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Abstract  

Heterojunction bipolar transistors (HBTs) have well established themselves since the invention of 

modern day epitaxial growth technology in nearly all areas of electronic integrated circuits varying 

from high speed Indium Phosphide (InP) based devices through to future high-power gallium 

nitride (GaN) applications.   

 

This thesis begins with a review of the current state of the art HBT devices, along with 

comparison between different materials used within such devices. A large portion of the work 

covers the fabrication process of an Indium Phosphide/ Indium Gallium Arsenide (InP/InGaAs) 

based Single-HBT (SHBT) using only wet etching, along with the comparison between different 

techniques involved. RF and DC measurements for the fabricated devices are also reported of 

HBTs with emitter size 16µm × 8µm with achieving speeds of FMAX and FT being, 3.5GHz and 

9GHz respectively.   

 

Finally, being that the accurate extraction of the small-signal equivalent circuit is a crucial part in 

the process development and optimisation of HBTs, the investigation and development of an 

accurate small signal device modelling technique was evaluated and developed this project. 
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1. Introduction 

Since the 1970’s with the fabrication of the first heterojunction bipolar transistor (HBT), the 

technology has successfully established itself in current day commercial applications. The is 

down to the higher performance offered by HBTs in comparison to other devices such as field-

effect transistors (FET) and/or high electron mobility transistors (HEMTs) due to their strong 

linearity, low 1/f  noise characteristic with high frequency and high speed performance. 

1.1.  History 

The history behind HBTs started with Thomas Edison who first discovered the theoretical 

principle of a basic diode [1], the testing of which led to the description of the process being 

known as the Edison effect.  It was in 1906 however, when John Fleming followed on with 

Edison’s work and developed a vacuum diode [2] that it became accepted as the start of the 

electronics journey to its current widespread application use of today.  This diode used thermionic 

emission to form a one-way valve for electrical current which allowed the conversion of 

alternating current (AC) to direct current (DC) and the processing of high frequency signals 

 

In 1906 Lee De Forrest expanded on Flemings work by incorporating a third electrode into the 

vacuum diode to form a triode [3].  This new vacuum tube triode was an improvement on the 

Fleming’s diode as it not only rectified the AC signal but also boosted it, this making it the first 

amplifier. It was this triode that was developed as a radio detector and resulted in the triode being 

a key component in electronic systems until the 1940’s with the invention of the first transistors.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1: Flemings first vacuum diodes [4] 
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In 1947, with the invention of the first Germanium based solid state transistor [5] by J. Bardeen 

and W. Brattain that the next evolution step occurred.  Up until then, virtually all electronics 

circuits were made up from valves which were unreliable and cumbersome.  As the transistor was 

considerably more reliable than valve technology, it also offered other key advantages of longer 

life time, less power consumption and smaller device dimensions.  It was these key attributes that 

resulted in invention of the first integrated circuit by J. Kilby [6].  Within the next 10 years, the 

transistor had rendered valve technology all but obsolete. 

 

 

 

Figure 1-2: First transistor from Bell laboratories  (1947) [7] 
 

At the same time that the transistor was invented, the theory behind HBT came to light.  This 

technology described the effect of incorporating a wider band gap material for the emitter in the 

transistor, which became known as “the heterojunction concept” [8].   It was not until the 1970s, 

with the advent of modern epitaxial growth techniques, that the ability to grow complex, latticed 

matched layer structure, enabled the fabrication of HBT devices. 

 

Initially, gallium arsenide (GaAs) / indium gallium arsenide (InGaAs) based devices were grown 

using liquid phase epitaxy (LPE) [9,10] due to the low density of interface recombination made it 

the ideal material for  HBT.  Since the introduction of LPE, the advent of molecular beam epitaxy 

(MBE) and metal organic chemical vapour deposition (MOCVD) resulted in the focus of research 

into this area to increase drastically [11], with MOCVD grown HBTs being reported in 1979 [12].  

This work looked into finding the optimal alloys and materials, and to find out the properties of 

these materials such as the carrier motilities and high-field velocities [13]. 
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1.2. Literature Review  

Research of HBTs can be broken down and characterised into different family types of 

heterostructures which are used in their construction.  These include gallium arsenide (GaAs), 

silicon (Si), gallium nitride (GaN), and indium phosphide (InP) based devices. 

GaAs-based HBTs, such as aluminium gallium arsenide (AlGaAs)/GaAs and indium gallium 

arsenide (InGaAs)/GaAs devices were, as previously mentioned, the first heterostructure used in 

HBTs. The selection of these heterojunctions is down to the different layer structures having very 

similar lattice constants and thermal coefficients.  GaAs based devices are used for high-power 

applications due to higher breakdown voltages [14]. 

Si-based HBTs (Si/SiGe) are not as competitive in comparison to other HBT heterojunction 

materials in the sense of achieving high speed or high power capability’s.  However, Si has some 

considerable advantages over the other families of HBTs being that it is well established, cheaper 

and has the ability to be integrate RF, analog and digital functions on a single substrate.  Si HBTs 

still offer advantages over bipolar junction transistors (BJTs) equivalent devices such as higher 

frequency operation, better gain performance and higher power efficiency due to the advantages 

of HBTs (this will be discussed in the following chapter).  SiGe based devices are typically used 

for low noise applications such as low noise amplifiers (LNAs) due to their enhanced noise 

behaviour [15]. 

GaN-based HBTs are strong devices that offer excellent performance in power electronics due to 

their ability to perform under high power, high temperature and high frequency conditions [16].   

GaN devices however are more limited due to having relatively low current gain, low maximum 

current density and high offset voltage.  

InP-based HBTs, such as InP/InGaAs have shown considerable performance at high speed [17]. 

This is largely due to the low-contact resistance of InGaAs, high mobility and lower surface 

recombination of the material.  These advantages, combined with the low turn-on voltages of InP-

based HBTs, allow the use of InP based devices for high-speed, low-powered applications. InP 

based technology, while still being relatively new compared to the established Si and GaAs based 

heterostructures tends to be more expensive.  

 

With the aim of achieving high speed devices, particularly in InP based HBTs, both the unity 

current gain (FT) and the unity power gain (Fmax) are key RF characteristics of the device. 

Principally with FT, the increasing of the bandwidth requires the vertical and lateral scaling of the 

device, which has led to the development of scaling laws [18-22], with scaling laws for InP based 

devices being indicated in table 1.1: 

In scaling, the aim being to improve the target bandwidth and speed of a circuit that uses 

transistors, such as master-slave D flip-flop (MS-DFF) circuits or amplifiers circuit by a factor of 
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γ:1. So with the target aim to increase the speed, (whether it be FT, FMAX or the speed of a MS-

DFF circuit) of a device by γ = √2.  Then the need to reduce the physical parameters of the 

devices, such as the widths and thicknesses of the emitter, base and collectors regions but also 

the element characteristic resistivity of the regions. 

 

 

Table 1-1: Scaling laws for InP-based HBTs [22]. 
 

There is the constant drive to increase the speed of devices, in the form of FMAX and FT, which is 

largely dependent on reducing parasitic elements device. For FMAX, the reduction of the base 

resistance (RBB) and the base-collector capacitance (CBC); being that FMAX is inversely 

proportional to these values (to be discussed in chapter two).  Reducing RBB and CBC can be 

achieved by increased doping in the base and reducing the base-collector mesa structure.  In 

conventional emitter-up structures, CBC provides a considerable restriction on Fmax.  As illustrated 

in Fig 1.3, CBC consists of both the intrinsic (CBCI) and extrinsic (CBCX) elements.  As the extrinsic 

element provides no purpose in the operation of the device, then its removal would be beneficial 

in the increase of Fmax. 
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Figure 1-3: C BCI and C BCX elements of an HBT 
 

Various techniques, as illustrated in Fig 1.4 that target the reduction, or even the removal of CBCX 

have been investigated.  This includes techniques such as emitter-up devices with re-grown 

emitter-base junctions [23], base with sidewall contacts [24], undercut technique [25] collector-up 

devices with implanted extrinsic emitter-base regions [26] and transferred substrate devices [27]. 

 

Figure 1-4: Various methods used to reduce the base -collector capacitance of a HBT. [28] 
 

In the last few years, Indium Phosphide based HBTs have achieved high reported transistor 

bandwidths, with power gain cut-off frequencies (FMAX) approaching and even exceeding 1 THz 

[17,29,30].  

1.3.  Aims and objectives 

The primary objective of this work is the development of a reliable process for the fabrication 

InP/In0.53Ga0.47As based Single-HBT.  The establishment of a reliable fabrication process of HBT 

devices is crucial in obtaining a high yield for working devices.  During this process the evaluation 

and testing of the Ohmic contacts and etching techniques will investigated and evaluated. 
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Following the completion of the device fabrication, the next objective is the establishment and 

evaluation of an accurate small-signal model of a HBT.   The accurate characterisation of HBTs is 

a crucial part in the process and development of devices, as it allows for improved device 

characterisation and evaluation. 

1.4.  Summary and layout of the Thesis 

This thesis is broken down into 6 chapters and will be structured as follows: 

 

Chapter 2 : 

This outlines the detail relating to the theory of HBT device operation, including the 

heterostructure concept that makes HBT different from bipolar junction transistors (BJTs).  

Alongside this, the key characteristic attributes that define the performance of a device such as 

the DC and RF properties are described. 

 

Chapter 3: 

Presented in chapter three is the fabrication technique that is used in the project to develop and 

fabricate a HBT.  In addition, the evaluation and testing of different Ohmic contacts and etching 

are undertaken along with the discussion about the different possible fabrication techniques 

available. 

 

Chapter 4:  

The RF and DC extracted results, such as Fmax, FT and the current gain (β) of the devices are 

presented here.  

 

Chapter 5:  

This chapter explains the design and implementation of an accurate small signal equivalent circuit 

HBT model.  In addition the background principle of small signal techniques and the evaluation of 

the equivalent circuit will be discussed.  

 

Chapter 6: 

The final chapter summarizes the results achieved within the thesis as a whole along with the 

outlook for potential future research that could follow on from this work. 
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2. Heterojunction Bipolar Transistor Theory 

The drive to achieve higher speeds in integrated circuit design has resulted in considerable work 

in transistor research to push the limit on the capabilities of these devices.  This has helped HBTs 

to establish themselves in circuit design due to the advantages of incorporating a heterojunction 

in a bipolar junction transistor (BJT).  Since the BJT  (and as a consequence HBTs) is formed up 

of two p-n junctions that are connected back to back then the operation of these transistors 

devices depends on the effects and properties at the p- and n- type boundary.   

