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Abstract 
 

Schizophrenia is a debilitating psychiatric disorder with a prevalence of around 

1% worldwide. It is an extraordinarily complex syndrome, which encompasses 

multiple psychological domains leading to the impairment of a range of 

symptoms. These symptoms are categorised as positive symptoms, negative 

symptoms and cognitive deficits.  The profile of cognitive deficits is broad and 

severe, and is likely to be present in most, if not all patients. Despite cognitive 

enhancement being recognised as an important treatment target in 

schizophrenia, the discovery of an effective treatment has been met with 

difficulty. 

The degree of psychosis is subject to numerous genetic and environmental 

factors. Family, twin and adoption studies show schizophrenia is unequivocally a 

genetic disorder, however the genetics behind schizophrenia are indisputably 

complex as it is not characterised by a single causative gene. A number of 

candidate genes have been implicated in schizophrenia. Recent genetic 

association studies have found an association for two genes, FXYD6 and MAP2K7, 

as risk factors in the susceptibility to schizophrenia. However the roles of these 

genes in the underlying mechanisms of the symptoms of schizophrenia are 

unknown.  To address this I utilise two mouse models, one containing 

homozygous disruption of Fxyd6 (Fxyd6-/-) and one heterozygous for Map2k7 

(Map2k7+/-). I employ a range of molecular and behavioural tests to investigate 

the roles FXYD6 and MAP2K7 in schizophrenia- like phenotypes in these mice.  

 

FXYD proteins are a family of seven single-span transmembrane proteins, all 

thought to be regulators of the Na+ K+ ATPase pump in a tissue-specific fashion. 

Up until now, FXYD6 function and its role in the risk to schizophrenia remain 

unclear. To address this I firstly investigated the association between FXYD6 and 

schizophrenia in a Northern European population using a genetic association 

study. However from this study I was unable to confirm an allelic or haplotypic 

association between FXYD6 and schizophrenia. Furthermore there was also no 

evidence for a role of epistatic interactions between FXYD6 and MAP2K7 in the 

risk of schizophrenia.  
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A putative functional link for FXYD6 in schizophrenia was explored further using 

Fxyd6-/- mice. The in situ hybridisation technique was utilised to reveal the 

expression of Fxyd6 in the mouse brain. Fxyd6 is interestingly expressed in the 

prefrontal cortex and hippocampus, two brain regions associated with 

schizophrenia and learning and memory. In addition, I have shown for the first 

time that disruption of Fxyd6 results in a significant deficit in Na+ K+ ATPase 

activity in the forebrain, confirming that FXYD6 is a modulator of mouse brain 

Na+ K+ ATPase activity. Anxiety- like behaviours and hyperlocomotion were 

explored Fxyd6-/- mice. However activity in plus maze and open field tests, and 

response to amphetamine or ketamine was not altered in comparison to wildtype 

mice. Nonetheless subtle deficits observed in prepulse inhibition suggest 

potential deficits in neurotransmission in Fxyd6-/- mice may be present. 

Interestingly, Fxyd6-/- mice displayed deficits in working memory at delays of 5 

seconds, indicating cognitive deficits. The molecular characterisation and insight 

into the phenotype of Fxyd6-/- mice are encouraging to investigate the role of 

FXYD6 in underlying mechanisms of schizophrenia-like symptoms further.   

 
MAP2K7 belongs to the family of Map Kinases which have key roles in the 

regulation of a diverse range of cellular processes such as gene expression, 

apoptosis and synaptic plasticity. The brain expression of Map2k7 was previously 

unknown, however this study utilised the in situ hybridisation technique to show 

expression in regions associated with schizophrenia, including the PFC and the 

hippocampus.  

For the reason that the homozygous disruption of Map2k7 is embryonically 

lethal, mice heterozygous for the disruption Map2k7 were used to explore the 

role of MAP2K7 in the susceptibility to schizophrenia. RTqPCR confirmed a 

modest but significant reduction of Map2k7 in these mice. The heterozygous 

deletion of Map2k7 results in alteration of glutamate receptor Grin1 expression, 

a receptor reported to have altered expression in schizophrenia. Furthermore, 

Map2k7+/- mice display cognitive deficits, as observed by increased perseverative 

responding in the working memory task.  Despite not exhibiting deficits in PPI, 

social behaviours or neurochemical deficits in GABAergic markers, Map2k7+/- 

mice revealed altered sensitivity to amphetamine, suggesting alterations in 

dopaminergic circuitry. 
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In conclusion, this study provides an insight in to the functional roles of FXYD6 

and MAP2K7. Although the roles of FXYD6 and MAP2K7 as risk factors in 

schizophrenia still requires further elucidation, these results provide evidence of 

a putative role for both genes in some areas of the underlying neuronal activity 

associated with schizophrenia-associated symptoms. Furthermore, results from 

this study suggest both strains of mice are potential rodent models of cognitive 

impairments.  
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1.1 General Introduction 

Schizophrenia is an extraordinarily complex syndrome, which encompasses 

multiple psychological domains leading to the impairment of a range of positive 

symptoms, negative symptoms and cognitive deficits. The schizophrenic 

phenotype is subject to numerous genetic and environmental factors however 

the genetics behind schizophrenia are indisputably complex as it is not 

characterised by a single causative gene. Recently, genetic association studies 

have found an association for two genes, FXYD6 and MAP2K7, as risk factors in 

the susceptibility to schizophrenia. However the roles of these genes in the 

underlying mechanisms of the symptoms of schizophrenia are unknown.   

 

We set out to investigate the roles of these genes in schizophrenia by firstly 

investigating the association between FXYD6 and schizophrenia in a Northern 

European population using a genetic association study. Epistatic interactions 

between FXYD6 and MAP2K7 were also explored within these samples. The 

functional roles of FXYD6 and MAP2K7 in cognitive and schizophrenia- related 

molecular pathways and behaviours were further investigated using two separate 

mouse models; one homozygous for disrupted Fxyd6 (Fxyd6-/-) and one 

heterozygous for Map2k7 (Map2k7+/-).  

 

1.2 Background 

Schizophrenia is a debilitating psychiatric disorder with a prevalence of around 

1% worldwide (Andreasen., 2000). It is an extraordinarily complex syndrome, 

which encompasses multiple psychological domains leading to the impairment of 

a range of cognitive and emotional functions, such as social interaction and the 

ability to form close relationships, executive function, imaginative thought, 

cognition and the expression of emotions (American Psychiatric Association., 

2000). The course and outcome of schizophrenia present great variability from 

patient to patient however symptoms generally begin in late adolescence or 

early adulthood and usually progress throughout life, with males being at a 

slightly higher risk compared to females (risk ratio 1.3:1) (Aleman et al., 

2003;McGrath et al., 2004). A huge economic burden is associated with 
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schizophrenia; this was estimated to be £6.7 billion in 2004/05, covering costs 

for treatment and care, lost productivity from employment, costs to the criminal 

justice system and benefit payments (Mangalore and Knapp., 2007).  

1.3 Clinical Diagnosis 

Schizophrenia has been described in the DSM-IV as a “disturbance that lasts for 

at least 6 months and includes at least 1 month of active phase-symptoms” 

(American Psychiatric Association., 2000). Due to the vast heterogeneity of 

schizophrenia, several criterions have been introduced to distinguish between 

the symptomology of this disorder, allowing standardised clinical diagnosis; 

criterions are based on both type and duration of symptoms and include the 

concurrent presence of 2 symptoms from the following list: Delusions, 

hallucinations, disorganised speech, grossly disorganised or catatonic behaviour 

and negative symptoms (American Psychiatric Association., 2000). The types of 

symptoms are as follows: 

1.3.1 Positive Symptoms 

Positive symptoms are additional to normal experiences and are usually absent 

in the general population. Positive symptoms can be classified under two 

dimensions: the “psychotic dimension” which includes hallucinations, the most 

prevalent being auditory (‘hearing voices’) and visual, however, frequent 

occurrences of tactile, gustatory and olfactory delusions are also known to occur  

and also the “disorganisation dimension” which includes disorganised speech and 

grossly disorganised or catatonic behaviour (American Psychiatric Association., 

2000).  

1.3.2 Negative Symptoms 

Negative symptoms include those that could be seen as a diminution of normal 

functioning and are largely responsible for the morbidity associated with 

schizophrenia.  Affective flattening (reduced emotional expression), alogia 

(reduced ability in fluency of thought and speech) and avolition (reduced 

motivation in goal-directed behaviour) are listed as negative symptoms of 

schizophrenia. However anhedonia (reduced ability to experience pleasure) and 

social withdrawal are associated with negative symptoms. These symptoms are 
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generally the first to arise in schizophrenic patients, followed by cognitive 

deficits and positive symptoms. 

1.3.3 Cognitive Dysfunction 

The profile of cognitive deficits is broad and severe, and is likely to be present 

in most, if not all patients. Marked cognitive deficits can be detected in first 

episode schizophrenia and include attention deficits, impairments in normal use 

of language and impairments in  memory (Mohamed et al., 1999;Gold et al., 

1999;Addington and Addington., 2002). The most prominent cognitive deficits 

occur in the domains of memory, attention, working memory, executive 

function, speed of processing, and social cognition (Nuechterlein et al., 

2004;Fioravanti et al., 2005). Despite cognitive enhancement being recognised 

as an important treatment target in schizophrenia, the discovery of an effective 

treatment has met with difficulty.  

1.4 Treatment 

There are two main classifications of medication associated with the treatment 

of schizophrenia; the first generation typical antipsychotics (chlorpromazine, 

loxapine, haloperidol), and the newer atypical antipsychotics (clozapine, 

olanzapine, sertindole, asenapine). Administration of early typical antipsychotics 

at clinically effective doses were found to elicit severe side effects such as 

seizures, agranulocytosis, and long term administration induced extrapyramidal 

symptoms (EPS) akin to parkinsonian-like behaviour. The mechanism of action of 

typical antipsychotics was subsequently found to be inhibition of the DA D2 

receptor (Burt et al., 1976;Creese et al., 1976), inducing undesirable EPS 

symptoms as the result of attenuated DA transmission in the nigrostriatal 

pathway (Bunney et al., 1973;Clement-Cormier et al., 1974). 

Soon after, atypical antipsychotics were developed and favoured. Positive, 

negative and some cognitive symptoms were found to respond following 

treatment with atypical antipsychotics, compared to the treatment of only 

positive symptoms with typical antipsychotics. Atypical antipsychotics often 

have a strong affinity for 5-HT receptors as well as the DA D1 and D2 receptors 
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(Leysen et al., 1994;Meller et al., 1985), resulting in low EPS at clinically 

effective doses (Leucht et al., 1999). 

1.5 Neuropathology of Schizophrenia 

Though the neuropathology of schizophrenia is somewhat elusive, there is 

considerable evidence suggesting it is fundamentally a disorder of subtle 

aberrations of brain development and plasticity. Despite some remaining 

inconsistencies, which may be a result of factors such as poor controls in early 

studies, differences in diagnostic criteria and changes caused by long term use 

of antipsychotics, technologies such as computer axial tomography (CAT) scans 

and magnetic resonance imaging (MRI) scans have revealed morphological and 

structural abnormalities in brains of patients with schizophrenia (Sigmundsson et 

al., 2001;Shenton et al., 1992). Key findings include enlarged lateral and third 

ventricles, decreased brain size, decreased cortical volume (temporal lobes) and 

decreased hippocampal volume (Daniel et al., 1991;Degreef et al., 1992;Lawrie 

and Abukmeil., 1998;Vita et al., 2006;Lawrie et al., 1999;Jeste and Lohr., 1989). 

One of the initial studies associating structural abnormalities with schizophrenia 

was carried out by (Johnstone et al., 1976), who observed a dilation of 

ventricles in chronic schizophrenics through the implementation of CAT scans. A 

number of studies have since followed and a comprehensive review estimates an 

average increase of 40% in ventricular size from MRI studies with a loss of around 

3% brain tissue (Lawrie and Abukmeil., 1998) however a  correlation has not 

been found between ventricular size and brain loss (Harrison., 1999).    

Early evidence of gliosis (Stevens., 1982), a marker of neural scarring and 

inflammation, suggested schizophrenia was a neurodegenerative disorder, 

however subsequent studies failed to support this (Falkai et al., 1999;Roberts et 

al., 1986). A range of studies further dissociate schizophrenia from a 

neurodegenerative disorder; the failure to find discrete lesions such as amyloid 

plaques and neurofibrillary tangles has now led to the prevailing idea of 

schizophrenia being a neurodevelopmental disorder (Arnold et al., 1998;Falkai et 

al., 1999;Casanova et al., 1993). 
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It has been suggested structural abnormalities may be a result from medication. 

However first-episode patients show ventricular enlargement and cortical 

volume reduction, and brain pathology in young adults at high risk of developing 

schizophrenia shows ventricular enlargement and smaller medial temporal lobes 

(Lawrie et al., 1999;Shihabuddin et al., 1998;Cannon et al., 1993;Szeszko et al., 

2003). Following the start of symptoms, abnormalities correlate with disease 

progression (Ho et al., 2003;Giedd et al., 1999). MRI studies of monozygotic 

twins discordant for schizophrenia reveal the affected twin has larger ventricles, 

smaller cortical size and smaller hippocampal size (McNeil et al., 2000;Thomas 

et al., 1996;Goldman et al., 2008;Thomann et al., 2009), suggesting ventricle 

size is not only associated with schizophrenia phenotype, but is also subject to 

factors other than genetics, such as environmental factors (refer to section 1.7).  

1.6 Neurochemical hypotheses of schizophrenia 

Prominent aberrations of the neurotransmission systems in brain circuitry have 

been associated with the aetiology behind schizophrenia. In particular, 

dopaminergic, glutamatergic and serotoninergic systems have been postulated to 

contribute to the neurobiology of this disorder.   

1.6.1 Dopamine (DA) hypothesis of schizophrenia:  

The DA hypothesis is the preeminent hypothesis of schizophrenia; proposing that 

the dysfunction of the DA system underlies the behavioural and cognitive 

abnormalities that are associated with this disorder (Howes and Kapur., 2009). 

Dopaminergic receptors can be categorised into two main subtypes; the D1-like 

receptor family (D1 and D5 receptors) and the D2-like receptor family (D2, D3, and 

D4 receptors). The DA hypothesis originated from correlations between the 

clinical potency and affinity of antipsychotics for the DA D2 receptor (Seeman 

and Lee., 1975;Creese et al., 1976). Studies also found hyperfunction of D2 

receptors (Abi-Dargham et al., 2000) and increased D2 receptor densities in 

mesolimbic regions of schizophrenia brains and post mortem schizophrenia 

brains (Abi-Dargham et al., 2000;Seeman., 1987;Cross et al., 1981;Laruelle., 

1998). Positive symptoms of schizophrenia can be successfully controlled with D2 

antagonists, however, these typical antipsychotics prove less effective in the 

treatment of negative and cognitive symptoms (Meltzer and McGurk., 
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1999;Harvey et al., 2005). This suggests D2 receptors have a role in the 

underlying mechanisms of positive but not negative or cognitive symptoms.  

D1 receptors are the most abundant DA receptors in the neocortex (Meador-

Woodruff et al., 1996;Lidow et al., 1991;Hurd et al., 2001), a brain region 

associated with cognition. It has been hypothesised that abnormalities in the 

activity of these receptors may be responsible for cognitive deficits associated 

with schizophrenia. Decreased densities of D1 receptors have been observed in 

brains from non-medicated schizophrenia patients (Okubo et al., 1997;Hess et 

al., 1987). D1 and D2 receptors have been shown to have impaired molecular 

interaction in schizophrenia (Seeman et al., 1989), the reduction in D1 activity 

may therefore contribute to hyperfunction of D2 receptors. Together the 

abnormal activity of D1 and D2 receptors may be responsible for a wide range of 

schizophrenia symptoms. Thus the DA hypothesis was reformed to encompass 

both the hyperfunction of D2 receptors in the underlying mechanisms of positive 

symptoms, and the hypofunction of D1 receptors with the onset of negative and 

cognitive symptoms (Howes and Kapur., 2009). 

Supporting the DA hypothesis, it is well known that administration of the DA-

transmission enhancer, amphetamine, induces schizophrenic-like behaviour in 

both healthy volunteers and animals (Breier et al., 1997;Angrist and Gershon., 

1970;Bell., 1965;Gambill and Kornetsky., 1976) and many of these behaviours 

can be reversed via the administration of anti-psychotics clozapine and 

haloperidol (Arnt., 1995;Warburton et al., 1994). Often genetic animal models of 

psychiatric disorders, such as schizophrenia, will be tested with amphetamine in 

order to investigate impairments to the Dopaminergic circuitry. 

Glutamate hypothesis of schizophrenia: 
 
The glutamate hypothesis of schizophrenia arose primarily from the observation 

that abuse of ‘angel dust’ (phencyclidine (PCP)) led to a psychosis similar to that 

observed in schizophrenia (Allen and Young., 1978). When PCP or ketamine, both 

NMDA receptor antagonists, are given to healthy subjects, positive symptoms, 

negative symptoms and cognitive deficits are induced (Adler et al., 1999;Lahti et 

al., 2001;Bakker and Amini., 1961), whereas administration of PCP to 

schizophrenia patients exacerbates the symptoms (Lahti et al., 2001;Allen and 
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Young., 1978). The ability of these compounds to transiently reproduce key 

features of schizophrenia led to the assumption that glutamatergic dysfunction 

has an underlying role in the onset of some of the symptoms associated with 

schizophrenia.  

Glutamate receptors can be categorised into either ionotropic ligand-gated ion 

channels or metabotropic G-protein coupled glutamate receptors (mGluRs). The 

ionotropic glutamate receptors include N-methyl-D-aspartic acid (NMDA), alpha-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainite 

receptors, named due to their selective responses to the respective agonists 

(reviewed by Traynelis et al., 2010).  

NMDA receptors are responsible for the mediation of the vast majority of 

excitatory neurotransmission in the brain, hypofunction of these receptors form 

the basis of the glutamate hypothesis of schizophrenia. Three subunits, termed 

NR1 (GRIN1), NR2 (GRIN2) and NR3 (GRIN3) make up the NMDA receptor, and 

these subunits and splice variants have been identified and associated with 

schizophrenia. For example, decreased expression of NMDA subunit splice variant 

NR2A has been observed in the PFC of schizophrenia brains (Bitanihirwe et al., 

2009). In further support of the glutamate hypothesis, clinical studies have found 

an association between the NR1 subunit and schizophrenia (Georgi et al., 

2007;Galehdari., 2009;Qin et al., 2005). This link is further supported by the 

behavioural characterisation of a mouse model expressing 5% of normal levels of 

the NR1 subunit. These mice display behavioural abnormalities reflective of 

those associated with schizophrenia symptoms, such as elevated motor activity 

and stereotypy and deficiencies in social and sexual interactions, furthermore, 

these behaviours are reversed with haloperidol or clozapine (Mohn et al., 1999).  

Despite studies focussing mainly on the role of NMDA receptors in schizophrenia, 

AMPA receptors have also been implicated in the aetiology of schizophrenia. The 

AMPA receptor subunits are derived from a family of four genes termed gluR1–

gluR4. Analysis of post mortem brains of schizophrenic patients revealed 

decreased expression of a range of AMPA receptors Glur1 and Glur2 in the medial 

temporal lobe and prefrontal cortex (PFC) (Eastwood et al., 1995;Beneyto et al., 

2007;Mirnics et al., 2000), whilst mouse models haplosufficient for AMPA 

receptor subunits display behaviours similar to those associated with 
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schizophrenia, some of which are be reversed following antipsychotic 

administration (Chourbaji et al., 2008;Gray et al., 2009; Wiedholz et al., 2006)  

Due to their role in the mediation of molecular correlates of neuroplasticity, 

such as long-term potentiation, via the modulation of the release and reuptake 

of synaptic glutamate, it is not surprising that mGluRs have also been implicated 

in schizophrenia. mGluRs are seven transmembrane domain, G-protein coupled 

receptors that can be categorised into group I, group and group III subtypes. 

Group I are responsible for increasing presynaptic glutamate release and consists 

of mGlur1 and mGlur5, and group II, which is responsible for the inhibition of 

presynaptic glutamate release, consists of mGlur2 and mGlur3 and group III 

consist of mGlur4, mGlur6, mGlur7, mGlur8 (reviewed by Traynelis et al., 2010). 

mGluRs show strong expression in the prefrontal cortex and striatum, two 

regions associated with schizophrenia. Interestingly, altered immunoreactivity 

for receptors belonging to both mGluR group I and II have been observed in 

schizophrenia brains (Gupta et al., 2004; Volk et al., 2010) whilst animal studies 

and genetic association studies further support a role of mGluRs in schizophrenia 

(Bolanna et al., 2007; Devon et al., 2001; Moghaddam et al., 1998; Profaci et 

al., 2011).  

1.6.2 GABAergic hypothesis of schizophrenia 

The role of NMDA receptors in schizophrenia has also led to the implication of 

GABAergic dysfunction. Excitatory input derived from NMDA receptors acts as a 

mediator of the inhibitory activity of parvalbumin GABA (γ-amino-butyric acid) 

interneurons (Kinney et al., 2006). Studies have shown pharmacologically-

induced impairments in NMDA receptor activity results in a dose-dependent 

decrease in the density of neurons immunoreactive for parvalbumin (Kinney et 

al., 2006;Abekawa et al., 2007). The impact of NMDA dysfunction on 

parvalbumin neurons is further observed in mice homozygous for the disrupted 

expression of the NMDA receptor NR1 subunit in parvalbumin-positive 

interneurons, these mice exhibit abnormal gamma oscillations and deficits in 

working memory and associative learning (Korotkova et al., 2010;Carlen et al., 

2011). These studies, in addition to evidence of reduced expression of 

messenger ribonucleic acid (mRNA) for PVALB in schizophrenia brains (Beasley et 

al., 2002;Lewis et al., 1999), supports the use of parvalbumin as a marker of 
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potential molecular aberrations associated with schizophrenia pathophysiology. 

For this reason, Pvalb expression is explored in the molecular characterisation of 

two potential mouse models of schizophrenia (Fxyd6 and Map2k7) later in these 

thesis (refer to Chapter 4 & Chapter 6).   

Further evidence of GABAergic dysfunction in schizophrenia comes from 

decreased expression of mRNA for glutamic acid decarboxylase (GAD), the enzyme 

responsible for the conversion of glutamate to GABA (Beasley et al., 2002;Lewis 

et al., 1999).  Furthermore, a decrease in the expression of the GABA 

transporter 1 (GAT1), is also observed in post mortem schizophrenia brain (Woo 

et al., 1998), which may be reflective of decreased GABA transmission due to 

altered GAD expression.  

1.6.3 Serotoninergic hypothesis of schizophrenia  

The serotoninergic hypothesis of schizophrenia proposes that hyperfunction of 

serotonin (5HT) receptors has a role in the symptoms of schizophrenia (Breier., 

1995). The induction of psychosis-like symptoms following administration of the 

potent 5HT agonist D-lysergic acid diethylamide (LSD) (Woolley and Shaw., 1954) 

lead to the initial suggestion of a role of 5HT in the pathology of schizophrenia. 

Despite recent positron emission tomography studies failing to find alterations in 

5-HT receptor expressions (Trichard et al., 1998;Lewis et al., 1999), evidence of 

a serotoninergic dysfunction in schizophrenia comes from reports that 5-HT1A and 

5-HT2A receptor expressions are increased by up to 80% in the PFC (Lopez-

Figueroa et al., 2004;Burnet et al., 1996;Sumiyoshi et al., 1996;Hashimoto et 

al., 1991) and atypical antipsychotics such as clozapine, olanzapine, and 

risperidone, have a stronger affinity for the 5-HT2a receptor in comparison to DA 

D2 antagonists (Leysen et al., 1994). It has been suggested these antipsychotics 

may elicit their effects through a DA-5HT interaction and accounts for the 

reduction in EPS observed in atypical antipsychotics (Meltzer., 1989;Meltzer., 

1992;Leysen et al., 1994).  

1.7 Risk factors for Schizophrenia  

Family, twin and adoption studies show schizophrenia is unequivocally a genetic 

disorder, with studies estimating around 80% chance of heritability (Riley and 
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Kendler., 2006;Cardno and Gottesman., 2000;Gottesman et al., 1987). Despite 

running in families, schizophrenia is also sporadic. In the general population, the 

risk of developing schizophrenia is 1%, increasing to 2% if a first cousin or sibling 

has schizophrenia (Gottesman et al., 1987). This risk rises further to 15% in 

dizygotic twins and reaches 50% in monozygotic twins (Gottesman et al., 1987). 

Despite a high degree of genetic risk, genetic factors alone do not determine risk 

to schizophrenia; otherwise a 100% concordance rate would be observed 

between monozygotic twins. Instead schizophrenia is a multifaceted disorder 

subject to complex interactions of numerous risk factors. 

 

Factors early on in life, such as intrauterine complications, viral infections 

during early childhood and/or parental loss all appear to be factors in the 

development of schizophrenia (Hultman et al., 1999;Dalman et al., 

2001;Rantakallio et al., 1997).  Environmental factors such as winter births or 

urban living are also thought to attribute to the risk (Mortensen et al., 1999). 

The recreational use of illicit substances such as cannabis has also been given 

much attention.  

Studies have shown adolescence abuse of cannabis can result in an increased 

incidence of psychiatric diagnosis later in life (Arseneault et al., 

2002;Andreasson et al., 1987;Arendt et al., 2005). Despite this, the association 

between cannabis and the development of schizophrenia remains controversial. 

It has been suggested that cannabis use hastens the development of 

schizophrenia in individuals predisposed to the disorder, or worsens the course 

and outcome of the disorder, rather than being a causal factor (Degenhardt et 

al., 2003). Furthermore, some studies have shown the association between 

cannabis and schizophrenia can also be influenced by a genetic interaction 

dependent on the allelic composition of the catechol-O-methyltransferase 

(COMT) gene, however this association has not been observed in all studies 

(Caspi et al., 2005;Henquet et al., 2009). COMT catabolism is the primary 

mechanism for catecholamine signal deactivation, such as with DA transmission, 

and COMT and has been genetically associated with schizophrenia by a single 

nucleotide polymorphism (SNP) located in exon 4 at codon 158. This results in a 

shift of methionine (Met) to valine (Val), resulting in increased enzymatic 

activity, and therefore decreased DA transmission (Chen et al., 2004; Lotta et 
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al., 1995). Carriers of the COMT Val158/Met alleles had shown an increased risk 

of developing schizophrenia symptoms following cannabis use, unlike carriers 

homozygous for met158 alleles (Caspi et al., 2005;Henquet et al., 2009); 

suggesting a modulating effect of COMT on the risk of developing schizophrenia. 

These studies show that not only is the risk of developing schizophrenia 

influenced by genetic and environmental risk factors, but it is also potentially 

susceptible to genetic and environmental interactions.   

1.8 Genetic risk factors 

The high heritability rate of schizophrenia has led to a search for genes that 

confer risk. However, the genetic architecture and mode of inheritance of 

schizophrenia is indisputably complex as it is not characterised by a single 

causative gene. Risk genes are likely to vary from case to case and models 

predict individual genes only confer a small risk which is mediated further by 

genetic and environmental interactions (refer to section 1.7).  

It has been thought that in the general population, schizophrenia arose from the 

accumulation of modest effects from inherited common polymorphisms (the 

common disease, common alleles model (CDCA model) (Chakravarti., 

1999;Gottesman and Shields., 1982). Genome wide association studies (GWAS) 

and candidate gene association studies have provided some evidence suggesting 

a role of common variants in the genetic architecture of schizophrenia in 

unrelated schizophrenia patients, (McClellan et al., 2007;Owen., 2010). Despite 

these variants being limited in number, these studies along with the increasingly 

high prevalence rate of schizophrenia and the lack of Mendelian inheritance 

associated with schizophrenia and linkage studies, has lead to the polygenic 

CDCA model receiving wide acceptance. However, this model does not explain 

why mutations are often specific to families, or why schizophrenia, an illness 

associated with reduced fertility, has not had reduced frequency over a long 

period of time (McGrath et al., 1999;Nimgaonkar et al., 1997). It is now being 

argued schizophrenia is likely to derive from rare but highly penetrant highly 

penetrant mutations (McClellan et al., 2007;Mitchell and Porteous., 2011).  

Several features of schizophrenia support the view that it is a ‘common disease 

caused by multiple rare alleles’. For example, mutations are often specific to a 
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subset of families or an individual. This may explain why only a small fraction of 

genetic risk factors have been identified and consistently replicated in 

association and linkage studies (McGrath et al., 1999;Nimgaonkar et al., 1997). 

These studies assume unaffected individuals sharing the same SNP-defined 

haplotypes will share common risk variants and present a common phenotype, 

however rare but highly penetrant mutations causing schizophrenia may vary 

within the same haplotype block resulting in a lack, or reduced association 

which could be worsened with high sample numbers (reviewed by McClellan et 

al., 2007;Mitchell and Porteous., 2011).  

The genetic variants are also subject to effects from other genetic and 

environmental factors (refer to section 1.7). Many processes such as gene 

regulation, signal transduction and biochemical networks are influenced and 

regulated by the interaction of multiple genes (Moore., 2003). The modification 

of a gene’s output by the actions of another gene (known as epistatic 

interactions) results in differences in phenotype and has implications in disease 

phenotype (Cloninger., 1997;Moore., 2003). Epistatic interactions in combination 

with influencing risk factors make the identification of putative susceptibility 

genes in schizophrenia complex and very few methods have been developed to 

model epistasis.  

Epigenetic mechanisms, which regulate chromatin structure and gene expression 

including deoxyribonucleic acid (DNA) methylation and histone modification, 

without changing the genetic code, have been suggested to be responsible for 

some of the genetic anomalies associated with schizophrenia (Matrisciano et al., 

2012). A recent study conducted in monozygotic twins discordant for 

schizophrenia revealed numerous loci demonstrating differences in disease- 

associated DNA methylation (Dempster et al., 2011) suggesting environmental 

factors may exert their effects by influencing epigenetic mechanisms. Further 

support for a role of DNA methylation in modifying schizophrenia risk comes 

from studies that have observed increased expression of methylation enzymes in 

GABAergic neurons in the PFC of schizophrenia brains (Veldic et al., 

2007;Ruzicka et al., 2007;Matrisciano et al., 2012). 
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1.9 Investigating the genetic basis of schizophrenia 

1.9.1 Types of variants 

Different types of DNA variants are associated with the risk of schizophrenia. 

CNVs are the submicroscopic deletion or duplication of segments of DNA, ranging 

from kilobases (kb) to megabases (Mb) (Redon et al., 2006;Sebat et al., 2004). 

Genes present in this segment will therefore have a lower or higher copy number 

than the standard two copies per genome, and may be present in one, three or 

more copies. CNVs associated with schizophrenia are not just used as markers 

but are risk variants. Despite the majority of CNVs not contributing towards an 

altered phenotype, genome-wide SNP arrays have shown aberrations in CNVs are 

a risk factor in schizophrenia (Nuechterlein et al., 2004;Fioravanti et al., 

2005;Stefansson et al., 2008).  

Microsatellites are di-, tri- or tetra- tandem repeats in short sequences of DNA 

e.g. GTGTGT. They are often referred to as simple sequence tandem repeats 

(SSTRs) and tend to occur in non-coding DNA. Microsatellites have been useful in 

associating genes as risk factors of schizophrenia, such as Neuroregulin 1 

(Stefansson et al., 2003;Stefansson et al., 2002;Li et al., 2006;Allen et al., 

2008).  

SNPs are DNA sequence variations occurring when a single nucleotide base is 

altered at a specific locus between members of the same species. This alteration 

is usually a substitution of one nucleotide with another, deletions or insertions 

may occur. In a polymorphic locus, the frequency of the least commonly 

occurring allele (DNA variant) is termed the minor allele frequency (MAF), and 

must occur in at least 1% of the population to be classified a SNP. If a suspected 

DNA variant occurs more frequently in cases than healthy controls, this 

constitutes evidence of genetic association. SNPs can occur throughout the gene, 

with the majority occurring within non-coding introns; these SNPs are generally 

phenotypically silent (silent mutation) however some mutations can result in 

splice site mutation and lead to errors in intron splicing, protein formation and 

also the binding of transcription factors. Silent mutations in the coding regions 

of the gene (exons) are termed synonymous mutations; however mutations in 
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exons are often non-synonymous and can result in the alteration of a codon 

leading to a different amino acid and subsequent protein (missense mutation).  

SNPs are thought to occur as often as once every 600 bp (Lander et al., 2001), 

implying there could be as many as 10 to 30 million potential SNPs. A 

combination of SNPs with high linkage disequilibrium (LD) are inherited together 

and is regarded as a haplotype block (Gabriel et al., 2002). Many haplotype 

blocks can be transmitted through generations with little or no recombination, 

making it possible to track a mutation (Gabriel et al., 2002).  

 

1.9.2 Linkage disequilibrium (LD) 

LD also known as gamete phase equilibrium or allelic association, reflects the 

non-random association of two or more alleles at different loci on the same 

chromosome (Cardon and Bell., 2001).  Identification of a candidate region using 

LD is dependent on the association between the causal mutation and the marker 

allele (Cardon and Bell., 2001;Carlson et al., 2004;Li and Li., 2008).  

1.9.3 Linkage studies 

Linkage studies assess genetic loci in familial- based samples; providing the 

ability to investigate a trait with different alleles in different families (Cordell 

and Clayton., 2005). Linkage studies are effective for the detection of small but 

powerful causative polymorphisms and thereby support the concept that 

schizophrenia is a common disease with rare but highly penetrant alleles. Many 

loci have been associated with schizophrenia following linkage studies, however 

very few of those fulfilled criteria for statistical significance and subsequent 

studies often failed to repeat positive findings (Jurewicz et al., 2001). Linkage 

studies found an association between Disrupted-in-Schizophrenia-1 (DISC1) and 

cognitive disruption and psychosis in a Scottish pedigree (Millar et al., 2001), 

however, mixed results were found in several independent studies in multiple 

populations (Millar et al., 2001;Ekelund et al., 2004;Sachs et al., 2005), 

providing further evidence that schizophrenia is a disorder of rare but highly 

penetrant alleles. Due to the lack of recombination, linkage studies are a great 

way of analysing the interaction of environmental and lifestyle factors with 

genetic risk factors in the induction of a disease, however, they hold less power 
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than a genetic association study (Cordell and Clayton., 2005).  Unlike linkage 

studies, genetic association studies aim to assess correlations between a genetic 

polymorphism and a disease phenotype across the whole population.  

1.9.4 Genetic association studies 

Genetic association studies aim to investigate links between DNA variance and 

the general population, and include genome wide association studies (GWAS) and 

candidate gene association studies.  

Association between a phenotype and a haplotype of SNPs can be determined by 

identifying and genotyping a SNP which is representative of the whole set of 

polymorphisms belonging to the haplotype. These SNPs are called ‘Tag SNPs’. 

Haplotype analysis exposed significant associations between dystrobrevin-binding 

protein 1 (dysbindin or DTNBP1) and schizophrenia, but despite further evidence 

such as reduced DTNBP1 mRNA expression in frontal brain areas of schizophrenia 

patients, implicating DTNBP1 in schizophrenia a single susceptibility marker is 

yet to be found (Straub et al., 2002). Associations can also exist between 

markers which do not share the same chromosome, this is called epistatic 

interaction. 

An association study requires the genotyping of many SNPs located throughout 

the gene to ensure the indirect association is captured. As associations are 

generally not directly linked to the disease, they can hold low power and can 

present difficulty in analysis (Cordell and Clayton., 2005). Population 

stratification can also be a problem in association studies. Common markers for 

a certain phenotype may be more common in certain populations despite there 

being no true causal relationship. If present it can be responsible for concealed 

associations or the generation of false-positive results. Control subjects need to 

be carefully matched to the cases by ethnicity to avoid population stratification. 

