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Abstract 
 

Mountain biking is a globally popular sport, in which the rider uses a mountain bike 

to ride on off-road terrain. A mountain bike has either a front suspension system only 

or a full-suspension system to decrease the external vibration resulting from the 

terrain irregularities and to increase riding comfort. Despite the added comfort of 

full-suspension of mountain bikes, there are some disadvantages because the 

chain-suspension interaction and bobbing effect absorb some of the rider's pedalling 

power and lead to the reduction of pedalling efficiency. 

In this study, a technique for evaluating the pedalling efficiency of a bike rider in 

seated cycling by using engineering mechanics is developed. This method is also 

found to be useful for determining the correct crank angle for the beginning of the 

downstroke and that of the upstroke during each pedalling cycle. Next, five 

mathematical models of rider-bike systems are developed in Simulink and 

SimMechanics, including one hard-tail (HT) bike, and four full-suspension (FS) bikes 

[single pivot, four-bar-linkage horst link, four-bar-linkage faux bar, and virtual pivot 

point (VPP)]. In each of the five rider-bike systems, a PID controller is applied on the 

rider's elbow to prevent his upper body from falling down due to gravity. A pedalling 

controller is also developed in Simulink, which is based on the previous theory for 

evaluating the rider's pedalling efficiency written in Matlab. Another PID controller is 

used for the pedalling control by sensing the real-time moving speed and applying a 

suitable pedalling force to achieve a desired speed. 

The dynamic responses for each of the five rider-bike systems moving on a flat road 

surface (without bumps) and rough terrain (with bumps) are investigated. The values 

determined include the pedalling force, pedalling torque and power, forward velocity, 

contact forces of front and rear wheels, compressions of front suspension (front fork) 

and rear suspension (rear shock absorber), sprocket distance, chain tension force, and 

vertical accelerations of handlebar and seats. The numerical results reveal that, while 

moving on flat road surface, the pedalling efficiency of hard-tail bike is highest, and 

the bobbing effect of the VPP bike is most serious. However, while moving on rough 
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terrain, the riding conditions for each of the four full-suspension bikes are more stable 

than the hard-tail bike. 

Keywords: Mountain bike, full-suspension system, bumps, bobbing effect, pedalling 

efficiency, pedalling cycle, vertical accelerations, PID controller, SimMechanics. 
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Chapter 1  Introduction 

 

1.1 Introduction to Mountain Bikes 
 

Bicycle riding is a globally popular sport and an economic transportation. Normal 

bicycles (road bikes) are good enough for a rider to ride on flat road surface. However, 

for a road bike to be ridden on rough terrains, the induced vibrations will cause the 

fatigue of its rider and the fracture of its frame structure (or related parts). Although a 

small part of the vibration can be absorbed by the pneumatic tyre, the most part of it is 

absorbed by the rider. Therefore, one requires a bike with stronger frame structure and 

better suspension systems, so that it can effectively reduce the vibration and increase 

the comfort for the rider. It is evident that the mountain bike belongs to this kind of 

bike. 

The invention of mountain bike can be traced back to 1970’s when a small group of 

people built bikes to race down Mount Tamalpais in California [1]. The mass 

production of mountain bikes began after 1977, and the first mass-produced mountain 

bike was Stumpjumper, made by the mountain bike manufacturer Specialized in 1981 

[1]. Early mountain bikes had the similar frames to those of road bikes, but with wider 

frames and forks to allow for wider tyres [2]. In Europe, the population of mountain 

bike riders has grown up when the manufacturers began to mass produce the 

mountain bikes in the early 1990's [2], and the modern front suspension (front fork) 

for mountain bikes was introduced at that time. Rear suspension systems appeared 

soon after. 

Mountain biking gained international recognition by UCI (Union Cycliste 

Internationale) in 1991 and became an Olympic event in Atlanta in 1996 [2~6]. An 

estimation by the IMBA in UK (International Mountain Biking Association UK) 

shows that 23% of the adult population in UK own a mountain bike [7]. 
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1.2 Advantages and Disadvantages of Front and Rear Suspension 
Systems for Mountain Bikes 
 

When one rides a bike, vibration caused by the surface irregularities is always an 

important issue, since the vibration will result in discomfort of the rider, the loss of 

traction control, the fatigue of frame structure, ...etc. One of the simplest ways of 

reducing bike vibration is the pneumatic tyre invented by Dunlop [1]. 

The first front suspension of bicycle was invented by Kenfield [8], in which a spring 

is mounted in the headset, and the rigid fork can move back and forth to absorb 

vibrations. The modern front and rear suspension systems for mountain bikes are 

introduced in 1990's. Current front suspension systems are adequate to absorb 

vibration when the bike is passing over rough terrains. Most advanced front 

suspension systems have not only springs in the front fork, but also fork (damping) oil 

in the fork tube to behave like a damping unit. Some of them even have the preloaded 

damping adjustment to be tuned according to the rider’s weight and/or the terrain 

conditions. In addition, some forks are reversed (up-side-down) with thicker upper 

fork tube and thinner lower fork tube, which is introduced from current front 

suspension systems popularly used in sports motorbikes. 

For rear suspension systems, the shock absorber looks like a spring-damper unit and is 

fitted between the front and rear parts of the bike frame. The rear shock absorber is 

mounted at different locations based on different configurations of bike frames.  

Some rear suspension designs are shown in Figure 1.1 [9,10]. 

Both front and rear suspension systems are used to absorb vibrations to increase the 

comfort of the rider in off-road riding conditions. Generally, suspension systems have 

four functions [4,10]: (a) isolate the rider from terrain irregularities, and reduce the 

discomfort of the rider; (b) absorb the energy and vibration caused by the bike hitting 

obstacles, and dissipate this effect; (c) keep the wheels on the ground while riding on 

rough terrains, so that the rider can have better control of traction, braking, and 

steering; (d) add no undesirable characteristics to the bikes. Undesirable 

characteristics here include chain-suspension interaction [9,10,13] and the bobbing 
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effect [2,4,12~16]. Chain-suspension interaction is an effect of compression of rear 

suspension due to the chain torque generated from the rider's pedalling motion 

(pushing the pedals) [10,13]. The bobbing effect is induced by the compression of rear 

suspension due to the inertial loading of the rider's legs spinning around (pedalling 

motion) and the other normal upper body motions [13]. Front suspension systems for 

mountain bikes have become a standard equipment [4,9] since they have no 

disadvantages except for a slight additional weight to the bike [4,11]. However, 

although current rear suspension systems can fulfil functions (a)-(c), none of them can 

satisfy function (d). 

 

Figure 1.1 Illustration of various rear suspension designs [9,10] (a: low pivot; b: high 
pivot; c: low-forward pivot; d: four-bar linkage; e: cantilevered beam suspended saddle; 
f: telescopic seat post suspended saddle; g: unified rear triangle) 
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Numerous papers in the last two decades have studied the difference between 

performance of mountain bikes with and without suspension systems. A study 

presented by Nielens and Lejeune [15] shows that there is no significant difference in 

energy consumption between cyclists riding a bike either with or without suspension 

systems. In contrast, the study presented by Wang and Hull [17] indicates that there is 

power dissipation in the rear suspension when one rides a full suspension bike uphill. 
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1.3 Aim of this Thesis 
 

The objective of this thesis is to study the experimental and numerical-simulation 

results to determining performance differences between the mountain bikes with and 

without suspension systems. For experimental studies, some researchers have 

designed indoor and field experiments and measured the rider's physiological and 

psychological state together with mechanical data from the bike. For numerical 

simulations, mathematical models of some rider-bike systems are developed using 

different software or programmes, and the dynamic response of the rider-bike systems 

are studied. Details will be introduced in Chapter 2 of this thesis. 

However, all the existing studies are focused on one specific full suspension system,  

none of them analyze and compare differences between bikes with different kinds of 

rear suspension systems, except the report of Iturrioz [2] introduced in this thesis.  

Experimental results of Titlestad, Davie, and Whittaker et al. [3,4,18~20] confirm that 

during a simulated riding condition with bumps, the full suspension mountain bikes 

provide physiological and psychological advantages over those of hard tail bikes. 

However, a series of questionnaires with 260 respondents of mountain bikers ranging 

from amateur level to competition riders in the UCI World Championships are 

analyzed by Davie [4], and the results show that only 37% (95 respondents) of the 

participants have ridden full suspension mountain bikes. 

The hard tail bike is a kind of mountain bike with only front suspension and no rear 

suspension. The most popular mountain bikes with rear suspension systems are: single 

pivot (swingarm type), four-bar-linkage, and VPP (virtual pivot point), which will be 

discussed in Chapter 3 of this thesis. 

In this thesis, mathematical models of rider-bike systems with the different rear 

suspension systems mentioned above are developed using SimMechanics. The 

performance of each bike is analyzed and compared using the dynamic responses of 

each rider-bike system, including effective pedalling forces and powers, forward 

velocities, contact forces of front and rear wheels, fork and shock compressions, chain 

tension forces, and vertical accelerations at handle and seat. 
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1.4 Thesis Structure 
 

Chapter 1:-Introduction. In this chapter, the general information regarding mountain 

bikes with suspension systems is presented, and the advantages and disadvantages of 

the suspension systems are introduced. 

Chapter 2:-Mountain Bike Research. In this chapter, a general review regarding the 

reports on mountain bikes is performed, in which the studies on physiological 

responses of mountain bike riders, mechanical characteristics of bikes with and 

without suspension systems, and dynamic simulations of rider-bike systems, and the 

previous studies on this topic are introduced. 

Chapter 3:-Hard-tail and full-suspension mountain bikes. In this chapter, the software 

used in this study is introduced: Simulink, SimMechanics, Linkage, BikeCAD, and 

AutoCAD. Following this, the configurations of the five mountain bikes studied in 

this thesis, hard tail, single pivot, horst link, faux bar, and VPP bikes, are presented. 

Chapter 4:-A technique for evaluating the pedalling efficiency of a bike rider. In this 

chapter, the theoretical analysis of rider's pedalling efficiency is performed, including 

the determinations of critical angles of the crank and those of the rider's lower and 

upper legs. Two driving forces transmitted from the rider's upper legs with simple 

harmonic (SH) and non-simple harmonic (NSH) motions are studied. 

Chapter 5:-Rider-bike system models developed in SimMechanics. In this chapter, the 

theoretical basis of this study and the mathematical model of the rider-bike systems 

developed in SimMechanics are discussed, then, a series of dynamic simulations are 

implemented to observe the dynamic characteristics of the rider-bike system of a hard 

tail bike. 

Chapter 6:-Quasi-static and dynamic analyses of bare and loaded bikes in stationary 

and moving conditions. In this chapter, a quasi-static analysis is conducted to study 

the characteristics of the five bare bikes in stationary condition due to sinusoidal or 

rapidly applied external loads. In addition, the dynamic analyses are also implemented 

to investigate the dynamic responses of each of the five rider-bike systems moving on 
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the flat road surface with and without bumps in the steady condition. It is found that, 

for a rider-bike system, the “phase angle” between the beginning (or end) of each 

pedalling stroke and the position corresponding the instant of time for it to meet (or 

leave) a bump is one of the important factors affecting its dynamic responses. 

Chapter 7:-Conclusions and future work. This chapter summarizes some conclusions 

obtained from the previous chapters and suggests some future works concerning the 

design of full suspension systems of mountain bikes. 
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Chapter 2  Mountain Bike Research 

 

2.1 Introduction 
 

Many reports concerning the performance of mountain bikes with and without 

suspension systems have been presented in the past two decades. Some of the studies 

implemented indoor or field experiments to measure the physiological variables of 

riders, and some of them implemented theoretical analyses to present better designs to 

reducing the bobbing effect. A literature review of both physiological experiments and 

theoretical analyses is carried out in this chapter. Since the abbreviations for hard tail 

bikes and full suspension bikes are different in the existing literature, in this study, the 

front suspension bike is called hard tail bike or HT bike, the full suspension bike is 

called FS bike, and the mountain bike without suspension systems is called rigid bike 

or RID bike. 

 

2.2 Studies on Physiological Responses of Mountain Bike Riders 
 

Generally, in comparison with road cycling competitions, the exercise intensity in 

off-road cycling races is much higher [6,21], since mountain bikers need to deal with 

rough terrains, such as gravel roads, uphill, and downhill. On the other hand, the air 

resistance in off-road biking competitions is much less than that in road cycling 

competitions [22] because the speed in the former is lower than that in the latter, and 

the riding strategies (such as the riding posture) are also different. In such high 

exercise-intensity races, the riders' HRs (heart rate) are close to their maxima soon 

after the races begin [5,6,21]. In addition, riders riding hard-tail mountain bikes have 

lower average (mean) HR than those riding rigid road bikes [21,23]. To investigate the 

difference between exercise intensities of the riders riding hard-tail bikes and 

full-suspension bikes, many studies have been performed, in which the physiological 

variables of the riders are measured, including CK (creatine kinase) [23], VO2 

(oxygen consumption) [15,16,18,22,23,24], RPE (rating of perceived exertion) 
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[16,18,22,24], HR (heart rate) [5,6,15,16,18,22,23,24], and blood lactate 

concentration [5,6,16,24]. 

In 1997, Seifert et al. [23] carried out a series of field experiments to investigate the 

effect of suspension systems on rider's muscular stress, energy expenditure, and time 

trials performance. Three bikes are used in this field study, including a rigid bike 

frame (RIG), a hard tail bike (HT), and a full suspension bike (FS) (Stumpjumper, 

Specialized). For the muscular stress, they found that the average variation in CK at 

24 hours of RIG are greater than that of HT or FS. For the energy expenditure, they 

found that the average HR of RIG are higher than that of HT or FS, and the VO2 of FS 

is lower than that of HT or RIG, but the difference (of average HR or VO2) is not 

obvious. The cyclists participated in this study rated the FS to be most comfortable 

among the three bikes. For the time trials performance, they found that the time for 

each rider finishing the cross-country track with HT is shorter than that with RIG or 

FS. Finally, they concluded that FS may not increase the riding performance because 

the pedalling efficiency is decreased due to the rear suspension system. 

In 2000, Macrae et al. [24] studied the effects of front(HT)/dual(FS) bike suspension 

systems on rider’s power output and the other physiological variables in uphill biking 

condition with an asphalt and an off-road courses, respectively, in which six male elite 

bikers are involved. The dual suspension system used in this experiment was a 

four-bar-linkage type with a Rock Shox Deluxe rear shock absorber. They found that 

the cardiovascular performance (VO2 and HR) have no obvious differences between 

the asphalt and off-road courses by riding HT and FS bikes, this supports the findings 

of Reference [23]. However, the rider’s power output of the FS bike is obviously 

higher than that of the HT bike. Comparing with the HT bike in this experiment, at 

each time interval, the rider’s average power output required by the FS bike is about 

80watt/min higher. They believed that the higher power output required by the FS 

bike is due to the rider needing to apply additional pedalling force to overcome the 

compression of the rear suspension. According to the last results, they conclude that 

the advantage values of VO2 and HR of the FS bikes might be better than those of the 

HT bikes during downhill riding. 
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In 2000, Berry et al. [22] performed a study to investigate the influences of bicycle 

mass, speed, and grade on VO2, HR, and RPE under a series of lab experiments.  

Three bike masses (11.6, 12.6, 13.6 kg), three speeds (2.7, 3.6, 4.5 m/s), and three 

grades (0, 2.5, 5 %) are randomly arranged for nine different testing conditions. The 

additional mass was added to a water bottle fixed on the bike with 1 kg or 2 kg lead 

shot. The bike used is Trek Y-22 with weight of 11.6 kg. The bike is ridden on a 

treadmill mounted by a bump with height of 3.8 cm, and the physiological variables 

were measured during the tests. They found that the effects of different bike masses 

on VO2, HR, and RPE are negligible. The three physiological variables only 

obviously increase with the increments of speed and grade. They claimed that the 

limited indoor test did not represent a real field test of off-road riding. They suggested 

that future studies could investigate whether or not the additional mass has obvious 

effect on grades greater than 5%. 

In 2001, Nielens and Lejeune [15] studied the effect of suspension systems on energy 

dissipation of mountain bikers. An indoor experiment is implemented in this study.  

They use an electromagnetically braked cycle ergometer to apply the braking force up 

to 250w. A four-bar-linkage full suspension mountain bike is used (FRM Be Active).  

Full suspended (FS), front suspended (HT), and no suspension (RIG) modes are 

considered in the test. Riders’ energy dissipation is evaluated by VO2, HR, and the 

relationship between VO2 and power. The results showed that, during riding under the 

braking force of 250w, the relative difference between VO2 of FS (44.4 ml/min/kg), 

HT (44.8 ml/min/kg), and RIG (43.6 ml/min/kg) is only 3 %. They claimed that there 

is no obvious difference on energy dissipation of the rider riding mountain bikes with 

and without suspensions. One possible reason for the bikers feeling the energy being 

dissipated by the rear suspension is because they use the technique of standing riding. 

In 2001, Impellizzeri et al. [5] performed a study to analyze the exercise-intensity 

profile of off-road races. In this study, nine bikers participated in a lab test and four 

international off-road competitions using bikes with front suspensions. Their results 

showed that the bikers’ HR are obviously lower than those of riding rigid bikes, this 

agrees with the results of Seifert [23]. Based on the HR and lap time during races, 
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they found that the bikers start the race at high exercise intensity in order to obtain the 

first position. They claimed that their results can be used (by trainers) to plan the 

training programme for off-road competitions. 

In 2003, Ishii et al. [16] implemented an experiment on subjects riding the same bike 

(Trek Y-33) with different suspension modes, including rigid, front-suspension (HT), 

and full-suspension (FS) on a treadmill test and a field test. They measured the riders' 

VO2 and blood lactate concentration, and showed that the average oxygen 

consumption of riding the FS bike during the field test was obviously bigger than that 

of riding the HT bike. However, the blood lactate concentration of riding the FS bike 

was lower than that of riding the HT bike. They claimed that the lower blood lactate 

concentration for a rider riding FS bike would be more advantageous during off-road 

competitions even though the VO2 is bigger. 

In 2004, Stapelfeldt et al. [6] performed a study to evaluate the exercise intensity of 

mountain bike racing. They recorded the HR and power output of eleven riders in 15 

races, and found that the highest value of power output appeared soon after the start of 

the race (at first lap), which agrees with the findings of Impellizzeri [5]. In addition, 

the variation of power output during the whole races is high, but that of the HR is 

relatively stable. They indicated that, for the evaluation of exercise intensity, the 

measurement of power output is better than that of HR, because HR can be influenced 

by the physiological and psychological factors (such as mental stress), and thus the 

results of HR can be limited to some degree. 

From 2003 to 2006, Titlestad, Davie, and Whittaker et al. [3,4,18,19,20] designed a 

lab experiment to test the physiological (VO2 and HR) and psychological (RPE and 

comfort assessment) variables of twenty riders. A hard tail (HT) bike Marin Rocky 

Ridge and a full suspension (FS) bike Marin Mount Vision are used in this study. In 

this experiment, front fork of the bike is fixed on a front bracket and the rear wheel is 

rolling against a roller with and without a bump, as shown in Figure 2.1. From the test 

without a bump on the roller, they found that the measured values of VO2 for riding 

the HT bike are lower than those for riding the FS bike, but the difference is small. In 

addition, from the test with bumps on the roller, they found that the values of VO2, 
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HR, and RPE for riding the HT bike are higher than those for riding the FS bike, and 

the comfort assessment shows that all riders feel more comfortable while riding the 

FS bike. Titlestad et al. [3,4,18,19,20] suggested that, under the controlled test 

conditions, the physiological cost of riding the HT bike is greater than that of riding 

the FS bike. 

Following the rolling rig experiment presented in References [3,4,18,19,20], Davie 

and Whittaker [4] improved the test platform to a rolling road rig (treadmill), as 

shown in Figure 2.2, in which the handlebar of the bike is fixed, and the bump can be 

hit by both the front and rear wheels. Only the FS bike Marin Mount Vision is used in 

this test, but a specially designed steel spacer is used to replace the rear shock 

absorber to switch to the HT mode. Eight riders took part in the test, and the same 

physiological (VO2 and HR) and psychological (RPE and comfort assessment) 

variables are measured. In this roller road rig test, they found that no significant 

differences between VO2 and HR of the riders riding the FS bike and those riding the 

HT bike in the test either with or without bumps, but both the RPE and comfort 

assessment reveal that, comparing with riding the HT bike, the riders feel more 

comfortable during riding the FS bike. In addition, Davie and Whittaker [4] designed 

an indoor track (see Figure 2.3) to do the same physiological tests on 10 riders. They 

found that the measured values of VO2, HR, and RPE of the riders riding the FS bike 

are lower than those riding the HT bike. The comfort assessment also shows that, 

comparing with riding the HT bike, the riders feel more comfortable during riding the 

FS bike. Davie and Whittaker [4] indicated that the energy cost of a rider riding the 

FS bike is less than that riding the HT bike. 
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Figure 2.1 Platform of roller rig test [3,4,18,19,20] 

 

 

Figure 2.2 Rolling road rig [4] 
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Figure 2.3 Indoor track presented by Davie and Whittaker [4] 
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2.3 Studies on Dynamic Responses of Mountain Bike Riders and 
Dynamic Simulations of Rider-Bike Systems 
 

In addition to the physiological experiments of mountain bikers, many researchers 

have investigated the dynamic responses of rider-bike systems, and also presented 

different mathematical models for the theoretical analyses. Some of them study the 

location of optimal pivot point for single pivot full suspension bikes to minimize the 

bobbing effects or chain-suspension interactions [9,10,12,13,17,25,26,27], some of 

them study the vibrations of the road bike and mountain bikes [28,29,30], and some of 

them used bond graph model to study the dynamic characteristics of mountain bikes 

[31,32]. 

The sources of loads generated on rider-bike system can be classified as two kinds 

[33]. The first kind is called rider-induced loads, which come from the rider via his 

muscular action while pedalling and his static weight. The second kind is called 

surface-induced loads, which are generated by the surface irregularities when the 

rider-bike system passes over them. 

In 1995, Stone and Hull [33] studied the rider-induced loads, and measured the loads 

on pedal, handlebar, and seat post in three riding conditions, including seated cruising, 

seated climbing, and standing climbing. Five riders, with their weights ranged from 

547N to 894N, took part in this study by using the Trek 1500 racing bicycle. From the 

measured rider-induced loads, they found a linear relationship between the rider 

weight and rider-induced loads (such as the normal pedal forces and the average 

power output). 

In 1996, in order to satisfy a design in which the bicycle rear suspension responds to 

bumps instead of rider-induced forces, Padilla and Brennan [25] presented an analysis 

of the free-body diagram of a bike to study the forces applied to the bike and 

suspension, and to determine the frame configuration and pivot location. They found 

that the ideal pivot point should be located at the point of intersection of the contact 

force of rear wheel and the pedal force, in which the direction of the temporary 

contact force of rear wheel is always acting at about 45 degrees, which is similar to 
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the results presented by Olsen [10]. They showed that a unified rear triangle (URT) 

(similar to model g in Figure 1.1 in Chapter 1) can simplify the design problem of the 

rear suspension with the chain force to be isolated from the suspension. 

In 1996, Wang and Hull [17] presented a dynamic model to study the rider’s power 

input dissipated by the suspension, also called rider-induced energy loss, while riding 

on a smooth uphill surface (with no terrain-induced energy loss). The computer 

programme AUTOLEV was used to develop the dynamic model. The rider-bike 

system consists of six rigid bodies: the rider, bike frame with main triangle, bike 

frame with rear triangle, fork, front wheel, and rear wheel. The bike model is based on 

a full suspension bike with single pivot rear suspension. This model of rider-bike 

system integrated the effects of front and rear suspensions (spring stiffness and 

viscous dampers), wheel force with rolling resistance, and pedal loads with chain 

force together. The wind resistance is modelled as a force applied on handlebar and 

opposite to the moving velocity. The results showed that the average dissipation was 

1.3% (6.9w) of the rider’s power input (530w) while riding on the smooth uphill 

surface with grade 6%, velocity 6.5m/s, gear ratio 32:14 and cadence 84 rpm, and the 

average compression of rear suspension is 6.6mm with variation ±2.7mm. They 

suggest that a practical approach to designing the rear suspension by changing the 

location of the pivot point should be developed. 

A discussion on the ideal pivot point for a full suspension bike with the single pivot 

rear suspension (as shown in Figure 2.4) is presented by Olsen [10]. In the discussion, 

Olsen [10] showed that the ideal pivot point can be found by drawing a line 45° up 

and forward from the ground contact point of rear wheel (GRL in Figure 2.4) to the 

intersection with the top point of the chain ("intersection of GRL with top run of 

chain" in Figure 2.4), and then draw another line from the rear axle to this intersection 

point (the chain line in Figure 2.4). However, Olsen [10] also showed that the ideal 

pivot point is varied with different front gears used. It is noted that the ideal pivot 

point can minimize the chain-suspension interaction as one may see from [9,10,13]. 
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Figure 2.4 Illustration of location of ideal pivot point for single pivot bike [10] 

In 1997, the same model presented by Wang and Hull [17] is used to study the optimal 

pivot point for a full suspension mountain bike with single pivot rear suspension in 

[13] with the same testing condition as that in [17]. The optimization parameters are 

assumed to be the pivot point coordinates (η,ξ), where η is the height above the 

bottom bracket measured along the seat tube, and ξ is the horizontal distance with 

respect to the seat tube. In the optimization analysis, it was found that the power 

dissipation depends on η, but not on ξ. Therefore, Wang and Hull [17] focused their 

attentions on the optimal pivot point located on the seat tube and studied the 

dependence of optimal location on pedalling mechanics (rider’s body mass), spring 

rate, compression and extension damping parameters, and chainring (the front 

sprocket) size. Their results showed that the damping parameters have no effect on the 

optimal pivot point location. In addition, the effects of different riders’ masses and 

spring rates on the optimal pivot point location are quite small. However, the optimal 

pivot point height η linearly rises as the chosen chainring has larger number of teeth 

(larger diameters). With the same model and testing condition as those in [17], Wang 

and Hull found that the optimal pivot point location is 11.0 cm above the bottom 

bracket along the seat tube and this can decrease the power dissipation from 6.9w to 

1.2w. However, the last optimal pivot point location is only suitable for the riding 

condition with a particular grade (6%), speed (6.5m/s), and gear ratio (32:14). For the 
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other riding conditions, they suggested that a sub-optimal pivot point location can be 

used which is slightly above or below the optimal one. 

In 1997, Needle and Hull [12] presented a design of a single pivot bike with 

adjustable pivot point. The pivot point is fixed on a collar which can be clamped 

along the seat tube from 0.0 to 22.0 cm above the bottom bracket. An experiment is 

implemented to find the optimal pivot point, in which a rider with weight 750N rides 

the bike in the seated position on a treadmill with the grade 6% at 23.3km/hr 

(corresponding to the cadence 84 rpm) and the gear ratio 39:14. They found that the 

minimum energy dissipation can be reached when the pivot point is arranged at the 

height of 8.4 cm above the bottom bracket. 

In 1999 and 2000, Good and McPhee [9,26] developed a simplified four-body 

dynamic model with Maple algorithms based on the model presented by Wang and 

Hull [17] to investigate the chain-suspension interaction. This model is composed of 

front and rear wheels, main frame (front triangle) and rear triangle. Since the rider 

part is integrated into the bike frame, the determination of interface loads between the 

rider and the seat, handlebars and pedals are not considered. The rider-bike system is 

only excited by a chain tension force varying with crank angle. With the same 

simulation conditions as those in [17], Good and McPhee [9] validated their 

developed model with the results of compression of rear suspension presented in [17], 

and showed that their difference is only 1.0 mm less than that in [17]. 

In 2000, with the dynamic model presented in [9], Good and McPhee [26] 

implemented an optimization analysis with genetic algorithm search routine 

MECHAGEN to study the optimal pivot point for minimizing the pitching motion of 

the rider. The design variables in this analysis are the x-axis and y-axis positions of the 

spring-damper attaching point on the rear frame, and those of the pivot point relative 

to the centre of mass of frame and rider. It is different from the study of Wang and 

Hull [17] in that Good and McPhee [26] studied the location of the pivot point on seat 

tube and the forward or rearward position relative to the seat tube. Their results show 

that the pitching motion of the rider will be minimized when the pivot point is located 

at 11.6cm above and 2.7cm rearwards the bottom bracket. 
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In addition to conducting the physiological experiments, Titlestad, Whittaker, and 

Davie et al. [3,4,18,19,20] also measured some mechanical variables and presented a 

dynamic model of the rider-bike system [3,4,19]. During the roller rig test with and 

without bumps (see Figure 2.1), the pedal forces and vertical accelerations at 

handlebar and at saddle were measured. The experimental results show that, during 

the test with no bump, the measured accelerations have only small differences 

between the hard tail bike and full suspension bike. However, during the test with 

bump, the vertical accelerations at handlebar and at saddle of the full suspension bike 

are significantly lower than those of the hard tail bike. In addition, the average pedal 

force required by full suspension bike to maintain the same average speed over bumps 

is also lower than that required by hard tail bike. Titlestad, Whittaker, and Davie et al. 

[3,4,19] also presented a dynamic model of rider-bike system by using DADS 

(Dynamic Analysis and Design Systems [34]) to compare the numerical results with 

the experimental ones. In this, the properties of human body model is adapted from 

the one presented by Wilczynski and Hull [35]. The entire model of rider-bike system 

consists of 2 parts. The rider model consists of the head, upper arm, lower arm, torso, 

hip, one upper leg, and one lower leg, while the bike model consists of the rear wheel, 

bike frame, handlebar, front and rear suspension. The two ends of a spring are 

connected to the rider's shoulder and handlebar, respectively. The numerical results 

obtained from DADS simulation are similar to those obtained from the experiment. 

Therefore, Titlestad, Whittaker, and Davie et al. concluded that the full suspension 

bike has a significant advantage over the hard tail bike in a controlled experimental 

environment. 

Following the study of Titlestad, Whittaker, and Davie et al. [3,4,19], Davie and 

Whittaker [4] measured the same mechanical variables and implemented the 

numerical simulation in DADS for the rolling road rig tests [see Figure 2.2(a)]. In the 

experiment of rolling road rig test with or without bumps, the mechanical results show 

that there is no significant difference between hard tail bike and full suspension 

system bike. The numerical results obtained from the DADS simulation show that, 

during the test with no bumps, the hard tail bike has a slight advantage over the full 

suspension bike, because the displacements of handlebar, saddle and rider of the hard 
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tail bikes are lower than those of the full suspension bikes. However, during the 

simulation of test with bumps, the advantage of the full suspension bike is significant 

over that of the hard tail bike, because the displacements and velocities of handlebar 

and saddle, and the displacements of rider of the former are lower than the 

corresponding ones of the latter. 

In 2002, Karchin and Hull [27] implemented an experiment with the bike designed by 

Needle and Hull [12] to study the optimal pivot point height with respect to three 

objectives : (1) the influence of interaction between front and rear suspensions on the 

pivot point height; (2) the sensitivity of the optimal pivot point height to the rider's 

pedalling mechanics in seated and standing riding conditions; (3) the dependence of 

the optimal pivot point height on the rider posture. Eleven riders are involved in this 

experiment, in which each rider is asked to ride on a treadmill with the grade 6%, 

constant velocity 24.8 km/hr, the gear ratio 38:14, and the cadence of 84 rpm. For the 

first objective, the riders ride the bike with the front suspension active (no lockout) 

and inactive (lockout), and it is found that, at the optimal pivot point height, the power 

loss from the rear suspension has no obvious effect on the interaction between front 

and rear suspensions. For the second and the third objectives, Karchin and Hull [30] 

found that the average optimal pivot point height for seated riding is 9.8cm and 

ranged from 8.0-12.3cm, and that for standing riding is 5.9cm and ranged from 

5.1-7.2cm. In addition, the optimal pivot point height is not sensitive to the pedalling 

mechanics in either seated or standing ridings. 

In 2005, Levy and Smith [28] performed a study to compare the vibration damping of 

five different suspension conditions, including a rigid frame with three different front 

forks (air-oil fork, elastomer fork, and linkage fork), and a rear-suspended frame with 

two different front forks (air-oil fork and linkage fork). Where a rigid frame with rigid 

fork (full rigid) is selected as the benchmark. Only one rider is involved in this 

experiment, and two road conditions of gravel surface (similar to railway tracks) and 

trail surface (similar to an off-road racing track) are tested. The vibration damping of 

those suspension conditions were investigated by quantifying accelerations at the 

front axle and frame using spectral analysis. The results showed that, in a low 
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frequency range between 0 and 100 Hz, all the suspension systems can effectively 

reduce the vibration at the frame in comparison with the axle, while the full-rigid 

frame has only modest low-frequency attenuation of vibration. The attenuation of 

vibration of rear suspended frame with air-oil fork on the gravel surface is 66.2%, and 

that on the trail surface is 64.8%, and both are highest among the five suspension 

systems. In a range of higher frequencies between 300 – 400 Hz, the vibration can be 

effectively attenuated for all conditions. The high-frequency vibration in this study is 

unexpected, and Levy and Smith [28] think that it is resulted from the rubber knobby 

tyres used by the mountain bikes. Moreover, it is suggested that the data of rider 

should be input in the future assessment of the effectiveness of suspension systems. 

In 2004, Champoux et al. [29] developed a fully instrumented mountain bike, in 

which all principal dynamic loads applied on the bike can be in situ (real-time) 

measured. The front and rear axles, and the front and rear brakes are equipped with 

commercial force transducers to measure the applied forces. The handlebar, seat, and 

pedals are equipped with strain gauges to measured the horizontal and vertical applied 

force components. Electric linear position transducers are used to measure the 

displacements of front and rear suspensions. A potentiometer is used to measure the 

pedal position. Electric cables of all transducers are fixed along the frame tubes and 

form an umbilical cable to connect to the data acquisition system in a backpack. With 

instrumented mountain bike, they achieve the goal of real-time measurement of all 

dynamic loadings applied on the bike when a rider rides it in the field or in the lab 

test. 

The weight, stiffness and comfort are three important factors directly affecting the 

dynamic characteristics of a rider-bicycle system. Since the dynamic behaviour of a 

bike can directly influence the bike lifetime, maneuverability, efficiency and rider's 

comfort, Champoux et al. [30] indicated that the more manufacturers can realize about 

the dynamic response of their products, the more they can benefit both current and 

potential riders. They have shown that the rider comfort can be categorized into static 

comfort and dynamic comfort. The quality of the road surface and the vibration 

transmitted from the five contact points of the rider (the hands, the feet and the 
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buttock) are all involved in the perceived dynamic comfort to be directly related to the 

dynamic behaviour of bike. In their study a series of experiments, including SIMO 

(Single input multiple output) without a rider and MIMO (Multiple input multiple 

output) tests with a rider were implemented to investigate the dynamic behaviour of 

road bikes. In the SIMO test, a shaker was used to generate excitations to the front 

axle, and in the MIMO test, an additional shaker was used to generate excitations to 

the handlebar. The related natural frequencies and mode shapes were obtained in the 

experiments. The results showed that the biker strongly affect the dynamics of a bike. 

For the road bike with a rider, only the mode of front-to-back motion of the forks at a 

natural frequency of 27.8Hz is similar to one at a natural frequency of 33.5Hz for the 

road bike without a rider. In addition, for the road bike with a rider, only the 3 modes 

with natural frequencies in the band 10-100Hz can be obtained. 

In 2005, Redfield [31] presented a mathematical model of rider-bike system to study 

the extreme manoeuvres of mountain biking. The model is developed by bond graphs, 

which is a series of graphical representations of physical systems based on energy 

domain [36]. In this study, the rider was assumed to be attached rigidly to a hard tail 

mountain bike, and the test condition was simulated by the rider passing through a 

steep drop of 1m. Several manoeuvres, including normal riding, applying maximum 

brake force, shifting the centre of mass of rider (nearly seated posture), and 

performing a "bunny hop" (jumping) to pass the steep drop (may be used by the 

professional mountain bikers), were investigated to assess the velocities of centre of 

gravity, shock forces, tyre forces, and torques. He indicated that the result of the 

simulation with the rider rigidly connected to the bike was reasonable comparing with 

a new rider carefully controlling the bike due to fearing the steep drop. 

In 2006, Redfield and Sutela [32] presented a bond graph model of a rear shock 

absorber for mountain bikes based on the fluid pressure and the flow through orifices, 

in which the pressures and volumes of air, oil, and nitrogen are all considered. They 

implemented an experiment to compare the measured results with the ones from the 

world. In the experiment, the rear shock eye of the shock (the one connecting to rear 

part of the bike frame) is fixed, and an input sinusoidal force with peak-to-peak stroke 
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length 25mm with varying frequency is applied on the front shock eye (the one 

connecting to the front part of the bike frame), and the applied shock force is 

measured from the front shock eye. The applied shock forces and the relative 

velocities are observed. By adjusting the model parameters, it is found that the model 

results correspond to the experimental results well. They indicate that the bond graph 

model can be provided to the design engineers to identify which physical parameters 

influence the performance of shock absorber significantly, so that the design cycle 

time can be reduced. 

In 2008, González et al. [11] performed an optimization analysis of a four-bar-linkage 

full suspension mountain bike. First, they present a dynamic model of rider-bike 

system by using Matlab, in which the human body model has right and left, upper and 

lower legs, and the bike is a single pivot bike similar to the one presented by Good 

and McPhee [9] and Wang and Hull [17]. Then, they used the same simulation 

conditions (uphill grade 6%, moving velocity 6.5m/s, gear ratio 38:14, and cadence 

84rpm) as those in [9,17], and compare the results of compression of rear suspension 

as a function of crank angles to the ones presented by Wang and Hull [17], and Good 

and McPhee [9] and it was found that the difference is very small. González et al. [11] 

also found that the rider's body (pedalling) motion affects the power dissipation in 

rear suspension significantly and was not considered in [9,17], in addition, the power 

dissipation increases with the maximum crank torques developed by the rider.  

González et al. [11] then developed a model of four-bar-linkage bike with the same 

rider model developed for validation by them, and implemented an optimization 

analysis. The design variables considered in this analysis are: the position of shock 

eye on seat tube, the main pivot near the bottom bracket, the position of the rocker fix 

pivot, the length of chain stay, the length of horst link, the length of seat stay, the 

distance between horst link pivot and rocker pivot, the distance between rocker pivot 

and rocker fix pivot, the distance between rocker pivot and upper shock eye, the 

distance between rocker fix pivot and upper shock eye (all parts mentioned above are 

introduced in Chapter 4). The results of this optimization analysis show that the power 

dissipation in rear suspension will reduce from 10.8w to 0.8w, and the optimized rear 

triangle (rear part of bike frame) is only 20g heavier than the original one. 
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In a research report presented by Enright in 2007 [37], several packages were assessed 

to determine the most suitable one to be used to study the dynamics of mountain bikes. 

Finally, SimMechanics, an add-on to Matlab and Simulink, was selected. With 

SimMechanics, hard tail and full suspension mountain bike models were developed, 

in which several parts were modelled, including the bike frame, the suspension system, 

the tyres, the crank, and the gears. The chain was not included in the model. In order 

to easily adjust the parameter values of the bike model, a calculation programme was 

written as a Matlab m-file. In addition, the rider’s mass was included in the model by 

adding two point masses [66.7% (of the rider’s mass) on the seat post and the other 

33.3% on the handlebars], and the point masses were added to the calculation of 

frame COG. The pedalling forces on the bike were simulated by inputting a sine wave 

force applied to one pedal. The pedalling motion was controlled by a proportional 

controller controlling the forces to the pedal depending on the speed of the bike 

comparing with the value of desired speed. Without the proportional controller, the 

sine wave force could not make the crank turn in complete revolutions and oscillated 

randomly, because the frequency of sine wave is fixed but the crank accelerates and 

the speed changes with time. The natural frequency and the deflections of the bike 

simulation under static loads were investigated to validate the mountain bike model 

with the pedalling controller and force removed. As a result, it was claimed that the 

numerical analysis results are close to the simulated results (around 80%). 