 

2.1.  Semiconductor Diode 

A semiconductor diode is achieved by combining two adjacent regions of the same continues 

crystal lattice with different carriers, as depicted in fig 2-1. With sufficient doping of donor 

impurities to a region of semiconductor material results in extra electrons being available within 

the crystal structure and the region becomes termed as “n-type”.  Within this region, electrons 

become the majority charge carriers.  Whereas with sufficient doping of acceptor impurities would 

result in extra holes being available in the crystal lattice of the region and is termed to be “p-type.  

The impurity atoms added to the crystal lattice to form the p-type region accepts the electrons of 

the semiconductor material and adds a hole in the covalent bond. Within the p-type region, holes 

become the majority charge carriers.   

 

 

 
 

Figure 2-1: pn semiconductor diode 
 

2.1.1. Unbiased  

As soon as the pn junction is formed, as represented in Fig 2-2 (a), free electrons and holes close 

to the boundary diffuse across the junction from their respective regions and recombine with each 

other.  This results in the n-type region near to the junction to becomes positively charged and the 

p-type region to become negatively charged (both having been previously neutral). This 

exchange of majority charge carriers between the two regions stops because the positive charge 

region in the n-type region opposes the flow of holes into the p-type material.  As well as this, the 

negative charge region in the p-type region opposes the flow of electrons into the n-type material. 

This depletion region becomes free of majority charge carriers due to the recombination that has 

occurred, as illustrated in Fig 2-2 (b).  This region is known as the depletion region.  The newly 

p-type 

Silicon 

n-type 

Silicon 
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formed depletion region acts as if there was a built in junction voltage, acting from n- to p-type 

region. 

 

 

Figure 2-2: Formation of a pn diode 
 

During this formation, in view of the need for the Fermi level of adjacent band gap to be aligned, 

this results in the valence and conduction bands shift to allow for this, as indicated in the band 

diagram in Fig 2-2 (b). 

 

2.1.2. Forward Bias  

Forward bias condition is obtained with the application of a positive voltage source to the p-type 

region a negative voltage being applied to the n-type region (as shown in Fig 2-3 (a)).  This 

applied voltage results in the decrease in width of the depletion region and the junction voltage.  

When the applied voltage exceeds the junction voltage of the depletion region, electrons are then 

able to flow across the pn boundary towards the positive terminal of the battery.  While the holes, 

which give the impression of flowing towers the negative terminal.  Holes do not flow themselves, 

but the electrons that possessed by the holes gain sufficient kinetic energy to break the covalent 

bond and fill up the hole [1]. 

 

2.1.3. Reverse Bias 

With the application of the power source in reverse bias mode by applying the positive terminal to 

the n-type material and negative terminal to the p-terminal (as depicted in fig 2-3 (b)), the excess 

electrons in the n-type region are attracted away from the depletion region, and towards the 

positive terminal of the external power source.  This results in an increased build up of minority 

carriers at the pn boundary.  Whereas in the p-type region, any electrons (minority carriers) are 

repelled and the holes appear to be attracted to the negative terminal of the power source.  This 
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results in the increased width of the depletion region.  Only a few minority carriers cross the 

junction and a small current, known as a “leakage voltage” flows. 

 

 

Figure 2-3: Band gap of a pn junction under (a) for ward bias and (b) reverse bias. 
 

 

2.1.4. Diode I-V Characteristic 

The typical IV characteristic graph for a pn junction is shown Fig 2-4.  The two key values for a pn 

junction are the threshold voltage (VT) and the breakdown voltage (VBV). The threshold voltage 

occurs due to the fact that even though the device is under forward bias, a small voltage is initially 

required to overcome the depletion region to allow the flow of current between the two terminals 

of the device. 

 

Figure 2-4: IV characteristic graph of diode 
 

If the diode is reverse biased, the breakdown voltage occurs when the material stops operating 

as a diode, i.e. it stops blocking current flow between the contacts but instead allows large current 
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flow (avalanche breakdown).  The relationship between the applied voltage V, and the current I is 

exponential and is expressed as [2]: 

 

1
qV

kT
sI I e
 

= − 
 

 (1) 

where: 

 I = The forward bias current 

 Is= The leakage current 

q = The charge of an electron  

V= The forward bias voltage 

k = is Boltzmann’s constant  

T = Temperature 

 

2.2.  BJT and HBT Layer Structure  

HBTs, like BJTs, are made up of three main regions, as indicated in Fig 2-5, being the collector 

(C), base (B) and emitter (E).  These layers form two pn junctions connected in a back to back 

configuration.  Typically it is the form of an npn transistor where the base is p-type and the emitter 

and collector are n-type. The device can be in the form of a pnp transistor. As the electron 

mobility is typically higher than the hole mobility for all semiconductor materials, a given npn 

structure tends to be faster, thus they are generally preferred for circuit applications.  

 

 

Figure 2-5: Typical layer structure of (a) silicon BJT and (b) InP/InGaAs HBT Transistor 
 

The principle difference between a BJT and HBT is the introduction of a heterojunction at the 

emitter-base interface in a HBT device.  As depicted in Fig 2-5 with an npn BJT being formed out 

of silicon and the emitter and collector regions of which being implanted with donors.  For an InP-

based HBT, narrower bandgap InGaAs (an alloy lattice-matched to InP) is used for the collector 

and the base, with the emitter being made out of a wider bandgap material in the form of InP.   
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The incorporation of a wide band-band gap material for the emitter region, and the resulting 

heterojunction means that at the boundary between the emitter and base result in a spice in the 

conductance band due to the discontinuity of the band gap.  This spike in turn reduces the back 

injection of electrons into the base is reduced considerably compared to the BJT equivalent 

device.  This results in, not only an improved efficiency of the HBT in comparison to BJT, but an 

improvement in the DC current gain (β) of the device.  As well as this, the incorporation of a wider 

bandgap material in the emitter means that there is less of a requirement for higher doping 

concentration within the region to limit the back injection, but allows for design in the doping 

levels with the intention to minimise parasitic elements of the device, which, as will get discussed 

later in this chapter, results in the improved device speeds.  Table 2.1 below shows some typical 

HBT layer structures. 

 

Substrate Emitter Base Collector Type 

GaAs SHBT AlGaAs GaAs 

AlGaAs DHBT 

GaAs SHBT 

GaAs 

InGaP GaAs 

InGaP DHBT 

InGaAs SHBT InP InGaAs 

InP DHBT 

InGaAs SHBT 

InP 

InAlAs InGaAs 

InP DHBT 

 InP GaASb InP DHBT 

Table 2-1: Types with different material systems [3 ] 
 

GaAs is the most mature of the substrates materials used as well as being the cheaper option 

when compared to InP based structures.  Although InP has some attractive advantages in 

comparison, the main one being that its energy band gap corresponds with that used with optical 

communication, or more accurately with lasers working at 1.36 and 1.55µm wavelengths, this 

makes them an ideal choice for optical communication circuits [42].  In addition, InP is lattice 

matched with InGaAs, which has a higher electron mobility than GaAs. 

2.3. Heterostructure Concepts 

This heterostructure concept, mentioned above, expands upon the theory and concept of a pn 

junction.  Unlike a homojunction pn junction where the material is made out of the same material 

and each adjacent region being doped to form a PN junction, a heterojunction, while still doping 

both the p and n region of the junction, incorporates two different semiconductor materials to form 

a PN junction. 
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2.3.1.  Band Discontinuities 

With the introduction of a heterojunction between the emitter and base, we find the electron 

affinities of these materials, χE and  χB respectively are different, which results in a discontinuity in 

the conductance band, which can be expressed as: 

B E
CE χ χ∆ = −

 (2) 

 

A discontinuity in the valence band (∆EV) is also introduced due to the band gap energies being 

different in the two regions. The total band gap discontinuity difference, ∆Eg, of the emitter and 

base, EgE and EgB respectively, is the combined discontinuities in both the valence and 

conduction bands: 

 

G C VE E E∆ = ∆ + ∆
 (3) 

 

The difference in the band gap, ∆Eg, between the two materials is resolved at the junction by the 

introduction of discontinuities in both the valence and conduction bands.  As shown in Fig 2-6, 

HBTs with abrupt emitter-base junction leads to a spike, ∆Ec, in the conduction band, and a step 

∆Ev, in the valence band. 

 

 

 

Figure 2-6: Energy band gap diagram of a N-type wid e gap emitter and P-type base at 
equilibrium both (a) before and (b) after formation . 

 

 

The key advantage of this incorporation of a heterojunction bipolar transistor does mean the back 

injection of electrons into the base is reduced considerably compared to the homojunction 

deployed in a BJT.  However the introduction of this band spike in the conduction band, ∆Ec, does 

mean that the forward flow of electrons from the wide band-gap emitter into the base is restricted 

due to the need to burrow (tunnel) through the spike (barrier).   

 

Ef 

Ec 

Ev 

Ec 

Ev 

Ef 

χE 
χB 

∆Ec 

∆EV 

Vbi 

(a)  (b) 
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In the valence band a combination of a large ∆Ev as well as the incorporation of a wider band-gap 

material in the emitter restricts the minority-carrier back flow from the emitter into the base.  The 

reduction in both the back injections of the holes and electrons, is expressed as 

E g

kT
B IH e

∆−
=  and 

E c

k T
B IE e

∆

= − respectively [5].  Considering the difference between ∆Ec is less than ∆Eg, while 

under forward bias the reduction of hole back injection HBI is reduced by a greater amount than 

that of electron back injection (EBI). This results in several advantages in the incorporation of a 

heterojunction in a HBT device that include: 

• The reduction the minority carrier charge stored in the emitter under forward bias, 

which accounts for the reduction in emitter-base capacitance (CBE).  As a result this 

improves the high-speed and high frequency of the device. 

• An improvement in the electron injection efficiency which impacts directly and 

favourably on the DC gain (β) of the device. 

 

If the reduction in hole flow is large enough, then the emitter doping density, NE, can be 

decreased, and the base doping density, NB, can be increased while still maintaining a high β.  

The advantages include: 

• A further reduction in CBE (due to the reduced in NE) 

• A reduction in base resistance, RBB, which in-turn improves: 

• Maximum oscillation frequency of the device (FMAX) 

• Noise performance by reducing  thermal noise in the base 

With the goal to meet a required RBB value, a narrower base can be achieved; this results in a 

shorter base transit-time (τb) which improves the current gain cut-of frequency (FT). 