It may be required to select samples from mixed populations or match 

geographical location and ethnicity of cases and controls (Cardon and Bell., 

2001;Carlson et al., 2004;Cordell and Clayton., 2005) and in complex disorders, 

such as schizophrenia, the accuracy of diagnostic criteria is important if 

diagnosis is performed by different medical practitioners. 
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1.9.5 Genome-wide association studies (GWAS) 

GWAS are pivotal in the discovery of genetic components implicated in the 

susceptibility of disease. With the ability to scan hundreds of thousands of SNPs 

per sample, GWAS prove to be an efficient process for associating common DNA 

variations in the population with a phenotype. Since the introduction of GWAS in 

genetic studies for a range of disorders, over 1 million causative SNPs have now 

been discovered (szgene.org). A further advantage of GWAS is that no 

assumption is required about the location or function of a causal SNP prior to the 

study, providing unbiased results. However, GWAS is an expensive process to 

run, hindering the quantity of studies performed, also the SNPs have to be 

present on the chip for them to be genotyped in samples, so the sampling of 

genetic variation may not be complete. Furthermore, despite the large sample 

numbers, only a few risk loci have reached statistical significance (reviewed by 

Mitchell and Porteous., 2011). 

1.9.6 Candidate gene association studies  

Genetic association studies aim to identify polymorphisms within genes that vary 

between individuals with different disease states such as schizophrenia cases 

and healthy controls. Similar to GWAS, candidate gene association studies 

involve the genotyping of SNPs that are generally not causative but are located 

in a region inherited with a causative SNP.  

1.9.7 Candidate gene criteria  

Biological evidence is required to identify good candidate genes for genetic 

association studies. For example, confirmation of the gene’s role in pathways 

associated with the disease, positional information or positive association from a 

previous association study is often required to consider the gene for a study 

(Hattersley and McCarthy., 2005). A number of candidate genes have been 

implicated in schizophrenia, a comprehensive database of these genes can be 

accessed at SZgene (http://www.szgene.org/). Though many putative 

susceptibility genes, such as COMT, DISC1 and Dysbindin, have been implicated 

in schizophrenia, biological evidence of their role and association is still required 

to implicate a gene as a definitive risk factor of schizophrenia.  

 

http://www.szgene.org/
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One of the most extensive and readily available sources of such evidence is 

provided by rodent models. Almost all mouse genes have orthologs in humans 

and further genetic manipulation provides an effective model to elucidate the 

roles and functions of putative candidate genes identified in association studies. 

1.10 Animal Models of Schizophrenia  

Animal models provide a unique way of analysing and understanding genetic, 

molecular and environmental influences implicated in the pathophysiology of 

schizophrenia. In vitro manipulation of cell biology can elucidate information 

surrounding the biochemical and molecular interactions involved in 

schizophrenia, yet it does not take into consideration the complex networks, 

interactions and potential regulatory and compensatory mechanisms which only 

an animal model can provide. However, schizophrenia is evidently a divergent 

multifactoral disorder with a wide range of symptoms and therefore difficulty 

arises in reaching a coherent animal model.  

The generation of an animal model which fully encompasses all symptoms of 

schizophrenia has been met with failure and as a result, animal models are 

focussed on one subset of features of schizophrenia. These models will possess a 

convergence of a variety of domains; behavioural, neurochemical and genetics 

and allow investigation into the impact of environmental factors and 

pharmacological interventions. Behavioural tests alone cannot be used to 

validate an animal model, as phenotypes such as deficits in sensorimotor gating 

or impaired learning cannot be said to be solely indicative of schizophrenia as 

they are often present in other psychiatric disorders (Perry et al., 2007;Perry et 

al., 2001;Bennetto et al., 1996). Therefore it is important animal models are 

tested for analogy to symptoms of schizophrenia through a variety of molecular, 

biochemical and behavioural measures. Animal models of schizophrenia have 

been generated through a number of methods. 

1.10.1 Pharmacological Models 

Alterations in neurotransmitters and neuropeptides are a major factor in 

schizophrenia, and attempts to replicate this in an animal model have been 

made using pharmacological intervention. The use of pharmacological agents to 
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create animal models generally aim to explore the neurotransmission hypotheses 

of schizophrenia. NMDA receptor antagonists provide a model to explore the 

glutamatergic hypofunction hypothesis of schizophrenia (reviewed by Morris et 

al., 2005). In healthy human volunteers, administration of non-competitive 

NMDA receptor antagonists phencyclidine (PCP, also known as angel dust) or its 

analogue ketamine induces positive, negative and cognitive symptoms of 

schizophrenia, whereas administration to schizophrenia patients exacerbates 

symptoms (Lahti et al., 2001;Malhotra et al., 1997). Animal models of symptoms 

derived from glutamate dysfunction can be achieved via the administration of 

PCP or ketamine, and generally result in a phenotype reminiscent of the 

negative and cognitive symptoms associated with schizophrenia, such as 

impairments in cognitive flexibility and sensorimotor gating (Egerton et al., 

2008;Sams-Dodd., 1996). Administration of ketamine and PCP in rats also 

reduces glucose utilisation in the PFC (hypofrontality) and network connectivity, 

providing evidence for a model of not only the symptoms of schizophrenia but 

also to investigate the underlying mechanisms and neural circuitry of 

schizophrenia (Cochran et al., 2003;Dawson et al., 2010;Dawson et al., 2011). 

The effectiveness with which ketamine and PCP models schizophrenia in rodents 

differs dependent of treatment regime, dose and testing end point. 

Administration of high doses of PCP results in neurotoxic effects; therefore low 

doses are generally administered to ensure any effects are reflective of 

schizophrenic pathology (Egerton et al., 2008).  

Another highly documented animal model of schizophrenia is based on the DA 

hypothesis (refer to 1.6.1); this is replicated in animal models via the 

administration of amphetamine and amphetamine-like compounds such as 3,4-

methylenedioxymethamphetamine (MDMA). Amphetamine and its analogs 

increase synaptic DA levels through a number of different mechanisms. These 

compounds act on transporters located in the plasma membrane, including the 

DA transporter (DAT), serotonin (5-hydroxytryptamine, 5HT) and norepinephrine 

transporter. Interaction with the DAT inhibits the reuptake of DA from the 

synapse into the nerve terminal. Amphetamine also can also induce the release 

of DA from synaptic vesicles back into the synaptic cleft, further increasing DA 

levels (reviewed by: (Fleckenstein et al., 2007;McMillen., 1983). Excess DA levels 

result in increased activation of DA D1 and D2 receptors, and administration of 
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amphetamine and its analogs consistently results in behaviour stereotypic of 

schizophrenia, such as hyperlocomotion and deficits in sensorimotor gating in 

rodents (Sharp et al., 1987;Tenn et al., 2003;Mansbach et al., 1988;Pijnenburg 

et al., 1975). Administration of amphetamine and MDMA act as psychostimulants 

in healthy volunteers and exacerbate psychotic symptoms in schizophrenic 

patients, even at doses which are sub-psychotic in healthy volunteers, these 

symptoms are reversed by the administration of antipsychotics (Angrist et al., 

1985;Angrist et al., 1980;Angrist and Gershon., 1970;Harris and Batki., 2000)  

In addition to animal models based on the glutamate and DA hypotheses of 

schizophrenia, models also exist based on the 5HT hypothesis (refer to 0). LSD 

induces sensory distortions, such as hallucinations and euphoria. Despite the 

mechanisms of action being unclear, LSD is structurally similar to 5HT and has 

been suggested to exert its actions through the 5HT receptor (5-HT2A) (Titeler et 

al., 1988;Marek and Aghajanian, 1996). Following administration of LSD to rats, 

sensorimotor deficits are induced, (Geyer and Braff., 1987;Braff and Geyer., 

1990;Farid et al., 2000) however using LSD to model symptoms of schizophrenia 

in rodents has been met with controversy due to lack of evidence for prominent 

aberrations in the serotoninergic system in schizophrenia. 

 

1.10.2 Developmental Models 

The induction of a lesion via a toxin or an environmental insult at an early stage 

of development provides valuable animal models of the neurodevelopmental 

hypothesis of schizophrenia. 

Lesion models are useful in evaluating and modelling the long term pathological 

changes associated with schizophrenia, which pharmacological models may not 

represent. Lesion models, usually created by the introduction of a toxin during 

early development, may not reflect the aetiology of schizophrenia. However 

they provide a model encapsulating the neurodevelopmental and circuitry 

disruption associated with schizophrenia (Lipska., 2004). A robust lesion model 

involves neonatal exocitoxic lesions of the rat ventral hippocampus, which 

results in deficits in spatial alternation learning, recognition memory, locomotor 
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activity, social interaction and sensitivity to amphetamine (Lipska., 2004;Lipska 

et al., 1995;Kruger et al., 2012;Wilkinson et al., 1993;Lipska et al., 1995). 

The introduction of environmental insults at an early stage of development 

provides a non-invasive animal model of schizophrenia-related behaviours. Rats 

are highly social animals, and studies have shown that in social isolation models, 

where pups are removed from their home cages into an isolated cage following 

weaning, results in altered neural development and behavioural changes 

reminiscent to those associated with schizophrenia, such as sensitivity to 

amphetamine and deficits in sensorimotor gating (Geyer et al., 1993, Wilkinson 

et al., 1994). However, it must be noted that these effects are strain-specific 

and can be observed in hooded Listar rats but not Wistar rats (Geyer et al., 

1993;Hall et al., 1997; Wilkinson et al., 1994). 

The loss of a parent during childhood has been associated with the increased risk 

of depression and psychosis (Kendler et al., 2002; Morgan et al., 2007). The 

disruption of usual mother–infant interactions (maternal deprivation model), 

where a pup is removed from it’s mother often for a short period of time (either 

a single 24 hours episode or brief period of 3-6 hours) results in changes in brain 

neurobiology such as sensitivity to dopaminergic drugs (Ellenbroek and Cools., 

1995; Hall et al., 1999) and behavioural changes associated with psychosis, 

including deficits in sensorimotor gating and latent inhibition (Geyer and Braff., 

1987). For these reasons, animal models of maternal deprivation are often used 

to investigate the neurodevelopmental hypothesis of schizophrenia. 

1.10.3 Genetic Models of schizophrenia 

Despite genetic association studies linking numerous genes to the pathology of 

schizophrenia, biological evidence is still required to explore and confirm the 

involvement of a candidate gene. Genetic animal models allow characterisation 

of genes of biological importance that are often implicated in disease-

susceptibility and provide several advantages over lesion and pharmacological 

models, such as exploring gene x environment and gene x drug interactions.  

The mouse genome can be altered by several different methods, such as random 

integration of transgenes or homologous recombination to change the 
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endogenous gene. Using the ‘cre/ loxp system’ allows tissue specific knockout or 

mutation of a gene in response to an external stimulus, and can therefore be 

induced at a specific time (Nagy., 2000). This is a particularly useful method to 

investigate the knockout of genes required for embryo development. Genes of 

interest can also be ‘knocked in’ and ‘knocked out’ via the insertion of DNA 

constructs, such as a ‘gene trap vectors’, which are accepted into the desired 

locus through homologous recombination (Evans and Kaufman., 1981). The 

insertion of a gene trap vector disrupts the gene of interest and will generally 

result in an inactivated (null) allele. Gene targeting and insertion of DNA 

constructs are predominately carried out in 129 mice, which are a proven 

germline competent embryonic stem cell strain, and have an impressive record 

of success in generation of knockouts (Melton., 1994;Simpson et al.,1997). 

Embryonic stem cells containing the inserted/recombined DNA locus are injected 

into mouse blastocysts and transferred into a pseudopregnant surrogate mother, 

however due to the poor phenotype of 129 mice, litters are often backcrossed 

onto a mouse strain expressing a more desired behavioural phenotype. The 

resultant phenotype of a mouse containing a targeted gene disruption is not only 

derived from the disruption created from the insert, but also from the 

cumulative effects and interactions elicited from background genes. It is 

therefore important that experimental mice are fully backcrossed onto one 

strain to eliminate variations in phenotype resulting from a mixed genetic 

background. 

The background strains must be carefully considered due to variations in areas 

such as locomotor activity, anxiety and sensorimotor gating (Bouwknecht and 

Paylor., 2002;Contet et al., 2001;Paulus et al., 1999;Rodgers et al., 2002). For 

example, 129 mice have a poor phenotype which may make subtle changes 

difficult to detect, whereas C57BL/6 strain of mouse portray high levels of open 

field (OF) locomotion and low levels of anxiety-related behaviours. Therefore 

subtle changes in a mouse model of anxiety would be easier to detect in a 

C57BL/6 strain, rather than a 129 strain.  For this reason C57BL/6 are commonly 

used for backcrossing (Bouwknecht and Paylor., 2002;Contet et al., 2001;Paulus 

et al., 1999;Rodgers et al., 2002). In order to characterise a novel genetically 

modified (GM) mouse, a range of molecular, biochemical and behavioural tests 

are required. 
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1.10.4 Behavioural tests 

Phenotypes of GM mice derive from the effects of the disrupted gene or over-

expressed transgene in pathways and can therefore be influenced by a number 

of factors such as age, hormones and the background strain, in addition to 

familiarity to the testing apparatus, level of illumination in testing rooms, 

odours, housing conditions and motivation (in food restricted animals). The 

function of a gene cannot be elucidated from a single behavioural test, and in 

general a battery of tests encompassing a wide range of behaviours are utilised. 

The elevated plus maze (EPM) and OF apparatus are designed to test locomotor 

activity and anxiety levels in the mouse. These paradigms are investigated by 

exploiting the mouse’s innate conflict between their natural tendency to explore 

and the need to be cautious when exposed to a new environment (Denenberg, 

1969). The OF behavioural test is widely used to test the efficacy of anxiolytic 

treatment or antipsychotics on hyperlocomotor activity.  

Deficits in sensorimotor gating often derive from an impaired response to 

sensory information in the CNS, resulting in the inability to filter important 

information from ‘noise’. It is a complex process involving multiple interactions 

with multiple neurotransmitters including DA, 5HT and glutamate (Ojima et al., 

2004;Quednow et al., 2004;Egerton et al., 2008) and is also thought to involve 

the prefrontal cortex and the hippocampus (Swerdlow et al., 1995; Japha and 

Koch., 1999). Deficits are a core symptom of schizophrenia and can be 

investigated in rodent models through prepulse inhibition (PPI) of the startle 

response. PPI assesses the ability of the nervous system to adapt to a strong 

sensory stimulus, following a weaker signal. If the startle response is not 

attenuated in response to a preceding weaker signal, it is likely deficits in 

sensorimotor manifest (Braff et al., 2001;Powell et al., 2009).  

Much attention has been focussed on the cognitive deficits in schizophrenia and 

a number of paradigms have been designed to assess different forms of cognition 

and memory in rodents. For example, spatial learning and memory can be tested 

using the Morris water maze; visual cues are used to help a rat or mouse learn 

and navigate a route to a hidden platform in a water arena (Morris et al., 2005). 

Executive function and cognitive flexibility can also be assessed through a rodent 
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version of the Wisconsin Card Sorting Task. The rodent attentional set shifting 

task (ASST) requires rodents to solve a series of discriminations containing an 

intra-dimensional to an extra-dimensional shift (Birrell and Brown. 2000). Tasks 

such as the ‘n-back task’ or ‘delayed non-match to sample’ have been designed 

to assess working memory, which requires synchrony between the prefrontal 

cortex and hippocampus (Sigurdsson et al., 2010;Yoon et al., 2008). During these 

tasks, rodents manipulate short term memory in order to reach a goal or reward, 

and involve delayed alteration in either a T maze or 8-arm radial maze.  

1.11 Na+ K+ ATPase pump 

The sodium potassium adenosine triphospatase (Na+ K+ ATPase) pump Na+ K+ 

ATPase pump is an integral membrane-bound enzyme present in the plasma 

membrane of all mammalian cells. It belongs to a family of P-type ATPases that 

includes the gastric H+ K+ ATPase and the Ca2+ ATPase (Lutsenko and Kaplan., 

1995). The Na+ K+ ATPase pump is essential for the normal functioning of all 

excitable tissues by establishing and maintaining resting membrane potential 

following depolarisation, it is therefore imperative in neuronal functioning 

(Moseley et al., 2003).  The pump maintains low internal sodium (Na+) and high 

internal potassium (K+ ) cellular concentrations through the active transport of 3 

Na+ ions out of the cell in exchange for 2 K+ ions moving in (Figure 1.1), and is of 

paramount importance for establishing and maintaining resting membrane 

potential and cellular volume (Blanco and Mercer., 1998). This process requires 

free energy released from the hydrolysis of adenosine triphosphate (ATP) to 

adenosine diphosphate (ADP); the release of inorganic phosphate from this 

reaction is often used as a marker of pump activity (Sarkar, 2002;Esmann, 1988). 

The activity of the Na+ K+ ATPase pump consumes approximately 30% of total 

energy in the body, whilst high expression in the brain consumes about 40-50% of 

brain ATP (Erecinska et al., 2004).  
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Figure 1.1 The Na+ K+ ATPase pump creates an electrochemical gradient across cell 
membranes by maintaining low internal Na+ and high internal K+ cellular concentrations. This 
is an active process involving the following steps: 

1. In conformation E1, the pump has a high affinity for sodium. Three sodium ions bind to 
the pump from the cytoplasmic side of the phospholipid bilayer membrane, which has a low 
sodium (Na+) concentration and a high potassium (K+) concentration.  

2. ATP phosphorylates the enzyme (represented by the P attached to the cytoplasmic side of 
the pump). This results in a change in pump conformation from E1 to E2, reducing the pumps 
affinity for sodium. The three sodium ion are released. 

3. Two potassium ions enter and bind to the pump in the E2 conformation. 

4. The pump becomes dephosphorylated, returning to conformation E1 and in the process 
transporting and releasing the potassium ions into the cell. The pump is ready to start again. 
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1.11.1 Structure and isoforms of Na+ K+ ATPase 

The Na+ K+ ATPase pump is a heterodimer comprising of two essential subunits; 

the catalytic α subunit which is responsible for ATP hydrolysation and Na+ and K+ 

transportation, and the regulatory β subunit required for protein folding and 

modulation of substrate affinity (Blanco and Mercer., 1998). Very little is known 

about the specific roles of the α/β heterodimers.  

The α subunit is a multi-spanning membrane protein, with a molecular mass of 

about 112 kilo Dalton (kDa), and contains binding sites for ATP and the Na+ K+ 

ATPase pump-specific inhibitor, ouabain (Jorgensen et al., 2003;Pedemonte and 

Kaplan, 1990). Four α isoforms exist (α1, α2, α3, α4) and three are abundant in 

the brain (α1, α2, α3) (Blanco and Mercer., 1998;Urayama et al., 1989;Lingrel et 

al., 2007;Orlowski and Lingrel., 1988). All four isoforms have a high degree of 

amino acid identity, however studies have shown isoforms differ in the kinetic 

properties and affinities for sodium, with α1 and α2 showing the most similarity 

(Jewell and Lingrel., 1991;Segall et al., 2001). The α isoforms are responsible for 

the tissue specific mechanisms of the Na+
 K

+ ATPase pump (Lingrel et al., 2007). 

The α1 subunit is present in neurons and glia and is thought to be essential for 

neurodevelopment as mice lacking α1 die at embryonic stage (Moseley et al., 

2007;Lingrel et al., 2003). The α2 isoform is found mainly in skeletal muscle, 

heart and brain, and may be involved in the regulation of the Na+/calcium (Ca+) 

exchanger, whilst α3 is found in neurons of the brain and central nervous system 

(CNS), and plays a role in neurotransmission (Moseley et al., 2007;James et al., 

1999;Lingrel et al., 2003;McGrail et al., 1991).  

The glycosylated β-subunit is 40-60 kDa in size and only crosses the membrane 

once. It is responsible for the normal activity of the membrane by maturation of 

the Na+ K+ ATPase pump and the transportation to the plasma membrane and 

(Lingrel et al., 2007;Noguchi et al., 1990;Geering et al., 1985). Moreover, the β-

subunit modulates the pump’s affinity for sodium and potassium (Eakle et al., 

1994;Jaisser et al., 1992). Without the β subunit, the α subunit is unable to 

adopt the conformation of the mature proteins and is quickly degraded (Geering 

et al., 1985). Three isoforms of the β subunit exist and they are all glycosylated 
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(β1, β2, β3) (Orlowski and Lingrel., 1988;Martin-Vasallo et al., 1989). The β1 

isoform is ubiquitous (in almost all tissues), whilst β2 is expressed in skeletal 

muscle and nervous tissues and β3 in the testis, retina, liver and lung (Lingrel., 

1992).   

A third, non-obligatory, small protein of around 6.5 kDa has also been identified. 

The γ subunit is thought to not be essential for Na+ K+ ATPase normal functioning 

however does have a regulatory role through the modulation of the α/β 

complexes (Mercer et al., 1993;Beguin et al., 1997;Therien et al., 1997). The γ 

subunit belongs to a family of small membrane proteins, the FXYD family 

(proline-phenylalanine-X-tyrosine-aspartate (PFXYD) refer to 1.12) (Sweadner 

and Rael., 2000;Crambert and Geering., 2003;Garty et al., 2002). 

1.11.2 Modulation of the Na+ K+ ATPase pump 

The exact mechanisms involved in the regulation and facilitation of the Na+ K+ 

ATPase pump remain largely unknown, however it is thought to be prominently 

maintained via the control of phosphorylation, after which a conformational 

transition occurs (E1 → E2). The main rate-limiting step of the Na+ K+ ATPase 

comes from the modulation of the conformational change of the phosphorylated 

enzyme from E1 → E2, and the conformational transition of the unphosphorylated 

enzyme from E2 → E1 (Lupfert et al., 2001;Jorgensen and Andersen., 1988) 

(Figure 1.1). The γ subunit and other members of the FXYD family are not 

essential for the functioning of the Na+ K+ ATPase pump; however have a role in 

the modulation of its activity (Beguin et al., 2001;Bibert et al., 2008;Crambert 

et al., 2005;Delprat et al., 2007). With the exception of the γ subunit (FXYD2), 

FXYD proteins do not form an integral part of the Na+ K+ ATPase pump, and 

therefore interaction and modulation must take place at the molecular level. It 

is thought the pump is regulated via the interaction of FXYD protein and the α/β 

heterodimer; however the specific interactions remain elusive. Beguin et al., 

(1997) have shown the γ subunit modulates the K+ activation of Na+ K+ ATPase 

pump by associating with α/β heterodimers. 
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1.11.3 Association between Na+ K+ ATPase activity and 
psychiatric disorders 

Reduced Na+ K+ ATPase activity has been observed in various disorders affecting 

the brain (Ischemia, epilepsy, depression and bipolar disorder) (Looney and El-

Mallakh., 1997;Mintorovitch et al., 1994;Renkawek et al., 1992). Ouabain-

induced inhibition of the pump in rats has been shown to result in increased 

spontaneous locomotor activity and reduced spatial learning in the rat which 

may model some aspects of symptoms associated schizophrenia and similar 

disorders (El-Mallakh et al., 2003;Riegel et al., 2009;Zhan et al., 2004). 

However, despite studies suggesting that Na+ K+ ATPase activity modulates 

neurotransmission of DA, GABA, norepinephrine and glutamate (Levi et al., 

1976;Rose et al., 2009;Westerink et al., 1989), little is known about the exact 

functioning of Na+ K+ ATPase in these disorders and further investigations are 

required to elucidate information about the role of Na+ K+ ATPase in psychiatric 

disorders.  

1.12 FXYD Family 

FXYD proteins are a family of single-span transmembrane proteins. So far, a 

total of 7 FXYD proteins have been identified at the mammalian level, all of 

which contribute to a variety of apparently unrelated physiological processes 

(summarised in Table 1.1). They are, however, all known to interact with the 

Na+ K+ ATPase pump in a tissue-specific fashion, altering the kinetics of the 

pump to meet specific tissue requirements (Crambert and Geering., 

2003;Geering., 2006;Li et al., 2004;Cornelius and Mahmmoud., 2003;Geering et 

al., 2003;Therien et al., 1997). The most highly characterised FXYD protein is 

the γ subunit of the Na+ K+ ATPase pump (FXYD2) (Bibert et al., 2008;Crambert 

et al., 2002;Lifshitz et al., 2006). FXYD2 is expressed in the kidney and is 

thought to regulate electrolyte homeostasis (Crambert and Geering., 

2003;Goldschmidt et al., 2004;Shustin et al., 1998). Protein expression and 

physiological roles of the FXYD family are summarised in Table 1.1. 
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Protein Gene Protein expression Physiological role References

Phospholemman (PLM) FXYD1 Heart, brain, kidney Substrate for proteinase A and C , Sweadner and Rael, 2000;Crambert et al., 

suspected role in heart contractility 2002;Moshitzky et al., 2012;Chen et al., 1997

The γ subunit of the FXYD2 Kidney Regulatory role in α/β complex activity and Beguin et al., 2001;Bibert et al., 2008;

Na+ K+ ATPase pump electrolyte homeostasis Crambert et al., 2005;Delprat et al., 2007

Mat-8 FXYD3 Stomach, colon, cancer cells Role in tumorogenesis Bibert et al., 2009;Arimochi et al., 2007;

Kayed et al., 2006

CHIF FXYD4 Kidney, colon regulatory role in electrolyte homeostasis Shustin et al., 1998;Goldschmidt et al., 2004

through mediating sodium absorption

RIC, dysadherin FXYD5 Kidney, intestine, heart, Regulates E-cadherin,  promotes metastasis Lubarski et al., 2005;Ino et al., 2002

lung, spleen

Phosphohippolin FXYD6 CNS, brain, inner ear Endolymph homestasis, Delprat et al., 2007a;Delprat et al., 2007b;

role in brain currently unknown Kadowaki et al., 2004

FXYD7 Brain, cerebellum Suscepted role in neuronal excitability Beguin et al., 2002;Crambert et al., 2003  

Table 1.1 Summary of FXYD family. FXYD proteins all modulate the Na+ K+ ATPase pump in a tissue-specific manner.  
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1.12.1 Structure 

The FXYD family consists of small hydrophobic proteins. Each protein has an 

extracellular NH2 terminus and contains a marked homology in a 35 amino acid 

sequence located in the transmembrane domain, this sequence is made up of 3 

exons and contains 7 invariant amino acids located within, and surrounding, the 

membrane span (Sweadner and Rael., 2000). With the exception of the 35 amino 

acid stretch, the structure of FXYD proteins has not been well conserved, around 

11 % of the amino acids of phospholemman (PLM) and (corticosteroid-induced 

factor) CHIF vary between the rat and mouse sequence (Garty and Karlish., 

2006). The short sequence proline-phenylalanine-X-tyrosine-aspartate (PFXYD) 

gives rise to the motif and is invariant among the proteins. It has been suggested 

that it is likely these residues are involved in a function common to FXYD 

proteins, such as interaction with the Na+ K+ ATPase pump (Beguin et al., 2001). 

FXYD proteins are modulatory proteins of the Na+ K+ ATPase pump, with the 

exception of PLM activity which has been shown to be modulated by protein 

kinase (PK) A (PKA)- and PK C (PKC)- dependent phosphorylation (Mahmmoud et 

al., 2000;Fuller et al., 2004).  

1.12.2 FXYD modulation of Na+ K+ ATPase 

Association between FXYD proteins and the Na+ K+ ATPase was first noted in 1978 

when a short polypeptide (later to be identified as the γ subunit) was 

characterised and shown to be directly associated with the renal Na+ K+ ATPase 

(Forbush et al., 1978;Collins and Leszyk., 1987). Further studies confirmed co-

immunoprecipitation and co-purification of the γ subunit with the Na+ K+ ATPase 

(Mercer et al., 1993;Arystarkhova et al., 2002). Studies investigating the 

functional relationship between the γ subunit and Na+ K+ ATPase have shown the 

pump is modulated by a change in confirmation of the enzyme from E2 to E1, 

increasing the affinity for ATP and increasing K+
 antagonism of cytoplasmic Na+ 

activation (Beguin et al., 1997;Pu et al., 2002;Therien et al., 1999).   

More recently, the functional relationship between the FXYD proteins and the 

Na+ K+ ATPase pump has shown to be a non-essential association between FXYD 
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and the α/β complex (Cornelius and Mahmmoud., 2003;Crambert and Geering., 

2003;Therien et al., 1997;Crambert et al., 2005;Geering et al., 2003). FXYD 

proteins associate with the α/β complex, inducing changes in K+ and Na+ 

apparent affinity. The modulation of pump kinetics differs depending on the 

FXYD protein and the α/β complex with which it associates. This suggests FXYD 

proteins modulate the kinetics of the pump specific to each tissue requirement 

(Table 1.2, Crambert and Geering., 2003;Geering., 2006;Li et al., 2004;Cornelius 

and Mahmmoud., 2003;Geering et al., 2003;Therien et al., 1997).  
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Protein Gene Role in Na+ K+ ATPase pump kinetics References

Phospholemman (PLM) FXYD1 Increases Na
+ 

binding affinity  by 30- 50%, Crambert et al., 2002;Cirri et al., 2011

FXYD2 Reduces apparent Na
+
  affinity, increases K

+
 affinity  during hyperpolarisation,  however Cirri et al., 2011;Li et al., 2004;

The γ subunit of the  decreases K+ affinity in high levels of Na+, it also increases ATP affinity Pu et al., 2002

Na+ K+ ATPase pump

FXYD3 Decreases apparent affinity for both Na+ and K+
Crambert et al., 2005

Mat-8

FXYD4 Induces a two- to threefold increase in apparent affinity for Na+ but does not affect affinity  Garty et al., 2002

for K+

CHIF FXYD5 Increases the apparent affinity for Na+ 2-fold, and decreased the apparent affinity for K+ by 60%  Miller and Davis, 2008

FXYD6 Association of FXYD6 with Na
+
 K

+
 ATPase α1/β1 slightly decreases the apparent K

+
 affinity and  Delprat et al., 2007

RIC, dysadherin  significantly decreases the apparent Na+ affinity. Association with the α1/β2 heterodimer  

increases their apparent K+ and Na+ affinity.

Phosphohippolin FXYD7 Association with Na+ K+ ATPase increases K+ affinity of  α1/ß1 and  α2/ß1, but not of  α3/ß1 Beguin et al., 2002

heterodimers

 

Table 1.2 The FXYD family each modulate the kinetics of the Na+ K+
 ATPase in tissue- specific ways 
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1.12.3 FXYD6 and schizophrenia  

A number of SNPs within the FXYD6 gene have been shown to be associated with 

schizophrenia in a Caucasian population, implicated this as a risk factor for 

schizophrenia (Choudhury et al., 2006;Choudhury et al., 2007). Despite the 

inability to confirm this association in Japanese and Chinese populations, several 

forms of evidence suggest a role for FXYD6 in the susceptibility to schizophrenia. 

FXYD6 is located on chromosome 11q23.3, a chromosomal region which has been 

previously linked with both schizophrenia and bipolar disorder (Grandy et al., 

1989;Egeland et al., 1987). Furthermore, in situ hybridization and western 

blotting have both reveal the expression of FXYD6 in regions of the brain 

associated with schizophrenia, in particular the PFC and hippocampus (Kadowaki 

et al., 2004). The PFC and hippocampus both have several roles in memory and 

cognition; they also share pathways to regulate working memory. It is therefore 

possible that impairments in FXYD6 may result in symptoms similar to 

schizophrenia, such as deficits in working memory.  

As of yet, FXYD6 has not been fully characterized, however, it has been revealed 

to co-localise, and associate, with the Na+ K+ ATPase pump in the inner ear, 

suggesting it has a role in the modulation of the pump (Delprat et al., 2007).  

This demonstrates a theorized mechanism of action by which FXYD6 and the Na+ 

K+ ATPase pump interact, based on the interaction of other FXYD members with 

this pump (Figure 1.2) (Geering., 2006). It is possible that aberrations in FXYD6 

may induce impairments in Na+ K+ ATPase activity. Impairments in Na+ K+ ATPase 

pump activity have been previously associated with psychiatric disorders (El-

Mallakh and Wyatt., 1995;Kurup and Kurup., 2003;Looney and El-Mallakh., 1997) 

and it would therefore be interesting to investigate further a role of Na+ K+ 

ATPase in schizophrenia. A mouse model expressing homozygous disruption of 

Fxyd6 has been created, however it has yet to be characterised and assessed for 

biochemical, molecular and phenotypic similarities to schizophrenia. 
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Figure 1.2 Proposed mechanism of the interaction between FXYD6 and Na+ K+ ATPase pump.  

Despite FXYD6 showing co-localisation and association with the Na+ K+ ATPase pump in the 
inner ear, the functional relationship between FXYD6 and the pump is currently unclear. It 
has been suggested the Na+ K+ ATPase pump is modulated by a non-essential association 
between FXYD proteins and the α/β complex, inducing changes in K+ and Na+ apparent 
affinity (Cornelius and Mahmmoud, 2003;Crambert and Geering, 2003;Therien et al., 
1997;Crambert et al., 2005;Geering et al., 2003).     Represents the potential association 
between FXYD6 and the Na+ K+  ATPase pump.  
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1.13 Mitogen activated protein kinase (MAPK) cascades 

MAPKs are serine/threonine specific protein kinases that respond to extracellular 

stimuli. They form part of the MAPK cascade; an evolutionarily conserved signal 

transduction cascade, responsible for the mediation of adaption and survival of 

eukaryotic cells’ in response to physical and chemical stress triggers (Johnson 

and Lapadat., 2002;Robinson and Cobb., 1997). Despite the majority of 

information on MAPK cascades deriving from yeast studies, more information is 

now becoming elucidated on the role of mammalian MAPKs. An important role of 

the MAPK cascades in the regulation of a diverse range of cellular processes such 

as gene expression, growth factors and hormones and cell survival/ apoptosis is 

apparent.  

MAPK cascades typically consist of a three kinase model that is activated through 

the sequential phosphorylation of MAPK by MAPK-kinases (MAP2Ks) (also known 

as MAPK/extracellular signal-regulated kinase (ERK)-kinases (MEKs), which are 

phosphorylated and activated by MAPKK-kinases (MAP3Ks) (Figure 1.3) (English et 

al., 1999). A number of distinct, but not mutually exclusive, mechanisms ensures 

specific MAPK activation in response to diverse cellular processes and 

extracellular stimuli (reviewed by (Johnson and Lapadat., 2002;Cobb and 

Goldsmith., 1995).  

1.13.1 Mammalian MAPK cascades 

In the MAPK cascades (reviewed by (Cobb., 1999), MAPKs are activated by 

MAP2Ks through common mechanisms at two regulatory phosphorylation sites 

located in the activation lip. This motif contains the sequence ‘threonine-X-

tyrosine’, both residues require phosphorylation, but can be phosphorylated 

independently of one another, and result in a conformation change. Once 

activated, MAPKs need to find their targets. Although it is necessary to limit the 

phosphorylation of irrelevant substrates, it is also important that each MAPK 

recognises a number of substrates to allow the regulation of many processes. 

Mechanisms ensuring specific MAPK cascade activations include scaffold proteins 

responsible for the organisation of specific cascades to specific activators, the 

regulation of physical interactions between members of a given cascade and the 
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indirect regulation of both ligands and inhibitors for cell-surface receptors that 

feed into MAPK cascades (Pierce et al., 2001;Su and Karin., 1996).   
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Figure 1.3 schematic diagram representing MAPK cascade. MAPK= mitogen activated protein 
kinase, MAP2K= mitogen activated protein kinase kinase, MAP3K= mitogen activated protein 
kinase kinase kinase.  

The MAPK cascades are typically initiated by the activation of MAP3Ks in response to diverse 
cellular processes and extracellular stimuli. MAP3Ks sequentially phosphorylate and activate 
MAP2Ks through common mechanisms at two regulatory phosphorylation sites. MAP2Ks 
proceed to phosphorylate and activate MAPKs in a similar manner. Once activated, MAPKs 
recognise a number of substrates to allow the regulation of many processes such as gene 
expression, cytokine production and apoptosis. 
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1.13.2 Different classes of mammalian Map kinases 

In mammalians, 4 distinct MAPK modules have been characterised (reviewed by 

(Johnson and Lapadat., 2002)). The four major MAPK members are: extracellular 

signal-regulated kinases (ERKs 1 and 2), C Jun amino- terminal Kinase (JNK1, 2, 

3), also known as stress activated protein kinases (SAPK), p38 (α, β, γ, δ) and 

the most recent to be identified, ERK5.  