Another report presented by Iturrioz in 2008 [2] was an extension study based on the 

one done by Enright [37]. In this project, the bump model was added to the bike 

model developed by Enright [37], and it was based on the example of bouncing ball 

model in SimMechanics [38]. A human body model was developed and integrated 

into the bike model. The body model used in this project was adapted from the one 

used by Titlestad [3]. The human body consisted of six segments, including the torso, 

the head, the upper and lower arms, and the upper and lower legs. All parts of the 

human body were supposed to be cylinders except the head being a sphere. A body 

spring-damper unit is connected with the handlebar and the shoulder to prevent the 

upper body from falling down due to gravity. Four bike models with different 

suspensions were studied in this project, including hard tail, single pivot, 

four-bar-linkage, and VPP (virtual pivot point). Due to the bump model being were 
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considered in this project, some models developed by Enright [37] were modified.  

The pedal force was simulated by two half sine waves applying on each crank in the 

second and third quadrants. The model of transmission between crank axle and rear 

hub were developed by using a chain force and a velocity driver instead of using a 

gear constraint used in the work of Enright [37]. A model for simulating the chain 

tension was developed in this project. After the four detailed mountain bike models 

were developed, situations for each bike passing over four different bumps, including 

flat bump (flat road), the fall of the bike due to a drop, vertical obstacle, and slope, 

were investigated. The angular velocity of COG, x and y velocity components of COG, 

x and y position components of COG, x and y velocity components of rear wheel, 

angular velocities of crank and rear wheel, pedalling force, chain force, torque, and 

power were analyzed. Some unexpected results occurred probably due to the incorrect 

definition of frame key points, because coordinates of frame key points are 

determined by approximate calculation, and the modification of these key points 

influence the numerical results significantly. 

In 2010, Cangley et al. [39] presented a 3D mathematical model of rider-bike system 

by using SimMechanics to simulate competitive road cycling in forward dynamics. 

The positive directions of the three axes are: forward (x-axis), left (y-axis), and 

upward (z-axis) when the rider-bike system is viewed from the rear. The bicycle 

model is based on the Trek Madone. The rider model consisted of fourteen rigid 

bodies, and the pedalling motion is modelled as symmetrical two-legged pedalling. 

Wind resistance, rolling resistance, and gravitational resistance are taken into 

consideration. Balancing of the rider-bike system is controlled by using a PID 

controller. The full cycling model is simulated from rest to accelerates forward and 

will reach the steady condition at a velocity of 11.1m/s after t  7.5sec. They 

conducted an experiment, in which fourteen riders are asked to ride in a time trial 

course, and the time, power, speed and distance data are recorded and compared to the 

numerical results. The finishing time predicted in the numerical analysis is only 1.4% 

higher than the actual time. 
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2.4 Studies on Rider's Pedalling Efficiency 
 

In the works of Enright [37] and Iturrioz [2], the pedalling force is simulated as the 

sine wave with its maximum and minimum occurring at the moment that the crank is 

at the horizontal and vertical positions, respectively. It is obvious that the above 

assumption for the pedalling force does not agree with the actual situations, because 

the maximum pedalling force should occur when the angle between the crank and 

rider's lower leg, α, is near 90° (i.e., α90°), and the minimum pedalling force occurs 

when α180°. Note that, if θ1 represents the rotational angle of the crank with respect 

to its top dead centre (TDC) at any instant of time t, then α90° does not occur at the 

moment that the crank is at the horizontal position (with θ1=90°) and α≒180° does 

not occur at the moment that the crank is at the vertical position (with θ1=180°) as one 

may see from Chapter 4 of this thesis. Besides, in some studies [40~46], the rider's 

pedalling motion was investigated and the performance of the rider-bike system 

subjected to rider's pedalling force was estimated. 

Broker [40] has shown that, with the strong growth of mountain biking, the questions 

and issues surrounding the biomechanics of cycling have become more complex and 

multifaceted. For this reason, a lot of researchers devoted themselves to the study of 

cycling biomechanics. For example, Neptune and Hull [41] examined the accuracy of 

three methods to indicate the hip joint centre (HJC) in seated stead-state cycling: 

trochanter method (TRO), fixed hip method (FIX) and anterior superior iliac spine 

method (ASIS). To perform a comparative analysis of errors inherent in the three 

methods, a standard method (STD) for locating the true HJC was developed. 

Quantified results reveal that the peak power obtained from TRO (43.2W) is much 

greater than that from STD (12.2W) with 254% error and the hip joint force work 

obtained from TRO (10J) is also much greater than that from STD (2.5J) with 300% 

error. Neptune and Hull [42] also developed a forward dynamic model of cycling and 

an optimization framework to simulate pedalling during submaximal steady-state 

conditions to identify the experimentally collected kinetic and kinematic data. Their 

model was driven by 15 individual musculotendon actuators per leg and the foot is 

assumed to be rigidly attached to the pedal. Neptune and Bogert [43] assessed the 
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utility of four experimental methods to quantify the mechanical energy expenditure 

(MEE) in human movement: metabolic energy method, external work method, 

kinematic method and kinetic method. They found that the kinematic (internal energy) 

method is theoretically flawed and should not be used in the cycling analyses, and the 

external work method has the potential to vastly improve our understanding of muscle 

function. Hansen et al [44] studied the influence of crank inertial load on freely 

chosen pedal rate and gross efficiency, and found that a considerable increase in crank 

inertial load would cause: (1) freely chosen pedal rate to increase, (2) gross efficiency 

to decrease and (3) peak crank torque to increase (for keeping a constant pedal rate). 

Sanderson and Black [45] studied whether the cyclists will modify the pattern of force 

application to become more effective during a prolonged ride to exhaustion and found 

that the peak effective force of the cyclist in the final minute ride is significantly 

increased compared with his first minute ride (to maintain the pedal cadence). Duc et 

al. [46] investigated the muscular activity of eight lower and four upper limb muscles 

across various laboratory pedalling exercises to simulate the uphill cycling conditions. 

They found that the increase of treadmill slope from 4% to 10% in uphill cycling did 

not significantly change the muscular activity of lower and upper limbs. In contrast, 

the change of pedalling posture from seated to standing affected largely the intensity 

and the timing of electromyography (EMG) activity of muscles crossing elbow, pelvis, 

hip and knee joint. 
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2.5 Summary 
 

A general literature review on research in mountain biking and pedalling efficiency is 

given in this chapter. Researches in the past two decades have investigated the 

performance of mountain bike with and without suspension systems. Some projects 

are focused on measuring the physiological variables of the rider in laboratory or field 

tests and analyzing the performance of hard tail bike and full suspension bike from the 

point of view of physiology. Some reports are focused on rider's power dissipation 

resulting from the compression of rear suspension and presentation of some methods 

to improve the design of rear suspension by developing the experimental tools or 

implementing the dynamic simulations. 

From the experimental evidences presented in Section 2.2, one can see that under 

various experimental environments, including lab tests and field tests, when the rider 

rides a RIG bike, a HT bike, or a FS bike, the difference of VO2 or HR is not obvious 

[4,15,23,24]. In addition, Berry et al. [22] and Nielens and Lejeune [15] concluded 

that there is no evidence to indicate the performance of a FS bike to be worse than a 

HT bike. On the other hand, in most of the experimental studies with the comfort 

assessment taken into consideration, the FS bikes are more advantageous than HT 

bikes [3,4,18,19,20,23]. More studies also conclude that FS bikes may be more 

beneficial than HT bikes during off-road riding conditions [3,4,16,18,19,20,24]. 

In Section 2.3, most of reports concerning dynamic simulations only investigated the 

optimal location of pivot points for single pivot bikes, and only one study investigated 

the optimization design of the four-bar-linkage bike [11]. 

In addition, it is found that most of the researchers study the cycling problems from 

the viewpoint of biomechanics and statistics theory and incorporating with various 

complicated experiments, and the literature for tackling the problems with the 

engineering mechanics and deterministic theory is rare. Thus, in this thesis, the 

pedalling efficiency of a bike rider is evaluated by using the conventional engineering 

mechanics incorporating with computer simulations. To this end, the rider-bike system 

is modelled by a two-dimensional mechanism consisting of crank, shank (lower leg), 
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thigh (upper leg) and a stationary segment (framework) joining hip to the crank 

spindle. Then five rider-bike systems (including one hard tail bike and four of the 

most popular full suspension bikes) are used to investigate the quasi-static responses 

of the stationary bare bikes due to applied forces and the dynamic responses of the 

moving loaded bikes passing over bumps. 
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Chapter 3 Hard Tail and Full Suspension Mou- 
ntain Bikes 
 

3.1 Introduction 
 

In order to study the influence of different full suspension systems of mountain bikes 

on the bike and rider performance, numerical models of five rider-bike system have 

been developed. In this chapter, the software used to develop the models are 

introduced and the details of all bike models are discussed. 

 

3.2 Software Used in Thesis 
 

In this thesis, numerical models of all rider-bike system are developed in 

SimMechanics and Matlab. The full suspension bikes are drawn with Linkage and 

AutoCAD so as to obtain the precise dimension of bike frames. The dimension of the 

rider model is measured and obtained from BikeCAD and [17]. 

 

3.2.1 Matlab, Simulink, and SimMechanics 

 

The rider-bike mechanical models are developed in SimMechanics in this study, 

which was also used by Enright [37] and Iturrioz [2], and the control system in 

rider-bike models is developed by using Simulink. 

SimMechanics [38] is one of the toolboxes among Simscape, which is the platform 

used for physical modelling in the Matlab and Simulink simulation environment. With 

SimMechanics, one can focus on defining the mechanics of a system since 

SimMechanics derives the equation of motion automatically [39]. A mechanical 

system developed in SimMechanics is represented graphically by connected blocks.  

All objects in the mechanical system are rigid bodies and defined with Body Block, in 

which the mass property, mass moment of inertia, relative coordinate systems (called 

CS), and initial orientations are defined. Each rigid body is connected to others with 
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different kind of Joint Block, and kinematic constraints can be defined. Standard 

Newtonian dynamics of force and torque are used to do the analysis in SimMechanics.  

As SimMechanics becomes popular, many researchers have begun to use 

SimMechanics in their studies [2,37,39,47~58]. 

In this thesis, all parameters required by SimMechanics are defined and calculated in 

an “m-file” written by the user. This is more convenient when many parameters must 

be modified at the same time. In the simulation, the results can either directly be 

observed in SimMechanics or output to the Matlab workspace for further observation. 

SimMechanics provides both forward and inverse dynamics analyses. In the forward 

dynamics analysis, the driving forces are given to the mechanical system and the 

resulting motion can be observed; in the inverse dynamics analysis, the motion of the 

mechanical system is given and the forces required to generate the motion are 

calculated [59]. In this thesis, forward dynamics analysis is used. 

In the simulation of Simulink and SimMechanics models, different types of solver 

(including variable time step and fixed time step) can be used. In this thesis, two 

solvers are used.  For fixed time step, the solver ODE 14x (extrapolation) is used, 

and the time step size is 0.01s. With this solver, the animation of the simulation is 

much faster than variable time step solver, and the response of rider-bike system can 

be observed easily. Since the numerical results obtained from last fixed time step 

solver are rough, the numerical results shown and discussed in this thesis are obtained 

from the variable time step solver ODE 45 (Dormand-Prince), in which the maximum 

time step is 0.01s and the relative tolerance is 1×10-5. 
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3.2.2 Linkage - Bike Suspension Simulation Software 

 

Linkage is a software which can simulate the motion of full suspension system of 

mountain bikes [60]. One of the sample interfaces is shown in Figure 3.1. By 

importing pictures of different mountain bikes into Linkage, and choosing the patterns 

of different suspension systems provided in Linkage, the models can be developed 

including drawing the contour of bike frames and defining the key pivot points. The 

full dimensions can be calculated automatically if a reference data is set. The 

reference data used here is the wheelbase. However, the dimensions calculated in 

Linkage are approximate, so AutoCAD is used to produce the more accurate 

dimensions. 

In Linkage, a vertical force can be applied on head tube and seat post simultaneously 

or one at a time to observe the responses of both front and rear suspensions. 

There are many other functions available in Linkage, such as customizing the 

parameters of the front fork and rear shock absorbers so that the behaviour of the 

suspension system will be affected directly. However, in this thesis only the motion of 

the rear suspension system is considered and the other functions are not used. 

 

 

Figure 3.1 A sample interface of Linkage software [60] 
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3.2.3 BikeCAD 

 

BikeCAD [61] is a software for bike enthusiasts to design bicycles and rider models.  

It can be used to design both road and mountain bikes. However, only a hard tail 

mountain bike is provided in BikeCAD. In this software, one can customize every 

length, diameter, angle of each frame tube. One of the sample interfaces of the 

software is shown in Figure 3.2. 

In this thesis BikeCAD is used because the rider model can be customized as well. 

While the angle of rider’s upper body is difficult to measure during real experiments, 

BikeCAD can provide the central line of each body part and labels the length and 

angle of every rider’s body part. Based on the clearly defined lengths and angles of 

rider model in BikeCAD, the improved rider model in SimMechanics has been 

developed. Details will be given in Chapter 5. 

 

Figure 3.2 A sample interface of BikeCAD software [61] 
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3.2.4 AutoCAD 

 

AutoCAD is a very useful tool for engineering design. An example for the detailed 

design of a road bike is shown in Figure 3.3 [62], in which all detailed dimensions of 

the bike are labelled. 

In this thesis, the pictures of the full suspension mountain bikes are imported into 

AutoCAD then the central lines of each tube is drawn. The origin (0,0) of the 

coordinate system is set at the rear axle, the wheelbase is set as the reference length.  

From this the relative length and angle of each tube is determined. The ling drawing 

of the single pivot mountain bike is shown in Figure 3.4. 

Comparing the dimension of line drawings of the full suspension mountain bikes 

obtained from AutoCAD with the specification provided by the manufacturers, it is 

found that the maximum error for lengths and angles between line drawings and real 

bikes is less than 6cm and 2°, respectively. Mountain bike models developed in 

SimMechanics in this thesis are therefore based on the line drawings obtained from 

AutoCAD. 

 

Figure 3.3 Example for the detailed design of a road bike [62] 
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Figure 3.4 Line drawing for a single pivot bike studied in this thesis 
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3.3 Model of Hard Tail Bike and Full Suspension Bikes 
 

A sample basic geometry of a mountain bike frame is shown in Figure 3.5, which is 

taken from the mountain bike magazine MBR [63]. The specification includes head 

angle, seat angle, bottom bracket (BB) height, lengths of chain stay, front centre, 

wheelbase, and down tube. From a book about the science of cycling, written by 

Burke [64], one obtains the geometry of a road bike frame as shown in Figure 3.6. 

From Figures 3.5 and 3.6, it is found the head angle, seat angle, and BB height affect 

the geometry of the bike frame significantly, and the three parameters affect the 

stiffness of the bike frame, the performance of steering, and the comfort of rider as 

well. 

 

Figure 3.5 Specification of a bike frame of Whyte 905 [63] 

 

Figure 3.6 Basic geometry of a bike frame based on [64] 
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In this thesis, five mountain bike models are developed and analyzed. One of them is 

the hard tail bike, which only has front suspension (front fork) and no rear suspension 

system. The other four mountain bikes have both front and rear suspension systems, 

and also called full suspension bikes. 

In the current mountain bike market, the most popular rear suspension systems can be 

categorized in four types: single pivot, four-bar-linkage horst link, four-bar-linkage 

faux bar, and virtual pivot point (VPP). 

The developed bike models are based on Marin Rocky Ridge (hard tail) [65], Orbea 

Occam (single pivot) [66], Specialized Pitch (four-bar-linkage horst link) [67], Kona 

Tanuki (four-bar-linkage faux bar) [68], and Santa Cruz Blur (VPP) [69]. Except the 

Marin Rocky Ridge is an old (hard tail) bike frame in the dynamics lab, all four full 

suspension bikes chosen are the 2011 models, as shown in Figures 3.7-3.11 obtained 

from the manufacturers websites. Details of each bike model developed in this thesis 

will be shown in the following sections. 

 

Figure 3.7 Marin Rocky Ridge [65] 

 

Figure 3.8 Orbea Occam [66] 
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Figure 3.9 Specialized Pitch [67] 

 

Figure 3.10 Kona Tanuki [68] 

 

Figure 3.11 Santa Cruz Blur [69] 
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3.3.1 Hard Tail Bike 

 

The Linkage model of the hard tail bike is shown in Figure 3.12. Hard tail bikes are 

the most common type of mountain bike in the market. Its frame is composed of front 

and rear triangles, and has only a front suspension with no rear suspension, thus, the 

bobbing effect is negligible. The absence of rear suspension system will result in less 

riding comfort since the terrain-induced load [13] and the vibration resulted from 

passing through bumps must be absorbed by the rider’s body. 

Another kind of hard tail bike is called soft tail, which has a chain stay made of 

special material to increase the flexibility for absorbing the vibrations. Since materials 

are not the subject of this thesis, no soft tail bikes have been included in this study. 

 

 

 Figure 3.12 Linkage model of Marin Rocky Ridge, a Hard Tail bike 
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3.3.2 Full Suspension Bike - Single Pivot 

 

The Linkage model of this single pivot bike is shown in Figure 3.13 and some 

important points are defined and shown in Table 3.1. 

The rear suspension system of a single pivot bike is the simplest, its main pivot is 

located above the bottom bracket on the down tube near the bottom bracket. Some 

bikes have the main pivot point located on seat tube. 

When a vertical force is applied on the seat post, the rear shock absorber is activated.  

It is found that the travel path of the rear wheel is similar to an arc when the rear 

shock absorber is compressed, which results in the bobbing effect. Therefore, the 

rider’s pedalling efficiency is reduced since part of rider’s pedalling force is absorbed 

by the rear suspension. 

 

 

Figure 3.13 Linkage model of Orbea Occam, single pivot bike 

 

Table 3.1 Definition of important points of a single pivot bike 

Point No. Definition of Point 
1 Rear Axle 
2 Bottom Bracket 
3 Main Pivot 
4 Shock Eye 1 
5 Shock Eye 2 
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3.3.3 Full Suspension Bike - Four-Bar-Linkage Horst Link 

 

The Linkage model of this four-bar-linkage horst link mountain bike is shown in 

Figure 3.14, and the important points are defined and shown in Table 3.2. It can be 

seen the four-bar-linkage is consisted of seat stay, rocker (the triangle part), rear shock 

absorber, and chain stay. The horst link type rear suspension is also called chain stay 

pivot, which has a pivot point in front of the rear axle, and connected to rear axle by a 

small link, called horst link. The horst link is a patent owned by the mountain bike 

manufacturer Specialized, and the inventor is Horst Leitner [70]. 

With the four-bar-linkage mechanism, the travel path of rear wheel is more vertical 

than single pivot rear suspension when the rear shock absorber is activated. Thus, less 

pedalling force is absorbed by the rear suspension, which results in better 

performance of pedalling, climbing, accelerating, and braking. 

 

Figure 3.14 Linkage model of Specialized Pitch, four-bar-linkage horst link 

Table 3.2 Definition of important points of a four-bar-linkage horst link mountain bike 

Point No. Definition of Point 
1 Rear Axle 
2 Horst Link Pivot 
3 Main Pivot 
4 Bottom Bracket 
5 Shock Eye 1 
6 Shock Eye 2 
7 Rocker Pivot 
8 Rocket Fix Pivot 
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3.3.4 Full Suspension Bike - Four-Bar-Linkage Faux Bar 

 

The linkage model of this faux bar mountain bike is shown in Figure 3.15, and the 

important points are summarized in Table 3.3. Faux bar design is similar to horst link 

design, both have the four-bar-linkage mechanism. However, the faux bar design does 

not have a small link to connect rear axle and chain stay. Instead, there is a pivot at the 

end of seat stay, and a small link is connected to rear axle, which is the so-called faux 

bar. Therefore, faux bar design is also called seat stay pivot. 

When the rear absorber is activated, the motion of the faux bar rear suspension is 

slightly similar to that of a single pivot mountain bike, so the travel path of rear wheel 

is also like an arc. However, faux bar design can provide better performance on 

braking. 

 

 

Figure 3.15 Linkage model of Kona Tanuki, four-bar-linkage faux bar 

Table 3.3 Definition of important points of a four-bar-linkage faux bar mountain bike 

Point No. Definition of Point 
1 Rear Axle 
2 Faux Bar Pivot 
3 Main Pivot 
4 Bottom Bracket 
5 Shock Eye 1 
6 Shock Eye 2 
7 Rocker Pivot 
8 Rocket Fix Pivot 
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3.3.5 Full Suspension Bike - Virtual Pivot Point (VPP) 

 

The linkage model of this VPP mountain bike is shown in Figure 3.16 with the 

important points summarized in Table 3.4. Unlike four-bar-linkage type rear 

suspension system, VPP bike has two individual triangles to compose the bike frame, 

and two links are used to connect the front and rear triangles. Although the real pivot 

points must be located on the bike frame, the effective virtual pivot point (VPP) is not 

constrained to be on the frame. In Figure 3.16, points 2 and 7 are located outside the 

bike frame, while two links, the rocker and a small link are used to connect the front 

and rear triangles. 

VPP design allows the travel path of rear wheel to be vertical when the rear shock 

absorber is under compression. Thus, the bobbing effect is decreased. VPP technology 

is a patent owned by the mountain bike manufacturer Santa Cruz. An illustration 

captured from their official website is shown in Figure 3.17 [69]. 

 

Figure 3.16 Linkage model of Santa Cruz Blur, virtual pivot point (VPP) 

Table 3.4 Definition of important points of a VPP mountain bike 

Point No. Definition of Point 
1 Rear Axle 
2 Small Link Pivot 
3 Main Pivot 
4 Bottom Bracket 
5 Shock Eye 1 
6 Shock Eye 2 
7 Rocker Pivot 
8 Rocket Fix Pivot/Second Link Pivot 
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Figure 3.17 Illustration of Santa Cruz VPP technology on the mountain bike Blur [69] 
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3.4 Procedure for Development of Rider-Bike System Model 
 

Five mountain bike models, including one hard tail (HT) bike and four full suspension 

(FS) bikes, and one rider model are developed in SimMechanics in this thesis. The 

procedure for developing the bike and rider models is shown in Figure 3.19. 

For the bike models, the pictures of the five bikes are obtained from the 

manufacturer's websites [65-69]. Then, the bike pictures are imported into AutoCAD 

to develop the line drawings to derive the dimensions of frame tubes for developing 

the SimMechanics bike models. (Comparing the dimensions derived from AutoCAD 

with the ones provided by manufacturers, the maximum errors for lengths and angles 

between line drawings and real bikes are less than 6 cm and 2°, respectively.) 

On the other hand, the pictures of the five bikes are imported into Linkage as well to 

develop the linkage models to observe the motion of rear suspension systems. The 

SimMechanics bike models are then tested to observe the motion of rear suspension 

systems and the results are compared with the ones from Linkage. If the motions of 

both results are consistent, then the SimMechanics model is integrated with the rider 

model for the numerical analysis. 

For the rider model, the dimensions of rider are obtained from [17]. Then the rider 

model is developed in BikeCAD, in which the angles of the rider's limbs and trunk 

can be precisely obtained. Afterwards, the SimMechanics rider model can be 

developed by using the information from [17] and BikeCAD rider model. Finally, the 

SimMechanics rider model is integrated with the bike model. 
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Figure 3.18 Procedure for developing rider-bike system models 
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3.5 Summary 
 

The steps required to develop the models detailed in this thesis can be summarized as 

follows. For each bike, with the help of Linkage, the motion of the rear suspension 

system is observed, and key pivot points of the bikes are defined. 

Using BikeCAD, the length and angles of each rider’s body part are clearly defined. 

The SimMechanics model of rider and bikes are then developed based on the 

dimensions obtained from BikeCAD. 

The line drawings of mountain bikes studied in this thesis are generated by using 

AutoCAD. Since the errors between the AutoCAD line drawings and real 

specifications provided by the (mountain bike) manufactures are small, the 

SimMechanics models of mountain bikes are developed based on the dimensions of 

the line drawings obtained from AutoCAD.  Detailed works will be shown in 

Chapter 5. 
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Chapter 4  A Technique for Evaluating Pedall- 
ing Efficiency of a Bike Rider 
 

4.1 Introduction 
 

It is a common sense that a good match between a rider and his bike is an important 

factor affecting the pedalling efficiency of the bike rider. In other words, it is 

impossible that a bike can match with every rider appropriately and, on the contrary, a 

rider can match with every bike with different dimensions. This is recognized 

implicitly by manufacturers of bikes who produce the same model in a variety of 

frame sizes. However, there does not appear to be any publications concerning 

evaluation of the appropriate match between a rider and his bike, thus, this Chapter 

presents a technique to the address. 

For the right (or left) leg of a bike rider, the crank, the lower leg and upper leg are the 

three members constituting a mechanism for transmitting the forces applied by the 

rider’s right (or left) leg, they are called Rod1, Rod 2 and Rod3, respectively. 

Furthermore, the angle between Rod1 and upward y-axis is designated as θ1, while the 

angle between Rod2 and x-axis and that between Rod3 and x-axis are designated as θ2 

and θ3, respectively. Because the mathematical expressions for determining the 

instantaneous positions of the foregoing three members are dependent on the 

associated positions of Rod1 in the three angular intervals bounded by four “critical 

positions”, for convenience, the angles of Rod1 corresponding the two critical 

positions, uppermost and lowermost positions of Rod3, are denoted by θ1,U and θ1,L, 

respectively, and those corresponding to the other two critical positions, rightward 

(with θ1=90°) and downward (with θ1=180°) positions of Rod1, are denoted by θ1,B 

and θ1,C, respectively, where the subscripts U and L represent uppermost and 

lowermost positions of Rod3, while B and C represent the positions of Joint 1 with 

θ1= 90° and 180°, respectively, as one may see from Figure 4.1. The last angles (θ1,U, 

θ1,L, θ1,B and θ1,C) associated with the four “critical positions” are called “critical 

angles” of Rod1. For the last reason, this Chapter begins with the determination of 
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critical angles of the three members corresponding to each critical position. Next, two 

types of driving forces are investigated: (i) The first type of driving forces are 

transmitted by the “simple” harmonic (SH) motions of the rider’s right (or left) upper 

leg, this leads to non-constant rotating (angular) speed of the crank and “non-simple” 

harmonic (NSH) external loads; (ii) The second type of driving forces are transmitted 

by the “non-simple” harmonic (NSH) motions of the rider’s right (or left) upper leg 

leading to constant rotating (angular) speed of the crank so that external loads are near 

“simple” harmonic (SH). In order to find the time history of external loads due to first 

type of driving forces, one must determine the instantaneous positions of Rod1 and 

Rod2 defined by the associated angles θ1(t) and θ2(t) based on the specified 

time-dependent position of Rod3 defined by the given angle θ3(t). On the other hand, 

in order to find the time history of external loads due to second type of driving forces, 

one must determine the instantaneous positions of Rod2 and Rod3 defined by the 

associated angles θ2(t) and θ3(t) based on the specified time-dependent position of 

Rod1 defined by the given angle θ1(t). 

Finally, from the dimensions (or geometric configuration) of Rod1, Rod2 and Rod3 

along with the relative positions of seat centre and bottom bracket, one finds that the 

angle between Rod1 and Rod2 at any instant of time t is given by α(t)=1.5π-θ1(t)-θ2(t) 

with θ1(t) and θ2(t) denoting the instantaneous angles of Rod1 and Rod 2, respectively. 

Thus, at any instant of time t, the external torque T(t) developed by the crank due to 

driving forces F2(t) transmitted from Rod2 is given by T(t)=L1F2(t) sin‧ α(t) with L1 

denoting the radius of the bike crank (Rod1). It is obvious that, in each half cycle, the 

effective work W done by the rider’s right (or left) leg is determined by the 

integrations of T(θ1)‧dθ1 through the angles from θ1,U to θ1,L, where θ1,U and θ1,L are 

the (critical) angles between Rod1 and upward y-axis when Rod3 are in its uppermost 

and lowermost positions, respectively. The above-mentioned integrations are 

performed numerically by using the trapezoid rule for the first type of (NSH) external 

torques and the Simpson’s rule for the second type of (SH) external torques. 

Two cases are studied. For the first case, the dimensions of a bike are kept unchanged 

and the lengths of upper and lower legs of the riders are varied. For the second case, 
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the dimensions of the bikes are different and the leg lengths of the rider are kept 

constant. Because the effective work done by the riders are different from case to case, 

the appropriate match between a rider and his bike will affect the pedalling efficiency 

significantly. 

 

Figure 4.1 Relative positions between the rider’s legs (lengths L2=L3=0.4m) and the 
crank (length L1=Rc=0.17m) with seat-to-bottom bracket distance xc=0.135m and 
yc=0.555m, where the crank, lower leg (shank) and upper leg (thigh) are designated as 
Rod1, Rod2 and Rod3, respectively. 

 

From the literature reviews shown in Section 2.4, one sees that most of the researchers 

study the cycling problems from the viewpoint of biomechanics and statistics theory 
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tackling the problems with the engineering mechanics and deterministic theory is rare. 

Thus, this chapter tries to study the pedalling efficiency of a bike rider by using the 

conventional engineering mechanics incorporating with computer simulations. For 

convenience, the following assumptions are made: (1) The functions of the rider’s 

muscles are neglected; (2) The performance of left leg is the same as that of right leg; 

(3) The applied force )(2 tF  of each leg during its upstroke is zero, so is the 

“negative work” produced by the reverse (retarding) pedalling force. It is noted that 

the similar simple assumptions are also used by the software SimMechanics, such as, 

each elastic member is assumed to be rigid, the continuous mass is modelled with 

lumped mass, the functions of the rider’s muscles are either neglected or modelled by 

the springs, … Furthermore, based on the foregoing simple assumptions, the 

theoretical results obtained from this chapter are very close to the experimental values 

of literature [45] as one may see from Figures 4.9 and 5.42. 



- 52 - 

4.2 Determination of Critical Positions of Rod1, Rod2 and Rod3 
 

For convenience, the crank, lower leg (shank) and upper leg (thigh) are called Rod1, 

Rod2 and Rod3, respectively, as shown in Figure 4.1. In general, the length of a 

rider’s “right” leg is identical with his “left” leg, thus, either lower leg or upper leg 

may refer to his “right” one or “left” one dependent on the situations concerned. This 

section determines the critical angles of Rod1, Rod2 and Rod3 for the following 

critical positions of Rod3 and those of Rod 1: (i) The upper leg (Rod3) is in its 

uppermost position; (ii) The upper leg (Rod3) is in its lowermost position; (iii) The 

crank (Rod1) is in its rightward position (with θ1=θ1,B=90°); (iv) The crank (Rod1) is 

in its downward position (with θ1=θ1,C=180°). These situations are detailed in 

Sections 4.2.1 - 4.2.4. 

 

4.2.1 Critical Angles when Upper Leg (Rod3) in its Uppermost Position 

 

From Figure 4.2 one sees that Rod3 (upper leg) is in its uppermost position when the 

angle between Rod1 (crank) and Rod2 (lower leg) are equal to π(=180°) (i.e., on a 

straight line). Thus, from Figure 4.2 one sees that 

cUU yLLL  ,33,121 sincos)(            (4.1) 

cUU xLLL  ,121,33 sin)(cos            (4.2) 

or 

cUU yLL  ,33,112 sincos             (4.1)’ 

cUU xLL  ,112,33 sincos             (4.2)’ 

where 

1221 LLL                (4.3) 

It is noted that the subscripts “U” of θ1 and θ3 refer to the “uppermost” position of 

Rod3. 
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Eliminating θ1,U from Equations (4.1)’ and (4.2)’ and then re-arranging the equations, 

one obtains 

0)(sin2sin)( 22
1,31,3

222  cUcUcc xCyCyx        (4.4) 

where 

)2()( 3
2
12

2
3

22
1 LLLyxC cc            (4.5) 

 

 

Figure 4.2 Diagram for determining the critical angles of Rod1, Rod2 and Rod3 (θ1,U, 
θ2,U and θ3,U) when the upper leg (Rod3) is in its “uppermost” position. 
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From the foregoing equations one obtains 

222

22

1

222

11

,3

))(()(
sin s

yx

xCyxyCyC

cc

ccccc

U 



       (4.6) 

or 

2
1

,3 sin sU
                 (4.6)’ 

and 

])sin([cos 12,33
1

,1 LLy UcU              (4.7) 

UU ,12
1

,2                (4.8) 

Besides, from Figure 4.1 one sees that the angle between Rod1 and Rod2 is given by 

2121 27090360            (4.9) 

For the details regarding Equations (4.6)-(4.8) one may refer to Equations (A.6)-(A.10) 

in Appendix A at the end of this thesis. 
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4.2.2 Critical Angles when Upper Leg (Rod3) in its Lowermost Position 

 

From Figure 4.3 one sees that upper leg (Rod3) is in its lowermost position when the 

path of Joint 1 of Rod1 is tangential to the path of Joint 1 of Rod2 with centre L' on 

path of Joint 2 and radius to be L2. If the tangential point between the 

above-mentioned two paths (arcs) is denoted by L, then LL  must pass through the 

centre "O" of the circle of crank pin (i.e., bottom bracket) because the radius of the 

circle must be perpendicular to the tangential line at point L. Where the symbol LL  

denotes the line connecting points L' and L. 

Thus, from Figure 4.3 one sees that  

MNSMPNSP               (4.10) 

)( LQLPPRPQPRQR               (4.11) 

Thus, 

2122,33 sinsinsin  LyLL cL             (4.12a) 

)coscos(cos 22,3321  LLxL Lc                (4.12b) 

Eliminating θ2 from Equations (4.12a) and (4.12b), one obtains 

0)(sin2sin)( 22
2,32,3

222  cLcLcc xEEyyx        (4.13) 

where 

)2(])([ 3
2

12
2
3

22
2 LLLLyxE cc             (4.14) 

From Equations (4.12)-(4.14) and referring to Equations (A.19)-(A.23), one obtains 

222

22

2

222

22

,3

))(()(
sin s

yx

xEyxEyEy

cc

ccccc

L 



       (4.15) 

or 

2
1

,3 sin sL
                 (4.15)’ 
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and 

])()sin([sin 12,33
1

,22 LLLy LcL           (4.16) 

22,1,1 5.1)5.0(   LL         (4.17) 

It is noted that the subscripts “L” of θ1, θ2, and θ3 refer to the “lowermost” position of 

Rod3. 

 

 

Figure 4.3 Diagram for determining the critical angles of Rod1, Rod2 and Rod3 (θ1,L, 
θ2,L and θ3,L) when the upper leg (Rod3) is in its “lowermost” position. Note that 

OL  and LL  are overlapped, and L is the tangential point between the two paths 
(arcs). 
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4.2.3 Critical Angles when Crank (Rod1) in Rightward Position (θ1=θ1,B=90°) 

 

When Rod1 is in its horizontal position with Joint 1 at point B and θ1=θ1,B=90° as 

shown in Figure 4.4, one has 

PMSPSM  , BRQRPQBP         (4.18a,b) 

Thus, 

22,33 sinsin  LLy Bc  , 221,33 coscos  LLxL cB     (4.19a,b) 

Eliminating θ2 from Equations (4.19a) and (4.19b), one obtains 

0)(sin2sin)( 2
3

2
3,33,3

222
3  CDyDyC BcBc         (4.20) 

where 

13 LxC c  , )2()( 3
2
2

2
3

22
33 LLLyCD c        (4.21a,b) 

From Equations (4.19)-(4.21) and referring to Equations (A.29)-(A.32), one obtains 

222

3

2

3

2

3

22

3

2

33

,3 )(

))(()(
sin s

yC

CDyCyDyD

c

ccc

B 



        (4.22) 

or 

2
1

,3 sin sB
               (4.23) 

and 

])sin([sin 2,33
1

,22 LLy BcB             (4.24) 
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Figure 4.4 Diagram for determining the critical angles of Rod2 and Rod3 (θ2,B and 
θ3,B) when the crank (Rod1) is in rightward position with Joint 1 at point B and 
θ1=θ1,B=90°. 
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4.2.4 Critical Angles when Crank (Rod1) in Downward position (θ1=θ1,C=180°) 
 

When Rod1 is in vertical position with Joint 1 at point C and θ1=θ1,C=180° as shown 

in Figure 4.5, one has 

NMPNSPSM  , CQPQCP          (4.25a,b) 

Thus, 

122,33 sinsin LLLy Cc   , 22,33 coscos  LxL cC       (4.26a,b) 

Eliminating θ2 from Equations (4.26a) and (4.26b) produces 

0)(sin2sin)( 22
4,344,3

22
4

2  cCCc xDDCCx         (4.27) 

where 

14 LyC c  , )2()( 3
2
2

2
3

2
4

2
4 LLLCxD c        (4.28a,b) 

From Equations (4.26)-(4.28) and referring to Equations (A.37)-(A.40), one obtains 

22
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2
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22

4444

,3 )(

))(()(
sin s
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xDCxDCDC

c

cc

C 



        (4.29) 

or 

2
1

,3 sin sC
                (4.29)’ 

and 

])sin([sin 2,334
1

,22 LLC CC              (4.30) 
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Figure 4.5 Diagram for determining the critical angles of Rod2 and Rod3 (θ2,C and 
θ3,C) when the crank (Rod1) is in downward position with Joint 1 at point C and 
θ1=θ1,C=180°. 
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4.3 Positions of Rod1 and Rod2 Associated with any Specified 
Positions of Rod3 
 

When the driving forces are transmitted by the “simple” harmonic (SHM) motions of 

the rider’s right (or left) upper leg, the rotating (angular) speed of the crank is 

“non-constant” and the external loads are “non-simple” harmonic (NSHM). In order 

to determine the instantaneous external loads, one requires to find the angles of Rod1 

and Rod2 corresponding to the (given) prescribed angle of Rod3 at any instant of time 

t. The relevant mathematical expressions must be derived based on the position of 

Rod3, θ3(t), within the following three angular intervals: (i) θ3,U θ3(t)<θ3,B, (ii) 

θ3,B θ3(t)<θ3,C and (iii) θ3,C θ3(t)<θ3,L. 

