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Abstract 

Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder arising in a 

haemopoietic stem cell (HSC) as a result of the reciprocal translocation between the long 

arms of chromosomes 9 and 22 (t9;22), leading to the formation of the fusion oncogene 

BCR-ABL. BCR-ABL has constitutive tyrosine kinase (TK) activity which drives, at least 

during the chronic phase (CP) of the disease, myeloid progenitor cells expansion through 

terminally differentiated cells and is necessary for the transformed phenotype. The 

introduction at the end of the last century of BCR-ABL TK inhibitors (TKI) has 

dramatically changed the management of newly diagnosed CP CML patients as the vast 

majority achieve deep molecular responses while enjoying good quality of life when 

treated with TKI. However about 20% of patients still show various degree of resistance to 

all currently available TKI while in those achieving deep responses, there is compelling 

evidence of persistent minimal residual disease demanding lifelong treatment which has 

obvious implications in terms of compliance, adverse events and costs. 

It is now known that the main reason for disease persistence in CML patients treated with 

TKI lies in the insensitivity of the most primitive CML leukaemia stem cell (LSC). More 

recent evidence has demonstrated that, in contrast to more mature leukaemic progenitor 

cells, CML LSC are not addicted to BCR-ABL kinase activity but rather rely on other stem 

cell intrinsic pathways for their survival. The main focus in the CML field is therefore to 

identify these pathways while also trying to exploit them therapeutically to achieve CML 

LSC eradication and as a result disease cure. 

Growth factor (GF) signals are known to provide survival cues to CML stem and 

progenitor cells (SPC) and potentially support their survival even in the presence of TKI. 

Moreover CML SPC are also known to produce higher levels of some GFs via an autocrine 

loop and support their survival and proliferation through this mechanism. In this thesis, the 

characterisation of the autocrine GF production by CML SPC was extended while also 

investigating the role of several GFs and downstream signals in survival, proliferation and 

self-renewal of CML SPC. Whenever possible, the consequences of therapeutic targeting 

of these signals on CML SPC survival and proliferation were also assessed in vitro.  

In particular the role of the intracellular janus kinase (JAK) 2, which relays several 

myeloid GF signals, such as those from interleukin (IL)-3 and granulocyte macrophage 

colony-stimulating factor (GM-CSF), in CML SPC survival and proliferation was 
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investigated mainly because higher levels of autocrine expression of GM-CSF by CML 

SPC relative to normal were demonstrated, while autocrine IL-3 production by CML SPC 

had already been shown. Moreover the cognate receptor of both GM-CSF and IL-3 

(CSF2RB) was also shown to be expressed at higher levels in CML SPC relative to their 

normal counterparts, further supporting investigations on the role of JAK2 in CML SPC 

biology. Indeed targeting JAK2 with small molecule inhibitors in CML SPC in vitro, 

particularly in the presence of maximal BCR-ABL TK inhibition, resulted in increased 

apoptosis, reduced proliferation and colony output of CML SPC. The JAK2 inhibitor plus 

TKI combination treatment, compared to either single agent, further reduced survival of 

the more primitive quiescent LSCs in vitro, while also reducing engraftment of primary 

CML CD34+ cells in vivo in immunocompromised hosts. Although a degree of toxicity to 

normal haemopoietic stem and progenitor cells (HSPC) was observed, this was not as great 

as seen in CML SPC, thus suggesting that a therapeutic window for using JAK2 inhibitors 

in CML patients might be present when a carefully selected concentration of these 

compounds is chosen. 

Tumour necrosis factor (TNF)-α was another GF shown to be produced in an autocrine 

fashion at higher levels by CML SPC relative to normal HSPC. Moreover its levels of 

production by CML SPC were not modulated by BCR-ABL TK activity. Using a small 

molecule TNF-α inhibitor and exogenous TNF-α, it was shown that autocrine TNF-α acts 

as a survival and proliferative signal in CML SPC. Moreover its role became even more 

important in the presence of TKI, as combining TNF-α inhibition with TKI led to high 

levels of apoptosis in CML CD34+ cells, including the more primitive quiescent 

population, while also causing increased apoptosis in a population enriched for CML LSCs 

based on its surface marker expression (CD34+ CD38-). 

Finally given the known importance of quiescence and self-renewal pathways in CML 

LSC persistence following TKI treatment, the role of transforming growth factor (TGF)-β1 

and novel neurotransmitter mediated pathways in CML LSC quiescence and self-renewal 

was investigated based on the findings of a genome and epigenome-wide screen of primary 

CML LSCs and normal HSCs carried out in our laboratory. Using in vitro assays the 

putative role of the neuromediators norepinephrine and acethylcoline in CML LSC self-

renewal was demonstrated. Moreover the role of TGF-β1 in inducing primary CML LSC 

quiescence mainly by modulating the AKT pathway was also demonstrated. 
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Overall the work presented in this thesis has furthered our understanding of the role of both 

autocrine and paracrine known and novel regulators of haemopoiesis in several aspects of 

CML SPC biology such as their survival, proliferation and self-renewal. Furthermore the 

efficacy in eradicating CML SPC of therapeutic strategies targeting some of these GF 

signals has been explored in vitro, thus providing evidence supporting their subsequent 

testing in in vivo assays and in due course in clinical studies. It is hoped therefore that the 

work presented will contribute to devise novel therapeutic strategies to eradicate CML 

LSC and in turn lead to a cure for CML patients. 
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1 Introduction 

1.1 Normal haemopoiesis 

1.1.1  The haemopoietic stem cell (HSC) 

Haemopoiesis is the process leading to the formation of all different types of blood cells 

starting from a HSC, normally residing in the bone marrow (BM). Because of the very 

short life span of most mature blood cells, haemopoiesis is an ongoing process producing 

between 1011 to 1012 blood cells every day in an adult human at steady state1. This process 

is made possible by the two main properties of HSC2:  

1) multipotency, defined as the ability to generate differentiated committed progenitor 

progeny through asymmetrical cell division which in turn gives rise to all mature blood 

cells;  

2) long-term self-renewal, defined as the lifelong ability to generate a daughter cell 

identical to the parent through symmetrical cell division, thus maintaining an overall 

constant pool of HSCs during the lifespan of an organism 

HSCs are the only haemopoietic cells displaying these two properties. Committed 

progenitors retain proliferative and developmental capacity although this is progressively 

lost as they mature from multipotent through oligopotent and lineage restricted progenitor 

cells into terminally differentiated cells which are unable to grow further1. 

The first evidence supporting the existence of HSC was the discovery in mice of a 

population of clonogenic BM cells able to generate myeloerythroid colonies in the spleen 

of lethally irradiated hosts3. Moreover these colonies contained clonogenic cells that could 

be transferred to secondary lethally irradiated hosts and reconstitute all blood cell lineages, 

thus proving their self-renewal potential4. Subsequently it was found that a high proportion 

of cells of the lymphoid system belonged to these same clones5.  These colony forming 

cells therefore showed capacity for proliferation, differentiation into all lineages and self-

renewal and were proposed to contain HSC. Subsequently the differential capacity of 

reconstituting haemopoiesis in lethally irradiated hosts from mouse BM cells prospectively 

isolated on the basis of their cell surface marker expression by multiparameter fluorescence 

activated cell sorting (FACS) has enabled the purification of murine HSC with a purity of 

1 in 26. Using the same functional and phenotypic assays it has also been possible to define 
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the ontogeny of all mature blood cells starting from the HSC. HSCs can be divided into 

long-term (LT)-HSCs and short-term  (ST)-HSCs based respectively on their long-term or 

more limited (about 8 weeks) self-renewal capacity7.  ST-HSC give rise to the multipotent 

progenitors (MPP) only capable of very limited self-renewal8. MPP then produce either of 

the two main lineage restricted progenitors, the common myeloid progenitor (CMP) and 

the common lymphoid progenitor (CLP). These are functionally committed progenitors 

which have taken an irreversible maturation step towards the lymphoid9 or myeloid 

lineage10. From them through progressive maturation steps the mature differentiated blood 

cells are eventually produced (figure 1-1). 

Platelets

LT‐HSC

ST‐HSC

MPP

CMP CLP

Red cells

Granulocytes
+ Monocytes

NK Cells T Cells B Cells

Self‐renewal 
potential

  
Figure 1-1 Ontogeny of mature blood cells 
Blood cells are produced starting from a LT-HSC which has maximal self-renewal potential. 
ST-HSCs have only short lived self-renewal potential while MPP have almost negligible self-
renewal potential. From MPP lineage committed progenitors are derived (CMP and CLP) and 
from them through other more differentiated intermediate progenitors (not shown) the 
terminally differentiated cells. Abbreviations (only those not explained in main text): NK, 
natural killer. 

Prospective isolation of human HSC has been lagging behind the murine counterpart, 

mainly because of suboptimal functional assays. While in mice competitive in vivo 

repopulating assays can be used to demonstrate sustained self-renewing and multipotent 

differentiation capacity of HSC, the same cannot be performed in humans for obvious 

ethical reasons. Therefore two main surrogate functional assays have been employed to 
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identify human HSC. In the long-term culture-initiating cell assay (LTC-IC), candidate 

BM  haemopoietic cells are cultured for 6 weeks or longer in vitro on an adherent layer of 

BM feeder cells in an attempt to mimic the BM microenvironment. Thereafter cells are 

transferred into semi-solid medium containing growth factors (GFs) and their ability to 

generate colonies is measured. The ability of candidate cells to produce differentiated 

colonies following long-term culture (>6 weeks) is considered evidence of self-renewal 

capacity and multilineage differentiation potential. As a result the LTC-IC assay is thought 

to identify primitive progenitors and HSC11. Alternatively the ability of prospectively 

isolated subsets of human haemopoietic stem and progenitor cells (HSPC) to reconstitute 

long-term multipotent human haemopoiesis in in vivo xenotransplantation assays using 

immunodeficient mice has been used to identify and quantitate human HSC12,13.  Despite 

their limitations, thanks to these assays a progressive and more refined characterisation of 

human HSC has been achieved.  

The main positive (and first to be described) surface marker for human HSC is the 

transmembrane glycoprotein CD3414. Its biological function in haemopoiesis is poorly 

understood and in fact could not even be relevant because despite the reduced in vitro 

colony forming activity of their haemopoietic progenitors, CD34 deficient mice have 

normal peripheral blood counts and respond to haemopoietic stress as well as wild-type 

mice15. CD34 is expressed in 1 to 2% of BM mononuclear cells (MNC) and its levels of 

expression  correlate with in vitro colony formation and LTC-IC activity with highest 

expression levels in the earliest haemopoietic cells11,14,16. Despite this, even cells 

expressing high levels of CD34 (CD34high) are still a heterogeneous population, including 

both HSCs and more committed haemopoietic progenitor cells (HPCs). Subsequently it 

was shown that only a small fraction (about 1 to 10%) of the CD34high population, which 

does not express mature lineage markers (Lin-), and has low or undetectable levels of 

expression of the surface marker CD38 (another poorly defined transmembrane protein17), 

contains cells with both lymphoid and myeloid differentiation potential18-21, with a 

frequency of 1 in 617 in in vivo assays. Finally, more recently a further phenotypic 

characterisation of normal human HSC has been added based on expression of three other 

surface markers CD90, CD49f and CD45RA: therefore according to the most recent 

evidence the HSC activity can be isolated in as few as 1 in 10 purified  Lin- CD34+ CD38- 

CD90+ CD49f+ CD45RA- cells22,23. A summary of the current markers to identify human 

HSC and committed progenitors at various stages of differentiation is shown in table 1-1. 
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CELL TYPE SURFACE MARKER 

PHENOTYPE 

 

 

HSC 

Lin- 

High CD34+ 

CD38- 

CD90+ 

CD49f+ 

CD45RA- 

 

 

MPP 

Lin- 

High CD34+ 

CD38- 

CD90- 

CD49f- 

CD45RA- 

 

Lineage committed 

progenitors 

Lin+/- 

CD34+ 

CD38+/- 

CD90- 

CD45RA+ 

Mature cells Lin+ 

CD34- 

Table 1-1 Surface immunophenotype of human haemopoietic cells at different stages of 
their development 

 
The ability to isolate highly purified stem and progenitor cells (SPC) populations has also 

allowed their functional and molecular characterisation. It is now known that at steady 

state the LT-HSCs are mainly quiescent, i.e. in G0 phase of cell cycle. However they are 

still able to enter cell cycle with one report showing that up to 99% of LT-HSCs divide at 

least once every 57 days in mouse24. Conversely as LT-HSCs differentiate, a progressive 

reduction in the percentage of G0 cells is seen with a corresponding increase in the 

proliferation rate of each progenitor population25. Quiescence appears to promote their 

long-term haemopoietic reconstitution ability as the capacity of LT-HSCs to functionally 

engraft lethally irradiated  hosts in competitive reconstitution assays rapidly decreases as 

they enter G125,26. These results in mice have been paralleled by similar observations in 

human showing that G0 HSCs have higher engraftment potential and indeed maintaining 

quiescence both in vitro and in vivo resulted in improved repopulating capacity of human 
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HSC27,28. Taken together these results suggest that quiescence is a main regulator of the 

maintenance of a pool of functional LT-HSCs able to both self-renew and differentiate. 

The molecular regulators of the behaviour of HSPC are also now better understood and it 

has become clear that LT-HSC express higher levels of the negative cell cycle regulators, 

cyclin dependent kinase inhibitors (CKIs), such as Cdkn1a/p21, Cdkn2a/p16 and 

Cdkn1c/p57. Conversely the expression of cyclin D1, a positive regulator of cell cycle, 

increases during differentiation25.  

1.1.2 Extrinsic regulators of normal haemopoiesis: cytokines, 
GFs and small molecules 

Haemopoiesis requires fine regulation so that an adequate production of mature blood cells 

is provided at both steady state and during physiological stresses (such as bleeding and 

infection), while a constant pool of LT-HSC is maintained. This regulatory process is 

largely accomplished by the production of a family of extracellular soluble proteins 

collectively called GFs or cytokines (the two terms will be used interchangeably), which 

determine various biological responses by binding to surface receptors on different 

haemopoietic cell types. Cytokines play a crucial role in haemopoietic homeostasis as they 

regulate HSPC quiescence, proliferation, lineage commitment and differentiation, survival 

and apoptosis. They comprise proteins such as the interleukins (ILs), colony-stimulating 

factors (CSFs), interferons (IFNs), erythropoietin (EPO), thrombopoietin (TPO), 

transforming growth factors (TGFs), tumour necrosis factors (TNFs)  and many others29. 

Other regulators of HSPC self-renewal have also been described which include 

chemokines such as stromal cell derived factor 1 (SDF1) and novel small molecules and  

proteins, such as the ligands of the embryonic morphogenic pathways Hedgehog (Hh), 

Notch and Wnt/β-catenin or, even more recently, several neurotransmitters30,31. Although 

these latter molecules are not usually considered part of the GFs and cytokine family, 

given their role in regulating haemopoiesis, they will be also presented and their function 

discussed in this section. 

Most cytokines are produced locally within the BM niche where HSPCs normally reside, 

by stromal cells, fibroblasts, osteoblasts, adipocytes, endothelial cells and mature blood 

cells such as lymphocytes and macrophages31-33. However for some GFs, such as TNF-α or 

IL-8, low levels of autocrine production by HSPCs has been described34, while in other 

cases a systemic endocrine production is also present (EPO by the kidney, TPO by the 
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liver)33. Moreover their production is also influenced by external stimuli, such as other 

cytokines, inflammation or hypoxia, all pertinent within the BM niche. 

Each GF has a main action on the haemopoietic system based on its specific ability to 

support the formation of blood cells of multiple and specific lineages. So for example 

while granulocyte macrophage (GM)-CSF supports the survival and proliferation of earlier 

progenitors of both granulocytes and macrophages,  EPO is the main regulator of 

erythrocytes, TPO of platelets and granulocyte (G)-CSF of neutrophils production29.  This 

has led to the hierarchical classification of cytokines which mirrors the hierarchical 

haemopoietic cell development (figure 1-2). Although this classification is helpful in the 

overall analysis of the effects of various cytokines in haemopoiesis, it should be borne in 

mind that both redundancy and pleiotropism are two features of GF signalling. 

Redundancy determines that different GFs can exert similar or overlapping effects possibly 

as a consequence of them sharing common receptors and signalling pathways. Pleiotropism 

results in the ability of each cytokine to elicit different responses depending on several 

factors, including the cell context where they act, their concentration and presence of other 

signals35,36.    

Two models for the effects of cytokines in haemopoietic stem cell maintenance, 

differentiation and proliferation have been proposed. One model, called the stochastic 

model, states that lineage commitment and differentiation of HSPC is already determined 

within each haemopoietic cell by a transcriptional programme intrinsic to each cell, with 

the cytokines only providing permissive growth/survival signals. The alternative model, 

named the instructive model, states that GFs direct the lineage commitment and 

differentiation of multipotent haemopoietic cells and therefore have an instructive role in 

haemopoiesis29,33. Both models have been supported by experimental evidence. For 

example transgenic mice expressing human G-CSF receptor ubiquitously were able to 

support multilineage development of primitive MPP, both in vitro and in vivo, when 

stimulated with human G-CSF without inducing exclusive commitment to the myeloid 

lineage37. Conversely Kondo et al demonstrated that a CLP can be redirected to the 

myeloid lineage by stimulation through exogenously expressed IL-2 and GM-CSF 

receptors. Moreover by mutational analysis of the IL-2 receptor, they were also able to 

show that the signalling pathways respectively responsible for granulocyte and monocyte 

differentiation are separable38. It is possible that both models are true and that cytokine 

signalling can indeed regulate lineage commitment decisions, at least for some cytokines 

and at certain points during haemopoietic development.  While however the survival and 
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growth signals triggered by the GFs are well described, the signals leading to lineage 

decisions are currently not yet clearly known. The high number of soluble regulators of 

haemopoiesis (currently estimated at over 80) and the complexity of their regulatory 

networks inevitably demands a degree of simplification when approaching this subject. As 

the main aim of the work presented in this thesis is to investigate the role of some of these 

regulators in normal and chronic myeloid leukaemia (CML) stem cell fate, a more in depth 

introduction to only the regulators involved in HSPC and myeloid cell development will be 

presented, particularly focusing on those that have been the subject of investigations in the 

work presented in this thesis. They will be presented in three different sections; the first 

concentrating on those GFs relevant to HSPC proliferation and myeloid differentiation (IL-

3, GM-CSF, G-CSF); the second addressing some putative regulators of HSC maintenance 

(note the term maintenance is used here to signify preservation of self-renewal potential) 

and quiescence i.e. TGF-β1 and neurotransmitters; and the third  focusing specifically on a 

truly pleiotropic cytokine TNF-α  known for its varied effects depending on cell context.  

Platelets GranulocytesRed cells

MEG EP

NK Cells T Cells B Cells

HSC

CMP CLP

GMPMEP
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BCPTNK

SCF
IL‐3

TPO
IL‐3

TPO EPO

G‐CSF M‐CSF

GM‐CSF

IL‐7

IL‐7
IL‐7

IL‐2 IL‐15 IL‐4
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Figure 1-2 Hierarchical classification of GFs 
Each GF main action in supporting the formation of blood cells of multiple and specific 
lineages is graphically shown in this figure. However it should be noted that because of 
both redundancy and pleiotropism, GFs effects on haemopoietic cells are not so specific. 
Abbreviations: MEP, megakaryocytic/erythroid precursor; GMP, granulocyte/macrophage 
precursor; TNK T cell/Natural killer (NK) precursor; BCP, B cell precursor; M-CSF, 
macrophage colony stimulating factor  
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1.1.2.1 Regulators of HSPC proliferation and myeloid differentiation: IL-3, 

GM-CSF and G-CSF 

The main GFs involved in HSPC proliferation and myeloid development are IL-3, GM-

CSF and G-CSF. IL-3 and GM-CSF have the broadest target specificity. IL-3 plays a role 

in the production of all myeloid cells including macrophages, neutrophils, eosinophils, 

basophils, mast cells, megakaryocytes, and erythroid cells and also of lymphoid cells as it 

exerts its effects mainly on the HSC and the CMP. GM-CSF acts mainly on the CMP and 

the granulocyte-macrophage progenitors (GMP) and thus has predominant effects on the 

production of granulocytes and monocytes/macrophages. Both IL-3 and GM-CSF are 

glycoproteins of molecular weight ranging between 14 and 30kDa depending on the level 

of glycosylation. Interestingly their genes are both located in tandem on the long arm of 

chromosome 5 and have a similar structure suggestive of a common evolutionary origin 

and in fact a degree of similarity in their structure is present39. The major source of 

production of IL-3 is T lymphocytes40 although production has also been shown by natural 

killer (NK) cells, eosinophils and stromal cells. GM-CSF is instead equally produced by T 

lymphocytes, monocytes, endothelial cells, fibroblast, stromal cells of different types and 

also mature neutrophils39. Interestingly both IL-3 and GM-CSF share the same family of 

receptors, the gp140 family of cytokine receptors41. These receptors are heterodimers 

composed of an α chain which is the specific ligand binding chain and a β chain (also 

named CSF2RB) which is the signal transducing subunit and is shared amongst different 

GFs, namely IL-3, GM-CSF and IL-542.  The IL-3 receptor has been detected mainly on 

primitive and more committed progenitor cells with lower levels of expression on the 

HSC43,44. Similarly the GM-CSF receptor has been detected on HPC with undetectable 

levels on the most primitive and clonogenic stem cells45. This correlates with the slightly 

different, although still overlapping, effects of these two GFs.  In fact IL-3 promotes the 

production from HSPC of multilineage colonies with higher replating efficiency compared 

to GM-CSF which mainly induces production of single lineage colonies. These results 

suggest that human MPP that respond to GM-CSF represent a small subpopulation of those 

sensitive to IL-3 and that GM-CSF effects are more prominent on more committed 

progenitors46,47. Similar effects were also demonstrated in in vivo experiments where 

administration of IL-3 stimulated haemopoiesis and induced a rise in all blood cell types 

and splenomegaly48. Significant functional redundancy between different GFs involved in 

the myeloid compartment proliferation and differentiation was further confirmed in vivo as 

IL-3 ligand or receptor deficient mice show a viable phenotype with some dysfunction in 

the eosinophils production and function, but no major effects on the HSC compartment49. 
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One function peculiar to GM-CSF, compared to IL-3, is its influence on the biological 

functions of terminally differentiated effector cells such as neutrophils, eosinophils and 

macrophages. These consist mainly in production of reactive oxygen species (ROS), 

induction of phagocytosis and overall stimulation of an inflammatory/immune response39.  

G-CSF plays a key role in growth, differentiation, survival and activation of neutrophils 

and their precursors. It has also been shown to support proliferation of more primitive 

haemopoietic progenitors in combination with IL-3.  It is a glycoprotein of about 20kDa 

and is produced by a variety of cells with monocytes and macrophages being the main 

producers. Moreover its production by fibroblasts, T lymphocytes and endothelial cells has 

been shown particularly following inflammatory stimuli, such the proinflammatory 

cytokines TNF-α, IFN-γ and IL-139. The G-CSF receptor is a member of the type I 

cytokine receptor superfamily which includes also receptors for EPO and growth hormone. 

These receptors form homodimers upon ligand binding and are primarily expressed on 

neutrophils progenitors and mature neutrophils50. G-CSF plays a central role in the 

terminal differentiation of haemopoietic cells towards the granulocytic pathway. In fact 

while IL-3 and GM-CSF were capable of supporting production of both multilineage and 

different single lineage colonies from haemopoietic progenitors, G-CSF in the same culture 

was only able to support single lineage colony formation, almost exclusively of the 

granulocytic type46. Its essential role in increasing myelopoiesis and maturation of 

neutrophils is particularly noticeable under stress conditions (i.e. infections, cancer) when 

G-CSF concentration increases dramatically leading to the well recognised physiological 

neutrophilic response often seen during the acute phase of an infection51. The neutrophilia 

seen in these circumstances is secondary to increased production/enhanced survival of 

neutrophils and a shortened maturation together with increased release from the BM. In 

addition to this, G-CSF also has profound effects on the biological functions of 

neutrophils, again stimulating ROS production and their phagocytic and chemotactic 

activity50. Finally G-CSF can also influence other cell types as demonstrated by its ability 

to mobilise HSC.  As a result of its effects on neutrophil progenitors and neutrophil 

development and function, G-CSF is one cytokine which has found a widespread clinical 

application and is currently routinely used in the management of post-chemotherapy or 

congenital neutropenia as well as when treating infection in patients with neutropenia or 

neutrophil dysfunction39,52.  

The main biological effects at the cellular level of the above mentioned GFs are therefore 

an increase in survival and proliferation of HSPC with a concomitant maturation of the 
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same towards the myeloid compartment. While the exact contribution of GFs in the lineage 

commitment of haemopoietic progenitors has still been questioned (see above the 

stochastic model for cytokine function), and the exact signals causing lineage fate 

decisions are unclear, a better understanding of the survival and proliferative signals 

elicited by these GFs is available. Because both the common β chain receptor of IL-3 and 

GM-CSF, which is the signal transduction subunit, or the G-CSF receptor do not have 

tyrosine kinase (TK) activity, their ability to transduce signals following GF stimulation is 

secondary to the presence of intracellular TK which are activated  upon ligand binding and 

in turn phosphorylate tyrosine residues within the GF receptor and other signalling 

molecules39. Amongst those, the janus kinase (JAK) family of proteins plays a prominent 

role in all three aforementioned GF signalling mainly via activation of the signal 

transducer and activator of transcription (STAT) transcription factors. Moreover two other 

survival signalling pathways, namely the PI3 kinase/AKT and Rat sarcoma (RAS)/Mitogen 

activated protein (MAP) kinase pathways are activated by the same GF receptors via the 

phosphotyrosines produced on the receptors themselves or intracellular adaptor proteins 

upon ligand binding41. In the next sections a more detailed analysis of these GF receptors 

activated signalling pathways will be presented.  

1.1.2.1.1 The JAK/STAT pathway 

The JAK/STAT pathway is central to haemopoiesis  and the most important pathway in the 

normal cellular response to a variety of GFs. JAKs are intracellular TKs which, following 

dimerisation of GFs receptor upon binding to their ligands, are brought close together and 

become activated through auto- and cross-phosphorylation. Active JAKs are then able to 

phosphorylate the GFs receptor creating docking sites for the STAT transcription factors, 

which as a result, also get phosphorylated by the JAK proteins.  Phosphorylated STATs are 

activated and translocate to the nucleus where they induce changes in gene expression 

within the target cells which are central for the growth, survival and differentiation53 of 

HSPC into different lineages, such as the proliferative genes cyclin D154, cyclin D255 and 

the antiapoptotic gene BCL-XL
56 (figure 1-3). The JAK/STAT pathway is tightly regulated 

normally by negative feedback mechanisms mainly via the activation of the cytokine-

induced SH2 containing (CIS) and the suppressors of cytokine signalling (SOCS) family of 

proteins. These proteins exert their negative effects by direct kinase inhibition and/or 

competitive binding to phosphotyrosine docking sites on the GFs receptors which prevents 

binding on the same site by stimulatory pathways signalling proteins57. 
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Figure 1-3 The JAK/STAT pathway 

 
There are 4 JAK proteins in mammals: JAK1, JAK2, JAK3 and TYK2. Each of them is 

activated by various different GFs and can in turn activate different types of STATs and 

therefore plays a rather broad role in normal haemopoiesis. Specific Jak gene knockout 

(KO) experiments in mouse models have helped clarifying this and narrowed down the 

most prominent role in haemopoiesis for each JAK (table1-2). 

KO mouse Phenotype GFs affected 
Jak1 Impaired lymphopoiesis IL-2, IL-4, IL-6 
Jak2 Impaired erythropoiesis/myelopoiesis EPO, IL-3, GM-CSF 
Jak3 Defective lymphopoiesis/dysregulated myelopoiesis IL-4, IL-7 
Tyk2 Defective adaptive and innate immune responses IFN α/β/γ, IL-12 

Table 1-2 Role of Jaks in haemopoiesis based on phenotypes of KO mouse 
(Adapted from57) 

Seven STAT transcription factors have been described in mammals: STAT 1 to 6 and 

STAT5a and STAT5b which show extensive sequence homology. They are activated via 

JAKs by different GFs receptors in a more specific manner, although different receptors 

can still activate a common STAT. Again Stat KO mouse models have helped clarify the 

main role for each of them in normal haemopoiesis (table1-3). 
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KO mouse Phenotype GFs affected 
Stat1 Defective IFN responses IFN α/β/γ 
Stat2 Defective type I IFN responses IFN α/β 
Stat3 Embryonic lethal/impaired T cell proliferation  IL-2, IL-6, IL-10 
Stat4 Impaired Th1 cell development IL-12 
Stat5ab Reduced granulocytic proliferation IL-3, GM-CSF, G-CSF 
Stat6 Impaired Th2 differentiation IL-4 

Table 1-3 Role of Stats in haemopoiesis based on phenotypes of KO mouse 
(Adapted from57) 

Both in vivo (see table 1-2 and 1-3) and in vitro58,59 work has shown that both IL-3 and 

GM-CSF signal mainly (although not exclusively) via JAK2/STAT5. The JAK2/STAT5 

axis also plays a central role in G-CSF induced signalling, although other members of both 

families (such as JAK1 and STAT3) have also been involved in G-CSF signalling60. 

Interestingly JAK2 also has a prominent role in EPO signalling and therefore erythroid 

development61. 

JAK2 therefore plays a central role in the normal cellular response to haemopoietic GFs 

particularly of the myeloid and erythroid lineages and in fact Jak2 KO mice are embryonic 

lethal because of absence of definitive erythropoiesis. Jak2 KO foetal liver cells are unable 

to respond to EPO, IL-3 and GM-CSF and show a clear defect in erythroid/myeloid lineage 

differentiation with little effect on lymphocytic lineage differentiation thus confirming 

Jak2’s essential role for erythroid and myeloid cell development due to its central role in 

erythropoietic and myelopoietic GFs receptor signalling. Interestingly however no effect 

was seen on the development of LT-HSC in the same mice which might be secondary to a 

degree of redundancy with other cytokines involved in HSC maintenance62,63.  

JAK2 transduces GFs signals through activation of its downstream target STAT5 and in 

support of a role for STAT5 in haemopoiesis, a constitutively active Stat5 mutant was able 

to compensate for loss of Jak2 in mouse haemopoiesis in vivo64. However the first Stat5 

KO mice described showed no effect on red cell production and a mild reduction in 

granulocytic differentiation65,66. These mice however expressed a hypomorphic N-

terminally truncated Stat5 allele.  When complete ablation of Stat5 was achieved a more 

severe phenotype was elicited with perinatal lethality, although up to 1% of animals 

survived till 6 weeks67,68. Moreover in transplantation assays, Stat5 null HSC showed only 

modest defects in the myeloerythroid repopulation69. Taken together these results suggest 

that Stat5 deletion phenotype on myeloerythroid development is overall less severe than 

the one shown by Jak2 KO mice. This would support the hypothesis that additional 

signalling pathways are activated by JAK2 beside STAT5 activation to support myeloid 
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and erythroid cell development. Conversely, recently it has been shown that STATs 

activation might also be dependent on other kinases, such as those of the family 

homologous to the Rous sarcoma virus gene (SRC), thus adding further complexity to this 

system and the relative contribution of STAT and JAK to GFs response70. 

1.1.2.1.2 The PI3 kinase/AKT pathway 

The PI3 kinase/AKT pathway is another pathway activated by several GFs including IL-

371,72, GM-CSF73 or G-CSF74. PI3 kinase consists of a family of related proteins with 

similar catalytic function. Although 3 classes of PI3 kinases have been identified (class I, 

II, III), class I PI3 kinase (from now on referred to as PI3 kinase for simplicity) is the most 

studied and relevant to the haemopoietic cells75. PI3 kinase is a heterodimeric protein 

consisting of an 85kDa regulatory subunit containing the phosphotyrosine binding domain 

SH2 and SH3, and 110kDa catalytic subunit76. The regulatory subunit allows the 

heterodimer to bind phosphotyrosines which appear on surface receptors or receptor 

associated proteins such as p8077 following haemopoietic GFs stimulation78. As a result 

PI3 kinase translocates near the plasma membrane, is activated and through its catalytic 

subunit promotes the conversion of the membrane lipid component phosphatidylinositol -

4,5- bisphosphate (PIP2)  into phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 then 

acts as a docking site for protein kinases containing the so called pleckstrin homology 

domains, such as the phosphoinositide dependent kinase (PDK) and AKT79. AKT can be 

activated by direct binding to PIP3
80 and through phosphorylation by PDK81. Following 

some GFs receptor activation, such as G-CSF, AKT appears to be activated by SRC 

kinases74. Different isoforms of AKT (AKT 1, 2 and 3) have been reported and its most 

relevant biological activities in the haemopoietic system are, as for the other pathways, in 

regulating cell cycle progression and apoptosis75. In particular its antiapoptotic effects are 

normally accomplished through the phosphorylation and consequent inactivation of 

different targets, including the proapoptotic proteins such as BAD72,82 and caspase-983. 

Amongst the AKT targets, the transcription factors of the forkhead box subgroup O 

(FOXO) family are particularly important given their pivotal role in normal regulation of 

cell proliferation, metabolism and survival84. These transcription factors (in particular 

FOXO3a in the haemopoietic cells) normally promote expression of genes involved in cell 

cycle arrest and/or apoptosis, such as the CKIs Cdkn1a/p2185, Cdkn1b/p2786 and the 

proapoptotic protein BIM71, while repressing the expression of proteins involved in cell 

cycle progression such as the D cyclins87,88. Following their phosphorylation by AKT, 

FOXOs are relocated in the cytoplasm and become inactive89 which results in inhibition of 
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the FOXO apoptotic and cell cycle arrest induced programme. The PI3 kinase/AKT 

pathway is normally regulated via the action of specific phosphatases, such as phosphatase 

and tensin homolog (PTEN) phosphatase, that removes the 3-phosphate from PIP3,  thus 

preventing AKT activation90. More recently two other phosphatases, SHIP 1 and SHIP2, 

have been also shown to act as negative regulators of the pathway through removal of the 

5-phosphate from PIP3
75(figure 1-4). 

P
P80

GF

Nucleus

DNA

Plasma membrane

Gene transcription
Cyclin D1
BCL‐XL

PTEN

PI3 
Kinase

PDK

AKT

PIP2
PIP3

P

FOXOP

TF

 
 

Figure 1-4 The PI3 kinase/AKT pathway 
Activation of PI3 kinase and its downstream effector AKT has multiple effects on signalling. 
Effects on FOXO transcription factors are specifically shown which result in inhibition of 
FOXO activity and therefore absence of their negative regulatory effects on other 
transcription factors (TF) regulating proliferative and prosurvival genes. 

1.1.2.1.3 The RAS/MAP kinase pathway 

The RAS/MAP kinase pathway is another central signal transduction pathway which relays 

signals from cell surface GFs receptors (including IL-3 and GM-CSF) to transcription 

factors in the nucleus91. RAS is a small guanosine triphosphate (GTP) binding protein that 

is active when bound to GTP and inactive when bound to guanosine diphosphate (GDP). 

Switching between these states is determined by changes in its conformation following 

GFs stimulation. These conformational changes allow alternatively the binding of GTPase 

activating proteins and the guanine exchange factors, which respectively remove a 
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phosphate from GTP and inactivate RAS, or activate it by addition of a GTP molecule75. 

RAS activation by GFs is normally secondary to the binding on GFs receptors of adaptor 

molecules such as SHC92 and GRB2, which in turn activates the guanine exchange factor 

SOS leading to RAS activation93. Active RAS recruits the serine/threonine kinase RAF to 

the cell membrane, which in turn activates the signalling cascades through intermediate 

kinases called MAP kinases, such as mitogen extracellular kinase (MEK). MEK 

phosphorylates and activates in turn the extracellular signal regulated kinase (ERK) which 

then phosphorylates and activates transcription factors, such JUN, FOS and MYC leading 

to the transcriptional regulation of several genes involved in proliferation and apoptosis75 

(figure 1-5). 
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Figure 1-5 The RAS/MAP kinase pathway 
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1.1.2.2 Regulators of HSC quiescence and maintenance: TGF-β1 and 

neurotransmitters 

HSC are predominantly quiescent. Quiescence, as discussed earlier, is essential to preserve 

HSC self-renewal potential (maintenance). Recently using a mouse model it was shown 

that amongst the most phenotypically primitive HSCs, the quiescent population was the 

only one able to reconstitute haemopoiesis in serial transplants94. This population of 

quiescent cells acts like a reservoir which normally does not contribute to daily blood 

production, but is only called upon under stress situations and as such it represents a safety 

net to prevent stem cell exhaustion during the life of an adult organism. Therefore 

quiescence and maintenance are two attributes of HSC closely linked as  also shown by the 

HSC exhaustion observed in mice carrying deletion of genes central to HSC quiescence, 

such as the cell cycle negative regulators CKIs Cdkn1a/p2195 and Cdkn1c/p5796. Quiescent 

HSCs are located in specific areas within the BM, particularly along the endosteal lining in 

the cavities of trabecular bones. These areas of the BM (called the BM  niche) are able to 

provide the best environmental cues for HSC quiescence31,32.  These cues can be soluble 

proteins acting in a paracrine way or membrane bound proteins acting instead by direct 

interaction between niche cells and HSC. Several of these cues have been described over 

the years and the list is rapidly expanding. Amongst the extrinsic regulators of normal HSC 

quiescence/maintenance it is worth mentioning TGF-β127,97, TPO98,99, Wnt/β-catenin100-102, 

Hh103,104, Notch31, integrin105, chemokine signalling27,106,107 and more recently also certain 

types of neurotransmitters108. Given the fact that they were part of the investigations 

presented in this thesis, a more in depth analysis of the role of TGF-β1 and 

neurotransmitters in HSC quiescence and maintenance will be presented in the following 

sections. 

1.1.2.2.1 TGF-β1 role in HSC quiescence and maintenance and its 
mechanisms of action 

TGF-β1 is a cytokine produced by almost every known cell type, including HSC, and has a 

role in the regulation of most tissues’ development and renewal. In haemopoiesis its main 

role is as a negative regulator of HSC proliferation, but TGF-β1 has been noted to have 

pleiotropic effects which can vary depending on the cell context109.  The TGF-β1 peptide is 

a 25kDa peptide which is normally released as a latent complex which includes the TGF-

β1 peptide bound to a latency associated protein (small latent complex). This small latent 

complex is then bound to a latent TGF-β1 binding protein (large latent complex) which 

allows this complex to associate with the extracellular matrix. TGF-β1 in a large latent 
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complex (also called latent TGF-β1) is inactive and therefore its function is modulated by 

its activation which requires the dissociation of  the TGF-β1 peptide from the latency 

associated protein normally via a proteolytic process110.  It has been shown that HSCs are 

unable to activate TGF-β1 by themselves and require BM niche cells to activate it97,111.  

Two receptors for TGF-β1 have been described: the TGF-β1 receptor type 1 (TGF-β1 R1) 

and type 2 (TGF-β1 R2). These are serine/threonine kinases that, upon ligand binding, 

heterodimerise and activate their kinase activity leading to their phosphorylation and 

downstream signalling activation. 

TGF-β1 biological function in haemopoiesis is to induce quiescence in HSC thus 

preserving their cloning and repopulating potential. This has been shown in several in vitro 

and in vivo experiments. TGF-β1 has been shown to reduce the proliferation of LTC-IC 

and of enriched CD34+ CD38- human haemopoietic cells. Interestingly its effects were 

different on the more mature progenitors (CD34+ CD38+) with even stimulation reported, 

thus confirming its pleiotropic effects which are highly dependent on the cell context112-114. 

Interestingly the effects on quiescence correlated with a higher repopulation capacity as 

human HSCs treated with TGF-β1 in vivo showed markedly increased repopulating 

capacity in secondary recipients27. Similarly in vitro treatment with TGF-β1 induced 

quiescence but also preserved the ability to produce multilineage colonies and repopulating 

capacity in competitive transplantation assays when compared to untreated (UT) cells. 

Moreover this was not associated with loss of viability or apoptosis induction in the 

HSC97,115. However it has also to be noted that mice deficient in Tgf-β1 R1 show no defect 

in HSC maintenance and quiescence116. It is therefore possible that a degree of redundancy 

exists, both in some components of the TGF-β1 signalling and overall in quiescence 

regulation which prevents the development of a clear phenotype in vivo. 

TGF-β1 can activate several signalling pathways depending on the cell context. However 

the two main pathways activated in the induction of quiescence and stem cell maintenance 

are the SMAD and AKT/FOXO pathways. The SMAD signalling pathway is the canonical 

pathway activated by TGF-β1. In simple terms, the activation of the TGF-β1 receptors 

upon ligand binding leads to the phosphorylation of the receptor regulated SMADs 

(SMAD 2 and SMAD3). Once phosphorylated, these can interact with SMAD4 to form an 

active transcriptional complex able to regulate the expression of several genes. The SMAD 

transcriptional complex is not in itself particularly strong as often the SMAD binding motif 

on the target genes are scarce. This practically means that for TGF-β1 to elicit a response 
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other cofactors have to be present and therefore the nature of response to TGF-β1 is highly 

dependent on the type of cofactors present in each cell. This is currently considered a 

possible explanation for the highly variable response to TGF-β1 observed in different cell 

contexts117. In terms of the cytostatic response to TGF-β1, this appears mainly secondary 

to the ability of TGF-β1 to activate CKIs, such as CDKN1A/p21, CDKN1B/p27 or 

CDKN1C/p57, while also being able to repress growth promoting factors, such as MYC118. 

Interestingly FOXO transcription factors have been shown to act as SMAD cofactors in 

TGF-β1 induction of CDKN1A/p2185 (figure 1-6). 
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Figure 1-6 The TGF-β1/SMAD pathway 

 
FOXO role in inducing cell cycle arrest and also apoptosis has already been discussed in 

the context of the PI3 kinase/AKT signalling. It is worth noting here that TGF-β1 has been 

shown to induce FOXO signalling by inhibiting AKT activity. The exact mechanism of 

AKT inhibition by TGF-β1 is not clear but recently a possible mechanism in the 

haemopoietic cells has been described involving its ability to prevent lipid raft clustering 

on the cell membrane of HSC97. Lipid rafts act as platforms for cellular functions such as 

cytokine signalling. Cytokine stimulation can induce lipid raft clustering which 

concentrates cytokine receptors and downstream signal transducers within the cluster and 
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further activates cytokine signalling thus controlling signalling and functional outcomes. In 

HSC lipid rafts have in fact been shown to increase AKT signalling leading to FOXO 

nuclear exclusion and inactivation119. Therefore TGF-β1 might be able to target both the 

SMAD and AKT/FOXO pathways and allow their interaction which appears to be 

necessary to regulate the expression of genes involved in stem cell quiescence, such as 

CDKN1A/p21.  In this respect it is also worth noting that both Foxo120 and Smad4121 have 

been shown to play a key role in HSC maintenance in KO mouse models, which at least in 

the case of FOXO was secondary to reduced quiescence and increased apoptosis possibly 

secondary to excessive accumulation of ROS122.  

1.1.2.2.2 The putative role of neurotransmitters in HSC maintenance 

The term neurotransmitters or neuromediators normally refers to a broad group of 

endogenous chemicals that transmit signals from a neuron to a target cell across a synapse. 