 

2.3.2.  Built-In Potential 

For a heterostructure PN structure, the built-in potential, (Vbi), as indicated in Fig 2.6 (a), can be 

expressed as: 

 

gE N V P biE V E V V− = ∆ + +
 (4) 

where: 

EgE = Emitter band gap in eV 

VN = Potential difference between the conduction band and Fermi level in the emitter 

VP = Potential difference between the Fermi level and the valence band in the base 
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If we then express VN and VP in terms of the emitter and base doping levels, NDE and NAB 

respectively, and the respective density of states in Emitter conduction band and base valence 

band, NcE and NvB, the following is obtained: 

( ) ( ) ( )lnN CE FE DE CEV E E kT q N N= − = −
 (5) 

and, 

( ) ( ) ( )lnP FB VB AB VBV E E kT q N N= − = −
 (6) 

 

By combining equations (2) through (5): 

 

( ) ( ) ( ) ( )/ ln / / ln /bi gE DE CE AB VB C GV E kT q N N kT q N N E E= + + + ∆ − ∆  (7) 

 

Although, since ∆Eg is defined as:  

G gE gBE E E∆ = − (8) 

Equation (6) can now be updated to the following: 

( )/ ln DE AB
bi gB C

CE VB

N N
V E E kT q

N N

 ⋅= + ∆ +  ⋅ 
 (9) 

 

2.3.3. Emitter-Base Interface 

With the introduction of a wide-bandgap material in the emitter to form a HBT, this allows a wider 

variety of options and flexibility in the design process depending on the exact design 

requirements.  Typical design parameters which, when taken into account when deciding on the 

emitter material includes: 

• Low-turn voltage (VT), which is a key requirement for low power consumption circuit. 

• Increased electron flow across the junction, allows in more electrons to flow into the 

collector. As a result, improves the dc gain (β) of the device. 

The key properties that affect these design parameters of the different materials in Table 2-1 are 

listed below in Table 2-2. 

 

Heterojunction Material E G, Emitter (eV) E G, Base (eV) ∆EC (eV) ∆EV (eV) 

InP/In0.53Ga0.47As 1.35 0.76 0.25 0.34 

In0.52Al0.48As / In0.53Ga0.47As 1.48 0.76 0.48 0.24 

Al0.30Ga0.70As/GaAs 1.86 1.42 0.28 0.15 

In0.49Ga0.51P/GaAs 1.92 1.42 0.12 0.38 

Table 2-2: Band Gap details of emitter-base materia ls [3] 
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Fig 2.7a illustrates a typical E-B wide bandgap emitter heterojunction which results in a 

discontinuity in both the conduction and valence bands, ∆Ec and ∆Ev.  Provided that the emitter is 

made up of a wide bandgap alloy, then the composition can be graded over a short distance at 

the junction to allow the removal of the discontinuity.  An example would be the emitter was made 

up of AlxGa1-xAs and the fraction x being varied from 0.3 to 0 over a short distance to a GaAs 

base.  By incorporating a graded junction at the emitter-base junction (as depicted in fig 2-7b) 

allows for improved VT performance and increased electron flows as previously mentioned.  

Although a downside of reducing ∆Ec is that the back injection of electrons enter the emitter from 

the base is increased due to the low barrier. 

 

 

                             (a)                       (b) 

Figure 2-7: Band diagram of a NPN HBT with (a) abru pt junction and (b) graded junction at 
the emitter-base junction. 

 
 

2.3.4.  Base-Collector Interface 

Typically HBTs come in the form of Single-HBT (SHBT) where there is only a single 

heterojunction between the emitter and base region. However it is not uncommon to incorporate a 

heterojunction between the base and collector to form a Double-HBT (DHBT). The band diagram 

of both a SHBT and DHBT being depicted in Fig 2-8.  There are several considerations in the 

design of the collector region mesa structure and the final design of this is dependent on the 

application of the device.  An example of this is illustrated by the thicker the collector region the 

higher the breakdown voltage [4], with the incorporation of a wider bandgap material in the 

collector increases the breakdown voltage of the device, this is particularly useful for high power 

devices.  In contrast, a thinner collector results in a higher FT but an increase CBC.   
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(a) SHBT     (b) DHBT 

Figure 2-8: NPN Band diagrams illustrating the diff erence between a SHBT and DHBT 
 

Although, the ∆Ec brought in by incorporating a heterojunction between the base and collector will 

decrease the electron flow into the collector, which will drastically reduce device performance [5], 

particularly β.  The removal of the discontinuity between the two regions can be overcome by 

incorporating grading into the base-collector interface as depicted in Fig 2-9.  This is achieved by 

incorporating a number of intermediate epitaxial layers between the two regions. 

 

 

Figure 2-9: Band diagram of the base – collector gr ading for a NPN DHBT. 
 

2.4. DC Characteristics 

For DC characterisation, Fig 2.10 shows the standard output characteristics, where, at a given 

VCE, varying IB has a similar effect on the collector current output (Ic).  Except with a gain of β, 

which is dependant upon the physical properties of the device. 
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Figure 2-10: Common DC output emitter characteristi cs 
  

With two pn junction diodes being connected back to back to each other 3 distinctive regions are 

obtained which, as illustrated in figure 2-10; include the saturation region, active region and finally 

the cut-off region.  The basic diode operation for the transistor is described below: 

 

To begin with in the saturation region:  

• The base-emitter diode is forward biased VBE > 0V and 

• The base-collector diode is forward biased VBC > 0V 

 

Under normal operating conditions (active region):  

• The base-emitter diode is Forward Biased VBE > 0V and 

• The base-collector diode is Reversed Biased VBC < 0V 

 

In the cut-off region:  

• The base-emitter diode is reversed biased VBE < 0V and 

• The base-collector diode is reversed biased VBC < 0V 

 

2.4.1. DC current gain 

In the common emitter output characteristics shown above in figure 2.10 if the output collector 

current (IC) is divided by the input base current (IB) at a certain bias point the DC current gain can 

be calculated for a given bias point.  The equation of this DC current gain (β) is [8]: 

expC E E nB V

B B B pE

I N T D E

I N T D kT
β ∆ = = ⋅  

 
 (10) 
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where: 

NE = Emitter doping 

NB = Base doping 

TE = Emitter thickness 

TB = Base thickness 

DpE = Minority hole diffusions coefficient in emitter 

DnB = Minority electron diffusion in the base 

∆Ev = Valence band discontinuity at the base-emitter hetero-interface 

 

Due to the valence band discontinuity brought on by the heterojunction at the emitter-base 

connection results in the reduction of the hole transfer from the base to the emitter, thus keeping 

the base current lower and leading to a higher DC gain. 

2.5. RF Characterisation 

For RF characterisation of a HBT there are two key figures of merit that are used, the current gain 

cut-off frequency (FT) and the maximum oscillation frequency (Fmax). 

 

2.5.1. The Current Gain Cut-off Frequency (F T)  

The current gain cut-off frequency (FT) is the frequency at which point the magnitude of the AC 

current gain has been decreased down to 1.  This cut-off frequency is determined mostly by the 

physical vertical structure of the device [8].  The cut-off frequency can be calculated by using 

equation (10) below: 

 

1

2T
total

F
πτ

=   (11) 

where: 

total e b sc cτ τ τ τ τ= + + +   (12) 

 

this equation can be further broken down with the following equations: 

 

( )e BE BCI
c

kT
C C

qI
τ = +

  (13) 

 

where τe is known as the emitter charging time, CBCI is defined as the intrinsic base–collector 

junction capacitance and CBE is known as defined as the base–emitter junction capacitance. 
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2

2
B

b
nB

T

D
τ =

    (14) 

 

τb is the base transit time and DnB being the minority electron diffusion in the base 

2
dep

sc
sat

T

V
τ =     (15) 

τsc = space-charge transit time which is the time for the carriers to cross through the depletion 

region of the base-collector junction. 

 

e(R ).c c BCIR Cτ = +
    (16) 

τc = the collector charging time.  When substituting equations 12 to 16 back into equation 11 this 

results FT to be rewritten as: 

  

  

( ) ( )
2

e

1
R

2 2 2
depB

BE BCI c BCI
T c nB sat

TTkT
C C R C

F qI D Vπ
= + + + + +  (17) 

 

 

From which, the cut-off frequency is written by: 

 

( ) ( )
2

e

1

2 R
2 2

T
depB

BE BCI c BCI
c nB sat

F
TTkT

C C R C
qI D V

π
=

 
+ + + + + 

 

  (18) 

 

From equation (17), it is clear that the intrinsic base–collector junction capacitance (CBCI) has a 

large effect on FT and there is currently a lot of work being undertaken into minimizing this [8-9]. 

 

2.5.2. Maximum oscillation Frequency (F max)   

The maximum oscillation frequency is defined as the frequency at which the maximum available 

power gain deliverable by the transistor equals unity.  This can be expressed as [9]: 
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8
T

MAX
BB BC

F
F

R Cπ
≈      (19) 

  

where RBB is the total base resistance and CBC is the combined total base-collector capacitance 

of both the intrinsic (CBCI) and extrinsic (CBCX) values: 

 

RBB = Rb,cont + Rbgap + Rb,spread (20) 

CBC=CBCI+CBCX   (21) 

 

where: 

Rb,cont = Base contact resistance 

Rb,gap  = Base-emitter gap resistance 

Rb,spread = Base spreading resistance 

 

The parameters are illustrated in Fig 2.11 as a visual representation of the parameters as part of 

the triple mesa structure of a HBT. 

 

Figure 2-11: Triple mesa HBT structure with small-s ignal model used in the equations. 



 

 24 

2.6. References 

[1] R. Conot, “Thomas A. Edison, A Streak of Luck”, Da Capo Press, Inc., 
1979, ISBN: 0-306-80261-9 

[2]  J. Sequra and C.F.Hawkins, “CMOS Electronics: How it works, How it fails,” J. Wiley and 

Sons Inc., 2004, ISBN:0-471-47669-2. 

[3] S. Topaloglu, Process Technology for High Speed InP Based Heterojunction Bipolar 

Transistors, PhD dissertation 2006, Universität Duisburg-Essen. 

[4] A. A. Rezazadeh, H. Sheng, S.H. Bashar, and D. Wake, "Design and realisation of InP-

HBTs for optical telecommunications," IEE Colloquium on Opto-Electronic Interfacing at 

Microwave Frequencies (Ref. No. 1999/045), pp.4/1-4/7, 1999. 

[5] D.L. Pulfrey, ``Heterojunction Bipolar Transistor',' Wiley Encyclopedia of Electrical And 

Electronics Engineering, J.G. Webster, Ed., New York: John Wiley and Sons, Inc., vol.8, 

690-706, 1999. 

[6] Q.Z Liu, B.A. Orner, L. Lanzerotti, M.Dahlstrom, W. Hodge, M. Gordon, J. Johnson, M. 

Gautsch, J. Greco, J. Rascoe, D. Ahlgren, A. Joseph and J. Dunn, "Collector optimization 

in advanced SiGe HBT technologies," IEEE Compound Semiconductor Integrated Circuit 

Symposium, pp. 4, 2005. 

[7] S.M. Sze, “High speed semiconductor devices,” J. Wiley and Sons Inc., 1990, ISBN:0-

471-24904-1. 

