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Abstract

It is well known that buckling instabilities occur when elastic solids are subject to compressive

stresses. However, this does not preclude the occurrence of instabilities in systems subject to

global tensile loads. Such tensile instabilities may be caused by certain discontinuities (geo-

metrical or material) which re-distribute the stresses applied on its boundary, generating local

compressive stresses inside the solid. This research deals with the tensile instabilities in elastic

solids by using linear bifurcation analysis, which leads to eigenvalue problems. Then the links

between mechanics and mathematics in these tensile instabilities/eigen-systems are demon-

strated by using a combination of both numerical and asymptotic analyses. Three main prob-

lems have been investigated: a hybrid energy method on edge-buckling, the tensile wrinkling of

a stretched bi-annular plate, and the tensile instabilities developed in a radially stretched thick

cylindrical tube.

We start by recording a coordinate-free derivation for Föppl–von Kármán equations and

the corresponding bifurcation equations (both weak forms and strong forms with their bound-

ary conditions) based on minimum energy principle. This set of equations is applicable to

anisotropic elastic thin plates in any planar geometries, which is then specialised for the bifur-

cation problem of isotropic elastic plates, and a further case under in-plane loading.

In the first main problem, we propose a hybrid energy method which provides an accurate

and computationally efficient algorithm for the instability analysis of a class of edge-buckling

problems. This algorithm is based on the existing simplest asymptotic approximations and an

energy principle (weak form for bifurcation). Fairly accurate and robust approximations can

be achieved for both the critical buckling load and mode number even though the simplest

asymptotic ansatz is employed. We also explore a number of additional mathematical features

that have an intrinsic interest in the context of multi-parameter eigenvalue problems.

Then we consider the wrinkling instabilities of a stretched bi-annular plate, which consists

of two fully bonded concentric annuli with different mechanical properties. The effects of the

mechanical and geometrical parameters on critical wrinkling are studied, using both numerical

and asymptotic techniques. It is found that the critical external buckling loading, the wrinkle

numbers and the wrinkled-shape can behave completely differently compared with the single-

annular case. The influence of discontinuities (the interface between these two annuli) on

localised instabilities is also illustrated thoroughly. Finally, a WKB analysis is conducted

i



which provides accurate approximations.

In the third problem, we consider the bifurcation of an infinite thick cylindrical tube made of

St. Venant–Kirchhoff elastic material, subject to radial tensile loading on both inner and outer

walls. In particular, linear Lamé solutions in plane-strain are taken for the pre-bifurcation state,

and the bifurcation equations are obtained by using Biot’s incremental bifurcation theory. The

bifurcation of this plane-strain problem is completely different from the corresponding plane-

stress case. Numerical investigations reveal two main bifurcation modes: a long-wave local

deformation around the central hole of the domain, or a material wrinkling-type instability

along the same boundary. Strictly speaking, the latter scenario is related to the violation of

the Shapiro-Lopatinskij condition in an appropriate traction boundary-value problem. It is

further shown that the main features of this material instability mode can be found by using a

singular-perturbation strategy.
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Chapter 1

Basic concepts and research

context

1.1 Introduction

In this first chapter we present the background for the work included in the Thesis and introduce

some of its main themes. The motivation for the mathematical investigations reported in the

later chapters comes from wrinkling phenomena. In Solid Mechanics wrinkling is commonly

understood as a particular form of buckling characterised by a short-wavelength deformation

pattern. It is typically encountered in thin sheets and is present in a range of overwhelmingly

familiar situations; a number of such examples are included in Figure 1-1.

Figure 1-1: Everyday wrinkling.
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1.1. Introduction

The mechanical behaviour of thin elastic plates or shells is intimately dictated by the geomet-

rical separation of scales that allows bending deformations more easily than in-plane shearing or

stretching. Most of the interesting fine-scale patterns observed on these structures in response

to imposed far-field loading originate in their differential bending/stretching properties.

Wrinkling, just like traditional buckling instabilities, requires the presence of compressive

stresses. However, this does not preclude the occurrence of wrinkles in systems subject to global

tensile loads. Indeed, geometrical discontinuities in an elastic solid are known to re-distribute

the stresses applied on its boundary, thus leading to unexpected regions of compressive stresses

inside the solid. A classical example is the famous Kirsch Problem (see pp.75-77 in [117])

concerning the distribution of stresses in a thin elastic plate with a hole at its centre, and

subjected to pulling forces on two opposite edges. Figure 1-2 gives a graphical representation

of the (linear) classical solution. If the plate is sufficiently thin, when the magnitude of the far-
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Figure 1-2: Elastic stress concentration around a hole in a rectangular plate subjected to uniform
tensile forces on the horizontal sides and traction-free on the other two boundaries. ‘Red’ identifies
regions of compressive (negative) azimuthal stresses, ‘dark blue’ is used for large tensile (positive)
stresses, and the areas shown in ‘pale blue’ are only modestly affected by the presence of the hole.

field tractions exceeds a critical threshold the originally flat plate deforms out-of-plane, resulting

in (possibly) unwanted effects. Interestingly, until recently such phenomena have received only

sporadic attention in the literature. Most investigations have dealt with either purely numerical

or experimental aspects (e.g., [18, 61, 111, 113]). Mansfield [85] seems to have been the first

to examine elastic wrinkling of an annular plate uniformly stretched along the inner rim and

traction-free on the other boundary. Other interest in similar situations came from modelling

deep-drawing processes [115], and involved plastic effects [25, 109, 128, 129, 130].

In the two-dimensional approximation theories of Linear Elasticity there have been nu-

merous studies that extended the Kirsch Problem to different hole geometries and loading

Eigenvalue problems & elastic instabilities 2



1.2. Linear bifurcations and formulation strategies

conditions. Most of them are focused exclusively on the calculation of certain stress intensity

factors and ignore any instability phenomena. An extensive collection of results along this line

can be found in the classic text by Savin [108] (also, reference [87] contains some chapters with

more recent material).

Recent interest in wrinkling of thin films or membranes comes from biomedical applications

[21] and biologically-inspired problems [22, 23]. Relevant questions in these areas involve the

dependence of the length and the number of wrinkles on the intensity of the applied load or

some geometrical characteristics. Of particular interest are also various scaling laws involving

the thickness of the films [23]. Given the unwieldy nature of the nonlinear equations usually em-

ployed for describing the post-wrinkling regime (i.e., far from the onset of the instability), most

authors have resorted to ad-hoc arguments, numerical simulations and curve-fitting results.

The route we take is quite different, in the sense that we regard wrinkling as an eigenvalue

problem and confine our attention to the linearised effects that describe the incipient stage of

wrinkles rather than their evolution far from the critical load values. While this is admittedly

more limiting than a nonlinear analysis, it does permit us to explore analytically the wrinkling

phenomena in considerably more depth than it would be possible within a nonlinear framework.

The scope of the investigations presented in the Thesis and their relationship to the literature

is amplified in §1.4. Our immediate aim is to introduce in some detail the mathematical

models used in the next chapters, the formulation theories of the bifurcation equations in solid

structures, such as the Calculus of Variations and the Method of Adjacent Equilibrium. Then,

a detailed description of the concept of neutral stability envelope is given, which is one of the

central themes of this work as it will be recurring in each of the following chapters. Finally, we

provide an overview of the Thesis.

1.2 Linear bifurcations and formulation strategies

The physical phenomena investigated in this Thesis fall within the class of linear bifurcations

and are closely related to the coexistence of different mechanical states for certain critical load

values. Notice that in the literature the terms ‘stability’ and ‘bifurcation’ are used interchange-

ably. There are two main strategies in formulating linear bifurcations in static problems. The

first one belongs to the province of the Calculus of Variations (CV ) and entails a study of

the second variation of the total energy (its sign or its various coerciveness properties). An

extensive discussion can be found in [12, 75, 76]. In this section, we will first outline some

fundamental ideas on the CV for conservative systems (the application of CV is on full display

in Chapter 2 where we derive the Föppl–von Kármán plate theory and bifurcation equations).

Then we move on to the Method of Adjacent Equilibrium (MAE), which can be used alter-

natively in all problems investigated in this Thesis, and will be particularly demonstrated in

the problem discussed in Chapter 5. It is important to keep in mind that this is not the only

Eigenvalue problems & elastic instabilities 3



1.2. Linear bifurcations and formulation strategies

strategy available for exploring linear bifurcations. Other options include the energy method,

which will be reviewed in some detail in the next chapter as applied to the class of bifurcations

for thin elastic plates, and the dynamic method on which we touch only briefly below.

1.2.1 Calculus of Variations

The Calculus of Variations (CV ) is actually based on the extension of the principle of

virtual displacements to static elastic bodies with infinite degree of freedom. Here we assume a

conservative system (an elastic system under the action of conservative loading), with potential

energy V = E + Ve (where E is the strain energy and Ve the potential energy of external

loads). If we use u to describe the displacement field of the elastic body, we can obtain

an expression for the potential energy functional in which only the displacement u (rather

than stress) appears. Given an arbitrarily small variation εu1 to the displacement u (where

0 < ε≪ 1 and maxx∈Ω |u1| = 1), the change in potential energy ∆V can be expanded in terms

of Taylor’s series as

∆V = δV(u)[u1] +
1

2!
δ2V(u)[u1,u1] + . . . ,

Then the stationary point of V , when the conservative system is in equilibrium, is given by

δV(u)[u1] = 0 . (1.1)

We mention in passing that this also leads to the principle of virtual displacement: δE =

−δVe. According to some basic arguments in CV , we can obtain the governing equations

and boundary conditions for the equilibrium in terms of displacement u (for example, the

equilibrium equations involving u alone as (3.26) on p.87 in [19]). There is no loss of generality

to assume that such equilibrium is governed by a (possibly vector) differential equation for the

non-dimensional displacement field u,





L(u;λ) = 0 in Ω ,

B(u;λ) = B∗ on ∂Ω ,

(1.2)

where λ > 0 denotes some dimensionless loading parameter, L and B represent time-independent

nonlinear differential operators, and B∗ is a known constant expression defined on ∂Ω. Here Ω

is assumed to be a bounded domain in R2 or R3, as this is the prevalent situation in the Thesis.

Assume further that a certain particular solution ů, the basic state, is available by solving the

system (1.2) with a given λ: it may be known explicitly in closed form or it may be available

only numerically.

When δV = 0, the sign of ∆V now depends on that of δ2V. The local minimum of the

potential energy (‘stability’) requires that the second derivative must be nonnegative: δ2V ≥ 0.

More specifically, as the loading parameter λ in (1.2) is sufficiently small, the second variation

Eigenvalue problems & elastic instabilities 4



1.2. Linear bifurcations and formulation strategies

is positive definite. As λ increases, δ2V might go from positive to zero, when the system loses

stability. The loss of stability is defined by the critical state which is caused by the smallest

loading parameter λC for which δ2V is no longer positive definite for at least one variation

u1 (denoted by δu1). In order to find the minimum external loading λC and corresponding

bifurcation mode u1C , we take the variation of the second variation of the energy functional,

namely,

δ
{
δ2V(λC ,u1C)

}
[δu1] = 0 . (1.3)

Similarly, we can get the governing equations together with the boundary conditions for such

a critical (bifurcation) state by using the CV arguments on the above equation.

1.2.2 Method of Adjacent Equilibrium

Indeed, the governing equations obtained by CV can alternatively be pursued by applying

the Method of Adjacent Equilibrium (MAE) procedure on the equilibrium equation (1.2).

MAE has its origins in Euler’s analyses of compressed elastic rods. Its gist lies in the fact

that under certain conditions the equilibrium solutions of (nonlinear) elastic systems are not

unique, that is, under given boundary conditions and prescribed loads these systems can have

more than one equilibrium configuration (e.g., a compressed rod could be straight or buckled).

Assuming that we already have governing equations (1.2) for the basic state, which is allowed

to be inhomogeneous, this does not play any role in the following discussion.

The next step is to postulate the existence of an adjacent (i.e., as close as one pleases to the

original) equilibrium state under constant load. This will be characterised by a displacement

εu1 (0 < ε ≪ 1 and maxx∈Ω |u1| = 1) with reference to the basic state, so it is expected that

u = ů+εu1 will satisfy the same equilibrium equations (1.2). Owing to the infinitesimal nature

of this secondary state, we can write

L(ů+ εu1;λ) = L(ů;λ) + εLlin(u1; ů, λ) + O(ε2) ,

B(ů+ εu1;λ) = B(ů;λ) + εBlin(u1; ů, λ) + O(ε2) ,

where the ‘lin’ label on the right-hand sides of these equations indicates that the corresponding

operators are linear in u1, but may depend nonlinearly on the basic state ů. On subtracting

the corresponding differential equations for the two adjacent states, dividing through by ε, and

then ignoring the O(ε)−terms yields





Llin(ů;u1, λ) = 0 in Ω ,

Blin(ů;u1, λ) = 0 on ∂Ω ,

(1.4)

which are actually the same as we would have obtained from (1.3) using the previous CV

Eigenvalue problems & elastic instabilities 5



1.2. Linear bifurcations and formulation strategies

strategy. The mathematical justification of the approach of MAE requires the existence of

a variational structure for (1.2), as shown earlier in (1.1). Knops and Wilkes (pp.224-228 in

[75]) give an informative discussion of the theory behind the validity of MAE. More readable

accounts covering similar material can be found in [19] and [79].

These equations lay at the foundation of most bifurcation analyses in elastostatics. Be-

cause the boundary conditions in (1.4) are homogeneous and Ω is bounded, the existence of

a nontrivial u1 turns out to be possible only for a discrete set of values of λ, the so-called

spectrum of the linearised problem. For problems that have a variational structure (e.g., (1.1))

the differential system (1.4) is self-adjoint and standard results from Functional Analysis (e.g.,

[123]) guarantee the existence of such values of λ. It is the lowest positive such critical number

which is important in applications.

We mention in passing that alongside λ there are other parameters that appear in equation

(1.4) – mechanical constants, aspect ratios, etc. When solving this equation one is usually

interested in the locus of λ as a function of one of these parameters, in some two-dimensional

plane. The diagram obtained by graphically representing this dependence makes it possible to

determine the so-called neutrally stable states of the particular configuration under investiga-

tion. Since the second variation is not involved in such analyses, strictly speaking the points

on these curves identify only the coexistence of at least two potential distinct states. Whether

they are stable or unstable in a physical sense is a different matter.

However, large classes of elasticity problems with non-conservative loading must be analysed

within a broader framework in which time effects are accounted for right from the outset. Such

strategies bring elastic stability closer to the general theory of stability of motion and its

applications in other fields such as Fluid Mechanics, for instance.

1.2.3 Dynamic Method

The other general strategy used for analysing linear bifurcations is the Dynamic Method

that amounts to the study of small oscillations superimposed on the basic state [79, 120]. The

first equation in (1.2) is replaced by its dynamic counterpart, that usually can be cast in the

form

L(u;λ) = ∂2u

∂t2
.

Following the linearisation procedure outlined above one arrives at

Llin(u1; ů, λ) =
∂2u1

∂t2
.

The solution of the last equation is sought in the form u1 = ûeiωt, where the arbitrary amplitude

û depends on the spatial coordinates; ω is a complex-valued constant that needs to be found and

plays the same role as λ in (1.4). On substituting this expression into the linearised equation

Eigenvalue problems & elastic instabilities 6



1.2. Linear bifurcations and formulation strategies

one finds a “static” problem

Llin(û, ω; ů, λ) = 0 ,

with Llin a time-independent differential operator with real coefficients. The main task is to

study the dependence ω = ω(λ) and identify how the sign of the imaginary part of ω changes

as λ is varied. A negative such imaginary part will lead to some disturbances u1 which grow

exponentially in time. According to the Lyapunov criterion of stability the values of λ for

which this happens will correspond to unstable states. It must be clear that for self-adjoint

problems MAE is just a particular case of this method since in that case all ω2’s are real; if

the dependence of ω on λ is continuous then the critical values obtained by the static method

are recovered by solving the (implicit) equation ω(λ) = 0 (e.g., see [79]).

iω1(λ)

stable

iω2(λ)
λ = λC

unstable

Im(s)

Re(s)

iω1(λ)

stable

iω2(λ)

λ = λC

unstable

Im(s)

Re(s)

Figure 1-3: Typical behaviour of the characteristic exponents for the static instability (left) and
the oscillatory instability (right). In the former case one of these exponents crosses into the right
half-plane via the origin when λ = λC and then remains on the real axis. For the oscillatory
instability the crossing takes place at some other location on the imaginary axis.

In discussing the effect of stability by the dynamic method it is customary to use the

so-called characteristic exponents s := iω. With this notation, stability amounts to all of

these exponents being in the left-hand plane. As λ is incrementally increased or decreased,

the location of these quantities changes. The smallest positive value of λ for which at least

one of the characteristic exponents crosses the imaginary axis identifies the critical values of

the eigenvalue, λC , say. There are many ways in which this can happen, depending on the

particular situation investigated. Two important generic situations can be distinguished, as

shown in Figure 1-3. On the left one of the characteristic exponents passes through the origin

before it enters the right-hand plane and remains purely real for λ ≃ λC+. This is the so-

called static instability that can be captured with the MAE explained above. In the second

example on the right, one exponent enters the right half-plane at some point of the imaginary

axis (different from the origin O), leading to an oscillatory instability or flutter. For λ ≃ λC+
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1.3. The neutral stability envelope

the behaviour of u1 in the two cases is rather different: in the first situation disturbances grow

monotonically in time, while in the second case this increase has an oscillatory nature.

Some authors (e.g., [1]) have used the dynamic method to solve static wrinkling problems,

but the extra overhead required by this technique does not justify its use in this Thesis since

the same results can be reached more expediently by employing the standard MAE.

1.3 The neutral stability envelope

A central role in all investigations in this work will be played by the concept of the neutral

stability envelope (NSE). It is difficult to give a general definition since such envelopes are not

uniquely defined and they are highly sensitive to the choice of non-dimensional scalings used for

the problem at hand. Instead, we prefer to introduce the NSE by looking at two simple elastic

stability problems that share some common characteristics with what will appear later in the

Thesis; our presentation follows [3, 19, 119] to a certain degree. One of the main simplifying

features in both examples is the constant-coefficient nature of the governing differential equa-

tions. Here we record the bifurcation equations for isotropic elastic thin plates under in-plane

loading

D∇4w − N̊ : (∇ ⊗∇w) = 0 , (1.5)

whose detailed formulation is contained in Chapter 2 and finally arrives at (2.40a).

Let us consider a thin elastic plate simply supported on all four edges and subject to

uniform compressive in-plane loads acting in the direction of the x-axis. The (linear) basic

state is characterised by N̊11 = N > 0, N̊12 = N̊22 = 0, so that the first equation in (1.5)

reduces to

D∇4w −N
∂2w

∂x2
= 0 . (1.6)

The simply-supported boundary conditions can be expressed as

w =
∂2w

∂x2
= 0 , on x = 0, a , (1.7a)

w =
∂2w

∂y2
= 0 , on y = 0, b . (1.7b)

Motivated by the fact that (1.6) represents a constant-coefficient equation, its solution is sought

in the form

w(x, y) = C sin(pmx) sin(qny) , (1.8)

that can be seen to satisfy (1.7) a priori. Here, pm := mπ/a and qn := nπ/b depend on

the arbitrary positive integers m,n ∈ N that must be determined as explained next. On
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1.3. The neutral stability envelope

substituting (1.8) into (1.6) we find immediately that

N =
D

p2m

(
p2m + q2n

)2
, (1.9)

i.e., N ≡ N(m,n). No proper eigenvalue problem is solved here because we were able to guess

the eigenmodes right from the start, so the boundary conditions play no role after postulating

(1.8). This is an exceptional situation that is no longer true in more complicated scenarios.

The critical buckling load Ncr, say, is identified as the smallest positive value of this expression

or, in other words,

Ncr = min
m,n∈NN(m,n) .

Given that the behaviour of (1.9) with n is monotonic increasing, we must obviously set n = 1,

thus yielding

N =
Dπ2

b2

(
m

η
+
η

m

)2

≡ D
(π
b

)2
Φ2(m; η) , (1.10)

where η := a/b, a geometrical parameter that characterises the slenderness of the plate. Min-

imising the new value of N with respect to m ∈ N will entail carrying out that process on Φ.

As a consequence, the critical value of m obtained from solving ∂Φ/∂m = 0 will depend on η.

If η < 1 (i.e. the plate is wider than its length), m/η > η/m and Ncr always corresponds to

m = 1. As the length-to-width ratio η increases, the buckling load will increase and the plate

will tend to adopt a neutrally stable configuration for which m > 1. By way of example let us

examine the inequality

N(m, 1) ≤ N(m− 1, 1) ,

which expresses the condition under which a plate of aspect ratio η will buckle into m half-sine

waves in the loaded direction, rather than m = 1. Simple algebra gives

η2 ≥ m(m− 1) ,

and we can immediately see that the plate will experience buckling in two half-sine waves rather

than one when η ≥
√
2, in three rather than two when η ≥

√
6, and so on – see Figure 1-4. A

plot like this is particularly useful as it provides an expedient means of identifying the critical

load and the corresponding mode number associated with a given aspect ratio η.

The overview given above paints a somewhat distorted picture because it relies heavily

on the explicit-form solution (1.8). In general, if the simply-supported boundary conditions

are abandoned, one must account for more freedom in the assumed expression of w. An

example that anticipates the work in the later chapters is described next. This involves, again,

a rectangular elastic plate simply supported on the edges x = 0, a, and some other type of

constraints (as yet unspecified) on the sides y = 0, b. Since (1.7b) still applies, a solution can

Eigenvalue problems & elastic instabilities 9
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Figure 1-4: The influence of the aspect ratio η on the mode number m ∈ N for the bifurcation
of rectangular plates with two different sets of boundary conditions. The blue curves are obtained
by plotting the curves of Nb2/π2D with respect to η for a family values of m, and we note that
it is only the solid line that is physically relevant (this is the so called neutral stability envelope of
the given eigenproblem). The left window shows the the case when all four edges of the plate are
simply supported, corresponding to the equation (1.10); the right plot includes the results of (1.13),
in the case when the plate is simply supported on the edges x = 0, a and y = 0, while the other
edge, y = b, is traction-free.

be sought in the form

w(x, y) =W (y) sin(pmx) , (1.11)

where pm has the same definition as in the previous example and the arbitrary function W

accounts for the changes in the boundary conditions.

The result of plugging (1.11) into (1.6) indicates that the amplitude W ≡ W (y) satisfies

the differential equation

d4W

dy4
− 2p2m

d2W

dy2
+ p2m

(
p2m − N

D

)
W = 0 .

Its general solution can be expressed as

W (y) = C1e
−αy + C2e

αy + C3 cos(βy) + C4 sin(βy) ,

where

α :=

(
pm

√
N

D
+ p2m

)1/2

and β :=

(
pm

√
N

D
− p2m

)1/2

,

and Cj ∈ R (j = 1, 2, 3, 4) represent constants that are to be determined by applying the

remaining boundary conditions for w. We shall assume, for example, that the side y = 0 is
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1.3. The neutral stability envelope

simply-supported so that (1.7b) still holds, and the edge y = b is stress-free, which amounts to

∂2w

∂y2
+ ν

∂2w

∂x2
=
∂3w

∂y3
+ (2 − ν)

∂3w

∂x2∂y
at y = b . (1.12)

Use of (1.11) in (1.7b) gives immediately C3 = 0 and C1 = −C2, leaving us with W (y) =

A sinh(αy) + B sin(βy) after a suitable relabelling of the constants (A,B ∈ R). With this

information in (1.12), we find the homogeneous system

[
(α2 − νp2m) sinh(αb)

]
A−

[
(β2 + νp2m) sin(βb)

]
B = 0 ,

{
α
[
α2 − (2− ν)p2m

]
cosh(αb)

}
A−

{
β
[
β2 + (2 − ν)p2m

]
cos(βb)

}
B = 0 ,

whose non-trivial solvability demands that the determinant of the coefficient matrix vanishes,

i.e.

(βb)
[
(αb)2 − ν(pmb)

2
]2

tanh(αb) = (αb)
[
(αb)2 + ν(pmb)

2
]2

tan(βb) , (1.13)

where

αb =

[(
mπ

η

)2

+
mπ

η

√
Nb2

D

]1/2
,

βb =

[
−
(
mπ

η

)2

+
mπ

η

√
Nb2

D

]1/2
.

Owing to its transcendental nature, the determinantal equation (1.13) must be solved numeri-

cally to identify the dependence of N on m for a given η and D. This is then used to identify

the critical values of the applied load and the preferred mode number. The comparison of

the neutral stability curves (NSE) between two cases in Fig. 1-4 suggests that: even though

the NSE’s of these two cases are of similar tendency, a free boundary condition reduces the

anti-buckling ability (NSE’s magnitude) of the plate.

Moreover, if we change the boundary conditions on the edges x = 0 and a (along which the

compressive loads are applied) into clamped ones, this problem becomes complicated when one

is trying to obtain the eigenvalues or eigenmodes. That is because the normal-mode approach,

such as (1.8) and (1.11) adopted in the previous two examples, is no longer applicable. Instead,

we can solve the partial differential equations directly using some numerical techniques, such

as finite different method or finite element method. For example, if we consider the boundary

conditions

w =
∂w

∂x
= 0 , on x = 0, a , (1.14a)

w =
∂2w

∂y2
= 0 , on y = 0, b , (1.14b)
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we can use finite different formulae to discretise the eigen-PDE problem into a generalised

eigenvalue problem. Then we can obtain the eigenvalue with smallest magnitude, together

with the associated eigenvector. This eigenvalue indicates the critical external force, while the

eigenvector approximates the buckling configuration. In the right graph of Fig. 1-5 we record

the uni-axially compressed plate with the boundary conditions specified in (1.14), compared

with the left plot where all edges are simply supported as discussed earlier. It can be seen from

4
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Figure 1-5: Comparison between two types of neutral stability envelopes (NSE) developed by
the same rectangular plate subject to two sets of different boundary conditions. The left window
records the NSE when all four edges simply supported (the same as the left window in Fig. 1-4);
while the right records the NSE for the case when the plate is simply supported on the edges y = 0
and b, and the other edges, x = 0 and a, are clamped.

Fig. 1-5 that, clamped boundary conditions enhance the resistance capability of buckling for

the plate; moreover, clamped supports on the uniaxial compressive loading boundaries will lead

to gradually decreasing envelopes (see the right plot of Fig. 1-5) rather than horizontal ones

when the same boundaries are simply supported (see the left window in Fig. 1-5).

So far, we have shown the neutral stability envelope (NSE) in terms of the bifurcation

of an uni-axially compressed plate under a variety of boundary conditions. To conclude, the

NSE is very sensitive to the boundary conditions. In other words, the boundary conditions

play a pivotal role on NSE: not only on its amplitude, but also on the way that the response

curves intersect with each other, thus, the tendency of the NSE. These findings will repeatedly

appear in the bifurcations within more complex geometries in later chapters.

1.4 Literature review

The remainder of this chapter gives a general overview of partial wrinkling phenomena in elastic

systems by tracing their historical development from the early pioneering works in the first half

of the twentieth century through to some of the modern developments that constitute the
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object of much research interest nowadays. In the next section we trace a number of relevant

contributions using a classical approach that is based on tension field theories. That is followed

by a more in-depth analysis of the singular perturbation approach initiated by Coman and his

associates, while the last part of this section will touch briefly on various numerical strategies

that have been used to explore wrinkling for structures in tension, and which are pertinent to

the problems targeted in the subsequent parts of the Thesis.

1.4.1 Tension field theories and classical approaches

While the rudiments of classical elastic stability were developed by Euler more than three

hundred years ago, and the mathematical study of compressive buckling in elastic plates was

already well under way in the late 1800’s, the role of tensile and shearing forces on similar in-

stabilities was not recognised until much later. It was the development of the aircraft industry

and the need for a more efficient design of wings that motivated the first tension field theories

through the works of the German engineer Wagner [125] and some contributions by Eric Reiss-

ner [101]. This framework is applicable to wrinkling phenomena understood as a post-buckling

equilibrium configuration and load transmission mode in membranes, thin-walled shear panels,

elastic shells, and other similar structural components.

Tension field theories were further developed by Stein and Hedgepeth in the mid-1960’s [116],

who introduced the concept of variable Poisson’s ratio that permits “over-contraction” in the

direction of the minor principal stress. Their work was confirmed by the experimental results of

Mikulas [88] which displayed excellent correlation with the theory, albeit for a limited range of

practical configurations. In recent times this approach has also been used by Coman [30] to treat

the localised wrinkling of radially stretched membranes with prescribed displacements applied

to the outer and inner rims. His results captured a number of both qualitative and quantitative

features revealed by the numerical post-buckling analysis performed by Geminard et al. in [59]

for a related configuration. The original motivation for the study of these latter investigators

came from a biomechanical application and was related to the fact that the quantitative analysis

of wrinkled patterns produced by living cells crawling on polymer nanomembranes could give

an indication of the force applied by the cell cytoskeleton. Biomedical applications and the

development of nanoscience are partly responsible for the renewed surge of interest in wrinkling

problems in the past decade. Lubarda [83] dealt with an extension of [30] by considering a

number of different boundary conditions and/or loading situations.

A general and far-reaching extension of the early tension field theories to problems involving

finite elastic deformations was achieved by Pipkin and Steigmann [97] by employing the relaxed-

energy approach.

One must bear in mind that, irrespective of the type of kinematics adopted, tension field

theories are just approximations whose accuracy cannot be gauged easily. It is interesting to

note that recently such theories have been challenged by comparing their predictions to full
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finite element simulations. By considering the tension field due to twisting of a central hub in an

initially stretched membrane (with small bending stiffness), Iwasa et al. [68] showed that there

are wrinkled regions of the membrane in which the tension field solution is at variance with

the numerical results based on nonlinear bifurcation theory. This is not the first instance when

such discrepancies have transpired. An earlier study by Rimrott and Cverko [103] examined

the gravity-induced wrinkling in vertical membranes (the so-called “wet blanking problem”),

a situation discussed by Mansfield [86] a few years before them by using a special theory of

tension field theory valid for nonlinear thin elastic plates. The former authors showed that the

introduction of a critical compressive stress perpendicular to wrinkles does lead to results that

better match the experimentally observed patterns.

All works cited above have been carried out within the framework of elastostatics, time-

dependent effects being ignored completely. This is a sensible approximation for a wide range

of situations, although there are circumstances in which the dynamic character of the wrinkling

phenomenon or the kinetic properties of the material response cannot realistically be ignored.

Such effects have been taken in consideration in a number of recent works. In an interesting

paper Vermorel et al. [122] looked at the transverse impact of rigid projectiles on a circular rub-

ber membrane by using analytical, numerical, and experimental techniques. They found that

on impact of the membrane the projectile gives rise to two axisymmetric waves: the first is a

tensile wave propagating at the speed of sound and leaving behind a stretched domain; the sec-

ond, a transverse wave, propagates on this domain at a lower speed. In the stretched area, due

to geometric confinement compressive radial stresses are induced that result in time-dependent

circumferential buckling similar to the static situation reported by Coman and Haughton in

[47]. The time-evolution of these buckling patterns as well as their wavelength were studied

by using numerical simulations and a number of simplifications. Lubarda and Marzani [84]

have also dealt with time-dependent phenomena in the wrinkling of a stretched annulus with

no bending stiffness, but their interest was in viscoelastic behaviour. Although these authors

stated that their interest in the problem was motivated by applications to red blood (erythro-

cyte) membranes, they used small-strain kinematics and made the assumption that the elastic

strains admit an additive decomposition into an elastic and, respectively, a viscoelastic part,

which seems rather restrictive. Given the scarcity of the existing results in the literature there

is ample scope for extending such viscoelastic analyses to thin plates as well, even though the

mathematical models might tend to be rather cumbersome and intractable from an analytical

point of view (e.g., see [17]).

1.4.2 Singular-perturbation results

The application of asymptotic methods for describing partial wrinkling phenomena in thin

elastic plates in tension has a more recent history. In a number of recent investigations [28, 29,

31, 32, 33, 34, 39, 40, 41, 42, 44, 47], Coman et al. have explored several non-trivial features of
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the bifurcation equation (to be obtained in Chapter 2 with the form (1.5)) for the case when

the initial pre-buckling stress distribution was inhomogeneous. The work of these investigators

was based on the classical normal-mode approach and revolved around a class of eigenvalue

problems for a fourth-order linear differential equations with variable coefficients that were cast

in the form

W ′′′′ +A3(ρ)W
′′′ +A2(ρ;µ, n, λ)W

′′ +A1(ρ;µ, n, λ)W
′ +A0(ρ;µ, n, λ)W = 0 , (1.15)

where ρ is the dimensionless independent variable, the prime represents the derivative with

respect to ρ, and the coefficients Aj (j = 0, . . . , 3) exhibited dependence on the non-dimensional

variables/parameters indicated above. Here µ ≫ 1 is directly linked to the small thickness of

the plate and the presence of tensile forces in the pre-buckling phase, while λ represents the

eigenvalue (some combination of the various loading parameters). As in the simpler examples

discussed in §1.3 the amplitude function W for which the equation (1.15) is solved comes

from the normal mode solution and n ∈ N denotes the mode number which forms part of the

unknowns.

Unlike in the two examples already seen in §1.3, a closed-form solution of (1.15) is not

available, so new strategies had to be developed in order to obtain useful analytical results.

Owing to the asymptotic nature of µ, it turned out that various approximations could be

found, hence leading to a number of simple and practical formulae for both the critical load

and the mode number as a function of µ.

It is the arbitrary mode number in (1.15) that is largely responsible for compounding the

difficulties associated with the presence of variable coefficients. As seen already in the previous

sections, to find the physically relevant values of this parameter one has to plot the response

curves and identify their envelope (similar to the thick blue lines seen Figures 1-4 and 1-5).

Alternatively, this critical value of the mode number is obtained as the global minimum of the

curve

λ ≡ λ(n) . (1.16)

One of the difficulties here originates in the implicit nature of this relationship. In references [41,

44], the crucial step in capturing this information through analytical means was the observation

that n ∼ µα as µ ≫ 1, where α = 3/4 for a whole range of different geometries and/or

prebuckling scenarios (see Figure 1-6). The constancy of the exponent α ∈ R across a whole

range of different problems was linked to the FvK equations used in all of those investigations;

the in-plane nature of the initial loading was also deemed to play a significant part. For the

case of the elastic instability associated with the stretched and twisted elastic strip discussed

in [42] this exponent was equal to 1/2. It was conjectured that α might have a different value

for other types of bifurcation equations, although the problem is still open.

Two distinct asymptotic approaches were used in describing the neutral stability envelope
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Figure 1-6: Sketch of the neutral stability curves for the buckling problems discussed in [40, 41].
The critical eigenvalue is indicated by ‘C ’, and was found to reside within an O(µ3/4)-layer indicated
by the labelled region in this picture.

of (1.15). The original study by Coman and Haughton [47] relied on WKB methods to extract

some information about the general (not necessarily critical) response curves (1.16) when both

n ≫ 1 and µ ≫ 1. A first application of the WKB method using the latter assumption and

treating n ∈ R as a fixed parameter allowed the reduction of (1.15) to a second-order eigenvalue

problem

B2(ρ;µ, n, λ)W
′′
+B1(ρ;µ, n, λ)W

′
+B0(ρ;µ, n, λ)W = 0 , (1.17)

where W was introduced here to distinguish with W in the original equation (1.15), and the

coefficients Bj (j = 0, 1, 2) were obtained from the original equation and had somewhat simpler

expressions. Since the order of the differential equation had dropped to two, it was necessary to

investigate which of the original four boundary conditions of (1.15) had to be discarded. This

was achieved through a second application of the WKB method, this time using n ≫ 1, in

conjunction with the asymptotic simplification of the 4 × 4 determinantal equation associated

with the original problem.

In [41, 43] Coman and Bassom exploited the localised nature of the eigenmodes of (1.17)

for large µ and n, by further reducing the already simplified eigenvalue problem to an algebraic

equation; that was then solved by perturbation methods involving n−1/3 as a small parameter.

The outcome was an expression of the form

λ = a0 + a1n
−1/3 + a2n

−2/3 + . . . , (1.18)

for some known coefficients aj ∈ R (j = 0, 1, . . . ). This represented an approximation for
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the originally implicit dependence (1.16), and was later plotted in order to identify the global

minima of those curves. The neutral stability envelope was obtained by substituting these

values of the mode number back into (1.18) for different choices of η’s.

One of the key ingredients in the strategy outlined above was the presence of a turning point

(TP ) in the reduced equation (1.17), where W
′
changes sign. This was related to the circular

boundary separating the regions of compressive and tensile stresses in the membrane (µ = 0),

but was not exactly equal to it. As shown in [43] for the azimuthal shearing of a radially

stretched membrane, the relationship between these points is akin to a regular perturbation.

The tendency of the TP was to migrate towards one of the plate boundaries as µ→ ∞, and it

was this particular characteristic that allowed the reduction from the differential equation (1.17)

to a simple algebraic relationship. This property of the turning point is typically encountered in

similar eigenvalue problems with localised eigenmodes that crop up in the area of hydrodynamic

stability (e.g., [53]).

The novel asymptotic arguments that led to (1.17) relied on a characteristic property of

the response curves, regarded as λ = λ(η;n). In this formula λ is a function of the aspect

ratio η, with n being a secondary parameter. Coman and Haughton [47] discovered that these

curves exhibit two distinct types of behaviour. For n ≪ µ1/2 the eigenvalues were found to

increase with η, while the corresponding buckling load decreased as the mode number was

increased. This behaviour is reminiscent of that encountered in membranes, which tend to

adopt energy-minimimum configurations with a large number of wrinkles (strictly speaking,

an infinite number). However, the presence of bending stiffness inhibits that tendency as one

stage is reached when n = O(µ1/2) and subsequently n ≫ µ1/2. It turned out that the energy

configurations available within the latter range were the preferred ones, and the corresponding

response curves were seen to be very similar to those encountered in the compressive buckling

of thin elastic plates. By coupling this observation with the presence of the aforementioned TP

facilitated the reduction of (1.15) to two qualitatively different versions of (1.17), although it

was only one of them that was relevant to identifying the critical values of the load and the

mode number. Figures 1-7 and 1-8 illustrate graphically the feature described above for the

annular plate discussed in [47].

While the WKB approach does permit easy access to a number of analytical features of

the wrinkling problems studied in [41, 43] like, for instance, the description of the curves (1.16)

as n→ ∞, the critical neutral stability envelope can only be obtained after some intermediate

numerical work (see Figures 3 and 4 in [41]). To circumvent such difficulties, Coman and

Bassom proposed a more powerful strategy based on matched asymptotics and the interaction

between two boundary layers of thickness O(µ−1/2) and O(µ−1), respectively. The larger of the

two layers is directly related to the co-existence of tensile and compressive pre-buckling stresses

in the plate, and can be loosely referred to as the membrane boundary layer. The other is just a

consequence of the fact that in thin plates bending effects appear as a singular perturbation to
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Figure 1-7: Dependence of the response curves λ = λ(η;n) for the radially stretched annulus
discussed in [47] when µ = 400. The red curves on the left illustrate the membrane-like behaviour
(n ≪ µ1/2) while the blue curves on the right describe the plate-like effect (n ≥ µ1/2). The arrows
indicate the direction of increasing n ∈ N.
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Figure 1-8: The superposition of the two families of curves recorded in Fig. 1-7. Note that for
η ≥ 0.1 the neutral stability envelope involves only the blue curves.

stretching, so we can label this second one as the bending boundary layer. To make transparent

the ideas put forth in [41] we need to be a bit more specific, although we shall try to maintain

a general tone.

After the introduction of the appropriate boundary-layer variables it was assumed that as
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µ→ ∞ the critical mode number would expand as

n = N0µ
3/4 +N1µ

1/4 +N2µ
−1/4 + . . . , (1.19)

where Nj ∈ R were constants that had to be fixed by ensuring that (1.16) was minimised. To

this end the eigenvalue was also assumed to have a representation of the form

λ = λ0 + λ1µ
−1/2 + λ2µ

−1 + . . . . (1.20)

The coefficient λ0 corresponded to the value of λ for which the the prebuckling azimuthal

stresses first became equal to zero in the plane membrane case (µ = 0); the remaining λj (j ≥ 1)

turned out to be available from the boundary-layer analysis mentioned above. Interestingly

enough, the dependence of the coefficients in (1.20) on the Nj ’s that feature in (1.19) displayed

a certain pattern that allowed the strategy to work consistently to any degree of accuracy

required. In most of the published works (e.g., [32, 33, 34, 40, 41]) the first term in the

expansion (1.19) was sufficient, although higher-order calculations were shown to be feasible

in [44]. In general λ1 depends only on N0 (and other given parameters), i.e. λ1 = λ1(N0).

From (1.19) and (1.20), it transpires that λ = λ(N0, N1, . . . ), so that the critical envelope is

determined by the conditions

∂λ

∂Nj
= 0 , j = 0, 1, 2, . . . .

Asymptotically, this demands that ∂λ1/∂N0 = 0, an equation that immediately identifies the

critical value ofN0, say, N
∗
0 . Following a lengthy matching process of the asymptotic solutions in

the two boundary layers mentioned above, eventually leads to an expression of λ2 as a function

of both N0 and N1, i.e. λ2 = λ2(N0, N1), where the dependence on N1 is linear. While this

might seem as an impasse at this stage in the solution, evaluating λ2 at N0 = N∗
0 removes

the dependence on N1 and one is then able to get a three-term asymptotic approximation in

(1.20) even though it is just the first term in the other expansion (1.19) that is available. If the

calculations are taken to higher orders one finds that λ3 = λ3(N0, N1, N2) and the dependence

on N1 is now quadratic, whereas that on N2 is linear. The stationarity condition ∂λ3/∂N1 = 0

yields the critical value ofN1, say, N
∗
1 , and so on. In certain cases (e.g., see [42]) some variations

of this strategy were found, in the sense that µ−1/4 rather than µ−1/2 entered in the expansion

(1.20) and some of the coefficients λj in that formula were identically zero on evaluating them

at N0 = N∗
0 . However, the quadratic and linear dependence already mentioned, as well as the

partial derivative conditions demanded by the desired criticality, were recurring features in all

of the examples studied.
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1.4.3 Numerical strategies

Tension field theories do not require any special numerical techniques since the small thickness

of the plates or shells to which they apply is left out. Finite element simulations have been

used to study the wrinkling phenomena far away from the initial bifurcation point that marks

their onset.

The problems discussed in this Thesis are governed by PDE’s, which are subsequently

reduced to ODE’s via the customary normal-mode reduction in elastic stability (e.g., [3, 19,

119]). The traditional method of choice for solving boundary eigenvalue problems associated

with ordinary differential equations is the determinantal method (e.g., see [65]). However,

such approaches turn out to be ineffective when employed for problems with turning points;

this is exactly the case when partial wrinkling is present. Such difficulties have been long

recognised in other fields, although in Solid Mechanics these findings are much more recent

(e.g., [106]). For example, in the Fluid Mechanics literature it has been known for some time

that strategies based on the determinantal method are doomed to failure when used to solve

the Orr-Sommerfeld equation (e.g., see [53]), an archetypal example of fourth-order differential

equation with a turning point (although its nature is rather different from the kind of TP

encountered in partial wrinkling). Haughton and Orr [66] reported similar difficulties when

trying to solve the linearised eversion problem for hyperelastic cylindrical shells (incidentally

their problem also features a turning point).

A more successful technique is the compound matrix method described succinctly in [53] and

reviewed in considerably more detail by Lindsay and Rooney in [81]. The gist of this method is

the introduction of some auxiliary variables that are subsequently found to satisfy an auxiliary

higher-order linear system of differential equations that must be integrated so that a certain

target condition is met at one of the endpoints of the integration range. Unfortunately, even this

technique has its own limitations because the dimension of the auxiliary system tends to grow

quickly. For example, for a fourth-order problem the auxiliary system contains six equations,

while for one of sixth-order the system has twenty equations. While this is might still look

reasonable from a practical point of view, matters get out of hand for higher-order equations,

as for an eight-order problem one would have to integrate a system comprising seventy equa-

tions (even generating the relevant auxiliary equations is nothing short of a Herculean task).

Particular details of the compound matrix calculations relevant to the problems of this Thesis

appear in Appendix B.

Other methods that could be used to solve the eigenvalue problems in this Thesis include

standard packages based on finite differences or collocation methods, such as the Matlab suite

‘sbvp’ [10] or the standard boundary-value solver ‘bvp4c’. Before concluding our short account

of the numerical procedures adopted in this Thesis, it is interesting to point out a different

strategy that is usually insensitive to the presence of turning points and can be brought to

bear on a whole range of situations involving linear bifurcations. This is rooted in the classical
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perturbation method used extensively by Timoshenko and Gere [119] for simple beam and truss

structures. Recently, Jillella and Peddeson [71] followed up on some remarks made by Coman

in the introductory part of reference [37], and presented results obtained by this method for

the radially stretched annulus analysed in [41, 47].