ERKs 

The ERK signalling pathway was the first Mammalian MAPK pathway to be 

identified and is preferentially activated by growth- related signals. ERK1 and 

ERK2 are both activated by MKK1 (MEK1) and MKK2 (MEK2) through the 

concomitant phosphorylation of tyrosine and threonine residues, and 

subsequently undergo a conformational change. The activation of MKK1 and 

MKK2 is required for ERK activation, this occurs following phosphorylation by 

protein kinase Raf, which has in turn been activated by GTP-bound Ras.    

ERKs act to regulate cell proliferation and cell differentiation. Interestingly, it 

was found ERKs are involved in signalling pathways of mature neurons that no 

longer require differentiation (Sava et al., 2011). Further studies revealed ERKs 

are involved in long-lasting neuronal plasticity, including long-term potentiation 

and memory consolidation, controlled by excitatory glutamatergic signalling 

through AMPA and NMDA receptors (Winder et al., 1999;English and Sweatt., 

1997;Xia et al., 1996). These processes are crucial in the underlying mechanisms 

of complex behaviours in the brain such as learning and memory and a role of 

ERK in memory retention and fear conditioning has been confirmed in animal 

studies.  

JNKs 

JNK (also known as SAPKs) are important in controlling programmed cell death or 

apoptosis in response to stress stimuli such as cytokines, ultraviolet irradiation, 

heat shock, and osmotic shock. The JNK protein kinases are encoded by three 
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genes; JNK1 (also known as MAPK8), JNK2 (MAPK9) and JNK3 (MAPK10) and like 

the other map kinases, JNKs are also activated through the phosphorylation of 

tyrosine and threonine by inflammatory cytokines such as interleukin by MAP2Ks. 

Similar to ERKS, studies have revealed JNKs have a role in the mediation of 

cortical and hippocampal synaptic plasticity (Yang et al., 2011). 

P38 MAP kinase 

P38 MAP kinases have four isoforms and play an important role in the production 

of cytokines such as IL-1, tumour necrosis factor alpha (TNFa) following 

activation. Because the p38 MAPKs are key regulators of inflammatory cytokine 

expression, they appear to be involved in human diseases such as asthma and 

autoimmunity (Irusen et al., 2002;Wilms et al., 2003).  

MAP2K and MAP3K 

Unlike MAPKs which are specifically recognised by their corresponding MAP2Ks, 

each of the MAP2Ks can be phosphorylated and activated by several different 

MAP3Ks. These MAP3Ks recognise different MAP2Ks, enabling diversity in the 

activation of MAPK pathways upstream of MAP2K. JNK2 is activated by either of 

the two dual specificity kinases, MAP2K4 and MAP2K7. MAP3Ks (c-Raf, MEKK4, 

MLK3) are more complex and require multiple steps for activation. They are 

allosterically controlled enzymes residing in an inactive state. Small ligands such 

as (ras) partially activate MAP3Ks, resulting in the formation of dimers, which 

act to phosphorylate and activate one another (Cheng et al., 2005).  

1.13.3 MAPKs and schizophrenia 

Due to the pivotal role of MAPK in the integration, amplification and regulation 

of signal transduction and synaptic plasticity, it is not surprising that alterations 

in the expression and/or function of various intermediates MAP kinase cascades 

are involved in the neuropathophysiological events occurring in the brain in 

schizophrenia. Because of the role in glutamatergic signalling, many studies have 

focussed on the role of ERK in schizophrenia. However, recently, our lab found 

evidence of a putative role of the JNK2-MAP2K7 pathway in schizophrenia as a 

risk factor in schizophrenia. An expression study revealed MAP2K7 mRNA levels 
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are reduced in the PFC of post mortem schizophrenia brains. The role of MAP2K7 

as a risk factor in schizophrenia was strengthened further by a positive genetic 

association in a UK population (Winchester et al., 2012). The MAP2K7 protein is 

an upstream activator of JNK2 which mediates signal transduction and regulates 

many cellular processes such as cell growth and proliferation, transcription and 

apoptosis (Tournier et al., 2001;Holland et al., 1997;Mayer et al., 2005). JNK2 

has also been shown to have decreased expression and phosphorylation in the 

anterior cingulate cortex (Funk et al., 2011). However, further biological and 

functional evidence of a role for MAP2K7 in schizophrenia is required.  

1.14 Hypotheses and Aim 

The genetic interactions underlying the pathophysiology of schizophrenia still 

remain ambiguous. Many genes have been implicated as risk factors in this 

disorder however these genes still require biological evidence in order to 

confirm an association. Recent genetic association studies have implicated both 

FXYD6 and MAP2K7 as risk factors in the susceptibility to schizophrenia; these 

associations have been strengthened further by the expression of FXYD6 in 

schizophrenia-related brain regions, such as the PFC and the involvement of 

MAP2K7 in signalling cascades used in cognitive processes. We sought to 

investigate the functional roles of FXYD6 and MAP2K7 and explore whether these 

genes are risk factors in the susceptibility to schizophrenia.  

This study initially aims to investigate whether FXYD6 and MAP2K7 individually 

propose a risk to schizophrenia susceptibility in a north European population. 

Epistatic interactions between FXYD6 and MAP2K7 are also investigated in order 

to explore genetic interactions between these two genes in the risk to 

schizophrenia. 

The role of FXYD6 in psychiatric disorders is further explored by using mice 

homozygous for disrupted Fxyd6. FXYD proteins are known modulators of Na+ K+ 

ATPase activity and disruption of FXYD6 is hypothesised to result in altered 

activity of brain Na+ K+ ATPase. A molecular characterisation of these mice aims 

to confirm whether FXYD6 plays a modulatory role in brain Na+ K+ ATPase 

activity, and explores the role of FXYD6 in the neurochemical pathways 

associated with schizophrenia.   
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The expression of FXYD6 in the PFC and the hippocampus suggests this protein 

may be involved in the underlying mechanisms of cognition, such as working 

memory. Therefore the disruption of this gene could result in cognitive 

impairments in Fxyd6-/- mice. In order to investigate the role of FXYD6 in 

cognitive impairments, as well as behaviours associated with psychiatric 

disorders, such as sensorimotor gating, this study aims to explore a number of 

phenotypes in Fxyd6-/- mice in order to provide further insight into the 

functional role of FXYD6 in areas such as locomotor activity, cognition, 

anhedonia and in DA and glutamatergic circuitry.   

Similarly to FXYD6, the functional role of MAP2K7 is explored using mice 

haploinsufficient for Map2k7 (Map2k7+/- mice). Due to the recent association of 

MAP2K7 with schizophrenia and the role in MAPK cascades and glutamate 

signalling and synaptic plasticity, it is hypothesised the disruption of Map2k7 in 

mice will result in impairments to neurochemical circuitry associated with 

schizophrenia and psychiatric disorders, as well as impaired cognition. This aim 

is explored via the molecular and phenotypic characterisation of Map2k7+/- mice. 
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Chapter 2. Materials and Methods 
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2.1 Materials 

Routinely used chemicals and buffers are listed in Table 2.1 and Table 2.2 

respectively. Sources for chemicals not listed in these tables are detailed in the 

relevant methods section. 

Chemical Formula Source

Tris Base C4H11NO3

Potassium chloride KCl

Potassium phospate KH2PO4

Sodium chloride NaCl

Sodium hydrogen phosphate Na2HPO4

Sucrose C12H22O11

Adenosine 5′-triphosphate disodium C10H14N5Na2O13P3 

Ethanol C2H6O

Ethylenediaminetetraacetic acid (EDTA) C10H16N2O8

Imidazile.hcl C3H4N2 · HCl 

L-histidine C6H9N3O2

Magnesium Chloride MgCl2

Methanol CH4O

Ouabain octahydrate C29H44O12 · 8H2O 

Saponin C27H42O3

Sodium citrate Na3C6H5O7

Sodium phosphate dihydrate NaH2PO4.2H2O

Tween®20 C58H114O26

All oligo primers

BDH, UK

Sigma-Aldrich, 

UK

 

Table 2.1 Routinely used chemicals and their source. 
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Table 2.2 Recipes for routinely used buffers 

 

2.2 Genetic association study 

The genomic DNA (gDNA) sample set used for the genetic association study 

consists of The University College London (UCL) Schizophrenia Case Control 

samples (Pimm et al., 2005) and West of Scotland DNA samples.  

2.2.1 Power Calculation 

Power of sample size was calculated using G*Power 3.1.2, the study had a power 

level of 0.95. 

2.2.2 UCL schizophrenia case control samples 

The UCL schizophrenia case control gDNA samples were obtained from Professor 

Hugh Gurling (Pimm et al., 2005) and are comprised of 300 unrelated, gender 

mixed gender healthy controls (age- information unavailable) and 293 mixed 

gender schizophrenia participants (mean age 44, age range 19-91, mean age of 

onset 23) from Greater London (Pimm et al., 2005). Samples were included if 

both parents were of English, Irish, Scottish or Welsh descent and had at least 3 

grandparents of British Ancestry. Samples did not contain pedigrees. All 

schizophrenia participants have an International Classification of Diseases 

version 10 (ICD10) diagnosis of F20 Schizophrenia (World Health Organization., 

1992) and Schedule for Affective Disorders and Schizophrenia- Lifetime version 

(SADS-L) (Spitzer and Endicott., 1978) interview was completed for all case and 

control participants. Research subjects with short-term drug-induced psychoses, 

Buffer Recipe/ source

10x phosphate buffered saline 1.3M NaCl, 30mM NaH2PO4.2H2O, 

70mM Na2HPO4, pH 7.4. 

Diluted to 1x using dH20

20x Saline sodium citrate (SSC) buffer 3 M NaCl, 0.3 M Na3C6H5O7

10x TBS (forumla) 200 mM Tris base, 1.37 M NaCl, 

pH 7.6. Diluted to 1x using dH20
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learning disabilities, head injuries, and other symptomatic psychoses were 

excluded from the present study. The UCL schizophrenia Case Control samples 

have been shown not to have significant population stratification by ancestry 

(Pimm et al., 2005). The UCL samples were collected with full ethical consent, 

and the approval of the local ethical committee.  

 

2.2.3 West of Scotland samples 

The West of Scotland cohort was recruited mainly from in or around Glasgow. It 

consists of 198 healthy, unrelated mixed gender healthy controls (mean age 32) 

recruited from local higher education facilities and matched as a group for age 

and sex and DNA from 211 schizophrenia participants (mean age 44 (range 18-

78)) with an ICD10 F20 diagnosis, ascertained by a consultant psychiatrist and 

verified by researchers using structured interview and case note review; meeting 

ICD10 criteria for schizophrenia spectrum disorders. gDNA was isolated from 

blood by Demetrius Vouyouiklis and Catherine Winchester (PsyRING) using the 

DNAce Spin Blood Kit (BIOLINE., London, UK). These samples have been shown 

not to have significant population stratification. A multicentre Research Ethics 

Committee (MREC) approval letter (reference 03/0/093) was obtained for the 

West of Scotland samples. All participants gave informed consent. 

 

2.2.4 SNP selection 

Six tagging SNPs representing polymorphic loci in FXYD6 were selected using 

publicly available genetic recombination data from Utah residents with ancestry 

from northern and western Europe (CEU) ((The International HapMap 

Consortium., 2003) and SNPbrowser™ Software v4.0, ABI Life Technologies). The 

criteria for inclusion in the study were:  1:MAF was not lower than 4-10%, 2: 

SNPs were in an area of high LD and 3: SNP genotyping assays were commercially 

available. SNP loci and LD plot for FXYD6 can be observed in Figure 2.1 and SNP 

allele information in Table 2.3. TaqMan® SNP genotyping assays for each selected 

tagSNP were purchased from ABI Life Technologies. 
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Figure 2.1 Tagging SNP positions on a) FXYD6 locus and b) FXYD6 linkage disequilibrium plot 
.  

a) Six tag SNPs were selected for their ability to represent the polymorphic loci across the 
FXYD6 gene. They are located within introns and exons 

b) FXYD6 linkage disequilibrium plot (The International HapMap Consortium, 2003). Red 
squares indicate high linkage disequilibrium between two loci (LOD≥ 2, D’=1), followed by 
pink (LOD≥ 2, D’<1), blue < 2, D’=1) and white <1, D’<1. Large areas of red squares indicate 
haplotype blocks of loci likely to be inherited together. SNPs were chosen by their ability to 
represent different haplotypes.  
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SNP ID Assay ID Location Alleles Ancestral allele MAF

Allele x 

(SNP_VIC)

Allele y 

(SNP_FAM) Polymorphism 

rs30087563 2120467_10 Chr.11: 117707937 C:T T 0.465 C T Transition Substitution

rs3168238 32368298_10 Chr.11:117709645 G:T T 0.047 G T Transversion substitution

rs3885041 27877757_10 Chr.11: 117722742 C:T C 0.221 C T Transition Substitution

rs1815774 11910811_10 Chr.11: 117731439 G:C C 0.393 C G Transversion substitution

rs4938445 3236508_10 Chr.11:117745003 A:G G 0.336 A G Transition substitution

rs497768 1048679_10 Chr.11:117750740 C:G C 0.241 C G Transversion substitution

  

Table 2.3 FXYD6  SNP assay information.  

All SNP assays chosen for genotyping had a Minor Allele Frequency (MAF) higher than 4%. 
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2.2.5 Genotyping quality control 

To confirm that the selected tagSNPs were polymorphic in European populations, 

the Human Random Control DNA panel 1 (HRC1) (Sigma- Aldrich) was genotyped 

using FXYD6 TaqMan® SNP genotyping assays. Genotyping data quality was 

assessed using sample replicates across 96 well plates and not template control 

(NTC) samples were used to detect contamination. Failed and ambiguous 

samples were repeated. 

2.2.6 Genotyping 

Genotyping was done blind to sample diagnosis. Genotyping of the HRC1 gDNA 

sample set was carried out in 96 well plates using TaqMan® SNP Genotyping 

Assay 5' nuclease technology (ABI Life Technologies) according to the 

manufacturer’s protocol. Briefly, a genotyping reaction mix (1x TaqMan® 

Genotyping master mix part no. 4371355, 1x SNP genotyping assay, dH2O in a 

final volume of 15µl) was added to 5ng gDNA from each sample in a 96 well 

plate. Fluorescent amplicons were generated using standard thermal cycling 

conditions (Table 2.5 PCR conditions used for SNP genotyping.) using an ABI 

Prism Sequence Detection 7000 hardware and ABI Prism Sequence Detection 

7000 software. Ambiguous samples were repeated. An end point read of the 

fluorescent signals generated a fluorescent cluster plot (Figure 2.2). 
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SNP ID SNP VIC allele SNP FAM allele

rs3087563 C T

rs3168238 G T

rs3885041 G A

rs1815774 C G

rs4938445 A G

rs497768 C G  

Table 2.4 SNP genotypes 

 

  

 

 

PCR Cycle

Stage Temperature Time Cycles

1 50°C 2 minutes 1

2 95°C 10 minutes 1

3 95°C 15 seconds 40

4 60°C 10 minutes 1

 

Table 2.5 PCR conditions used for SNP genotyping. 
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FAM/FAM (G/G)

FAM/VIC (G/A)

VIC/VIC (A/A)

FAM/FAM (G/G)

FAM/VIC (G/A)

VIC/VIC (A/A)

 

 

Figure 2.2 Example of end point read cluster plot and genotype calling. 

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (alleles A/A),  = 
samples homozygous for SNP_FAM™ (alleles G/G), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (alleles G/A). 
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2.2.7 Haploview 

All genotyping data were uploaded to Haploview v4.2 

(www.broad.mit.edu/mpg/haploview) in Linkage Format as a .txt file. All data 

and statistical analyses were performed using Haploview v4.2.  

2.2.8 Quality Control 

Data quality was assessed using ‘check markers’ in Haploview. Genotyping call 

rate was assessed; this was taken as the percentage of samples which were 

successfully genotyped by each SNP genotyping assay and was used to give 

indication of quality of genotyping and power of the study. Hardy-Weinberg 

equilibrium (HWE) p-value (p<0.001) was determined for controls and cases for 

each SNP genotyping assay. This provided an indication of any deviation from 

genetic equilibrium and is used to primarily detect errors in genotyping. The 

output file also provides the following information for each SNP genotyping 

assay: expected heterozygote genotype numbers, observed heterozygote 

genotype numbers, MAF and alleles detected.  

 

2.2.9 Case/control association test 

Case/ control association tests were performed on allele frequencies for all SNP 

genotyping data. The output file provided information on the dominant allele, 

the allele frequency for case and controls, the Chi Square value and the p value. 

2.2.10 Linkage Disequilibrium blocks  

Linkage disequilibrium was investigated in all data; blocks sharing high levels of 

linkage disequilibrium were defined using Haploview’s ‘solid spine of LD’ method 

using D’ values greater than 0.8. Haplotype blocks were analysed for association. 

Output data provided information on frequency of haplotype associations, 

case/control ratios, chi square value and the derived p value. MAF and LD data 

from this study were compared to published CEU HapMap Data.  

http://www.broad.mit.edu/mpg/haploview
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2.2.11 Epistatic interactions with Map2k7 

Epistatic interactions between FXYD6 and MAP2K7 (MAP2K7 human data 

generated from C. Winchester) were investigated using SNPStats using a co-

dominant model (www.bioinfo.iconologia.net). Data were formatted under the 

following headings: ID, sex (1 male, 2 female), status (Ca (control), Co (case)), 

SNP ID (alleles) and analysis of interaction of covariates was used to indicate 

epistasis.   

http://www.bioinfo.iconologia.net/
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2.3 Mouse lines.  

2.3.1 Fxyd6 Founder Mice  

F1 heterozygote founder mice (Fxyd6+/-) were obtained from (Lexicon 

Pharmaceuticals Incorporated, 2007). The Fxyd6 knockout mice were generated 

via a gene trap mutation disrupting the Fxyd6 gene upstream of the first coding 

exon (Figure 2.3a). The F1 heterozygote founder mice had a mixed genetic 

background of C57BL/6J and 129SvEvBr strain.  

2.3.2 Map2k7 Founder Mice  

Founder Map2k7 mice were a gift from Professor. J. Penninger (Institute of 

Molecular Biology of the Austrian Academy of Science, Vienna, Austria). The 

Map2k7 knockout mouse was generated by replacement of a portion of exon 9 

with a PGK-Neo cassette (Figure 2.3b). Homozygous disruption of Map2k7 

(Map2k7-/-) results in embryonic lethality, thus only wildtype (Map2k7+/+) and 

heterozygous (Map2k7+/-) mice for Map2k7 were used in the following studies. 

The founder Map2k7 Mouse background comprised of at least 87.5% C57BL/6J 

(the rest is 129SvEvBrd (129) strain).  

2.3.3 Backcrosses 

All Fxyd6 and Map2k7 mice used in procedures were backcrossed onto 

C57b6/j_rcchsd strain to eliminate variability which may arise from a mixed 

genetic background. Mice used in chapter 4 were backcrossed for 3 generations, 

whilst mice used in chapter 5 were backcrossed for 4 generations, and mice used 

in chapter 6 were backcrossed for at least 5 generations. Mice used for 

generating backcrosses were aged 6-8 weeks, pair housed in a temperature and 

humidity regulated room with a 12-h dark/light cycle.  Animals were given 

access to food and water ad libitum.  
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Figure 2.3 Schematic diagram representing disruption of 

a) Fxyd6 gene in Fxyd6-/- mice showing the insertion of a trapping cassette up stream of the 
first coding exon. Adapted from (Lexicon Pharmaceuticals Incorporated, 2007)  

b) Disruption of Map2k7 in Map2k7 +/- mice showing the insertion of a PGK neo cassette into 
exon 9. Not drawn to scale. UTR= untranslated region. LTR= long terminal repeat. 
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2.4 Genotyping 

2.4.1 DNA extraction  

Ear clips were taken from all Fxyd6 and Map2k7 mice at 3 weeks of age. 

Genomic DNA was extracted by digesting ear clips in lysis buffer (0.8x cell lysis 

solution (Promega, Cat no A7933),  0.1M EDTA, 140 µg Proteinase K (Sigma-

Aldrich, UK) at a total volume of 200 µl) overnight at 50°C with agitation at 1000 

rpm for a duration of 10 seconds once every minute. The following day 

Proteinase K was deactivated by heating samples to 99°C for 15 minutes. 2x 

volume of 100% ethanol was added to all samples prior to centrifugation at 

13,000 rpm for 5 minutes. Supernatant was discarded and 1 ml of 70% ethanol 

(w/v) was added to all samples prior to centrifugation at 13,000 rpm for 2 

minutes.  Supernatant was discarded and samples were centrifuged at 13,000 

rpm for 5 seconds. Remaining supernatant was discarded and DNA pellet samples 

were air-dried for 30 minutes. DNA was re-suspended in 100 µl dH20 by 

incubation at 50°C for 20 minutes with agitation at 1000 rpm for 10 seconds per 

minute. DNA samples were stored at -20°C until use.     

2.4.2 Quantification of DNA 

The concentration DNA determined using a spectrophotometer (Gene Quant, 

RNA/DNA Calculator, Amersham Pharmcia Biotech) set to measure absorbance at 

wavelength 260 nm and path length 5 mm. Measuring the wavelength at 260 nm 

gives a direct indication of nucleic acid quantity. The following calculation was 

used to derive the exact concentration of DNA in each sample: 

OD260 x dsDNA co-efficient x path length correction = concentration of total DNA (μg/μL) 

2.4.3 Polymerase Chain Reaction (PCR) 

PCR was used to amplify regions of mouse genomic DNA extracted from Fxyd6 

and Map2k7 mice in order to determine their genotype using KOD Hotstart DNA 

polymerase (Merck Millipore, UK). Reaction components used in PCR reaction are 

outlined in Table 2.6 and conditions in Table 2.7. PCR primers specific for Fxyd6 

and Map2k7 were designed using OligoPerfect™ Designer (Invitrogen, UK). 

Proposed forward and reverse primers were ‘blasted’ using Nucleotide Blast 
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(NCBI) to ensure primers were specific to gene of interest. The wildtype forward 

primer for Fxyd6 targets the region upstream of the trapping cassette insert 

(intron 1) and the reverse immediately following the insertion site (intron 1) 

(Figure 2.4). To identify mice with disrupted copies of Fxyd6, a forward primer 

was designed to recognise the trapping cassette. Map2k7 wildtype mice were 

distinguished from Map2k7 heterozygote mice by primers designed to target 

regions either side of the trapping cassette insertion site (exon 9). A primer was 

designed to anneal to the trapping cassette in order to identify heterozygote 

mice (Figure 2.4). Primer sequences are displayed in Table 2.8 and example 

genotype results can be observed in Figure 2.4b and Figure 2.5b. 
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Figure 2.4 Fxyd6 Genotyping PCR primer locations  

a) Fxyd6. Wildtype primers (F1, R2) are adjacent to cassette insert site (upstream of the 
first coding exon), the presence of the cassette will inhibit the annealing of the wildtype 
primers. F2 primer has been designed to target the insert, identifying heterozygous and 
knockout mice.  

b) Representative PCR gel used to identify genotypes. Fxyd6+/+ mice (+/+) have a single band at 
366 bp, Fxyd6+/- mice (+/-) have two bands at 288 bp and 366 bp, Fxyd6-/- mice (-/-) have a 
single band at 288 bp. 1 kb= 1 kb pair ladder. 
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Figure 2.5 Map2k7 Genotyping PCR primer locations  

a) Map2k7. Wildtype mice are identified by primers F1 and R1, located in introns flanking 
exon 9, the site of trapping cassette insertion. The disruption of Map2k7 by the insertion of 
the trapping cassette is identified by primers F2 and R2, located along and immediately after 
the trapping cassette.   

b) Representative PCR gel used to identify genotypes. Map2k7+/+ mice (+/+) have a single 
band at 360 bp, Map2k7+/- mice (+/-) have two bands at 261 bp and 360 bp, Map2k7-/- mice 

are embryonically lethal. 1 kb= 1 kb pair ladder. 
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Component Final Concentration

KOD Hot Start DNA Polymerase buffer (Merck Millipore, UK) 1X

MgSO4 1.5 mM

dNTPs 0.2 mM (each)

PCR Grade Water

Primers 0.3 uM each

gDNA 0.1 ug

KOD Hot Start DNA Polymerase 1 µl

DMSO 2%

 

Table 2.6 PCR master mix components and concentrations optimised for use with primers 
designed to genotype Fxyd6 and Map2k7 mice.   

 

 

Step Conditions

1. Polymerase Activation 95 °C for 2 min

2. Denature 95 °C for 20 s

3. Annealing

        Fxyd6 58 °C for 10 s

        Map2k7 66 °C for 10 s

4. Extension 70 °C for 10 s

Repeat steps 2-4 30 Cycles

  

Table 2.7 PCR reaction conditions optimised for primers targeted to Fxyd6 and Map2k7. 
 

 

Gene Primer Sequence 5' → 3'

Fxyd6 Wildtype forward TACCTCACACCTCAGTTCCAAGTGG

Cassette forward AATGGCGTTACTTAAGCTAGCTTGC

Reverse GGGTGGGAGTTCTCGCCTATCACAG

Map2k7 Wildtype Forward GCTCTGTGACTTTGGCATCA

Wildtype Reverse GCCCCAACTAACCAGTGAGA

Cassette Forward GGATGTGGAATGTGTGCGAG

Cassette Reverse TCCCCAGTAGCATGAGGACAC  

Table 2.8 Sequences of forward and reverse primers used to target and amplify regions of 
Fxyd6 (refer to Figure 2.4a)Figure 2.4 Fxyd6 Genotyping PCR primer locations and Map2k7 
(refer to Figure 2.4b).  
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2.5 Na+ K+ ATPase activity in Fxyd6 mice 

2.5.1 Preparation of crude plasma membrane 

Mice (male, 12 weeks old) were killed by cervical dislocation, the brains 

removed rapidly on ice and the prefrontal cortex and hippocampus dissected and 

immediately frozen on dry ice. Brain regions were stored at -80°C until use and 

stored overnight at - 20°C prior to testing. Each frozen brain region was 

homogenised using a plastic Dounce in 300 µl ice cold 0.32 M sucrose solution 

buffer and further homogenised by being passed through a 26g needle 10 times. 

Homogenates were centrifuged at 1000 x g for 10 minutes at 4°C (Sigma 2K15 

rotor Nr. 12148) and supernatants were extracted into a new eppendorf. Crude 

plasma membranes from supernatants were obtained via differential 

centrifugation using sucrose gradients, briefly supernatants were centrifuged at 

1000 x g for 10 minutes at 4°C (Sigma 2K15 rotor Nr. 12148). The resultant 

supernatants were layered over a sucrose gradient of 300 µl 0.32 M ice-cold 

sucrose and 700 µl 1.2 M ice-cold sucrose in Thinwall Polyallomer tubes 

(Beckman Coulter) and centrifuged at 34,000 x g for 50 minutes at 4°C in a 

TLS55 Beckman rotor. The fraction collected between 0.32 M and 1.2 M sucrose 

was diluted 1:3 with ice-cold bi-distilled water, then layered over 500 µl  ice 

cold 0.8 M sucrose and centrifuged at 34,000 x g for 30 minutes. The pellet was 

re-suspended in 300 µl ice cold 5 mM imidazole- HCl buffer (pH 7.4), an aliquot 

was taken for protein quantification, and the rest stored over night at -20°C.  

2.5.2 Protein quantification 

Protein concentration of plasma membrane fractions were determined by an 

adapted version of the method of Bradford (Bradford, 1976). Briefly, a standard 

curve of bovine serum albumin (BSA, Sigma-Aldrich, UK) ranging from 0 µg/ml to 

250 µg/ml was prepared in respective homogenisation buffer.  Samples, 

depending on size of tissue region, were either used neat or diluted in 

homogenisation buffer to ensure protein concentration is within the range of the 

standard curve. 10 µl of each sample or BSA standard was pipetted, in triplicate, 

into a flat-bottomed 96 well plate and 200 µl of 1:4 protein assay dye reagent 
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concentrate (BIO-RAD, Bio-Rad laboratories, UK) (diluted with ddH20) was added 

to each well and incubated at room temperature for 10 minutes to allow colour 

development. Absorbance was read at OD 630nm using Revelation software on a 

DYNEX MRX plate reader. A linear regression of optical density vs. protein 

concentration was calculated from the known standard concentrations and the 

concentration of each sample was calculated from the standard curve.  

2.5.3 Na+ K+ ATPase activity assay 

The day following the preparation of crude plasma membrane, Na+ K+ ATPase 

activity was tested in samples by a method adapted from (Sarkar., 2002). 

20 µg/ml protein suspended in imidazole.HCl buffer (pH 7.4) was added 1:1 to 2x 

ATPase buffer (60 mM imidazole-HCl, 280 mM NaCl, 60 mM histidine, 20 mM 

MgCl2, pH 7.4) and 1:1 to ouabain-ATPase buffer (60 mM imidazole-HCl, 50 mM 

KCl, 20 mM ouabain, 280 mM NaCl, 60 mM L-histidine, 20 mM MgCl2, pH 7.4) 

(total volumes 100 µl). Samples were incubated in the dark, on ice for 60 

minutes. 20 mM Na.ATP was made up in the respective buffer and 100 µl was 

added to all samples to give a final concentration of 10 mM. Samples were 

incubated for 5 minutes at 37°C with agitation at 1000 rpm for a duration of 10 

seconds per minute. Reactions were stopped via the addition of 400 µl BioMol 

Green (Enzo Life Sciences, Inc, Exeter UK) and the optical density was read 25 

minutes later at 630 nm  wavelength on Dynex Technologies MRX plate reader. 

Background was deducted using tissue-free control samples. Na+ K+ ATPase -

specific activity was calculated by deducting the signal from samples incubated 

in ouabain- ATPase buffer from samples incubated in ATPase buffer.  

2.6 Confirmation of protein expression by western 
blotting  

2.6.1 Samples 

Samples used for western blotting were either prepared as crude plasma 

membranes (section 2.5.1) or brain regions were dissected on ice and 

homogenised with a plastic Dounce in 300- 500 µl ice cold 0.32 M sucrose 

solution buffer. The homogenates were further homogenised by being passed 

through a 26g needle 10 times.  
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2.6.2 Sample preparation 

32.5 μg of crude plasma membrane or 16 μg of protein homogenate (determined 

from the protein concentration (see section 2.5.2)) was added to 4x NuPAGE®  

LDS sample buffer (Invitrogen, UK) and 10x NuPAGE® reducing agent (Invitrogen, 

UK), and denatured at 70°C for 10 minutes.   

 

2.6.3 SDS-polyacrylamide gel electrophoresis (-PAGE) 

Proteins were separated by molecular weight using SDS-PAGE gel electrophoresis 

in the XCell SureLock Mini-Cell system (Invitrogen, UK).  10 μl of pre-stained 

Novex® Sharp Protein Standard ladder (Invitrogen, UK) was added to the first 

well of a 10% NuPAGE® Novex® Bis-Tris gel (Invitrogen, UK). 20 μl of prepared 

samples were added to the subsequent wells. The gel was run in 1x NuPAGE® 

MOPs SDS running buffer (Invitrogen, UK) at 200 V for 45 minutes, or until the 

dye had run to the bottom of the gel, with a Gibco BRL PS304 Electrophoresis 

power supply (Gibco BRL Life Technologies). 

2.6.4 Transfer of protein to nitrocellulose 

Following the running of samples, proteins were transferred onto an Invitrolon™ 

Polyvinylidene fluoride (PVDF) membrane (0.45 µm pore size, Invitrogen, UK). 

Membranes were submerged in 100% methanol (>1 minute) prior to being soaked 

in 1x NuPAGE® transfer buffer. All filter papers and sponges were soaked in 1x 

NuPAGE® transfer buffer. The gel was carefully removed from the gel plates and 

the transfer cassette was assembled in the following order: cassette back, 

sponges x3, filter paper, gel, PVDF membrane, filter paper, sponges x4, cassette 

front and inserted into the MiniCell System. The system was filled with 1x 

NuPAGE® transfer buffer and proteins were transferred at 30V for 2 hours using a 

Gibco BRL PS304 Electrophoresis power supply (Gibco BRL Life Technologies).  

 

2.6.5 Protein detection 

Following protein transfer, membranes were rinsed twice in ddH20 and blocked 

with 3% (w/v) milk powder (Marvel) in TBS/Tween (0.05% (w/v) for 2 hours at 
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room temperature with gentle agitation. Membranes were further incubated 

overnight in the relevant blocking buffer and primary antibody (Table 2.9). 

After overnight incubation, the membranes were washed in TBS/Tween (0.05% 

(w/v)) followed by 2hr incubation with the appropriate secondary antibody in 1% 

milk powder in TBS/Tween (0.05%) at room temperature (see Table 2.10). 

 Antibody Species Working dilution Supplier  Antibody

α-Fxyd6 Rabbit 1:1000 Gift from B. Delprat

α-Actin-HRP Rabbit 1:2000 Santa Cruz

α-Actin-HRP Goat 1:5000 Santa Cruz

α-Na
+
 K

+
 ATPase α1 subunit Mouse 1:1000 Abcam

α-Map2k7 Rabbit 1:1000 Calbiochem

α-GluR2 Rabbit 1:1000 Sigma

α-GAD Rabbit 1:500 Sigma

  

Table 2.9 The primary antibodies and their working dilutions used for western blotting  

 

 

 Antibody Working dilution Supplier

α- Mouse HRP 1:5000-1:10,000

α- Mouse HRP 1:5000-1:10,000

                                                                                                       

Santa Cruz

Table 2.10 The secondary antibodies and their working dilutions used for western blotting 

 

2.6.6 Protein Visualisation 

Enhanced chemiluminescence (ECL) used for protein visualisation was dependent 

on primary antibody. FXYD6 required homemade ECL (1:1 solution A (33% (w/v) 

DMSO, 2.5 mM luminol (Fluka analytica, UK), 0.9M coumaric acid (Sigma- Aldrich, 

UK), 0.1M Tris) solution B (0.02% (v/v) H2O2 in 0.1M Tris)) applied for 1 minute. 

All other antibodies required Millipore Immoblin (Fischer Scientific, UK), applied 

for 5 minutes and exposed to X-ray film for 15 seconds- 20 minutes and 

developed using an automatic developer (HyperProcessor, Amersham) 

The film images were scanned to obtain a digital image and the amount of 

protein in samples was estimated using image analysis (Image J).  
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2.7 Gene transcript expression RTq-PCR 

2.7.1 Total RNA isolation 

PFC samples were homogenised in Buffer RLT with (% (v/v) β-mercaptoethanol) 

using Hybaid Ribolyser tubes (Lysing Matrix D, Qbiogene., UK) and total RNA was 

isolated using silica-based membrane spin columns in RNEasy mini Kit (Qiagen., 

UK), according to the manufacturer’s protocol. Total RNA was eluted using 

DNase/RNase free water (Ambion., UK) and contaminating DNA removed by 

treatment with DNaseI (Invitrogen., UK) according to manufacturers protocol. 

The quality of total RNA was analysed using the Nano chip Bioanalyser 2100 

(Agilent Technologies., UK) and quantified using Nanodrop™ 1000 (Thermo 

Scientific., UK).  Samples were stored at -80°C until use. 

 

2.7.2 First Strand CDNA Synthesis  

First strand cDNA was synthesised from 1 µg of total RNA using SuperScript® 

VILO™ cDNA Synthesis Kit (Life Technologies., UK) according to the 

manufacturers protocol. In order to detect contamination, samples with no 

template and no enzyme were included. Samples were stored at -20°C until use.  