Neurotransmitters are normally stored in synaptic vesicles clustered in the nerve axon 

terminal and are released into the synaptic cleft following electrical nerve stimulation by 

depolarisation.  Classical neurotransmitters, such as norepinephrine (NEPI), serotonin 

(5HT) and acethylcoline (ACH) are usually synthesised from simple molecule precursors, 

such as amino acids, through few biosynthetic steps. A common classification of 

neuromediators is based on their chemical structure which allows their differentiation into 

3 main groups, including the biogenic amines, such as ACH, NEPI, dopamine, 5HT, 

histamine (HIS), the amino acids, such as glycine, glutamate (GLU), aspartate, and the 

peptides, such as somatostatin, opioid peptides and others123,124. Although neurotransmitter 

function has been mainly studied in relation to the nervous system, back in 2001 it was 

showed that an overlapping gene expression profile could be detected between mouse 

neuropoietic and HSC which included seven transmembrane domain receptors commonly 

used by neuromediators in relaying their signals125. More recently a report specifically 

looked at gene and protein expression for the same receptors in human HSPC and found 

that indeed several neurotransmitter receptors were expressed on HSPC, including opioid 

and 5HT receptors. These receptors were functionally active and interestingly their 

expression levels were higher in the more primitive population (CD34+ CD38-). This 

provided the first evidence for a common signalling mechanism between nervous and 

haemopoietic systems126. As already mentioned, HSC, particularly the most primitive ones, 

reside in specialised BM niches where they are subject to numerous cues through contact 

with stromal cells via adhesion molecules and soluble proteins. Nerve fibers have also been 

reported as being part of the BM niche. The role of the nervous system in regulation of 
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HSC maintenance, proliferation and migration has however only recently started to be 

unveiled. In murine models, the sympathetic nervous system, through the neurotransmitter 

NEPI, has been shown to regulate HSC egress from the BM by suppressing endosteal 

osteoblast function and leading to reduction in the levels of a key chemokine involved in 

HSC BM retention, SDF1127. Moreover treatment of human CD34+ cells with 

catecholaminergic neurotransmitters, such as dopamine and NEPI, has been shown to 

increase their mobilisation, proliferation and repopulation capacity of immunodeficient 

hosts108,128, while 5HT has been shown to enhance ex vivo expansion of cord blood CD34+ 

cells, including cells capable of repopulating immunodeficient mice BM129. A very recent 

report has also shown an indirect role of specific peripheral nervous system cells, the non-

myelinating Schwann cells, in regulating haemopoietic cells maintenance through 

regulation of the activation process of latent TGF-β1 into its active form130. Taken together 

these results support a model where the autonomic nervous system regulates HSC function 

in several different ways, through both direct and indirect effects. According to this model 

a dynamic crosstalk exists between the BM niche stromal cells, the HSC and the nervous 

system, which create a regulatory “brain-bone-blood triad”, as it has been named, whose 

primary role is to regulate HSC maintenance, proliferation and BM homing131.   

Little is known as to the mechanisms used by the aforementioned neurotransmitters to 

determine their effects on the HSC. Most neurotransmitters relay their signals through 

several different pathways using different receptors. Amongst those the already mentioned 

seven transmembrane domain receptors (also called serpentine receptors) play the main 

role. These receptors constitute the so called G protein coupled receptor family. Upon 

ligand binding to these receptors, the coupled G proteins become active as they bind a 

molecule of GTP. G proteins are heterotrimeric proteins consisting of an α, β and γ 

subunit. They are classified on the basis of their α subunit which is mainly responsible for 

the stimulation or inhibition of their target effector proteins which are normally an enzyme 

like adenylyl cyclase and phospholipase C β1 (PLCB1) or an ion channel. There are 

several subtypes of Gα proteins, with the main ones being Gs, Gi and Gq.  Gs, stimulates, 

while Gi inhibits,  adenylyl cyclase which is the enzyme that regulates intracellular levels 

of the second messenger cyclic adenosine monophosphate (cAMP), by converting 

adenosine triphosphate (ATP) into cAMP. Gq stimulates PLCB1 which is the enzyme that 

hydrolyses the phospholipid component of the plasma membrane, PIP2 into inositol 1,4,5-

trisphosphate (IP3) and diacyglycerol (DAG).  IP3 promotes the release of sequestered 

calcium (Ca2+) from intracellular stores into the cytoplasm where it acts as a second 

messenger, while DAG activates protein kinase C (PRKC). Ion channels can also be 
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activated by both Gi and Gq and increase intracytoplasmic levels of several ions including 

Ca2+ and potassium123,132. Interestingly in the report showing neurotransmitter receptors 

expression on HSC, their functionality was also demonstrated by measuring intracellular 

cAMP levels following agonist binding126 (figure 1-7). 
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Figure 1-7 The G protein coupled receptor signalling pathway 
Several neuromediators such as NEPI and ACH activates G protein coupled receptors. 
These in turn can stimulate or inhibit several different signalling pathways depending on the 
type of G protein they are coupled too. ‘+’ indicates stimulation and ‘–’ inhibition. See text 
for full explanation of the pathways and abbreviations. 

How these signals determine the biological outcome seen following neuromediators 

stimulation is still unclear. A possible role for the canonical Wnt pathway through 

stabilisation of β-catenin has been suggested following NEPI stimulation108. The Wnt/β-

catenin pathway has a well defined role in HSC self-renewal and maintenance. Treatment 

of single mouse HSC with Wnt ligand caused an increase in their self-renewal as 

demonstrated both phenotypically and functionally in transplantation assays and this was 

secondary to β-catenin activation101. Similarly upregulation of β-catenin activity through 

transduction of a constitutively active β-catenin in mouse HSC led to their increased self-

renewal and repopulating capacity of irradiated hosts, while the opposite results were seen 

upon inhibition of β-catenin activity through transduction of its inhibitor axin in HSC102.   
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In conclusion the study of the role of the nervous system in regulation of HSC function has 

only recently found some momentum. While evidence is accumulating on the role of 

several neurotransmitters in HSC self-renewal, mobilisation, maintenance and quiescence 

and its possible mechanisms, the exact role of each neurotransmitter, their interaction with 

other regulators and other possible mechanisms underlying their effects are an area of 

current investigation. 

1.1.2.3 Pleiotropic regulators of haemopoiesis: TNF-α 

TNF-α is a cytokine produced primarily by blood cells of the immune system, such as 

macrophages, NK cells and lymphocytes, although production by other cell types, in both 

physiological and pathological conditions, has been reported. It is a trimeric protein of 

approximately 17kDa which can be expressed in both transmembrane and soluble forms. It 

can bind to two different receptors, TNF-α receptor 1 (TNFR1) and TNF-α receptor 2 

(TNFR2). TNFR1 is expressed on every cell type known to date and is essential for the 

transduction of most of the signalling pathways activated by TNF-α. It contains a death 

domain which, despite its name, is able to relay not only proapoptotic signals (such as 

caspase-3 and 8 activation), but also prosurvival signals, mainly through the   nuclear 

factor kappa-light-chain-enhancer of activated B cells (NFκB) and MAP kinase pathway. 

Conversely TNFR2 expression is limited to immune cells, endothelial cells and nerve cells 

and although reports have suggested a role mainly in transducing proliferative signals 

through NFκB and MAP kinase, it seems to have overlapping function with TNFR1  with 

which it acts cooperatively133,134. 

The role played by TNF-α in normal haemopoiesis has been extensively investigated with 

conflicting results. Although usually considered a negative regulator of haemopoiesis, 

TNF-α has been shown in vitro to both inhibit and promote growth of human HSPC 

partially depending on the maturation stage of the target cells, its concentration and other 

GFs involved135,136. To summarise the current evidence, it appears that TNF-α is able to 

stimulate the proliferation and expansion of the more primitive human haemopoietic cells 

(CD34+ CD38-) particularly when the latter are cultured in the presence of high 

concentrations of GFs, such as IL-3 and GM-CSF, and with maximal effects seen when 

TNF-α is used in a concentration range of 0.1 to 5ng/mL, while higher concentrations 

show inhibitory effects135,137-139.  These proliferative effects are also associated with a more 

rapid differentiation of HSC and a subsequent downstream differentiation induced growth 

arrest. As a result the effects of TNF-α on more mature and committed progenitors are 
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rather inhibitory than stimulatory140,141. Similarly in vivo experiments using single and 

double KO mouse for both TNF-α receptors have shown increased BM cellularity, possibly 

explained by a tendency towards increased sizes of both mature and immature progenitor 

cell populations. This would suggest release of inhibitory effects from TNF-α on mature 

progenitors. The end result of these effects on the overall maintenance of LT-HSC is 

however not clear and some reports have suggested that by pushing HSC into 

differentiation TNF-α  would determine a negative effect on LT-HSC maintenance142. 

Overall conflicting results on TNF-α effects on LT-HSC maintenance have been reported 

which could not be easily reconciled143,144. TNF-α can also exert its effects on 

haemopoiesis indirectly, i.e. by stimulating HSPC and other cells from the 

microenvironment to produce GFs involved in HSPC proliferation and differentiation 

(such as GM-CSF) 145,146 or  by upregulating their cognate receptor expression147 (i.e. 

CSF2RB). In conclusion it would appear therefore that the effects of TNF-α on normal 

haemopoiesis are more complex than usually thought and testify as to the pleiotropic and 

cell context dependent effects of this GF. 

TNF-α is able to activate multiple signalling pathways with different biological outcomes 

which helps to explain its pleoiotropic effects.  Moreover it often activates them 

simultaneously so that their net balance determines its biological effects. Amongst the 

signals activated, the apoptosis/caspase, the MAP kinase and the NFκB pathways are 

particularly relevant. The apoptosis signal is relatively simple as upon TNF-α binding, 

TNFR1 recruits a protein called TRADD through its death domain which can in turn 

recruit another protein called FADD leading to sequential activation of caspase-8 and 3 

and apoptosis148. It is a relatively rapid signal not requiring protein synthesis. The MAP 

kinase pathway is also activated by TNFR1 and TRADD, but through a different 

intermediate called TRAF2134. Therefore RAS/RAF proteins are not required for MAP 

kinase activation by TNF-α. However once the MAP kinases are activated via 

TNFR1/TRADD/TRAF2, the signalling cascade is similar to the one previously described 

in relation to other GFs signalling. A more detailed description is instead required for the 

NFκB pathway and its activation by TNF-α. 

1.1.2.3.1 The NFκB pathway  

NFκB comprises a family of five transcription factors (p65 REL-A, REL-B, C-REL, p50 

NFκB and p52 NFκB) which despite their name are present in virtually every cell type. 

These proteins can form a variety of homo or heterodimers, however, due to the presence 
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of a strong transcriptional activation domain, p65 REL-A is responsible for most of the 

transcriptional activity of NFκB. The classic heterodimer comprising p65 REL-A and p50 

NFκB is the most abundant and ubiquitous in mammals and the one transducing most of 

the proproliferative, antiapoptotic and inflammatory signals of NFκB family following its 

activation149,150. Because of this, the following discussion will be mainly focused on the 

p65 REL-A/p50 NFκB dimer which from now on will be referred to as NFκB for 

simplicity.   

The regulation of NFκB is based on its intracellular localisation. In its inactive state, NFκB 

is bound to the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

(IκB) proteins, such as IκBα, which prevent its nuclear translocation and activation. NFκB 

can be activated by a variety of stimuli, such as the proinflammatory GFs TNF-α and IL-1 

or lipopolysaccharide produced in microbial and viral infection. Specifically in the case of 

TNF-α, upon ligand binding a TNFR1/TRADD/TRAF2 complex is formed, which through 

other intermediates (RIP), activates the IκBs kinase (IKK) complex.  When active, IKK 

complex phosphorylates IκBs leading to their proteasomal degradation151 and release of 

NFκB. Furthermore released NFκB also becomes accessible to direct phosphorylation by 

the IKK complex and possibly also other kinases on two key serine residues (529 and 536) 

of the transactivation domain of p65 REL-A152,153. This direct phosphorylation also plays a 

prominent role in the full activation of NFκB154. Phosphorylated NFκB is then free to 

shuttle into the nucleus where it can activate the transcription of several genes involved in 

proliferation, survival and inflammatory responses150,155. With regards to its effects, NFκB 

is well known for its role in regulating the proinflammatory responses to TNF-α by 

inducing the production of several inflammatory mediators, such as cytokines (IL-6, IL-8), 

chemokines and enzymes, such as cyclo- and lipo-oxygenase. NFκB also has strong 

proliferative effects, through both the direct induction of the transcription of genes 

involved in cell cycle progression, such as cyclin D1156 or indirectly by inducing the 

production of GFs, such as GM-CSF150. Finally its antiapoptotic effects are mainly 

secondary to the induction of the so called inhibitor of apoptosis (IAP) proteins. These 

include 4 members named IAP1, IAP2, XIAP and survivin. They act by blocking several 

caspases’ activation either directly (caspase-3, caspase-7) or indirectly (caspase-8 and 

caspase-9)157-160 and also, particularly IAP2, by enhancing NFκB signalling through a 

positive feedback161. Other antiapoptotic proteins of the BCL-2 family, such as BCL-XL 

have also been shown to be activated by NFκB162 (figure 1-8). It is worth noting that the 

activation of NFκB signal by TNF-α is able to prevent its simultaneous induction of 

apoptosis and this has been shown also for other apoptotic stimuli able to activate NFκB163. 
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Therefore despite its name, TNF-α is indeed a poor inducer of apoptosis and this is due to 

its ability to activate NFκB. Only when NFκB signalling is abolished/inhibited can TNF-α  

effectively induce apoptosis as shown by experiments in p65 Rel-A null cells164. 
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Figure 1-8 The NFκB pathway 
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1.2 Leukaemogenesis 

1.2.1   The leukaemia stem cell (LSC) 

The hierarchical organisation of the haemopoietic system coupled with the observation that 

many leukaemias demonstrate significant heterogeneity with respect to morphology, cell 

growth kinetics and response to therapeutic agents, has led to the testing of the hypothesis 

of whether leukaemia is also hierarchically organised. In 1971 it was shown using ascites 

derived mouse myeloma cells, that only 1 in 10,000 to 1 in 100 leukaemic cells were able 

to form colonies in standard colony-forming assays165. However it was not until 1997 that 

conclusive evidence of the existence of LSC was produced. Using transplantation assays of 

peripheral blood leukocytes from patients with acute myeloid leukaemia (AML) in 

immunodeficient mice, Bonnet and Dick demonstrated that in almost every type of AML 

only a population of cells expressing specific stem cell markers (CD34+ CD38-) was able 

to reproduce a disease in the host with the same features present in the donor. Moreover 

this same population showed self-renewal potential because of its ability to re-establish 

leukaemia in secondary recipients166. The leukaemic CD34+ CD38- population therefore 

truly contained a LSC as it displayed both of the key properties of a normal HSC, i.e. self-

renewal and proliferation/differentiation.  The conclusion from this landmark study was 

that AML followed a hierarchical organisation similar to the one present in normal 

haemopoiesis and could be viewed as an aberrant haemopoietic tissue initiated by a 

minority of cells within the bulk of the tumour which displayed indefinite proliferation 

potential as a result of acquired mutations. The main source of the heterogeneity seen in 

AML was therefore not secondary to continuing and accumulating genetic changes within 

the original leukaemic clone, but rather a consequence of the aberrant and variable 

differentiation programme of the LSC which depends on the nature of the original 

transforming genetic event. As a result, a LSC gives rise to a phenotypically diverse 

progeny of cells with limited or no proliferative potential, forming the disease bulk, while 

also maintaining a small proportion of LSCs with indefinite proliferation potential and 

displaying little phenotypic variability. In this report the LSC was only isolated within a 

population sharing the same markers of normal HSC. It was therefore originally thought 

that normal HSCs provide a more permissive environment for LSC development because 

they already possess an active self-renewal machinery. Moreover the HSCs are the only 

cells within the haemopoietic system that persist throughout life and undergo several 

rounds of divisions which means that they can more easily accumulate the necessary 

mutations to become malignant2,167. In support of this model, studies have shown that 
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potent oncogenes such as breakpoint cluster region-abelson (BCR-ABL) are unable to 

confer self-renewal properties to murine progenitors168. However over the last decade 

evidence has accumulated that this is not always the case and a LSC does not always need 

to originate from a normal HSC but might also arise in a more mature cell that has 

reacquired gene expression and functional characteristics that support self-renewal. In fact 

in contrast with BCR-ABL, other oncogenes such as MLL-AF9, MLL-ENL and MOZ-TIF2 

were all capable of conferring properties of LSC to murine committed HPCs which 

normally lack self-renewal capacity168-170. More recently it has also been shown in some 

forms of human AML that phenotypic progenitors (CD34+ CD38+) or even CD34- cells 

acquire self-renewal potential and can act as LSC171,172. Therefore there appears to be a 

higher variability in the phenotype of LSC than previously realised. A model for origin of 

LSC, including both scenarios, is shown in figure 1-9. 
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Figure 1-9 Models of LSC origin 
The LSC can arise from the normal HSC compartment when the initial transforming 
mutation happens in a normal HSC (A). Alternatively the transforming mutation can arise in 
a progenitor which as a result reacquires LSC properties (self-renewal and differentiation) 
(B). Note it is also possible for both events to happen sequentially during the course of the 
same disease 
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1.2.2 The cancer stem cell (CSC) model and its implications 

Since the original description of the hierarchical structure of human AML by Bonnet and 

Dick, a similar organisation has also been demonstrated in many other forms of leukaemias 

and solid tumours leading to the development of a new model to explain tumour 

heterogeneity which is applicable in all forms of tumours where a stem cell can be 

identified173. According to this model, usually defined as the CSC model, the CSC is the 

only cell within a specific tumour with the ability to self-renew and reconstitute the entire 

tumour (the same two key properties of normal HSC). Therefore CSC is biologically 

distinct from the bulk tumour cells and tumour heterogeneity is a result of the 

differentiation of CSC into tumour bulk cells. This model is often mentioned in contrast 

with another model for tumour heterogeneity, first described by  Nowell in 1976 and called 

the clonal evolution model, which postulates that all cancers arise from a single cell of 

origin which will evolve through the progressive acquisition of genetic mutations within 

the original clone leading to the sequential selection of more aggressive subclones174. 

According to this model the heterogeneity of cancers is secondary to the presence at any 

one time of various genetically different subclones all equally capable of maintaining the 

tumour.   

As is often the case, neither of the two models is probably completely correct. While the 

existence of CSC has been proven beyond doubt in several forms of leukaemias and solid 

tumours, clonal evolution is still observed within cancers following a CSC model. It is 

therefore now accepted that both the CSC model and the clonal evolution model can 

coexist, as in fact CSC can undergo clonal evolution during the course of a disease175 

possibly as a result of additional hits. As a consequence it is possible that several CSC with 

different properties might be present at any one time within a cancer. Nevertheless the 

CSC model is still very attractive because it helps to explain poorly understood clinical 

phenomena such as resistance to therapy, disease persistence, and relapse in the face of 

good initial response, especially in the absence of any evidence of clonal evolution within 

the resistant population of cells. In this latter scenario the CSC are in fact thought to be the 

resistant cells, potentially causing disease relapse, because of their intrinsic (possibly 

epigenetic) differences compared to the bulk of differentiated tumour cells176.  Several 

lines of evidence support this hypothesis in various forms of leukaemias and solid tumours. 

For example a very recent study in the glioblastoma model used lineage tracing of stem 

cells to show in vivo that CSC exist and contribute to repopulating the tumour following 

standard cytotoxic treatment which only targets the bulk of the disease. Moreover using a 
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clever and elegant combination of “suicide gene technology” that selectively killed 

glioblastoma CSC together with standard cytotoxic treatment, the authors were able to 

show that targeting both CSC and their daughter cells prevented the growth of 

glioblastoma in vivo177.   In conclusion, based on the CSC hypothesis, the main focus of 

the ongoing research in several forms of leukaemias (and in other forms of cancers 

following the CSC model) is to improve the identification as well as the functional and 

molecular characterisation of the LSC. This in turn should help to identify therapeutically 

exploitable differences between the LSC and their normal counterpart and lead to 

development of more effective therapies against them which, according to the original 

hypothesis, would lead to disease cure by directly targeting the “beating heart” of the 

tumour173 (figure 1-10). 
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Figure 1-10 Model of disease relapse secondary to persistence of LSC and possible 
pathway to cure 
Standard cytotoxic treatment is effective against mature leukaemic cells but spares LSC 
which can then repopulate the tumour (A). By combining a standard cytotoxic drug with a 
LSC targeted drug it would be theoretically possible to eliminate both mature leukaemic 
cells and LSC thus leading to disease eradication (B) 
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1.3 CML 

1.3.1 Clinical features 

CML is an acquired clonal myeloproliferative disorder resulting from the malignant 

transformation of a HSC. CML accounts for about 15% of all adult leukaemias and most 

commonly occurs in adults between the ages of 40 and 60, with a median age at 

presentation of 53 years. It normally runs a triphasic course from the initial chronic phase 

(CP) to an accelerated phase (AP) and then to blast crisis (BC), with the duration of each 

phase being highly variable between patients, but progressively shorter. In CP the disease 

is characterised by expansion of the myeloid compartment in the BM with resulting 

accumulation of mature neutrophils in peripheral blood and often also the presence of 

basophilia and thrombocytosis. Splenomegaly is often detected at this stage. If not treated 

CP CML lasts on average between 3 to 5 years before  it progresses through an AP to BC 

stage, when a block in differentiation of the leukaemic SPC arises and leukaemic blasts 

accumulate in the BM and peripheral blood leading to a clinical picture similar to the one 

seen in AML characterised by progressive and severe BM failure with a poor 

prognosis178,179.  

1.3.2 The BCR-ABL oncogene and its role in CML development 

Perhaps the most remarkable aspect in the history of CML is that it has been the first 

example of a cancer linked to a single chromosomal abnormality, later also shown to be 

disease causative. In 1960, an acrocentric chromosome, later shown to be a shortened 

chromosome 22, was described in all patients with CML  by Nowell and Hungerford 

working in Philadelphia180. This chromosome has since been known as the Philadelphia 

(Ph) chromosome. In 1973,  Rowley showed that the Ph chromosome was the product of a 

balanced translocation between the long arms of chromosomes 9 and 22181. Subsequently it 

was demonstrated that in CML, the oncogene c-ABL, normally present on chromosome 9, 

was translocated to the Ph chromosome, adjacent to the breakpoint cluster region, BCR182 

and this resulted in the generation of a fused transcript which was called BCR-ABL183 

(figure 1-11). 
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Figure 1-11 The Ph chromosome and BCR-ABL fusion transcript 
The reciprocal translocation between chromosome 9 and 22 results in the formation of the 
Ph chromosome (shortened 22) and the BCR-ABL fusion transcript. 

This transcript is in turn translated typically into a 210kDa protein ( p210 BCR-ABL)184, 

which exhibits constitutively elevated TK activity and can transform cells185,186. Further 

confirmation of the causative role of BCR-ABL in CML development in vivo was provided 

when murine BM cells transduced with a retrovirus encoding p210 BCR-ABL were shown 

to be capable of producing a CML-like disease when transplanted into an irradiated host187. 

More recently this has been confirmed in a transgenic mouse model where expression of 

BCR-ABL can be specifically induced in the HSC upon withdrawal of tetracycline from 

the drinking water. Consistent with the retroviral transduction model, these mice also 

developed a CML-like disease when BCR-ABL was induced in the HSC188.  These 

experiments proved that BCR-ABL was responsible for inducing CML in a murine mouse 

model. Apart from its causative role in CML, it is also worth noting that the consistent 

presence of the specific BCR-ABL translocation in all CML patients has also allowed 

diagnosis and monitoring of disease response to treatment very effectively using both 

cytogenetic analysis of metaphases of BM MNC looking for the presence of the Ph 

chromosome and the ultrasensitive quantitative real time-polymerase chain reaction (qRT-

PCR) to detect BCR-ABL transcripts in peripheral blood MNC189. As CML progresses to 

more advanced phases, the Ph chromosome is often no longer the single chromosomal 

abnormality as new cytogenetic abnormalities can be detected178,179. 

1.3.3 CML as a paradigm of the CSC model 

CML is a form of leukaemia which perfectly fits the CSC model. Early experiments using 

patterns of inactivation in X-linked genes were able to show that CML was a clonal 
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disorder whose origin could be traced back to at least a multipotent stem cell as the same 

clone was detected in granulocytes, erythrocytes, platelets and monocytes190,191. The 

hierarchical organisation of CML, at least in its CP, also lends further support to this.  In 

1999, however, Holyoake et al provided formal demonstration of the existence of a CML 

LSC using standard transplantation experiments and in vitro assays192. The CML LSC 

reside in the CD34+ CD38- compartment193 and in fact it has since been shown in murine 

models that the BCR-ABL oncogene, in contrast with other known oncogenes, is only 

capable of driving leukaemia development when transduced into HSC which possess 

inherent self-renewal capacity, but fails to do so if transduced into more mature progenitor 

cells which have lost self-renewal potential168. When these findings are extrapolated to the 

disease in humans, they support a model whereby CML is initiated when the Ph 

chromosome arises in a single HSC at which point this is transformed into a CML LSC.  

The constitutive TK activity of the BCR-ABL oncoprotein in the CML LSC stimulates 

several signalling pathways which determine enhanced survival, proliferation and 

differentiation of the leukaemic clone compared to the normal haemopoietic cells in the 

patient BM. This in turn leads, over time, to expansion of the myeloid compartment with 

preserved cell maturation to terminally differentiated forms and appearance of clinical 

disease. If not treated, the presence and activity of BCR-ABL drive further genomic 

instability 194, and can lead to additional genetic changes or hits resulting in the progression 

of the disease from its CP to the AP and eventually to BC195. Once in BC stage it has also 

been shown that cells with the phenotype of a progenitor (CD34+ CD38+) acquire self-

renewal potential and can act as LSC196. 

1.3.4 BCR-ABL structure and function 

The human ABL gene encodes a 145kDa non-receptor TK expressed in most tissues. It is 

composed of several different domains. The amino terminal of ABL contains the SRC 

homology (SH) domains SH1, SH2 and SH3. SH1 is the TK functional domain, SH2 is 

mainly important for protein-protein interactions while the SH3 domain has a TK 

inhibitory function and plays an important role in regulating ABL TK activity. The centre 

of the protein contains proline-rich sequences which are also important in protein-protein 

interaction. The carboxyl terminal region contains domains important to protein 

localisation such as nuclear localisation signals, DNA and actin binding domains (figure 1-

12 A). The ABL protein is normally present in both nucleus and cytoplasm of cells and its 

main function are to integrate signals from both intracellular and extracellular sources to 

effect cell fate decisions such as survival, proliferation and apoptosis. The exact functions 
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of ABL however are still not completely clarified and appear to be partly dependent on its 

localisation. Nuclear ABL has been shown to have a role in the regulation of cell cycle 

with mainly inhibitory function in the G1 phase and even induction of apoptosis. Its kinase 

activity appears to be stimulated by ionising radiation thus suggesting a role in cell cycle 

arrest and apoptosis in genotoxic stress. Less is known with regards to the function of ABL 

in the cytoplasm where it is found bound to F-actin197,198. However it is worth noting that 

all the transforming ABL proteins are exclusively localised in the cytoplasm thus 

suggesting that the transforming activities of this protein can only occur in the 

cytoplasm199.  

The 160kDa protein BCR is also a signalling protein ubiquitously expressed and 

containing multiple domains.  The amino terminal contains a serine-threonine kinase and a 

coiled-coil domain necessary for its dimerisation. The centre and carboxy terminal of the 

protein contain respectively the pleckstrin-homology domain and a RAC guanosine 

triphosphatase activating protein (RAC-GAP) domain (figure 1-12 B). It is important to 

note that BCR itself can be phosphorylated on several tyrosine residues and in particular 

the tyrosine 177, by binding an adaptor protein called GRB2, plays an important role in 

RAS pathway activation178,197,200.  

As already mentioned the translocation of the 3’ portion of ABL in proximity to the 5’ 

portion of BCR leads to the formation of a fused BCR-ABL transcript which gives rise to 

the chimeric BCR-ABL protein. Three different breakpoints within the BCR sequence 

have been identified and depending on where the break occurs, three chimeric BCR-ABL 

proteins of different molecular weight can be produced (p190, p210 and p230 BCR-ABL). 

Most CML patients harbour the p210 BCR-ABL protein, while the p190 BCR-ABL is 

mainly seen in patients with Ph positive acute lymphoblastic leukaemia and rare patients 

with CML. p230 BCR-ABL has been associated with a variant form of CML, the so called 

neutrophilic CML, which tends to run a more indolent course, although classical cases of 

CML in association with p230 BCR-ABL have also been described in few instances200-203. 

However all three proteins, although demonstrating different levels of kinase activity, have 

been shown to have in vitro transformation properties and in vivo leukaemogenic 

activity204. The fusion of BCR to ABL enhances the protein TK activity possibly as a result 

of the abrogation of the suppressive effects of the ABL SH3 domain on the SH1 domain 

TK function and promotes  its cytoplasmic localisation and dimerisation197,200. Through 

both autophosphorylation and substrate phosphorylation, BCR-ABL can directly and 

indirectly activate the signalling pathways central to its transforming activity200,205.  
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In p210 BCR-ABL the fusion point occurs after the pleckstrin homology domain of BCR 

and before the SH domains of ABL, thus including the majority of the BCR domains and 

effectively all ABL domains. Therefore BCR-ABL is a relatively big protein with multiple 

domains (figure 1-12 C). Functional in vitro and in vivo  analysis of the transforming 

activity of several mutated forms of BCR-ABL have shown that in addition to the crucial 

TK (SH1) domain, other domains and even single amino acid residues are essential to 

BCR-ABL transforming activity therefore supporting a model where the TK activity of 

BCR-ABL is necessary, but not sufficient on its own to induce CML206. The domains or 

residues shown so far to be crucial to BCR-ABL induced leukaemogenesis  are together 

with the SH1 domain207, the SH2208,209 domain in the ABL protein, and the coiled-coil 

domain and the tyrosine 177 in BCR210-212.  While SH2 and coiled-coil domain mutations 

reduce the TK activity of BCR-ABL, the tyrosine 177 mutant displays normal TK activity 

thus suggesting that it plays a role in BCR-ABL leukaemogenesis independently of BCR-

ABL TK activity.  The current knowledge of the signalling pathways activated by BCR-

ABL through all its domains and of their effects on the biological properties of BCR-ABL 

positive cells and their leukaemogenic activity will be the subject of the next section. 

However it is worth pointing out now that a clear understanding of BCR-ABL induced 

signalling pathways has also highly relevant therapeutic implications. In fact, as it will be 

explained later in the Introduction, pharmacological targeting of the TK activity of BCR-

ABL has become the mainstay of CML treatment.  Understanding therefore which 

signalling pathways link to the domains crucial to BCR-ABL leukaemogenic activity,  in 

particular for those domains or residues shown to be essential despite having no effect on 

TK activity, could identify together with novel mechanisms central to CML biology, novel 

therapeutic targets. 
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Figure 1-12 Structure of ABL, BCR and p210 BCR-ABL 
ABL protein has three SRC homology (SH) domains in the amino terminal end with one of 
them having TK activity. Proline rich domain (P) and a nuclear localisation signal domain 
(NLS) are in the centre of the protein while a DNA binding (DNA BIN) and actin binding (AC 
BIN) domain are in the carboxy terminal. BCR has a coiled-coil (CC) and a serine/threonine 
(Ser/Thr) kinase domain in the amino terminal. A pleckstrin homology (PH) domain is in the 
middle and a RAC-GAP domain in the carboxy terminal. The tyrosine 177 (Tyr 177) in BCR, 
by binding an adaptor protein called GRB2, plays an important role in RAS pathway 
activation. p210 BCR-ABL arises from the fusion of BCR downstream of PH domain with 
ABL just before the SH3 domain. p210 BCR-ABL can form dimers through the CC domain 
(black lines) and has enhanced TK activity (indicated by the ATP molecule sitting in the 
pocket of its TK domain). 
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1.3.5 Signalling pathways activated by BCR-ABL and the 

mechanisms of BCR-ABL induced transformation 

The main mechanisms of BCR-ABL induced transformation are enhanced proliferation, 

reduced apoptosis and abnormal interaction with BM stroma. These features are a result of 

the activation of several signalling pathways which relay both mitogenic/proliferative and 

antiapoptotic signals. Some of these pathways overlap with pathways activated following 

GF stimulation of normal HSPC213-215. Their direct activation by BCR-ABL therefore 

explains the proliferative phenotype of BCR-ABL driven leukaemias and their GF 

independence in vitro216.  BCR-ABL activates these pathways both by direct 

phosphorylation of substrates via its TK activity or indirectly following its 

autophosphorylation. The latter produces increased phosphotyrosine sites on the BCR-

ABL protein which can act as docking sites for proteins carrying SH2 domain (able to bind 

to phosphotyrosine). These proteins can then either act as adapters for other proteins with 

catalytic function or they have their own catalytic function. The eventual outcome however 

is the activation of some known mitogenic and antiapoptotic pathways and amongst those 

the RAS/MAP kinase, JAK/STAT, PI3 kinase/AKT and NFκB pathways have all been 

shown to be activated by BCR-ABL and to be crucial to its leukaemogenic activity200,217.   

1.3.5.1 BCR-ABL and the RAS/MAP kinase pathway 

In CML RAS is constitutively active at least in part as a result of BCR-ABL 

autophosphorylation on tyrosine 177218. This phosphotyrosine site in fact acts as a binding 

site for the adaptor protein GRB2 which binds and activates a guanine exchange factor 

protein called SOS leading to stabilisation of RAS in its active form200. Similarly GRB2 

mutants also block RAS activation and BCR-ABL transforming capability219. Also other 

adapter proteins such as SHC and CrKL have been shown to be involved in RAS activation 

although the exact mechanism is less clear220-222. In the same reports it was shown that 

activation of RAS/MAP kinase pathway has a central role in BCR-ABL transforming 

ability both in vitro and in vivo although this varied slightly according to the cell 

context218,220-222. Co-transfection of a RAS dominant negative mutant in BCR-ABL 

transfected cells was also able to inhibit BCR-ABL induced transformation223. Both genes 

involved in cell cycle progression, such as cyclin dependent kinases, leading to G1 to S 

phase transition and DNA synthesis224 or mediating reduced apoptosis of the leukaemic 

cells, such as the antiapoptotic proteins BCL-2225, have been shown to be activated by the 

RAS pathway in BCR-ABL positive cells. Taken together this evidence suggests that 
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RAS/MAP kinase pathway is constitutively activated and plays a central role in BCR-ABL 

induced leukaemogenesis through upregulation of antiapoptotic and proliferative signals. 

1.3.5.2 BCR-ABL and the JAK/STAT pathway 

In BCR-ABL positive cells constitutive activation of several members of the JAK/STAT 

pathway has been shown, including JAK1/2/3 and STAT1/3/5226-230. Several domains of 

BCR-ABL have been shown to be necessary to the activation of both JAK and STAT with 

the TK activity and SH2 domain important for JAK2 activation231 , the SH2 and SH3 and 

TK activity domain important for STAT5 activation232 and the tyrosine 177 (via activation 

of the RAS pathway) and TK activity domain for STAT3 activation229. Amongst the JAK 

family members, JAK2 appears to play a central role in BCR-ABL induced 

leukaemogenesis, at least in its advanced phase, as kinase inactive JAK2 mutant shows 

reduced clonogenic potential and ability to form tumours in nude mice231. Amongst all the 

STAT family members, STAT5 has a central role in BCR-ABL induced transformation as 

shown by the inhibitory effects of dominant negative forms of STAT5 on BCR-ABL 

induced transformation in vitro232-234.  Initial in vivo experiments using an amino terminal 

deleted form of STAT5 underestimated the role of STAT5 in BCR-ABL induced 

leukaemogenesis235. However recently its central role to BCR-ABL induced 

leukaemogenesis has been confirmed in vivo using complete Stat5 KO mouse BM cells 

transduced with BCR-ABL retrovirus236. STAT5 contribution to BCR-ABL induced 

transformation is also via activation of both genes involved in cell proliferation (cyclin 

D1)237 and against apoptosis (BCL- XL)238.  

A controversial point in the CML community is the relative contribution of JAK2 and 

BCR-ABL to the activation of STAT5 in CML cells. While in normal haemopoiesis the 

role of JAK2 in activating STAT5 has been demonstrated, in BCR-ABL positive cells a 

dominant negative JAK2 mutant was unable to prevent BCR-ABL induced STAT5 

activation230. More recently the dispensable role of JAK2 in both BCR-ABL induced 

leukaemogenesis and STAT5 activation has also been shown in vivo using Jak2 KO mouse 

BM cells transduced with BCR-ABL retrovirus239. Conversely JAK2 appears to be able to 

induce MYC expression in BCR-ABL positive cell lines in a STAT5 independent 

fashion240 and as already mentioned has been shown to have a role in BCR-ABL induced 

transformation231. Therefore it appears that the presence of BCR-ABL perturbs the normal 

activation of the JAK2/STAT5 pathway with at least a partial uncoupling of the signals 

relayed by these two proteins. As investigations on the role of JAK2 are a relevant part of 
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the work presented in this thesis, this issue will be analysed in more detail in one of the 

results chapters. 

1.3.5.3 BCR-ABL and the PI3 kinase/AKT pathway 

The PI3 kinase/AKT pathway is another pathway which has been shown to be required for 

BCR-ABL positive cells survival and proliferation241. Similar to the RAS/MAP kinase and 

JAK/STAT pathway, it prominently induces mitogenic signals and reduces proapoptotic 

ones. In BCR-ABL positive cells, PI3 kinase specifically activates AKT kinase and the 

BCR-ABL SH2 domain appears to have a central role in this242.  This activation is not 

secondary to direct interaction of PI3 kinase with BCR-ABL243, but requires the presence 

of the adaptor protein complexes, such as GRB2/GAB2 and CrKL/CBL which respectively 

bind to BCR-ABL residues244,245(i.e. tyrosine 177) or domains246 and provide docking sites 

for PI3 kinase. The activation of the PI3 kinase/AKT pathway is essential for BCR-ABL 

induced leukaemogenesis as demonstrated by the ability of a dominant negative AKT 

mutant to inhibit BCR-ABL dependent transformation of murine BM cells in vitro and 

leukaemia development in immunodeficient mice. PI3 kinase/AKT pathway transforming 

ability appears to be at least partially secondary to the increased expression and 

transcriptional activation function of MYC242. MYC is a transcription factor shown to be 

active in several malignancies and also shown to be necessary to BCR-ABL induced 

transformation247. Moreover the activation of the PI3 kinase/AKT in BCR-ABL positive 

cells leads to phosphorylation and inactivation of the same substrates as in their BCR-ABL 

negative counterparts, including BAD248, CDKN1B/p27249 and the FOXO transcription 

factors250. Inactivation of the FOXO transcription factors by BCR-ABL also has similar 

effects on the expression levels of its target genes, such as BIM251 and D cyclins88  as those 

observed in other cell types following GFs stimulation. 

1.3.5.4 BCR-ABL and the NFκB pathway 

NFκB has been shown to play a role in a variety of solid and haematological 

malignancies150. In CML, constitutive activation of NFκB has been demonstrated in BCR-

ABL positive cells252. Moreover using in vivo and in vitro experiments, its role in BCR-

ABL induced leukaemogenesis and transformation of BM cells has been shown253. Indirect 

evidence for its importance in survival of CML cells including primary samples from CML 

patients has been provided by the ability of NFκB pathway inhibitors, such as IKK 

inhibitors, to induce apoptosis of CML cells alone and in combination with BCR-ABL 

tyrosine kinase inhibitors (TKI)254,255. BCR-ABL TK activity has been shown to be 
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essential253,256, while the tyrosine 177 has been shown to be dispensable256 for NFκB 

activation.  However the exact role of NFκB in BCR-ABL induced leukaemogenesis, 

survival and proliferation is still unclear. Only recently a potential role of NFκB in 

preventing accumulation of excessive levels of ROS in BCR-ABL positive cells has been 

suggested as a possible mechanism for its protective role in this cell context257. 

1.3.6 The role of GFs in survival, proliferation and maintenance of 
CML cells 

The role of GFs in CML cell survival, proliferation and maintenance is an area of active 

research but also of contention. The known ability of BCR-ABL oncoprotein to activate 

the same signalling pathways normally activated by GFs, coupled with GF independence 

in vitro 216of CML cells has led many investigators to question the exact role of GFs in 

CML pathology and if indeed the GFs signals are dispensable in the context of a BCR-

ABL transformed cell. In this next section therefore a review of the current evidence on the 

role of GFs in CML induction, expansion and maintenance will be presented.  Moreover 

the aberrant autocrine GFs production in CML cells and the effects of the presence of 

BCR-ABL oncoprotein on the BM microenvironment and the normal physiological 

responses to GFs in CML cells will be also reviewed. 

1.3.6.1 Exogenous GFs role in CML cells 

Several studies have shown that CML cells respond normally to exogenous GFs. This has 

been shown for both proliferative GFs important for myeloid differentiation, such as IL-3, 

GM-CSF and G-CSF, and negative regulators of proliferation, such as TGF-β1, mainly 

through their effects on cell survival and proliferation258,259. Since the introduction of 

BCR-ABL TKI it has also been possible to show more easily the ability of several of the 

proliferative GFs mentioned above to activate their normal signalling pathways upon BCR-

ABL kinase inhibition with sometimes even a compensatory upregulation of the same 

pathways (MAP kinase) observed260-263. Moreover this has also allowed the demonstration 

that GFs signalling could provide survival cues to CML cells when BCR-ABL kinase is 

inhibited and that therefore this could be a resistance mechanism to current TKI based 

therapies. In fact by targeting these pathways, such MAP  kinase261, PI3 kinase/AKT264, 

JAK/STAT260,262 and NFκB254 through specific small molecule inhibitors, an increased kill 

of BCR-ABL positive cell lines and also CML primary CD34+ cells was demonstrated. 
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The role of exogenous regulators of normal HSC maintenance has also been studied in 

CML LSC maintenance. In order to prove their importance in most cases a standard 

retroviral transduction/transplantation model has been used where BM cells carrying a 

deletion for an important component of these signalling pathways were transduced with 

BCR-ABL retrovirus and the effects on CML development in the mice were observed, and 

if possible, this was complemented using inhibitor work in vivo. This has provided proof of 

a role for many such regulators like Hh104,265 and Wnt/β-catenin266-268 and TGF-β1111.  In 

the case of TGF-β1, it was also shown that the mechanism involved activation of FOXO 

through inhibition of AKT in a very similar fashion to what had also been observed in 

normal HSC.  

In conclusion these studies show that similar cues involved in normal HSPC maintenance, 

survival and proliferation are also active in the CML counterparts, thus proving their 

responsiveness to exogenous GFs and that CML cells appear to have an intact and 

functional response mechanism to cytokines despite the presence of BCR-ABL 

oncoprotein. The GFs signals appear also to play a central role in maintenance of disease 

and as survival cues particularly in the presence of TKI.  

1.3.6.2 The autocrine production of GFs in CML cells 

Together with the normal response to exogenous GFs, CML cells also display aberrant 

autocrine production of several GFs. Following the original demonstration of an autocrine 

loop in BCR-ABL positive cell lines for GM-CSF and IL-3269, a similar observation was 

later made in primary CML cells too. This autocrine loop resulted in STAT5 activation and 

GFs independent growth of CML CD34+ cells, both of which could be  inhibited using 

neutralising antibody270.  These studies further confirmed that despite the presence of 

BCR-ABL, CML cells are responsive to GFs stimulation and in fact enhanced autocrine 

GFs signalling could even be relevant to BCR-ABL induced transformation. Since then 

autocrine loops with a similar role in cell survival and proliferation have also been 

demonstrated in BCR-ABL positive cell lines and CML primary MNC for other GFs, such 

as IL-4271 and GM-CSF262. In order to further confirm the role of autocrine GF production 

in BCR-ABL induced leukaemogenesis, in vivo models have been used with some 

conflicting results. BM cells derived from Il-3 plus Gm-csf KO mice and transduced with 

BCR-ABL were able to induce a BCR-ABL induced myeloproliferative disorder identical 

to that induced by Il-3 plus Gm-csf expressing BM into syngeneic animals. This was true 

regardless of the genotype of the recipient, i.e. a CML disease was induced in both Il-3 
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plus Gm-csf KO and genetically normal recipient272. This result supported a model where 

IL-3 and GM-CSF are redundant for the generation of CML. However it should be noted 

that although commonly used, the BCR-ABL retroviral model does not fully reflect the 

clonal disorder with the long latency period that gives rise to CML in humans and the high 

levels of expression of BCR-ABL in this model (higher than in primary CML cells) could 

render GFs role dispensable. In fact, when Il-3 KO BM cells transduced with BCR-ABL 

were cultured in vitro for an extended period, they lacked leukaemogenic activity in 

transplanted mice in comparison to Il-3 expressing counterparts273. These latter 

observations were more supportive of a model whereby the maintenance of transplantable 

CML LSCs in culture requires autocrine IL-3, thus implying that autocrine IL-3 is indeed 

relevant to the sustained leukaemogenicity of CML LSCs in a situation more closely 

approximating that seen in the human disease. Moreover the protective effects of GFs 

might become more apparent in the context of an inhibited BCR-ABL kinase as previously 

mentioned with regards to CML cells response to exogenous GFs. However in neither of 

these two studies were the mice challenged with TKI and this might have masked an even 

more important effect of autocrine GFs in CML pathogenesis.  