The key observation regarding this approach is that the linear elastic stability problem

can be fictitiously perturbed by introducing an arbitrary imperfection, so that the governing

equations take the form

M[Φ]− λN [Φ] = f , (1.21)

where M and N are some differential operators and the equation is typically solved subject

to homogeneous boundary conditions. Here λ plays the role of a loading parameter, while the

arbitrary function f characterises the degree of imperfection; the unknown Φ and the (fixed)

right-hand side f are possibly multi-dimensional vector fields.

The original linear elastic stability problem corresponds to setting f ≡ 0. If N = I (the

identity operator) and the eigenproblem has only a discrete (simple) spectrum consisting of an

infinite sequence of numbers {λj}j≥0, it is a standard fact that

Φ =

∞∑

j=0

βj
λ− λj

Φj , (1.22)

where {Φj}j≥0 denotes the corresponding set of eigenfunctions and βj ∈ R are uniquely de-

termined by f (e.g., see [16]). In deriving the above expansion it was assumed that the eigen-

functions form a complete set, an issue that is far from trivial when the eigenproblem is not

self-adjoint. It is obvious that as λ→ λ±j0 then Φ → ∞, irrespective of how small the right-hand

side f is – a clear hallmark of structural instability. (The usual Fredholm solvability condition

is not invoked here because the right-hand side in (1.21) is understood as being arbitrary; while

it may be true that in some instances βj0 = 0 and hence Φ remains bounded as λ → λj0 , this

is an exceptional situation that one can choose to ignore in a general discussion.) In summary,

within this context one sets out by fixing an arbitrary (constant) value for the right-hand side

of (1.21), followed by solving the resulting boundary-value problem for a sequence of values of λ

increasing from some reference value (usually, zero). The approach towards the first eigenvalue

is signalled by a sharp increase of the L2−norm of the solution and the inability of the computer

code to go past a certain critical value of λ – this represents an approximation of the desired

quantity (see Figure 7 of [36] where the technique was applied to the secondary bifurcations

of a sandwich panel). Modifications of the underlying ideas presented above to the case when

N 6= I or the eigenvalues of the homogeneous version of (1.21) have higher multiplicity can be

adapted from the general theory given by Collatz in [27].
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1.5 A guide to the Thesis

The Thesis aims to probe further into some of the open questions that surface in relation to

the literature reviewed above. Generally speaking this will involve studying a number of linear

eigenvalue problems by using a mixture of both numerical and asymptotic techniques.

We start in Chapter 2 with a full set of coordinate-free derivations of Föppl-von Kármán

plate theory (FvK) and the associated buckling equations for a general anisotropic linear elastic

plate. This set of equations is then adapted to the isotropic plate case, and a further case for

plates subject to in-plane loading.

Then in Chapter 3, a Hybrid Energy Method is proposed for the wrinkling of rectangular

and annular plates subject to tensile loads. The route taken here is based on the leading order

(simplest) asymptotic approximations already obtained by Coman et al. [29, 41, 44, 47], but is

rather different from the earlier studies since it employs a modified energy method akin toHybrid

Galerkin Technique (HGT ) of Geer and Andersen [4, 5, 6]. It is shown that this strategy allows

a more faithful description of the numerical simulations previously reported in the literature,

even when the asymptotic parameter µ (which typically must be in the range 350.0 or larger for

very thin plates) is relatively small (µ ≃ 50.0). Strictly speaking this method requires that the

asymptotic results for both large− and small−µ regimes are available, which are then combined

into some sort of composite ansatz that is used in the same spirit as in the classical Galerkin

or Rayleigh-Ritz methods. Since our problems involve asymmetric instability patterns and are

quite complicated, Geer and Andersen’s ideas are not immediately applicable. Nevertheless, our

modification of their strategy does perform remarkably well and suggests that this is an effective

line of inquiry. Furthermore, motivated by the necessity of the small−µ asymptotic results in

the HGT technique, we pursue the mathematical limit µ→ 0 for the equation (1.15), for both

circular and rectangular geometries. The asymptotic formulae obtained tend to perform well

even for µ ≃ 2.0, a case which strictly speaking falls outside the theoretical range of validity for

the analysis carried out in §3.3.2. The presence of two interactive boundary layers also poses

some interesting challenges. The work in this chapter has been published online [50].

In Chapter 4 we consider a novel case of a bi-annular thin elastic plate, consisting of two

concentric annuli made of different elastic materials and perfectly bonded together. It is the in-

terface (discontinuity) between the two annuli, together with the piecewise-constant mechanical

parameters, that arouse our interest, and introduce some new features to the bifurcation. Due

to the asymptotic features (large parameter µ) of this problem, we first discuss the existence

of compressive stresses in the pre-buckling state (limit case µ → ∞). Since the formulation

of pre-bucking is much more transparent than the buckling problem, we apply both analytical

and numerical analysis in order to shed light on the latter problem. It transpires that there are

two types of lower bounds for external loading when compressive stresses first appear in the

bi-annular region. Then, to solve the buckling problem, extensive numerical simulations are

carried out by using numerical strategies of an adapted version of compound matrix method,
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in conjugation with an collocation solver ‘sbvp’. Because now there is an interface in the an-

nulus, the numerical simulation becomes more demanding compared to the single-annular case.

For example, the compound matrix approach requires special modifications for dealing with

this non-trivial feature. As shown by Lindsay in [80] this strategy is eminently amenable to

generalisations for layered continua, and we take advantage of his numerical scheme to carry

out our simulations. Moreover, the application of a collocation solver involves transforming

the three-point fourth-order boundary value problem into an eighth-order two-point boundary

value problem, with an additional trivial differential equation by letting the derivative of the

eigenvalue be zero, and a normalisation equation (nonlinear) to normalise the eigenfunction.

Then the nonlinear collocation-based solver ‘sbvp’ (for general singular & nonlinear problems)

in Matlab is used to solve the transformed nonlinear eigenvalue problem. In light of the new

features obtained in the pre-buckling analysis (the limit case µ → ∞), the question arises as

to whether there are similar behaviours for the NSE when µ is asymptotically large. The

answer to this question turns out to be positive. Another interesting problem concerns the

effects of discontinuities (introduced by the interface) on the NSE and the wrinkling modes.

Is it possible that the wrinkling is still triggered near the inner boundary, or the interface, or

that we have two localised wrinkles on both annuli? This is accomplished by pulling the above

analyses together. Given the similarities between the problem treated in this chapter and the

work [47], one would also expect that the asymptotic simplification of that reference could be

transposed to the bi-annular plate. This expectation is indeed confirmed and allows us to apply

WKB reduction on the fairly complex eigenvalue problems, together with the justification of

the reduction of the boundary and continuity conditions. This work has been published in [82]

and an additional paper was submitted for publication [48] which is currently under review.

In Chapter 5 the original motivation comes from trying to establish whether there is any

parallel between the plane stress situations involving the instabilities of the stretched annular

plate [41, 47] and a particular plane strain scenario. This is accomplished by looking at an

infinite cylinder subject to radial stretching on the two cylindrical surfaces. The FvK theory

is of course no longer applicable, so it will have to be replaced by a more suitable model. In the

interest of consistency with the earlier developments [41] in which the prebuckling stresses were

those given by the Linear Elasticity Lamé solution, we consider a particular set of bifurcation

equations based on a simplified theory of Biot [15] (these equations appear in Novozhilov’s book

[94] and have been used by other investigators without giving appropriate credit – e.g., [72]).

While the main equations used in Chapter 5 are not new, we give a novel tensor derivation

that clarifies the assumptions introduced and we also present a new tensorial equation in which

some of the simplifications are removed. The method of solution in that chapter mirrors to

a certain extent the investigations for the stretched annulus, in the sense that the normal

mode reduction leaves us with an eigenvalue problem in which we have the (unknown) mode

number that has to be determined by minimising a relation of the form (1.16). Unlike in the
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plate problem, this time there is no obvious asymptotic parameter present in the governing

equations. But the main challenge in this problem comes from the fact that the second-order

differential operators in the eigenvalue problems have variable coefficients and can exhibit loss

of ellipticity in some regions of the annulus. This was not the case with the work based on

(1.5) since the bi-Laplacian guarantees ellipticity, despite the fact that the membrane equations

(D = 0) are of mixed type when one of the principal stresses of N̊ is negative. Also, now the

topology of the response curves no longer resembles the familiar picture seen in the plane stress

situations. Furthermore, because we are dealing with a traction boundary-value problem we

have to account for the satisfaction of the Shapiro-Lopatinskij [54] condition which turns out to

be violated in some cases. So the picture that emerges from our analysis strongly suggests that,

at least for the particular St Venant-Kirchhoff constitutive law used here, the elastic instability

involves either the critical mode number n = 2 or n = ∞. Strictly speaking, the latter is not

exactly a form of structural instability but a manifestation of material failure. The work in this

chapter has been published in [49].

In Chapter 6, some key results and remarks of this Thesis are summarised, followed by a

brief description of potential further work.
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Chapter 2

Föppl–von Kármán plate theory

and bifurcation equations

In this chapter we will formulate the (Föppl–von Kármán) FvK equations and the correspond-

ing bifurcation equations (both weak form and strong form with natural boundary conditions)

for a thin plate of anisotropic linear elastic material by using a coordinate-free approach and

the Calculus of Variations (CV ) strategy as stated in §1.2.
As is well known, a plate is defined as a plane structural element with small thickness com-

pared to the planar dimensions [118]. In Mechanics, plates theories reduce a three-dimensional

problem into a two-dimensional problem by taking advantage of the disparity between the

thickness and planar dimensions. Strictly speaking, all plate theories are approximate in terms

of certain assumptions. In general, the more ‘accurate’ the theory is, the more demanding it

becomes for solving it either numerically or analytically. For a given problem, it becomes a

compromise to choose an appropriate plate theory between the accuracy and the calculation

expense.

In this Thesis we will employ the classical Föppl–von Kármán (FvK) plate theory, as this

has been repeatedly proven to be a versatile model able to well describe a wide variety of

physical phenomena in thin planar structures (for example, see [8]).

Even though the derivation of this set of equations is available in a number of textbooks

(such as [3, 19, 20, 26, 119]), it is still necessary to record here the full derivation based on the

minimum energy principle (CV ) for the following reasons:

• In the literature, the derivations of this set equations are limited to employing either

Cartesian coordinates or polar coordinates;

• the plates are generally confined to isotropic or orthotropic elastic materials;

• the formulation is only in strong form based on the equilibrium criterion, and the deriva-

tions for boundary conditions are often left vague;
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• the connections between this plate theory and three dimensional deformation are not

clear.

In this chapter, the derivation is carried out in terms of tensorial algebra and Variational

Principles. One of the merits is that it offers us the freedom in choosing particular coordinates

for particular problems, as a tensorial derivation is used. Since no direct reference is made to

rectangular or polar coordinates. In addition, mistakes in derivation can be avoided as far as

possible due to the conciseness of the tensorial notation. Another advantage is, CV can furnish

automatically the full set of boundary conditions once a variational structure for the loading

is available. For example, in the derivation of interfacial conditions, this strategy helps us to

circumvent the fallible continuity conditions, see Chapter 4.

This chapter is organised as follows. We first use CV to derive a set of governing equations

for both the basic state (in §2.1) and the bifurcation state (in §2.2). The derivations of both

weak forms and strong forms (together with their complementary boundary conditions) for both

states are obtained in this process. Also, the material is assumed to be generally anisotropic

elastic which is applicable to model anisotropic composite thin plates. This set of equations is

then adapted to the isotropic linear elastic plate case (in §2.3), and a further case for plates

subject to in-plane loading (as in §2.4) which will be used in Chapter 3 (weak form) and

Chapter 4 (strong form).

2.1 Energy formulation on FvK equations

We assume a plate occupying the region Ω× [−h/2, h/2], where Ω ⊂ R2 is the midplane surface

of the plate, h the thickness. Without losing generality, we use vector x + zn̂ to describe the

position of any point within the plate, where x ∈ Ω denotes the projection of the point on the

midplane, n̂ is the unit normal to the midplane. Notice that x is a two-dimensional vector

with component form xα, where the index α ranges over the value {1, 2}, and we do not follow

any particular reference coordinate in the two-dimensional (midplane) region. The in-plane

displacement is defined as v := (u, v). z ∈ [−h/2, h/2] stands for the lateral coordinate with

the corresponding displacement described by w.

For thin plates, the well-known Love–Kirchhoff hypothesis is customarily taken, which re-

duces the three-dimensional problem into a two-dimensional one by expressing the displacement

field as

u = v − z∇w + wn̂ , (2.1)

where ∇ is the two dimensional gradient operator on the in-plane surface, with component

form ∇α, α ∈ {1, 2}. For thick plates, displacement field takes the form

u = v − f(z)φ+ wn̂ ,
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where φ is the bending rotation vector. For example, f(z) = z is for the first-order shear de-

formation theory (Reissner-Mindlin [89, 102] plate theory). For higher-order shear deformation

theories, Reddy [100] and Shi [112] assume

f(z) = z(1− 4z2

3h2
) and f(z) =

5

4
z(1− 4z2

3h2
)

respectively.

In this work, we only take the displacement assumption (2.1) in classical plate theory for a

thin plate. By taking the leading order terms, the Lagrange strain tensor is generally reduced

to

E ≃ (∇⊗ v)s +
1

2
(∇w)⊗ (∇w)− z∇⊗∇w , (2.2)

where the symmetric term (∇⊗ v)s := (∇⊗ v + v ⊗∇)/2. Here, we introduce the stretching

strain tensor Es experienced by the midplane and the bending strain tensor Eb which is purely

caused by the out-of-plane displacement.

Es := (∇⊗ v)s +
1

2
(∇w)⊗ (∇w) , (2.3a)

Eb := −z∇⊗∇w , (2.3b)

such that E = Es +Eb.

For a conservative system, the total potential energy V is composed of two parts: the

potential energy of strains E and the potential of the external forces Ve, namely,

V = E+ Ve , (2.4)

which is the weak form for the equilibrium state. Here, another assumption for the FvK

equations is: the plate undergoes large deflections but small strains such that the referential

and spatial description can be assumed to coincide. If linear Hooke’s law is assumed for the

plate, the strain energy of a plate can be given by

E(u) :=
1

2

∫

Ω×h

E : C : E dV . (2.5)

whereC is a symmetric fourth-order stiffness tensor, with 6 independent components for general

anisotropic linear elastic plates under plane stress deformation. If external forces do not change

(both magnitude and directions) during the deformation, its potential energy takes the form

Ve = −
∫

Ω

pw dA−
∫

∂Ω

(q · v +Rn∇nw + V w) dS , (2.6)

where dA is the area element of the midplane, while dS represents the line element of the

midplane’s edge; p is the stress applied on the midplane; q, Rn and V represent in-plane external
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stresses, the moment loads (normal to the boundary) and the lateral shear forces applied on the

boundary ∂Ω. Indeed, the external loading assumed in (2.6) is only a specific case in the static

problem, which can be easily adapted to other situations. For example, in dynamic analysis,

we expect an additional kinetic energy term

Vk =
1

2

∫

Ω×h

ρu̇ · u̇dV ,

where ρ is the density and u̇ represents the first derivative of u with respect to time. For this

more general case, the CV for the dynamic analysis, is actually Hamilton’s principle. However,

in this Thesis, we only discuss static problems, and consider the kinetic term to be identically

zero.

Substituting (2.3) into (2.5), the total strain energy is composed of bending energy and

stretching energy E = Eb + Es, where the bending energy is given in the form below associated

to the bending strain tensor

Eb(u) :=
1

2

∫

Ω×h

Eb : C : Eb dV =
1

2

∫

Ω

(∇⊗∇w) : D : (∇ ⊗∇w) dA , (2.7)

where D is the bending stiffness tensor of the plateD :=

∫ h
2

−h
2

z2C dz . (2.8)

If the elasticity coefficients do not vary with the thickness, then D = Ch3/12. Likewise, the

stretching energy takes the form

Es(u) :=
1

2

∫

Ω×h

Es : C : Es dV =
1

2

∫

Ω

Es : A : Es dA , (2.9)

by taking the membrane stiffness tensor A of the plate asA :=

∫ h
2

−h
2

C dz , (2.10)

which takes the valueA = hC for the plates with material homogeneous in the lateral direction.

Incidentally, there should be another ‘coupling’ energy term which couples the elongation and

bending deformations. When the material is inhomogeneous in the lateral direction, this term

should be considered, such as laterally layered plates or laterally functionally graded plates

(e.g., see [92]). However, for a thin plate with mechanical properties constant in the thickness

direction, the coupling stiffness tensor becomes
∫ h

2

−h
2

zC dz = 0C, and thus this coupling energy

term can be omitted. It is the latter assumption that is made for the derivations hereafter.

Next, we shall take the principle of minimum potential energy in terms of the CV to

formulate the problem, and we will use the following definitions for the the first and second
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variations hereafter

δE(ů)[u1] :=
∂

∂ε
E(ů + εu1)

∣∣∣∣
ε=0

, δ2E(ů)[u1,u1] :=
∂2

∂ε2
E(ů + εu1)

∣∣∣∣
ε=0

. (2.11)

To start, we consider the equilibrium of basic state, which requires δE = 0. Here, we use ‘̊ ’

to denote the variables in the basic state. We assume that the configuration of the plate is

described by ů = v̊+ ẘn̂. If we give an arbitrary variation to this configuration, ů → ů+ εu1,

where, u1 = v1 + w1n̂, we can have both the first and second variation of potential energy

by means of the definitions (2.11). The equilibrium of the plate (in basic state) is given by

δE[u1] = 0, where δE = δEb + δEs.

From (2.7) we have

δEb(ů)[u1] =

∫

Ω

M̊ : (∇⊗∇w1) dA ,

where M̊ := (∇ ⊗ ∇ẘ) : D = D : (∇ ⊗ ∇ẘ) is the bending tensor of the plate, which is a

symmetric tensor. Recalling the identity

∇ · (T · a) = (∇ · T ) · a+ T : (∇ ⊗ a) , (2.12)

which holds for any second-order tensor T and vector a, if we treat ∇w1 as a, then

δEb(ů)[u1] =

∫

Ω

[
∇ · (M̊ ·∇w1)− (∇ · M̊) ·∇w1

]
dA

=

∫

∂Ω

M̊ ·∇w1 · n dS −
∫

Ω

(∇ · M̊ ) ·∇w1 dA , (2.13)

where, it is apparent that M̊ ·∇w1 · n = M̊ · n · ∇w1 due to the symmetry of M̊ . In order

to simplify the first term further, it helps to introduce the local system of basis vectors {n, s}
attached to the boundary ∂Ω. Then, M̊ · n can be decomposed into bending moment M̊b and

twisting moment M̊t

M̊b := M̊ : (n⊗ n) = (∇ ⊗∇ẘ) : D : (n⊗ n) , (2.14a)

M̊t := M̊ : (n⊗ s) = (∇ ⊗∇ẘ) : D : (n⊗ s) . (2.14b)

Furthermore, the two-dimensional gradient operator ∇ can be rewritten in the form

∇ := n
∂

∂n
+ s

∂

∂s
:= n∇n + s∇s .

so, ∇ẘ = n∇nẘ + s∇sẘ. Here we assume that the boundary ∂Ω is made of closed curves,

then by using the identity (A.8) recorded in Appendix A, we have

∮

∂Ω

M̊ · n ·∇w1 dS =

∮

∂Ω

{[
M̊ : (n⊗ n)

]
(∇w1 · n) +

[
M̊ : (n⊗ s)

]
(∇w1 · s)

}
dS
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=

∮

∂Ω

[
M̊ : (n⊗ n)

]
(∇w1 · n) dS −

∮

∂Ω

∇

[
M̊ : (n⊗ s)

]
· sw1 dS

where,

∇

[
M̊ : (n⊗ s)

]
· s = ∇

{D :
:
[
(∇⊗∇ẘ)⊗ n⊗ s

]}
· s ,

hereafter, we introduce ‘ :
.
’ and ‘ :

: ’ which stand for the triple and quadruple contractions re-

spectively; for their definitions see Appendix A.

The second term on the right hand side of (2.13) can be transformed further using the

Divergence Theorem ∫

Ω

(φ∇ · a+ a ·∇φ) dA =

∫

∂Ω

(a · n)φdS . (2.15)

By letting ∇ · M̊ → a and w1 → φ, we find that

∫

Ω

(∇ · M̊ ) ·∇w1 dA =

∫

∂Ω

[
(∇ · M̊) · n

]
w1 dS −

∫

Ω

[
∇ · (∇ · M̊ )

]
w1 dA .

Here,

∇ · M̊ = ∇ ·
[D : (∇ ⊗∇ẘ)

]
= D :

.
(∇⊗∇⊗∇ẘ)

and

∇ · (∇ · M̊) = ∇ ·
{
∇ ·

[D : (∇ ⊗∇ẘ)
]}

= D :
: (∇ ⊗∇⊗∇⊗∇ẘ) ,

which are valid for any constant stiffness tensor D for a general linear elastic material. There-

fore, the bending energy in (2.7) yields

δEb(ů)[u1] =

∫

∂Ω

{
M̊ ·n·∇w1−

[D :
.
(∇⊗∇⊗∇ẘ)

]
·nw1

}
dS+

∫

Ω

D :
: (∇⊗∇⊗∇⊗∇ẘ)w1 dA .

(2.16)

Next we shall consider δEs(ů)[u1]. When applying an arbitrary variation u1 onto ů → ů+ εu1

(u1 = v1 + w1n̂), the stretching strain becomes

Es = E̊s + εEs1 + ε2Es2 + · · · ,

where, ‘· · · ’ stands for the higher-order terms, and

E̊s := (∇ ⊗ v̊)s +
1

2
(∇ẘ)⊗ (∇ẘ) ,

Es1 := (∇ ⊗ v1)
s + [(∇ẘ)⊗ (∇w1)]

s
,

Es2 :=
1

2
(∇w1)⊗ (∇w1) .

Taking the first variation of the stretching energy (2.9) in terms of the definition in (2.11)1 we
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have

δEs(ů)[u1] =

∫

Ω

E̊s : A : Es1 dA =

∫

Ω

[
N̊ : (∇⊗ v1)

s + N̊ : (∇ẘ ⊗∇w1)
s
]
dA , (2.17)

where, we have introduced the symmetric tensor N̊ := E̊s : A = A : E̊s, which is the membrane

stress tensor in the basic state. Notice that for a general symmetric second-order tensor T , we

have

T : (a⊗ b)s = T : (a ⊗ b) = T : (b⊗ a) = (T · b) · a = (T · a) · b , (2.18)

which is valid for any vectors a and b. So, we can drop the symmetric superscript in (2.17).

By using the identity (2.12),

∫

Ω

N̊ : (∇ ⊗ v1) dA =

∫

Ω

[
∇ · (N̊ · v1)− (∇ · N̊) · v1

]
dA

=

∫

∂Ω

(N̊ · v1) · n dS −
∫

Ω

(∇ · N̊ ) · v1 dA ,

where (N̊ · v1) · n = (N̊ · n) · v1, since N̊ = N̊T . Repeated application of the identity (2.18)

and the Divergence Theorem (2.15) yields

∫

Ω

N̊ : (∇ẘ ⊗∇w1) dA =

∫

Ω

(N̊ ·∇ẘ) ·∇w1 dA

=

∫

∂Ω

[
(N̊ ·∇ẘ) · n

]
w1 dS −

∫

Ω

[
∇ · (N̊ ·∇ẘ)

]
w1 dA .

Furthermore, the variation of the external loading base on (2.6) becomes

δVe = −
∫

Ω

pw1 dA−
∫

∂Ω

(q · v1 +Rn∇nw1 + V w1) dS . (2.19)

If we sum up (2.16), (2.17) and (2.19), the equilibrium of the system requires

δE(ů)[u1] =

∫

Ω

{[D :
: (∇ ⊗∇⊗∇⊗∇ẘ)−∇ · (N̊ ·∇ẘ)− q

]
w1 − (∇ · N̊ ) · v1

}
dA

(2.20a)

+

∫

∂Ω

{[(
N̊ ·∇ẘ −D :

.
(∇ ⊗∇⊗∇ẘ)

)
· n−∇

(D :
: (∇⊗∇ẘ ⊗ n⊗ s)

)
· s− V

]
w1

+ (N̊ · n− q) · v1 +
[
M̊ : (n⊗ n)(∇w1 · n)−Rn

]
·∇w1

}
dS = 0 . (2.20b)

Using standard variational calculus arguments, we can obtain the equilibrium equation (strong

form) for the basic state from (2.20a), and the associated boundary conditions from (2.20b),

corresponding to the weak form (2.4) for equilibrium. Due to the arbitrariness of the v1 and
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w1, the equilibrium equations for the basic state can be cast asD :
: (∇ ⊗∇⊗∇⊗∇ẘ)−∇ · (N̊ ·∇ẘ) = p , (2.21a)

∇ · N̊ = 0 , (2.21b)

where, in (2.21a), we notice that

∇ · (N̊ ·∇ẘ) = (∇ · N̊) ·∇ẘ + N̊ : (∇ ⊗∇ẘ) = N̊ : (∇⊗∇ẘ) .

because of (2.21b). This set of coupled equations (2.21) is frequently used as an alternative

form of von Kármán equations, and is valid for anisotropic linear elastic plates.

To obtain the boundary conditions from (2.20b), we need to employ the decompositions

again. For example, we can decompose v in terms of n, s by letting vn = v ·n while vs = v · s
(same decomposition applies for q). Also, N̊ · n can be decomposed into two components in

n and s directions along the boundary ∂Ω, namely, the normal resultant N̊n and the shear

resultant N̊n (recalling the identity (2.18), for example, N̊ : (n⊗ s) = N̊ · n · s)

N̊n := N̊ : (n⊗ n) =

[
(∇⊗ v̊)s +

1

2
(∇ẘ)⊗ (∇ẘ)

]
: A : (n⊗ n) , (2.22a)

N̊s := N̊ : (n⊗ s) =

[
(∇⊗ v̊)s +

1

2
(∇ẘ)⊗ (∇ẘ)

]
: A : (n⊗ s) . (2.22b)

By applying the standard calculus of variation arguments to (2.20b), we can deduce the follow-

ing boundary conditions on the boundary ∂Ω (or some disjoint parts of it)

either N̊n = qn or v̊n specified , (2.23a)

either N̊s = qs or v̊s specified , (2.23b)

either M̊b = Rn or
∂ẘ

∂n
specified , (2.23c)

either S̊v = V or ẘ specified , (2.23d)

where S̊v :=
[
N̊ ·∇ẘ−D :

.
(∇⊗∇⊗∇ẘ)

]
·n−∇

{D :
:
[
(∇⊗∇ẘ)⊗n⊗ s

]}
· s is the vertical

shear force along the boundary.

2.2 Bifurcation equations

As mentioned earlier in §1.2, the stability of a conservative system is indicated by the second

variation of the total potential energy. With the application of (2.11)2 on the bending energy
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(2.7), we obtain

δ2Eb(ů)[u1,u1] =

∫

Ω

(∇ ⊗∇w1) : D : (∇⊗∇w1) dA , (2.24)

while for the stretching part as in (2.9), we have

δ2Es(ů)[u1,u1] =

∫

Ω

(
2E̊s : A : Es2 +Es1 : A : Es1

)
dA

=

∫

Ω

N̊ : (∇w1 ⊗∇w1) dA+

∫

Ω

N1 : (∇ ⊗ v1 +∇ẘ ⊗∇w1)
s dA , (2.25)

where N1 := A : Es1 = A : (∇ ⊗ v1 + ∇ẘ ⊗ ∇w1)
s. While for the second variation of the

potential energy of external load is zero in light of (2.6), namely, δ2Ve ≡ 0. Summing up (2.24)

and (2.25) we have the weak form of the bifurcation equation

δ2V(ů)[u1,u1] =

∫

Ω

[
(∇⊗∇w1) : D : (∇⊗∇w1)

+ N̊ : (∇w1 ⊗∇w1) +N1 : (∇⊗ v1 +∇ẘ ⊗∇w1)
s
]
dA ≡ 0 . (2.26)

In order to obtain the neutral stability (critical buckling) state ů and u1, we should have

δ
{
δ2E(ůC ,u1C)

}
[δu1] = 0 according to the Trefftz criterion. Here, δu1 is the variation given

to u1, namely, u1 = v1 + w1n̂ → u1 = v1 + εδv1 + (w1 + εδw1)n̂. By considering (2.24) in

terms of (2.11)2, we obtain

δ
{
δ2Eb(ů,u1)

}
[δu1] = 2

∫

∂Ω

{
M1 · n ·∇δw1 −

[D :
.
(∇⊗∇⊗∇w1)

]
· nδw1

}
dS

+ 2

∫

Ω

D :
: (∇ ⊗∇⊗∇⊗∇w1)δw1 dA . (2.27)

where M1 := D : (∇⊗∇w1) is the linear term of bending tensor caused by the variation δu1,

and the first term can be decomposed further following similar procedure after (2.13). Here we

omit this for simplicity. The stretching part in (2.25) becomes

δ
{
δ2Es(ů,u1)

}
[δu1] = 2

∫

∂Ω

[
(N1 · δv1) · n+ (N̊ ·∇w1 +N1 ·∇ẘ) · nδw1

]
dS

− 2

∫

Ω

{
(∇ ·N1) · δv1 +

[
∇ · (N̊ ·∇w1) +∇ · (N1 ·∇ẘ)

]
δw1

}
dA . (2.28)

Summing up (2.27) and (2.28) we have

δ
{
δ2E(ů,u1)

}
[δu1] = 2

∫

Ω

[
Γδw1 − (∇ ·N1) · δv1

]
dA (2.29a)

+ 2

∫

∂Ω

{
(χ · n− ζ · s)δw1 +N1 · n · δv1 +M1 : (n⊗ n)

[
∇(δw1) · n

]}
dS , (2.29b)
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where

Γ := D :
: (∇⊗∇⊗∇⊗∇w1)−∇ · (N̊ ·∇w1)−∇ · (N1 ·∇ẘ) ,

χ := N̊ ·∇w1 +N1 ·∇ẘ −D :
.
(∇⊗∇⊗∇w1) ,

ζ := ∇
[D :

: (∇⊗∇w1 ⊗ n⊗ s)
]
.

Similarly, we have

∇ · (N̊ ·∇w1) = N̊ : (∇ ⊗∇w1) and ∇ · (N1 ·∇ẘ) = N1 : (∇ ⊗∇ẘ) .

Using some basic arguments in calculus of variations we arrive at the coupled governing equation

(strong form) for bifurcation based on (2.29a)D :
: (∇ ⊗∇⊗∇⊗∇w1)− N̊ : (∇ ⊗∇w1)−N1 : (∇⊗∇ẘ) = 0 , (2.30a)

∇ ·N1 = 0 . (2.30b)

This set of coupled bifurcation equations is to be considered under appropriate boundary con-

ditions, which can be obtained from (2.29b). The derivation is similar with that when we derive

the boundary conditions for the FvK equations. In the interest of brevity, we only record the

final results, as follows

either N1n = 0 or v1n specified , (2.31a)

either N1s = 0 or v1s specified , (2.31b)

either M1b = 0 or
∂w1

∂n
specified , (2.31c)

either S1v = 0 or w1 specified , (2.31d)

where,

N1n = N1 : (n⊗ n) = (∇⊗ v1 +∇ẘ ⊗∇w1)
s : A : (n⊗ n) ,

N1s = N1 : (n⊗ s) = (∇⊗ v1 +∇ẘ ⊗∇w1)
s : A : (n⊗ s) ,

M1b = M1 : (n⊗ n) = (∇⊗∇w1) : D : (n⊗ n) ,

S1v =
[
N̊ ·∇w1 +N1 ·∇ẘ −D :

.
(∇⊗∇⊗∇w1)

]
· n−∇

{D :
:
[
(∇⊗∇w1)⊗ n⊗ s

]}
· s .

So far the formulation is for anisotropic elastic plates subject to both in-plane and lateral loads;

next we specialise this formulation to isotropic plates as in §2.3, which is further reduced to

plates under in-plane loading only, as recorded in §2.4.
It’s worth highlighting that we can also arrive at the bifurcation equations by using the
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MAE method. By applying the linearisation process as outlined in §1.2 to the equilibrium

equation (2.21), we can also arrive at the governing equation for the bifurcation as (2.30). The

corresponding boundary conditions (2.31) can be obtained by applying theMAE manipulations

on the boundary conditions of the basic state (2.23).

2.3 Formulation for isotropic elastic plates

Next we will reduce the formulation for the general anisotropic plate in the last section to

the special case when the plate is made of the St. Venant–Kirchhoff (isotropic) material. We

confine ourselves to this isotropic linear elastic material for all the problems to be discussed in

this Thesis. The stiffness tensor for the St. Venant–Kirchhoff material isC =
Eν

1− ν2
I ⊗ I +

E

2(1 + ν)
I ,

where E and ν denote Young’s modulus and Poisson ratio respectively; I is the second-order

identity tensor (with the component form gαβgγδ), while I is the symmetric part of the fourth-

order identity tensor whose entries are (gαγgβδ + gαδgβγ)/2. Therefore, the component form ofC reads, Cαβγδ =
E

1− ν2

[
νgαβgγδ +

1− ν

2
(gαγgβδ + gαδgβγ)

]
.

According to the definitions of A and D in (2.8) and (2.10), we haveA := hC = A[νI ⊗ I + (1− ν)I] , D =
h3

12
C = D[νI ⊗ I + (1− ν)I]

where

A =
Eh

1− ν
and D =

Eh3

12(1− ν2)

are the bending and the in-plane stiffnesses of the plate.

Now we aim to obtain the equilibrium equation (2.21) and the boundary conditions (2.23)

for an isotropic plate. Using the identities recorded in Appendix A, we haveD :
: (∇⊗∇⊗∇⊗∇ẘ) = D∇4ẘ ,D :
.
(∇⊗∇⊗∇ẘ) = D∇(∇2ẘ) ,

N̊ := A :

[
(∇ ⊗ v̊)s +

1

2
∇ẘ ⊗∇ẘ

]
= A

{
ν(∇ · v̊ +

1

2
|∇ẘ|2)I + (1− ν)

[
(∇⊗ v̊)s +

1

2
∇ẘ ⊗∇ẘ

]}
,

M̊ := D : (∇⊗∇ẘ) = D
[
ν∇2ẘI + (1 − ν)∇⊗∇ẘ

]
,

where |∇ẘ|2 := ∇ẘ ·∇ẘ. Therefore, the governing equation for the equilibrium of an isotropic
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elastic plate becomes

D∇4ẘ − N̊ : (∇ ⊗∇ẘ) = 0 , (2.32a)

∇ · N̊ = 0 . (2.32b)

By substituting the simplified terms obtained earlier into (2.22) and (2.14), we can also obtain

the following specific terms in the boundary conditions (2.23)

N̊n = N̊ : (n⊗ n) = A

{
ν(∇ · v̊ +

1

2
|∇ẘ|2) + (1− ν)

[
∇nvn +

1

2
(∇nẘ)

2

]}

= A

{
∇nv̊n +

1

2
(∇nẘ)

2 + ν

[
∇sv̊s +

1

2
(∇sẘ)

2

]}
,

N̊s = N̊ : (n⊗ s) =
A(1− ν)

2
(∇nvs +∇svn +∇nẘ∇sẘ) ,

M̊b = M̊ : (n⊗ n) = D
[
ν∇2ẘ + (1− ν)∇2

nẘ
]
= D(∇2

nẘ + ν∇2
sẘ) ,

M̊t = M̊ : (n⊗ s) = (1− ν)∇n∇sẘ ,

S̊v = N̊ ·∇ẘ · n−D
[
∇n(∇2ẘ) + (1 − ν)∇s(∇n∇sẘ)

]
,

where we have used the definition ∇2ẘ = ∇2
nẘ + ∇2

sẘ, and ∇2
n(•) := ∇n(∇n•), ∇2

s(•) :=

∇s(∇s•).
Furthermore, following similar derivations as above, we can arrive at the following bifurca-

tion equations for the isotropic case

D∇4w1 − N̊ : (∇⊗∇w1)−N1 : (∇ ⊗∇ẘ) = 0 , (2.33a)

∇ ·N1 = 0 . (2.33b)

The boundary conditions (2.31) for bifurcation state can be deduced in a similar way as for the

equilibrium, just by replacing all the terms with superscript (̊•) with subscript (•)1, with the

exception of N1 (therefore N1n, N1s) and S1v

N1 = A [ν(∇ · v1 +∇ẘ ·∇w1)I + (1− ν) (∇⊗ v1 +∇ẘ ⊗∇w1)
s
] .

Finally,

N1n = A [ν(∇ · v1 +∇ẘ ·∇w1) + (1− ν) (∇nv1n +∇nẘ∇nw1)]

= A [∇nv1n +∇nẘ∇nw1 + ν(∇sv1s +∇sẘ∇sw1)] ,

N1s =
A(1 − ν)

2
(∇nv1s +∇sv1n +∇nẘ∇sw1 +∇sẘ∇nw1) ,

M1b = D(∇2
nw1 + ν∇2

sw1) ,
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M1t = (1− ν)∇n∇sw1 ,

S1v = (N̊ ·∇w1 +N1 ·∇ẘ) · n−D
[
∇n(∇2w1) + (1− ν)∇s(∇n∇sw1)

]
.

2.4 Formulation for isotropic plates under in-plane load-

ing

The problems to be discussed in Chapter 3 and Chapter 4 will be bifurcation problem of

plates under in-plane loading only. So in this section we discuss the related simplifications

for the weak forms and the strong forms for the equilibrium and stability of isotropic plates

under in-plane loading. When a plate is subject to in-plane loads only, in (2.6), p ≡ 0 on Ω;

q 6= 0, Rn = 0, V = 0 along the boundary ∂Ω. In this case, the out-of-plane displacement in the

basic state is identically zero, namely, ẘ ≡ 0. The first variation of the total potential energy

(2.20) becomes

δV(ů)[u1] = δEs(ů)[u1]+ δVe(ů)[u1] =

∫

∂Ω

(N̊ ·n−q) ·v1 dS−
∫

Ω

(∇ ·N̊ ) ·v1 dA = 0 , (2.34)

since δEb ≡ 0. The second variation of bending energy (2.24) is reduced to

δ2Eb(ů)[u1,u1] = 2D

∫

Ω

{
(∇2w1)

2 − (1− ν)[w1, w1]
}
dA , (2.35)

where ∇4 :=
(
∇2
)2

stands for the bi-Laplacian operator, and

D =
Eh3

12(1− ν2)

is the bending stiffness of the isotropic plate; the bracket is Monge-Ampère bracket which is

defined as [f, g] := (∇2f)(∇2g)−(∇⊗∇f) : (∇⊗∇g). However, back to the stretching energy,

it is customarily assumed (for example, see [3, 119]) that the plate’s midplane is inextensible

during buckling (but was not applied to basic state); the condition for this reads

Es := (∇⊗ v)s +
1

2
(∇w)⊗ (∇w) = O ;

therefore, if we give a variation εu1 := ε(v1 + w1n̂) to the above condition, we have

Es1 = δEs[u1] = [∇⊗ v1 + (∇ẘ)⊗ (∇w1)]
s
= O . (2.36)

Under such assumption, we also haveN1 = O. According to [3] such an approximation is equiv-

alent to asking for the Gaussian curvature of the deformed plate midplane be identically zero

or, equivalently, that this surface be developable during buckling. Thus, the second variation
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of the stretching energy (2.25) becomes

δ2Es(ů)[u1,u1] = 2

∫

Ω

N̊ :
[
(∇w1)⊗ (∇w1)

]
. (2.37)

Adding two part (2.35), (2.37) together, we have the weak form for bifurcation

δ2V(ů)[u1,u1] := 2D

∫

Ω

{
(∇2w1)

2 − (1− ν)[w1, w1]
}
dA+2

∫

Ω

N̊ : (∇w1⊗∇w1) dA , (2.38)

which will be used in Chapter 3.

Consider a plate only subject to in-plane loading, which is initially flat with condition ẘ ≡ 0,

then the equilibrium equations (2.32) in the basic state are reduced to

∇ · N̊ = 0 , (2.39)

where N̊ denotes the linearised membrane stress tensor corresponding to the basic state (not

necessarily constant) obtained by solving the reduced governing equation for the basic state

(2.39). If we take a further inextensional assumption, then N1 = A : Es1 = O, and the

bifurcation equations (strong form) (2.33) become

D∇4w1 − N̊ : (∇ ⊗∇w1) = 0 , (2.40a)

∇ ·N1 = 0 . (2.40b)

Notice that this is a set of coupled equations. As the inextensible midplane assumption has

been taken, the second equation (2.40b) will vanish due to (2.36). In this case, only the first

equation (2.40a) that must be investigated for finding the eigenvalues (λ is usually present

in the expression of N̊). Although the assumption made in (2.36) is in general violated, the

determination of the neutrally stable configurations using this hypothesis is acceptable for very

thin elastic plates (for instance, as shown in [47], the results for the critical buckling obtained

from a decoupled version of (2.40a) alone confirm those from the coupled version of (2.40) in

[59]). However, coupling between bending and stretching becomes important when ẘ 6= 0, or

the plate enters the post-buckling regime.

Moreover, complementary boundary conditions (2.23) for the basic state (when solving

(2.39)) need to be specified

either N̊n = qn or v̊n specified , (2.41a)

either N̊s = qs or v̊s specified , (2.41b)

where

N̊n = A(∇nv̊n + ν∇sv̊s) , N̊s =
A(1 − ν)

2
(∇nv̊s +∇sv̊n) .
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The boundary conditions in (2.31) are simplified to

either M1b = 0 or
∂w1

∂n
specified , (2.42a)

either S1v = 0 or w1 specified , (2.42b)

when solving the bifurcation equations (2.40a), where

M1b = D(∇2
nw1 + ν∇2

sw1) , M1t = (1 − ν)∇n∇sw1 ,

S1v = (N̊ ·∇w1) · n−D
[
∇n(∇2w1) + (1− ν)∇s(∇n∇sw1)

]
.

2.5 Conclusions

In this chapter we have provided a complete formulation on the classic plate theory (Föppl–

von Kármán equations) for anisotropic linear elastic thin plates by using a coordinate-free

approach. This includes the weak and strong form (with boundary conditions) for both the

basic state and the bifurcation state in bifurcation analysis.

This was accomplished by first assuming the Love–Kirchhoff displacement field, which is

plugged into the energy functional to get the weak forms for both the basic and bifurcation

states. Then CV is employed to get both the governing equations (strong forms) and natural

boundary conditions from their corresponding weak forms. These equations can be used for

any geometries such as rectilinear and polar coordinates due to the coordinate-free approach

we have used.

This set of equations is straightforward to reduce to a specific anisotropic material (such as

isotropic, orthotropic, transversely-isotropic, etc) by only evaluating the corresponding fourth-

order stiffness tensor in the equations. The fourth-order stiffness tensors for different kinds

anisotropic material are given in [58]. The procedure for obtaining the natural boundary

conditions in this chapter can be modified slightly to formulate the continuity conditions along

the contacts in planar-composite structures (see Chapter 4 as an example).

Then this set of equations is specialised for isotropic linear elastic plates and a further case

for plates subject to in-plane loading only, both in weak form (to be used in Chapter 3) and

strong form (to be involved in Chapter 4).
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Chapter 3

A hybrid energy method for a

class of eigenvalue problems

related to edge-buckling in thin

plates

3.1 Introduction

Approximation schemes such as the Rayleigh–Ritz method or the Galerkin technique have

played a historical role in the development of the theory of elastic stability [3, 119]. They are

still used on a large scale in the engineering community and feature most prominently as the ba-

sis of sophisticated finite element computer packages. The use of the more basic “incarnations”

of these two methods (in the spirit of Timoshenko’s book, for example) represents one of the

most expedient ways for solving buckling problems with a relatively modest amount of effort.

Unfortunately, these more basic versions are not well suited for describing localised eigende-

formations unless one is prepared to allow for a large number of terms in the corresponding

approximations.

The problems we are interested in this chapter have been discussed by Coman et al [29, 41,

44, 47] with the help of singular perturbation techniques. In what follows the emphasis will

be on improving those results and looking at some features that were not touched upon in the

previous investigations. As pointed out in the literature review in Chapter 1, the papers just

cited dealt with the linear bifurcation equations related to the partial wrinkling of stretched thin

elastic plates (for details of the precise setting see Figures 3-1 and 3-8 later in this chapter).

Among other things, it was discovered that these equations were intimately controlled by a

typically large dimensionless parameter µ ≫ 1 (whose definition was problem-dependent).
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3.1. Introduction

Regular/periodic features of the eigendeformation in one of the two principal directions of the

pre-buckling state of stress facilitated the reduction of the corresponding partial differential

equations to ordinary differential equations for an unknown transverse amplitude function W .

The eigenvalue λ and the eigenfunction W were then represented as power series in µ−1/2, i.e.





λ

W





=
∞∑

j=0





λj

Wj




µ−j/2 , (3.1)

with the coefficients λj ∈ R and the functions Wj determined sequentially through a sequence

of lengthy calculations. An indication of the role played by the size of µ on the accuracy of the

approximations derived in [29, 41, 44, 47] is included in Tables 3.1 and 3.2 .