2.8 Quantitative real time reverse transcriptase PCR (RTq-
PCR) 

2.8.1 Primers 

Gene expression assays were purchased from Applied Biosystems (refer to Table 

2.11). Β2M, ribosomal 18s and GAPDH were used to create a geometric mean to 

normalise CT values generated from genes of interest (Fxyd6_m1, Fxyd6_g1, 

Map2k7 10/11, Map2k7 1a/1b, PVALB, Grin1). 
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Gene expression assay Gene Amplification region Status Source

β2M β2M Housekeeping gene Applied Biosystems

18s 18s Housekeeping gene Applied Biosystems

GAPDH GAPDH Housekeeping gene Applied Biosystems

Fxyd6_m1 Fxyd6 E xons 1 & 2 Gene of interest Applied Biosystems

Fxyd6_g1 Fxyd6 Exons 3 & 4 Gene of interest Applied Biosystems

Map2k7 10/11 Map2k7 Exons 10 & 11 Gene of interest Applied Biosystems

Map2k7 1a/1b Map2k7 Exons 1a & 1b Gene of interest Applied Biosystems

PVALB PVALB Gene of interest Applied Biosystems

Grin1 Grin1 Gene of interest Applied Biosystems  

Table 2.11 Gene expression assays were purchased from Applied Biosystems. Β2M, ribosomal  
18s (18s) and GAPDH were used to create a geometric mean to normalise CT values 
generated from genes of interest.  

 

2.8.2 RTqPCR 

500 ng of RNA equivalent 1st strand cDNA and mastermix (1x TaqMan®Gene 

Expression Master Mix (Applied Biosystems), 1x Gene Expression Assay (Applied 

Biosystems) and nuclease-free H2O to a final volume of 25 µl) was aliquoted, in 

triplicates, into a 96 well MicroAmp™ optical reaction plate (Applied Biosystems) 

and sealed with MicroAmp™ optical adhesion film (Applied Biosystems). To 

detect contamination, cDNA samples of known genotype were used as controls 

controls (section 2.7.2) and no template controls were included.  PCR thermal 

cycling conditions were ran for 50°C for 2 minutes, 90°C for 10 minutes followed 

by 40 cycles of 95°C for 15 seconds and 60°C for 10 minutes on the ABI SDS7000.  

2.8.3 Gene expression quantification 

CT values (cycle threshold) were exported for each well. The CT value is defined 

as the number of cycles required for the fluorescent signal to exceed reach an 

arbitrary set fluorescent threshold in the linear phase of the amplification level, 

this level is set as a threshold of 0.3. As CT levels are inversely proportional to 

the amount of target nucleic acid in the sample, values can be used to quantify 

gene expression using LinRegPCR. No template controls were checked for non-

amplification. Triplicates were checked for outliers using the Grubbs test 

(GraphPad, http://graphpad.com/quickcalcs/Grubbs1.cfm) and sample averages 

were calculated. REST V2.0.13 (Qiagen., 2009) was used to calculate relative 

expression of each gene of interest, values were normalised by using a geometric 

http://graphpad.com/quickcalcs/Grubbs1.cfm
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mean from the three reference genes using amplification efficiencies obtained 

from LinReg. 2000 iterations were used and a hypothesis test was performed 

with 10,000 random reallocations of samples and controls between the groups, 

significance was set at p<0.05.  

  

2.9 In situ Hybridisation 

 

2.9.1 Labelling Oligonucleotide probes 

A 7 µl mastermix containing 5ng oligonucleotide, 1x TdT buffer, 3.6 µl α33P-dATP 

and 1.5 µl TdT enzyme was incubated at 32 °C for 60 minutes (Amersham 

Biosciences, UK). 50 µl DEPC-treated water was added to the mastermix and 

labelled nucleotide probes were separated from excess radioactivity using 

Biospin 6 Tris Columns (Biorad, 732- 6227, UK), according to manufacturer’s 

instructions. The radioactivity counts of probes were calculated using a liquid 

scintillation analyser (2200CA, Tricarb-Packard). Probes with a radioactivity 

count between 100-500 x 103 dpm/ µl in a total volume of 50 µl were considered 

successfully labelled.  

 

2.9.2 Slide preparation and fixation 

Brains were removed from -80°C and left to equilibrate to -20°C for at least 1 

hour prior to sectioning. 20 µm coronal sections containing the prefrontal 

cortex, striatum/ nucleus accumbens, hippocampus, substantia nigra on the 

cerebellum were collected using a -20°C cryostat (CM1850, Leica). Sections were 

thaw-mounted onto Poly-L-Lysine coated slides (0.01% w/v) and air-dried for 

around one %hour prior to fixation in 4% (w/v) paraformaldehyde (in PBS) for 5 

minutes. Slides were then transferred into a sterile trough containing 1 x PBS 

then dehydrated in 70 % (v/v) ethanol followed by 95% (v/v) ethanol for 5 

minutes each and stored under 100% ethanol at 4°C until use.  
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2.9.3 Hybridisation 

 
Sections were removed from ethanol and air-dried for ~30 minutes. Experimental 

sections were incubated in ‘Hot’ probe buffer (4 µl labelled probe, 200 µl 

hybridisation buffer (4x SSC, 50% deionised formamide, 10% dextran sulphate, 

0.5M sodium phosphate, 0.1M sodium pyrophosphate, 54 mM polyadenylic acid 

and covered with Parafilm® to ensure sections and probes do no dry out. 

Controls sections were incubated in ‘Cold’ probe buffer (4 µl labelled probe, 4.5 

µl unlabelled probe, 200 µl hybridisation buffer) and covered with Parafilm®. All 

sections were placed in petri- dishes containing SSC (150 mM NaCl, 15 mM 

Na.Citrate) -soaked tissue to maintain humidity and incubated overnight at 

42°C. 

 

2.9.4 Hybridisation- washing  

Slides were removed from the oven and submerged in 1x SSC at 55°C. Parafilm® 

covers were carefully removed and slides were transferred into a fresh trough of 

1x SSC at 55°C for 30 minutes with slight agitation.  Slides underwent a 

dehydration step by immersion in 0.1 x SCC, 70% (v/v) ethanol and 95% (v/v) 

ethanol for 20 seconds each with slight agitation. Slides were air-dried for ~ one 

hour and placed under BiomaxTMMR films (Kodak) for 1 to 3 weeks. 

 

2.9.5 Film Development and analysis 

BiomaxTMMR films (Kodak) were developed using an automatic developer 

(HyperProcessor, Amersham, Piscataway, NJ, USA). mRNA levels were analysed 

using Image J software. Non-specific labelling (slides labelled with ‘cold probe’) 

was deducted from total labelling (slides labelled with ‘hot probe’) to quantify 

mRNA levels. 
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2.10 Phenotyping  

2.10.1 Primary phenotype screen 

A primary phenotype screen was carried out on Fxyd6+/+ and Fxyd6-/- mice and 

Map2k7+/+ and Map2k7+/- mice as a first screen for phenotype abnormalities. This 

consisted of a modified version of the Smithkline Beecham, MRC Harwell, 

Imperial College, the Royal London Hospital Phenotype Assessment (SHIRPA) 

assessment. PPS was carried out as outlined in Table 2.12. Weekly weight 

measurements were catalogued and a growth curve for each strain was 

produced. Fxyd6+/+ and Fxyd6-/- mice n=10 per group, aged 7 weeks. Map2k7+/+ 

mice n=9 and Map2k7+/- mice n=7 per group, aged 6 weeks. Data analysed by 

Student’s t-test. 
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Testing location Measure Response score

In arena Body position 0= Inactive, 1= Active, 2= Excessive Activity

Spontaneous activity 0= Absent, 1=Intermittent  rapid darts, 2= Excessive rapid darts

Tremor 0= Absent, 1= Present

Urination Quantity

Defecation Quantity

Bizarre behaviours 0= Absent, 1= Present

Convulsions 0= Absent, 1= Present

Palpebral closure 0= Eyes fully open, 1= Eyes mid closed, 2= Eyes fully closed

Gait 0= Fluid movement, 1=Lack of fluidity in movement

Pelvic Elevation 0= Flattened, 1=Normal (3 mm elevated), 2= Elevated

Coat appearance 0= Tidy and well groomed, 1= Ungroomed 

Piloerection 0= Absent, 1= Present

Tail Elevation 0=Dragging, 1= Horizontal extension, 2= Elevated/ straub tail

Restrained Pinna reflex 0= Present, 1= Absent

Cornea reflex 0= Present, 1= Absent

Lacrimation 0= Absent, 1= Present

Evidence of biting 0= Absent, 1= When handled

Vocalisation 0= Absent, 1= Present

Trunk curl 0= Absent, 1= Present

Other Hanging wire n=3 mean latency to fall from wire (three 120s trials)

Contact righting reflex 0= Present, 1= Absent
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Table 2.12  Primary phenotype screen testing parameters.  

The battery of tests is designed to reveal any basic phenotype abnormalities in a new mouse 
line. Phenotyping is carried out either with a free moving mouse in an arena or by 
restraining the mouse.  
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2.10.2 Rotorod 

The rotorod assesses motor coordination and consisted of a rotating drum set to 

accelerate gradually. Latencies for mice either to fall from the rod or to 

passively rotate with the rod were recorded. The speed was initiated at 4 RPM, 

and incrementally increased until 40 RPM was reached within a 5 minute time 

period. Testing was repeated three times with a 15 minute resting interval 

between tests. Fxyd6+/+ and Fxyd6-/- mice n=10 per group, aged 7 weeks. 

Map2k7+/+ mice n=9 and Map2k7+/- mice n=7 per group, aged 6 weeks. Data 

analysed by Student’s t-test. 

2.10.3 Plus Maze  

Plus maze apparatus consisted of two opposing enclosed, dark arms (30 cm x 6 

cm) and two opposing open light arms (30 cm x 6 cm). The mouse was placed in 

centre of the maze and allowed to freely move for 5 minutes. An overhead infra-

red detecting camera tracked and analysed activity. Data was analysed using 

EthoVision Video Tracking System (Noldus Information Technology, Leesburg, 

VA). Four zones were created in order to analyse behaviour and admittance to 

open and enclosed arms, these zones are out lined in Figure 2.6. Fxyd6+/+ and 

Fxyd6-/- mice n=10 per group, aged 7 weeks. Map2k7+/+ mice n=9 and Map2k7+/- 

mice n=7 per group, aged 6 weeks. Duration and frequency analysed by analysis 

of variance (ANOVA) followed by Tukey’s post hoc for multiple comparisons. 

Distance and mean velocity analysed by Student’s t-test. 

2.10.4 Open field (OF) 

The OF apparatus consisted of four identical plastic arenas (dimensions 40 cm x 

40 cm x 40 cm) situated on an infra-red light box. Movement within the arenas 

was tracked by an overhead infra-red detecting camera using Ethovision XT 

(Noldus) video tracking software. In order to habituate mice to arenas, one 

mouse was placed in each arena for 30 minutes prior to locomotor assessment 

and allowed to move freely.  
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Locomotor activity was assessed immediately following habituation to the 

arenas. Mice were removed from arenas for around five minutes and during this 

time received subcutaneous injections of vehicle (0.9% (w/v) saline) or d-

amphetamine sulphate (Sigma-Aldrich., UK) (3 mg/ kg/ 5 ml) and immediately 

placed back in the arena and allowed to move freely for 1 hour. Mice received 

both treatments over 3 days, with one day washout between drug 

administrations. Treatment groups were fully counterbalanced. Data were 

analysed using Ethovision software. An inner (20 cm X 20 cm) and outer zone 

were created (Figure 2.7) to assess anxiety and exploratory like behaviour. 

Velocity was measured by distance (cm) moved per second. Fxyd6+/+ and Fxyd6-/- 

mice n=12 per group, aged 8 weeks. Map2k7+/+ mice n=9 and Map2k7+/- mice n=7 

per group, aged 7 weeks. Duration and frequency analysed by ANOVA followed 

by Tukey’s post hoc for multiple comparisons. Distance and mean velocity 

analysed by Student’s t-test. 

 

2.10.5 Prepulse inhibition  

Prepulse inhibition (PPI) was assessed following a 7 day washout period after the 

open field amphetamine challenge. PPI apparatus consisted of four identical 

sound-attenuated chambers. Immediately prior to PPI testing, mice received 

intraperitoneal (ip) injections of vehicle (0.9% (w/v) saline) or ketamine (10 mg/ 

kg/ 2 ml and 30 mg/ kg/ 2 ml). Mice was subsequently placed in restrainers and 

secured in the PPI chamber. Mice were exposed to 120 dB noise (pulse), with 

varying levels of prepulse preceding the pulse. Prepulses are of values 4, 8 and 

16 dB above background white noise of 65 dB. Mouse startle response to the 

pulses were recorded. Fxyd6+/+ and Fxyd6-/- mice n=10 per group, aged 9 weeks. 

Map2k7+/+ mice n=9 and Map2k7+/- mice n=7 per group, aged 8 weeks. Duration 

and frequency analysed by ANOVA followed by Tukey’s post hoc for multiple 

comparisons.  
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Figure 2.6 Schematic diagram illustrating plus maze zones and corresponding arms.  

Total activity in closed arms was analysed by collating data from both arms to form zone 1, 
similarly activity from open 2/3rd arms (zone 2) and open 1/3rd arms (zone 3) were collated 
to give indication of anxiety levels.  

 

 

Zone 1

Zone 2

Zone 3

Zone 1: Centre arena             

Zone 2 + zone 3: Outer arena

Zone 3: Thigmotaxis arena     

40 cm

40 cm
 

Figure 2.7 Schematic diagram illustrating open field zones in order to analyse anxiety levels 
and locomotor behaviours.  

Anxious mice would be expected to spend least time in zone 1, centre of the arena, whilst 
mice with high levels of anxiety may spend more time in the very outer arena, zone 3.  
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2.10.6 Working memory in delayed non-match to sample 

Animals 

Mouse littermates were littermate pair housed with free access to water and 

received a restricted diet of 3g feed pellet/ mouse/ day. Weights were recorded 

daily throughout the study to ensure weights did not fall below 85% of expected 

ad libitum feed weight.  

Apparatus 

An elevated cross- maze (elevated off the ground by 1 metre) was adapted to be 

used as a T-Maze using 5 cm by 15.5 cm sliding doors, creating three arms 30 cm 

by 15.5 cm by 5 cm,. The maze was constructed from grey Plexiglas. The arm 

used as the start alley was varied for each trial to prevent the use of visual cues. 

During inter- and intra- trial periods, mice were placed into a holding cage 

located adjacent to the maze.  

Habituation to handler and reward 

In order to reduce handler-mediated anxiety within the mice, all mice were 

handled for 5 minutes each for 3 days prior to habituation to the maze. Each 

day, following handling, mice were introduced to 50% (v/v H20) condensed milk 

by placing a small plastic tray into their home cage containing 8x 70 µl drops. 

The tray was removed following the consumption of all condensed milk drops. 

Habituation to Maze 

Around 1 hour following handling on the 3rd day, mice were exposed to the maze 

in pairs with their cage mate. Mice were placed in the maze for 5 minutes. The 

two ‘goal’ arms were both baited with 140 µl of 50% condensed milk. This 

process was repeated so all mice were exposed to the maze twice on the 3rd day.  

Forced alternations  



75 
 

 
 

On the 4th day, mice were exposed to 10 forced alternations. Both goal arms 

were baited with a food reward of 70 µl 50% condensed milk. One goal arm of 

the maze (arm A) was blocked off using a sliding door and mice were placed in 

the starting arm. Mice were required to run down the open goal arm (arm B) and 

consume the food reward. This is referred to as a forced-choice run. Following 

the consumption of the reward, or a 2 minute time period, mice were removed 

from maze and placed in the holding cage adjacent to the maze for 10 seconds. 

During this time, access to arm B was blocked using the sliding door and access 

to arm A and its reward was made available. The mouse was placed back on the 

starting arm and was now required to run down arm A and consume the reward. 

This is repeated for 10 trials. Mice have a limit of 2 minutes to find the reward 

for all trials. Forced alternations were continued for 3 days by which point the 

mice were actively running to the goal arm.   

Training 

In the training stage, the mouse performed a (pseudorandom) forced-choice run, 

followed by a 10 seconds intra-trial delay in the holding cage. The mouse was 

placed back into the starting arm of the maze now with access to both goal 

arms; however, the arm which contained the reward for the forced choice run 

was not re-baited and only the previously closed arm remained baited. The aim 

was for the mouse to remember which arm previously contained a reward and to 

avoid this arm, and explore the previously closed off arm. A different pattern of 

randomly chosen forced runs were used each day, with inter-trial delays of 40 

seconds. Training phase was repeated until animals reach a criterion of 7 correct 

trials out of 10 trials in 3 consecutive days. 

Testing 

Mice were tested the day following the completion of training. This consisted of 

the mice performing 3 days of 12 pseudorandom forced choice runs, followed by 

a 5, 15 or 30 second intra-trial delay in the holding cage. Mice were then placed 

back in the starting arm with access to both arms. The mouse had to correctly 

identify the unexplored goal arm to be included as a correct trial. The order of 

the forced choice runs was kept constant for all mice over the three testing 

days. Trials were separated by an inter-trial delay of 40 seconds. Fxyd6+/+ mice 
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n= 7, Fxyd6-/- mice n=6, Map2k7+/+ mice n=5 , Map2k7+/- mice=5. Data analysed 

by ANOVA followed by Tukey’s post hoc for multiple comparisons.  

2.10.7 Sociability  

Sociability was performed on mice one week following the working memory 

assessment.  

Apparatus 

Apparatus consisted of a Plexiglas test box separated by sliding doors into 3 

chambers. The two outer chambers contained a cylindrical wire cage. A clear 

Plexiglas lid was placed on top of the test box. All movement within the arenas 

was tracked Ethovision XT (Noldus).  

Habituation  

To habituate mice to apparatus, mice individually freely explored the test box 

and chambers, including the cylindrical wire cages, for 5 minutes, before being 

placed into a holding cage adjacent to the arena for around 3 minutes.  

Sociability 

Immediately following habituation, an unfamiliar mouse was placed in one of the 

cylindrical wire cages and the test mouse was placed back into the centre 

chamber of the arena and allowed to explore the whole arena, including the 

cylindrical wire cages, freely for 10 minutes, before being placed into a holding 

cage adjacent to the arena for around 3 minutes.  

Social Novelty 

Immediately following from sociability, the ‘unfamiliar’ mouse was kept in the 

wire cage and was termed ‘familiar mouse’. An novel unfamiliar mouse, termed 

‘stranger mouse’ was placed into the empty wire cage. The test mouse was 

placed back into the centre chamber of the arena and allowed to explore the 

whole arena, including the cylindrical wire cages, freely for 10 minutes.  
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Activity analysis 

Activity within the arena was analysed using Ethovison XT (Noldus). Time spent 

and entries into each chamber, and time spent exploring each wire cage were 

analysed. Fxyd6+/+ mice n= 7, Fxyd6-/- mice n=6 , Map2k7+/+ mice n=5 , Map2k7+/- 

mice=5. Data analysed by ANOVA followed by Tukey’s post hoc for multiple 

comparisons. 

2.10.8 Sucrose Preference 

Anhedonia was investigated in mice by sucrose preference testing. Following 

sociability testing, mice were singly housed. Water bottles were removed from 

cages and replaced with 2 bottles containing known volumes of either water or 

1% sucrose solution (dissolved in H20). Bottles were counterbalanced across the 

left and right sides of the feeding compartments and positions were alternated 

daily.  For 5 consecutive days both bottles were weighed every 24 hours and 

preference for sucrose was presented as the percentage of total fluid 

consumption using the following equation: 

Sucrose preference (%) = sucrose solution consumption (mg)/ total fluid intake (mg) 

Fxyd6+/+ mice n= 7, Fxyd6-/- mice n=6 , Map2k7+/+ mice n=5 , Map2k7+/- mice=5. 

Data analysed by ANOVA followed by Tukey’s post hoc for multiple comparisons.  

2.11 Statistical Analysis 

All statistical analyses were carried out in Minitab version 16. Data were 

assessed for normal distribution using the Anderson Darling normality test, data 

which did not follow a normal distribution were transformed using Johnson 

transformation and tested using either Student’s t-test or ANOVA with Tukey’s 

post hoc comparison test. Significance set at p≤0.05. 
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Chapter 3. A genetic association study of the 
FXYD6 gene and epistatic interactions in 
susceptibility to schizophrenia in a British 
population. 
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3.1 Introduction 

The high heritability rate of schizophrenia (refer to 1.7) has led to a search for 

genes that confer disease susceptibility. The two prevailing ideas behind most 

genetic research on schizophrenia are that schizophrenia is a combination of 

multiple common polymorphisms of modest effect  (The ‘common disease – 

common alleles’ model, refer to 1.8) (Chakravarti., 1999;Gottesman and 

Shields., 1982) and more recently, a common disease caused by multiple rare 

alleles (refer to 1.8, McClellan et al., 2007). 

GWAS and candidate gene genetic association studies have provided evidence 

suggesting a role of common variants in the genetic background of schizophrenia 

in unrelated schizophrenia patients (refer to 1.9.4 (McClellan et al., 

2007;Owen., 2010)). These studies are thought to strengthen the CDCA model of 

schizophrenia, which implies that schizophrenia is the result of the effects of 

multiple inherited genetic mutations (McClellan et al., 2007). However, the 

mode of inheritance is unclear and the genetic architecture of schizophrenia 

remains complex and poorly understood. Recent studies providing contradicting 

results to current literature have led to the re-evaluation of the ‘common 

disease – common alleles’ model as the primary hypothesis of the genetic 

architecture of schizophrenia (reviewed by Mitchell and Porteous., 2011). GWAS 

studies with large sample sizes have only found a few common variants 

associated with the increased risk of schizophrenia (Jia et al., 2010;Purcell et 

al., 2009;Stefansson et al., 2009) challenging the CDCA model which would 

require a larger quantity of common variants to be a valid hypothesis. 

Furthermore, in depth analysis of these studies revealed variance is not due to 

polygenic common variants, and instead the risk of schizophrenia is more likely 

to stem from rare but highly penetrant mutations (Purcell et al., 2009). Several 

features of schizophrenia support the view that it is a ‘common disease caused 

by multiple rare alleles’, such as mutations are often specific to a subset of 

families, or why schizophrenia, an illness associated with reduced fertility, has 

not had reduced frequency over a long period of time (McGrath et al., 

1999;Nimgaonkar et al., 1997). Furthermore, this model may offer an 

explanation to why only a small fraction of genetic risk factors have been 
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identified and consistently replicated in association and linkage studies. These 

studies assume unaffected individuals sharing the same SNP-defined haplotypes 

will share common risk variants and present a common phenotype, however rare 

but highly penetrant mutations causing schizophrenia may vary within the same 

haplotype block resulting in a lack, or reduced association which could be 

worsened with high sample numbers (reviewed by McClellan et al., 2007).  

Over a thousand genes and polymorphisms have been implicated in schizophrenia 

as a result of gene discovery strategies, such as GWAS studies, genetic 

association studies and meta-analysis (Allen et al., 2008). However schizophrenia 

is subject to environmental and genetic factors, factors such as pre- and post- 

natal environmental insults and genetic interactions (refer to 1.7), increasing 

the difficulty of identifying rare but highly penetrant susceptibility genes that 

often only confer a fractional. Processes such as gene expression can also be 

mediated by epigenetic mechanisms, which occur without changing the genetic 

code (refer to 1.8) and would therefore go undetected in genetic association 

investigations. A gene’s output can also be modified by the actions of another 

gene (known as epistatic interactions) (refer to 1.8), resulting in differences in 

phenotype between individuals sharing a risk variant (Cloninger., 1997;Moore., 

2003).  

Reduced association can also stem from the variations in the classification and 

diagnoses of disorders. The imprecise nature of the schizophrenic phenotype and 

lack of relevant biological markers lead to variability in the classification of 

schizophrenia. Rare but highly penetrant alleles may be responsible for a small 

range of phenotypes associated with schizophrenia; genetic associations can be 

missed if association studies are performed in a high number sample 

encompassing a wide variety of symptoms.  

Recently a genetic association study has implicated 5 genetic variations from 

FXYD6 in the aetiology of schizophrenia in samples from the United Kingdom 

(Choudhury et al., 2006) with two variants further confirmed in an Aberdeen 

sample (Choudhury et al., 2007). The association between FXYD6 and 

schizophrenia has been investigated in different populations with mixed results. 

Allelic, genotypic or haplotypic associations were not observed in similar studies 

carried out in a Japanese population (Ito et al., 2008;Iwata et al., 2010) or a 
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Chinese Han population (Zhang et al., 2010), however (Zhong et al., 2011) found 

significant associations between a Chinese Han population and schizophrenia 

suggesting FXYD6 gene as a risk factor in schizophrenia across populations is 

subject to other risk factors. 

FXYD6 is located on 11q23.3 (chromosome 11, locus 23.3). 11q22-24 has one of 

the strongest genetic associations with schizophrenia, as revealed by meta-

analysis of 20 genome scans in combination with a number of genome studies 

(Lewis et al., 2003). The FXYD6 protein belongs to the FXYD family, members of 

which are modulators of the Na+ K+ ATPase pump (Garty and Karlish., 

2006;Sweadner and Rael., 2000) (refer to 1.11 and 1.12). As of yet, FXYD6 has 

not been fully characterized, however, it has been revealed to modulate the Na+ 

K+ ATPase pump in the inner ear (Delprat et al., 2007). Several potential links to 

schizophrenia have been found, such as strong mRNA and protein expression in 

the rat brain (Kadowaki et al., 2004, personal correspondance) and in particular 

the forebrain (Kadowaki et al., 2004, personal correspondance); a region that is 

responsible for cognitive, sensory and motor function and is highly associated 

with schizophrenia. In addition FXYD6 protein has been shown to have highest 

levels of expression in the post natal rat brain during development (Kadowaki et 

al., 2004), suggesting it may be involved in neurodevelopment. Furthermore, co-

localisation with the GABAergic interneuron marker parvalbumin in the inner ear 

suggests a potential role of FXYD6 in the GABAergic circuitry (Delprat et al., 

2007) strengthening the argument for a role of FXYD6 in schizophrenia.  

 

3.2 Hypothesis and aim 

FXYD6 has been shown to be associated with schizophrenia in a North European 

population (Scotland and England); however despite molecular evidence further 

supporting a link with schizophrenia, difficulty in replicating this genetic 

association has been encountered. 

The aim of this genetic association study was to genotype alleles of six SNPs in 

FXYD6 and to look for association of single SNPs and haplotypes to determine if 

FXYD6 is a risk factor in schizophrenia in a North European population (the West 

of Scotland and London samples). Epistatic interactions between FXYD6 and 

schizophrenia- associated candidate gene, MAP2K7 (refer to Chapter 6), in the 
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samples were also investigated in order to explore whether the combined effects 

of these genes add to the risk of schizophrenia.  
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3.3 Results 

3.3.1 Data Quality 

Six tagging SNPs were selected to analyse genetic association of FXYD6 with 

schizophrenia (refer to 2.2.4) to capture variation across the entire gene. Prior 

to testing for association with schizophrenia, the data were assessed for quality 

(refer to 2.2.5) to eliminate the chance of false data. Ambiguous samples were 

repeated and replication samples that were included throughout the study 

confirmed the accuracy of the data. NTC within the study did not produce a 

signal, confirming samples were contamination free.  The allele frequency (in all 

controls and samples) was used to confirm that genotyping was likely to be 

accurate by being comparable to the expected frequency and with control data 

sets in databases too and a call rate of over 99% of all samples confirmed lack of 

missing data (Table 3.1).  Representative allelic discrimination plots can be 

observed in Figure 3.1-Figure 3.6. 

SNP ID Location Call rate (%) SNP VIC allele SNP FAM allele

rs3087563 Chr.11: 117707937 99.6 C T

rs3168238 Chr.11:117709645 99.8 G T

rs3885041 Chr.11: 117722742 99.8 G A

rs1815774 Chr.11: 117731439 99.8 C G

rs4938445 Chr.11:117745003 99.4 A G

rs497768 Chr.11:117750740 99.6 C G  

Table 3.1 Summary of SNP assays.  

A high percentage of samples were genotyped in all assays (98.5% - 99%). SNPs were 
determined using reporter dyes SNP VIC and SNP FAM to detect the presence of the major 
and minor alleles.  
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Figure 3.1 Representative allelic discrimination plot for rs3087563.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (C/C alleles),  = 
samples homozygous for SNP_FAM™ (T/T alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (C/T alleles). 

 

 

 

Figure 3.2 Representative allelic discrimination plot for rs3168238.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (G/G alleles),  = 
samples homozygous for SNP_FAM™ (T/T alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (G/T alleles).  
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Figure 3.3 Representative allelic discrimination plot for rs3885041.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (G/G alleles),  = 
samples homozygous for SNP_FAM™ (A/A alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (G/A alleles). 

 

 

 

Figure 3.4 Representative allelic discrimination plot for rs1815774.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (C/C alleles),  = 
samples homozygous for SNP_FAM™ (G/G alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (C/G alleles). 
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Figure 3.5 Representative allelic discrimination plot for rs4938445.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (A/A alleles),  = 
samples homozygous for SNP_FAM™ (G/G alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (A/G alleles). 

 

 

 

Figure 3.6 Representative allelic discrimination plot for rs497768.  

Genotype of samples are based on arbitrary intensity values for SNP_VIC® (axis x) and 
SNP_FAM™ (axis y). Samples where genotype could not be determined are represented by an 
‘X’,   = no template controls,  = samples homozygous for SNP_VIC® (C/C alleles),  = 
samples homozygous for SNP_FAM™ (G/G alleles), = samples heterozygous for SNP_VIC® and 
SNP_FAM™ (C/G alleles). 
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3.3.2 Allele Frequencies 

The allele frequencies for all SNPs were in Hardy-Weinberg equilibrium (HWE) 

(Table 3.2). However when the data sets were combined, one SNP, rs3885041 

did not follow the expected distribution and therefore deviated from HWE (p= 

8x10-4, Table 3.2).  This is unlikely to be due to genotyping error due to the 

stringent quality control measures (refer to 2.2.8 & 3.3.1) and may be 

representative of disease association in the samples, when these data were 

separated into cases and controls, the allele frequency was in HWE (p<0.001) 

(Table 3.3) confirming rs3885041 follows the expected allelic distribution 

pattern and can therefore be used in this study. 

SNP ID Exp.HET Obs.HET Call rate (%) MAF Alleles HWpval

rs3087563 0.498 0.505 99.6 0.465 C:T 0.6524

rs3168238 0.49 0.482 99.8 0.428 G:T 0.9337

rs3885041 0.449 0.4 99.8 0.341 G:A 8.00E-04

rs1815774 0.48 0.438 99.8 0.399 C:G 0.0124

rs4938445 0.096 0.097 99.4 0.051 A:G 0.6263

rs497768 0.365 0.384 99.6 0.241 C:G 0.1365  

Table 3.2 Summary of genetic frequency in the sample set combining the West of Scotland 
and the London controls and cases samples. Rs3885041 is the only SNP assay in which 
samples are not in HWE (p=8x10-4). Exp.HET= expected heterozygous allele frequencies, 
Obs.HET= observed heterozygous allele frequencies, MAF= minor allele frequency. HWpval= 
Hardy-Weinberg p value (Significance set at p<0.001, refer to 2.2.8).  Case n=498, 
controls=504.  

 

SNP ID Obs.HET %Genotype HWpval Obs.HET %Genotype HWpval

rs3087563 0.499 100 0.652 0.505 98.5 0.9515

rs3168238 0.483 100 0.7837 0.482 99.2 0.9594

rs3885041 0.38 100 0.0655 0.4 99.6 5.20E-03

rs1815774 0.416 100 0.2363 0.438 99.5 0.0244

rs4938445 0.087 100 0.5186 0.097 98.8 1

rs497768 0.394 99.8 0.3833 0.384 99 0.2784

Control samples Case samples

 

Table 3.3 Summary of control and case genetic frequency in the sample set combining the 
West of Scotland and the London samples. Rs3885041 is now in HWE in both control and case 
samples (p>0.001). Exp.HET= expected heterozygous allele frequencies, Obs.HET= observed 
heterozygous allele frequencies, MAF= minor allele frequency. HWpval= Hardy-Weinberg p 
value.  Case n=498, controls=504.  
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3.3.3 Genetic Association  

Association tests were carried out on allele frequencies in control vs. case data 

in the combined West of Scotland and London data set to give indication of 

whether the SNPs in FXYD6 are associated with increased risk to schizophrenia 

(Table 3.4). Chi square values revealed observed results do not significantly 

deviate from expected results, whilst p value confirms there is no significant 

association between the SNPs and schizophrenia cases.  

SNP ID Assoc.allele Case, control ratio Chi Sq. p  value

rs3087563 T 543:467, 521:475 0.425 0.5144

rs3168238 G 587:427, 563:433 0.382 0.5368

rs3885041 G 684:330, 644:352 1.753 0.1854

rs1815774 G 625:389, 584:412 1.89 0.1692

rs4938445 A 959:47, 936:60 1.809 0.1787

rs497768 G 251:761, 232:762 0.587 0.4437  

 

Table 3.4 Allelic association analyses in the combined West of Scotland and London sample 
set. There is no significant association of SNPs rs30087563, rs3168238, rs3885041, 
rs1815774, rs4938445 or rs497768 with schizophrenia in the combined West of Scotland and 
London data set (p>0.05), as observed by no significant difference in case samples 
frequencies compared to  control sample frequencies (as represented by Case, control ratio 
column) chi Sq > 0.05 Case n=498, controls=504 

 

3.3.4 Linkage disequilibrium associate and haplotype association 

Data were explored for haplotype blocks of adjacent SNPs (refer to 2.2.10) to 

investigate association of genetic loci with schizophrenia. Two haplotype blocks 

of associated SNPs were observed in the data set using the solid spine of LD 

method implemented in the Haploview software (refer to 2.2.7), however 

analysis did not reveal any SNP or haplotype associations with schizophrenia. 

Block 1 indicates linkage disequilibrium between rs3885041 and rs1815774 

(region size = 8kb, D’= 91, LOD score>2.0, indicated by red blocks (Figure 3.7) 

whilst block 2 indicates linkage disequilibrium between rs4938845 and rs497768 

(region size= 5 kb, D’=100, LOD score>2.0, indicated by red block, (Figure 3.7), 

(p>0.05) (Table 3.5).  
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Figure 3.7 Linkage disequilibrium (LD) was measured using samples combined from the West 
of Scotland and London sample sets.  

Each box provides D’ values (1-100) with darker shades of red representing stronger LD and 
an LOD score of >2. The haplotype blocks were determined by the solid spine of LD method 
implemented in the Haploview software (refer to 2.2.7). 2 haplotype blocks were 
determined in this sample set. Block 1 show LD between rs3885041 and rs1815774 (region 
size = 8kb, D’ = 91, LOD score >2.0) and block 2 rs4938845 and rs497768 (region size = 5 kb, 
D’ = 100 LOD score >2.0). Case n=498, controls=504  
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Haplotype Case frequency : control frequency P value

Block1

GG 611.9, 402.1 : 562.8, 433.2 0.081

AC 316.9, 697.1 : 330.8, 665.2 0.346

GC 72.1, 941.9 : 81.2, 914.8 0.38

AG 13.1,1000.9 : 21.2, 974.8 0.149

Block 2

AC 715.1, 298.9 : 703.5, 292.5 0.9588

AG 251.5, 762.5 : 232.5, 763.5 0.4442

GC 47.4, 966.6 : 60.0, 936.0 0.177

 

Table 3.5 Haplotypic analyses in the combined sample set. Two haplotype blocks were 
observed in the sample set and are referred to as Block 1 and Block 2. The frequency of 
allele combinations observed in both block 1 and block 2 did not significantly differ between 
case samples (case frequency) and control samples (control frequency) in the sample set 
(p>0.05). Case n=498, controls=504.  
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3.3.5 FXYD6 and MAP2K7 epistasis 

Although there was no association of FXYD variants with schizophrenia, we 

investigated whether there was an epistatic relationship between FXYD6 and 

MAP2K7. MAP2K7 has recently been found to be associated with susceptibility to 

schizophrenia however this study reveals that interactions between these two 

genes do not contribute to the risk of schizophrenia (refer to 2.2.11). Analysis of 

epistatic interactions between MAP2K7 SNPs rs3679 and rs4804833 and FXYD6 

SNPs rs3087563, rs497768, rs4938445, rs1815774, rs3168238, rs3885041 did not 

reveal any significant interactions in case compared to control samples in West 

of Scotland, London and combined data set (Table 3.6).  