1.3.6.3 Aberrant GF responses in CML cells 

Another important point to consider when assessing the role of GFs in CML biology is the 

effects that BCR-ABL presence has on CML cells responses to GFs and overall BM 

microenvironment. For example it has been observed that in BCR-ABL transduced 

haemopoietic cell lines, the  BCR-ABL oncoprotein directly interacts with the IL-3/GM-

CSF β chain receptor, inducing activation of GF signalling in a ligand independent way 

and causing therefore an aberrant constitutive activation of GF signalling via its normal 

receptors274. Conversely it has been reported that soluble factors, such as monocyte 

chemotactic protein 1 (MCP-1), selectively inhibit the proliferation of normal progenitors 

in vitro while sparing CML progenitors259. The work of Bhatia et al in both primary CML 

samples and CML transgenic mouse models has been particularly helpful in furthering the 

understanding of the effects BCR-ABL has on the BM microenvironment. In original work 

carried out with primary CML and normal BM samples, it was shown that indeed BM 

stroma from CML patients had a reduced ability to support growth of normal LTC-IC. This 

appeared to be secondary to the presence of malignant stromal macrophages in CML 

stroma rather than abnormal production of soluble factors as demonstrated by the similar 

concentration of the cytokines tested in BM supernatant from CML and normal BM. 

However potential indirect effects secondary to altered function of CML stromal cells in 
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binding and presenting haemopoietic GFs to CML and normal HSPC could not be 

excluded275.   

In the last year, work from the same group has also better characterised the BM 

microenvironment in CML using mainly a transgenic BCR-ABL mouse model. This work 

has shown that indeed the levels of some cytokines are different between CML and normal 

BM with higher levels amongst others of IL-1, IL-6, G-CSF and TNF-α in the former. 

Moreover this altered GF milieu determined a reduced engraftment of normal HSC 

compared to CML LSC when these where transplanted in BCR-ABL expressing irradiated 

host. The ability of normal HSCs to grow in the presence of BM plasma from CML mice 

was also impaired while CML LSCs were unaffected. Higher levels of IL-1, G-CSF and 

TNF-α mRNA levels were also demonstrated in BM MNC of CML patients compared to 

normal BM MNC. Again in contrast to human CML LSCs, human HSCs showed reduced 

growth in the presence of CML BM conditioned media276. Together these results suggest 

that altered BM microenvironment in CML confers a growth advantage to CML LSCs 

compared to normal HSCs. These effects are secondary to both the presence of soluble 

factors, such as G-CSF, TNF-α and IL-1, and direct interaction with stromal cells. 

Moreover although in certain cases, as shown previously, CML cell responses to GFs 

appear similar to what is observed in normal HSPC, in other instances CML cells show 

aberrant responses to these environmental cues which they can use to their own avail. 

1.3.7 Current therapies and clinical problems in the management 
of CP CML  

The treatment of CML has to be considered in the field of medicine one of the success 

stories of the past 50 years. Since the original description of the Ph chromosome through 

the demonstration of the pathogenic role of the BCR-ABL oncogene to the clinical 

development of specific inhibitors of BCR-ABL kinase activity, CML has served as a 

paradigm of how a clear understanding of the molecular cause of a disease can lead to the 

rational development of specific targeted therapies with high therapeutic index and 

massive impact on disease outcome. 

1.3.7.1 Historical perspective 

Before the molecular basis of CML was completely clarified, its treatment was based, as is 

still the case these days for many other cancers, on standard cytotoxic chemotherapy such 

as alkylating agents like busulphan or the ribonucleotide reductase inhibitor, hydroxyurea. 
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Although capable of inducing haematological responses, none of these treatments were 

capable of inducing cytogenetic responses, i.e. reduction or disappearance of Ph+ cells in 

the BM of patients (see table 1-4 for definition of responses in CML patients) and therefore 

they did not alter patient survival. Moreover in the case of busulphan, significant and 

severe associated side effects, mainly in the form of myelosuppression and pulmonary 

fibrosis, were also present277. The introduction of IFN-α in the 80s provided the first 

significant improvement in patient life expectancy (15% higher 5 year survival rate 

compared to chemotherapy in a meta-analysis of seven randomised trials).  Improved 

survival in patients treated with IFN-α was then shown to be associated with achievement 

of a cytogenetic response (at least major) which has since been used as a surrogate marker 

for patient survival278,279. Both survival and cytogenetic responses could be improved when 

IFN-α was combined with the antimetabolite, cytarabine280. However IFN-α parenteral 

administration and poor tolerability (such as “flu like” symptoms, lethargy, insomnia and 

depression) made this treatment still relatively difficult to deliver. At the same time when 

IFN-α was gaining support in CML treatment, allogeneic BM transplant (alloBMT) also 

started to be used for CML patients. Unlike any other treatment before (and probably 

after), alloBMT offered curative potential for patients and in that respect represented a 

significant improvement compared to any other therapies available. However its treatment 

morbidity and mortality rate, which, depending on several variables, can be as high as 

40%, limited its use to a small cohort of patients (20-25% of patients), generally young 

with a suitable donor and no other significant comorbidity281. 

The demonstration at the beginning of the 90s that the BCR-ABL oncoprotein was disease 

causative mainly because of its constitutive TK activity185-187 led to the testing of the 

hypothesis that pharmacological inhibition of the BCR-ABL TK activity via small 

molecule inhibitor could be clinically useful. 
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Response by type Definitions

Haematological
Complete (CHR) White blood cells <10X109/L

Basophils <5%
No myelocytes, promyelocytes, myeloblasts in the 

differential
Platelet <450X109/L
Spleen not palpable

Cytogenetic
Complete (CCyR)
Partial (PCyR)
Minor (mCyR)
Minimal (minCyR)
None (noCyR)

No Ph+ metaphases
1% to 35% Ph+ metaphases
36% to 65% Ph+ metaphases
66% to 95% Ph+ metaphases
>95% Ph+ metaphases

Molecular
Complete (CMR4.5)

Major (MMR)

Undetectable BCR-ABL mRNA transcripts by qRT-PCR in 
two consecutive samples of adequate sensitivity (the 
transcripts have to be undetectable in an assay with a 
sensitivity of at least ≥4.5 log)
Ratio of BCR-ABL to control gene ratio of ≤0.1% on an 
international scale

 
Table 1-4 Definition of haematological, cytogenetic and molecular responses in CML 
Abbreviations CHR, complete haematological response; CCyR, complete cytogenetic 
response; PCyR, partial cytogenetic response; mCyR, minor cytogenetic response; minCyR, 
minimal cytogenetic response; noCyR, no cytogenetic response; CMR, complete molecular 
response; MMR, major molecular response. When CCyR and PCyR are counted together 
they are defined major cytogenetic response (MCyR). Ph+ metaphases are examined in at 
least 20 BM MNC metaphases. For assessment of molecular responses, the conversion of 
each laboratory data to an international scale is recommended, to correct for the variability 
of the assays in different laboratories. 

1.3.7.2 Imatinib mesylate 

In 1996, Druker et al reported preclinical data showing that a modified 2-

phenylaminopyrimidine (CGP 57148) induced apoptosis of BCR-ABL positive human 

cells, including primary CML cells with little toxicity on normal cells282. This compound, 

later known as imatinib (IM), specifically inhibits BCR-ABL TK activity in cellular 

tyrosine phosphorylation assays with a 50% inhibitory concentration (IC50) of 0.25μM. 

Activity against the TK of the c-KIT receptor283 and platelet derived growth factor receptor 

(PDGFR) were in similar ranges, but otherwise there was no other significant kinase 

inhibition close to that concentration range thus confirming its selectivity. IM functions as 

a competitive substrate for the BCR-ABL TK ATP binding pocket, thus preventing ATP 

from binding to the kinase to activate it (figure 1-13). IM  reached clinical development  as 

an oral agent in 1998 and rapidly showed in a large phase 3 clinical study (International 

Randomized Study of Interferon and STI571-IRIS) its ability to induce significantly higher 
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rates of cytogenetic responses and molecular responses, and therefore improve overall 

survival (OS), in newly diagnosed CML patients compared to the previous standard 

therapy based on IFN-α and cytarabine284,285. Since its introduction, IM has radically 

changed the management of CP CML and established itself as standard of care in newly 

diagnosed CML patients. The last follow-up reported for the IRIS study at 8 years shows 

continued clinical benefit with 83% of patients achieving CCyR, event free survival (EFS) 

rate of 81% and OS rate of 85%, which rises to 93% if CML only related deaths are 

considered, while also showing a safe toxicity profile286.  Durability of responses was 

confirmed by the continually declining rate of progression events over time in patients who 

achieved CCyR on IM. Overall only 3% of patients achieving a CCyR progressed to 

AP/BC and all but one progressed within the first 2 years of achieving CCyR. These 

findings support the conclusion that once a patient achieves a sustained CCyR (at least 2 

years), his/her chance of progressing are extremely low and recently an independent 

worldwide study reported that patients who achieve a stable CCyR on IM show an OS rate 

of 95.2% after 8 years, which is similar to the survival rate in the general population287. 
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Figure 1-13 Mechanism of action of IM 
BCR-ABL is able to phosphorylate its substrates and activate intracellular signals only 
when it binds ATP (A). IM competes with ATP for its binding site on BCR-ABL thus 
preventing activation of the oncoprotein and the downstream intracellular signals (B). 
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1.3.7.3 Disease resistance 

Despite IM’s remarkable efficacy, it is still felt however in the CML community that there 

is a genuine need for improving outcomes for CML patients. Analysis of response related 

prognostic factors from several studies of newly diagnosed CML patients treated with IM  

have shown that achieving a CCyR by 12 months is a consistent and reliable predictor of 

long-term outcome on IM therapy. Over 95% of patients who achieved this response did 

not progress to advanced disease by 5 years compared to only 75-80% of patients  who 

failed to achieve a 12 months CCyR288,289.  These results explain the previously described 

low risk of progression and normal life expectancy of patients achieving a sustained CCyR 

and have led investigators to consider a timely CCyR as the minimum satisfactory 

response for patients on IM290. The results reported in IRIS are known to suffer a selection 

bias as patients who discontinued IM for adverse events or failed to achieve a CCyR were 

censored and their outcome not considered in the IM efficacy analysis. In fact if the 

number of patients not achieving CCyR in IRIS (17%) is considered together with those 

who lost their response (about 10%), then a third of patients did not have an acceptable 

outcome on IM. In fact if a more stringent definition of EFS (which also includes not 

achieving a timely CCyR and adverse events as criteria for failing IM therapy) compared 

to the one applied in IRIS is used, lower EFS rates of 50-60% for newly diagnosed CP 

CML patients treated with upfront IM are reported as shown by three independent 

population based studies289,291,292. Even if the failures secondary to IM intolerance (which 

account for 10-20% of the total events) in the three above mentioned studies are not 

considered, these figures still show that about a third of CML patients treated with IM 

show evidence of resistance. More recently Marin et al has shown that a molecular 

response level at 3 months of less than 10% BCR-ABL/ABL transcripts is the strongest 

prognosticator in a multivariate analysis of long-term outcome in patients treated with IM 

and its prognostic value is independent of whether the patient had treatment 

discontinuation. Using these criteria, 24% of patients in the cohort studied were identified 

as being at high risk of progression thus confirming that resistance is a problem at least in 

about a quarter of patients treated with upfront IM293.  All these data consistently show that 

together primary disease resistance (failure to achieve a satisfactory response) and 

secondary disease resistance (loss of a satisfactory response) are still significant clinical 

problems as they put all these patients at risk of disease progression for which current 

therapies are still unsatisfactory thus reducing their life expectancy.  
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1.3.7.3.1 Mechanisms of disease resistance and current therapeutic options 

Although the mechanisms of IM resistance vary widely, they can be schematically divided 

in two main groups: BCR-ABL dependent and BCR-ABL independent. 

The presence of both BCR-ABL kinase domain mutations and BCR-ABL gene 

amplification in CML samples from patients who had lost their response to IM were the 

first to be identified294. BCR-ABL kinase domain mutations are now the most common and 

best characterised resistance mechanism, especially in the cases of secondary resistance. 

Using a highly sensitive technique which can detect clones present at low levels, mutations 

are usually identified in over 50% of patients at disease relapse295. The original mutation 

identified in 6 of the 11 CML relapsed patients was a single nucleotide change resulting in 

a threonine to isoleucine substitution at position 315 (T315I) of ABL. These amino acid 

residues are present within the ATP binding site and the activation loop of ABL which are 

required for IM binding. As the threonine at position 315 is necessary to form a hydrogen 

bond with IM, its substitution results in loss of this interaction which, coupled with the 

steric hindrance from an extra hydrocarbon group on the isoleucine residue, results in the 

inhibition of IM binding294. To date the T315I mutation is still the most clinically relevant 

mutant because it has proven to be resistant to most available TKI. However many other 

mutations have now been identified with each of them having different consequences in 

terms of resistance conferred to the clone. Mutations normally affect IM binding either by 

direct inhibition through modification of an amino acid involved in drug binding to the 

kinase (as for T315I) or indirectly by altering BCR-ABL oncoprotein conformation296. 

Another BCR-ABL dependent resistance is reduced intracellular drug level due to either 

overexpression of multidrug efflux transporters of the ATP-binding cassette (ABC) 

transporter family, such as ABCB1297,  or reduced expression of the drug influx organic 

cation transporter OCT-1298. However for ABCB1, the experimental evidence supporting 

its role in resistance to IM is not clear. In fact conflicting results have been reported in 

BCR-ABL positive cell lines overexpressing ABCB1299,300, while in the more relevant 

model of primary CP CML samples ABCB1 activity was low and its inhibition did not 

enhance IM induced BCR-ABL inhibition or kill301.  Conversely more convincing data are 

in support of OCT-1 activity in IM resistance as high levels are predictive of better 

response to IM in clinical studies and inhibiting OCT-1 activity with its inhibitor prazosin 

resulted in reduced intracellular uptake of IM. Finally in patients with low OCT-1 activity, 

higher doses of IM were able to produce better responses302. 
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All the above described resistance mechanisms confirmed that BCR-ABL oncoprotein is 

still a legitimate target in a proportion of resistant cases and this has led to the development 

of novel TKI of higher potency and binding affinity to BCR-ABL even in the presence of 

mutants. Nilotinib (NL) and dasatinib (DA) were the first two of these novel agents to be 

developed. NL is 10 to 20 fold more potent than IM in both phosphorylation and 

proliferation assays with IC50 in both types of assay in the nM range. NL is also quite 

specific with only PDGFR and KIT again inhibited at about 5 to 10 fold higher 

concentration than BCR-ABL303. Another advantage of NL is that its intracellular levels 

are not affected by drug transporters304. DA is an even more potent BCR-ABL inhibitor 

than NL with IC50 of less than 1nM. Moreover it also inhibits a number of SRC kinases at 

the same IC50 while retaining inhibitory activity against PDGFR and KIT too at low nM 

range305. Both compounds have shown activity against the majority of BCR-ABL mutants 

although mutants conferring resistance to either of them have been reported while the 

T315I mutant confers resistance to both306,307. Clinical studies of NL and DA in IM 

resistant/intolerant patients showed good efficacy with both agents producing CCyR in 

about 50% of patients308,309. The good efficacy of both NL and DA in the resistant setting 

have led to their use in newly diagnosed patients where they have both been shown  to 

induce deeper responses more rapidly compared to IM. However longer follow-up is 

required to know if these faster responses will translate into reduced progression rates and 

improved survival310,311.  

More recently two other novel TKI have reached clinical development: bosutinib (BOS) 

and ponatinib (PON). BOS is a dual SRC/BCR-ABL inhibitor at low nM concentrations 

and, similarly to NL and DA, shows activity against multiple BCR-ABL mutants except 

T315I312. Conversely PON is the first TKI to show activity against T315I in experimental 

models with the ability to suppress the growth of all mutant BCR-ABL clones at 40nM in 

mutagenesis assays313. Its efficacy in this setting has now been confirmed in a recently 

published phase 1 clinical trial where PON has been shown to produce CCyR in about 75% 

of CP CML patients carrying a T315I mutation and in over 50% of multiresistant CP 

patients314. Summarising these data it is clear that novel TKI have been able to improve 

responses significantly in about half of resistant patients including T315I now thanks to 

PON. However another 50% of patients are still not being rescued. In those patients it is 

likely that BCR-ABL independent resistance mechanisms are present which means that 

CML cells rely on alternative survival pathways to support their survival and proliferation.  
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Several putative mechanisms have already been proposed for BCR-ABL independent 

resistance and amongst those the aforementioned GF activated signalling pathways (see 

1.3.6.1) appear to definitely play a role. Another mechanism which has been well 

elucidated is the activation of the SRC kinases LYN and HCK in IM resistant samples. 

This has been demonstrated in both resistant BCR-ABL positive cell lines and primary 

samples from patients who lost response to IM and progressed to advanced phase disease. 

Moreover SRC inhibition induced apoptosis of these resistant cells315,316. These reports 

provided the rationale for the use of dual SRC/ABL inhibitors such as DA in advanced 

phase disease and DA is currently the only TKI licensed in this setting. More recently other 

pathways have also been involved in this type of resistance, such as the MAP kinase 

pathway through both constitutive activation of ERK kinases or paradoxical activation by 

TKI in the setting of resistant CML cells317. Again inhibition of ERK kinases was able to 

overcome this form of resistance in BCR-ABL positive cell lines318,319. However this 

approach has not yet been taken into clinical practice. It is possible that other novel 

resistance mechanisms will be elucidated in the future and that all will play a role to 

various extents in different groups of patients. The biggest challenge will be to translate 

these findings into clinical practice as precise understanding of the resistance mechanisms 

present in each patient will be required in order to devise an effective targeted therapy.  

1.3.7.4 Disease persistence 

For those patients who achieve satisfactory responses with TKI, the main problem is 

disease persistence. Although a small study on a subset of IRIS patients showed that up to 

40% of IM treated patients achieved undetectable BCR-ABL transcripts levels at a median 

follow-up of 81 months320, these figures have been much smaller (only 3%) in a large IM 

treated population based study with a median follow-up of 38 months, likely a reflection of 

the unselected group of patients in this population study and the shorter follow-up289. 

Therefore it is reasonable to say that only a minority of patients achieve sustained 

undetectable BCR-ABL transcripts. Moreover achieving undetectable BCR-ABL transcripts 

does not equate to disease eradication as shown by the detection of BCR-ABL genomic 

DNA in all patients who are negative by standard qRT-PCR for BCR-ABL transcripts in 

peripheral blood in two independent studies321,322. Even more importantly, if treatment is 

discontinued in this small cohort of patients with sustained undetectable BCR-ABL levels, 

approximately 60% will relapse at molecular level within 12 months, although they can all 

be rescued by reintroduction of therapy323. Overall these results prove that IM is not 

curative in the majority of patients, which results in an ongoing potential risk of disease 
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progression and need for lifelong treatment, which can be highly expensive and not readily 

accessible in many parts of the world. Moreover in those patients fortunate enough to have 

access to continuous treatment with IM, it has been shown that a small proportion will 

experience occasional severe side effects and the majority will suffer from mild/moderate 

continuous side effects perceived as affecting their quality of life and impairing their 

physical and social functioning. Interestingly these effects were more marked in the 

younger patients287,324. Continuous side effects, together with the chronic nature of the IM 

therapy, have been shown to affect patient’s adherence to treatment and in fact about 30% 

of patients are not fully compliant to treatment at a median of 5 years from diagnosis, with 

only 14% of patients taking their medication exactly as instructed. Interestingly again 

younger patients were more likely to have lower adherence325,326. Lack of adherence to 

drug therapy has now been shown to correlate with disease response and in fact it might be 

the main reason for losing a CCyR in patients on long-term IM therapy327.  

In conclusion these data show that disease persistence is a relevant clinical problem for the 

ever growing population of CML patients as it has significant financial and social 

consequences, while also putting patients at risk of disease progression because of both 

lack of adherence and minimal residual disease persistence. 

1.3.7.4.1 Mechanisms of disease persistence and current therapeutic options 

The cause of disease persistence in CP CML patients treated with IM has been a subject of 

intense investigation in the CML research community for the last decade. Soon after the 

original demonstration of the existence of a highly quiescent CML LSC population, 

Graham et al showed through cell cycle analysis experiments on SPC from CP CML 

patients that the same population of quiescent LSC was insensitive to induction of 

apoptosis by IM328. The inability to target the LSC was then observed also for DA329, NL330 

and BOS331 thus suggesting this is a common feature of all available TKI therapies. These 

in vitro findings have been supported by clinical data from several groups showing that CP 

CML patients, even after achieving a CMR with TKI (it is noteworthy again that some of 

the patients analysed had been treated with DA), still harbour phenotypically and 

functional (both in in vitro and in vivo assays) BCR-ABL positive -both by polymerase 

chain reaction (PCR) and fluorescence in situ hybridisation (FISH)- LSCs within their stem 

cell compartment332,333.  Original mathematical models of the kinetics of the molecular 

response to IM also suggested that while inhibiting the production of differentiated 

leukaemic cells, IM did not eradicate the LSC334. More recently similar mathematical 
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modelling of the molecular disease levels and relapse kinetics of patients within IM 

stopping trials has supported a view where treatment with IM selects a LSC clone with 

slower growth rate which contributes to disease relapse upon discontinuation of therapy, 

although to a different rate in each patient335. While it is possible that in some patients this 

clone might not actually lead to overt relapse, speculatively as a result of concomitant 

factors, such as immunological control, a population of “therapy selected” LSC are still 

present in all patients. Interestingly experimental data have also supported the idea that 

persistent disease is correlated to the selective survival of a LSC clone with low BCR-ABL 

expression levels which appears to be less sensitive to IM336. Taken together, all the above 

data support a model where TKI are able to eradicate leukaemia progenitor cells (LPC) and 

might even produce a selection pressure on LSCs, but they are still unable to completely 

deplete them.   

Having shown that LSCs persist during TKI therapy, understanding the mechanisms 

causing this phenomenon has been the next logical step. One theoretical possibility is that 

TKI do not effectively inhibit the BCR-ABL kinase in this selected population of LSCs. 

However work performed independently from two groups using complementary mouse 

models and primary CML samples has now shown that TKI are capable of suppressing 

BCR-ABL TK activity in the most primitive, quiescent LSCs which however still survive 

while maintaining their functionality as shown by their ability to produce LTC-IC or 

generate disease in mice. This has therefore proven that CP CML LSCs are not oncogene 

addicted, or more precisely, that their survival is not dependent on BCR-ABL kinase 

activity337,338.  

The overall conclusion from this body of work is that the TK activity of the BCR-ABL 

oncoprotein is not a legitimate therapeutic target to eradicate primitive LSCs which depend 

on their own intrinsic mechanisms for their survival. Identifying such mechanisms will 

then provide rational therapeutic targets for developing CML LSC specific drugs, which 

combined with debulking agents, such as TKI, may lead to disease cure as shown in the 

model presented earlier in figure 1-10. Recently some of these survival pathways have 

started to be elucidated and their role as therapeutic targets explored. A detailed 

presentation of all these newly discovered survival pathways is beyond the scope of this 

chapter, it is however useful to discuss some general points while presenting some of the 

most notable ones. A didactic classification of the possible approaches to eradicate LSC 

divides them into two broad groups. The first group comprises those approaches aiming to 

reduce CML LSC self-renewal/maintenance capacity mainly by targeting regulators of 
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their quiescence thus leading to their functional exhaustion. The second group instead aims 

to identify survival pathways particularly relevant to CML LSC in the specific context of 

TKI therapy that when targeted might lead directly to LSC apoptosis.  

Within the first group, two notable examples have been provided by the TGF-

β1/AKT/FOXO axis and the promyelocytic leukaemia (PML) protein, which have both 

been demonstrated to play a central role in CML LSC maintenance. In the first case, 

investigators have shown that BCR-ABL transduced murine BM cells are not capable of 

sustaining leukaemia in serial transplantation upon genetic deletion of the Foxo3a 

transcription factor. Moreover using a TGF-β1 R1 kinase inhibitor in combination with IM 

prolonged survival of CML mice which correlated with downregulation of FOXO3a 

activity within the LSC111. Similarly the PML protein, known to be involved in the 

development of acute promyelocytic leukaemia, was demonstrated to be overexpressed in 

CML LSCs and to prevent them entering cell cycle.  Murine models lacking Pml 

expression were again shown to be unable to sustain CML development on serial 

transplantation as their LSCs appeared to exhaust. In support of this model, combined 

treatment of CML mice with arsenic trioxide, a drug known to target PML for degradation, 

and standard cytotoxic chemotherapy achieved complete eradication of leukaemia339.  

Within the second type of mechanism (LSC survival pathways), it is worth mentioning the 

role of the sirtuin 1 (SIRT1) histone deacetylase and autophagy. SIRT1 is highly expressed 

in CML LSC and inhibits p53 function through deacetylation. The p53 transcription factor 

plays a central role in inhibiting cancer cell proliferation and inducing apoptosis and is 

often mutated in cancer cells. SIRT1 inhibition using RNA interference or a small 

molecule inhibitor, in both primary cells and mouse models, was able to increase p53 

transcriptional activity in CML LSCs, thus leading to their more effective eradication when 

treated with IM340. Similarly autophagy is an adaptive process normally activated in 

eukaryotic cells in response to stress conditions which allows them to adapt to 

environmental signals. It is based on the breakdown of intracellular materials within 

lysosomes and, depending on the cell context, can act either as a cell death or as a cell 

survival mechanism. CML LSCs induce autophagy in response to inhibition of survival 

signals emanating from BCR-ABL kinase upon TKI treatment to evade cell death. 

Suppression of autophagy, either using small molecule inhibitors or RNA interference of 

essential autophagy inducing genes, has been shown to enhance LSC death induced by TKI 

both in primary CML samples and complementary mouse models341. 
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In conclusion this brief and not fully comprehensive overview of the possible survival 

mechanisms inherent to CML LSC shows that, as might have been expected, not one single 

mechanism is in control of CML LSC survival and their relative contribution within each 

patient and between patients ideally needs to be taken into account when devising LSC  

targeted therapies. This issue coupled with the difficulty of recruiting patients on long-term 

IM therapy, who have a nearly normal quality of life, into clinical studies probably 

represent the main reasons for the lack of clinical trials investigating the role of all these 

specific LSC druggable targets in CML patients with persistent disease. Nevertheless it is 

worth noting that in some cases clinical testing of these targets is being performed as is the 

case with the ongoing CHOICES (Chloroquine and imatinib combination to eliminate stem 

cells) study which our group in Glasgow has devised and is currently conducting in 

collaboration with several other centres throughout Europe 

(http://public.ukcrn.org.uk/search/StudyDetail.aspx?StudyID=8492). This is a phase II 

clinical study looking at the combination of autophagy inhibition using 

hydroxychloroquine with standard IM therapy in CML patients with persistent minimal 

residual disease to assess its safety and efficacy in CML LSC eradication. The biggest 

challenge in the future for the CML community will be to ensure that, as for CHOICES, 

other clinical studies will be conducted to allow the translation to the bed side of all these 

exciting discoveries in CML LSC biology. 
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1.4 Aims  

Based on our current knowledge of CML LSC biology and the currently unanswered 

research questions and clinical problems in the CML field, the overall aim of the work 

presented in this thesis was to study in further detail the role that GFs play in survival, 

proliferation and in inducing quiescence/maintenance of CP CML SPC in order to 

characterise better their exact role in disease persistence. Although some GFs function in 

CML LSC biology has already been investigated, there is little doubt that our 

understanding of the role of several other GFs and novel extrinsic regulators of 

haemopoiesis in CML SPC biology is still lagging behind compared to our knowledge of 

their role in the normal setting. Moreover the consequences of the presence of the BCR-

ABL oncogene on CML cell production and response to several GFs is still unknown. Even 

more, the characterisation at molecular levels of cytokine’s mechanisms of action in CML 

cells is an area requiring further investigation. Finally, an improved understanding of the 

effects of several GFs on CML cells at biological and molecular level could also have high 

therapeutic relevance as it might allow identification of novel therapeutic targets to be 

exploited for the eradication of CP CML LSCs. 

As excessive autocrine secretion of some GFs has already been demonstrated as an 

aberrant feature of CML SPC compared to their normal counterparts, this mechanism was 

investigated further in an attempt to identify novel CML CD34+ cells survival and 

proliferation regulators, which are produced autonomously by the CML cells and in a 

differential way compared to normal cells. While studying in further detail the role of 

CML autocrine GF production may provide a better understanding of cell autonomous 

cytokine signals used by CML cells to regulate their survival, the role of truly extrinsic 

regulators was also investigated, in particular focusing on those whose role in CML is 

currently unknown, while it has been demonstrated, or is being investigated, in normal 

haemopoiesis. Following the results of a genome and epigenome-wide analysis of CML 

and normal stem cells carried out in our laboratory and the recent interest regarding the 

role of neuromediators in normal haemopoiesis, their putative effects on CML LSC 

biology was chosen as another topic of investigation. In conclusion the main aims of the 

work presented in this thesis and the plan of the investigations necessary to achieve them 

can be summarised in the following points: 
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1) Characterisation in more detail of the autocrine production of cytokine and cognate 

receptors in different subsets of normal and leukaemic cells and its modulation by BCR-

ABL kinase activity in CML SPC.  

2) Characterisation of the functional role of the most interesting autocrine GFs identified 

from aim 1, by specifically looking at the effects of either inhibiting or stimulating their 

production/downstream signals at both biological and molecular level.  

3) Investigation of the role of several neurotransmitters on survival, proliferation and 

maintenance of CML LSC using both functional biological and molecular assays.  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Small molecule inhibitors 

IM was provided as a white powder under a Materials Transfer Agreement (MTA) from 

Novartis Pharma. It was dissolved in sterile water and stored as a 100mM stock solution at 

4°C. 

DA, NL, INCB18424 (INC) and TG101209 (TG) were provided in powder form under 

MTA respectively from Bristol-Myers Squibb (DA), Novartis Pharma (NL and INC) and 

TargeGen, Inc. (TG). They were all dissolved in anhydrous dimethyl sulfoxide (DMSO) 

and stored as a 20mM stock concentration at -20°C (DA) and as a 10mM stock solution at 

-20°C (NL, INC, TG). 

TNF-α inhibitor (TNF-α inh) and the TGF-β1 R1 kinase inhibitor  LY364947 (LY) were 

purchased respectively from Merck Chemicals and Sigma-Aldrich, UK, dissolved in 

DMSO and stored as a 10mM stock concentration at -20°C. 

All the inhibitors were made up fresh and diluted to the appropriate concentration with 

Phosphate Buffered Saline (PBS) prior to use. 

2.1.2 Tissue cultures supplies 

Abbot Diagnostics, UK LS1 BCR-ABL dual colour FISH probe 
Baxter Healthcare, UK Sterile water 
Biolegend, UK Mouse IgG1, κ isotype control antibody 
Becton Dickinson, UK 
 

Luer Lok syringes 
19G Syringe needles 

BD Biosciences, UK 6-well collagen coated plates 
Brefeldin A (protein transport inhibitor) 

Cell Signaling (New England Biolabs), UK Human TNF-α 
Chugai Pharma, UK Human G-CSF 
 
Greiner bio one, UK 

25 and 75mm3 tissue culture flasks 
6,12,24,48 and 96-well plates 
FACS tubes 
Pipette tips 

 
 
 
 
 

2-Mercaptoethanol  14.3M 
KaryoMax Colcemid solution (10μg/mL) 
Foetal Calf Serum (FCS) 
L-Glutamine 200mM  
PBS 
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Invitrogen, UK 
 

Penicillin-Streptomycin Solution 
(10,000U/ml) 
Roswell Park Memorial Institute (RPMI) 
1640 media 
Dulbecco’s Modified Eagle Medium 
(DMEM) 
Iscove’s Modified Dulbecco’s Medium 
(IMDM) 
Minimum Essential Medium-α (MEM-α) 
Collagenase IV 
Collagen coated 6 well plates 
Non-essential aminoacids solution (NEAA) 

 
Miltenyi Biotec, UK 
 

CliniMACS CD34 reagent 
CliniMACS 
PBS/Ethylenediaminetetraacetic 
acid(EDTA) Buffer 
CliniMACS tubing set 

 
Nalge Nunc International, Denmark 
 

25 and 75mm3 non-adherent tissue culture 
flasks 
Cryotubes 
Cryofreezer container 

 
Peprotech, UK 
 

Human TGF-β1 
Human FLT-3 ligand (FLT-3L) 
Human IL-3 
Human IL-6 
Human stem cell factor (SCF) 

R&D Systems, UK Mouse anti-human TNF-α antibody 
Sarstedt, Ltd, UK 5-10-25mL pipettes 

15-50mL falcon tubes 
Sartorius, Germany 
 

Minisart 0.2μM sterile filters 
Minisart 0.45μM sterile filters 

Scottish National Blood Transfusion 
Service, UK 

20% Human Albumin Solution (ALBA) 
4.5% ALBA 

 
 
 
 
 
 
 
 
 
Sigma-Aldrich, UK 

Bovine serum albumin (BSA) >96% 
Carbonate-bicarbonate buffer 
DMSO >99.9% 
Ethanol >99.5% 
Histopaque solution (1.077g/mL) 
Hank’s buffered salt solution – calcium 
and magnesium free (HBSS-CMF) 
Hydrochloric acid (HCl) 36.5-38% 
Acetic acid >99.7% 
PBS tablets 
Low density lipoprotein (10mg/mL) 
Magnesium chloride (MgCl2) 1M 
Methanol 99.8% 
Pepstatin A protease inhibitor (1mg/mL) 
Sodium azide 0.1M 
Trisodium citrate 0.155M 
Trypan blue 0.4% 
Trypsin-EDTA 0.25% 
DL-Norepinephrine hydrochloride  
Serotonin hydrochloride  
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L-Glutamic acid  
Histamine dihydrochloride  
Acethylcoline chloride  

 
 
 
Stem Cell Technologies, Canada 

Bovine pancreatic deoxyribonuclease 
(DNAse I) 1mg/mL 
Bovine serum albumin/insulin 
/transferrin (BIT) serum substitute 
Hydrocortisone 21-hemisuccinate 
Methocult H4034 
Myelocult H5100 
Human GM-CSF 
Macrophage inflammatory protein-1α (MIP-
1α) 
Leukaemia inhibitory factor (LIF) solution 
(10μg/mL) 

Thermo Fisher Scientific, UK Sterile cell strainer 70µm mesh 
Weber Scientific International, UK Hawksley Neubauer counting chamber 
 

2.1.3 Flow cytometry reagents 

Abcam, UK Mouse IgG, isotype control antibody  
Rabbit IgG, isotype control antibody 

 
 
 
 
 
 
 
BD Biosciences, UK 

Annexin-V binding buffer (10x) 
Mouse anti-human IgG Fluorescein 
isothiocyanate (FITC) isotype control 
antibody 
Mouse anti-human IgG Phycoerythrin (PE) 
isotype control antibody 
Mouse anti-human IgG allophycocyanin 
(APC) isotype control antibody 
FACS flow 
FACS clean 
Mouse anti-human-Ki67 FITC antibody 
Annexin-V FITC/PE/APC  
Mouse anti-human-CD34 APC antibody 
Mouse anti-human-CD38 FITC/PE/ 
Peridinin chlorophyll protein (PerCP-Cy5.5) 
antibody 
Viaprobe- 7 aminoactinomycin D (7-AAD) 
Mouse anti-human-phospho-AKT PE 
antibody 

Biolegend, UK  Mouse anti-human-TNF-α PE antibody 
 
 
 
Cell Signaling (New England Biolabs), UK 

Rabbit anti-human-phospho-CrKL  (p-
CrKL) antibody 
Rabbit anti-human-phospho-STAT5 (p-
STAT5) antibody 
Rabbit anti-human-phospho-NFκB (p-
NFκB) antibody 
Rabbit anti-human-phospho-IκBα (p-IκBα) 
antibody 
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Ebiosciences, UK Mouse anti-human-CD131 PE antibody 
Epitomics, USA Rabbit anti-human-phospho-JAK2 (p-

JAK2) antibody 
 
 
Invitrogen, UK 
 

Fix&Perm cell fixation and 
permeabilisation kit 
CellTrace Violet cell proliferation kit 
CountBright  Absolute counting beads 
CellTrace Carboxyfluorescein diacetate 
succinimidyl ester (CFSE) cell proliferation 
kit 

 
Sigma-Aldrich, UK 

Goat anti-rabbit IgG FITC conjugate 
antibody 
Goat anti-rabbit IgG PE conjugate antibody 
Formaldehyde solution 36.5% 
Triton-X-100 1.06g/mL 

 

2.1.4 Molecular biology supplies 

 
 
Applied Biosystems, USA 
 

High capacity complementary 
deoxyribonucleic acid (cDNA) reverse 
transcription kit 
TaqMan Universal PCR mastermix   
TaqMan PreAmp mastermix kit 
Nuclease free water 
Arcturus Picopure ribonucleic acid (RNA) 
isolation kit 

Bioline, UK HyperPAGE protein marker 
 
Bio-Rad, USA 

Immun-Blot polyvinylidene fluoride 
(PVDF) membrane 
Immun-Star WesternC Kit 

 
 
 
Cell Signaling (New England Biolabs), UK 
 
 
 
 

Anti-rabbit IgG horseradish peroxidase 
(HRP)-linked secondary antibody 
Anti-mouse IgG HRP-linked secondary 
antibody 
Rabbit anti-human-β-Tubulin antibody 
Rabbit anti-human-Glyceraldehyde-3-
phosphate-dehydrogenase (GAPDH) 
antibody 

Chemicon International 
USA 

Re-blot Plus Strong Antibody Stripping 
Solution 

 
Epitomics, USA 

Rabbit anti-human-Apolipoprotein-E (APO-
E) antibody 

 
 
 
 
Invitrogen, UK 
 

NuPage MOPS Sodium dodecyl sulphate 
(SDS) Running Buffer (20X) 
NuPage Novex Bis- Tris 
(hydroxymethyl)aminomethane 
hydrochloride (Tris) gels 
NuPage Transfer Buffer (20X) 
XCell II Blot Module 
XCell SureLock Mini-Cell 
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electrophoresis system 
NuPage LDS sample buffer (4x) 
NuPage Reducing agent (10x) 
CellsDirect One-Step qRT-PCR kit 
1xTE Buffer 
SUPERase-In 
Tracklt 1KB DNA Ladder 
100mM deoxyribonucleotides (dNTP) Set 

 
Fluidigm, USA 
 

48x48 gene Dynamic Array IFC 
20x GE Sample loading reagent 
2x Assay loading reagent 

Pierce ThermoScientific, USA Bicinchoninic acid (BCA) protein assay kit 
Promega Corporation, USA GoTaq  Flexi DNA Polymerase (5u/μL), 

including MgCl2, and loading buffer 
Qiagen, Crawley, UK  RNeasy mini kit 

RNeasy micro kit 
 
Roche Diagnostics, Germany 

cOmplete, EDTA-free Protease inhibitor 
cocktail tablets 
PhosSTOP, Phosphatase inhibitor cocktail 
tablets 

 
 
 
Sigma-Aldrich, UK 

EDTA 
Ethidium bromide solution 10mg/mL 
Formaldehyde solution 36.5% 
NP-40 (1.06g/mL) 
Radioimmunoprecipitation assay (RIPA) 
buffer 
Sodium chloride (NaCl) >99% 
Tris base >99% 
Sodium deoxycholate >97% 
Tween-20 (1.095g/mL) 

 

2.1.5 Custom designed PCR primer sequences and TaqMan Gene 
expression assays 

See Appendix I 
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2.2 Preparation of media and solutions 

2.2.1 Tissue culture media 

2.2.1.1 RPMI++   

RPMI 1640 500mL 
FCS  50mL 
L-glutamine 5mL 
Penicillin/Streptomycin solution 5mL 
 

2.2.1.2 MEM-α++ for maintenance of stromal cell line OP-9 

MEM-α 500mL 
FCS 100mL 
L-glutamine 5mL 
Penicillin/Streptomycin solution 5mL 
NEAA 5mL 
2-Mercaptoethanol 500μL  
 

2.2.1.3 Serum free medium (SFM) 

BIT  25mL  
2-Mercaptoethanol 250μL  
L-glutamine 1.25mL  
Penicillin/Streptomycin solution 1.25mL  
IMDM  97.25mL 
Low density lipoprotein 500μL 
Made up in a Vacubottle and filter sterilised 

2.2.1.4 SFM supplemented with high 5 GF cocktail (SFM+HiGF) 

SFM 50mL 
IL-3 (50μg/mL) 20μL   
IL-6 (50μg/mL) 20μL 
G-CSF (20μg/mL) 50μL 
FLT-3L (50μg/mL)  100μL 
SCF (50μg/mL)  100μL 
Filter sterilised through 0.22μM syringe filter 
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2.2.1.5 SFM supplemented with physiological GFs (SFM+PGF) 

SFM  50mL 
SCF (0.5μg/mL) 20μL 
G-CSF (2μg/mL) 25μL 
IL-6 (5μg/mL)  10μL 
GM-CSF (0.1μg/mL)  100μL 
LIF (0.1μg/mL)  25μL 
MIP-1α (0.1μg/mL)  100μL 
Filter sterilised through 0.22μM filter 

2.2.1.6 Myelocult 

Myelocult H5100 100mL 
Hydrocortisone hemisuccinate 
(1x10-4M) 

1mL 
 

 

2.2.2 Tissue culture solutions 

2.2.2.1 PBS/2% FCS 

PBS 490mL 
FCS 10mL 
 

2.2.2.2 PBS/20% FCS 

PBS 80mL 
FCS 20mL 

 

2.2.2.3 DAMP solution for thawing cryopreserved CD34+ cells or MNC 
aliquots from -150°C 

DNAse II solution  1 vial 
MgCl2 625μL 
Trisodium citrate 26.5mL 
20% ALBA  12.5mL 
PBS  to 250mL 
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2.2.2.4 20% DMSO/4.5% ALBA 

DMSO 20mL 
4.5% ALBA 80mL 
 

2.2.2.5 IMDM/ 2% FCS 

IMDM 98mL 
FCS 2mL 
 

2.2.3 Flow cytometry solutions 

2.2.3.1 PBS/0.4% formaldehyde 

PBS 48mL 
10% formaldehyde 2mL 
 

2.2.3.2 PBS/0.2% Triton-X-100 

PBS 50mL 
Triton-X-100 100μL 
 

2.2.3.3 Annexin-V binding buffer 

Annexin-V binding buffer (10X) 1mL 
Distilled water 9mL 
 

2.2.3.4 Fix&perm wash – PBS/1% BSA 

BSA 10g 
PBS to 1L 
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2.2.4 Molecular biology solutions 

2.2.4.1 Lysis buffer for protein lysates (RIPA) 

Distilled water 7.75mL 
1.5M NaCl  1mL 
1M Tris-HCl  0.5mL 
150mM EDTA  333μL 
NP-40  50μL 
10% Sodium deoxycholate  250μL 
Protease inhibitor (10X) 100μL 
Phosphatase inhibitor (10X) 100μL 

 

2.2.4.2 Running buffer 

NuPage MOPS SDS Running 
buffer (20X) 

30mL 

Distilled water to 600mL 
 

2.2.4.3 Transfer buffer 

NuPage transfer buffer (20X) 30mL 
Distilled water 510mL 
Methanol 60mL 
 

2.2.4.4 Tris-buffered saline (TBS) 10X 

NaCl 876.6g 
Tris base 121.1g 
Distilled water to 10L 
Adjusted to pH 8.0 

2.2.4.5 1X TBS-T buffer/ wash buffer 

TBS 10X 1L 
Tween 20 10mL 
Distilled water to 10L 
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2.2.4.6 Blocking buffer 

1X TBS-T 100mL 
BSA 5g 
dry, skimmed milk  5g 
Either BSA or dry/skimmed milk were used depending on antibody 

2.2.4.7 10XTBE buffer 

Boric acid 55g 
EDTA (0.5M, pH 8.0) 40ml 
Tris base 108g 
Distilled water 1L 
 

2.2.4.8 2X reverse transcription (RT) Mastermix 

10X RT Buffer  2μL  
25X dNTP Mix 0.8μL 
10X RT Random Primers  2μL 
Reverse Transcriptase 50u/μL 1μL 
RNase Inhibitor 1μL 
Nuclease free water 3.2μL 
 

2.2.4.9 Reverse Transcription (RT)-PCR mix 

5X Green GoTaq Flexi Buffer  5μL  
10mM dNTP Set 0.5μL 
5’ and 3’ primers (25µM)  0.2μL 
GoTaq DNA polymerase 0.1µL 
MgCl2 Solution (25mM) 3µL 
cDNA+ Nuclease free water 16µL 
 

2.2.4.10 qRT-PCR Mastermix (TaqMan) 

2X TaqMan Universal PCR 
Mastermix  

5μL  

20X TaqMan gene expression 
assay 

0.5μL 

cDNA+ Nuclease free water 4.5μL 
 

 



Chapter 2  90 
 
2.2.4.11 Specific target amplification Mastermix 

2X TaqMan Preamplification 
Mastermix  

12.5μL  

0.2X pooled gene expression 
assay mix 

6.25μL 

cDNA+ Nuclease free water 6.25μL 
 

2.2.4.12 Single cell RNA extraction/cDNA/preamplification Mastermix 

2X cell reaction mix  5μL  
0.2X pooled gene expression 
assay mix 

2.5μL 

SUPERase-In 0.1μL 
Superscript III RT/Platinum 
TaqMix  

0.2μL 

1xTE buffer 1.3μL 
 

2.2.4.13 qRT-PCR assay mix (Fluidigm) 

2x assay loading reagent  2.5μL  
20X TaqMan Gene expression 
assay  

2.5μL 

 

2.2.4.14 qRT-PCR sample mix (Fluidigm) 

2X TaqMan Universal PCR 
Mastermix  

2.5μL  

20x GE sample loading reagent 0.25μL 
cDNA 2.25μL 
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2.3 Methods 

2.3.1 Cell culture and cellular techniques 

2.3.1.1 Culture of cell lines 

The BC CML cell lines K562 and KCL22 (BCR-ABL positive) and the AML cell line 

HL60 (BCR-ABL negative) available in house were grown in suspension culture in 

RPMI++ medium. All cell lines were maintained at 37°C with 5% CO2 in 25cm3 tissue 

culture flasks. Cells in suspension were counted and passaged every two days with warm 

fresh medium, to maintain a density of between 1x105-1x106 cells/mL. Prior to each 

experiment cells were washed, resuspended in fresh medium and seeded at a density of 

2x105/mL for each treatment arm. Cells were harvested at different time points for protein 

and gene expression analysis and functional assays as dictated by experimental design. 