Table 3.1: Typical comparisons for the critical edge-buckling loads λC of the clamped rect-
angular plate studied in [29, 44]: direct numerical simulations (NUM), two-term asymptotic
results (ASY I), and three-term asymptotic expressions (ASY II); the relative errors (R.E.)
of the last two sets of data with respect to the first are recorded in the last two columns.

µ NUM ASY (I) ASY (II) R.E. I (%) R.E. II (%)

400.0 0.213362 0.205769 0.212336 3.5588 0.4809

200.0 0.238152 0.221965 0.235099 6.7969 1.2819

80.0 0.300362 0.254101 0.286936 15.4015 4.4697

60.0 0.333067 0.267628 0.311407 19.6475 6.5030

40.0 0.399122 0.290318 0.355988 27.2608 10.8073

10.0 1.226536 0.413969 0.676648 66.2489 44.8326

Table 3.2: Same data as in Table 3.1, but for the annular plate discussed in [41, 47] (with
the corrected term λ∗2 as given in our §3.4). Here the ratio of the two radii of the annulus
(η) is equal to 0.1.

µ NUM ASY (I) ASY (II) R.E. I (%) R.E. II (%)

1200.0 0.197795 0.177290 0.195899 10.3668 0.9583

800.0 0.229288 0.197506 0.225421 13.8611 1.6867

400.0 0.311650 0.243140 0.298969 21.9830 4.0691

200.0 0.454089 0.307676 0.419334 32.2432 7.6538

80.0 0.854713 0.435724 0.714869 49.0210 16.3616

60.0 1.081105 0.489620 0.861813 54.7111 20.2841

40.0 1.556522 0.580031 1.138320 62.7354 26.8677

10.0 7.743505 1.072726 3.305881 86.1468 57.3077

It must be clear from this data that the asymptotic formulae perform admirably well for the
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range they were intended to, but as µ decreases their reliability deteriorates fast. This trend is

more pronounced in the case of the annular plate, so the question arises: can those results be

improved?

As pointed out in [47], typical values of the non-dimensional parameter µ for annular thin

films are in the vicinity of 300.0 or larger, but smaller numbers are also relevant to practical

applications. Thus, extending the results in the aforementioned works to a broader range of

values for the stiffness parameter µ would be desirable. Furthermore, from a strictly mathe-

matical point of view the limit µ → 0 is also of interest, although this case does not have an

immediate physical connotation.

The route we choose to pursue the answer to the question posed above is related to the

so-called Hybrid Galerkin Method discussed at length by Geer and Andersen in a number of

interesting papers [4, 5, 6] (the idea of using boundary-layer type functions in conjunction with

Galerkin methods can be traced back to much earlier studies like that of Di Prima [52], for

example). Their method is based on replacing the asymptotic gauges with arbitrary constants in

known asymptotic expansions, that are subsequently determined by following the same pattern

as in the classical version of the Galerkin scheme. We shall make the ideas more precise in §3.2,
but here we confine ourselves to reviewing some related efforts.

Gristchack et al. [63] have used the classical WKB method in conjunction with the theory

developed in [4, 5, 6] to determine the state of stress in an orthotropic elastic conical shell

subjected to axial loading, while in [64] they dealt with the problem of dynamic loading for a

piezoelectric sandwich plate. Whiting [126] modified existing multiple-scale results for buckling

of a long strut on a nonlinear Winkler foundation, and used them as a starting point for his

Galerkin procedure. That study was later extended by Wadee et al. [124] for the stability

of single-hump localised solutions in the same particular context. The very good accuracy

obtained in all of these works is indicative of the high efficiency and reliability of the hybrid

approximation methods.

This chapter is organised as follows. We start by setting the stage in the next section,

where the main ingredients of the energy method for elastic plates are briefly recalled. In §3.3
we discuss the details of the modification we introduce for the case of the rectangular plate

studied in [29, 44]. It is shown that the results obtained with the current strategy do improve

upon the previous studies, especially for µ ≃ 20.0 to 300.0, but difficulties are still encountered

for µ . 7.0. Partly motivated by this occurrence, we discuss the regular perturbation case

µ → 0 and establish that the relative errors of the new approximations are within 5% for

0 < µ . 2.0; while the work in §3.3.2 is pursued from a purely mathematical perspective, it is

particularly gratifying that its range of validity extends well beyond its theoretical limitations.

The more difficult problem of the stretched annular plate investigated in [41, 47] is tackled in

§3.4 by using the same hybrid energy method. Again, comparisons with the earlier results and

direct numerical simulations of the original equation show a marked improvement.
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3.2 The Hybrid Energy Method

In this section, we outline the strategy of the hybrid energy method, which is clarified by

comparisons with the Rayleigh–Ritz and Galerkin methods.

In the current hybrid energy method, we need to make use of the weak form of the bifurcation

equation. For example, in the problems to be discussed in this chapter, we recall (2.38) as

formulated in Chapter 2

δ2E(λ,u1) = 2D

∫

Ω

{
(∇2w1)

2 − (1 − ν)[w1, w1]
}
dA+ 2

∫

Ω

N̊ : (∇w1 ⊗∇w1) dA = 0 .

Here the expression δ2E(λ,u1) represents δ
2E(ů)[u1,u1] as in (2.38), since ů = ů(λ) is deter-

mined by the external loading parameter λ by solving the pre-buckling problem. (Notice that

the pre-buckling stress tensor N̊ depends on ů and therefore on λ.) The determination of the

neutrally stable buckling configurations is obtained from the well-known Trefftz criterion,

δ
{
δ2E(λ,u1)

}
[δu1] = 0 , (3.2)

that must be satisfied by all δu1 = δv1 + (δw1)n̂ compatible with the geometrical boundary

conditions; this variational problem defines the critical eigenvalue, λ = λC , and the infinitesimal

buckling mode, u1 = u1C .

Now we recall some fundamental ideas of Rayleigh–Ritz method. The equation (3.2) forms

the basis of the classical Rayleigh–Ritz method. By expanding the unknown transverse eigendis-

placement in the form

w ≃ wk :=

k∑

j=1

Cjφj ,

where Cj ∈ R (j = 1, 2, . . . , k) are undetermined constants, and the test functions {φj} are

a priori known and assumed to satisfy the kinematic boundary conditions for the problem at

hand, the Trefftz criterion (3.2) translates into the criticality conditions

∂

∂Ci

[
δ2E(λ,u1)

]
= 0 , i = 1, 2, . . . , k . (3.3)

This typically represents a generalised matrix eigenvalue problem of the form A = λB, for some

known square matrices A and B, which can be solved without difficulty.

The strategy we propose in this work differs in several respects from the classical method.

For example, to allow convergence in the L2(Ω)-norm of the sequence of approximations in this

classical approach one would have to require that the shape functions {φi} form a complete set

in Ω; the agreement with the actual solution usually improves by increasing k ∈ N. Our choice

of basis functions does not fulfil such requirements as it is informed by the asymptotic analysis

developed in [41, 44]. Also, the kinematic boundary conditions are satisfied only approximately,

unlike in the classical case.
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For the sake of completeness, next we give a short overview of the Hybrid Galerkin Method

of Geer and Andersen [4, 5]. The strategy is applicable to general equations of the form

L(u; ε) = 0 , (3.4)

where L is a differential operator and ε ∈ R is some parameter. The operator involved in

the above equation may depend on several other parameters (which here are not mentioned

explicitly), but it is just the behaviour of ε around some specific values εj (j = 1, 2, . . . , q) which

is of interest. In most cases ε1 = 0 and ε2 = +∞, although in principle q ≥ 3 does not pose

any sort of complications. When applied to problems such as (3.4), which do not necessarily

have a variational structure, the technique is essentially a modification of the classical Galerkin

method. Our interest is, however, in conservative elastic stability problems, so we shall adapt

the theory of [4, 5, 6] to the Rayleigh–Ritz (energy) approach. It is well known [79] that the

two classical versions are in fact equivalent to each other for such problems. Hence there is no

loss of generality in our exposition.

The first step consists of generating asymptotic expansions for ε → εj for each j =

1, 2, . . . , q, which we can formally write

u = u0 +

ni−1∑

s=1

u(i)s δ(i)s (ε) + O(δni
(ε)) ,

where u0 is the leading order expansion and the gauge functions
{
δ
(i)
s (ε)

}
(s = 1, 2 , . . . , ni−1)

are specific to the problem at hand.

In the second step we have two alternative treatment schemes.

One is taking the above asymptotic expansion for u to a certain order, using this as an

ansatz. Then we plug this ansatz directly into the weak form δ2E(λ)[u1C ,u1C ] = 0, which

ends up with an equation in terms of λ and other parameters (not explicit). By solving this

equation we could obtain λ as a function of other parameters. Notice in this treatment, we

did not use the idea of Rayleigh–Ritz (3.3). Instead, we just assume that this variational effect

(3.3) is already (asymptotically) embedded in the asymptotics u1C ≃ u, which were obtained

from the bifurcation equation (strong form together with the boundary conditions).

Alternatively, we can follow a Rayleigh–Ritz strategy by discarding the gauge functions and

selecting a subset of
{
u
(i)
s

}
, with s = 1, 2, . . . , ni − 1 and i = 1, 2, . . . , q, to construct the

ansatz

u = u0 +

Q∑

s=1

Csus , (3.5)

with Q ≤∑q
j=1 nj . The unknowns Cs are determined exactly as in the classical energy method

by applying both the weak form for bifurcation δ2E(λ)[u1,u1] = 0 and the stationarity condi-

tions (3.3).
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Obviously, the results obtained from the latter treatment are expected to be more accurate,

because we have introduced freedom to the ansatz, and the eigenfunction u can be approximated

better. However, this procedure is much more expensive from a computational point of view,

and can easily cause convergence problem in numerical calculations. In contrast, the former

treatment is more straightforward and computationally economic, and is later proven to be an

accurate and efficient strategy. So in this work we choose the former strategy.

In the Galerkin and Rayleigh–Ritz methods increasing the number of test functions does

not pose any serious difficulties because of the conditions in (3.3) end up with linear algebra

system. Unfortunately, this is not the case with the hybrid methods and that is why it is

important to keep the terms of expansion for u small.

Depending on the nature of the features studied with this method, it is important to allow

for variations from the above strategy. For example, in the post-buckling analyses discussed by

Wadee et al. [124] and Whitting [126] for compressed beams on nonlinear Winkler foundations

it was found helpful to introduce some extra degrees of freedom that made the ansatz (3.5)

nonlinear (in the sense that some of the C’s entered in the expression of the gauge functions as

well – see equation (16) in [124]).

3.3 Rectangular plate

A detailed numerical and asymptotic analysis for the edge-buckling of a stretched elastic plate

subjected to in-plane bending was carried out in [29, 44]. For the sake of completeness here we

include an outline of the model and a summary of some of the main results.

The rectangular thin elastic plate of length 2a, width b, and thickness h (h/b ≪ 1) corre-

sponds to the situation illustrated in Figure 3-1; it is assumed to occupy the domain

Ω ≡
{
(x, y) ∈ R

2 | − a ≤ x ≤ a , 0 ≤ y ≤ b
}
.

The plate is stretched by normal stresses σ0 in the y-direction, while on the two lateral edges

it is subjected to the loads P at the midpoints. Further in-plane bending moments M act

simultaneously, as indicated in the aforementioned figure. Under the combined action of these

loads the plate develops a region of compressive stresses adjacent to one of the long edges,

leading eventually to a regular wrinkling pattern in the x−direction (for a certain critical value

of the ratio M/P ). With the short sides taken as simply supported, the linearised Föppl–von

Kármán buckling equation used for describing the bifurcations of this plate is reduced to an

ODE by expressing the transverse displacement in the form

w(x, y) =W (y) sin(Amx) .
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Figure 3-1: Stretched thin film under in-plane bending.

Eventually, it transpires that

W ′′′′(y) + P1(µ,Am)W ′′(y) + P2(y;µ,Am)W (y) = 0 , 0 < y < 1 , (3.6)

where

P1(µ,Am) := −(µ2 + 2A2
m) ,

P2(y;µ,Am) := A2
m

{
A2

m + 6µ2

[
2λy −

(
λ− 1

6

)]}
,

and

η :=
a

b
, Am :=

mπ

η
, λ :=

M

Pb
,

µ2 := 12(1− ν2)
(σ0
E

)( b
h

)2

;

differentiation with respect to y is indicated by a dash (·)′. The mode number m ∈ N is

uniquely determined by identifying the global minimum of the curve λ = λ(Am). We shall use

the appellative ‘critical’ in relation to these values.

The same normal-mode solution transforms the boundary conditions along the long edges

into relatively simple expressions. In the case of clamped edges they take the form

W =W ′ = 0 at y = 0, 1 , (3.7)

while for the free-edge case we have

W ′′ − νA2
mW = 0 at y = 0, 1 , (3.8a)

W ′′′ −
[
µ2 + (2− ν)A2

m

]
W = 0 at y = 0, 1 . (3.8b)
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Finally, the work in [44] provides the asymptotic expansion for the critical buckling load λC

and the corresponding critical buckling mode number (proportional to AC
m below) in the form

W =W0(Y ) + µ−1/2W1(Y ) + µ−1W2(Y ) + µ−3/2W3(Y ) +O(µ−2) , Y := µ1/2y , (3.9a)

λC = λ0 + λ∗1iµ
−1/2 + λ∗2iµ

−1 +O(µ−3/2), for i = 1, 2 , (3.9b)

(AC
m)2 =M∗

0iµ
3/2 +M∗

1iµ+O(µ1/2), for i = 1, 2 , (3.9c)

where the extra subscript ‘1’ is used to indicate the values for the free-edge case, and ‘2’ applies

to the clamped-edge approximation. The coefficients that appear in (3.9) are recorded below

and are identified through a sequence of lengthy matched asymptotic calculations,

λ0 = 1/6, M∗
02 = 1.17306, M∗

01 = 0.62912,

λ∗12 = 0.78204, λ∗22 = 2.62679, M∗
12 = 0.79737,

λ∗11 = 0.41941, λ∗21 = 0.65966− 0.11111ν2, M∗
11 = 0.39579− 0.66666ν2 .

Details on the Wj−terms in the expansion of the eigenfunctions are given in the next section

(as adapted to our immediate purposes). The comparison between these asymptotic results

and numerics showed good agreement for both the two- and three-term approximations when

µ ≫ 1; the question here is whether or not this assumption can be relaxed without affecting

the accuracy.

3.3.1 Hybrid energy method

We start by noticing that setting u1 → u1C in (3.2) gives

δ2E(λ)[u1C ,u1C ] = 0 ; (3.10)

in the case of our rectangular plate this equation assumes the form

∫ 1

0

[
W ′′ 2(y) + (µ2 + 2A2

m)W ′ 2(y) + P2(y;µ,Am)W 2(y)
]
dy = 0 . (3.11)

Alternatively, the energy integral (3.11) can be also obtained by multiplying equation (3.6)

by W ≡ W (y) and then integrating the resulting expression over [0, 1] with the help of the

corresponding boundary conditions and the integration by parts formula.

As already pointed out, since our main interest lies with the approximation of the envelope

of the neutral stability curves, we are essentially looking for eigenvalues satisfying ∂λ/∂Am = 0.

On applying
∂
{
δ2E(λ)[u1C ,u1C ]

}

∂(A2
m)

= 0 , (3.12)
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we derive an extra integral constraint applicable to the case in which the long edges are clamped,

∫ 1

0

{
W ′ 2(y) +

[
A2

m + 3µ2
(
2λy −

(
λ− 1

6

))]
W 2(y)

}
dy = 0 . (3.13)

An different route for arriving at equation (3.13) was taken by Coman and Bassom in [44], and

it relies on the use of the Fredholm solvability condition for a certain inhomogeneous fourth-

order ODE. In the next chapter we shall extend their approach to the case of a bi-annular

plate which involves a set of interfacial conditions.

The counterpart of (3.13) for the case when the long edges of the plate are ‘free’ rather than

‘clamped’ is obtained similarly, with the only difference that this time we need to make use of

the boundary conditions (3.8). The final result reads

∫ 1

0

{
− νW (y)W ′′(y) + (1− ν)W ′ 2(y) +

[
A2

m +3µ2
(
2λy−

(
λ− 1

6

))]
W 2(y)

}
dy = 0 . (3.14)

A possible candidate for the ansatz of our hybrid energy method is

λC = λ0 + λ∗1jc1 , (AC
m)2 =M∗

0jc2 , (3.15a)

W (y) =W0(y) +W1(y)c3 + . . . , (3.15b)

where

W0(y) = Ai
(
ωµ1/2y + ζ0j

)
, ω := (2M∗

0i)
1/3 . (3.16)

Here, W0(Y ) in (3.9a) is expressed in terms of y, ζ0j denotes the first zero of the equation

Ai(j)(ζ) = 0 (j = 1, 2): for the free-edge case we take ζ01 ≃ −1.01879, while for clamped edges,

ζ02 ≃ −2.3381. The expression of W1(y) is not given here because of its high complexity, but

it can be found in [44] (see equations (16) and (17) in that reference).

The above approximation is obtained from (3.9) in which the powers of µ have been replaced

by the arbitrary constants ci (i = 1 , . . . , n); for notational simplicity we let c := [c1, c2, . . . , cn].

Note that (3.15a) do not require more terms as in (3.9b) or (3.9c) – it is just the expansion

(3.15b) that could potentially improve the accuracy of our numerical strategy.

If we confine ourselves to the case when just W0(y) is used in (3.15b) we essentially end up

with two unknowns for which we need only two equations. Substituting (3.15) into the integral

constraint (3.11) yields a first nonlinear equation in the ci’s, which we shall identify by the

notation f1(c) = 0. A second equation is obtained by plugging the same ansatz into either

(3.13) or (3.14); this will generically be referred to as f2(c) = 0. Thus, we get two nonlinear

equations in two unknowns. Here, we provide some details and possible simplifications in the

calculations that lead to these equations for the case of a clamped-edge plate.
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To start, we rewrite the energy integral in (3.11) in the form

∫ 1

0

[
W ′′ 2(y)−P1(µ;Am)W ′ 2(y)+R1(µ;Am, λ)W

2(y)+R2(µ;Am, λ)yW
2(y)

]
dy = 0 , (3.17)

where

R1(µ;Am, λ) := A2
m

[
A2

m − 6µ2

(
λ− 1

6

)]
,

R2(µ;Am, λ) := 12µ2A2
mλ .

As mentioned earlier, we choose an ansatz based on the leading-order asymptotic predictions

W (y) = Ai(ky + ζ02) ,

where ‘Ai’ is the usual Airy function of the first kind, k := µ1/2ω = µ1/2(2M∗
02)

1/3, and M∗
02 is

a constant that has already been mentioned in §3.3. To simplify the notation we introduce the

variable Z := ky + ζ02, so that now W (y) = Ai(Z), and notice that

dn(·)
dyn

= kn
dn(·)
dZn

, (3.18)

Z
∣∣
y=0

= ζ02 =: a1 and Z
∣∣
y=1

= k + ζ0 =: a2 ; (3.19)

the reason for re-labelling the first zero of the Airy function is to provide a more uniform

notation in the subsequent calculations.

By using the change of variable indicated above, the integrals in (3.17) can be recast as

follows

∫ 1

0

[
d2W (y)

dy2

]2
dy =

∫ a2

a1

[
k2

d2W (Z)

dZ2

]2
1

k
dZ = k3

∫ a2

a1

Z2W 2(Z)dZ ,

∫ 1

0

[
dW (y)

dy

]2
dy =

∫ a2

a1

[
k
dW (Z)

dZ

]2
1

k
dZ = k

∫ a2

a1

[
dW (Z)

dZ

]2
dZ ,

∫ 1

0

W 2(y)dy =
1

k

∫ a2

a1

W 2(Z)dZ ,

∫ 1

0

yW 2(y)dy =
1

k2

∫ a2

a1

ZW 2(Z)dZ − a1
k2

∫ a2

a1

W 2(Z)dZ .

Therefore, equation (3.17) can be reformulated further as

k3T1 − kP1(µ;Am)T2 +

[R1(µ;Am, λ)

k
− a1R2(µ;Am, λ)

k2

]
T3 +

R2(µ;Am, λ)

k2
T4 = 0 , (3.20)
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where

T1 :=

∫ a2

a1

[
dW 2(Z)

dZ2

]2
dZ , T2 :=

∫ a2

a1

[
W (Z)

dZ

]2
dZ ,

T3 :=

∫ a2

a1

W 2(Z)dZ , T4 :=

∫ a2

a1

ZW 2(Z)dZ .

Reference [2] provides us with a set of interesting formulae that facillitate the simplification of

integrals of products of Airy functions. That strategy will be applied in the context of (3.20)

as indicated below

T1 :=

∫ a2

a1

Z2Ai2(Z)dZ =
1

5

[
2

{
ZAi(Z)Ai′(Z)− 1

2
Ai2(Z)

}
− Z2Ai′

2
(Z) + Z3Ai2(Z)

]a2

a1

,

(3.21a)

T2 :=

∫ a2

a1

Ai′
2
(Z)dZ =

1

3

[
2Ai(Z)Ai′(Z) + ZAi′

2
(Z)− Z2Ai2(Z)

]a2

a1

, (3.21b)

T3 :=

∫ a2

a1

Ai2(Z)dZ =
[
ZAi2(Z)−Ai′

2
(Z)
]a2

a1

, (3.21c)

T4 :=

∫ a2

a1

ZAi2(Z)dZ =
1

3

[
Ai(Z)Ai′(Z)− ZAi′

2
(Z) + Z2Ai2(Z))

]a2

a1

, (3.21d)

where [ψ]a2
a1

≡ ψ(a2) − ψ(a1). As mentioned earlier, the integration limits a1, a2 depend only

on the parameter µ. Therefore, with given µ, the quantities Ti = Ti(µ) (for i = 1, 2, 3, 4) can

be calculated once and for all. On substituting (3.21) into (3.20) we then end up with the first

equation f1(Am, λ) = 0.

Additionally, we have derived the integral constraint (3.13) which enforces the criticality

condition ∂λ/∂Am = 0. For the clamped-edge rectangular plate this assumes the expression

∫ 1

0

{
W ′ 2(y) + [R3(µ;Am, λ) +R4(µ;λ)y]W

2(y)
}
dy = 0 , (3.22)

where

R3(µ;Am, λ) := A2
m − µ2

(
3λ− 1

2

)
,

R4(µ;λ) := 6µ2λ .

Carrying out the same transformation on variables as for (3.17), we eventually get

kT2 +

[R3(µ;Am, λ)

k
− a1R4(µ;λ)

k2

]
T3 +

R4(µ;λ)

k2
T4 = 0 , (3.23)

where, T2, T3, T4 were introduced earlier in (3.20). If we plug (3.21) into (3.23), we then obtain
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the second equation f2(Am, λ) = 0.

To summarise, in (3.20) and (3.23) we have formulated two nonlinear equations f1, f2 in

two unknows Am, λ. Since Am and λ depend only on c1 and c2, according to (3.15), we

essentially have two equations for these two unknowns. To complete the solution, the multi-

dimensional root finding problem is transformed into a minimisation problem by considering

I(c) := f2
1 (c) + f2

2 (c), which is expected to be zero when c ∈ R2 corresponds to our actual

solution. Cast in this form the problem is then solved by using Powell’s method (e.g., see [98]

for details). The situation we are confronted with is not trivial because the functional that

needs to be minimised is highly nonlinear. We have checked that the minima of I(c) lead to

values of the functional that are virtually indistinguishable from zero; this indicates that our

approximate solution satisfies the neutral stability condition (3.11) and guarantees that the

most dangerous mode has been captured. A final observation worth stating is that, owing to

the non-quadratic nature of the functional to be minimised, providing an initial guess requires

additional care. We employed a numerical continuation strategy in which the original guess

was supplied by various powers of µ ≫ 1, as hinted by (3.9), with µ then being decreased

progressively until it reached O(1)−values. In manipulating integrals involving Airy functions

a certain degree of simplification can be achieved by using the formulae in [2].

Results of this method are recorded in Figures 3-2 and 3-4 for clamped and, respectively, free-

edge boundary conditions, which are followed by the corresponding relative errors with respect

to the direct numerical simulations as in Figures 3-3 and 3-5. In Figures 3-2 and 3-4, the direct

numerical simulations are shown with a continuous line, while the new approximations are

represented by the white markers. To put things in perspective, we have also included the two-

and three-term asymptotic approximations from [44] (the dot-dashed/dashed lines). It is quite

remarkable that the simple-minded ansatz (3.16) informed by the leading-order asymptotic

analysis of equation (3.6) outperforms by a long shot the two-term asymptotic approximation

obtained through a very laborious analysis [44]. In Figure 3-3 the relative errors between

the hybrid energy results and numerics tend to deteriorate, for instance, from R.E. ≃ 5.14%

(µ = 11.0) R.E. ≃ 9.96% (µ = 10.0), although for µ & 60.0 we have R.E. . 2.73%. Similar

conclusions can be drawn in relation to Figure 3-4 and 3-5.

A caveat needs to be raised about our choice of test function (3.16). In the case of a

clamped plate, for relatively largish values of µ (typically, greater than 10.0), this function and

its derivative display exponential decay for y ≃ 1.0, so the constraints W (1) = W ′(1) = 0 are

satisfied asymptotically. Note that by definition W (0) = 0 (exactly), but W ′(0) 6= 0. It was

shown in [44] that satisfaction of the condition W ′(0) = 0 demanded the introduction of an

O(µ−1) layer that had to be matched to the solution described by equations (3.9). Here we

have disregarded this effect because the results obtained with the apparently crude choice of

(3.16) already lead to values that improve considerably upon the earlier studies. In §3.6 we shall
reconsider this point and look more closely at what happens if the test function is replaced by
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the O(µ−1) composite asymptotic approximation that partially satisfies the derivative boundary

condition at y = 0. It is also important to keep in mind that higher-order asymptotic results

are not easily available for the annulus problem discussed in §3.4.
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Figure 3-2: Comparisons between two- (dot-dashed line) and three-term (dashed line) asymptotic
approximations of the critical eigenvalue, the hybrid energy method (small circles) and the cor-
responding direct numerical simulations (continuous line) for the clamped-edge rectangular plate.
Both (a) and (b) are the comparisons of λC , but for different ranges of µ.
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Figure 3-3: Relative errors with respect to the direct numerical simulations shown in in Fig. 3-2
for the three approximations recorded there: the two- (ASYI ) & three- (ASYII ) term asymptotic
results for the critical eigenvalue, together with the hybrid energy method (H. E. M.) for the
clamped-edge rectangular plate.

It might be tempting to try and improve the results already obtained, especially since

W1(y) in (3.15b) is available [44]. In this case we have three unknowns, so a change of tack is

imperative. The criticality conditions (3.13) or (3.14) will remain unchanged, but two further

equations are obtained with the help of (3.2) in which δw → W0(y) sin(Amx) and δw →
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Figure 3-4: Same as per Fig. 3-2, but for the free-edge rectangular plate.
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Figure 3-5: Same as per Fig. 3-3, corresponding to the results in Fig. 3-4 for the free-edge rectan-
gular plate.

W1(y) sin(Amx), respectively. Doing this, however, does not lead to any noteworthy headway

since the kinematic boundary condition W ′(0) = 0 is still violated (and will continue to be so

as long as we do not take into consideration the O(µ−1) layer mentioned above).

3.3.2 The limiting case µ → 0

As already pointed out in the Introduction, for wrinkling it is the limit µ≫ 1 that is the most

interesting. However, from a mathematical point of view it would be important to understand

the asymptotic structure of the opposite limit µ → 0 as well. This scenario is also relevant to

the important case σxx → 0, and it does present us with an interesting regular perturbation

situation. We also anticipate that the range of validity for these new asymptotic results would
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extend beyond their immediate limit of applicability, so they could be useful (at least in prin-

ciple) as numerical guesses for the optimisation routines used in the hybrid energy method.

Another motivation for the work in this section comes from the related papers of Geer and

Andersen [4, 5, 6] mentioned in §3.2, although it will eventually transpire that we cannot follow

their strategy very closely.

Clamped-edge boundary conditions

For a rectangular plate with clamped edges AC
m = O(1) as µ → 0. At the same time, the

critical eigenvalue λC displays a tendency to blow up, which was verified by the direct numerical

simulations. This limiting behaviour is captured by the following ansatz

W (y) =W0(y) +W1(y)µ
2 + . . . , (3.24a)

λ = λ0µ
−2 + λ1 + λ2µ

2 + . . . , (3.24b)

(Am)2 =M0 +M1µ
2 + . . . , (3.24c)

where W0, λ0, and M0 satisfy the simplified differential equation

W ′′′′
0 − 2M2

0W
′′
0 +M0 [M0 + 6λ0(2y − 1)]W0 = 0 , (3.25)

that is to be solved subject to the boundary conditions

W0(y) =W ′
0(y) = 0 , at y = 0, 1 .

Here and in the next section we shall employ some of the labels used previously for expanding

λ, Am and W in order to avoid overdoing the notation; no confusion should arise as these

derivations are independent of each other.

Note that this reduced problem depends only on the parameters λ0 and M0, so we can

integrate it numerically once and for all to identify the values for which the curve λ0 = λ0(M0)

has a global minimum. It is found that the critical values are (λ∗0,M
∗
0 ) = (65.0663, 6.6399).

Some comparisons with direct numerical simulations are included in Figure 3-6. It can be

clearly seen that the asymptotic solution for 0 < µ ≪ 1 is applicable even for 0 < µ . 2.0,

since its relative error is within 5% for this range of µ. Unfortunately, the asymptotic analysis

can be executed only to the leading order – similar limitations were encountered in a couple of

recent works [34, 42].
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Figure 3-6: Plot (a) shows the comparison between the asymptotic approximation λC ≃ λ∗

0/µ
2

(circle-dashed) and its counterpart obtained by direct numerical simulations (continuous line) in
the case of a clamped-edge rectangular plate. Plot (b) gives an idea about a similar comparison of
AC

m involving the corresponding mode numbers.

Free edges

For the free-edge case, informed by numerical simulations, we expect the criticalAm to approach

zero as µ → 0 and λC is found to display a similar blow-up behaviour as seen previously.

However, the asymptotic structure of the limiting case is somewhat different (the asymptotic

analysis from Eq. (3.26) to (3.35) was obtained by the first author of [50]. For the sake of

self-consistency, they are recorded here with acknowledgement). It turns out that this time we

need an ansatz of the form

W (y) =W0(y) +W1(y)µ+W2(y)µ
2 + . . . , (3.26a)

λ = λ0µ
−1 + λ1 + λ2µ+ . . . , (3.26b)

(Am)2 =M0µ
2 +M1µ

3 + . . . . (3.26c)

Substituting (3.26) into the bifurcation equation (3.6) and setting to zero the coefficients of

successive powers of µ we obtain

O(1) : W ′′′′
0 = 0 , (3.27a)

O(µ) : W ′′′′
1 = 0 , (3.27b)

O(µ2) : W ′′′′
2 − (1 + 2M0)W

′′
0 = 0 , (3.27c)

O(µ3) : W ′′′′
3 − (1 + 2M0)W

′′
1 − 2M1W

′′
0 + 6M0(2y − 1)λ0W0 = 0 . (3.27d)
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Similarly, plugging (3.26) into the boundary conditions (3.8), we derive the constraints that Wj

(for j = 1, 2, . . . ) must satisfy at y = 0, 1

W ′′
0 = 0 , W ′′′

0 = 0 , (3.28a)

W ′′
1 = 0 , W ′′′

1 = 0 , (3.28b)

W ′′
2 − νM0W0 = 0 , W ′′′

2 − [1 + (2− ν)M0]W
′
0 = 0 , (3.28c)

W ′′
3 − νM0W1 − νM1W0 = 0 , W ′′′

3 − [1 + (2− ν)M0]W
′
1 − (2− ν)M1W

′
0 = 0 . (3.28d)

Finally, the critical buckling mode condition (3.14) can be expanded in powers of µ and results

in the following additional constraints

O(1) :

∫ 1

0

[
νW0W

′′
0 − (1− ν)W ′2

0

]
dy = 0 , (3.29a)

O(µ) :

∫ 1

0

[νW0W
′′
1 − 2(1− ν)W ′

0W
′
1 + νW ′′

0 W1 + Γ1] dy = 0 , (3.29b)

O(µ2) :

∫ 1

0

[νW0W
′′
2 − 2(1− ν)W ′

0W
′
2 + νW ′′

0 W2 + Γ2] dy = 0 , (3.29c)

where

Γ1 :=− 3(2y − 1)λ0W
2
0 ,

Γ2 :=νW1W
′′
1 − (1− ν)W ′2

1 − 6(2y − 1)λ0W0W1 −
[
M0 + 3(2y − 1)λ1 −

1

2

]
W 2

0 .

The leading order equation (3.27a) together with the boundary conditions (3.28a) leads to the

general solution W0(y) = γ1y+ γ2 in which γ1, γ2 ∈ R are constants that will be fixed as we go

along. On substituting this W0 into (3.29a) results in γ1 = 0, and hence W0(y) = γ2; without

any loss of generality we can assume γ2 = 1.

Next, considering the equation (3.27b) subject to the end constraints (3.28b) yields

W1(y) = γ3y + γ4 ,

where γ3, γ4 ∈ R are constants. Note that γ4 can be taken to be zero because of the homogeneous

nature of the problem and, as we haveW0(y) already, it is only γ3 that needs to be determined.

To this end, we carry on with solving the next order problem, consisting of (3.27c) in conjunction

with (3.28c); some simple algebra eventually leads to

W2(y) =
1

2
νM0γ2y

2 .

We mention in passing that the criticality constraint (3.29b) is identically satisfied with the
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information we have thus far, so we need to look at (3.29c). It transpires that

(1− ν)γ23 + λ0γ2γ3 +

[
(1 − ν2)M0 +

1

2

]
γ22 = 0 , (3.31)

an equation that will be used shortly to identify λ0. After some further manipulations, the

solution of (3.27d) and (3.28d) is found to be

W ′′
3 (y) = −6M0

(
y3

3
− y2

2

)
λ0γ2 + γ5y + γ6 , (3.32)

with

γ5 := (νγ3 − λ0γ2)M0, γ6 := νM1γ2 ;

in the course of reaching equation (3.32) it also emerges that

γ3 = −
[

M0λ0
1 + 2(1− ν)

]
γ2 .

On substituting this value of γ3 into (3.31) we arrive at

λ20 =
M0(1− ν2) + 1

2

ω2M0 − ω1M2
0

, (3.33)

where

ω1 :=
1− ν

[1 + 2(1− ν)]
2 and ω2 :=

1

1 + 2(1− ν)
.

As we aim for the lowest critical load, this expression must be minimised with respect to M0,

i.e. ∂λ20/∂M0 = 0. The result is a quadratic algebraic equation for M0, whose unique positive

root will give the critical value

M∗
0 =

−1 +
√
7 + 2ν − 4ν2

2(1− ν2)
. (3.34)

The corresponding critical value of λ0 is obtained by substituting (3.34) into (3.33), i.e.

λ∗0 = λ0
∣∣
M0=M∗

0
. (3.35)

To assess the relevance and usefulness of these last two formulae, a representative sample of

comparisons between them and direct numerical simulations is summarised in Figure 3-7.
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Figure 3-7: Free-edge rectangular plate: plot (a) includes the comparison between the asymptotic
approximation λC ≃ λ∗

0/µ (small circles) given by (3.35) and direct numerical simulations. The
accuracy of (3.26c) and (3.34) on AC

m can be appreciated by inspecting plot (b).

The remarks made in the previous section vis-á-vis the range of applicability of the results

derived for the free-edge case remain valid. Relative errors between asymptotics and numerics

are roughly 5% for 0 < µ . 2.0. Further work, not discussed here, has shown that the term λ1 in

the asymptotic ansatz (3.26b) is negative. Once obtained, that term does improve the accuracy

of the approximation as µ gets closer and closer to zero, but within the range 1.0 < µ < 2.0

the results become worse.

3.4 Annular plate

Full details of this model and a comprehensive asymptotic analysis can be found in [41, 47];

only the most important aspects are highlighted below. We consider an annular plate with

inner radius R1, outer radius R2, and thickness h (h ≪ R2) – as shown in Figure 3-8. This

configuration is stretched by applying uniform radial displacement fields U1 and U2 on the inner

and outer rims respectively. The Lamé solution for the corresponding plane stress problem

reveals the presence of compressive stresses near the inner rim. Coupled with the same Föppl–

von Kármán buckling equation as in §3.3, the bifurcation problem that results is reduced to an

ODE by using the separable variables solution

w(r, θ) =W (r) cosnθ ,

where n ∈ N is the mode number (equal to half the number of identical wrinkles in the azimuthal

direction). The final result reads

W ′′′′ + P3(ρ)W
′′′ + P4(ρ)W

′′ + P5(ρ)W
′ + P6(ρ)W = 0 , η < ρ < 1 , (3.36)
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Figure 3-8: An annular plate subject to uniform displacement fields on its boundaries. For a

sufficiently large ratio U1/U2, localised buckling emerges near the central hole.

where

η :=
R1

R2
, ρ :=

r

R2
,

and the rescaled W is denoted by the same letter to avoid overloading the notation. The

coefficients of (3.36) are defined by

P3(ρ) :=
2

ρ
, P4(ρ) := −

[
2n2 + 1

ρ2
+ µ2

(
A+

B

ρ2

)]
,

P5(ρ) :=
1

ρ

[
2n2 + 1

ρ2
− µ2

(
A− B

ρ2

)]
, P6(ρ) :=

n2

ρ2

[
n2 − 4

ρ2
+ µ2

(
A− B

ρ2

)]
,

with

A := (1 + ν)
1 + λη

1− η2
, B := (1− ν)

η2 + λη

1− η2
, (3.37a)

λ :=
U1

U2
, µ2 :=

12U2R2

h2
. (3.37b)

For the sake of brevity only clamped boundary conditions are considered. In terms of the

amplitude W (ρ) these are

W (ρ) =W ′(ρ) = 0 at ρ = 0, 1 . (3.38)

In [41, 45], Coman and Bassom provided a detailed asymptotic investigation of the aforemen-

tioned model. They showed that the neutral stability envelope can be obtained by various
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expansions in suitable powers of µ≫ 1,

W (Y ) =W0(Y ) +W1(Y )µ−1/2 + O(µ−1) , Y := µ1/2(ρ− η) (3.39a)

(nC)
2 = N∗

0µ
3/2 + O(µ) , (3.39b)

λC = λ0 + λ∗1µ
−1/2 + λ∗2µ

−1 + O(µ−3/2) , (3.39c)

where,

N∗
0 =

(
2

3
ζ0η

2Â0

)3/4

, (3.40a)

λ0 =
2νη

1− ν − η2(1 + ν)
, (3.40b)

λ∗1 = 4N∗
0G , (3.40c)

λ∗2 = 2η2G

[
4ζ0(N

∗
0 )

2/3

(
GÂ1 +

1

2η2

)
+

(Â0)
1/2

η
√
2

]
; (3.40d)

(−ζ0) ≃ −2.3381 represents the first zero of the Airy function Ai, and we have introduced the

notations

Â0 :=
(1 + ν)(1 + λ0η)

1− η2
, Â1 :=

(1 + ν)η

1− η2
, (3.41a)

G :=
1− η2

η(1− ν)− η3(1 + ν)
. (3.41b)

Note that in the expansion of (nC)
2, only the critical value N∗

0 is available – as pointed out in

[41] the effort required to find N∗
1 is significant. Thus, improving on these results is far from

being a lightweight undertaking.

The hybrid energy method for the annular plate proceeds along the same route as in §3.3.1;
the ansatz that we use is given by

λ ≃ λC ≡ λ0 + λ∗1c1 , n2 ≃ (nC)
2 ≡ N∗

0 c2 , W (ρ) =W0(ρ) +W1(ρ)c3 + . . . , (3.42)

where

W0(ρ) = Ai
(N∗1/3

0 µ1/2

η
(ρ− η) + ζ0

)
. (3.43)

Since in this case W1(ρ) is not easily available, our approximation will have only two degrees

of freedom (c1 and c2). These constants are found from (3.10), which for an annular plate

becomes ∫ 1

η

[
Π3W

′′2(ρ) + Π4W
′2(ρ) + Π5W

2(ρ)
]
dρ = 0 , (3.44)
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Figure 3-9: Comparisons of the various approximations of the critical eigenvalue λC ≡ λC(µ): two-
(dot-dashed line) & three-term (dashed line) asymptotic results, the hybrid energy method (small

circles), and the direct numerical results (continuous line) for the stretched annular plate. Here
η = 0.2 in (a), (b) and η = 0.4 in (c), (d).

with

Π3 := ρ , Π4 :=
2n2 + 1

ρ
−∆1(1 + λη)ρ−∆2

η(λ+ η)

ρ
,

Π5 :=
n2(n2 − 4)

ρ3
− n2

ρ

(
∆1 −

∆2

ρ2

)
(λη + 1) ,

and

∆1 :=
µ2(1 + ν)

1− η2
, ∆2 :=

µ2(1− ν)

1− η2
.

An additional equation is obtained from the criticality condition in (3.12) by replacing A2
m by

n2, namely, ∫ 1

η

[
Π6W

′ 2(ρ) + Π7W (ρ)W ′(ρ) + Π8W
2(ρ)

]
dρ = 0 , (3.45)
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Figure 3-10: Relative errors with respect to the corresponding direct numerical solution for the
three approximations seen in Fig. 3-9: two- (ASYI ) and three-term (ASYII ) asymptotic approxi-
mations of the critical eigenvalue λC = λC(µ), together with the hybrid energy method (H. E. M.)
for a stretched annulus with η = 0.2 in (a) and η = 0.4 in (b).

where

Π6 :=
2

ρ2
, Π7 := − 2

ρ3
, Π8 :=

µ2

ρ2

(
A− B

ρ2

)
+

2(n2 − 2)

ρ4
,

and the expressions of A and B were defined in (3.37). These equations will be used in the

numerical strategy described in §3.3.1 and already employed in the previous section, so we omit

the details.

In contrast to the rectangular plate, we now have an extra parameter, 0 < η < 1, so our

comparisons between asymptotic and numerics will have to reflect this new addition. Figure 3-

9 shows a first set of comparisons for η = 0.2 and, respectively, η = 0.4, complemented by

the corresponding relative errors plots in Figure 3-10. The results of the hybrid energy method

based on the one-term ansatz (3.43) appear to perform better than both the two- and three-term

asymptotic approximations derived in [41]. More specifically, when η = 0.2 as in Figure 3-10

(a), the relative errors between the values computed with the former approach and direct

numerical simulations lie between 1.06% and 1.66% for µ in the range [20.0, 350.0], but they

tend to deteriorate quickly as µ ≃ 10.0 because the boundary condition W (1) = 0 starts to be

violated in that instance. The situation is more evident when η = 0.4 as in Figure 3-10 (b),

the relative errors of the current energy method is below 6.25% to for µ ∈ [14.0, 350.0], but

deteriorate sharply when µ ≃ 10.0 (R.E. ≃ 92.16% in that case). Given our previous experience

from §3.3.1 this is not unexpected.

A different set of comparisons is presented in Figures 3-11 and 3-13, which contain the

neutral stability envelopes for the stretched annulus. It is known that the individual curves

λ = λ(η;m) for m = 2, 3, . . . satisfy limη→0 λ(η;m) = +∞, and therefore the envelope of this

family of curves is expected to have the same characteristic. However, the asymptotic analysis

proposed in [41] was conducted under the assumption that η = OS(1), so the approximations of
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Figure 3-11: Dependence on η of the two- (dot-dashed line) & three-term (dashed line) asymptotic
results, the hybrid energy method (small circles), and the direct numerical results (continuous line)
for the stretched annular plate: µ = 10.0 (a) and µ = 20.0 (b).
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Figure 3-12: Relative errors with respect to the direct numerical solutions for two- (ASYI ) and
three-term (ASYII ) asymptotic approximations of the critical eigenvalue λC = λC(η) and the
hybrid energy method (H. E. M.); the data corresponds to the information shown in Fig. 3-11 Here,
µ = 10.0 (a) and µ = 20.0 (b).

the envelope derived there, and reproduced here as the dot-dashed/dashed lines for convenience,

cannot be expected to be a faithful description of what happens for η ≃ 0. This statement

does not contradict the results obtained by Coman and Bassom in [41] since for µ ≫ 1 the

range of η for which their formula is not accurate is extremely small; in fact, it can be argued

that to the level of accuracy of visual inspection their formulae perform very well for the entire

range of realistic values of η. Indeed, (3.39c) plays the role of some sort of outer approximation

for |η − 1| ≪ 1 that can be complemented by a similar expression for η → 0. Interestingly

enough, the hybrid energy approximation is free of such shortcomings and it appears to follow

the numerical envelope quite closely. The relative errors in Figure 3-11(a) are admittedly large
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because µ = 10.0, but they decrease quickly as this parameter increases. For example, in

Figure 3-13(a) (µ = 40.0) they are within 5.20% for η ∈ [0.01, 0.5], while in Figure 3-13(d)

(µ = 350.0) the maximum relative error is 1.5% for 0.05 < η < 0.5. We also want to point out

that the blow-up of λ (both the numerical solution and our current approximations) is present

in all four plots in Figure 3-13, but it is not emphasised since the η−region over which this

behaviour occurs is awkward to represent graphically; furthermore, this regime has very little

relevance from a practical point of view.
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Figure 3-13: Same as per Fig. 3-11, except that µ = 40.0 in (a), µ = 60.0 in (b), µ = 100.0 in (c),
and µ = 350.0 in (d).