Model codominant codominant codominant codominant codominant codominant

rs3087563 0.77 0.77 0.92 0.12 0.98 0.82

rs3168238 0.96 0.9 0.25 0.21 0.39 0.3

rs3885041 0.73 0.92 0.19 0.14 0.92 0.51

rs1815774 0.51 0.74 0.16 0.9 0.34 0.8

rs4938445 0.37 0.31 0.46 0.63 0.65 0.45

rs497768 0.87 0.38 0.7 0.53 0.72 0.19  

Table 3.6 Epistatic interaction p values.  P values representing epistatic interactions 
between MAP2K7 SNPs rs3679 and rs4804833 and FXYD6 SNPs rs3087563, rs497768, 
rs4938445, rs1815774, rs3168238, rs3885041 suggest epistatic interactions between these 
two genes do not contribute a risk to schizophrenia. Case n=498, controls=504. 
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3.4 Discussion 

Genetic association studies investigating whether FXYD6 is a risk factor in the 

susceptibility to schizophrenia have yielded mixed results, with evidence for an 

association (Choudhury et al., 2006; Choudhury et al., 2007; Zhong et al., 2011) 

and against (Ito et al., 2008;Iwata et al., 2010; Zhang et al., 2010).  

This genetic association study genotyped alleles of six SNPs in FXYD6 and 

explored both single SNPs and haplotypes to determine if FXYD6 is a risk factor 

in schizophrenia in a North European population (the West of Scotland and 

London samples). Furthermore, epistatic interactions between FXYD6 and 

MAP2K7, a gene recently shown to be genetically associated with schizophrenia 

(Winchester et al., 2012), were investigated to see if genetic interactions 

between these two genes contribute to the risk of schizophrenia. 

3.4.1 SNP criteria and data quality 

SNPs investigated in this study were selected based upon the following criteria:  

MAF was at least 5-10%, SNPs provided a full coverage of the haplotype diversity 

in FXYD6 and SNP genotyping assays were commercially available. This criterion 

suggests SNPs are polymorphic and span the FXYD6 locus. Five SNPs out of the six 

selected (rs3168238 p=0.009, odds ratio 1.64; rs1815774 p=0.049, odds ratio 

1.21; rs4938445 p=0.010, odds ratio 1.31; rs4938446 p=0.025, odds ratio 1.26 

and rs497768 p=0.023, odds ratio 1.24 (Choudhury et al., 2006) were found to 

have a positive association with Schizophrenia in Choudhury et al’s studies 

(Choudhury et al., 2006;Choudhury et al., 2007). In data samples, no 

contamination was detected and all SNPs were confirmed polymorphic and allele 

frequency followed a similar distribution pattern to those published in HapMap 

(www.hapmap.org). Assay rs3885041 deviated from HWE in London samples. 

HWE is often used as a primary data quality check in association studies (Wittke-

Thompson et al., 2005) and can be investigated through a goodness of fit chi-

squared (X2) test, which assesses the difference between the expected and 

observed allele frequencies. The HWE principle states that in a randomly mating 

population, genetic frequency remains in a state of equilibrium, assuming no 

mutations (Hardy, 1908;Weinberg, 1908), and thus allele frequency is conserved 

from generation to generation. Hardy-Weinberg assumes both alleles are equally 
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selective and so does not take into account evolution. Samples are said to 

deviate from HWE when they exhibit a HWE p value of <0.001 (Guo and 

Thompson., 1992;Wigginton et al., 2005). Deviation may indicate an error in 

genotyping techniques; however it may also be a result of disease-association or 

poor study design (Balding., 2006;Wittke-Thompson et al., 2005). When control 

and case samples tested with rs3885041 were separated, both sample sets were 

in HWE, and so the data were not excluded from the study.   

3.4.2 Allelic and haplotypic association 

Haplotype blocks were determined using Haploview’s ‘Solid spine of LD method’; 

a method which searches for a "spine" of strong LD amongst markers within the 

haplotype block. The first and last markers in the haplotype block are in strong 

LD with the other markers, however adjacent SNPs within the haplotype block 

may not be in strong LD with each other. LD, also known as gamete phase 

equilibrium or allelic association, reflects the relationship between two alleles 

at different loci on the same chromosome, indicating the likeness of these 

alleles being inherited together (Cardon and Bell., 2001). LD association is 

dependent on the association between the causal SNP and the marker SNP 

(Cardon and Bell., 2001;Carlson et al., 2004;Li and Li., 2008). Levels of LD 

between two markers in the data sets were represented by D’ values. D’ gives an 

indication of high levels of association and inheritance between two loci- D’ 

values range from 0 to 100, with D’ = 100 showing complete LD, and 0 no LD 

(Lander et al., 2001;Wall and Pritchard., 2003). A combination of SNPs at the 

same locus likely to be inherited together is regarded as a haplotype block 

(Gabriel et al., 2002). Many haplotype blocks can be transmitted through 

generations with little or no recombination, making it is possible to track a 

mutation (Gabriel et al., 2002).   

Allelic analysis of the six SNPs did not reveal any significant differences in 

variant frequencies between case and control data, suggesting these SNPs do not 

contribute towards the risk of schizophrenia phenotype in this sample set. In the 

data set 2 haplotype blocks were identified with LOD scores of >2. LOD scores 

indicate if the SNPs are linked and are likely to be inherited together or whether 

the association observed is through chance (Lander et al., 2001;Wall and 

Pritchard., 2003). The frequency of allele combinations forming haplotypes did 
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not significantly differ in either block between case and control samples, 

suggesting the inheritance of these sets of loci are not a risk factor in 

schizophrenia.  

The London data sample set from this study was a subset of samples from 

(Choudhury et al., 2007) study in which rs3087563, rs3168238, rs1815774, 

rs4938445, rs497768 were significantly associated with schizophrenia. When 

compared, data reveal a very similar frequency to those observed in Choudhury 

et al’s study, and it is a possibility that despite the study having a high statistical 

power (power level 0.95, refer to 2.2.1), it is not high enough to produce a 

significant association (control n=498, case n=504).  Alternatively, it is possible 

that data from the Choudury et al studies (Choudhury et al., 2006;Choudhury et 

al., 2007), have generated a false- positive association with schizophrenia. 

False-positive associations in genetic association studies may arise for a number 

of reasons including population stratification, which can arise when case-control 

samples are poorly matched for genetic ancestry. Allele frequencies are known 

to vary amongst different populations, these differences in allele frequencies 

between cases and controls can be wrongly interpreted as an association of 

genes with disease.  

Population stratification can be tested by the genotyping of unlinked marker loci 

in both cases and controls (Pritchard & Rosenberg., 1999). However, the power 

to detect population stratification is often inadequate if only a few dozen 

markers are tested or if the markers are not informative of ancestry. The 

samples used in the Choudhury studies have been tested for population 

stratification, making this an unlikely reason behind the generation of false-

positive results. However, other factors such as the wrong use of statistical 

analysis model and human error could have generated false- positive results in 

the Choudhury studies.   

Human error either during the testing procedure or bias during analysis can also 

lead to the production of false results. Efforts can be made in order to detect 

human errors, such as using genotyping repeat samples to ensure the same 

results are reached, including no- template controls in experiments, using 

automated genotype results calling, or having results called by two independent 

researchers. Re-genotyping using a technology different from that originally 
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employed could also provide reassurance that the results are not due to 

genotyping error.  

Given the concern for false-positive findings in studies implicating genes to a 

disease state, replication of results in new patient samples is crucial to 

determining the significance of a reported genetic association. However, lack of 

replication is not always indicative of false-positive results from previous sample 

sets, and can derive from a number of reasons, such as low power or low sample 

numbers, SNPs genotyped, poor study design and incorrect statistical models, 

variations in diagnosis, and assumptions or over interpretation of the data 

(Cardon and Bell., 2001). A number of reasons could be used to explain why this 

study did not replicate the Choudhury study in finding a significant association 

between FXYD6 and schizophrenia. It could be argued that the addition of the 

West of Scotland sample set would be associated with new environmental 

factors (refer to 1.7), differences in epigenetic modification of gene expression 

(refer to 1.8), as well as the possibility of differences in diagnostic criteria used 

to assess Schizophrenic patients. In addition, the following hypotheses of 

schizophrenia offer further explanations as to why positive associations between 

a disease state and genes can be hard to detect. 

 The ‘common disease- common variants’ hypothesis of schizophrenia, which 

states ‘the genetic risk for common diseases will often be due to disease 

producing alleles found at relatively high frequency’ (Pritchard and Cox., 

2002;Becker., 2004)  suggests it would be expected that genetic association 

studies with high enough sample numbers will detect causative alleles. If the 

‘common disease, common variants’ model was applied to this study, where it is 

proposed that schizophrenia is a result of multiple common variants of modest 

effect, the effect of FXYD6 may contribute to schizophrenia phenotype albeit 

with too small an effect size to reach significance. However, recent studies are 

also suggesting schizophrenia is a common disease caused by multiple rare 

alleles. The ‘common disease- rare alleles’ hypothesis proposes mutations are 

highly penetrant and individually rare (Pritchard., 2001;McClellan et al., 2007). 

These types of mutations may be specific to patients/families, thereby making 

them difficult to identify, resulting in many mutations going undetected due to 

low significance. If the ‘rare but highly penetrant allele’ model is applied to this 

study, it could be suggested that statistical significance was not reached due to 
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the large number of non-pedigree samples used. This would introduce a large 

number of different risk mutations, diluting associations of rare but highly 

penetrant variants with schizophrenia. Furthermore, genetic analysis of tagging 

SNPs or haplotypes, rather than analysis of fully sequenced DNA may not provide 

adequate scrutinisation of risk DNA and rare disease-related variants may go 

undetected.  

Due to the lack of clinical data provided with these samples, it is not possible to 

confirm this study is age- matched and sex- matched. As a result of this, 

limitations may occur. Lack of clinical data also limits further analyses of these 

samples, for example, investigating whether FXYD6 acts as a sex-specific risk 

factor, which would be required to evaluate fully whether FXYD6 is a risk factor 

for schizophrenia.  

3.4.3 FXYD6 and MAP2K7 epistasis 

A gene’s phenotype can be modified by the actions of a separate gene; 

association between SNPs which do not share the same chromosome can act as a 

biomarker for schizophrenia and similar disorders. It is possible FXYD6 becomes a 

risk factor for schizophrenia following epistatic interactions. Recently a genetic 

association between MAP2K7 and schizophrenia has been discovered (odds ratio 

~1.9) (Winchester et al., 2012). MAP2K7 is located on chromosome 19 and the 

protein has been associated with the activation of JNK2, which has decreased 

expression in the frontal cortex of patients with schizophrenia (Funk., 2012). 

There are several different inheritance models which can be used to assess 

epistatic interactions to account for the number of copies of alleles required to 

alter the risk for a disease. For example, a polymorphism with two alleles, T and 

a risk allele C, could be tested as a ‘recessive model’, where two copies of C 

would be necessary to cause a risk, or a ‘dominant mode’ where a single copy of 

C could cause a risk, or a ‘co-dominant model’ which is the most generalised 

model and assumes alleles do not present an additive risk (Solé et al., 2006). A 

‘co-dominant model’ was used in this study. Haplotypic analysis did not reveal 

an association between selected markers in FXYD6 and MAP2K7. MAP2K7 SNPs 

rs3679 and rs4804833 and FXYD6 SNPs rs3087563, rs497768, rs4938445, 

rs1815774, rs3168238, rs3885041 did not reveal any significant interactions 
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between MAP2K7 and FXYD6, suggesting interaction of these genes is not a risk 

factor in susceptibility to schizophrenia.  

 

3.4.4 Conclusion 

In conclusion, this study did not find an allelic or haplotypic association between 

FXYD6 and schizophrenia in a north European population. A number of 

influencing factors, such as environmental factors or genetic interactions may 

have contributed to the lack of association with schizophrenia, which has 

previously been observed in a similar genetic study. Epistatic interactions 

between FXYD6 and MAP2K7 are not a risk factor in susceptibility to 

schizophrenia in a North European population.   
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Chapter 4. Molecular characterisation of FXYD6  
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4.1 Introduction 

Despite three recent genetic association studies finding an association between 

FXYD6 and schizophrenia in a Caucasian population (Choudhury et al., 

2006;Choudhury et al., 2007), and a Chinese Han population (Zhong et al., 

2011), subsequent genetic association studies have failed to confirm an 

association in a similar Caucasian population, a Japanese population (Ito et al., 

2008;Iwata et al., 2010) and a further Chinese Han population (Zhang et al., 

2010). Therefore it remains ambiguous as to whether FXYD6 is a risk factor in 

developing schizophrenia and what role it plays.  

FXYD6 is known to be expressed in the brain (Kadowaki et al., 2004;Stansberg et 

al., 2011;Yamaguchi et al., 2001) and several studies suggest a molecular 

association between FXYD6 and schizophrenia may exist. For example, it has 

recently been revealed that Fxyd6 is strongly expressed in the rat forebrain 

(Ferra., 2006); a region that is responsible for cognitive, sensory and motor 

function and is highly associated with schizophrenia. In addition, the protein 

encoded by Fxyd6 (often referred to as phosphohippolin), has been discovered 

by means of  western blot analysis to have highest levels of expression in the 

postnatal rat brain during development (Kadowaki et al., 2004); a finding which 

may correlate with the theory that schizophrenia is a neurodevelopmental 

disorder.  

FXYD6 has been shown to co-localise with the GABAergic interneuron marker 

parvalbumin in the inner ear (Delprat et al., 2007). Loss of parvalbumin cells has 

been associated with GABAergic signalling deficits in schizophrenia (Kadowaki et 

al., 2004;Zhang & Reynolds, 2002;Beasley & Reynolds, 1997;Lewis et al., 2005) 

and it is thought the inhibitory activity of parvalbumin GABAergic signalling can 

be mediated  by the excitatory input derived from NMDA receptors on 

parvalbumin interneurons (Kinney et al., 2006). As deficits in glutamate and 

GABAergic neurotransmitters are leading neurochemical hypotheses of 

schizophrenia (refer to 1.6), it would therefore be interesting to investigate the 

role of Fxyd6 in both GABAergic and glutamatergic circuitry in brain regions 

associated with memory and cognition. This can be explored using markers of 

GABAergic and glutamatergic neurons and neurotransmisson such as parvalbumin 
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protein markers and glutamate receptor markers in regions such as the 

prefrontal cortex and hippocampus. 

FXYD6 has also been shown to co-localise with Na+ K+ ATPase α1 subunit in the 

inner ear and act as a modulator of the inner ear Na+ K+ ATPase pump (Delprat 

et al., 2006;Delprat et al., 2007). It is currently unknown whether FXYD6 also 

acts as a modulator of brain Na+
 K

+ ATPase pump activity however if this is the 

case it may provide a further link with schizophrenia. Not only is brain Na+ K+ 

ATPase activity associated with glutamate transport (Rose et al., 2009;Pellerin & 

Magistretti., 1997), but it has also been implicated in several psychiatric 

disorders, with low Na+ K+ ATPase activity reported in schizophrenic and bipolar 

mood disorder patients (Goldstein et al., 2006;Kurup et al., 2001;Petronijevic et 

al., 2003).  

4.2 Aim 

This chapter aims to determine if Fxyd6 acts as a modulator of the Na+ K+ ATPase 

pump and to investigate the molecular association between FXYD6 and 

schizophrenia-associated neurochemical markers. The following aims were 

explored in this chapter:   

 Evaluation of the expression of Fxyd6 and Na+ K+ ATPase were investigated 

in the mouse brain using an in situ hybridisation technique. Mice 

homozygous for disrupted Fxyd6 were utilised to evaluate the impact of 

lack of Fxyd6 on and Na+ K+ ATPase α1 expression. 

 Characterisation of the relationship between FXYD6 and Na+ K+ ATPase 

pump was further explored by investigating the impact of the lack of 

Fxyd6 on Na+ K+ ATPase pump activity in brain regions associated with 

schizophrenia. 

 The impact of the lack of Fxyd6 on glutamatergic and GABAergic pathways 

were investigated to explore whether neurochemical changes associated 

with schizophrenia are present in Fxyd6-/- mice. 
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4.3 Results 

4.3.1 Expression of Fxyd6 in the mouse brain 

Hybridisation of a 33P- labelled probe designed to target Fxyd6 mRNA confirmed 

the expression of Fxyd6 in 20 µm coronal adult mouse brain sections. Non-

specific binding was determined using excess of 50x unlabelled probe (refer to 

2.9.1) and was deducted from total binding to calculate the specific binding. 

Qualitative assessment of specific binding revealed Fxyd6 has higher levels of 

expression in the following brain regions: secondary motor cortex, agranular 

insular cortex and prelimbic (PrL) area of the prefrontal cortex, cingulate cortex 

(Cg), claustrum (Cl), perirhinal cortex (PRh), dentate gyrus and the CA3 region 

of the hippocampus and cerebellar lobules of the cerebellum (Figure 4.1).  
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Nonspecific                      Total                   Reference    

 

Figure 4.1 Autoradiographic film showing Fxyd6 distribution in 20 µm coronal mouse brain 
sections, as detected by in situ hybridisation.   

Qualitative assessment revealed Fxyd6 is expressed in a) the secondary motor cortex (M2) 
and the agranular insular (AI) cortex in the prefrontal cortex (bregma 2.10 mm) b) cingulate 
cortex (Cg) and claustrum (Cl) (bregma 1.18 mm) c) perirhinal cortex (PRh) (bregma -1.22 
mm) d) posterior hypothalamic area (PH) dentate gyrus in the hippocampus (DG) (bregma -
1.82), e) CA3 region of the hippocampus (bregma -2.92 mm) f) cerebellar lobules of the 
cerebellum (bregma -6.00). Non-specific binding= 50x excess of unlabelled probe to indicate 
non-specific binding, total binding= antisense probe only, reference= brain regions according 
to the Allen Mouse Brain Atlas (Lein et al., 2006). Scale bar = 2mm. Arrows indicate relevant 
brain region. 
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4.3.2 Fxyd6 total RNA and protein is significantly reduced in mice 
homozygous for Fxyd6 disruption 

To investigate the potential functional link between FXYD6 and schizophrenia, a 

novel strain of mouse containing two disrupted copies of Fxyd6 was obtained 

from Lexicon Pharmaceuticals Incorporated (refer to 2.3.1).  Prior to molecular 

characterisation of these mice, validation of disruption of Fxyd6 total RNA and 

protein was required.  Quantitative real-time polymerase chain reaction (RTq-

PCR) (refer to 2.7), in situ hybridisation (refer to 2.9) and western blotting 

techniques (refer to 2.6) were employed to confirm that homozygous disruption 

of Fxyd6 in mice results in lack of Fxyd6 total RNA and protein. 500 ng of total 

RNA was extracted from the frontal cortex and converted to cDNA from 3 adult 

mice homozygous for functioning Fxyd6 (referred to as Fxyd6+/+ mice) and 3 age-

matched littermate mice homozygous for disrupted Fxyd6 (referred to as Fxyd6-

/- mice) were studied. RTq-PCR primers were designed to target Fxyd6 at two 

sites in the gene (refer to 2.8.1). Fxyd6 m1 is designed to span the targeting 

vector insertion point across exon 1 and exon 2, and Fxyd6 g1 is designed to 

detect splice variants by targeting exon 3 and 4 (Fxyd6 g1). Using a geometric 

mean from three housekeeping genes (18s ribosomal RNA, B2M and GAPDH) 

analysis of cycle threshold values (CT values) revealed Fxyd6 m1 expression in 

Fxyd6-/- mice is significantly reduced by a ratio of 0.001 (standard error of 0.000 

- 0.003, p<0.001) and Fxyd6 g1 significantly reduced by a ratio of 0.001 

(standard error 0.001- 0.00, p<0.001) in comparison to Fxyd6+/+ mice, a ratio of 1 

shows no effect, thus confirming null expression of Fxyd6 RNA following Fxyd6 

disruption (Figure 4.2). The in situ hybridisation probe used in section 4.3.1 

confirmed Fxyd6 homozygous disruption results in null expression of Fxyd6 RNA 

in the adult brain (Figure 4.3a-d), as observed in the following brain regions; 

prelimbic cortex, agranular insular cortex, cingulate cortex, claustrum, medial 

orbital cortex, primary and secondary motor cortex, striatum, nucleus 

accumbens, CA1, CA2, CA3 and dentate gyrus of the hippocampus and 

cerebellum. White matter in the cerebellum was used to normalise results 

(Genotype (F1, 95 = 31.89, p<0.001). 
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To confirm that FXYD6 protein is disrupted in parallel with Fxyd6 RNA reduction, 

western blotting analysis was utilised to establish Fxyd6-/- mice also lack FXYD6 

protein (refer to 2.6). An antibody designed to target FXYD6 protein specifically 

produced a band of the correct size (15 kDa) in Fxyd6+/+ mice. This band was 

absent in Fxyd6-/- mice, indicating null expression of FXYD6 protein (Figure 

4.5e). 
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Figure 4.2 Fxyd6 cDNA relative expression is significantly reduced in Fxyd6-/- mice.  

Cycle threshold (CT) values for a) Fxyd6 g1 and b) Fxyd6 m1 are significantly reduced in 
Fxyd6-/- mice in comparison to Fxyd6+/+ mice (p< 0.001). Data represent expression ratio ± 
S.E.M. relative to Fxyd6+/+ mice samples. Fxyd6+/+ mice n=3, Fxyd6-/- mice n=3
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Figure 4.3 Fxyd6-/-
 mice display disrupted Fxyd6 RNA and protein expression.  

In situ hybridisation in 20 µm sections  reveals Fxyd6-/- mice have significantly lower Fxyd6 
RNA expression, in comparison to Fxyd6+/+ mice,  a) prelimbic cortex (F1,7 = 15.47, 
p=0.008), b) motor cortex (F1,7 = 16.37, p=0.007), c) perirhinal cortex (F1,7 = 16.96, 
p<0.006) d) dentate gyrus (F1,7 = 14.54, p<0.009). Data represented as expression ratio of 
Fxyd6+/+ mice ± S.E.M  

e) Western blotting confirms the disruption of Fxyd6, in Fxyd6-/- mice, results in the lack of 
FXYD6 protein expression, in comparison to Fxyd6+/+ mice. Lack of protein observed in 16 µg 
protein prefrontal cortex, striatum, hippocampus, cerebellum and brain stem samples. 
Fxyd6+/+ mice n=3, Fxyd6-/- mice n=3 
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4.3.3  Fxyd6 null expression increases Pvalb but not Map2k7 and 
GRIN1 RNA expression 

To investigate if the disruption of Fxyd6 impacts on the expression of Pvalb and 

also schizophrenia-associated gene Map2k7 and the NMDA receptor gene GRIN1, 

RTqPCR (using probes designed to target these genes) was performed 

simultaneously with Fxyd6 m1 and Fxyd6 g1 probes (refer to 4.3.2).  Using a 

geometric mean from three housekeeping genes (18s ribosomal RNA, B2M and 

GAPDH) analysis of cycle threshold values (CT values) revealed Pvalb expression 

in Fxyd6-/- mice is significantly increased by a ratio of 2.987 (standard error 

1.431 – 5.598, p<0.05) in comparison to Fxyd6+/+ mice (Figure 4.4). Since a ratio 

of 1 shows no effect, thus revealing an interaction between Fxyd6 and Pvalb. 

Analysis of CT values also revealed Map2k7 and Grin1 expression in Fxyd6-/- mice 

does not significantly deviate from Fxyd6+/+ mice (Map2k7 expression ratio = 

0.901, standard error ranging 0.681- 1.146, Grin1 expression ratio= 0.541, 

standard error ranging 0.184 – 1.111) (Figure 4.4).  

4.3.4 Fxyd6 null expression does not impact on GLUR2, NR2A and 
GAD 65/67 protein expression 

The involvement of FXYD6 in the glutamatergic and GABAergic hypothesis of 

schizophrenia was explored further by western blotting technique. Antibodies 

designed to target glutamatergic receptor subunit proteins; AMPA receptor 

subunit GLUR1 and the NMDA receptor subunit NR2A together with the GABA 

synthesising enzyme glutamate decarboxylase 65/ 67, produced bands of the 

correct size (GluR1 102 kDa, NR2A 170 kDa, GAD 65/67 produced a doublet band 

at 65 kDa and 67 kDa) in both Fxyd6+/+ mice and Fxyd6-/- mice. Disruption of 

Fxyd6 did not have an impact on expression on any of the proteins investigated 

(Figure 4.5). 
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Figure 4.4 Pvalb RNA relative expression is significantly increased in Fxyd6-/- mice.  

The disruption 

n of Fxyd6 in Fxyd6-/- mice, in comparison to Fxyd6+/+ mice a) does not alter Grin1 
expression or b) Map2k7 expression however c) significantly increases Pvalb expression  
(***p< 0.001), data represent CT values as a ratio of Fxyd6+/+ mouse expression. Fxyd6+/+ 
mice n=3, Fxyd6-/- mice n=3 
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Figure 4.5 Western blotting analysis reveals Fxyd6 disruption in Fxyd6-/- mice does not 
impact on the expression of  

a) GLUR2 (F(1,8) = 0.15), p>0.05.   

b) NR2A (F(1,8) = 0.15), p>0.05.  

c) GAD 65/67. (F(1,8) = 3.76), p>0.05. Data represent mean ± S.E.M. Data analysed using 
Student’s t-test. N=4  
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4.3.5 Impact of Fxyd6 null expression on Na+ K+ ATPase activity in 
the forebrain and hippocampus  

The Na+ K+ ATPase activity in adult mice homozygous for Fxyd6 deletion was 

investigated in 16 µg forebrain and hippocampus plasma membrane using an 

assay optimised to detect Na+ K+ ATPase pump activity via phosphate release 

(refer to 2.5). Crude plasma membrane extraction by sucrose fractionation was 

confirmed using 3 different antibodies by western blot (Figure 4.8a). NR2A 

antibody produces a band of the correct size of 170 kDa and shows highest 

expression in the fraction taken as crude plasma membrane fraction, confirming 

the fraction contains the plasma membrane (Figure 4.8a). H3 antibody is used as 

an indicator of nuclear fractions, and produces a band of the size at 17 kDa in 

fractions pellet2 and supernatant (Figure 4.8a).  FXYD6 and Na+ K+ ATPase α1 

subunit antibodies both show highest expression in the crude plasma membrane 

fraction (Figure 4.8a). In comparison to Fxyd6+/+ mice, Na+ K+ ATPase activity 

was significantly decreased in the forebrain of the Fxyd6-/- mice (F(1,12)= 7.90, p= 

0.017, Figure 4.8b). However, despite a trend towards decreased Na+ K+ ATPase 

activity in the hippocampus, the decrease in activity was not found to be 

significant (F(1,14= 2.61, p= 0.130 Figure 4.8c). Following the finding that Fxyd6 

disruption results in a significant decrease of Na+ K+ ATPase activity, protein 

expression of adult mouse Na+ K+ ATPase α1 subunit was subsequently examined 

in forebrain homogenates. Western blotting results revealed protein expression 

of Na+ K+ ATPase α subunit does not alter with the deletion of Fxyd6 (F(1,9= 2.61, 

p= 0.130 Figure 4.8d, Figure 4.8e). 

 

The impact of lack of Fxyd6 on Na+ K+ ATPase expression was further explored 

using in situ hybridisation technique with a probe designed to target Na+ K+ 

ATPase α1 subunit (refer to 2.9). Quantitative analysis of autoradiogram films 

revealed Na+ K+ ATPase α1 subunit expression is not changed in the following 

brain regions in Fxyd6-/- compared to Fxyd6+/+ mice : prelimbic cortex, medial 

orbital cortex, primary and secondary motor cortex, striatum, nucleus 

accumbens, CA1, CA2, CA3 and dentate gyrus of the hippocampus and 

cerebellum (genotype interaction (F1,82 = 0.09, p> 0.05, (representative 
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autoradiographic films (Figure 4.9), there was also no affect of genotype on 

specific regions (F11,82 = 0.29, p> 0.05).  
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Figure 4.6 Confirmation of Na+ K+ ATPase expression in the plasma membrane and impact  of 
Fxyd6 disruption on Na+ K+ ATPase pump activity and protein  

a) Expression of NR2A confirms the fraction in which FXYD6 and Na+ K+ ATPase are expressed 
in is the plasma membrane (PM), marker histone H3 (H3) confirms pellet 2 (P2) and 
supernatant (SN) contain nuclear components P1= pellet 1 (refer to 2.5.1).  

b) Forebrain Na+ K+ ATPase activity is significantly decreased following the disruption of 
Fxyd6 in Fxyd6-/-

  mice compared to Fxyd6+/+ mice  F(1,12)= 7.90,  * p= 0.017 

c) Hippocampal Na+ K+ ATPase activity in Fxyd6-/- mice does not significantly deviate from 
Fxyd6+/+ mice  F(1,14)=2.61, p=0.130. 

d) Na+ K+ ATPase α1 subunit protein expression is not affected by Fxyd6 disruption in Fxyd6-/- 
mice, compared to Fxyd6+/+ mice. Data are expressed as mean ± S.E.M nMol Pi/min/mg 
protein.  

e) Representative western blot images showing Na+ K+ ATPase α1 subunit protein expression 
is not affected by Fxyd6 disruption in Fxyd6-/- mice, compared to Fxyd6+/+ mice.. Data 
analysed using Student’s t-test.  
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Figure 4.7 Representative autoradiographic film and expression levels of Na+
 K

+ ATPase. 
Arrows indicate relevant brain region. Levels do not differ between Fxyd6+/+ (n=3) and 
Fxyd6-/- mice (n=4) in: 

a) The prelimbic cortex (F1,6=0.29, p>0.05)  

b) The CA1 region of the hippocampus (F1,6=0.08, p>0.05) 

c) The CA2 region of the hippocampus (F1,6=0.03, p>0.05) 

d) The dentate gyrus (F1,6=0.03, p>0.05)   
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4.4 Discussion 

 

4.4.1 Fxyd6 mRNA brain expression  

In this present work, I have confirmed Fxyd6 mRNA is expressed in various 

regions of the mouse brain. Two regions which are of particular interest that 

show strong Fxyd6 expression are the prefrontal cortex and the hippocampus. 

These two regions have been repeatedly associated with the symptoms of 

schizophrenia (refer to 4.3.1) and are therefore of significance in mouse models 

of this disorder. Decreased functioning and metabolism in the prefrontal cortex 

(hypofrontality) has been associated with schizophrenia symptoms, furthermore, 

impaired cognitive tasks such as decision making are also attributed to the 

altered functioning of this region. Impairments in the functioning of the 

hippocampus have also been associated with deficits in spatial learning, and 

connectivity networks between the prefrontal cortex and the hippocampus are 

thought to be responsible for many areas of cognition and memory consolidation, 

in particular working memory (Laroche et al., 2000;Yoon et al., 2008). Although 

Fxyd6 mRNA is strongly expressed in these regions, qualitative western blot 

analysis of FXYD6 protein expression would be required to investigate whether 

there is also a potential functional role of FXYD6 in these regions and associated 

pathways. If FXYD6 showed expression in these regions, it would suggest Fxyd6-/- 

mice may exhibit impairments in cognition and related phenotypes. 

4.4.2 Fxyd6 DNA and protein is significantly reduced in mice 
homozygous for Fxyd6 disruption 

In order to further characterise Fxyd6 and evaluate the impact of Fxyd6 in the 

modulation of Na+ K+ ATPase pump activity modulation I utilised a mouse  

homozygous for the disruption of Fxyd6 (Fxyd6-/- mice) (Lexicon Pharmaceuticals 

Incorporated., 2007). In these mice I also investigated the role of FXYD6 in 

pathways associated with schizophrenia, such as the GABAergic and 

glutamatergic pathways.  Fxyd6-/- mice were created via the insertion of a 

trapping cassette upstream of exon1 in Fxyd6 (Lexicon Pharmaceuticals 

Incorporated., 2007). To confirm that insertion of the cassette results in the full 

disruption of Fxyd6 and FXYD6 protein transcripts, two RTqPCR primers were 

designed to target Fxyd6 across exon 1 and 2 and exon 3 and 4. This ensures that 
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if alternative splicing has occurred following the insertion of the trapping vector 

upstream of exon1, short transcripts expressing exons 1 and 2 and longer 

transcripts also expressing exons 3 and 4, will be detected. Fxyd6 expression 

levels were quantified using cDNA converted from Fxyd6-/-
 mouse- derived RNA. 

Results revealed significant disruption of both splice variants of Fxyd6 in Fxyd6-/- 

mice in comparison to Fxyd6+/+ mice. To ensure results are truly representative 

of physiological RNA expression, a geometric mean of 3 housekeeping genes was 

used as reference to normalise samples. This method is better than using only 

one housekeeping gene as it reduces the risk of genotype-related changes in 

expression of any individual housekeeping gene.   

Fxyd6 expression in Fxyd6-/- mice was examined further using in situ 

hybridisation. Dramatically reduced expression of Fxyd6 was apparent 

throughout the brain. Despite these results in conjunction with RTqPCR results 

clearly indicating Fxyd6 RNA has been reduced in Fxyd6-/- mice, and therefore 

suggesting protein expression will also be disrupted, it is still important to 

evaluate FXYD6 protein expression in the mice, to exclude residual alternative 

splicing, or remaining low levels of RNA transcripts. I have shown that FXYD6 

protein was also knocked out in the mice using western blotting. These results 

confirm Fxyd6-/- mice are suitable to be used as a tool for investigating the 

molecular properties of FXYD6. 

4.4.3 Fxyd6 null expression increases Pvalb but not Map2k7 and 
GRIN1 RNA expression 

In situ hybridisation interestingly revealed an up-regulation of Pvalb expression 

in the frontal cortex of Fxyd6-/- mice in comparison to Fxyd6+/+ mice. Pvalb is a 

marker of a subtype of GABAergic interneurons and reduced parvalbumin-

expressing interneuron density has been previously associated with schizophrenia 

(Kinney et al., 2006;Abekawa et al., 2007);(Korotkova et al., 2010). It would 

therefore be interesting to futher investigate whether the expression in Fxyd6-/- 

mice is due to reduced Pvalb expression in neurons, or a reduction in the 

number of neurons expressing Pvalb. Although this is an interesting avenue to 

explore,  further confirmation of altered parvalbumin expression in these mice is 

required, such as increased sample numbers (n = 3 in this study) and a 
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confirmation of  a functional association between FXYD6 and parvalbumin 

proteins in Fxyd6-/- mice would also be needed. 

Reduced expression of MAP2K7 has recently been reported in post-mortem 

prefrontal cortex brain samples from schizophrenic patients (Winchester et al., 

2012). However change in expression was not observed in Fxyd6-/- mice, 

suggesting there is no interaction between these two genes. Glutamate 

dysfunction is also associated with the pathophysiology of schizophrenia and 

glutamate transport has also been linked to the Na+
 K

+ ATPase pump (Nanitsos et 

al., 2004;Nanitsos et al., 2005), and so the role of FXYD6 in this circuitry was 

explored by investigating RNA expression of Grin1, a NMDA glutamate receptor 

subunit reported to be involved in memory and learning (Bannerman., 2008), 

however this was also not affected by Fxyd6 disruption, which may be due to 

small n numbers (n=3).  

4.4.4 FXYD6 disruption does not impact on GLUR2, NR2A and GAD 
65/67 protein expression 

As previously mentioned (refer to 4.4.3), parvalbumin and GABAergic 

neurotransmission is reduced in schizophrenia. In addition, the activity of 

glutamic-acid-decarboxylase (GAD), an enzyme which differentially contributes 

to GABA synthesis, is also dysregulated (Dracheva et al., 2004;Addington et al., 

2004). GAD 65/67 protein expression was investigated in Fxyd6-/- mice, using the 

western blotting technique, to further investigate an interaction between FXYD6 

and GABAergic neurotransmission. However Fxyd6 disruption does not have a 

significant impact on expression in Fxyd6-/- mice.  