The murine green fluorescent protein (GFP) tagged OP-9 stromal cells available in house 

were cultured in MEM-α++ medium and passaged after reaching confluency. For the 

coculture experiments, 5x104 OP-9 cells per well were seeded in 6 well collagen-coated 

plates with fresh medium. Fresh medium was replenished after 3 days and prior to plating 

primary haemopoietic cells.  

2.3.1.2 Primary CML and normal CD34+ cells collection and enrichment 

All samples were collected with the approval from the Local Research and Ethics 

Committee and with written informed patient consent. Samples were obtained from 

patients at diagnosis of CP CML prior to any drug treatment, patients with normal BM 

stem cells undergoing autologous stem cell collection and normal healthy volunteers.  

Either 6mL of histopaque solution was added to a 15mL falcon tube, or 20mL of 

histopaque solution was added to a 50mL falcon tube (depending on the volume of blood 

sample) and brought to room temperature. The whole blood sample was first diluted (1:2) 

with PBS, carefully layered drop-wise onto the histopaque solution, until it reached the top 

of the centrifuge tube and centrifuged at 400g for 30 minutes at room temperature. 

Following centrifugation, the opaque interface containing the MNC was carefully aspirated 

with a 3mL sterile pastette. The interface was then transferred into a sterile centrifuge tube 

with a pastette and washed twice with sterile PBS (centrifuge at 300g for 5 minutes). The 

resultant MNC were either cryopreserved or further enriched for CD34+
 cells. 
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CD34+

   enrichment was achieved using the CliniMACS system (Miltenyi Biotec, Bisley, 

UK). MNC were incubated with a specific anti-CD34 monoclonal antibody (Miltenyi 

Biotec) to which super-paramagnetic MACS beads (~50nM in diameter) had been 

conjugated. The cell sample was then passed through a high-gradient magnetic separation 

column, where the target CD34+ cells were retained in the column and the unlabelled 

CD34- cells flushed through and discarded. The bound CD34+
 cells were then eluted after 

removal from the magnetic field, collected and an aliquot was removed for flow cytometry 

assessment of CD34 purity, which confirmed that all samples were >95% CD34+ post-

selection. All samples were stored at the indicated concentrations (see Section 2.3.1.3) in 

cryotubes at -185°C, until required for use. Finally all CP CML samples were determined 

to be BCR-ABL+ by PCR. The preparation of the MNC samples and enrichment for CD34+ 

cells were kindly performed by Dr Alan Hair. 

2.3.1.3 Cryopreservation of cells 

Cryopreservation in liquid nitrogen at -185°C of both cell lines and fresh primary cells was 

used for long term storage.  Between 4x106-2x107 CD34+ selected cells or 1x108 

unselected MNC were suspended in 1 to 2mL of an equal volume solution of 20% DMSO 

in 4.5% ALBA to give a final concentration of 10% DMSO and aliquoted in cryotubes. 

Likewise, 5x106-1x107 cell lines in exponential growth were suspended in 1 to 2mL of a 

solution of 10% DMSO in FCS and aliquoted in cryotubes. The cryotubes were transferred 

to a cryofreezer container and first cooled at a controlled rate to -80°C to before being 

transferred to -185°C freezer for long-term storage. 

2.3.1.4 Recovery of frozen cells 

Primary CD34+ cells and MNC were removed from -150°C and immediately thawed at 

37°C in a water bath until the ice crystals had disappeared. Using a pastette, the cells were 

added to a 15ml sterile tube and recovered by slowly adding 10ml of thawing solution 

(DAMP) drop-wise over a 20 minute period. This step was performed at room temperature 

to enhance the activity of the DNAse II, with constant agitation to prevent clumping of the 

cells. The cells were centrifuged at 300 g for 10 minutes, the supernatant was poured away 

and the pellet loosened by flicking the tube. The pellet was then washed twice in DAMP 

and centrifuged, then resuspended in SFM+HiGF or SFM+PGF (depending on the 

experiments) for counting and cell viability.  
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Cell lines were thawed in a 37°C water bath and recovered slowly as above but in RPMI++ 

and MEM-α (depending on the cell lines, see Section 2.3.1.1). The cells were then washed 

twice more and resuspended in 10mL of appropriate medium (see Section 2.3.1.1). 

2.3.1.5 Primary CD34+ cells sorting 

Cell sorting was kindly performed by Miss Jennifer Cassels. Briefly, fresh or recovered 

MNC or CD34+ cells were washed, resuspended in PBS/2% FCS and stained with anti-

human anti-CD34 APC and anti-CD38 FITC or PECy7 antibodies (depending on the 

experiments) for 15 minutes in the dark. Small cell aliquots (2x104) were used for relevant 

isotype controls and single colour controls to define positive and negative staining, 

respectively for each marker and to set compensation. Stained cells were washed and 

filtered through a 0.22μM filter prior to sorting with a BD FACS Aria with Diva software 

into two populations: CD34+ CD38-
 and CD34+ CD38+. The CD34+ CD38- fraction 

approximates the most primitive quiescent stem cell pool (less than 5% total CD34+ 

cells)342 (figure 2-1) and for all CP CML samples their Ph+ status was confirmed by dual-

colour FISH (D-FISH).  

C
D
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CD34

4%

 
Figure 2-1 Representative plot of the gating strategy used to sort CD34+ CD38- cells from 
bulk CD34+ cells 
A strict gate based on background matched isotype antibody staining was employed 
yielding usually between 2 and 5% CD34+ CD38- cells out of the total CD34+ cells  
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2.3.1.6 Culture of primary cells 

CD34+ cells or sorted subpopulations were maintained in suspension culture in SFM+PGF 

or SFM+HiGF depending on experimental setup at 37°C with 5% CO2 in 25cm3 tissue 

culture hydrophobic flasks overnight prior to set up experimental conditions. Prior to each 

experiment cells were washed, resuspended in fresh medium and seeded at a density of 1-

2x105/mL for each treatment arm. Cells were harvested at different time points for protein 

and gene expression analysis and functional assays as dictated by experimental design. 

In the coculture experiments 5x103 – 5x104 CML CD34+ CD38- cells for each treatment 

arm were seeded in each well on top of confluent GFP tagged OP-9 stromal cells and the 

OP-9 media was replaced with 2mL of Myelocult H5100 supplemented with 

hydrocortisone sodium succinate at a final concentration of 10-6M. The coculture was 

maintained for 3 days at 37oC and 5% CO2 by which point the medium was replaced by 

1mL collagenase IV/Myelocult (1mg/mL) solution and incubated for 20 minutes at 37oC. 

Subsequently, cells were incubated for 15 minutes at 37oC with 1mL of trypsin followed 

by harvesting using cell scrapers and 1mL FCS to neutralise trypsin. Harvested cells were 

used for protein and gene expression analysis and functional assays as per experimental 

design. 

2.3.1.7 Cell counting and cell viability assessment 

Cell counts and assessment of viability were performed using a counting chamber. Cells 

were counted with trypan blue exclusion. Trypan blue dye was first diluted 1:10 with PBS 

and 10L was added to 10L of cell suspension to give a 1:2 dilution of cells. 

Approximately 10L of the mixture was transferred to a haemocytometer and a minimum 

of 100 viable cells were counted. Dead cells have damaged membranes and therefore 

absorb the trypan blue dye, appearing dark blue under the light microscope, whereas live 

cells with an intact membrane do not absorb the dye. Hence, the unstained cells were 

counted and the remaining stained cells were deemed non-viable.  

2.3.1.8 Colony forming cell (CFC) assay 

The CFC assay is an in vitro assay specifically developed to quantify the haemopoietic 

progenitors present within a cell sample by enumerating the number of colonies produced 

following culture in a semi-solid media in the presence of adequate cytokine support. It can 

also help to characterise the type of progenitors present in the sample based on the 
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morphology of the colonies produced. It is based on the known ability of haemopoietic 

progenitors to proliferate and differentiate into colonies in a semi-solid media in response 

to cytokine stimulation343.  

Briefly, following treatment for 3 or 6 days 3x105 cells from each arm were washed and 

resuspended in 300µL of fresh medium and then added to 3mL of Methocult H4034. This 

suspension was thoroughly mixed and then 1.3mL was added to a 35mm tissue culture dish 

in duplicate. An extra 35mm tissue culture dish containing sterile water was added to 

prevent culture drying. The dishes were incubated for 12-14 days at 37°C, 5% CO2 prior to 

counting the number of viable colonies. 

The capacity of an individual haemopoietic progenitor cell colony to replate in a CFC 

assay has been used as an indicator of the self-renewal potential of that progenitor344,345. 

Therefore CFC replating assays were performed to assess drug treatment effects on self-

renewal capacity of haemopoietic progenitors.  

In replating experiments 50 single colonies from each arm were harvested from Methocult 

H4034 between day 10-12 of primary culture, resuspended in 10µL of fresh medium and 

plated in 100µL of Methocult H4034 within each well of a 96-well plate with thorough 

mixing. The plates were then incubated for further 12-14 days at 37°C, 5% CO2 prior to 

counting the number of viable colonies. 

2.3.1.9 D-FISH 

CML CD34+ and CD34+ CD38- cells were assessed for the presence of BCR-ABL by D-

FISH prior to culture. 1x105 cells were washed in PBS/2% FCS and then resuspended in 

30L pre-warmed (37°C) hypotonic solution (0.075M potassium chloride) and spotted to a 

well of multi-spot microscope slides previously coated with poly-L-lysine and air-dried 

overnight.  Samples were incubated at room temperature for at least 20 minutes. 10µL of 

freshly made fixative (methanol:acetic acid [3:1]) were subsequently added to the well 

containing cells and allowed to dry out.  This procedure was repeated further 3 times. The 

prepared slides were wrapped in parafilm and stored at -20°C until D-FISH was performed 

with the LS1 BCR-ABL Dual Colour, Dual Fusion translocation probe according to the 

manufacturer’s instructions. Interphase nuclei were evaluated using a Leica fluorescence 

microscope with a triple band pass filter for DAPI, Spectrum Orange and Spectrum Green. 

All D-FISH slides were kindly prepared and scored by Mrs Elaine Allan. 
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2.3.2 Flow cytometry 

Flow cytometry is a technique able to characterize and sort samples at single cell level 

using fluorochrome-labelled antibodies and dyes. Single cells in a stream of fluid are 

presented to a laser which excites the fluorescent dyes. The fluorochromes then emit light 

at different wavelengths (colours) allowing simultaneous measurement of several different 

properties of a single cell. Finally it also measures size and granularity of single cells by 

their forward-angle and side-angle light scatter, respectively (FSC and SSC)346. 

2.3.2.1 Detection and quantification of protein expression 

To detect and quantify levels of expression of protein by flow cytometry, between 5x104 

and 1 x 105
 primary cells were harvested and washed in PBS/2%FCS. For surface protein 

staining cells were resuspended in 100μL PBS/2% FCS with appropriate antibody solution 

or appropriate isotype antibody as negative control for 15 minutes in the dark. After 

incubation, the cells were washed in PBS/2% FCS and either analysed by flow cytometry 

immediately or further processed depending on the experimental setup. For intracellular 

protein staining cells were washed and resuspended in 100μL of fixing reagent (reagent A 

of Fix&Perm cell fixation and permeabilisation kit) for 15 minutes. The cells were then 

washed in PBS/1%BSA and the supernatant completely removed. The cell pellet was 

subsequently resuspended in 25μL of permeabilising reagent (reagent B Fix&Perm cell 

fixation and permeabilisation kit) containing the relevant antibody for 60 minutes. Excess 

antibody was then washed prior to flow cytometry analysis. When an unconjugated 

primary antibody was used, the cells were washed and resuspended in 100μL of 

PBS/1%BSA with either 2μL of the secondary anti-rabbit IgG FITC conjugate (1:50 

dilution), or 10μL of the secondary anti-rabbit IgG PE conjugate (1:10 dilution) depending 

on the requirement for multi-parametric flow cytometry analysis, at room temperature in 

the dark for 30 minutes. Quantification of the protein of interest within each sample was 

calculated in relative terms, using the ratio between the geometric mean fluorescence 

intensity (MFI) of the antibody labelled live cells and the geometric MFI of the isotype 

labelled live. When measuring changes in levels of protein within each sample following 

treatment, the MFI ratio (calculated as explained above) for each treatment arm was 

expressed as a percentage of the value of the untreated (UT) control (100%). 
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2.3.2.2 High resolution cell cycle analysis 

Flow cytometry can effectively be used for assessment of the cell cycle status of cells 

within each sample and following treatment. To this end a staining combining detection of 

the intranuclear antigen Ki67 together with the DNA binding dye 7AAD was used. Ki67 is 

an antigen present in the nuclei of cells which are in the active phases of cell cycle - G1, 

S/G2 and M.  It is not expressed in G0 cells and therefore is present only in proliferating 

cells347 so is commonly used as a marker for cellular proliferation. 7AAD allows 

measurement of DNA content within each cell. By combining Ki67 with 7AAD, it is 

possible to distinguish cells in the different phases of cycle348. G0 cells will have low 

(diploid) DNA content and do not express Ki67. Cells in G1 phase have the same DNA 

content but begin to express Ki67. Following replication of the DNA during the S phase, 

the DNA content within each cell effectively doubles and Ki67 expression also increases 

as cells progress from S phase to G2 and then mitosis (figure 2-2). 
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Figure 2-2 Representative plot of high resolution cell cycle staining by flow cytometry 
G0 cells have undetectable expression of Ki67 and low DNA content (lower left). G1 cells 
have low DNA content but express Ki67 (upper left) and S/G2/M cells have double DNA 
content and high level of expression of Ki67 (upper right) 

Practically 2x105 cells were washed in PBS/2%FCS and then resuspended in 500μL of 

PBS/0.4% formaldehyde for fixing for 30 minutes on ice. Following this, the cells were 

permeabilised in 500μL of PBS/0.2% Triton-X-100 overnight at 4°C. The following 

morning, the cells were washed once in PBS/2%FCS and stained with either 20μL of Ki67 

FITC labelled antibody or 20μL of FITC isotype control for 40 minutes at room 
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temperature in the dark. Following one further wash, the cells were resuspended in 1mL 

PBS with 5μL of 7AAD (1μg/mL) for 6 hours. Before flow cytometry analysis, the cells 

were washed once more in PBS/2%FCS. Cells stained with levels of 7AAD below G0 

levels were gated out from analysis as they represented dead cells and debris. Within the 

live cell population, the relative percentages of cells at each stage of the cell cycle were 

then measured by combining the Ki67 and 7AAD staining. 

2.3.2.3 CFSE staining 

The CFSE fluorescein-based dye staining of cells is a technique used to track cell division 

by flow cytometry. It was first described by Lyons and Parish in 1994 to determine 

divisions of lymphocytes349. CFSE is a lipophilic molecule which upon entering the cells is 

converted to a reactive dye by non-specific intracellular esterases. In the cell, it binds 

irreversibly to the free amines of cytoplasmic proteins and therefore allows stable cell 

staining. However upon division, the dye is equally divided between the two daughter cells 

determining a serial dilution of the dye with each division. As a result the fluorescence 

intensity of cells is halved with every cell division allowing a measure of the number of 

divisions a sample has undergone in culture, i.e. its proliferation (figure 2-3).  
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Figure 2-3 CFSE plot showing halving of CFSE fluorescence intensity with each division 
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Practically, following recovery and resuspension in 5mL PBS/2%FCS, CD34+ cells were 

stained with 10μL of a 500μM solution of CFSE dye to give a final concentration of 1μM 

for 10 minutes at 37°C in a water bath, while a small aliquot of cells was kept unstained for 

control purposes. Following this, CFSE was quenched by adding 10x volume of ice cold 

PBS/20% FCS and then washed once more time in fresh PBS/2% FCS. The cells were 

cultured overnight and the following day the total number of viable cells was recorded by 

flow cytometry using a 200μL aliquot of the cell suspension to which 20μL of a known 

concentration of counting beads for flow cytometry (CountBright Absolute counting 

beads) had been added. This also allowed confirmation of uniform CFSE staining and 

recording of the position of the undivided (CFSEmax) cell population prior to culture in 

different treatment conditions. Moreover to confirm the position of undivided cells 

following treatment, a control well was set up to which 100ng/mL of Colcemid was added 

which effectively blocked cell proliferation.  

As well as allowing detection of the number of divisions a sample has undergone in 

culture, CFSE stain can also be used to track the fate of all the cells in culture by 

measuring the percentage recovery of viable input cells within each division following 

treatment. To this purpose both the number of viable cells seeded initially in each culture 

and their number following different treatment conditions is recorded by bead counting as 

explained above.  The level of CFSE fluorescence is used to identify cells that have 

undergone 0, 1, 2, 3 etc. divisions and by gating on each division peak it is possible to 

measure the percentage of cells within each division. Following this, the absolute number 

of input cells which have undergone 0, 1, 2, 3 etc. divisions can be calculated using the 

formula shown in table 2-1: 

Absolute number of input 
cells remained undivided 

 
=

Absolute number of viable cells following 
treatment*percentage of cells in undivided CFSE gate/1 

Absolute number of input 
cells undergone 1 division 

 
=

Absolute number of viable cells following 
treatment*percentage of cells in division 1 CFSE gate/2 

Absolute number of input 
cells undergone 2 divisions  

 
=

Absolute number of viable cells following 
treatment*percentage of cells in division 2 CFSE gate/4 

Absolute number of input 
cells undergone 3 divisions 

 
=

Absolute number of viable cells following 
treatment*percentage of cells in division 3 CFSE gate/8 

Absolute number of input 
cells undergone 4 divisions 

 
=

Absolute number of viable cells following 
treatment*percentage of cells in division 4 CFSE gate/16 

Table 2-1 Formula for calculating absolute number of input cells recovered within each 
division using CFSE staining 

 
Finally the percentage of starting cells recovered within each division can be measured by 

dividing the absolute number of input cells undergone 0, 1, 2, 3 etc. divisions by the total 
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number of input cells and expressing this value as a percentage.  This analysis allows a 

comparison of the percentage of input cells recovered within each division following 

different treatment conditions and is mainly used to detect the effects of different 

treatments on the undivided, quiescent CFSEmax population which has been shown to be 

enriched for LSCs192.   

Of note in some experiments to allow multi-parametric flow cytometry analysis, a 

CellTrace Violet stain was used to track cell divisions. This is a stain with similar 

properties to the CFSE stain but has different emission spectrum thus allowing the 

combination of cell proliferation analysis with other assays requiring the use of a 

fluorochrome with the same emission spectrum of standard CSFE.  

2.3.2.4 Assessment of apoptosis and viability 

Apoptosis induction was measured by flow cytometry using annexin-V staining. During 

early phases of apoptosis, the phospholipid phosphatidylserine is translocated from the 

inner to the outer leaflet of the plasma membrane and exposed to the external cellular 

environment. Annexin-V, a phospholipid-binding protein, can be used to identify cells 

undergoing apoptosis when conjugated with a fluorochrome detectable by flow cytometry. 

Annexin-V staining was used in association with the DNA binding dye 7AAD which is 

only able to stain dead or late apoptotic cells because their membranes are   damaged to 

such an extent that they cannot exclude the 7AAD dye. As a result it was possible to 

differentiate live cells (annexin-V and 7AAD negative), cells undergoing early apoptosis 

(annexin-V positive, 7AAD negative), cells in the late stages of apoptosis (annexin-V and 

7AAD positive) and dead cells (annexin-V negative, 7AAD positive) (figure 2-4). 
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Figure 2-4 Schematic representation of apoptosis and viability assessment by annexin-V 
and 7AAD staining 

 
Practically, following a wash in PBS/2%FCS 0.5-1x105 cells were resuspended in 100μL 

of annexin-V buffer containing 5μL annexin-V conjugated to relevant fluorochrome and 

5μL 7AAD and incubated at room temperature for 15 minutes in the dark. Following 

incubation, further 200μL of annexin-V buffer was added to the cell suspension and 

analysis was immediately performed by flow cytometry. 

2.3.3 Western blotting 

Western blotting measures protein expression in cells following their lysis and 

fractionation of the protein component. The proteins are first separated according to their 

size by gel electrophoresis. Thereafter they are transferred or ‘blotted’ onto a membrane, 

almost always of nitrocellulose or PVDF, by placing the gel next to the membrane and by 

applying an electrical current which allows the proteins in the gel to move to the 

membrane where they adhere. The membrane will therefore contain all the proteins 

expressed within the cell sample tested. Following incubation with a specific primary 

antibody against the protein of interest, the membrane is incubated with a secondary 

antibody coupled to an easily detectable enzyme such as HRP on addition of a substrate. 

This allows the detection and quantification of a specific protein within each sample tested.  

2.3.3.1 Protein lysate preparation 

The RIPA lysis buffer was prepared immediately prior to use. Cells from different 

treatment arms were harvested and washed twice in ice cold PBS at 4°C. The supernatant 
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was removed carefully with a graduated pipette and the fresh lysis buffer was added to the 

cells (50μL per 5x105 cells), mixed by pipetting up and down and incubated for 20 minutes 

on ice. Following this the cell suspension was spun at maximum speed for 10 minutes at 

4°C to pellet DNA and debris. The supernatant which contains the protein was then 

carefully aspirated and either immediately used or stored at -80°C until use. 

2.3.3.2 Protein quantification 

The BCA method was used for colorimetric detection and quantification of total protein 

according to the manufacturer’s instructions. This assay is based on the reduction of 

cuprous cation from Cu2+ to Cu1+ by protein in an alkaline medium (the so called biuret 

reaction) and the following colorimetric detection of the purple reaction product formed by 

the chelation of one cuprous cation (Cu1+) with two molecules of BCA350. This water 

soluble complex exhibits a strong absorbance at 562nm that is nearly linear over a broad 

range of protein concentrations (20-2,000μg/mL). Protein concentrations are determined 

with reference to standards of known concentrations of BSA. 

The BSA standards were prepared by dissolving a measured amount in 0.9% saline to give 

a stock concentration of 2,000μg/mL. The following serial dilutions of the stock were 

prepared to produce a concentration gradient for the controls: 1,500; 1,000; 750; 500; 250; 

125; 50; 25; 5 and 0 (blank) μg/mL.  25μL of each serial dilution of the standards was 

pipetted in duplicate onto the well of a 96-well plate. 5μL of the protein lysate from each 

sample was added to 20μL of PBS (1:5 dilution) and also pipetted in duplicate onto the 

well of a 96-well plate. A BCA working solution was prepared by mixing solutions A and 

B of the BCA protein assay kit in a 50:1 ratio and 200μL of the working solution was 

added to each well. The 96-well plate was then incubated at 37°C for 30 minutes and the 

plate was read using an enzyme-linked immunosorbent assay (ELISA) plate reader for 

absorbance at 562nm. Protein concentrations were calculated with reference to BSA 

standards so that equal amounts of protein could be loaded for Western blot analysis. 

2.3.3.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE) 

SDS-PAGE is a technique used to separate protein in a highly cross-linked gel based on 

their size and following their denaturation. The anionic detergent SDS binds to the protein 

molecules in a fixed mass ratio of 1.4:1 and causes their denaturation. This confers an 

equal negative charge density to each polypeptide and as a result, migration is determined 
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only by the protein molecular weight.  It is usual to associate this procedure with the 

reduction of disulphide bridges in proteins which is necessary for optimal separation by 

size. This is normally achieved using a reducing agent such as 2-Mercaptoethanol. 

Following application of an electric current each negatively charged protein molecule 

migrates towards the positive electrode. The distance of migration depends on the size of 

the polypeptides with smaller polypeptides travelling more rapidly through the gel thus 

allowing protein separation according to their size.  

Practically protein lysate was mixed with NuPage LDS 4x sample buffer in a 1.5mL 

eppendorf and then heated to 70°C for 10 minutes. The samples were then loaded into a 

NuPage Novex Bis-Tris 4-12% gradient gel. 10μL of HyperPage protein marker was also 

loaded for protein size assessment. The gel was run using 1X NuPage MOPS SDS Running 

Buffer in an Invitrogen XCell SureLock Mini-Cell electrophoresis system at 80V for 15 

minutes and then 120V till adequate protein separation was achieved. 

2.3.3.4 Transfer to PVDF membrane 

Transferring or blotting proteins onto a membrane is based on the same principle of gel 

electrophoresis, i.e. charged proteins can be transferred in an electrical field from the gel 

onto a robust support such as a PVDF membrane.  

Briefly transfer was performed in wet conditions using the Invitrogen XCell II Blot 

Module at 30V for 60 minutes. The PVDF membrane was first soaked in methanol shortly 

for its activation, and then in transfer buffer for several minutes. Sponges and filter papers 

were also soaked in transfer buffer before assembling the transfer sandwich as shown in 

figure 2-5 
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Figure 2-5 Schematic representation of the transfer assembly 

 
10% to 20% methanol was added to transfer buffer both to reduce gel swelling thus 

increasing protein resolution during transfer and to remove SDS from proteins thus 

increasing their binding to the membrane. 

2.3.3.5 Antibody labelling 

Following transfer, the PVDF membrane was briefly washed in TBS-T and then incubated 

in blocking buffer, with gentle agitation at room temperature for 1 hour. Thereafter the 

blocking buffer was discarded and the membrane incubated with primary antibody 

overnight at 4°C with constant rotation. The membrane was then washed the following 

morning for 4 times (15 minutes per wash) in TBS-T to remove excess primary antibody 

prior to incubation with appropriate HRP-conjugated secondary antibody (1:3,000 dilution) 

for 1-2 hours at room temperature with constant rotation. Following 4 more washes (15 

minutes per wash) in TBS-T to remove excess secondary antibody, the blot was incubated 

with the Immun-Star WesternC Kit as per manufacturer’s protocol. Immun-Star ECL 

reagents (luminol/enhancer and peroxide solutions) were mixed in equal amounts before 

use and incubated with the membrane for few minutes. HRP bound to the secondary 

antibody oxidises luminol in the presence of hydrogen peroxide. Upon returning to its 

initial state oxidized luminol emits light. The enhancer in the mixture serves the purpose of 
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increasing signal intensity and length. Finally digital pictures of protein bands were taken 

by the Molecular Imager ChemiDoc XRS machine. 

2.3.3.6 Stripping and reblotting 

Stripping allows sequential incubation of a membrane with different antibodies by 

removing antibodies bound into the membrane without removing the actual protein. This 

was performed by incubating the PVDF membrane with the Re-Blot Plus Strong stripping 

solution diluted 1:10 with distilled water. Following two brief washes (5 minutes per wash) 

in TBS-T, the membrane was re-blocked for 1 hour and finally incubated with a different 

primary antibody. 

2.3.4 PCR 

PCR is a molecular biology technique used to amplify a single or a few DNA copies to 

billions of copies. It is based on the simple concept that  it is possible to amplify a target 

region of DNA by incubating it with two short DNA fragments (the so-called primers)  

containing sequences complementary to the target region together with the appropriate 

enzyme responsible for DNA synthesis - DNA polymerase - from which the method takes 

its name351. As target DNA is amplified, it is used as a template for its replication causing 

an exponential amplification of the target DNA with each replication cycle.  In general 

terms PCR consists of 30-40 cycles of replication each of them consisting of 1) a 

denaturation step during which double-stranded DNA is separated into single strands; 2) an 

annealing step during which the primers bind to the single-stranded DNA; 3) an extension 

step during which the DNA polymerase will synthesize a new DNA strand complementary 

to the DNA template. 

2.3.4.1 RNA extraction 

Total RNA was isolated from pellets using either the Qiagen RNeasy Mini Kit or the 

Applied Biosystems Arcturus Picopure RNA isolation kit (depending on sample size) 

according to the manufacturer’s instructions. The quantity and purity of the extracted RNA 

was measured using a nanodrop spectrophotometer Nd-1000 (Labtech International, East 

Sussex, UK). An absorbance at 260nm quantified nucleic acid and the ratio of 260/280 

determined purity (pure RNA ratio is 2.0).  
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2.3.4.2 cDNA synthesis 

Reverse transcription of RNA into cDNA was carried out by using the High Capacity 

cDNA Reverse Transcription Kit.  10μL of the extracted RNA was mixed with 10μL of 2X 

Reverse Transcription Mastermix (2.2.4.8) in a PCR tube and reaction carried out as per 

manufacturer’s protocol (i.e. 25°C for 10 minutes, 37°C for 120 minutes and 85°C for 5 

seconds). cDNA was kept at -20°C for long-term storage. 

2.3.4.3 Specific cDNA target amplification 

In some experiments, due to low level of expression of target genes of interest, a 

preamplification step of the cDNA was carried out by using the TaqMan PreAmp 

mastermix kit. This step increases the quantity of specific cDNA targets for following gene 

expression analysis using TaqMan gene expression assays. Synthesized cDNA was 

incubated with a specific TaqMan PreAmp mastermix (2.2.4.11) containing a pool of 

primers (100 times diluted) specific to the target cDNAs which needed preamplifed.  A 

preamplification reaction was carried as per manufacturer’s protocol (i.e. 95°C for 10 

minutes followed by 14 cycles consisting of 15 seconds at 95°C for denaturing and 4 

minutes at 60°C for annealing and extension). The ensuing preamplified cDNA was diluted 

1:5 in TE buffer and kept at -20°C for long-term storage. 

In some experiments a one step reaction comprising all three above described steps was 

employed using the Invitrogen CellsDirect One-Step qRT-PCR kit as per manufacturer’s 

protocol. Briefly 300 cells were directly sorted into 200μL PCR tubes containing single 

cell RNA extraction/cDNA/preamplification mastermix (2.2.4.12). The tubes were then 

vortexed to extract RNA and thereafter the following reaction conditions were set up in a 

thermal cycler: 50°C for 15 minutes for reverse transcription, 95°C for 2 minutes for Taq 

activation followed by 18 cycles of 95°C for 15 seconds and 60°C for 4 minutes for 

specific target amplification. 

2.3.4.4 RT-PCR 

RT-PCR is a method used to detect messenger RNA (mRNA) expression in a sample 

following its reverse transcription into cDNA. Following the PCR reaction, the PCR 

products are run on an agarose gel by electrophoresis and separated according to their size 

and stained with ethidium bromide prior to their detection. This is a qualitative analysis of 

mRNA expression within a sample and cannot be used to relatively quantify gene 
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expression levels between different samples. This is because ethidium bromide is a rather 

insensitive stain. Moreover the PCR products are usually analysed following their 

exponential stage of amplification (after 35-40 cycles usually), i.e. once the reaction is 

complete and has reached saturation. As a result the amount of PCR product has reached 

a plateau that is not directly correlated with the amount of target cDNA in the initial PCR.  

First of all to carry out RT-PCR, custom primers were designed using NCBI/Primer-Blast. 

The cDNA sequences of the genes of interest were identified by searches on the Pubmed 

website and then used to design appropriate primers. Primer design was aimed to yield set 

of primers of about 20 base pairs with similar melting temperatures between forward and 

reverse primers, and no internal loops or primer dimers. The reaction was carried out by 

mixing synthesized cDNA with the RT-PCR Mix (2.2.4.9) in a PCR tube. The PCR 

reaction temperature and cycling conditions were optimised for each individual set of 

primers (Appendix I). The PCR products were run in 2% agarose gel in order to visualize 

individual DNA bands. The gel was prepared with 1g agarose powder in 50mL of 1X TBE 

buffer (2.2.4.7; 10X TBE buffer diluted in distilled water). This mixture was heated in a 

microwave until the agarose powder had completely dissolved. 1μL ethidium bromide 

(10mg/mL) was then added and the complete mix was poured into a casting tray with a 

comb inserted to create loading wells. The gel was left to set for about 30 minutes. Each 

well of the gel was loaded with 10μL of PCR product mixed with 2μL loading dye (6X) 

while 2μL of 100bp DNA ladder was loaded in a separate lane and then run at 50V in a 

tank filled with 1X TBE buffer. After running, the PCR products were detected using an 

ultraviolet light source (UV transilluminator - ChemiDoc). 

2.3.4.5 qRT-PCR using TaqMan  

qRT-PCR allows quantification of the cDNA products in a sample by detecting increasing 

level of fluorescence during the reaction as the PCR products accumulate, i.e. in real time. 

In a real-time PCR reaction a fluorescent reporter molecule such as a TaqMan Probe or 

SYBR Green dye, is added to the reaction mix and used to monitor the accumulation of 

PCR product. As a result the amount of fluorescence emitted from the reporter increases as 

the quantity of target cDNA increases. By plotting fluorescence against the number of 

cycles of the PCR reaction it is possible to determine the cycle number at which the 

increase in fluorescence (and therefore cDNA) is exponential and exceeds the set 

background fluorescence threshold.  This is called the cycle threshold or Ct value for a 

specific PCR reaction. By recording the Ct value during the exponential phase of the 
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reaction it is possible to infer the quantity of the cDNA in a sample relative to each other. 

This is because during its exponential phase, the reaction has not yet reached its saturation 

and the DNA target doubles every cycle so that the quantity of the PCR product is directly 

proportional to the amount of template nucleic acid with any differences in fluorescence 

signal secondary to different starting amounts of cDNA in the samples tested. Simply put 

as an example, a DNA sample whose Ct precedes that of another sample by 3 cycles 

contained 23 = 8 times more template for the reaction.  

TaqMan probes consist of a reporter fluorophore covalently attached to the 5’-end of the 

oligonucleotide probe and a quencher at the 3’-end. The quencher molecule quenches the 

fluorescence emitted by the reporter fluorophore and, as long as the reporter and the 

quencher are in proximity, inhibits any fluorescence signals. The probes are designed to 

anneal within the DNA region amplified by the specific set of primers they are associated 

with. During the PCR reaction the probe is cleaved by the 5' to 3' exonuclease activity of 

the Taq polymerase causing physical separation of the reporter and the quencher dye. This 

results in an increase in fluorescence as the PCR products accumulate. The advantage of 

the TaqMan Probe as a fluorescent reporter is that the probe set is complementary to the 

target amplicon. The increase in fluorescent signal occurs therefore only if the target 

sequence complementary to the probe is amplified during PCR. Consequently nonspecific 

amplification such as primer dimers, which are a potential problem when using SYBR 

Green dye as a fluorescent reporter, is not detected (figure 2-6).  
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Figure 2-6 Schematic diagram for the mechanism of function of the TaqMan qRT-PCR 
During the denaturation step of the PCR (A) the probe and primers are not attached to the 
cDNA template, the reporter (R) and quencher (Q) fluorophore are in close proximity and no 
fluorescence is emitted. During the annealing step (B) the probe and primers bind to the 
cDNA template but the reporter (R) and quencher (Q) fluorophore are still in close proximity 
and no fluorescence is emitted. However during the extension step (C) the TAQ polymerase 
adds complementary nucleotides to the single strand cDNA template and also cleaves the 
TaqMan probe thus releasing the reporter (R) from the quencher (Q) fluorophore and 
allowing for fluorescence to be emitted. 

Practically the mRNA levels of the target genes were measured using the ABI PRISM 

7900HT sequence detector (Applied Biosystems (ABI), U.K.).  cDNA was added to the 

TaqMan qRT-PCR master mix (2.4.4.10) in triplicate reactions and run on the ABI PRISM 

7900 with the following reaction conditions: 50°C for 2 minutes, 95°C for 10 minutes 

followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute.  Experimental target 

quantities were normalized to the endogenous control using 2-ΔCT method for each 

individual samples. For matched samples (i.e. treated versus UT) the relative quantification 

(RQ) of gene expression was calculated using the comparative CT method, i.e. 2-ΔΔCT352. 

2.3.4.6 qRT-PCR using Fluidigm 

The Fluidigm BioMark HD System integrates thermal cycling and fluorescence detection 

on a Fluidigm dynamic array integrated fluidic circuit (IFC) and provides high-throughput 

qRT-PCR using standard TaqMan gene expression assays353. The IFC allows the 
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simultaneous performance of PCR reactions in nL volumes on a single microfluidic device. 

The BioMark HD System consists of a real-time PCR instrument (BioMark HD Reader) 

and an IFC controller to prime and load the IFC. 

Briefly, cDNA was subjected to a specific targets amplification step (2.3.4.3) prior to 

performing the PCR reaction. Thereafter 48 qRT-PCR sample mixes (2.2.4.14) and 48 

qRT-PCR assay mixes (2.2.4.13) were loaded into the wells of a previously primed 48x48 

dynamic array IFC.  The qRT-PCR sample and assay mixes were combined (by the IFC 

controller) through the IFC chip network of microfluidic channels, chambers 

and valves automatically assembling a total of 2304 (48x48) individual PCR reactions. 

Thereafter the loaded chip was put through thermal cycling within the BioMark HD 

Reader and a Ct value for each individual PCR reaction was produced. 

The actual mechanism of qRT-PCR and the calculation of relative expression of target 

genes were the same as previously described for qRT-PCR using TaqMan (2.3.4.5). 

2.3.5 Statistical analysis 

All the results are shown as the mean ± standard error of the mean (mean ± SEM) unless 

otherwise stated. All statistical analyses was performed with Graph Pad prism software 

using the two-sided unpaired or paired student’s t-test (depending on the nature of samples 

compared) when two groups were compared. When multiple groups were compared a one 

way ANOVA with correction for multiple groups’ comparison was used. A p value <0.05 

was considered significant. 
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3 Results (I) Assessment of autocrine GF 
production by CML SPC and normal HSPC 

 

Autocrine production of GFs is a mechanism used by various types of cancer to promote 

their survival and proliferation. It has been described both in solid and haematological 

malignancies354,355 and shown to be relevant to the survival and resistance to therapy of 

CSC in other forms of cancer356. 

Autocrine production of myeloid haemopoietic GFs by CML SPC (IL-3, G-CSF) or MNC 

(GM-CSF) has already been demonstrated262,270 and this autocrine loop is thought to 

contribute to the GF independent growth capacity of CML SPC and possibly also to BCR-

ABL induced transformation (fully reviewed in section 1.3.6.2). Moreover other GFs, 

whose biological function in myeloid cells development is less obvious, such as IL-4, 

vascular endothelial growth factor (VEGF) and insulin like growth factor 1 (IGF-

1)271,357,358 have been shown to be produced by immortalised BCR-ABL positive cells. 

However little is known regarding the production of the latter GFs by primary CML SPC 

and their potential biological function and role in this context.  

It has already been shown that CML SPC can activate several survival and antiapoptotic 

signalling pathways following exposure to haemopoietic GFs, even in the presence of 

TKI261,263. It is therefore intriguing to postulate that autocrine cytokine overexpression 

could also act as an early resistance mechanism accounting for CML SPC survival 

following TKI selection pressure. Extending therefore the current knowledge of the 

autocrine GF production by CML SPC could lead to the identification of novel survival 

mechanisms of CML SPC which could in turn be therapeutically targeted.  In this respect it 

should be noted that a certain level of autocrine GF production has been shown in normal 

HSPC34 and therefore caution has to be exercised in interpreting autocrine GF production 

as a cancer specific feature. This observation has obvious implications on the safety of a 

therapeutic approach aimed to target GF production or signalling in CML. 

Finally another important and still unanswered question is if autocrine GF production in 

CML SPC is dependent on BCR-ABL kinase activity. 
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Based on this brief summary of our knowledge to date, the aims set out in this chapter were 

to:  

1) extend our knowledge of which GFs and cognate receptors are differentially expressed 

between CML LSCs (CD34+ CD38-) and LPCs (CD34+ CD38+) relative to their normal 

counterparts.  

2) elucidate if GF expression is modulated by BCR-ABL kinase activity. 

First the expression levels of several GFs was measured and compared between normal 

HSPC and CML SPC. QRT-PCR was used in the first instance to detect their expression 

because of its high sensitivity. This decision was taken because autocrine produced GFs 

are often expressed at low levels which would make their detection by other techniques, 

such as ELISA or western blotting, more difficult, and taking into account the limited 

material available when working with primary human cells.  However for the most 

interesting candidates, confirmation of their expression at the protein level was also sought. 

Thereafter to assess if any residual autocrine GF production was present upon complete 

BCR-ABL kinase inhibition, primary CML SPC were treated with a high concentration of 

NL at 5μM prior to analysing their expression of GFs and cognate receptors. NL was 

deliberately chosen as being a more potent TKI than IM and more specific than DA, while 

the high concentration (which is slightly above peak plasma concentrations achievable in 

patients359) has been shown to achieve maximal (nearly 100%) inhibition of BCR-ABL 

kinase activity263.  

This was a crucial point based on recent evidence which has shown that CML LSCs do not 

require BCR-ABL kinase activity for their survival337,338. Assuming that autocrine GF 

production is a survival mechanism for CML LSCs, it would be important to understand if 

it is a BCR-ABL kinase independent mechanism. Only in this case could it be regarded as 

a bona fide therapeutic target worthy of further investigation.   
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3.1 Assessment of GFs and cognate receptors 
expression in CML SPC and normal HSPC by PCR 

3.1.1 Initial screen for autocrine GFs expression in BCR-ABL 
positive cell lines and CML CD34+ cells by RT-PCR 

Preliminary experiments to assess autocrine GF expression in the BCR-ABL positive cell 

lines, K562 and KCL22 were performed to first screen for the most interesting candidates 

and identify those to be followed in subsequent experiments using primary human CML 

cells. Specific sets of primers were designed for several GFs, including IL-2, IL-4, 

hepatocyte growth factor (HGF), GM-CSF, SCF, TGF-β1 and TNF-α, chosen on the basis 

of their known functions as regulators of different stages of haemopoiesis and/or because 

they had already been implicated in autocrine signalling in other malignancies, but had not 

already been shown to be produced by CML SPC. After optimisation of the best cycling 

conditions to test each set of primers (Appendix I), expression of the GFs was assessed by 

standard RT-PCR. 

Amongst all GFs tested, gene expression for TGF-1, IL-4 and GM-CSF was consistently 

demonstrated in K562 cells, while TNF-α and HGF were consistently detected in KCL22 

cells (figure 3-1 A and B). No products were detected for IL-2 or SCF. 

Overall these data demonstrate mRNA expression of novel GFs by BCR-ABL positive cell 

lines thus providing support for testing if production of the same is present in CP CML 

CD34+ cells.  
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Figure 3-1 GF expression in BCR-ABL positive cell lines 
Candidate GF mRNA expression was measured by RT-PCR in K562 (A) and KCL22 (B) 
following resuspension in fresh medium and overnight culture (n=2). RT minus, no reverse 
transcriptase control. Red arrows indicate DNA ladder marks with numbers referring to the 
basepairs number of the mark. 

GF expression was therefore tested in primary CML CD34+ cells by standard RT-PCR.  