[8] H. Kroemer,, "Heterostructure bipolar transistors and integrated circuits," Proceedings of 

the IEEE , vol.70, no.1, pp. 13- 25, Jan. 1982. 

[9] M. J. W. Rodwell, M. Urteaga, T. Mathew, D. Scott, D. Mensa, Q. Lee, J. Guthrie, Y. 

Betser, S. C. Martin, R. P. Smith, S. Jaganathan, S. Krishnan, S. I. Long, R. Pullela, B. 

Agarwal, U. Bhattacharya, L. Samoska, M. Dahlstrom, “Submicron scaling of HBTs,” 

IEEE Trans. Electron Devices, vol. 48, pp. 2606–2624, Nov. 2001 



 

 25 

 

3. HBT Fabrication 

 In this chapter, the techniques used in the fabrication of HBTs are discussed along with 

comparisons of the different processing techniques available.  The processing of HBTs presented 

here is performed in a clean room environment, the University of Glasgow’s James Watt 

Nanofabrication Centre (JWNC).   

3.1. Processing Steps 

The fabrication of HBTs used in this work, being of a triple mesa design structure, requires 8 

separate processing steps.  These consist of 3 etching steps, 4 metallization steps and a device 

isolation step, all of which are discussed here. 

 

3.1.1. Lithography 

Lithography is a crucial part of the fabrication process, as even though it is not a step in itself, it is 

used in every step.  It can be defined as the process used to define the required pattern layout 

design from the mask plate onto the resist layer on the wafer surface.  There are two forms of 

photolithography; electron-beam lithography (e-beam lithography) and photolithography. 

Photolithography uses ultraviolet (UV) to transfer the layer on the mask to be imprinted onto the 

photo-resist, whereas e-beam lithography, which as the name suggests, involves exposing the 

resist to the electron bean via a mask plate which transfers the layer design onto the wafer.  In 

comparison to photolithography, e-beam is capable of defining structures in the nanometre scale 

with good tolerances, although does requires considerably more time to write the patterns.  For 

our process, photolithography using a SÜSS MA6 mask aligner is used which provides a high 

precision alignment accuracy of as low as ± 0.5µm. 

The initial step with photolithography is the application of photo-resist onto the wafer which is 

used to define the mask layer in.  There are several considerations to be aware of with the use of 

photo-resist.  These include the required thickness, which is dependant of the speed and duration 

of the application of the photo-resist, and the choice of using either negative or positive resist 

depending on the application of the process.  The difference between the two types is that with 

the exposure of positive photo-resist to UV light, results in the weakening of the chemical 

structure and becomes soluble in the developer solution.  Whereas with negative photo resist, the 

exposure of these resist to UV light strengthens the bonds and becomes insoluble in the 

developer solution.  The illustration of the outcome of using different outcome of using positive or 

negative resist is shown in Fig 3-1.  There are a number of different resists and techniques used 

within the JWNC, although the process used within this project is the use of S1818 photo-resist. 
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Figure 3-1: Comparison between positive and negativ e resist 
 

The masks used in the creation of the HBT structures were themselves made using the electron 

beam technology. The mask itself is of glass material that has been coated with chrome on one 

surface.  Resist is covered on top of the chrome, exposed with e-beam lithography and the 

exposed chrome is etched away using wet etch technique.  The mask used in this project 

consists of eight 10mm2 layers, one for each of the 8 steps involved in this work, as described 

later in this chapter in section 3.2. 

 

3.1.2.  Ashering 

After the development of the resist once it has been exposed on the MA6, a sub-step of placing 

the sample into an oxygen plasma chamber may be required.  This would be used to remove any 

remaining unwanted resist that might have been left after development.  It is required to make 

sure there is no resist remaining because if this were the case, it would prevent a successful etch 

or the application of good Ohmic contacts. This ashering is processed at 80W for 4 minutes 

during this fabrication process.  

 

3.1.3. Etching 

Etching is defined as the removal of a required material on the wafer to a required depth. This 

can be achieved by using either wet etching or dry etching. Wet etching uses chemicals that 

interact with the material to etch to the required depth. Dry etching typically uses the 

bombardment of ions to etch away the material.  There are a number of different requirements of 

etching, depending on the application and layer structure of the devices being developed. These 

requirements include: etch rate, uniformity, selectivity, and anisotropy: 

 

Uniformity is the deviation of the etch rate across the whole wafer. Having a high uniformity is 

required with the aim to have consistently reliable devices that all contain similar properties.  
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Having a high selectivity means that if one etches down through one layer structure then when a 

different material is reached, it stops. Isotropic etching occurrence is only a problem in wet 

etching, as dry etch has a virtually perfect anisotropic etching effect on the sample. 

 

An/Isotropy is the etch rate difference between vertical and horizontal etching for different 

crystallographic directions.  Isotropic etching is where the etching in both the horizontal and 

vertical direction are the same, as illustrated in Fig 3-2 (c). Anisotropic Etching rate is where the 

etch rates are different in the horizontal and vertical direction, Fig 3-2 (b), and lateral etch. 

 

 

Figure 3-2: Etching comparison 
 

 

The degree of isotropy, A, is depicted as: 

L

v

R
A

R
=

 (22) 

where: 

RL is the lateral etch rate 

RV is the vertical etch rate 

 

Therefore when A = 0, then the etch characteristic is known as directional etching, as depicted in 

Fig 3-2 (a), and reversely, when A = 1 then the etch is known as Isotropic.  Any variation in 

between these extreme is referred to as having an anisotropic etch characteristic. 

 

In comparison wet etching offers high etching rate and greater etch selectivity to that of dry 

etching, although in contrast, dry etching has the advantage of being capable of defining small 

feature sizes.  

 

3.1.4. Forming of Contacts 

The forming of metal contacts onto a semiconductor layer allows for the direct accessing of the 

device in question, whether this is for testing of the device characteristics or for connection to 
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other devices in a circuit.  These contacts, in an ideal world would not add any resistance to the 

flow of current, however, in reality this is not the case and a small resistance is added.  The base 

contact is important in the development for high speed HBT devices.  The introduction of this 

junction creates a contact resistance which will cause the voltage to drop and with this will affect 

the key merits of the device, FT and FMAX, as discussed in the previous chapter. There are two 

types of contacts that can be applied, namely Ohmic and Schottky. Ohmic contacts provide 

symmetric and linear current-voltage (IV) curve (as shown in Fig 3-3 a), while a Schottky contact 

provides asymmetric and non-linear behaviour (as shown in Fig 3-3 b) 

 

   

       (a)      (b)  

Figure 3-3: Comparison between (a) Ohmic and (b) Sc hottky contact. 
    

In a semiconductor contact, depending on the requirements of the semiconductor material, it will 

be implanted with either acceptors or donors.  This results in them having different Fermi levels 

(Fig 3-4 (a) and Fig 3-5 (b)).  On joining the semiconductor material to the metal contact the free 

electrons and holes diffuse across the junction so that the Fermi levels align [Fig 3-4 (b) and Fig 

3-5 (b)].    

 

(a)      (b) 

Figure 3-4: Band diagram for a metal/n-semiconducto r junction. 
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(a)      (b) 

Figure 3-5: Band diagram for a metal/p-semiconducto r junction. 
 

There are two methods by which carriers flow across the metal/semiconductor interface.  

“Thermionic emission” occurs if the doping level in the semiconductor material is low.  In this 

scenario the carriers flow over the barrier by thermal energy.  In contrast for highly-doped 

semiconductor material, the depletion region becomes narrower. This narrow region can be 

penetrated by the carriers by quantum effect, or more commonly known as “tunnelling”.  For 

Ohmic contacts, tunnelling is preferred as it allows for greater linearity and as a result, high 

doping is employed.  The depletion width (Wdep) within the metal/semiconductor interface can be 

derived by solving the poisons equation: 

2V
ρ
ε

∇ =
  

where:  

ρ is the net charge density 

ε is the dielectric constant 

 

After evaluating this, we are able to define the depletion region as [1]: 

 

2 2

.
bi bi

dep
dopant

V V
W

q N

ε ε
ρ

= =
  

where: 

 q = Electric charge 

Vbi = Built in Potentioal  

Ndopant= Dopant levels  

 

As indicated in equation (24) the depletion thickness is inversely proportional to the doping of the 

semiconductor material, so for Ohmic contents, tunnelling is preferred as it allows for greater 

(24) 

(23) 
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linearity.  As a result of these properties high doping is employed in this project.   For 

semiconductors that are highly doped, the barrier heights can be defined as [1]: 

Bn m sq q qφ φ= − Χ
  (25) 

( )Bp g m sq E qφ φ= − − Χ
 (26) 

where: 

ΦBn= Barrier heights of n-type matieral 

Φm= Work function of the metal 

Xs= Electron affinity of the semiconductor  

ΦBp= Barrier heights of p-type matieral 

Eg= Band gap (in eV) 

 

3.1.5. Device Planarization 

Due to the need of applying Ohmic contacts that are designed to enable the direct access of the 

device, the active/actual transistor is required to be isolated from these contacts.  This is to 

prevent the bond pads from touching active multiple device regions (Emitter, base and collector).  

Polyimide PI-2545 is used to enable thick application onto the substrate to cover the vertical 

mesa structure of the device and the etching of the polyimide enables vias to be applied to 

directly access the emitter, base and collector regions of the device, as depicted in Fig 3.6.  At 

which point the Ohmic contacts used for device testing can be applied the characteristics of the 

HBT can be successfully extracted, as shown later in this chapter.  Individual devices are isolated 

from each other by etching the epitaxial layers around the transistors down to the semi-insulating 

InP substrate. 

 

  

Figure 3-6: Successful application and development of  polyimide 
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3.1.6. Details of a typical processing step 

There are two key processing steps used within the development and fabrication of devices.  This 

includes in the depositing of metal contacts, known as a metallization step and etch step. The 

initial steps, steps a-c in fig 3-7 for both processes are the same. Initially, the sample wafer is 

cleaned in Acetone, followed by Methanol and IPA for 5minutes in each while in an ultrasonic 

bath.  This removes any loose organic or resist on the wafer. Once this has been completed, 

S1818 is spun onto the wafer (step a) and baked. The sample is then exposed with UV light and 

the mask layer is imprinted into the resist, which is then developed to expose the mask design.  It 

is at this step where the processing steps between metallisation and etch processes divide with 

the deposition on metal or the etching of the wafer structure.  Once this has been completed, the 

sample is placed into acetone for an hour in a warm bath (50°c) to remove the resist.   