 

4.3.1 Positions of Rod1 and Rod2 Associated with θ3,Uθ3(t)<θ3,B 

 

When upper leg (Rod3) is in the arbitrary position within the interval θ3,U θ3(t)<θ3,B, 

the position of crank (Rod1) must be in the interval θ1,U θ1(t)<0.5π as shown in 

Figure 4.6. From the figure one obtains 

MNPMSPSN  , RTQRPQPT         (4.31a,b) 

Thus, 

112233 cossinsin  LLLyc  , 221133 cossincos  LLxL c    (4.32a,b) 

Eliminating θ2 from Equations (4.32a) and (4.32b), one obtains 

0)(sin2sin)( 2
5

2
51551

22
5

2
5  CEDEDC           (4.33) 

where 

335 sinLyC c  , 335 cosLxD c         (4.34a,b) 

)2()( 1
2
2

2
1

2
5

2
55 LLLDCE             (4.34c) 

From Equations (4.32)-(4.35) and referring to Equations (A.47)-(A.50), one obtains 
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sin s

DC
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


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         (4.35) 

or 

1
1

1 sin s                 (4.35)’ 

and 

])cos([sin 2115
1

2 LLC                (4.36) 

 

 
Figure 4.6 Diagram for determining the angle of Rod1, θ1,U θ1(t)<0.5π, when the 
position of upper leg (Rod3) is in the interval θ3,U θ3(t)<θ3,B. 
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4.3.2 Positions of Rod1 and Rod2 Associated with θ3,Bθ3(t)<θ3,C 

 

When upper leg (Rod3) is in the arbitrary position within the interval θ3,B θ3(t)<θ3,C, 

the position of crank (Rod1) must be in the interval 0.5π θ1(t)<π as shown in Figure 

4.7. In such a case, from the figure one sees that 

MNPNSPSM  , RTQRPQPT        (4.37a,b) 

Thus, 

112233 sinsinsin   LLLyc , 221133 coscoscos  LLxL c   (4.38a,b) 

Eliminating θ2 from Equations (4.38a) and (4.38b) leads to 

0)(cos2cos)( 2
5

2
51551

22
5

2
5  CEDEDC         (4.39) 

Where C5, D5 and E5 take the same forms as those given by Equations (4.34a,b,c), i.e., 

335 sinLyC c  , 335 cosLxD c         (4.40a,b) 

)2()( 1
2
2

2
1

2
5

2
55 LLLDCE            (4.40c) 

From Equations (4.38)-(4.40) and referring to Equations (A.55)-(A.59), one obtains 
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
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        (4.41) 

or 

1
1

1 cos s                (4.41)’ 

11 5.0                  (4.42) 

])sin([sin 2115
1

2 LLC               (4.43) 
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Figure 4.7 Diagram for determining the position of Rod1, 0.5π θ1(t)<π, when the 
position of upper leg (Rod3) is in the interval θ3,B θ3(t)<θ3,C. 
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4.3.3 Positions of Rod1 and Rod2 Associated with θ3,Cθ3(t)<θ3,L 

 

When the upper leg (Rod3) is in the arbitrary position GS  within the interval 

θ3,C θ3(t)<θ3,L, the position of crank (Rod1) must be in the interval π θ1(t)<θ1,L as 

shown in Figure 4.8 denoted by OG . In such a case, from the figure one sees that 

MNPNSPSM  , GQQRPRGP  )(        (4.44a,b) 

Thus, 

112233 cossinsin   LLLyc , 221133 cos)sin(cos  LLxL c   (4.45a,b) 

Eliminating θ2 from the above two equations, one obtains 

0)(sin2sin)( 2
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2
61661

22
6

2
6  CEEDDC           (4.46) 

where 

336 sinLyC c  , 336 cosLxD c          (4.47a,b) 
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6

2
66 LLLDCE             (4.47c) 

From Equations (4.45)-(4.47) and referring to Equations (A.64)-(A.68), one obtains 
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1 sin s                (4.48)’ 

and 

11                  (4.49) 

])cos([sin 2611
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2 LCL                  (4.50) 
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Figure 4.8 Diagram for determining the position of Rod1, π θ1(t) θ1,L, when the 
position of upper leg (Rod3) is in the intervalθ3,C θ3(t)<θ3,L. 
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4.4 Positions of Rod2 and Rod3 Associated with any Specified 
Positions of Rod1 
 

If the driving forces are transmitted by the “non-simple” harmonic (NSHM) motions 

of the rider’s right (or left) upper leg and the rotating (angular) speed of the crank is 

constant, then the external loads are “simple” harmonic (SHM). It is obvious that, in 

order to determine the instantaneous external loads, one requires to find the angles of 

Rod2 and Rod3 corresponding to the (given) prescribed angle of Rod1 at any instant 

of time t. In such situations, the relevant mathematical expressions must be derived 

based on the position of Rod1, θ1(t), within the following three angular intervals: (i) 

θ1,U θ1(t)<0.5π, (ii) 0.5π θ1(t)<π and (iii) π θ1(t)<θ1,L. The formulation of this 

section is similar to that of the last section, the main difference is that θ3(t) is given 

with θ1(t) and θ2(t) being determined in the last section, however, θ1(t) is given with 

θ2(t) and θ3(t) being determined in the present section. 

 

4.4.1 Positions of Rod2 and Rod3 Associated with θ1,Uθ1(t)<0.5π 

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.6. 

From Equations (A.74)-(A.77) of Appendix A at end of this thesis, one obtains 
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          (4.51a) 

Thus, 

2
1

3 sin s                (4.51b) 

In addition, 

])sin([sin 2335
1

2 LLC                   (4.52) 
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4.4.2 Positions of Rod2 and Rod3 Associated with 0.5πθ1(t)<π 

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.7. 

From Equations (A.81)-(A.85), one obtains 
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Thus, 

1
1

3 cos s                   (4.53b) 

In addition, 

])sin([sin 2335
1

2 LLC                  (4.54) 

11 5.0                     (4.55) 
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4.4.3 Positions of Rod2 and Rod3 Associated with πθ1(t)<θ1,L 

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.8, 

thus, from Equations (A.89)-(A.93), one obtains 
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))(()(
cos s

DC

CEDCEDED
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      (4.56a) 

Thus, 

1
1

3 cos s                (4.56b) 

In addition, 

])sin([sin 2336
1

2 LLC              (4.57) 

11                 (4.58) 

  5.02               (4.59) 

1121 )5.0()(5.15.1        (4.60) 

The last result agrees with that appearing in Figure 4.8. 
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4.5 Simple Harmonic and Non-Simple Harmonic Motions of Upper 
Leg (Rod3) 
 

In this chapter, two types of driving forces are investigated: (i) The first type of 

driving forces are transmitted by the “simple harmonic” (SH) motions of the rider’s 

right (or left) upper leg, this leads to non-constant rotating (angular) speed of the 

crank (Rod1) and “non-simple harmonic” (NSH) external loads; (ii) The second type 

of driving forces are transmitted by the “non-simple harmonic” (NSH) motions of the 

rider’s right (or left) upper leg leading to constant rotating (angular) speed of the 

crank so that external loads are near “simple harmonic” (SH). 

 

(i) Simple Harmonic (SH) Motions of Upper Leg (Rod3) 

The angle θ3,U associated with the uppermost position of a rider’s right (or left) upper 

leg (Rod3) has been determined by Equations (4.6) and (4.6)’, and the angle θ3,L 

associated with the lowermost position of the same upper leg has been determined by 

Equations (4.15) and (4.15)’. Thus, if the motion of a rider’s upper leg is “simple 

harmonic” (SH) with circular frequency ωe rad/sec, the angle between his “right” 

upper leg (Rod3) and x-axis (in horizontal direction) at any instant of time t during the 

downward half cycle is given by 

)5.0sin()( 3,33 tt eU              (4.61) 

Where 3  is the amplitude of Rod3 given by 

UL ,3,33                (4.62) 

It is noted that the instantaneous position of the rider’s “left” upper leg during the 

other half cycle is also determined by Equation (4.61). Once the instantaneous 

position of Rod3, θ3(t), is obtained from Equation (4.61), the corresponding angles of 

Rod1 and Rod2 can be determined by using the associated equations presented in 

Section 4.3, and the angle α(t) between Rod1 and Rod2 is determined by Equation 

(4.9), α(t)=1.5π-θ1(t)-θ2(t). Finally, the external torque T(t) developed by the crank 

(Rod1) is given by Equation (4.64) in the next section. 
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(ii) Non-Simple Harmonic (NSH) Motions of Upper Leg (Rod3) 

If non-simple harmonic (NSH) motions of the rider’s right (or left) upper leg lead to 

constant rotating (angular) speed of the crank (Rod1), then the angle between Rod1 

and positive y-axis (in upward direction) at any instant of time t during the downward 

half cycle of the rider’s right (or left) upper leg is given by 

tt eU   ,11 )(              (4.63) 

where θ1,U is the angle between crank (Rod1) and positive y-axis when the upper leg 

(Rod3) is in its uppermost position, as one may see from Figure 4.2 and Equation 

(4.7). Once the instantaneous position of Rod1, θ1(t), is obtained from Equation (4.63), 

the corresponding angles of Rod2 and Rod3 can be determined by using the 

associated equations presented in Section 4.4, and the angle α(t) between Rod1 and 

Rod2 is determined by Equation (4.9). Finally, the external torque T(t) developed by 

the crank (Rod1) is given by Equation (4.64) in the next section. 
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4.6 Effective Work Done by the Rider 
 

If the driving force transmitted from the rider’s right (or left) lower leg (Rod2) is 

represented by F2(t), then the external torque developed by the crank (Rod1) with 

radius Rc=L1 is given by (refer to Figure 4.6) 

)(sin)()()( 211 ttFLtFLtT t            (4.64) 

Where )(sin)()( 2 ttFtFt   represents the tangential component of F2(t) normal to 

the crank. In such a case, T(t) is a function of α(t) and the latter is a function of 

instantaneous positions of Rod1 and Rod2 defined by the angles, θ1(t) and θ2(t), as 

one may see from Equation (4.9). 

The time history for the tangential pedalling forces )(sin)()( 21 ttFFt    (normal 

to crank) takes the form as shown in Figure 4.9(a) and that for the external torques 

given by Equation (4.64) takes the form as shown in Figure 4.9(b). Since the ordinate 

of Figure 4.9(b) represents the torques T(θ1) associated with the abscissa for the 

rotational angles of crank (Rod1), θ1, the effective work W done by a rider during the 

down-stroke of each pedalling cycle is given by 

  L

U

dTW
,1

,1

 

 11 )(



               (4.65) 

From Figure 4.9(a) of this paper and Figure 4.9(c) of Reference [45], one sees that the 

“profile” of normal pedalling forces )( 1tF  (tangential to the circular path of crank 

pin) in the down-stroke (with crank angles o
U 366.27,11   to 

o
L 808.199,11  ) for each pedalling cycle of this thesis (obtained from 

engineering mechanics and computer simulations) takes the same form as that of the 

mean normal pedalling forces (subtracting 125N for the retarding force of the other 

leg due to muscular function) of Reference [45] (obtained from biomechanics and 

experiments). This result reveals that the mathematical model and the theory 

presented in this thesis should be significant. Note that, although the “profile” of 

Figure 4.9(b) is the same as that of Figure 4.9(a), the ratio between their ordinates is 

given by 111 17.0)()( LFT t  = constant. (Please see Section 5.6 and Figure 5.42 
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for the details.) 

 

Figure 4.9 Time histories of (a) normal pedalling forces )( 1tF  (tangential to the 

circular path of crank pin) and (b) crank torques )( 1T  due to alternative pedalling of a 

rider’s two legs with constant force 2502 F N and cyclic frequency (cadence) 1ef  

Hertz, and (c) normal pedalling forces )( 1tF  based on Reference [45]. 

 

It is noted that, in Equation (4.65), the work W represents the “area” under each curve 

of “T vs. θ1” and the horizontal axis. Since, in SI units, the unit of torque is “N-m” 

and the unit of θ is “radian”, thus, the unit for Equation (4.65) is “N-m” (unit of work), 

because “radian” is a dimensionless unit. 
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From Sections 4.1-4.5, one sees that the angle between crank (Rod1) and a rider’s 

lower leg (Rod2), α(t), is a function of some parameters from the discussions of the 

rider (L2 and L3) and those from the discussions of the bike itself (Rc, xc and yc). 

Therefore, for the “same bike” (with Rc, xc and yc keeping constant) the time history 

of external torque T(t) given by Equation (4.64) along with the associated effective 

work W given by Equation (4.65) due to “different rider” (with L2 and L3 being 

variable) will be different. Of course, for the “same rider” (with L2 and L3 keeping 

constant), the external torque T(t) and the associated effective work W will be also 

different when he rides “different bikes” (with Rc, xc and yc being variable). Therefore, 

Equations (4.64) and (4.65) provide a practical theory for evaluating the 

appropriateness of match between a rider and his bike. 

In practice, it is very difficult to calculate the effective work W from Equation (4.65) 

by using an analytical method. In such a case, the numerical approach, such as 

trapezoidal rule or Simpson rule, is popularly used [71,72]. 
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4.6.1 Calculation of Effective Work Using Trapezoid Rule 

 

When the driving forces are transmitted through SH motions of the rider’s upper leg 

(Rod3), the angular speed of crank (Rod1), ω1, is not a constant, so is the angle 

corresponding to each time interval, Δθ=ω1Δt, even if Δt=constant. For the case of Δθ 

≠ constant, the area under a curve (such as that shown in Figure 4.9(b)) can be 

obtained from the trapezoid rule, using step-by-step calculations. From Figure 4.10, 

one sees that the area of the trapezoid CiDiEiFi is given by Ai= 2
1 Δxi(yi-1+yi), thus, the 

total area under the curve can be evaluated by 











n

i
iii

n

i
iiii

n

i
i yyxyyxxA

1
12

1

1
112

1

1

)( ))((   Area  ( ni ~1 )   (4.66) 

where 

)())((A 12
1

112
1

i iiiiiii yyxyyxx           (4.67) 

1 iii xxx                (4.68) 

From the above formulation one sees that, in the trapezoidal rule, the curve segment 

between the two points, iD  and iE , as shown in Figure 4.10 is replaced by a 

straight line iiED . 
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Figure 4.10 For the trapezoid rule, the area under the curve y=f(x) is subdivided into n 
small area by the ordinates yi, ni ,...,2,1,0 , with arbitrary spacing Δxi and arbitrary 
number n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

y

)(xfy 

1x

0y
1y 2y

3y
4y

ny
1ny

2ny
3ny4ny

iC

2x

3x

1ix

ix

1 iii xxx

iy

1iy

iA

iF

iD iE



- 77 - 

4.6.2 Calculation of Effective Work Using Simpson Rule 

 

If the driving forces are transmitted through NSH motions of the rider’s upper leg 

(Rod3) leading to constant rotating (angular) speed of the crank (Rod1), ω1, then the 

angle corresponding to each time interval, Δθ=ω1Δt, is constant. In such a case, one of 

the simplest ways for calculating the area under a curve is the Simpson rule. 

According to the theory shown in Appendix B at the end of this thesis, if the area 

under the curve y=f(x) and the horizontal axis as shown in Figure 4.11 is subdivided 

into n small areas by the ordinates yi, ni ,...,2,1,0 , with identical spacing Δx and 

even number n, then the total area under the curve is given by 
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  (4.69) 

From Figure B.1 (in Appendix B) one sees that, in the Simpson rule, the “3-point” 

curve segment passing through the three points, 1i , i  and 1i , is represented by 

a “quadratic” equation. 

 
Figure 4.11 For the Simpson rule, the area under the curve y=f(x) is subdivided into n 
small areas by the ordinates yi, ni ,...,2,1,0 , with identical spacing Δx and even 
number n. 
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4.7 Limitations of Lengths of a Rider’s Legs for this Study 
 

It is a fundamental requirement that the length of a rider’s upper leg (Rod3) plus that 

of his lower leg (Rod2) must be long enough so that his heel can touch the bike’s 

pedal. This limiting configuration is shown in Figure 4.12 by the dashed lines. In 

which, SH , HK  and OK  denote the upper leg (Rod3), lower leg (Rod2) and 

crank (Rod1), respectively, and it is noted that they are on a straight line with Joint 2 

and Joint 1 located at points H and K, respectively. 

From the point of view of natural and comfortable posture so that a rider does not feel 

tired after long-time riding, it is required that each upper leg (Rod3) should be lower 

than the horizontal line passing through seat centre as shown by the solid line in 

Figure 4.12. In which, HS  , KH   and KO   denote the upper leg (Rod3), lower 

leg (Rod2) and crank (Rod1), respectively, and it is noted that lower leg (Rod2) and 

crank (Rod1) are on a straight line with Joint 2 and Joint 1 located at points H and 

K  , respectively. 
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Figure 4.12 Limitations for lengths of a rider’s legs: the shortest leg lengths are that the 
heel of each lower leg (Rod2) can touch the bike’s pedal as shown by the dashed lines, 
while the longest leg lengths are that each upper leg (Rod1) should be lower than the 
horizontal line passing through seat centre as shown by the solid lines 
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(i) Determination of Shortest Leg Lengths 

Based on the dashed lines shown in Figure 4.12, one obtains 

cc xymax,3tan               (4.70a) 

cxLLL  max,31max,332 coscos)(            (4.70b) 

In general, it is assumed that the length of upper leg is equal to that of lower leg, i.e., 

LLL  23              (4.71a,b) 

From Equations (4.70) and (4.71) one has 

)cos2()cos( max,3max,31minmin,2min,3 LxLLL c      (4.72a,b) 

 

(ii) Determination of Longest Leg Length 

Based on the solid lines shown in Figure 4.12, one obtains 

cxLLL  min,2213 cos)(              (4.73) 

cyLL  min,221 sin)(               (4.74) 

From the above two equations one obtains 

2
21

2
3

2 )()( LLxLy cc              (4.75) 

If LLL  23  as shown by Equation (4.71a,b), then the last equation reduces to 

2
1

2
1

222 22 LLLLxLxLy ccc   LxLLyx ccc )(2 1
2
1

22   

)](2[)( 1
2
1

22
maxmax,2max,1 ccc xLLyxLLL         (4.76) 
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4.8 Numerical Results and Discussions 
 

The configurations shown in Figures 4.1-4.8 are obtained based on the leg lengths of a 

reference rider, L2=L3=0.40m, and the relevant dimensions of a reference bike, 

Rc=L1=0.17m, xc=0.135m and yc=0.555m. Where L2 and L3 are lengths of the rider’s 

lower leg and upper leg, respectively, Rc=L1 is the radius of bike crank, while xc and yc 

are the horizontal and vertical distances between seat and bottom bracket of the bike, 

respectively. In this section, the influence of different leg lengths of riders riding the 

same reference bike is studied first, and then the influence of different dimensions of 

bikes ridden by the same reference rider is investigated. 

 

4.8.1 The Influence of Different Leg Lengths of Riders Riding Reference Bike 

 

Based on relevant dimensions of the reference bike (Rc=L1=0.17m, xc=0.135m and 

yc=0.555m) and limitations of the rider’s leg lengths given by Equations (4.72) and 

(4.76), one obtains the minimum leg length is 371.0minmin,3min,2  LLL m and the 

maximum one is 487.0maxmax,3max,2  LLL m. For the last reason, the leg lengths 

of three different riders are assumed to be L2=L3=0.375m, 0.4m and 0.48m, 

respectively. 

 

(i) The Influence on Critical Angles of Rod1, Rod2 and Rod3 

In order to determine the positions of Rod1, Rod2 and Rod3 at any instant of time t, 

one requires the critical positions of the last three members as one may see from 

Sections 4.3 and 4.4. Thus, the critical positions of Rod1, Rod2 and Rod3 for the three 

riders riding the reference bike are determined first and shown in Table 4.1. Where the 

subscripts U and L of θi refer to the positions of Rod i (i =1,2,3), when the upper leg 

(Rod3) is in its uppermost and lowermost positions, respectively, while the subscripts 

B and C of θi refer to those when the crank (Rod1) is in the rightward and downward 

positions with Joint 1 located at points B (with θ1=θ1,B=90°) and C (with 

θ1=θ1,C=180°), respectively. From Table 4.1 one sees that the critical angles of Rod1 



- 82 - 

corresponding to the uppermost and lowermost positions of upper leg (Rod3), θ1,U and 

θ1,L, increase with the increase of leg lengths (L2=L3) and the trend of associated 

critical angles of Rod2 and Rod3, (θ2,U, θ2,L) and (θ3,U, θ3,L), is reversed. Furthermore, 

the critical angles of Rod2 and Rod3 corresponding to θ1=θ1,B=90° andθ1=θ1,C=180°, 

(θ2,B, θ2,C) and (θ3,B, θ3,C), decrease with the increase of leg lengths (L2=L3). The last 

results agree with those observed from Figures 4.2-4.5. 

 

Table 4.1 Influence of rider’s leg lengths (L2=L3) on the critical angles of Rod1, Rod2 
and Rod3 for the reference bike (with L1=0.17m, xc=0.135m and yc=0.555m) 

*Critical angles, θi,X (degrees) Leg 
lengths 

L2=L3 (m) 

Members 
Rod i θi,U θi,B θi,C θi,L 

Limitations of 
leg lengths 

minL , maxL (m)

Rod1 25.50281 90.00000 180.00000 180.10390 
Rod2 64.49719 86.39656 89.94327 89.89610 0.375 
Rod3 9.68744 28.81461 68.96061 68.96068 
Rod1 27.36598 90.00000 180.00000 199.80839 
Rod2 62.63402 81.12686 77.74277 70.19161 0.40 
Rod3 7.00603 23.54491 56.64664 57.83539 
Rod1 32.05562 90.00000 180.00000 223.50694 
Rod2 57.94438 70.06584 60.73965 46.49306 0.48 
Rod3 0.48981 12.48389 39.64352 43.45881 

371.0min L

487.0max L

* X = U, B, C or L. 
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(ii) The Influence on Effective Works Done by the Riders 

Because the effective work W done by a rider is dependent on the time history curves 

of external torques T(θ1) developed by the bike crank (see Figures 4.13-4.15), and 

these curves are dependent on the types of motions of the rider’s upper leg (Rod3), 

the influence of “simple harmonic” (SH) and “non-simple harmonic” (NSH) motions 

of upper leg is also studied in addition to the rider’s leg lengths, in this subsection. 

Furthermore, the effective work W given by Equation (4.65) is determined by the 

numerical integration, and the latter is usually performed by using the Simpson rule 

and trapezoid rule, both of the two numerical integration methods are used in this 

subsection for inter checking. However, for the type of SH motions of upper leg 

(Rod3), the integration spacing Δθ1 is varied from Δθ1,min=0.003° to Δθ1,max=5.502° 

for the current example, this is “not available” for the Simpson rule so that the 

associated numerical results are removed from Table 4.2 to avoid misunderstanding, 

in this subsection. For the present example, the exciting frequency is ωe=1Hertz=2π 

rad/sec with period te=2π/ωe=1sec, thus, if the time interval is Δt= 0.001sec, then the 

total time intervals in each “half cycle” is given by n=0.5(te/Δt)=500. It is noted that 

the work done by a rider’s “right” leg in a “half cycle” is equal to that by his “left” 

leg in the other “half cycle”. 

According to the last statements, the effective works done by the three riders (with leg 

lengths L2=L3=0.375m, 0.4m and 0.48m, respectively) are shown in Table 4.2. For the 

type of NSH motions of the rider’s upper leg (Rod3), the rotating speed of the crank 

(Rod1) is a constant and so is the integration spacing Δθ1=π/ne=180°/500=0.36°. In 

such situation, either Simpson rule or trapezoid rule is available for the numerical 

integration of Equation (4.65), this is the reason why the values of effective work W 

obtained from trapezoid rule shown in the 6th row of Table 4.2 are very close to the 

corresponding ones obtained from Simpson rule shown in the adjacent (5th) row of 

Table 4.2. However, the last statement is not true for the type of SH motions of the 

rider’s upper leg (Rod3), because the rotating speed of the crank (Rod1) is “not” a 

constant and so is not the integration spacing Δθ1. In such situation, only the trapezoid 

rule is available for the numerical integration of Equation (4.65), this is the reason 
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why the values of effective work W obtained from Simpson rule are removed from the 

3rd row of Table 4.2 (to avoid misunderstanding) and only those obtained from 

trapezoid rule are shown in the 4th row of Table 4.2. Since the values of W obtained 

from trapezoid rule listed in 4th row of Table 4.2 associated with SH motions of the 

rider’s upper leg (Rod3) are very close to the corresponding ones listed the final row 

of the table associated with NSH motions of the rider’s upper leg (Rod3), the 

influence of types of motions (simple or non-simple harmonic) of the rider’s upper leg 

on the effective work W is negligible. 

It is noted that both trapezoidal rule and Simpson rule are the “approximate” methods, 

and their formulations are different as one may see from Subsections 4.6.1, 4.6.2 and 

Appendix B, in general, the effective works obtained from the two methods cannot be 

equal to each other “exactly”. However, the difference between them will become 

smaller if the integration spacing 1  is reduced from 3.6° (with t 0.01sec) to 

0.36° (with t 0.001sec) as one may see from the final six rows of Table 4.2. For 

better accuracy, all numerical results concerned are based on t 0.001sec (with 

1 = 0.36°) unless particularly stated. 

 

Table 4.2 Effective works W (N-m) in a “half pedalling cycle” done by three riders with 
leg lengths, L2=L3=0.375m, 0.4m and 0.48m, respectively, and riding the same 
reference bike (L1=0.17m, xc=0.135m, yc=0.555m) with pedalling force F2=10N and 
frequency ωe=1Hertz=2π rad/sec. 

Lengths of rider’s leg, L2=L3 Motions of 
upper leg (Rod3) 

Integration 
methods 0.375m 0.40m 0.48m 

Spacing 
Δθ1 (deg) 

Simpson rule ― ― ― Not available*Simple harmonic 
(SH) Trapezoid rule 2.9284 N-m 3.1045 N-m 3.5090 N-m Varied* 

Simpson rule 3.0388 N-m 3.0962 N-m 3.4729 N-m 
Trapezoid rule 3.0379 N-m 3.0952 N-m 3.4920 N-m 

3.6 
 

Simpson rule 3.0373 N-m 3.0962N-m 3.4932N-m 
Trapezoid rule 3.0371 N-m 3.0959N-m 3.5014N-m 

1.8 

Simpson rule 3.0370 N-m 3.0961N-m 3.5063N-m 

Non-simple 
harmonic 

(NSH) 

Trapezoid rule 3.0370 N-m 3.0961N-m 3.5077N-m 
0.36 

* For simple harmonic motions of upper leg (Rod3), Δθ1 is varied from Δθ1,min=0.003° 
to Δθ1,max=5.502°, thus, it is “not available” for Simpson rule. 
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(iii) The Influence on Time Histories of External Torques 

The influence of rider’s leg lengths on the time histories of external torques T(θ1) due 

to “simple harmonic” motions of upper leg (Rod3) with “non-constant” rotating speed 

of Rod1 is shown in Figure 4.13, and that due to “non-simple harmonic” motions of 

upper leg (Rod3) with “constant” rotating speed of Rod1 is shown in Figure 4.14. 

Where the solid lines (――) are obtained based on the rider’s leg lengths 

L2=L3=0.375m, dashed lines (–––) are based on L2=L3=0.40m and the dashed-dotted 

lines (― ･ ―) are based on L2=L3=0.48m. For the type of “non-simple harmonic” 

motion of upper leg leading to “constant” rotating speed of crank (Rod1), the 

time-history curve in each half cycle looks like the sine wave as one may see from 

Figure 4.14. However, this is not true for the curves shown in Figure 4.13, in which, 

each curve deviates from the sine wave to some degree, particularly for the case of 

rider’s leg lengths L2=L3=0.375m near the minimum values 

371.0minmin,3min,2  LLL m. From Figures 4.13 and 4.14 one also sees that the 

longer the rider’s leg the larger the critical angle of Rod1 (θ1,U) and the larger the 

“area under each corresponding curve” (i.e., the effective work W). These results 

agree with those shown in Tables 4.1 and 4.2. 

For comparisons, the time history curves for the types of SH and NSH motions of the 

rider’s upper leg with L2=L3=0.375m, L2=L3=0.40m and L2=L3=0.48m are shown in 

Figures 4.15(a), (b) and (c), respectively, where the solid lines (――) are for the type 

of SH motions of upper leg and the dashed lines (– – – –) for the type of NSH motions 

of upper leg. Although the area under the solid curve in each half cycle is very close 

to that under the dashed one as one may see from the effective works W shown in 

Table 4.2, the dashed one should be better because the associated motions are more 

smooth. Furthermore, for the present example, the radius of crank is Rc=L1= 0.17m 

and the external force transmitted from lower leg (Rod2) is F2= 10N, thus, from 

Equation (4.64) one obtains the external torques to be  )(sin)( 21 tFLtT    

)(sin7.1 t . This is the reason why the “amplitude” for each time-history curve of 

external torques is very close to 1.7 N-m as one may see from Figures 4.13-4.15. 
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Figure 4.13 The influence of rider’s leg lengths on the time histories of external 
torques T(θ1) based on  “simple harmonic” motions of the rider’s upper leg (Rod3) 
with “non-constant” rotating speed of Rod1: (a) L2=L3=0.375m (denoted by solid 
lines ―――), (b) L2=L3=0.40m (denoted by dashed lines –––), (c) L2=L3=0.48m 
(denoted by dashed-dotted lines ― ･ ―). 

 

 

Figure 4.14 The influence of rider’s leg lengths on the time histories of external 
torques T(θ1) based on “non-simple harmonic” motions of the rider’s upper leg (Rod3) 
with “constant” rotating speed of Rod1: (a) L2=L3=0.375m (denoted by solid lines 
―――), (b) L2=L3=0.40m (denoted by dashed lines –––), (c) L2=L3=0.48m (denoted 
by dashed-dotted lines ― ･ ―). 
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Figure 4.15 Comparisons between time histories of external torques T(θ1) due to 
“simple harmonic” motions (denoted by solid lines ―――) and “non-simple 
harmonic” motions (denoted by dashed lines －－－) of the rider’s upper leg (Rod3) 
with: (a) L2=L3=0.375m, (b) L2=L3=0.40m, (c) L2=L3=0.48m. 

 

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
o

rq
ue

s 
de

ve
lo

p
e

d
 b

y 
cr

a
n

k 
(R

o
d1

),
 T

(T
he

ta
1)

(N
-m

)

Time histories of external torques obtained from
different types of motions for Rod3

Based on "harmonic" motions of Rod 3

Based on "non-harmonic" motions of Rod 3

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
o

rq
ue

s 
de

ve
lo

pe
d 

b
y 

cr
an

k 
(R

o
d1

),
 T

(T
he

ta
1

)(
N

-m
)

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
or

qu
e

s 
de

ve
lo

p
ed

 b
y 

cr
an

k 
(R

o
d1

),
 T

(T
he

ta
1

)(
N

-m
)

 

(a) 

(b) 

(c) 



- 88 - 

4.8.2 Influence of Different Dimensions of Bikes Ridden by Reference Rider 

 

The purpose of this subsection is to investigate the influence of different 

seat-to-bottom bracket distances of the bike. In addition to the reference bike (with 

Rc=L1=0.17m, xc=0.135m and yc=0.555m), two more bikes are considered. One of 

them has “shorter” centre distance with xc=0.115m and yc=0.535m, and the other has 

“longer” centre distance with xc=0.155m and yc=0.575m. Comparing with the 

reference bike, the differences between horizontal and vertical centre distances for the 

two new bikes are Δxc =Δyc =0.02m. 

The influence on the critical angles (θi,U, θi,B, θi,C and θi,L with i=1,2,3) is shown in 

Table 4.3 and that on the effective works W is shown in Table 4.4. Since the minimum 

rider’s leg lengths minmin3min2 LLL   given by Equation (4.72) and the maximum 

ones maxmax3max2 LLL   given by Equation (4.76) are functions of seat-to-bottom 

bracket distances, xc and yc, the values of minL  and maxL  are different for the three 

bikes as one may see from the final column of Table 4.3. It is noted that the leg 

lengths of the reference rider, L2=L3=0.40m, do not exceed the limitations for each 

bike. 

From rows 3-8 of Table 4.3 one sees that reducing the seat-to-bottom bracket 

distances will increase the value of θ1,U and decrease those of θ2,U and θ3,U. Since 

reducing the seat-to-bottom bracket distances and keeping the rider’s leg lengths 

unchanged as shown in Table 4.3 is equivalent to increasing the rider’s leg lengths and 

keeping the seat-to-bottom bracket distances unchanged as shown in Table 4.1, thus, 

the last conclusion agrees with that obtained from Table 4.1. On the other hand, from 

rows 6-11 of Table 4.3 one sees that increasing the seat-to-bottom bracket distances 

will decrease the value of θ1,U and increase those of θ2,U and θ3,U. This trend is the 

same as the case of decreasing the rider’s leg lengths and keeping the seat-to-bottom 

bracket distances unchanged as shown in Table 4.1. For the same reason, decreasing 

the seat-to-bottom bracket distances (xc and yc) can increase the values of effective 

works W and increasing the seat-to-bottom bracket distances (xc and yc) has the 

reverse effect as one may see from Table 4.4. This result agrees with that obtained 
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from Table 4.2. 

The influence on the time-history curves of external torques T(θ1) of different 

seat-to-bottom bracket distances for the three bikes ridden by the same reference rider 

is shown in Figures 4.16-4.18. Those shown in Figure 4.16 are based on the type of 

“simple harmonic” motions of the rider’s upper leg (Rod3) with “non-constant” 

rotating speed of Rod1, where the solid line (―――) is for the case of xc=0.115m and 

yc=0.535m, the dashed line (–––) is for xc=0.135m and yc=0.555m and the 

dashed-dotted line (― ･ ―) is for xc=0.155m and yc=0.575m. All legends for Figure 

4.17 are the same as those for Figure 4.16, the only difference is that the time-history 

curves of external torques T(θ1) are based on “non-simple harmonic” motions of the 

rider’s upper leg (Rod3) with “constant” rotating speed of Rod1. 

For comparisons, the time history curves associated with the types of SH and NSH 

motions for the seat-to-bottom bracket distance with (xc=0.115m and yc=0.535m), 

(xc=0.135m and yc=0.555m) and (xc=0.155m and yc=0.575m) are shown in Figures 

4.18(a), (b) and (c), respectively, where the solid lines (――) are for the type of SH 

motions of upper leg and the dashed curves (– – – –) for the type of NSH motions of 

upper leg. The effective work W shown in Table 4.4 indicates that the area under each 

solid curve in each half cycle is very close to the corresponding one under the dashed 

one. 
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Table 4.3 Influence of seat-to-bottom bracket distances (xc and yc) on the critical angles 
of Rod1, Rod2 and Rod3 for three bikes (with Rc=L1=0.17m) ridden by the reference 
rider with leg lengths L2=L3=0.40m. 

*Critical angles, θi,X (degrees) Seat-to-bottom 
bracket 
distance 

xc, yc (m) 

Members 
Rod i θi,U θi,B θi,C θi,L 

Limitations 
of leg lengths

minL , maxL (m)

Rod1 29.76520 90.00000 180.00000 208.03825 
Rod2  60.23480 77.30836 72.50414 61.96175 xc=0.115 

yc=0.535 
Rod3  5.76821 21.21898 53.97509 56.09725 

359.0min L

475.0max L

Rod1  27.36598 90.00000 180.00000 199.80839 
Rod2  62.63402 81.12686 77.74277 70.19161 xc=0.135 

yc=0.555 
Rod3  7.00603 23.54491 56.64664 57.83539 

371.0min L  

487.0max L

Rod1  24.98140 90.00000 180.00000 190.27022 
Rod2  65.01860 85.12682 83.77802 79.72978 xc=0.155 

yc=0.575 
Rod3  8.38453 26.17504 60.27215 60.65829 

383.0min L

501.0max L

* X = U, B, C or L. 

 

Table 4.4 Effective works W (N-m) in a “half pedalling cycle” done by the reference 
rider with leg lengths L2=L3= 0.40m and riding three bikes with the same crank radius 
Rc=L1= 0.17m and different seat-to-bottom bracket distances (xc and yc) with pedalling 
force F2=10N and frequency ωe=1Hertz=2π rad/sec. 

Seat-to-bottom bracket distances, xc and yc 
(m) Motions of 

upper leg (Rod3) 
Integration 

methods xc=0.115 
yc=0.535 

xc=0.135 
yc=0.555 

xc=0.155 
yc=0.575 

Spacing 
Δθ1 (deg) 

Simpson rule ― ― ― Not available*Simple harmonic 
Trapezoid rule 3.2088N-m 3.1045 N-m 2.9525N-m Varied* 
Simpson rule 3.2093N-m 3.0961 N-m 2.9790N-m 0.36 Non-simple 

harmonic Trapezoid rule 3.2093N-m 3.0961 N-m 2.9790N-m 0.36 

* For simple harmonic motions of upper leg (Rod3), Δθ1 is varied from Δθ1,min=0.007° 
to Δθ1,max=5.460°, thus, it is not available for Simpson rule. 
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Figure 4.16 Influence of seat-to-bottom bracket distances (xc and yc) on the time 
histories of external torques T(θ1) based on “simple harmonic” motions of the rider’s 
upper leg (Rod3) with “non-constant” rotating speed of Rod1 for three bikes (with 
Rc=L1=0.17m) ridden by the reference rider with leg lengths L2=L3=0.40m for: (a) 
xc=0.115m and yc=0.535m (denoted by solid lines ―――); (b) xc=0.135m and 
yc=0.555m (denoted by dashed lines –––); (c) xc=0.155m and yc=0.575m (denoted by 
dashed-dotted lines ― ･ ―). 

 
Figure 4.17 Influence of seat-to-bottom bracket distances (xc and y) on the time 
histories of external torques T(θ1) based on “non-simple harmonic” motions of the 
rider’s upper leg (Rod3) with “constant” rotating speed of Rod1 for three bikes (with 
Rc=L1=0.17m) ridden by the reference rider with leg lengths L2=L3=0.40m for: (a) 
xc=0.115m and yc=0.535m (denoted by solid lines ―――); (b) xc=0.135m and 
yc=0.555m (denoted by dashed lines –––); (c) xc=0.155m and yc=0.575m (denoted by 
dashed-dotted lines ― ･ ―). 
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Figure 4.18 Comparisons between time histories of external torques T(θ1) due to 
“simple harmonic” motions (denoted by solid lines ―――) and “non-simple 
harmonic” motions (denoted by dashed lines －－－) of the rider’s upper leg (Rod3) 
with Rc=L1=0.17m and leg lengths L2=L3=0.40m for: (a) xc=0.115m and yc=0.535m; 
(b) xc=0.135m and yc=0.555m; (c) xc=0.155m and yc=0.575m. 

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
o

rq
u

e
s 

de
ve

lo
p

ed
 b

y 
cr

a
n

k 
(R

od
1)

, 
T

(T
he

ta
1)

(N
-m

)

Time histories of external torques obtained from different
types of motions for Rod3 with L=0.4m

Based on "harmonic" motions of Rod 3

Based on "non-harmonic" motions of Rod 3

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
or

qu
es

 d
e

ve
lo

p
e

d 
by

 c
ra

n
k 

(R
o

d1
),

 T
(T

he
ta

1
)(

N
-m

)

 

0 120 240 360 480 600 720 840 960 1080 1200
Rotating angles of crank (Rod1), Theta1 (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

T
or

qu
e

s 
de

ve
lo

pe
d 

by
 c

ra
nk

 (
R

od
1)

, T
(T

he
ta

1)
(N

-m
)

 

(a) 

(b) 

(c) 



- 93 - 

4.9 Pedalling Efficiency of a Long-Leg Rider Riding a High-Seat Bike 
 

In the anthropometric studies, researchers have found that the leg length is 

approximately equal to half of the adult human height [73]. Therefore, in this section, 

for the tall rider with height 200cm, the length for each of his legs is approximated by 

100cm (i.e., L2=L3=50cm=0.5m). In such a case, the seat-to-bottom bracket distance 

must be adjusted to accommodate the tall rider, thus, the horizontal and vertical 

distances between the seat and bottom bracket are assumed to be xc=0.190m and 

yc=0.605m, respectively. 

The critical positions of Rod1, Rod2 and Rod3 for the tall rider riding the high-seat 

bike are determined first and shown in Table 4.5. Where the subscripts U and L of θi 

refer to the positions of Rod i (i =1,2,3), when the upper leg (Rod3) is in its 

uppermost and lowermost positions, respectively, while the subscripts B and C of θi 

refer to those when the crank (Rod1) is in the rightward and downward positions with 

Joint 1 located at points B (with θ1=θ1,B=90°) and C (with θ1=θ1,C=180°), respectively. 

The effective work W done by the tall rider is shown in Table 4.6 and the crank torque 

developed by him is shown in Figure 4.19. Comparing with Table 4.2, it is found that 

the effective work done by the current tall rider (W=3.4229N-m obtained from 

Simpson rule) is slightly smaller than that of the rider (with L2=L3=0.48m) shown in 

Table 4.2 (W=3.5063N-m obtained from Simpson rule) in spite of the fact that the leg 

lengths of the current rider (with L2=L3=0.50m) are slightly longer than those of the 

rider studied in Table 4.2. This is because the horizontal and vertical distances 

between the seat and bottom bracket for the current case (xc=0.190m and yc=0.605m) 

are greater than those for Table 4.2 (xc=0.135m and yc=0.555m). From the present 

example one sees that the pedalling efficiency of a rider is dependent on the 

parameters regarding both the rider and his bike and is a complicated problem. Thus, 

the technique presented in this chapter provides an efficient approach. 
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Table 4.5 The critical angles of Rod1, Rod2 and Rod3, and the limitations of leg lengths 
for the long-leg rider riding the high-seat bike (with L1=0.17m, xc=0.190m and 
yc=0.605m) 

*Critical angles, θi,X (degrees) Leg 
lengths 
L2=L3 
(m) 

Members 
Rod i θi,U θi,B θi,C θi,L 

Limitations of 
leg lengths 

minL , maxL (m) 

Rod1 27.5490 90.00000 180.00000 213.98020 

Rod2 62.4510 75.50372 66.70985 56.019800.50 
Rod3 1.25689 13.99493 39.15981 41.50670

402.0min L

518.0max L

* X = U, B, C or L. 