Glutamate dysfunction in Fxyd6-/- mice was further explored by investigating 

NR2A and AMPA subunit expressions. The role NMDA glutamate receptor subunit 

NR2A (GluN2A) in the PFC in schizophrenia is not well characterised, however 

decreased expression of NR2A in parvalbumin neurons has been observed in the 

PFC of schizophrenia brains (Bitanihirwe et al., 2009). The key AMPA subunit, 

GLUR2 (GluA2), also has altered expression in schizophrenia brains (Eastwood et 

al., 1995;Eastwood et al., 1997), however both of these receptor subunits do not 

have altered protein expression in Fxyd6-/- mice compared to Fxyd6+/+ mice, 
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suggesting the disruption of Fxyd6 does not impact on these subunits in the 

glutamatergic  system. 

4.4.5 FXYD6 modulates Na+ K+ ATPase pump activity in the 
forebrain 

To investigate whether FXYD6 plays a modulatory role of Na+ K+ ATPase activity, 

plasma membrane was extracted from the frontal cortex and hippocampus of 

mice using a sucrose fractionation method. The fraction containing plasma 

membrane was confirmed using antibodies targeting NR2A and Na+ K+ ATPase α1 

as both are present in the plasma membrane of mammalian cells. 

The Na+ K+ ATPase-specific inhibitor ouabain was used as a means of detecting 

Na+ K+ ATPase specific activity in plasma membrane. The results revealed a 

decrease in activity in the forebrain of Fxyd6-/- mice. This is the first time that 

FXYD6 has been shown to be a modulator of brain Na+ K+ ATPase activity. A non-

significant trend towards decreased Na+ K+ ATPase activity was observed in the 

hippocampus, an increase in n number may be required to reach statistical 

power. Despite the altered activity of forebrain Na+ K+ ATPase pump activity, Na+ 

K+ ATPase α1 RNA and protein expression were not affected by Fxyd6 

homozygous disruption. The mechanism behind how FXYD6 modulates the Na+ K+ 

ATPase pump activity is unclear however it has been suggested that the FXYD 

proteins are non-essential modulators of the α/β complex of the Na+
 K

+ ATPase 

pump and act to regulate the kinetics of the pump in a tissue-specific manner 

(refer to 1.12.2). To further investigate the interaction and modulation of the 

Na+ K+
 ATPase pump, it would be interesting to use immunocytochemistry 

technique using antibodies targeted to the relevant proteins to investigate the 

cellular expression of these proteins in relation to each other. 

Immunoprecipitation would also be a good technique to employ to investigate 

interactions between these proteins. These methods would allow further insight 

in to whether the Na+ K+ ATPase pump and FXYD6 proteins interact by directly 

associating with one another.  
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4.5 Conclusion 

This chapter has provided an insight in the molecular profile of FXYD6. Fxyd6-/- 

mice have been validated as having Fxyd6 DNA, RNA and protein disruption and 

utilised as a tool to elucidate information on the molecular functioning of 

FXYD6. 

Fxyd6 was shown to be expressed in a number of regions of the brain including 

the forebrain and hippocampus, two regions of interest in schizophrenia. 

Furthermore, although the disruption of Fxyd6 does not appear to have an 

impact on glutamatergic receptor expression, Pvalb was found to have increased 

expression in Fxyd6-/- mice, this suggests a potential interaction between FXYD6 

and GABAergic neuronal activity however this area requires further evidence to 

confirm an interaction exists.  

We have confirmed FXYD6 modulates brain Na+
 K

+ ATPase activity in the frontal 

cortex, whilst the interaction between FXYD6 and Na+ K+ ATPase does not 

manifest through alteration of protein expression; further experiments could be 

conducted to elucidate the means of interaction between FXYD6 and Na+ K+ 

ATPase. 

Due to the expression of Fxyd6 in the prefrontal cortex, the impairment of Fxyd6 

in Fxyd6-/- mice could have the potential to disrupt memory and learning. The 

phenotype of these mice would therefore be an interesting area to investigate. 
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Chapter 5. Phenotype of mice containing 
disrupted Fxyd6 and similarities to cognitive 

symptoms of schizophrenia. 
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5.1 Introduction 

The molecular characterisation of FXYD6 (refer to Chapter 4) provides novel 

evidence which further supports a role of FXYD6 in schizophrenia and similar 

disorders associated with impaired cognition. Fxyd6 was shown to be expressed 

in the prefrontal cortex and hippocampus, two brain regions highly implicated in 

schizophrenia. The targeted disruption of a gene in an animal model provides an 

excellent tool to research the role of a desired gene in disease pathology, 

however molecular and behavioural characterisation are both required to 

validate the model as being representative of a disorder. 

The expression pattern of Fxyd6 in the brain (refer to 4.3.1) indicates it may be 

involved in cognition and memory. The prefrontal cortex plays a major role in 

working and executive memory. Dysfunction in associated circuitry are thought 

to underlie many of the cognitive symptoms of schizophrenia such as deficits in 

working and executive memory, task switching and decision making (Kim et al., 

2009;Heerey et al., 2008). Clinical, neuropsychological and neuroimaging studies 

have all implicated dysfunction of the prefrontal cortex in the pathology of 

schizophrenia (Chai et al., 2011;Pomarol-Clotet et al., 2010). The hippocampus 

is also a key structure implicated in the symptoms of schizophrenia. It is 

responsible for memory and spatial learning (Gaffan., 1985;Olton and Paras., 

1979). Furthermore, connectivity networks between the prefrontal cortex and 

the hippocampus are thought to be responsible for many areas of cognition and 

memory consolidation, in particular working memory (Laroche et al., 2000;Yoon 

et al., 2008). The presence of Fxyd6 in these brain regions alone make this an 

interesting mouse model to investigate as a model of schizophrenia. However 

the potential interaction of Fxyd6 in GABAergic neuronal activity (refer to 

4.4.3), as observed by increased Pvalb expression in Fxyd6-/- mice , further 

suggests Fxyd6-/- mice may exhibit a phenotype analogous to symptoms observed 

in schizophrenia.  

Currently not much information is known on the role of Na+ K+ ATPase activity in 

behaviour. Mice homozygous for the genetic disruption of Na+ K+ ATPase subunits 

α1, α2, or α3 are all embryonically lethal, however heterozygous disruption of 

each subunit results in altered locomotor activity in response to amphetamine, 

impaired memory and spatial learning, and increased anxiety (Moseley et al., 
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2007). Furthermore, it has been suggested Na+ K+ ATPase is required for memory 

consolidation (Wyse et al., 2004;Sato et al., 2004). Fxyd6-/- mice exhibit 

decreased Na+ K+ ATPase activity in the prefrontal cortex (refer to 4.3.5) and 

may therefore have deficits in memory, locomotor and/or increased anxiety as a 

result of Na+ K+ ATPase dysfunction. 

5.2 Hypothesis and aim 

FXYD6 has been shown to be expressed in brain regions associated with working 

and executive memory, and consolidation of memory; therefore the targeted 

disruption of Fxyd6 may result in cognitive deficits, a symptom associated with 

schizophrenia. The targeted genetic disruption of Fxyd6 may reveal further 

association with symptoms of schizophrenia as the disruption Na+ K+ ATPase α 

subunit has been shown to induce deficits in locomotor activity and increase 

anxiety-like behaviours. The genetic disruption of Fxyd6 results in decreased Na+ 

K+ ATPase activity and Fxyd6-/- mice may therefore show similar phenotypes.  

The aim of this chapter is to provide a phenotypic characterisation of mice 

homozygous for disrupted Fxyd6 (Fxyd6-/- mice), in order to elucidate the in vivo 

role of Fxyd6 and determine if Fxyd6-/- mice represent a rodent model of 

schizophrenia-related behaviours. The strain’s basic phenotype is investigated 

using a battery of assessments, followed by more challenging behavioural tests 

designed to investigate specific traits such as anxiety, locomotor activity, 

sensorimotor gating and cognitive deficits. 
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5.3 Results 

5.3.1 Fxyd6-/- mice have a normal primary phenotype 

In comparison to Fxyd6+/+ mice (n= 10) the disruption of Fxyd6 in Fxyd6-/- mice 

(n=10) did not induce significant abnormalities in basic behaviours tested by the 

primary phenotype screen (Table.5.1) and motor coordination and balance, as 

tested by rotarod, both appeared unaffected by the disruption of Fxyd6 (Table 

5.1, refer to 2.10.2).     

5.3.2 Fxyd6-/- mice do not differ from Fxyd6+/+ in plus maze 
performance 

In order to investigate the impact of lack of Fxyd6 on anxiety related 

behaviours, Fxyd6-/- mouse performance in the elevated plus maze was analysed 

(refer to 2.10.3). In comparison to Fxyd6+/+ mice (n=10), Fxyd6-/- mice (n=10) did 

not reveal any significant changes in anxiety related behaviours, as detected by 

no significant differences in zone duration (F1,79=0.299), p>0.05), zone entry 

frequency (F1, 79= 0.228, p>0.05), distance travelled (F1,19=0.99, p>0.05) and 

mean velocity (F1,19=0.99, p>0.05,Table 5.2) n=10 per group. 
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Table.5.1 Summary of primary phenotype screen performed on mice homozygous for Fxyd6 
(Fxyd6+/+) and mice homozygous for Fxyd6 deletion (Fxyd6-/-).  

Fxyd6-/- mice do not significantly differ from Fxyd6+/+ mice in any parameters tested in the 
primary phenotype screen. Data are presented as mean ± SEM, n = 10. Data analysed by 
Student’s t-test.  

 

Location Phenotype Significance

Fxyd6+/+ Fxyd6-/-

In Arena Body position 1 ± 0 1 ± 0 p >0.05

Spontaneous activity 0 ± 0 0 ± 0 p >0.05

Tremor 0 ± 0 0 ± 0 p >0.05

Urination 0.4 0.6 p >0.05

Defecation 1.2 1 p >0.05

Bizarre behaviours 0 ± 0 0 ± 0 p >0.05

Convulsions 0 ± 0 0 ± 0 p >0.05

Palebral Closure 0 ± 0 0 ± 0 p >0.05

Piloerection 0 ± 0 0 ± 0 p >0.05

Gait 0 ± 0 0 ± 0 p >0.05

Pelvic elevation 1 ± 0 1 ± 0 p >0.05

Tail elevation 1 ± 0 1 ± 0 p >0.05

Pinna reflex 0 ± 0 0 ± 0 p >0.05

Restrained Cornea reflex 0 ± 0 0 ± 0 p >0.05

Provoked biting 0 ± 0 0.1 ± 0.1 p >0.05

Trunk curl 1 ± 0 1 ± 0 p >0.05

Visual placing 1 ± 0 1 ± 0 p >0.05

Hanging wire 1 55.0 ± 5 56.5 ± 3.5 p >0.05

Hanging wire 2 60.0 ± 0 51.5 ± 5.7 p >0.05

Hanging wire 3 60.0 ± 0 54.9 ± 5.1 p >0.05

Hanging wire average 58.3  ± 1.7 54.3 ± 4.4 p >0.05

Rotarod 1 85.9 ± 15.6 131.2 ± 19.9 p >0.05

Rotarod 2 130.7 ± 21.6 107.7 ± 14.1 p >0.05

Rotarod 3 155.6 ± 25.0 144.4 ± 18.2 p >0.05

Rotarod average 124.1 ± 16.8 127.8 ± 14.9 p >0.05

Genotype
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A

Zone Fxyd6+/+ Fxyd6-/- Significance

Centre 101.1 ± 9.4 93.6 ± 6.3 p =0.99, ns

Zone 1 166.7 ± 14.8 163.7 ±  10.9 p =0.99, ns

Zone 2 26.9 ± 7.7 32.2 ± 7.2 p =0.67, ns

Zone 3 4.9 ± 2.7 10.1 ± 4.5 p =0.89 ns

Duration

 

B

Zone Fxyd6+/+ Fxyd6-/- Significance

Centre 24.8 ± 2.0 25.7 ± 1.8 p =0.99, ns

Zone 1 19.4 ± 1.8 19.3 ± 2.0 p =1.00, ns

Zone 2 7.1 ± 1.8 10.3 ± 1.3 p =0.99, ns

Zone 3 0.8 ± 0.4 2.5 ± 0.9 p =0.84, ns

Frequency

 

C

Parameter Fxyd6+/+ Fxyd6-/- Significance

Distance travelled (cm) 1218.2 ± 57.0 1297.6 ± 45.7 p =0.28, ns

Mean velocity (cm/s) 4.1 ± 0.2 4.3 ± 0.2 p =0.28, ns  

 

Table 5.2 Fxyd6-/- mice do not display abnormal anxiety-related behaviours in the elevated 
plus maze, in comparison to Fxyd6+/+ mice.  

Performance in the elevated plus maze did not differ between Fxyd6+/+ and Fxyd6-/- mice in 
the following parameters  

a) duration (seconds) (F1,79=0.299, p> 0.05) 

 b) frequency of entering zones in the EPM (F1, 79=0.228, p> 0.05 and  

c) Distance travelled (T=0.99, p> 0.05) and mean velocity (T=0.99, p> 0.05)  travelled in all 
zones.  Zone 1= closed arm total, zone 2= 2/3rds open arm, zone 3= 1/3rd open arm (refer to 
2.10.4) Data are presented as mean ± SEM. N=10 per group. Duration and frequency 
analysed using ANOVA followed by Tukey’s post hoc test for multiple comparisons. Distance 
and mean velocity analysed by Student’s t-test.  
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5.3.3 Fxyd6-/- mouse performance in open field with 
pharmacological challenges 

Anxiety-like behaviours in Fxyd6-/- mice were further evaluated using the open 

field behavioural test (refer to 2.10.42.10.5). During analysis of data, the open 

field arena was split into three zones, inner, thigmotaxis and outer (refer to 

2.10.4). In addition, normal functioning of the mesolimbic dopamine pathway 

was investigated by assessing hyperlocomotor activity following administration 

of amphetamine and similarly assessing ability of NMDA neurotransmission 

following the administration of ketamine.   

Amphetamine challenge 

Fxyd6-/- mice did not differ from Fxyd6+/+ mice in the duration of time spent in 

individual zones, and did not show altered sensitivity to amphetamine in 

hyperlocomotor activity, as described below: 

Genotype did not significantly affect the duration of time spent in zones 

(F1,119=0.01, p>0.05) and there was no overall interaction between treatment 

and genotype (F1,119=0.07, p>0.05) (Figure 5.1a).  Administration of 3 mg/kg 

amphetamine had a significant overall interaction with zone (F2,119= 17.63, 

p<0.001). Tukey’s post hoc analysis reveals that amphetamine treated mice 

spend significantly less time in the centre duration compared to mice 

administered saline (p<0.001) and more time in the outer zone (p<0.001). Time 

spent in the thigmotaxis zone does not significantly differ in response to 

amphetamine (p>0.05). n= 10 per group (Figure 5.1a).   

Fxyd6-/- mice do not significantly differ from Fxyd6+/+ mice in velocity 

(F1,479=306, p=0.08). Administration of 3 mg/kg amphetamine significantly 

increases velocity in both genotypes (F1,39=4126, p<0.001), however there is no 

significant interaction between amphetamine and genotype (F1,39=1.59, p>0.05, 

Figure 5.1b).  

Total distance travelled during the testing stage is not affected by genotype 

(F1,39=0.32, p>0.05), however overall amphetamine significantly increases 
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distance travelled (F1,39=43.68, p<0.001) but does not have a significant 

interaction with genotype (F1,39=0.17, p>0.05) Figure 5.2. n= 10 per group.  

Ketamine challenge 

Fxyd6-/- mice did not differ from Fxyd6+/+ mice in the duration of time spent in 

individual zones, despite one group revealing a higher baseline velocity (Fxyd6-/- 

mice prior to receiving 10 mg/kg ketamine in comparison to Fxyd6+/+ mice) no 

significant differences were observed following ketamine treatment, as 

described below: 

Administration of treatment (saline, 10 mg/kg ketamine or 25 mg/kg ketamine) 

does not have an overall significant effect on duration in zones in the open field 

(F2,152= 0.84, p>0.05, Figure 5.3a). There was not an overall effect of genotype 

on duration spent in zones (F1,152=0.14, p>0.05) or interaction between drug and 

genotype (F1,152=0.07, p>0.05). Duration spent in zones significantly differed 

from one another (F2,152=191.20, p<0.001) n= 10 per group.  

Mean velocity of movement of Fxyd6+/+ and Fxyd6-/- mice was analysed during 

the habituation period and following ketamine administration. During the 

habituation period, treatment (saline, ketamine 10mg/kg and 25 mg/kg) did not 

influence velocity (F2,305=0.24, p>0.05), however genotype did have a significant 

effect (F1,305=10.23, p=0.002). Tukey’s post hoc analysis revealed Fxyd6-/- mice 

in treatment group 10 mg/kg ketamine have a higher basal velocity, prior to 

receiving treatment, compared to Fxyd6+/+ mice (p=0.02), this is not observed 

between any of the other groups (p>0.05).  During the test stage, treatment 

does not have a significant effect on velocity over the 60 minute period 

(F2,566=0.20, p>0.05) however during the 10 minutes succeeding treatment 

administration (time point 35-45 minutes) treatment has an overall significant 

impact (F2,140=26.33, p<0.001), this effect does not differ between Fxyd6-/- mice 

Fxyd6+/+ mice (F2,140=2.27, p>0.05) (Figure 5.3b). Tukey’s post hoc analysis 

demonstrates 10 mg/kg ketamine and 25 mg/kg both induce an overall 

significant effect in comparison to saline (10 mg/kg p=0.03, 25 mg/kg p<0.001). 

Fxyd6+/+ n=10, Fxyd6-/- n=7. 



129 

 
 

C e n tre O u te r T h ig m o ta x is

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

F x y d 6
+ / +

(s a lin e )

F x y d 6
- / -

(s a lin e )

F x y d 6
+ / +

 (a m p )

F x y d 6
- / -

   (a m p )

Z o n e

D
u

r
a

ti
o

n
 (

M
in

u
te

s
)

***

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

0

5

1 0

1 5

2 0

F x y d 6
+ / +

(s a lin e )

F x y d 6
- / -

(s a lin e )

F x y d 6
+ / +

(a m p )

F x y d 6
- / -

(a m p )

T im e  (m in u te s )

M
e

a
n

 v
e

lo
c

it
y

 (
c

m
/s

)

aaa

b

 
Figure 5.1 Fxyd6-/- mice do not exhibit altered locomotor activity responses to amphetamine 
in comparison to Fxyd6+/+ mice in the open field test. 

a) Analysis of duration spent in centre, inner and outer zones of the open field arena reveal 
Fxyd6-/- mice do not significantly differ from Fxyd6+/+ mice, suggesting the homozygous 
disruption of Fxyd6 does not impact on anxiety-related behaviours (F1,119=1.08, p>0.05). 
Administration of 3mg/kg of amphetamine (amp) overall significantly increases anxiety- 
related behaviours in Fxyd6+/+ and Fxyd6-/- mice, as observed by a decrease in time spent in 
the centre of the arena in both genotypes (F2,119= 17.63, p<0.001). In comparison to Fxyd6+/+ 
mice, Fxyd6-/- mice do not show hypersensitivity to amphetamine challenge (F1,59= 0.04, 
p>0.05). *** p<0.001 overall amphetamine vs. saline affect on duration  

b) Mean velocity in Fxyd6+/+ mice and Fxyd6-/- are both increased following the 
administration of amphetamine (amp) after a 30 minute habituation period (F1,479=4126, 
p<0.001), Fxyd6-/- mice do not differ from their Fxyd6+/+ littermates in their response to 
amphetamine (F1,479=306, p>0.05). n=10 per group. Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons. n=10 per group. Data analysed by ANOVA 
followed by Tukey’s post hoc test for multiple comparisons.  ↓ represents time of treatment 
administration 
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Figure 5.2 Fxyd6-/- mice do not show altered sensitivity to amphetamine in the open field 
test 

Analysis of distance travelled during the testing stage of open field did not reveal a 
significance difference between Fxyd6+/+ and Fxyd6-/- mice (F1,39=0.32, p>0.05) . 
Administration of 3mg/kg of amphetamine significantly increases the overall distance 
travelled (F1,39=43.68, p<0.001), the effect of amphetamine is not influenced by genotype 
(F1,39=0.17, p>0.05) Data analysed by ANOVA followed by Tukey’s post hoc test for multiple 
comparisons. ***p<0.001. 
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Figure 5.3 Fxyd6-/- do not reveal sensitivity to ketamine in the open field test. 

a) Analysis of duration spent in centre, inner and outer zones of the open field arena reveal 
Fxyd6-/- mice do not significantly differ from Fxyd6+/+ mice (F1,152=0.14, p>0.05). 
Administration of 10 mg/kg and 25 mg/kg ketamine (ket), using a cross-over treatment 
regime, does not significantly affect anxiety- like behaviours in both Fxyd6+/+ and Fxyd6-/- 
mice, as observed by no change in time spent in the arena zones (F2,152= 0.84, p>0.05).   

b) Velocity of Fxyd6+/+ and Fxyd6-/- mice were both significantly increased in response to 
ketamine over time points 35-45 minutes (F2,140=26.33, p<0.001) however there is not a 
drug x genotype interaction (F2,140=2.27, p>0.05). Key: * 10 mg/kg ketamine (ket 10) vs. 
saline p=0.03, # 25 mg/kg ketamine (ket 25) vs. saline p<0.001).   Fxyd6+/+ n=10, Fxyd6-/- 
n=7. Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons. ↓ 
represents time of treatment administration 
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5.3.4 Fxyd6-/- acoustic startle 

Prior to conducting PPI, acoustic startle was examined to ensure PPI results were 

not confounded by alterations in hearing (refer to 2.10.5). Startle responses 

from mice homozygous for Fxyd6 null expression did not significantly differ from 

mice homozygous for Fxyd6 expression (F1,143=0.08, p> 0.05, Figure 6.7) 

suggesting lack of Fxyd6 does not affect hearing. n=10 per group. 

5.3.5 Fxyd6-/- sensorimotor gating 

As predicted ketamine induced overall deficits in sensorimotor gating. Deficits in 

sensorimotor gating in Fxyd6-/- mice compared to Fxyd6+/+ mice are only 

apparent following administration of 10 mg/kg ketamine, but not saline or 25 

mg/kg ketamine, as described below (refer to 2.10.5): 

As expected, prepulse levels also had a significant impact on sensorimotor gating 

(F2,206=45.86, p<0.001). Overall PPI results reveal Fxyd6-/- mice have significantly 

altered PPI compared to Fxyd6+/+ mice (F1,206=6.15, p=0.01). There is also an 

overall effect of treatment (saline, 10 mg/kg ketamine, 25 mg/kg ketamine) 

(F2,206=8.75, p<0.001) and a significant interaction between genotype and 

treatment (F2,206=4.94, p=0.01). The response to the size of prepulse is not 

affected by genotype (F2,206=0.22, p>0.05), or by treatment (F4,1.12, p>0.05). 

Tukey’s post hoc exposes Fxyd6-/- mice only reveal PPI deficits, in comparison to 

Fxyd6+/+ mice, following treatment with 10 mg/kg ketamine (p=0.03), but not 

saline (p>0.05) or 25 mg/kg ketamine (p>0.05). However, post hoc analysis 

revealed there is no deficits at individual prepulses; at prepulse 4, both 

genotype (F1,68=2.32, p>0.05) and treatment (F2,68=0.341) do not significantly 

impact on  PPI responses.  Similarly, at prepulse 8 both genotype (F1,68=0.78, 

p>0.05) and treatment (F2,68=2.04) also do alter PPI response. At prepulse 16, 

treatment significantly inhibits PPI overall (F1,68=6.54, p=0.003) but not genotype 

does not affect the response (F1,68=6.54, p>0.05).  n=10 per group.  
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Figure 5.4 Fxyd6-/- mice do not display hearing loss but do have prepulse inhibition deficits,   
compared to Fxyd6+/+ mice. 

a) Startle magnitude to auditory stimuli of 65 dB, 69 dB, 73 dB, 77 dB, 85 dB, 90 dB, 100 dB, 
110 dB, 120 dB intensities did not differ between Fxyd6+/+ mice and Fxyd6-/- mice (F1,143 = 
0.08, p> 0.05) suggesting disruption of Fxyd6 does not impact on hearing. n=10 per group. 
Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons.   

b) Effect of ketamine treatment (10 or 25 mg/kg) on PPI in Fxyd6-/- mice compared to 
Fxyd6+/+ mice. Prepulse inhibition of the startle response was overall significantly lowered in 
Fxyd6-/- mice compared to Fxyd6+/+ mice (F1,206=6.15, p=0.01) and 10 mg/kg ketamine had 
less effect on Fxyd6-/- mice overall (F1,206=6.15, p=0.01).  However, genotype and treatment 
individually did not have a significant effect at each prepulse level (p>0.05). n=10 per group. 
Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons.  Data 
shown as mean ±S.E.M. 
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5.3.6 Fxyd6-/- mouse sociability and social novelty.  

Fxyd6+/+ and Fxyd6-/- mice both demonstrated a strong preference for exploring 

the chamber containing a strange mouse, in comparison to the empty chamber 

(F2,29=48.36, p<0.001), demonstrating similar levels of mouse sociability (Figure 

5.5a). The disruption of Fxyd6 in Fxyd6-/- mice did not appear to have an impact 

on levels of sociability, as observed by no differences in the duration of time 

spent exploring the chamber containing a mouse, in comparison to Fxyd6+/+ mice 

(F1,29=0.00, p>0.05), and also there was no genotype*zone interaction 

(F2,29=0.12, p=0.884) (Figure 5.5a). Fxyd6+/+ n=7, Fxyd6+/+ n=6. 

When a novel mouse was added to the arena in the social novelty aspect of this 

task (refer to 2.10.7), zones had a significant impact on duration (F2,29=22.95, 

p<0.001), Tukey’s post hoc analysis reveals only Fxyd6+/+ mice display 

significantly more time investigating the novel mouse compared to the now 

familiar mouse (Fxyd6+/+ p=0.003, Fxyd6-/- p<0.05) (Figure 5.5b). This suggests 

Fxyd6-/- mice may have deficits in social novelty. Time spent in each zone did 

not significantly differ between Fxyd6+/+ and Fxyd6-/- mice (p>0.05). Fxyd6+/+ 

n=7, Fxyd6+/+ n=6. 

5.3.7 Fxyd6-/- mouse sucrose preference 

A sucrose consumption test was performed as a measure of anhedonia in mice 

(refer to 2.10.8). Genotype did not have an overall impact on % of sucrose 

consumption over 5 days (F1,50=2.40, p>0.05), there was a significant effect of 

day (F4,50=3.31, p=0.02) however this was not affected by genotype (F4,50=0.23, 

p>0.05) (Figure 5.6). The average % sucrose consumed over the 5 day period was 

also not significantly affect by genotype (p>0.05). Fxyd6+/+ n=7, Fxyd6+/+ n=6. 
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Figure 5.5 Fxyd6-/- mice do not have sociability deficits however do not show social novelty.  

a) Fxyd6+/+ and Fxyd6-/- mice both displayed sociability, as observed by significantly more 
time spent interacting with the stranger side of the arena, compared to the empty side 
(F2,29=48.36, p<0.001). Genotype did not have an effect on levels of sociability (F1,29=0.00, 
p>0.05) ***p<0.001. Fxyd6+/+ n=7, Fxyd6-/- n=6. Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons.   

b) Only Fxyd6+/+  mice displayed significant sociability, as observed by significantly more 
time spent interacting with a novel mouse (stranger side), in comparison to the now familiar 
mouse (familiar side).= (Fxyd6+/+ mice p=0.003, Fxyd6-/- mice p>0.05). Fxyd6+/+ n=7, Fxyd6-/- 
n=6. Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons.  ** 
p<0.01 
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Figure 5.6 Fxyd6-/- mice also do not show deficits in a model to detect anhedonia.   

Genotype did not have an overall impact on % of sucrose consumption during single days and 
in total  over a 5 day period, suggesting that Fxyd6-/- mice do not suffer from anhedonia 
(F1,50=2.40, p>0.05), Fxyd6+/+ n=7, Fxyd6-/- n=6. Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons.   
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5.3.8 Fxyd6-/- mouse performance in a delayed non-match to 
sample task 

Results from the delayed non-match to sample task revealed that Fxyd6-/- mice 

have difficulty with working memory following a 5 second delay, as shown by 

significantly fewer correct trials  (F1,12=10.44, p=0.008, Figure 5.7a), inter trial 

delays were kept constant. There were no significant differences at intra-trial 

delays of 15 seconds (p>0.05) and 30 seconds (F1,12=0.65, p>0.05). Fxyd6+/+ and 

Fxyd6-/- mice do not differ in perseverative responding as measured by two or 

more consecutive incorrect trials (F1,12=2.31, p>0.05, Figure 5.7b)  or the % of 

overall trials correct (F1,12=3.17, p>0.05, Figure 5.7c). Fxyd6+/+ n=7, Fxyd6-/- n=6. 



138 

 
 

5 1 5 3 0

0

2 5

5 0

7 5

1 0 0

D e la y  (s e c o n d s )

%
 c

o
r
r
e

c
t

F x yd 6 + /+ F x yd 6 - /-

0 .0

2 .5

5 .0

7 .5

P
e

r
s

e
r
v

a
ti

v
e

 r
e

s
p

o
n

s
e

 (
c

h
e

c
k

 v
a

lu
e

s
)

F x y d 6
+ / +

F x y d 6
- / -

F x yd 6
+ /+

F x yd 6
- / -

0

2 5

5 0

7 5

1 0 0

O
v

e
r
a

ll
 %

 c
o

r
r
e

c
t

* *
 a

b

c

 



139 

 
 

 

Figure 5.7 Fxyd6-/- mice have deficits in working memory.  

 a) In comparison to Fxyd6+/+ mice, Fxyd6-/- mice have deficits in working memory when 
encountering a delay of 5 seconds (F1,12=10.44, p=0.008) but not 15 (p<0.05) and 30 seconds 
(F1,12=0.65, p=0.438). Fxyd6+/+ n=7, Fxyd6-/- n=6. Data analysed by Student’s t-test with the 
exception of delay at 15 which was analysed by Mann-Whitney non-parametric test. **p<0.01  

b) Fxyd6-/- do not have significantly increased perseverative response in comparison to 
Fxyd6+/+ mice (F1,12=2.31, p>0.05). **p<0.01  

c) Overall % trials correct does not differ between Fxyd6+/+ and Fxyd6-/- mice. Fxyd6+/+ n=7, 
Fxyd6-/- n=6. Data analysed by Student’s t-test .  **p<0.01 
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5.4 Discussion 

The effect of the homozygous disruption of Fxyd6 on phenotype was investigated 

using a range of tests. These were no gross deficits however there is evidence 

for subtle phenotype alterations in particular tests.    

5.4.1 Primary phenotype screen 

The primary phenotype screen comprising of a battery of tests based on the 

SHIRPA screen (Rogers et al., 1997) was initially performed on Fxyd6-/-
 mice in 

order to detect manifestation of abnormal behaviours such as spontaneous 

activity, aggressiveness, neuromuscular abnormalities, convulsions general 

condition of coat and eye reflexes. For the full list of criteria refer to (refer to 

2.10.1). The screen is initiated by viewing undisturbed mouse behaviour in a 

clear observation arena. The screening is an imperative process that should be 

carried out as a first line of phenotyping for any novel mouse strain as such 

effects could impact on subsequent behaviours and confound interpretation of 

results in more specific tests. In this study, Fxyd6+/+ and Fxyd6-/- mice undergo 

various behavioural tests where results could be misinterpreted due to deficits in 

motor control or muscle fatigue, or tremors or convulsions. The primary 

phenotyping screen did not indicate abnormal behaviours in Fxyd6-/- mice in 

comparison to Fxyd6+/+ mice, and rotarod and grip strength aimed to detect poor 

motor performance, co-ordination and balance also did not differ between 

mouse genotypes. Therefore deficits in subsequent behavioural tests such as 

locomotor activity, social interaction and working memory are likely to be a true 

indication of a role for Fxyd6 in behaviour and cognition, rather than non-

specific confounds.  

5.4.2 Anxiety-related behaviours in Fxyd6-/- mice 

Mouse performance in the elevated plus maze was analysed in order to assess 

the effect of Fxyd6 disruption on anxiety-related behaviours. The elevated plus 

maze uses anxiety-related conflict that arises between the mouse’s natural 

preference for dark enclosed space, compared to the drive to explore a novel 

environment (Lister., 1987). Mice with high levels of anxiety will avoid the bright 

open arms of the maze. Fxyd6-/- mice did not show altered anxiety-related 
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behaviours when compared to Fxyd6+/+ mice during the 5 minutes allowed to 

explore the elevated plus maze.   

Anxiety levels in Fxyd6-/- mice were further explored, along with locomotor 

activity, using the open field test. In order to analyse anxiety-related behaviours 

in the open field arena further, the arena was split into 3 zones during data 

analysis. The ‘centre zone’ indicates the amount of time the mouse spends in 

the centre of the arena, indicating increased exploratory behaviour in the 

mouse, while the outer zone represents the time spent in the rest of the arena. 

The outer zone was further split to analyse thigmotaxis.  Similarly to the 

elevated plus maze, the open field test assesses anxiety arising from the 

mouse’s urge to explore the open centre of the arena, compared to the anxiety- 

induced preference to stay close to the wall (thigmotaxis). In accordance with 

the plus maze, Fxyd6-/- mice did not reveal an increased anxiety phenotype in 

the open field arena. Mice heterozygous for the deletion of the Na+ K+ ATPase 

α1-subunit also do not display increased anxiety-related behaviours (Moseley et 

al., 2007) Since molecular characterisation of Fxyd6+/+ mice revealed co-

localisation between FXYD6 protein and Na+ K+ ATPase α1-subunit (refer Chapter 

4), and functional studies link FXYD6 with the Na+ K+ ATPase subunit (Delprat et 

al., 2007a, Delprat et al., 2007b) this suggests that Na+ K+ ATPase modulation  in 

the PFC or hippocampus is a key factor controlling anxiety.  

The administration of 3mg/kg amphetamine significantly induced 

hyperlocomotion and as a result, distance travelled in both Fxyd6+/+ and Fxyd6-/- 

mice was also increased. In comparison to Fxyd6+/+ mice, Fxyd6-/- mice did not 

reveal any increased sensitivity to amphetamine. Amphetamine induced 

hyperlocomotion is an expected result and confirms the validity of the 

experiment (Ralph et al., 2001). Amphetamine increased anxiety levels in both 

genotypes; again the effect was not affected by genotype. Amphetamine-

induced hyperlocomotion are a result of increased dopamine in the synapse in 

the mesolimbic system (Costall et al., 1987;Pijnenburg et al., 1976). The 

increase in dopamine results in the increased activation of dopamine D1 and D2 

receptors, inducing hyperlocomotion (Sharp et al., 1987;Tenn et al., 

2003;Mansbach et al., 1988;Pijnenburg et al., 1975 refer to 1.6.1),  

Administration of amphetamine in rodents is used to model hyperlocomotor 

activity in order to represent some of the positive symptoms of schizophrenia 
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(refer to 1.3.1, Knable and Weinberger., 1997;Mansbach et al., 1988;Pijnenburg 

et al., 1976;Thornburg and Moore., 1973).  In mice containing genetic mutations 

or lesions, amphetamine administration can reveal dopamine dysfunction or 

subtle abnormalities in locomotor activity or anxiety which open field test alone 

may not show. Hence this evidence implies that Fxyd6-/- mice do not have 

abnormalities in dopamine network. To my knowledge there is no known 

involvement between FXYD proteins and the dopamine network function, 

however mice heterozygous for deletion of α isoforms of Na+ K+ ATPase show 

abnormally increased anxiety and locomotor activity in response to 

methamphetamine (Moseley et al., 2007).  

Potential dysfunction of glutamatergic circuitry was explored in Fxyd6-/- mice by 

administration of a low dose of ketamine (10 mg/kg) and a higher but sub-

anaesthetic dose (25 mg/kg) (Ralph et al., 2001;Imre et al., 2006;Kamiyama et 

al., 2011). Initial analysis of duration spent in zones and velocity of Fxyd6+/+ and 

Fxyd6-/- mice did not reveal any differences following administration of 10 

mg/kg ketamine and 25 mg/kg ketamine, however due to the short half-life of 

Ketamine (13 minutes, (McLean et al., 1996;Maxwell et al., 2006)) data were 

reanalysed for the first 10 minutes after ketamine administration only. Both 

doses of ketamine were then found to induce hyperlocomotion in both 

genotypes; however the effect was not genotype- dependent. Despite treatment 

order and genotype being pseudorandom and balanced amongst groups, one 

group (Fxyd6-/- mice receiving 10 mg/kg ketamine) displayed increased velocity 

baseline, in comparison to Fxyd6+/+ mice. However, in this study it is unlikely 

this is a physiological response derived from the genetic disruption of Fxyd6, as 

it was not displayed in the Fxyd6-/- mice subsequently treated with 25 mg/kg 

ketamine or amphetamine, or Fxyd6+/+ mice with treated 10 mg/kg ketamine, 

despite all groups being counterbalanced.  