 

 

Figure 3-7: Individual processing step flow diagram .
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3.2. Processing of InP/InGaAs SHBT 

As previously outlined the process of the fabrication of a single heterojunction bipolar transistor 

(SHBT) in this project consists of eight steps, with each step having a respective layer in the 

mask. The following flow diagram gives an overview of the fabrication steps used in this project 

as a whole and their specific order.  A more detailed description of the fabrication process can be 

found in the Appendix A. 
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Figure 3-8: Processing of InP/InGaAs SHBT. 
 

The development and deposition of the contacts in step h results in the deposition of the bond 

pads as shown 3.9.  This allows the access of both the DC and RF probes to reach the device as 

the actual devices are too small to be probed directly.  

 

 

Figure 3-9: Final layout design and a picture of a fabricated dummy device (top down 
views). 
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3.3. Etching 

With the use of wet etching technique in this project to etch through InP and InGaAs, the use of 

two highly selective solutions were used to accomplish this.   

• The solution used to etch through the InP layers of the wafer uses a solution withg a 

mixture of orthophosphoric acid (H3PO4) and hydrochloric acid (HCL) at a ratio of 9:1 

respectively.  This resulted in an etch rate of ≈400nm/min [2] 

• While the solution used to etch the InGaAs layers, a solution with the combination of 

hydrogen peroxide (H2O2), orthophosphoric acid (H3PO4) and water (H2O) with a ratio of 

1:1:38 respectively.  This solution at the stated ratio resulted in an etch rate of ≈92nm/min 

[3] 

Both solutions have been found to be highly selective in relation to the semiconductor material 

they were not desired to etch, be it InGaAs or InP [4]. 

 

3.4. Ohmic Contacts 

The depositing of metal onto the semiconductor wafers in this project was carried out with the use 

of electron beam evaporation with the Plassys MEB 450 Electron Beam Evaporator (Plassys I) 

and Plassys MEB 550S (Plassys II).  The process involves first placing the sample, which has 

been appropriately processed onto a holder, which then is loaded into a vented loadlock and is 

pumped down to the required pressure.  At which point the desired metal structure that has been 

selected on the computer software is selected, and then the respective layers are evaporated and 

condenses onto the wafer.  After the deposition of the contacts have been applied, the pressure 

within the loadlock returns up to atmospheric pressure and the sample is withdrawn from the 

loadlock.  At this point the sample is placed into a beaker of Acetone and placed into a warm bath 

50°c to remove the S1818 resist along with the unwa nted metal that has been deposited on top of 

the resist, leaving the required metal on the wafer.  The metals that were available to be 

deposited by evaporation were Al, Au, Ge, Pd, Pt, Ti and NiCr. 

 

3.4.1. Ohmic Comparison 

Since the development of different epitaxial growth techniques, research has been undertaken 

into the investigation of metal contacts with various semiconductor materials [5-9].  Tables 3-1 

and 3-2 show some of the common metal schemes over the last decades by various groups for  

both n and p type materials on InGaAs. 
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Metal Scheme Specific Contact Resistance [Ω*cm²] Reference 

Ti/Pd/Au 0.73±0.44×10-9 [6] 

TiW/Ti/Ni 0.84±0.48×10-9 [6] 

Ti/Pt/Au 2×10-7 [7] 

Ni/Ge/Au 3.5×10-7 [7] 

Pd/Ge/Pd/Ti/Au 1.1×10-6 [9] 

Pd/Ge/Ti/Pt 3.8×10-6 [9] 

Table 3-1:  n-type InGaAs contacts. 
 

Metal Scheme Specific Contact Resistance [Ω*cm²] Reference 

Ti/Pd/Au 2×10-4 [10] 

Ti/Pt/Au 5.7×10-5 [11] 

Table 3-2: : p-type InGaAs contacts. 
 

3.4.2. TLM Theory 

It is with the use of the transmission line measurement (TLM) that the quality of the Ohmic 

contact can be evaluated [12].  This is achieved when two adjacent pads are deposited on a 

semiconductor material and an applied electron current and voltage is forced through the 

interface, as shown in Fig 3.10. 

 

Figure 3-10: TLM characterisation set up. 
 

The current experiences a resistance of both the semiconductor material resistance (Rs) and a 

contact resistance (Rc) that is brought about by the infusion of holes and electrons between the 

contact and semiconductor material. The symbols ‘W’, ‘S’ and ‘d’ are the width and length of the 

metal contact pads and messa height respectively and are located at a gap spacing of a linearly 

increasing gap spacing (L) with L1<L2<L3.  
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Figure 3-11: Overall TLM cross section. 
 

The measurement of the total resistance drop (Rtotal) for various gap spacing lengths can be 

obtained and a Rtotal is plotted on a linear graph as a function of pad spacing, an example of 

which is shown in fig 3.12 

 

Figure 3-12: Example of R total  Vs TLM pad spacing. 
 

From Fig 3.12, it can be extracted that the total resistance Rtotal between the two adjacent pads, 

can be expressed as: 

 

2total con sR R R= +  (27) 

 

Considering Rs and Rsh can be expressed as:  

x
s

L
R =

dw

ρ
 (28) 

shR
d

ρ=  (29) 

where: 

ρ = resistivity of the semiconductor material 

Rsh =  sheet resistance 

Lx = length 
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When rearranging equations (28) and (29) back into (27) we get: 

 

2 x
total con sh

L
R R R

w
 = +  
 

 (30) 

 

Thus, giving us a gradient of (Rsheet/W) and the x-y intercept points at Lx and 2Rc. It has been 

shown that Rcon and LT can be expressed as [9]:  

2
2 sk T

con

R L
R

w
=  (31) 

where: 

Rsk = the modified sheet resistance of the semiconductor material directly under the pads 

LT = The transfer length, being the distance that is required for the current to flow in or 

out of the Ohmic contact. 

 

3.4.3. TLM Evaluation 

TLM tests were carried out not only to confirm that the contacts had made good connections to 

the devices but also as a comparison to the published data from other laboratories. Ohmic 

contacts used within the research group being 10nm Au / 10nm Ge / 10nm Au / 10nm Ge / 20nm 

Au / 11nm Ni / 80nm Au and 20nm Ti/ 30nm Pd/ 80nm Au for n-type and p-type contacts, 

respectively. A summary of the extracted figures of merit for the contacts are shown in Tables 3-3 

to 3-5 below.  The complete comparison between all the elements of both metal structures for 

emitter, base and collector, along with all measured data are listed in the Appendix B through to 

D.   

 

 

 

 
Table 3-3: Emitter TLM comparison 

 

With the emitter metal, Ti/Pd/Au metal scheme was used due to its improved contact resistance.  

Being that this metal contact lays directly ontop of the vertical active region of the device the 

sheet resistance of the layer is not as important when deciding on this Ohmic contact. 

 

Metal Structure Rcon (ΩΩΩΩ) Rsh(ΩΩΩΩ/□) LT(µm) 

Ti/Pt/Au 0.28 646.4 0.31 

Ti/Pd/Au 2.75 377.55 1.09 

Table 3-4: Base TLM Comparison 

Metal Structure Rcon (ΩΩΩΩ) Rsh(ΩΩΩΩ/□) LT(µm) 

Au/Ge/Au/Ge/Au/Ni/Au 0.31 14.7 3.19 

Ti/Pd/Au 0.23 16.51 2.14 
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Metal Structure Rcon (ΩΩΩΩ) Rsh(ΩΩΩΩ/□) LT(µm) 

Au/Ge/Au/Ge/Au/Ni/Au 0.33 10.87 13.15 

Ti/Pd/Au 0.14 2.88 7.5 

Table 3-5: Collector TLM Comparison 
 

3.5. Preliminary device evaluation 

As it is not possible to evaluate the devices themselves until after the development of bond pads 

contacts, a few large devices have been placed on the sample to allow direct access by the DC 

probes to enable the evaluation of the structure.  It is from these large devices that the DC 

characteristic can be extracted after the base and collector contacts have been deposited in Fig 

3-13 
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Figure 3-13: Preliminary device evaluation 
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These large devices as well as the TLM measurements in the evaluation of the Ohmic contacts 

enable the evaluation of the sample after each step in the processing.  This enables the 

identification and isolation issues in the processing and update the fabrication technique if 

required.  

3.6. HBT structure 

The epilayer structure for the wafer used in this project is of a single heterojunction bipolar 

transistor (HBT) made up of an Npn InP/InGaAs material, as seen below in table 3-6. 

 

Layer No Layer Dopent Concentration /cm -³ Thickness (nm) Type 

1 In0.53Ga0.47As 3×1019:Si 40 Emitter Cap 

2 InP 3×1019:Si 80 Emitter Cap 

3 InP 8×1017:Si 10 Emitter 

4 InP 3×1017:Si 40 Emitter 

5 In0.53Ga0.47As 6×1019:C 40 Base 

6 In0.53Ga0.47As 2×1016:Si 400 Collector 

7 InP 1×1019:Si 10 Etch Stop 

8 In0.53Ga0.47As 3×1019:Si 200 Sub Collector 

9 InP 2×1019:Si 200 Buffer 

 SI : InP Si : InP Substrate  

Table 3-6: Layer Structure currently being used in this project. 
 

The emitter cap (layer 1+2) are the top most layers in the structure.  Due to InGaAs having a 

smaller band gap than InP it makes it easier to create a good Ohmic contact on InGaAs.  The InP 

emitter cap is used to create a step between the highly doped InGaAs cap and the InP emitter 

layer. 

 

The emitter is split into two different layers, which includes a highly doped InP to provide 

electrons for injection into the base.  This is on top of another InP less doped layer which is used 

to reduce the base–emitter junction capacitance as discussed in section 2.2. 

 

The base layer, as discussed earlier in this chapter is the most important layer in a HBT.  There 

are two key things for the base, being the thickness and the doping level.  The thinner the base, 

the shorter the transit time, which increases the cut-off frequency, as well as having a greater DC 

gain (β).  The thinner the base however, the greater the base resistance, to overcome this the 

base needs to be as highly doped as possible, hence this is why the  layer has a dopant 

concentration of 6×1019 cm-3. 

The doping level in the collector is lower in comparison to the layers adjacent to it as a high 

doping is not required here.  A low doping level also minimises the base-collector capacitance. 
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The etch stop layer, like the name indicates, is used primarily used as an etch stop.  The sub-

collector layer, like the emitter cap, is highly doped to make a good Ohmic contact.   All these 

layers are grown on top of a 200nm InP buffer layer to improve the quality of the device.  Below in 

Fig 3-14 gives the band line-up of the emitter, base and collector region while under equilibrium of 

the HBT used in this project.  It was generated by a programme designed for calculating energy 

band gap known as 1D Poisson [13]. 

 

Band diagram of sample material
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Figure 3-14: Band line-up of emitter, base and coll ector region of the HBT used in this 
project while under equilibrium. 