MNC from normal healthy volunteers were also tested as positive controls as they are rich 

in lymphocytes and monocytes known to produce several of these GFs. While TNF-α, 

TGF-β1, HGF were easily detected in both CD34+ cells and MNC, IL-2, IL-4 and GM-CSF 

were only detected in the MNC (figure 3-2 A and B). However following a 

preamplification (2.3.4.3) step, IL-4, and GM-CSF became detectable in 2 out of 3, and 1 

out of 3 CML patients CD34+ cells, respectively (figure 3-2 C). 
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Figure 3-2 GF expression in CML CD34+ cells 
mRNA expression of GFs was measured in 2 CML CD34+ cells following recovery and 
overnight culture in SFM+PGF cells and freshly isolated MNC (used as a positive control) by 
standard RT-PCR (panels A and B). Detection of IL-4 and GM-CSF mRNA expression in 3 
CML CD34+ samples following a cDNA preamplification step (panel C). 

Overall these results identify novel GF expression by primary CML CD34+ cells, such as 

TGF-β1, TNF-α, IL-4 and HGF. The next logical step was to accurately quantify levels of 

GF expression in CML CD34+ versus normal CD34+ cells using TaqMan qRT-PCR.  



Chapter 3  116 
 
3.1.2 Assessment of levels of GF expression in CML and normal 

CD34+ cells by qRT-PCR 

Quantitation of mRNA expression for GM-CSF, HGF, IL-4, TGF-β1 and TNF-α was 

performed in CML and normal CD34+ cells. A preamplification step (2.3.4.3) was carried 

out to improve GF detection given their low levels of expression and the limited amount of 

RNA normally obtained from primary CD34+ cells. Between 5 and 13 CML samples and 5 

to 6 normal samples were analysed for expression of candidate GFs.  

Amongst the candidates both TNF-α and IL-4 appeared to be more highly expressed in 

CML CD34+ compared to normal CD34+ cells.  However due to the high inter-sample 

variability, the differences did not reach statistical significance (respectively p=0.16 and 

p=0.2) (figure 3-3 A and B). GM-CSF was detected in a higher proportion of CML CD34+ 

(8 out 10, 80%) compared to normal CD34+ samples (4 out 6, 66.6%), but no significant 

difference in the expression levels was noted due to high inter-sample variability (figure 3-

3 C).  Given the previously reported autocrine production of IL-3 by CML CD34+ cells270 

and the observation that GM-CSF was more easily detected in CML versus normal CD34+ 

cells, the mRNA levels of the common β chain receptor of IL-3 and GM-CSF (CSF2RB) 

were also measured. Interestingly CSF2RB was more highly expressed in CML CD34+ 

cells at a level approaching statistical significance (p=0.09) (figure 3-3 D). Finally there 

was no obvious difference in the expression levels of TGF-β1 between CML and normal 

CD34+ cells, while HGF appeared to be more highly expressed in normal CD34+ cells,  but 

the difference did not reach statistical significance (p=0.11) (figure 3-3 E and F). 
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Figure 3-3 Quantitative mRNA expression of candidate GFs in CML and normal CD34+ cells 
mRNA expression of GFs was measured in CML (n= 6 to 13) and normal CD34+ (n=6) 
samples following recovery and overnight culture in SFM+PGF. Levels of expression were 
calculated using the 2-∆Ct method after normalisation of GFs mRNA expression levels 
against the expression levels of a housekeeping gene (HPRT1 or TBP) within each sample. 

Overall these data suggest an increased expression of some of the candidate GFs and one 

of their cognate receptors in CML CD34+ cells compared to their normal counterparts, but 

not to a statistically significant level. It should be noted however that most of these GFs are 

also normally produced at higher levels by monocytes and macrophages (TNF-α), 

lymphocytes (IL-4 and GM-CSF), endothelial and stromal cells (GM-CSF). Although all 

samples used were enriched for CD34+ cells (to 85% to 100% depending on the samples) 

an effect on the levels of GFs expression due to contaminating MNC cannot be ruled out, 

which makes an accurate measurement of the levels of GFs production by both normal 

HSPC and CML SPC using enriched CD34+ samples potentially not completely accurate.  
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In view of this it was decided to assess GF mRNA expression in sorted population looking 

at both the more primitive stem cell population (CD34+ CD38-) and the more mature 

progenitor population (CD34+ CD38+). This approach provided a more accurate 

measurement of the levels of expression of GFs in CML LSCs, CML LPCs and normal 

counterparts while reducing the contribution of any contaminating non haemopoietic cells 

and MNC. It also allowed characterisation of any differential expression of GFs between 

the more mature progenitor compartment (CD34+ CD38+) and the primitive stem cell 

compartment (CD34+ CD38-) which in CML samples is enriched for cells resistant to TKI. 
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3.1.3  Assessment of levels of GF expression in CML and normal 

CD34+ CD38+ and CD34+ CD38- cells by qRT-PCR 

Levels of expression for the same GFs previously measured in the bulk CD34+ cells were 

measured in freshly sorted CD34+ CD38+ and CD34+ CD38- samples as previously 

described (2.3.1.5). Interestingly following this further purification step, expression of IL-4 

became undetectable in the CD34+ CD38- compartment of the 5 CML and 3 normal 

samples tested, while its expression was still detected, although at low level, in the CD34+ 

CD38+ CML cells, but not in their normal counterparts (only 1 out of 3 samples) (figure 3-

4 A). Similarly GM-CSF was only detected in CML but not in normal samples within both 

compartments, although expression levels were quite variable and undetectable in 2 out of 

the 5 CML samples tested (figure 3-4 B). TNF-α was instead detected at a similar level in 

both CD34+ CD38+ and CD34+ CD38- CML cells; following sorting it was expressed at 

significantly higher levels in both CML populations compared to normal counterparts 

(p=0.03) (figure 3-4 C). CSF2RB was significantly more expressed in CML CD34+ CD38+  

versus CML CD34+ CD38- cells (p=0.008). Moreover it was also more highly expressed in 

both CML compartments compared to their normal equivalents, although the difference 

reached statistical significance only in the comparison between the CD34+ CD38+ 

compartments (p=0.04 for CD34+ CD38+ and p=0.2 for CD34+ CD38-) (figure 3-4 D).  

HGF and TGF-β1 were also easily detected. Both TGF-β1 and HGF were more highly 

expressed in the normal CD34+ CD38- cells compared to the CML counterparts, with the 

difference reaching statistical significance for HGF (respectively, p=0.07 and p=0.008). 

Moreover HGF was also differentially expressed between the 2 CML compartments with 

significantly higher levels detected in the CD34+ CD38+ cells (p=0.04) (figure 3-4 E-F). 
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Figure 3-4 Quantitative mRNA expression of candidate GFs in sorted CML and normal 
CD34+ CD38+ and CD34+ CD38- cells 
mRNA expression of GFs was measured in CML (n=5) and normal (n=3) samples following 
recovery, sorting into CD34+ CD38+  and CD34+ CD38- cells and overnight culture in 
SFM+PGF.  Levels of expression were calculated using the 2-∆Ct method after normalisation 
within each sample of GFs mRNA expression levels against the expression levels of a 
housekeeping gene (GAPDH). 

Overall these data suggest that once expression levels are measured within populations 

enriched for LPCs and LSCs, differences are more easily detected and start to be 

significant with higher levels of expression for some GFs and receptors seen in both CML 

LSCs (CSF2RB, GM-CSF and TNF-α) and CML LPCs (CSF2RB, GM-CSF, IL-4 and TNF-

α) compared to normal and vice versa (HGF). Based on these data, it was decided to focus 

mainly on the GFs expressed at higher levels by CML SPC.   
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3.1.4 Assessment of levels of GF expression in CML CD34+ CD38+ 

and CD34+ CD38- cells upon BCR-ABL kinase inhibition by 
qRT-PCR 

To assess the effects of BCR-ABL kinase inhibition on gene expression of GFs, CML 

CD34+ CD38+ and CD34+ CD38- cells were sorted and cultured in SFM+PGF in the 

presence of NL at a concentration of 5μM. Twenty four hours duration of NL treatment 

prior to the measurement of GFs expression was chosen following preliminary experiments 

in CML CD34+ cells. The experiments comprised analysis by western blotting of p-CrKL, 

a known downstream target of BCR-ABL and surrogate marker for its kinase activity, 

showing that BCR-ABL kinase was effectively inhibited within 1 hour of treatment with 

NL at 5μM and such effect was persistent up to 24 hours (figure 3-5 A). Moreover using 

annexin-V staining, only low levels of apoptosis (similar to baseline level) were detected in 

CML CD34+ cells treated with 5μM of NL at 24 hours (figure 3-5 B). Therefore the 24 

hours time point was considered as an appropriate time to assess modulation of GF 

expression by BCR-ABL kinase because of the evidence that persistent inhibition of BCR-

ABL kinase activity was achieved without inducing high apoptosis levels and based on the 

reasonable assumption that gene expression changes would have started to occur by then. 
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Figure 3-5 P-CrKL levels and apoptosis induction following NL treatment in CML CD34+ cells 
P-CrKL levels were measured by western blotting in CML CD34+ cells following 5μM NL 
treatment at 1, 4, 8 and 24 hours and compared to UT control levels (panel A, n=2). 
Apoptosis levels were measured by annexin-V staining in CML CD34+ cells following 5μM 
NL treatment at 1, 4, 8 and 24 hours (panel B, n=5) and compared to  those of UT cells. 

Therefore CML CD34+ CD38+ and CD34+ CD38- cells were treated with 5μM NL for 24 

hours and GF expression measured by qRT-PCR (figure 3-6 A and B) 

A

B

 
Figure 3-6 Quantitative mRNA expression of candidate GFs in CML CD34+ CD38+  and CD34+ 

CD38- cells following NL treatment  
GF expression was measured in CML samples (n=3) following sorting into CD34+ CD38+  and 
CD34+ CD38- cells and overnight culture in SFM+PGF with or without NL at 5μM. Differences 
in GF expression levels following treatment were calculated using the 2-∆∆Ct method after 
normalisation within each sample of GFs mRNA expression levels against the expression 
levels of a housekeeping gene (GAPDH). RQ, i.e. positive or negative fold change, of GFs 
mRNA expression following NL treatment was then plotted as log2 of the 2-∆∆Ct values (with 
the untreated cells having a value of 0 in the graph).  

Interestingly no changes in gene expression levels were detected for CSF2RB while TNF-α 

expression levels were only marginally reduced (less than 50%) following NL treatment in 

both CD34+ CD38+ and CD34+ CD38- cells. Slightly higher levels of modulation were 

observed for GM-CSF mainly within the CD34+CD38- compartment and IL-4 (for the latter 

GF only for the CD34+ CD38+ cells as it was not detected in the CD34+CD38- cells).   

However due to sample variability none of these differences was statistically significant. 

Overall, these results suggest that gene expression of GFs and cognate receptors is not 

significantly modulated by BCR-ABL kinase activity.  



Chapter 3  123 
 

3.2 Assessment of GFs and cognate receptors protein 
expression 

3.2.1 Assessment of levels of TNF-α and CSF2RB protein 
expression in CML and normal CD34+ cells 

Following demonstration of differential expression at mRNA levels between CML and 

normal SPC for CSF2RB, GM-CSF, IL-4 and TNF-α, the next logical step was to analyse if 

this translated into a differential level of expression at the protein level. Given their very 

low and inconsistent levels of mRNA expression, GM-CSF and IL-4 were not easily 

detectable and accurately measured. However for CSF2RB and TNF-α, it was possible to 

accurately measure the levels of protein expression within the CD34+ cells by flow 

cytometry analysis.  

Protein analysis was performed on cells following 48 hours in culture with SFM+PGF. 

This longer culture period was chosen to allow enough time for the differential gene 

expression levels detected at the earlier time point of 24 hours to translate into differential 

expression at the protein level. Given the longer culture period of these experiments, the 

protein expression analysis was performed on a pure CD34+ population gated by flow 

cytometry, but not on subpopulations. The CD38 marker tends to be expressed following 

in vitro culture making an assessment within subpopulations challenging and possibly 

unreliable. However by gating on a pure CD34+ population any contribution of MNC to 

the protein levels measured was effectively eliminated. 

Flow cytometry analysis confirmed higher levels of protein expression for both TNF-α and 

CSF2RB in CML CD34+ versus normal CD34+ cells.  In particular TNF-α protein 

expression levels were twice as high in CML versus normal CD34+ cells (p=0.038) (figure 

3-7 A), while CSF2RB protein expression levels were 1.5 times higher in CML CD34+ 

cells (p=0.032) (figure 3-7 B). 

Overall these results further confirm at the protein expression level the findings previously 

obtained at the gene expression level. 
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Figure 3-7 Protein expression levels of TNF-α and CSF2RB in CML and normal CD34+ cells 
CD34+ cells from CML (n=6) and normal (n=4) samples were cultured for 48 hours following 
recovery and protein expression was then measured by flow cytometry. Levels of 
expression were expressed as MFI of the antibody stained cells over MFI of cells stained 
with a matched isotype antibody (left panels). Representative flow plots are shown in the 
right panels. 
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3.2.2 Assessment of levels of TNF-α and CSF2RB protein 

expression in CML CD34+ cells upon BCR-ABL kinase 
inhibition 

Finally the effect of BCR-ABL kinase inhibition on the protein expression of TNF-α and 

CSF2RB by CML CD34+ cells was investigated. CML CD34+ cells were therefore cultured 

for 48 hours in the presence or absence of NL at 5μM and thereafter TNF-α and CSF2RB 

protein expression was measured. 

Consistent with the gene expression data TNF-α  protein expression following NL 

treatment was only reduced by about 20% with the difference not reaching statistical 

significance (p=0.33) (figure 3-8 A). However for CSF2RB a more pronounced reduction 

by about 40% in protein expression levels was observed with the difference bordering 

statistical significance (p=0.06) (figure 3-8 B). This latter result was not in keeping with 

the gene expression data, thus suggesting that the levels of CSF2RB might be regulated at 

a post-translational level following BCR-ABL kinase inhibition, for example as a result of 

an increased protein degradation. Alternatively the longer 48 hours exposure prior to the 

assessment of protein expression might have elicited an effect which was not detected by 

the gene expression analysis carried out at the earlier time point of 24 hours. 
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Figure 3-8 Protein expression levels of TNF-α and CSF2RB in CML CD34+ cells upon BCR-
ABL kinase inhibition  
Levels of expression were measured by flow cytometry analysis and expressed as MFI of 
the antibody stained cells over MFI of cells stained with a matched isotype antibody (n=4). 
The average expression levels in the NL treated cells were then plotted as percentage of the 
average expression levels in UT cells (left panels). Representative flow plots (right panels). 
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3.3 Summary and future directions 

The autocrine production of GFs by cancer cells has long been postulated as a mechanism 

beneficial to their survival and proliferation. In CML, however,  the known profile of GFs 

produced by the leukaemic SPC was limited to IL-3 and G-CSF270 and the exact role 

played by BCR-ABL kinase in the regulation of this event was never investigated. The 

purpose of the work presented in this chapter was to extend the current knowledge of the 

GFs expressed by CML SPC, determine if their level of expression was different from the 

levels detected within normal CD34+ cells and finally assess the effects of BCR-ABL 

kinase inhibition on this phenomenon. Starting from BCR-ABL positive cell lines it was 

found that several novel GFs are produced by CML cells, including CML SPC, in an 

autocrine fashion, such as GM-CSF, HGF, IL-4, TGF-β1 and TNF-α. When however the 

levels of expression in CML CD34+ and normal CD34+ cells were quantified using qRT-

PCR even more interestingly it appeared that many of these were also produced by normal 

CD34+ cells. Autocrine production of some of these GFs (namely HGF, TGF-β1 and TNF-

α) by normal CD34+ cells has already been reported and therefore these findings are 

consistent with published literature34. Also consistent with the same report, other GFs such 

as GM-CSF were barely detected in normal CD34+ compared to CML CD34+ cells. A 

trend towards increased expression of some GFs and their receptors (TNF-α, IL-4, CSF2RB 

and GM-CSF) was seen in CML CD34+ compared to normal CD34+ cells, however these 

differences were not statistically significant. Although the samples used for this analysis 

were highly enriched for CD34+ positive cells (between 85% to 100%), in order to exclude 

any contribution from contaminating MNC in the results observed, phenotypically purified 

sorted population of normal and leukaemic stem (CD34+ CD38-) and progenitor (CD34+ 

CD38+) cells were tested for the expression of the same GFs. This had also the advantage 

to measure the levels of autocrine production of these same GFs within different subsets of 

SPC, which might help to postulate their different biological relevance. Interestingly once 

the analysis was carried in purified sorted populations statistically significant differences 

were observed for CSF2RB and TNF-α with higher levels in CML compared to normal 

cells. Low levels of expression of GM-CSF and IL-4 were detected only in CML cells, 

with generally higher levels in the more mature CD34+ CD38+ compartment. It is worth 

noting that the autocrine expression levels of the more typical myeloid GFs, such as GM-

CSF and its receptor CSF2RB (the common GM-CSF and IL-3 β chain receptor), whose 

function is more relevant in proliferation and differentiation of myeloid precursors, were 

higher in CML CD34+ CD38+ cells relative to CML CD34+ CD38- cells. This observation 

is biologically consistent with previous published data showing that primitive quiescent 
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cells (likely to be enriched in CD34+ CD38- cells) do not produce autocrine IL-3 until they 

enter cell cycle342 and would suggest that the effects of some of these autocrine GFs, 

mainly those involved in myeloid cells maturation, might be specific to the survival and 

proliferation of more mature cells while having a limited role on more primitive stem cells. 

Conversely the higher levels of expression of CSF2RB in all CML compartments 

compared to normal might still allow CML LSC compared to normal HSC to be exposed 

to enhanced prosurvival signals through paracrine produced GFs.  Moreover the previously 

reported interaction of CSF2RB with BCR-ABL oncoprotein leading to its ligand 

independent activation274 and constitutive activation of JAK2  suggests that indeed 

CSF2RB might have an important role in relaying enhanced survival and proliferation 

signals in BCR-ABL positive cells. Because of its higher expression and putative 

interaction with BCR-ABL, CSF2RB might therefore be a legitimate therapeutic target, 

either on its own or through its downstream activated kinase, namely JAK2. 

A limitation of these investigations was the fact that confirmation at the protein level of the 

expression of the aforementioned GFs was not always possible, namely for IL-4 and GM-

CSF. This was likely secondary to their low expression levels in primary cells which made 

their detection difficult as also previously reported for normal CD34+ cells34. However, 

using flow cytometry analysis, protein expression was detected at least for CSF2RB and 

TNF-α. Reassuringly the protein expression data for both TNF-α  and CSF2RB were 

consistent with gene expression data showing higher levels of expression in CML CD34+ 

compared to normal CD34+ cells, which is  suggestive that the gene expression data might 

mirror  the protein expression levels in the other instances too. However it has to be noted 

that by using flow cytometry analysis for protein expression, the actual secretion of the 

GFs was not demonstrated which represents another limitation of the current data.  

One important question in regards to autocrine production of GFs by BCR-ABL positive 

cells which had never been addressed before is whether or not this phenomenon is 

dependent on BCR-ABL kinase activity. Using a 24 hour treatment course of high dose 

NL, which was shown to effectively inhibit BCR-ABL TK activity, it was possible to show 

that, at least at gene expression level, no significant modulation of the production of GFs 

highly expressed by CML SPC was present. However a high inter-patient variability was 

observed which might prevent a firm conclusion from being reached. Moreover as the 

expression levels were measured at a single time point, it is also possible that early or late 

changes might have been missed. Finally for those GFs in which protein levels were not 

measured, it is possible that any modulation at post-translational level would be missed. In 
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this regard it is worth noting that CSF2RB, whose gene expression levels were not 

modulated by BCR-ABL kinase inhibition, showed higher modulation when its protein 

expression was measured following NL treatment. This could be due to the longer NL 

exposure prior to protein expression analysis causing changes in CSF2RB expression 

which had been missed by PCR analysis at 24 hours; alternatively an increased 

turnover/degradation of the receptor following BCR-ABL kinase inhibition might have 

determined reduced protein levels without any detectable changes at gene expression level. 

On the other hand, TNF-α was not significantly modulated by BCR-ABL kinase 

expression at both gene and protein level, suggesting that its production is truly BCR-ABL 

kinase independent. In that respect it is interesting to note that TNF-α, unlike GM-CSF or 

IL-3, is one of the GFs also produced in an autocrine fashion by normal CD34+ cells. This 

would suggest that its autocrine production is not necessarily typical of a cancer cell, 

although at the same time its higher expression levels in BCR-ABL positive cells support 

the idea that the levels of expression are influenced by the leukaemic nature of the CML 

LSC, possibly through other domains of BCR-ABL or genetic/epigenetic changes within 

the CML LSC which are independent of BCR-ABL protein. It is worth noting that the lack 

of modulation of autocrine GF production upon BCR-ABL kinase inhibition has also been 

previously reported for G-CSF in BCR-ABL transduced normal CD34+ cells exposed to 

IM360. Similarly the role of other domains of the BCR-ABL oncoprotein, such as the SH2 

domain, in autocrine GF production by BCR-ABL positive cells has also been 

demonstrated361. These observations suggest that at least in some instances BCR-ABL TK 

is either not necessary or not sufficient to determine the aberrant autocrine GF production 

which has therefore a more complex regulation.   

Based on all the above it is possible to conclude that autocrine production of GFs is a more 

extensive phenomenon in CML than previously appreciated and that it is not always BCR-

ABL kinase dependent. On these grounds it is therefore worth investigating it in further 

detail trying to elucidate, at both molecular and functional levels, the effects that some of 

these GFs have on CML SPC survival, especially those expressed at higher levels by CML 

SPC relative to normal HSPC and not modulated by BCR-ABL kinase. In particular it 

would be interesting to assess if targeting GF production directly, or indirectly through 

their downstream signalling pathways, could have a therapeutic role in CML SPC 

eradication. Moreover by assessing the efficacy of combining therapies targeting the 

autocrine GF production/signalling with a TKI in eradicating CML SPC, the BCR-ABL 

kinase independence of autocrine GF production/signalling will also be evaluated  

indirectly. It is reasonable to expect that such combination treatments will yield 
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additive/synergistic effects only if autocrine GF production is a truly BCR-ABL kinase 

independent phenomenon. 

The role of GM-CSF in normal and leukaemic haemopoieis has already been reviewed in 

detail (section 1.1.2.1 and 1.3.6.1). Considering also the previously shown autocrine 

production of IL-3 by CML SPC and the observation of higher levels of expression of their 

common β chain receptor CSF2RB in CML SPC, it seemed reasonable to focus on the 

common pathway activated by these ligands/receptors, i.e. JAK2/STAT5. JAK2 could act 

as a central hub in relaying enhanced prosurvival signals from autocrine and paracrine GFs 

in CML SPC.  This indeed will be the subject of the following chapter of the thesis. It is 

worth noting that, following the recent clinical development of several small molecule 

inhibitors of the JAK2 kinase for the management of patients with BCR-ABL negative 

myeloproliferative disorders, such investigation in CML has become even more relevant as 

the rapid translation into clinical studies of any promising laboratory results could be 

possible. The role of TNF-α in normal haemopoiesis has also been extensively reviewed 

(section 1.1.2.3). However its role in CML biology is much less clear. Given autocrine 

TNF-α expression levels is higher in CML cells and not modulated via BCR-ABL kinase, 

its specific role in CML SPC survival and proliferation was also further investigated and 

will be presented in chapter 5 of the thesis. 
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4 Results (II) Investigation of the role of JAK2 in 
the survival and proliferation of CML CD34+ cells 

 

The central role of the intracellular TK JAK2 in normal haemopoiesis and cellular 

response to several erythropoietic GFs, such as EPO, IL-3 and GM-CSF, has been 

reviewed in detail in the Introduction (section 1.1.2.1.1). In normal haemopoietic cells 

JAK2 is activated following GFs binding to their cognate receptors and transduces their 

signals mainly through activation of its downstream target STAT5.  It therefore represents 

a central hub in relaying signals from several GFs as shown by the profound effects on 

haemopoieis leading to embryonic lethality of Jak2 KO mice. Although STAT5 represents 

the main transcription factor activated by JAK2, the milder phenotype in terms of 

myeloerythroid development of Stat5 KO mice compared to Jak2 KO mice suggests that 

JAK2 might activate additional signalling pathways besides STAT5 as also shown by 

recent evidence in other cancer cell models362. 

Constitutive activation of both JAK2 and STAT5 has long been known to be a feature of 

BCR-ABL positive cells227,226. Recent evidence suggests that STAT5 plays an essential  

role in BCR-ABL induced leukaemogenesis: using Stat5 KO mouse BM cells transduced 

with BCR-ABL retrovirus, two groups have now demonstrated that Stat5 is indispensable 

for the maintenance of BCR-ABL positive leukaemias in vivo, although slightly discordant 

results were obtained regarding the effects of Stat5 deletion on LSC eradication236,363. 

Furthermore the role of  STAT5 as a potential target for leukaemic SPC eradication has 

been supported by recent reports showing that high levels of STAT5 are protective for 

BCR-ABL positive cells upon treatment with TKI364 and that specific targeting of STAT5 

activity  increases eradication of BCR-ABL positive cells, including primary CML CD34+ 

cells and CML cells resistant to TKI365. Pharmacological interference with STAT5 

activation therefore represents an attractive therapeutic strategy in CML. STAT5, though, 

is a difficult drug target as it is a transcription factor lacking an enzymatic domain that can 

be targeted and therefore a more simple and logical approach to interfere with STAT5 

function would be to inhibit its activating kinase, JAK2. However while in normal 

haemopoiesis the role of JAK2 in activating STAT5 has been demonstrated, in BCR-ABL 

positive leukaemias this is a much more controversial area. The relative contribution of 

JAK2 and BCR-ABL to STAT5 phosphorylation was originally investigated in BCR-ABL 

positive cell lines by Ilaria and Van Etten. Although BCR-ABL was shown to 
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phosphorylate JAK2, it also appeared to directly activate STAT5. Moreover a dominant 

negative JAK2 mutant was unable to prevent the BCR-ABL induced STAT5 activation. 

This observation led to the conclusion that the role of JAK2 was dispensable for STAT5 

activation in BCR-ABL positive cells230. More recently Hantschel et al have investigated 

this issue further using Jak2 KO mouse BM cells transduced with BCR-ABL retrovirus and 

also concluded, based on in vitro colony forming assays and in vivo transplantation assays, 

that Jak2 is dispensable to BCR-ABL induced leukaemias and STAT5 activation239 and 

therefore should not be pursued as a therapeutic target in CML. 

On the other hand, results of the work presented in the former chapter and previous 

evidence show that primary CML SPC are capable of autocrine production of  GFs, such as 

GM-CSF and IL-3, which coupled with the normal responses that CML cells show to the 

same GFs would suggest that activation of STAT5 via JAK2 is also relevant to CML cells 

survival270. As shown in the previous chapter the common β chain receptor for IL-3 and 

GM-CSF, CSF2RB is also upregulated in CML SPC, suggesting that the GF induced 

JAK2/STAT5 pathway is active in CML cells and might indeed play a significant role in 

CML SPC survival, as these cells are likely to respond (possibly even at a higher level 

compared to normal HSPC) in vivo to the same cues produced from the BM stroma. In 

support of this, in vitro experiments have already shown that JAK2 inhibitors can abrogate 

exogenous GFs antiapoptotic signals in CML CD34+ cells, mainly by reducing the 

activation of STAT5260,262. Alongside its role in transducing GFs signals via STAT5, other 

roles for JAK2 in BCR-ABL positive leukaemias have also been suggested.  Xie et al 

originally showed that JAK2 is necessary for the leukaemogenic potential of BCR-ABL 

positive cell lines. Using clones stably transfected with kinase inactive JAK2 mutant they 

were able to show both reduced clonogenic potential and ability to form tumours in nude 

mice. Interestingly these effects were independent of STAT5 activity231, but involved 

downregulation of the transcription factor MYC240.  More recently the same group has 

shown in BCR-ABL positive cell lines that JAK2 forms a complex with BCR-ABL 

necessary for the stabilisation of BCR-ABL and its activity. By disrupting this complex 

using both JAK2 chemical inhibitors and RNA interference, BCR-ABL kinase stability and 

activity were dramatically reduced. Targeting JAK2 was effective even in cells harbouring 

BCR-ABL kinase mutations resistant to standard TKI therapy366,367. Neviani et al has also 

shown preliminary data demonstrating a prominent role of JAK2 in maintenance of CML 

SPC. Interestingly this appears to be secondary to interference of other signalling pathways 

alongside STAT5. In particular, JAK2 appears to play a prominent role in inactivating the 

intracellular phosphatase PP2A368. PP2A activity is reduced in CML SPC and its 
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reactivation through JAK2 inhibition can lead to the eradication of CML SPC. Moreover 

their data also show that JAK2 plays a significant role in the activation of the transcription 

factor β-catenin, which has also been implicated in the maintenance of LSC369. Finally, 

although in a different disease setting, a recent report has highlighted a role for JAK2 in 

the cell nucleus as a histone kinase and chromatin modifier, which is again independent 

from direct STAT5 activation362.  

The recent discoveries of JAK2 activating mutations in BCR-ABL negative 

myeloproliferative disorders370,371 has led to the rapid development of numerous JAK2 

pharmacological inhibitors, most of which have now reached clinical development372,373. 

As a result, a therapeutic strategy employing JAK2 inhibitors in CML patients could now 

easily be pursued.  It is therefore even more important that a better understanding of the 

role of JAK2 in BCR-ABL induced leukaemia is obtained before considering a 

combination of JAK2 and BCR-ABL inhibitors for the treatment of CML patients.  

The main aim of the work presented in this chapter was therefore to provide answers to the 

following key questions on the role of JAK2 in CML using primary CD34+ cells:  

1) Does JAK2 play a role for the survival and proliferation of primary CD34+ CML cells, 

in particular when BCR-ABL kinase is inactive (i.e. in the presence of TKI)? 

2) Is JAK2 activation in CML SPC only due to GFs signals? What is the relative 

contribution of autocrine versus exogenous GFs in the activation of JAK2? Is there a cell 

autonomous activation of JAK2 in CML SPC via autocrine GFs production or yet 

unknown signals independent of GFs?   

3) Which are the pathways controlled by JAK2 in CML SPC? Has JAK2 an effect at all on 

STAT5 in CML SPC and/or does it regulate alternative survival pathways?  

4) What are the effects of JAK2 inhibition on adult normal CD34+ cells given the known 

central role of this kinase to normal haemopoiesis?  

In a first set of experiments carried out using a non clinically developed JAK2 inhibitor 

TG, proof of principle of the effects of JAK2 inhibition alone and in combination with TKI 

in normal and CML CD34+ cells was sought. This included measuring the effects of such a 

strategy on cell survival, proliferation and STAT5 activation. These experiments were then 
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followed by similar confirmatory experiments using a clinically licensed JAK2 inhibitor 

INC now also known as Ruxolitinib. However a more in depth analysis of the role of 

autocrine and exogenous GFs signals behind JAK2/STAT5 activation and contribution to 

CML SPC survival was also performed with INC. Finally alternative novel pathways 

affected by JAK2 inhibition in CML CD34+ cells were investigated using an unbiased 

proteomic screen of cells treated with INC alone and in combination with TKI. 
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4.1 Investigation of the role of JAK2 in CML and normal 
CD34+ cells using TG 

4.1.1 IC50 of TG in CML and normal CD34+ cells 

TG is a pyrimidine-based inhibitor targeting JAK2 at nM concentrations (figure 4-1 A). Its 

IC50 for JAK2 in in vitro kinase assay has been recorded at 6nM374. It is worth noting that, 

as is often the case with small molecule inhibitors, TG was also able to inhibit other 

kinases, although at higher IC50 concentration (figure 4-1 B). The efficacy of TG in cell 

lines carrying activating JAK2 mutations has already been reported. In these model 

systems, TG was able to induce apoptosis and reduce proliferation at a concentration range 

between 100 and 200nM374. Notably IC50 in a cell culture system is often higher compared 

to the value recorded from in vitro kinase assays. This reflects the fact that a different 

readout is used in cell culture systems (apoptosis/viability) which is regulated at different 

levels and which requires higher inhibitor concentrations to be elicited.  

An IC50 for TG effects on viability in CML and normal CD34+ cells was measured by our 

collaborators at the Terry Fox Laboratory -British Columbia Cancer Agency in Vancouver, 

Canada- Dr Xiaoyan Jiang and Dr Min Chen. In CML CD34+ cells this was recorded at 

100nM while in normal CD34+ cells was 250nM (figure 4-1 C). This offered a therapeutic 

window to work with when trying to assess TG effects on CML and normal CD34+ cells. 

Based on these preliminary data TG was used at a concentration of 100nM for all 

following experiments. 
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Figure 4-1 Molecular structure of TG and its IC50 in in vitro kinase assays and primary CML 
and normal CD34+ cells 
Primary CML and normal CD34+ cells were cultured in SFM+HiGF (from which SCF had been 
removed) in the presence of increasing concentrations of TG. Viability was assessed by 
trypan blue dye exclusion method after 72 hours and expressed as % of UT (courtesy of Dr 
X. Jiang and M. Chen). 
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4.1.2 Assessment of the effects of TG+TKI combination on CML 

and normal CD34+ cells viability and apoptosis induction  

In order to assess the effects of combining JAK2 inhibition with BCR-ABL kinase 

inhibition, CML and normal CD34+ cells were treated with TG 100nM, DA 150nM, IM 

5μM, NL 5μM and their combination. The concentrations of TKI were chosen to obtain 

maximal BCR-ABL kinase inhibition while being within (DA and IM)329,375, or slightly 

above (NL)359, the peak plasma concentrations achievable in patients. It has to be noted 

that in these experiments, cells were cultured in SFM+HiGF from which SCF had been 

removed to exclude any effects of IM secondary to inhibition of the SCF receptor TK, c-

KIT. IM is known to inhibit c-KIT at nM concentration283. 

The percentage of viable cells following 72 hours in culture in the presence of each 

inhibitor was reduced by 50 to 60% compared to UT CML CD34+ cells. Moreover a 

further 50% reduction was observed in all combination arms compared to single agent TKI 

alone, with the difference reaching statistical significance for the IM versus IM+TG 

comparison (p=0.02) (figure 4-2 A left panel). When the actual number of viable cells was 

measured over 3 days, a significant 50% reduction in the expansion of CML CD34+ cells 

was observed at 72 hours when comparing all 3 TKI arms as a group with the 3 

combination arms (p<0.001) (figure 4-2 A right panel), but it should be noted that the 

number of cells following treatment was still higher than input cell number. Although a 

degree of reduction in viability was also seen in normal CD34+ cells, mainly following 

combination treatment, this was not of the same magnitude and not statistically significant 

(figure 4-2 B left panel). Similarly no obvious difference was observed in the expansion of 

normal CD34+ cells following treatment (figure 4-2 B right panel).  
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Figure 4-2 Effects of the combination of TG+TKI on CML and normal CD34+ cell viability and 
cell expansion 
Viability was assessed in 3 CML and normal CD34+ cell samples by trypan blue dye 
exclusion method at 72 hours following treatment (left panels). Cell expansion was recorded 
in the same samples by counting number of viable cells in each culture at 24, 48 and 72 
hours post treatment. Results for the 3 TKI and for the 3 combination arms were grouped 
together in the right hand panels. 

In order to confirm the above finding by an alternative method, annexin-V staining was 

used to measure apoptosis following 72 hours culture with each drug and their 

combination. Again all the combination arms produced significantly higher levels of 

apoptosis compared to single agent treatment in CML CD34+ cells (2-3 fold increase for 

each arm, p<0.05 for all comparisons), while no significant increase in apoptosis level was 

noted with TG in combination with TKI in normal CD34+ cells (figure 4-3 A and B). 

Given the consistent results obtained for the 3 TKI, their results were combined for all the 

subsequent analyses in order to assess a TKI drug class effect versus a TG+TKI effect.  

The phenotype of viable (annexin-V and 7AAD double negative) CML SPC following 72 

hours drug exposure was also assessed using CD34 and CD38 staining by flow cytometry. 

The percentage of cells within each population (CD34+ CD38+, CD34+ CD38low and 

CD34+ CD38-) was multiplied by the total viable cell count at the same time point to give 

the total number of viable cells for each population following culture. This was then 

compared to the input number of cells within each subpopulation (baseline). In the single 
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agent TG and TKI treatment arms, a reduction in the number of more mature CD34+ 

CD38+ progenitor cells below baseline number of cells was observed, but more primitive 

CD34+ CD38low cells (a population with greater short-term expansion potential) and CD34+ 

CD38- cells (a stem cell-enriched population) still expanded compared to baseline, 

although less than in the UT arm (2 and 3-fold fewer cells in cultures with TKIs or TG, 

respectively, as compared to untreated controls after 3 days in culture). This was consistent 

with reported observations that more primitive CML cells are less sensitive to TKI 

treatment than the more mature cells328,337. However, in the TKI+TG treatment arm, a 

further reduction in the numbers of the CD34+ CD38low cells compared to either of the 

single agents alone and, more strikingly, an absolute reduction in the number of CD34+ 

CD38- cells (>10-fold reduction) was noted (figure 4-3 C).   

Overall these data show that the combination of TG+TKI was more effective in eradicating 

CML CD34+ cells compared to single agent TKI treatment. Moreover phenotypic analysis 

of viable cells suggests that there was also a more potent effect on the most primitive stem 

cell compartment with the combination arm. Only mild toxic effects were seen on normal 

CD34+ cells in this short term liquid culture assay. 
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Figure 4-3 Apoptosis induction in CML and normal CD34+ cells and phenotype of remaining 
viable CML cells following exposure to TG+TKI  
Apoptosis was measured by annexin-V/7AAD staining in 3 CML and normal CD34+ cell 
samples cultured with either single agent drugs or their combination at 72 hours following 
treatment (A and B). CD34+ CML cells (n=3) were cultured for 72 hours in the presence of IM, 
NL, DA or TG alone, or a combination of TKI with TG. The phenotypes of viable (annexin-
V/7-AAD double negative) cells were then determined by flow cytometry based on their 
expression of CD34 and CD38. The total number of viable cells within each subpopulation 
was then calculated based on viable cell counts at 72 hours and compared to the starting 
number of cells within each subpopulation (baseline), represented by the red line (C). 
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4.1.3 Assessment of the effects of TG+TKI combination on CFC 

output in CML and normal CD34+ cells 

In order to measure the effects of combining TG with TKI on CFC, CML and normal 

CD34+ cells were cultured in the presence of TG and TKI for 6 days. At day 3 cells were 

washed in PBS, resuspended in fresh media and drugs were added again to the cultures. At 

both day 3 and  day 6 following drug washout, 3,000 cells were taken from each treatment 

arm and resuspended in 300µL of fresh medium and then added to 3mL of Methocult 

H4034 for CFC assay as described in 2.3.1.7. 

At day 3 both TKI and TG+TKI CML CD34+  treated cells showed a reduction in CFC 

output compared to CFC output from the same sample at day 0 (baseline); as expected the 

reduction in CFC became even bigger following a further 3 days of treatment to day 6. At 

both time points however the combination arm produced a more marked reduction in CFC 

output compared to TKI treated CML cells with a relative reduction of 35% in CFC output 

at day 3 and 84% at day 6 (p=0.03 at day 6) and almost complete elimination of CFC in 

absolute numbers by day 6 with the combination treatment (figure 4-4 A). Normal CD34+ 

cells treated with TKI predictably showed no change in CFC at day 3 and day 6 compared 

to baseline. The combination arm showed signs of early toxicity as it caused a relative 

reduction of  43% in CFC output in comparison to TKI treated cells at day 3 (p=0.012). 

However following another 3 days in culture no further reduction in CFC output was seen 

for  TG+TKI treated cells (relative CFC reduction compared to TKI of 32%, p=0.019) 

(figure 4-4 B).  

Overall these data show that the combination of TG+TKI was more effective than TKI 

treatment in eradicating CML CFC and the effect increased over time. While a degree of 

early toxicity was observed with the combination treatment on normal CFC at day 3, this 

did not increase over time thus suggesting that the carefully selected concentration of TG 

used in this study provides a therapeutic window for the combination arm. 
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Figure 4-4 CFC output of CML and normal CD34+ cells following treatment with TG+TKI 
3,000 cells from 2 CML and 3 normal CD34+ samples were plated in standard CFC assays 
after 3 (left) or 6 (right) days of prior incubation in suspension cultures with TKI or TG+TKI. 
Number of colonies recovered from each arm is plotted together with the number of 
colonies recovered at day 0 from 3,000 CD34+ cells (baseline). The number of colonies 
following 3 and 6 days in culture was also adjusted for the expansion in vitro of CD34+ cells 
in each arm relative to baseline. 
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4.1.4 Assessment of the effects of TG+TKI combination on STAT5 

phosphorylation levels in CML and normal CD34+ cells 

In order to clarify the mechanism behind the effects seen with the combination therapy, 

levels of p-STAT5 were measured by intracellular flow cytometry in CML CD34+ cells at 

various time points. P-STAT5 is a known surrogate marker for BCR-ABL kinase activity, 

although it is also activated by JAK2. 

Figure 4-5 panel A shows that p-STAT5 levels were significantly reduced by the 

combination treatment compared to either single agent alone, at both 24 and 72 hours 

following treatment (TKI versus TG+TKI comparison - p-STAT5 19% absolute reduction 

at 24 hours, p<0.001 and 26% absolute reduction at 72 hours, p<0.001). Overall these 

results show that the combination of TG+TKI enhances the inhibition of BCR-ABL and 

JAK2 kinase activity in CML SPC in a durable fashion. Levels of p-STAT5 were also 

measured in equivalent cultures of normal CD34+ cells. As expected normal CD34+ cells 

expressed lower levels of p-STAT5 when compared to CML CD34+ cells (35% reduction 

in p-STAT5 levels between normal and CML, p=0.09) (figure 4-5 B). Moreover 

phosphorylation levels were not significantly changed following treatment with TG or TKI 

in normal CD34+ cells at 24 hours (figure 4-5 C). 
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Figure 4-5 Comparison of p-STAT5 levels in CML and normal CD34+ cells following 
treatment with TG+TKI 
p-STAT5 (A) levels were measured by intracellular flow cytometry in 3 CML CD34+ samples 
after 24 (left panels) or 72 (right panels) hours of incubation in suspension cultures with TG, 
TKI or TG+TKI. p-STAT levels were measured in 3 CML and 4 normal CD34+ samples after 
overnight recovery in SFM+HiGF (B) and in normal CD34+ cells (n=3) following 24 hours of 
incubation in suspension cultures with TG, TKI or TG+TKI (C). Levels of p-STAT5 were 
calculated based on MFI of antibody stained samples relative to isotype stained samples. 
For changes following treatment, the average of UT values was normalised to 100% and 
levels in treatment arms expressed as % change from UT. 
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4.1.5 Assessment of the effects of TG+TKI combination on in vivo 

engraftment of CML CD34+ cells 

To assess the effects of combined TG plus IM treatment on in vivo leukaemogenic activity 

of primary CML SPC, transplantation assays of CD34+ CML cells into non obese 

diabetic/severe combined immunodeficient (NOD/SCID) interleukin 2 receptor γ-chain-

deficient (NSG) mice were performed by our collaborators in Vancouver. 6x106 CML 

CD34+ cells per treatment condition from three CML patients were exposed to 1µM IM, 

100nM TG, or their combination for 72 hours. Following the 3 day drug exposure in 

culture, all recovered cells were washed and injected intravenously into 8-10-week old, 

sublethally irradiated (350 cGy) NSG mice (three mice/per group for each patient sample). 

At 16 weeks, the levels of both human CD45+ and CD34+ leukaemic cells regenerated in 

the BM of transplanted NSG mice following IM+TG treatment of primary CD34+ CML 

cells in vitro was reduced compared to cells pretreated with IM or TG alone (figure 4-6 A 

and B). In particular CD34+ cells became almost undetectable in the BM of mice injected 

with cells pretreated in vitro with the TG plus IM combination (0.13% CD34+ cells only). 

Over 90% of the human cells obtained from mice transplanted with CML cells not exposed 

to drug were BCR-ABL positive by FISH (due to low cell numbers FISH was not possible 

in the other arms) (figure 4-6 C). However qRT-PCR at 4 weeks posttransplant confirmed 

that BCR-ABL transcript levels in FACS purified CD45+ BM cells were reduced 

significantly in cells pretreated with combination treatment compared to cells pretreated 

with either single agent alone (p<0.001 for both TKI versus TG+IM and TG versus 

TG+IM comparison).  