3.4.1 The small-µ limit for the annular plate

By analogy with the clamped-edge rectangular plate, since the annular plate is also subjected to

the same type of boundary constraints, we anticipate that λC = O(µ−2) and nC = O(1) when

µ→ 0; this expectation was also confirmed by the direct numerical simulations. Therefore, we
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Figure 3-14: Same as per Fig. 3-12, except that µ = 40.0 in (a), µ = 60.0 in (b), µ = 100.0 in (c),
and µ = 350.0 in (d), which corresponds to the (a), (b), (c), (d) in Fig. 3-13.

adopt the ansatz

W (ρ) =W0(ρ) +W1(ρ)µ
2 + . . . , (3.46a)

λ = λ0µ
−2 + λ1 + λ2µ

2 + . . . , (3.46b)

n2 = N0 +N1µ
2 + . . . . (3.46c)

Substituting the above formulae into the original bifurcation equation (3.36) and collecting the

leading order terms, yields the simplified differential equation as

W ′′′′
0 + C3(ρ)W

′′′
0 + C2(ρ)W

′′
0 + C1(ρ)W

′
0 + C0(ρ)W0 = 0 , (3.47)

where

C3(ρ) :=
2

ρ
, C2(ρ) := −

(
A0 +

2N0 +B0 + 1

ρ2

)
,

Eigenvalue problems & elastic instabilities 65



3.4. Annular plate

C1(ρ) :=
1

ρ

(
−A0 +

2N0 +B0 + 1

ρ2

)
, C0(ρ) :=

N0

ρ2

(
A0 +

N0 −B0 − 4

ρ2

)
,

and

A0 :=
(1 + ν)λ0η

1− η2
, B0 :=

(1− ν)λ0η

1− η2
;

the boundary conditions (3.38) remain the same.

It is obvious that, when µ→ 0 (the limiting situation when the rescaled bending stiffness of

the plate becomes infinite), µ does not appear in both the simplified differential equation and the

boundary conditions (3.38), therefore, the solutions of the simplified problem are independent

of µ. However, the additional parameter η is involved here compared with the clamped-edge

rectangular plate. Solving the above simplified problem, the eigenvalue λ0 = λ0(η,N0). For a

given η, we have a global minimum for λ∗0 with respect to the critical N∗
0 , which are shown in

Figure 3-15.
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Figure 3-15: The critical eigenvalues λ∗

0(η) with respect to the mode-number parameter N∗

0 when
solving the reduced problem equation (3.47). The right window shows the corresponding critical
N∗

0 (η). Notice that, there is a minimum in the left window (η ≃ 0.08, λ∗

0 ≃ 468.1059).

It is found from Figure 3-15 that, as η ranges from 0 to 0.4, λ∗0 shows a parabola-like

tendency; moreover, λ∗0(η) has a minimum at η ≃ 0.08. It is therefore apparent that the

curve of λC(η) with λC = λ0µ
−2 also possesses a minimum near η ≃ 0.08 (for example, when

µ = 40, 60, 100 as in Figure 3-13 (a), (b), (c). In addition, the validity of this asymptotic

approximation can also be checked by comparing its predictions with the direct numerical

simulations in Figure 3-16 when µ = 2.0.
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Figure 3-16: Comparison between the asymptotic approximation λC ≃ λ∗

0/µ
2 (continuous line)

and its counterpart obtained by direct numerical simulations (small circles) for an annular plate
with clamped edges and µ = 2.0. In the right bar chart we show the relative errors with respect to
the direct numerical results, which are within 4% for the entire range of η.

It can be observed that the relative errors of asymptotic approximations for 0 < µ ≪ 1 is

even applicable for µ = 2.0 (R.E. ≤ 4%). Similar with the clamped-edge rectangular case, only

the leading order of the asymptotic analysis is worth conducting, otherwise more sophisticated

numerical work is involved.

3.5 A more refined ansatz
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Figure 3-17: Comparison between the relative errors of several approximations on the critical
eigenvalues with respect to the direct numerical simulations for the clamped-edge rectangular plate,
the values of ASY II,W0, Ŵ shown here are the same as Tab. 3.3.

It was mentioned in §3.3.1 that a more suitable ansatz for the problems discussed in this work
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3.5. A more refined ansatz

Table 3.3: Comparisons between various approximations of the critical eigenvalues and direct
numerical simulations (NUM) for the edge-buckling of a clamped rectangular plate. The
following conventions are used: ASY II represents the asymptotic result λC := λ0 +λ∗1µ

−1/2 +
λ∗2µ

−1 from the paper [44]; W0 denotes the values of λ obtained via the hybrid energy method

with the simplest ansatz W = W0; finally, Ŵ is used to identify the approximate eigenvalues
obtained with the test function (3.48). The relative errors with respect to the corresponding
direct numerical results are recorded in the last three columns.

µ NUM ASY (II) W0 Ŵ R.E.ASY (II) R.E.W0 R.E.Ŵ
(%) (%) (%)

10.0 1.226536 0.676648 1.348720 1.329550 44.8326 9.9617 8.3988

20.0 0.620428 0.472876 0.593808 0.617041 23.7824 4.2906 0.5460

30.0 0.468225 0.397007 0.448233 0.464508 15.2103 4.2696 0.7939

40.0 0.399122 0.355988 0.384502 0.396310 10.8073 3.6630 0.7045

50.0 0.359254 0.329800 0.347982 0.357133 8.1988 3.1377 0.5904

100.0 0.280448 0.271139 0.275470 0.279756 3.3196 1.7751 0.2470

200.0 0.238152 0.235099 0.235919 0.237944 1.2819 0.9377 0.0873

300.0 0.222183 0.220574 0.220768 0.222085 0.7244 0.6367 0.0443

400.0 0.213362 0.212336 0.212333 0.213306 0.4809 0.4821 0.0263

would be one which incorporates the effect of the O(µ−1) bending layer. Prompted by that

observation we shall now consider replacing W in (3.16) by

Ŵ (y) = Ai(Z) + µ−1/2

{
β1Ai

′(Z) + β2Ai
′′′(Z) + Ai′(ζ02)exp(−µy)

}
, (3.48)

where Z := ωµ1/2y + ζ02 and βj (j = 1, 2) are the complicated expressions defined in equation

(17) of [44]. Comparisons with various other results obtained previously are recorded in Ta-

ble 3.3 and the corresponding relative errors in Figure 3-17. The data included there indicates a

significant improvement over both the asymptotic results reported in [41] and the earlier results

from our hybrid energy method. It can be shown that the free-edge case for the rectangular

plate is amenable to a similar treatment by following the analysis available in [44], although

things are considerably more involved for the annular plate. That is partly due to the fact that

one has to take the asymptotic analysis of [41] to the next order.

Refining the ansatz (3.16) or (3.43) as indicated above can only provide a sensible improve-

ment as long as µ does not get too small, typically µ & 10.0. Indeed, the analysis of Geer and

Andersen in [4, 5, 6] suggests that for lower µ-values one would have to augment the Rayleigh–

Ritz ansatz by terms coming from the asymptotic analysis in which 0 < µ≪ 1. Unfortunately,

as we have already seen in §3.3.2 for the clamped plate, the expression of the corresponding

eigenmodes is not immediately available in closed form. While in principle we can construct

the refined ansatz and use numerical methods to carry out the programme outlined in §3.3.1,
there is little scope in pursuing it as this would defeat the whole purpose of using the hybrid
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energy method in the first place.

3.6 Discussion and conclusions

Motivated by recent work on the bending instabilities of thin elastic plates in tension (e.g.,

[41, 44]), a hybrid energy method has been proposed to improve upon those earlier results.

With the help of a special ansatz informed by the asymptotic structure of the problems at

hand, we have shown that the new strategy is capable of producing approximations for both

the critical edge-buckling loads and the number of wrinkles that are valid for moderate values

of the stiffness parameter µ. It is remarkable that the accuracy achieved is very good despite

the simplicity of the ansatz employed. This leads us to believe that leading-order asymptotic

approximations in other contexts (such as the two-dimensional problems in [90], for instance)

could form the basis for similar energy strategies, thus circumventing the need of complicated

numerical work.

In the context of asymmetric buckling problems our hybrid energy method is particularly

versatile since it is able to capture the neutral stability envelope with minimum effort. Indeed,

this is done by simply adding an extra integral constraint as demanded by the criticality of

the eigenvalue with respect to the mode number. It is interesting to note that while the

general asymptotic approach in [44] and [41] for rectangular and annular plates, respectively,

was identical, its accuracy was problem-dependent. The hybrid energy method seems to be free

of such shortcomings and is quite robust.

Finally, the analysis described in this chapter reinforces the duality between numerics and

asymptotics. By using the techniques of asymptotic analysis one is naturally led to a correct

estimate of the ansatz that needs to be used in approximate methods such as the Rayleigh–Ritz

technique.
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Chapter 4

The localised instabilities of a

stretched bi-annular plate and

the wrinkling-resistance analysis

4.1 Introduction

In the last chapter, we introduced a new energy method by taking advantage of the asymp-

totic feature (the instabilities are localised) and the minimal potential energy strategy. One

of the examples discussed in that chapter was the localised instabilities of a stretched annular

plate. The localised features therein were introduced by the stress concentration which was

caused by the geometrical discontinuities of the central hole under stretching. But how will

material discontinuity affect localised instabilities in a similar annular geometry? In this chap-

ter, we will discuss a stretched bi-annular plate with piecewise-constant mechanical properties.

More specifically, this bi-annular plate is composed of two fully bonded annuli, which are made

of different materials with different Young’s moduli and Poisson ratios.

Indeed, this can be regarded as a composite structure. A question with practical engineering

application is: how do the mechanical and geometrical properties of each annulus contributes

to the resistance to wrinkling? Can we have some general rules for designing thin structures

when considering their abilities to resist buckling, in order to make the composite structure

more efficient than any of the constituent ingredients?

The motivation of the present work originates partly from the work of Simitses and Frostig

[55, 56, 114]. In [55], the authors formulated the classical buckling problem of a multi-annular

plate subject to axisymmetric radial compressive loading on the boundaries or the common

joints, which was followed by a numerical study of a uniformly compressed bi-annular plate

using a power series method. Later, this study was expanded for a ring-stiffened annular
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plate under compression, to discuss the effect of boundary conditions and its rigidities on its

buckling [56, 114]. In the compressed situations, the authors discussed mainly the buckling

forces of either when the mode number n = 0 (axisymmetric mode) or n = 1 (asymmetric

mode). However, in light of the localised wrinkling problem in [41, 47], the wrinkling mode

number in the current problem is supposed to be n ≫ 1. In this case, the critical wrinkling

mode number becomes a pivotal extra parameter for the critical wrinkling loads. Moreover,

bi-annular plates experience global buckling under uniformly compressive stresses as in Simitses

et.al.’s work [55, 56, 114], where all the mechanical properties of both annuli make contributions

to the global buckling. In other words, there is no dominant effect introduced by the mechanical

parameters of either sub-annular region. In the present problem, the buckling is expected to

be localised in the case of the stretched single annular plate. It is interesting to see if only the

mechanical properties of the localised region play the dominant role compared with the flatter

region.

U1

U2

U1

U2

E2, ν2
E1, ν1

E2, ν2

Figure 4-1: Two different an-
nular models under the same uni-
form stretching displacement fields
U1, U2. The left sketch shows a sin-
gle annular plate with uniform ma-
terial, while the right illustrates a
bi-annular plate composed of two
mechanically different annuli.

Also, comparing with the stretched single-annular plate by Coman et al. [41, 47], the

discontinuities between the materials of the two annuli (see Fig. 4.1) raise a couple of other

interesting questions:

If we recall the work done by S. Roccabiance et. al. [106, 107], rather than considering

the homogeneous thick plate, the authors investigated the plane strain bifurcations of elastic

layered structures subject to finite bending. Their analysis reveals that a multilayered structure

can behave completely differently for both the basic state and the bifurcation state compared

with its homogenous counterpart. For instance, a homogeneous block under bending can only

possibly have one neutral axis (where the stress components are zero), and experiences surface

instabilities on the compressed side when it buckles. However, a multilayered block might

have several neutral axes [107]. They then pointed out that, for example, the presence of two-

neutral axes might lead to long-wavelength buckling modes [106]. Returning to the stretched

thin annular plate geometry, we know that in a single-annular case (in [47]), the wrinkling

mode is localised near the inner rim. Then what will the wrinkling mode of a stretched layered-

annular plate look like? Would it be a completely different wrinkling mode, just like the

contrast between the homogeneous and multi-layered block under bending? Is it possible that
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the wrinkling is still triggered near the inner boundary or the interface, or that we have two

localised wrinkles on both annuli?

If we look from an alternative aspect: how do the discontinuities affect the bifurcation

behaviour of a layered structure? If we get a complete understanding of this problem, it could

provide us with the general rules for how the physical discontinuities influence the capabilities

of anti-buckling of thin structures. It will therefore contribute to the anti-buckling design of

general thin structures.

Moreover, in the single-annular case, the critical stretching load (for buckling) increases

monotonically with the aspect ratio (ratio between the inner and outer radii of the annulus), the

associated critical wrinkle number shows a similar trend with respect to aspect ratio. Whereas,

for the stretched bi-annular plate, we might find that these monotonic relations would no longer

be true in some cases.

To answer the above questions, we organise the chapter as follows. In § 4.2, we introduce

the problem and record the formulation for both basic and bifurcation states within such a

bi-annular geometry. For thin plates, the analysis of the pre-buckling stress distribution can

always provide a fruitful indication for the wrinkling problem, which is explained in § 4.3. Af-

ter appropriate rescalings, we conduct extensive numerical explorations following the numerical

strategies presented in §4.4. Here, both a collocation-based solver and the compound matrix

method are adopted for the eigenvalue problem (bifurcation problem) of this multi-layer struc-

ture. The response curves are shown in § 4.5.1, followed by the critical wrinkling load and

the corresponding critical wrinkling modes in § 4.5.2. In these sections, we fully answer the

questions raised earlier: the neutral stability envelopes NSE can be classified into two different

types, kink and monotonic types. Critical wrinkling modes are not the same as for the stretched

single-annular case: there are four types of wrinkling modes rather than only one: the wrinkling

can be localised solely in the inner or outer annulus, or both, or localised right at the inter-

face. Also, we present a detailed analysis to show the close connections linking the basic state,

the neutral stability and the wrinkling modes, which are affected by the physical discontinuity

introduced by the interface. The role played by the physical discontinuity on the prebuckling

and NSE is presented in §4.6.2. Finally, motivated by the WKB analysis proposed by Coman

and Haughton [47], we take advantage of the presence of a large parameter (related to the large

initial stretching and small thickness, analogous to µ in last chapter) and the large value of the

critical mode number, to extend that strategy to a multi-layer structure by reducing the origi-

nal fourth-order eigenvalue problem into a second-order problem. For a bi-annular plate, there

are four boundary conditions and four continuity conditions. We simplify the eight conditions

into four by order analysis using the Laplacian expansion on an eighth-order determinant. The

asymptotic results show excellent agreement with the results of the full problem. This chapter

concludes with some remarks in §4.9.
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4.2 Problem formulation

Let us consider a simple plane-stress situation that generalises the Lamé problem for an annular

domain subject to radial stresses or displacements on its inner and outer boundaries. Rather

than having uniform elastic properties, the annulus, Ω (say), is assumed to consist of two

perfectly bonded concentric annular regions,

ΩI :=
{
(r, θ) ∈ R

2 | R1 ≤ r ≤ Rm, 0 ≤ θ < 2π
}
,

ΩII :=
{
(r, θ) ∈ R

2 | Rm ≤ r ≤ R2, 0 ≤ θ < 2π
}
,

that have different mechanical properties, i.e. Ω = ΩI ∪ ΩII (details of the geometry that we

have in mind can be seen in Fig. 4-2). For the sake of simplicity it will be assumed that the

thicknesses of the two annuli are identical and equal to h > 0. The inner and outer rims of Ω

are given by the curves r = R1 and r = R2, respectively, while r = Rm indicates the location of

the interface between the two concentric regions. The inner annulus (ΩI) consists of a linearly

elastic isotropic material characterised by the Young’s modulus E1 and Poisson’s ratio ν1; the

outer region (ΩII) is similar, but its material is described by the elastic constants E2 and ν2.

Moreover, the inner and outer rims are assumed to subject to displacement field U1 (inward)

and U2 (outward) respectively.

R1

R2

Rm

h

U1

U2

E1, ν1

E2, ν2

Figure 4-2: A bi-annular plate stretched by applied uniform displacements on both its inner and outer
edges. The two constituent parts ΩI and ΩII are assumed to be perfectly bonded together.

Now we will apply the linearised FvK equations obtained in §2 to the present problem. As

usual, with this kind of problem, we adopt a cylindrical system of coordinates with origin at
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the centre of Ω and the z− axis perpendicular to it. Therefore, the operators are defined as

∇r :=
∂

∂r
, ∇θ :=

1

r

∂

∂θ
, ∇rr :=

∂2

∂r2
, ∇rθ :=

1

r

∂2

∂r∂θ
− 1

r2
∂

∂θ
,

∇θθ :=
1

r

∂

∂r
+

1

r2
∂2

∂θ2
, ∇2 := ∇rr +∇θθ , ∇ :=



∇r

∇θ


 , ∇⊗∇ :=



∇rr ∇rθ

∇rθ ∇θθ


 ,

(4.1)

For notational convenience, we use the labels j = I or II to indicate the variables in the two

regions: ΩI ,ΩII , and use C1, C2 and Cm to represent the circular boundaries at r = R1, R2

and Rm respectively. By recalling (2.34), the equilibrium of the basic state of the bi-annular

plate requires

δE(ů)[h] =2

∫

C1+Cm

[
N̊ I · (δv̊I)

]
· nI dS + 2

∫

C2+Cm

[
N̊ II · (δv̊II)

]
· nII dS

− 2

∫

ΩI

(∇ · N̊ I) · δv̊I dA− 2

∫

ΩII

(∇ · N̊ II) · δv̊II dA ≡ 0 . (4.2)

In addition, the forced boundary conditions are prescribed as

v̊I = (−U1, 0) , δv̊I ≡ 0 on C1 , v̊II = (U2, 0) , δv̊II ≡ 0 on C2 ,

where U1, U2 > 0 are given. Notice that (4.2) should be valid for any variation δv̊(j) that

satisfies the above forced boundary conditions, so we have the strong form for equilibrium in

basic state

∇ · N̊ I,II ≡ 0 in ΩI,II , (4.3)

which leads to the classical Lamé solution if we assume axial symmetry. Assuming ůr ≡ ůr(r, θ)

and ůθ = ůθ(r, θ) denote the radial and the azimuthal displacements respectively, this reduces

to the equivalent conditions

ůr = U(r) and ůθ ≡ 0 ,

where the function U(r) fully characterises the displacements undergone by the points in the

annulus. By using the definitions of the linear elastic strains in polar coordinates,

ε̊rr =
∂ůr
∂r

, ε̊rr =
1

r

(
ůr +

∂ůθ
∂θ

)
, ε̊rθ =

1

2r

(
∂ůr
∂r

+ r
∂ůθ
∂r

− ůθ

)
,

it is immediately found that

ε̊rr = U ′(r), ε̊θθ =
U(r)

r
, ε̊rθ ≡ 0 , (4.4)
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where the dash indicates differentiation with respect to the radial coordinate R1 ≤ r ≤ R2.

We shall use these expressions in Hooke’s law for plane-stress elasticity

σ̊rr =
E

1− ν2
(̊εrr + νε̊θθ) , σ̊θθ =

E

1− ν2
(̊εθθ + νε̊rr) , (4.5)

where

E =




E1 in ΩI ,

E2 in ΩII ,
ν =




ν1 in ΩI ,

ν2 in ΩII .

Based on the above assumptions, the linear equilibrium equation of the annular plate takes the

form
d

dr
(rN̊rr) + N̊θθ = 0 ,

in which the resultant membrane forces can be expressed as N̊rr = hσ̊rr and N̊θθ = hσ̊θθ.

Since the thickness h has been assumed to be the same all over the two annuli, the equilibrium

equation for the pre-buckling state is in fact (rσ̊rr),r + σ̊θθ = 0. Substituting (4.4) and (4.5)

into this last equation leads to

r2U ′′(r) + rU ′(r) − U(r) = 0 , (4.6)

with the general solution

U(r) = br +
c

r
, (4.7)

where the constants b, c ∈ R are arbitrary. This expression is valid for both the inner and the

outer regions of Ω, but with different constants. We shall use the notations (j) to represent

quantities relevant to either ΩI or ΩII , and take the corresponding two solutions

U I(r) = bIr +
cI

r
, r ∈ [R1, Rm] , (4.8a)

U II(r) = bIIr +
cII

r
, r ∈ [Rm, R2] , (4.8b)

that are valid in ΩI and ΩII , respectively. The four arbitrary constants b(j), c(j) are to be

determined by imposing the boundary constraints on the inner and outer rims of Ω, together

with the continuity conditions along the interface r = Rm. Assuming that uniform radial

displacements are applied on r = R1 and r = R2, the boundary conditions are

U I(R1) = −U1 and U II(R2) = U2 , (4.9)

where U1, U2 > 0 are given. Moreover, the continuity of displacement at r = Rm indicates that

v̊I = v̊II , δv̊I = δv̊II and nI = −nII = er + 0eθ along the interface r = Rm, the rest of the

Eigenvalue problems & elastic instabilities 75



4.2. Problem formulation

terms in (4.2) read

2

∫

Cm

(
N̊ I − N̊ II

)
· nI · (δv̊I) dS ≡ 0 .

Taking into account the constant thickness of the two sub-annular regions, the continuity con-

dition at r = Rm for the basic state can be written as

U I(Rm) = U II(Rm) and σ̊I
rr(Rm) = σ̊II

rr (Rm) . (4.10)

We introduce the non-dimensional variables

λ :=
U1

U2
, γ :=

E1

E2
, (4.11)

and then substitute the general expressions (4.8) into (4.9) and (4.10). The result is a linear

system of four equations for the four constants b(j), c(j),

bIR1 +
cI

R1
= −λU2 ,

bIIR2 +
cII

R2
= U2 ,

bIRm +
cI

Rm
= bIIRm +

cII

Rm
,

κ1b
I − κ2

cI

R2
m

= κ3b
II − κ4

cII

R2
m

,

where

κ1 :=
γ

1− ν1
, κ2 :=

γ

1 + ν1
, κ3 :=

1

1− ν2
, κ4 :=

1

1 + ν2
.

After lengthy calculations we find that bI,II are given as the product between certain non-

dimensional factors and U2/R2, while in c
I,II the dimensionless factors are multiplied by U2R2.

We can further rescale our variables by introducing

ρ :=
r

R2
, η1 :=

R1

R2
, η2 :=

Rm

R2
, (4.12a)

U1 :=
U1

R2
, U2 :=

U2

R2
, (4.12b)

so that Ω is now defined by η1 ≤ ρ ≤ 1 and the interface has equation ρ = η2; henceforth, the

bars on the dimensionless U1 and U2 will be omitted for the sake of simplicity. In terms of

these new variables the expressions of the coefficients in the basic state are

bI =
1

∆

{ [
(κ3 + κ2) η2

2 − κ2 + κ4
]
η1λ+ (κ4 + κ3) η2

2
}
, (4.13a)

cI = − 1

∆

{ [
(κ3 − κ1) η

2
2 + (κ1 + κ4)

]
η1λ+ (κ4 + κ3) η1

2
}
η22 , (4.13b)
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bII =
1

∆

[
(κ2 + κ1) η

2
2η1λ+ (κ2 − κ4) η

2
1 + (κ1 + κ4) η

2
2

]
, (4.13c)

cII = − 1

∆

[
(κ2 + κ1) η1λ+ (κ3 + κ2) η

2
1 + (κ1 − κ3) η

2
2

]
η22 , (4.13d)

where

∆ :=
[
κ2 − κ4 − (κ3 + κ2) η

2
2

]
η21 +

[
(κ3 − κ1) η

2
2 + κ1 + κ4

]
η22 . (4.14)

Since ∆ ≡ ∆(η1, η2) defined by (4.14) appears as a denominator in the expression of the

coefficients that enter in the basic state (4.8), we need to investigate whether this quantity can

ever be equal to zero. By introducing ξ := η2/η1 > 1, it is a routine exercise to show that

∆

η21
= (κ4 + κ3η

2
2)(ξ

2 − 1) + (κ2 + κ1ξ
2)(1− η22) ,

which is evidently strictly positive.

We are now going to couple the basic state of the previous section with the linearised

bifurcation equation. Owing to the presence of two different regions in the annulus, this equation

will have to be written separately in each of them. Letting wI and wII be the out-of-plane

displacements experienced by the two annular parts as a result of wrinkling, (2.40a) leads to

the below bifurcation equations (strong form for bifurcation) due to the arbitrariness of δw(j)

D(j)∇4w(j) − N̊ (j) : (∇⊗∇w(j)) = 0 in Ω(j) , (4.15)

which is applicable to the inner and outer sub-annular regions by taking j = I and II respec-

tively, namely,

DI∇4wI − h

[
σ̊I
rr

∂2wI

∂r2
+ σ̊I

θθ

1

r

(
∂wI

∂r
+

1

r

∂2wI

∂θ2

)]
= 0 in ΩI , (4.16a)

DII∇4wII − h

[
σ̊II
rr

∂2wII

∂r2
+ σ̊II

θθ

1

r

(
∂wII

∂r
+

1

r

∂2wII

∂θ2

)]
= 0 in ΩII , (4.16b)

where

DI :=
E1h

12(1− ν21)
, DII :=

E2h

12(1− ν22 )
,

denote the (different) bending stiffnesses in ΩI and ΩII , respectively, while

∇4 :=
(
∇2
)2

=

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

stands for the usual bi-Laplacian operator in polar coordinates.

The bifurcation equations can be rescaled by using the dimensionless variables already

introduced in (4.11) and (4.12). Some further substitutions are required to complete the process,
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and we state these explicitly for the sake of completeness

w(j) → w(j)

h
, D(j) →

h2

12U2R2
=: µ−2 . (4.17)

(Although in switching from the independent variable ‘r’ to ‘ρ’ it would have been possible to

re-label the radial stresses as σ̊ρρ, we keep the original notation as that seems more intuitive.)

The rescaled pre-bifurcation stress can be expressed in terms of the non-dimensional con-

stants found in (4.13) as recorded below



σ̊
(j)
rr

σ̊
(j)
θθ


→



1 + ν(j) −1− ν(j)

ρ2

1 + ν(j)
1− ν(j)
ρ2






b(j)

c(j)


 , j ∈ {I, II} . (4.18)

We can write the rescaled versions of (4.15) in the compact form

µ−2∇4w(j) − h

[
σ̊(j)
rr

∂2w(j)

∂ρ2
+ σ̊

(j)
θθ

1

ρ

(
∂w(j)

∂ρ
+

1

ρ

∂2w(j)

∂θ2

)]
= 0 , (4.19)

where µ−2 is usually a very small parameter (0 < µ−1 ≪ 1) for plates that are very thin or

highly stretched (within the limits of the theory employed in our investigations).

The solution strategy for solving these equations mirrors closely the related approach taken

by Coman et al. in [41, 47]). By looking for solutions with separable variables we consider

w(j)(ρ, θ) =W (j)(ρ) cos(nθ) , j ∈ {I, II} , (4.20)

where n ∈ N represents the mode number (equal to half the number of regular wrinkles in

the azimuthal direction), and the unknown amplitudes W I,II will be found by solving some

simpler ordinary differential equations. We mention in passing that the mode number n must

be the same in both ΩI and ΩII , otherwise there would be certain discontinuities between the

wrinkled configurations of these two regions (which would contradict the perfect bond initially

assumed to exist between these parts).

On substituting the ansatz (4.20) into (4.19), after eliminating the multiplicative common

term cosnθ, we are left with solving two ordinary differential equations

d4W (j)

dρ4
+C(j)

3 (ρ)
d3W (j)

dρ3
+C(j)

2 (ρ)
d2W (j)

dρ2
+C(j)

1 (ρ)
dW (j)

dρ
+C(j)

0 (ρ)W (j) = 0 , ρ ∈ Λ(j) , (4.21)

where

C(j)
3 (ρ) :=

2

ρ
, C(j)

2 (ρ) := −
[
2n2 + 1

ρ2
+ µ2 σ̊(j)

ρρ (ρ)

]
,

C(j)
1 (ρ) :=

1

ρ

[
2n2 + 1

ρ2
− µ2 σ̊

(j)
θθ (ρ)

]
, C(j)

0 (ρ) :=
n2

ρ2

[
n2 − 4

ρ2
+ µ2 σ̊

(j)
θθ (ρ)

]
.
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where j = I or II is adopted, respectively, to describe the buckling equations of the inner

and outer sub-regions. These two equations must be supplemented with appropriate boundary

conditions. Using the rescaling introduced and the normal mode approach introduced earlier

on, the clamped boundary conditions on ρ = η1, 1 are

W I(η1) =
dW I

dρ

∣∣∣∣
ρ=η1

= 0 and W II(1) =
dW II

dρ

∣∣∣∣
ρ=1

= 0 . (4.22)

The continuity conditions along the interface are slightly more demanding. For example, the

kinematic continuity on the interface requires that

wI = wII , ∇wI = ∇wII at r = Rm . (4.23)

The same rule goes for its variation, so δwI = δwII , ∇(δwI) = ∇(δwII) on the interface.

In §2.4 we have derived the boundary conditions for isotropic plates under in-plane loading.

However, when we pursue the interfacial conditions, we need to be more careful – we should

start from the integrals in (2.29b) which include the full information of the unit normal n

or unit shear s. Following a similar process as in (4.2), we can have one of the continuity

conditions by applying (2.29b) along the interface (the subscript ‘1’ has been dropped for

notational convenience and the inextensible midplane assumption has been taken)

∑

j=I,II

∫

Cm

{[
N̊ (j) ·∇w(j) −D(j) :

.
(∇ ⊗∇⊗∇w(j))

]
· n(j)

−∇

[D(j) :
: (∇⊗∇w(j) ⊗ n(j) ⊗ s(j))

]
· s(j)

}
(δw(j)) dS ≡ 0 , (4.24)

where j = I defines the variables in ΩI on the interface, while, II denotes those in ΩII on

the interface, but in opposite direction, namely, nI = −nII = er, s
I = −sII = eθ. Therefore,

nI ⊗ sI = nII ⊗ sII , and (4.24) becomes

∫

Cm

{ [
−DI :

.
(∇⊗∇⊗∇wI) +DII :

.
(∇⊗∇⊗∇wII)

]
· nI

+∇
[
−DI :

: (∇ ⊗∇wI ⊗ nI ⊗ sI) +DII :
: (∇⊗∇wII ⊗ nI ⊗ sI)

]
· sI
}
(δwI) dS ≡ 0 .

Specialising the bending stiffness tensor D to the St. Venant–Kirchhoff material case (as in

§2.3), the arbitrariness of δwI = δwII leads to the following continuity constraint on Cm

−DI

[
∇r(∇2wI)+(1−ν1)∇θ(∇r∇θw

I)
]
= −DII

[
∇r(∇2wII)+(1−ν2)∇θ(∇r∇θw

II)
]
, (4.25)

in which we have already made use of the simplification N̊ I · ∇wI = N̊ II · ∇wII along Cm

that follows from (4.10) and (4.23). We observe that (4.25) is the equilibrium of the vertical

shear force resultants on the interface.
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We can conduct similar operations on (2.42a) along the interface Cm, which leads to

∑

j=I,II

∫

Cm

D :
: (∇⊗∇w(j) ⊗ n(j) ⊗ n(j))

[
∇(δw(j)) · n(j)

]
dS ≡ 0 .

According to the arbitrariness of∇(δw(j))·n(j) along Cm, we eventually have another continuity

condition

DI(∇rrw
I + ν1∇θθw

I) = DII(∇rrw
II + ν2∇θθw

II) , (4.26)

which states the equilibrium of the bending moments on the interface.

To summarise, at the interface r = Rm we have the kinematic and mechanical continuity

conditions recorded below,

wI(Rm) = wII(Rm),
∂wI

∂r

∣∣∣∣
r=Rm

=
∂wII

∂r

∣∣∣∣
r=Rm

, (4.27a)

M I(Rm) =M II(Rm) , QI(Rm) = QII(Rm) . (4.27b)

The quantities that appear in (4.27b) are defined by

M (j) := D(j)

[
∂2w(j)

∂r2
+
ν1,2
r

(
∂w(j)

∂r
+

1

r

∂2w(j)

∂θ2

)]
,

Q(j) := −D(j)

[
∂

∂r

(
∇2w(j)

)
+

1− ν(j)

r

∂2

∂r∂θ

(
1

r

∂w(j)

∂θ

)]
+ N̊ (j)

rr ∇rw
(j) ,

and represent the bending moment and the vertical shear force, respectively, where the terms

N̊
(j)
rr ∇nw

(j) in Q(j) are cancelled out in (4.27b) as mentioned earlier. Here we take the chance

to point out that the continuity conditions Eq. (10) in [55] and Eq. (9) in [56] are problematic,

which make the mistakes

Q̂I(Rm) = −Q̂II(Rm) ,

where

Q̂(j) := −D(j)

[
∂

∂r

(
∇2w(j)

)
+

1− ν(j)
r

∂

∂θ

(
1

r

∂w(j)

∂θ

)]
+
N̊

(j)
rr

D(j)

∂w(j)

∂r
.

Comparing the expression for Q(j) we obtained in (4.27b), there are three discrepancies. First,

the terms Q̂(j) on either side of their equation are of opposite sign, thus the terms N̊
(j)
rr (Rm)

are not cancelled out for equilibrium, which does not make sense from a physical point of view.

The second difference presents in the derivative order of w(j) (with respect to variables r and θ)

in the two underlined terms, obviously, the first term is of third-order while the latter is second-

order, which is mathematically problematic. Moreover, we can observe that D(j) multiplies the

bracket, but is in the denominator of the last term, which raises a dimensional mistake. As will

be pointed out in §4.8, the continuity conditions (4.27b) are not the leading order condition

compared with the forced interfacial conditions (4.27a). Therefore, it will not affect the final
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results significantly (especially for the compressed bi-annular cases in [55, 56]), but it caused

some singularity problems in numerical calculations when we tried their formulation in our

stretched bi-annular case.

The above derivation leads us to believe that the tensorial formulation based on the min-

imum energy principle can help us avoid mistakes in derivation especially for comparatively

complex constraints.

After using the rescalings introduced earlier on, and employing the normal-mode approach

(4.20), the kinematic continuity conditions (4.23) and the natural continuity conditions in

(4.25), (4.26) lead to the rescaled continuity conditions at ρ = η2

W I =W II , (4.28a)

dW I

dρ
=
dW II

dρ
, (4.28b)

β1

(
d2W I

dρ2
+
ν1
η2

dW I

dρ
− ν1n

2

η22
W I

)
= β2

(
d2W II

dρ2
+
ν2
η2

dW II

dρ
− ν2n

2

η22
W II

)
, (4.28c)

β1

[
d3W I

dρ3
+

1

η2

d2W I

dρ2
−
(
1 + (2− ν1)n

2

η22

)
dW I

dρ
+

(3 − ν1)n
2

η32
W I

]

= β2

[
d3W II

dρ3
+

1

η2

d2W II

dρ2
−
(
1 + (2− ν2)n

2

η22

)
dW II

dρ
+

(3− ν2)n
2

η32
W II

]
, (4.28d)

where

β1 :=
γ

1− ν21
and β2 :=

1

1− ν22
.

4.3 Basic state

Next, we are going to study the existence of azimuthal compressive stresses in Ω as in

Eq. (4.18) and classify all the possible situations. Hereafter, we will refer to the analysis for

prebuckling azimuthal stresses as PBAS analysis for clarity.

As mentioned in § 1, the compressive component(s) in the prebuckling stress N̊ is a key

term in the bifurcation equation to determine the critical bucking state for the thin (slender)

elastic structures. Because from a mathematical point of view, in the bifurcation equation

Eq. (4.21), the rescaled prebuckling stresses σ̊
(j)
rr , σ̊

(j)
θθ are multiplied by a large parameter µ2,

which characterises the slenderness of the stretched bi-annular plate. It introduces a singular-

perturbation feature into this eigenproblem. As µ → ∞, the original fourth-order differential

equation collapse to a second-order equation, in which, the point where σ̊θθ(ρ̄) = 0 acts as the

turning point of the reduced problem. For the sake of classifying convenience, here we introduce

a terminology ‘Nodal Hoop Point’ (NHP ), which denotes the point of ρ̄ where σ̊θθ(ρ̄) = 0.

For a stretched bi-annular plate, the PBAS are complicated compared with the model
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Table 4.1: Classifications of prebuckling azimuthal stresses (PBAS) σ̊θθ(ρ) in the stretched
bi-annular elastic plate. Ia,b, IIa,b are the quantities defined in (4.29). The black bullets on the
dashed lines in each sketches identify the location of the nodal hoop points (NHP ) η1 < ρ < 1
for which σ̊θθ(ρ) = 0. The coloured blocks following the notations such as B,G indicate the
background types of the pre-bifurcation hoop stresses to be used later on, e.g., Figs. 4-3 to 4-9.

Shift-down style Shift-up style

r

B1, �
1NHP in ΩI

Ia < 0 < Ib,
IIa, IIb > 0,
and Ib < IIa

r

B2, �
1NHP in ΩI

Ia < 0 < Ib,
IIa, IIb > 0,
and Ib < IIa

r r

R, �
2NHP in ΩI,II

Ia < 0 < Ib and
IIa < 0 < Ib

K, �
0NHP

Ia < Ib < 0 and
0 < IIa < IIb

r

G1, �
1NHP in ΩII

Ia, Ib < 0 and
IIa < 0 < IIb

r

G2, �
1NHP in ΩII

IIa < 0 < IIb
and Ia < Ib < 0

r

Y, �
1NHP in ΩII

Ia, Ib > 0 and
IIa < 0 < IIb

discussed in [41, 47] with only one NHP . When S. Roccabiance et. al. [107] considered the

plane strain bifurcation of a layered thick block, they pointed out that the stress distribution

in the basic state is complex and is in itself interesting, and it may have more than one neutral

axis (counterpart of the NHP in our problem). Similarly, we expect that the curves of PBAS

of the stretched bi-annular plate might have more than one NHP , and there are a variety

of situations in terms of the combinations of the positive and negative PBAS regions which

are separated by the NHP ’s. Since the NHP is of great importance for the further possible

WKB analysis, it is therefore critical to classify the different situations of PBAS in advance,

in order to gain a clearer understanding of the buckling problem, and also indicate the possible

application of further WKB approximations. We have employed numerical simulations on

the orthoradial stress with respect to η1, λ. Figs. 4-3 to 4-5 include the most representative

behaviours of the PBAS with the background coloured as defined in Table 4.1. For the sake

of notational convenience, we denote the PBAS on the boundaries and interface as

Ia := σ
(0)I
θθ (η1) , Ib := σ

(0)I
θθ (η2) , (4.29a)

IIa := σ
(0)II
θθ (η2) , IIb := σ

(0)II
θθ (1) . (4.29b)

There are seven possible cases when we consider the PBAS with respect to the location of
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Figure 4-3: The coloured background in each subplot show different types of pre-buckling azimuthal
stress (PBAS) σ̊θθ(ρ) corresponding to the notation defined in Table 4.1. The parameters are taken
as ν1 = 0.1, ν2 = 0.3; γ, η2 take the values as in the title of each subplot. The thick lines (either

blue or red in later plots) in each subplots are the curves for λlow.

NHP as illustrated in Table 4.1. These seven possible cases can be classified mainly into two

categories: shift-down type (Ib > IIa) at the interface and shift-up type (Ib < IIa).

Shift-down type In Table 4.1, the types B1 (light blue), R (red), G1 (light green) and Y

(yellow) fall into the shift-down type. All the four sketches are of similar tendency except for the

relative locations of the dash line (̊σθθ(ρ̄) = 0) with respect to the points Ia,b and IIa,b. More

specifically, by moving the sketch curves (thick solid lines) in the type R (with two NHP ’s)

up or down with respect to the dashed line, it will transits to the types B1 (with one NHP in

ΩI) and G1 (one NHP in ΩII), respectively. The transition from R to Y (with one NHP ) is a

matter of moving up the left section (the σ̊θθ(ρ) in ΩI) of the curve until σ̊θθ is positive over the

whole region ΩI . Such relations are also embodied in the σ̊θθ(η1;λ) plots. As we can see from

the subplots in the first row of Fig. 4-4 and all those in Fig. 4-5 (when γ is relatively small or

ν1/ν2 is relatively large), the R background regions always border the B1,G1 and Y regions. To

put it another way, by changing the values of λ and η1 within the λ− η1 plane, the situations

shown in one colour may switch to the situations indicated by its border background.

Shift-up type On the other hand, B2 (light blue), K (black) and G2 (light green) belong
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Figure 4-4: As per Fig. 4-3 except: ν1 = 0.3, ν2 = 0.3.

to the shift-up type. With the dash line σ̊θθ(ρ̄) = 0 crossing different sections of the curve,

there is one NHP in ΩI for the B2 type, no NHP in K, and one NHP located in ΩII in the

G2 type. If we refer to all the subplots in Fig. 4-3 and those in the last row of Fig. 4-4 (when γ

is relatively large or ν1 < ν2), we may find that the K background region always share borders

with B2 and G2 regions.

However, in Figs. 4-3 to 4-5, those background regions of different colours are separated by

the boundaries between them. So we will keep our focus on the occurrences of those bound-

aries and their properties. Since the backgrounds are based on the Ia,b and IIa,b, we would

expect that the boundaries can be obtained by letting those values equal zero. Due to the large

number of free parameters in this problem, the boundaries should also depend on some of the

parameters, which motivates the following analytical investigations. We take 0 ≤ η1 ≤ η2 ≤ 1,

γ := E1/E2 > 0 and ν1, ν2 ∈ [0, 0.5] according to general physical sense, which will be used by

default as the valid ranges for the parameters in the analysis on those boundaries hereafter.
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Figure 4-5: As per Fig. 4-3 except: ν1 = 0.3, ν2 = 0.1.

1◦ Boundary B1(Ia = 0)

If we let Ia(η1, η2;λ) = 0, then with fixed η2, we obtain an expression

λB1 =
4γν1η1η

2
2

(1− ν21)(1 − ν22) {κ1 [κ2 − κ4 − (κ2 + κ3)η22 ] η
2
1 + κ2 [κ1 + κ4 − (κ1 − κ3)η22 ] η

2
2}
,

which apparently passes the origin (0, 0) in λ − η1 plane and is monotonically increasing with

η1 for entire valid ranges of other parameters (η2, ν1, ν2, γ). However, the latter statement is

not as straightforward as the former and requires some explanations as follows. For the sake of

clarity, the λB1 can be expressed in the form

λB1 =
l1η1

l2η21 + l3η22
, (4.30)

by introducing

l1 :=
4γν1η

2
2

(1− ν21 )(1− ν22 )
, l2 := κ

[
κ2(1− η22)− (κ4 + κ3η

2
2)
]
,

l3 := κ2
[
κ1(1− η22) + (κ4 + κ3η

2
2)
]
.
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The monotonicity of λB1(η1) is predicted by the sign of its first derivative with respect to η1

∂λB1

∂η1
=

l1
l2η21 + l3η22

− 2l1l2η
2
1

(l2η21 + l3η22)
2
=
l1(l3η

2
2 − l2η

2
1)

(l2η21 + l3η22)
2
, (4.31)

where l1 and (l2η
2
1 + l3η

2
2)

2 are positive except at a singular point where the latter equals zero

(referred to in subsequent discussions). If we agree to use the standard signum function ‘sgn’

in the following discussions, it follows immediately

sgn

(
∂λB1

∂η1

)
= sgn(l3η

2
2 − l2η

2
1) .

As 1− η22 > 0, κ4 + κ3η
2
2 > 0, and obviously l3 > 0, so

l2
l3

=
κ1
[
κ2(1− η22)− (κ4 + κ3η

2
2)
]

κ2 [κ1(1− η22) + (κ4 + κ3η22)]
<
κ1
κ2

· κ2(1 − η22)

κ1(1 − η22)
= 1 <

(
η2
η1

)2

,

therefore, we always have l3η
2
2 − l2η

2
1 > 0, which leads to ∂λB1/∂η1 > 0. To put it another

way, λB1(η1) is an increasing function for any valid parameters ranges in our problem. As η1

increases from zero, the denominator of λB1 in (4.30) is always positive (since l3 > 0), before it

possibly changes sign from positive to negative (provided l2 < 0). More specifically, λB1 → ∞
at

η1 = η2

√
(1− ν2) [1− ν1 + γ(1 + ν2)] + (1 + ν2) [1− ν1 − γ(1− ν2)] η22
(1− ν2) [1 + ν1 − γ(1 + ν2)] + (1 + ν2) [1 + ν1 + γ(1− ν2)] η22

.