 



 

 41 

 

3.7. References 

[1] S. Topaloglu, Process Technology for High Speed InP Based Heterojunction 

BipolarTransistors, PhD dissertation 2006, Universität Duisburg-Essen.   

[2] S. Uekusa and K. Oigawa,. “Preferential Etching of InP for Submicron Fabrication with 

HCl/H3PO4 Solution,” Solid-State Science and Technology, Vol 132, No.3, pp. 671-673. 

March 1985 

[3] A. Stano, “Chemical Etching Characteristics of InGaAs/InP and InAlAs/InP 

Heterostructures,” Solid-State Science and Technology, Vol 134, No.2, pp. 448-452. Feb. 

1987 

[4]  M. Sotoodeh, L. Sozzi, A. Vinay, A. H. Khalid, Z. Hu, A. A. Rezazadeh, R. Menozzi, 

Stepping toward standard methods of small-signal parameter extraction for HBT's, IEEE 

Trans. on electron devices, vol. 47 (6), pp. 1139 -1151, June 2000. 

[5] L. Rideout. : “A review of the theory and technology for ohmic contacts to group III–V 

compound semiconductors, Solid-State Electronics, Vol.18, Issue 6, pp. 541-550. June 

1975,  

[6] A.M. Crook, E. Lind, Z. Griffith, M.J.W Rodwell, J.D. Zimmerman, A.C Gossard and S.R. 

Bank,. “Low resistance, nonalloyed Ohmic contacts to InGaAs,” Applied Physics Letters, 

Volume 91, Issue 19, id. 192114, (2007). 

[7] J.W. Wu, C.Y. Chang, K.C. Lin, E.Y. Chang, J.S. Chen and C.T. Lee, “The Thermal 

stability of Ohmic contact to n-type InGaAs layer,” Journal of Electronic Materials, Vol. 24, 

Issue 2, pp.79-82 Feb. 1995. 

[8] G. Baca, F. Ren, J.C. Zolper, R.D. Briggs and S.J. Pearton, “A survey of ohmic contacts 

to III-V compound semiconductors,” Thin Solid Films, Volumes 308–309, 31 October 

1997, pp. 599-606. 

[9] I.-H. Kim, “Comparison of Pd/Ge/Pd/Ti/Au and Pd/Ge/Ti/Pt ohmic contacts to n-type 

InGaAs,” Materials Letters, Vol. 57, Issues 24–25, August 2003, pp. 4033-4039. 

[10] W.K. Chong, E.F. Chor, C.H. Heng and S.J. Chua, "(Pd, Ti, Au)-based ohmic contacts to 

p- and n-doped In0.53 Ga0.47As," IEEE International Symposium on Compound 

Semiconductors, pp.171-174, 8-11 Sep 1997. 

[11] H. P. Meijs , “Ohmic contacts on p-GaAs and p-In0.53Ga0.47As”; MSc thesis, Technical 

University of Eindhoven, The Netherlands. 

http://alexandria.tue.nl/extra2/afstversl/E/383150.pdf 

[12]  G.K. Reeves, and H.B. Harrison, "Obtaining the specific contact resistance from 

transmission line model measurements," IEEE Electron Device Letters, vol.3, no.5, pp. 

111- 113, May 1982. 



 

 42 

[13] http://www.nd.edu/~gsnider/ 

 

 

 



 

 43 

 

4. Device Characterisation 

This chapter presents the DC and RF results obtained from the fabricated devices.  The results 

described here are of an HBT that has an emitter size of 16µm×10µm. 

4.1. 4.1 DC Measurements 

With the completion of the fabrication of the devices, preliminary tests were performed on the 

devices in the form of the emitter-base and base-collector diode I-V characteristic.  These diode 

tests are the first chance to test the devices themselves because the bond pads are fabricated 

last.  The testing of the diode I-V characteristic this way enables the isolation of any issues.  

Figure 4.1 illustrates the forward emitter-base junction from which it is possible to conclude that 

the turn on voltage is 0.6V 
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Figure 4-1: Forward biased base-emitter emitter jun ction diode I-V characteristic. 
 

Next the base-collector diode characteristic is tested from which the turn on voltage is extracted 

as approx 0.4V 
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Figure 4-2: Forward biased base-collector junction diode I-V characteristic. 
 

With the completion of the preliminary testing, the DC characteristics can be measured.  On 

setting up the probe station to undertake a DC sweep from 0 to operate 2V for variable base 

currents (IB) of 1µA to 10µA with intervals of 1µA.   This gives us the common emitter output I-V 

characteristics as shown in figure 4.3. 

 

 

Figure 4-3: Common emitter HBT output I-V character istics for devices with 16 µmx10µm 
emitter dimensions. 

 

The DC current gain (β) of the device can be observed from the measured Gummel plot as 

shown in figure 4.4, for this device, β is extracted as 25. 
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16-10 Gummel Plot
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Figure 4-4: Gummel plot of 16 µmx10µm HBT. 
 

4.2. RF Characterisation 

The measurement of the RF characteristics of a device requires a different technique than that of 

measuring of DC characteristic.  This is due to the difficulties encountered in measuring voltages 

and currents at microwave frequencies. In contrast, waves are more easily measured in a 

microwave device.  One way of measuring the behaviour of a device is through the incident and 

reflected waves, this being described by scattering parameters (S-parameters).  The basic theory 

of S-parameters is outlined in the following sub-section. 

 

4.2.1. Scattering Parameters (S-Parameters) 

A two-port network that is described by S-parameters is shown in Fig 4-5.  This is with the 

incident power waves a1 and a2, as well as the reflected power waves b1 and b2. 

 

 

Figure 4-5: Two-port network for S-parameter networ k 
 

These four waves (a1, a2, b1 and b2) are related by the use of scattering matrix: 
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The introduction of a source generator whose source impedance matches the line characteristic 

impedance is connected to the device-under-test (DuT), in the case of a1 = 0 then [2]: 
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with: 

S11 = Input port voltage reflection coefficient  

 S12 = The reverse gain ratio of the device 

 S21 = The forward gain ratio of the device 

S22 = Output port voltage reflection coefficient 

 

4.2.2. RF Calibration Technique 

The measurement of S-parameters uses a vector network analyzer (VNA) and it is important to 

explain the calibration procedure.  When measuring with a VNA, imperfections and errors can 

affect the final results.  These errors can be broken down into three different types [1] which 

include systematic, random and drift errors. 

 

• Systematic errors  are caused by imperfections brought in by the VNA and cables 

this includes errors from crosstalk, source and load impedance mismatch as well as 

frequency response errors caused by reflection. These errors however, can be 

removed mathematically through calibration. 

• Random errors  occur due to instrumental noise, repeatability of switches, 

connectors and cables.  Even though random errors can be defined, they do however 

vary with time which makes them unpredictable.  As a result they cannot be removed 

through calibration. 

(33) 

(34) 

(35) 

(36) 
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• Drift Errors  occurs after the initial calibration has been performed due to the 

changes in VNA performance from variation in ambient temperature.  Even though 

drift error cannot be accounted for with the initial calibration of the VNA, additional 

calibration techniques can be performed during the data extraction to limit this error. 

   

Calibration of the network analyser is required to be carried out to eliminate errors that would 

otherwise be introduced to the device by the test station, probes and the cables.  The process 

used in this work for calibration is known as SOLT, and provides a broadband calibration that 

provides testing over the whole frequency range that is required.  SOLT stands for known Short 

circuit load, Open circuit load, Load (50 Ω) structure and Thru (transmission line) structure tests 

and once they have been measured, the results are used to remove errors from the measured S-

parameters. 

 

4.2.3. RF Results 

With the completion of the calibration of the VNA, measurements of S-parameters at desired bias 

points can be taken. Figure 4.6 shows the measured S-parameters of the device at 2V and Ib= 

50µA bias point: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 4-6: Extracted S-Parameters at bias voltage of 2V and bias current of 50 µA 
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S-parameter measurements were carried out over a range of frequencies up to 10 GHz. It is the 

use of these S-parameters that the FMAX and FT can be extracted as indicated in fig 4-7. FT is 

extracted from h-parameters at indicated in equation (37), while FMAX is defined and extracted as 

the S21. 

 

2
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1 0 0ce
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bv v

ii
h

i i
= =

= =   (37) 

where: 

i2 = Output applied current 

i1 = Input applied current 

v2 = Applied voltage at the input 

Ic = Collector voltage 

Ib = Base current 

Vce = Collector-emitter voltage 

 

 

Figure 4-7: FT and FMAX extraction. 

 

 

 

 

 

 maxf = 3.5 GHz     Tf  = 9 GHZ  
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5. Device Modelling  

Accurate extraction of the small-signal equivalent circuit is a crucial part in the process and 

development of HBTs as it allows for improved device evaluation and modelling. There has been 

extensive research into this subject area over the last few decades [1-5] in order to improve the 

accuracy of modelling, with approaches varying from optimisation to purely analytical techniques. 

Small signal modelling involves a trade-off between the optimisation techniques and the more 

accurate and simpler technique of direct extraction techniques. 

5.1.  Analysis 

The method adopted here follows on and further improves on the work involved by Sheinman et 

al. [2], as well as the modelling technique used on HEMTs by MacFarlane et al. [6] which 

combines the approach of estimating the extrinsic components of the device capacitance and 

inductances with the use of 3D electromagnetic numerical simulation. The extrinsic resistances 

are estimated from the geometry of the device and the transmission line method (TLM) test 

structures.  Knowing these extrinsic elements values, these are de-embedded from the S-

parameters and the remaining intrinsic values are then estimated analytically. Due to these 

estimates being highly accurate and close in value to the actual results, optimisation of the whole 

circuit against measured S-parameters results in a quick convergence to the final values.    

 

The model shown in Figure 5-1 is used as the basis of the small-signal model used in this 

parameter extraction. With the extrinsic parasitic components, capacitance, Inductance and 

resistance brought in by the bond pads, while the intrinsic model being marked within the dash 

line and is based on the typical bias dependent T-model of HBTs [7]. The element values can be 

extracted from measured data, both from the final S-parameters as well as from the TLM test 

structures as discussed below. 

. 