Overall these results show that IM+TG combination reduces the leukaemogenic activity of 

CML LSCs more effectively than IM or TG alone. 
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Figure 4-6 Engraftment of CML CD34+ cells in immunodeficient mice following TG+TKI 
treatment 
CML CD34+ cells (n=3) were cultured for 72 hours with IM, TG or IM+TG or left UT. Following 
this they were washed and injected intravenously into NSG mice. After 16 weeks, BM 
aspirates were obtained and the presence of human CD45+ (A) and CD34+ (B) cells 
measured by flow cytometry. Representative FISH pictures of human BCR-ABL positive 
cells present in the BM of mice transplanted with UT CD34+ CML cells (C). BCR-ABL 
transcript levels at 4 weeks in FACS purified CD45+ BM cells from mice transplanted with 
CML CD34+ cells either UT or pretreated with IM, TG or their combination. Transcript levels 
were expressed relative to GAPDH (housekeeping gene) transcript levels (D). Animal 
experiments were performed in the Animal Resource Centre of the British Columbia Cancer 
Agency Research Centre, using procedures approved by the Animal Care Committee of the 
University of British Columbia (Vancouver, Canada). Figures are courtesy of Dr Xiaoyan 
Jiang, Min Chen and Kyi Min Saw. 
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4.2 Investigation of the role of JAK2 in CML and normal 
CD34+ cells using the clinically developed JAK2 
inhibitor INC 

4.2.1 Assessment of IC50 for INC in CML CD34+ cells 

INC is a potent, selective and orally bioavailable JAK1/2 inhibitor. In kinase assays it was 

shown to inhibit the above kinases at low nM concentrations, while also having effects on 

other kinases at higher concentrations (figure 4-7 A and B). However when the activity of 

INC was measured in a more physiological setting using GFs stimulated whole blood 

assay, the IC50 was observed to be between 200 and 300nM for both JAK1 and JAK2, 

which is likely to be a more genuine reflection of the IC50 in cellular assays and in vivo.  In 

preclinical studies INC has shown efficacy in reducing survival and proliferation of JAK2 

mutant cell lines and primary MNC from patients with myeloproliferative disorders at 

concentrations ranging between 100 to 200nM. Moreover it has also shown efficacy in an 

in vivo model of myeloproliferative disorder376. On the basis of these promising results, 

INC underwent a rapid clinical development which has led to its licensing for the treatment 

of primary myelofibrosis following encouraging results from phase 3 clinical trials372,373. 

Clinical studies with this compound are currently ongoing in other myeloproliferative 

disorders and both haematological and solid tumours. 

ENZYME IC50 (nM)

JAK1 3.3

JAK2 2.8

TYK2 19

JAK3 428
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Figure 4-7 Molecular structure of INC (A) and its IC50 towards JAK1/2/3 and TYK2 in in vitro 
kinase assays (B) 

 
INC efficacy in CML CD34+ cells was assessed in preliminary experiments by measuring 

both viable cell numbers and induction of apoptosis at 72 hours as a readout. In a first set 

of experiments a wide range of concentrations from 1 to 1,000nM (which is the maximal 

concentration (Cmax) achieved in patient plasma377) was tested. A concentration of INC 

between 100 and 1,000nM appeared to reduce by about 50% the viable cell number (figure 
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4-8 A left panel). Moreover an increase in apoptosis induction was also seen starting from 

100nM (figure 4-8 A right panel). A further titration experiment was carried out to identify 

more precisely the IC50 for INC using a narrower range of concentrations from 200 to 

1000nM. Viable cell counts were reduced by 50% starting at 200nM with no further 

reduction with increasing concentrations. Again a degree of induction of apoptosis was 

also observed starting at 200nM which did not increase significantly with higher 

concentrations (figure 4-8 B). On the basis of these experiments a concentration of 200nM 

was chosen for all subsequent experiments, in line with the one used in published 

preclinical studies in JAK2 mutated cell lines. 

UT

A

B

 

Figure 4-8 Assessment of IC50 for INC in CML CD34+ cells 
CML CD34+ cells (n=3) were cultured in SFM+PGF in increasing concentrations of INC for 72 
hours at which point viable cell count was measured using trypan blue exclusion method (A 
and B left panels) and apoptosis measured by annexin-V/7AAD staining (A and B right 
panels). 
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4.2.2 Assessment of the effects of NL+INC combination in 

inducing apoptosis and on CFC output in CML CD34+ cells 

Having defined an effective concentration of INC in CML CD34+ cells, further 

experiments focused on the effects of combining INC with TKI to assess the efficacy of 

this combination treatment. It has to be noted that all experiments were carried out in 

SFM+PGF (unless otherwise stated) in order to mimic a more physiological condition for 

CML cells based on the work produced by Bhatia et al275. NL was chosen as a TKI based 

on its higher potency and specificity and was used at a concentration of 5μM to achieve 

maximal BCR-ABL kinase inhibition as previously explained (see introduction of chapter 

3). The effects of combining NL+INC on inducing apoptosis and on CFC output in CML 

CD34+ cells were first assessed.  

As shown in figure 4-9 panel A, the combination of NL+INC was able to induce higher 

levels of apoptosis compared to either single agent alone, at both 48 and 72 hours (p<0.05). 

After 72 hours culture in the presence of the same drug, 3,000 cells were recovered for 

CFC assay. The colonies were also characterised morphologically in burst forming unit – 

erythroid (BFU-E), colony forming unit – erythroid (CFU-E) and colony forming unit – 

granulocyte and macrophage (CFU-GM). The former two represent erythroid colonies 

deriving from more mature progenitors compared to CFU-GM. NL alone was able to 

reduce erythroid colonies (BFU-E and CFU-E), but not CFU-GM, compared to baseline, 

while the combination treatment caused a more marked reduction in erythroid colonies and 

also a non significant reduction in the number of CFU-GM compared to baseline. When 

the total CFC output was considered, a significant reduction with NL+INC compared to 

NL was observed (50% relative reduction, p=0.02) (figure 4-9 B). It was also noticeable 

that the morphology of the colonies changed following combination treatment with mainly 

small colonies of 100 to 200 cells left (figure 4-9 C).  

Overall these data show that the combination of NL and INC was more effective than NL 

treatment alone in eradicating CML CD34+ cells, including CFC, in short term culture 

assays. 
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Figure 4-9 Apoptosis induction and CFC output in CML CD34+ cells following treatment with 
NL+INC 
CML CD34+ cells (n=3) were cultured in SFM+PGF with NL, INC, their combination or left UT. 
At 48 and 72 hours apoptosis levels were measured by annexin-V/7AAD staining (A). At 72 
hours, 3,000 cells from each of the arms were plated in standard CFC. Number of colonies 
recovered in total and based on their morphology from each arm and at baseline is plotted 
in panel B. The number of colonies following 72 hours culture was adjusted for the 
expansion of CD34+ cells in vitro in each arm relative to baseline. Representative picture of 
the size and morphology of recovered CFC in each treatment arm is shown in panel C. 
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4.2.3 Assessment of the effects of NL+INC combination on both 

proliferating and non proliferating CML CD34+ cells 

In order to assess the effects of the NL+INC combination on both proliferative and 

quiescent CML CD34+ cells, CFSE staining was used. Using this technique, research 

carried out in our laboratory has previously shown that all TKI are unable to reduce the 

CFSEmax population which is enriched with most primitive, quiescent cells328-330. This 

observation has led to the conclusion that the main effect of TKI on CML SPC is 

antiproliferative rather than apoptotic and is currently considered to be one of the main 

reasons behind the persistence of CML stem cells even in patients who have achieved deep 

molecular responses to TKI. It was therefore interesting to see if the effects induced on 

bulk CD34+ cells and CFC by the NL+INC combination resulted in a reduction of the 

CFSEmax population. 

Figure 4-10 (panel A) shows that while NL and INC as single agents started to reduce the 

recovered cells in the second division (recovered cells in division 2 for both NL and INC 

versus UT, p<0.001), the combination arm had a statistically significant effect on cells 

recovered from the first division (recovered cells in division 1 for NL+INC versus UT,   

p<0.001). Moreover while NL even at high concentrations of 5μM had no effect on the 

undivided recovered cells, both INC and even more the NL+INC combination showed a 

bigger reduction of cells recovered in the undivided population gate, although the 

differences did not reach statistical significance. Moreover when the total recovery of 

CD34+ cells was measured a further decrease was observed with the combination 

treatment, which became significant when compared to UT (p<0.05) (figure 4-10 B). 

In order to measure the effects on the CFSEmax population using a different approach, 

CML CD34+ cells were co-stained with CFSE and annexin-V and the levels of apoptosis 

within the CFSEmax population measured at 72 hours. Interestingly the NL+INC 

combination produced higher levels of apoptosis within the CFSEmax population, with the 

difference being significant when compared to both UT and NL treated cells (respectively 

p<0.01 and p<0.05) (figure 4-10 C). 

Overall these data show that NL+INC together have a more profound effect on the 

quiescent stem cell compartment compared to either agent alone. 
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Figure 4-10 Effects of NL+INC on quiescent and proliferative CML CD34+ cells 
CML CD34+ cells (n=3) were stained with CFSE and then cultured for 72 hours with NL, INC, 
their combination or left UT. At 72 hours cells from each arm were co-stained with annexin-
V and flow cytometry analysis performed. Percentages of starting CD34+ cells recovered 
within each division (A) and in total (B) following treatment were calculated as explained in 
2.3.2.3. Percentage apoptosis within CFSEmax was measured by gating on the population 
double positive for maximal CFSE expression and annexin-V staining. 
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4.2.4 Assessment of the effects of INC alone and in combination 

with NL on normal CD34+ cells 

Having shown an increased efficacy for the NL+INC combination on CML CD34+ cells, 

the toxicity of this treatment to normal CD34+ cells was also assessed. It is important to 

note that in these experiments normal CD34+ cells had to be cultured in SFM+HiGF as 

they will quickly undergo apoptosis within 24 hours in vitro culture in low GFs 

concentrations, such as those present in SFM+PGF.  

Although an increased apoptosis of normal CD34+ cells at both 48 and 72 hours was seen 

with combination treatment when compared to either of the single agents alone (not 

significant at 48 hours and p<0.05 at 72 hours for the NL+INC versus NL comparison), the 

magnitude of this effect was reduced compared to that seen with the combination treatment 

on CML CD34+ cells, whereby NL+INC caused about 50% more apoptosis relative to UT 

and about 25% more apoptosis relative to NL (48 and 72 hours; figure 4-9). In normal 

CD34+ cells the corresponding figures were halved with NL+INC causing about 20% more 

apoptosis relative to UT and 12% more apoptosis relative to NL at both time points (figure 

4-11 A). CFC output was also measured following 3 days drug treatment and in this case 

no major difference was observed in the effects caused by NL+INC on normal and CML 

CD34+ cells. In fact NL+INC caused a 65% reduction relative to baseline (p=0.03) in total 

CFC output in normal CD34+ (figure 4-11 A right panel) versus a 73% reduction in total 

CFC output in CML CD34+ cells (figure 4-9). CFSE staining was then used to assess the 

effects of the NL+INC combination on both proliferating and quiescent normal CD34+ 

cells to define further the toxic effects of this treatment.  As expected compared to UT, 

both NL and INC as single agents had an antiproliferative effect as demonstrated by the 

increased recovery of CD34+ cells in the early divisions, including the CFSEmax population 

(figure 4-11 B). Moreover an overall increase in the total CD34+ cells recovered was also 

observed with NL or INC, which is likely due to reduced differentiation of CD34+ cells 

because of their antiproliferative effects (figure 4-11 C left panel). NL+INC had an even 

more marked antiproliferative effect on the cells within the early divisions causing an 

increase in CD34+ cells recovered in CFSEmax gate and division 1. Overall CD34+ cells 

recovery was only slightly reduced compared to UT after NL+INC treatment (figure 4-11 

C left panel). Finally levels of apoptosis within the CFSEmax population were not 

significantly increased with NL+INC combination (figure 4-11 C right panel). 
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 Overall these data show that NL+INC combination causes a degree of toxicity on more 

mature normal progenitors as shown by the increased apoptosis in bulk CD34+ cells, 

reduced CFC output and reduced total CD34+ cells recovery. However this effect is not of 

the same magnitude as the one seen in CML CD34+ cells. Moreover NL+INC combination 

has mainly an antiproliferative effect on the most primitive and quiescent normal stem cell 

pool (which is represented by the CFSEmax population). These effects are different from 

those observed in CML CD34+ cells where a reduction in the quiescent population was 

seen with combination treatment, together with induction of apoptosis within the CFSEmax.  

These latter observations would suggest that this combination might preferentially target 

the most primitive CML LSCs, but spare the corresponding normal counterparts. 
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Figure 4-11 Effects of NL+INC combination on normal CD34+ cells 
Normal CD34+ cells (n=3) were cultured with NL, INC, their combination or left UT in 
SFM+HiGF. Apoptosis was measured at 48 and 72 hours by annexin-V staining (A left and 
central panel). At 72 hours, 3,000 cells from each treatment arm were plated in standard CFC 
assays (A right panel). The number of colonies following 72 hours culture was also adjusted 
for the expansion of CD34+ cells in vitro in each arm relative to baseline. CFSE stained cells 
(n=3) were analysed by flow cytometry after 72 hours culture in the same conditions. 
Percentages of starting CD34+ cells recovered within each division (B) and in total (C left 
panel) following treatment were calculated as explained in 2.3.2.3. Percentage apoptosis 
within CFSEmax was also measured (C right panel) as described in figure 4-10. 
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4.2.5 Assessment of the effects of NL+INC combination on STAT5 

and JAK2 phosphorylation levels in CML CD34+ cells 

In order to clarify the mechanism behind the increased efficacy of the NL+INC,  changes 

in phosphorylation of STAT5 and JAK2 in CML CD34+ cells following treatment with 

either agent alone or their combination were measured using intracellular flow cytometry.  

NL reduced levels of p-STAT5 and p-JAK2 thus suggesting that they are both under 

control of BCR-ABL kinase. However the addition of INC caused a further 30%  and 40% 

relative reduction respectively in p-STAT5 and p-JAK2 levels compared to NL (p<0.05  

for both p-STAT5 and p-JAK2) (figure 4-12). 

Overall these data show that the combination of NL+INC has more profound inhibitory 

effects on the signalling through JAK2 and STAT5 than either agent alone. 

A B

 
Figure 4-12 p-STAT5 and p-JAK2 levels in CML CD34+ cells following treatment with NL+INC 
p-STAT5 (A) and p-JAK2 (B) levels were measured by intracellular flow cytometry in 3 CML 
CD34+ samples after 24 hours of incubation in suspension cultures with NL, INC and 
NL+INC. Levels of phosphorylation of both proteins were calculated based on MFI of 
antibody stained samples relative to isotype stained samples. The average of UT values was 
normalised to 100% and changes following treatment expressed as % change from UT. 
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4.2.6 Assessment of the effects of NL+INC combination on CML 

CD34+ cells in the absence of supplemented GFs 

All the experiments described above were performed as previously mentioned in 

SFM+PGF. This culture medium contains, amongst others, two key GFs for myeloid cells, 

GM-CSF and IL-6, which are able to activate respectively JAK2 and JAK1, the two main 

kinases inhibited by INC41. It was therefore logical to ask if the additive effects seen when 

combining NL with INC were secondary to INC reducing survival signals emanating from 

the supplemented GFs. To ensure that any effects due to JAK2 inhibition would not be 

missed, a concentration of INC of 1,000nM (which is the Cmax achievable in patients) was 

used to achieve complete JAK2 inhibition. Moreover given the higher background levels 

of apoptosis induced over time by the absence of GFs, measurement of cell death and of 

signalling changes was carried out at earlier time points.  

Figure 4-13 shows that both apoptosis and CFC output were not significantly increased by 

combination treatment compared to NL in the absence of GFs (panel A and B). Similarly 

p-STAT5 levels at various time points were not further reduced by NL+INC compared to 

NL alone in the absence of GFs (panel C).  

Overall these data suggest that activation of JAK2 by GFs is necessary to observe the 

additive effects previously reported. In the absence of GFs, JAK2 signals were either 

absent or under the direct control of BCR-ABL, hence completely abrogated by the high 

doses of NL used in this experimental setting. Moreover this would also support a model 

where the previously  reported autocrine production of the GFs, such as IL-3 and GM-CSF 

known to activate JAK2, is not sufficient to activate this kinase in a cell autonomous 

fashion and particularly when  BCR-ABL kinase is fully inhibited. 
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Figure 4-13 Effects of NL+INC combination on CML CD34+ cells in the absence of 
supplemented GFs 
CML CD34+ cells (n=3) were cultured with NL, INC, their combination or left UT in the 
absence of any supplemented GFs. At 24 hours apoptosis was measured by annexin-V 
staining (A). Following 72 hours in culture 3,000 cells from each treatment arm were plated 
in standard CFC assays following drug washout. Number of colonies recovered based on 
their morphology from each arm and at baseline is plotted in panel B. The number of 
colonies following 72 hours culture was also adjusted for the expansion of CD34+ cells in 
vitro in each arm relative to baseline. CML CD34+ cells (n=2) were cultured with NL, INC, 
their combination or left UT in the absence of any supplemented GFs. P-STAT5 levels were 
measured by intracellular flow cytometry at 1, 4, 8 and 24 hours for each treatment arm. 
Levels of phosphorylation of STAT5 were calculated as previously described (C). 
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4.2.7 Investigation of the mechanisms underlying the additive 

effects seen when combining NL with INC 

A recent report from Hantschel et al has put in doubt the role of JAK2 in BCR-ABL 

induced leukaemias. Particularly it has suggested that in these forms of leukaemias, 

STAT5 is under the direct control of BCR-ABL and therefore JAK2 becomes dispensable. 

It has also suggested that the additive effects reported by other groups when combining 

JAK2 inhibitors with TKI are secondary to off-target effects of the JAK2 inhibitor, mainly 

inhibition of BCR-ABL itself. Therefore in order to clarify the mechanism behind the 

effects seen in cell biology assays on CML CD34+ cells when combining NL with INC, 

further experiments were carried out using qRT-PCR to measure STAT5 target gene 

expression changes following treatment. Moreover this was complemented by an unbiased 

approach using a proteomic screen of cells treated with NL, INC or their combination. In 

this set of experiments a higher concentration of INC at 1,000nM was used to ensure that 

full inhibition of JAK2 was achieved and changes in the genome and proteome could be 

detected. 

4.2.7.1 Investigation of the role of STAT5 in the effects seen when 
combining NL with INC in CML CD34+ cells  

In order to define the best time point at which to perform gene expression analysis a time 

course analysis of changes in p-STAT5 levels was performed in CML CD34+ cells treated 

with NL, INC or their combination. These experiments further confirmed that NL+INC 

rapidly and durably inhibit the activity of this transcription factor to a higher degree than 

either single agent alone by 8 hours and this effect was persistent up to 24 hours (figure 4-

14 A). Moreover no significant apoptosis was induced by the combination treatment at 

early time points (1, 4 and 8 hours), although a trend towards higher apoptosis started to be 

present by 24 hours (figure 4-14 B). Based on this it was decided that 8 hours was the best 

time point for any further signalling analysis. In all the experiments so far described, a high 

concentration of NL at 5μM was used. It is therefore unlikely that any putative off-target 

effects of JAK2 inhibitor would contribute to further inhibition of BCR-ABL kinase in this 

setting. However to exclude this possibility p-CrKL levels were also measured. Western 

blot analysis of 2 CD34+ CML samples confirmed full inhibition of BCR-ABL kinase 

activity upon treatment with NL, which was not enhanced by the combination treatment. 

Moreover no significant changes in p-CrKL levels were observed when cells where treated 

with INC as a single agent (figure 4-14 C).  
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Figure 4-14 Time course analysis of the effects of NL+INC on p-STAT5 levels and apoptosis 
induction in CML CD34+ cells and effects of NL+INC combination on p-CrKL levels in CML 
CD34+ cells  
CML CD34+ cells (n=3) were cultured with NL, INC, their combination or left UT in SFM+PGF. 
P-STAT5 levels were measured by intracellular flow cytometry at 1, 4, 8 and 24 hours for 
each treatment arm. Levels of phosphorylation of STAT5 were calculated as previously 
described (A). Apoptosis was measured by annexin-V staining at the same time points (B). 
P-CrKL levels were measured by western blot in CML CD34+ cells (n=2) treated for 8 hours 
with NL, INC at 1,000nM or their combination. Tubulin was used as a loading control. 

In order to look further into the effects caused by the deeper inhibition of p-STAT5 levels 

by the NL+INC combination, gene expression changes for some known key targets of 

STAT5 were assessed at 8 hours following treatment. As shown in figure 4-15, compared 

to NL and INC single agent treatment,  the combination treatment caused downregulation 

of genes known to be positively regulated by STAT5, such as the antiapoptotic gene BCL-

XL and those involved in inducing cell cycle and proliferation, such as cyclin D1, D2, D3 
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or MYC. Conversely genes normally negatively regulated by STAT5 were upregulated, 

such as the AKT pathway negative regulator PTEN and the CKI CDKN1B/p27. For other 

known targets of STAT5, such as MCL1 and p53, no changes were observed. It was also 

noticeable that TNF-α  and the IL-4 receptor alpha (IL-4Rα) were downregulated by 

NL+INC. TNF-α  and IL-4 were amongst 2 of the GFs shown to be upregulated in CML 

SPC in chapter 3. While STAT6 (which is downstream of JAK1 also inhibited by INC) has 

been involved in IL-4Rα expression, little is known as to the role of STATs in regulating 

TNF-α expression. 

Finally two other genes modulated by the NL+INC combination were noticeable: BCL6 

and ID1. BCL6 has recently been reported as a key transcription factor for the maintenance 

of CML LSC378. Interestingly in this report the authors link its expression to both the 

FOXO3a transcription factor and to STAT5. In particular FOXO3a overexpression appears 

to upregulate BCL6 expression. STAT5 instead acts as a negative regulator of its 

expression, whilst STAT5 deletion causes Bcl6 upregulation. The gene expression analysis 

shown here therefore appears consistent with such a model, as the deeper reduction in p-

STAT5 levels seen following NL+INC correlates with an increased expression of BCL6. 

Moreover it would also suggest this as a potential resistance mechanism to combined 

TKI+JAK2 inhibitor therapy in CML SPC. 

ID1 has also been shown to be controlled by STAT5379. It is an inhibitor of basic helix-

loop-helix transcription factors which play key roles in HSC self-renewal and 

differentiation. In particular, ID1 appears to promote self-renewal of HSC380,381. More 

recently two reports have also suggested its potential role in cancer as ID1 has been shown 

to both promote a myeloproliferative disorder in vivo382 and to maintain colon cancer 

initiating cells383. Its significant downregulation by NL+INC treatment would therefore 

suggest that it might play a role also in CML SPC survival.  

Overall these data show that NL+INC causes a more rapid and deeper inhibition of p-

STAT5 activity and this is not secondary to off-target effects of JAK2 inhibitors on BCR-

ABL kinase activity. The correlative changes in gene expression of known STAT5 target 

genes further support a more profound downregulation of STAT5 activity following 

combination treatment as a key mechanism behind the observed additive effects seen. 

Moreover it also identifies new potential transcription factors involved in either resistance 

(BCL6) of CML CD34+ cells to this therapeutic strategy or to the overall survival (ID1) of 

CML SPC. 
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Figure 4-15 Gene expression changes in STAT5 target genes following NL+INC combination 
treatment 
Candidate genes mRNA expression was measured in 2 CML samples following 8 hours 
culture in SFM+PGF with NL, INC or their combination. Differences in gene expression 
levels following treatment were calculated using the 2-∆∆Ct method after normalisation within 
each sample of candidate genes expression levels against the expression levels of two 
housekeeping genes (GAPDH and TBP). RQ of candidate genes mRNA expression following 
NL and NL+INC treatment was then plotted as log2 of the 2-∆∆Ct values (with the INC cells 
having a value of 0 in the graph being the calibrator). 
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4.2.7.2 Investigation of novel mechanisms for the additive effects seen when 

combining NL with INC using an unbiased proteomic screen 

It is often seen in cellular systems that combining two drugs not particularly effective on 

their own can result in increased cell kill, because of combined effects which could not be 

appreciated when the drugs were used as single agents. Trying to decipher these effects can 

help to characterise better the mechanism of action of a drug combination. Moreover it also 

provides an opportunity to unravel novel pathways and targets which otherwise would 

have gone unnoticed and could themselves represent potential therapeutic targets. The only 

way however to achieve this is to use an unbiased approach ideally looking at genome and 

proteome changes caused by the combination of two drugs. An example of the validity of 

such an approach has recently been demonstrated in the CML field by a study published by 

Winter et al, which has characterised the synergistic interaction between two multikinase 

inhibitors, danusertib and BOS, in BCR-ABL transformed cells carrying resistant 

mutations in the kinase domain. By using a global proteomic and genomic approach they 

were able to show that reduced MYC activity was the key point of convergence in the 

synergistic effects seen which had not been appreciated when either inhibitor had been 

characterised on its own384.  Following a similar logic it was felt that by interrogating the 

proteome for any changes caused by the NL+INC combination, it would be possible to 

identify novel mechanisms behind the combinatory effects seen. 

Two CML CD34+ cell samples were therefore treated for 8 hours with NL, INC or their 

combination and quantitative proteomic changes analysed using mass spectrometry (MS) 

following isobaric tags for relative and absolute quantitation (iTRAQ) labelling to allow 

for peptide quantitation (work carried out in collaboration with Dr Emma Carrick and 

Professor Tony Whetton, University of Manchester, UK). A simplified diagram of the 

different steps involved in quantitative proteomics using mass spectrometry analysis is 

presented in figure 4-16. 
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Figure 4-16 Workflow of quantitative proteomic analysis using MS analysis 
Proteins were extracted from the 4 different treatment arms at 8 hours in 2 CML CD34+ 
samples. Following digestion into peptides and labelling with different isobaric stable 
isotope tags (iTRAQ), the digests are mixed and first separated by liquid chromatography 
(LC) into different fractions. Thereafter these fractions are fragmented and ionised in the MS 
and detected as mass to charge ratio (m/z) peptide fragment ions which can then be 
mapped to the protein to which they belong by searching against public databases. 
However in addition to the normal fragment ions, the reporter regions of the iTRAQ labels 
also dissociate in the MS to produce ion signals which provide quantitative information 
regarding the relative amount of the peptide in the samples. 

A total of 12467 peptides were identified which could be matched with confidence to a 

total of 2686 proteins. Although the original plan was to perform a phosphopeptide 

enrichment to interrogate also the phosphoproteomic changes (in fact the 8 hour time point 

had been chosen to capture mainly protein phosphorylation changes), this was not possible 

because of lack of material (there was only 16μg of protein available per sample while 

normally 50 to 100μg are necessary for phosphopeptide enrichment). Analysis of the data 

set produced showed that the combination treatment was able to create a more profound 

perturbation in the proteome compared to either single agent alone, as more specific 

protein changes were produced by NL+INC compared to either single agent alone (31 in 

NL+INC versus 4 in NL arm and 11 in INC arm) (figure 4-17 A left panel). When the 

common differences in the protein changes between the 2 patient samples were analysed, 

29 common changes were identified in the INC versus combination comparison and 8 in 

the NL versus combination comparison (figure 4-17 A right panel). Given the increased 

apoptosis seen when combining NL+INC in vitro  and the fact TKI are standard treatment 
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for CML, it was felt that the common changes happening in the combination versus NL 

comparison were more interesting to follow. In fact while TKI are excellent debulking 

agents in CML, they show little activity against CML LSCs. Therefore focusing on the 

changes caused by the combination in comparison to single agent TKI alone provided the 

opportunity to identify novel and relevant survival mechanisms of CML LSC which are 

not affected by TKI treatment on its own. These could help to explain the increased 

efficacy of the combination and also identify novel CML LSC specific therapeutic targets. 

Amongst these 8 proteins there were some interesting candidates, such as the drug 

transporter ABCC4 and APO-E, both being more deeply downregulated by the NL+INC 

combination (figure 4-17 B left panel). APO-E however was particularly interesting as it 

had been shown to be upregulated in CML quiescent stem cells compared to normal 

quiescent stem cells in a previous gene array carried out in our laboratory385 (figure 4-17 B 

right panel).  
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Figure 4-17 Protein changes detected using a quantitative proteomic screen in CML CD34+ 
cells treated with NL, INC or NL+INC 
Venn diagram showing overall protein changes in different treatment arms compared to UT 
(A, left panel) and common changes between the two patient samples in the combination 
versus single arm treatment comparison (A, right panel).  Heatmap showing the 8 proteins 
changed in both CML CD34+ samples following NL+INC treatment when compared to NL 
treated cells from the same samples (B). Levels of APO-E expression in 5 CML CD34+ G0 
samples versus 2 Normal CD34+ G0 samples from a published gene array carried out in our 
laboratory (C)385.  The analysis of the proteomic data set was kindly performed by Dr Lisa 
Hopcroft, University of Glasgow, UK.  

APO-E is a constituent of plasma lipoproteins responsible for cholesterol transport and 

metabolism, which is mainly produced by the liver, although production by other tissues 

has also been reported.  It appears to play a protective role in response to oxidative stress 
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as its deficiency is associated with chronic oxidative stress mainly in the brain tissues386. 

APO-E has been reported to promote cell proliferation in serum deprivation conditions, 

thus suggesting a role as a prosurvival cue387. More recently its role in survival and 

proliferation of cancer cells has also been reported388,389.  The exact mechanisms behind 

these effects are still unclear. One possibility that has been proposed is that endogenously 

produced APO-E might be able to bind members of the LDL receptor family and activate 

proliferative signalling pathways, such as the PI3 kinase/AKT pathway388.  It was therefore 

decided that APO-E was the first candidate to be followed from the proteomic screen. 

In order to validate that APO-E levels were indeed higher in CML SPC relative to their 

normal counterparts, APO-E mRNA was measured by qRT-PCR in CD34+ cells from 

CML and normal samples. APO-E was expressed at slightly higher levels in CML CD34+ 

cells although the difference was not significant (p=0.11) (figure 4-18 A left panel). 

However when changes in both gene expression and protein levels of APO-E were 

measured following 8 hours treatment with NL, INC or their combination, no differences 

were observed in the protein levels (figure 4-18 B) and even an increase in its mRNA 

expression was recorded following both NL and NL+INC treatment (figure 4-18 A right 

panel). 

Overall these data show the validity of an unbiased approach in trying to elucidate the 

mechanisms underlying the effects seen when combining two drugs together and as a way 

to potentially identify novel targets. Although APO-E was not validated following the 

proteomic screen, its high levels of expression in CML cells are potentially interesting and 

worthy of further investigation. Unfortunately because of lack of time it was not possible 

to do this and to validate the other candidates and so this will be part of future planned 

work. Moreover in order to clarify the mechanisms of the combined effects of NL+INC in 

more detail, it has also been planned to perform a phosphoproteomic screen using a larger 

number of cells to obtain enough material. This work is currently underway. 
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Figure 4-18 Validation of APO-E changes following NL, INC or their combination treatment 
mRNA expression of APO-E was measured in CML and normal CD34+ samples (n=5) 
following recovery and overnight culture in SFM+PGF. Levels of expression were calculated 
using the 2-∆Ct method after normalisation of APO-E mRNA expression levels against the 
expression levels of a housekeeping gene (GAPDH and TBP) within each sample (panel A 
left). APO-E mRNA expression was measured in 2 CML CD34+ samples following 8 hours 
culture with NL, INC or their combination. Differences in APO-E expression levels following 
treatment were calculated using the 2-∆∆Ct method after normalisation within each sample of 
its mRNA expression levels against the expression levels of a housekeeping gene (GAPDH 
and TBP). Fold change was then plotted relative to UT on a linear scale (with the UT sample 
having a value of 1 in the graph) (panel A right). APO-E levels were measured by western 
blot in CML CD34+ cells (n=2) treated for 8 hours with NL, INC or their combination. Tubulin 
was used as a loading control. Changes in expression levels were quantified using 
densitometry and expressed as % change relative to UT samples (panel B right). 
Representative blot from one of the 2 samples (panel B left). 
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4.3 Summary and future directions 

The results of the experiments presented in this chapter using two different JAK2 

inhibitors support the conclusion that JAK2 plays a role in survival of CML SPC. These 

conclusions are supported by the enhanced apoptosis, reduced CFC output and reduced 

viability consistently seen in CML CD34+ cells when treated with JAK2 inhibitors. The 

effects were always mild when the JAK2 inhibitors were used as single agents, but became 

much more dramatic when combined with TKI.  The role of JAK2 appears therefore to be 

prominent especially in the setting of TKI therapy as demonstrated by the fact that both TG 

and INC in combination with TKI (at concentrations fully inhibiting BCR-ABL kinase) 

determined a consistent reduction in viability, colony output and proliferation of CML 

CD34+ cells, including a trend towards reducing the quiescent CFSEmax population (INC, 

figure 4-10) and the CD34+ CD38- population (TG, figure 4-3) compared to TKI treatment 

alone. This would suggest that CML CD34+ cells become more reliant on JAK2 kinase 

when BCR-ABL is fully inhibited and that a combined treatment approach with JAK2 

inhibitors and TKI could produce synthetic lethality in CML SPC.  These findings are 

consistent with those recently published by other research groups mainly using non 

clinically developed JAK2 inhibitors260,390,391. Despite all this accumulating evidence on 

the role of JAK2 in CML, it should however be noted that its role in BCR-ABL positive 

cells survival has been questioned by a recent report by Hantschel et al which shows that 

BCR-ABL is still able to transform murine BM cells in which Jak2 expression has been 

deleted, both in vitro and in vivo239. There are however several possible explanations for 

the discrepancy in the results observed.  It is indeed possible that JAK2’s role is 

dispensable when BCR-ABL is fully active, but that it becomes highly important when 

BCR-ABL kinase is inhibited. In a truly synthetic lethality model, the role of a therapeutic 

target can only be evaluated in the context of a combined inhibition of two or multiple 

targets. Therefore the fact that JAK2 is relevant in the context of TKI does not necessarily 

contradict its reported dispensable role when BCR-ABL is fully active.  It should be noted 

that sometimes it is necessary to stress a system in order to see a phenotype, for example 

by combined inhibition of BCR-ABL and JAK2, or secondary and tertiary transplants of 

BM carrying gene deletions, none of which were performed in the report from Hantschel et 

al. Other technical differences might also help in explaining the differences observed 

between the Hantschel’s report and the results observed here, such as the use of different 

models (respectively BCR-ABL transduced mouse cells versus primary CP CML cells, 

with the former likely expressing higher levels of BCR-ABL compared to the latter) and 

the culture conditions (respectively without and with exogenous GFs). In this respect it is 
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interesting to note that the actual debate on the role of JAK2 in CML is reminiscent of the 

old debate on the role of IL-3 in BCR-ABL induced leukaemias in vivo, which in any case 

is also biologically linked (given that IL-3 does signal via JAK2), where completely 

opposite results, both perfectly explainable, were obtained based on different experimental 

conditions (see section 1.3.6.2). Considering these points will help to reconcile the 

discrepancy between the results reported in this chapter and those reported by Hantschel et 

al. 

To assess the mechanisms behind the activation of JAK2 in CML SPC and test the 

hypothesis that autocrine IL-3 and GM-CSF production is a relevant and cell autonomous 

mechanism supporting JAK2 activation and CML CD34+ cell survival, experiments in the 

absence of exogenous GFs were performed. These showed that in this setting JAK2 

inhibition had only very mild effects on survival of CD34+ cells and did not synergise with 

TKI therapy and support the conclusion that autocrine production of GFs (i.e. GM-CSF 

and IL-3) by CML CD34+ cells is not sufficient to activate JAK2 in a cell autonomous and 

BCR-ABL kinase independent fashion. In this respect it is worth noting that also in the 

original report showing autocrine IL-3 production by primary CML CD34+ cells, when the 

cells were plated in bulk cultures with neutralising anti-IL-3 antibodies only a relatively 

low reduction of proliferation was observed and only when high concentrations of 

neutralising antibody were used270. There are several possible explanations for this result: 

1) Both our data and published literature270 show that the level of autocrine production of  

IL-3 and GM-CSF is low and often inconsistent between patient samples which might 

preclude the observation of a truly autocrine effect in in vitro cultures. 

2) If autocrine GFs production is a feature of only few selected cells, it is possible that in 

bulk cultures a truly autocrine effect cannot be observed because of high local 

concentrations of GFs around individual autocrine cells. 

3) The high concentration of NL used caused already marked effects on cell death and 

signalling in the absence of GFs which would have precluded observing any 

additive/synergistic effects of JAK2 inhibitors in the setting of TKI therapy. A titration of 

NL in this experimental setting would have probably been appropriate and is planned in 

future work. 
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4) Both inhibitors used are also capable of targeting other members of the JAK family so it 

is theoretically possible that some of the effects seen were also secondary to inhibition of 

other JAK family members activated in the presence of exogenous GFs used in our 

standard culture media. For example IL-6, which is normally present in the GFs mix used 

in the standard media, is known to activate JAK1 together with JAK2376. In the absence of 

GFs the only JAK possibly active would have been JAK2 via autocrine IL-3 and GM-CSF 

and might not have been enough to replicate the same effects seen when  other GFs and 

possibly other JAK proteins were active.  

Overall the lack of effects in the absence of supplemented GFs are consistent with other 

reports using CML CD34+ cells suggesting that the main role of JAK2, independent of 

BCR-ABL, is to relay survival signals by exogenous GFs260,390,391. This observation helps 

also to resolve, to an extent, the discrepancy in the results observed with the findings from 

Hantschel et al as all their in vitro transformation assays were performed in the absence of 

supplemented GFs.  

Based on the above findings, it is no surprise that the observed mechanism of action for 

JAK2 inhibitors in combination with TKI in the presence of exogenous GFs is a more 

profound inhibition of JAK2/STAT5 activity, as shown by the correlative changes in both 

p-JAK2 and p-STAT5 levels with combined treatment. Moreover the correlative gene 

expression changes of STAT5 target genes further support this conclusion, while also 

providing some mechanistic explanations for the effects observed with combination 

treatment, as proliferation inducing genes such as cyclin D1, D2 and D3 and MYC and the 

antiapoptotic gene BCL-XL were all downregulated, while negative regulators of cell cycle 

and proliferative signals, such as CDKN1B/p27 and PTEN were upregulated. In this respect 

it is worth noting that in the Hantschel’s report off-target inhibition of BCR-ABL kinase 

was observed by several JAK2 inhibitors resulting in reduced phosphorylation of STAT5 

which was considered the likely explanation for the JAK2 inhibitor efficacy in killing 

BCR-ABL positive cells.  However in the same report it was noted that such off-target 

effects were only seen when TG was used at higher than 500nM and INC at higher than 

20μM, which are both well above the concentrations used in the experiments described in 

this chapter. Moreover the high TKI concentration used in the experiments described in 

this chapter achieved maximal BCR-ABL kinase inhibition, which makes it highly unlikely 

that further inhibition of the same kinase activity could be caused by off-target effects of 

the JAK2 inhibitors, as shown by changes in p-CrKL levels following NL, INC and their 

combination treatment (figure 4-14 C). Finally the close correlation observed between the 
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phosphorylation changes in JAK2 and STAT5 (figure 4-12), further supports JAK2 

inhibition as being responsible for the further reduction in STAT5 activity.  Therefore it 

can be excluded that the effects on STAT5 activity seen in the reported experiments were 

all secondary to BCR-ABL kinase inhibition, but they were rather secondary to JAK2 

inhibition. 

It should be noted however that some of the genes whose expression was modulated by 

INC are not specifically or uniquely under the control of STAT5 while for others, such as 

TNF-α and IL-4Rα, the evidence of a control by STAT5 is lacking. This would suggest that 

other pathways besides STAT5 can be inhibited by JAK2 itself, which is consistent with 

the discrepancy seen in the phenotype of Jak2 and Stat5 KO mouse models. Recently the 

nuclear localisation of JAK2 has been shown in both JAK2 positive cell lines and BCR-

ABL positive K562 cells and was associated with a STAT5 independent effect of JAK2 on 

chromatin structure and gene expression through direct phosphorylation of histone 3362. 

Also literature published in the CML field in the past and more recently has suggested 

possible STAT5 independent effects for JAK2, including  activation of MYC240, 

phosphorylation of BCR-ABL on its key residue tyrosine 177367 (which is central for its 

transforming capacity through its ability to activate both the RAS/MAP kinase and the PI3 

kinase pathways210-212) and activation of β-catenin369. 

Another important point to note is that both TG and INC are able to inhibit other JAK 

kinases (JAK1 and JAK3) and therefore some of the effects seen could be secondary to 

inhibition of these other kinases. In this respect, it is worth noting that other reports on the 

efficacy of  JAK2 inhibitors in BCR-ABL positive cells have showed inhibition of STAT3 

activity (also a downstream target of both JAK1 and JAK3) as  a possible mechanism of 

action for these agents390,391. In order to assess more precisely the relative contribution of 

STAT5 and of other JAK kinases in the effects seen on CML CD34+ cells following JAK2 

inhibitor treatment, inhibition of  STAT5 and JAK2 expression in CML CD34+ cells using 

RNA interference techniques could be employed. Although this approach was explored, 

adequate knockdown was never achieved and therefore results were not presented in this 

chapter. Trying to optimise this approach is part of the future work plans. Nevertheless the 

consistent results obtained with two different JAK2 inhibitors (who had different inhibitory 

effects on other JAK kinases) in terms of reduction of p-STAT5 levels, together with the 

correlative changes in p-JAK2 levels and gene expression are highly suggestive that 

inhibition of the JAK2/STAT5 axis plays a central role in the effects observed. In summary 

based on the presented experimental data, it can be concluded that enhanced inhibition of 
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STAT5 activity by JAK2 inhibitor and TKI combination can be considered the major  

mechanism behind the effects seen, although interference of the JAK2+TKI combination 

with other yet poorly characterised signalling pathways is also possible (figure 4-19). 
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Figure 4-19 JAK2 role in CML SPC 
JAK2 can be activated both directly by BCR-ABL kinase and via autocrine and paracrine 
GFs. Upon activation it relays its signals through STAT5 and possibly other as yet unknown 
signalling pathways. Inhibiting both BCR-ABL kinase and JAK2 kinase activity in CML SPC 
has an additive effect through enhanced downregulation of STAT5 signalling and also 
possibly through interference of other pathways.  

In an attempt to explore any novel mechanisms underlying the observed efficacy of the 

NL+INC, an unbiased proteomic screen was used. The value of such an approach, 

particularly in being able to identify novel mechanisms of action and targets of combined 

drug therapies, has already been shown384. Unfortunately due to the lack of material, the 

original plan to perform a phosphoproteomic screen had to be abandoned and only a 

proteomic screen was performed. However its preliminary analysis is in support of the 

combination treatment causing changes in the proteome not brought about by either single 

agent alone with some potentially interesting candidates highlighted. An unbiased screen 

could therefore shed more light on the mechanisms of action for the TKI+JAK2 inhibitors 

combination treatment. Future work (already in part underway) includes therefore 
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completing the validation of the proteomic screen performed (which could not be 

completed due to lack of time) and extending it further to include the phosphoproteome.  

An interesting aspect to discuss in more detail is whether or not the data from the presented 

work support an effect of the TKI+JAK2 inhibitor combination on the most primitive CML 

LSCs. Various aspects of the data point towards the combination treatment being able also 

to eradicate the most primitive CML LSC. Both the phenotypic analysis of the viable cells 

following TG+TKI treatment and the CFSE experiments with INC suggest an enhanced 

effect of the combination treatment on CD34+ CD38- cells and CFSEmax cells, both of 

which are known to be enriched for primitive LSC. Moreover the in vivo data produced by 

our collaborators in Vancouver are also supportive of an enhanced effect of the 

combination treatment on most primitive LSCs, as mouse engraftment with CD34+ cells 

following combination treatment was consistently reduced. In this respect the marked 

inhibition of ID1 gene expression (a gene known to be involved in the maintenance of 

HSCs and also other CSCs380,381,383) is also supportive of an effect on CML LSC survival 

by the combination treatment. Conversely it has to be said that none of the in vitro tests 

performed is a true readout for LSC activity and the gold standard to assess an effect on 

LSC remains the in vivo work. Moreover the effects on BCL6 gene expression suggest that 

the combination treatment might also upregulate genes involved in LSC maintenance. 

BCL6 was recently shown to be central to CML LSC resistance to TKI and to have a 

critical role in self-renewal signals of CML LSC378. It is therefore possible that the net 

effect of all these signalling changes is what will eventually determine whether or not the 

combination treatment has an effect on the most primitive LSCs. Although suggestive of 

an effect at LSC level, on the basis of the data presented, it is not possible to conclusively 

say that JAK2 inhibitors in combination with TKI eradicate the most primitive LSCs and 

further work is necessary to prove this starting from more in vivo assays which are 

currently being performed by our collaborator in USA, Professor Ravi Bhatia (City of 

Hope, Duarte, California, USA).  