The occurrence of such a singular point requires that the coefficient of η2 falls between 0 and

1, which leads to the restriction

η2 >

√(
1− ν2
1 + ν2

)
· γ(1 + ν2)− ν1
γ(1 + ν2) + ν1

:= η̄2 .

Actually, the expression for λB1 represents, in Fig. 4-3 to 4-5, the blue solid bounds between

the bottom-side white region and the blue regions B1,2 in all sub-plots, also the blue dot-dash

bounds between the red region R and the yellow region Y in the some of the sub-plots.

If the bi-annular problem degenerates into a simple-annular case described by ρ ∈ [η, 1], θ ∈
[0, 2π), by letting η1 = η2 = η, γ = 1.0, ν1 = ν2 = ν, in this case, the condition for such a

singular point reads η > η̄2 :=
√
(1− ν)/(1 + ν), which matches the previous work in [47].

2◦ Boundary B2(IIa = 0)

Similarly, if we let IIa(η1, η2;λ) = 0, we have

λB2 =

(
1− ν21
1− ν22

)
· (1 + ν1)(1− ν1 + γν2)η

2
2 − (1− ν1)(1 + ν1 − γν2)η

2
1

γη1 [1− ν2 − (1 + ν2)η22 ]
.
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For the sake of notational convenience, we can rewrite the above expression as

λB2 = l4

(
l5
η22
η1

− l6η1

)
, (4.32)

where

l4 :=

(
1− ν21
1− ν22

)
· 1

γ [1− ν2 − (1 + ν2)η22 ]
, l5 := (1 + ν1)(1− ν1 + γν2) ,

l6 := (1 − ν1)(1 + ν1 − γν2) .

It is easily shown that for all parameters within their valid ranges,

l5
η22
η1

− l6η1 = η1

(
l5
η22
η21

− l6

)
> η1(l5 − l6) = 2γν2η1 > 0 ,

then, the validity condition λB2 > 0 requires l4 > 0, namely,

η2 <

√
1− ν2
1 + ν2

.

Moreover, the monotonicity of the curves of λB2 (η1) can be indicated by

sgn

(
∂λB2

∂η1

)
= sgn

(
−l5

η22
η21

− l6

)
. (4.33)

Keeping in mind that l5 > 0 and η2/η1 ≤ 1, then

−l5
η22
η21

− l6 ≤ −l5 − l6 = −2(1− ν21 )− 2γν1ν2 < 0 .

Consequently, we can conclude that λB2(η1) is a monotonically decreasing function of η1.

Returning to the background plots for the σ̊θθ(η1;λ) in Fig. 4-3 to 4-5, the curves of λB2(η1)

are represented by the red lines (both solid and dot-dashed), which appear naturally between

the red region R and the blue region B1, or between the yellow region Y and the white region

below, such boundaries only occur under the condition η2 <
√
(1− ν2)/(1 + ν2).

3◦ Boundary B3(Ib = 0)

Following a similar strategy to 1◦ and 2◦, another boundary B3 can be found by assuming

Ib(η1, η2;λ) = 0

λB3 =
(κ3 + κ4)(−κ2η1 + κ1η

2
2/η1)

2κ1κ2(1− η22) + (κ4 + κ3η22)(κ2 − κ1)
,

which can be rewritten in the simpler form as

λB3 = l7

(
κ1
η22
η1

− κ2η1

)
, (4.34)
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by introducing

l7 :=
κ3 + κ4

2κ1κ2(1 − η22) + (κ2 − κ1)(κ4 + κ3η22)
.

We notice that

κ1
η22
η1

− κ2η1 = η1

(
κ1
η22
η21

− κ2

)
> η1(κ1 − κ2) =

2γν1η1
1− ν21

> 0 ,

therefore, the existence of such a boundary requires l7 > 0, that is

sgn(l7) = sgn
(
2κ1κ2(1− η22) + (κ4 + κ3η

2
2)(κ2 − κ1)

)
= sgn

(
γ(1− η22)−

ν1
1− ν2

− ν1η
2
2

1 + ν2

)
> 0 .

After some direct analysis, the above statement leads to η2 < η̄2 (η̄2 was introduced in 1◦ for

the singularity point of B1(η1)), provided that γ > ν1/(1+ ν2). As for the monotonicity of the

boundary λB3 , we have

sgn

(
∂λB3

∂η1

)
= sgn

(
−κ1

η22
η21

− κ2

)
.

In fact,

−κ1
η22
η21

− κ2 ≤ −κ1 − κ2 < 0 ,

which suggests that λB3(η1) is a monotonically decreasing function of η1 once it exists. The

curves λB3(η1) in Figs. 4-3 to 4-5 are shown by the green dot-dashed lines either between

the black region K and the light blue region B2, or between the red region R and the green

region G1. It is interesting to point out that the boundary λB1(η1) always intersects λ
B3(η1) at

η1 = η2 when the former curve is not singular for the whole range of η1 (η2 is one root of the

equation λB1 = λB3). Of course, the conditions for the existence of such an intersecting point

are γ > ν1/(1 + ν2) and η2 < η̄2.

4◦ Boundary B4(Ib = IIa)

If we let Ib = IIa, we have

λB4 =
κ3(κ2 − κ4)η1 + κ4(κ3 − κ1)η

2
2/η1

κ2(κ1 − κ3)η22 + κ1(κ4 − κ2)
,

Before dwelling on the analysis of its behaviours, we introduce some auxiliary notations

P 0 :=
ν1
ν2
, P+ :=

ν1 + 1

ν2 + 1
, P− :=

ν1 − 1

ν2 − 1
,

Q+ := γ − P+ , Q− := γ − P− ,

where P 0, P+ and P−, depending on ν1 and ν2, are obviously positive, whereas the relationship

among these three terms is not immediately apparent, and whether the values of Q− and Q+
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are positive or negative depend further on the relationship between γ, ν1 and ν2. Therefore,

sgn(P+ − P 0) = sgn

(
ν2 − ν1
ν2(1 + ν2)

)
= sgn(ν2 − ν1) ,

sgn(P− − P 0) = sgn

(
ν2 − ν1
ν2(1 − ν2)

)
= sgn(ν2 − ν1) ,

sgn(P− − P+) = sgn

(
ν2 − ν1
1− ν22

)
= sgn(ν2 − ν1) ,

sgn(1− P+) = sgn

(
ν2 − ν1
1 + ν2

)
= sgn(ν2 − ν1) ,

sgn(P− − 1) = sgn

(
ν2 − ν1
1− ν1

)
= sgn(ν2 − ν1) ,

and for further reference, we record the results below

P 0 ≤ P+ ≤ 1 ≤ P− ⇐⇒ ν1 ≤ ν2 , (4.35a)

P− ≤ 1 ≤ P+ ≤ P 0 ⇐⇒ ν1 ≥ ν2 , (4.35b)

here ‘ ⇐⇒ ’ stands for if and only if. After certain direct simplifications with the help of the

previously introduced notation and results, we can rewrite λB4 as

λB4 =
−η1P−Q+ + η22/η1P

+Q−

γ(Q+ − η22Q
−)

:=
Nume

Deno
, (4.36)

with Nume and Deno denoting the numerator and denominator of this fraction. If we take the

first derivative of the above expression with respect to η1, we have

∂λB4

∂η1
= −P

−Q+ + η21/η
2
1P

+Q−

γ(Q+ − η22Q
−)

, (4.37)

to be used for the discussion of the monotonicity of the boundary curve B4. The validity of

its expression in Eq. (4.36) requires λB4(η1) > 0. From (4.36), λB4(η1) > 0 leads to two cases:

the denominator Deno > 0 and the numerator Nume ≥ 0 in the fraction therein; or Deno < 0

and Nume ≤ 0. Moreover, after some direct analysis in terms of the values of Q+ and Q−, we

have two situations below

Q+, Q− > 0 ⇐⇒ γ > P+, P− ⇐⇒ γ > max(P+, P−) , (4.38a)

Q+, Q− < 0 ⇐⇒ γ < P+, P− ⇐⇒ γ < min(P+, P−) , (4.38b)

while, other two situations Q+ > 0, Q− < 0 and Q+ < 0, Q− > 0, both yield λB4 (η1) < 0, are

therefore dropped.
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Case 1 Deno > 0 and Nume ≥ 0

In this case, we have

Q+ > η22Q
− > 0 , and η22/η1P

+Q− > η1P
−Q+ , (4.39)

under such conditions, we shall consider the two sub-cases as listed in (4.38). Before doing so,

we can rewrite the statement for the convenience of further analysis

Q+

Q−
=
γ − P+

γ − P−
= 1 +

P− − P+

Q−
, (4.40a)

P+Q−

P−Q+
=
P+(γ − P−)

P−Q+
= 1 +

γ(P+ − P−)

P−Q+
, (4.40b)

which holds irrespective of the value ranges of the parameters.

Case 1a If Q+ > 0, Q− > 0 as in (4.38a), then (4.39) gives

η2 <
√
Q+/Q− , (4.41a)

η21
η22

≤ P+Q−

P−Q+
, (4.41b)

There are still two situations regarding ν1 and ν2. When ν1 ≤ ν2, we have Q+/Q− ≥ 1 and

(P+Q−)/(P−Q+) ≤ 1. Hence, (4.41a) holds by default, while (4.41b), together with (4.38a)

and η1 ≤ η2, lead to

η1 ≤ η2

√
P+Q−

P−Q+
≤ η2 , γ >

1− ν1
1− ν2

≥ 1 , ν1 ≤ ν2 . (4.42)

On the other hand, if ν1 ≤ ν2, then Q
+/Q− ≤ 1 and P+Q−/P−Q+ ≥ 1, similarly, (4.41b) is

satisfied automatically, and we can draw the conclusion

η2 ≤
√
Q+

Q−
≤ 1 , γ >

1 + ν1
1 + ν2

≥ 1 , ν1 ≥ ν2 . (4.43)

It remains a routine exercise to verify in both situations (4.42) and (4.43), we always have

∂λB4/∂η1 < 0.

Case 1b As in the case (4.38b), Q+ < 0, Q− < 0, when (4.39) results in

η2 >
√
Q+/Q− , (4.44a)

η21
η22

≥ P+Q−

P−Q+
. (4.44b)

It is manifest that in this case the assumption ν1 ≤ ν2 will lead to the invalid conclusion

η2 >
√
Q+/Q− ≥ 1, therefore this argument is not true. If we assume ν1 ≥ ν2, from (4.44b)

we will have η21/η
2
2 ≥ 1, which again conflicts with the valid parameter range of η1. Thus, the
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situation Case 1b does not exist.

Case 2 Deno < 0 and Nume ≤ 0

On this assumption, we get

Q+ < η22Q
− , and P+Q− ≤ η21

η22
P−Q+ , (4.45)

which can be considered in two sub-cases just like Case 1.

Case 2a Assuming Q+ > 0, Q− > 0, (4.45) yields

η2 >
√
Q+/Q− , (4.46a)

η21
η22

≥ P+Q−

P−Q+
. (4.46b)

However, in both situations when ν1 ≤ ν2 and ν1 ≥ ν2, we arrive at the conclusions η21/η
2
2 ≥

√
P+Q−/P−Q+ ≥ 1 and η2 >

√
Q+/Q− ≥ 1, respectively, which both conflict with 0 ≤ η1 ≤

η2 ≤ 1, which means that the situation Case 2a is not valid.

Case 2b On the other hand, if take the assumption Q+ < 0, Q− < 0, then

η2 <
√
Q+/Q− , (4.47a)

η21
η22

≤ P+Q−

P−Q+
. (4.47b)

When ν1 ≤ ν2, then Q+/Q− ≤ 1 and (P+Q−)/(P−Q+) ≥ 1; hence (4.47b) is correct for all

parameters in their valid ranges, while (4.47a), with the conditions in (4.38b), gives rise to the

conclusion

η2 <

√
Q+

Q−
≤ 1 , γ <

1 + ν1
1 + ν2

≤ 1 , ν1 ≤ ν2 . (4.48)

However, once ν1 ≥ ν2, we will have Q+/Q− ≥ 1 and P+Q−/(P−Q+) ≤ 1, which makes the

inequality (4.46b) to be always satisfied. In addition, we can have

η1 < η2

√
P+Q−

P−Q+
≤ η2 , γ <

1− ν1
1− ν2

≤ 1 , ν1 ≥ ν2 , (4.49)

In both cases of (4.48) and (4.49), we will always have ∂λB4/∂η1 < 0 according to (4.37).

To conclude, the existence conditions for the boundary B4 in the λ− η1 plane are

As ν1 ≤ ν2 ,





γ < P+ ≤ 1 and η2 <

√
Q+

Q−
≤ 1 , (4.50a)

γ > P− ≥ 1 and η1 ≤ η2

√
P+Q−

P−Q+
≤ η2 , (4.50b)
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or

when ν1 ≥ ν2 ,





γ > P+ ≥ 1 and η2 <

√
Q+

Q−
≤ 1 , (4.51a)

γ < P− ≤ 1 and η1 ≤ η2

√
P+Q−

P−Q+
≤ η2 . (4.51b)

Let us return to Figs. 4-3 to 4-5. The boundaries of B4 are represented by the cyan dot-line

curves. Actually, this is the boundary which separates the shift-up and shift-down types. The

conditions in (4.50a) apply for all the subplots in first row of both Figs. 4-3 and 4-4, where

ν1 ≤ ν2, γ < P+ ≤ 1; with the conditions (4.50b), B4 appears in the last row subplots in

Figs. 4-3 and 4-4. While, (4.51a) and (4.51b) imply the existence of the cyan curves B4 in,

respectively, the last row and the first row subplots in Figs. 4-4 and 4-5 when ν1 ≥ ν2. All

the curves of B4 appear to be monotonically decreasing with η1 just as we obtained earlier

∂λB4/∂η1 < 0.

Lower bound of λ for the occurrence of compressive stresses

After discussing the boundaries of different backgrounds, we draw attention to the fact that,

from the point of view of a pure membrane (µ = ∞), it is their lower parts that are immediately

relevant. In other words, as λ is progressively being increased from zero, the onset of compressive

stresses coincides with the temporal quality when the value of this parameter first reaches

the coloured background. We can think of the horizontal boundary separating the coloured

background region from the white region as a mapping η1 → λlow(η1). With this convention in

mind the observations just made above say that wrinkling occurs in the bi-annular membrane

as soon as λ = λlow; for a plate, the counterpart of this statement is λ ≥ λlow i.e., we only have

a lower bound in this case.

It can be seen from Fig. 4-3 to 4-5 that, there are two types of the lower bounds (shown in

blue and red thick lines): one kind of lower bound is of ‘rectangular-hyperbola’ shape, which is

actually the boundary B1 (Ia = 0, blue thick line) alone, and it coexists with the shift-up type

sketches of σ̊θθ(ρ), namely, those denoted byB2,K and G2; the other kind is of cusp shape, which

is actually the lower intersecting parts of both boundaries B1 (Ia = 0, blue thick line) and B2

(IIa = 0, red thick line). This case always agrees with the concurrence of the aforementioned

shift-down type σ̊θθ(ρ) sketches, corresponding to the B1,R,G1 and Y background subplots.

The cusp (intersecting point of B1 and B2) can be understood mathematically as the point

Ia = IIa = 0 in the first quadrant of the λ − η1 plane. By solving λB1(η1) = λB2(η1) and

dropping the invalid roots of η1, we are left with the root

ηcusp1 = η2

√
1− ν1 + γν2
1 + ν1 − γν2

thus, the possibility of the cusp is guaranteed by forcing the intersecting point ηcusp1 to be
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within (0, η2), which requires 0 < γ < ν1/ν2. On the contrary, once γ > ν1/ν2, the η
cusp
1 falls

outside (0, η2), λ
low(η1) appears to be ‘rectangular-hyperbola’ shape. In conclusion,




0 < γ < ν1/ν2 , cusp-shape λlow ,

γ > ν1/ν2 , rectangular-hyperbola-shape λlow .

(4.52)

4.4 Remarks on the numerical solutions

In this section, we discuss various strategies for the numerical investigation of the bifurcation

equations (4.21) to (4.28) derived in the previous section. The differential equations can be

written in linear system form,

dy(j)

dρ
= AI(ρ)y(j) , ρ ∈ Λ(j) , (4.53)

in which the vectors y(j) are defined by

y(j) :=

[
W (j),

dW (j)

dρ
,
d2W (j)

dρ2
,
d3W (j)

dρ3

]T
,

and the matrices A(j)(ρ) are represented by

A(j)(ρ) :=




0 1 0 0

0 0 1 0

0 0 0 1

−C(j)
0 (ρ) −C(j)

1 (ρ) −C(j)
2 (ρ) −C(j)

3 (ρ)




.

The boundary conditions on the inner and outer rims, (4.22), can be cast in vector form,

BIyI(η1) = 0 and BIIyII(1) = 0 , (4.54)

where

B(j) :=



1 0 0 0

0 1 0 0


 .

In addition the continuity conditions (4.28) are also amenable to a similar transformation,

GyI(η2)−HyII(η2) = 0 . (4.55)

The non-zero elements of the matrices G and H are

G11 = G22 = 1 , H11 = H22 = 1 ,
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G31 = −β1
n2ν1
η22

, G32 = β1
ν1
η2
, G33 = β1 ,

H31 = −β2
n2ν2
η22

, H32 = β2
ν2
η2
, H33 = β2 ,

G41 =
β1
η32

(3− ν1)n
2 , G42 = −β1

η22

[
1 + (2 − ν1)n

2
]
, G43 =

β1
η2
, G44 = β1 ,

H41 =
β2
η32

(3− ν2)n
2 , H42 = −β2

η22

[
1 + (2− ν2)n

2
]
, H43 =

β2
η2
, H44 = β2 ,

The numerical solution of the eigensystem formed with (4.53) to (4.55) can be pursued by using

several different strategies. One of the non-trivial features in this problem is the presence of the

interface requiring the solutions of (4.53) to be matched via the equations (4.55). In standard

terminology, we are dealing with a three-point boundary-value problem. The MATLAB software

provides built-in functions that allow us to deal with such problems very easily, without the

need to do any preliminary work (e.g., see the comprehensive overview given in [110] for the

‘bvp4c’ solver). Both the eigenvalues and the corresponding eigenmodes are available by using

this software.

Other alternatives are the boundary-value solver ‘sbvp’ (see [9, 10, 11]) and a version of

the compound matrix method described by Lindsay in [80]. The disadvantage of the latter

consists in the fact that only the eigenvalues are available by following that route; to get the

eigenmodes one must turn to standard boundary-value solvers like the ones mentioned above.

We have used all three approaches to check the accuracy of our results. A further check was

done by letting γ = 1.0, ν1 = ν2 with various choices for η1, η2, and then comparing the results

with those obtained in the case of a simple annular plate with uniform material in [47].

4.4.1 Observations regarding the collocation solver ‘sbvp’

Here, for the sake of completeness, we review a few preliminary steps that are needed for using

the MATLAB-based collocation boundary-value solver ‘sbvp’ [9, 11]. This is particularly effective

in dealing with problems involving singularities, nonlinearities or any other complicated situ-

ations; in certain respects this software copes better than ‘bvp4c’ with unexpected difficulties

that are usually encountered in problems with large numbers of parameters (where a vast range

of solution behaviours is possible). Basically, we have to reformulate our governing equations

as a two-point boundary-value problem – this is a standard technique whose pros and cons are

reviewed in detail in [7].

By using the change of variables

x :=
ρ− η1
η2 − η1

or ρ = η1 + (η2 − η1)x , 0 ≤ x ≤ 1 , (4.56)

the differential equations (4.21 when j = I) are written over the fixed range η1 ≤ ρ ≤ η2. To
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accomplish this, let W I(ρ) =W I(η1 + x(η2 − η1)) =: U1(x) and, similarly,

dW I

dρ
(η1+x(η2−η1)) =: U2(x) ,

d2W I

dρ2
(η1+x(η2−η1)) =: U3(x) ,

d3W I

dρ3
(η1+x(η2−η1)) =: U4(x) .

With these notations, the differential equation (4.21) within ΩI becomes

dU1

dx
= U2 ,

dU2

dx
= U3 ,

dU3

dx
= U4 ,

dU4

dx
= −δ41 C

I

0 U1 − δ31 C
I

1 U2 − δ21 C
I

2 U3 − δ1 C
I

3 U4 ,

where δ1 := η2 − η1. The coefficients CI

i , i = 0, 1, 2, 3 are obtained from the original bifurcation

equations (4.21) by expressing ρ in terms of x via (4.56).

Equation (4.21) when j = II is amenable to similar treatment by introducing the new

dependent variables U i (i = 5, 6, 7, 8) and the change of variable

y :=
ρ− η2
1− η2

or ρ = η2 + (1− η2)y , 0 ≤ y ≤ 1 ,

so that

dU5

dy
= U6 ,

dU6

dy
= U7 ,

dU7

dy
= U8 ,

dU8

dy
= −δ42 C

II

0 U5 − δ32 C
II

1 U6 − δ22 C
II

2 U7 − δ2 CII

3 U8 ,

where δ2 := 1 − η2. Also, with the help of the new variables introduced above, the boundary

conditions (4.54) and continuity conditions (4.55) can be recast as

U1(0) = U2(0) = 0 and U5(1) = U6(1) = 0 ,

U1(1) = U5(0) and U2(1) = U6(0) ,

3∑

i=1

[
G3i U i(1) +H3i U i+4(0)

]
= 0 ,
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4∑

i=1

[
G4i U i(1) +H4i U i+4(0)

]
= 0 ,

where Gij andHij are obtained from their counterpartsGij andHij , and by taking into account

the obvious rules

d

dρ
= (η2 − η1)

−1 d

dx
in ΩI ,

d

dρ
= (1− η2)

−1 d

dy
in ΩII .

The upshot of re-writing the equations in this new form is the simplification from a three-point

to a two-point boundary value problem. Although there is an increase in order of the new

system that needs to be solved, this is a minor impediment since originally we had to solve two

fourth-order equations, see equations (4.53). Any boundary-value solver can be used to tackle

the new problem. Here, the previously introduced variables x and y are independent variables

defined in ΩI ( U1∼4) and ΩII (U5∼8) respectively. Yet, in this coupled eighth-order boundary

value problem, both variables are of the same integral interval [0, 1]. From a computational

point of view, both can be replaced by a unique variable (say z) .

To determine the eigenvalue λ by using the eighth-order boundary-value problem with the

help of ‘sbvp’, we should introduce two auxiliary functions, U9(z) := λ and U10(z) to be defined

shortly. We regard λ as a function of z, so that

U
′

9(z) = λ′(z) = 0 .

Furthermore, we still need to choose a normalisation for the eigenfunction; here we adopt

U10(z) :=

∫ z

0

|U1(t)|
2
+ |U5(t)|

2
dt .

By using the condition U10(1) = 1, the uniqueness of the eigenmodes is ensured. Differentiation

with respect to z of the above expression yields

U10
′
(z) := |U1(z)|

2
+ |U5(z)|

2
,

which is then supplemented with two obvious boundary conditions

U10(0) = 0 , U10(1) = 1 .

This completes the set-up process for using ‘sbvp’; for further details, such as formulating the

Jacobian matrices, we refer to [9, 10, 11].
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4.4.2 Compound matrix method

The compound matrix method (CMM) is a natural candidate for finding eigenvalues of boundary-

value problems that have turning points. Unlike the classical determinantal method, which fails

in this situation because of the presence of turning point, CMM is very robust and requires

solving only an initial-value problem for an auxiliary system of differential equations (e.g.,

[66, 81]); in a certain sense CMM is just a variation of the classical shooting technique, and

thus its numerical implementation is fairly straightforward.

With the exception of [80], most applications of this method to Solid Mechanics have been

centred around two-point boundary-value problems. As already pointed out in §4.4.1, the

presence of the interface introduces non-trivial complications; trying to tackle these directly, by

using the eighth-order system formulated above leads to no sensible progress since the associated

CMM system will contain 70 differential equations. A different strategy, proposed by Lindsay

in [80], eliminates the need to go through the reformulation of the previous section and handle

the interface directly (without any unwanted increase in dimension). The precise details of how

this is accomplished for the present problem have been relegated to Appendix B to preserve the

flow of the chapter.

4.5 Numerical study of the wrinkling problem

Using the numerical strategies recorded in last section, we can solve the eigenvalue problem

formulated in (4.53) to (4.55). Then, the eigenvalue λ can be treated as a function of parameters

indicating the geometrical and mechanical properties as defined earlier in (4.11), (4.12) and

(4.17), i.e.

λ = λ(µ, n; η1, η2, γ, ν1, ν2) , n ∈ N , (4.57)

that provide the vital information for understanding the neutral stability envelope of this prob-

lem. With the discussions in §4.3, we will explore the dependence on the parameters in (4.57)

on the eigenvalue λ.

As in §4.3, η1 is regarded as the main variable in this function, i.e., λ(η1), while keeping

all the other parameters fixed. However, we have an additional parameter (mode number

n ∈ N), which was introduced to the problem through the separable-variable solution (4.20), so

eventually we need to identify those values which lead to the smallest eigenvalue. It is for this

reason that we need to plot the individual response curves for a whole range of mode numbers as

in §4.5.1, and then move on to the smallest eigenvalues, namely, the neutral stability envelope

(NSE) as introduced in §1.
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4.5.1 Response curves

Recalling the annular plates (both single-annular and multi-annular) under compression

(e.g., [55, 56, 85]), the buckling mode normally appears to be either axisymmetric n = 0 or

asymmetric with n = 1. It is also pointed out by Yamaki [127] that under certain boundary

conditions the axisymmetric mode does not have the lowest critical load, higher modes must

be taken into consideration for compressed annular plates. However, when an annular plate is

under tensile stretching (e.g., [28, 41, 47]), the wrinkling modes with n = 0, 1 are irrelevant

because the original eigenproblem has no solutions, and localised instabilities normally develops

fine buckling structures (wrinkling) with mode number n≫ 1.
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Figure 4-6: Dependence of the eigenvalue λ on the parameter η1 for µ = 400.0, ν1 = 0.1, ν2 =
0.3, γ := E1/E2 = 0.3. The locations of the interface (vertical dashed lines) in (a) − (d) are
η2 = 0.6, 0.5, 0.4, 0.3, respectively. The values of the mode number for the red curves are n =
6, 8, 10, 12, 14 in all subplots; n = 20, 30, 40, 50, 60, 70 for the families of blue curves in (a) and (b),
while, n = 20, 25, 30, 35, 40, 45 for those blue curves in (c) and (d). The red and blue arrows indicate
the direction of increase for the mode number n. The coloured background show the prebuckling

azimuthal stress types defined in §4.3, the thick black lines in the bottom indicate λlow as for
Fig. 4-3.

Eigenvalue problems & elastic instabilities 98



4.5. Numerical study of the wrinkling problem

The relevant numerical results are recorded in Fig. 4-6 to 4-9. We follow the same structure

as §4.3 in selecting the range of Ej and νj (j = 0, 1) for the response curves, to cover all

significant variations between the cases γ ≡ E1/E2 < 1, ν1/ν2 < 1 and their complements. For

the purpose of understanding the effect of the interface location on eigenvalue λ, a range values

of η2 have been considered subject to the requirement that they are not too close to either the

inner or the outer rims of the annular domain. Hence we chose η2 ∈ {0.6, 0.5, 0.4, 0.3} (shown

in each figure as (a), (b), (c) and (d)) and ensure that the starting value of η1 is never below 0.1.

Also, µ ≫ 1 will be tacitly assumed in all of our examples. In the response curves in Figs. 4-6

to 4-9, we adopt a moderately large value: µ = 400.0.

The response curves will be denoted by C(n), where the dependence on n ∈ N is indicated

explicitly. In each set of plots there are two families of curves C(n) shown in different colours.

The red ones are obtained by using n≪ µ1/2, and they correspond (roughly) to the membrane-

like regime identified by Coman and Haughton in [47]. This group of curves contributes nothing

to the neutral stability envelope. Similarly with the response curves of a stretched single-annular

plate as shown in Fig. 1-7, it is still true that C(n) is always above C(n+1) for the entire range

of relevant values 0 < η1 < η2 < 1 (as indicated by the red arrows showing the increasing

direction of the mode number n), and that is why we use the same terminology. The other

set of curves, shown in ‘blue’ and for which µ1/2 ≤ n ≪ µ, are basically the building blocks

of the neutral stability envelope (NSE as mentioned in §1.3). In the language of [47] this will

form the plate-like regime, in which, the response curves intersect each other, thus forming the

NSE.

However, unlike the work in [47] (in Fig. 1-7), the dependence λ vs. η1 is not always mono-

tonically increasing in both red and blue sets of response curves. For a better understanding of

the novel features and seeking clearer linkages between the prebuckling and the buckling state,

in Figs. 4-6 to 4-9, the response curves are superimposed with the background indicating the

NHP styles proposed in §4.3. Actually, the existence of these features can be indicated by the

basic state. For a moderately large µ (µ = 400.0), the response curves appear with a kink-like

shape as soon as the lower bound λlow is cusp type, and are of monotonic shape when the λlow

is of rectangular-hyperbola type, which is in line with our earlier expectations. Now we will

discuss this two types in detail.

1◦ kink-type response curves

In Figs. 4-6 (b) − (d) and 4-7 (a) − (d), the response curves appear to be ‘kinked’, the value

of λ increases when η1 is far away from η2, then arrives at a peak at a larger value of η1 be-

fore decreasing with η1 as η1 approaches η2. (Notice that here we use the terminology ‘kink’

to represent the non-monotonic feature in the response curves and later the neutral stability

envelopes, in order to distinguish with the previously introduced ‘cusp’ in the analysis of the

lower bound λlow in PBAS plots.) The sharpness of the kink is dependent on several factors

including the mechanical parameters γ, ν1 and ν2, the value of large parameter µ and the mode
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Figure 4-7: Similar to Fig. 4-6, the parameters are taken as: µ = 400.0, ν1 = 0.3, ν2 = 0.1, γ :=
E1/E2 = 0.3. The values of the mode numbers n and the interface locations η2 in (a)− (d) are the
same as the corresponding subplots Fig. 4-6.

number n.

From Figs. 4-6 and 4-7, the smaller the ratio between γ : (ν1/ν2) (which means that γ ≪
ν1/ν2), the more pronounced will be the ‘kink’ in the response curves of the same mode number,

for instance, comparing the ‘kinked’ feature in the subplots of Fig. 4-7 (as γ : (ν1/ν2) = 0.1)

and Fig. 4-6 (when γ : (ν1/ν2) = 0.9);

Furthermore, in each set of response curves where a kink is present, the kink-like feature is

sharper for larger mode number n than that with smaller n. Also, The ‘kinks’ become more

pronounced as µ increases because λ→ λlow in the limit µ→ ∞, which will be shown in NSE

analysis in the coming sections.

As η1 → η2, all the ‘kinks’ of the response curves occur within R or G1 background regions,

after the response curves enter from B1 (with compressive stresses only in ΩI) to R and G1

(there are compressive hoop stresses in both ΩI and ΩII). That is, from a physical point of

view, as η1 → η2, the resistance of the wrinkling of a bi-annular plate deteriorates after both
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Figure 4-8: Similar to Fig. 4-6; here, the parameters are µ = 400.0, γ := E1/E2 = 10.0, ν1 = 0.1,
ν2 = 0.3. The red curves correspond to the mode numbers n = 5, 6, 7, 8, 9, 10, while those in blue

are obtained for n = 20, 30, 40, 50, 60, 70. The location of the interface is η2 = 0.6 in (a), η2 = 0.5
in (b), while, η2 = 0.4 in (c), and η2 = 0.3 in (d).

regions experience compressive hoop stresses. The latter statement is a necessary condition for

reducing the anti-wrinkling capability of the bi-annular structure. We can also notice that for

smaller η2 (i.e. (d) in Figs. 4-6 and 4-7), the kinks of the response curves occur for a smaller

η1.

2◦ monotonic response curves

When γ > (ν1/ν2), the response curves corresponding to the rectangular-hyperbola λlow as in

Figs. 4-8 and 4-9 also present different characteristics compared with the singular-annular case.

It can be observed from these two figures that the response curves are not always convex but

can be composed of both convex and concave sections (e.g., see the red curves therein). Even

thought the envelope formed by the family of blue curves is monotonically increasing with η1,

it just increase modestly first, then experiences a blow-up like trend when η1 approaches η2.

Both the above novel features will be discussed more thoroughly in the context of Neutral

Stability Envelop (NSE) in next section.
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Figure 4-9: Similar to Fig. 4-6; the parameters used are: µ = 400.0, γ := E1/E2 = 10.0, ν1 = 0.3,
ν2 = 0.1. The red curves for all subplots correspond to the mode numbers n = 5, 6, 7, 8, 9, 10, while
the blue ones in (a) and (b) are obtained for n = 20, 30, 40, 50, 60, 70 , and n = 18, 20, 25, 30, 35, 40, 45
for the mode number of blue curves in (c) and (d). The interface locations are the same as per
Fig. 4-6.

4.5.2 Neutral stability envelope

Now we are in position to investigate the role played by the mechanical parameters γ, ν1

and ν2 on the neutral stability (characterised by λC , nC) of the stretched annular plate. In light

of the response curves reported in last section, it is these sets of blue curves forming the NSE,

like the stretched single-annular case, λ = λ(n) for our current problem is also a U-shape curve

with a global minimum. Hence, the so-called NSE can be cast as λC(η1) = minn∈N λ(n; η1),

corresponding to the critical wrinkling mode number nC . So for certain values of η1, we can

solve the eigenproblem numerically [7, 9, 10, 11, 80] by using an optimal strategy with respect

to the mode number n.

Firstly, we found that higher elasticity modulus ratio γ := E1/E2 will decrease the wrinkling

resistant capability (in terms of the rescaled stretching parameter λ := U1/U2) of a stretched

bi-annular plate. We have conducted numerical simulations on the neutral stability curves for
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Figure 4-10: Dependence of the neutral stability envelope λC and the corresponding critical mode
number nC on the ratio of Young’s modulus of inner and outer annuli γ := E1/E2, other parameters
are: µ = 400.0, ν1 = ν2 = 0.3 and η2 = 0.5.

a range values of γ when other parameters are fixed. For clarity, Fig. 4-10 only includes three

values: γ = 0.5, 1.0 and 2.0 (other values of γ indicate similar tendency) all with fixed Poisson

ratio µ = 400.0, ν1 = ν2 = 0.3 and η2 = 0.5. It is easily seen that the three curves range in a

diminishing sequence with increase of γ for all range of η1. It means that with Poisson ratios

fixed, λC is inversely proportional to γ, which is true for the entire range of η1 ∈ (0, η2) (this

is also to be shown in § 4.6.3, e.g., in Fig. 4-23); as η1 → η2, whatever the value of γ is, all

the curves of λC coincide to a limit point (the same happens for those of nC). At this point,

the inner annulus disappears as the bi-annular shrinks to a single annulus with inner radius

η2 and Poisson ratio ν2, where the two curves of bi-annular plates with γ = 0.5 and 2 match

the results of the single-annular case in [41, 47] (shown in red continuous line). We have also

conducted numerical simulations systematically for other fixed Poisson ratio contrasts of these

two annuli, the results are consistent with the above conclusions.

Secondly, once γ is fixed, ν1 plays a dominant role on the the occurrence of wrinkling when

η1 is far away from η2; whereas, as η1 → η2, ν2 becomes to be of controlling effect on λC and

nC . Fig. 4-11 shows the effect of Poisson ratios of the two annuli on the tensile instability of

bi-annular plate with other parameters given in the caption. It is interesting to notice that

in Fig. 4-11(a), the yellow dots (ν1 = 0.3, ν2 = 0.1) closely follows the red continuous line

(ν1 = ν2 = 0.3) when η1 < 0.4 or so. Similarly, the curves of black circles (ν1 = 0.1, ν2 = 0.3)

and its counterpart blue continuous line (ν1 = ν2 = 0.1) approach each other for the same regime

of η1. This feature also applies for the associated curves of nC in Fig. 4-11(b). Moreover, we

found that with fixed γ, both the curves of λC and nC approach limit points at η1 = η2 if the

value of ν2 is unique (the red continuous line and black circles, the blue continuous line and

the yellow dots), which matches closely with the conclusions in last paragraph.

Interestingly enough, our extensive numerical simulations also suggest two representative
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Figure 4-11: Dependence of the neutral stability envelope λC and the corresponding critical
mode number nC on the Poisson ratio of two annuli ν1, ν2; the other parameters are taken as
µ = 400.0, γ := E1/E2 = 1.0 and η2 = 0.5.

types of neutral stability envelopes (NSE) for λC , namely, the kink-type (yellow dots in Fig. 4-

10(a) and 4-11(a)) and the monotonic-type (black circles therein), which are both different from

the curves of the stretched single-annular plate (continuous lines). For the kink-type NSE,

with increasing η1, λC increases first up to the a kink, then descends monotonically until η1

approaches η2. While, in the monotonic-type NSE, although the curves remain monotonically

increasing for the whole range of η1, λC increases modestly with η1 when η1 and η2 are far

apart, but increase rapidly as η1 → η2.

4.6 Critical wrinkling modes and morphological changes

In §4.3 and §4.5.2, we discussed thoroughly the prebuckling azimuthal stresses (indicated by

PBAS analysis) and the neutral stability envelope (NSE) on the discontinuities that are

present in the two-layer structures. Nevertheless, it is important to have a preliminary assess-

ment of how the information in §4.3 and §4.5.2 is reflected in the possible behaviours of the

critical eigenfunctions generated by solving the boundary-value problem (4.21) to (4.28). For

this we consider a number of representative critical eigenmodes together with their correspond-

ing pre-buckling azimuthal stress-distributions, followed by the morphological changes in the

wrinkling modes for the novel kink-type and monotonic-type NSE.

4.6.1 Examples of critical eigenmodes

The results of critical eigenmodes and the related PBAS distribution are summarised in Figs. 4-

12 and 4-13 with the parameters recorded in Table 4.2. We shall denote by λC and nC the

critical values of the eigenvalue and the mode number, respectively. For each case the eigen-

modes are represented by a continuous black line, while the azimuthal stresses appear in green.
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Table 4.2: The parameters used in Fig. 4-12.

subplot γ ν1 ν2 η1 η2 nC λC
B1- 1© 0.5 0.3 0.3 0.350 0.500 76.06 2.201548
B2- 1© 1.0 0.1 0.3 0.200 0.400 32.78 0.318883
R- 1© 0.3 0.3 0.1 0.264 0.400 69.20 2.322499
R- 2© 0.5 0.3 0.1 0.332 0.400 46.15 1.030182
R- 3©a 0.5 0.3 0.1 0.280 0.400 45.11 1.575215
R- 3©b 0.5 0.3 0.3 0.400 0.500 101.25 3.937109
K- 1© 2.0 0.1 0.3 0.400 0.500 56.16 0.265950
G1- 1© 2.0 0.3 0.1 0.425 0.500 54.31 0.474511
G1- 2© 0.5 0.1 0.3 0.490 0.500 102.54 1.869891
G2- 1© 0.5 0.1 0.3 0.470 0.500 129.61 1.639835
G2- 2© 2.0 0.3 0.1 0.475 0.500 75.63 0.520341
G2- 4© 2.0 0.1 0.3 0.490 0.500 162.45 1.482214
Y- 2© 0.3 0.3 0.1 0.340 0.400 47.35 1.252496

The orange vertical dashed lines mark the positions of the interface (ρ = η2). One of the select-

ing criteria for picking up these particular eigenmodes was to cover all possible distinct cases

when solving the original eigenproblem with respect to the seven types of PBAS as classified in

Table 4.1, in order to establish the connections between the PBAS analysis and the wrinkling

problem. From an extensive set of numerical simulations we chose only the ones that were the

most representative. Loosely speaking, depending on µ, one encounters three general classes

of eigenmodes. For µ = O(1) the solutions are not necessarily localised, so there is a wide

range of behaviours; these were not seriously taken into account because we are interested in

the situation µ ≫ 1. If this parameter falls (roughly) within the range 200.0 ∼ 700.0 then µ

can be regarded as moderately large, and we noticed that the solutions experienced pronounced

localised effects. This is the situation that we illustrate in our plots. A third class of eigenmodes

would be that corresponding to extremely large values of µ (much greater than 700.0). This is

the true asymptotic range in which the critical eigenmodes will reveal significantly less diverse

behaviours. The reason for this is that λC gets smaller and smaller as µ grows; in the limit

µ→ ∞, the neutral stability curve will be almost indistinguishable from the boundary between

the white region and the coloured markers in the lower part of the plots included in Figs. 4-3

to 4-5, the curve that was identified as λlow = λlow(η1) in §4.3. Unfortunately, for such large

values of µ obtaining the eigenvalues for a whole range of mode numbers becomes problematic

because of the singular-perturbation character of the problem and the large number of arbitrary

parameters. Nonetheless, it will be seen later in this chapter that our asymptotic predictions

compare well with direct numerical simulations even for modest values of the asymptotic pa-

rameter µ. The wrinkling mode of a stretched annular plate can be loosely classified into four

types: 1©- 4©. Types 1© represents the wrinkling mode localised within the inner annulus next

to the inner rim; 2© stands for the case when wrinkles are located in the outer annulus; there

is another interesting wrinkling mode 3©, where wrinkling is localised in both sub-regions near

the interface; and type 4© describes the wrinkling mode located at the interface.
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Figure 4-12: Examples of critical eigenmodes for the classifications (a) to (n) in Fig. 4.1 (the
examples for (a), (d), (i) are not included here since the corresponding eigenmodes are observed only
when the interval [η1, η2] is extremely small). Each example consists of two subplots, namely, the
eigenmodes W (ρ) and the corresponding hoop stresses σ̊θθ(ρ). The vertical dashed lines indicate
the interface separating the radial direction of Ω in the two regions, [η1, η2] (for ΩI) and [η2, 1]
(for ΩII). The horizontal dot-dashed lines identify the neutral hoop stress σ̊θθ(ρ) ≡ 0. All the
eigenmodes are appropriately normalised such that their maximum amplitude is equal to one, and
the parameters adopted in each sub-plot are shown in Table 4.2.
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Figure 4-13: Continued from Fig. 4-12.
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The most prevalent situations are characterised by eigenmodes localised within the region

ΩI , which resemble closely those seen in the stretched simple annulus (e.g., [47]), and we denote

as type 1©. For example, see the subplots with the notation containing ‘- 1©’ in in Figs. 4-12

and 4-13. This type of wrinkling mode is generally encountered for the cases in which there is

just one NHP in ΩI (when η1 and η2 are far apart), like B1 − 1© and B2 − 1© in Fig. 4-12, and

there are disjoint regions in the inner annulus in which the hoop stresses have opposite signs

in ΩI ; the outer annulus is fully under tensile stresses. Extensive numerical experiments show

that for all the cases of B1 and B2, the associated critical wrinkling mode is certainly of type

1©. It might be tempting to say that only this class of PBAS will lead to type 1©. However,

this would be wrong: since µ → ∞ is not true for our problem, the occurrence of the type 1©
does not exclude other classes of PBAS such as R and K.

We also have wrinkling mode localised in the ΩII next to the interface, which are labelled

type ‘ 2©’ in Figs. 4-12 and 4-13. It is again very straightforward to understand the situation

G1,G2 and Y, this situation is typically encountered when |η2 − η1| is sufficiently small and

0 < γ < 1. On the other hand, we can also have the wrinkling mode of type 2© when the

PBAS background is of type R. The reason is the same as those of type 1©.

As we change the size of the inner annulus, namely the value of η1, we would have expected

that there should be intermediate wrinkling modes which are localised near the interface. In-

deed, an interesting mode 3©, as presented as R- 3©a and R- 3©b in Fig. 4-12, is localised in both

ΩI and ΩII . However, this wrinkling mode is limited to the PBAS case when we have NHP s

in both annular subregions (within R background and γ < ν1/ν2). For µ≫ 1 such a case is only

noticeable for an extremely narrow window of 0 < η1 < η2 < 1, so it represents an exception,

and will be discussed again later on.

Yet another scarce occurrence, 4©, is the wrinkling mode with a crest located in the vicinity

of the interface, which also happens only for a small interval of η1 within the R or G2 background.

This type of wrinkle only happens for the shift-up PBAS distribution with γ > ν1/ν2, when

the azimuthal stresses are fully compressive in ΩI , and those of the entire or part of ΩII is

under tensile hoop stresses. For instance, see G2- 4© and K- 4© in Fig. 4-13. A quick glance at

Figs. 4-10 and 4-11 suggests that this scenario is also unlikely in the asymptotic regime, a fact

that was confirmed by our extensive numerical simulations.