 

Figure 5-1:  Small-signal equivalent circuit of an HBT. 
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5.1.1. Pad Capacitances- 

The extrinsic base-collector, base-emitter and collector-emitter capacitances (Cpbc, Cpbe and Cpce 

respectively) are simulated in Agilent’s Momentum software, which is a 3D electromagnetic 

simulator. Once the bond pads of the device have been drawn in (as seen below in Fig. 5-2a) 

with the accurate dimensions, along with the relative dielectric constants of the substrate, the 

software applies a technique “method of moments” to Maxwell’s electromagnetic equations to 

analyse the structure.  The result of the simulations produces S-parameters which are then 

converted into Y-parameters, and it is from these parameters (equations 38-40 below) that the 

extrinsic capacitances, as shown in Fig.5-2b, can be calculated and evaluated 

 

 

 

).(11 pbcpbe CCjY += ω
   (38) 

pbcCjYY .2112 ω−==
   (39) 

).(22 pbcbc CCjY += ω
   (40) 

 

          

(a)       (b) 

Figure 5-2: a) Layout of open-circuited bond pads ( b) Electrical equivalent circuit for the 
pads 
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Figure 5-3: Extracted pad capacitances. 
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5.1.2. Pad Inductances 

The extrinsic emitter, base and collector Inductances (L e, Lb and Lc respectively) are simulated in 

a similar method to those of the pad capacitances mentioned above, except a short circuit is 

placed where the transistor would sit (Fig 5-4a below).  Agilent’s Momentum software, simulates 

the S-parameters from the test structure, from which the Z-parameters are extracted and the 

inductances are calculated from the these, using equations (41-43) which results in pad 

Inductances equivalent circuit (Fig. 5-4b below). This results of which is shown in fig 5-5. 

 

).(11 eb LLjZ += ω
    (41) 

eLjZ .12 ω=
     (42) 

).(22 ec LLjZ += ω
    (43) 

 

       

(a)      (b) 

Figure 5-4: a) Layout of short-circuited bond pads,  (b) Electrical equivalent circuit for the 
pads. 

 

Figure 5-5: Extracted pad inductances. 
 

5.1.3. Contact and Access Resistances 

The extrinsic emitter (Re), base (Rb) and collector (Rc) resistances are calculated from the 

extracted sheet resistance and contact resistances from the transmission line measurements 

(TLM) test structures that are carried out at each of the three metallisation steps (emitter, base 

and collector).  Once the values for Rsh and Rc have been acquired, the access resistance is 

calculated through combining the known geometry (In the case of the base, the four gray regions 
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highlighted in Fig.5-6 below) of the access region of the device (highlighted by the arrows in Fig. 

5-7), with the sheet resistance (Rsh) and the addition of the contact resistance (Rsh).  The results 

are set out below in Table 1 using (20 nm)Ti / (30 nm) Pd / (80 nm) Au Ohmic contacts. 

 

Figure 5-6: Active Region and access region of devi c 
 

 

Figure 5-7: Known geometry of device 
 

 

Table 5-1: Sheet (R sh) and contact (R sh) Ohmic contact resistances. 
 

5.1.4. Intrinsic Elements  

The intrinsic and extrinsic base-collector capacitances (Cbcx and Cbci) were estimated as they are 

area dependent.  They are able to be estimated with the use of equation (44) below.   

t

A
C or ..εε=

    (44) 

where: 

 Ar= Cross-section area of metallic contact (m2) 

 εr = Relative permittivity of the dielectric (F/m) 

ε0 = Permittivity of free space(F/m) 

t = Thickness of dielectric (metres) 

 Layer Doping (cm -3) Rcon (Ω) Rsh(Ω/□⁪) 

Emitter Cap In0.53Ga0.47As 3×1019: Si 0.22 16.51 

Base In0.53Ga0.47As 6×1019: C 2.75 377.55 

Sub-Collector In0.53Ga0.47As 3×1019: Si 0.15 2.88 
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The intrinsic and extrinsic base-collector capacitances can be calculated this way because of the 

high dopant concentrations of the base and sub-collector.  As they are separated by  a lightly 

doped collector layer then this acts like a plate capacitor which is area dependant.  Since all the 

extrinsic components have been estimated, we then de-embedded these values from the original 

S-parameters results, the remaining elements can all be expressed in the form of Z-parameters 

as follows [4]: 
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 where: 

be
be

be Cj
R

Y ω+= 1

   (46) 

bci
bc

bc Cj
R

Y ω+= 1

   (47) 

 From (44-46) gives us: 

1211 ZZRbi −=
    (48) 
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and 

2122

2112

ZZ

ZZ

−
−=α

    (51) 

 

where: 

 α being the common-base high frequency current gain 

 

Since all the intrinsic components of the small-signal model are now known, the result can be 

compared and optimised using a multi-variable optimisation technique in Agilents Advanced 

Design Systems to provide the best fit of the measured and modelled S-parameters.  The 
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importance of the need to optimise these values is due to the fabrication process would have a 

small effect, although, as discussed previously, the estimation and data extraction are highly 

accurate estimates so only a brief convergence to the final values is required. 

5.2. Results 

The measured S-parameters for a16µm×10µm HBT device biased at VCE = 2V and IB = 50µA are 

shown figures 5-8 and 5-9: 

 

  
Figure 5-8: Frequency plots of the measured and mod elled S 21. 

 

 

Figure 5-9: Comparison between modelled and measure d S-parameters. 
 

 

The estimated and optimised small-signal equivalent circuit element values are shown below in 

Tables 5-2 and 5-3. 

 

 Re Rc Rb Le Lc Rb Cpbc  Cpce Cpbe 

 Ω Ω Ω pH pH Ph fF fF fF 

Est. 0.4 1.91 28.14 8.4 110 100 2.060 25.48 26.31 

Opt. 0.39 2.18 20 8.14 113 96.9 2.25 28.3 27.8 

Table 5-2: Comparison between estimated and optimis ed parasitic components. 
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 α Rbe Rbi Rbc Cbe Cbcx  Cbci  

 - Ω Ω kΩ pF fF fF 

Est. 0.964 30 147 22 4.5 440 40 

Opt. 0.966 23.2 100 20.9 3.82 450 31 

Table 5-3: Comparison between extracted and optimis ed Parasitic Components. 



 

 57 

 

5.3. References 

[1]  L. Degachi and F. M.Ghannouchi, “An Augmented Small-Signal  HBT Model With its 

Analytical Based Parameter Extraction Technique,” IEEE Trans. on Electronic Devices, 

Vol. 55, No.4, pp.968-972, April 2008. 

[2]  L. Degachi and F. M. Ghannouchi, “Systematic and Rigorous Extraction Method of HBT 

Small-Signal Model Parameters,” IEEE Trans. on Microwave Theory and Techniques, 

Vol. 54, No.2, pp.682-688, Feb 2006. 

[3]  H. C. Tseng and J. H. Chou, “A Pure Analytical Method for Direct Extraction of Collector-

Up HBT’s Small-Signal Parameters,” IEEE Trans. on Electronic Devices, Vol. 51, No.12, 

pp.1972-1977, Dec 2004. 

[4]  B. Sheinman et al,. “A Peeling Algorithm for Extraction of the HBT Small Signal 

Equivalent Circuit,” IEEE Trans. on Microwave Theory and Techniques, Vol. 50, No.12, 

pp.2804-2810, Dec 2002. 

[5]  B. Willén et al,. “Improved Automatic Parameter Extractiom of InP-HBT Small-Signal 

Equivalent Circuits,” IEEE Trans. on Microwave Theory and Techniques, Vol. 50, No.2, 

pp.580-583, Feb 2002. 

[6]  D. MacFarlane, S. Taking and E. Wasige “Small-Signal Equivalent Circuit Extraction For 

AlN/GaN MOS-HEMTs,” European Microwave Conference, 2011. 

[7]  W. Liu, “Handbook of III-V Heterojunction Bipolar Transistors,” John Wiley & Sons, Inv. 

pp.672, 1998. 

 

 



 

 58 

 

6. Conclusion 

The aim of the work described in ths dissertation was the development and fabrication of an 

InP/InGaAs based SHBT using wet etching technique. The fabrication of a InP/InGaAs based 

SHBT with emitter dimensions of 16µm×10µm was successfully accomplished and this was 

characterised both at DC and RF. The project completed with the successful extraction of the 

small-signal RF model for the HBT.  Using a extraction methodology in which the extrinsic 

parasitic transistor elements were estimated from the device geometry and the TLM 

measurements and the intrinsic elements were extracted from the s-parameters. 

 

Future Work 

• Fabricate smaller device sizes with the use of wet etch due to its high selectivity 

capability.  For sub-micron devices, the use of e-beam lithography would be required 

due to its high accuracy in the defining of structures in the nanometre scale.  

• Evaluate of the small-signal equivalent circuit model for high speed devices. 
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Appendices  

Appendix A: Accurate Fabrication Process Overview 

Initial Sample Cleaning  

5mins in Acetone in ultrasonic bath 

5mins in Methanol in ultrasonic bath 

5mins in IPA in ultrasonic bath 

Rinse in RO water 

Blow dry with N2 gas 

 

Metallisation  

Spin S1818 resist at 4,000rpm for 120s 

Bake on hot plate at between 60ºC and 65 ºC 

Place in developer solution and RO water at a ratio of 1:1 for 1min 

Expose on MA6 for 5secs 

Place in developer solution and RO water at a ratio of 1:1 for 75secs 

Check under microscope 

Ashering in O2 plasma for 80 Watts for 3mins 

De-oxidise sample for 60secs 

Rinse in RO water 

Blow dry with N2 gas 

Place sample into Plassys and deposit the metal 

Place sample into warm bath (50ºC) for 3 hours 

Place sample into IPA solution and then ultrasonic bath for 3minutes 

Rinse in RO water 

Blow dry 

 

Etching Process  

Spin S1818 resist at 4,000rpm for 120s 

Bake on hot plate at between 60ºC and 65 ºC 

Expose on MA6 for 5secs 

Place in developer solution and RO water at a ratio of 1:1 for 80secs 

Inspect under microscope 

De-oxidise sample for 60secs 

Rinse in RO water 
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Blow dry 

Etch InGaAs layer using in H2O2:H3PO4:H2O on a 1:1:38 ratio 

Rinse in RO water 

Etch InP layer using H3PO4:HCl on a 9:1 ratio 

Rince in RO water 

Blow dry 

Place into acetone and then into the warm bath (50ºC) for an hour 

Check height measurements under Dektak  

 

Polyimide  

Mix polyimide Polymer with RO on a 5:1000 ratio 

Put solution onto sample and wait 20secs 

Spin on recipe 9 (5Secs at 4,000rpm) 

Bake on hot plate @ 120 ºC for 1min 

Put polyimide onto sample 

Spin on recipe 6 for 5 Secs 

Spin on recipe 1 

Bake on hot plate at 140ºC for 20minutes 

Spin on S1818 on recipe 1 

Bake for 90 secs at 115ºC 

Expose on MA6 for 11 secs and Gap of 50µm 

Place in CD-26 for 20s 

Rince in RO water 

Check under microscope 

Place in Acetone and then into warm bath for 30mins 

Bake sample for 5mins at 140ºC 

Bake sample in oven (180ºC) for 20mins  

 