The toxicity to normal haemopoiesis of a therapeutic strategy targeting JAK2 is an obvious 

concern based on the essential role of JAK2 for erythropoiesis as suggested by the 

embryonic lethal phenotype of the Jak2 KO mouse. Moreover a recent report by Traer et al 

has highlighted these concerns further and suggested that targeting JAK2 in CML might 

not be possible following experimental work showing toxicity to normal haemopoiesis 

with TG used at concentrations of 250nM390.  The presented experimental work shows 

however that, despite a degree of toxicity on normal CD34+ cells, a strategy combining 
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JAK2 inhibitors and TKI could preferentially eradicate CML compared to normal CD34+ 

cells when a carefully selected concentration of the JAK2 inhibitor is chosen (for example 

100nM of TG was used in the presented experiments). A speculative explanation for this 

would be that the higher levels of CSF2RB in CML compared to normal CD34+ cells (see 

3.1.3 and 3.2.1) would render these cells more sensitive to JAK2 inhibition. The above 

conclusions are obviously based only on in vitro experiments and will require further 

confirmation by in vivo studies which are currently being performed by our collaborators 

using a combination of NL+INC in a CML transgenic mouse model. With regards to the 

safety of JAK2 inhibitors in the adult, it is also reassuring that INC has been used as a 

single agent for the treatment of patients with myelofibrosis, with no severe BM toxicity, 

which points towards the possibility that JAK2 inhibition in an adult in vivo might be less 

toxic than in vitro or during embryonic development as seen in the Jak2 KO mice. 

Inhibition using a potent pharmacological inhibitor could in fact be less detrimental to 

normal haemopoiesis than gene deletion while it is also often seen that the effects of 

targeting a gene in adult stem cells are different to the effects of targeting the same gene 

during embryonic development. However caution has to be exercised in drawing any 

conclusions based on this clinical observation as the potential toxicity to normal 

haemopoiesis of a combined TKI+INC treatment in CML patients might be different.  

In conclusion, given the effects seen with the combination treatment on CML CD34+ cells, 

including CFSEmax cells and the CD34+ CD38- population, it is plausible that a 

combination treatment with TKI and already clinically developed JAK2 inhibitors in CML 

patients might help in reducing and potentially eradicating minimal residual disease. 

However given the fact that a definite effect on the most primitive LSC is still lacking and 

the potential concerns regarding its toxicity, it might not be advisable at this stage to 

support an upfront treatment of newly diagnosed CP CML patients with this combination 

treatment or in patients with persistent disease. Conversely, its use in patients where the 

clinical need is higher can be supported at this stage, such as CP CML patients who show 

resistance to TKI in the absence of BCR-ABL dependent resistance mechanisms and even 

in patients with advanced phase disease. Although its efficacy in this latter setting was not 

formally tested in the experiments presented, it has been reported by other groups367 and 

could again be postulated above all in the absence of BCR-ABL kinase mutations or gene 

amplification. 



176 
 

5 Results (III) Investigation of the role of autocrine 
TNF-α production in the survival and 
proliferation of CML CD34+ cells 

 

TNF-α has complex and varied effects in normal haemopoiesis which have already been 

discussed in detail in the Introduction (see section 1.1.2.3). Its role appears to be highly 

dependent on the cell context, its concentration and the presence of other GFs 

involved135,136 with both proliferative and inhibitory effects being reported. TNF-α is able 

to stimulate the proliferation and expansion of the more primitive human haemopoietic 

cells (CD34+ CD38-) in vitro, particularly when the latter are cultured in the presence of 

high concentrations of GFs, such as IL-3 and GM-CSF 135,137-139.  These proliferative 

effects are however also associated with a more rapid terminal differentiation of HSPC 

towards the monocytic lineage leading to inhibition of granulocytic differentiation and 

growth suppression of mature granulocytes. As a result the effects of TNF-α on more 

mature and committed granulocytic precursors are rather inhibitory than stimulatory140,141. 

The effects of TNF-α  on haemopoiesis are both direct and indirect as TNF-α can also 

stimulate HSPC and other cells from the microenvironment to produce GFs involved in 

HSPC proliferation and differentiation (such as GM-CSF) 145,146 or  to upregulate GF 

receptor expression147 (i.e. CSF2RB).  

Similarly the role played by TNF-α in cancer biology is also very complex.  Originally 

discovered as a cytotoxic to cancer cells392 (hence its name), TNF-α soon proved to be 

more than that. Small amounts of TNF-α are constitutively produced by many malignant 

cells, in contrast to their normal counterparts. Moreover excess TNF-α is often produced 

by other immune cells as a result of the inflammatory reactions surrounding tumour cells. 

Regardless of its source TNF-α can contribute to tumourigenesis, both indirectly by 

creating a tumour-supportive inflammatory microenvironment and through direct effects 

on malignant cells393. For example, in colitis associated cancer, TNF-α, produced by 

inflammatory cells, plays a clear supportive role mainly through enhanced expression of 

several inflammatory GFs, which in turn activate survival and proliferative signals in the 

cancer cells394,395. On the other hand autocrine TNF-α production has been shown to 

support lymphoma cell proliferation directly396.  In both circumstances a central role is 

played by the TNF-α mediated activation of NFκB397, a central transcription factor for both 

prosurvival and proinflammatory signals, which is often constitutively active in TNF-α 
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producing cancers.  Inhibition of the NFκB pathway, through either anti-TNFα treatment 

or genetic targeting, is coupled with induction of apoptosis in several cancers associated 

with high TNF-α activity397,398.  One of the key components of NFκB survival signals is its 

ability to activate several antiapoptotic proteins, such as BCL-XL, survivin and the IAP 

family, which includes IAP1, IAP2 and XIAP399.   IAPs (particularly IAP1 and IAP2) have 

been shown to be activated by NFκB and in turn activate NFκB through a positive 

feedback loop. Moreover they are able to block caspase-8 and any proapoptotic signal 

relayed by TNF-α so that in their presence the net output of TNF-α signalling is skewed 

towards promoting survival and proliferation of its target cells158,161. Therefore in the 

context of a cancer cell which has constitutively active NFκB and high levels of expression 

of IAPs, autocrine and paracrine TNF-α signalling becomes a potent prosurvival and 

proliferative cue400. Interference with this mechanism by using inhibitors of IAPs (so 

called SMAC mimetics) is able to redirect TNF-α signalling towards induction of 

apoptosis. Such an approach has been shown to be successful in solid cancers and is 

particularly effective in those producing autocrine TNF-α as it turns its signals into cell 

death promoting signals401-404. Again from the above evidence it appears that TNF-α 

signalling in cancer acts as a double edged sword depending on the cell context.  

Haemopoietic cancers, including BCR-ABL positive leukaemias, are capable of autocrine 

TNF-α production405. Moreover they also show high levels of expression of IAP proteins406 

and a therapeutic strategy targeting IAPs is currently being investigated in some of these 

diseases407. It is therefore intriguing to speculate that autocrine production of TNF-α by 

haemopoietic cancer cells could indeed act as a prosurvival signal too.  However 

investigation of TNF-α role in these leukaemias, including CML, is lacking. The first 

reports published several years ago suggested a role for TNF-α in inducing CML cell kill. 

It has to be noted however that in those reports most of the experiments were carried out 

on unselected MNC fraction from CML patients and often using very high concentrations 

up to 100ng/mL405,408. More recently Zhang et al reported higher levels of TNF-α in the 

BM of BCR-ABL induced transgenic mice compared to wild type controls. In functional 

assays in the same report it was also shown that stem cells from BCR-ABL induced mice 

displayed a growth advantage compared to normal control stem cells when cultured in the 

presence of physiological TNF-α concentrations276. The experiments shown in 3.1.3 

demonstrate that both primary CML CD34+ CD38+ and CD34+ CD38- cells express higher 

levels of TNF-α mRNA compared to their normal counterparts. Higher levels of expression 

in CML CD34+ cells compared to normal CD34+ cells were also confirmed at the protein 

expression level. Finally autocrine production of TNF-α by CML SPC appeared not to be 
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significantly modulated by BCR-ABL kinase activity. Based on these observations and the 

evidence coming from the literature regarding TNF-α’s role in other cancer systems, it was 

decided to test the hypothesis that autocrine TNF-α could act as a survival signal in CML 

SPC. Further support of this hypothesis was provided by a recent report proving that such a 

mechanism is active in BCR-ABL negative myeloproliferative disorders409. In this chapter 

therefore the aim was to answer the following research questions: 

1) Does autocrine TNF-α act as a prosurvival signal for CML SPC? 

2) Which mechanisms and pathways are modulated by autocrine TNF-α to determine its 

effects on CML SPC survival and proliferation?  

3) Assuming autocrine TNF-α is acting as a prosurvival signal in CML SPC, can a 

therapeutic strategy targeting TNF-α be used against CML SPC? What effects would this 

have against normal HSPC? Could it be combined with TKI therapy? 

In order to answer these research questions, a small molecule inhibitor of TNF-α was used 

alone and in combination with exogenously supplied TNF-α used to rescue the phenotype 

and further clarify its exact role in CML SPC biology. Protein and gene expression assays 

were used to investigate the signalling pathways and the mechanisms for the effects seen 

following TNF-α inhibition and stimulation. Toxicity of TNF-α inhibition on normal SPC 

was assessed and the effects of combining TNF-α inhibition with TKI therapy in CML 

SPC cells were evaluated. Finally confirmatory experiments using a TNF-α blocking 

antibody were carried out. 
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5.1 Investigation of the role of autocrine TNF-α in CML 
and normal CD34+ cells using a small molecule TNF-α 
inhibitor 

5.1.1 Assessment of IC50 for TNF-α inh in BCR-ABL positive cell 
lines and primary CML CD34+ cells 

As a first step before proceeding with further investigations into the role of TNF-α in CML 

SPC survival, dose finding experiments for the small molecule TNF-α inh to be used were 

performed.  This compound (originally described in a report in Science in 2005410) is a 

cell-permeable indolyl-chromenone compound that rapidly inactivates TNF-α by non-

covalently binding to the TNF-α trimer and promoting subunit dissociation and preventing 

binding to its receptor  (figure 5-1 A). As a result it would be able to inhibit soluble or 

membrane bound or receptor bound TNF-α. Being a small molecule it would also be 

capable of blocking any intracellular TNF-α. For these reasons it was selected over other 

now established anti-TNF-α agents, such as the blocking antibodies (Infliximab) and  the  

decoy receptors (Etanercept)411.  By virtue of their nature, neither of these compounds 

would necessarily be able to bind to receptor bound or intracellular TNF-α. Moreover a 

small molecule inhibitor would represent a more attractive option to follow on clinically 

compared to blocking antibodies and decoy receptors which both require parenteral 

administration. 

A first set of experiments was carried out in the BCR-ABL positive cell line KCL22 as this 

cell line had been shown to produce autocrine TNF-α (see figure 3-1) (figure 5-1 B). Based 

on reduction in viable cell numbers and induction of apoptosis in KCL22, a range of 

concentration of the TNF-α inh between 2 and 4μM was chosen for further testing in 

primary CML CD34+ cells. As shown in figure 5-1 C, 3μM of TNF-α inh reduced CD34+ 

cells viable cell number just below 50% relative to UT with evidence of induction of 

apoptosis. Based on these results a concentration of 3μM was used in all subsequent 

experiments in primary CML CD34+ cells. 
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Figure 5-1 Molecular structure of TNF-α inh and identification of IC50 for TNF-α inh in the 
BCR-ABL positive cell line KCL22 and CML CD34+ cells 
TNF-α inh (A) was tested at increasing concentrations on KCL22 grown in RPMI++ for effects 
on viability and apoptosis following 48 hours of incubation. Experiments were performed in 
triplicate (B). CML CD34+ cells (n=2) were cultured in SFM+PGF with increasing 
concentrations of TNF-α inh and viability and apoptosis were measured at 48 hours (C). 
Viability was measured by counting cells using trypan blue dye exclusion method. 
Apoptosis was measured by annexin-V/7AAD staining. 
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5.1.2 Assessment of the effects of TNF-α inhibition and 

stimulation in inducing apoptosis and proliferation of CML 
CD34+ cells 

In order to assess the role of TNF-α in survival and proliferation, CML CD34+ cells were 

cultured in the presence of TNF-α inh, with or without, exogenously added TNF-α. 

Different concentrations of TNF-α were used in these rescue experiments with very similar 

results obtained with both 0.1 and 1ng/mL. Therefore for ease of presentation only the 

results obtained with TNF-α 1ng/mL will be shown. In a first set of experiments apoptosis 

was measured at different time points. TNF-α inh induced 10-15% apoptosis above UT 

cells and this could be rescued by exogenous TNF-α (figure 5-2 A). In order to assess the 

effects of TNF-α inh on both proliferative and quiescent CML CD34+cells, CFSE staining 

was used. Again TNF-α inh reduced overall proliferation of CML CD34+ cells relative to 

UT cells. Moreover it also caused cell death as shown by the significant reduction in 

number of CD34+ cells recovered within each division starting from division 1 (p<0.001 

for divisions 1, 2 and 3) and an overall significant 43% reduction in the total CD34+ 

recovered cells compared to UT (p<0.05). Although a reduction in the recovered cells 

within the CFSEmax population was observed with TNF-α inh, this was not statistically 

significant. However a definite effect on the survival of this population was present as a 

significant induction of apoptosis within the CFSEmax population was observed (p<0.05). 

Moreover all these effects were partially rescued by exogenous TNF-α (figure 5-2 B and 

C).  

Overall these data show that autocrine TNF-α supports CML SPC survival and 

proliferation with some effects seen also on the quiescent stem cell compartment. 
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Figure 5-2 Effects of autocrine TNF-α in CML CD34+ cells survival and proliferation 
CML CD34+ cells (n=5) were cultured in SFM+PGF with TNF-α inh with or without TNF-α or 
left UT. Apoptosis was measured by annexin-V/7AAD staining at 48 and 72 hours (A). CML 
CD34+ cells (n=3) were CFSE stained and then cultured for 72 hours with TNF-α inh with or 
without TNF-α or left UT. At 72 hours cells from each arm were co-stained with annexin-V 
and flow cytometry analysis performed. A representative plot is shown in B, right panel. 
Percentages of starting CD34+ cells recovered within each division (B) and in total (C, left 
panel) following treatment were calculated as explained in 2.3.2.3. Percentage apoptosis 
within CFSEmax was measured by gating on the population double positive for maximal 
CFSE expression and annexin-V staining (C, right panel). 
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5.1.3 Assessment of the effects of TNF-α inhibition and 

stimulation in inducing apoptosis and on proliferation of 
normal CD34+ cells 

Although normal CD34+ CD38+ and CD34+ CD38- cells produce less autocrine TNF-α 

than their CML counterparts (see figure 3-4), they are still able to produce small amounts. 

In order to assess the role of autocrine TNF-α in normal HSPC biology, similar 

experiments to the one performed on CML CD34+ were performed on normal CD34+ cells 

using the same concentrations of both TNF-α inh and TNF-α. In contrast to CML SPC, 

normal HSPC did not undergo apoptosis when exposed to TNF-α inh (figure 5-3 A). 

Moreover no significant changes in the normal CD34+ cell proliferation and cells 

recovered within each division and in total were observed following TNF-α inh treatment, 

except for a slight reduction in recovered cells in the later divisions (figure 5-3 B). Adding 

exogenous TNF-α did not change any of these results. Taken together these results show 

that autocrine TNF-α does not play a significant role in normal CD34+ cell survival and 

proliferation. 

B

A

 
Figure 5-3 Effects of autocrine TNF-α in normal CD34+ cells survival and proliferation 
Normal CD34+ cells (n=3) were cultured in SFM+HiGF with TNF-α inh with or without TNF-α 
or left UT. Apoptosis was measured by annexin-V/7AAD staining at 48 and 72 hours (A). 
Normal CD34+ cells (n=3) were CFSE stained and then cultured for 72 hours with TNF-α inh 
with or without TNF-α or left UT before flow cytometry analysis. Percentage of starting 
CD34+ cells recovered within each division (left panel) and in total (right panel) following 
treatment was calculated as explained in 2.3.2.3 (B). 
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5.1.4 Investigation of the mechanisms underlying the survival and 

proliferative effects of autocrine TNF-α in CML CD34+ cells 

5.1.4.1 Analysis of baseline expression of key antiapoptotic genes in CML 
CD34+ cells 

Evidence from the literature, discussed in the chapter introduction, suggests that for TNF-α 

to be able to relay prosurvival rather than apoptotic signals, NFκB dependent survival 

signals need to be active and in particular antiapoptotic proteins such as BCL-XL, survivin 

and the IAP family need to be expressed399. Because of the presence of the BCR-ABL 

oncogene, CML SPC have a constitutive level of activation of NFκB252,253. Therefore to 

confirm that the key antiapoptotic genes involved in NFκB signalling were expressed in 

CML CD34+ cells, gene expression analysis was carried out in CML CD34+ cells and 

compared to their normal counterparts. If indeed the expression of these key antiapoptotic 

genes was confirmed to be high in CML CD34+ cells, it would provide support to the idea 

that autocrine TNF-α can act as a prosurvival cue in this specific cell context. As shown in 

figure 5-4, all the antiapoptotic genes tested (except XIAP) had roughly the same level of 

expression if not higher (BCL-XL) than the housekeeping gene used thus confirming their 

expression. Moreover for IAP2, BCL-XL and MCL1 (another key antiapoptotic gene 

although not a direct NFκB target) expression levels were higher in CML than normal, 

with the difference approaching statistical significance for BCL-XL and MCL1 (p=0.09) 

(A). For the other genes tested (IAP1, XIAP and survivin) no difference was detected at the 

gene expression level between normal and CML CD34+ cells (B). However it should be 

noted that normal CD34+ cells were grown in SFM+HiGF which might stimulate 

expression of some of these genes. Moreover a difference at the protein level cannot be 

excluded based on these data. Taken together these data show that several key 

antiapoptotic genes are expressed in CML CD34+ cells with some also differentially 

expressed compared to the normal counterparts. Based on this result, it is possible to 

speculate that autocrine TNF-α would relay survival signals in this cell context thus 

providing a possible explanation for the biological effects seen on CML CD34+ cells 

following TNF-α inh treatment and rescue with exogenous TNF-α . 
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Figure 5-4 Quantitative mRNA expression of key antiapoptotic genes in CML and normal 
CD34+ cells 
mRNA expression for each gene was measured in CML (n=5) and normal (n=3) CD34+ 
samples following recovery and overnight culture in SFM+PGF and SFM+HiGF respectively. 
Levels of expression were calculated using the 2-∆Ct method after normalisation of each 
gene mRNA expression levels against the expression levels of a housekeeping gene (TBP) 
within each sample. Panel A shows genes which appear to be differentially expressed 
between CML and normal CD34+ cells, while panel B shows the ones for which no obvious 
difference in gene expression levels was detected. 
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5.1.4.2 Analysis of the effects of TNF-α inhibition and stimulation on NFκB 

pathway in CML CD34+ cells 

TNF-α can transmit its proliferative signals through various pathways, including MAP 

kinase, activator protein-1 (AP-1) transcription factor and NFκB activation134. In order to 

investigate further the mechanisms behind the effects seen following TNF-α inhibition and 

stimulation in CML CD34+ cells, the NFκB pathway was analysed in more detail by both 

protein and gene expression assays. The level of phosphorylation of NFκB on serine 536, a 

known activation site following TNF-α stimulation152, was measured by intracellular flow 

cytometry and western blot analysis as a readout for activation of the pathway. Moreover 

the levels of phosphorylation on serine 32 and 36 of IκBα were also measured by the same 

techniques as further confirmation of the effects seen on the pathway. IκBα is a negative 

regulator of NFκB as its binding prevents nuclear translocation and activation of NFκB. 

However upon phosphorylation on the above mentioned serines (by the IKK complex 

following TNF-α stimulation), IκBα is tagged for proteasomal degradation which leads to 

the release of NFκB and its nuclear translocation and activation. Therefore in simple terms, 

high levels of phosphorylation of  both NFκB and IκBα indicate an active pathway, while 

reduction in both proteins’ phosphorylation levels reflects pathway inhibition150.  

TNF-α inh consistently reduced the level of phosphorylation of both NFκB and IκBα. 

However the magnitude of the effect was variable and overall limited to a non significant 

20 to 25% reduction, suggesting that the NFκB pathway was kept active to a certain level 

even when autocrine TNF-α was inhibited, possibly via BCR-ABL.  Exogenous TNF-α 

significantly increased the levels of p-NFκB (p<0.001) and p-IκBα, thus confirming that 

TNF-α in the context of CML CD34+ cells causes activation of this pathway (figure 5-5 

A). The effects of TNF-α inh were also assessed with regards to the levels of expression of 

NFκB pathway target genes, such as BCL-XL, IAPs, survivin and XIAP. As shown in figure 

5-5 B, TNF-α inh consistently reduced IAP2 levels, while TNF-α increased them. For all 

other genes either no significant changes were observed or there was a high degree of 

patient sample variability, which precluded drawing any conclusion on the effects of the 

treatment on these gene expression levels. Finally to exclude that the effects seen with 

TNF-α inh were secondary to off-target inhibition of BCR-ABL kinase activity, the levels 

of two downstream targets of BCR-ABL, p-CrKL and p-STAT5, were measured following 

treatment with TNF-α inh. Neither p-CrKL nor p-STAT5 levels were reduced by TNF-α 

inh while NL, as expected, led to inhibition of both (figure 5-5 C).   
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Overall these data support the role of NFκB in TNF-α signalling in CML CD34+ cells 

which helps to explain the effects seen in the cell biology assays. However given that 

NFκB is only partially inhibited by TNF-α inh, it is possible that other pathways, which 

have not been investigated, might also play a role in the effects seen. The reason behind the 

partial effects seen on NFκB activation with TNF-α inh are likely due to residual activation 

of this pathway by BCR-ABL which was not inhibited by the TNF-α inh.  Although 

consistent changes at gene expression levels were seen only for IAP2 amongst all NFκB 

target genes tested, it cannot be excluded that TNF-α inh might have regulated expression 

of these proteins at the post-translational level. Moreover amongst all NFκB target genes, 

IAP2 appears to play a key role in redirecting TNF-α signals towards a prosurvival and 

proliferative outcome, because of its ability to further activate NFκB via a positive 

feedback loop158,161. In fact the clear activation of NFκB following TNF-α rescue 

experiments further supports the role of NFκB pathway in the signalling relayed by TNF-α 

in CML CD34+ cells. 

  



Chapter 5  188 
 

C
e
ll 
co
u
n
t

p‐NFĸB (Ser536)

ISOTYPE

UT

TNF‐α inh

TNF‐α inh+
TNF‐α

A

p‐NFκB

p‐IκBα

Tubulin

UT TNF‐α inh TNF‐α inh+
TNF‐α

B

U
T

TN
F 
–α

in
h

p‐CrKL

p‐STAT5

GAPDH

TN
F 
–α

in
h
+

TN
F‐
α

N
L

C

 
  



Chapter 5  189 
 
Figure 5-5 Effects of TNF-α inhibition and stimulation on NFκB and BCR-ABL activity in CML 
CD34+ cells 
p-NFκB and p-IκBα levels were measured by intracellular flow cytometry (A, left panels) in 3 
CML CD34+ samples after 24 hours of incubation in suspension cultures with TNF-α inh or 
TNF-α inh+TNF-α. Levels of phosphorylation of both proteins were calculated as described 
in 2.3.2.1. Representative plot for changes in p-NFκB is shown in panel A, top right. 
Representative western blot analysis for changes in the levels of the same proteins is 
shown in panel A, bottom right. Tubulin was used as a loading control. Gene expression 
changes for NFκB target genes was measured in 3 CML samples following 24 hours culture 
in SFM+PGF with TNF-α inh or TNF-α  inh plus TNF-α. Differences in gene expression levels 
following treatment were calculated using the 2-∆∆Ct method after normalisation within each 
sample of candidate gene expression levels against the expression levels of two 
housekeeping genes (GAPDH and TBP). RQ of candidate gene mRNA expression following 
each treatment was then plotted as log2 of the 2-∆∆Ct values (with the UT cells having a value 
of 0 in the graph being the calibrator) (B). P-CrKL and p-STAT5 levels were measured by 
western blot in CML CD34+ cells (n=3) treated for 24 hours with TNF-α inh, TNF-α  inh+TNF-α 
or NL. Representative blot of 3 is shown. GAPDH was used as a loading control (C). 
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5.1.4.3 Analysis of the effects of TNF-α inhibition and stimulation on GFs 

and CSF2RB expression in CML CD34+ cells 

TNF-α has been shown to upregulate expression of several GFs and cognate receptors in 

different model systems including human and murine HSPC145,146,136,147,412. This feature 

could also be secondary to NFκB activation, given its prominent role in regulating GFs 

production by immune cells, although this link has not been proven following stimulation 

of haemopoietic and stromal cells by TNF-α.   Given the proliferative effects caused by 

TNF-α in CML CD34+ cells, it was interesting to investigate if the expression of any GFs 

and receptors were indeed regulated by TNF-α in this cell context too.  Given their 

differential expression in CML SPC versus normal HSPC (see 3.1.3), mRNA levels for IL-

4, GM-CSF and CSF2RB levels were measured following 24 hour treatment with TNF-α 

inh or TNF-α inh plus TNF-α  in CML CD34+ cells. CSF2RB protein levels were also 

measured following 48 hours in the same treatment conditions. GM-CSF was not detected 

in the three UT CML CD34+ samples (consistent with the fact that autocrine production of 

this GF is not always detected in CML SPC, see 3.1.2 and 3.1.3) and following TNF-α inh 

treatment, but became detectable following TNF-α inh plus TNF-α treatment (figure 5-6 

A). Instead, for both IL-4 (detected in 2 out of 3 samples) and CSF2RB (detected in all 3 

samples), TNF-α inh treatment caused a variable degree of reduction in their level of 

expression compared to UT, which was rescued with addition of exogenous TNF-α. 

Interestingly a similar pattern was also observed for SCF (detected in 2 out of 3 samples), a 

GF the expression of which was observed in CML CD34+ cells, although at a level not 

different from normal CD34+ cells (not shown) (figure 5-6 B). Moreover consistent with 

gene expression findings, CSF2RB protein levels in CML CD34+ cells were also 

respectively downregulated and upregulated following TNF-α inh and TNF-α inh plus 

TNF-α treatment (both p<0.05) (figure 5-6 C). 

Overall these data show that modulation of TNF-α activity in CML CD34+ cells can affect 

autocrine production of proliferative GFs expressed by CML CD34+ cells. These 

correlative changes may provide another potential mechanism by which autocrine TNF-α 

can act as a proliferative and survival cue in CML CD34+ cells. 
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Figure 5-6 Effects of TNF-α inhibition and stimulation on GFs and CSF2RB expression by 
CML CD34+ cells 
Gene expression changes for candidate GFs were measured in 3 CML samples following 24 
hours culture in SFM+PGF with TNF-α inh or TNF-α inh plus TNF-α. Levels of expression for 
GM-CSF were calculated using the 2-∆Ct method after normalisation within each sample of 
GFs mRNA expression levels against the expression levels of a housekeeping gene 
(GAPDH). Levels of expression for UT and TNF-α inh were set at 0 as they were undetected 
(A). Differences in gene expression levels following treatment for CSF2RB, IL-4 and SCF 
were calculated using the 2-∆∆Ct method after normalisation within each sample of candidate 
gene expression levels against the expression levels of two housekeeping genes (GAPDH 
and TBP). RQ of candidate gene mRNA expression following each treatment was then 
plotted as log2 of the 2-∆∆Ct values (with the UT cells having a value of 0 in the graph being 
the calibrator) (B). Levels of protein expression of CSF2RB were measured by flow 
cytometry analysis and expressed as MFI of the antibody stained cells over MFI of cells 
stained with a matched isotype antibody. The average expression levels in the TNF-α inh 
and TNF-α inh plus TNF-α  treated cells was then plotted as percentage of the average 
expression levels in UT cells (C, left panel). Representative plots of CSF2RB protein 
expression (C, right panel). 
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5.1.5 Assessment of the effects of TNF-α inhibition in 

combination with NL on CML CD34+ cells survival and 
proliferation 

Following demonstration that autocrine TNF-α supports survival and proliferation of CML 

CD34+ cells, the next step was to assess if its effects were present even when BCR-ABL 

kinase was inhibited by a TKI. The lack of significant modulation of TNF-α production by 

CML CD34+ cells following NL treatment (see 3.1.4 and 3.2.2) would suggest that TNF-α  

effects might indeed be BCR-ABL kinase independent.  In order to prove this, 5μM NL 

was therefore combined with TNF-α inh at a fixed concentration (3μM) and effects on 

CML CD34+ cell survival and proliferation measured. The combination treatment was able 

to induce higher levels of apoptosis at both 48 (p<0.05 relative to NL and p<0.01 relative 

to TNF-α inh) and 72 hours (p<0.01 relative to both NL and TNF-α inh) compared to 

either single agent alone (figure 5-7 A). Total CFC output was also further reduced by 

combined treatment and this was mainly due to a reduction in the more primitive CFU-GM 

compared to both NL and TNF-α inh single agent treatment (figure 5-7 B). Profound 

effects on both proliferative and quiescent CML CD34+ cells, when assessed by CFSE 

staining, were also observed. Besides a generalised effect on reducing proliferation of 

CML CD34+ cells, the combination treatment caused a significant reduction in CD34+ cells 

recovered in both the undivided population and within the early divisions relative to UT 

(p<0.05 for the undivided and p<0.001 for divisions 1, 2 and 3). Moreover a further overall 

reduction in the total recovered CD34+ cells compared to both single agents was noted 

(figure 5-7 C). The effects seen on CFSE recovery combined with the observation that 

levels of autocrine TNF-α production are similar in both CML CD34+ CD38+ and CD34+ 

CD38- cells (see 3.1.3) suggest that TNF-α could play a relevant role in the survival of a 

more primitive stem cell population. In order to test this hypothesis, apoptosis induction 

was measured specifically in the CFSEmax population (which reflects a more quiescent and 

primitive stem cell subset) and in a CML CD34+ CD38- sorted population (a more 

primitive stem cell subset based on cell surface markers).  In both cases the combination of 

TNF-α inh and NL induced significantly higher levels of apoptosis compared to either 

single agents alone (p<0.05 for both comparisons in both experiments) (figure 5-7 D).  

Overall these data suggest that combining TNF-α inhibition with TKI reduces CML SPC 

survival and inhibits their proliferation more than either approach on its own. Moreover 

combination treatment is also able to target more efficiently a primitive stem cell subset 

which is notoriously resistant to standard TKI therapy. 
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Figure 5-7 Effects of TNF-α inhibition combined with NL on survival and proliferation of CML 
SPC 
CML CD34+ cells (n=5) were cultured in SFM+PGF with TNF-α inh, NL or their combination. 
Apoptosis was measured by annexin-V/7AAD staining at 48 and 72 hours (A). At 72 hours, 
3,000 cells from each of the arms were plated in standard CFC. Number of colonies 
recovered in total and based on their morphology from each treatment arm are plotted (n=3) 
(B). CML CD34+ cells (n=4) were CFSE stained and then cultured for 72 hours with TNF-α 
inh, NL or their combination. Percentage of starting CD34+ cells recovered within each 
division and in total following treatment were calculated as explained in 2.3.2.3 (C). 
Apoptosis was measured by annexin-V/7AAD following 72 hours treatment in the same 
conditions within the CFSEmax population (n=5) and in previously sorted CD34+ CD38- cells 
(n=2) (D). 
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5.1.6 Investigation of the mechanisms underlying the effects of 

TNF-α inhibition in combination with NL on CML CD34+ cells 
survival and proliferation 

In order to clarify the mechanisms underlying the effects seen when combining TNF-α inh 

with NL in CML CD34+ cells, levels of p-NFκB and p-IκBα were first measured by 

intracellular flow cytometry. The combination treatment caused a further 20% reduction in 

the phosphorylation levels of both proteins (p<0.05 for p-NFκB and not significant for p-

IκBα), suggesting that the effects seen are at least partially secondary to a stronger 

inhibition of the NFκB pathway with the combined treatment (figure 5-8 A). However it 

should be noted that levels of activation of both proteins were still about 50% following 

combination treatment. 

Gene expression changes were also measured for the same antiapoptotic genes previously 

assessed when investigating the mechanisms of action of TNF-α inhibition. Interestingly, 

except for survivin where the combination treatment caused a reduction previously not 

present with TNF-α inh alone, for all the others the addition of NL either did not cause any 

change in the levels (BCL-XL, IAP1, MCL1 and XIAP) or even reverted the changes seen 

with TNF-α inh on its own (IAP2), thus suggesting that complex feedbacks are generated 

when combining the two approaches which result in a more global modification of the 

signalling output within the cell than simple cumulative effects of the two drugs on the 

same pathway (figure 5-8 B). In fact the combination treatment appeared to determine 

effects on other key genes which were not individually targeted by either agent alone and 

which are overexpressed in CML versus normal CD34+ cells, such as MYC (figure 5-8 C).  

Taken together these data show that the mechanism of action of TNF-α inh with NL on 

CML CD34+ cells are complex and not easily explained by an additive effect on a single 

pathway such as NFκB.  
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Figure 5-8 Effects of TNF-α inhibition in combination with NL on NFκB pathway and MYC in 
CML CD34+ cells 
p-NFκB and p-IκBα levels were measured by intracellular flow cytometry in 3 CML CD34+ 
samples after 24 hours of incubation in suspension cultures with TNF-α inh, NL or their 
combination. Levels of phosphorylation of both proteins were calculated as described in 
2.3.2.1 (A). Gene expression changes for NFκB target genes and MYC were measured in 3 
CML samples following 24 hours culture in the same conditions. Differences in gene 
expression levels following treatment were calculated using the 2-∆∆Ct method after 
normalisation within each sample of candidate gene expression levels against the 
expression levels of two housekeeping genes (GAPDH and TBP). RQ of candidate gene 
mRNA expression following each treatment was then plotted as log2 of the 2-∆∆Ct values 
(with the UT cells having a value of 0 in the graph being the calibrator) (B and C, right 
panel). mRNA expression for MYC was measured in CML (n=6) and normal (n=5) CD34+ 
samples following recovery and overnight culture in SFM+PGF and SFM+HiGF respectively. 
Levels of expression were calculated using the 2-∆Ct method after normalisation of MYC 
mRNA expression levels against the expression levels of a housekeeping gene (TBP) within 
each sample (panel C, left). 
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5.2 Investigation of the role of autocrine TNF-α in CML 
CD34+ cells using a TNF-α neutralising antibody 

Classically autocrine growth has been thought to be secondary to stimulation of a cell by 

its own secreted GFs via their binding to their cognate membrane receptors413. Therefore in 

order to confirm our findings using a TNF-α small molecule inhibitor by a different 

approach, CML CD34+ cells were cultured in the presence of a TNF-α neutralising 

antibody or a matched isotype control antibody. Interestingly the TNF-α neutralising 

antibody only mildly increased levels of apoptosis in CML CD34+ cells compared to 

isotype antibody and as a result no changes in apoptosis levels were observed when 

exogenous TNF-α was added to the culture (figure 5-9 A).  The effects of the TNF-α 

neutralising antibody on p-NFκB levels were also measured. The TNF-α neutralising 

antibody again did not change levels of p-NFκB relative to isotype. Notably addition of 

exogenous TNF-α increased the levels of p-NFκB in the presence of isotype antibody but 

not in the presence of TNF-α neutralising antibody, which confirms the specificity of the 

TNF-α neutralising antibody used (figure 5-9 B). These results suggest that the previously 

demonstrated autocrine effects of TNF-α in CML CD34+ cells are not due to the secreted 

form of TNF-α binding to its cognate surface receptor. 
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Figure 5-9 Effects of TNF-α neutralising antibody in CML CD34+ cells 
CML CD34+ cells (n=3) were cultured in SFM+PGF with TNF-α neutralising antibody (TNF-α 
Ab) or matched isotype control antibody (Iso Ab) both at 25μg/mL in the presence or 
absence of exogenous TNF-α at 1ng/mL. Apoptosis was measured by annexin-V/7AAD 
staining at 48 and 72 hours (A). p-NFκB levels were measured by intracellular flow 
cytometry in 3 CML CD34+ samples after 24 hours of incubation in the same conditions. 
Levels of phosphorylation of the protein were calculated as described in 2.3.2.1 and 
expressed as a percentage of Iso Ab treated cells (B). 
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5.3 Summary and future directions 

The work presented in this chapter shows that inhibition of autocrine TNF-α signalling 

using a specific small molecule TNF-α inhibitor is able to induce apoptosis and reduce 

proliferation in CML CD34+ cells. TNF-α inhibition also appears to be particularly 

effective in targeting the CFSEmax population as levels of apoptosis within this population 

were higher on exposure to the small molecule inhibitor. Given that the amount of 

autocrine TNF-α produced by CML CD34+ CD38- LSC was similar to that produced by 

more mature CML LPC (CD34+ CD38+) (see 3.1.3) this last result is not surprising. The 

evidence supporting this conclusion was gathered mainly by using a small molecule TNF-α 

inhibitor with rescue experiments using exogenous TNF-α to confirm the specificity of the 

effects seen. It was therefore initially surprising that when a TNF-α neutralising antibody 

was used to further confirm the findings observed with the TNF-α inh, the same effects on 

survival of CML CD34+ cells were not seen. However it should be noted that autocrine 

stimulation can occur by different mechanisms: autocrine GFs may be secreted and bound 

to their surface receptors or may act by binding to an internal cognate receptor as shown 

already in transformed cells and haemopoietic cells414,415. The latter mechanism therefore 

appears to play a major role in the autocrine effects of TNF-α in CML CD34+ cells when 

taking into account the results obtained with both TNF-α inh and TNF-α neutralising 

antibody. It is interesting to note also that the internal binding mechanism for autocrine 

stimulation has already been described in other BCR-ABL positive cells capable of 

autocrine GFs production269,361 which might suggest this is a common mechanism used in 

cells transformed by BCR-ABL. Moreover protein expression of TNF-α by CML CD34+ 

cells was only detected using intracellular flow cytometry analysis (see 3.2.1), but not 

when other techniques specifically aimed to detect secreted proteins (such as ELISA) were 

employed (not shown). 

However other possible explanations including technical ones should also be considered. 

TNF-α is produced as both a soluble protein and a membrane bound protein134 and 

although the TNF-α antibody used was specifically tested for neutralising purposes, it was 

not epitope mapped. It is therefore possible that the epitope recognised could be part of the 

transmembrane or intracytoplasmic structure of TNF-α. If that is the case the antibody 

might not be able to bind TNF-α when expressed in its transmembrane form thus 

explaining its reduced efficacy compared to the TNF-α small molecule inhibitor which 

instead acts by disrupting the trimeric structure of active TNF-α410.  It is also possible that 

the small molecule inhibitor was more potent than the neutralising antibody although this 
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is unlikely as the neutralising antibody was used at high saturating concentrations. 

Alternatively the small molecule inhibitor effects might be not specific. Against this latter 

hypothesis however are several observations: 

1) Although to different extents, the TNF-α inh effects were consistently rescued by 

exogenous TNF-α. It is possible that if intracellular receptor activation is indeed present a 

significant proportion of the TNF-α receptors might be occupied before reaching the cell 

surface which might also explain why the rescue experiments with exogenous TNF-α were 

not always able to fully revert the effects caused by the TNF-α inh.  

2) TNF-α inh showed no effects on normal CD34+ cells (which were shown to produce 

only low levels of TNF-α) which again supports its specificity (it is worth noting that this 

finding would also support the theory that a truly autocrine effect in in vitro culture can 

only be seen when levels of autocrine produced GFs are sufficient and can help to explain 

also the lack of efficacy of JAK2 inhibitors on CML cells in the absence of exogenous GFs 

described in the previous chapter).  

3) No effects of TNF-α small molecule inhibitor on BCR-ABL kinase activity were 

demonstrated which excludes therefore the possibility of off-target effects of this 

compound at least on BCR-ABL kinase. 

A potential way to clarify this further would be to silence the expression of TNF-α in CML 

CD34+ cells by RNA interference techniques to see if the findings obtained with TNF-α 

inh are confirmed. This is currently in planning and will help clarify this issue. 

Therefore based on the above considerations, it is reasonable to assume that the effects 

seen with the TNF-α inh were secondary to inhibition of autocrine intracellular TNF-α. 

The finding that autocrine TNF-α acts as a survival cue in CML SPC is not surprising 

given that this has already been reported in other cancer systems and TNF-α itself can 

effectively relay stimulatory signals depending on the cell context396,409. The importance of 

the cell context for the effects of TNF-α has been long known. It has been shown that 

TNF-α  is able to induce apoptosis only in cells where the NFκB pathway is inactive164. 

NFκB activation is necessary to allow transformation of murine BM by BCR-ABL253 and 

therefore must be active in primitive CML cells. Our results from gene expression analysis 

support this as they have shown that CML CD34+ cells express high levels of several 

antiapoptotic genes, in particular of the IAP family, which are known to be under direct 
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control of NFκB and can also activate it further with a positive feedback loop. The IAP1 

and IAP2 proteins have been shown to play a central role in redirecting TNF-α signalling 

from an apoptotic to a prosurvival outcome161 thus providing the right cell context in CML 

CD34+ cells for autocrine TNF-α to act as a prosurvival cue. It was interesting to see that 

normal CD34+ cells, which produce significantly less autocrine TNF-α  than their CML 

counterparts and also express reduced levels of several antiapoptotic proteins, do not 

appear to rely on this autocrine loop as TNF-α inhibition did not cause any effects on their 

survival. This would also suggest that a therapeutic window could be present if a strategy 

targeting TNF-α signalling should be developed for treating CML. 

The putative role of TNF-α as a survival cue in CML CD34+ cells would also be consistent 

with recent observations published by Zhang et al which have shown, using a transgenic 

CML mouse model, that TNF-α is produced at higher level in the BM of CML mice 

relative to wild type. Moreover they also showed higher levels of TNF-α mRNA 

expression in the BM MNC from CML patients compared to normal controls. In functional 

studies, they also showed that mouse CML LSC had a growth advantage and were 

protected from apoptosis compared to normal control stem cells when cultured in the 

presence of physiological concentrations of TNF-α276. Conversely reports published 

several years ago suggested a different role for TNF-α in CML as exposure to TNF-α 

caused CML cell death. However it is worth noting that in none of these reports purified 

populations of CML SPC were used, but instead a MNC fraction with only a small 

proportion of CD34+ cells. Moreover in some cases very high concentrations of TNF-α (up 

to 100ng/mL) were used405,408. As the effects of TNF-α are highly concentration and cell 

context dependent, as also shown in normal haemopoiesis where its proliferative effects on 

progenitor cells are counteracted by negative/inhibitory effects on more differentiated 

cells140, these considerations might help to explain the discrepancy between our results and 

those published in these early reports. It is intriguing to speculate that different levels of 

activation of NFκB underlie the different effects observed when more primitive or mature 

cell subsets are exposed to TNF-α.  

The mechanisms underlying the effects of autocrine TNF-α inhibition were also 

investigated. As TNF-α is known to activate NFκB to relay its survival signals, the effects 

of TNF-α inhibition on this pathway were mainly assessed. Reduced activation of this 

pathway following TNF-α inh treatment was demonstrated using different readouts, 

including changes in phosphorylation levels of two key proteins within the pathway (NFκB 

itself and IκBα) and gene expression changes in key NFκB targets. The effects however on 
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NFκB and IκBα phosphorylation were not dramatic and amongst all the NFκB target genes 

tested only consistent downregulation of IAP2 was observed following TNF-α inh. These 

results would suggest that beside NFκB, TNF-α inh might also affect other pathways 

which were not investigated in the current work. TNF-α is indeed known to act on several 

pathways and transcription factors, such as MAP kinase and AP-1134. However, TNF-α 

rescue experiments led to activation of the NFκB pathway showing that TNF-α does signal 

through this pathway, which is therefore at least partly contributing to the effects seen. It is 

also important to consider that BCR-ABL induced NFκB activation was still present in 

cells treated with TNF-α inhibitor on its own (as previously stated TNF-α inh did not have 

any effects on BCR-ABL kinase activity) which might explain why the inhibition of this 

pathway was only partial. 