4.6.2 Morphological changes on critical wrinkling modes

Having seen what the critical eigenmodes look like, the next task is to understand a bit better

the novel kink- and monotonic-type NSE combined with the possible morphological changes

of the wrinkling modes undergone by these eigenmodes as η1 → η2. Both the monotonic and

kinked features can be traced back to the PBAS analysis in § 4.3, which is the case for µ→ ∞.

For the plate scenario (0 < µ <∞) that information is not immediately relevant, although for

very large values of µ, we expect the latter situation to mirror closely the former. As we shall
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see shortly in § 4.8, for µ ≫ 1 (but finite), the role of the NHP ’s is replaced by the turning

points of certain second-order differential equations. Therefore, we will try to understand by

means of the pre-buckling analysis and the corresponding critical eigenmodes.
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Figure 4-14: Morphological changes of the critical eigenmodes as η1 → η2 before and after the
‘kink’ for the kink-type neutral stability envelope. In both (a) and (b), we use different colours of
‘⊕’ to show the chosen critical values of λC and nC near the kink of the kink-type NSE, namely, at
η1 = 0.35, 0.38, 0.385, 0.39, 0.45; while (c) includes the critical eigenmodes showing the morphological
changes at those points labelled by the corresponding coloured ‘⊕’ as in (a) and (b). In (a), the
coloured background indicates the classification of the prebuckling azimuthal stress (PBAS) which
was introduced in § 4.3. Here µ = 400.0, γ = 1.0, ν1 = 0.3, ν2 = 0.1, η2 = 0.5.

1◦ Kink-type neutral stability envelopes

Kink-type neutral stability envelopes (NSE) generally occur in the stretched bi-annular plates

with flexible inner annulus (when 0 < γ < ν1/ν2 as indicated in basic state analysis), which

follows the features of the lower bound λlow as shown in Fig. 4-14 (a).

In Fig. 4-14(a) and (b), we use colour ‘⊕’s to label the values of λC , nC for a sequence of

η1, while the corresponding critical eigenmodes are shown with the same colour, in which the

largest amplitude is normalised to 1. On a closer look at the critical eigenmodes together with

the related points on the kink-shape λC , it is clearly that, when η1 is on the left but not close

to the kink (the blue ⊕ in (a)), the critical eigenmodes localised within region ΩI near its inner

rim ρ = η1, see the left-most (blue) wrinkling mode in Fig. 4-14(c), which is of type 1©. While,

on the right side of the kink, when η1 → η2, the critical eigenmodes are localised within region
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ΩII next to the interface, such as the right-most (green) wrinkling mode in Fig. 4-14(c), and it

is of type 2©. However, there is an interesting transition between the aforementioned two types

of eigenmodes 1© and 2© corresponding to the vicinity of the kink on the kink-shape λC curve,

e.g., the intermediate modes between the blue (type 1©) and green modes (type 2©).

Just before η1 approaches the kink (pink wrinkling mode), when λC is still increasing with

η1, the wrinkling mode nC arrives at its maximum in (c) (pink ⊕ in (a) and (b)), which means

that at this stage, the wrinkled bi-annular plate displays the maximum number of wrinkles.

While the wrinkling mode is mainly localised in ΩI , a little bump develops in ΩII (pink curves

in (c)) compared with the blue one in (c).

As η1 approaches the kink for maximum λC (the cyan ⊕ in (a)), nC passed its maximum

(the cyan ⊕ in (b)). The localised part in ΩI shrinks gradually, and meanwhile, the bump

in ΩII near the interface increases, the wrinkles in both subregions are of matching maximal

amplitudes (see the cyan wrinkling mode in (c)). We can also say it is localised in both regions

near the interface. This wrinkling mode was classed as type 3© in the last section. It is

important to mention that this type of transition only occurs for the cases that have NHP ’s

in both annular subregions (the PBAS being R type).

After the kink point of λC , the NSE decreases and the corresponding nC continues to

decrease until it approaches it local minimum (red ⊕ in (a) and (b)), then it increases again

(e.g., the green ⊕’s).

As indicated above, the peak of λC does not coincide with that of nC . A more transparent

version on the kink-transition will be shown later in Fig. 4-19(a), by superimposing the plots of

both λC and nC (Fig. 4-14(a), (b)) and zooming-in near the kink. The curve of nC has a local

maximum at η1 ≃ 0.3755 and a local minimum at η1 ≃ 0.3780. There is one global maximum

point of λC located between the two η1s, at η1 ≃ 0.3770.

The turning points in the curves of λC and nC are not very sharp when γ is just slightly

smaller than ν1/ν2, and the local extremum of λC does not coincide with those of nC , such as

the case in Fig. 4-19(a) where γ : (ν1/ν2) = 1 : 3. Such a gentle-shift character is rooted in the

shape of response curves and the way they intersect; see more details in Fig. 4-15(a). It is of

geometrical sense that the family of round-shape curves will intersect to form a ‘round’ kink

of the NSE. Also, the corresponding nC appears to be round-shape in (b), the shift from the

local maximum (n = 70) to the local minimum (n = 57) involves a sequence of integral mode

numbers (n = 69 to 58). The turning points on the curves become sharper when γ ≪ ν1/ν2.

For example, when we change the γ in last case to γ = 0.3, the response curves are much

sharper (Fig. 4-16) than the previous case in Fig. 4-15; therefore, the turning point on the

curve NSE is extremely sharp, and the shift point of nC curves just looks like a discontinuity.

When we only consider the integral mode number n, the shift of nC is just a discontinuity,

reducing from n = 111 directly to n = 74 as demonstrated in Fig. 4-16(b). Also, in this case,

the peak location (in terms of η1) for λC seems to happen just at the peak of nC .
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Figure 4-15: The intersected response curves of round-shape kink shown in (a) which form the
non-sharp kink on neutral stability envelope NSE (we only include several curves of n for clarity,
the black dots indicate the intersecting points), and the corresponding natural critical mode number
nC is given by the nearest integer function of the real results nC designated by the staircase-like
line in (b). Here, it is the identical case shown in Figs. 4-14 and 4-19(a), where the parameters are
referred to, and γ : (ν1/ν2) = 1 : 3.
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Figure 4-16: The counterpart case of Fig. 4-15, for sharp-shift curves of NSE and nC . The
intersected response curves of sharp kink shown in (a) form the sharp kink on neutral stability
envelope NSE, when γ : (ν1/ν2) = 0.3 : (0.1 : 0.3) = 1 : 10 is extremely small. While the
corresponding natural critical mode number nC shown in (b) with the presence of a discontinuity.
Other parameters are: µ = 400.0 and η2 = 0.5.

We mention in passing that the kink behaviour of λC (or the discontinuity feature of nC)

is more and more pronounced as µ increases, see Fig. 4-17. To put it another way, the turning

points on the curves of both λC and nC become sharper with increasing µ. This observation on

neutral stability envelopes originates from similar behaviours of the response curves as discussed

§4.5.1. Another piece of information can be collected from Fig. 4-17: as µ increases, the NSE

always show a parallel pattern with the λlow, and it approaches λlow as µ → ∞. At the same

time, the corresponding nC increases with the value of µ.

Eigenvalue problems & elastic instabilities 111



4.6. Critical wrinkling modes and morphological changes

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5
0

40

80

120

λ
C

η1η1

n
C

(a)

µ = 200.0

µ = 400.0❍❍❍❥

µ = 600.0
❍❍❨

(b)
µ = 600.0

µ = 400.0
❅
❅
❅❘

µ = 200.0

Figure 4-17: The critical eigenvalues λC and the corresponding critical mode number nC with the
rescaling parameter µ ranges 200.0, 400.0 and 600.0. The other parameters are: γ := E1/E2 =
1.0, ν1 = 0.3, ν2 = 0.1, η2 = 0.5. The black thick arrow indicates the direction of increasing µ.

2◦ Monotonic-type neutral stability envelopes

In light of the pre-buckling azimuthal stress PBAS analysis in § 4.3, a stretched bi-annular

plate with flexible inner annulus (γ := E1/E2 > ν1/ν2) tends to have ‘monotonic’ type neutral

stability curves (NSE). Notice that even though this type is also monotonic just as the NSE

of stretched single-annular plate, there are two differences. On the one hand, λC is very small

when η1 is far away from η2 (see Fig. 4-18(a)), then increases steeply as η1 approaches η2,

displaying a blow-up like trend before arriving at its limit as η1 approaches η2. On the other

hand, the plots of nC are not monotonically increasing with respect to η1 (see Fig. 4-18(b)),

but firstly increase gently with η1 then reach a maximum (the red ⊕ in (b)) when η1 is near η2,

then return to a limit value at η1 = η2.

These significant features can be understood further by looking at the critical eigenmodes

in subplot (c) therein. The critical eigenmodes when η1 and η2 are apart from each other or

when η1 → η2 are localised in ΩI (the blue ⊕’s in (a), (b) and the blue eigenfunction in (c),

which is of type 1©) and ΩII (the green ⊕’s in (a), (b) and the green curve in (c), of type 2©)

respectively, just similar with the case in kink-type NSE. However, this monotonic-type λC

has completely different features for the transition between the above two. On the process of

η1 going close to η2, the localised wrinkles move towards the interface, until it starts to cross

the interface as λC increase sharply. Then, when the wrinkle crest crosses the interface (see

the red eigenmode in (c), of type 4©), nC reaches its first local maximum (red ⊕ in (b)). After

that, the critical wrinkling mode shift to the mode localised in ΩII (green curve in (c) of type

2©) as soon as nC drop rapidly to its limit point at η2. It is to be emphasised that during the

whole range of η1 ( 1©→ 4©→ 2©), there is only one bump for the critical mode, distinct from the

special wrinkling mode of the kink-type NSE case.

The morphological change of the critical eigenmodes (from 1© to 2©) occurs when the critical
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Figure 4-18: Morphological changes of the critical eigenmodes as η1 → η2 for the “monotonic”
type neutral stability envelopes (NSE). The subplots are similar with Fig. 4-14, but µ = 400.0,
γ = 2.0, ν1 = 0.1, ν2 = 0.3, η2 = 0.5. The eigenfunctions from left to right correspond to η1 =
0.4, 0.475, 0.485, 0.49, 0.495.

wrinkle number is in the vicinity of its maximum. That is to say, for this case, the maximum

wrinkles number happens when the wrinkles are localised at the interface (of type 4©). Finally,

we shall discuss the influence of the physical discontinuity introduced by the interface on the

novel behaviours of the λC , nC and the critical eigenmodes. In order to see more clearly the

new features, we superimpose the plots of λC and nC both in Figs. 4-14 and 4-18 into the

same plot as in Fig. 4-19. It is found that both types 3© (two-bump wrinkles) and 4© (wrinkle

crest passes the interface) are the transition wrinkling modes between 1© and 2©, and they only

occur for a very small window of η1. Also, when the wrinkles are localised near the interface

(either type 3© or types 4©), the plate is likely to exhibit finer wrinkles (nC is relatively larger).

More specifically, when the localised wrinkle transits from the more flexible region to the stiffer

region as η1 varies, the curves of nC will experience a steep increase to a local maximum at this

transition point, then decrease. See Fig. 4-19, where it is shown that when we decrease η1 in

(a) (from right to left) or increase η1 in (b) (from left to right), we will have an upward-shifting

of nC to a local minimum then a decrease.
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Figure 4-19: The close-up plots (a) and (b) include the two superimpositions of λC and the
corresponding nC in Fig. 4-14 and Fig. 4-18 respectively. In (a), we focus on the ‘kink’ of the
kink-type NSE as in Fig. 4-14, while (b) emphasises the abnormal behaviour of nC at η1 → η2
for the case shown in Fig. 4-18. The blue continuous lines stand for the λC , and the green dashed
curves denote the associated nC .

4.6.3 The dependence of λ on γ ≡ E1/E2 and ν1/ν2

Given the large number of parameters in our boundary eigenvalue problem it seems desirable to

get a more systematic understanding of the dependence of the eigenvalue on the ratios E1/E2

and ν1/ν2 for a range of different mode numbers. Here we include a sample of results that shed

more light on these matters.
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Figure 4-20: Dependence of the non-critical eigenvalues on the ratio E1/E2, where E1 and E2 are
the Young’s moduli for the two annular subregions. The values of the parameters are: µ = 500.0,
η1 = 0.3, η2 = 0.6, ν1 = 0.1, ν2 = 0.3 for both (a) and (b). The data shown here corresponds to
1 ≪ n ≪ O(µ1/2) (n = 6, 10, 14) in (a), while for (b) O(µ1/2) ≪ n ≪ O(µ) (n = 30, 40, 50).

Fig. 4-20 deals with the individual curves λ = λ(γ) for a range of values of mode numbers

that cover both the membrane- and plate-like regimes; here, µ = 500.0 and all the other
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parameters are fixed as indicated in the caption. In both cases the aforementioned dependence

is monotonic decreasing. The difference between them consists in the fact that in the former

case the curves do not intersect. The cross-over seen in the right window occurs around 1.6,

and suggests that if E1/E2 ≫ 1.6 (e.g., 8.0 or 10.0 in this problem) then high mode-number

eigendeformations demand larger eigenvalues than their low mode-number counterparts. For

E1/E2 ≪ RE (e.g., 0.1 or 0.3) the situation is reversed. In light of this information it is not

at all surprising that the µ1/2 ≤ n ≪ µ response curves for γ = 0.3 and γ = 10.0 (shown in

Fig. 4-7 and 4-9, for instance) are so radically different.
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Figure 4-21: Dependence of the eigenvalues on the ratio ν1/ν2 of the Poisson’s constants for the
two annular subregions. Two cases are considered: in (a) 1 ≪ n ≪ O(µ1/2) (n = 6, 10, 14), while in
(b) O(µ1/2) ≪ n ≪ O(µ) (n = 30, 40, 50). The values chosen for the other parameters are µ = 500.0,
η1 = 0.3, η2 = 0.6, E1/E2 = 10, ν2 = 0.5, with ν1 ranging from 0.1 to 0.5.
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Figure 4-22: Similar to Fig. 4-21. Here, µ = 500.0, η1 = 0.3, η2 = 0.6, E1/E2 = 10, ν1 = 0.5, and
ν2 ranges from 0.1 to 0.5.
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In a similar fashion, the plots in Figs. 4-21 and 4-22 illustrate the dependence λ = λ(ν1/ν2).

For the sake of completeness we dealt with γ > 1 and 0 < γ < 1 separately. Both sets of plots

show that for each fixed mode number the corresponding eigenvalues increase monotonically

with ν1/ν2. Note that in the left-hand windows n increases from top to bottom, while the

plots on the right display opposite behaviour. Of course, the information gathered so far can

be extrapolated to deduce the role of E1/E2 on λC (the critical value of the eigenvalue). This

anticipation is indeed confirmed by the direct numerical simulations recorded in Fig. 4-23(a)

for the dependence of the critical eigenvalue λC on the ratio of Young’s Modulus γ := E1/E2

in two cases: one is when the inner rim η1 = 0.3 is far away from the interface η2; the other

is when η1 = 0.45 is near η2 = 0.5. Here the results comprehensively verify the conclusions

made from Fig. 4-10: when other parameters are fixed, λC decreases monotonically with γ. In

Fig. 4-23(b) we also include the dependence of the mode number, nC , on the quotient of the

two Young’s moduli. However, we notice nC is not necessarily monotonically decreasing with

γ, which also matches the findings from Fig. 4-10.
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Figure 4-23: Dependence of the critical eigenvalue λC (shown in (a)) and the critical mode number
nC (shown in (b)) on γ ≡ E1/E2 for two cases: η1 = 0.35 and η1 = 0.47. In which, η1 = 0.35 (blue
continuous lines) corresponds to the case when η1 is far away to η2 = 0.5, while, the red dashed

lines for η1 = 0.47 represent the case when η1 is close to η2 = 0.5. The values adopted for other
parameters are: µ = 400.0, ν1 = 0.3, ν2 = 0.1 and η2 = 0.5.

4.7 An alternative view of the response curves

A striking feature of the bi-annular plate is the rich behaviour displayed by the response curve

λ = λ(η1;n) as η1 is allowed to vary in (0, η2). In the previous section it has been seen that,

despite this apparent complexity, one can still use the classification introduced by Coman and

Haughton in [47], and which has been reviewed in detail in Chapter 1. It was pointed out

at that point that the topology of the response curves is strongly influenced by the scalings

adopted and that, in general, some choices are better than others. Since there is no method to
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4.7. An alternative view of the response curves

identify the best scaling a priori, the alternative is to examine at least two of them in order to

ascertain how robust the global picture is. It turns out that for the bi-annular plate there is

another natural rescaling of the problem, and we shall summarise some of its pros and cons in

this section.

The starting point is the pre-buckling solution. Instead of using the original scalings, we

notice that we can adopt

η1 :=
R1

Rm
and η2 :=

Rm

R2
, (4.58)

while keeping everything else the same as before. With this choice the rescaled annular sub-

regions become

ΩI :=
{
(ρ, θ) ∈ R

2 | η1η2 ≤ ρ ≤ η2, 0 ≤ θ < 2π
}
,

ΩII :=
{
(r, θ) ∈ R

2 | η2 ≤ ρ ≤ 1, 0 ≤ θ < 2π
}
,

so the inner rim is now given by ρ = η1η2 and the interface by ρ = η2. The eigenvalue problem

can be rewritten using (4.58), which here is omitted in the interest of brevity, but the eigenvalue

will remain the same λ ≡ U1/U2.
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Figure 4-24: Dependence of the eigenvalues λ on the aspect ratio η2=Rm/R2 for µ = 350.0.
Other parameters are given by γ = 2.0, ν1 = 0.1, ν2 = 0.3, R1/Rm ≡ 0.8. The values of the
mode number in the left-hand plots are n = 4, 6, 8, 10, 12, 14, 16, 18, while in the right plots, n =
20, 25, 30, 35, 40, 45, 50, 55, 60. The arrows indicate the direction in which n increases.

If we employ the same numerical and analytical analysis on PBAS as in §4.3 using this

new scaling, we notice a notable feature in all of these plots: a smooth, monotonic boundary

between the differently coloured regions identifying the distribution of NHP s according to the

same classification as in Fig. 4.1. To a certain extent, this information seems to anticipate the

more regular behaviour of the response curves λ = λ(η2;n), with η1 fixed. For the sake of

clarity, we only record here the response curves.
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Figure 4-25: Similar to Fig. 4-24, except for the following changes: γ = 1.0, ν1 = 0.1, ν2 = 0.3,
R1/Rm ≡ 0.8, and the values of the mode number in the left plots are n = 4, 6, 8, 10, 12, 14, 16, 18, 20,
while in the right plots n = 25, 30, 35, 40, 45, 50, 55, 60.
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Figure 4-27: Similar to Fig. 4-24, except for the following changes: γ = 0.5, ν1 = ν2 = 0.3,
R1/Rm ≡ 0.8, and the values of the mode number in the left plots are n = 4, 6, 8, 10, 12, 14, 16 while
in the right plots, n = 18, 20, 25, 30, 35, 40, 45, 50, 55, 60.

Figs. 4-24 to 4-29 illustrate the new response curves and their behaviour for the two cases

1 ≪ n ≪ µ1/2 and µ1/2 ≤ n ≪ µ that were identified in [47] as the membrane- and plate-like

regimes. It is very clear that the curves included in these plots are very similar to the ones

shown in Chapter 1. We have not insisted on these scalings right from the outset because of the

fact that the new response curves are somewhat misleading: when changing η2 we are actually

altering the inner rim as well. As a result the interesting features discovered in Figs. 4-6 to

4-7 for η1 → η2 (e.g., the ’kink’) are absent from this new scenario. Nevertheless, despite these

shortcomings, this new scaling reconfirms the relevance of the WKB route taken in [47].
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Figure 4-26: Similar to Fig. 4-24, except for the following changes: γ = 0.5, ν1 = 0.1,
ν2 = 0.3, R1/Rm ≡ 0.8, and the values of the mode number in the left plots are n =
4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, while in the right plots n = 40, 45, 50, 55, 60.
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Figure 4-29: Similar to Fig. 4-24, except for the following changes: γ = 0.5, ν1 = 0.3, ν2 = 0.1,
R1/Rm ≡ 0.8, and the values of the mode number in the left plots are n = 4, 6, 8, 10, 12, 14, 16,
while in the right plots n = 18, 20, 25, 30, 35, 40, 45, 50, 55, 60.

4.8 Asymptotic limits

As seen in the plots of the response curves discussed in §4.5.1, the situation encountered in

the bi-annular plate problem shares several common features with the analogous situation of

a simple annulus discussed in references [29, 47]. Here, we take advantage of this analogy and

go one step further to derive a simplified three-point boundary-value problem that turns out

to be capable of reproducing many of the qualitative behaviours of the original one. The next

two sections represent a direct generalisation of the work in the references just mentioned but

is much more involved.
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Figure 4-28: Similar to Fig. 4-24, except for the following changes: γ = 0.5, ν1 = ν2 = 0.3,
R1/Rm ≡ 0.2, and the values of the mode number in the left plots are n = 4, 6, 8, 10, 12, 14, while
in the right plots n = 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, 60.

4.8.1 The reduction of the bifurcation equations

When 1 ≪ µ and 1 ≪ n (in this stage we left the question whether n≪ µ or n ∼ µ to be open)

the original equations (4.21) can be reduced to the compact form

d2W
(j)

dρ2
+

1

ρ

[
σ̊
(j)
θθ (ρ)

σ̊
(j)
rr (ρ)

]
dW

(j)

dρ
− n2

ρ2

[(
n

µ

)2
1

ρ2σ̊
(j)
rr (ρ)

+
σ̊
(j)
θθ (ρ)

σ̊
(j)
rr (ρ)

]
W

(j)
= 0 , j ∈ {I, II} ,

(4.59)

by using the arguments of reference [47], which will not be repeated here. The two equations in

ΩI or ΩII are obtained by keeping either the label I or II, for all of the coefficients in (4.59).

We shall also adopt an informal style of notation and do not insist on re-labelling W in these

equation as was done in §1 in relation to (1.17).

Numerical evidence indicates that, augmented by appropriate boundary and interfacial con-

ditions, these two equations can reproduce the plate-like behaviour of the stretched bi-annular

plate. If n≪ µ1/2 then equation (4.59) reduces to

d2W

dρ2
+

1

ρ

[
σ̊
(j)
θθ (ρ)

σ̊
(j)
rr (ρ)

]
dW

dρ
−
(
n

ρ

)2
σ̊
(j)
θθ (ρ)

σ̊
(j)
rr (ρ)

W = 0 , j ∈ {I, II} . (4.60)

Again, when solved in conjunction with the boundary and interfacial conditions mentioned

above, these two equations capture the membrane-like behaviour. Interestingly enough, we

discovered that one can disregard (4.60) completely because equation (4.59) reproduces the

membrane-like behaviour for n≪ µ1/2.

In obtaining (4.59) or (4.60) certain exponential solutions controlled by the size of the

asymptotic parameter µ ≫ 1 were omitted. The reduction process is rather standard and is

related to the (asymptotic) regular degeneracy of the original problem, a situation frequently
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encountered in the hydrodynamic literature or in shell theory.

Since the order of our three-point boundary-value problem has decreased from 4 to 2, we

are left with the task of identifying the reduced versions of the boundary constraints (4.22) and

the interfacial conditions (4.27). Intuitively, it is the higher-order derivatives in both of them

that will have to be ignored, and we notice that this will leave us with

W I(η1) = 0 and W II(1) = 0 , (4.61)

together with the continuity conditions,

W I(η2) =W II(η2) and
dW I

dρ
(η2) =

dW II

dρ
(η2) . (4.62)

Incidentally, this is the right number of constraints required to solve either (4.59) or (4.60).

However, this non-rigorous argument still needs to be placed on a firmer footing, and this is

what we do next.

4.8.2 The reduction of the boundary and continuity conditions

Since the order of our three-point boundary-value problem has decreased from 4 to 2, we are left

with the task of identifying the reductions of the boundary constraints (4.61) and the interfacial

conditions (4.62). Because the differential equations in both ΩI and ΩII are of fourth-order,

each can be represented as a linear combination of four linearly independent solutions, i.e.

W (j)(ρ) =

4∑

i=1

C
(j)
i W

(j)
i (ρ) , j ∈ {I, II} , (4.63)

where C
(j)
i ∈ R (i = 1, ..., 4) are eight constants that are to be determined by the four bound-

ary constraints (4.22) together with the the four continuity conditions (4.28). Following this

strategy we end up with a homogeneous eighth-order linear algebraic system for C
(j)
i whose non-

trivial solvability requires that the determinant of the coefficient matrix, D(λ;µ, ν1, ν2, η1, η2, n)

(say), vanishes. More specifically,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W I
1 (η1) W I

2 (η1) W
I

3(η1) W
I

4(η1) 0 0 0 0

W I
1
′
(η1) W I

2
′
(η1) W

I

3

′

(η1) W
I

4

′

(η1) 0 0 0 0

D31 D32 D33 D34 D35 D36 D37 D38

D41 D42 D43 D44 D45 D46 D47 D48

D51 D52 D53 D54 D55 D56 D57 D58

D61 D62 D63 D64 D65 D66 D67 D68

0 0 0 0 W II
1 (1) W II

2 (1) W
II

3 (1) W
II

4 (1)

0 0 0 0 W II
1

′
(1) W II

2
′
(1) W

II

3

′

(1) W
II

4

′

(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 ,

(4.64)
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where the following notation has been introduced,

D3i :=W I
i (η2), i = 1, 2, 3, 4 D3i := −W II

i−4(η2), i = 5, 6, 7, 8 .

D4i :=W I
i

′
(η2), i = 1, 2, 3, 4 D4i := −W II

i−4

′
(η2), i = 5, 6, 7, 8 ,

D5i :=

4∑

k=1

G3kW
I
i

(k−1)
(η2), i = 1, 2, 3, 4, D5i := −

4∑

k=1

H3kW
II
i−4

(k−1)
(η2), i = 5, 6, 7, 8 ,

D6i :=

4∑

k=1

G4kW
I
i

(k−1)
(η2), i = 1, 2, 3, 4, D6i := −

4∑

k=1

H4kW
II
i−4

(k−1)
(η2), i = 5, 6, 7, 8 ,

where the notations (•)(k−1)
denotes the (k − 1)th order derivative of (•) with respect to ρ.

The main idea is to take advantage of the presence of the large parameter µ≫ 1 and simplify

the above equation asymptotically. To this end, we need to use the WKB approximation in

µ≫ 1 and n≫ 1. In principle this is a routine task for small-dimensional problems, but it can

become quite a tedious undertaking for the above 8×8 determinant. This will be accomplished

by reviewing in some detail the WKB structure of the linearly independent solutions that

feature in (4.63).

We start by making the observation that the differential equations in the annular subregions

of Ω are the same except for the range of the independent variable and the coefficients σ̊
(j)
rr , σ̊

(j)
θθ .

In the interest of brevity, here we shall present the calculations forW I(ρ) only. The derivations

for W II(ρ) are just a matter of changing the labels from I to II, and the corresponding range

for the independent variable must be amended to η2 < ρ < 1.

The differential equation (4.21) in Ω(j)(j ∈ {I, II}) are amenable to asymptotic integration

by adopting the ansatz

W (j)(ρ) :=
{
a
(j)
0 (ρ) +

1

µ
a
(j)
1 (ρ) + . . .

}
exp

{
µ

∫ ρ

•

H(j)(ζ) dζ

}
, ρ ∈ Λ(j) , (4.65)

where the intervals Λ(j) were defined in § 4.2 as ΛI := [η1, η2],ΛII := [η2, 1]. If (4.65) is

substituted into the bifurcation equation (4.16) applicable in Ω(j), and like powers of µ are

collected, at leading order we get the characteristic equation for H(j),

X2
[
X2 − σ̊(j)

rr (ρ)
]
= 0 , ρ ∈ Λ(j) . (4.66)

The coefficients a
(j)
i (ρ) (i = 1, 2, ...) are fixed by solving sequentially the so-called transport

equations that result from setting to zero the coefficients of the other terms in the above

expansion of (4.21). These will not be needed as all of our derivations rely only on leading-

order approximations. Equation (4.66) has two distinct solutions corresponding to the linearly

independent functions

W
(j)
i (ρ) ≃ P

(j)
i (ρ)E

(j)
i (ρ), i ∈ {1, 2} (no sum over i) , (4.67)
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in which

P
(j)
1 (ρ) ≡ P

(j)
2 (ρ) ≡ P (j)(ρ) := ρ−1/2

[
σ̊(j)
rr (ρ)

]−3/4

,

E
(j)
1,2(ρ) := exp

{
±µ
∫ ρ

η(j)

√
σ̊
(j)
rr (ζ) dζ

}
, ρ ∈ Λ(j) .

If µ ≫ 1 then W I
1 (η2) and W II

1 (1) are exponentially large, whereas W I
2 (η2) and W II

2 (1) will

be exponentially small (hence negligible). Next, we shall use the assumption 1 ≪ n ≪ µ to

identify the orders of W
(j)
1,2 .

From equation (4.67) we deduce

W I
1,2(η1) ≃ P I(η1) ,

diW I
1,2

dρi
(η1) ≃ P I(η1)

{
±µ
√
σ̊I
rr(η1)

}i

+ . . . , i = 1, 2, 3 ,

where the dots stand for lower-order contributions compared with the dominant terms. Simi-

larly,

W II
1,2(η2) ≃ P II(η2) ,

diW II
1,2

dρi
(η2) ≃ P II(η2)

{
µ
√
σ̊II
rr (η2)

}i

+ . . . , i = 1, 2, 3 .

In conclusion,

W I
1,2(η1) , W

II
1,2(η2) ∼ O(1) ,

diW I
1,2

dρi
(η1),

diW II
1,2

dρi
(η2) ∼ O(µi) , i = 1, 2, 3 . (4.68)

We must also establish analogous order of magnitude estimates for the remaining values of

W I,II
1,2 . To this end, let us introduce the auxiliary quantities

EI
± := exp

(
±µ
∫ η2

η1

√
σ̊I
rr(ζ)dζ

)
and EII

± := exp

(
±µ
∫ 1

η2

√
σ̊II
rr (ζ)dζ

)
;

it should be clear that E
I,II
+ are exponentially large, while E

I,II
− will be exponentially small.

From (4.67) we then have

W I
1,2(η2) ≃ P I(η2)E

I
± ,

diW I
1,2

dρi
(η2) ≃ P I(η2)

(
±µ
√
σ̊I
rr(η2)

)i

EI
± + . . . , i = 1, 2, 3 ,

and

W II
1,2(1) ≃ P II(1)EII

± ,
diW II

1,2

dρi
(1) ≃ P II(1)

(
±µ
√
σ̊II
rr (1)

)i

EII
± + . . . , i = 1, 2, 3 .
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These results are summarised below for easy reference,

diW I
1,2

dρi
(η1) ∼ O(µi) ,

diW I
1,2

dρi
(η2) ∼ O(µiEI

±) , i = 0, 1, 2, 3 , (4.69a)

diW II
1,2

dρi
(η2) ∼ O(µi) ,

diW II
1,2

dρi
(1) ∼ O(µiEII

± ) , i = 0, 1, 2, 3 , (4.69b)

where

E
(j)
± := exp

{
±µ
∫

Λ(j)

√
σ̊
(j)
rr (ζ)dζ

}
.

It remains to obtain information in a similar vein regarding W
(j)
3 and W

(j)
4 . As in the related

work [41], it turns out that the remaining functions W
(j)
3 and W

(j)
4 in (4.63) can be approx-

imated by the solutions of the reduced equations (4.59); which can be indicated below, to

distinguish between the two sets of functions we shall keep the same notations, but will use

the ‘overbar’ for the approximations. Equation (4.59) can be recast in a more convenient form

with the help of a standard Liouville–Green transformation

R(j)(ρ) := ρ σ̊(j)
rr (ρ) , Y (j)(ρ) :=

√
R(j)(ρ)W

(j)
(ρ) ,

so that our original equation becomes

Y (j)′′(ρ)− n2Q(j)(ρ)Y (j)(ρ) = 0 , ρ ∈ Λ(j) , (4.70)

where the dash indicates differentiation with respect to ρ,

Q(j)(ρ) := Q
(j)
1 (ρ) +

1

n2
Q

(j)
2 (ρ) ,

and

Q
(j)
1 :=

1

ρR(j)

(
δ2

ρ2
+R(j)′

)
, Q

(j)
2 :=

1

4





(
R(j)′

R(j)

)2

+ 2
d

dρ

(
R(j)′

R(j)

)
 , δ := n/µ≪ 1 .

The general solution of (4.59) is a linear combination of W
(j)
3,4 , which is generically written as

W (ρ) = d3W 3(ρ) + d4W 4(ρ) , j ∈ {I, II} ,

where d3, d4 ∈ R are arbitrary constants. At this stage, we aim to identify the leading-order

behaviour of W 3,4 as ρ = ρB , where ρB denotes one of the values in the set {η1, η2, 1}.
If Q(j)(ρB) < 0 then

W
(j)

3 (ρ) ≃
[
R(j)2(ρ) |Q(j)(ρ)|

]−1/4

sin(nχ(j)(ρ)) ,
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W
(j)

4 (ρ) ≃
[
R(j)2(ρ) |Q(j)(ρ)|

]−1/4

cos(nχ(j)(ρ)) ,

which are both O(1) quantities (with respect to n≫ 1); here, χ(ρ) :=
∫ ρ

•

√
|Q(ζ)| dζ. By taking

into consideration that the derivatives of R(ρ) and Q(ρ) are O(1), this WKB result (valid for

1 ≪ n≪ µ) produces

W
(j)

3,4(ρB) ∼ O(1) and
diW

(j)

3,4

dρi
(ρB) ∼ O(ni) , i = 1, 2, 3 (4.71)

On the other hand, if now Q(j)(ρB) > 0 then

W
(j)

3 (ρ) ≃
[
R(j)2(ρ)|Q(j)(ρ)|

]−1/4

exp(nχ(j)(ρ)) , (4.72a)

W
(j)

4 (ρ) ≃
[
R(j)2(ρ)|Q(j)(ρ)|

]−1/4

exp(−nχ(j)(ρ)) . (4.72b)

Thus, we have the following simple estimates that follow directly from (4.71) and (4.72)

diW
(j)

3

dρi
(ρ) ∼ O(niF+) ,

diW
(j)

4

dρi
(ρ) ∼ O(niF−) , i = 0, 1, 2, 3 . (4.73)

In relation to this last approximation, let us introduce some further notation,

F± :=





O(1) , when Q(ρB) < 0 ,

exp(±nχ(ρB)) when Q(ρB) > 0 .

It is clear, irrespective of whether Q(ρB) < 0 or Q(ρB) > 0, we get E
(j)
+ ≪ F

(j)
+ and E

(j)
− ≫ F

(j)
−

once 1 ≪ n≪ µ is assumed to hold.

At last, we are in position to expand the 8 × 8 determinant in (4.64) by using the Laplace

expansion theorem. This can be done in a number of different ways, but here we choose to

carry out this procedure by using the first and the last two rows. Thus,

D(λ;µ, ν1, ν2, η1, η2, n)

=
∑

1≤p1<p2<p3<p4≤8
1≤q1<q2<q3<q4≤8

(−1)18+p1+p2+p3+p4D(1, 2, 7, 8|p1, p2, p3, p4)D(3, 4, 5, 6|q1, q2, q3, q4) ,

(4.74)

where pi 6= qj for any i, j ∈ {1, 2, 3, 4}, and D(i1, i2, i3, i4 | j1, j2, j3, j4) represents the minor

formed with the elements situated at the intersections between the rows i1, i2, i3, i4 and the

columns j1, j2, j3, j4. If we keep only the exponentially large terms in E
(j)
+ and neglect all the

terms containing E
(j)
− , there should be one 5 and no 1, 2 among p1 ∼ p4, and one 1 and no 2, 5

among q1 ∼ q4. Eventually, only four leading terms are left, namely,
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D(λ;µ, ν1, ν2, η1, η2, n) = −φ1 + φ2 + φ3 − φ4 + · · · = 0 , (4.75)

where

φ1 := D(1, 2, 7, 8|2, 3, 5, 7)D(2, 3, 4, 5|1, 4, 6, 8) , φ2 := D(1, 2, 7, 8|2, 4, 5, 7)D(2, 3, 4, 5|1, 3, 6, 8) ,

φ3 := D(1, 2, 7, 8|2, 3, 5, 8)D(2, 3, 4, 5|1, 4, 6, 7) , φ4 := D(1, 2, 7, 8|2, 4, 5, 8)D(2, 3, 4, 5|1, 3, 6, 7) .

and the dots stand for lower-order terms that we suspect will play a secondary role.

The following results are immediately obvious and require no further justification,

D3i =W I
i (η2), i = 1, 2, 3, 4 , D3i = −W II

i−4(η2), i = 5, 6, 7, 8 ,

D4i =W I
i

′
(η2), i = 1, 2, 3, 4 , D4i = −W II

i−4

′
(η2), i = 5, 6, 7, 8 .

However, the simplifications for D5i,D6i (i = 1, ..., 8) are more complex, and we will pay closer

attention to them. According to the notation introduced immediately after (4.64),

D51 = G31W
I
1 (η2) +G32W

I
1

′
(η2) +G33W

I
1

′′
(η2) , (4.76)

and the definitions of the Gkl in (4.55) indicate that

G31 ∼ O(n2) and G32, G33 ∼ O(1) .

Taken together with (4.69), these results yield

G31W
I
1 (η2) ∼ O(n2EI

+) ,

G32W
I
1

′
(η2) ∼ O(µEI

+) ,

G33W
I
1

′′
(η2) ∼ O(µ2EI

+) .

If we recall the initial assumption 1 ≪ n≪ µ then

D51 ≃ β1W
I
1

′′
(η2) ∼ O(µ2EI

+) ,

being the leading-order term on the right-hand side of (4.76). The same procedure can be

applied to D53 = G31W
I

3(η2) +G32W
I

3

′

(η2) +G33W
I

3

′′

(η2), taking account of (4.73), resulting

in

G31W
I

3(η2) ∼ O(n2FI
+) ,
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G32W
I

3

′

(η2) ∼ O(nFI
+) ,

G33W
I

3

′′

(η2) ∼ O(n2FI
+) .

Hence the leading-order contribution coming from these three terms is the first and last one,

D53 ≃ β1

[
−n

2ν1
η22

W
I

3(η2) +W
I

3

′′

(η2)

]
∼ O(n2FI

+) .

From (4.55) we have

G41, G42 ∼ O(n2) and G43, G44 ∼ O(1) ,

and the components of D61 are

G41W
I
1 (η2) ∼ O(n2E+) ,

G42W
I
1

′
(η2) ∼ O(n2µE+) ,

G43W
I
1

′′
(η2) ∼ O(µ2E+) ,

G44W
I
1

′′′
(η2) ∼ O(µ3E+) ,

so that

D61 ≃ β1W
I
1

′′′
(η2) ∼ O(µ3EI

+)

represents the leading-order term.

Similarly, a number of other estimates are derived below with the assumption 1 ≪ n ≪ µ,

in preparation for the simplification of the φi (i = 1, 2, 3, 4) in equation (4.75).

D51 ≃ β1W
I
1

′′
(η2) ∼ O(µ2EI

+) , D52 ≃ β1W
I
2

′′
(η2) ∼ O(µ2EI

−) , (4.77a)

D53 ≃ β1

[
−n

2ν1
η22

W
I

3(η2) +W
I

3

′′

(η2)

]
∼ O(n2FI

+) , (4.77b)

D54 ≃ β1

[
−n

2ν1
η22

W
I

4(η2) +W
I

4

′′

(η2)

]
∼ O(n2FI

−) , (4.77c)

D55 ≃ −β2W II
1

′′
(η2) ∼ O(µ2EII

+ ) , D56 ≃ −β2W II
2

′′
(η2) ∼ O(µ2EII

− ) , (4.77d)

D57 ≃ −β2
[
−n

2ν2
η22

W
II

3 (η2) +W
II

3

′′

(η2)

]
∼ O(n2FII

+ ) , (4.77e)

D58 ≃ −β2
[
−n

2ν2
η22

W
II

4 (η2) +W
II

4

′′

(η2)

]
∼ O(n2FII

− ) , (4.77f)

D61 ≃ β1W
I
1

′′′
(η2) ∼ O(µ3EI

+) , D62 ≃ β1W
I
2

′′′
(η2) ∼ O(µ3EI

−) , (4.77g)

D63 ≃ β1

[
−1 + n2(2− ν1)

η22
W

I

3

′

(η2) +W
I

3

′′′

(η2)

]
∼ O(n3FI

+) , (4.77h)

D64 ≃ β1

[
−1 + n2(2− ν1)

η22
W

I

4

′

(η2) +W
I

4

′′′

(η2)

]
∼ O(n3FI

−) , (4.77i)

D65 ≃ −β2W II
1

′′′
(η2) ∼ O(µ3EII

+ ) , D66 ≃ −β2W II
2

′′′
(η2) ∼ O(µ3EII

− ) , (4.77j)
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D67 ≃ −β2
[
1 + n2(2− ν2)

η22
W

II

3

′

(η2) +W
II

3

′′′

(η2)

]
∼ O(n3FII

+ ) , (4.77k)

D68 ≃ −β2
[
1 + n2(2− ν2)

η22
W

II

4

′

(η2) +W
II

4

′′′

(η2)

]
∼ O(n3FII

− ) , (4.77l)

It now remains to use the information derived up to this point in order to evaluate φ1 ∼ φ4;

this will be done by another application of the Laplace expansion theorem for determinants.

Taking φ1 as an example,

φ1 = D(1, 2, 7, 8|2, 3, 5, 7) ·D(2, 3, 4, 5|1, 4, 6, 8)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W I
2 (η1) W

I

3(η1) 0 0

W I
2
′
(η1) W

I

3

′

(η1) 0 0

0 0 W II
1 (1) W

II

3 (1)

0 0 W II
1

′
(1) W

II

3

′

(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D31 D34 D36 D38

D41 D44 D46 D48

D51 D54 D56 D58

D61 D64 D66 D68

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Γ11 · Γ12 · Γ13 ,

(4.78)

where,

Γ11 :=

∣∣∣∣∣∣∣

W I
2 (η1) W

I

3(η1)

W I
2
′
(η1) W

I

3

′

(η1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(1) O(FI
+)

O(µ) O(nFI
+)

∣∣∣∣∣∣∣
≃ −W I

2

′
(η1) ·W

I

3(η1) + · · · ,

Γ12 :=

∣∣∣∣∣∣∣

W II
1 (1) W

II

3 (1)

W II
1

′
(1) W

II

3

′

(1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(EII
+ ) O(FI

+)

O(µEII
+ ) O(nFI

+)

∣∣∣∣∣∣∣
≃ −W II

1

′
(1) ·W II

3 (1) + · · · ,

by using the order analysis in (4.69) and (4.73), where the dots represent the lower order terms,

and Γ13 denotes the second determinant of φ1 in (4.78) with the order analysis as

Γ13 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

O(EI
+) O(FI

−) O(EII
− ) O(FII

− )

O(µEI
+) O(nFI

−) O(µEII
− ) O(nFII

− )

O(µ2EI
+) O(n2FI

−) O(µ2EII
− ) O(n2FII

− )

O(µ3EI
+) O(n3FI

−) O(µ3EII
− ) O(n3FII

− )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= µ6EI
+F

I
−E

II
− FII

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

O(1) O(1) O(1) O(1)

O(1) O(δ) O(1) O(δ)

O(1) O(δ2) O(1) O(δ2)

O(1) O(δ3) O(1) O(δ3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

where δ := n/µ ≪ 1 as 1 ≪ n ≪ µ. If we apply the Laplacian expansion for the 4 × 4

determinant of Γ13, we have

Γ13 =D(3, 4|1, 2) ·D(1, 2|3, 4)−D(3, 4|1, 3) ·D(1, 2|2, 4) +D(3, 4|1, 4) ·D(1, 2|2, 3)

+D(3, 4|2, 3) ·D(1, 2|1, 4)−D(3, 4|2, 4) ·D(1, 2|1, 3) +D(3, 4|3, 4) ·D(1, 2|1, 2) .
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the leading order term should be D(3, 4|1, 3) · D(1, 2|2, 4), irrespective of whether Q(j)(η2) is

greater or smaller than zero. Hence

Γ13 ≃ −

∣∣∣∣∣∣∣

D51 D56

D51 D56

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

D34 D38

D44 D48

∣∣∣∣∣∣∣
= −β1β2

∣∣∣∣∣∣∣

W I
1
′′
(η2) W II

2
′′
(η2)

W I
1
′′′
(η2) W II

2
′′′
(η2)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

4(η2) −W II

4 (η2)

W
I

4

′

(η2) −W II

4

′

(η2)

∣∣∣∣∣∣∣
.

Therefore,

φ1 ≃ −β1β2W I
2

′
(η1)·W II

1

′
(1)·

∣∣∣∣∣∣∣

W I
1
′′
(η2) W II

2
′′
(η2)

W I
1
′′′
(η2) W II

2
′′′
(η2)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

3(η1) 0

0 W
II

3 (1)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

4(η2) −W II

4 (η2)

W
I

4

′

(η2) −W II

4

′

(η2)

∣∣∣∣∣∣∣
.