 

Table 4.6 Effective work W (N-m) in a half pedalling cycle done by the tall rider with 
leg lengths L2=L3=0.50m and riding the high seat bike (L1=0.17m, xc=0.190m, 
yc=0.605m) with pedalling force F2=10N and frequency ωe=1Hertz= 2π rad/sec. 

Motions of 
upper leg (Rod3) 

Integration 
methods Works done by the rider, W 

Spacing 
Δθ1 (deg) 

Simpson rule 3.4229N-m 0.36 Non-simple 
harmonic Trapezoid rule 3.4237N-m 0.36 
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Figure 4.19 Crank torque developed by the tall rider (with leg lengths L2=L3=0.50m) 
riding the high-seat bike (with xc=0.190m, yc=0.605m). 
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4.10 Conclusion 
 

1. For the mechanism composed of Rod1, Rod2 and Rod3, studied in this Chapter, 

one can obtain only two “independent” equations based on the next two 

requirements: (i) the summation of projections of Rod1, Rod2 and Rod3 on 

x-axis is equal to xc and (ii) that on y-axis is equal to yc. Where xc and yc denote 

the horizontal and vertical distances between seat centre and bottom bracket, 

respectively. Thus, if θ1 denotes the angle between Rod1 and y-axis, θ2 denotes 

that between Rod2 and x-axis, and θ3 denotes that between Rod3 and x-axis, then 

one of the three unknowns, θ1, θ2 and θ3, must be given for the other two 

unknowns to be obtainable. For the cases studied in Section 4.3, the angle θ3 is 

given with the angles θ1 and θ2 being determined. On the other hand, for those 

studied in Section 4.4, the angle θ1 is given with the angles θ2 and θ3 being 

determined. 

2. For the cases that the critical positions of Rod1 (with angles θ1,U, θ1,L, θ1,B and 

θ1,C) are given and the critical positions of Rod2 (with angles θ2,U, θ2,L, θ2,B and 

θ2,C) and those of Rod3 (with angles θ3,U, θ3,L, θ3,B and θ3,C ) are determined as 

studied in Section 4.2, the “negative (-)” sign is “correct” for the roots of the 

quadratic equation,   )2(42 aacbbx  .  However, for the cases that the 

arbitrary position of Rod3 (with angle θ3) is given and the corresponding 

positions of Rod1 and Rod2 (with angles θ1 and θ2) are determined as studied in 

Section 4.3, the “positive (+)” sign is “correct” for the last roots. 

3. Under the assumptions that the length of a rider’s upper leg (Rod3) plus that of 

his lower leg (Rod2) must be long enough so that his heel can touch the bike’s 

pedal and the upper leg (Rod3) must be lower than the horizontal line passing 

through the bike’s seat centre, for the same specified bike, the longer the rider’s 

legs the larger the effective work W done by the rider in each half pedalling cycle. 

Furthermore, the influence of types of motions (simple or non-simple harmonic) 

of the rider’s upper leg on the effective work W is negligible. 

4. Under the same assumptions made in the last conclusion 3, for the same 
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specified rider, the smaller the seat-to-bottom bracket distances (xc and yc) of the 

bike, the larger the effective work W done by the rider in each half cycle. In other 

words, the effect of decreasing the seat-to-bottom bracket distances (xc and yc) of 

the bike with the rider’s leg lengths keeping unchanged is equivalent to 

increasing the rider’s leg lengths with the seat-to-bottom bracket distances (xc 

and yc) of the bike keeping unchanged. 

5. For the type of “non-simple harmonic” motion of upper leg leading to “constant” 

rotating speed of crank (Rod1), the time history curve in each half cycle looks 

like the sine wave, however, this is not true for the curves associated with 

“simple harmonic” motions, in which, each curve deviates from the sine wave to 

some degree, particularly for the case of rider’s leg lengths (L2=L3) near the 

minimum values ( minmin3min2 LLL  ). 

6. According to the theory of this chapter, for a given bike dimensions, the longer 

the lengths of its rider's legs, the higher the rider's pedalling efficiency, however, 

the longest lengths of the rider's legs must be "practical". On the contrary, for a 

rider with given leg lengths, the smaller the distances (xc and yc) between the seat 

and bottom bracket of his bike, the higher the rider's pedalling efficiency, of 

course, the minimum values of xc and yc must also be "practical". 
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Chapter 5 Rider-Bike System Models Developed 
in SimMechanics 

 

5.1 Introduction 
 

All bikes studied in this chapter have been introduced in Chapter 3. In order to study 

the influence of various full suspension systems of mountain bike on the bike and 

rider performance, numerical models of five rider-bike systems have been developed 

in SimMechanics. In this chapter, details of all bike models and the rider models are 

discussed. 

 

5.2 Matrices for Mass Moments of Inertias (Inertia Tensors) 
 

In SimMechanics, the various parts of a rider-bike system are modelled by the 

cylindrical tubes, solid rods and/or circular discs. Since the mass moments of inertias 

of each rigid body are dependent upon its configuration (or shape), the inertia tensors 

of some rigid bodies are introduced here for convenience of the subsequent 

descriptions. In general, it is assumed that the centre of gravity (CG) of a rigid body is 

coincident with its centroid. Thus, if the centroidal coordinate axes (x, y and z) are the 

principal axes, then its inertia tensor takes the form 


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         (5.1) 

Where the diagonal elements, Ixx, Iyy, and Izz, denote the mass moment of inertia about 

x, y and z axes, respectively.  

For a thin solid rod with length l (m) and mass m (kg) as shown in Figure C.1, the 

matrix for its mass moments is given by (see Appendix C) 
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For a hollow circular cylinder with length l, mass m, inner radius ri and outer radius ro 

as shown in Figure C.2, the matrix for its mass moments of inertias is given by 
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 (5.3) 

For a solid disc with radius r and mass m as shown in Figure C.3, the matrix for its 

mass moments of inertias is given by 
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For the muscular parts of a rider model, including shanks, thighs, torso, upper and 

lower arms, the inertia tensor is modified from Equation (5.2) and takes the form 
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By adding the mass moment of inertia about x-axis, Ixx=ml2/(8×12), in Equation (5.5), 

the shape of a thin solid rod shown in Figure C.1 will be similar to an ellipsoid and 

can represent the muscular part better. 

Based on Equations (5.1) ~ (5.5), various bike models and the rider models are 

developed in SimMechanics, and will be discussed in the following sections. 
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5.3 SimMechanics Models of Five Bikes in this Thesis 
 

The mass of bike frame is divided into two parts, including front and rear triangles.  

The front triangle is composed of head tube, top tube, down tube, and seat tube. The 

rear triangle is varied dependent on the different rear suspension systems, but 

basically, seat stay and chain stay are included. In order to study the influence of 

different rear suspension systems on rider’s pedalling efficiency, all bike frames are 

assumed to have the same masses. Thus, only the geometric difference between the 

bikes is considered. In addition, a series of lab experiments done by Berry, Koves, and 

Benedetto [22] has shown that the effect of different bike masses on rider’s VO2, HR, 

and RPE is negligible. It is obvious that the three physiological variables increase 

with the increase of speed and grade. 

The specification of the five bikes developed in this thesis is listed in Table 5.1. All 

dimensions are obtained from the AutoCAD line drawings. The seat tube angle of 

most common mountain bikes is between 71° to 73° [64]. Bike mass and other 

common variables used in the five bikes are also summarized in Table 5.1. Among the 

common variables, only the effect of different geometry of bike frames will be 

analyzed. 

Each member (or component) is modelled by a rigid body with the mass to be equal to 

AL (or  ) located at CG of the member and mass moments of inertias determined 

by the formulas given in Appendix C. Where   is mass density, A  is 

cross-sectional area, L is length and is volume of the member. In Table 5.1, BB 

height is the distance between bottom bracket and ground. Swingarm pivot tube refers 

to the tube connecting the shock eye on swingarm and the main pivot point on down 

tube for single pivot bike, as shown in Figure 3.13. Horst link is a small link 

connecting the seat stay and rear axle for horst link bike, as shown in Figure 3.14. 

Faux bar is a small bar connecting the chain stay and rear axle for faux bar bike, as 

shown in Figure 3.15. Small link is the link connecting the bottom of rear triangle and 

the main pivot point near bottom bracket for VPP bike, and the rear triangle tube is a 

tube connecting chain stay, seat stay, and small link for VPP bike as well, as shown in 
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Figure 3.16. Offset at crown refers to the distance between the bottom of head tube 

and the top of front fork, and offset at front axle refers to the distance between the 

bottom of front fork and front axle. Forks of all five bikes are assumed to be identical 

in their masses and to be different in their lengths only. 
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Table 5.1 Specification of bike frames studied in this thesis 

       Bike 
Item 

Hard 
Tail 

Single 
Pivot 

Horst 
Link 

Faux 
Bar 

VPP 

Base Model 
Marin 

RockyRidge 
Orbea 
Occam 

Specialized 
Pitch 

Kona 
Tanuki 

Santa Cruz 
Blur 

Head Angle 69° 69.5° 66° 68° 68° 
Seat Angle 72° 73.5° 72° 74° 73° 
Wheelbase 1.0668m 1.131m 1.196m 1.16332m 1.12776m 
BB Height 0.29246m 0.3208m 0.31458m 0.32278m 0.32521m 

Chain Stay 
L:0.42711m 
M:0.5918kg 

L:0.468m 
M:0.478kg 

L:0.40343m 
M:0.4635kg 

L:0.42507m 
M:0.5174kg 

L:0.3706m 
M:0.353kg 

Seat Stay 
L:0.43888m 
M:0.6082kg 

L:0.474m 
M:0.4841kg 

L:0.46427m 
M:0.5334kg 

L:0.3169m 
M:0.3857kg 

L:0.45844m
M:0.4367kg

Seat Tube 
L:0.40206m 
M:1.3911kg 

L:0.482m 
M:1.5493kg 

L:0.46819m 
M:1.4796kg 

L:0.46542m 
M:1.4733kg 

L:0.490m 
M:1.5814kg

Top Tube 
L:0.56025m 
M:1.9384kg 

L:0.593m 
M:1.9061kg 

L:0.59437m 
M:1.8783kg 

L:0.63042m 
M:1.9956kg 

L:0.61237m
M:1.9764kg

Down Tube 
L:0.69295m 
M:2.3976kg 

L:0.708m 
M:2.2758kg 

L:0.7517m 
M:2.3754kg 

L:0.70727m 
M:2.2389kg 

L:0.68754m
M:2.2190kg

Head Tube 
L:0.12569m 
M:0.4349kg 

L:0.134m 
M:0.4307kg 

L:0.13565m 
M:0.4287kg 

L:0.14351m 
M:0.4543kg 

L:0.11936m
M:0.3852kg

Swingarm 
Pivot Tube 

N/A 
L:0.233m 

M:0.238kg 
N/A N/A N/A 

Horst Link N/A N/A 
L:0.04612m 
M:0.053kg 

N/A N/A 

Faux Bar N/A N/A N/A 
L:0.06114m 
M:0.0744kg 

N/A 

Small Link N/A N/A N/A N/A 
L:0.09477m
M:0.0903kg

Rear Triangle 
Tube 

N/A N/A N/A N/A 
L:0.26938m
M:0.2566kg

Rocker N/A N/A 
L:0.13059m 
M:0.15kg 

L:0.18275m 
M:0.2224kg 

L:0.06661m
M:0.0634kg

M:1.546kg [17]  Stiffness=73600N/m [4]  Damping=975N．s/m [4] Front 
Suspension L:0.46109m L:0.454m L:0.45374m L:0.42048m L:0.4367m 
Offset at 
Crown 

0.0365m 0.032m 0.03154m 0.0325m 0.03769m 

Offset at 
Front Axle 

0.02982m 0.0391m 0.06487m 0.0755 0.05021m 

Stiffness=73900N/m [4]  Damping=7776N．s/m [4] Rear 
Suspension 

N/A 
L:0.316m L:0.2308m L:0.20447m L:0.19701m 

Total Bike 
Mass 

Front frame=6.162kg  Rear frame=1.2kg [17] 

Front Wheel 
Diameter=26in=0.6604m  Mass=1.755kg [17] 

Stiffness=90000N/m [35]  Damping=10000 N．s/m (tested) 

Rear Wheel 
Diameter: 26in=0.6604m  Mass: 2.535kg [17] 

Stiffness=90000N/m [35] Damping=10000 N．s/m (tested) 
Frame Tube 
Radius 

Inner=0.006m  Outer=0.012085m 

Fork Tube 
Radius 

Upper Tube: Inner: 0.0145m   Outer: 0.016m 
Lower Tube: Inner: 0.016m   Outer: 0.02m 

Crank Length: Right=Left=0.17m  Mass:1kg 
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5.3.1 Block Diagrams and Mathematical models of Bike Frames 

 

The SimMechanics block diagrams, mathematical models of the five mountain bike 

frames are shown as follows: 

 

(a) Hard Tail Bike 

The block diagram and mathematical of the hard tail bike based on Marin Rocky 

Ridge are shown in Figure 5.1 and Figure 5.2, respectively. Since the hard tail bike is 

the simplest kind of mountain bike (without rear suspension), its main frame is 

composed of front and rear triangle only, in which the adjacent frame tubes are 

welded together by weld joints. The mass moments of inertias of every frame tube are 

shown in Table 5.2. 

 

 

Figure 5.1 Block diagram of the hard tail bike frame 
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Figure 5.2 Mathematical model of the hard tail bike frame (comes from the output of 
SimMechanics) 

 

 Table 5.2 Mass moments of inertias for tubes of the hard tail bike frame 

Mass moments of inertias ( 2mkg  ) 
Tube 

Ixx Iyy Izz 
Chain Stay 5.387×10-5 9.024×10-3 9.024×10-3 
Seat Stay 5.535×10-5 9.789×10-3 9.789×10-3 
Seat Tube 1.266×10-4 1.880×10-2 1.880×10-2 
Top Tube 1.764×10-4 5.079×10-2 5.079×10-2 
Down Tube 2.182×10-4 9.604×10-2 9.604×10-2 
Head Tube 3.958×10-5 5.923×10-4 5.923×10-4 
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(b) Single Pivot Bike 

The block diagram and mathematical model of the single pivot bike based on Orbea 

Occam 2011 are shown in Figure 5.3 and Figure 5.4, respectively. The mass moments 

of inertias of the frame tubes are summarized in Table 5.3. From the block diagram 

shown in Figure 5.3, one can find that the swingarm pivot tube is welded to seat stay 

and chain stay, and the end of this tube is connected to down tube with a revolute joint 

which is the main pivot point. 

The rear suspension (shock absorber) of the single pivot bike is modelled as a “body 

spring & damping block”. It is connected to swingarm pivot tube and the top tube, in 

which the natural spring length, stiffness, and damping constants are defined, but the 

rear shock absorber does not appear in the mathematical model shown in Figure 5.4, 

because in SimMechanics, “body spring & damper” is a force element to model the 

force of a damped spring between two bodies. 

 

 

Figure 5.3 Block diagram of the single pivot bike frame 
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Figure 5.4 Mathematical model of the single pivot bike frame (damper unit is 
connected between two shock eyes) 

 

 Table 5.3 Mass moments of inertias for tubes of the single pivot bike frame 

Mass moments of inertias ( 2mkg  ) 
Tube 

Ixx Iyy Izz 
Chain Stay 4.350×10-5 8.745×10-3 8.745×10-3 
Seat Stay 4.406×10-5 9.085×10-3 9.085×10-3 
Swingarm 
Pivot Tube 

2.165×10-5 1.087×10-3 1.087×10-3 

Seat Tube 1.410×10-4 3.006×10-2 3.006×10-2 
Top Tube 1.735×10-4 5.594×10-2 5.594×10-2 
Down Tube 2.071×10-4 9.516×10-2 9.516×10-2 
Head Tube 3.920×10-5 6.641×10-4 6.641×10-4 

 

Two shock 
eyes 
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(c) Four-Bar-Linkage Horst Link Bike 

The block diagram and mathematical model of the four-bar-linkage horst link bike 

based on Specialized Pitch 2011 are shown in Figures 5.5 and 5.6, respectively. The 

mass moments of inertias of the frame tubes are summarized in Table 5.4. From 

Figure 5.5 one sees that the horst link bike model developed in SimMechanics has 

four revolute joints to model the main pivot, horst link pivot, rocker pivot, and rocker 

fix pivot. The two shock eyes are located on rocker and down tube, and connected 

with the shock absorber. The horst link pivot is between chain stay and rear axle. 

 

 

Figure 5.5 Block diagram of the horst link bike frame 
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Figure 5.6 Mathematical model of the horst link bike frame (damper unit is connected 
between two shock eyes) 

 

 Table 5.4 Mass moments of inertias for tubes of the horst link bike frame 

Mass moments of inertias ( 2mkg  ) 
Tube 

Ixx Iyy Izz 
Horst Link 0 9.392×10-6 9.392×10-6 
Chain Stay 4.219×10-5 6.307×10-3 6.307×10-3 
Seat Stay 4.855×10-5 9.605×10-3 9.605×10-3 
Rocker 0 2.132×10-4 2.132×10-4 
Seat Tube 7.902×10-5 5.500×10-3 5.500×10-3 
Top Tube 1.709×10-4 5.538×10-2 5.538×10-2 
Down Tube 2.162×10-4 1.119×10-1 1.119×10-1 
Head Tube 3.901×10-5 6.768×10-4 6.768×10-4 

 

Two shock 
eyes 
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(d) Four-Bar-Linkage Faux Bar Bike 

The block diagram and mathematical model of the four-bar-linkage faux bar bike 

based on Kona Tanuki 2011 are shown in Figures 5.7 and 5.8, respectively. The mass 

moments of inertias for the tubes of bike frame are summarized in Table 5.5. 

It has been mentioned in Section 3.3.4 that the faux bar design is very similar to horst 

link design, and the only difference is the faux bar pivot to be between the rear axle 

and seat stay instead of between rear axle and chain stay. 

 

Figure 5.7 Block diagram of the faux bar bike frame 

 

 

 

Figure 5.8 Mathematical model of the faux bar bike frame (damper unit is connected 
between two shock eyes) 

Two shock 
eyes 
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 Table 5.5 Mass moments of inertias for tubes of faux bar bike frame 

Mass moments of inertias ( 2mkg  ) 
Tube 

Ixx Iyy Izz 
Faux Bar 0 2.318×10-5 2.318×10-5 
Chain Stay 4.709×10-5 7.814×10-3 7.814×10-3 
Seat Stay 3.511×10-5 3.245×10-3 3.245×10-3 
Rocker 0 2.783×10-5 2.783×10-5 
Seat Tube 1.341×10-4 2.666×10-2 2.666×10-2 
Top Tube 1.816×10-4 6.618×10-2 6.618×10-2 
Down Tube 2.037×10-4 9.343×10-2 9.343×10-2 
Head Tube 4.135×10-5 8.003×10-4 8.003×10-4 
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(e) Virtual Pivot Point Bike 

The block diagram and mathematical model of the virtual pivot point (VPP) bike 

based on Santa Cruz Blur 2011 are shown in Figures 5.9 and 5.10, respectively. The 

mass moments of inertias of frame tubes are summarized in Table 5.6. As has been 

introduced in Section 3.3.5, the VPP bike has individual front and rear triangles, so in 

the SimMechanics model, one tube is used to weld with seat stay and chain stay, and 

is named “rear triangle tube”, as shown in Figure 5.9. The rear triangle is connected 

with front triangle by two small links and named small link and rocker, respectively, 

in Figure 5.9. 

 

 

 Figure 5.9 Block diagram of the VPP bike frame 
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Figure 5.10 Mathematical model of the VPP bike frame (damper unit is connected 
between two shock eyes) 

 

 Table 5.6 Mass moments of inertias for tubes of the VPP bike frame 

Mass moments of inertias ( 2mkg  ) 
Tube 

Ixx Iyy Izz 
Chain Stay 3.213×10-5 4.056×10-3 4.056×10-3 
Seat Stay 3.974×10-5 7.667×10-3 7.667×10-3 
Rear Triangle 
Tube 

2.335×10-5 1.563×10-3 1.563×10-3 

Rocker 0 2.345×10-5 2.345×10-5 
Small Link 0 6.756×10-5 6.756×10-5 
Seat Tube 1.439×10-4 3.171×10-2 3.171×10-2 
Top Tube 1.798×10-4 6.185×10-2 6.185×10-2 
Down Tube 2.019×10-4 8.751×10-2 8.751×10-2 
Head Tube 3.506×10-5 4.748×10-4 4.748×10-4 

 

 

Two shock 
eyes 
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5.3.2 Block Diagrams Concerning Wheel 

 

In the work of Itturioz [2], the wheel is modelled as a rigid ball, which is used in the 

demo model of bouncing ball from SimMechanics [38]. This demo model uses a 

contact force system to apply a bouncing force to the ball when the ball hits the 

ground from the air. The contact force system is available for the wheel model 

moving on the ground. However, the shape of the rigid ball must be modified. 

In [39] and [47], the wheel models are represented by the two-dimensional knife edge 

rigid discs, which are better than a three-dimensional rigid ball. Therefore, the wheel 

models are represented by the rigid discs in this study. 

This subsection uses the parameters of the “hard tail bike” with wheels shown in 

Figure 5.11 and the mass moments of inertias of the front and rear wheels shown in 

Table 5.7. The models developed here are easily applied to other bikes. 

 

 

Figure 5.11 Mathematical model of the hard tail bike with wheels 



- 113 - 

 Table 5.7 Mass moments of inertias of front and rear wheels 

Mass moments of inertias ( 2mkg  ) 
Wheel 

Ixx Iyy Izz 
Front Wheel 4.783×10-2 4.783×10-2 9.567×10-2 
Rear Wheel 6.909×10-2 6.909×10-2 1.381×10-1 

 

The block diagram of rear wheel is shown in Figure 5.12. The most popular diameter 

of bike wheel used for mountain bikes is 26 inch (660.4 mm), so this value is used to 

construct the wheel model. Other information about the wheel can be found in Table 

5.1. In Figure 5.12, the contact point between ground and wheel is modelled by a 

planar joint with 2 translational degrees of freedom (in x and y directions) and one 

rotational degree of freedom (about z-axis). Since the wheel falls down due to gravity, 

a contact force subsystem is introduced as in the bouncing ball model [46]. 

 

 

Figure 5.12 Block diagram of the rear wheel 

 

The contact force subsystem is a closed-loop control system as shown in Figure 5.13. 

First of all, the position and velocity of the centre of gravity of the wheel are 

measured and the associated signals are sent into the force law system shown in 

Figure 5.14, where the position of CG is subtracted by the block "bump", in which the 

instantaneous y-axis position and the corresponding time are obtained from the 
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“m-file” written by the user. The bump model will be discussed later. Then, the 

selector block selects the y-axis component and sent it to the logical if block to check 

if the numerical value of y-axis position is larger or less than 0. 

If the numerical value of position is less than 0, which means the wheel is lower than 

ground, then the signal is sent to the penalty force block, as shown in Figure 5.15(a). 

In Figure 5.15(a), the value of position is multiplied by a negative spring constant 

(-90000N/m), and the velocity is multiplied by a negative damping constant (-10000 

N．s/m). Then the two amplified values are added together and the result is sent to a 

saturation block to ensure the value is larger than 0. After that, the signal is sent out 

back to the force law subsystem. The spring and damping constants used in this model 

are similar to a spring-damper system to bounce back and forth when it is applied by a 

force. In real riding condition, the pneumatic tyres can absorb some part of vibration 

dependent on the different tyre pressures. 

In contrast, if the numerical value of position is larger than 0, the signal is sent to the 

other block with no force being applied, as shown in Figure 5.15(b), and then sent 

back to the force law system. 

Returning to the force law system shown in Figure 5.14, where both penalty force and 

zero force are merged in the merge block and then a signal is sent back to the contact 

force subsystem shown in Figure 5.13. Finally, the signal of force is sent to the body 

actuator block to apply force on the centre of gravity of wheel. 

A “contact force system” is added to both front and rear wheels to support the wheels 

on the ground for preventing them from falling down. 
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Figure 5.13 Block diagram of contact force subsystem 

 

 

Figure 5.14 Force law system of wheel model 

   

            (a) Penalty Force                   (b)Zero Force 

Figure 5.15 Block diagram of penalty force and zero force system 
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5.3.3 Front Fork 

 

The current front suspension systems of mountain bikes are adequate to absorb 

vibration when the bike is passing over rough terrain. Most advanced front suspension 

systems have not only springs in the front fork, but also fork oil (damping oil) in the 

fork tube to behave like a damping unit. Some of them even have the preloaded 

damping adjustment to be tuned according to the rider’s weight and/or the road 

condition. Some front suspensions are made of the reversed (up side down) forks 

similar to the ones used on racing motorcycles, which have an upper tube with a 

thicker diameter and a lower tube with a thinner diameter. 

The front suspension system developed in this study is a simple model with a body 

spring & damper unit being added between the upper and lower fork tubes. The block 

diagram is shown in Figure 5.16. The CG of upper tube is connected to the top of 

lower tube with a prismatic joint which has a degree of freedom along y-axis based on 

the lower tube, so that the upper tube can move back and forth along the lower tube 

when the bike passes through obstacles. The body spring & damper unit is equipped 

in the middle of the front fork. The spring constant and damper constant used in this 

model are shown in Table 5.1. The length of spring is 0.125m. Although different bike 

models have different fork lengths, the length, spring constant, and damper constant 

of each “spring & damper unit” are the same, thus, the analysis can be focused on 

different rear suspension systems. It is noted that the only factor affecting the 

characteristics of front fork is the different head angle among the five bike models. 
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 Figure 5.16 Block diagram of the front fork 
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5.3.4 Chain Tension 

 

In real riding conditions, the length of chain will be varied when the bike passes 

through bumps. Although the change is small for the hard-tail bike, it will produce the 

pedal kick-back effect [9,26] when one rides a mountain bike with the rear suspension 

system and the latter is activated due to hitting bumps of the bike or pedalling of the 

rider. When the length of chain is varied, the chain tension is maintained by the 

derailleur. Therefore, it is necessary to develop a model to tackle the chain tension 

force. This system is based on Itturioz’s study [2]. 

The relationship between chain and its sprockets is shown in Figure 5.17, where the 

“sprocket distance” is defined as the distance between bottom bracket and the centre 

of rear wheel. During riding a bike, if the instantaneous chain length is larger than the 

initial distance, then the derailleur will expand the chain to make it longer, just like a 

spring. To simulate this effect, a pair of forces are applied to the bottom bracket and 

the centre of rear wheel, as shown in Figure 5.17. 

 

Figure 5.17 Definition for sprocket distance 

 

The block diagram of chain tension system is shown in Figure 5.18. In which the x 

coordinates of bottom bracket and CG of rear wheel are measured and subtracted first.  

This signal gives the instantaneous sprocket distance and is then subtracted by the 

initial chain distance. The signal for the last result is sent to a logical if block to check 

if the signal is larger or less than 0m. If it is larger than 0m, then it will be multiplied 

distanceSprocket 
Rear wheel

sprocketFront 

Chain
bracket Bottom

rear wheel of Centre

sprocketRear 

F F
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by the spring constant (chain stiffness block in the system). Then the signal is sent to 

the force actuator to apply force on the centre of rear wheel. Meanwhile, the signal is 

multiplied by a constant -1 and sent to another force actuator to apply force at the 

bottom bracket, because the direction of the two forces are opposite (see Figure 5.17). 

If the signal is less than 0m, then no force is applied. 

 

 

Figure 5.18 Block diagram for chain tension system 
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5.4 SimMechanics Model of Rider and PID Controller 
 

With the help of BikeCAD introduced in Section 3.2.3, the angles of all body parts of 

the rider’s upper body can be well measured. The positions of rider’s lower body, 

including upper and lower legs are calculated with the method discussed in Chapter 4. 

In Chapter 4, every possible position of rider’s upper and lower legs are discussed and 

the calculations have been written into a programme in the “m-file”. The two points 

significantly influencing the instantaneous configurations of the rider’s upper and 

lower legs are the positions of seat post and bottom bracket. As long as the horizontal 

and vertical distances xc and yc, between them are known, the programme can 

calculate the positions of the rider’s upper and lower legs automatically. The lengths 

of upper and lower legs can also be modified. 

The rider-bike system model (for hard tail bike) is shown in Figure 5.19. The 

information for the rider’s body parts are summarized in Table 5.8. The lengths and 

masses of all rider’s body parts are obtained from [17], which is a rider with height of 

1.88m and weight 778N (including hands and feet), but in this study, the weight 778N 

does not include hands and feet. The horizontal and vertical distances between seat 

post and bottom bracket (xc, yc), the initial angles of rider's upper and lower legs on 

each mountain bike are summarized in Table 5.8, where the definitions for the 

symbols, θ2,U, θ2,L, θ3,U and θ3,L, are defined in Figures 4.2 and 4.3. 
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Figure 5.19 Mathematical model of rider and hard tail bike 

 

 Table 5.8 Physical quantities for the rider’s body parts 

Mass moments of Inertia (kg．m2) 
Items 

Length 
(m) 

Mass 
(kg) Ixx Iyy Izz 

Lower leg (Shank) 0.45 3.19 6.728×10-3 5.383×10-2 5.383×10-2

Upper leg (Thigh) 0.45 8.4 1.771×10-2 1.417×10-1 1.417×10-1

Torso 0.63 41.69 1.723×10-1 1.378 1.378 
Upper arm 0.31 2.18 2.182×10-3 1.745×10-2 1.745×10-2

Lower arm 0.29 1.47 1.287×10-3 1.030×10-2 1.030×10-2

Head 
0.23 

(Diameter)
4.54 1.501×10-2 1.501×10-2 3.002×10-2

 

Table 5.9 Distances between seat and bottom bracket, and initial angles of upper and 
lower legs for each mountain bike 

Lower leg Upper leg 
Bike xc(m) yc(m) Right( U,2 ) Left( L,2 ) Right( U,3 ) Left( L,3 )

Hard Tail 0.21218 0.64074 67.93° 74.96° 8.45° 53.91° 
Single Pivot 0.186 0.62793 65.27° 69.82° 8.27° 53.11° 
Horst Link 0.1553 0.61915 62.20° 64.86° 9.03° 53.58° 
Faux Bar 0.17595 0.61359 64.12° 66.78° 7.11° 51.66° 
VPP 0.19934 0.63222 66.60° 72.11° 8.07° 53.12° 
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The block diagram of rider model is shown in Figure 5.20. It is seen that every body 

part is connected with a revolute (hinged) joint, except the neck joint being welded 

(rigid) joint. Furthermore, the elbow joint is connected with an angle controller 

subsystem. In the work of Iturrioz [2], a spring is connected between shoulder and 

hand to prevent the rider's upper body from falling down due to gravity. It is not 

adequate since no spring is attached on human body in real condition. 

In normal riding condition, the elbow joint can be considered as the middle point from 

shoulder to hand, and the angle of elbow joint is changed when the bike passes 

through bumps. Therefore, it is decided to attach a feedback control system at elbow 

joint to control the angle of elbow. 

The block diagram of the elbow angle control system is shown in Figure 5.21. In 

which the joint sensor senses the angle of elbow first and then sends the signal to the 

PID controller. 

In control engineering, PID controller is also called three-term control [76], because it 

includes the three terms, proportional, integral, and derivative. The P term deals with 

the “present error” and gives a proportional amplified signal to output. The I term 

senses the “past error” and sends an integral signal to output. The D term predicts the 

“future errors” and gives a derivative signal to output. The three summed output is 

then given to a certain system to do feedback control. The transfer function of PID 

controller takes the form given by Equation (5.6) [38,76], where Kp is the proportional 

gain, Ki is the integral gain, and Kd is the derivative gain. Sometimes PI only or PD 

only controllers are used as well. 

sK
s

K
KsC d

i
p )(             (5.6) 

The PID controller is shown in Figure 5.22. In this controller, the desired angle 0º is 

subtracted by the actual angle, and the error signal is sent to amplify with proportional, 

integral, and differential gains, then three amplified signals are added together and 

sent to the joint actuator to apply torque at the elbow joint to make the angle of elbow 

at the desired angle. The desired angle is set as 0º because the initial angle is set as 0º 

in SimMechanics. 
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A test is implemented to observe the functions of the PID controller. PI mode is used 

in this test with Kp=100 and Ki=70. The simulation is implemented under the assumed 

condition that the rider sits on the bike and keeps stationary. The results for the angle 

and reaction torque at the elbow joint are shown in Figure 5.23. It is seen that, initially, 

the elbow angle has a slight fluctuation (or variation) about 0.56º with reaction torque 

to be 57.5 N·m, and then the angle decreases to 0º gradually due to the action of PI 

controller, just as expected. Since the PI controller gives feedback control to the 

elbow angle, the angle gradually decreases to 0º, and the reaction torque decreases to 

35N·m also gradually. 
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Figure 5.20 Block diagram for a rider 
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Figure 5.21 Block diagram for the elbow angle control system 

 

 
Figure 5.22 Block diagram for the PID controller in elbow angle control system 
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Figure 5.23 Time histories for the angles and reaction torques at the elbow joint 
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5.5 Rider-Bike System 
 

When the models for a human body and all parts of a bike are developed, they are 

integrated and connected together as a whole rider-bike system as shown in Figure 

5.24. Since movement of a bike requires the pedalling force from the rider, a pedalling 

controller is developed in Section 5.5.2 for this purpose and the theory used is 

introduced in Section 5.5.1. In Figure 5.24, the rider-bike system consists of several 

subsystems, including "hard-tail bike frame", "rear wheel", "front wheel", "front fork", 

"chain model", "rider" and "crank, pedalling controller, and transmission". The 

"hard-tail bike frame" is discussed in Section 5.3.1 with block diagram shown in 

Figure 5.1 and mathematical model shown in Figure 5.2, and the block diagrams and 

mathematical models for other 4 full suspension bikes are shown in Figures 5.3-5.10, 

respectively. The "rear wheel" is discussed in Section 5.3.2 with mathematical model 

and block diagram shown in Figures 5.11 and 5.12, respectively, and the "front wheel" 

is the same as "rear wheel". The "front fork" is discussed in Section 5.3.3 with block 

diagram shown in Figure 5.16. The "chain model" is discussed in Section 5.3.4 and 

shown in Figure 5.18. The "rider" is discussed in Section 5.4 with associated 

mathematical model and block diagram shown in Figures 5.20 and 5.21, respectively. 

The "crank, pedalling controller, and transmission" will be discussed in Section 5.5.2 

with associated block diagrams shown in Figures 5.25 and 5.26. 

 
Figure 5.24 Block diagram of rider-bike system (for hard tail bike) 
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5.5.1 Theoretical Analysis for Parameter Transmission between Sprockets 
 

If the radii of the front and rear sprockets are denoted by rf and rr, respectively, and 

the corresponding angular velocities by ωf and ωr, respectively, then, the tangential 

velocity of the chain is given by (see Figure D.1 in Appendix D) 

rrfft rrV                 (5.7) 

Thus, 
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If the torque applied on the front sprocket is Tf(t), then the force in the chain is 

determined by 
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)(                 (5.9) 

The force equilibrium in the chain requires that Fr(t)= Ff(t), thus, 

fffr rtTtFtF )()()(              (5.10) 

Therefore, the torque applied on the rear sprocket is given by 
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Since the power of a rotating shaft is given by P=Tω, the power developed by the rear 

sprocket shaft is determined by 
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In Equation (5.12), Tr and ωr are given by Equations (5.11) and (5.8), respectively. 

From Equation (5.8) one has 
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Therefore, for the case of rf/rr=4, Equation (5.13) produces )(tr )(4 tf . 
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If the external torque Tr(t) on the rear sprocket given by Equation (5.11) can be 

transformed into external force Fx(t) on the rear wheel (or on the rear axle) by using 

the next equation 

wrx RtTtF )()(               (5.14) 

then, from Figure D.3 (in Appendix D) one sees that the average moving speed Vx(t) 

of the entire bike is given by 

rwx RtV )(               (5.15) 

Where Rw is the radius of rear wheel and the subscript x of Fx(t) denotes the force to 

be in the horizontal (x) direction. The actual value of Vx(t) may be smaller than that 

given by Equation (5.15) due to inertia forces of the entire bike, frictions or sliding on 

the road surface, etc. 
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5.5.2 Transmission System and Pedalling Controller 

 

In SimMechanics, one cannot find the function to simulate the chain transmission, 

although there exists a block Gear Constraint for the constraint between two 

“engaged” gears based on Equation (5.7). In other words, the two gears must rotate in 

the opposite directions. Therefore, much time has been spent to test how to simulate 

the power transmission between bottom bracket and rear wheel by using the other 

functions of the SimMechanics. 

The block diagram of transmission subsystem of the rider-bike system is shown in 

Figure 5.25, in which, a velocity driver is introduced with one of its ends connected to 

the crank (CG) and the other end connected to the rear axle. In SimMechanics, the 

velocity driver can be used to constrain the relative translational and rotational 

velocities of the two attached bodies [38]. Here, in the velocity driver of the 

transmission system, the rotational velocities of crank and rear axle are defined, which 

are 4rpm and 1rpm, respectively. By doing so, when the crank rotates 1 revolution, the 

rear wheel rotates 4 revolutions, which represents the gear ratio 4:1 (front sprocket : 

rear sprocket) used in this study. 

Three parameters are input the pedalling controller, including the crank angle with 

unit “degrees”, crank angular velocity with unit “deg/sec”, and crank angular velocity 

with the unit “rpm”. The output of pedalling controller represents the force applied on 

right or left pedal. It is evident that when the last force is multiplied by the crank 

length 0.17m will produce the pedalling torque on the front sprocket, and when the 

latter is multiplied by 1/4 [see Equation (5.13)] will produce the torque transferred to 

the rear axle. 
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Figure 5.25 Block diagram of (torque) transmission system 

 

The pedalling controller is shown in Figure 5.26. The crank angle with unit “degrees” 

and crank angular velocity with unit “deg/sec” are input the continuous angle block. 

In SimMechanics, the range of angle is between -180° and +180°, so when the crank 

angle reaches -180° (- means the clockwise direction), it jumps to +180° immediately 

and then decreases to -180° gradually. With the continuous angle block, the crank 

angle can be accumulated during the simulation. Thus, if the rider pedals 10 cycles, 

the final crank angle will be 3600°. The output signal from the continuous angle is 

then sent to the summation block and added by using a "constant block" named 

"Initial Crank Angle". In this study, the zero crank angle (i.e., θ=0°) is assigned at the 

position when the right crank is in the “upward” vertical (+ y-axis) direction (see 

point A in Figure 4.1.), also called top dead centre [17], and when the right crank 

reaches point C shown in Figure 4.1, the crank angle will be 180°, also called bottom 

dead centre [17]. 

In SimMechanics, the initial angle of any object is assumed to be 0°. Since the initial 

crank angle is given by θ1,U = 90° - θ2,U (see Figure 4.2), so the value given in the 

“constant block” is  -θ1,U = -(90° - θ2,U) (- means the clockwise direction). Then, the 

signal is sent to the "abs" block to obtain the “absolute value” of crank angle. 

Afterwards, the signal is divided by 360, and the remainder is obtained through the 

Math Function block in which the remainder mode is selected. Finally, the remainder 

is sent to the output block named "Crank Angle Output". Thus, the correct crank angle 

is obtained and can be output for drawing related figures. For convenience, the initial 
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crank angle θ1,U of the five rider-bike systems are summarized in Table 5.10. 

In Figure 5.26, the crank angle (before the Continuous Angle block) is transferred into 

two logical blocks, named “if condition for right pedal” and “if condition for left 

pedal”, in which the conditions -180° θright crank 0° and 0° θright crank 180° are 

introduced, respectively. 

The whole effective pedalling stroke is composed of the two half cycles by pedalling 

the right and left crank from point U to point L (instead of from point A to point C) in 

clockwise direction, respectively, as shown in Figures 4.2 and 4.3. Obtaining the 

angle α as shown in Figure 4.4, the instantaneous effective pedalling force is 

determined by F sin(‧ α) [with F≡F2(t) denoting the force given by the rider's lower 

leg (along Rod2) appearing in Equation (4.64)]. 