5.4.3 Sensorimotor gating in Fxyd6-/- mice 

Prior to testing sensorimotor gating, hearing in Fxyd6-/- mice was tested to 

ensure the disruption of Fxyd6 does not affect hearing, as FXYD6 is expressed in 

the inner ear (Delprat et al., 2007a;Delprat et al., 2007b). Fxyd6-/- mice do not 

have altered hearing. However they have overall deficits in prepulse inhibition, 

indicating deficits in sensorimotor gating. Sensorimotor gating is a complex 
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process involving multiple interactions with multiple neurotransmitters including 

dopamine, serotonin and glutamate (Ojima et al., 2004;Quednow et al., 

2004;Egerton et al., 2008). Deficits in sensorimotor gating stems from problems 

in inhibition in the CNS and results in the inability to filter important sensory 

information from ‘noise’ and is associated with symptoms of schizophrenia. 

Deficits in PPI are often used as a rodent model of the sensorimotor gating 

deficits associated with schizophrenia (Geyer et al., 2001). Inhibition of Na+ K+ 

ATPase activity by ouabain has been associated with inhibition of dopamine and 

serotonin uptake (Steffens M and Feuerstein TJ., 2004) and glutamate transport 

(Nanitsos et al., 2005;Rose et al., 2009). It is possible impairments in 

neurotransmission as a result of impaired Na+ K+ ATPase activity are responsible 

for the impaired sensorimotor gating observed in Fxyd6-/- mice.  

5.4.4 Social interaction and social novelty in Fxyd6-/- mice 

Social deficits are potentially associated with the negative symptoms of 

schizophrenia, as well as autism and related neurodevelopmental disorders (Lord 

et al., 2000;Aghevli et al., 2003;Wing and Gould., 1979). Mice are highly social 

animals and therefore make an excellent model to study deficits in sociability. 

Sociability testing in mice takes into account social approach of mice to a 

stranger mouse. A cylindrical wire cage containing the stranger mouse permits 

visual, olfactory and tactile interaction. In this study, sociability was defined as 

the tendency to approach and remain in the zone containing the stranger mouse. 

Disruption of Fxyd6 did not cause deficits in sociability. However it appears to 

induce a trend towards reduced levels of social novelty- the preference to 

interact with a new stranger mouse, compared to the now familiar mouse, 

reached significance in Fxyd6+/+ mice but not Fxyd6-/- mice. Despite this 

suggesting that Fxyd6-/- mice have reduced levels of social novelty, the levels 

did not significantly differ from Fxyd6+/+ mice. An increase in ‘n’ numbers could 

determine whether this result is a true biological effect that reflects a lack of 

interest from Fxyd6-/- mice in the new mouse. Reduced social novelty could also 

reflect the inability to distinguish between the familiar and novel mouse which 

could be explored further by using the novel object recognition test, which 

explores recognition memory by assessing time spent exploring familiar and non-

familiar objects. This test may provide further insight into novel object 

preference in Fxyd6-/- mice.    
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5.4.5 Sucrose preference 

Anhedonia, the inability to experience pleasure, has been associated with the 

negative symptoms of schizophrenia (refer to 1.3.2). Mice have a preference for 

sweet sucrose water over standard water. It has been suggested that the 

presence of anhedonia in mice can be detected by attenuated sucrose 

preference over water (Papp et al., 1991).  Fxyd6-/- mice consumed similar 

amounts of sucrose water compared to normal water, not only revealing a lack 

of anhedonia but also showing they do not have deficits in taste, which may have 

existed due to the expression of FXYD6 in taste cells (Shindo et al., 2011).  

5.4.6 Working memory 

Impaired working memory is a well recognised cognitive deficit associated with 

schizophrenia (Chai et al., 2011;Goldman-Rakic., 1994;Kim et al., 

2009;Manoach., 2003;Manoach et al., 2000;Pomarol-Clotet et al., 2010). Working 

memory differs from short term memory and spatial memory because it requires 

the retention and manipulation of short term memory in order to reach an 

internal goal (e.g. food reward). A T maze is used in this task, and mice are 

required to remember which arm they visited following a forced arm run (refer 

to 2.10.6), following an intra-trial delay, mice need to retain and manipulate 

this information to choose to enter the previously unvisited arm in return for a 

reward. Delays of varying times are introduced into the intra-trial delays of the 

working memory tasks and the ability to correctly enter an unvisited arm is used 

as an assessment (Aultman and Moghaddam., 2001). Male mice were solely used 

in ‘working memory’ tasks due to female mice requiring considerably longer 

training to reach testing stage (personal communication, Dr. Thomson). This 

gender difference could be due to behaviour being affected by a number of 

factors such as circadian rhythm, menstrual cycle, environmental factors such as 

stimulating housing toys, littermates etc. It is therefore important that during 

behavioural tasks, such as those designed to test working memory, influencing 

factors are kept constant.  

Fxyd6-/- mice displayed deficits in working memory with delays of 5 seconds, 

however not at long delay periods of 15 and 30 seconds. The working memory 

task showed a non-significant trend to becoming increasingly more difficult for 
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wildtype mice as delays are increased, reducing the average % of trials correct, 

significant time-dependent deficits have been in similar working memory studies 

(Aultman and Moghaddam., 2001;Zoubovsky et al., 2011) and it is possible these 

were not observed in this study due to the low n numbers reducing power and 

adding variability (Fxyd6+/+ mice=7, Fxyd6-/- mice n=6) . Deficits in working 

memory in mice should reach a minimum of a 50% correct score by chance 

alone, it is possible Fxyd6-/- mice have deficits in working memory that are not 

apparent due to the low n numbers and variability in data, especially at the high 

delays of 15 and 30 seconds.  

Hypofrontality (reduced glucose utilisation and blood flow in the prefrontal 

cortex) has been associated with deficits in working memory (Berman K et al., 

1988;Carter et al., 1998;Glahn DC et al., 2005); it would therefore be interesting 

to carry out 2 deoxyglucose experiments in these mice to assess whether there is 

altered metabolism in the prefrontal cortex (Weinberger et al., 1986, Callicott 

et al., 2000., Manoach et al., 2000). The hippocampus has also been associated 

with deficits in working memory and memory consolidation (Lipska et al., 

2002;Sato et al., 2004;Wyse et al., 2004) and it has been suggested that both 

the prefrontal cortex and the hippocampus are required for different 

components of working memory (Yoon et al., 2008;Laroche et al., 2000). Hence, 

since Fxyd6 is prominently expressed in the PFC and hippocampus, impaired 

working memory in these mice is consistent with altered function in these areas.    

5.4.7 Conclusion 

This chapter presents a behavioural characterisation of Fxyd6-/- mice and 

provides evidence that the disruption of Fxyd6 in mice models some of the 

aspects of schizophrenia.  

Fxyd6-/- mice do not exhibit altered sensitivity to ketamine or amphetamine, 

indicating no potential glutamatergic or dopaminergic circuitry dysfunction, 

respectively. However indication of deficits in neurotransmission in Fxyd6-/- mice 

comes from subtle deficits in prepulse inhibition.  

The targeted disruption of Fxyd6 also results in prefrontal cortex and 

hippocampal- related behaviour deficits, such as deficits in working memory.  
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The genetic disruption of Fxyd6 in mice results in phenotypes similar to a range 

of symptoms associated with schizophrenia. This is encouraging to further 

investigate Fxyd6-/- a potential mouse model of schizophrenia and associated 

psychiatric and cognitive disorders. It also provides further evidence for a role of 

FXYD6 dysfunction in the aetiology of schizophrenia.   
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Chapter 6. Molecular and phenotypic 
characterisation of Map2k7, and potential as a 

mouse model of schizophrenia –like deficits 



148 

 
 

 

6.1 Introduction 

The symptoms of schizophrenia are diverse and do not appear to be the result of 

a single neurobiological factor, instead it is often thought to be a result of 

several subtle anomalies including aberrations in cell signalling.  Various studies 

have implicated impairments in neuronal circuitry and neurotransmission in the 

pathology of schizophrenia (Sumiyoshi et al., 1996;Lisman et al., 2008); 

however, the pathological mechanisms that result in impaired cell signalling and 

the signalling cascades involved remain unclear.  

MAP kinases belong to the family of serine/ threonine kinases and are important 

mediators of signal transduction (refer to 1.13); playing a major role in all 

eukaryotic cells’ response to extracellular stimuli and regulating a wide range of 

cellular processes that may lead to functional and morphological alterations of 

neurons (Kyosseva et al., 1999;Pearson et al., 2001;Kyosseva, 2004). The role of 

MAP kinase signal transduction cascades, and in particular MAP kinase kinase 7 

(MAP2K7), in major psychiatric disorders, including schizophrenia, is not well 

understood (refer to 1.13.3). However due to the abundant expression in the 

CNS and pivotal role in the regulation of signal transduction, synaptic plasticity 

and modification of gene expression in neurons (Kyosseva et al., 1999;Pearson et 

al., 2001;Kyosseva, 2004), it is not surprising various intermediates of MAP 

kinase cascades have been suggested to be involved in neurodevelopmental 

abnormalities of the brain in schizophrenia and psychiatric disorders (Kyosseva 

et al., 1999;Funk et al., 2011). 

Recently, our lab found evidence of a role of MAP2K7 as a susceptibility factor in 

schizophrenia. Not only was MAP2K7 found to have attenuated expression in the 

PFC of post mortem schizophrenia brains, but a genetic association between 

MAP2K7 and schizophrenia was found (Winchester et al., 2012). The MAP2K7 

protein is primarily activated by cytokines in the immune system (e.g. TNF, IL-

1), although it has also been shown to be activated by NMDA receptor activity in 

the CNS, a receptor often showing impaired activity in schizophrenia (Tournier 

et al., 2001;Centeno et al., 2006). Following activation, MAP2K7 is dually 

phosphorylated on a specific threonine and tyrosine residue of the 
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phosphorylation motif (refer to 1.13, (Tournier et al., 2001;Holland et al., 1997) 

prior to acting as an upstream JNK2 activator. JNK2 mediates signal transduction 

and regulates many cellular processes such as cell growth and proliferation, 

transcription and apoptosis (Tournier et al., 2001;Holland et al., 1997;Mayer et 

al., 2005). JNK2 has also been shown to have decreased expression and 

phosphorylation in the anterior cingulate cortex (Funk et al., 2011) 

strengthening the hypothesis for a role of MAP2K7 and related pathways as a risk 

factor in schizophrenia.  

Despite the genetic association implicating MAP2K7 as a risk factor of 

schizophrenia, further biological evidence is required to ascertain a functional 

link between the gene and disease. Genetic association studies provide an 

indication of markers of disease; however they do not elucidate information on 

the causative variation or the exact biological mechanism underlying the risk 

factor. Animal models provide a unique way of analysing and understanding the 

functional role of genetic risk factors in the pathophysiology of schizophrenia 

(refer to 1.10). The heterozygous or homozygous disruption of a gene of interest 

allows investigation into signalling networks, interactions and potential 

regulatory and compensatory mechanisms, as well as the impact on behaviour. 

In addition to providing a model to investigate behaviours similar to those 

associated with schizophrenia, the neurochemical hypotheses of schizophrenia 

can be explored in the mice by investigating the expression of relevant markers 

such as the GABAergic interneuron marker parvalbumin or the expression of 

glutamate receptors.  

A mouse heterozygous for Map2k7 has been established (Wada et al., 2004). 

Heterozygous expression of Map2k7 in these mice was confirmed using northern 

and southern blotting which revealed a clear reduction in Map2k7 genomic mRNA 

and DNA (respectively) (Wada et al., 2004), however as of yet these mice have 

not been investigated for impairments in neural circuitry or behaviours 

associated with schizophrenia, such as cognitive deficits.  

6.2 Aim and hypothesis 

MAP2K7 is a putative risk factor in the susceptibility to schizophrenia; however 

biological evidence is still required to establish this link. Map kinases are 
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associated with the maintenance of signal transduction and it is hypothesised 

the heterozygous deletion of Map2k7 will have implications in neurotransmission 

and memory consolidation. This chapter aims to elucidate information on the 

molecular and functional role of Map2k7 by utilising Map2k7 heterozygous mice 

(Map2k7+/-) and investigating changes in schizophrenia-related proteins and 

behaviours, such as working memory.    
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6.3 Results 

6.3.1 Expression of Map2k7 in the mouse brain 

Expression of Map2k7 in 20 μm coronal adult mouse brain sections was visualised 

using a 33P- labelled probe designed to target Map2k7 RNA (refer to 2.9). 

Qualitative assessment from comparison of total staining to non-specific staining 

revealed Map2k7 is expressed in the following brain regions: the prefrontal cortex, 

the granular cell layer of the olfactory bulb (GrO), the CA1 region of the 

hippocampus and the granule cell layer of the dentate gyrus (GrDG), and the 

cerebellar lobules of the cerebellum (Figure 6.1).  

6.3.2 Evidence for a trend towards reduced Map2k7 RNA 
expression in Map2k7+/- mice 

To investigate the potential functional link between MAP2K7 and schizophrenia, 

mice containing one targeted disruption of Map2k7 were utilised (refer to 2.3.2). 

The in situ probe used to detect mouse brain expression of Map2k7 (section 

6.3.1) was further utilised to investigate the effect of heterozygous targeted 

disruption of Map2k7 on RNA levels. Despite a trend towards reduced expression, 

no significant overall attenuation of Map2k7 mRNA expression was observed in 

Map2k7+/- mice (F1,38= 2.88, p>0.05), neither were there decreases in the 

following regions: CA1 (T1,6=0.04, p>0.05), CA3 (T1,6= 4.25, p>0.05), cerebellum 

(T1,6= 0.55, p>0.05), DG (T1,6= 0.3, p>0.05), or olfactory bulb (GrO) (T1,6= 0.1, 

p>0.05) (Figure 6.2a-i). Map2k7+/+ n=5, Map2k7+/- n=3.  

RTq-PCR primers designed to target Map2k7 transcripts across two sites: exon 1a 

and 1b and exons 10 and 11 (refer to 2.8.1), were employed to investigate the 

impact of heterozygous genetic knockdown of Map2k7 upon Map2k7 mRNA 

expression. Using a geometric mean from three housekeeping genes (18s 

ribosomal RNA, B2M and GAPDH) analysis of CT values revealed Map2k7 

expression in Map2k7+/- mice is reduced across exon 10/11 by 20% (Figure 6.3a) 

however this does not reach significance (ratio 1: 0.80, F1,5=1.09, p>0.05). A 

modest reduction of Map2k7 exon 1a and b mRNA expression of 32% was 

observed (Figure 6.3b). To further investigate Map2k7 mRNA expression in 

Map2k7+/- mice, the effect of genotype on overall Map2k7 expression was 

analysed using ANOVA with multiple comparisons, which showed a near 
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significant effect of genotype of Map2k7 expression (F1,11=5.47, p=0.06)  n=3 per 

group. 

6.3.3 Map2k7+/- mice have increased Grin1 RNA expression  

RTqPCR revealed that the heterozygous targeted disruption of Map2k7 

significantly increased glutamate receptor Grin1 mRNA expression (ratio 1: 4.3, 

(F1,5=15.99, p=0.016, Figure 6.3e). However the disruption does not have a 

significant impact on Pvalb (ratio 1: 0.79, F1,5=0.71, p>0.05, Figure 6.3c) or 

Fxyd6 mRNA expression (ratio 1: 1.09, F1,5=0.25, p>0.05, Figure 6.3d). 

6.3.4 Map2k7 reduced expression does not impact on GLUR2, 
NR2A and GAD 65/67 protein expression 

The involvement of MAP2K7 in the glutamatergic hypothesis of schizophrenia 

was explored by the western blotting technique. Antibodies designed to target 

glutamatergic receptor proteins GluR2 and NR2A and glutamate decarboxylase 

(GAD) 65/ 67 produced bands of correct size (GluR2 102 kDa, NR2A 170 kDa, GAD 

65/67 produces a doublet band at 65 kDa and 67 kDa) in both Map2k7+/+ and 

Map2k7+/- mice. Disruption of Map2k7 did not impact on the expression of any of 

the proteins investigated (Figure 6.4). Despite attempts at the optimisation of 

two different MAP2K7 antibodies, neither was able to produce a clear band of 

correct size to confirm MAP2K7 protein knockdown.  



153 

 
 

       Nonspecific             Total               Reference   

     

Figure 6.1 Autoradiogram images showing Map2k7 mRNA distribution in coronal mouse brain 
sections, as detected by in situ hybridisation.  

Qualitative assessment suggests Map2k7 is expressed in a) the prefrontal cortex and in 
particular the granular cell layer of the olfactory bulb (GrO) (bregma 2.10 mm) b) (bregma 
1.18 mm) c) pyramidal cell layer of the hippocampus (Py), granular layer of the dentate 
gyrus (GrDG)  (bregma -1.22 mm) d) pyramidal cell layer of the hippocampus (Py), granular 
layer of the dentate gyrus (GrDG)  (bregma -1.82), e) pyramidal cell layer of the 
hippocampus (Py), granular layer of the dentate gyrus (GrDG)  (bregma -2.92 mm) f) 
cerebellar lobules of the cerebellum (bregma -6.00). Unlabelled= slides incubated with ‘cold 
probe’, indicates non specific labelling, total = slides incubated with ‘hot probe’ refer to 
2.9.1. Scale bar = 2mm. 
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                 Map2k7+/+                        Map2k7+/-                   Reference  
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Figure 6.2 Map2k7 expression in Map2k7+/+ and Map2k7+/- mouse brain  

Autoradiogram images showing Map2k7 distribution in Map2k7+/+ and Map2k7+/- coronal 
mouse brain sections in a) the prefrontal cortex and in particular the granular cell layer of 
the olfactory bulb (GrO) b) pyramidal cell layer (Py) and CA3 of the hippocampus, granular 
layer of the dentate gyrus (GrDG)  c) cerebellar lobules of the cerebellum. Scale bar = 2mm.  

Quantitation of autoradiographic film images reveals that Map2k7 mRNA levels do not differ 
significantly in Map2k7+/+ and Map2k7+/- mice in the following brain sections a) granular cell 
layer of the olfactory bulb (GrO) (T1,7=0.18, p>0.05) b) pyramidal cell layer (Py) (T1,7=0.46, 
p>0.05)  c) CA3 of the hippocampus (T1,7=4.19, p>0.05) d) granular layer of the dentate 
gyrus (GrDG) (F1,7=0.92, p>0.05) e) cerebellar lobules of the cerebellum (T1,7=0.62, p>0.05)  
f) total expression (T1,7=2.32, p>0.05). Map2k7+/+ n=5, Map2k7+/- n=3. Data analysed by 
Student’s t-test.  

 

 



156 

 
 

M a p 2 k 7
+ /+

M a p 2 k 7  
+ /-

0 .0

0 .5

1 .0

1 .5
M

a
p

2
k

7
 e

x
o

n
s

 1
0

/1
1

 e
x

p
r
e

s
s

io
n

 (
r
a

ti
o

 o
f 

M
a

p
2

k
7

+
/+

)

M a p 2 k 7
+ /+

M a p 2 k 7  
+ /-

0 .0

0 .5

1 .0

1 .5

M
a

p
2

k
7

 1
a

 a
n

d
 b

 e
x

p
r
e

s
s

io
n

 (
r
a

ti
o

 o
f 

M
a

p
2

k
7

+
/+

)

M a p 2 k 7
+ /+

M a p 2 k 7  
+ /-

0 .0

0 .5

1 .0

1 .5

P
v

a
lb

 e
x

p
r
e

s
s

io
n

 (
r
a

ti
o

 o
f 

M
a

p
2

k
7

+
/+

)

M a p 2 k 7
+ /+

M a p 2 k 7  
+ /-

0 .0

0 .5

1 .0

1 .5

F
x

y
d

6
 e

x
p

r
e

s
s

io
n

 (
r
a

ti
o

 o
f 

M
a

p
2

k
7

+
/+

)

M a p 2 k 7
+ /+

M a p 2 k 7  
+ /-

0 .0

2 .5

5 .0

7 .5

G
R

IN
1

 e
x

p
r
e

s
s

io
n

 (
r
a

ti
o

 o
f 

M
a

p
2

k
7

+
/+

)

   *

a b

c dc

e

*

 

Figure 6.3 Map2k7+/- mice have increased GRIN1 mRNA expression.  

Analysis of CT values revealed Map2k7 heterozygous deletion results in a) a non-significant 
reduction of Map2k7 exon 10/11 expression (ratio 0.80, F1,5=1.09, p=0.18) b) a modest 
reduction of Map2k7 exon 1a and b mRNA expression (ratio 0.68, T1,5=2.17, p=0.05 c) no 
effect on parvalbumin (Pvalb) mRNA expression (ratio 1.79, T1,5=0.71, p>0.05) and d) Fxyd6 
mRNA expression (ratio 1: 1.09, T1,5=0.25, p>0.05) e) GRIN 1 expression (ratio 1: 4.3, 
F1,5=15.99, p=0.016). *p<0.05. n=3. Data analysed by Student’s t-test. 
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Figure 6.4 Western blotting analysis reveals Map2k7 heterozygous disruption does not 
impact on the protein expression of a) GluR2 (F1,7=2.61, p>0.05) b) NR2A (F1,7=1.82, p>0.05) 
c) FXYD6 (F1,7=0.29, p>0.05) d) ATP1a1 (F1,7=0.09, p>0.05) e)GAD 65/67 (F1,7=1.22, p>0.05). 
n=4 

a b 

a b 

e 

c d 
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6.3.5  Map2k7+/- primary phenotype screen 

Map2k7+/- mice (n=9) were not distinguishable from Map2k7+/+ mice (n=7) in all 

parameters of the primary phenotype screen (Table 6.1). Neuromuscular 

function, as tested by hanging wire and motor coordination and balance, as 

tested by rotarod (refer to 2.10.1 & 2.10.2), were also unaffected by the 

heterozygous disruption of Map2k7 (p>0.05, Table 6.1).  

6.3.6 Map2k7+/- mice do not differ from Map2k7+/+ in plus maze 
performance 

In comparison to Map2k7+/+ mice, Map2k7+/- mice did not appear to have 

increased levels of anxiety in the EPM (refer to 2.10.3). This was detected by no 

significant differences in zone duration (F1,63=0.238 p> 0.05), zone entry 

frequency (F1, 63=0.123, p> 0.05), distance travelled (T=3.84, p> 0.05) and mean 

velocity (T=3.29, p> 0.05) in the plus maze (Table 6.2) Map2k7+/+ n=7, Map2k7+/- 

n=9.  
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Location Phenotype Significance

Map2k7
+/+

Map2k7
+/-

In Arena Body position 1 ± 0 1 ± 0 p >0.05

Spontaneous activity 0 ± 0 0 ± 0 p >0.05

Tremor 0 ± 0 0 ± 0 p >0.05

Urination 0.5 0.7 p >0.05

Defecation 1.4 1.2 p >0.05

Bizarre behaviours 0 ± 0 0 ± 0 p >0.05

Convulsions 0 ± 0 0 ± 0 p >0.05

Palebral Closure 0 ± 0 0 ± 0 p >0.05

Piloerection 0 ± 0 0 ± 0 p >0.05

Gait 0 ± 0 0 ± 0 p >0.05

Pelvic elevation 1 ± 0 1 ± 0 p >0.05

Tail elevation 1 ± 0 1 ± 0 p >0.05

Pinna reflex 0 ± 0 0 ± 0 p  >0.05

Restrained Cornea reflex 0 ± 0 0 ± 0 p >0.05

Provoked biting 0 ± 0 0 ± 0 p >0.05

Trunk curl 1 ± 0 1 ± 0 p >0.05

Visual placing 1 ± 0 1 ± 0 p >0.05

Hanging wire 1 55.7 ±4. 3 52.5- ± 5.2 p >0.05

Hanging wire 2 49.7 ± 6.7 49.1 ± 5.3 p >0.05

Hanging wire 3 59.4 ± 0.5 54.2 ± 5.7 p >0.05

Hanging wire average 54.9  ± 3.3 52.0 ± 3.7 p >0.05

Rotarod 1 96.7 ± 20.7 136.4 ± 17.6 p >0.05

Rotarod 2 105.7 ± 17.8 122.8 ± 19.6 p >0.05

Rotarod 3 132.1 ± 17.5 104.3 ± 17.2 p >0.05

Rotarod average 111.5 ± 14.7 121.2 ± 12.6 p >0.05

Genotype

 

Table 6.1 Summary of primary phenotype screen performed on mice heterozygous for the 
genetic disruption of Map2k7 (Map2k7+/-) and their wildtype littermates Map2k7+/+ mice. 

 Heterozygous disruption of Map2k7 did not significantly alter mice phenotype in parameters 
tested in the primary phenotype screen. Data is presented at mean ± SEM, Map2k7+/+ n = 7, 
Map2k7+/- n=9. Data analysed by Student’s t-test.  
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a

Genotype Centre Closed arm 2/3
rd 

open arm 1/3
rd 

open arm Significance

Map2k7+/+ 112.2 ± 33.3 132.1.7 ± 37.3 37.9 ± 22.5 17.12  ± 11.8 p >0.05, ns

Map2k7
+/-

118.2 ± 12.3 120.9 ± 15.6 44.8 ± 7.9 15.8 ± 6.2 p >0.05, ns

Duration (seconds)

 

b
Genotype Centre Closed arm 2/3rd open arm 1/3rd open arm Significance

Map2k7+/+
14.4 ± 2.2 9.9 ± 3.0 7.6 ± 2.9 1.6 ± 0.9 p >0.05, ns

Map2k7+/-
23.9 ± 1.7 13.9 ± 1.6 12.9 ± 2.0 2.3 ± 0.8 p >0.05, ns

Frequency

 

c
Genotype Distance travelled (cm) Mean velocity (cm/s) Significance

Map2k7+/+
961.0 ± 166.3 3.6 ± 0.3 p >0.05, ns

Map2k7+/-
1302.6 ± 84.4 4.3 ± 0.3 p >0.05, ns  

 

Table 6.2 Map2k7+/- mice do not display abnormal anxiety-related behaviours in the elevated 
plus maze, as indicated by no differences in performance in the following parameters  

a) duration (seconds) (F1,63=0.238 p> 0.05)  

b) frequency of entering zones in the EPM (F1, 63=0.123, p> 0.05) and c) Distance travelled 
(T=3.84, p> 0.05) and mean velocity (T=3.29, p> 0.05) travelled in all zones. Closed zone 
(non-aversive), 2/3rd open arm (mildly aversive), 1/3rd open arm (aversive) refer to 2.10.3) 
Data is presented as mean ± SEM. Map2k7+/+ n=7, Map2k7+/- n=9. Duration and frequency 
analysed using ANOVA followed by Tukey’s post hoc test for multiple comparisons. Distance 
and mean velocity analysed by Student’s t-test.  
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6.3.7 Map2k7+/- mouse performance in open field with 
amphetamine challenge 

Map2k7+/- mice did not show anxiety-like behaviours or hyperlocomotor activity 

in the open field test in comparison to Map2k7+/+ mice, however slightly altered 

sensitivity to amphetamine was observed as described below. 

Overall, genotype did not significantly affect the duration of time spent in zones 

during the habituation stage (F,1,83=2.8, p>0.05) however it approached 

significance in the test stage (F1,83=2.8, p=0.06). There was an overall effect of 

genotype on duration of time spent in each zone (F1,83=4.07, p=0.02) and on 

further investigation,  Tukey’s post hoc analysis revealed Map2k7+/- mice spent 

significantly decreased duration of time in the thigmotaxis zone under saline 

treatment (p=0.02) Figure 6.5a).  Map2k7+/- mice did not significantly differ from 

Map2k7+/- mice in velocity in both the habituation stage (F1,179 =1.15, p>0.05) or 

testing stage (F1,359=1.46, p>0.05) (Figure 6.5b). Administration of 3 mg/kg 

amphetamine significantly increases velocity in both genotypes (F1,27=1.24, 

p<0.001), however there is no significant interaction between amphetamine and 

genotype (F1,27=0.03, p>0.05, Figure 6.5b). Similar results were observed with 

distance travelled during testing stage, Map2k7+/+ and Map2k7+/- mice did not 

differ from each other (F1,39=0.32, p>0.05, Figure 6.6a), although the 

administration of 3mg/kg of amphetamine significantly increases the overall 

distance travelled for both genotypes (F1,39=43.68, p<0.001 Figure 6.6a), the 

response was not influenced by genotype (F1,39=0.17, p>0.05). 

Comparing velocity to the mean baseline revealed an overall near significance 

effect of genotype (F1,359=3.84, p=0.05), and the effect of amphetamine was 

influenced by genotype (F1,359*=9.33, p=0.002, Figure 6.6b). Tukey’s post hoc 

analysis revealed Map2k7+/+ mice exhibited significantly increased velocity at 

time points 35 (p= 0.003), 40 (p=0.04) and 45 minutes (p=0.02), in comparison to 

Map2k7+/- following amphetamine treatment Figure 6.6b). Map2k7+/+ n=7, 

Map2k7+/- n=9.  
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Figure 6.5 Map2k7+/- mice do not have altered locomotor activity however display decreased 
thigmotaxis in comparison to Map2k7+/+ mice 

a) Analysis of duration spent in centre, inner and outer zones of the open field arena reveal 
a significant interaction between genotype and zone duration (F1,83=2.8, p=0.06) with 
Map2k7+/- mice spending less time in the thigmotaxis zone compared to Map2k7+/+ mice 
during treatment with saline (F1,119=1.08, p=0.02). Administration of 3mg/kg of amphetamine 
did not affect duration spent in zones for both genotypes (F1,83=0.06, p>0.05.) n=10 per 
group. Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons.  
Map2k7+/+ n=7, Map2k7+/- n=9. *p=0.02 Map2k7+/+ vs Map2k7+/- 

b) Mean velocity in Map2k7+/+ mice and Map2k7+/- are both increased following the 
administration of amphetamine after a 30 minute habituation period (F1,27=1.24, p<0.001). 
Map2k7+/- mice do not differ from their Map2k7+/+ littermates in their response to 
amphetamine (F1,27=0.03, p>0.05). n=10 per group. Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons. Map2k7+/+ n=7, Map2k7+/- n=9. ↓ represents 
time of treatment administration 

a 

b 



163 

 
 

 

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

M a p 2 k7
+ / +

(s a lin e )

M a p 2 k7
+ / -

(s a lin e )

M a p 2 k7
+ / +

 (a m p )

M a p 2 k7
+ / -

   (a m p )

D
is

ta
n

c
e

 t
r
a

v
e

ll
e

d
 (

c
m

/s
)

***

***

0

0

1

2

3

4

3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

M a p 2 k7
+ / +

(s a lin e )

M a p 2 k7
+ / -

(s a lin e )

M a p 2 k7
+ / +

(a m p )

M a p 2 k7
+ / -

(a m p )

T im e  (m in u te s )

M
e

a
n

 v
e

lo
c

it
y

 (
r
a

ti
o

 o
f 

a
v

e
r
a

g
e

 b
a

s
e

li
n

e
)

**

*

*

 

Figure 6.6 Map2k7+/- mice reveal altered sensitivity to amphetamine  

a) Analysis of distance travelled following the administration of amphetamine or saline (time 
point 30 min) did not reveal a significance difference between Map2k7+/+ and Map2k7+/- mice 
(F1,39=0.32, p>0.05). Administration of 3mg/kg of amphetamine significantly increases the 
overall distance travelled (F1,39=43.68, p<0.001), however the effect of amphetamine was 
not influenced by genotype (F1,39=0.17, p>0.05). Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons. Map2k7+/+ n=7, Map2k7+/- n=9. *p<0.001 
amphetamine (amp) vs saline 

b) Mean velocity as a ratio of average baseline in Map2k7+/+ mice and Map2k7+/- are both 
increased following the administration of amphetamine (3 mg/kg) after a 30 minute 
habituation period (F1,39=1.59, p<0.001), there is a near-significant overall effect of 
genotype (F1,359=3.84, p=0.05) and a significant overall interaction between genotype and 
amphetamine (F1,359*=9.33, p=0.002, Tukey’s post hoc analysis revealed Map2k7+/- mice 
exhibited significantly increased velocity at time points 35 (p= 0.003), 40 (p=0.04) and 45 
minutes (p=0.02), in comparison to Map2k7+/+ following amphetamine treatment.  Map2k7+/+ 
n=7, Map2k7+/- n=9. *p<0.05, **p<0.01 significance observed between Map2k7+/+ vs. 
Map2k7+/- with amphetamine (amp).  

a 

b 
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6.3.8 Map2k7+/- acoustic startle 

Prior to conducting PPI, acoustic startle was examined to ensure Map2k7+/- mice 

do not exhibit deficits in hearing which may affect PPI results (refer to 2.10.5). 

Age-matched Map2k7+/+ and Map2k7+/- mice were tested for their startle 

responses to a range of auditory stimuli (65 dB, 69 dB, 73 dB, 77 dB, 85 dB, 90 

dB, 100 dB, 110 dB, 120 dB). Overall, the heterozygous targeted disruption of 

Map2k7 did not significantly alter startle response in Map2k7+/- mice, compared 

to Map2k7+/+ mice (F[1, 89 = 2.20, p>0.05) suggesting that the lack of Map2k7 does 

not affect hearing (Figure 6.7a). As predicted the size of auditory stimuli 

produces a decibel- dependent increase in startle amplitude (F8,89=12.73, 

p<0.001) however is it not affected by genotype (F8,89=0.76, p>0.05).  N=5 per 

group.  

6.3.9 Map2k7+/- mouse sensorimotor gating  

Overall PPI results reveal Map2k7+/- mice do not significantly differ from 

Map2k7+/+ mice, as described below. 

Map2k7+/- mice do not have deficits in PPI, in comparison to Map2k7+/+ mice 

(F1,95=0.09, p>0.05). Ketamine and prepulse intensity both had an overall 

significant effect (F1,95=6.43, p=0.01 & F2,95=35.98, p<0.001 respectively) 

however effects were not influenced by genotype (genotype x treatment 

F1,95=0.05, p>0.05, genotype x prepulse interaction F2,95=1.16, p>0.05) (Figure 

6.7b). Post hoc analysis did not identify which prepulse level were affected by 

ketamine (pp4 p= 0.54, pp8 p= 0.56, pp16 p=0.89). Map2k7+/+ n=7, Map2k7+/- 

n=9. 
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Figure 6.7 Map2k7+/- mice do not display hearing loss or sensorimotor gating deficits in 
comparison to Map2k7+/+ mice. 

a) Startle magnitude to auditory stimuli of 65 dB, 69 dB, 73 dB, 77 dB, 85 dB, 90 dB, 100 dB, 
110 dB, 120 dB intensities did not differ between Map2k7+/+ mice and Map2k7+/- mice (F[1, 89 

= 2.20, p>0.05) suggesting disruption of Map2k7 does not impact on hearing. n=5 per group. 
Data analysed by ANOVA followed by Tukey’s post hoc test for multiple comparisons.  

b) Overall, prepulse inhibition of the startle response did not significantly differ between 
Map2k7+/+ and Map2k7+/- mice (F1,95=0.09, p>0.05). Ketamine (25 mg/kg) and prepulse both 
had an overall significant effect (F1,95=6.43, p=0.01 & F2,95=35.98, p<0.001 respectively)  
however  there was no significant interaction between genotype and treatment (F1,95=0.05, 
p>0.05) or genotype x prepulse interaction (F2,95=1.16, p>0.05). Map2k7+/+ n=7, Map2k7+/- 
n=9, data analysed using ANOVA followed by Tukey’s post hoc test for multiple comparisons. 

a 

b 
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6.3.10 Map2k7+/- mouse sociability and social novelty.  