Similarly, we can expand φ2 as

φ2 = D(1, 2, 7, 8|2, 4, 5, 7) ·D(2, 3, 4, 5|1, 3, 6, 8)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W I
2 (η1) W

I

4(η1) 0 0

W I
2
′
(η1) W

I

4

′

(η1) 0 0

0 0 W II
1 (1) W

II

3 (1)

0 0 W II
1

′
(1) W

II

3

′

(1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D31 D33 D36 D38

D41 D43 D46 D48

D51 D53 D56 D58

D61 D63 D66 D68

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Γ21 · Γ22 · Γ23 ,

(4.79)

where

Γ21 :=

∣∣∣∣∣∣∣

W I
2 (η1) W

I

4(η1)

W I
2
′
(η1) W

I

4

′

(η1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(1) O(FI
−)

O(µ) O(nFI
−)

∣∣∣∣∣∣∣
≃ −W I

2

′
(η1) ·W

I

4(η1) + · · · ,

Γ22 :=

∣∣∣∣∣∣∣

W II
1 (1) W

II

3 (1)

W II
1

′
(1) W

II

3

′

(1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(EII
+ ) O(FI

+)

O(µEII
+ ) O(nFI

+)

∣∣∣∣∣∣∣
≃ −W II

1

′
(1) ·W II

3 (1) + · · · .

Γ23 :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D31 D33 D36 D38

D41 D43 D46 D48

D51 D53 D56 D58

D61 D63 D66 D68

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

O(EI
+) O(FI

+) O(EII
− ) O(FII

− )

O(µEI
+) O(nFI

+) O(µEII
− ) O(nFII

− )

O(µ2EI
+) O(n2FI

+) O(µ2EII
− ) O(n2FII

− )

O(µ3EI
+) O(n3FI

+) O(µ3EII
− ) O(n3FII

− )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The leading order of Γ23 reads

Γ23 ≃ −

∣∣∣∣∣∣∣

D51 D56

D61 D66

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

D33 D38

D43 D48

∣∣∣∣∣∣∣
= −β1β2

∣∣∣∣∣∣∣

W I
1
′′
(η2) W II

2
′′
(η2)

W I
1
′′′
(η2) W II

2
′′′
(η2)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

4(η2) −W II

3 (η2)

W
I

4

′

(η2) −W II

3

′

(η2)

∣∣∣∣∣∣∣
.
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Therefore,

φ2 ≃ −β1β2W I
2

′
(η1)·W II

1

′
(1)·

∣∣∣∣∣∣∣

W I
1
′′
(η2) W II

2
′′
(η2)

W I
1
′′′
(η2) W II

2
′′′
(η2)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

4(η1) 0

0 W
II

3 (1)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣

W
I

3(η2) −W II

4 (η2)

W
I

3

′

(η2) −W II

4

′

(η2)

∣∣∣∣∣∣∣
.

Following similar procedure, φ3 leads to

φ3 = D(1, 2, 7, 8|2, 3, 5, 8) ·D(2, 3, 4, 5|1, 4, 6, 7) = Γ31 · Γ32 · Γ33 , (4.80)

where

Γ31 :=

∣∣∣∣∣∣∣

W I
2 (η1) W

I

3(η1)

W I
2
′
(η1) W

I

3

′

(η1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(1) O(FI
+)

O(µ) O(nFI
+)

∣∣∣∣∣∣∣
= −W I

2

′
(η1) ·W

I

3(η1) + · · · ,

Γ32 :=

∣∣∣∣∣∣∣

W II
1 (1) W

II

4 (1)

W II
1

′
(1) W

II

4

′

(1)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

O(EII
+ ) O(FI

−)

O(µEII
+ ) O(nFI

−)

∣∣∣∣∣∣∣
= −W II

1

′
(1) ·W II

4 (1) + · · · .

Γ33 ≃ −
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Hence,
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φ4 is followed by similar simplifications as before

φ4 = D(1, 2, 7, 8|2, 4, 5, 8) ·D(2, 3, 4, 5|1, 3, 6, 7) = Γ41 · Γ42 · Γ43 , (4.81)

where
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leading to
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Finally, putting all the leading orders in φ1 ∼ φ4 together, excluding out the common coeffi-

cients, (4.75) becomes
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+ · · · = 0 ,

where the dots stand for the lower order therefore were neglected. A close inspection of the

above equation reveals that, to leading order, the original determinantal condition (4.64) is

equivalent to ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= 0 ,

which is the same with the determinantal equation for (4.59) corresponding to the boundary

constrains (4.62) together with the continuity conditions (4.62).

This completes the proof of the assertion made at the end of §4.8.1.

4.8.3 The reduced equations: comparisons with full numerical simu-

lations

In this section the reduced problems of (4.59) to (4.62) are compared with direct numerical

simulations of the original boundary-value problem (4.21), (4.22) and (4.28). We concentrate

on individual response curves with µ≫ 1 and a range of mode numbers n. Both small and large

values of this latter parameter are considered in order to understand the range of applicability

of our work.

We solved the reduced equations (4.59) in ΩI and ΩII , subject to the simplified boundary

constraints (4.61) and the interfacial matching conditions (4.62). The interface is situated at

η2 = 0.5 and the large parameter is taken to be µ = 400.0 in all of our examples – from
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Figure 4-30: Comparison between the numerical solutions of the reduced problem (4.59) comple-
mented by (4.62) (yellow circles), and the original problem (4.21) and (4.28) (black continuous lines).
In these four windows: µ = 400.0, η2 = 0.5, three curves are for n = 5, 20, 50. More specifically, (a),(d)
shows the ‘kink’ type solutions, while, (b),(c) illustrates the ‘monotonic’ solutions. The values of the
parameters γ, ν1, ν2 are specified in the titles of the subplots. The colour background indicates the
classification of the pre-bifurcation hoop stresses that was introduced in § 4.3.

an asymptotic point of view the latter value is only moderate. As our extensive numerical

experiments (not included here for the sake of brevity) have indicated, larger µ’s tend to lead

to even more accurate results. The captions of the plots included above give full information

about the values of the other parameters used in our comparisons.

In all four plots of Fig. 4-30, as η1 increases from the initial value 0.1 towards the interface

(η2 = 0.5), all the four sets of curves are almost indistinguishable for all range of η1 with

different values of γ, ν1, ν2. More specifically, when µ = 400.0, theWKB solution is in excellent

agreement for both the “kink” and “monotonic” type response curves, and for any classifications

of the pre-buckling hoop stress defined in Fig. 4.3. Noting that the continuity conditions

Eq. (10) in [55] and Eq. (9) in [56] are problematic, these affect the final results slightly since

the continuity conditions are not leading order conditions, and can be removed from the process

of the order analysis in § 4.8. Here, we only included the comparison for η2 = 0.5, but this

approximation has proved to be very accurate for the individual response curves λ = λ(η1;n)
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for the whole range 0 < η1 < η2, where η2 ∈ (0, 1). To summarise, the WKB approximation

for moderately large µ and small n (n = 5) is of significance since it has been greatly reduced

and much more easily being tackled but still provides accurate solutions.

4.9 Discussion and conclusions

The problem of tensile wrinkling for a radially stretched thin annular plate [47] has been

extended to a system consisting of two (mechanically different) concentric annular plates per-

fectly bonded along a circular interface. The bi-layer structure can behave differently when

considering the prebuckling stress distribution and the wrinkling compared with the case of

homogeneous material.

The results obtained in this chapter are rather informative, here we try to conclude the

findings from both engineering and mathematical aspects.

From the engineering point of view, this work is of guiding significance in designing with re-

spect to buckling (wrinkling), as stated below. (Notice that the buckling resistance is discussed

in terms of the stretching parameter λ := U1/U2.)

• We found that a bi-annular plate with stiffer inner annulus (larger γ := E1/E2) is prone

to buckle under smaller stretching displacement on the inner rim, since a stiffer inner

layer will intensify the stress concentration. On the other hand, a slender-inner-layer

plate behaves in an opposite way, and can endure larger tensile displacement.

• The Poisson’s ratio of either sub-annulus exerts a global effect on the buckling resisting

capability of the bi-annular structure. Generally speaking, the smaller the Poisson’s ratio,

the lower the buckling resistance will be. Also, it is the Poisson’s ratio of the wrinkled

region that plays a dominant role on the critical stretching loading.

• The bifurcation mode exhibits a finer wrinkling structure (larger number of wrinkles)

when the wrinkles are localised near the interface. This phenomenon is somewhat similar

to the edge-buckling.

• When the inner rim is far from the interface (inner annulus is not very narrow), the

wrinkles tend to locate within the inner annulus next to the inner rim; the wrinkling

mode which is mainly localised in the outer annulus occurs when the inner annulus is

very narrow. The wrinkles might also be localised in both annuli around the interface, or

localised at the interface; however, the last two modes are rarely seen.

The above engineering conclusions were obtained from mathematical analysis on the corre-

sponding eigenvalue problem, which itself is of great interest to us and could be summarised

below.
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• The wrinkling analysis was started by thorough investigations of the stress distributions

in the basic state for a limit case µ → ∞, which suggests two types of lower bounds

(λlow) for such a limit case: the cusp type and the rectangular-hyperbola type. Some

detailed numerical and analytical analysis reveals the succinct relations: the former type

corresponds to the cases when γ := E1/E2 < ν1/ν2; while the latter type occurs when

γ > ν1/ν2.

• Extensive numerical simulations have been carried out by using numerical strategies of

an adapted version of compound matrix method, in conjunction with a collocation solver

sbvp. The response curves and neutral stability curves are obtained with respect to

different combinations of the mechanical parameters of the two annuli. The neutral

stability envelopes (NSE) can be classified into two different types, the so called kink-type

and monotonic-type, which asymptotically correspond to the two situations for the basic

state, namely, the cusp type and the rectangular-hyperbola type prebuckling azimuthal

stress distributions. More specifically, a bi-annular plate with a more flexible inner part

E1/E2 < ν1/ν2 is typically seen as a kink-type NSE, and of higher resistance against

wrinkling under stretching (defined by λ = U1/U2), while such a plate with a stiffer inner

annulus tends to appear as a monotonic-type NSE with lower critical external stretching.

• By further investigation in the morphological changes of critical eigenmodes when we vary

the location of the inner rim, we have gained a deeper understanding on the effects of the

discontinuities of the interface on either the critical external stretching and the wrinkling

mode. For example, the transition of the critical wrinkling modes is clearly related to

the critical mode number, as the localised wrinkling shifts from a stiffer region to a more

flexible region, the mode number nC increases steeply to a local maximum then decreases.

The singular-perturbation nature of this problem enables conducting further asymptotic

analysis. We have extended the earlier analysis of Coman et al. [47] into the bi-layer structure,

which is also applicable for general multilayer regime. The asymptotic approximations are quite

robust and accurate when the large parameter is moderately large (e.g., µ = 400.0).

The above WKB reduction paves the way for the generalisation of the so-called double-

WKB analysis put forth by Coman and Bassom in [41]. In such a double-WKB analysis, both

asymptotic parameters µ and n are taken advantage of, and the reduced second-order eigenvalue

problem obtained in this work can be further reduced and finally arrives at a transcendental

equation. Then the value of λ = λ(n) is obtained from this transcendental equation, without

solving eigenvalue problems. This was done by Coman in [38] and is not included here.
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Chapter 5

Tensile instability of a

thick-walled tube based on Lamé

solutions

5.1 Introduction

Elastic instabilities of bulky solids and thick-walled structural elements, such as plates and

shells, have received considerable attention for the past several decades, starting with the

works of Biot on incremental elasticity in the 1930’s, which were later collected in [15]. A more

modern treatment, together with many interesting examples, can be found in the classic text

by Ogden [95] .

While for most part there is a close parallel between the bifurcations experienced by thin-

walled bodies modelled with the help of classical plate and shell theories, on the one hand, and

those of three-dimensional elastic bodies, on the other, a number of complementary issues arise

in the latter situation. Largely speaking, these are related to the possible loss of ellipticity

in the incremental bifurcation equations and the existence of surface instabilities [14, 67]; this

last phenomenon is typical of compressed half-planes or half-spaces and has no counterpart in

the classical theories of buckling. It is precisely these two aspects, and related phenomena,

that we wish to revisit here within the scope of an approximate set of incremental bifurcation

equations described by Novozhilov in his book [94]; this model can be traced back to some early

incremental equations proposed by Biezeno and Hencky [13] as well as Biot ([15], pages 490-491).

For convenience we shall refer to this model as the simplified incremental deformation theory

(SIDT for short). To a certain extent, these incremental models are superior to the buckling

equations used in structural mechanics, since in recent years they have been the object of several

quantitative studies (e.g., [51, 72, 74, 96]). The mathematical structure of these equations in
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the case of non-homogeneous stress fields appears to be little explored and, as seen in what

follows, deserves much more consideration.

In some recent work Coman and Destrade [46] have investigated the asymptotic structure of

the instability experienced by an incompressible neo-Hookean rubber block subjected to pure

flexure (see [60] for some experimental considerations on the same problem). Based on the

exact nonlinear pre-bifurcation solution obtained by Rivlin in [105] it was found that if the

ratio of thickness to length was κ then for 0 < κ < ∞ the bent block displayed an Euler-type

instability with a well defined number of ripples on the compressed side, but in the limit κ→ ∞
this degenerated into a kinematic surface instability. In a later study [31] it was shown that

the turning points found in the differential equation associated with the pure bending problem

played only a passive role, in contrast to a deceivingly similar situation that crops up in relation

to the wrinkling of stretched thin films [40, 41] – where turning points did play a crucial role.

The above instability scenario was associated with one of the traction-free circular surfaces

of the bent block (the one that was in compression); the eversion of a cylindrical thick-walled

tube represents an akin situation amenable to the same type of asymptotic treatment. A

question that still remains is whether the asymptotic strategy developed in these studies can

find any applicability to the case when the bifurcation is associated with a stressed rather than

a free surface.

The problem we have in mind is that of a long hollow cylindrical body subjected to radial

tensions on both boundaries. Invoking the standard plane-strain simplifications we can confine

our attention to cross-sections situated sufficiently far away from the two ends of the cylinder.

Thus, we are essentially dealing with a two-dimensional problem and a number of further

simplifications can be called upon. For instance, if we assume that the pre-bifurcation state

is sufficiently weak, so that linear elasticity is applicable, then the expressions of the stress

and displacement fields are given by the Lamé solution for a radially loaded annulus (e.g.,

see [24]). It is a well-known fact that for tensile loads this solution predicts a typical stress

concentration around the perimeter of the inner hole, so we expect the possible bifurcations to

have a local character. However, it is not at all obvious a priori whether the inner rim will

prefer a long-wave deformation mode, as seen in the left sketch in Figure 5-1, or whether it will

have the tendency to accumulate many ripples (right sketch, same figure). Of course, a third

possibility is material failure as heralded by loss of ellipticity prior to any changes in the radially

symmetric pre-bifurcation state. All these questions will be addressed in the subsequent parts

of this chapter.

As already hinted above, the SIDT has attracted interest in recent time, particularly in

relation to buckling of thick circular cylindrical shells under hydrostatic pressure. Kardomateas

and his associates have explored such aspects extensively (e.g., [72, 74] and the references

therein). While not entirely as accurate as the incremental equations found in [15] or [95], they

represent a versatile alternative whose status is perhaps somewhere between classical plate/shell
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models and those found in the last two references just cited.

Figure 5-1: Long- and short-wavelength local deformations of the annulus

This chapter is laid out as follows. In §5.2 we review the SIDT by presenting an intrinsic-

form derivation of the relevant equations; a brief glancing at the equivalent traditional-notation

calculations (“á la Timoshenko”) that appear in [72] indicates clearly the advantages of the route

pursued here. By using the normal-mode approach, the bifurcation equations are reduced

to an eigenvalue problem for two coupled second-order ordinary differential equations with

variable coefficients. Direct numerical simulations are then employed in §5.3 to investigate

the character of the possible linear bifurcations. This aspect turns out to be sensitive to

the type of traction boundary conditions imposed on the curved boundaries of the annulus.

Two complementary cases are discussed: (i) dead loads (i.e., the outward unit normal to the

boundary remains unchanged in passing from the stressed configuration to the neutrally stable

one), and (ii) follower loads (assumed to follow the direction of the normal to the boundary). As

it happens, the outcome in both cases turns out to be somewhat similar, in the sense that the

predominant instability mode is the short-wavelength deformation pattern seen on the right-

hand side in Figure 5-1. Strictly speaking, the number of ripples along the inner rim is infinite

and the ‘bifurcation’ is linked with the failure of the Shapiro–Lopatinskij Condition (SLC) in

the corresponding incremental traction boundary-value problem – e.g., see [54] (pp. 106-108).

The recent paper [93] contains a number of interesting discussions in the context of nonlinear

elasticity problems and abstract bifurcation theory, as well as an extensive list of references.

Motivated by our numerical findings, in §5.4 we indicate how some of the quantitative aspects

of this material instability can be understood by a simple boundary-layer argument involving

the mode number as the main asymptotic parameter.

5.2 Bifurcation equations

We consider a very long cylindrical body as seen on the righthand side in Fig. 5-2. By invoking

the plane-strain approximation we shall confine our attention to a generic annular cross-section
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of inner radius R1 and outer radius R2, situated far away from the ends of the cylinder. Our

main interest in what follows is with the possible in-plane bifurcations experienced by such a

cross-section when the two curved boundaries are subjected to purely radial tensile loads.

Figure 5-2: A thick cylindrical body under radial tensile loads

In this section, we will employ the Method of Adjacent Equilibrium (MAE) mentioned in

§1.2 to derive the bifurcation equations, which amounts to writing the equilibrium equations on

two neighbouring stressed configurations and taking their difference, followed by a geometrical

linearisation of the kinematics.

Without losing generality, we assume a deformable continuous body B occupying a reference

configuration Br in three-dimensional Euclidean point space, in which an arbitrary particle is

denoted by position vector X. All pre-bifurcation fields will be indicated by using “̊ ” and the

relevant bifurcation equations are derived from the Method of Adjacent Equilibrium (MAE).

For example, we denote the displacement field in the basic state as ů. To determine the

bifurcation-point load of a structure B, adjacent-equilibrium criterion can be applied. We give a

small incremental displacement εu1 (ε is a arbitrary small parameter) to the displacement vector

ů and examine the two adjacent configurations before and after increment. The perturbed

position is denoted by

u = ů+ εu1 , (5.1)

Then the incremental fields between these two configurations caused by εu1 will be labelled as

“ (•)1 ”, by taking the difference between these two configurations and keeping the linear terms

of ε.

Then, we take deformed configuration of the body as Bt, x representing the position vector

of the same particle in the deformed configuration. If we agree to use “∇” to represent the

gradient operator in the reference configuration, then the deformation gradient tensor F of the

motion is defined by

F = ∇⊗ x = I +H = I + u⊗∇, (∀)X ∈ Br , (5.2)
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where u is the displacement vector and I is the identity tensor, H is the displacement gradient

in referential configuration: H = u⊗∇. From mathematical point of view, H is a second-order

tensor, and can be written as the sum of a symmetric and a skew-symmetric tensor, H = e+ω,

with the first symmetric tensor describing changes in lengths (or linear strain tensor), while the

second characterises the skew-symmetric tensor describing the rotation of material line elements

(or linear rotation tensor). So, we have

H̊ = ů⊗∇ = e̊+ ω̊ , (5.3a)

H1 = u1 ⊗∇ = e1 + ω1 , (5.3b)

which are applicable for pre-buckling state and neutral stability state respectively, and where

e̊ =
1

2
(ů⊗∇+∇⊗ ů) and ω̊ =

1

2
(ů⊗∇−∇⊗ ů) , (5.4a)

e1 =
1

2
(u1 ⊗∇+∇⊗ u1) and ω1 =

1

2
(u1 ⊗∇−∇⊗ u1) . (5.4b)

Substituting (5.1) into (5.2) yields

F̊ = I + H̊ , (5.5a)

F1 = H1 . (5.5b)

Furthermore, the Green-Lagrange strain tensor is defined by

E =
1

2
(C− I) =

1

2

(
F T · F − I

)
, (5.6)

where C is the right Cauchy-Green tensor, C = F TF . If we assume small deformation such

that |ů| ≪ 1 and |u1| ≪ 1. Then substituting (5.5) into (5.6), we have

E̊ =
1

2

(
F̊ T · F̊ − I

)
= e̊+

1

2
∇⊗∇(ů · ů) ≃ e̊ , (5.7a)

E1 =
1

2
(HT

1 · F̊ + F̊ T ·H1) =
1

2
(H1 +HT

1 + H̊T ·H1 +HT
1 · H̊)

= e1 +∇⊗∇(u1 · ů) ≃ e1 , (5.7b)

where e̊ and e1 are linear strain and the variation of linear strain respectively. Now we introduce

the symmetric second Piola–Kirchhoff stress tensor S, which is an objective Lagrangian tensor

defined on Br and unchanged under rigid-body deformation. The first Piola–Kirchhoff stress

tensor (the nominal stress tensor) is P = S ·FT, and the equilibrium equation ∇ ·P = 0 leads

to

∇ · P̊ = ∇ ·
[
S̊ · (I + H̊T)

]
= 0 , (5.8a)
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∇ ·P = ∇ ·
[
S̊ ·HT + S · (I + H̊T)

]
= 0 , (5.8b)

where the subscript“1” was dropped for notational convenience and hereafter we will keep this

convention. Here, (5.8a) is the equilibrium equation for the basic state and (5.8b) is for the

neutral stability configuration.

According to the principle of material frame-indifference, we can define a constitutive equa-

tion for hyperelastic solids as

S =
∂W

∂E
, (5.9)

in which W, the strain energy is a function of the Green–Lagrange strain tensor. In particular,

if we assume that the material follows Hooke’s law, for general anisotropic linear materials, we

have S = C : E, where S and E are symmetric. The stiffness tensor C is a fourth-order tensor

with 21 independent components. We take the assumption that the deformation is small as in

(5.7), and we assume further that the material follows linear constitutive law in the form

S̊ = C : E̊ ≃ C : e̊ := σ̊ , and S = C : E ≃ C : e := σ , (5.10)

where we have introduced the Cauchy Stress tensors in both pre-bifurcation state (σ̊) and

bifurcation state (σ). In this work, we only use the linear Lamé solution for the pre-bifurcation

state, and confine ourselves to the derivation of bifurcation equation (5.8b). Therefore, (5.8b)

is reduced to

∇ · [σ · (I +∇⊗ ů) + σ̊ · (∇ ⊗ u)] = 0 . (5.11)

Recalling the identity

∇ · (A ·B) = (∇⊗A) : B +A · (∇ ·B) ,

which holds for any second-order tensors A,B, and considering the linear elasticity (5.10), we

haveC :
.
(∇⊗e)+[C : (∇⊗e)] : (∇⊗ů)+(C : e)·(∇2ů)+(∇⊗σ̊) : (∇⊗u)+σ̊·(∇2u) = 0 . (5.12)

Indeed, (5.11) can be rewritten as

∇ · [σ · (I + e̊− ω̊) + σ̊ · (e− ω)] = 0 . (5.13)

According to classical linear theory of elasticity, we have O(e) ∼ O(ω2) and O(e̊) ∼ O(ω̊2) (see

[94], for example) under small deformation. Hence, we can take further assumptions

‖e̊‖ ≪ ‖ω̊‖ ≪ ‖I‖ and ‖e‖ ≪ ‖ω‖ ,
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where ‘‖ • ‖’ is the norm of a second-order tensor, and is defined by ‖A‖ ≡ (A:A)1/2. In this

case, we have the following approximation

P ≃ S − S̊ · ω . (5.14)

Therefore, the bifurcation equation (5.13) is reduced to

∇ · (σ − σ̊ · ω) = 0 . (5.15)

In particular, for isotropic elastic materials, the constitutive law in (5.10) takes the form

S = C : E = λtr(E)I + 2µE (5.16)

where, C = λI ⊗ I + 2µI.
S = µ

[
(H̊T + I) ·H +HT · (H̊ + I)

]
+ λ

(
|H |+ |H̊T ·H |

)
I

≃ σ = µ(H +HT) + λ|H | I . (5.17)

Use of (5.17) will then allow us to cast the bifurcation equation (5.15) in the following invariant

form

µ∇2u+ (λ+ µ)∇ (∇ · u)− σ̊ : (∇⊗ ω) = 0 . (5.18)

where we have taken ∇·σ̊ = 0 for the pre-bifurcation state. It would be of interest to undertake

a quantitative comparison between the two equations (5.18) and (5.12), and we hope to return

to this problem in the near future.

The boundary conditions associated with this equation are briefly reviewed below. Let n̂

be the outward unit normal to the cylindrical surface of the original unstressed body, and let

n̊ and n be the normals to the prestressed and, respectively, the neutrally stable adjacent

configurations. Thus, the traction boundary conditions can be written as

P̊ T · n̂ = t(ů) and (P̊ + P )T · n̂ = t(ů + u) , (5.19)

where t represents the given traction vector – possibly depending on the displacement field in

the case of follower loads. In this situation t(u) = σjn, with σj ∈ R representing the magnitude

of the applied radial stresses on r = Rj (j = 1, 2): σj < 0 for compressive loads, while σj > 0

in the tensile case.

Since we are interested in the case of small pre-buckling deformations, we can introduce the

approximation n̂ ≃ n̊ and then, with the help of (5.14), the difference of the two relations in

(5.19) leads to

(S + ω · S̊) · n̊ = σj(n− n̊) . (5.20)
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On the other hand, Nanson’s formula with J ≡ detF ≃ 1 gives n da = F−T · n̊ d̊a, which on

squaring out both sides produces

(da)2 = n̊ · F−1 · F−T · n̊(d̊a)2 = n̊ ·
[
(I +H)−1 · (I +H)−T · n̊

]
(d̊a)2

≃ (1 − 2n̊ · (H · n̊))(d̊a)2 ,

and hence

n ≃ F−T · n̊(1 + n̊ · (H · n̊)) .

When used in conjunction with (5.20) this last equation yields

σj(n− n̊) ≃ −σjHT · n̊ ≃ σjω · n̊ ,

where in deriving the last result we have assumed that ‖e‖ ≪ ‖ω‖ . In conclusion, the con-

straints on the two curved boundaries of the annulus are

(S + ω · S̊) · n̊ = σjω · n̊ for r = Rj (j = 1, 2) . (5.21)

The term on the right-hand side of (5.21) has its origin in the changes of the applied forces

with the current configuration, so this term will be absent in the case of dead loading.

Our next task will be to write the invariant-form equations (5.18) and (5.21) in component

form in order to make them amenable to numerical calculations in the next sections. To this

end, let {g1, g2, g3} and
{
g1, g2, g3

}
be a pair of reciprocal bases associated to the problem

at hand; expressed in the latter base, the contravariant components of the identity tensor are

gij = gi · gj . A simple calculation then reveals that

σ̊ : (∇⊗ ω) =
1

2
σ̊ : [∇⊗ (u⊗∇)−∇⊗ (∇⊗ u)]

=
1

2
σ̊ij (∇i∇juk −∇i∇kuj) g

k ,

where ∇puq ≡ uq,p − Γr
pqur denotes the covariant derivative of uq with respect to the gp-

coordinate and Γr
pq ≡ gr · gp,q are the well-known Christoffel symbols. Since in addition to

this,

∇(∇ · u) =
(
gij∇k∇iuj

)
gk and ∇2u =

(
gij∇i∇juk

)
gk ,

the desired component form of equation (5.18) assumes the expression

(
µgij +

1

2
σ̊ij

)
∇i∇juk + (λ+ µ)gij∇k∇iuj −

1

2
σ̊ij∇i∇kuj = 0 . (5.22)

In cylindrical polar coordinates we find two coupled second-order partial differential equations
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for the components of the in-plane displacement field u(r, θ) = ur(r, θ)er + uθ(r, θ)eθ,

A11
∂2ur
∂r2

+A12
∂2uθ
∂θ∂r

+A13
∂2ur
∂θ2

+A14
∂ur
∂r

+A15
∂uθ
∂θ

+A16ur = 0 , (5.23a)

A21
∂2uθ
∂r2

+A22
∂2ur
∂θ∂r

+A23
∂2uθ
∂θ2

+A24
∂uθ
∂r

+A25
∂ur
∂θ

+A26uθ = 0 , (5.23b)

where

A11 := λ+ 2µ , A21 := µ+
1

2
σ̊rr ,

A12 :=
1

r

(
λ+ µ− 1

2
σ̊θθ

)
, A22 :=

1

r

(
λ+ µ− 1

2
σ̊rr

)
,

A13 :=
1

r2

(
µ+

1

2
σ̊θθ

)
, A23 :=

λ+ 2µ

r2
,

A14 :=
λ+ 2µ

r
, A24 :=

1

r

(
µ+

1

2
σ̊rr

)
,

A15 := − 1

r2

(
λ+ 3µ+

1

2
σ̊θθ

)
, A25 :=

1

r2

(
λ+ 3µ+

1

2
σ̊rr

)
,

A16 := −λ+ 2µ

r2
, A26 := − 1

r2

(
µ+

1

2
σ̊rr

)
.

Note that due to plane-strain assumption the other equation obtained from (5.22) is automat-

ically satisfied.

These equations are solved subject to the following boundary conditions at r = Rj (j = 1, 2),

B11
∂ur
∂r

+B12
∂uθ
∂θ

+B13ur = 0 , (5.24a)

B21
∂ur
∂θ

+B22
∂uθ
∂r

+B23uθ = 0 , (5.24b)

where the coefficients that appear above are given by

B11 := λ+ 2µ , B21 :=
1

2r
[2µ− (̊σrr − σj)] ,

B12 :=
λ

r
, B22 :=

1

2
[2µ+ (̊σrr − σj)] ,

B13 :=
λ

r
, B23 :=

1

2r
[−2µ+ (̊σrr − σj)] .

The solution of the rather complicated system (5.23)–(5.24) is sought by using functions with
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separable variables, i.e.

ur(r, θ) = U1(r) cosnθ and uθ(r, θ) = U2(r) sinnθ , (5.25)

where the arbitrary integer n ≥ 0 will be determined from the usual minimisation strategy

employed in similar contexts (see, for instance, [40, 41] for details on related problems). The

amplitudes U1 and U2 turn out to satisfy two coupled second-order ordinary differential equa-

tions whose explicit expression we find next.

In the case of an elastic annulus loaded by radial tractions on both circular boundaries, the

pre-buckling stress field has the well known expression (e.g., see [24])

σ̊rr = σ2

(
A+

B

ρ2

)
, σ̊θθ = σ2

(
A− B

ρ2

)
,

with

A :=
η2 − Λ

η2 − 1
, B :=

η2(Λ− 1)

η2 − 1
,

and

ρ :=
r

R1
, η :=

R2

R1
, Λ :=

σ1
σ2
.

It can be shown that the hoop stresses will vanish along the circumference of the circle ρ = ρ,

ρ :=

{
η2(Λ − 1)

η2 − Λ

}1/2

;

furthermore, by letting

Λlow =
2η2

1 + η2
, Λup =

1

2
(1 + η2) ,

we infer that if Λlow < Λ < Λup then the region 1 < ρ < ρ experiences azimuthal compression,

while the remaining part of the annulus, ρ < ρ < η, is in tension. Thus, we expect the possible

bifurcations present in this problem to have a local character and to be confined near the inner

rim of the annulus. In this respect the situation appears to be entirely analogous to that

involving the plane-stress problems discussed in [40, 41] but, as we shall see shortly, this is

where the analogy stops.

After substituting the assumed form of solution (5.25) into the original equations (5.23)–

(5.24), the resulting boundary-value problem for the Uj’s (j = 1, 2) can be non-dimensionalised

by introducing

α :=
σ2
E
, Û1 :=

U1

R2
, Û2 :=

U2

R2
.

Dropping the “hats” for notational convenience and denoting by a dash differentiation with

respect to ρ, we record below the final form of the bifurcation equations that hold for 1 < ρ < η
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A11U
′′
1 +A12U

′
2 + (A13 +A16)U1 +A14U

′
1 +A15U2 = 0 , (5.26a)

A21U
′′
2 +A22U

′
1 + (A23 +A26)U2 +A24U

′
2 +A25U1 = 0 , (5.26b)

where

A11 := K1 , A21 :=
1

2

[
K3 + α

(
A+

B

ρ2

)]
,

A12 :=
n

2ρ

[
K2 − α

(
A− B

ρ2

)]
, A22 := − n

2ρ

[
K2 − α

(
A+

B

ρ2

)]
,

A13 := − n2

2ρ2

[
K3 + α

(
A− B

ρ2

)]
, A23 := −n

2K1

ρ2
,

A14 :=
K1

ρ
, A24 :=

1

2ρ

[
K3 + α

(
A+

B

ρ2

)]
,

A15 := − n

2ρ2

[
K4 + α

(
A− B

ρ2

)]
, A25 := − n

2ρ2

[
K4 + α

(
A+

B

ρ2

)]
,

A16 := −K1

ρ2
, A26 := − 1

2ρ2

[
K3 + α

(
A+

B

ρ2

)]
,

and

K1 =
1− ν

(1 + ν)(1− 2ν)
, K2 =

1

(1 + ν)(1 − 2ν)
,

K3 =
1

1 + ν
, K4 =

3− 4ν

(1 + ν)(1 − 2ν)
, K5 = νK2 .

The relatively small parameter α that enters in these equations will be regarded as fixed in the

numerical simulations of the next section.

The rescaled boundary conditions can be written in condensed form as

B
(j)

11 U
′
1 +B

(j)

12 U2 +B
(j)

13 U1 = 0 , (5.27a)

B
(j)

21 U
′
2 +B

(j)

22 U2 +B
(j)

23 U1 = 0 , (j = 1, 2) , (5.27b)

where the case j = 1 corresponds to the inner rim (ρ = 1), and j = 2 applies to the outer

boundary (ρ = η). The expressions of the above coefficients take on different forms in the case

of dead and follower loads, but can be written compactly as

B
(1)
11 = K1 , B

(1)
21 =

1

2

[
K3 + α(A +B)− α

]
,

B
(1)
12 = nK5 , B

(1)
22 =

1

2

[
−K3 + α(A+B)− α

]
,
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B
(1)
13 = K5 , B

(1)
23 = −n

2

[
K3 − α(A+B) + α

]
,

and

B
(2)
11 = K1 , B

(2)
21 =

1

2

[
K3 + α

(
A+

B

η2

)
− αλ

]
,

B
(2)
12 =

nK5

η
, B

(2)
22 =

1

2η

[
−K3 + α

(
A+

B

η2

)
− αλ

]
,

B
(2)
13 =

K5

η
, B

(2)
23 = − n

2η

[
K3 − α

(
A+

B

η2

)
+ αλ

]
,

with the caveat that the underlined terms do not appear in the case of dead loading, whereas

for follower loads all the α−terms in the square brackets must be omitted (see also the remarks

made after equation (5.21)). We mention in passing that the equations set up in this section

are equivalent to the ones in [72] – cf. (27) and (28) featuring in that reference.

5.3 Numerical results

Direct numerical simulations of the boundary-value problem (5.26)-(5.27) were carried out in

the usual fashion by first rewriting the equations as a first-order four-by-four linear system,

which was then tackled with the help of the compound matrix method [40, 41]. In using

the separable variable solutions (5.25) it was tacitly assumed that the equations (5.23) were

elliptic. However, owing to the presence of variable coefficients, this statement need not be true

everywhere in the annulus and, in fact, the equations do lose ellipticity for sufficiently large

values of Λ. Also, since we are essentially concerned with a traction boundary-value problem,

another subtle point is the verification of the Shapiro–Lopatinskij Condition (SLC, also named

complementing or covering condition, see pp.107 in [54]). In order to understand the range of

validity for the numerical integration of the ordinary differential equations, we first examine

briefly under what conditions the loss of ellipticity becomes possible, and later we comment on

the SLC.

To this end let us observe that (5.23) can be arranged in the form

Lrr[ur] + Lrθ[uθ] = 0 , (5.28a)

Lθr[ur] + Lθθ[uθ] = 0 , (5.28b)

where the differential operators that appear above have the following definitions,

Lrr ≡ A11
∂2

∂r2
+A13

∂2

∂θ2
+A14

∂

∂r
+A16 ,

Lrθ ≡ A12
∂2

∂r∂θ
+A15

∂

∂θ
,
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Lθr ≡ A22
∂2

∂r∂θ
+A25

∂

∂θ
,

Lθθ ≡ A21
∂2

∂r2
+A23

∂2

∂θ2
+A24

∂

∂r
+A26 .

The principal part of the symbol associated to the system (5.28) is defined by (see [54], for

example)

Lp(x, iξ) := −



A11(x)ξ

2
1 +A13(x)ξ

2
2 A12(x)ξ1ξ2

A22(x)ξ1ξ2 A21(x)ξ
2
1 +A23(x)ξ

2
2


 , (i =

√
−1) , (5.29)

where ξ ≡ (ξ1, ξ2) ∈ R2 and we have indicated explicitly the dependence of the coefficients

Aij on the independent variable x ≡ (r, θ). The type of the partial differential system (5.28)

is classified according to the behaviour of Lp, regarded as a quadratic form in ξ1 and ξ2. In

particular, ellipticity requires that

detLp(x, iξ) 6= 0 , (∀) ξ ∈ R
2 ,

which, after setting t := ξ2/ξ1 (ξ1 6= 0), can be reduced to the study of the signs of the roots

for the bi-quadratic

Z3 + Z2t
2 + Z1t

4 = 0 , (5.30)

where

Z1 := A11A21 ,

Z2 := A11A23 +A13A21 −A22A12 ,

Z3 := A13A23 .

This can be further transformed into a quadratic by making the obvious substitution s = t2; if

the equation in s has either negative or complex conjugate roots, then the problem is elliptic.

Loss of ellipticity will occur when one of the roots passes through zero. Note also that due to

the axial symmetry of the coefficients Aij in (5.23), the boundary curve separating the elliptic

regions of the material from the non-elliptic ones will have to be some circle ρ =const.

The discriminant of the quadratic in s is always positive as it turns out to be equal to

[
1

2r
(λ+ 2µ)(̊σrr − σ̊θθ)

]2
,

and the sum of the roots of the quadratic is just 2µ− (̊σrr + σ̊θθ)/2. Since 3/2 < K3 < 1 and

α is a relatively small parameter, it transpires that the sum of the roots is always negative.

Thus, the condition for the loss of ellipticity will be given by Z3 = 0 (since Z1 > 0, after some
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routine calculations), with the result that

Λ =
ρ2
[
η2 + (K3/α)(η

2 − 1)
]
+ η2

ρ2 + η2
. (5.31)

Regarded as a function of ρ, while all the other parameters are being kept fixed, Λ = Λ(ρ) is an

increasing function – as can be checked immediately by computing the derivative Λ′(ρ). This

means that loss of ellipticity will first occur for ρ = 1, i.e. at the inner rim. In conclusion,

the curve that gives the loss of ellipticity in the λ − η plane, say C, has a simple analytical

expression,

(C) : Λep =
2η2

η2 + 1
+
K3

α

(
η2 − 1

η2 + 1

)
. (5.32)

If 0 < Λ < Λep then the system (5.28) is elliptic and this is precisely the regime of interest here;

note that the first term on the right-hand side of (5.32) is just Λlow defined in the previous

section.

It can be seen that the principal part of the symbol associated to the more complicated

equation (5.12) does not coincide with (5.29) because the inhomogeneous character of the pre-

bifurcation state of stress. This makes the analysis of that new equation even more relevant

to understanding the nature of the simplifications that led to (5.18) and the potential loss of

ellipticity. While for a homogeneous basic state both (5.18) and (5.12) are justly expected to

produce very similar outcomes, it does not appear sensible to maintain these expectations in

the case dealt with here.

The first set of numerical results appears recorded in Figure 5-3 and applies to the case

of follower loads. We show the neutral stability curves corresponding to (5.26)-(5.27) for an

increasing sequence of mode numbers ranging between 2 and 1000, when α = 0.05 and ν = 0.33.

Changing these parameters does alter the quantitative features of the results, but the overall

qualitative picture remains the same. Superimposed on these plots, the curve C is shown as the

thick dashed line. It can be seen that the mode number n = 2 leads to the lowest eigenvalue

for annular widths of up to η ≃ 5.0. Beyond that critical value, as n increases, the neutral

stability curves move progressively into the elliptic region and seem to converge towards a

limiting curve, which hereafter will be identified as C∞. While not entirely obvious at this

stage, the critical values of Λ associated with this curve identify a form of material rather than

kinematic instability. In the next section we are going to show how an analytical approximation

of C∞ can be obtained by invoking some basic singular-perturbation arguments. In conclusion,

when follower loads are considered the critical mode numbers are either n = 2 or n = ∞; the

latter is essentially a material instability and is associated with the failure of the SLC – hence,

the curve C∞ provides the boundary in the Λ− η plane across which this condition is violated.

When dead (or rigid) loading is considered we have included a typical scenario in Figure 5-4,

which is laid out in the same fashion as the previous Figure. Note that the loss-of-ellipticity

boundary C appears now as the envelope of the neutral stability curves as n→ ∞. For smallish
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Figure 5-3: Dependence of the eigenvalues Λ on the aspect ratio η > 1 for different mode numbers:
n = 2, 4, . . . , 8, 10, 20, . . . , 80, 100, 1000 in the case of follower loads. The thick arrow indicates the
direction of increasing n and the dashed curve represents the loss of ellipticity boundary, as given
by equation (5.32). Here α = 0.05 and ν = 0.33.

values of η (up to approximately 2.0), all response curves are inside the elliptic region and

the lowest eigenvalue is rendered by n = 2, just as before. However, increasing the width

of the annular domain, these curves are then found above the curve C, which this time is

attained in the limit of (infinitely) large mode numbers (i.e., C ≃ C∞, at least for largish η’s).

We recall here the well-known fact that the loss of ellipticity is a property of the differential

equations themselves and it is independent of the type of boundary conditions employed. So

in both Figures 5-3 and 5-4 the dashed line is the same, what changes is the position and the

topology of the neutral stability curves. From this perspective the results obtained are to be

expected, although the sharp transition between the two instability modes in Figure 5-3 cannot

be anticipated right from the outset.

For the sake of completeness in Figure 5-5 we illustrate the eigenmodes for n → ∞ in the

case of follower loads. It is immediately clear that as n grows, i.e. the spatial oscillations in

the azimuthal direction increase, the amplitude functions U1 and U2 defined in (5.25) get closer

and closer to the inner rim of the annular domain. We mention in passing that these functions

also display localisation if n is kept fixed and η → ∞.
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Figure 5-4: Response curves similar to Fig. 5-3, but in the case of dead loading; all values of the
parameters are the same as before and the thick arrow shows again the direction of increasing mode
numbers.

5.4 The limit n ≫ 1

While in principle it would be possible to carry out an asymptotic analysis of (5.26) subject to

either follower or dead loads, it is only the former case that is of some theoretical interest, and

which therefore deserves a closer scrutiny. For the sake of completeness, we shall also make

a few remarks regarding the asymptotic structure of the problem for dead loads. As it will

become clear from our asymptotic calculations, the leading-order analysis presented here is in

fact directly relevant to establishing the limits of validity for the SLC – although in keeping

with the informal style of this section we shall not stress the technical side of that aspect.

Section 5 of reference [93] contains some pertinent comments about similar situations and the

ramifications for nonlinear bifurcation problems. The results in this section were obtained by

the first author of [49], for the sake of self-consistence, they are reproduced here with permission.

The asymptotic structure in the two scenarios discussed in the previous section is different,

although this is not immediately apparent. However, in both cases there is an O(n−1) boundary

layer forming near the inner rim of the annular cross-section, and that is where we start.

To begin, in the limit n ≫ 1 we introduce the stretched variable X = O(1) such that

ρ = 1 +Xn−1, and look for solutions of (5.26) with

U = U0(X) +U1(X)
1

n
+ . . . , (5.33a)
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Figure 5-5: Normalised eigenmodes of (5.26) for follower loading when α = 0.05, ν = 0.33, and
η = 5.0. Both U1 and U2 undergo localisation as the mode number n is progressively increased;
here, n = 50, 100, 150, 200. The independent variable 1.0 ≤ ρ ≤ 5.0 has been suitably adjusted to
a smaller range in order to enhance the clarity of the localisation process.

Λ = Λ0 +
Λ1

n
+ . . . , (5.33b)

where

U :=



U1

U2


 , Uj(X) :=



U1j(X)

U2j(X)


 (j = 0, 1, . . . ) .

The quantities that appear on the right-hand sides of (5.33) can be found systematically, al-

though for our immediate purposes a leading-order analysis will suffice.