Therefore, the condition -180° θright crank 0° given in the block "if condition for right 

pedal" means that the rider begins to apply the right pedalling force at right crank 

angle -θ1,U (0° in SimMechanics), and ends at the right crank angle -(180°+θ1,U) 

(-180° in SimMechanics). Then, the condition 0° θright crank 180° given in the block 

"if condition for left pedal" represents the rider begins to apply the left pedalling force 

at right crank angle -(180°+θ1,U) (+180° in SimMechanics), and ends at the right 

crank angle -θ1,U (0° in SimMechanics). The critical angles and points of the five 

rider-bike systems are summarized in Table 5.10. 

In Chapter 4, the angle α between Rod1 and Rod2 (see Figure 4.4) is 180° when the 

rider's upper leg is in its uppermost position, as shown in Figure 4.2, and 0° when the 

rider's upper leg is in its lowermost position, as shown in Figure 4.3. Therefore, the 

angle α begins from 180° and then reduces to 0° gradually. 

By defining the conditions for the two logical blocks "if condition for right pedal" and 

"if condition for left pedal", the instantaneous angle α is obtained. 

After sensing the instantaneous angle of right crank in the two logical blocks, the 

signal is then transferred to two pairs of action blocks for deciding to apply force on 

right foot or left foot, or to take no action. Since the two pairs of action blocks are the 

same with 180° phase difference, only one pair of them is discussed below. The action 
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block “Right Force” is shown in Figure 5.27. First the instantaneous angle is added by 

180° because the initial angle in SimMechanics is 0°, and the initial angle of α is 180° 

(i.e., αinitial=180°). Then, the signal is transformed into radians and the sine value of 

the angle is determined. It is noted that one must transform the “degrees” into 

“radians”, because the trigonometric block in Simulink can only deal with “radians”. 

The sine value of the angle is used to determine the instantaneous force component in 

the tangential direction to produce the “effective” pedalling force. It is evident that the 

other force component in radial direction has no effect on pedalling [39,78]. In Figure 

5.27 the sine value is multiplied by the force in right (or left) lower leg to produce the 

“effective” pedalling force. Furthermore, a constant named “Force applied”, [0 -10 0] 

N is used, which is a downward vertical force applied at Joint 1. 

When the right crank passes the point L in Figure 4.3 (i.e. 180°+θ1,U), the upward 

stroke begins with no force being applied, so the signal is transferred to the "No 

Force" subsystem with the constant given by [0 0 0]N. 

After running through each of the two pairs of action blocks, one can back to Figure 

5.26 to merge the two signals together by using the merge block. 

In Figure 5.26, a block named “Crank av” at the downward part of the pedalling 

controller is used to sense the angular velocity of crank first with the unit of rpm.  

The actual angular velocity of crank is then subtracted by the desired angular velocity 

86rpm (a cadence adopted by elite mountain bikers during competition). The error 

signal then goes to the PID controller block, in which the PI mode is used with Kp=10 

and Ki=0.1. 

After the PID controller, the corrected signal is sent to multiply with the original 

given force given by [0 -10 0]N to amplify the pedalling force. Finally, two saturation 

blocks are added to the right and left pedalling forces, respectively, to make sure the 

applied force is not too big so that human cannot reach. 

In the work of Soden and Adeyefa [77], it has been reported that a rider with weight 

570N can apply the maximum pedalling force approximately equal to his body weight 

in an indoor experiment and another rider with weight 660N can apply a pedalling 
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force 1448N (more than twice of his body weight) in an outdoor experiment. In the 

outdoor experiment, the rider is to ride on level (uphill) ground with standing posture 

and the bike used in [77] is a road bike. 

The standing (riding) posture is not studied in this thesis, and for convenience, the 

maximum pedalling force is assumed to be 1000N. Now based on the signals 

concerned the pedalling forces on right and left cranks are applied, respectively. 

One problem occurs in the pedalling controller. The rider's right and left upper legs 

are located at their uppermost (α=180°) and lowermost (α=0°) positions at the start of 

simulation, respectively, so no “effective” pedalling force is applied because 

sin180°=sin0°=0, and the rider-bike system stays in stationary condition.  To solve 

this problem, one block "Joint Initial Condition" is added to the Revolute Joint (the 

bottom bracket), as shown in Figure 5.25, in which a small initial angular velocity 1 

rpm is given. Thus, the rider can pedal normally. 

With the output data regarding the pedalling forces and the "Crank Angle Output", 

one can obtain the relationship between the effective pedalling forces and the crank 

angles successfully. 
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Figure 5.26 Block diagram of pedalling controller 
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 Table 5.10 Critical angles and points of pedalling strokes 

Angle Hard Tail Single Pivot Horst Link Faux Bar VPP 

TDC 0° 

θ1,U 22.067° 24.724° 27.795° 25.875° 23.396° 

BDC 180° 

180°+θ1,U 202.067° 204.724° 207.795° 205.875° 203.396° 

TDC: Top dead centre (see point A in Figure 4.1) 

BDC: Bottom dead centre (see point C in Figure 4.1) 

θ1,U: Beginning of pedalling (down) stroke (see point U in Figure 4.2) 

180°+θ1,U: End of pedalling (down) stroke (see point L in Figure 4.3) 

 

 

Figure 5.27 Block diagram for "Right Force" in the pedalling controller 

 

With the pedalling controller, the simulation shows the rider's pedalling motion on the 

bike correctly, as shown in Figures 5.28 and 5.29. In order to move the bike forward 

on the ground, two velocity drivers are added to the front and rear wheels, 

respectively; and in order to constrain both the relative translational and rotational 

velocities between the wheels and ground, two constraints, V=1m/s and ω=0.3rad/s, 

are defined with V denoting the translational velocity and ω denoting the rotational 

velocity. 

After developing the pedalling controller and the rolling constraints (the velocity 

drivers for constraining the motions between wheels and ground), the rider-bike 

system can move forward normally. However, the air resistance and friction resistance 

are not considered. Therefore, a joint damper is added to the rear axle to represent the 

total mechanical loss of the rider-bike system. The damping coefficient can be 
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adjusted according to the desired velocity of the rider-bike system. A discussion of 

using the damping force to represent the mechanical loss in the rider-bike system is 

shown in Appendix E. The damping constant used in this study is 3 N-sec/m. 
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5.5.3 Bump Model 

 

As mentioned in Section 5.3.2, the bump model is a series of variables of the 

instantaneous positions of CG of the wheel in y-direction together with the 

corresponding time instants given in an “m-file”, represented by the block "bump" 

shown in Figure 5.14. If the y-axis position of CG of wheel keeps at 0m, then the last 

information indicates that road surface is flat. 

In the complete rider-bike system, the front and rear wheels must be added, so two 

identical bump models are given to front and rear wheels, respectively. The only 

difference between the two bumps is due to the time instants. The front bump defines 

the y-axis position of CG of the front wheel and the corresponding time instant, and 

the rear bump is defined based on Reference [2]. Each time moment of the rear bump 

must be added by the time difference Δt given by Equation (5.16), where d is the 

distance between the front and rear axles (wheelbase), and v is the forward velocity of 

bike. 

v

d
t                 (5.16) 
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5.5.4 Simulation of Rider-Bike System Moving on Flat Road Surface 

 

First of all, a simulation of the rider-bike system (for hard tail bike) moving on flat 

road surface is implemented to observe the dynamic response of the developed 

rider-bike model. The simulation condition of this section is that the rider-bike system 

with the hard tail (HT) bike moving on the flat road surface will lead to the steady 

pedalling cadence 86 rpm and result in the convergence of forward velocity to about 

11.96 m/s at the instant t 11sec. 

For the first step, the time history for the original pedalling force obtained based on 

the two signals after "Merge" block shown in Figure 5.26 is presented, as shown in 

Figure 5.28. When the simulation begins, the rider applies right pedalling force first. 

The right pedalling force becomes bigger during the downward pedalling stroke and 

reaches maximum -10N at t=1.45sec with the angle α=90°. Then the force begins to 

decrease gradually and reaches to 0N at t=1.74sec, which is the time that right pedal 

reaches the point L in Figure 4.3. Immediately after t=1.74sec, the rider begins to 

apply force on left pedal. At t=2.22sec, the rider stops applying force on left pedal 

since the left pedal reaches the point L in Figure 4.3. After that, another pedalling 

cycle begins. Therefore, the alternate pedalling is achieved. In addition, as the angular 

velocity of crank reaches the desired value 86 rpm, the cycling time becomes shorter. 

The result shown in Figure 5.28 is not constrained by the saturation blocks to restrict 

the maximum pedalling force. 
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Figure 5.28 Time history for the original pedalling force 
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After the force signal is controlled by the PI controller, the result without constraint of 

the saturation blocks is shown in Figure 5.29. As one can see the maximum pedalling 

force is near 5000N (4630.34N), which is beyond capacity of the general strength of 

human. Therefore, the saturation block is used to constrain the pedalling force to be 

less than or equal to 1000N, and the result is shown in Figure 5.30. From Figure 5.30 

one sees that for the first pair of pedalling forces, the right pedalling force ends at 

t=2.32sec and the left one ends at t=3.14sec, respectively, which are slower than the 

corresponding ones shown in Figure 5.29, but closer to the real riding condition. 

In Figure 5.30, the pedalling force is near steady condition at about t=11sec when the 

angular velocity of crank reaches the desired value 86 rpm. The final pair of right and 

left pedalling forces in the time interval from t=13.72sec to t=14.42sec are shown in 

Figure 5.31 with the abscissa denoting the crank angle. 

The crank angle of rider-bike system of hard tail bike has reached 5400° (i.e. 15 

pedalling cycles) before t=13.72sec. For convenience, the crank angle shown in 

Figure 5.31 during the time interval between t=13.72sec and t=14.42sec is assigned to 

be between 0° and 360°, in which the two red chain lines are located at crank angles 

θ=θ1,U and θ=180+θ1,U, respectively, and the three blue dashed lines are located at 

crank angles θ=90°, θ=180°, and θ=270°, respectively. 

When the rider-bike system reaches the steady condition (with angular velocity of 

crank being 86 rpm), the right and left pedalling forces shown in Figure 5.31 are 

almost the same, in which the right pedalling force reaches the maximum 248.65N at 

the crank angle θ=100.96°, while the left pedalling force reaches the maximum 

248.62N at the crank angle θ=280.47°. The two critical crank angles appear at the 

moment of the angle α=90° (i.e. the rider's lower leg is orthogonal to the crank). From 

Figure 5.31, one can see the right and left pedalling forces start at crank angles θ=θ1,U 

and θ=180+θ1,U, respectively. 



- 140 - 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (Sec)

-5000

-4000

-3000

-2000

-1000

0

F
o

rc
e

 (
N

)
Unsaturated Pedalling Force

Right

Left

 

Figure 5.29 Time history for unsaturated pedalling forces 
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 Figure 5.30 Time history for saturated pedalling forces 
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Figure 5.31 The relationship between the final pair of pedalling forces shown in Figure 
5.30 and the corresponding crank angles θ with θ=0° at top dead centre 

 

The angular velocities and torques for crank and rear wheel are shown in Figures 5.32 

and 5.33, respectively. From Figure 5.32, one can see that the angular velocity of rear 

wheel is four times larger than that of crank during the simulation. By means of the PI 

controller, the actual angular velocity of crank reaches the desired value 86 rpm about 

at the moment t=8.39sec (the first moment for the crank and rear wheel reaching the 

desired angular velocity) and that of rear wheel reaches 344 rpm approximately, and 

then keep at the steady condition. Meanwhile, when the rider-bike system reaches the 

steady condition, the applied torque on rear wheel is 10.56N-m, which is four times 

smaller than that of the pedalling torque (42.27N-m) as one may see from Figure 5.33. 

The pedalling power and rear-wheel power are shown in Figure 5.34, it is seen that 

the power developed is about 382.05Watts when the rider-bike system reaches the 

steady condition. Since the foregoing results agree with the “theory” introduced in 

Section 5.5.1, the velocity driver added between bottom bracket and rear wheel is 

satisfactory for achieving the expected results. 
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Figure 5.32 Time histories for actual angular velocities of crank and rear wheel 
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 Figure 5.33 Time histories for pedalling torques and rear-wheel torques 
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 Figure 5.34 Time histories for pedalling power and rear-wheel power 

 

The time history for the forward velocity of the rider-bike system in x-direction (Vx) is 

shown in Figure 5.35. Due to the joint damper added at rear axle, the moving velocity 

finally converges to about 11.96 m/s (43.056 km/hr) at about t=11sec. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (Sec)

0

2

4

6

8

10

12

V
e

lo
ci

ty
 (

m
/s

)

 

Figure 5.35 Time history for the forward velocity of rider-bike system in x-direction 
(Vx) 
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The time histories for the velocity components of front and rear wheels in y-direction 

(Vy) are shown in Figure 5.36. Both wheels have a slightly negative vertical velocities 

at the beginning due to the rider's weight applied on the bike (mainly at seat and 

handle bar). When the rider pedals to move the bike forward, the excitation resulting 

from the pedalling motion changes the contact force, so does the vertical velocity. 

However, it is seen that the vertical velocity of front wheel is smaller than that of rear 

wheel. This is due to not only the applied force on handle bar being less than the that 

on seat, but also the front fork absorbing some part of the excitation. 
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Figure 5.36 Time histories for the velocity components of front and rear wheels in the 
vertical (y-) direction (Vy) 

 

The time histories for the contact forces between ground and wheels are shown in 

Figure 5.37. The front and rear wheels have big contact forces 535.49N and 1218.38N, 

respectively, at the start of simulation due to the same reason as the y-axis velocities. 

When the pedalling force decreases to the steady condition due to the angular velocity 

of crank reaching the desire value, the contact forces of front and rear wheels decrease 

to 496.08N and 694.19N (the maximum contact forces), respectively. Obviously, the 

contact force of rear wheel is bigger than that of front wheel due to the fact that the 
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CG of the rider’s body is closer to the rear axle and the front fork absorbs some part 

of the pedalling force. Usually, a vehicle with bigger contact force between wheel and 

ground has more stable traction control. Therefore, although the main function of the 

suspension system is for the comfort of the vehicle’s passengers, it must also be 

adjustable to produce adequate contact force between ground and wheel for achieving 

good traction control. Of course, the last requirements must also be satisfied by the 

suspension systems of the mountain bikes. 
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 Figure 5.37 Time histories for the contact forces of front and rear wheels 

 

The time history for the fork compression is shown in Figure 5.38. Based on the 

discussion of front fork in Section 5.3.3 and the defined stiffness constant and 

damping constant, the fork is compressed to the maximum -8.87mm at the moment 

t=2.27sec, and then gradually decreases as pedalling force lowers down. After the 

desired angular velocity of crank 86 rpm is reached, the fork has a slightly fluctuation 

between -5.96mm ~ -4.32mm, which means that the compression is only 1.64mm.. 
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 Figure 5.38 Time history for the fork compression 

 

The time histories for the elbow angle and the reaction torque at elbow joint are 

shown in Figure 5.39(a) and (b), respectively. From Figure 5.39(a) one sees that, 

initially, the elbow angle has a big fluctuation due to falling down of the rider's upper 

body. Immediately, the PI controller begins to control the elbow joint to prevent the 

upper body from falling down. Due to the influence of the fork compression, the 

elbow angle has a slight fluctuation. After the rider-bike system reaches the stable 

condition, so that the elbow angle decreases to 0° gradually and the reaction torque 

remains at about 35N-m as in the static analysis. 
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Figure 5.39 Time histories for (a) the elbow angle and (b) reaction torque of elbow joint 
for riding on flat road surface 

 

The time history for the sprocket distance (between bottom bracket and rear axle) is 

shown in Figure 5.40. The initial sprocket distance of the hard tail bike is 0.42544m. 

From Figure 5.40 one sees that the biggest change of sprocket distance during the 

simulation is about 0.2mm. This change of sprocket distance is negligible, because 

there exists no rear suspension system in the hard tail bike. In addition, since the 

ordinates of curve shown in Figure 5.40 subtracted by the initial sprocket distance are 

always less than 0m, no forces are applied on the bottom bracket and the rear axle. 
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 Figure 5.40 Time history for the sprocket distance 

 

The time histories for the reaction force components at right and left ankle joints in 

the horizontal (x-) direction, Rx(t), are shown in Figure 5.41(a) and the time histories 

for the corresponding ones in the vertical (y-) direction, Ry(t) , are shown in Figure 

5.41(b). From the figures one sees that: (i) For either Rx(t) or Ry(t), the time histories 

of the right ankle joint are similar and not identical to those of the left one because of 

the time difference Δt=π/ω between them. (ii) Throughout the entire time histories, the 

amplitude of Ry(t) is much greater than the corresponding one of Rx(t), because the 

pedalling force is in the vertical (y-) direction. Furthermore, the increase of Rx(t) is 

always accompanied by the decrease of the corresponding Ry(t), because their 

resultant must be equal to the applied force. (iii) After time t=11 seconds, the 

rider-bike system reaches the steady condition gradually as one may see from Figure 

5.35, so does the fluctuation of the time histories of Rx(t) or Ry(t). (iv) The smaller the 

moving speed of the bike in the horizontal (x-) direction, the greater the resistance of 

the ankle joint to the vertical force, thus, the magnitude of Ry(t) is much greater than 

that of the corresponding Rx(t) before time t=11 seconds (due to the smaller bike 

velocity). 
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Figure 5.41 Time histories for the reaction force components at right and left ankle 
joints: (a) in the horizontal (x-) direction, (b) in the vertical (y-) direction. 
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5.6 Confirmation of Theoretical Results with Experimental Values of 
Literature 
 

For the reference rider (with 4.032  LL m) riding the reference bike (with 

17.01 L m, 135.0cx m, 555.0cy m), according to the theory of Chapter 4 one 

obtains the crank angles corresponding to the beginning and end of “downstroke” of 

each pedalling cycle to be o
U 36598.27,1   and o

L 80839.199,1  , respectively, as 

one may see from Table 4.1. Since Rod1 and Rod2 are on a straight line at the 

“beginning” of downstroke and they are overlap each other at the “end” of 

downstroke, the normal forces to the crank (Rod1) are equal to zero at those two 

points [see pints U and L in Figure 5.42]. Based on the last statement one sees that the 

retarding (or reverse) force due to the other leg (in the upstroke) in the time history 

curves shown in Figure 5.42 is (see line UL  in the figure) 

125tF N              (5.17) 

From Figure 1(b) of Reference [45] one also sees that the average maximum pedalling 

forces is (see Figure 5.42) 

375|| maxtF N             (5.18) 

 

 

 

 

 

 

 

 

 

Figure 5.42 Time history of normal pedalling forces (tangential to the circular path of 
crank pin) )( 1tF  based on Figure 1(b) of Reference [45]. 
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Thus, the average maximum “effective” pedalling force is given by 

250|| || maxmax  ttt FFF N                 (5.19) 

Figure 5.31 or Table 6.4 reveals that the maximum effective pedalling force of the 

hard-tail bike is 

65.248|| maxtF N                 (5.20) 

From Equations (5.19) and (5.20), one sees that the result of this thesis (obtained from 

engineering mechanics and computer simulations) is very close to that of Reference 

[45] (obtained from biomechanics and experiments).  

Since the crank length is 17.01 L m and the corresponding rotating speed is 

0.9e  rad/sec, the peak crank torque maxT  and peak power maxP  are given by 

27.4217.065.248|| 1maxmax  LFT t  Nm        (5.21) 

43.3800.927.42maxmax  eTP   Nm/sec = 380.43 Watt    (5.22) 

The above values of maxT  and maxP  agree with those shown in Figures 5.33 and 5.34 

or Table 6.5. 

As shown on page 140 of the thesis, the crank angle corresponding to the maximum 

effective pedalling force is 

o
peak 96.100,1               (5.23) 

The above value also agrees with that shown in Table 2 of Reference [45]: 

oo 9.6103  . 
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5.7 Conclusion 
 

In this chapter, the mass moments of inertias for the members (or components) 

associated with the entire rider-bike system are determined. The details concerning 

the block diagrams and mathematical models of various rider-bike systems are 

presented. By using the SimMechanics, the rider-bike system models for a rider body 

and five types of mountain bikes are developed. A rider-bike system for a hard tail 

bike is used to test the dynamic response of the bike. Since the developed rider-bike 

system works well and the theoretical results are very close to the experimental values 

of literature, the behaviours of the rider-bike systems for different bikes passing 

through different bumps will be studied in the next chapter. In addition, in the 

developed rider-bike system model shown in Figure 5.24, the bike model is the hard 

tail. If a new bike frame model is developed in SimMechanics, the new bike model 

can be fitted into the rider-bike system model easily. 
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Chapter 6  Quasi-static and Dynamic Analyses 
of Bare and Loaded Bikes in Stationary and 
Moving Conditions without Bumps 

 

6.1 Introduction 

 

In order to compare the characteristics of different mountain bikes, both quasi-static 

and dynamic analyses are implemented and discussed in this chapter. For quasi-static 

analysis, the response of rear suspension systems due to a vertical downward 

sinusoidal force applied on the seat or handlebar of each bike is studied. For the 

dynamic analysis, the dynamic response of the rider-bike system for five different 

types of bikes passing through different terrains are discussed, where the 

mathematical model of each rider-bike system takes the form as shown in Figure 5.19, 

while the terrains indicate the flat road surfaces “without” bumps. As to the flat road 

surfaces “with” bumps, the characteristics of the five rider-bike systems are studied in 

the next chapter. 

For convenience, a bike without the rider on its seat is called a “bare bike” and the 

one with the rider on its seat is called a “loaded bike”, a bike with zero forward 

velocity is called a “stationary bike” and the one with non-zero forward velocity is 

called a “moving bike”. Furthermore, the response of a stationary bike due to the 

“dynamic” or “impulsive” load is called “quasi-static” response and that due to the 

“static” load is called “real-static” response. For example, the (front) fork 

compression for a stationary bike due to a sinusoidal force applied on its seat or the 

weight of its rider applied on the seat gradually in a short time interval is called 

“quasi-static” fork compression and that due to the pure “static load” applied on the 

bike is called “real-static” fork compression. In other words, for a stationary bike, if 

its response is dependent on the time history (of the response), it is called the 

“quasi-static” response; otherwise, it is called the “real-static” response. All five bike 

frames in Chapters 6 and 7 are assumed to have the same masses and only the 

geometric differences between the five bikes are investigated. 
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6.2 Quasi-Static Analysis of the Stationary Bare Bike 
 

In the quasi-static analysis presented in this section, each bike does not have any rider 

on its seat and is subjected to a vertical downward force on either the handlebar or the 

seat, in a stationary condition. The force is given by a sine wave signal [0 -1000 0]N 

with the exciting frequency ωe=0.5 rad/sec and constrained by a saturation block to 

restrict the force to be less than 0 N to avoid lifting up of the bike. 

When a vertical downward force is applied on the bike, the front fork and rear 

suspension system are activated, and the compressions are observed. Here, attention is 

paid to the travel path of the rear axle, the sprocket distance (distance between the 

bottom bracket and the rear axle), the chain tension force, the fork compression, and 

the shock compression. 

 

6.2.1 Travel Path of Rear Axle 

 

When the vertical downward sinusoidal force with amplitude 1000N is applied on the 

“seat” of the bike, the travel path of rear axle of each mountain bike is shown in 

Figure 6.1. For the hard tail bike, due to no rear suspension system, the vertical 

movement of the rear axle (in y-direction), δy, is the smallest (8.7mm) and so is the 

horizontal one (in x-direction), δx, to be (0.4mm), thus, the travel path of its rear axle 

is near a vertical line. However, due to the existence of rear suspension systems, the 

travel path of the rear axle for each of the four different full suspension (FS) bikes has 

greater vertical movement of the rear axle, δy, than that of the hard tail bike. 

From Figure 6.1 one can see that the travel path of the single pivot bike is similar to 

that of the VPP bike, while those of horst link and faux bar are similar to each other. 

Besides, the travel path of the single pivot bike looks like a shallow circular arc, and 

those of the other three FS bikes look like the straight lines with the vertical 

movement of the rear axle, δy, of the VPP bike to be at a less inclined angle. Although 

the movements of the rear axle (δx and δy) for each bike presented in this quasi-static 

analysis are small and may be negligible, they influence the dynamic response of each 
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rider-bike system significantly since they have close relationship with the pedalling 

efficiency and the bobbing effect. 
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Figure 6.1 Travel path of rear axle for each bike due to a vertical downward force 
Fy=-1000sinωet N applied on its seat in the time interval from t=0.0sec to t=6.5 sec 
with ωe=0.5rad/sec 

 

The maximum horizontal (x) and vertical (y) movements of the rear axle, | δx |max and  

| δy |max, for each bike shown in Figure 6.1 is summarized in Table 6.1. Usually a good 

mountain bike should have bigger vertical (y) movement of rear axle, δy, and smaller 

horizontal (x) one , δx, so that a bike with larger ratio of | δy |max / | δx |max would be 

better. As shown in Table 6.1, the ratio of | δy |max / | δx |max for the hard tail bike is 

biggest because its horizontal movement δx is smallest. Among the four FS mountain 

bikes in this study, the order for the ratio | δy |max / | δx |max is: single pivot, VPP, faux 

bar, horst link. 
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Table 6.1 The maximum “quasi-static” horizontal (x) movement of rear axle, | δx |max, 
and the maximum “quasi-static” vertical (y) one, | δy |max, for the five mountain bikes 

Maximum movements 
(mm) 

Hard 
Tail 

Single 
Pivot 

Horst Link Faux Bar VPP 

max|| x  0.42 4.24 8.59 8.19 5.93 

max|| y  8.74 9.14 8.95 9.22 9.28 

 maxmax |||| xy   20.80 2.15 1.04 1.12 1.56 

The corresponding time history of contact force of rear wheel for each bike is shown 

in Figure 6.2. Since each wheel is supported by the contact force as discussed in 

Section 5.3.2, the contact forces is closely related to the maximum vertical movement 

of the rear axle, | δy |max. In Figure 6.1, the order of | δy |max is: VPP, faux bar, single 

pivot, horst link, hard tail, thus, in Figure 6.2, the order of the maximum contact 

forces has the same trend. Since the | δy |max of the VPP bike is 9.277mm and the wheel 

stiffness is 90000N/m (as shown in Table 5.1), the contact force of the VPP-bike rear 

wheel is given by F=k．x=834.98N, which is near its peak contact force, 836.18N, 

appearing in Figure 6.2. 

0 1 2 3 4 5 6 7 8 9 10
Time (Sec)

0

200

400

600

800

1000

F
o

rc
e 

(N
)

Rear Wheel Contact Force
Hard Tail

Single Pivot

Horst Link

Faux Bar

VPP

 

Figure 6.2 Time history of “quasi-static” contact force of rear wheel for each bike due 
to a vertical downward sinusoidal force with amplitude 1000N applied on its seat 
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6.2.2 Chain Tension 

 

When a vertical downward sinusoidal force is applied on the seat of each bike, the 

variations of sprocket distance and the corresponding chain tension force applied on 

the rear sprocket are shown in Figures 6.3 and 6.4, respectively. Since the chain 

tension force is a pair of forces between the front and rear sprockets (with the same 

magnitudes and opposite directions), only the force applied on rear sprocket is shown. 

From Figure 6.3 one sees that the variation of sprocket distance of the hard tail bike is 

0.03mm, which is very small and negligible. The variation of sprocket distance of 

single pivot and VPP have the same trend, but the variation of VPP bike is bigger than 

that of the single pivot bike. The curves of VPP bike and single pivot bike look like 

the half-sine waves in the time interval from t=0 to t=6.5 seconds. 

The variations of sprocket distances for the horst link bike and the faux bar bike (both 

with the four-bar-linkage frames) are much different from the other three types of 

bikes due to their rear axles being connected to either the horst link or the faux bar, as 

one may see from Figure 6.3. It is seen that when the amplitude of the applied 

sinusoidal force increases from 0.0N to 1000N gradually, the sprocket distance of the 

horst link bike increases from 0.0 to 0.45mm first and then reduces from 0.45mm to 

0.0N. After that, the similar variation of the sprocket distance is repeated when the 

magnitude of the applied force decreases from 1000N to 0.0N gradually. 

On the other hand, due to the configuration of faux bar design, the sprocket distance 

of the faux bar bike becomes smaller (negative) when a vertical downward sinusoidal 

force is applied on its seat. This is the reason why the chain tension forces applied on 

the rear sprocket of the faux bar bike are equal to zero, as shown in Figure 6.4. The 

maximum chain tension force on the rear sprocket of each bike shown in Figure 6.4 is 

summarized in Table 6.2. 
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Figure 6.3 Time history for “quasi-static” sprocket distance of each bike due to a 
sinusoidal downward force with amplitude 1000N applied on its seat 
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Figure 6.4 Time history for “quasi-static” chain tension force applied on the rear 
sprocket of each bike due to a vertical sinusoidal downward force with amplitude 
1000N applied on its seat 

 

Table 6.2 Maximum “quasi-static” chain tension force in the rear sprocket of each bike 
due to a vertical sinusoidal downward force with amplitude 1000N applied on its seat. 

Types of bike Hard Tail 
Single 
Pivot 

Horst Link Faux Bar VPP 

Max. force (N) 0.374 55.366 4.473 0 71.957 
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6.2.3 Fork Compression 

 

For each bike subjected to a vertical sinusoidal downward force with amplitude 

1000N applied on its handlebar, the time history of its “quasi-static” fork compression 

is shown in Figure 6.5. As discussed in Section 5.3.3, the front forks of the five 

mountain bikes are the same and the only two differences are the total fork length and 

inclination due to head angle. This is the reason why the differences between the fork 

compressions of the five bikes are small as shown in Figure 6.5. From the figure one 

sees that the fork compression of hard tail bike and that of single pivot bike are almost 

the same, and so are the fork compression of faux bar bike and that of VPP bike. 

Among the five bikes, the horst link bike has the smallest fork compression. 

Since the head angles of hard tail bike and single pivot bike are 69° and 69.5°, 

respectively, the head angle of either faux bar bike or VPP bike is 68°, and that of 

horst link bike is 66°, comparison between the foregoing head angles and fork 

compressions reveals that steeper head angle will result in greater fork compression as 

one’s expectation. It is noted that the head angle affects the steering performance as 

well, but this effect is not considered in this study. 
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Figure 6.5 Time history of “quasi-static” fork compression for each bike due to a 
vertical sinusoidal downward force with amplitude 1000N applied on its handlebar 
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6.2.4 Shock Compression 

 

When the vertical sinusoidal downward force with amplitude 1000N is applied on the 

seat of each bike, the time history for the compression of its rear shock absorber is 

shown in Figure 6.6. Since the hard tail bike has no rear suspension, its shock 

compression is not shown in the figure. The stiffness and damping constants for the 

rear shock absorber of each bike are the same, and the only difference is the length 

and the location equipped on the bike due to different type of rear suspension systems. 

From Figure 6.6 one sees that, among the four FS bikes, VPP bike has the biggest 

shock compression (about 30mm), while the faux bar bike has the smallest one (about 

21.3mm). In addition, the frame of the horst link bike and that of the single pivot bike 

have a similar shock compression, but the shock compression of the latter is slightly 

greater than that of the former. 

If the foregoing “dynamic” (sinusoidal) downward force is replaced by a “static” one, 

then the “real-static” shock compression of each bike is shown in Table 6.3. 

Comparing with the maximum “quasi-static” shock compressions of the four FS bikes 

shown in Figure 6.6, one sees that each of the “real-static” shock compressions shown 

in Table 6.3 is only about one half of the corresponding one of the maximum 

“quasi-static” shock compressions. The last phenomenon indicates that the influence 

of inertia force due to each associated bike frame is significant, because one of the 

biggest differences between the static and dynamic characteristics is due to the 

“inertial effects”. 

 

Table 6.3 The “real-static” shock compression of each bike due to the rider sits on the 
bike in the stationary condition 

Bike Hard Tail Single Pivot Horst Link Faux Bar VPP 
Compression 

(mm) 
N/A 13.7 14.5 12.5 16.5 
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Figure 6.6 Time history of “quasi-static” compression of rear shock absorber for each 
bike due to a vertical downward sinusoidal force with amplitude 1000N applied on its 
seat 
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6.3 Dynamic Analysis of the Moving Loaded Bike on a Flat Road 
Surface 

 

In the dynamic analysis presented in this section, the rider of the five bikes is the 

same person. Each of the five rider-bike systems is assumed to move on the flat road 

surface without small bumps and the pedalling cadence is 86 rpm which results in the 

convergence of forward velocity to 11.96 m/s at about t=11sec. The dynamic response, 

performance, bobbing effect, and comfort regarding each rider-bike system are 

studied. The theory concerned is given in Chapter 4 and Section 5.5.1. 

 

6.3.1 Effective Pedalling Forces, Torques and Powers 

 

For the rider-bike system of the hard tail bike moving on the flat road surface, the 

time histories for actual angular velocities of the crank and the rear wheel, and that of 

the forward velocity Vx are shown in Figures 5.39 and 5.42, respectively. Since each 

rider-bike system reaches the “steady condition” near time t=11secs (and 

Vx=11.96m/s), the time histories of the pedalling forces, torques and powers for each 

bike in the time interval from t=10sec to t=15sec are presented for observations. 

First of all, the “effective” pedalling force of each bike (i.e., the force component 

perpendicular to the crank) is shown in Figure 6.7. As one can see from Figure 6.7, 

the difference between the “effective” pedalling forces of the five rider-bike systems 

is very small, in addition, when one right pedalling force ends at the (time) instant 

t10.64sec the next left pedalling force is applies successively. 

In the steady condition, each pair of the right and left pedalling forces shown in 

Figure 6.7 are identical, thus, only the final pair of right and left pedalling forces 

appearing in the time interval from t13.76sec to t14.46sec are discussed and 

shown in Figure 6.8. The maximum pedalling forces for each rider-bike system is 

summarized in Table 6.4. From the table one sees that, among the five bikes, the 

maximum pedalling force of the hard tail bike is biggest due to no rear suspension 

system because the pedalling force is not absorbed by the rear shock absorber. 
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With the pedalling forces of the hard tail bike as the benchmark, the decrements of 

pedalling forces resulting from the activation of rear suspension systems of the bikes 

are shown in Table 6.4. It is seen that, based on the decrements of pedalling forces, 

that of the VPP bike is biggest and that of the faux bar bike is smallest. Where the 

“decrement” of a pedalling force of the “X bike” is defined as the difference of the 

maximum “effective” pedalling force of the hard tail bike minus the corresponding 

one of the “X bike” with X denoting single pivot, horst link, faux bar and VPP, 

respectively. 
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Figure 6.7 Time histories of “effective” pedalling forces for the five rider-bike systems 
moving on flat road surface. 
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Figure 6.8 The relationship between the final pair of pedalling forces and the crank 
angles θ (with θ=0° at top dead centre) for the five bikes in the steady condition. 

 

Table 6.4 Maximum “effective” pedalling forces, and their decrements (with respect to 
the hard tail bike) for the rider-bike systems moving on the flat road surface and in the 
steady condition 

Bikes Hard Tail Single Pivot Horst Link Faux Bar VPP 
Max. pedalling 
forces (N) 

248.65 240.95 239.81 241.63 239.05 

Difference between FS bikes and HT bike  
(Pedalling force of HT bike minus the corresponding one of FS bikes) 

Decrements — 7.7 8.84 7.02 9.6 

 

The final pairs of “effective” pedalling torques and pedalling powers as a functions of 

crank angles are shown in Figures 6.9 and 6.10, respectively. It is obvious that the 

trend of either Figure 6.9 or 6.10 is the same as that of Figure 6.8, since the effective 

pedalling torque is equal to the effective pedalling force multiplied by the crank 

length (= 0.17m for the current example), and the effective pedalling power is equal to 

the effective pedalling torque multiplied by the angular velocity of crank (about 
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9.0rad/sec in the steady condition). The maximum effective pedalling torques and 

powers shown in Figures 6.9 and 6.10 are summarized in Table 6.5. 

Comparing with the hard tail bike, one finds that, the “peak” power required by the 

hard tail bike is greater than that of the four FS bikes. Among the four FS bikes, the 

“peak” power required by faux bar bike is biggest, while that of single pivot bike is 

slightly smaller. The “peak” powers required by the two four-bar-linkage bikes are 

similar, while that of horst link bike is slightly smaller than that of faux bar bike. The 

"peak" power required by VPP bike is smallest. The bottom row of Table 6.5 is the 

percentage power decrements for each of four FS bikes with respect to the “peak” 

power required by the hard tail bike. It is seen that, among the four FS bikes, the 

percentage power decrement of faux bar bike is only 2.98%, while those of the other 

three FS bikes are bigger than 3%. 

Based on the maximum pedalling powers shown in Table 6.5 one sees that the hard 

tail bike has the highest pedalling efficiency on the flat road surface. Furthermore, 

among the four FS bikes, the total power decrement of VPP bike is highest, but this is 

not necessary to mean that the VPP bike has the higher pedalling efficiency, because 

some part of the pedalling power may also be absorbed by the shock absorber of the 

rear suspension system of each FS bike due to the bobbing effect. In other words, the 

rider of a FS bike must apply more pedalling force to compensate the power 

decrement for achieving the same speed as the rider of a hard tail bike. 
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Figure 6.9 The relationship between the final pair of pedalling torques and the crank 
angles θ (with θ=0° at top dead centre) for the five bikes in the steady condition. 
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Figure 6.10 The relationship between the final pair of pedalling powers and the crank 
angles θ (with θ=0° at top dead centre) for the five bikes in the steady condition. 
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Table 6.5 Maximum pedalling torques and powers, and their decrements (with respect 
to the hard tail bike) for the rider-bike systems moving on the flat road surface and in 
the steady condition. 

Max. pedalling 
Torque and Power

Hard Tail Single Pivot Horst Link Faux Bar VPP 

Torque (N-m) 42.27 40.96 40.76 41.07 40.63 
Power (Watt) 382.05 369.65 367.79 370.66 366.24 

Difference between FS bikes and HT bike  
(Pedalling torque and power of HT bike minus the corresponding ones of FS bikes)

Torque (N-m) — 1.31 1.51 1.2 1.64 
Power (Watt) — 12.4 14.26 11.39 15.81 

Power 
Decrements (%) 

— 3.24 3.73 2.98 4.13 
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6.3.2 Forward Velocity 

 

In the steady condition, the relationship between the forward velocity, Vx, and the 

crank angles θ is shown in Figure 6.11 and the maximum forward velocity, max|| xV , 

and minimum one, min|| xV , of the five bikes are summarized in Table 6.6. Figure 

6.11 reveals that the values of max|| xV  and min|| xV  of the hard tail bike are biggest.  

The values of min|| xV  for all FS bikes are smaller than that of hard tail bike, because 

the compression of rear shock absorber of the FS bikes causes the decrease of Vx. The 

value of max|| xV  for the VPP bike is highest among the four FS bikes and that of the 

single pivot bike is next. It is noted that the values of max|| xV for the two 

four-bar-linkage bikes are almost the same. 

In Table 6.6, for each of the bikes, the average of Vx (denoted by xV ) represents the 

summation of | Vx |max and | Vx |min divided by two [ i.e., xV = 2
1 (| Vx |max +| Vx |min)], 

while the variation of Vx (denoted by ΔVx) represents the difference between the xV  

and the corresponding | Vx |max or | Vx |min (i.e., xxx VVV  || minor  max  ). Among the 

five bikes, the hard tail bike has the highest value of xV  and the smallest value of 

ΔVx, this means that the hard tail bike is least variable. Among the four FS bikes, the 

value of xV  for the horst link bike is lowest and that for the single pivot bike is 

highest, and the value of ΔVx for the VPP bike is biggest. 

From Figure 6.11 and Table 6.6, one can see that the bobbing effect will occur on each 

FS bike, because the compression of rear shock absorber due to the rider's pedalling 

motion will cause the decrement of Vx. 