The heterozygous genetic disruption of Map2k7 does not significantly impact on 

levels of sociability. A preference for social novelty was not observed in either 

Map2k7+/+ or Map2k7+/+ mice, as described below. 

Map2k7+/+ and Map2k7+/- mice both exhibit sociability as observed by prolonged 

duration of time spent exploring the chamber containing a strange mouse, in 

comparison to the empty chamber (F2,29=39.13, p<0.001). The heterozygous 

genetic disruption of Map2k7 does not significantly impact on levels of sociability 

(F1,29=0.09, p>0.05) however there is a significant interaction between zone and 

genotype (F2,29=3.33, p=0.05, Figure 6.8a).  

Social novelty was investigated by assessing the duration of time spent 

investigating a novel mouse in this study (refer to 2.10.7), compared to the now 

familiar mouse. Genotype did not have a significant impact on duration 

(F,29=0.23, p>0.05), however zone did have an overall impact (F2,29=12.18, 

p<0.001), and there was an overall interaction between zone and genotype 

(F2,29=4.07, p=0.03, Figure 6.8b). Tukey’s post hoc analysis revealed neither 

Map2k7+/+ or Map2k7+/- mice spend a longer duration of time interacting with the 

stranger mouse, compared to the now familiar mouse, suggesting social novelty 

is not present in these mice (p>0.05, Figure 6.8b). Map2k7+/+ n=5, Map2k7+/- n=5, 

data analysed using ANOVA followed by Tukey’s post hoc test for multiple 

comparisons.   

6.3.11 Map2k7+/- mouse sucrose preference 

Anhedonia in Map2k7+/- mice was investigated using the sucrose preference test 

(refer to 5.3.7), results suggest the heterozygous deletion of Map2k7+/- mice 

does not cause significant levels of anhedonia. One Map2k7+/- mouse was 

removed from testing due to not displaying sucrose preference. Map2k7+/- mice 

were not significantly different from Map2k7+/+ mice in levels of sucrose 

consumption over a 5 day period (F1,44=1.23, p>0.05, Figure 6.9). There was a 

significant effect of day on the % of sucrose consumed (F4,44=1.24, p=0.02) but 

not an impact of genotype on consumption of sucrose on individual days 

(F4,44=0.49, p>0.05). Map2k7+/+ n=5, Map2k7+/- n=4. 
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The overall average % sucrose consumed over the 5 day period was also not 

significantly affect by genotype (F1,8=0.09, p>0.05, Figure 6.9). Map2k7+/+ n=5, 

Map2k7+/- n=4.  
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Figure 6.8 Map2k7+/- mice do not have deficits in sociability or suffer from anhedonia.   

a) Levels of sociability; duration spent exploring and interacting with the stranger  mouse in 
comparison to an empty chamber was used as an indication of mouse sociability levels. Both 
Map2k7+/+ and Map2k7+/- mice showed levels of sociability (F2,29=39.13, p<0.001). Genotype 
did not have an overall effect on levels of sociability (F1,29=0.00, p>0.05), however there is a 
near significant interaction between zone and genotype (F2,29=3.33, p=0.05). ***p<0.001 

b) Preference for social novelty; There was an overall interaction between zone and 
genotype (F2,29=4.07, p=0.03) however Tukey’s post hoc analysis revealed that neither 
Map2k7+/+ or Map2k7+/- mice spend a longer duration of time interacting with the stranger 
mouse, compared to the now familiar mouse, suggesting social novelty is not present in 
these mice (p>0.05). Genotype did not have an overall impact (F,29=0.00, p>0.05). Map2k7+/+ 
n=5, Map2k7+/- n=5.  

 

a b 
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Figure 6.9 Map2k7+/- mice do not suffer from anhedonia.   

Genotype did not have an overall impact on % of sucrose consumption during single days and 
in total  over a 5 day period, revealing Map2k7+/- mice do not suffer from anhedonia 
(F1,44=1.23, p>0.05), Map2k7+/+ n=5, Map2k7+/- n=4. Data analysed by ANOVA followed by 
Tukey’s post hoc test for multiple comparisons.   
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6.3.12 Map2k7+/- mouse performance in delayed non-match to 
sample 

Results from the delayed non-match to sample T maze task (refer to 2.10.6) 

revealed that there was an overall effect of genotype on working memory 

(F1,32=7.24, p=0.01). However post hoc analysis did not identify which delay the 

deficits occurred (Figure 6.10a) 5 seconds (F1,10=2.31, p=0.22), 15 seconds 

(F1,10=0.82, p=0.96 and 30 seconds (F1,10=1.522, p=0.65). Map2k7+/+ n=5, 

Map2k7+/- n=6.  

Collapsing of the data in order to evaluate an average response, revealed that 

Map2k7+/- mice exhibit a trend towards reduced working memory overall 

(F1,10=4.73, p=0.05 Figure 6.10b). Map2k7+/- mice also showed a significant 

increase in perseverative responding, in comparison to Map2k7+/+ mice 

(F1,10=13.29, p=0.005, Figure 6.10c) as measured by the number of 2 or more 

consecutive incorrect trials. Map2k7+/+ n=5, Map2k7+/- n=6. 
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Figure 6.10 Map2k7+/- mice exhibit an overall deficit in working memory and increased 
perseverative errors in delayed non-match to sample test.  

 a) In comparison to Map2k7+/+ mice, Map2k7+/- mice had an overall deficit in working 
memory (F1,32=7.24, p=0.01) however no significant differences were observed at individual 
time delays, 5 seconds (F1,10=2.31, p>0.05), 15 (F1,10=0.82, p>0.05) and 30 seconds 
(F1,10=1.522, p>0.05). Map2k7+/+ n=5, Map2k7+/- n=6. Data analysed using ANOVA followed by 
Tukey’s post hoc test for multiple comparisons 

b) Overall % trials correct revealed Map2k7+/- mice have a trend towards reduced working 
memory (T1,10=4.73, p=0.05). Map2k7+/+ n=5, Map2k7+/- n=6, data analysed using Student’s 
t’test. *p=0.05 

c) Map2k7+/- mice had significant increase in perseverative responding, in comparison to 
Map2k7+/+ mice (T1,10=13.29, p=0.005). Map2k7+/+ n=5, Map2k7+/- n=6, data analysed using 
Student’s t’test. **p<0.01 

 

a 
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6.4 Discussion 

 

6.4.1 Map2k7 is expressed in brain regions associated with 
schizophrenia 

Qualitative assessment revealed Map2k7 is expressed in regions of the mouse 

brain associated with schizophrenia; the prefrontal cortex, the granular cell 

layer of the olfactory bulb (GrO) and CA1 and dentate gyrus of the hippocampus. 

Altered prefrontal cortical function has been repeatedly implicated in the 

pathophysiology of schizophrenia. Decreased functioning and metabolism of the 

prefrontal cortex (hypofrontality) and dysfunction of prefrontal related tasks, 

such as working memory and decision making are associated with schizophrenia. 

The hippocampus, as part of the medial temporal lobe, is also a central region in 

the pathophysiology of schizophrenia, and is associated with tasks such as spatial 

working memory and learning. Connectivity networks between the prefrontal 

cortex and the hippocampus are thought to be responsible for many areas of 

cognition and memory consolidation, in particular working memory (Laroche et 

al., 2000;Yoon et al., 2008). The expression of Map2k7 in these brain regions 

suggests a potential role in the underlying mechanisms of cognition and memory. 

Animal models of genetic risk factors are likely to aid our understanding of the 

pathogenesis of schizophrenia, for this reason I utilised a mouse model 

containing heterozygous deletion of Map2k7 to elucidate information on the 

functional role of MAP2K7 in schizophrenia. Homozygous deletion of murine 

Map2k7 results in embryonic lethality (Wada et al., 2004), suggesting Map2k7 

has a vital role in neurodevelopment; however the stage of development at 

which lethality occurs is unknown.   

6.4.2 Mice heterozygous for Map2k7 disruption exhibit a trend 
towards reduced Map2k7 mRNA 

RTqPCR detected a modest significant reduction of Map2k7 RNA in Map2k7+/- 

mice, in comparison to Map2k7+/+ mice. Primers designed to target exons 10/11 

revealed a non-significant reduction of 20%, whilst primers designed to 

alternative splice exon 1a and b revealed a significant reduction of 32%. Exon b 

has been shown to have increased expression in subjects homozygous for 
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rs4804833; a Map2k7+/- SNP associated with schizophrenia (Winchester et al., 

2012). It is important to use primers located at different loci to confirm that 

viral insertion disrupts the entire gene of interest and does not result in 

alternative transcripts. 

In order to further investigate Map2k7 expression in Map2k7+/- mice, RNA levels 

were quantified using in situ hybridisation technique. On average, a non-

significant reduction of 12% Map2k7 expression was observed. It is possible 

compensatory up-regulation of transcription from the single Map2k7 allele has 

occurred. However, non-significance could also be due to the low ‘n’ number 

(n=3) used in this study, resulting in increased data variability and decreased 

statistical power. These findings are similar to those observed in other 

heterozygous mouse models that die early in development (Williamson et al., 

2000;Graziotto et al., 2008), which suggest that if the homozygous knockout of a 

gene is embryonically lethal, the gene is likely to have an essential role in 

development and so compensatory up-regulation of related gene expressions will 

occur. The translation into protein was unable to be examined due to failed 

attempts at producing quantifiable protein results using western blotting, 

despite repeated attempts at optimisation of antibodies.  

Wada et al., 2004 confirmed heterozygous expression of Map2k7 in Map2k7+/- 

mice using northern and southern blotting which revealed a clear reduction in 

Map2k7 genomic mRNA and DNA (respectively). These results combined with DNA 

and RNA analysis from this study suggest it is highly likely Map2k7 has reduced 

expression in Map2k7+/- mice and thus are suitable to be used as a tool for 

investigating the functional properties of Map2k7. 

6.4.3 A trend towards Map2k7 reduced expression increases Grin1 
but not Pvalb and Fxyd6 RNA expression 

RTqPCR interestingly revealed that the heterozygous targeted genetic disruption 

of Map2k7 significantly increases Grin1 expression in the frontal cortex of 

Map2k7+/- mice. The Grin1 gene encodes the NR1 (GluN1) subunit for the 

glutamatergic NMDA receptors (Sakurai et al., 2000;Myers et al., 1999). NMDA 

receptors play a crucial role in the glutamatergic excitatory neurotransmitter 

system and hypofunction of receptors are the basis of the glutamate hypothesis 
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of schizophrenia. Emerging evidence suggests a genetic role of GRIN1 in 

schizophrenia. A genetic association has been found between GRIN1 and 

schizophrenia (Georgi et al., 2007;Galehdari, 2009;Qin et al., 2005) and mice 

expressing 5% of normal levels of the Grin1 subunit display behavioural 

abnormalities reflective of those associated with schizophrenia symptoms, such 

as elevated motor activity and stereotypy and deficiencies in social and sexual 

interactions, which were ameliorated by treatment with antipsychotics 

haloperidol or clozapine (Mohn et al., 1999). It is possible that the up-regulation 

of GRIN1 expression is a compensatory mechanism employed to continue the 

normal functioning of synaptic transmission, following reduced expression of 

Map2k7. Interestingly, the NR1 and NR2B subunit of the NMDA receptor have 

been shown to have increased expression in post mortem schizophrenia brains 

(Grimwood et al., 1999;Clinton et al., 2006;Kristiansen et al., 2006;Dracheva et 

al., 2001),  suggesting up-regulation of NMDA receptor subunits may be a feature 

of the neurobiology of schizophrenia.  However, in order to fully confirm an 

association between Map2k7 and Grin1, sample numbers would need to be 

increased as the significant interaction observed in this study was derived from 

an n of 3.  

6.4.4 The modest reduction of Map2k7 does not impact on GLUR2, 
NR2A, GAD 65/67, FXYD6 and Na+ K+ ATPase protein 
expression 

To investigate further the effect of heterozygous knockout of Map2k7 on 

neurotransmission, GLUR2, NR2A and GAD 65/67 protein expression levels were 

investigated using the western blotting technique. The role of the NMDA 

glutamate receptor subunit NR2A (GluN2A) in the PFC in schizophrenia is not 

well characterised, however decreased expression of NR2A in parvalbumin 

neurons has been observed in the PFC of schizophrenia brains (Bitanihirwe et al., 

2009). Nonetheless, NR2A protein expression was not altered in Map2k7+/- mice 

compared to Map2k7+/+ mice, suggesting there is no compensatory regulation of 

the expression of these receptors, despite the increased expression of the NMDA 

receptor subunit Grin1 as observed with RTqPCR (refer to 6.3.3). Furthermore, 

GLUR2 (GluA2), the key subunit of heteromeric glutamate AMPA receptors has 

altered expression in schizophrenia brains (Eastwood et al., 1995;Eastwood et 
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al., 1997), but is not altered in Map2k7+/- mice, suggesting signalling of these 

receptors is not altered by impairments in Map2k7 expression.  

GABAergic neurotransmission is also dysregulated in schizophrenia, glutamic-

acid-decarboxylase (GAD), the enzyme which catalyses the synthesis of GABA 

from glutamate, has been found to be decreased in schizophrenia, however 

Map2k7 disruption does not have a significant impact in expression in Map2k7+/- 

mice. It’d be interesting to carry out further analyses such as studies of 

expression of other related genes to further investigate whether Map2k7 has an 

impact on GABAergic circuitry. 

It is widely accepted that schizophrenia derives from the effects of multiple 

genes. Epistatic static interactions between MAP2K7 and FXYD6 in schizophrenia 

were investigated in a north European population (refer to Chapter 3), however 

interactions were not found be a risk factor. Lack of interaction between Fxyd6 

and Map2k7 was further confirmed by no change in RNA or protein expression of 

FXYD6 and the Na+ K+ ATPase pump, which it co-localises with and modulates in 

Map2k7 mice.  

6.4.5 Primary phenotype screen  

The homozygous knockout of Map2k7 results in embryonic lethality, which would 

suggest a role in neurodevelopment, however no abnormal neurological 

behaviours, such as spontaneous activity, aggressiveness, neuromuscular 

abnormalities, convulsions and general condition of coat and eye reflexes were 

detected in Map2k7+/- mice compared to Map2k7+/- mice.   

From these results it was concluded that any phenotypes generated from 

subsequent behavioural tests designed to detect more complex behaviours, such 

as anxiety and sensorimotor gating, are more likely to be a true reflection of 

phenotype and not a result of poor motor skills or poor health.  

6.4.6 Anxiety-related behaviours in Map2k7+/- mice 

Anxiety-related behaviours can be measured in a mouse model by using the 

innate natural tendency to explore a novel environment, compared to their 

conflicting  preference for dark enclosed space (Lister., 1987). The elevated plus 
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maze and the open field apparatus exploit this conflict to indicate changes in 

levels of anxiety between transgenic or knockout mice and their wildtype 

controls. Mice with high levels of anxiety will avoid the bright open arms of the 

EPM and the centre of the open field arena, and spend more time in the dark 

arms or the corners and walls of the open field arena (thigmotaxis). Map2k7+/- 

mice did not show altered anxiety-related behaviours when compared to 

Map2k7+/+ mice during the 5 minutes allowed to explore the EPM. However, in 

the open field arena, after 30 minutes (during the ‘test stage’), Map2k7+/- mice 

appeared to spend less time in the thigmotaxis zone compared to Map2k7+/+ 

mice. This could possibly indicate disinhibited behaviours, which are thought to 

be a symptom of ‘disorganised schizophrenia’ and are also present following 

drug abuse (Gawin., 1991;Fillmore et al., 2003).  

Impairments to the dopaminergic circuitry were explored in Map2k7+/- mice 

using administration of 3 mg/kg amphetamine. Surprisingly, administration of 3 

mg/kg amphetamine did not produce an overall effect on duration spent in 

zones.  3 zones were introduced during open field analysis to fully assess 

anxiety-related behaviours. Centre zone represents the duration of time the 

mouse spent in the centre of the arena, indicating exploratory behaviour; the 

outer zone represents the time spent in the rest of the arena. The outer zone 

was further split to analyse thigmotaxis. Amphetamine resulted in 

hyperlocomotor activity in both Map2k7+/+ and Map2k7+/- mice, a result 

commonly observed in mice (Ralph et al., 2001), validating the experimental 

approach. Amphetamine increases hyperlocomotor activity by increasing 

synaptic dopamine levels in the mesolimbic system (Costall et al., 

1987;Pijnenburg et al., 1976), this can occur through a number of different 

mechanisms (refer to 1.10.1). The excess levels of dopamine result in the 

increased activation of dopamine D1 and D2 receptors, inducing hyperlocomotion 

(Sharp et al., 1987;Tenn et al., 2003;Mansbach et al., 1988;Pijnenburg et al., 

1975).  

In order to investigate fully the effect of amphetamine on velocity, the mean 

baseline for each individual mouse was taken across time points 5-30 minutes 

and velocity following amphetamine administration (35-90 minutes) was 

calculated. There was a significant overall effect of genotype and Map2k7+/- 

mice exhibited significantly increased velocity at time points 35, 40 and 45 
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minutes, in comparison to Map2k7+/+ mice. Although this could suggest Map2k7+/- 

mice are more sensitive to amphetamine, implying a potential role of Map2k7 in 

the dopaminergic signalling circuitry, further testing such as sensitivity to 

amphetamine in sensorimotor gating (Cilia et al., 2005) or response to 

administration of antipsychotic drugs such as clozapine and haloperidol, which 

are antagonists at the dopamine receptor, would be required to confirm this 

(Swerdlow and Geyer., 1993).  

6.4.7 Sensorimotor gating in Map2k7+/- mice 

Sensorimotor gating is a complex process involving multiple interactions with 

multiple neurotransmitters including dopamine, serotonin and glutamate (Ojima 

et al., 2004;Quednow et al., 2004;Egerton et al., 2008). Deficits in sensorimotor 

gating are a key symptom of schizophrenia and stem from impairments in 

inhibition in a number of regions in CNS. Imaging, electrophysiological 

investigations and animal studies have provided evidence for the role of a 

number of brain regions, such as the hippocampus (Swerdlow et al., 1995;Adler., 

1982;Siegel et al., 1984) nucleus accumbens (Swerdlow et al., 1990;Wan et al., 

1995) and the striatum (Kodsi and Swerdlow., 1994;Kretschmer and Koch., 

1997), in the underlying mechanisms of impaired sensorimotor gating. These 

impairments result in the oversensitivity to sensory information and the inability 

to filter important sensory information from ‘noise’. Map2k7+/- mice did not have 

deficits in hearing or sensorimotor gating, suggesting Map2k7 does not play a 

role in the physiology of hearing or filtering of sensory inputs. The 

administration of ketamine attenuates sensorimotor gating in both Map2k7+/+ 

and Map2k7+/- mice. However ketamine did not induce a significant difference 

between the genotypes. Ketamine exerts its action via inhibition of the NMDA 

receptor and is therefore used to explore impairments in glutamatergic 

signalling despite the up-regulation of the Grin1 subunit in the PFC. These 

results suggests Map2k+/- mice do not have alterations in glutamatergic 

signalling. However it is difficult to conclude whether or not Map2k7 is 

implicated in glutamatergic pathways due to the up-regulation of Grin1 

expression, which may be contributing to normal glutamatergic transmission.  
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6.4.8 Social interaction and social novelty in Map2k7+/- mice 

Testing of mouse social behaviours has become a well-established method to 

study deficits in social interaction and social novelty in models of schizophrenia 

and autism (Lord et al., 2000;Aghevli et al., 2003;Wing and Gould, 1979). 

Various behaviours such as social communication, social novelty (social 

recognition), aggression and juvenile play can be investigated following analysis 

of behaviours between two mice. These mice could be familiar with one 

another, related, strangers or differ in sex.  Social interaction can be assessed 

by the duration of time a mouse will spend investigating and interacting with a 

non-familiar mouse (termed stranger mouse) in an arena containing a cylindrical 

wire cage which permits visual, olfactory and tactile interaction.  

In this study, sociability was defined as the tendency to spend a longer duration 

of time in the zone containing the stranger mouse, in comparison to the empty 

zone. Both Map2k7+/+ and Map2k7+/- mice displayed sociability, however 

disruption of Map2k7 did not induce deficits in sociability. Preference for social 

novelty is interpreted to have occurred when the test mouse spends more time 

investigating a novel mouse, in comparison to a familiar mouse. In this study, 

mice were familiarised to the first stranger mouse during sociability testing, a 

novel mouse was then entered into the ‘empty’ zone to test preference for 

social novelty. Interestingly, neither Map2k7+/+ or Map2k7+/- mice displayed a 

preference for social novelty. The genetic background of the Map2k7+/+ and 

Map2k7+/- mice is C57BL/6 and in our laboratories has been backcrossed onto the 

substrain C57BL/6J rcchsd strain. Studies have shown substrains of C57BL/6 do 

not differ in social interaction levels from one another (Matsuo et al., 2010), 

furthermore both strains have previously shown a preference for social novelty 

(refer to Chapter 5 (Matsuo et al., 2010;Moy et al., 2004). In Moy et al., (2004) 

study, ‘n’ numbers are substantially larger compared to those used in this study 

(n=20, n=5, respectively), and thus statistical power may not be high enough to 

have detected social novelty reliably in the present experiments.  

6.4.9 Anhedonia 

The inability to experience pleasure (anhedonia) is associated with the negative 

symptoms of schizophrenia (refer to 1.3.2, (Strauss and Gold., 2012;Dowd and 
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Barch., 2010;Pizzagalli., 2010). Mice have a natural preference for sweet sucrose 

water over standard water, anhedonia can be detected between wildtype and 

knockout/transgenic mice by a reduction in the ratio of sucrose water to 

standard water consumption (Papp et al., 1991). A heterozygous mouse was 

removed from this study as it did not show any preference for sucrose water 

over standard water during the 5 days. It could be argued that this is a 

phenotype of Map2k7 heterozygous deletion, however the rest of the group (n=4) 

all showed sucrose preference. Analysis of sucrose consumption as a ratio of 

total fluid intake revealed Map2k7+/- mice do not suffer from anhedonia as 

tested in this model.  

6.4.10 Working memory 

Working memory can be assessed using a T maze-based ‘delayed non-match to 

sample’ task (refer to 2.10.6). The task requires the retention and manipulation 

of short term memory in order to perform executive functions (Aultman and 

Moghaddam., 2001). Working memory requires synchrony between the prefrontal 

cortex and hippocampus (Sigurdsson et al., 2010;Yoon et al., 2008) and from the 

expression pattern of Map2k7 in these regions, it was hypothesised Map2k7+/- 

mice may present impairments in working memory. Collapsing the data revealed 

that Map2k7+/- mice have a working memory impairment in comparison to 

Map2k7+/+ mice and on further investigation it was found these impairments 

derived from increased perseverative errors. In this study, perseverative errors 

were defined as a mouse not correcting its behaviour following an incorrect 

trial, leading to at least two consecutive incorrect trials in a row. An increase in 

perseverative errors has been postulated to be a result of impairments in 

dopamine in the PFC (Yawata et al., 2012;Pezze et al., 2006;Zahrt et al., 1997) 

. Moreover, hypofunction of the dopamine D1 receptor has been associated with 

cognitive deficits and working memory impairments in schizophrenia (Castner et 

al., 2000;Abi-Dargham et al., 2002;Granon et al., 2000), effects which are not 

responsive to treatment with typical antipsychotic drugs (Masahiko & Michio., 

1997). However, studies have shown that short term treatment using D1 agonists 

can improve cognitive deficits (Castner et al., 2000;Cai and Arnsten., 1997). It 

may therefore be of interest to investigate the role of D1 receptors in the 

perseverative responding of Map2k+/- mice using D1 agonists, particularly 
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considering the trend towards sensitivity to amphetamine, which suggests a 

potential altered dopaminergic circuitry in these mice.  

Due to the modest impairment in working memory, it is difficult to conclude 

whether Map2k7+/- mice have impairments in the manipulation and retention of 

short term memory and executive functioning. Unusually, during this task there 

was not an overall affect of duration of retention delay during this task. In 

working memory tasks, as retention delays are increased, mice would be 

expected to have decreased correct trials; however this was not observed in 

both genotypes. This could be concealed from variability in performance 

stemming from low ‘n’ numbers. Another possibility for the lack of clear deficits 

associated with increasing delays could be gender, however male mice only were 

used in the ‘working memory’ task due to female mice presenting difficult in 

reaching criteria (personal correspondence), this could be due to a number of 

factors affecting learning behaviour, such as circadian rhythm, menstrual cycle, 

environmental factors such as stimulating housing toys, littermates etc. It is 

therefore important that during working memory testing, and similar tasks, 

environmental factors such as housing conditions and handler are kept constant.  

6.5 Conclusion 

The molecular and phenotypic characterisation of Map2k7+/- mice revealed 

Map2k7 is expressed in brain regions associated with schizophrenia. The 

heterozygous deletion of Map2k7 results in alteration of glutamate receptor 

Grin1 expression, a receptor reported to have altered expression in 

schizophrenia. Similarly, Map2k7+/- mice display some phenotypes similar to 

those reported in schizophrenia, such as working memory deficits, increased 

perseverative responding, and sensitivity to amphetamine.  

As Map2k7+/- mice did not exhibit deficits in PPI, social behaviours or 

neurochemical deficits in GABAergic markers, the functional role of MAP2K7 as a 

risk factor in schizophrenia still remains tenuous, however these results do 

suggest a putative role of MAP2K7 in impairments in glutamatergic 

neurotransmission and a potential rodent model of cognitive impairments.  
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Chapter 7. Discussion. 
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The overall aims of this PhD study were to investigate the genetic and functional 

roles of two genes recently associated with schizophrenia: FXYD6 and MAP2K7. A 

genetic association between FXYD6 and schizophrenia in a Northern European 

population was not confirmed in this study, or a role of epistatic interactions 

between FXYD6 and MAP2K7 in the risk of schizophrenia. Despite this, the 

molecular and phenotypic characterisations of two strains of mice, one 

homozygous for disrupted Fxyd6 and one heterozygous for Map2k7, reveals an 

interesting insight into the roles of these genes in the neuronal circuitry 

associated with schizophrenia and related psychiatric disorders. Furthermore, 

the phenotypes of these mice could provide potential rodent models for looking 

at certain aspects of cognition. 

7.1 FXYD6 as a risk factor in schizophrenia 

This study did not find an allelic or haplotypic association between FXYD6 and 

schizophrenia in a north European population. A proportion of the samples 

analysed derived from a subset of samples from a previous study, in which a 

genetic association between FXYD6 and schizophrenia was found (Choudhury et 

al., 2006; Choudhury et al., 2007). It is well known that difficulty can arise when 

attempting to confirm a positive association between a gene and a disorder and 

the lack of replication could be due to a number of reasons such as the 

generation of false-positive results in the Choudhury studies or factors such as 

low sample size and statistical power, or the potential presence of rare but 

highly penetrant alleles. For these reasons, despite not confirming an association 

between FXYD6 and schizophrenia, a role of FXYD6 in susceptibility to 

schizophrenia was not discarded and instead further explored using a mouse 

model homozygous for disrupted Fxyd6.  

Until now, the molecular role of FXYD6 was unknown. This study not only utilised 

the in situ hybridisation technique to provide further evidence of the expression 

of Fxyd6 in the schizophrenia-related brain regions, the PFC and the 

hippocampus, but also found expression of both Fxyd6 and Na+ K+ ATPase in the 

hippocampus; a region involved in synaptic plasticity and learning and memory. 

In addition, this study confirms for the first time that, like other members of the 
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FXYD family, FXYD6 is a tissue-specific modulator of the Na+ K+ ATPase pump. 

This is particularly interesting as alterations to the Na+ K+ ATPase pump activity 

have been associated with psychiatric disorders whilst mice lacking the Na+ K+ 

ATPase α2 and α3 subunits both exhibit increased anxiety-related behaviour and 

impaired learning and memory where as alpha1 isoform mice showed increased 

locomotor in response to methamphetamine (Moseley et al., 2007).  

The role of FXYD6 in neurochemical pathways associated with schizophrenia was 

also explored, however no evidence of a role of FXYD6 in glutamatergic 

signalling was found at the molecular level, as observed by no change in 

glutamatergic receptor expression. However increased expression of GABAergic 

interneuron marker, and parvalbumin expression in Fxyd6-/- mice suggests that 

FXYD6 might interact with GABAergic neuronal activity. To investigate 

neurotransmission pathways further in Fxyd6-/- mice, amphetamine and 

ketamine were both used to explore impairments in the dopaminergic and 

glutamatergic pathways (respectively) and their effects on locomotor activity. 

Fxyd6-/- mice do not exhibit altered sensitivity to ketamine or amphetamine, 

despite this, subtle deficits observed in prepulse inhibition suggests potential 

deficits in neurotransmission may be present. 

Due to the expression of Fxyd6 in the PFC and the expression of both Fxyd6 and 

Na+ K+ ATPase in the hippocampus, as observed by in situ hybridisation, it was 

hypothesised that memory and learning may be disrupted in Fxyd6-/- mice. This 

was explored by looking at impairments in working memory. Working memory is 

a key symptom associated with the cognitive deficits of schizophrenia (Goldman-

Rakic., 1994;Manoach., 2003), and an important treatment target in 

schizophrenia, as an effective treatment is yet to be discovered. The Fxyd6-/- 

mice displayed deficits in working memory at delays of 5 seconds, this is 

encouraging to further investigate Fxyd6-/- a potential mouse model of cognitive 

disorders and provides further evidence for a role of FXYD6 dysfunction in the 

aetiology of schizophrenia.   
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7.2 MAP2K7 as a risk factor in schizophrenia.   

A recent genetic association study and an expression study have both implicated 

MAP2K7 as a risk factors in the susceptibility to schizophrenia (Winchester et al., 

2012); however this study reveals MAP2K7 does not interact with FXYD6 to 

increase the risk to susceptibility in a north European population.  

The brain expression of Map2k7 was previously unknown, however this study 

utilised the in situ hybridisation technique to show expression in regions 

associated with schizophrenia, including the PFC and the hippocampus. The role 

of MAP2K7 in the susceptibility to schizophrenia was explored using mice 

heterozygous for the disruption of Map2k7. The homozygous disruption of 

Map2k7 is embryonically lethal. RTqPCR and in situ hybridisation techniques 

were used to assess the effect of heterozygous disruption of Map2k7 RNA and 

protein levels. A modest but significant reduction was observed in the RTqPCR 

data; however this was not observed using in situ hybridisation. This could be 

due RTqPCR being a more sensitive technique, compared to in situ hybridisation. 

Wada et al., 2004 have confirmed heterozygous expression of Map2k7 in 

Map2k7+/- mice using northern and southern blotting which revealed a clear 

reduction in Ma2pk7 genomic mRNA and DNA (respectively). These results 

combined with analysis from this study suggest it is highly likely Map2k7 has 

reduced expression in Map2k7+/- mice. 

These mice were also used to confirm the lack of interaction between Fxyd6 and 

Map2k7 which was evidenced by no change in RNA or protein expression of 

FXYD6 and the Na+ K+ ATPase pump in Map2k7+/- mice compared to Mapk7+/+ 

mice. 

The heterozygous deletion of Map2k7 results in alteration of glutamate receptor 

Grin1 RNA expression, a receptor reported to have altered expression in 

schizophrenia. Furthermore, Map2k7+/- mice display increased perseverative 

responding in the working memory task and sensitivity to amphetamine, 

suggesting alterations in dopaminergic circuitry. Despite this, Map2k7+/- mice did 

not exhibit deficits in PPI, social behaviours or neurochemical deficits in 

GABAergic markers, and so the functional role of MAP2K7 as a risk factor in 

schizophrenia still remains unclear.  
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7.3 Future work 

The data generated from this study are very thought-provoking, and if more time 

and funding were available several interesting follow-up studies could be carried 

out. 

Despite this study providing molecular and behaviour characterisations of Fxyd6 

and Map2k7, their roles in susceptibility to schizophrenia still remain ambiguous. 

It would be interesting to investigate hypofrontality in both mouse strains. 

Hypofrontality has been associated with deficits in working memory and is 

observed in schizophrenia brain (Berman et al., 1988;Carter et al., 1998;Glahn  

et al., 2005). As both strains of mice exhibit impairments in components of the 

working memory task it would be interesting to carry out 2 deoxyglucose 

experiments to assess whether there is altered metabolism in the prefrontal 

cortex (Weinberger et al., 1986, Callicott et al., 2000, Manoach et al., 2000). 

Further behaviour tasks aimed to investigate learning and memory in these 

strains would also be interesting in order to investigate fully their roles as 

models of cognition. Executive memory could be investigated using attentional 

set-shifting task, or spatial learning could be assed using the Morris water maze.  

Following the increased expression of Pvalb in Fxyd6-/- mice, it would be 

interesting to investigate the role of FXYD6 in GABAergic neurotransmission 

activity further. Initially, it would also be interesting to investigate further the 

regions where FXYD6 and parvalbumin are both expressed to see if co-

localisation occurs at cellular level. RTqPCR, in situ hybridisation and western 

blot techniques could also be used to investigate the expression of GABA 

receptors in Fxyd6-/- mice. It would also be appealing to investigate serotonin 

and related neurotransmisson pathways in these mice in a similar manner, in 

order to elucidate reason for the subtle alterations observed in PPI. The levels of 

brain-expressed FXYD7 would also be fascinating to investigate to assess if 

expression is up-regulated in order to compensate for reduced modulation of the 

Na+ K+ ATPase pump by FXYD6. 

It would be interesting to investigate further the glutamatergic signalling system 

in the Map2k7+/- mice. This could be done by investigating the expression of 

further NMDA receptor subunits, and by exploring the effects of PCP and/or 
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ketamine on processes such as locomotor activity. Furthermore, using western 

blotting technique, it would be beneficial to investigate the effect of 

heterozygous Map2k7 disruption of the expression of the downstream target, 

JNK2 and related members of the MAPK cascade.    

These studies would further investigate the functional roles of both Fxyd6 and 

Map2k7 genes in the neuropathology of schizophrenia and provide further 

evidence to determine if they would be a suitable model of schizophrenia-

related symptoms 

7.4 Conclusions 

These studies provide an invaluable insight into the molecular functions of 

FXYD6 and MAP2K7, and their potential roles in schizophrenia.  

A genetic association between FXYD6 and schizophrenia in a Northern European 

population was not confirmed in this study, or a role of epistatic interactions 

between FXYD6 and MAP2K7 in the risk of schizophrenia. Despite this, this study 

reveals Fxyd6 is expressed in regions of the brain associated with schizophrenia 

and the targeted disruption of Fxyd6 results in prefrontal cortex and 

hippocampal- related behaviour deficits, such as deficits in working memory. 

FXYD6 may also have a potential role in GABAergic signalling, as observed by 

increased Pvalb expression in Fxyd6-/- mice.  FXYD6 does not appear to have a 

role in glutamatergic signalling as evidenced by the unaltered expression of 

glutamate receptors and normal response to ketamine in the open field task. 

However indication of deficits in neurotransmission in Fxyd6-/- mice comes from 

subtle deficits in prepulse inhibition.  

I have also shown for the first time that FXYD6 modulates brain Na+
 K

+ ATPase 

activity in the frontal cortex.  

The molecular and phenotypic characterisation of Map2k7+/- mice revealed 

Map2k7 is also expressed in brain regions associated with schizophrenia and 

display some phenotypes similar to those reported in schizophrenia, such as 

working memory deficits, increased perseverative responding, and sensitivity to 

amphetamine. 



187 

 
 

The heterozygous deletion of Map2k7 also results in alteration of glutamate 

receptor Grin1 expression, suggesting a potential role in glutamatergic signalling 

however a role in GABAergic neurotransmission was not found.  

The functional roles of FXYD6 and MAP2K7 as risk factors in schizophrenia still 

remains equivocal, however these results provide evidence of a putative role for 

both genes in some areas of the underlying neuronal activity associated with 

schizophrenia and associated psychiatric disorders. Furthermore, results from 

this study suggest both strains of mice are potential rodent models of cognitive 

impairments.  
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