Bond Pads  

Spin LOR 10A at 3,000rpm for 45Secs 

Bake at 150ºC for 5mins 

Spin S1818 resist for 30s at 4,000rpm 

Bake at 115ºC for 1min 

Expose S1818 for 5.0s on MA6 

Place in developer solution and RO water at a ratio of 1:1 for 75secs 

Bake in oven at 120 ºC for 20mins 

Develop LOR10a and S1818 using LDD-26W solution for 1min 
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Rinse in RO water 

Blow dry 

Metal deposition using either Plassys machines 

Immerse samples in SVC-14 positive stripper 

Rinse with RO Water 

Check under microscope 
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Appendix B:  Emitter TLM results 

 20Ti/30Pd/80Au  

  1 2 3 4 6 7 8 9 OVERAL 

3 0.80183 0.78202 0.81288 0.80345 0.71111 0.68695 0.87176 0.82859 0.787 

5 1.02519 1.01189 1.00947 1.03443 0.95674 0.94218 1.08749 1.04291 1.014 

7 1.23754 1.28238 1.23869 1.26523 1.20477 1.17321 1.24817 1.28347 1.242 

9 1.41274 1.45558 1.42238 1.4764 1.44162 1.41803 1.44919 1.48625 1.445 

CORR 0.999 0.997 0.999 1.000 1.000 1.000 0.999 1.000 0.999 

Rsh/Wpad [Ω/µm] 0.1023 0.1146 0.1029 0.1125 0.1220 0.1212 0.0946 0.1107 0.110 

2Rcont [Ω] 0.5058 0.4456 0.5035 0.4700 0.3467 0.3278 0.5963 0.4962 0.461 

Rsh [Ω/�] 15.34 17.18 15.43 16.87 18.30 18.18 14.20 16.60 16.513 

Rcont [Ω] 0.25 0.22 0.25 0.23 0.17 0.16 0.30 0.25 0.231 

LT [µm] 2.47 1.94 2.45 2.09 1.42 1.35 3.15 2.24 2.140 

Sp.Rcont [Ω∗µm2] 94 65 92 74 37 33 141 83 77.422 

 

  10Au/10Ge/10Au/10Ge/20Au/11Ni/80Au  

  1 2 3 4 5 6 Average 

3 1.0905 1.0578 0.897 0.906 0.88532 0.8424056 0.947 

5 1.2708 1.2454 1 1.08 1.0323 1.03251 1.110 

7 1.4933 1.4414 1.3792 0.7565 1.2549 1.25629 1.264 

9 1.6729 1.6394 1.9605 1.195 1.39694 1.43963 1.551 

CORR 0.999 1.000 0.958 0.364 0.996 0.999 0.988 

Rsh/Wpad [Ω/µm] 0.0985 0.0971 0.1785 0.0272 0.0879 0.1008 0.0983 

2Rcont [Ω] 0.7910 0.7637 0.2383 0.8213 0.6151 0.5381 0.6279 

Rsh [Ω/�] 14.8 14.6 26.8 4.1 13.2 15.1 14.7 

Rcont [Ω] 0.40 0.38 0.12 0.41 0.31 0.27 0.31 

LT [µm] 4.02 3.93 0.67 15.11 3.50 2.67 3.19 

Sp.Rcont [Ω∗µm2] 238 225 12 931 161 108 150 

 

 

 

Annealing:  Au/Ge/Au/Ge/Au/Ni/Au - 380ºc for 1min                      

 Ti/Pd/Au - None 
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Appendix C: Base TLM Results 

 

 

 

 

 

 

 

 

  20Ti/30Pt/80Au  

Sample: Base 1 Base 2 Base 3  

Spacing 1 2 3 4 5 6 Average 

3 10.2178 10.1988 0.712 29.3 
    8.405 

5 16.2255 16.2959 38.7 40.3 16.2959 16.2716 24.015 

7 21.7541 22.1319 50.5 49.4 22.1317 22.1319 31.342 

9 27.2642 27.3116 59.3 61.3 27.3116 27.3868 38.312 

CORR 1.000 0.999 0.938 0.999 0.999 1.000 0.989 

Rsh/Wpad [W/mm] 2.8334 2.8587 9.3782 5.2550 2.7539 2.7788 4.310 

2Rcont [W] 1.8651 1.8322 -18.9662 13.5450 2.6356 2.4785 0.565 

Rsh [W/¨] 425.0 428.8 1406.7 788.3 413.1 416.8 646.451 

Rcont [W] 0.93 0.92 -9.48 6.77 1.32 1.24 0.283 

LT [mm] 0.33 0.32 -1.01 1.29 0.48 0.45 0.309 

Sp.Rcont [W*mm2] 46 44 1438 1309 95 83 502.528 

 20Ti/30Pd/80Au   

Sample: 1-1 Average 1-2 Average OVERAL 

Spacing 
1 2 3 4   6 7 8 9     

3 12.9703 15.58 12.749 12.5985 13.47443 
  12.4864 12.4739 12.5435 

12.50127 12.988 

5 18.4862 17.353 18.1083 18.127 18.01855 
18.2161 18.0835 18.7626 18.0731 18.28383 18.151 

7 23.2513 22.004 23.3428 23.3377 22.98398 
23.3371 23.4125 23.2835 23.4258 23.36473 23.174 

9 28.0433 26.127 28.0988 28.6556 27.73125 
27.7256 28.9535 28.2905 28.8526 28.45555 28.093 

CORR 0.99936 0.98543 0.99963 0.99993 0.99987 0.99901 0.99996 0.99755 0.99998 0.99948 0.99994 

Rsh/Wpad [Ω/µm] 2.4992 1.8147 2.5642 2.6691 2.3868 2.3774 2.7365 2.5985 2.7140 2.6472 2.517 

2Rcont [Ω] 5.6925 9.3779 5.1896 4.6651 6.2313 6.4513 4.3149 5.1114 4.4398 4.7682 5.500 

Rsh [Ω/�] 374.88 272.20 384.63 400.37 358.02 356.61 410.48 389.78 407.10 397.08 377.549 

Rcont [Ω] 2.85 4.69 2.59 2.33 3.12 3.23 2.16 2.56 2.22 2.38 2.750 

LT [µm] 1.14 2.58 1.01 0.87 1.31 1.36 0.79 0.98 0.82 0.90 1.09 

Sp.Rcont [Ω∗µm2] 486 1817 394 306 610 656 255 377 272 322 451 
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Appendix C: Collector TLM Results 

 

 

 

 

 

Annealing:  Au/Ge/Au/Ge/Au/Ni/Au - 380ºc for 1min                      

 Ti/Pd/Au - None 

 20Ti/30Pd/80Au   

Sample: 1-1 Average 1-2 Average OVERAL 

Spacing 
1 2 3 4   6 7 8 9     

3 0.35031 0.3433 0.33675 0.341846 0.343041 0.341144 0.349427 0.36271 0.35498 0.352064 0.348 

5 0.38021 0.3743 0.383998 0.380851 0.37985 0.373329 0.396658 0.40261 0.391282 0.39097 0.385 

7 0.42107 0.4105 0.414634 0.416743 0.415729 0.416957 0.414992 0.42955 0.435683 0.424296 0.420 

9 0.45033 0.4505 0.452877 0.466561 0.45506 0.48365 0.456123 0.46873 0.485097 0.473401 0.464 

CORR 0.99781 0.99844 0.99657 0.99741 0.99982 0.98656 0.98775 0.99733 0.99771 0.99692 0.99876 

Rsh/Wpad [Ω/µm] 0.0170 0.0179 0.0190 0.0205 0.0186 0.0236 0.0169 0.0173 0.0217 0.0199 0.0192 

2Rcont [Ω] 0.2982 0.2873 0.2834 0.2785 0.2868 0.2624 0.3028 0.3124 0.2863 0.2910 0.2889 

Rsh [Ω/�] 2.56 2.68 2.84 3.08 2.79 3.53 2.54 2.59 3.26 2.98 2.88 

Rcont [Ω] 0.15 0.14 0.14 0.14 0.14 0.13 0.15 0.16 0.14 0.15 0.14 

LT [µm] 8.75 8.03 7.48 6.79 7.71 5.57 8.95 9.05 6.59 7.32 7.51 

Sp.Rcont [Ω∗µm2] 196 173 159 142 166 110 203 212 141 160 163 

Sample: Collector 1 Collector 2 Collector 3  

Spacing 1 2 3 4 5 6 Average 

3 0.7487 0.704883 
0.652 0.7752 0.712275 0.720708 0.719 

5 0.7796 0.754119 
1.8977 2.4987 0.756446 0.779645 1.244 

7 0.8059 0.797957 
2.002 2.269 0.803177 0.805862 1.247 

9 0.8304 0.834927 
1.97 1.9 0.839975 0.831541 1.201 

CORR 0.99857 0.99800 0.80143 0.53100 0.99884 0.97542 0.884 

Rsh/Wpad [W/mm] 0.0136 0.0217 0.2029 0.1572 0.0215 0.0179 0.072 

2Rcont [W] 0.7098 0.6428 0.4129 0.9173 0.6490 0.6768 0.668 

Rsh [W/¨] 2.03 3.25 30.44 23.59 3.22 2.69 10.871 

Rcont [W] 0.35 0.32 0.21 0.46 0.32 0.34 0.334 

LT [mm] 26.17 14.81 1.02 2.92 15.10 18.87 13.147 

Sp.Rcont [W*mm2] 1393 714 32 201 735 958 671.994 
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Appendix D: TLM Comparison 

 

 Emitter Base Collector 

Spacing 
Original New Difference Original New Difference Original New Difference 

3 0.947 0.787 0.159 8.405 12.988 -4.583 0.719 0.348 0.371 

5 1.110 1.014 0.096 24.015 18.151 5.864 1.244 0.385 0.859 

7 1.264 1.242 0.022 31.342 23.174 8.167 1.247 0.420 0.827 

9 1.551 1.445 0.105 38.312 28.093 10.219 1.201 0.464 0.737 

CORR 0.988 1.000 -0.012 0.989 1.000 -0.011 0.884 0.999 -0.115 

Rsh/Wpad [Ω/µm] 0.098 0.110 -0.012 4.310 2.517 1.793 0.072 0.019 0.053 

2Rcont [Ω] 0.628 0.461 0.166 0.565 5.500 -4.935 0.668 0.289 0.379 

Rsh [Ω/�] 14.746 16.513 -1.767 646.451 377.549 268.902 10.871 2.885 7.986 

Rcont [Ω] 0.314 0.231 0.083 0.283 2.750 -2.467 0.334 0.144 0.190 

LT [µm] 3.194 2.096 1.098 0.309 1.093 -0.784 13.147 7.511 5.635 

Sp.Rcont [Ω∗µm2] 150.398 72.547 77.850 502.528 450.646 51.883 671.994 162.757 509.238 

 