Although the differences between average speeds in Table 6.6 are very small [with the 

biggest difference to be 11.925-11.8625 = 0.0625(m/s)], they will become significant 

if the same rider rides each of the two bikes for more than 60 seconds, because the 

difference between the distance may reach 3.75m for the same rider riding the hard 

tail bike and the horst link bike, respectively. In other words, the bobbing effect will 

influence the rider’s performance significantly in the long competitions. It is noted 

that the foregoing discussion is based on the rider-bike system moving on the flat road 

surface and the influence of bumps on the road surface is not considered. 
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Figure 6.11 The relationship between the moving velocities Vx and the crank angles θ 
(with θ=0° at top dead centre) for the five rider-bike systems moving on flat road 
surface and in the steady condition. 

 

Table 6.6 Maximum Vx (|Vx|max), minimum Vx (|Vx|min), and average Vx ( xV = 2
1 (| Vx |max +| 

Vx |min)) of the five bikes and their variations ( xxx VVV  || minor  max  ) 

Vx (m/s) Hard Tail Single Pivot Horst Link Faux Bar VPP 
|Vx|max 11.969 11.939 11.925 11.930 11.944
|Vx|min 11.881 11.820 11.800 11.818 11.788

)|||(| minmax2
1

xxx VVV   11.925 11.8795 11.8625 11.874 11.866

xxx VVV  || minor  max   ±0.044 ±0.0595 ±0.0625 ±0.056 ±0.078
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6.3.3 Contact Forces on Front and Rear Wheels 

 

In the “stationary” condition, the maximum “quasi-static” contact forces of the front 

and rear wheels for each bike due to the rider sitting on the bike are shown in Table 

6.7. As shown in Figure 5.37 for the hard tail bike, the maximum contact forces of 

both wheels appear at the start of simulation when the rider sits on each of the bikes.   

From the table, one can see that the hard tail bike has the biggest “maximum contact 

force” at front wheel, while the horst link bike has the biggest “maximum contact 

force” at rear wheel. Besides, the four FS bikes have higher contact forces at their rear 

wheels than the hard tail bike, this is beneficial for the FS bikes, from the viewpoint 

of pushing force (opposite to the frictional force), because the maximum traction is 

proportional to the contact force of “rear” wheel of a bike. 

The relationship between the contact forces and crank angles of the front and rear 

wheels for each of the five rider-bike systems moving on flat road surface in the 

“steady” condition are shown in Figures 6.12(a) and 6.12(b), respectively, and the 

maximum, minimum, and average contact forces are summarized in Table 6.8. It is 

seen that, for the front wheel, the hard tail bike has the biggest “maximum contact 

force”, and the VPP bike has the smallest “maximum contact force” and the smallest 

“average contact force”. For the rear wheel, the faux bar bike has the biggest 

“maximum contact force”, the hard tail bike has the smallest “maximum contact 

force”, and the VPP bike has the biggest “average contact force”. 

Since a bike with bigger contact force between its wheel and ground will have better 

traction control as shown in Section 5.5.4, the FS bikes will be better than the hard tail 

bike in this aspect as one may see from Table 6.8. 
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Figure 6.12 The “dynamic” contact forces of the five rider-bike systems moving on 
flat road surface as a function of crank angles θ (with θ=0° at top dead centre) in the 
steady condition for: (a) Front wheel (b) Rear wheel 
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Table 6.7 Maximum “quasi-static” contact forces on the front and rear wheels for each 
bike due to the rider sits on the bike in the stationary condition 

Max. contact 
force (N) 

Hard Tail Single Pivot Horst Link Faux Bar VPP 

Front wheel 953.34 836.10 803.82 815.98 797.78 
Rear wheel 1247.86 1381.74 1467.30 1409.17 1368.67 

 

Table 6.8 Maximum “dynamic” contact forces on the front and rear wheels for each of 
the rider-bike systems moving on flat road surface in the steady condition 

Contact force 
(N) 

Hard Tail Single Pivot Horst Link Faux Bar VPP 

Front Wheel 
Maximum 496.08 486.85 487.02 477.67 465.82 
Minimum 363.57 360.51 357.64 350.23 354.63 
Average 429.825 423.68 422.33 413.95 410.225 
Variation ±66.255 ±63.17 ±64.49 ±63.72 ±55.595 

Rear Wheel 
Maximum 694.19 717.77 726.35 729.78 723.57 
Minimum 415.54 436.68 436.64 436.17 465.71 
Average 554.865 577.225 581.495 582.975 594.64 
Variation ±139.325 ±140.545 ±144.855 ±146.805 ±128.93 
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6.3.4 Fork Compression and Shock Compression 

 

In the steady condition, the trend for the compressions of each front fork as a function 

of crank angle shown in Figure 6.13 is similar to that for the contact forces [shown in 

Figures 6.12(a) and 6.12(b)] or pedalling forces (shown in Figure 6.8), because all of 

the above-mentioned dynamic responses are dependent on the variations of moving 

velocity of each rider-bike system. From Figure 6.13 one sees that the maximum fork 

compression of hard tail bike (5.96mm) is greater than those of the other four FS 

bikes (5.42mm ~ 5.75mm), this is because some part of the rider-induced load [14] is 

absorbed by each rear suspension system leading to the front fork of each FS bike to 

be subjected to smaller load. 

In Figure 6.13, the maximum and minimum compressions represent, at certain 

moments, the front fork being compressed tightly and loosely, respectively, and they 

are summarized in Table 6.9.  It is noted that the “maximum” or “minimum” value of 

each parameter is based on its “absolute values”. 

Among the four FS bikes, the maximum fork compression of the single pivot bike is 

biggest, that of the VPP bike is smallest, and those of horst link bike and faux bar bike 

are approximately equal to each other. 
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Figure 6.13 The “dynamic” fork compressions as a function of crank angle for each 
rider-bike system moving on flat road surface and in the steady condition 

 

Table 6.9 Minimum, maximum, and average fork compressions for each rider-bike 
system moving on flat road surface and in the steady condition 

Fork 
Compression 

(mm) 
Hard Tail Single Pivot Horst Link Faux Bar VPP 

*Minimum 4.32 4.20 4.10 4.06 4.07 
*Maximum 5.96 5.75 5.66 5.61 5.42 
*Average 5.14 4.975 4.88 4.835 4.745 
Variation ±0.82 ±0.775 ±0.78 ±0.775 ±0.675 

* Based on the “absolute values” 

 

The “dynamic” shock compressions (in rear shock absorbers) as a function of crank 

angles are shown in Figure 6.14. Since the shock compression is calculated by 

subtracting the instantaneous distance between the two shock eyes from the initial 

spring length (i.e. the initial distance between the two shock eyes), the maximum and 

minimum shock compressions shown in Figure 6.14 are obtained with the shock 

absorber being compressed tightly and loosely, respectively. For a rider-bike system 



- 175 - 

moving on the flat road surface, the only load on its rear shock absorber is due to the 

rider's pedalling motion and is called the rider-induced load [17]. From Figure 6.14 

one can find that the rear shock absorber of VPP bike is most sensitive to the rider's 

pedalling motion. 

Based on Figure 6.14, the maximum and minimum shock compressions are 

summarized in Table 6.10. It is seen that, on the flat road surface and in steady 

condition, the average shock compression and the variation for each bike are in the 

same order and their ranks are: VPP (biggest), horst link, single pivot, and faux bar 

(smallest). 

The bobbing effect comes from the activation of rear suspension system due to the 

rider's pedalling motion. Figure 6.14 indicates that the bobbing effect does exist for 

each of the four FS bikes. Among the four rear suspension systems, the bobbing effect 

of VPP bike is biggest and that of the faux bar bike is smallest. Besides, the shock 

compression of horst link bike and that of single pivot bike are similar, but the latter is 

slightly smaller than the former. 

Comparing Table 6.9 with Table 6.10, one sees that the difference of fork 

compressions between any two bikes is very small. However, the maximum 

“dynamic” shock compression of the VPP bike is much greater than those of the other 

three FS bikes. 

In order to confirm the bobbing effect of the VPP bike is biggest among the four FS 

bikes, the average “dynamic” shock compressions (with the bikes moving forward) 

shown in Table 6.10 are subtracted from the corresponding “real-static” ones (with the 

bikes in stationary condition and subjected to “static” force) shown in Table 6.3 

(Section 6.2.4), and the results are shown in Table 6.11. It is found that the difference 

of maximum shock compression of the VPP bike is biggest (4.05mm), that of the faux 

bar is smallest (2.73mm), while that of single pivot bike (2.975mm) is slightly higher 

than that of horst link bike (2.915mm). 
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Figure 6.14 The “dynamic” shock compressions as a function of crank angles of the 
four FS rider-bike systems moving on the flat road surface and in the steady condition 

 

Table 6.10 Minimum, maximum and average shock compressions for each of the 
rider-bike systems moving on flat road surface and in the steady condition 

Shock 
Compression 

(mm) 
Hard Tail Single Pivot Horst Link Faux Bar VPP 

*Minimum — 14.81 15.43 13.47 18.43 
*Maximum — 18.54 19.40 16.99 22.67 
*Average — 16.675 17.415 15.23 20.55 
Variation — ±1.865 ±1.985 ±1.76 ±2.12 

* Based on the “absolute values” 

 

Table 6.11 Differences between maximum “dynamic” shock compressions (with the 
bikes in moving condition) and the corresponding “real-static” ones (with the bikes in 
stationary condition and subjected to “static” force) 

Types of bikes Hard Tail Single Pivot Horst Link Faux Bar VPP 
Difference between 

compressions 
(mm) 

— 2.975 2.915 2.73 4.05 

 



- 177 - 

6.3.5 Sprocket Distance and Chain Tension 

 

In the steady condition, the variations of sprocket distances and chain tension forces 

as a function of crank angle for each rider-bike system moving on the flat surface are 

shown in Figures 6.15(a) and 6.15(b), respectively. Since the hard tail bike has no rear 

suspension, its sprocket distance is almost unchanged and so is its chain tension force.  

When each rider-bike system has reached the steady condition at the time t 11sec, 

the sprocket distance of faux bar bike keeps at about -0.7mm and that of horst link 

bike is about 0.2mm (with corresponding chain tension force about 2.2N). Throughout 

the full pedalling cycle, the variations of the single pivot bike and VPP bike are 

greater than those of the other two FS bikes, and the “average” sprocket distances of 

single pivot bike and VPP bike keep at about 4mm and 5mm, respectively. 
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Figure 6.15 Variations of (a) sprocket distances and (b) chain tension forces as a 
function of crank angle for each rider-bike system moving on the flat road surface and 
in the steady condition 
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6.3.6 Vertical Accelerations of Handlebar and Seat 

 

In the steady condition, the variations of the vertical (y) accelerations at CG of 

handlebar and seat for each rider-bike system moving on the flat road surface as a 

function of the crank angle are shown in Figures 6.16 and 6.17, respectively. Since the 

rider's weight is mainly supported by the handlebar and seat, only the vertical 

accelerations at CG of handlebar and seat are studied and considered as the 

parameters for assessing the degree of comfort and bobbing effect. From Figures 6.16 

and 6.17 one sees that the trends of the five bikes are very similar and, for 

comparisons, the “minimum” and “maximum” vertical accelerations are summarized 

in Table 6.12. It is seen that, for the hard tail bike, its vertical acceleration at seat is 

smaller than that at handlebar because it has front fork and no rear suspension system. 

Since all the FS bikes have the front fork, the difference between the maximum 

vertical accelerations at handlebars is very small. However, that at seats is bigger 

because of the different rear suspension systems. The order of average vertical 

accelerations at seats of the four FS bikes is: horst link (biggest), faux bar, single pivot 

and VPP (smallest). The variation of average vertical acceleration at seat of VPP bike 

is highest, that of single pivot bike is close to that of horst link bike, and that of faux 

bar bike is smallest. The biggest amplitude of VPP bike means that its bobbing effect 

will be the most serious. 

Although the vertical accelerations at handlebar and seat of the four FS bikes are 

greater than those of hard tail bike on the flat road surface as shown in Table 6.12, this 

situation will be changed on the road surface with bumps as one may see from 

Chapter 7, because the rear suspension system of each FS bike can absorb some part 

of the impulsive force when it passes through the bumps. 
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Figure 6.16 Vertical acceleration at CG of handlebar as a function of crank angle for 
each rider-bike system moving on the flat road surface and in the steady condition 
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Figure 6.17 Vertical acceleration at seat as a function of crank angle for each rider-bike 
system moving on the flat road surface and in the steady condition 
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Table 6.12 The maximum vertical accelerations at handlebar and seat for each 
rider-bike system moving on the flat road surface and in the steady condition 

Accelerations 
(m/s2) Hard Tail Single Pivot Horst Link Faux Bar VPP 

Handlebar 
Maximum 0.303 0.465 0.522 0.493 0.481 
Minimum -0.712 -0.809 -0.805 -0.763 -0.819 
Average -0.2045 -0.172 -0.1415 -0.135 -0.169 

Variations ±0.5075 ±0.637 ±0.6635 ±0.628 ±0.65 
Seat 

Maximum 0.216 1.178 1.232 1.032 1.604 
Minimum -0.371 -1.571 -1.699 -1.431 -1.876 
Average -0.0775 -0.1965 -0.2335 -0.1995 -0.135 

Variations ±0.2935 ±1.3745 ±1.4655 ±1.2315 ±1.741 
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6.4 Discussion and Conclusion 

 

In this chapter, the quasi-static analysis of the stationary bare bike is implemented to 

study the characteristics of the five mountain bikes. Then, the dynamic analyses of 

each of the five rider-bike systems moving on the flat road surface without bumps are 

conducted to study the dynamic responses of each rider-bike system due to external 

excitations. Discussions of the analyses are presented in the following subsections. 

 

6.4.1 Quasi-Static Analysis 

 

In the quasi-static analysis of each stationary bare bike, a vertical downward force 

Fy=-1000sinωet N (with exciting frequency ωe=0.5rad/sec) is applied on either the 

seat or the handlebar of each of the five bikes to observe the time histories of travel 

paths of rear axle, contact forces of rear wheel, variations of sprocket distances, chain 

tension forces, fork compressions, and shock compressions. 

For the travel paths of rear axle, the ratios of maximum vertical movement of rear 

axle to the maximum horizontal one (|δy|max/|δx|max) of the five bikes are obtained and 

the bike with biggest value of |δy|max is determined. Due to no rear suspension system, 

the ratio |δy |max/|δx|max of the hard tail bike is much bigger than that of the four FS 

bikes. From highest to lowest, the rank of ratios |δy |max/|δx|max of the four FS bikes is: 

single pivot, VPP, faux bar, horst link, in which the value of |δy|max of VPP bike is 

biggest (in spite of its value of |δy |max/|δx|max to be smaller than single pivot). Since the 

contact force of each rear wheel is proportional to its maximum vertical movement of 

rear axle, |δy|max, the corresponding contact forces of rear wheels of the five bikes 

show the same trends as their values of |δy|max. 

For the variations of sprocket distances, due to no rear suspension system, the 

sprocket distance of the hard tail bike is nearly unchanged, and that of each of the four 

FS bikes is varied significantly. Since the variations of sprocket distances of faux bar 

bike are negative, no chain force is applied on the rear axle or bottom bracket. For the 
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other three FS bikes, the variations of sprocket distances of single pivot bike and VPP 

bike are similar, but those of the latter are larger, and those of horst link bike are less 

than 1.0 mm. 

For the “fork” compressions, it is found that the greater (steeper) the head angle is, the 

bigger the fork compression is. On the other hand, for the “shock” compressions, the 

quasi-static analysis shows that, from highest to lowest, the rank of the four FS bikes 

is: VPP, single pivot, horst link, faux bar. However, if the dynamic downward force is 

replaced by a static one, the numerical results show that the real-static shock 

compression for each of the four FS bikes is only about one half of its quasi-static one, 

and the trend of ranks is similar except that the ranks of horst link bike and faux bar 

are exchanged. 

In this quasi-static analysis, it is found that the hard tail bike is not significantly 

affected by the vertical downward force Fy due to no rear suspension system except 

for its fork compression being slightly less than that of the single pivot bike, because 

its head angle is very steep (69°) to be 0.5° smaller than that of the single pivot bike. 

Furthermore, among the four FS bikes, all responses of the VPP bike are the biggest 

ones except for the fork compression to be smaller than that of the single pivot bike. 
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6.4.2 Dynamic Analysis of Loaded Bike Moving on Flat Road Surface 

 

In the dynamic analyses of the five rider-bike systems moving on the flat road 

surfaces, the dynamic responses in the steady conditions including effective pedalling 

forces, effective pedalling torques and powers, forward velocities Vx in horizontal (x) 

direction, contact forces of front and rear wheels, fork compressions, shock 

compressions, variations of sprocket distances, chain tension forces, and vertical 

accelerations at handlebars and seats are studied, and all the dynamic responses are 

represented as functions of the crank angles   with o0  to o360  (where 

o0  is located at the top dead centre of the right crank). 

(a). For the maximum effective pedalling force, that of hard tail bike is biggest due to 

no rear suspension, and with this value as the benchmark, the decrement of that 

resulting from the activation of rear suspension system of each FS bike is biggest for 

the VPP bike and is smallest for the faux bar bike. 

(b). For the effective pedalling torques and powers, the maximum pedalling power 

required by the hard tail bike is biggest. With respect to the hard tail bike, Table 6.5 

reveals that the percentage decrement of maximum pedalling power is 2.98% for faux 

bar bike, is bigger than 3% for each of the other three FS bikes, and is highest (4.13%) 

for the VPP bike. 

(c). For the forward velocities Vx, their averages xV  and variations ΔVx shown in 

Table 6.6 indicate that the value of xV  of the hard tail bike is highest and the 

corresponding value of ΔVx is smallest. Among the four FS bikes, the rank of the 

value of xV  from highest to lowest is: single pivot, faux bar, VPP, horst link, while 

the rank of the value of ΔVx from highest to lowest is: VPP, horst link, single pivot, 

faux bar. From the above two ranks, one can find that the bobbing effect of VPP bike 

will be most serious, because its average moving velocity xV  is lowest and the 

variation ΔVx is highest. For the other three FS bikes, the xV  of horst link bike is 

lowest and its ΔVx is highest (only lower than that of the VPP bike), and the 

performance of single pivot bike and that of faux bar bike are very similar with slight 
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difference. The lower average moving velocities xV  of the four FS bikes reveals that 

the bobbing effect will be possible to occur on each FS bike. 

(d). For the contact forces of front and rear wheels, from Table 6.8, one can see that 

the rank of average contact force of “front” wheel from biggest to smallest is: hard tail, 

single pivot, horst link, faux bar, VPP, and that of “rear” wheel is reversed because, 

for each bike, its average contact force of “rear” wheel is equal to the vertical applied 

force (Fy) minus that of “front” wheel and the value of Fy is a constant. 

(e). For the fork and shock compressions, the average fork compression of hard tail 

bike is biggest (5.14 mm), while that of VPP bike is smallest (4.745 mm). The rank of 

average fork compressions from biggest to smallest is the same as that of average 

contact forces of front wheel, because the latter are proportional to the former. 

However, the rank of average shock compressions from biggest to lowest is: VPP, 

horst link, single pivot, faux bar, which is different from that of average contact forces 

of rear wheels, but the average shock compression and average contact force of rear 

wheel of the VPP bike are biggest. It is noted that the bigger average contact forces 

between the wheels and ground can make the rider-bike system more stable during 

riding, but the bigger variations of average fork or shock compressions can make the 

rider-bike system more unstable at the same time. From Tables 6.8 to 6.10, one can 

see that the average contact force of front wheel of hard tail bike and that of rear 

wheel of VPP bike are biggest, respectively. However, the variation of average fork 

compression of hard tail is highest, while that of average shock compression of VPP 

bike is highest. 

(f). For the variations of sprocket distances and chain tension forces, from Figure 

6.15(a), one can see that the variations of sprocket distances of VPP bike and single 

pivot bike are similar and much bigger than those of the other three bikes. In addition, 

the configurations for the rear suspension designs of the VPP and single pivot bikes 

make the sprocket distances varied more frequently than the four-bar-linkage designs 

of the horst-link and faux-bar bikes. For the two four-bar-linkage bikes, the variation 

of sprocket distances of horst link bike is small (about 0.2mm), and that of faux bar 

bike is about -0.7mm. Due to no rear suspension system, the variation of sprocket 
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distances of hard tail bike is close to zero. 

(g). For the vertical accelerations at handlebar, the differences between the bikes are 

very small, because the front suspensions of the five bikes are similar to each other. 

However, from Figure 6.17 one can see that the vertical acceleration at seat of hard 

tail bike is smallest, and those of the four FS bikes are about two times of that of hard 

tail bike. Among the four FS bikes, the vertical acceleration at seat of VPP bike is 

biggest. Therefore, once again, one can confirm that the bobbing effect of VPP bike 

will be most serious. 

From the foregoing discussions, one can see that, for each of the five rider-bike 

systems moving on the flat road surface and in the steady condition, the performance 

of hard tail bike will be highest and that of VPP bike will be lowest from the point of 

view of bobbing effect. The performance difference between the other three FS bikes 

is small, but that of single pivot bike will be lowest, especially the variations of 

sprocket distances caused by the activation of its rear shock absorber (and resulting in 

the bobbing effect). The performances of the two four-bar-linkage bikes are similar, 

but that of the faux-bar bike will be higher than that of horst-link bike since the 

moving velocity Vx of the former is higher than that of the latter. 
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6.4.3 Conclusion 

 

In this chapter, the quasi-static analyses of stationary bare bikes and the dynamic 

analyses of the five rider-bike systems moving on the flat road surfaces without 

bumps are studied. It is found that the performance of hard tail bike is best. Due to the 

rear suspension systems, all four FS bikes have the bobbing effect, which is induced 

by the activation of each rear suspension due to the rider's pedalling motion, and 

among the four FS bikes, the bobbing effect of VPP bike is most serious. 
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Chapter 7 Dynamic Analyses of Loaded Bikes 
Moving on Flat Road Surface with Bumps 

 

7.1 Introduction 
 

The quasi-static and dynamic responses of bare and loaded bikes in stationary and 

moving conditions with effect of bumps neglected have been studied in Chapter 6. 

This chapter is a continuation of the last chapter to study the dynamic responses of 

various rider-bike systems moving on flat road surface with bumps (bump height 

h=±0.03m). The pedalling cadence is 86 rpm which will result in the convergence of 

forward velocity to 11.96 m/s at t=11sec. The related titles include the variations 

(versus crank angles) of effective pedalling forces, effective pedalling torques and 

powers, moving velocities Vx in horizontal (x) direction, contact forces of front and 

rear wheels, fork compressions, shock compressions, sprocket distances, chain tension 

forces and vertical accelerations at handlebars and seats for each of the five rider-bike 

systems passing over a hump and through a hollow. 

 

7.2 Effective Pedalling Forces for the Rider-Bike System of a Hard 
Tail Bike Passing over a Hump and through a Hollow, Respectively 
 

In this subsection, dynamic responses of the rider-bike system of a hard tail bike 

passing over a long hump and through a long hollow, respectively, are analyzed. The 

heights of the hump and the hollow are given by hb=+0.03m and hb=-0.03m as shown 

in Figures 7.1(a) and 7.1(b), respectively. 

For convenience, either the hump or the hollow is assumed to be located at the 

position so that the rider-bike system will meet the left end of it at t=11.5sec and leave 

the right end of it at t=12.5sec, i.e., Δtb=1.0 second. The time histories of the effective 

pedalling forces are shown in Figure 7.2 and, for easier observations, the relationship 

between the effective pedalling forces and the crank angles in the time interval from 

t=10.94sec to t=13.03sec with corresponding crank angles from o0  to 
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o1080  are shown in Figure 7.3. 

When the rider-bike system hits the left side of the hump as shown in Figure 7.1(a) at 

the moment t=11sec, the instantaneous vertical acceleration due to the hump is 

upward and “opposite” to the downward gravitational acceleration g = 9.81 m/sec2, 

and when it leaves the right end of the hump at the moment t=12.5sec, the 

instantaneous vertical acceleration due to the hump is downward and “identical” to 

the downward gravitational acceleration g. In other words, the “gravitational (or 

inertial) force” of the bike during hitting the left side of the hump is much smaller 

than that during leaving the right end of the hump, so that the “peak” effective 

pedalling force of the rider-bike system during hitting the left side of the hump is 

smaller than that during leaving the right end of the hump as one may see from the 

solid curves (――) appearing in Figures 7.2 and 7.3. 

On the contrary, the situations for the rider-bike system passing through the “hollow” 

as shown in Figure 7.1(b) are opposite to those passing over the “hump”. In other 

words, when the rider-bike system meets the left end of the hollow as shown in Figure 

7.1(b) at the moment t=11.5sec, the instantaneous vertical acceleration due to the 

hollow is downward and “identical” to the downward gravitational acceleration g and 

when it hits the right side of the hollow at the moment t=12.5sec, the instantaneous 

vertical acceleration due to the hollow is upward and “opposite” to the downward 

gravitational acceleration g. For the last reason, the “gravitational (or inertial) force” 

of the bike during meeting the left end of the hollow is much greater than that during 

hitting the right side of the hollow and, in turn, the “peak” effective pedalling force of 

the rider-bike system during meeting the left end of the hollow is greater than that 

during hitting the right side of the hollow as one may see from the dashed curves 

(– – –) appearing in Figures 7.2 and 7.3. 

In addition to the foregoing reasonable results, Figures 7.2 and 7.3 reveal that the 

solid curves (――) and the corresponding dashed curves (– – –) are overlapped each 

other except at the vicinities of meeting and leaving the bumps, this is also a 

reasonable one. 

For convenience of comparisons, the “peak” effective pedalling forces due to the 
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rider-bike system of the hard tail bike meeting and leaving a hump and a hollow 

shown in Figure 7.2 or 7.3 are summarized in Table 7.1. It is seen that, for the 

rider-bike system passing over the “hump”, the minimum (reverse) peak effective 

pedalling force is 132.91N during hitting the left side of the hump and the maximum 

peak force is 581.99N during leaving the right end of the hump, while for the 

rider-bike system passing through the “hollow”, the maximum peak effective 

pedalling force is 582.79N during meeting the left end of the hollow and the 

minimum (reverse) peak force is 122.87N during hitting the right side of the hollow. 

Since the effect of the rider-bike system hitting the left side of the hump is the same as 

that hitting the right side of the hollow to produce the upward accelerations, this is the 

reason why the minimum (reverse) peak effective pedalling force of the rider-bike 

system during hitting the left side of the hump (132.91N) is near that during hitting 

the right side of the hollow (122.87N) with difference ΔFup=132.91-122.87=10.04N 

(with the subscript of the symbol ΔFup denoting the accelerations due to the bumps is 

“upward”). Similarly, the effect of the rider-bike system leaving the right end of the 

hump is the same as that meeting the left end of the hollow to produce the downward 

accelerations, this is the reason why the maximum peak effective pedalling force of 

the rider-bike system during leaving the right end of the hump (581.99N) is near that 

during meeting the left end of the hollow (582.79N) with difference 

ΔFdown=582.79-581.99=0.8N (with the subscript of the symbol ΔFdown denoting the 

accelerations due to the bumps is “downward”). In general, the “phase angle” between 

the time instant of meeting the left end of the bump and the associated pedalling 

stroke, Δθmeet = ωeΔtm (with Δtm denoting the phase time interval at meeting the left 

end of the bump as shown in Figure 7.2), is different from that of leaving the right end 

of the bump and the associated pedalling stroke, Δθleave=ωeΔtl (with Δtl denoting the 

phase time interval at leaving the right end of the bump as shown in Figure 7.2), and 

this is the reason why the foregoing values of ΔFup and ΔFdown are not equal to zero. 

If Δtb (= 1.0 second for the current example) denotes the time duration from the 

rider-bike system meeting the left end of the bump to that leaving the right end of the 

bump [see Figures 7.1 and 7.2] and Tp denotes the period of the pedalling forces or 

strokes (see Figure 7.2), then one of the simplest ways to achieve the condition of   
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θhit = θleave so that ΔFup = ΔFdown = 0 is to set the ratio of Δtb to Tp to be equal to the 

integers, i.e., Δtb / Tp =1,2,3,... 

To confirm the last statement, a simulation is implemented, where the period of the 

pedalling forces after the rider-bike system of the hard tail bike reaching the steady 

condition is Tp0.694sec. As shown in Figure 7.3, when the rider-bike system meets 

the left end of the hump (or hollow) and then moves on the top of the hump (or the 

bottom of the hollow), it will restore the steady condition in the next pedalling stroke 

(with crank angle θ=360°~720°). Therefore, if one sets Δtb to be three times of Tp, i.e., 

Δtb=3Tp=0.694×3=2.082sec, then the rider-bike system will restore the steady 

condition before leaving the right end of the hump (or hollow). Since the rider-bike 

system meets the left end of the hump (or hollow) at t=11.5sec (see Figure 7.1), the 

phase angle of meeting the left end of the bump (either hump or hollow) will be equal 

to that of leaving the right end of the bump (i.e., θmeet = θleave) if the moment of leaving 

the right end of the bump is selected at t=11.5+2.082=13.582sec. 

Based on the last assumption of Δtb=3Tp=0.694×3=2.082sec, the time histories of 

pedalling forces for the rider-bike system meeting the left end of the bump and 

leaving the right end of the bump (including “hump” and “hollow”) are shown in 

Figure 7.4, and for easier observations and explanations, the time histories in the time 

interval from t=10.94sec to t=13.72sec with corresponding crank angles from o0  

to o1440 are shown in Figure 7.5, and the maximum and minimum peak forces 

(based on the “absolute” values) and the corresponding crank angles for the rider-bike 

system meeting the left end of the bump and leaving the right end of the bump are 

summarized in Table 7.2. It is seen that, for the rider-bike system passing over the 

“hump” (denoted by the solid curves, ——), the minimum (reverse) peak effective 

pedalling force is 132.91N during meeting the left end of the hump at the crank angle 

o03.305 , and the maximum peak force is 582.27N during leaving the right end of 

the hump at the crank angle o37.1366  [=(360°×3)+286.37°], while for the 

rider-bike system passing through the “hollow” (denoted by the dashed curves, – – –), 

the maximum peak effective pedalling force is 582.79N during meeting the left end of 

the hollow at the crank angle o7.288 , and the minimum (reverse) peak force is 
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132.16N during hitting the right side of the hollow at the crank angle o35.1358  

[=(360°×3)+303.47°]. 

Therefore, the difference between the minimum (reverse) peak effective pedalling 

force of “hitting the left side of the hump” and that of “hitting the right side of the 

hollow” is ΔFup=132.91-132.16=0.75N and the difference between the corresponding 

phase angles is Δθup=305.03°-303.47°=1.56°. Similarly, the difference between the 

maximum peak effective pedalling force of “leaving the right end of the hump” and 

that of “meeting the left end of the hollow” is ΔFdown=582.79-582.27=0.52N and the 

difference between the corresponding phase angles is Δθdown=288.7°-286.37°=2.33°. 

The foregoing slight differences of phase angles and pedalling forces may be due to 

the time duration (Δtb=3Tp=0.694×3= 2.082sec) for the rider-bike system moving on 

the top of the hump (or the bottom of the hollow) to be not long enough, so that the 

rider-bike system cannot completely restore to the steady condition at leaving the 

right end of the hump (or hollow). However, it is evident that if Δtb=3Tp, then the 

phase angle for the rider-bike system meeting the left end of the bump (either “hump” 

or “hollow”) is close to that leaving the right end of the bump (i.e., θmeet   θleave ) so 

that the minimum (reverse) peak effective force due to hitting the left side of the 

hump is close to that hitting the right side of the hollow (i.e, Fup,humpFup,hollow or 

ΔFup0) and the maximum peak effective force due to leaving the right end of the 

hump is close to that meeting the left end of the hollow (i.e., Fdown,humpFdown,hollow or 

ΔFdown0). 
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 Figure 7.1 Types of the bumps: (a) Hump, (b) Hollow 
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Figure 7.2 Time histories of effective pedalling forces due to the rider-bike system of a 
hard tail bike passing over a “hump” [Figure 7.1(a)] (denoted by the solid curves, ——)  
and through a “hollow” [Figure 7.1(b)] (denoted by the dashed curves, – – –), 
respectively. Where Δtm and Δtl denote the phase time intervals associated with the 
phase angles Δθmeet = ωeΔtm and Δθleave=ωeΔtl at meeting and leaving the bumps, 
respectively, and ωe is the angular velocity of the rotating crank. 
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Figure 7.3 The relationship between the effective pedalling forces and the associated 
crank angles due to the rider-bike system of a hard tail bike passing over a “hump” 
[Figure 7.1(a) ] (denoted by the solid curves, ——) and through a “hollow” [Figure 
7.1(b)] (denoted by the dashed curves, – – –), respectively. 

 

Table 7.1 Minimum and maximum peak effective pedalling forces due to the rider-bike 
system of the hard tail bike meeting and leaving a hump [Figure 7.1(a)] and a hollow 
[Figure 7.1(b)], respectively 

Min./max. peak effective pedalling forces (N) 
Conditions 

Hump Hollow 
Meeting 132.91* 581.99** 
Leaving 582.79** 122.87* 

* Minimum (reverse) peak force (based on the “absolute” values)  
** Maximum peak force (based on the “absolute” values) 
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Figure 7.4 Time histories of effective pedalling forces for the rider-bike system meeting 
the “hollow” (denoted by the dashed curves, - - -) and leaving the “hump” (denoted by 
the solid curves, ——), respectively, with the same phase angle. 
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Figure 7.5 The relationship between the effective pedalling forces and crank angles for 
the rider-bike system meeting the “hollow” (denoted by the dashed curves, - - -) and 
leaving the “hump” (denoted by the solid curves, ——), respectively, with the same 
phase angle 
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Table 7.2 Minimum and maximum peak effective pedalling forces and associated phase 
angles for the rider-bike system of the hard tail bike meeting and leaving a hump and a 
hollow with Δtb=3Tp , respectively. 

Conditions — Hump Hollow 
Peak forces (N) 132.91*  582.79** 

Hitting 
Phase angles 305.03° 288.70° 

Peak forces (N) 582.27**  132.16* 
Leaving 

Phase angles 
1366.37° 

=(360°×3)+286.37° 
1383.47° 

=(360°×3)+303.47° 
* Minimum (reverse) peak force (based on the “absolute” values)  
** Maximum peak force (based on the “absolute” values) 
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7.3 Effective Pedalling Forces for each Rider-Bike System of the Five 
Bikes Passing over a Hump and through a Hollow 
 

After testing the rider-bike system of a hard tail bike passing over a hump and through 

a hollow, respectively, now the dynamic responses for each of the five rider-bike 

systems passing through the flat road surface with both a hump and a hollow will be 

analyzed. For the current simulation, since each rider-bike system will reach the 

steady condition with constant speed Vx=12m/s at time t 11sec, the two bumps (see 

Figure 7.6) are assumed to be located at the positions so that the bike hits the left side 

of the hump (first bump) at t=11.5sec (to rapidly lift up a bump height at t=11.45sec), 

leaves the right end of the hump at t=12.144sec (11.45sec+Tp) and then returns to the 

ground at t=12.194sec; next, the bike meets the left end of the hollow (second bump) 

at t=12.888sec [to rapidly lower a bump height at t=12.838sec (=12.144sec+Tp)], hits 

the right side of the hollow at t=13.532sec (12.838sec+Tp), then returns to the ground 

at t=13.582sec. Thus, the phase angles of hitting the left side and leaving the right end 

of the hump (first bump) are approximately equal to the corresponding ones of 

meeting the left end and hitting the right side of the hollow (second bump), so that 

θmeet   θleave and the time histories in the time interval from t=10sec to t=15sec are 

studied. 

The types of the hump and the hollow are shown in Figure 7.6, in which the heights of 

both bumps are the same as those shown in Figures 7.1(a) and 7.1(b), i.e., 

bh +0.03m for the hump and bh -0.03m for the hollow, respectively. 
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Figure 7.6 The mathematical model for the flat road surface with both “reference” 
bumps (a hump and a hollow) for each rider-bike system of the five bikes. 
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The relationship between pedalling forces and crank angles for each of the five 

rider-bike systems passing through the bumps is shown in Figure 7.7. Since each of 

the five rider-bike systems pedals 3960° (i.e., 11 pedalling cycles) at time t 11sec, 

for convenience, the crank angle with its “origin” located at time t=0 is denoted by θ(t) 

and that at time t=11sec by  (t) in the foregoing and following discussions. Based 

on the last statements one has the relationship  (t)= θ(t)-3960°, thus,  (t)= 

θ(t)-3960°=3960°-3960°=0° at time t=11sec. According to Figure 6.7, although the 

period of pedalling stroke of each rider-bike system may be assumed to be the same 

(Tp=0.694sec), actually, there exists a slight “time difference” to reach the "steady" 

condition (to be less than 1.0sec) between the five rider-bike systems. Therefore, the 

two bumps for each rider-bike system are arranged in such locations that the “time 

difference” to reach the steady condition for each rider-bike system can be as small as 

possible and that the associated phase angles of the five rider-bike systems passing 

through their (two) bumps are close to each other, as shown in Table 7.3. Thus, one 

may easily find the differences between the responses of the five rider-bike systems 

passing through their bumps and there is no need to worry out the influences due to 

different phase angles. 

If each rider-bike system is assumed to hit the left side of the hump at the moment 

with crank angle  1=299.5° and to meet the left end of the hollow at the moment 

with  3=1003.158° (see Table 7.3), then the dynamic responses of the five rider-bike 

systems are shown in Figure 7.7 and for easier observations, the last dynamic 

responses are further magnified and shown in Figures 7.8(a) together with 7.8(b).  

From Figure 7.8(a) one sees that, when each bike hits the left side of the hump, the 

pedalling force decreases to some degree because the upward acceleration (induced 

by the hump) reduces the gravitational effect of the bike frame, so that the pedalling 

force applied for passing over the hump is smaller than the normal one. At the 

moment with crank angle  2=644.792°, each rider-bike system begins to leave the 

right end of the hump (and return to flat road surface), this leads to the bike rapidly 

falling hb=0.03m and producing the downward acceleration. Thus, the corresponding 

pedalling force becomes greater than the normal one. 
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From Figure 7.8(b), one can see when each bike begins to meet the left end of the 

hollow at the moment with the crank angle  3=1003.158°, it rapidly falls hb=0.03m 

and produces the downward acceleration (with direction identical to the gravitational 

acceleration g), so that the maximum instantaneous pedalling force appears. At the 

moment with crank angle  4=1373.436°, the rider-bike system hits the right side of 

the hollow and returns to flat road surface, now, the bike rapidly raises hb=0.03m and 

produces the upward acceleration (with direction opposite to g) so that the pedalling 

force is smaller than the normal one. 

Based on Figures 7.8(a) and 7.8(b), the peak effective pedalling forces and the four 

corresponding crank angles are summarized in Table 7.3, for convenience, the 

above-mentioned four crank angles are called “peak” crank angles. For convenience, 

the minimum (reverse) peak force corresponding to o5.2991   is represented by 

jpF
,1

||


 with the subscript “j” referring to the j-th rider-bike system, and the maximum 

“normal” effective pedalling force for each rider-bike system moving on the flat road 

surface (without bumps) shown in Table 6.4 is also listed in the 3rd row of Table 7.3 

and denoted by |Fp|steady,j with the subscript “steady” denoting the rider-bike system to 

be in “steady” condition. From the difference between  |Fp|steady,j and 
jpF

,1
||


, 

jpjsteadypjhumphitp FFF
,,, 1

||||||


  (j=1~5), one can find the variation of the pedalling forces 

for each of the five bikes hitting the left side of the hump. From Table 7.3, one can see 

that the value of Δ|Fp|hit hump,j for each of the FS bikes is smaller than that for the hard 

tail bike due to the effects of rear suspension systems of the FS bikes. Based on the 

values of Δ|Fp|hit hump,j, with the smaller one denoting the higher rank, the ranks of the 

four FS bikes are: horst link bike, faux bar bike, single pivot bike, VPP bike. It is 

noted that the value of Δ|Fp|hit hump,j for the VPP bike (with last rank) is slighter greater 

than that for the single pivot bike. 

In Table 7.3, the maximum peak effective pedalling force corresponding to the crank 

angle  2=644.792° for each of the five rider-bike systems is represented by 
jpF

,2
||


.  