Routine algebraic manipulations indicate that if η = O(1) the boundary-layer behaviour is

described by a hierarchy of equations governed by the differential operator

LBL ≡ M (2) d2

dX2
+M (1) d

dX
+M (0) , (5.34)

where the matrices M (j) ∈ M2×2(R) have the components recorded below

M
(2)
11 := K1 , M

(1)
11 := 0 ,

M
(2)
12 := 0 , M

(1)
12 :=

α

2(η2 − 1)

[
Λ0(η

2 + 1)− 2η2
]
+
K2

2
,

M
(2)
21 := 0 , M

(1)
21 := −1

2
(K2 − αΛ0) ,

M
(2)
22 :=

1

2
(K3 + αΛ0) , M

(1)
22 := 0 ,
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M
(0)
11 :=

α

2(η2 − 1)

[
Λ0(η

2 + 1)− 2η2
]
− K3

2
,

M
(0)
12 := 0 ,

M
(0)
21 := 0 ,

M
(0)
22 := −K1 .

The leading-order terms in (5.33) satisfy

LBL[U0] = 0 ; (5.35)

when dead loads are considered, this equation must be solved subject to the homogeneous

boundary conditions

H1
dU0

dX
+ H̊U0 = 0 at X = 0 , (5.36)

where

H1 :=



K1 0

0 αΛ0 +K3


 and H̊ :=




0 K5

αΛ0 −K3 0


 .

These constraints apply to follower loads as well, with the only modification that the pa-

rameter α in H̊ and H1 must be set equal to zero. In both cases a second set of constraints

must be enforced, as motivated by the numerical experiments of §3,

djU0

dXj
→ 0 as X → ∞ , (j = 0, 1) . (5.37)

It will turn out that this naive set of conditions are not relevant to the dead loading situation

but, nevertheless, it is instructive to carry on with both cases in parallel and see how the simple

boundary-layer structure (5.33) fails in that situation.

Looking for a solution of (5.35) in the form U0(X) = v exp(ζX), for some ζ ∈ C and a

column vector v ∈ R2, it is found that the former must satisfy the characteristic equation

det
[
ζ2M (2) + ζM (1) +M (0)

]
= 0 ,

with the roots

ζ1,2 = ±1 and ζ3,4 = ±β(Λ0, η) , (5.38)

where

β(Λ0, η) :=

√
K3 − 2G

K3 + αΛ0
, G :=

α

2(η2 − 1)

[
Λ0(η

2 + 1)− 2η2
]
. (5.39)

Guided by the fact that the requirement (5.37) must hold in the far-field, the boundary-layer
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solution must be a linear combination of two exponentials involving the negative values from

(5.38). Substituting this function in the two boundary conditions (5.36) results in the determi-

nantal equation that supplies Λ0. In the case of follower loads it is found that

H3Λ
3
0 +H2Λ

2
0 +H1Λ0 +H0 = 0 , (5.40)

where

H0 = −H04η
4 +H02η

2 +H00

(η2 − 1)2(ν + 1)3
, H1 = −α(H14η

4 +H12η
2 +H10)

(η2 − 1)2(ν + 1)2
,

H2 =
α2
(
H24η

4 +H22η
2 +H20

)

(η2 − 1)2(ν + 1)
, H3 = −α

3
(
H34η

4 +H32η
2 +H30

)

(η2 − 1)2
,

and

H04 := 4α2(1− ν2)2 − 2α(1 + ν)− 1 , H02 := 2 [α(ν + 1) + 1] ,

H14 := 4α2(1− ν2)2 − 4α(ν3 + 1) + 1− 2ν , H12 := 4
[
α(−ν3 + 2ν2 + 2ν − 1) + ν

]
,

H24 := 4α(1 − ν)− 2αν2(1− 3ν)− 1 , H22 := 2
[
αν2(ν − 3) + 2ν(1− ν) + 2α(1− ν)− 1

]
,

H34 := 2ν2 − 2ν + 1 , H32 := 2(ν − 1)2 ,

H00 := −1 , H10 := −(1 + 2ν) , H20 := 4ν − 1 , H30 := 1− 2ν .

The results predicted by (5.40) are compared in Figure 5-6 with the direct numerical sim-

ulations of (5.26)-(5.27) for n = 1000 (which could serve as a good approximation for C∞).

For the sake of brevity we show only a representative sample of calculations corresponding to

ν = 0.33 and α = 0.05/0.005, because no qualitative differences are observed when changing

these parameters. It is evident that the agreement is excellent and the leading-order ansatz

(5.33b) does capture all the features of the numerical solution.

If we try to approach the dead-loading problem with the same type of ansatz, then it quickly

transpires that such a strategy would eventually be doomed for according to (5.39) as (Λ0, η)

gets close to the curve C defined in (5.32), β(Λ0, η) → 0. Hence there is now only one solution

of (5.35) that falls off exponentially for X → ∞. In this case the determinantal equation loses

its relevance since it was obtained under the assumption that β(Λ0, η) = O(1).

Figure 5-4 shows clearly that the neutral stability curves tend to accumulate on C (the

dashed curve) in the limit n ≫ 1. Interestingly enough, this feature is anticipated by the old

expansion (5.33) although, as we have just remarked above, this leads to some spurious results

as well. Following the same strategy that led to (5.40), its counterpart in the dead loading case

is

(K3 − 2G)(E2Λ
2
0 + E1Λ0 + E0) = 0 , (5.41)
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Figure 5-6: Follower loads: comparisons between the limiting curves Λ ≡ Λ0(η) predicted by the
leading-order determinantal equations (dotted lines) and their counterparts obtained from direct
numerical simulations of (5.26)-(5.27) in the large-n limit (continuous curves, n = 1000). In both
windows ν = 0.33, while α = 0.05 in (a), and α = 0.005 in (b).

with

E2 :=
4α2(1− ν)2

η2 − 1
+ α2(η2 + 1) ,

E1 := −2α(αη2 −K3)−
8α2η2(1− ν)2

η2 − 1
,

E0 :=
4α2η4(1 − ν)2

η2 − 1
−K2

3 (η
2 − 1)− 2K3αη

2 .

Setting to zero the first bracket we get precisely the equation for the curve that marks the

loss of ellipticity boundary in the Λ− η plane. Alternatively, one can solve the quadratic in the

second bracket that turns out to have a unique root Λ0 > 0 slightly below that predicted by

the previous equation. This apparent contradiction is a consequence of using the determinantal

equation (5.41) beyond its intended range of validity. We have checked numerically for mode

numbers up to n = 5× 104 that confirmed the accuracy of the scenario recorded in Figure 5-4

(and that the dashed curve is approached from above by the response curves).

To unravel the reason of the discrepancy generated by (5.41) we need to go back to the

differential equations (5.26). When K3 − 2G = 0 it is easily checked that A13(ρ = 1) = 0

and (5.26) admits an O(n−2/3) boundary layer governed by a rescaled Airy function, with the

eigenvalue expanding now in powers of n−2/3. The O(n−1)-layer still survives and it is possible

to carry out a relatively standard analysis involving the interaction of the two layers, very much

in the spirit of [40, 41]. Since the non-elliptic regime is outwith the range of physical interest

the details of that analysis are left out.

The boundary-value problem (5.26)-(5.27) contains a couple of additional parameters be-

Eigenvalue problems & elastic instabilities 154



5.4. The limit n ≫ 1

sides the mode number. Several asymptotic regimes can be investigated in this respect, for

instance 0 < α ≪ 1 or η ≫ 1 or assuming that the relative order of magnitude of these param-

eters are related to each other. However, none of these appears to be relevant to our immediate

purposes, so we do not pursue matters further here.

The next-order problem is found to be described by the system of differential equations

LBL[U1] = N (00)U0 +N (10) dU0

dX
+N (20) d

2U0

dX2
, (5.42)

where

N
(00)
11 = −Λ1α

2

(
η2 + 1

η2 − 1

)
+X

{
α

η2 − 1

[
Λ0(1 + 2η2)− 3η2

]
−K3

}
,

N
(00)
12 = − α

2(η2 − 1)

[
Λ0(1 + η2)− 2η2

]
− K4

2
,

N
(00)
21 =

1

2
(K4 + αλ0) ,

N
(00)
22 = −2XK1 ,

N
(10)
11 = −K1 ,

N
(10)
12 = −Λ1α

2

(
η2 + 1

η2 − 1

)
+
X

2

{
α

η2 − 1

[
Λ0(1 + 3η2)− 4η2

]
+K2

}
,

N
(10)
21 = −Λ1α

2
− X

2

{
α

η2 − 1

[
Λ0(1− 3η2) + 2η2

]
+K2

}
,

N
(10)
22 = 0 ,

N
(20)
22 = −Λ1α

2
+X

[
αη2(Λ0 − 1)

η2 − 1

]
,

N
(20)
12 = N

(20)
21 = N

(20)
11 = 0 .

The relevant boundary conditions in this case are

H1
dU1

dX
+ H̊U1 = G(10) dU

(0)

dX
+G(00)U0 , (5.43)

where

G(10) :=



0 0

0 −αΛ1


 and G(0) :=



−K5 0

−αΛ1 K3 − αΛ0


 .

and again the decay conditions at infinity (5.37) must be enforced on U1. As before, the above

formulae are also valid for follower loads by setting α = 0 in (5.43).
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5.5 Discussion and conclusions

We have considered the in-plane bifurcations of the classical plane-strain Lamé solutions for

a St. Venant–Kirchhoff elastic solid. One of the main aims of this last chapter has been

to explore the applicability of the asymptotic strategy proposed in [31, 46] to the case when

the bifurcations are associated with a stressed rather than a free surface. Within the context

of the simplified incremental deformation theory adopted here – SIDT (e.g., [13, 15, 94]),

it was shown that this is indeed possible, but the outcome is somewhat different from that

of the earlier investigations. In the scenario for the pure bending of a neo-Hookean rubber

block discussed in [46] the transition between small and large mode numbers was gradual and

depended intimately on the ratio of thickness to length. More exactly, the larger the width of

the block, the greater the number of ripples on the compressed side. In the limit of an infinitely

large block the critical principal stretch became equal to that found in the compression of a

half-plane [14]. The problem was strongly elliptic and the instabilities found had a kinematic

character. Here, perhaps because of the fact that both boundaries of the annulus are stressed,

the neutrally stable configuration has less freedom in accommodating the full spectrum of

mode numbers. Our results indicated that in the case of follower loads, for a small range of

annulus widths, η ≃ 1 to 2 when α = 0.05 and ν = 0.33 (η ≡ R2/R1), the predominant long-

wave deformation mode corresponds to the inner rim becoming an ellipse. For larger widths

a short-wavelength (material) instability is observed whereby the central hole of the cylinder

experiences fine warping; this wrinkling-type instability is directly linked to the failure of the

Shapiro–Lopatinskij Condition. In the case of dead loading loss of ellipticity dominates the

global picture, although there is still a narrow window of annular widths for which the long-

wave mode (n = 2) persists. (These findings were robust when changing the Poisson’s ratio

0 < ν < 0.5 and the non-dimensional parameter α ≡ σ2/E).

While from a practical point of view the immediate relevance of the specific type of loading

adopted in this study is somewhat limited, the results reported here contribute towards a further

rational understanding of the bifurcation phenomena experienced by elastic solids subjected to

tensile loads. The analysis reported in this chapter also shows that one must tread with caution

when dealing with incremental bifurcation equations involving non-homogeneous basic states

because loss of ellipticity can severely restrict the scope of mathematical investigations. Last

but not least, the work reported here reinforces the relevance of singular perturbation methods

not only to thin-walled configurations, but also to incrementally linear elastic solids.
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Chapter 6

Conclusions

6.1 Summary

The main contribution of this Thesis is the investigation of several bifurcation (eigenvalue)

problems for the elastic instability in tension, which include the thin elastic plates, rectangular

plates and thick cylindrical tubes subject to stretching loading. Then these mathematical mod-

els were discussed thoroughly by using a mixture of both numerical and asymptotic techniques.

As stated in the concluding sections in Chapter 2 to Chapter 5, we summarise the main

results here.

In Chapter 2, we first recorded a set of coordinate-free formulation for Föppl–von Kármán

plate theory and the corresponding bifurcation equations by using Calculus of Variations. This

is first started by assuming the Love–Kirchhoff displacement field, then we apply the minimum

energy principle to the potential energy by using the Calculus of Variations. We showed the

derivation of these equations in both weak form and strong form (together with the bound-

ary conditions). This set of equations is applicable for any plate geometries made of general

anisotropic elastic material. We also showed the reduction from the above general case to the

isotropic elastic plate subject to only in-plane loading. The related weak form was then used

in Chapter 3, and the strong form together with the boundary conditions were then applied to

Chapter 4.

In Chapter 3, a hybrid energy method was proposed aiming to improve the existing asymp-

totic approximations in tensile edge-buckling (such as [41, 44]), and extend those results (valid

for large asymptotic parameter µ & 350.0) to the regime when µ is small (µ ≃ 10.0). This

was achieved by adding extra unknowns (freedom) to the leading order asymptotic ansatzes,

plugging them into the weak form of the bifurcation equation and the critical mode number

condition to form a multi-variable optimisation problem. Then the results for smaller-µ regime

(µ . 2.0) are complemented by asymptotic analysis when µ is asymptotically small. This

new approach provides approximations for both the neutral stability envelope (NSE) and the
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corresponding critical number of wrinkles with minimum effort. The method is shown to be

robust irrespective of the geometries as we have applied it to both rectangular and annular

geometries. The accuracy achieved is fairly good despite the simplicity of the leading order

asymptotics (membrane boundary-layer) employed . Additionally, including the effects of the

bending boundary layer leads to an even better agreement with the numerics.

In Chapter 4, we have investigated the localised instabilities of a stretched bi-annular thin

plate, which is composed of two concentric annuli with different mechanical properties and

fully attached. The bi-layer structure can behave differently in terms of both the prebuckling

stress distribution and the bifurcation compared with the single-annular case with homogeneous

material. Owing to the different properties of the materials (Young’s modulus E and Poisson

ratio ν) in the two annular regions, the stress distribution in the basic state was first investigated

both analytically and numerically, which is a limit case when µ→ ∞. It suggests two types of

limiting curves analytically that depend on the ratios of mechanical properties (Young’s moduli

and Poisson ratios) of these two annuli: the cusp type and the rectangular-hyperbola type. The

former type corresponds to the cases when γ := E1/E2 < ν1/ν2; while the latter type occurs

when γ > ν1/ν2. Complete parametric studies (mechanical and geometrical) were conducted

for the full bifurcation problem. The NSE can be classified into two different types as well,

asymptotically corresponding to the previous basic state analysis. We also found that localised

instabilities (edge-buckling) can be triggered by discontinuities, not only from the boundaries

but also from interface, depending on mechanical and geometrical parameters. Then, both the

pre-bifurcation and bifurcation analyses were considered together and a deeper understanding

was gained on the effects of the discontinuities caused by the interface on both the critical

external stretching and wrinkling modes. Further asymptotic analysis has been undertaken by

extending the earlier analysis of Coman et al.(2006) into bi-layer structure. The asymptotic

approximations are quite robust and accurate when the large parameter is moderately large.

It paves the way for generalisation of the asymptotic analyses given by Coman et al. (2007).

Both the numerical and asymptotic strategies in this problem can, in principle, be extended

for the bifurcation of multi-layered structures.

In Chapter 5, the in-plane bifurcation of an infinite thick cylindrical tube made of St Venant–

Kirchhoff elastic material was considered, subject to radial stretching on the two cylindrical

surfaces. Firstly, a novel tensor derivation that clarifies the assumptions introduced was given

based on a simplified theory of Biot, and a new tensorial equation was presented in which some

of the simplifications have been ignored informed by Novozhilov’s theory. However, the bifur-

cation of plane-strain problem is completely different from the corresponding plane-stress case.

Numerical investigations of the relevant incremental problem reveal two main bifurcation modes

for the tube: a long-wave local deformation (critical mode number n = 2) around the central

hole of the domain; or a material wrinkling-type instability (n = ∞) along the same boundary.

Strictly speaking, the latter scenario is related to the violation of the Shapiro–Lopatinskij con-
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dition in an appropriate traction boundary-value problem. From the physical point of view, it

might be because the strong constraints such as the the plane-strain deformation and both the

boundaries are stressed, the neutral stability configuration has less freedom in accommodating

the full spectrum of mode numbers. The results contribute towards a further rational under-

standing of the bifurcation phenomena experienced by elastic solids subject to tensile loads.

The analysis also shows that one must tread with caution when dealing with incremental bifur-

cation equations involving non-homogeneous basic states because loss of ellipticity can severely

restrict the scope of mathematical investigations.

6.2 Future work

The work in this Thesis also suggests a number of interesting extensions that could be

explored in the future.

There are several direct extensions for the formulation in Chapter 2: we can pursue thick

plate theories such as the first- and higher-order shear deformation theories by introducing a

rotation vector term in the assumption for the displacement field; or we can consider dynamic

plate theory by including a kinetic energy term, which is of great importance since in dynamic

analysis, the nonlinearities in deformation and elasticity are customarily assumed to be absent.

In Chapter 3, the proposed hybrid energy method has been proven to be robust for a

class of edge-buckling problem in tension. It would be interesting to explore this strategy to

problems in which the asymptotics are governed by differential equations that are not solvable

in closed form. A pertinent example is provided by the paper [99], in which the authors used

finite element simulations to identify the optimal choice of such an ansatz. The alternative

asymptotic description given by Coman in [34] for the same problem hinged upon a boundary-

layer analysis governed by a fourth-order differential equation with variable coefficients and

which was not solvable in closed form. Extending the ideas discussed in this chapter to that

situation would be an interesting exercise, and that could broaden the scope and relevance of

the Hybrid Energy Method to new classes of eigenvalue problems.

Since we have investigated the localised instabilities of a stretched bi-annular plate in Chap-

ter 4, there are a number of extensions for this problem. One direction would be extend it

to a greater number of concentric annuli that make up a multi-annular plate. It would be of

interest to see if there are further novel types of response curves and wrinkling modes, and

more interesting findings are expected to appear in parametric analysis. In this direction, we

can treat one annulus as stiffened, then it is of practical significance to study its stiffening

effects on the buckling resistance under tension, in contrast to compressed buckling of stiffened

annular plates as reported in [56]. Another aspect is focusing on how do the discontinuities

(boundary and interfacial conditions) affect the localised wrinkling patterns. For example,

in light of the localised instabilities of the initially stretched annular plate caused by the az-
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imuthal shear stresses along the inner rim [40, 43], we expect the localised wrinkling mode and

the NSE appear novel types for a multi-layer structure compared to a single-annular under

the same geometries. Also, we can change the interfacial conditions from fully attached to be

other contacting constraints (different discontinuities). By doing this, we investigate how those

discontinuities affect the prebuckling stresses, and in that case, what is the influence of the

mechanical and geometrical parameters on the wrinkling mode as well as the anti-wrinkling

capability of that structure.

In Chapter 5 we have discussed the plane-strain instability of a thick cylindrical tube. In

this problem, linear Lamé solutions were used for the pre-buckling state, it would be interesting

to see whether the findings of this work will persist when we treat the pre-buckling as nonlinear,

such as the equations ∇ ·P = 0 before reduction, as stated in §5.2. Also, the linear bifurcation
equations were obtained under a series of simplifications. However, for a compressed thick

cylindrical shells, Kardomateas [73] pointed out that the effect of including the terms with

pre-buckling normal strains and stresses (σ̊ · e and σ · e̊, which were neglected in our problem)

as coefficients will lead to about 14% decrease in the critical compressive load compressed

orthotropic tubes when R2/R1 = 1.4. It would be of interest to compare the solutions with the

un-simplified and the simplified bifurcation equations in our problem, followed by asymptotic

analysis (if applicable). Another immediate extension of this work vis-á-vis the developments

of §5.3 could be directed towards the role of the boundary loading imposed on the annulus.

For instance, the stress concentration phenomenon persists if the domain undergoes azimuthal

shearing along the inner boundary, with tensile tractions still being imposed on the outer

perimeter. By analogy with the plane-stress calculations carried out in [40] we expect the

asymptotic structure of the problem to be different due to the obvious rotational symmetry

inherent in that problem. Finally, it is also of interest to understand whether the phenomena

observed in this chapter are an immediate consequence of the approximate nature of the SIDT ;

in this respect a comparison of the present analysis with a more rigorous one based on Ogden’s

incremental elasticity formulation would be desirable.

Another interesting aspect would be extending the bifurcation problems discussed in Chap-

ter 4 and Chapter 5, where the structures are made of isotropic material, to the same geometries

but made of anisotropic materials (such as polar orthotropic, transversely isotropic, etc.). The

formulation are already recorded in §2.1, §2.2 (for elastic plate) and §5.2 (for elastic solids).

Those work can be companied by the asymptotic analysis in light of [35].
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Appendix A

Some useful identities for vectors

and tensor fields

Here we collect a few less standard identities that were used in Chapter 2 and Chapter 5. In

this appendix, we let φ and ψ be scalar fields, a, b, c, d, e, f , g and h be vector fields, and T

a second-order tensor field.

A.1 Identities related to stiffness tensor

At first we introduce some fourth-order identity tensors, then we record some identities used

to perform the manipulations that specifies the general anisotropic linear elastic plate into the

plates made of isotropic material. The double contraction for second-order tensors, the triple

contraction for third-order tensors and the quadruple contraction for fourth-order tensors are

defined respectively by

(a⊗ b) : (c ⊗ d) := (a · c)(b · d) ,

(a⊗ b⊗ c) :
.
(d⊗ e⊗ f) := (a · d)(b · e)(c · f) ,

(a⊗ b⊗ c⊗ d) :
: (e⊗ f ⊗ g ⊗ h) := (a · e)(b · f)(c · g)(d · h) .

These operations are extended in an obvious way when one of the terms is a tensor of higher

order. For example, for any fourth-order tensor C, we have

(a⊗ b) : C : (c ⊗ d) = C :
: (a⊗ b⊗ c⊗ d) .

We now introduce two important fourth-order identity tensors appear in the stiffness tensors,

followed by some useful identities. One is I ⊗ I (I is the second-order identity tensor), whose
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component form reads

(I ⊗ I)αβγδ := gαβgγδ .

Another important fourth-order tensor is symmetric projection tensor I, with the entriesIαβγδ := 1

2
(gαγgβδ + gαδgβγ) .

In what follows we record some properties of these two tensors.

(I ⊗ I) : T = tr(T )I , I : T = T s ,

where T s denotes the symmetric parts of T , and tr(T ) is the first principal invariant of T .

Therefore, we have

(I ⊗ I) : (∇φ⊗∇ψ) = (∇φ ·∇ψ)I , I : [(∇φ)⊗ (∇ψ)] = [(∇φ)⊗ (∇ψ)]
s
.

For an arbitrary vector field a, we have

(I ⊗ I) : (∇⊗ a) = (∇ · a)I , I : (∇⊗ a) = (∇⊗ a)s , (A.1a)

(I ⊗ I) :
.
(∇⊗∇⊗ a) = ∇(∇ · a) , I :. (∇⊗∇⊗ a) = ∇ · (∇ ⊗ a)s , (A.1b)

(I ⊗ I) :
: (∇⊗∇⊗∇ ⊗ a) = ∇2(∇ · a) , I :: (∇⊗∇⊗∇⊗ a) = (∇⊗∇) : (∇ ⊗ a)s .

(A.1c)

Note that in (A.1b)2 and (A.1c)2

∇ · (∇⊗ a)s =
1

2
[∇(∇ · a) +∇ · (∇⊗ a)] ,

(∇⊗∇) : (∇⊗ a)s = ∇ · [∇ · (∇ ⊗ a)s] .

If we replace a in (A.1) by ∇φ, we have the identities below

(I ⊗ I) : (∇ ⊗∇φ) = (∇2φ)I , I : (∇⊗∇φ) = ∇⊗∇φ , (A.2a)

(I ⊗ I) :
.
(∇⊗∇⊗∇φ) = I :. (∇⊗∇⊗∇φ) = ∇(∇2φ) , (A.2b)

(I ⊗ I) :: (∇⊗∇⊗∇⊗∇φ) = I :: (∇⊗∇⊗∇⊗∇φ) = ∇2(∇2φ) , (A.2c)

in which

∇(∇2φ) = ∇2(∇φ) = ∇ · (∇ ⊗∇φ) , (A.3a)

∇2(∇2φ) = (∇⊗∇) : (∇ ⊗∇φ) = ∇ · [∇ · (∇⊗∇φ)] . (A.3b)
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Moreover, in two-dimensional problems, if we introduce two orthogonal unit vectors n and s

(n · s = 0), then the gradient can be decomposed as

∇ := n∇n + s∇s = n
∂

∂n
+ s

∂

∂s
.

Therefore, we have the following conclusions

I : (n⊗ n) = tr(n ⊗ n) = 1 , I : (n⊗ s) = tr(n ⊗ s) = 0 ,

(I ⊗ I) : (n⊗ n) = I , I : (n⊗ n) = n⊗ n ,

(I ⊗ I) : (n⊗ s) = O , I : (n⊗ s) = (n⊗ s)s ,

(∇⊗∇φ) : (n⊗ n) = ∇2
nφ , (∇ ⊗∇φ) : (n⊗ s) = ∇n∇sφ ,

(∇φ⊗∇ψ) : (n⊗ n) = ∇nφ∇nψ , (∇φ⊗∇ψ) : (n⊗ s) = ∇nφ∇sψ ,

where O is the second-order zero tensor.

We use C to denote the constant stiffness tensor for a general linear material (anisotropic).

Due to the symmetric of the stress tensor and strain tensor, a stiffness tensorC has the following

three symmetric properties, namely, two minor symmetries (defined in (A.4)1,2) and the major

symmetries (as in (A.4)3)Cαβγδ = Cβαγδ , Cαβγδ = Cαβδγ , Cαβγδ = Cγδαβ . (A.4)

In three-dimensional problems, the above symmetry properties can reduce the original 81 inde-

pendent components in two-dimensional problem into only 21. For two-dimensional problems,

the number of independent components is reduced from 16 to 6. Some inferences drawn from

the symmetry properties of a constant stiffness tensor C readC : T = T : C ,
∇ · (C : T ) = C :

.
(∇⊗ T ) ,

∇ · [∇ · (C : T )] = C :
: (∇⊗∇⊗ T ) .

A.2 Divergence Theorem and Green Identities

In this Thesis, Divergence Theorem was also applied to conduct some of the integration

derivations. More specifically, for two-dimensional problems,

∫

Ω

∇ · (φa) dA =

∫

Ω

(φ∇ · a+ a ·∇φ) dA =

∫

∂Ω

(a · n)φdS , (A.5)
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where n is the unit normal vector (outward drawn) on the boundary ∂Ω. By letting a → ∇ψ,

we obtain the Green’s first identity

∫

Ω

(φ∇2ψ +∇ψ ·∇φ) dA =

∫

∂Ω

(∇ψ · n)φdS . (A.6)

Moreover, if we permute φ and ψ in (A.6) and subtract, we can obtain the Green’s second

identity as following

∫

Ω

(φ∇2ψ − ψ∇2φ) dA =

∫

∂Ω

(φ∇ψ − ψ∇φ) · n dS . (A.7)

Another corollary of the Divergence Theorem is

∮

∂Ω

a ·∇φdS =

∮

∂Ω

[(a · n)∇nφ+ (a · s)∇sφ] dS =

∮

∂Ω

[a · n∇nφ−∇s(a · s)φ] dS , (A.8)

where n and s are the normal and shear unit vector attached to the boundary ∂Ω.

A.3 Other identities

For any symmetric second-order tensor T , where T = T T , it is obvious that

T : (a⊗ b)s = T : (a ⊗ b) = T : (b⊗ a) = (T · b) · a = (T · a) · b .

Furthermore, we have the identity,

I : (∇⊗∇φ) = ∇ · (∇φ) = ∇2φ and ∇2(∇⊗ a) = ∇⊗ (∇2a) . (A.9)

By letting a → ∇φ in (A.9)2 we find that

∇2(∇⊗∇φ) = ∇⊗ (∇2(∇φ)) .

Other identities used earlier in the Thesis include

∇ · (φI) = ∇φ ,

∇ · (φa) = (∇φ) · a+ φ(∇ · a) ,

∇ · (T · a) = (∇ · T ) · a+ T : (∇⊗ a) ,

∇(φψ) = ψ(∇φ) + φ(∇ψ) ,

∇(a · b) = (∇ ⊗ a) · b+ (∇⊗ b) · a ,

∇⊗ (φa) = (∇φ)⊗ a+ φ(∇ ⊗ a) ,

Eigenvalue problems & elastic instabilities 164



A.3. Other identities

∇⊗ (T · a) = (∇ ⊗ T ) · a+ (∇⊗ a) · T T ,

∇2(a⊗ b) = (∇2a)⊗ b+ a⊗ (∇2b) + 2(∇⊗ a)T · (∇⊗ b) .
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Appendix B

Application of the compound

matrix method to the bi-annular

eigenvalue problem

This appendix contains the relevant calculations for the compound matrix method (CMM)

applied to the wrinkling of the bi-annular plate in Chapter 4 – see equations (4.53)-(4.55) in

§ 4.4. Our presentation follows the detailed treatment given by Lindsay in [80] for several

related examples.

For the sake of clarity, we are going to rewrite the fourth-order governing differential equa-

tions in ΩI and ΩII as

dy

dρ
= AIy , ρ ∈ [η1, η2] , (B.1a)

dz

dρ
= AIIz , ρ ∈ [η2, 1] , (B.1b)

where y = [y1, y2, y3, y4]
T , z = [z1, z2, z3, z4]

T , and the 4 × 4 matrices introduced above are

defined by

AI,II :=




0 1 0 0

0 0 1 0

0 0 0 1

AI,II
41 AI,II

42 AI,II
43 AI,II

44




.

These two linear systems are complemented by the boundary conditions on the inner and outer

rims of the annular domain Ω ≡ ΩI ∪ ΩII

BIy = 0 at ρ = η1 , (B.2a)
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BIIz = 0 at ρ = 1 , (B.2b)

where

BI = BII :=



1 0 0 0

0 1 0 0


 .

In addition to this, on the interface between ΩI and ΩII we have the continuity condition

Gy −Hz = 0 at ρ = η2 , (B.3)

where

G :=




0 1 0 0

0 0 1 0

G31 G32 G33 0

G41 G42 G43 G44




and H :=




0 1 0 0

0 0 1 0

H31 H32 H33 0

H41 H42 H43 H44




.

We are now ready to outline the CMM without being burdened by the precise expressions

of the matrices introduced above. For the bi-annular plate problem, we have two strategies.

The first transforms the boundary conditions (B.2a) and (B.2b) on the inner and, respectively,

the outer rim of Ω into some initial conditions for two auxiliary linear differential systems; the

continuity conditions on the interface ρ = η2 serves as a target condition for these auxiliary

initial-value problems, and its role is to identify the actual eigenvalues.

Alternatively, one can use the boundary conditions on either boundary (e.g., ρ = η1) as

the initial conditions to integrate one of the auxiliary systems mentioned above over the range

from η1 to η2. Then, by using a suitable reformulation of the continuity conditions (B.3), a new

set of initial conditions is derived for the second auxiliary system. The boundary conditions

on ρ = 1 are arranged into a target condition (different from the previous scenario) that the

second system must satisfy in order to identify the eigenvalues of the original problem (B.1).

A caveat is in order at this point: the former strategy is only applicable for an annular

plate that has exactly two annular sub-regions, whereas the latter one is more general and can

be used for multi-annular plates. The difference between the two strategies consist only in

the treatment of the continuity conditions at the interface, the other details remain unchanged.

Thus, we shall start with a preliminary description on how the two auxiliary differential systems

are set up that will be followed by the particular details of the two alternatives mentioned.

The general solutions of (B.1a) and (B.1b) can be expressed in the form

y = α1y
(1) + α2y

(2) , z = α3z
(1) + α4z

(2) .
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where, αi ∈ R (i = 1, 2, 3, 4) are arbitrary constants, and y(1),y(2), z(1), z(2) are two indepen-

dent solutions with

y(k) = [y
(k)
1 , y

(k)
2 , y

(k)
3 , y

(k)
4 ]T , z(k) = [z

(k)
1 , z

(k)
2 , z

(k)
3 , z

(k)
4 ]T (k = 1, 2) .

These solutions are the building block for the the compound variables that are set up by using

the matrices Y and Z,

Y :=




y
(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

y
(1)
3 y

(2)
3

y
(1)
4 y

(2)
4




=




R1

R2

R3

R4




and Z :=




z
(1)
1 z

(2)
1

z
(1)
2 z

(2)
2

z
(1)
3 z

(2)
3

z
(1)
4 z

(2)
4




=




S1

S2

S3

S4




, (B.4)

where Ri, Si (i = 1, 2, 3, 4) represent the row vectors of Y and Z introduced for further

reference when we shall discuss the second CMM strategy mentioned earlier. Furthermore, we

also introduce the CMM variables ψi and φi (i = 1, ..., 6) constructed from the matrix Y and

Z as indicated below,

ψ1 :=

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

y
(1)
2 y

(2)
2

∣∣∣∣∣∣∣
= (1, 2)y , ψ2 :=

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

y
(1)
3 y

(2)
3

∣∣∣∣∣∣∣
= (1, 3)y ,

φ1 :=

∣∣∣∣∣∣∣

z
(1)
1 z

(2)
1

z
(1)
2 z

(2)
2

∣∣∣∣∣∣∣
= (1, 2)z , φ2 :=

∣∣∣∣∣∣∣

z
(1)
1 z

(2)
1

z
(1)
3 z

(2)
3

∣∣∣∣∣∣∣
= (1, 3)z .

The notation (i, j) stands for the minor obtained by considering rows i and j in either Y or Z;

the superscripts indicate which one of the two matrices is chosen.

Similarly, we have

ψ3 := (1, 4)y , ψ4 := (2, 3)y , ψ5 := (2, 4)y , ψ6 := (3, 4)y ,

φ3 := (1, 4)z , φ4 := (2, 3)z , φ5 := (2, 4)z , φ6 := (3, 4)z .

If we differentiate ψj with respect to ρ, by using the formula for differentiation of a determinant

we can express the result as a linear combinations of the components of ψ. For example,

dψ1

dρ
≡ ψ1

′ =

∣∣∣∣∣∣∣

y
(1)
1

′

y
(2)
1

′

y
(1)
2 y

(2)
2

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

y
(1)
2

′

y
(2)
2

′

∣∣∣∣∣∣∣
= ψ2
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and

dψ3

dρ
≡ ψ3

′ =

∣∣∣∣∣∣∣

y
(1)
1

′

y
(2)
1

′

y
(1)
4 y

(2)
4

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

y
(1)
4

′

y
(2)
4

′

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

y
(1)
2 y

(2)
2

y
(1)
4 y

(2)
4

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

∑4
i=1 A

I
i y

(1)
i

∑4
i=1 A

I
i y

(2)
i

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

y
(1)
2 y

(2)
2

y
(1)
4 y

(2)
4

∣∣∣∣∣∣∣
+

4∑

i=1

AI
i

∣∣∣∣∣∣∣

y
(1)
1 y

(2)
1

y
(1)
i y

(2)
i

∣∣∣∣∣∣∣

Taking into account the earlier definitions of ψi, i = 1, ..., 6, this last result becomes

ψ3
′ = AI

2ψ1 +AI
3ψ2 +AI

4ψ3 + ψ5 .

Similarly, we have

ψ′
2 = ψ3 + ψ4 ,

ψ′
4 = ψ5 ,

ψ′
5 = −AI

2ψ1 +AI
3ψ4 +AI

4ψ5 + ψ6 ,

ψ′
6 = AI

1ψ2 −AI
2ψ4 − AI

4ψ6 .

and

φ′1 = φ2 ,

φ′2 = φ3 + φ4 ,

φ′3 = AII
2 φ1 +AII

3 φ2 +AII
4 φ3 + φ5 ,

φ′4 = φ5 ,

φ′5 = −AII
2 φ1 +AII

3 φ4 +AII
4 φ5 + φ6 ,

φ′6 = AII
1 φ2 −AII

2 φ4 −AII
4 φ6 .

Performing the same type of calculations in relation to (B.1b), the original fourth-order equa-

tions are transformed into a couple of linear sixth-order systems involving the compound matrix

variables,

dψ

dρ
= MIψ , ρ ∈ [η1, η2] , (B.5a)

dφ

dρ
= MIIφ , ρ ∈ [η2, 1] , (B.5b)
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B.1. The first strategy

where MI,II are the 6× 6 matrices

MI,II :=




0 1 0 0 0 0

0 0 1 1 0 0

AI,II
2 AI,II

3 AI,II
4 0 1 0

0 0 0 0 1 0

−AI,II
1 0 0 AI,II

3 AI,II
4 1

0 −AI,II
1 0 −AI,II

2 0 AI,II
4




.

Even though the problem has experienced an increase in the number of equations, the real

advantage comes from the fact that now we only need to solve some initial-value problems.

The formulation of the required initial conditions and the handling of the continuity equations

at the interface are explained in the next two sections.

B.1 The first strategy

Assuming that y(1),y(2) satisfy the boundary conditions on the inner rim ρ = η1, i.e., y
(1)
1 (η1) =

y
(2)
1 (η1) = y

(1)
2 (η1) = y

(2)
2 (η1) = 0, by taking into account the definitions of the CMM variables

we discover that

ψ1(η1) = ψ2(η1) = ψ3(η1) = ψ4(η1) = ψ5(η1) = 0 and ψ6(η1) 6= 0 .

Without loss of generality we can set ψ6(η1) = 1, and hence the boundary conditions (B.2a) on

the inner rim of the original problem correspond to the following initial conditions for the new

system (B.5a),

ψ = [0, 0, 0, 0, 0, 1]T at ρ = η1 . (B.6)

Similarly, assuming that the solutions z(1), z(2) satisfy the boundary conditions (B.2b) on the

outer rim of Ω, we obtain the other set of initial conditions for (B.5b),

φ = [0, 0, 0, 0, 0, 1]T at ρ = 1 . (B.7)

With the original boundary conditions embedded in these two initial conditions for the new

system, the next item on the agenda is to rewrite the continuity conditions (B.3) at the interface

in terms of the components of ψ and φ. To this end, we notice that

Pα = 0 , (B.8)
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where

P := [Gy(1),Gy(2),Hz(1),Hz(2)] and α = [α1, α2, α3, α4]
T .

From the nontrivial solvability of the linear system (B.8) in which αi (i = 1, 2, 3, 4) are regarded

as the unknowns, we deduce the so-called target condition

det (P ) = 0 . (B.9)

By applying the Laplace expansion theorem for determinants, we can express the target con-

ditions in terms of the 2× 2 minors of P . Hence equation (B.8) becomes

P1214P3432 − P1221P3434 − P1223P3441 − (P1223P3413 − P1231P3424 − P1243P3421) = 0 ,

where

Pijkl :=

∣∣∣∣∣∣∣

Pk,i Pk,j

Pl,i Pl,j

∣∣∣∣∣∣∣
.

The 2 × 2 determinants above can be further expressed in terms of the compound matrix

variables ψi and φi (i = 1, .., 6) in light of their definitions

∣∣∣∣∣∣∣

Pk,1 Pk,2

Pl,1 Pl,2

∣∣∣∣∣∣∣
=(Gk1Gl2 −Gk2Gl1)ψ1 + (Gk1Gl3 −Gk3Gl1)ψ2

+ (Gk1Gl4 −Gk4Gl1)ψ3 + (Gk2Gl3 −Gk3Gl2)ψ4

+ (Gk2Gl4 −Gk4Gl2)ψ5 + (Gk3Gl4 −Gk4Gl3)ψ6 ,

and

∣∣∣∣∣∣∣

Pk,3 Pk,4

Pl,3 Pl,4

∣∣∣∣∣∣∣
=(Hk1Hl2 −Hk2Hl1)φ1 + (Hk1Hl3 −Hk3Hl1)φ2

+ (Hk1Hl4 −Hk4Hl1)φ3 + (Hk2Hl3 −Hk3Hl2)φ4

+ (Hk2Hl4 −Hk4Hl2)φ5 + (Hk3Hl4 −Hk4Hl3)φ6 .

To summarise, the compound matrix method has transformed the original eigenproblem into

an initial value problem for a linear system of 6 first-order ordinary differential equations. The

eigenvalue λ is identified by searching for the least positive value of this parameter for which

the target condition (B.9) is satisfied.
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B.2 The second strategy

This differs from the earlier one in the way the continuity conditions are handled. Basically,

the change of tack consists in integrating the problem sequentially, starting from the inner rim

to the interface, and then using the continuity conditions to formulate new initial conditions for

the equations that are integrated in the outer annulus. Such an approach is more general than

the one already outlined in the previous section, and can be easily extended to multi-annular

problems with an arbitrary number of concentric annular sub-regions.

After forward integration of equation (B.5a) over [η1, η2] with the initial condition (B.6),

the values of ψi (i = 1, ..., 6) are obtained at the interface. Equation (B.3) can be recast in the

form

CY α̂1 = DZα2 , (B.10a)

EY α̂1 = FZα2 , (B.10b)

where

α̂1 :=



α1

α2


 , α̂2 :=



α3

α4


 , C = D :=



1 0 0 0

0 1 0 0


 ,

E =



G31 G32 G33 0

G41 G42 G43 G44


 , F =



H31 H32 H33 0

H41 H42 H43 H44


 .

From (B.10a) it follows that det (CY )α̂1 = adj (CY )DZα̂2, where adj(CY ) is the adjugate

matrix of CY . Substituting this into (B.10b) yields

{
EY adj (CY )D − det (CY )F

}
Zα̂2 = 0 .

As explained by Lindsay in [80] this relation must be satisfied for all α̂2 ≡ [α3, α4]
T since there

are still two boundary conditions left to satisfy on the outer rim of Ω. Hence

{
EY adj (CY )D − det (CY )F

}
Z = 0 . (B.11)

Note that

CY =


y

(1)
1 y

(2)
1

y
(1)
2 y

(2)
2


 , adj (CY ) =


 y

(2)
2 −y(2)1

−y(1)2 y
(1)
1


 ,

and then using the definitions for ψi (i = 1, ..., 6), after routine manipulations (B.11) can be
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shown to become

[
F̂1

∣∣ F̂2

]





S1

S2

S3

S4





= 0 , (B.12)

where,

F̂1 :=




(G31 −H31)ψ1 −G33ψ4 (G32 −H32)ψ1 +G33ψ2

(G41 −H41)ψ1 −G43ψ4 −G44ψ5 (G42 −H42)ψ1 +G43ψ2 +G44ψ3


 ,

F̂2 :=



−H33ψ1 0

−H43ψ1 −H44ψ1


 ,

and the Sj (j = 1, 2, 3, 4) have already been defined in equation (B.4).

The above equation provides two relations for the four quantities Si (i = 1, 2, 3, 4), so we

can represent any two of them in terms of the other two (by routine algebraic manipulations).

We choose to write

S3 = k1S1 + k2S2 , S4 = k3S1 + k4S2 ,

where ki (i = 1, 2, 3, 4) can be obtained from the (B.12), and have the expressions recorded

below

k1 =
(G31 −H31)ψ1 −G33ψ4

H33φ1
,

k2 =
(G32 −H32)ψ1 −G33ψ2

H33φ1
,

k3 =
[H43(H31 −G31)−H33(H41 −G41)]ψ1 − (H33G43 −H43G33)ψ4 −H33H44φ5

H33H44φ1
,

k4 =
[H33(H42 −G42) +H43(H32 −G32)]ψ1 − (H33G44 −H33G43)ψ2 −H33H44φ3

H33H44φ1
.

This information permits us to relate the CMM variables on the interface since

φ1 :=

∣∣∣∣∣∣
S1

S2

∣∣∣∣∣∣
= φ1 , φ2 :=

∣∣∣∣∣∣
S1

k1S1 + k2S2

∣∣∣∣∣∣
= k2φ1 ,

φ3 :=

∣∣∣∣∣∣
S1

k3S1 + k4S2

∣∣∣∣∣∣
= k4φ1 , φ4 :=

∣∣∣∣∣∣
S2

k1S1 + k2S2

∣∣∣∣∣∣
= −k1φ1 ,

φ5 :=

∣∣∣∣∣∣
S2

k3S1 + k4S2

∣∣∣∣∣∣
= −k3φ1 , φ6 :=

∣∣∣∣∣∣
k1S1 + k2S2

k3S1 + k4S2

∣∣∣∣∣∣
= (k1k4 − k2k3)φ1 .
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B.2. The second strategy

The first of these equations is trivially satisfied, so without loss of generality we can set φ1(η2) =

1. In conclusion, the initial conditions for φ at the interface read

φ = [1, k2, k4,−k1,−k2, k1k4 − k2k3] at ρ = η2 .

Equations (B.5b) are integrated towards the outer boundary of ΩII with these initial conditions,

and the eigenvalue is found once the target condition (B.7) is satisfied.
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Glossary of Abbreviations

CMM Compound Matrix Method

CV Calculus of Variations

FvK Föppl–von Kármán

HEM Hybrid Energy Method

HGT Hybrid Galerkin Technique

MAE Method of Adjacent Equilibrium

NHP Nodal Hoop Point

NSE Neutral Stability envelope

PBAS Pre-Buckling Azimuthal Stresses

SIDT Simplified Incremental Deformation Theory

SLC Shapiro-Lopatinskij Condition

TP Turning Point
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