Therefore, from the difference between 
jpF

,2
||   and |Fp|steady,j, Δ|Fp|leave hump,j= 

jpF
,2

|| 


-|Fp|steady,j (j=1~5), one can find the variation of the pedalling forces for each of 

the five bikes leaving the right end of the hump. It is seen that the value of  Δ|Fp|leave 
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hump,j for each of the FS bikes is smaller than that for the hard tail bike, and is close to 

that of meeting the left end of the hollow. 

Based on the values of jhumpleavepF , || , with the smaller one denoting the higher rank, 

the ranks of the four FS bikes are: horst link bike, faux bar bike, single pivot bike, 

VPP bike. It is noted that the value of jhumpleavepF , ||  for the VPP bike (with last 

rank) is also slighter greater than that for the single pivot bike. 

In Table 7.3, if the maximum effective pedalling force corresponding to the crank 

angle  3=1003.158° is represented by 
jpF

,3
||


, then the variations of pedalling forces 

due to meeting the left end of the hollow is determined by               

Δ|Fp|meet hollow,j= jpF
,3

||  -|Fp|steady,j. It is seen that the magnitudes of Δ|Fp|meet hollow,j for the 

four FS bike do not have much difference, but that Δ|Fp|meet hollow,j for the VPP bike is 

slightly higher than that for the hard tail bike.  

Finally, if the minimum (reverse) effective pedalling force corresponding to the crank 

angle  4 =1373.436° is represented by 
jpF

,4
||


, then the variations of them due to 

hitting the right side of the hollow is determined by 
jpjsteadypjhollowleavep FFF

,,, 4
||||||


 .  

From Table 7.3, one sees that the ranks of the four FS bikes based on the values of 

Δ|Fp|leave hollow,j are the same as that based on those of Δ|Fp|hit hump,j, but the values of 

Δ|Fp|leave hollow,j are slightly higher than the corresponding ones of Δ|Fp|hit hump,j, except 

that of the VPP bike. 
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Figure 7.7 The relationship between pedalling forces and crank angles for each of the 
rider-bike systems passing through its both bumps (a hump and a hollow) 
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Figure 7.8 The relationship between effective pedalling forces and crank angles due to 
each of the rider-bike systems passing (a) over a hump and (b) through a hollow. 
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Table 7.3 Minimum and maximum peak effective pedalling forces and the corresponding “peak” crank angles for each of the five rider-bike 
systems passing through its two bumps 

Types of bike Hard Tail (j=1) Single Pivot (j=2) Horst Link (j=3) Faux Bar (j=4) VPP (j=5) 
Min./max. peak pedalling forces and
corresponding peak crank angles 

|| pF (N)  (deg.) || pF (N)  (deg.) || pF (N)  (deg.) || pF (N)  (deg.) || pF (N)  (deg.) 

jsteadypF
,

(on flat road without bumps) 248.65  240.95  239.81  241.63  239.05  

Min. (reverse) Peak, 
jpF

,1
||   

( 1=299.5°) 
132.91 305.03° 145.52 299.49° 156.50 296.63° 153.43 297.97° 137.80 298.38° 

jhumphitpF
, 

  115.74  95.43  83.31  88.2  101.25  

Max. Peak, 
jpF

,2
||   

( 2=644.792°) 
587.97 

647.80° 
(287.80°)

573.70 
644.55° 

(284.55°)
554.49 

643.61° 
(283.61°) 

569.59 
644.32° 

(284.32°)
574.94 

643.68° 
(283.68°) 

Hump 

jhumpleavepF
, 

  339.32  332.75  314.68  327.96  335.89  

Max. Peak, 
jpF

,3
||   

( 3=1003.158°) 
575.66 

1007.47°
(287.47°)

566.92 
1002.83°
(282.83°)

543.97 
1001.45° 
(281.45°) 

562.48 
1002.45° 
(282.45°)

568.78 
1001.59° 
(281.59°) 

jhollowmeetpF
, 

  327.01  325.97  304.16  320.85  329.73  

Min. (reverse) Peak, 
jpF

,4
||   

( 4=1373.436°) 
125.57 

1383.28°
(303.28)

144.51 
1373.03°
(293.03°)

155.48 
1368.72° 
(288.72°) 

152.28 
1371.03° 
(291.03°)

139.49 
1371.12° 
(291.12°) 

Hollow 

jhollowleavepF
, 

  123.08  96.44  84.33  89.35  99.56  

 i (i=1~4): Average peak crank angle: Summation of five corresponding peak crank angles divided by five 

jpjsteadypjhumphitp FFF
,,,  1

||||||  ; jsteadypjpjhumpleavep FFF ,,,  ||||||
2

  ; 

jsteadypjpjhollowmeetp FFF ,,,  ||||||
3

  ; 
jpjsteadypjhollowleavep FFF

,,,  
4

||||||   (j=1~5 , numberings of bikes)
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7.4 Pedalling Power Developed by the Rider Riding Each of the Five 
Bikes Passing over a Hump and through a Hollow 
 

The relationship between pedalling powers and crank angles from o0 to 
o1440 are shown in Figures 7.9(a) and 7.9(b). The trend is similar to that of 

Figures 7.8(a) and 7.8(b) for the effective pedalling forces. The pedalling powers 

developed by the rider to ride each of the five bikes at four moments corresponding to 

the four “peak” crank angles ( 1  to 4 ) are summarized in Table 7.4, in which, the 

maximum pedalling powers for the five rider-bike systems moving on flat road 

surface (without bumps) shown in Table 6.5 are also listed in the 2nd row of the table 

and denoted by Wsteady, j. 

In the Section 6.3.1, Table 6.5 shows that the power developed by the rider of a hard 

tail bike (Wsteady, 1) is biggest so that the hard tail bike has the highest pedalling 

efficiency. From Table 7.4, one can see that, either hitting the left side of the hump or 

hitting the right side of the hollow, the power required by the hard tail bike (
1,1

W  or 

1,4
W ) is lowest while that of leaving the right end of the hump or meeting the left end 

of the hollow (
1,2

W  or 
1,3

W ) is highest. On the contrary, the power required by the 

horst link bike during hitting the left side of the hump or hitting the right side of the 

hollow (
3,1

W  or 
3,4

W ) is highest, and that of leaving the right end of the hump or 

meeting the left end of the hollow (
3,2

W or 
3,3

W ) is lowest. 

From the difference between Wsteady,j and 
ji

W
,
 (i=1~4, j=1~5), one can see that which 

bike is more suitable for riding on the off-road terrains. Basically, the lower value of 

the variation (ΔWj) is, the less variable the bike is. From Table 7.4, one can see that 

the ranks of the four variations (ΔWhit hump,j, ΔWleave hump,j, ΔWmeet hollow,j, ΔWleave hollow,j) 

from lowest to highest are: horst link, faux bar, single pivot, VPP, hard tail (except 

that the value of ΔWmeet hollow,j for the VPP bike is slightly higher than that for the hard 

tail bike). This rank reveals that both four-bar-linkage bikes are more suitable for the 

rider to ride on the off-road terrains, because the powers developed by the rider are 

not decreased too much comparing with that developed by the rider of the hard tail 

bike. It is noted that, for all cases of Table 7.4, the pedalling powers of single pivot 

bike are the third rank among the five bikes, which means that the performance of 
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single pivot bike is the least variable. 
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Figure 7.9 The relationship between pedalling power and crank angles for each 
rider-bike system passing (a) over a hump and (b) through a hollow. 
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Table 7.4 Minimum and maximum pedalling powers developed by the rider riding each of the five bikes passing through the bumps at the moments 
corresponding to the four “peak” crank angles ( 1  to 4 ) 

— 
Pedalling Power 

(Watts) 
Hard Tail 

(j=1) 
Single Pivot 

(j=2) 
Horst Link 

(j=3) 
Faux Bar 

(j=4) 
VPP 
(j=5) 

Maximum pedalling power in steady 
condition on flat road (without bumps)

Wsteady, j 382.05 369.65 367.79 370.66 366.24 

Minimum 

( 1=299.5°) j
W

,1
 206.99 225.86 242.46 237.86 213.92 

jjsteadyjhumphit WWW
,,, 1

  175.06 143.79 125.33 132.80 152.32 

Maximum 

( 2=644.792°) j
W

,2
 864.16 845.83 813.91 839.67 846.98 

Hump 

jsteadyjjhumpleave WWW ,,, 2
   482.11 476.18 446.12 469.01 480.74 

Maximum 

( 3=1003.158°) j
W

,3
 853.24 836.19 803.01 829.50 838.13 

jsteadyjjhollowmeet WWW ,,, 3
   471.19 466.54 435.22 458.84 471.89 

Minimum 

( 4=1373.436°) j
W

,4
 196.04 224.33 240.85 236.10 216.50 

Hollow 

jjsteadyjhollowleave WWW
,,, 4

  186.01 145.32 126.94 134.56 149.74 
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7.5 Forward Velocities for each of the Rider-Bike Systems of the Five 
Bikes Passing over a Hump and through a Hollow 
 

The relationship between forward velocities (Vx) and crank angles of front wheel are 

shown in Figures 7.10(a) and 7.10(b), and that of rear wheel are shown in Figures 

7.11(a) and 7.11(b). The moving velocities at the moments corresponding to the four 

“peak” crank angles ( 1  to 4 ) due to each of the rider-bike systems passing through 

the bumps (a hump and a hollow) are summarized in Table 7.5, in which the symbol 

jsteadyxV ,||  given in the 3rd row of the table denotes the average speed of each bike 

shown in Table 6.6. Since there exists a small time difference between the front and 

rear wheels hitting the bump, as discussed in Section 5.5.3, the dynamic responses 

between front and rear wheels are also slightly different. The moving velocity of 

either front or rear wheel increases slightly when each bike hits the left side of the 

hump (at  1=299.5°) or hits the right side of the hollow (at  4 =1373.436°), as 

shown in Figures 7.10 and 7.11. The peak values are summarized in Table 7.5 and 

denoted by |Vx|hit hump,j and |Vx|leave hollow,j, respectively. It is seen that the average speed 

of VPP bike is only slightly higher than horst link bike. However, when the VPP bike 

hits the left side of the hump or hits the right side of the hollow, its moving velocities 

(|Vx|hit hump,j and |Vx|leave hollow,j) are only slightly smaller than the corresponding ones of 

hard tail bike (for both front and rear wheels). 

When the value of Vx reaches the minimum due to each bike has left the right end of 

the hump (at  2=644.792°) or met the left end of the hollow (at  3=1003.158°) and 

the front wheel touches the ground, the value of Vx rises to the maximum rapidly, as 

shown in Figures 7.10 and 7.11. The two minimum values of Vx (|Vx|min,1,j and |Vx|min,2,j) 

and the two maximum ones (|Vx|max,1,j and |Vx|max,2,j) are summarized in Table 7.5. 

In the road bike competitions, a good road bike should be able to help the rider 

keeping the forward velocity as high as possible. This is also the requirement for the 

mountain bike competitions. However, when the mountain bikes move in the off-road 

conditions full of obstacles and different terrains, those external factors will result in a 

decreases of their forward velocities Vx, especially during meeting hollows (or bumps).  

Therefore, one another performance index for a bike is its variation of Vx, and the 
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smaller the latter, the better the stability of the bike. 

To observe the variation of Vx for each rider-bike system moving on the uneven road 

surface, the two “minimum values” of Vx (|Vx|min,1,j and |Vx|min,2,j) are subtracted from 

the two “maximum values” of Vx (|Vx|max,1,j and |Vx|max,2,j), respectively, and denoted by 

Δ|Vx|1 and Δ|Vx|2, respectively, as shown in Table 7.5, in which the variation of Vx 

(denoted by xV ) shown in the final row is obtained from Δ|Vx|1 plus Δ|Vx|2, i.e., 

xV = Δ|Vx|1+Δ|Vx|2. 

With the "Variation of Vx" as the performance index, one can find that the variation of 

xV  for the hard tail bike is maximum, while those for all the FS bikes are smaller. 

Among the four FS bikes, the variation of Vx of single pivot bike is highest, and that 

of faux bar bike is slightly higher than that of VPP bike. The horst link bike has the 

smallest variation of Vx. 
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Figure 7.10 The relationship between forward velocities (Vx) and crank angles for 
front wheel due to each rider-bike system passing (a) over a hump and (b) through a 
hollow 
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Figure 7.11 The relationship between forward velocities (Vx) and crank angles for rear 
wheel due to each rider-bike system passing (a) over a hump and (b) through a hollow 



- 210 - 

Table 7.5 Forward velocities (Vx) of front and rear wheels at the moments corresponding to the four “peak” crank angles ( 1  to 4 ) due to each 
rider-bike system passing the two bumps (over a hump and through a hollow) 

Hard Tail (j=1) Single Pivot (j=2) Horst Link (j=3) Faux Bar (j=4) VPP (j=5) 
Conditions 

Velocities 
(m/s) Front Rear Front Rear Front Rear Front Rear Front Rear 

Average speed on flat 
road (no bumps) and 
in steady condition 

jsteadyxV
,

 11.925 11.8795 11.8625 11.874 11.866 

Meet hump |Vx|meet hump,j 12.121 12.093 12.078 12.051 12.049 12.029 12.058 12.037 12.083 12.053 
|Vx|min,1,j 11.258 11.470 11.226 11.447 11.216 11.459 11.215 11.446 11.202 11.438 

Leave hump 
|Vx|max,1,j 12.603 12.514 12.402 12.319 12.323 12.211 12.374 12.303 12.363 12.258 

Δ|Vx|1=|Vx|max,1,,j -| Vx |min,1,j 1.345 1.044 1.176 0.872 1.107 0.752 1.159 0.857 1.161 0.820 
|Vx|min,2,j 11.267 11.480 11.230 11.452 11.219 11.462 11.220 11.450 11.205 11.441 

Meet hollow 
|Vx|max,2,j 12.614 12.525 12.409 12.327 12.330 12.218 12.382 12.311 12.371 12.266 

Δ|Vx|2=|Vx|max,2,,j -| Vx |min,2,j 1.347 1.045 1.179 0.875 1.111 0.756 1.162 0.861 1.166 0.825 
Leave hollow |Vx|leave hollow,j 12.131 12.103 12.080 12.053 12.048 12.028 12.059 12.038 12.081 12.051 

xV = Δ|Vx|1+Δ|Vx|2 2.692 2.089 2.355 1.747 2.218 1.508 2.321 1.718 2.327 1.645 
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7.6 Contact Forces of Front and Rear Wheels for Each of the 
Rider-Bike Systems of the Five Bikes Passing over a Hump and 
through a Hollow 
 

The relationship between contact forces of front and rear wheels and crank angles is 

shown in Figures 7.12(a) and 7.12(b), respectively. Figure 7.12(a) shows that the five 

bikes have the similar responses, and the maximum contact force occurs when the 

bike leaves the right end of the hump and touches the ground at  2=644.792°, or 

meets the left end of the hollow and touches the bottom of the hollow at 

 3=1003.158°. However, it is very difficult to observe the contact force of rear wheel 

shown in Figure 7.12(b). Due to the rear suspension systems, the three FS bikes, 

including single pivot bike, horst link bike, and VPP bikes have dense excitations 

when each of their rear wheels hits the right side of the hollow and returns to the 

ground, but this is not true for the faux bar bike and hard tail bike. The maximum 

contact forces of front and rear wheels appearing in Figures 7.12(a) and 7.12(b) are 

summarized in Table 7.6, it is seen that the contact forces of the four FS bikes are 

bigger that those of hard tail bike. 

Since the single pivot bike, horst link bike, and VPP bike can induce dense excitations 

(of contact forces) on the rear wheels when each of them hits the left side of the 

hollow and returns to the ground, this will activate rear shock absorber to absorb the 

vibration and lead to the bouncing of rear wheel. The dense excitation is most 

predominant on VPP bike, as shown in Figure 7.13. At the crank angle 

o1032 (corresponding to the moment t =12.632sec), the VPP bike has met the left 

end of the hollow and touched the bottom of the hollow, which causes the biggest 

contact force 8081.23N as shown in Table 7.6. The shock absorber is activated and the 

contact force of the rear wheel becomes zero during the interval from t=12.632sec to 

t=12.635sec, and then returns to the ground again, which caused the second maximum 

contact force. The last responses will be attenuated when the rider-bike system 

restores to the steady condition gradually and ended at about t=12.660 sec. 

From Figure 7.12(b) one sees that the response curves in the narrow bands of crank 

angles, o697~6750  and o1057~10350 , are overlapped. This is due to the 

high-frequency oscillations (or vibrations) of the rear suspension system and the effect 
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of dampers on the high-frequency responses is significant so that the oscillations (or 

vibrations) induced by the rider-bike system passing through the bumps are damped 

out rapidly. On the contrary, for the phenomenon of dense excitation of contact forces 

on the rear wheel of VPP bike shown in Figure 7.13, since the effect of damper is 

small on the lower-frequency oscillations, the dynamic responses due to the rider-bike 

system passing through the bumps cannot be damped out in a short time. Therefore, 

the oscillations spread throughout the wide band of the crank angles after passing 

through the bumps. Furthermore, the spacing between any two adjacent responses (or 

signals) becomes smaller gradually because the old responses are overlapped with the 

new ones when the rider-bike system passes through more bumps. It is noted that the 

structure connected with the front fork is much simpler than that of the bike frame 

attached to the rear suspension system, and this should be the reason why the response 

curves appearing in Figure 7.12(a) are much simpler that those shown in Figure 

7.12(b). 
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Figure 7.12 Contact forces of (a) front wheels and (b) rear wheels due to each 
rider-bike system passing both bumps (over a hump and through a hollow) 

 

Table 7.6 Maximum peak contact forces of front and rear wheels of the five bikes due to 
each rider-bike system passing over a hump and through a hollow 

Maximum peak contact forces (N) 
Conditions 

Hard Tail Single Pivot Horst Link Faux Bar VPP 
Front Wheel 

Leave hump 8776.04 9162.66 9012.19 9287.59 9377.30 
Meet hollow 8816.39 9212.81 9079.30 9338.97 9423.49 

Rear Wheel 
Leave hump 7276.57 7373.40 7465.14 7822.68 8099.64 
Meet hollow 7305.11 7377.37 7463.82 7826.62 8081.23 
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Figure 7.13 Bouncing of rear wheel of the VPP bike due to its rider-bike system 
hitting the left side of the hollow 
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7.7 Fork Compressions for each of the Rider-Bike Systems of the Five 
Bikes Passing over a Hump and through a Hollow 
 

The relationship between fork compressions and crank angles due to each rider-bike 

system leaving the right end of the hump (at 2 ) and meeting the left end of the 

hollow (at 3 ) is shown in Figure 7.14. The forks of all five bikes have the similar 

responses during leaving the right end of the hump and meeting the left end of the 

hollow, and the two minimum and maximum fork compressions at the two moments 

corresponding to the “peak” crank angles 2  and 3  are summarized in Table 7.7. 

When each bike leaves the right end of the hump, the fork is loosen, and the fork will 

extend slightly due to gravity, so the minimum fork compressions in Table 7.7 are 

positive, but all fork compressions with positive values are very small (less than 

0.1mm) and can be neglected. Next, the fork has the maximum compression when the 

front wheel leaves the right end of the hump and touches the ground. The situation is 

the same as that each bike meets the left end of the hollow and touches the bottom of 

the hollow. 

The minimum and maximum fork compressions for each rider-bike system leaving 

the right end of the hump (at 2 ) and meeting the left end of the hollow (at 3 ) are 

summarized in Table 7.7, it is similar to Table 7.8 that the fork compression of hard 

tail bike is greater than those of the four FS bikes. Among the four FS bikes, the fork 

compression of single pivot bike is biggest, while that of horst link bike and that of 

faux bar bike are similar. The fork compression of VPP bike is smallest, which is 

slightly lower than that of horst link bike. 
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Figure 7.14 The relationship between the fork compressions and crank angles due to 
each rider-bike system passing over a hump and through a hollow 

 

 

Table 7.7 Minimum and maximum fork compressions for each rider-bike system 
leaving a hump (at 2 ) and meeting a hollow (at 3 ) 

Fork Compressions (mm) 
Conditions 

Hard Tail
Single 
Pivot 

Horst 
Link 

Faux Bar VPP 

Minimum +0.002 +0.011 +0.047 +0.017 +0.023 Leave 
hump *Maximum -14.866 -13.928 -13.408 -13.551 -13.386 

Minimum +0.001 +0.014 +0.050 +0.020 +0.026 Meet 
hollow *Maximum -14.856 -13.902 -13.358 -13.521 -13.357 

* Based on the “absolute” values.  
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7.8 Shock Compressions for each Rider-Bike System Passing over a 
Hump and through a Hollow 
 

The relationship between shock compressions and crank angles is shown in Figure 

7.15. From the figure, one can find the response of rear shock absorber is not too 

much when each rider-bike system hits the left side of the hump or the right side of 

the hollow. It is similar to front fork, the minimum and maximum shock compressions 

happen at the moments the rear wheel hitting the left side of the hump and the right 

side of the hollow, respectively. The two pairs of minimum and maximum 

compressions of four FS bikes are shown in Table 7.8. 

Referring to the discussion of shock compression shown in Section 6.3.4, each 

average shock compression is obtained by the summation of the corresponding 

minimum and maximum compressions dividing by two in Table 7.8. It is seen that the 

trend of the two sets of average shock compressions are the same, and the rank from 

highest to lowest is: VPP, horst link, single pivot, and faux bar. Although the average 

shock compression for VPP bike is highest, its variation is lowest, which means that 

the VPP bike can effectively reduce the vibration when it passes through the obstacles 

and will be more comfortable for its rider. It is noted that, for the VPP bike, its 

variation of shock compression on off-road terrains is opposite to that on flat road 

without bumps (with the highest variation of shock compression). 



- 218 - 

0 180 360 540 720 900 1080 1260 1440
Crank Angle (Deg.)

-24

-22

-20

-18

-16

-14

-12

C
o

m
pr

e
ss

io
n

 (
m

m
)

Shock Compression
Single Pivot

Horst Link

Faux Bar

VPP

 
Figure 7.15 The relationship between the shock compressions and crank angles due to 
each rider-bike system passing over a hump and through a hollow 

 

Table 7.8 Minimum and maximum shock compressions due to each rider-bike system 
leaving a hump and meeting a hollow 

Shock Compressions (mm) 
Conditions 

Hard Tail
Single 
Pivot 

Horst 
Link 

Faux Bar VPP 

*Minimum 14.96 15.69 13.02 18.91 
*Maximum 19.13 20.04 17.79 22.72 

Average 17.045 17.865 15.405 20.815 
Leave 
hump 

Variation 

— 

±2.085 ±2.175 ±2.385 ±1.905 
Minimum 14.82 15.54 12.91 18.70 
Maximum 18.96 19.84 17.63 22.48 
Average 16.89 17.69 15.27 20.59 

Meet 
hollow 

Variation 

— 

±2.07 ±2.15 ±2.36 ±1.89 
*Based on the absolute values. 
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7.9 Variations of Sprocket Distances and Chain Tension Forces due to 
each Rider-Bike System Passing over a Hump and through a Hollow 

 

The relationship between variations of sprocket distances and crank angles, and that 

between chain tension forces and crank angles are shown in Figures 7.16(a) and 

7.16(b), respectively. Although the hard tail bike has no rear suspension, its sprocket 

distance increases 0.42mm when its front wheel hits the left side of the hump or the 

right side of the hollow, and decreases 1.72mm when its front wheel leaves the right 

end of the hump or meets the left end of the hollow. The trends of the horst link bike 

and faux bar bike are similar to that of the hard tail bike. Since the variations of 

sprocket distances for both single pivot bike and VPP bike are bigger, so are their 

chain tension forces. It is noted that the chain tension forces of hard tail bike and horst 

link bike are quite small (less than 10N). From Figures 7.16(a) and 7.16(b), one can 

see that the variations of sprocket distances on faux bar bike are negative, so there 

exist no chain tension forces. 

 



- 220 - 

 

(a)
0 180 360 540 720 900 1080 1260 1440

Crank Angle (Deg.)

-3

-2

-1

0

1

2

3

4

5

6

D
is

ta
nc

e 
(m

m
)

Sprocket Distance and Chain Tension Force
Hard Tail

Single Pivot

Horst Link

Faux Bar

VPP

 
 

(b)
0 180 360 540 720 900 1080 1260 1440

Crank Angle (Deg.)

0

10

20

30

40

50

60

F
or

ce
 (

N
)

 

Figure 7.16 The relationship between (a) sprocket distances and (b) chain tension 
forces and the crank angles due to each rider-bike system passing over a hump and 
through a hollow 
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7.10 Vertical Accelerations at Handlebar and at Seat due to each 
Rider-Bike System Passing over a Hump and through a Hollow 
 

The relationship between vertical accelerations at handlebar and at seat and the crank 

angles are shown in Figures 7.17(a) and 7.17(b), respectively. It is seen that the 1st 

maximum acceleration at handlebar happens at the moment of the front wheel leaving 

the right end of the hump (1st bump) and the 2nd one occurs at that meeting the left end 

of the hollow (2nd bump), while the 1st maximum acceleration at seat happens at the 

moment of the rear wheel leaving the right end of the hump (1st bump) and the 2nd one 

occurs at that hitting the right side of the hollow (2nd bump). Based on Figures 7.17(a) 

and 7.17(b), the maximum accelerations at handlebar and seat are summarized in 

Table 7.9, in which the negative minimum accelerations represent their directions to 

be downward. It is seen that, the average vertical accelerations at handle bar for the 

hard tail bike is smallest, while those of the four FS bikes are much bigger. 

Furthermore, the maximum vertical acceleration at seat of FS bikes are much smaller 

than that of hard tail bike, because the rear suspension systems of the FS bikes can 

significantly reduce the vibrations when each rider-bike system passes through the 

obstacles. Among the four FS bikes, the “instantaneous” vertical acceleration at seat 

of VPP bike is smallest, which indicates that its rear suspension system is efficient for 

reducing the vibrations. The average vertical acceleration at seat is one of the 

important factors to assess the degree of comfort of the riders. Among the four FS 

bikes, the “average” acceleration at seat of the VPP bike is smallest and that of faux 

bar bike is biggest. Although the bobbing effect of the VPP bike is most serious, as 

shown in Section 6.3.6, it is an attractive bike from the point of view of comfort. 
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Figure 7.17 The relationship between the vertical accelerations (a) at handlebar and (b) 
at seat and the crank angles due to each rider-bike system passing over a hump and 
through a hollow 
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Table 7.9 Minimum and maximum vertical (y-) accelerations at handlebar and at seat due to each rider-bike system passing over a hump and 
through a hollow 

Accelerations (m/s2) 
Hard Tail Single Pivot Horst Link Faux Bar VPP Conditions 

Handlebar Seat Handlebar Seat Handlebar Seat Handlebar Seat Handlebar Seat 
Minimum -74.46 -20.65 -33.99 -36.88 -51.35 -32.99 -47.97 -36.30 -33.41 -37.67 
Maximum 195.71 125.28 238.40 12.46 269.34 10.47 260.42 15.94 266.87 7.57 
Average 60.625 52.315 102.205 -12.21 108.995 -11.26 106.225 -10.18 116.73 -17.96 

Leave 
hump 

Variation ±135.085 ±72.965 ±136.195 ±24.67 ±160.345 ±21.73 ±154.195 ±26.12 ±150.14 ±19.71 
Minimum -74.72 -26.49 -33.78 -36.90 -51.32 -33.05 -48.01 -36.30 -33.21 -37.63 
Maximum 197.14 125.78 240.89 12.50 272.89 10.44 263.27 15.90 269.54 7.57 
Average 61.21 49.645 103.555 -12.2 110.785 -11.305 107.63 -10.2 118.165 -15.03 

Meet/leave 
hollow 

Variation ±135.93 ±76.135 ±137.335 ±24.7 ±162.105 ±21.745 ±155.64 ±26.1 ±151.375 ±22.6 
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7.11 Discussion and Conclusion 
 

In this chapter, the dynamic analyses for each of the five rider-bike systems passing 

over a hump and through a hollow are conducted. Discussion and conclusion of the 

analyses are presented in the following. 

 
7.11.1 Dynamic Analysis of Loaded Bike Moving on Flat Road Surface with 
Bumps 
 

In the dynamic analyses of the five rider-bike systems moving on the flat roads with 

bumps in the steady conditions, the dynamic responses of the rider-bike system of the 

hard tail bike passing through a hump and a hollow, respectively, are studied first. 

From the effective pedalling forces shown in Figures 7.2 and 7.3, one can see that the 

two maximum pedalling forces are to happen at the moment of leaving the right end 

of the hump and that of meeting the left end of the hollow, because the instantaneous 

vertical accelerations of the bike at the last two moments are downward and identical 

to the downward gravitational acceleration g. On the contrary, the two minimum 

pedalling forces occur at the moment of hitting the left side of the hump and that of 

hitting the right side of the hollow, because the instantaneous vertical accelerations of 

the bike at the latter two moments are upward and opposite to the downward 

gravitational acceleration g. From the two pairs of maximum and minimum effective 

pedalling forces summarized in Table 7.1, one can see that the maximum and 

minimum effective pedalling forces of passing the hump are not equal to those of 

passing the hollow, because the phase angle of hitting the bump θmeet is different from 

that of leaving the bump θleave. By arranging the time instant for the rider-bike system 

of hard tail bike hitting the left side of the hump to be very close to that leaving the 

right end of the hollow so that θmeetθleave, the numerical results (see Figures 7.4 and 

7.5 and Table 7.2) show that the difference between the maximum pedalling force of 

leaving the right end of the hump and that of meeting the left end of the hollow is only 

ΔFdown=0.52N with slight difference of phase angles Δθdown=2.33°. Similarly, the 

difference between the minimum pedalling force of hitting the left side of the hump 

and that of hitting the right side of the hollow is only ΔFup=0.75N with slight 
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difference of phase angles Δθup=1.56°. From above discussion, one can see that the 

instantaneous crank angle corresponding to the instant for the rider-bike system 

passing through a bump is an important factor significantly influencing the dynamic 

responses of the rider-bike system. 

After testing the rider-bike system of a hard tail bike passing over a hump and through 

a hollow, respectively, the dynamic responses for each of the five rider-bike systems 

(the same as those mentioned in the Section 6.4.2) passing through the flat road 

surface with both a hump and a hollow in the steady conditions are analyzed, in which 

the two bumps for each rider-bike system are arranged in such locations that the “time 

differences” for reaching the steady conditions between the five rider-bike systems are 

as small as possible so that the associated phase angles are close to each other. 

(a) For the effective pedalling forces, when each bike hits the left side of the hump at 

 1=299.5° or hits the right side of the hollow at  4=1373.436°, the corresponding 

pedalling forces decrease to some degree due to the upward vertical acceleration.  

On the contrary, when each bike leaves the right end of the hump at  2=644.792° or 

meets the left end of the hollow at  3=1003.158°, the corresponding pedalling forces 

are greater than normal ones due to the downward vertical acceleration. Among the 

five rider-bike systems, the differences between the minimum (reverse) peak 

pedalling forces or those between maximum ones are small, but one may assess the 

performance of each bike based on the difference between the maximum (or 

minimum) pedalling forces for the bike passing over bumps and the corresponding 

ones for the bike moving on the flat road surface (without bumps) in the steady 

condition (see Δ|Fp|meet hump,j, Δ|Fp|leave hump,j, Δ|Fp|meet hollow,j, and Δ|Fp|leave hollow,j 

summarized in Table 7.3). It is found that the values of the four variations Δ|Fp| of the 

hard tail are biggest due to no rear suspension system [except that the value of 

Δ|Fp|meet hollow,j of VPP bike (329.73N) is slightly bigger than that of hard tail bike 

(327.01N)]. For the four FS bikes, the values of Δ|Fp|X,j at the four peak crank angles 

( 1  to 4 ) of VPP bike are biggest, while those of single pivot bike are second, and 

those of the two four-bar-linkage bikes are lowest. 

(b) For the effective pedalling powers, based on the variations of ΔWmeet hump,j, 
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ΔWleave_hump,j, ΔWmeet hollow,j and ΔWleave hollow,j summarized in Table 7.4, the ranks of the 

five bikes from lowest to highest are: horst link, faux bar, single pivot, VPP, hard tail 

(except that the value of ΔWmeet hollow,j for the VPP bike is slightly higher than that for 

the hard tail bike). Since the higher values of Δ|Fp|X,j and ΔWX,j indicate that the 

rider-bike system will be more unstable during passing through the bumps, the four 

FS bikes are better than the hard tail bike during riding on the off-road terrains. From 

Table 7.4, one sees that the two four-bar-linkage bikes are most stable and the horst 

link bike is slightly better than the faux bar bike. 

(c) For the forward velocities Vx, the variations of Vx (see Δ|Vx|1, Δ|Vx|2, and ΔVx in 

Table 7.5) are used to assess the performance of each bike. Since the lower the 

variations of Δ|Vx|1, Δ|Vx|2, and ΔVx, the better the traction control of the rider-bike 

system during passing through the bumps, the ranks of the five bikes from highest to 

lowest are: hard tail, single pivot, VPP, faux bar, horst link. Therefore, the horst link 

bike is most stable for riding on the off-road terrains. From Table 7.5, one can see that 

the values of Δ|Vx|1 and Δ|Vx|2 of front wheel of faux bar bike are slightly smaller than 

those of VPP bike (0.004m/s), and the values of Δ|Vx|1 and Δ|Vx|2 of rear wheel of 

faux bar bike are larger than those of VPP bike (0.037m/s). Thus, based on the last 

two small differences, the performance of VPP bike is slightly better than that of faux 

bar bike. 

(d) For the contact forces of front and rear wheels, the rank of maximum contact 

forces of “front” wheels from highest to lowest is: VPP, faux bar, single pivot, horst 

link, hard tail, and that of “rear” wheels from highest to lowest is similar (due to the 

effects of the rear suspension systems), only the ranks of horst link and single pivot 

are exchanged. Based on the last two ranks, one can see that the contact force of front 

wheel of hard tail bike is smallest, which is different from that of riding on the flat 

road surface.  In addition, due to the structure of front fork is simpler than that of 

rear suspension systems, the responses of front wheels are simpler than those of rear 

wheels, as shown in Figures 7.12(a) and 7.12(b). Since the configurations of the rear 

suspension systems of single pivot bike, horst link bike, and VPP bike can lead to the 

dense excitation of contact forces on the rear wheel when each bike passes through 

the bumps, and among the three bikes, the dense excitation is most predominant on 
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VPP bike, as shown in Figure 7.13. 

It is noted that the rear wheels of full suspension bikes can follow the rough terrains 

(keep in contact with the ground) better so that the traction control will be increased 

and the loss of velocity will be decreased as shown in [7,8,10,12,19,20,22,30,34]. 

(e) For the fork compressions, the two ranks of maximum fork compressions for each 

of the five rider-bike systems leaving the right end of the hump and meeting the left 

end of the hollow from highest to lowest are: hard tail, single pivot, faux bar, horst 

link, VPP. The differences between maximum fork compressions of the five bikes are 

quite small (with the biggest one to be 1.49 mm). The numerical results show that the 

front fork of each bike can also absorb the vibration during passing through the 

bumps. 

(f) For the shock compressions, the two ranks of average shock compressions for each 

of the four FS rider-bike systems leaving the right end of the hump and meeting the 

left end of the hollow from highest to lowest are: VPP, horst link, single pivot, faux 

bar. Based on the variations of average shock compressions, the rank from highest to 

lowest is: faux bar, horst link, single pivot, VPP. From the last ranks, one can see that 

the average shock compression of VPP bike is highest and its variation is smallest, 

which means that the rear suspension system of VPP bike can absorb the vibration 

when it passes through bumps and will be more comfortable for its rider. In addition, 

the variation of average shock compressions for the VPP bike passing through bumps 

is opposite to that (riding) on flat road surface (with the highest variation of average 

shock compression). 

(g) For the variations of sprocket distances and chain tension forces, the variations of 

sprocket distances of hard tail bike, horst link bike, and faux bar bike are similar and 

very small with the biggest one being about -2.5mm (for faux bar bike), while those of 

single pivot bike and VPP bike are much bigger. Therefore, the chain tension forces of 

single pivot bike and VPP bikes are much bigger than those of hard tail bike and horst 

link bike. It is found that the chain tension forces of faux bar bike are equal to zero 

due to the negative variations of sprocket distances. 

(h) For the vertical accelerations at handlebar and seat, the average vertical 
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acceleration at handlebar of hard tail bike is smallest, while that of the four FS bikes 

are much bigger. However, the average vertical acceleration at seat of the four FS 

bikes are much smaller than that of hard tail bike. This is because the rear suspension 

systems can absorb the vibration when the FS bikes pass through bumps. Among the 

four FS bikes, the average acceleration at seat of VPP bike is smallest, and the 

variation is only slightly bigger than that of horst link bike. Therefore, although the 

rear suspension system of VPP bike can lead to the most serious bobbing effect, it has 

the performance of reducing vibrations during passing through bumps and can provide 

the better comfortable condition for its rider. 

Based on the foregoing discussions, one can see that the four FS bikes can provide a 

more comfortable riding experience than a hard tail bike when they are ridden on the 

off-road terrains. For the purpose of moving fast without significantly decreasing 

velocity, the selection of the four-bar-linkage bikes (either horst link or faux bar) may 

be one of the better choices. However, for the purpose of comfort in the riding 

condition, the VPP bike may be beneficial in this aspect. The performance of single 

pivot bike may be in the middle rank among the four FS bikes. 
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7.11.2 Conclusion 
 

When each of the five rider-bike systems moves on the flat road surface with bumps, 

stable riding conditions of the four FS bikes are better than that of the hard tail bike. 

The two four-bar-linkage bikes can move at higher average velocities with smaller 

variations. The average vertical accelerations at seats of the four FS bikes are much 

smaller than that of hard tail, which confirms that the four FS bikes can provide more 

comfortable condition for the rider riding on the off-road terrains. Among the four FS 

bikes, the VPP bike can provide the most comfortable riding condition for its rider and 

the performance of single pivot bike is in the middle rank. 
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Chapter 8  Conclusion and Future Work 
 

After the extensive studies on static and dynamic characteristics of five types of 

mountain bikes and their riders in the foregoing chapters, this chapter will draw some 

pertinent conclusions and give some viewpoints to the future works. 
 

8.1 Conclusions 
 

From the foregoing analyses and discussions one obtains the following conclusions: 

1. In general, the appropriate match between a rider and his bike is an important 

factor affecting the pedalling efficiency of the bike rider. However, one cannot 

find any information concerning evaluation of appropriate match between a rider 

and his bike in the existing literature, thus, the technique for evaluating the 

pedalling efficiency of a bike rider presented in Chapter 4 should be novel and 

significant. 

2. In the existing reports, the pedalling stroke is assumed to be from top dead centre 

(TDC) to bottom dead centre (BDC) of the crank and the pedalling force is 

assumed to be sinusoidal. However, if the angle between the crank and the rider’s 

lower leg is denoted by α, then, for each half pedalling cycle, its “beginning” is 

located at the instantaneous position with α=180° and its “end” is located at that 

with α=0° as one may see from Chapter 4. In other words, if the crank angle θ 

between TDC of the crank and the last “beginning” of each half pedalling cycle is 

denoted by θ=θ1,U, then the “end” of each half pedalling cycle is given by 

θ180°+θ1,U. Therefore, the formulations of Chapters 5 and 6 in this thesis based 

on the pedalling stroke with crank angles to be from θ1,U to 180°+θ1,U and 

pedalling force to be “Fy=constant” should be closer to the realistic conditions and 

can produce the more accurate results. 

3. The dynamic behaviour for a rider-bike system passing over the bumps are 

complicated.  It has been found that, for a rider-bike system, the “phase angle” 

between the beginning (or end) of each pedalling stroke and the position 
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corresponding to the instant of time for it to meet (or leave) a bump is one of the 

important factors affecting its dynamic responses. Therefore, one must carefully 

arrange the position of each bump for each rider-bike system so that the 

corresponding “phase angles” between different rider-bike systems may be as 

small as possible, then one can easily compare the dynamic behaviours between 

the rider-bike systems passing through the bumps. 

4. Since the oscillations (or vibrations) of the front or the rear suspension system are 

high-frequency and the effect of dampers on the high-frequency responses is 

significant, the oscillations (or vibrations) induced by each rider-bike system 

passing through the bumps are damped out rapidly as one may see from Figure 

6.29. On the contrary, for the low-frequency excitations (of contact forces) on the 

rear wheel of a full suspension bike (such as that shown in Figure 6.30), since the 

effect of damper on the lower-frequency responses is low, the bouncing responses 

due to the rider-bike system passing through the bumps cannot be damped out in a 

short time. Therefore, the oscillations spread throughout the wide band of the 

crank angles after passing through the first bump. Furthermore, the spacing 

between any two adjacent responses (or signals) becomes smaller gradually 

because the old responses are overlapped with the new ones when the rider-bike 

system passes through more bumps. 

5. In this thesis, the numerical models of all rider-bike systems are developed in 

SimMechanics and Matlab, in which, the full suspension bikes are drawn with 

Linkage and AutoCAD so as to obtain the precise dimension of bike frames and 

the dimension of the rider model is measured and obtained from BikeCAD.   

6. For either a road bike or a mountain bike, its mass is much smaller than the mass 

of its rider. Thus, for practical applications, either numerical simulations or field 

experiments should be conducted by using the rider-bike model with the total 

mass of the rider considered. In addition, the influence due to different mass of 

different rider should also be taken into account. 

7. Comparing with its responses on the flat roads, a full-suspension bike (FS bike) 

has the smaller the variations of pedalling powers ΔW and moving velocities Δ|Vx|, 
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bigger contact forces of both front and rear wheels, and smaller vertical 

accelerations at seat on the rough terrains, thus, it can provide more stable and 

comfortable riding conditions than the hard tail bike (HT bike) when it is ridden 

on the off-road terrains. In other words, the advantages of the FS bike are greater 

than those of the HT bike on the rough roads. 

8. Comparing with a FS bike on the flat roads, the HT bike has the higher pedalling 

efficiency and negligible bobbing effect, thus, the hard tail bike may be the good 

choice for the rider riding on the flat terrains. 

9. The rider model, front wheel model, rear wheel model, front fork model, pedalling 

controller, transmission system, and chain tension model of the rider-bike system 

developed in this thesis can be easily modified to simulate other bike models for 

investigating the characteristics of the new bikes. 

10. Comparing with the HT bike, the major drawback of the FS bike is the higher 

bobbing motion and the lower pedalling efficiency due to its rear suspension 

system. Therefore, a better FS bike should have a rear suspension system with a 

versatile mechanism so that one can adjust the effect of its rear suspension system 

to satisfy various requirements. Since, for some riders, they require a bike with 

various bobbing motions and pedalling efficiencies for some special purposes 

(such as health or training), the models of the rider-bike systems developed and 

the approaches presented in this thesis should be significant to provide the 

relevant information for designing a versatile FS bike. 

11. In engineering, besides the “quantitative” analysis, one also requires the 

information regarding the results of the “qualitative” analysis. Thus, the 

reasonable results presented in this thesis will be also useful from the viewpoint of 

“qualitative” analysis. 
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8.2 Future Works 
 

Referring to the mathematical models of the five rider-bike systems developed in this 

thesis, the following works can be continued in the future: 

(a) Study the behaviours of the five rider-bike systems moving uphill and downhill.  

Since the theories and equations for pedalling motions developed in this thesis are 

based on the bike moving on the horizontal surface, one requires to modify the 

formulations concerned for accommodating the above-mentioned study on the bike in 

uphill or downhill conditions. It is found that the results of References [9,11,17] may 

be helpful for the validation of this future work. 

(b) Study the quasi-static and dynamic responses of the five rider-bike systems by 

using their 3-dimensional (3D) models. Since the 3D model of a rider-bike system is 

closer to its real configuration, the numerical results should be more accurate. It is 

obvious that one will encounter many challenges, because more degrees of freedoms 

for each rider-bike system must be considered and more problems associated with 

balancing controls must be solved. The study of Cangley et al. [39] and those of 

Schwab et al. [79~84] may be relevant to this future work. 

(c) Study the dynamic responses of the five rider-bike systems by using the finite 

element method (FEM). The FEM is one of the powerful tools for solving the static 

and dynamic problems of various complicated structures. However, for the mountain 

bikes, the information regarding use of the FEM to perform their static and dynamic 

analyses is rare, thus, the author has devoted himself to this aspect for some time [85]. 

t is believed this will be also a good work worthy of future study. The experimental 

results concerning the structural vibrations of the mountain bikes presented by Levy 

and Smith [28] and Champoux et al. [30] may be useful for the validations of the last 

study. 

(d) In the existing researches, only one study investigated the rider-bike system with 

standing posture [77]. Therefore, modelling standing riding with and without 

pedalling motion would be worth studying. 

(e) For the mathematical model and dynamic analyses investigated in this thesis, it 
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would be worth doing a study to analyze a simple bike model with different riders to 

see how much different riders affect the results obtained. 
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Appendix A  

Derivations of Equations for Chapter 4 
 

A.1 Determination of Critical Positions of Rod1, Rod2 and Rod3 
 

This section determines the critical angles of Rod1, Rod2 and Rod3 for the following 

critical positions of Rod3 and those of Rod 1: (i) The upper leg (Rod3) is in its 

uppermost position; (ii) The upper leg (Rod3) is in its lowermost position; (iii) The 

crank (Rod1) is in its rightward position (with θ1=θ1,B=90°); (iv) The crank (Rod1) is 

in its downward position (with θ1=θ1,C=180°).  

 

A.1.1 Critical Angles when Upper Leg (Rod3) in its Uppermost Position 

 

From Figure 4.2 one sees that Rod3 (upper leg) is in its uppermost position when the 

angle between Rod1 (crank) and Rod2 (lower leg) are equal to π(=180°) (i.e., on a 

straight line). Thus, from the figure one sees that 

cUU yLLL  ,33,121 sincos)(            (A.1) 

cUU xLLL  ,121,33 sin)(cos            (A.2) 

or 

cUU yLL  ,33,112 sincos             (A.1)’ 

cUU xLL  ,112,33 sincos             (A.2)’ 

where 

2112 LLL                (A.3) 

It is noted that the subscripts “U” of θ1 and θ3 refer to the “uppermost” position of 

Rod3. 

Eliminating θ1,U from Equations (A.1)’ and (A.2)’ and then re-arranging the equations, 

one obtains 

0)(sin2sin)( 22
1,31,3

222  cUcUcc xCyCyx        (A.4) 



 - 244 -

where 

)2()( 3
2
12

2
3

22
1 LLLyxC cc            (A.5) 

The solution of Equation (A.4) is given by 

2
122

22
1

222
11

,3

))(()(
sin s

yx

xCyxyCyC

cc

ccccc
U 




       (A.6) 

Thus, 

1
1

,3 sin sU
  or 2

1
,3 sin sU

            (A.7a,b) 

From Figure 4.2 one sees that the value of θ3,U is approximately equal to 7.5° for the 

initial configuration and the computer output reveals that the selection of negative 

sign (-) in Equation (A.6) will lead to θ3,U7.5°, thus, Equation (A.7b) must be used 

to determine the value of θ3,U. [The selection of positive sign (+) in Equation (A.6) 

will lead to θ3,U34.35°, which is not consistent with Figure 4.2.] 

From Equation (A.1)’, one obtains 

12,33,1 )sin(cos LLy UcU             (A.8) 

Thus, the (critical) angle between Rod1 and the upward y-axis is given by 

])sin([cos 12,33
1

,1 LLy UcU              (A.9) 

From Figure 4.2 one sees that the (critical) angle between Rod2 and x-axis is given by 

UU ,12
1

,2                  (A.10) 

From Figure 4.1 one sees that the angle between Rod1 and Rod2 is given by 

2121 27090360              (A.11) 

For the special case studied in this subsection, from Figure 4.2 and Equation (A.10) 

one sees that  

o
UU 902

1
,1,2                 (A.12) 

Substitution of the last equation into Equation (A.11) leads to 

ooo
UU

o 18090270)(270 ,2,1            (A.13) 

This agrees with the actual situation, because Rod1 and Rod 2 are on a straight line 
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when the rider’s right (or left) upper leg is in its uppermost position as shown in 

Figure 4.2. 
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A.1.2 Critical Angles when Upper Leg (Rod3) in its Lowermost Position 

 

From Figure 4.3 one sees that upper leg (Rod3) is in its lowermost position when the 

path of Joint 1 of Rod1 is tangential to the path of Joint 1 of Rod2 with centre L' on 

path of Joint 2 and radius to be L2. If the tangential point between the 

above-mentioned two paths (arcs) is denoted by L, then LL  must pass through the 

centre "O" of the circle of crank pin (i.e., bottom bracket) because the radius of the 

circle must be perpendicular to the tangential line at point L. Where the symbol LL  

denotes the line connecting points L' and L. 

From Figure 4.3 one sees that  

MNSMPNSP                 (A.14) 

)( LQLPPRPQPRQR                (A.15) 

Thus, 

2122,33 sinsinsin  LyLL cL            (A.16a) 

)coscos(cos 22,3321  LLxL Lc               (A.16b) 

It is similar to Equations (A.1)’ and (A.2)’ that eliminating θ2 from Equations (A.16a) 

and (A.16b) and then performing some mathematical manipulations, one obtains 

0)(sin2sin)( 22
2,32,3

222  cLcLcc xEEyyx         (A.17) 

where 

)2(])([ 3
2

12
2
3

22
2 LLLLyxE cc            (A.18) 

The solution of Equation (A.17) is given by 

2
122

22
2

222
22

,3

))(()(
sin s

yx

xEyxEyEy

cc

ccccc
L 




        (A.19) 

Thus, the critical angle of Rod3 when it is in its “lowermost” position is given by 

1
1

,3 sin sL
  or 2

1
,3 sin sL

           (A.20a,b) 

From Figure 4.3 one sees that the value of θ3,L is approximately equal to π/3(60°) 

for the current configuration and the computer output indicates that the selection of 
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negative sign (-) in Equation (A.19) leads to θ3,Lπ/3(60°). Thus, Equation (A.20b) 

must be used to calculate the value of θ3,L. [The selection of positive sign (+) in 

Equation (A.19) leads to θ3,L85.18°, which is not consistent with Figure 4.3.] 

From Equation. (A.16a) one obtains 

)()sin(sin 12,332 LLLy Lc             (A.21) 

Thus, the angle of Rod2 corresponding to the lowermost position of Rod3 is given by 

])()sin([sin 12,33
1

,22 LLLy LcL               (A.22) 

From Figure 4.3, one sees that the angle between Rod1 and upward y-axis is given by 

22,1,1 5.1)5.0(   LL          (A.23) 

Substituting Equation (A.23) into Equation (A.11) leads to 

0)270(270270 2221   ooo         (A.24) 

It is obvious that the last result agrees with the actual situation appearing in Figure 4.3 

where Rod1 and Rod2 overlap each other. 
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A.1.3 Critical Angles when Crank (Rod1) in Rightward Position (θ1=θ1,B=90°) 

 

When Rod1 is in its horizontal position with Joint 1 at point B and θ1=θ1,B=90° as 

shown in Figure 4.4, one has 

PMSPSM  , BRQRPQBP         (A.25a,b) 

Thus, 

22,33 sinsin  LLy Bc  , 221,33 coscos  LLxL cB     (A.26a,b) 

Eliminating θ2 from Equations (A.26a) and (A.26b), and then manipulating the 

resulting expression mathematically, one obtains 

0)(sin2sin)( 2
3

2
3,33,3

222
3  CDyDyC BcBc        (A.27) 

where 

13 LxC c  , )2()( 3
2
2

2
3

22
33 LLLyCD c        (A.28a,b) 

The solution of Equation (A.27) is given by 

2
122

3

2
3

2
3

22
3

2
33

,3 )(

))(()(
sin s

yC

CDyCyDyD

c

ccc
B 




      (A.29) 

Thus, 

1
1

,3 sin sB
  or 2

1
,3 sin sB

          (A.30a,b) 

From Figure 4.4 one sees that the value of θ3,B is approximately equal to 25° for the 

current configuration and the computer output indicates that the selection of negative 

sign (-) in Equation (A.29) will lead to θ3,B25°. Thus, Equation (A.30b) must be 

used to determine the critical value of θ3,B corresponding to the horizontal position of 

Rod1. [The selection of positive sign (+) in Equation (A.29) will lead to θ3,B81.13°, 

which is not consistent with Figure 4.4.] 

From Equation (A.26a), one obtains 

2,332 )sin(sin LLy Bc               (A.31) 

Thus, when the crank (Rod1) is in the horizontal position with Joint 1 at point B and 

θ1=θ1,B=90°, the angle between Rod2 and x-axis is given by 

])sin([sin 2,33
1

,22 LLy BcB              (A.32) 
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From Figure 4.4 one sees that the angle between Rod1 and Rod 2 is given by 

21270   o  

which agrees with Equation (A.11). 
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A.1.4 Critical Angles when Crank (Rod1) in Downward Position (θ1=θ1,C=180°) 

 

When Rod1 is in vertical position with Joint 1 at point C and θ1=θ1,C=180° as shown 

in Figure 4.5, one has 

NMPNSPSM  , CQPQCP          (A.33a,b) 

Thus, 

122,33 sinsin LLLy Cc   , 22,33 coscos  LxL cB       (A.34a,b) 

Eliminating θ2 from Equations (A.34a) and (A.34b), and conducting some 

mathematical operations of the resulting expression produce 

0)(sin2sin)( 22
4,344,3

22
4

2  cCCc xDDCCx        (A.35) 

where 

14 LyC c  , )2()( 3
2
2

2
3

2
4

2
4 LLLCxD c        (A.36a,b) 

The solution of Equation (A.35) is given by 

2
12

4
2

22
4

2
4

22
4444

,3 )(

))(()(
sin s

Cx

xDCxDCDC

c

cc
C 




      (A.37) 

Thus, 

1
1

,3 sin sC
  or 2

1
,3 sin sC

          (A.38a,b) 

Since Figure 4.5 reveals that the value of θ3,C is approximately equal to 60° and the 

selection of negative sign (-) in Equation (A.37) will lead to θ3,C60° as one may see 

from the computer output, Equation (A.38b) must be used to determine the critical 

value of θ3,C. [The selection of positive sign (+) in Equation (A.37) will lead to 

θ3,C77.74°, which is not consistent with Figure 4.5.] 

From Equations (A.34a) and (A.36a), one obtains 

2,3342 )sin(sin LLC C              (A.39) 

Thus, 

])sin([sin 2,334
1

,22 LLC CC              (A.40) 

From Figure 4.5 one sees that the angle between Rod1 and Rod 2 is given by 
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290   o                (A.41) 

which agrees with the following result obtained from Equation (A.11) by substituting 

the value of θ1=θ1,C=180° (see Figure 4.5) 

22
0

21 90180270270   ooo         (A.42) 
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A.2 Positions of Rod1 and Rod2 Associated with any Specified 
Positions of Rod3 
 

This section determines the instantaneous positions of Rod1 and Rod2 corresponding 

to the positions of Rod3, θ3(t), in the following three intervals: (i) θ3,U θ3(t)<θ3,B, (ii) 

θ3,B θ3(t)<θ3,C and (iii) θ3,C θ3(t)<θ3,L. 

 

A.2.1 Positions of Rod1 and Rod2 Associated with θ3,Uθ3(t)<θ3,B 

 

When upper leg (Rod3) is in the arbitrary position within the interval θ3,U θ3(t)<θ3,B, 

the position of crank (Rod1) must be in the interval θ1,U θ1(t)<0.5π as shown in 

Figure 4.6. 

From Figure 4.6 one obtains 

MNPMSPSN               (A.43a) 

RTQRPQPT               (A.43b) 

Thus, 

112233 cossinsin  LLLyc            (A.44a) 

221133 cossincos  LLxL c            (A.44b) 

Therefore, if the position of Rod3 (with angle θ3) is given, then the corresponding 

positions of Rod1 and Rod2 (with angles θ1 and θ2) can be determined as follows: 

Eliminating θ2 from Equations (A.44a) and (A.44b) and then performing some 

mathematical operations, one obtains 

0)(sin2sin)( 2
5

2
51551

22
5

2
5  CEDEDC          (A.45) 

where 

335 sinLyC c  , 335 cosLxD c  , )2()( 1
2
2

2
1

2
5

2
55 LLLDCE   

               (A.46a,b,c) 

The solution of Equation (A.45) is given by 
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2
12

5
2
5

2
5

2
5

2
5

2
5

2
5555

1 )(

))(()(
sin s

DC

CEDCDEDE





        (A.47) 

Thus, 

1
1

1 sin s  or 2
1

1 sin s          (A.48a,b) 

Since the value of θ1 must be in the interval θ1,U θ1(t)<0.5π and the selection of 

positive sign (+) in Equation (A.47) will lead to the desired value of θ1, Equation 

(A.48a) is correct for the present case. [Numerical example indicates that selection of 

negative sign (-) in Equation (A.47) will lead the value θ1(t) outside the interval 

θ1,U θ1(t)<0.5π.] 

From Equations (A.44a) and (A.46a), one obtains 

21152 )cos(sin LLC              (A.49) 

Thus, 

])cos([sin 2115
1

2 LLC              (A.50) 

From Figure 4.6 one sees that the angle between Rod1 and Rod 2 is given by 

21270   oOVT  

The last result agrees with that obtained from Equation (A.11). 
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A.2.2 Positions of Rod1 and Rod2 Associated with θ3,Bθ3(t)<θ3,C 

 

When upper leg (Rod3) is in the arbitrary position within the interval θ3,B θ3(t)<θ3,C, 

the position of crank (Rod1) must be in the interval 0.5π θ1(t)<π as shown in Figure 

4.7. In such a case, from the figure one sees that 

MNPNSPSM              (A.51a) 

RTQRPQPT              (A.51b) 

Thus, 

112233 sinsinsin   LLLyc          (A.52a) 

221133 coscoscos  LLxL c           (A.52b) 

Therefore, if the value of θ3 is given, then the corresponding values of θ1 and θ2 can 

be determined as follows: 

Eliminating θ2 from Equations (A.52a) and (A.52b), and then conducting some 

mathematical operations will lead to 

0)(cos2cos)( 2
5

2
51551

22
5

2
5  CEDEDC         (A.53) 

Where C5, D5 and E5 take the same forms as those given by Equations (A.46a,b,c), 

i.e., 

335 sinLyC c  , 335 cosLxD c         (A.54a,b) 

)2()( 1
2
2

2
1

2
5

2
55 LLLDCE            (A.54c) 

The solution of Equation (A.53) is given by 

2
12

5
2
5

2
5

2
5

2
5

2
5

2
5555

1 )(

))(()(
cos s

DC

CEDCDEDE





       (A.55) 

Thus, 

1
1

1 cos s  or 2
1

1 cos s           (A.56a,b) 

Since the correct position of Rod1 must be in the interval 0.5π  θ1(t)<π and 

θ1=0.5π+θ1' as one may see from Figure 4.7, the value of θ1' must be 0 θ1'(t) 0.5π.  

From the computer output one finds that the selection of positive sign (+) in Equation 
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(A.55) will lead to the desired result and numerical example indicates that selection of 

negative sign (-) in Equation (A.55) will lead the value θ1(t) outside the interval 

0.5π θ1(t)<π, thus, Equation (A.56a) must be used to calculate the value of θ1' and 

the corresponding position of Rod1 is given by 

11 5.0                  (A.57) 

Now, from Equations (A.52a) and (A.54a), one obtains 

21152 )sin(sin LLC               (A.58) 

Thus, 

])sin([sin 2115
1

2 LLC               (A.59) 

From Figure 4.7 one sees that the angle between Rod1 and Rod 2 is given by 

21270   oOVT  

The above equation is identical to Equation (A.11). 
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A.2.3 Positions of Rod1 and Rod2 Associated with θ3,Cθ3(t)<θ3,L 

 

When the upper leg (Rod3) is in the arbitrary position GS  within the interval 

θ3,C θ3(t)<θ3,L, the position of crank (Rod1) must be in the interval π θ1(t)<θ1,L as 

shown in Figure 4.8 denoted by OG . In such a case, from the figure one sees that 

MNPNSPSM  , GQQRPRGP  )(        (A.60a,b) 

Thus, 

112233 cossinsin   LLLyc           (A.61a) 

221133 cos)sin(cos  LLxL c            (A.61b) 

Eliminating θ2 from the above two equations and manipulating the resulting 

expression mathematically, one obtains 

0)(sin2sin)( 2
6

2
61661

22
6

2
6  CEEDDC          (A.62) 

where 

336 sinLyC c  , 336 cosLxD c  ,        (A.63a,b) 

)2()( 1
2
2

2
1

2
6

2
66 LLLDCE            (A.63c) 

The solution of Equation (A.62) is given by 

2
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6
2
6

2
6

2
6

2
6

2
6

2
6666

1 )(

))(()(
sin s

DC

CEDCEDED





      (A.64) 

Thus, 

1
1

1 sin s  or 2
1

1 sin s          (A.65a,b) 

Since the correct position of Rod1 must be in the interval π  θ1(t)  θ1,L and 

LL ,1,1    as one may see from Figure 4.3, the value of θ1' must be 0 θ1'(t) L,1  . 

From the computer output one finds that the selection of positive sign (+) in Equation 

(A.64) will lead to the desired result and Numerical example indicates that selection 

of negative sign (-) in Equation (A.64) will lead the value θ1(t) outside the interval 

π θ1(t) θ1,L, thus, Equation (A.65a) must be used to calculate the value of θ1' and the 

corresponding position of Rod1 is given by 
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11                   (A.66) 

Furthermore, from Equations (A.61a) and (A.63a), one obtains 

26112 )cos(sin LCL                (A.67) 

Thus, 

])cos([sin 2611
1

2 LCL                (A.68) 

If the angle between +y-axis and Rod2 is denoted by β, then Figure 4.8 indicates that 

the angle between Rod2 and x-axis is given by 

  5.02                 (A.69) 

Introducing the values of θ1 and θ2 given by Equations (A.66) and (A.69) into 

Equation (A.11) produces 

1121 )5.0()(5.1270   o        (A.70) 

The above value of α agrees with the actual situation as shown in Figure 4.8. 
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A.3 Positions of Rod2 and Rod3 Associated with any Specified 
Positions of Rod1 
 

This section determines the angles of Rod2 and Rod3 corresponding to the (given) 

prescribed angle of Rod1 at any instant of time t, θ1(t), within the following three 

intervals: (i) θ1,U θ1(t)<0.5π, (ii) 0.5π θ1(t)<π and (iii) π θ1(t)<θ1,L. 

 

A.3.1 Positions of Rod2 and Rod3 Associated with  5.0)(1,1  tU  

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.6. 

From that figure, one obtains 

112233 cossinsin  LLLyc            (A.71a) 

221133 cossincos  LLxL c            (A.71b) 

The above two equations are identical to Equations (A.44a) and (A.44b), but the given 

angle is θ1 (of Rod1) instead of θ3 (of Rod3). 

Eliminating θ2 from Equations (A.71a,b) and considering θ1 as the given parameter, 

one obtains an equation for the unknown angle θ3 

0)(sin2sin)( 2
5

2
53553

22
5

2
5  DEECDC        (A.72) 

where 

115 cosLyC c  , 115 sinLxD c         (A.73a,b) 

)2()( 3
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2
3

2
5

2
55 LLLDCE           (A.73c) 

The solution of Equation (A.72) is given by 
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3 )(

))(()(
sin s

DC

DEDCECEC





     (A.74) 

Thus, 

1
1

3 sin s  or 2
1

3 sin s           (A.75a,b) 
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From the previous sections one sees that the value of θ3 must be in the interval of 

BU t ,33,3 )(    for the case with  5.0)(1,1  tU . Since the selection of 

negative sign (-) in Equation (A.74) will lead to the desired result, Equation (A.75b) is 

correct for the present case. 

Now, from Equations (A.71a) and (A.73a), one obtains 

23352 )sin(sin LLC                (A.76) 

Thus, 

])sin([sin 2335
1

2 LLC                (A.77) 

and the angle between Rod1 and Rod 2 is given by Equation (A.11), i.e., 

21270   oOVT  
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A.3.2 Positions of Rod2 and Rod3 Associated with   )(5.0 1 t  

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.7. It 

is obvious that the relevant equations are the same as Equations (A.52a) and (A.52b), 

i.e., 

112233 sinsinsin   LLLyc           (A.78a) 

221133 coscoscos  LLxL c            (A.78b) 

Eliminating θ2 from Equations( A.78a,b) and considering 1   as the given parameter, 

one has 

0)(cos2cos)( 2
5

2
53553

22
5

2
5  CEEDDC       (A.79) 

where 

115 sin  LyC c , 115 cos  LxD c        (A.80a,b) 

)2()( 3
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2
55 LLLDCE           (A.80c) 

The solution of Equation (A.79) is given by 
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2
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3 )(

))(()(
cos s

DC

CEDCEDED





     (A.81) 

Thus, 

1
1

3 cos s  or 2
1

3 cos s          (A.82a,b) 

From the previous sections one sees that the value of θ3 must be in the interval of 

CB t ,33,3 )(    when   )(5.0 1 t . Since the selection of positive sign (+) in 

Equation (A.81) will lead to the desired result, Equation (A.82a) is correct for the 

present case. 

From Equations (A.78a) and (A.80a), one obtains 

23352 )sin(sin LLC                 (A.83) 

Thus, 

])sin([sin 2335
1

2 LLC                 (A.84) 
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As one may see from Figure 4.7, the angle between Rod1 and positive y-axis is given 

by 

11 5.0                    (A.85) 

and the angle between Rod1 and Rod2 is given by 

21270   o  
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A.3.3 Positions of Rod2 and Rod3 Associated with Lt ,11 )(    

 

For the current case, the configuration of the crank (Rod1), the rider’s right (or left) 

lower leg (Rod2) and his upper leg (Rod3) is the same as that shown in Figure 4.8, 

thus, the relevant equations are the same as Equations (A.61a) and (A.61b), i.e., 

112233 cossinsin   LLLyc            (A.86a) 

221133 cos)sin(cos  LLxL c             (A.86b) 

Eliminating θ2 from Equations (A.86a,b) and considering 1   as the given parameter, 

one has 

0)(cos2cos)( 2
6

2
63663

22
6

2
6  CEEDDC         (A.87) 

where 

116 cos  LyC c  , 116 sin  LxD c          (A.88a,b) 

)2()( 3
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2
66 LLLDCE             (A.88c) 

The solution of Equation (A.87) is given by 
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3 )(

))(()(
cos s

DC

CEDCEDED





     (A.89) 

Thus, 

1
1

3 cos s  or 2
1

3 cos s           (A.90a,b) 

From the previous sections one sees that the value of θ3 must be in the interval of 

LC t ,33,3 )(    when Lt ,11 )(   . Since the selection of positive sign (+) in 

Equation (A.89) will lead to the desired result, Equation (A.90a) is correct for the 

present case. 

From Equations (A.86a) and (A.88a), one obtains 

23362 )sin(sin LLC               (A.91) 

Thus, 

])sin([sin 2336
1

2 LLC               (A.92) 
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From Figure 4.8 one sees that the angle between Rod1 and positive y-axis is given by 

11                  (A.93) 

Furthermore, if the angle between Rod2 and positive y-axis is represented by β, then 

the angle between Rod2 and x-axis is given by 

  5.02                (A.94) 

Introducing the values of θ1 and θ2 given by Equations (A.93) and (A.94) into 

Equation (A.11), one has 

1121 )5.0()(5.15.1          (A.95) 

The last result agrees with that appearing in Figure 4.8. 
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Appendix B  

Theory of Simpson Rule 
 

In order to find the area under the curve )(xf  vs. x  as shown in Figure B.1, the 

“3-point” curve segment passing through the three points 1i , i  and 1i  is 

represented by the “quadratic” equation 

2)( cxbxaxf                 (B.1) 

or  

2)( xcxbaxf               (B.2) 

with 

1 ixxx               (B.3) 

Furthermore, if the ordinates of the three points, 1i , i  and 1i , are represented 

by 1if , if  and 1if , respectively, then from Figure B.1 one sees that 

 

 
Figure B. 1 The “3-point” curve segment passing through the three points, 1i , i  
and 1i , is represented by the “quadratic” equation 2)( cxbxaxf  or 

2)( xcxbaxf   with 1 ixxx . 


1if

if
1if

x

2)(or  xcxbaxf 

1 ixxx

)(xf

0 ix
1ix 1ix

i1i 1i

2)( cxbxaxf 

hh

1 ixxx0

)(xf


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aff i  )0(1  (at 0x )            (B.4a) 

chbhahffi
2)(    (at hx  )          (B.4b) 

chbhahffi
2

1 42)2(     (at hx 2 )         (B.4c) 

where h is the spacing (in x-direction) between points 1i  and i , which is equal to 

that between points i and 1i , as one may see from Figure B.1. 

From Equation (B.4a) one obtains 

1 ifa                  (B.5a) 

From Equations (B.4b) and ( B.4c) one has 

chaff ii
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1 22    
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c iiiii  




             (B.5b) 

Substituting the values of a  and c  given by Equations (B.5a,b) into Equation 

(B.4b) produces 
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b  (B.5c) 

From Figure B.1 one sees that the area under the “3-point” curve segment passing 

through the three points, 1i , i  and 1i , is given by 
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   (B.6) 

Substituting the values of a , b  and c  by Equations (B.5a,b,c) into Equation (B.6) 

gives 
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( B.7) 

Which is the formula for obtaining the area under the “3-point” curve segment passing 
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through the three points, 1i , i  and 1i , and consisting of two adjacent 

“identical” spacings as shown in Figure B.1 and is the basic theory for Simpson rule. 

It is noted that the spacing (in the x-direction) h between points 1i  and i  must be 

equal to that between points i  and 1i . 
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Appendix C  

 

Matrices for Mass Moments of Inertias (Inertia 
Tensors) 
 

In order to develop the mathematical models in SimMechanics, the masses and inertia 

tensors of every rigid body must be defined. Inertia tensor here means the matrix for 

mass moment of inertia with unit 2mkg  . Generally, it takes the form 



















zzzyzx

yzyyyx

xzxyxx

III

III

III

I              (C.1) 

Where x, y and z are the coordinate axes passing through the centroid of the rigid body, 

and the non-diagonal elements in Equation (C.1) are equal to 0 if the three axes are 

the principal axes. Since the values of the diagonal elements, Ixx, Iyy, and Izz, have 

something to do with the configuration (or shape) of the rigid body, they must be 

determined carefully. 

Several kinds of inertia tensors are required for developing various rider-bike system 

models in SimMechanics. For the bike models, most of the main frame tubes are the 

thick-walled cylindrical tubes and some of them are the solid rods. The front and rear 

wheels are modelled as the knife-edged circular disc (Euler disc) [39,47]. For the rider 

model, the head is modelled as a circular disc, and other muscular parts are modelled 

as the solid rods. 

From [74] and [75], one can obtain the mass moments of inertias for all the 

above-mentioned rigid bodies. For simplicity, in this study, it is assumed that the 

centre of gravity (CG) of each rigid body is identical with its centroid. 

For a thin solid rod with length l (m) and mass m (kg) as shown in Figure C.1, the 

matrix for its mass moments of inertias about the centroid coordinate axes xyz is given 

by 
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Figure C. 1 The reference coordinate axes zyx  and the centroid ones xyz for a thin 
solid rod with length l, mass m and centroid C. 

 

For a hollow circular cylinder with length l, mass m, inner radius ri and outer radius ro 

as shown in Figure C.2, the matrix for its mass moments of inertias about the centroid 

coordinate axes xyz is given by 
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Figure C. 2 The reference coordinate axes zyx  and the centroid ones xyz for a 
hollow circular cylinder with length l, inner radius ri , outer radius ro and centroid C. 

 

For a solid disc with radius r and mass m as shown in Figure C.3, the matrix for its 

mass moments of inertias about the centroid coordinate axes xyz is given by 
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Figure C. 3 A solid disc with radius r, mass m and centroid C 

 

For the muscular parts of a rider model, including shanks, thighs, torso, upper and 

lower arms, the inertia tensor is modified from Equation (C.2) and takes the form 
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By adding the mass moment of inertia about x-axis, Ixx=ml2/(8×12), given in Equation 

(C.5), the shape of a solid rod shown in Figure C.1 will be similar to an ellipsoid and 

can represent the muscular part better. In other words, the only difference between 

Equations (C.2) and (C.5) is the value of xxI . 

Based on Equations (C.1)-(C.5), various bike models and the rider models can be 

developed in SimMechanics as one may see from Chapter 5. 
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Appendix D  

Theoretical Analysis for Parameter Transmi- 
ssion between Sprockets 
  

If the radii of the front and rear sprockets are denoted by rf and rr, respectively, and 

the corresponding angular velocities by ωf and ωr, respectively, then, the tangential 

velocity of the chain is given by (see Figure D.1) 

rrfft rrV                (D.1) 

Thus, 

f
r

f
r r

r
 

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


               (D.2) 

If the torque applied on the front sprocket is Tf(t), then the force in the chain is 

determined by 

f

f
f r

tT
tF

)(
)(                (D.3) 

The force equilibrium in the chain requires that Fr(t)= Ff(t), thus, 

fffr rtTtFtF )()()(              (D.4) 

Therefore, the torque applied on the rear sprocket is given by 
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               (D.5) 

Since the power of a rotating shaft is given by P=Tω, the power developed by the rear 

sprocket shaft is determined by 
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
           (D.6) 

In Equation (D.6), Tr and ωr are given by Equations. (D.5) and (D.2), respectively. 
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Figure D. 1 Determination of torque transmitted from the front sprocket to the rear 
sprocket 

 

From Equation (D.6) one sees that Pr≡Pf, this is correct if the energy loss is neglected. 

If the radius of front sprocket, rf, is 4 times of the radius of the rear sprocket, rr, that is 

to say rr/rf=1/4=0.25, then from Equation (D.5) one obtains 

)(25.0)()()()( tTtTrrrtFtT fffrrrr             (D.7) 

In other words, at any time the torque of the rear sprocket is only 0.25 of that of the 

front sprocket. However, because the angular velocity of the rear sprocket, ωr, is 4 

times of that of the front sprocket, ωf, as one may see from Equation (D.2), the power 

of the rear sprocket is equal to that of the front sprocket. 

For the case of rr/rf=1/4=0.25, Figure D.2 shows the relationship between the external 

torque on the front sprocket Tf(t) (denoted by the solid line, ━━) and that on the rear 

sprocket Tr(t) (denoted by the dotted line, ………).  It is seen that at the same time t, 

one has 

)(tTr )(25.04)( tTtT ff                (D.5)’ 

)(tr )(4 tf                 (D.8) 

From Equation (D.2) one has 
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Therefore, for the case of rf/rr=4, Equation (D.9) reduces to Equation (D.8). 
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Figure D. 2 Time histories of external torques: if rf/rr=4, then at the same time t, the 
torque on the rear sprocket is given by Tr(t)=Tf(t)/4=0.25Tf(t) with rotating angle 
θr(t)=4θf(t). 

 

If the external torque Tr(t) on the rear sprocket given by Equation (D.5) can be 

transformed into external force Fx(t) on the rear wheel (or on the rear axle) by using 

the next equation 

wrx RtTtF )()(                 (D.10) 

then, from Figure D.3 one sees that the average moving speed Vx(t) of the entire bike 

is given by 

rwx RtV )(                 (D.11) 

Where Rw is the radius of rear wheel and the subscript x of Fx(t) denotes the force to 

be in the horizontal (x) direction. The actual value of Vx(t) may be smaller than that 

given by Equation (D.11) due to inertia forces of the entire bike, frictions or sliding on 

the road surface, etc. 

Substituting Equation (D.5) into Equation (D.10), one obtains 
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Figure D. 3 External torque Tr(t) on rear sprocket is transformed into external force 
Fx(t)=Tr(t)/Rw 

 

Therefore, if the external torque Tf(t) obtained from rider-bike system is given, then 

one may obtain the corresponding external force Fx(t) from Equation (D.12a).  

Applying the external force Fx(t) at point P as shown in Figure D.3 will determinate 

the responses of the bike. 

Another method for obtaining the responses of the bike is to apply the external force 

Fx(t) together with a counterclockwise torque at point 1 (see Figure D.3) 

wxz RtFtT  )()(              (D.12b) 

This is due to the fact that the influence on the rigid body W of the force Fx(t) 

applying at point P (see Figure D.4) is the same as that of the parallel force F'x(t) 

together with a moment Tz(t)=Fx(t)．Rw applying at point 1, where F'x(t)= Fx(t) and Rw 

is the distance between the two parallel forces Fx(t) and F'x(t).  The above statement 

is called “theory for parallel shift of a force” and may be proved as follows (see 

Figure D.4): 

For convenience, one applies two forces F'x(t) and -F'x(t) at point 1 with 

|)(|  |)(|  |)(| tFtFtF xxx  . Because the two forces have the same magnitudes and 

opposite directions, their influence on the equilibrium of the rigid body W is nil. 

However, the force Fx(t) (applying at point P) and the force -F'x(t) (applying at point 1) 

constitute a counterclockwise moment or couple given by Equation (D.12b), and the 

force Fx(t) (applying at point P) is now replaced by the parallel force F'x(t) (applying 

at point 1). 
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Figure D. 4 Theory for parallel shift of a force: The influence on the rigid body W of 
the force Fx(t) applying at point P is the same as that of the parallel force F'x(t) 
together with a moment Tz(t)=Fx(t)．Rw applying at point 1, where F'x(t)= Fx(t) and Rw 
is the distance between the two parallel forces Fx(t) and F'x(t). 
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Appendix E  

Resistance and Contact Forces 

 

E.1 Overall Resistance 

 

If the entire bike is considered as a “rigid body” and moving in x-direction, then its 

equation of motion is given by 

)()()()( tFtkxtxctxm xequi             (E.1) 

where m, cequi and k are mass, equivalent viscous damping coefficient and spring 

constant, respectively, and Fx(t) is the effective applied force in x-direction. 

Since the spring must be fixed to the ground, for a moving rigid body, one may set 

k=0, in such a situation, Equation (E.1) reduces to 

)()()( tFtxctxm xequi               (E.2) 

A conventional damper (with damping coefficient c) must also be fixed to the ground, 

however, since a “damping force” is also one kind of “resistant force”, for 

convenience, one may replace all resistances such as “air resistance” and “frictional 

resistance” by an “overall resistance” and evaluated by the next formula 

)()( txctF equiR               (E.3) 

Since “air resistance” and “frictional resistance” are not linearly proportional to the 

moving velocity )(tx , for the theoretical analysis, the coefficient cequi in Equation 

(E.3) is called the equivalent viscous damping coefficient, for convenience. It is noted 

that the coefficient c of a conventional damper is called the viscous damping 

coefficient because its damping force is linear proportional to the moving velocity 

)(tx , i.e., )()( txctFd  . For the theoretical analysis, the value of cequi may be obtained 

from assumptions. 
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E.2 Contact Force between Wheels and Ground 

 

In Equations (E.1) and (E.2), the effective mass m may be evaluated by 

riderbike mmm               (E.4a) 

with mbike and mrider denoting the bike mass and rider mass, respectively. The contact 

forces between the two wheels and ground are mainly due to the vertical gravitational 

force given by 

gmgmmgF riderbikecontact              (E.4b) 

If the total mass of the rider mrider is shared by the handlebar and saddle according to 

reasonable proportion, then, the contact force on the rear wheel Fc,r and that on the 

front wheel Fc,f are determined by 

mgF f
rc




,  (for rear wheel)            (E.5a) 

mgF r
fc




,   (for front wheel)            (E.5b) 

where   is the horizontal distance between the rear axle and front axle,  r and  f 

are the horizontal distances between CG of the “entire bike and the rider” and rear 

axle and front axle, respectively. Of course, if the applied force has the “downward” 

component Fy,c in vertical (y) direction, then Equations (E.5a,b) should be replaced by 

cy
ff

rc FmgF ,,

~








  (for rear wheel)          (E.6a) 

cy
rr

fc FmgF ,,

~








   (for front wheel)              (E.6b) 

where 
~

r and 
~

f are the horizontal distances between the acting point of the force 

component Fy,c and real axle and front axle, respectively. 

 