TNF-α is also known to regulate the production of several GFs by other cell types (see 

1.1.2.3). It was interesting therefore to see if autocrine TNF-α might contribute to autocrine 

production of GFs and cognate receptors in CML CD34+ cells too. Interestingly it was 

found that production of several GFs (IL-4, GM-CSF and SCF) was indeed reduced upon 

TNF-α inh treatment and stimulated by exogenous TNF-α. In particular the CSF2RB 

receptor, which had previously been shown to be upregulated in CML SPC compared to 

normal counterparts, was shown to be respectively down and upregulated upon TNF-α 

inhibition and stimulation, both at the protein and gene expression level. This result is in 

keeping with similar results shown in normal haemopoietic cells where TNF-α was also 

able to upregulate the expression levels of CSF2RB147. This might explain some of the 

proliferative effects caused by TNF-α and might also provide a possible link between TNF-

α and JAK2/STAT5 axis. It is noticeable that both inhibition of JAK2 and TNF-α have 

similar effects on the survival and proliferation of CML cells. Although the consequences 

of TNF-α inhibition or stimulation on STAT5 activity were not formally assessed, hints 

towards upregulation of STAT5 activity upon TNF-α treatment were provided by the gene 

expression data showing upregulation of the expression of genes such as BCL-XL (figure 5-

5 B) and cyclin D1 (data not shown in the thesis) which are also known to be STAT5 target 

genes. This aspect of TNF-α signalling however would require further investigation to be 

confirmed and clarified. 

The effects of TNF-α inhibition in conjunction with BCR-ABL inhibition were also 

assessed. This was done because TNF-α autocrine production had been shown to be mainly 

BCR-ABL kinase independent and also because TNF-α inh did not show any off-target 

effects on BCR-ABL kinase activity. Interestingly this combination treatment showed a 
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dramatic effect on induction of apoptosis in CML CD34+ cells, while also markedly 

reducing their proliferation and colony forming capacity. Moreover the combination was 

particularly effective in killing the most primitive CML LSCs defined based on their 

quiescent phenotype or surface markers. A significant reduction in the CD34+ cells 

recovered in the undivided gate was caused by the combination treatment relative to UT. 

This was coupled with a significant induction of apoptosis in the CFSEmax population and 

in sorted leukaemic CD34+ CD38- cells following the combination treatment and relative 

to UT and either single agent alone. These observations suggest that, despite the presence 

of TKI, TNF-α is still able to relay survival signals which become even more important in 

this context, supporting a synthetic lethality model for the effects seen similar to the one 

described when combining JAK2 inhibitors and TKI. These observations would therefore 

give support to a therapeutic strategy combining TNF-α inhibition with TKI.  

It was interesting to note that the presence of TKI did not alter the cell context of CML 

CD34+ cells to the extent of rendering autocrine TNF-α signalling proapoptotic. In fact 

when levels of several key antiapoptotic genes were measured following NL treatment in 

CML cells no significant changes in their levels were noted which suggest that, even 

following TKI therapy, autocrine TNF-α would still act in a cell context that favours its 

prosurvival signals. This observation also provides an explanation for the effects seen with 

combined treatment. However when the exact mechanisms of the combination treatment 

were investigated, in particular looking at the NFκB pathway, it appeared clear that the 

effects on signalling underlying the biological responses seen were more complicated than 

just a summation of effects on a particular pathway (NFκB in this case). As a possible 

explanation, it has already been shown that the  effects of small molecule inhibitors on 

complex cellular systems  are a consequence of all their on- and off-target actions and that, 

as a result of crosstalk at various levels, the complexity of their effects is enhanced when 

two drugs are applied simultaneously384. It is therefore also not surprising that novel points 

of convergence of the effects of two drugs applied simultaneously on a complex cell 

system can be identified as new targets explaining the effects seen following combination 

treatment. Interestingly the results were more suggestive of a novel and still not fully 

clarified mechanism behind the effects seen with combination treatment, with gene 

expression changes pointing towards MYC being a possible target of the combined 

treatment. MYC is a key transcription factor  already shown to be essential for BCR-ABL 

mediated transformation247 and also shown to play a key role in numerous other 

malignancies, including haemopoietic ones416,417.  
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In conclusion the results shown in this chapter support further investigation of the role of 

autocrine TNF-α in CML biology, including potentially developing a strategy to target it 

therapeutically, in particular in combination with TKI. Although TNF-α inhibitory therapy 

is already available for several autoimmune disorders, based on the lack of efficacy of 

TNF-α neutralising antibody, a strategy using small molecule TNF-α  inhibitors, such as 

the one used in this study, should be pursued in CML as this would also have the 

advantage to be orally administered. The one used in this chapter was originally described 

by a group working for the biopharmaceutical company Sunesis410, however it does not 

appear to have been taken further in its clinical development. If in vivo experiments in 

animal models will prove supportive of the current findings and demonstrate potential lack 

of toxicity of this approach, it is therefore advisable that similar compounds be developed 

to assess if such a therapeutic strategy is really possible. Alternatively, small molecules 

interfering with TNF-α signalling, such as NFκB pathway inhibitors (such as IKK 

inhibitors) or IAP inhibitors (such as SMAC mimetics) could also be employed. This 

would take advantage, in an indirect way, of the autocrine secretion of TNF-α by CML 

cells (figure 5-10) by redirecting its signals towards an apoptotic outcome, as shown in 

other cancer systems. Both types of compounds are currently being clinically developed 

and our laboratory is already primed to test their efficacy in the CML field. 
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Figure 5-10 Possible strategies to interfere with autocrine TNF-α signalling in CML 
TNF-α in CML cells activates the NFκB pathway leading to inhibition of its proapoptotic 
effects mainly by induction of IAP2 which blocks caspase activation. TNF-α inhibitors can 
interfere with this pathway. Other possible speculative approaches are inhibition of IKK and 
IAP2 through IKK inhibitors and SMAC mimetics. Both strategies would lead to reduction of 
NFκB activity and swing TNF-α signalling from prosurvival to proapoptotic as activation of 
caspases would not be counteracted anymore. 
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6 Results (IV) Investigation of putative autocrine 
and paracrine regulators of CML LSC 
quiescence and self-renewal 

 

A defining characteristic of HSC is quiescence. This feature appears to be of critical 

biological importance in preventing stem cell exhaustion, particularly under conditions of 

stress, and ensuring maintenance of a self-renewing pluripotent cell population able to 

repopulate the entire BM25,28 (note the term maintenance is used here to signify 

preservation of self-renewal potential). Therefore quiescence and maintenance are two 

closely linked attributes of HSC. Deletion of genes central to HSC quiescence leads to 

their depletion and exhaustion as demonstrated for example in mice carrying a deletion of 

cell cycle negative regulators, such as the CKIs Cdkn1a/p2195 and Cdkn1c/p5796. Several 

extrinsic regulators of normal HSC quiescence/maintenance have been described, 

including TGF-β127,97, TPO98,99, Wnt/β-catenin100-102, Hh103,104, integrin105 and chemokine 

signalling27,106,107 (see section 1.1.2.2 for a more detailed discussion). 

Similarly to normal haemopoiesis, a quiescent LSC population has been demonstrated in 

CML, despite the highly proliferative phenotype induced by the BCR-ABL oncoprotein, 

and still detectable even in the presence of GFs stimulation192. Moreover LSC quiescence 

has been shown to be a resistance mechanism in the CP of disease following TKI 

therapy328. An improved understanding of the mechanisms controlling quiescence in LSC 

would therefore provide potential novel therapeutic targets for their eradication in CP CML 

and would advance our knowledge of LSC biology in general. Similarly to normal 

haemopoiesis, CML LSC quiescence and self-renewal appears also to be controlled by 

both extrinsic and intrinsic regulators. Amongst the extrinsic regulators Hh104,265, Wnt/β-

catenin266-268 andTGF-β1, via its downstream transcription factors such as FOXO111 and 

BCL6378, are the most relevant. It is worth noting that a great degree of overlap exists 

between the pathways shown to play a role in both normal and CML stem cell 

maintenance. This therefore suggests that any strategy aiming to target such pathways in 

CML therapy has to rely on either increased expression of these regulators or higher 

dependency on these pathways in CML stem cells compared to their normal counterparts. 

Recently our laboratory, in collaboration with Dr David Vetrie’s laboratory, has used a 

combined approach including genome‐wide expression and epigenetic analysis of normal 
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HSC (CD34+ CD38-) and HPC (CD34+ CD38+) and their leukaemic counterparts, to obtain 

a global view of the cellular processes that regulate stem cell maintenance in HSC and 

LSC (Dr K. Korfi PhD thesis, University of Glasgow, 2012).  When looking at the gene 

expression changes in the transition from a normal HSC to a normal HPC, pathways 

potentially involved in HSC maintenance showed significant (p<0.05) downregulation, 

whereas pathways involved in proliferation were significantly upregulated in line with 

their known biological differences (see section 1.1) and previous gene profile studies418. 

However interestingly when comparing CML LSC to normal HSC, it appeared that despite 

having increased activity in pathways involved in cell division and proliferation, the 

expression levels of the pathways potentially involved in stem cell maintenance remained 

significantly unchanged. These pathways included Wnt, TGF‐β signalling and chemokine 

signalling, as well as novel signalling pathways involving neurotransmitters (figure 6-1). 

Moreover by examining genome‐wide histone modification patterns using chromatin 

immunoprecipitation coupled to deep sequencing (ChIP-seq), it was demonstrated that the 

majority of the putative HSC maintenance pathways were significantly associated with 

bivalent promoters in HSCs, HPCs, LSCs (and CML LPC too). Bivalent gene promoters 

carry both activating (H3K4me3) and repressing (H3K27me3) histone marks. Such 

epigenetic modification is thought to mark genes poised in a bipotential state which can be 

resolved to a monovalent state that confers a more stable silencing (H3K27me3-only) or 

transcriptional activation (H3K4me3-only) to their regulated loci, in the course of 

differentiation and lineage commitment. As such the bivalent epigenetic signature tends to 

be enriched in developmentally regulated genes419. Genes involved in stem cell 

maintenance pathways play a central role in preserving pluripotency of cells and regulate 

whether a stem cell undergoes self-renewal or differentiation upon division. Interestingly it 

was observed in our screen that these genes were specifically enriched for bivalent 

promoters in both HSC and LSC.  
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Figure 6-1 Gene expression changes in the transition from HSC to HPC and from HSC to 
LSC 
Pathway analysis of the genes showing significant (p<0.05) differential expression in HPCs 
(CD34+ CD38+) relative to HSCs (CD34+ CD38-) (left) and LSCs (CD34+ CD38-) relative to HSCs 
(right) (only most biologically relevant pathways from overall analysis listed). A significant 
upregulation of proliferative pathways in both HPCs and LSCs was observed in comparison 
to HSCs. Furthermore, several signalling pathways demonstrated significant 
downregulation in HPCs relative to HSCs which included known stem cell maintenance 
pathways and some novel pathways possibly involved in stem cell maintenance. 
Interestingly all these pathways remained unchanged at expression level between HSCs and 
LSCs comparison. Novel signalling pathways through neurotransmitters potentially 
involved in the HSC and LSC maintenance are highlighted in bold. The flags at the bottom 
visually represent the two transitions with maintenance pathways (green) going down from 
HSC to HPC while proliferative pathways (red) are conversely upregulated. In the HSC to 
LSC transition although there is an increase in the proliferative pathway expression (red), 
the maintenance pathways expression (green) does not decrease. This figure was adapted 
from a figure courtesy of Dr Koorosh Korfi and Dr David Vetrie.   

In addition to the putative HSC maintenance pathways several other signalling pathways 

were also significantly associated with the bivalent promoters in the studied cell types, 

which included heterotrimeric Gα protein signalling pathways that are core to many 

neurotransmitter signalling pathways. Consequently, combining the global gene expression 

and epigenetics analysis several novel neurotransmitter signalling pathways were identified 

of potential importance in the maintenance of both HSC and LSCs (Dr K. Korfi PhD 

thesis, University of Glasgow, 2012). These pathways included ACH, catecholamines such 

as NEPI, 5HT, HIS and GLU signalling pathways. Interestingly investigation of the role of 

neurotransmitters in normal haemopoietic cell biology, including their self-renewal and 
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maintenance, has recently been reported. For example catecholaminergic 

neurotransmitters, such as NEPI, have been shown to increase motility, proliferation and 

engraftment of human HSPC108,128, while 5HT has been shown to enhance ex vivo 

expansion of cord blood CD34+ cells, including NOD/SCID mice repopulating cells129. 

Moreover G protein-coupled receptors of neuromediators, such as 5HT, have been shown 

to be upregulated in human CD34+ CD38- compared to CD34+ CD38+ cells126. A recent 

report has also shown an indirect role of specific peripheral nervous system cells, namely 

the non-myelinating Schwann cells, in regulating haemopoietic cell maintenance through 

regulation of the activation process of TGF-β1130 (see section 1.1.2.2.2 for more detailed 

discussion).  The role of neurotransmitters in LSC biology is however less clear. Only very 

recently has it been reported, for example, that inhibitors of dopamine receptors might be 

able to eradicate LSCs in AML420, while in CML a single report published several years 

ago showed upregulation of G protein coupled receptor for neuromediators in CML CD34+ 

relative to normal CD34+ cells421, however their functional role was not thoroughly 

investigated and to date remains unknown. 

Therefore the aim of the work presented in the current chapter was to investigate the role 

of the neurotransmitters whose pathways had been identified by the above described 

genetic and epigenetic screen in CML LSC biology. In particular their role in CML LSC 

survival, proliferation and maintenance was assessed using standard in vitro cell biology 

assays such as annexin staining for apoptosis, CFSE staining and CFC replating. Moreover 

correlative changes in gene expression of genes known to be involved in maintenance and 

quiescence of LSC was measured by qRT-PCR.  Finally the role of TGF-β1 in the same 

process was also assessed. TGF-β1 was investigated further as, although not differentially 

expressed between normal HSPC and CML SPC, was amongst the most highly expressed 

GFs by both CML CD34+ CD38+ and CD34+ CD38- cells (see 3.1.3) and also appeared to 

be modulated by some of the neurotransmitters.  Considering both the observed autocrine 

production of TGF-β1 by CML primary SPC described in chapter 3, its modulation by 

some of the neurotransmitters and the recent reports of its role in CML LSC maintenance 

in mouse models111, it was considered interesting to assess if TGF-β1 also played a similar 

role in the setting of primary human CML LSC maintenance. 
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6.1 Assessment of the effects of neurotransmitters on 
CML LSC quiescence and maintenance 

6.1.1 Experimental design 

When investigating potential regulators of stem cell quiescence/maintenance in vitro, it is 

considered preferable to mimic the BM niche as closely as possible using a stromal 

coculture system which exposes stem cells to a more physiological environment containing 

both GFs stimulating their proliferation/differentiation and regulators of 

quiescence/maintenance.  Moreover such a system also allows controlling for any indirect 

effects of the regulators tested due to the presence of BM stromal cells. This appears 

particularly important in the case of neurotransmitters as recent evidence suggests that 

some of the effects of NEPI and 5HT on HSCs and other cell types are secondary to the 

activation of other known maintenance pathways, such as Wnt108 or TGF-β1422. Although 

also produced by stem cells,  both Wnt and TGF-β1 are secreted by BM stromal cells100. 

Moreover TGF-β1 is normally secreted as a latent protein which requires an enzymatic 

cleavage and activation by stromal cells97,130. Therefore by including BM stromal cells in 

these experiments, it was conceivable that at least some of these indirect effects would not 

be missed if present.  

OP-9 cells are murine stromal cells originally established from the calvaria of newborn 

mice genetically deficient in functional macrophage colony-stimulating factor (M-csf)423. 

They have been shown to support haemopoietic cell differentiation from both human 

embryonic stem424 and induced pluripotent stem cells425 and have also been routinely used 

in coculture experiments with human haemopoietic SPC, including CML LSCs111,426. Thus 

there is robust evidence backing their use as a stromal cell line suitable to support 

haemopoiesis in vitro. Therefore to assess the effects of neurotransmitters, CML CD34+ 

CD38- cells were cocultured with GFP tagged OP-9 cells for a total of 3 days in the 

presence or absence of one of the following neurotransmitters: ACH at 100nM, GLU at 

10μM, HIS at 100μM, NEPI at 1μM and 5HT at 5μM. All concentrations were chosen 

based on published work in the literature performed on either haemopoietic cells or other 

cell systems and showing non toxic effects on the target cells108,422,427-429. At the end of the 

culture period the GFP negative CML LSC were easily identified and separated from the 

GFP tagged OP-9 stromal cell line by flow cytometry. This allowed both the gene 

expression and functional assays to be performed, which included CFC and cell 
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proliferation/apoptosis assays, on a clean population of human CML LSCs (figure 6-2) 

(more details on the coculture method are available in 2.3.1.5).  

Finally it is necessary to mention the reasons behind designing the experiments so that the 

neurotransmitter pathways were stimulated rather than inhibited in CML LSCs. This does 

not seem the most logical approach given that CML LSCs have already been shown to be 

enriched for quiescent and self-renewing cells and therefore detecting an enhancement of 

quiescence and self-renewal following neurotransmitter treatment might be difficult.  

However it is worth noting first, that each of the above mentioned neuromediators 

stimulate different classes of receptors (with both stimulatory and inhibitory effects), hence 

making it difficult to design an experiment where a pathway can be effectively shut down 

just by using one inhibitor;  secondly, as the source of neurotransmitters in the BM niche 

are nerve fibres, reproducing an environment containing physiological concentrations of 

neurotransmitters in vitro would be extremely challenging with standard feeder cells which 

do not include nerve cells. As a result the effects of neurotransmitter receptor inhibitors 

might be missed in a standard in vitro coculture experiment of CML LSC.  

Stromal cells 
(OP‐9 GFP)

CML LSC
(CD34+ CD38‐)

Neurotransmitters

NEPI5HT

HIS ACH

GLU

Cell proliferation and 
apoptosis analysis

CFC and 
replating
assays

FACS‐sorting 
CML LSC

3 days

Gene 
expression 
assays

Flow‐gating  
CML LSC

 
  

Figure 6-2 Experimental design to assess the effects of neurotransmitters on CML LSC 
using a coculture system with GFP tagged OP-9 
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6.1.2 Effects of neurotransmitters on CML LSC proliferation 

In order to assess the effects of the neurotransmitters on proliferation, CML LSC were 

stained with a CellTrace Violet stain after sorting and prior to coculture. This stain has 

similar properties to the CFSE stain but with different emission spectrum in the violet 

channel. This made it possible to combine cell proliferation analysis of LSCs cocultured 

with GFP tagged OP-9 cells which otherwise would have been impossible because GFP 

has the same emission spectrum as CFSE. 

After 3 days in culture in the presence of neurotransmitters at the above mentioned 

concentrations, there was little difference detected in the overall proliferation of CML 

LSCs. However more CD34+ cells were recovered in the later divisions of UT samples 

compared to the treated samples, starting from divisions 3 with more marked differences 

observed in divisions 4 and 5 (figure 6-3 blue arrows). Conversely the neurotransmitter 

treated samples had higher recoveries in the earlier divisions (figure 6-3). Overall these 

data show that in a short term liquid culture the tested neurotransmitters had only mild 

effects on CML LSC proliferation with a trend towards reduced proliferation seen. 

 
Figure 6-3 Effects of neurotransmitters on CML LSC proliferation 
CML LSC (CD34+ CD38-) (n=3) were stained with CellTrace Violet and then cultured for 3 
days on an OP-9 stromal layer with ACH (100nM), GLU (10μM), HIS (100μM), NEPI (1μM) and  
5HT (5μM) or left UT before flow cytometry analysis. Percentages of starting CD34+ cells 
recovered within each division following treatment were calculated as explained in 2.3.2.3. 
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6.1.3 Effects of neurotransmitters on CML LSC viability and 

apoptosis 

Next the effects of neurotransmitters on CML LSC viability and apoptosis were assessed. 

To this end the total number of CD34+ cells recovered in the UT and treated samples at the 

end of the 3 day coculture period was measured. Apoptosis levels were also recorded using 

standard annexin-V staining. 

Neurotransmitters did not affect CML LSC viability or apoptosis in short term cultures as 

both total CD34+ cells recovered (figure 6-4 A) and apoptosis levels (6-4 B) following 

treatment were not different compared to UT samples. Overall these data show that 

neurotransmitters, at least at the concentrations used in these experiments, are not toxic to 

CML LSCs. 

A B

 
Figure 6-4 Effects of neurotransmitters on CML LSC viability and apoptosis 
CML LSC (CD34+ CD38-) (n=3) were stained with CellTrace Violet stain and then cultured for 
3 days on an OP-9 stromal layer with ACH (100nM), GLU (10μM), HIS (100μM), NEPI (1μM) 
and  5HT (5μM) or left UT before flow cytometry analysis. Percentages of the starting CD34+ 
cells recovered in total following treatment were calculated as explained in 2.3.2.3 (A). At 
day 3 CML LSC were also stained with annexin-V and total apoptosis measured within each 
treatment arm (B). 
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6.1.4 Effects of neurotransmitters on CML LSC CFC output and 

replating 

In order to assess the effects of neurotransmitters on CML LSC self-renewal capacity, CFC 

replating assays were performed following the 3 day coculture experiments by plating 

between 1,000 to 3,000 (depending on cells recovered at the end of the experiment) CML 

LSCs in methylcellulose assays. After 10 to 12 days CFC were enumerated for each arm 

and thereafter single colonies harvested and resuspended in fresh methylcellulose for 

further 12 to 14 days prior to colony counting. The first round of such CFC assay (CFC 1) 

is considered a readout for the haemopoietic progenitors’ ability to proliferate and 

differentiate. However by assessing the morphology of the colonies produced (erythroid 

such as CFU-E and BFU-E versus myeloid and mixed such as CFU-GM) it is possible to 

infer the type of progenitors present in the sample, with erythroid colonies normally 

considered a reflection of a more mature progenitor cell compared to myeloid colonies343. 

Interestingly amongst the neurotransmitters, ACH and NEPI appeared to increase the 

number of CFC 1 produced (figure 6-5 A), mainly as a result of increased presence of 

myeloid and mixed colonies (figure 6-5 B). However the differences did not reach 

statistical significance. When the capacity of these colonies to replate in secondary CFC 

assays (CFC 2) was measured, it became clear that both NEPI and ACH increased the 

replating efficiency of CML LSC compared to UT (p<0.05 for NEPI versus UT) with a 

minor trend towards a similar effect for 5HT (figure 6-5 C). Morphologically, this increase 

was due mainly to a higher number of erythroid colonies in the treated samples (p<0.05 for 

both ACH versus UT and NEPI versus UT), which was expected as by the second round of 

CFC, cells had been cultured for over 4 weeks and possibly undergone a degree of 

differentiation. However an increased number of myeloid colonies was also produced in 

CFC 2 following NEPI treatment (and to a lesser extent following ACH treatment) (figure 

6-5 D).  Finally the size of the colonies produced by both NEPI and ACH in CFC 2 was 

bigger compared to UT (figure 6-6 E).   

Given that the capacity of an individual haemopoietic progenitor cell colony to replate in a 

CFC assay has been used as an indicator of the self-renewal potential of that 

progenitor344,345, these data show that  NEPI, ACH and possibly 5HT (although to a lesser 

extent) increase the self-renewal potential of CML LSCs and thus contribute to their 

maintenance. 



Chapter 6  215 
 

A B

C D

E
UT

UT

ACH

ACH

NEPI

NEPI

 
Figure 6-5 Effects of neurotransmitters on CML LSC CFC output and replating 
CML LSC (CD34+ CD38-) (n=3) were cultured on an OP-9 stromal layer for 3 days with ACH 
(100nM), GLU (10μM), HIS (100μM), NEPI (1μM) and  5HT (5μM) or left UT before  between 
1,000 to 3,000 cells from each of the arms were plated in standard CFC. Number of colonies 
recovered in total and based on their morphology in CFC 1 (A and B) and CFC 2 (C and D)   
are plotted. Representative images of replated CFC from UT, ACH and NEPI treated cells (E). 
As the starting number of cells plated in CFC was different in each of the 3 samples, the 
number of CFC obtained was expressed relative to UT in each sample. For CFC1 the number 
of colonies recovered in each arm was adjusted by the CML LSCs expansion after 3 days in 
vitro culture. 
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6.1.5 Investigation into the activity of neurotransmitter signalling 

pathways in CML LSC 

As already mentioned in the chapter introduction, the heterotrimeric Gα protein signalling 

pathways, which are core to many neurotransmitter signalling pathways and in particular to 

NEPI and ACH signalling, were shown to be significantly associated with the bivalent 

promoters in the epigenetic screen of HSC and LSC. Therefore it was felt necessary to 

investigate if any of these signalling pathways were active and modulated by the 

neurotransmitters tested, in particular NEPI and ACH being the ones which had produced 

the most significant biological effects and known to mainly signal through the Gα protein 

signalling pathways. Based on the original genome-wide and epigenetic screen carried out 

in our laboratory, the pathways which appeared to be activated in LSC maintenance were 

mainly the α adrenergic receptor signalling pathway for NEPI and the muscarinic receptor 

1 and 3 signalling pathway for ACH (figure 6-1). Both α adrenergic receptor and 

muscarinic 1 and 3 receptors are part of the G protein coupled receptor family and their 

signalling pathways have been reviewed in the Introduction section 1.1.2.2.2. Several 

components of these pathways were analysed. Amongst the receptors both the muscarinic 

receptor 3 (CHRM3) and the α2 adrenergic receptor (ADRA2A) were detected in CML LSC 

with ADRA2A levels also being upregulated by exposure to ACH and NEPI. These 

receptors activate the Gi and Gq subtypes of Gα proteins and, through Gq, PLCB1. PLCB1 

activates several isoforms of PRKC. Amongst those, PRKC epsilon (PRKCE) has emerged 

as a possible oncogene in several solid tumours430,431. Interestingly Gi, PLCB1 and PRKCE 

gene expression levels appeared upregulated following NEPI and ACH stimulation in 

CML LSCs (figure 6-6). Taken together these results suggest that some of the signalling 

pathways modulated by both NEPI and ACH are present and active in CML LSCs and 

confirm that neurotransmitters can also generate signals in haemopoietic stem cells. 
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Figure 6-6 Gene expression changes of components of neurotransmitter signalling 
pathways in CML LSC following exposure to NEPI and ACH 
Gene expression changes for target genes were measured in CML LSC (n=3) samples 
following 3 days coculture on an OP-9 stromal layer in the presence of ACH (100nM), NEPI 
(1μM) or no drug. Differences in gene expression levels following treatment were calculated 
using the 2-∆∆Ct method after normalisation within each sample of candidate gene 
expression levels against the expression levels of two housekeeping genes (GAPDH and 
TBP). RQ of candidate gene mRNA expression following each treatment was then plotted as 
log2 of the 2-∆∆Ct values (with the UT cells having a value of 0 in the graph being the 
calibrator). 
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6.1.6 Effects of neurotransmitters on gene expression levels of 

regulators of quiescence and maintenance 

After showing that NEPI and ACH can activate specific neurotransmitters signalling 

pathways, gene expression changes in key regulators of quiescence and maintenance of 

CML LSCs were measured following all 5 neurotransmitter treatments. Interestingly 

consistent correlative changes in genes involved in haemopoietic stem cell quiescence and 

maintenance of CSC and LSC in general, such as cyclin D1, CDKN1A/p21 and ID1 were 

only seen following NEPI treatment and to a lesser extent ACH and 5HT treatment (figure 

6-7 A). Moreover upregulation of TGF-β1 and its cognate receptors TGF-β1 R1 and R2 

gene expression was also seen only following NEPI and ACH treatment (figure 6-7 B). 

TGF-β1 has recently been shown mainly in mouse models to play a key role in CML LSC 

maintenance111. It is worth noting that similar changes in gene expression levels were not 

observed following HIS and GLU treatment and only to a reduced level following 5HT 

treatment. This supports the conclusion that the correlative gene expression changes 

observed in these experiments were important to the biological effects seen following 

NEPI and ACH treatment as they were not observed following treatment with the 

neurotransmitters which had not elicited significant biological responses. 

Overall these data support the conclusion that NEPI and ACH activate known pathways 

central to LSC and HSC quiescence/maintenance. Whether these effects are directly caused 

by the activation of their signalling pathways or through upregulation of other mediators 

cannot be inferred based on these data. However the upregulation of TGF-β1 and its 

receptors is suggestive of a role for this cytokine in the effects seen following NEPI and 

ACH treatment. 
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Figure 6-7 Gene expression changes in regulators of LSC quiescence/maintenance 
following neurotransmitter treatment 
Gene expression changes for genes central to HSC and LSC quiescence and maintenance 
(A) and TGF-β1 and its receptors (B) were measured in CML LSC samples (n=3) following 3 
days coculture on an OP-9 stromal layer in the presence of ACH (100nM), GLU (10μM), HIS 
(100μM), NEPI (1μM), 5HT (5μM) or no drug. Differences in gene expression levels following 
treatment were calculated using the 2-∆∆Ct method after normalisation within each sample of 
candidate gene expression levels against the expression levels of two housekeeping genes 
(GAPDH and TBP). RQ of candidate gene mRNA expression following each treatment was 
then plotted as log2 of the 2-∆∆Ct values (with the UT cells having a value of 0 in the graph 
being the calibrator). 
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6.2 Assessment of the effects of TGF-β1 on CML LSC 
quiescence and maintenance 

TGF-β1 is a cytokine with pleoiotropic effects which vary depending on the cell context on 

which it acts109. It has been shown to act as a negative regulator of HSC proliferation in 

vitro although its effects can be different on more mature progenitors112-114 (see section 

1.1.2.2.1 for detailed discussion). In CML stem cell biology, the role of TGF-β1 has been 

investigated for a long time. Most of the older reports showed, using long term culture of 

primary CML MNC, that CML SPC are still responsive to the inhibitory effects of TGF-β1 

on proliferation. However they did not investigate the role of TGF-β1 in CML LSC 

maintenance, but focused on trying to understand why primary CML SPC displayed a 

highly proliferative phenotype despite being responsive to TGF-β1259,432. More recently a 

report using BCR-ABL positive cell lines and primary CML CD34+ cells from CP patients 

showed higher sensitivity of BCR-ABL positive cells to TGF-β1 signalling and that 

inhibition of TGF-β1 signalling, together with IM, increased the kill of CML CD34+ cells, 

possibly by inducing quiescent cells into cycle, although this was not definitively 

proven433.  Consistent with this, Naka et al have very recently demonstrated a central role 

for TGF-β1 in CML LSC maintenance through its inhibition of AKT signalling and 

concomitant activation of FOXO3a transcription factors in a CML mouse model. They also 

show that inhibition of TGF-β1 signalling together with IM led to prolonged survival of 

mice affected by CML111, which also suggests that this pathway is more relevant to CML 

LSC maintenance than normal HSC maintenance. Therefore it appears that inhibiting the 

TGF-β1/AKT axis might lead to preferential CML LSC exhaustion. However very little 

work on the role of TGF-β1 in survival, proliferation and maintenance of an enriched 

population of primary human CML LSCs (CD34+ CD38-) has been performed, while 

nothing is known of the pathways regulated by TGF-β1 in the same population. Working 

on a pure or at least enriched population is essential when trying to understand TGF-β1’s  

role in CML LSC biology as TGF-β1’s effects on CML cells are very dependent on the 

cell context, as shown by another report which demonstrates that silencing TGF-β1 

signalling by BCR-ABL oncoprotein is necessary to the survival of CML BC derived cell 

lines250. In the next section the effects of TGF-β1 in controlling human CML LSCs cell 

cycle regulation, survival and signalling was investigated and compared to its effects on 

normal HSCs. Finally using the more physiological OP-9 coculture in vitro model, a 

strategy targeting TGF-β1 signalling in primary CML LSCs was assessed for its effects on 

proliferation, maintenance and signalling.   
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6.2.1  Effects of TGF-β1 on CML LSC and normal HSC cell cycle, 

apoptosis and signalling 

In a first set of experiments the effects of TGF-β1 in inducing quiescence and apoptosis 

and on signalling in CML and normal CD34+ CD38+ and CD34+ CD38- populations were 

assessed. Although both CML LSCs and normal HSCs produce autocrine TGF-β1, this 

might not be active in a liquid in vitro culture system in the absence of stroma97,111. This is 

because TGF-β1 is secreted as a latent protein which requires activation by the stroma110. 

Therefore in these experiments TGF-β1 was supplied exogenously to CML and normal 

CD34+ cells cultured in vitro in SFM+PGF at a concentration of 5ng/mL, a concentration 

chosen based on published studies in the literature433, but above all shown to be present in 

the BM stroma of CML patients275. AKT phosphorylation levels on threonine 308 (a 

known activation marker of this protein) were then measured at 8 hours following start of 

culture by intracellular flow cytometry, while high resolution cell cycle analysis (see 

2.3.2.2) and standard annexin-V staining were performed at 24 hours. All these assays 

were combined with surface staining to allow characterisation of the effects within 

phenotypically defined subpopulations of SPC.  

TGF-β1 increased the number of cells in G0 in both CML populations to a similar extent 

(by about 10%) (figure 6-8 A). Although a higher proportion of normal HSCs were 

quiescent compared to CML LSCs (93% versus 52% respectively) no further induction of 

quiescence was seen in normal HSCs and only a mild increase (about 6%) of the G0 

population was seen in normal HPCs at 24 hours (figure 6-8 B). While a variable degree of 

apoptosis induction was detected in CML LPCs and normal HSCs and HPCs, no 

significant induction of apoptosis was seen in CML LSCs following TGF-β1 treatment at 

24 hours (figure 6-8 C and D). Although CML LSCs expressed lower levels of p-AKT 

compared to CML LPCs, its levels were further reduced by TGF-β1 (figure 6-8 E). 

Conversely both normal HPCs and HSCs expressed barely detectable levels of p-AKT (just 

above isotype control levels) which were only mildly affected by TGF-β1 (figure 6-8 F).    

These data confirm that TGF-β1 induces quiescence of CML LSCs within 24 hours 

without causing concurrent apoptosis. This effect is at least partially secondary to 

downregulation of AKT signalling based on the correlative changes in p-AKT levels 

following TGF-β1 exposure. Conversely normal HSCs express very low levels of p-AKT, 

are mostly quiescent and not induced into further G0 arrest by TGF-β1. Taken together 

these results suggest that CML LSCs are more sensitive than normal HSC to TGF-β1 
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induced quiescence and could therefore be more dependent on TGF-β1 signalling for their 

maintenance. 
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Figure 6-8 Effects of TGF-β1 on CML SPC and normal HSPC cell cycle, apoptosis and 
signalling 
CML CD34+ (n=3) and normal CD34+ (n=2) cells were cultured in SFM+PGF in the presence 
of TGF-β1 at 5ng/mL or no drug. At 24 hours cells were then first stained for CD34 and CD38 

and thereafter high resolution cell cycle analysis was performed as explained in 2.3.2.2 in 
CML (A) and normal (B) samples. Apoptosis was measured by annexin-V staining in CML 
(C) and normal (D) samples. P-AKT levels were measured at 8 hours by intracellular flow 
cytometry in the same CML (E) and normal (F) samples. Levels of p-AKT were calculated 
based on MFI of antibody stained samples relative to isotype stained samples. 

  



Chapter 6  223 
 
6.2.2 Effects of inhibition of TGF-β1 signalling on CML LSC 

quiescence, self-renewal and signalling 

In order to investigate the effects of inhibition of TGF-β1 signalling on CML LSC 

proliferation, self-renewal and signalling, experiments were undertaken using the OP-9 

stromal coculture method previously described (see 6.1.1). The presence of stroma in this 

system would allow for CML LSC autocrine produced TGF-β1 to be activated so that the 

effects of modulating the TGF-β1 signals would be assessed in a more physiological 

situation.  Overall as previously mentioned, this also represents a better model to study 

mechanisms regulating quiescence in vitro as CML LSCs would be exposed to both 

positive and negative regulators of haemopoiesis. It should be noted that in the previous 

liquid culture experiments carried out in the presence of PGF (i.e. mainly positive 

regulators of haemopoiesis) almost 50% of CML LSCs were in cycle after 24 hours which 

confirms the inadequacy of such a system to study regulators of quiescence and the effects 

of their pharmacological modulation. 

CML CD34+ CD38- cells were therefore sorted and cultured on an OP-9 stromal layer with 

no drug or in the presence of the TGF-β1 R1 kinase inhibitor LY at 10μM as previously 

published111. Effects on proliferation and recovery of cells were then assessed using the 

CellTrace Violet stain as previously described (6.1.2). After 3 days in culture in the 

presence of LY there was a reduction in the recovery of undivided CML LSCs together 

with an overall reduction in CD34+ cells recovered (figure 6-9 A). These data show that 

inhibition of TGF-β1 signalling causes a reduction in the quiescence of CML LSCs with 

concurrent reduction in their overall survival. Consistent with this LY decreased the 

number of CFC 1 produced compared to UT with similar effects on both erythroid and 

myeloid/mixed colonies. These effects were confirmed also in CFC 2 as LY reduced the 

replating efficiency of CML LSCs compared to UT (figure 6-9 B). These data show that 

inhibition of TGF-β1 signalling reduces the self-renewal potential of CML LSCs. Finally, 

the effects seen following LY treatment correlated with downregulation of the gene 

expression of CDKN1A/p21, CDKN1B/p27 and PTEN, all key regulators of HSC 

quiescence/maintenance normally activated by TGF-β1, and upregulation of the growth 

promoting transcription factor MYC normally inhibited by TGF-β1117(figure 6-9 C). 

Overall these data suggest that inhibition of the TGF-β1 pathway reduces quiescence and 

self-renewal of CML LSCs, possibly through downregulation of CDKN1A/p21, 

CDKN1B/p27 and PTEN and upregulation of MYC and confirm in primary human CML 

samples the role of the TGF-β1 signalling in the maintenance of CML LSCs. 
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Figure 6-9 Effects of inhibition of TGF-β1 signalling on CML LSC quiescence, self-renewal 
and signalling 
CML LSC (CD34+ CD38-) (n=2) were stained with CellTrace Violet stain and then cultured for 
3 days on an OP-9 stromal layer with LY (10μM) or left UT before flow cytometry analysis. 
Percentages of the starting CD34+ cells recovered within each division and in total  
following treatment were calculated as explained in 2.3.2.3 (A). After 3 days in culture in the 
same conditions as before, 2,000 cells from each of the arms were plated in standard CFC 
(n=1). Number of colonies recovered in total and based on their morphology in CFC 1 and 
CFC 2 are plotted (B). For CFC1 the number of colonies recovered in each arm was adjusted 
by the CML LSCs expansion after 3 days in vitro culture. Gene expression changes for 
CDKN1A/p21, CDKN1B/p27, PTEN and MYC in LSC samples (n=2) following 3 days coculture 
on an OP-9 stromal layer in the same conditions as above were calculated using the 2-∆∆Ct 
method after normalisation within each sample of candidate gene expression levels against 
the expression levels of the housekeeping gene GAPDH. RQ of candidate gene mRNA 
expression following each treatment was then plotted as log2 of the 2-∆∆Ct values (with the 
UT cells having a value of 0 in the graph being the calibrator).  
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6.3 Summary and future directions 

6.3.1 Novel putative role of NEPI and ACH in CML LSC 
maintenance 

The work presented in this chapter aimed to investigate novel autocrine and paracrine cues 

involved in CML LSC maintenance. It originated from an unbiased genetic and epigenetic 

screen which suggested a potential role for several neuromediators signalling pathways in 

maintenance of CML LSC. In order to validate these findings a set of in vitro experiments 

of primary CML LSCs (CD34+ CD38-) were designed using a stromal coculture setup with 

OP-9 cells, to mimic more closely the BM niche. Studying stem cell function in in vitro 

assays is inevitably limited and needs to be complemented with in vivo experiments, such 

as repopulating assays of immunodeficient host, which is an obvious limitation of the 

investigations presented. Nevertheless interesting findings were generated as a result of 

these in vitro experiments.  

None of the neuromediators tested, at the concentrations used in the experiments, were 

toxic to CML LSCs. Their effects on CML LSC proliferative ability in short term liquid 

culture experiments were mild as only a slight reduction of the expansion in cells in later 

divisions relative to UT cells was observed with no obvious effects on the undivided 

population. However, an effect on CML LSC self-renewal based on replating capacity was 

observed for two of the neuromediators tested, i.e. NEPI and ACH. This was also 

associated with a mild increase in colony forming ability after short term culture in the 

presence of NEPI and ACH with a relative increase in more primitive colonies, such as 

CFU-GM. It is worth noting that due to limited cell numbers and the necessity to screen 

multiple neurotransmitters, it was not possible to titrate the concentration at which all the 

tested neuromediators were used so the concentrations used in the experiments were based 

on published work often in different cell model systems108,422,427-429. It is therefore possible 

that in some cases either inadequate or excessive concentrations were used which might 

explain the lack of effects seen apart from NEPI and ACH. In this respect it is interesting 

however to note that  NEPI was the only neuromediator for which a study on its effects on 

primary HSCs had been published and therefore its concentration was chosen based on 

effects seen on a similar model system108. This might be one reason why NEPI was the 

neuromediator yielding more positive results. Also amongst all the neuromediators tested, 

NEPI is the one which has been linked more to HSC function (see section 1.1.2.2.2) so far, 

so it is possible that it is the one with most relevant biological function in this 
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setting108,127,128. Moreover the heterotrimeric Gα protein signalling pathways, which were 

shown in the epigenetic screen to be significantly associated with the bivalent promoters in 

the CML LSC, are the most important signalling pathways downstream of NEPI and ACH, 

although they also play a role to a lesser extent in the signalling of the other 

neuromediators tested123. All these considerations might help to explain why amongst all 

neuromediators tested, NEPI, and to a lesser extent ACH, appeared to produce the most 

biologically relevant results. 

The possible mechanisms of the effects seen were studied by analysing gene expression 

changes following 3 days culture of CML LSCs in the presence of neurotransmitters. The 

heterotrimeric Gα protein signalling pathways, activated by both NEPI and ACH, were 

shown to be present and active in CML LSCs upon stimulation with these neuromediators. 

This finding reinforces the hypothesis that heterotrimeric Gα protein signalling pathways 

activated via neuromediators present in the BM niche might indeed play a role in CML 

LSC maintenance. Moreover upon stimulation with neuromediators other genes more 

commonly involved in HSC and also LSC quiescence/maintenance, such as 

CDKN1A/p2195 and ID1380, were shown to be upregulated, which provides a potential 

mechanism for the effects seen. Reassuringly the effects on these genes were only 

observed following treatment with NEPI and ACH which, as mentioned, were the only two 

neuromediators clearly showing an effect on CML LSC self-renewal. This result therefore 

further validates the effects seen following NEPI and ACH treatment and also suggests that 

the correlative changes in these genes expression might be relevant to the biological effects 

seen. Moreover the upregulation of both TGF-β1 (mainly for ACH) and TGF-β1 R1 (for 

both NEPI and ACH) observed would suggest that some of the effects seen might be 

secondary to upregulation of the TGF-β1 pathway in CML LSC.  

The potential role of NEPI and ACH in CML LSC maintenance is a completely novel 

finding and shows the value of using unbiased screens to highlight otherwise unknown 

mechanisms, in this case, potentially relevant to the maintenance of CML LSC. How does 

this fit with what is already known in the literature about neuromediators and 

haemopoiesis? As discussed in the Introduction (section 1.1.2.2.2), only recently a role for 

neuromediators, and in particular NEPI, in different aspects of HSC biology has been 

shown. This included a role for NEPI in indirectly regulating HSC egress from the BM by 

suppressing endosteal osteoblast function and leading to reduction in the levels of a key 

chemokine involved in HSC BM retention, SDF1127.  Also treatment of human CD34+ 

cells with NEPI (similar to what was done in CML LSC in the work presented, except that 
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here an even more pure stem cell subset i.e. CD34+ CD38- was tested) has been shown to 

increase their mobilisation, proliferation and repopulation capacity in immunodeficient 

hosts108,128. The effects of NEPI on CML LSC migration were not tested and although the 

effects seen on short term liquid culture were consistent with a mild antiproliferative effect, 

in the first round of CFC both NEPI and ACH already produced an increased colony 

output relative to UT, which suggests that indeed these neurotransmitters increased 

proliferative potential of CML LSC. The fact that this effect was carried over into CFC 

replating suggests that these proliferative effects were also associated with maintenance of 

self-renewal capacity and again would be consistent with the increased repopulating 

capacity seen in normal HSCs exposed to the same agent. In summary, it appears that 

NEPI, and ACH to a lesser extent, increase the proliferative capacity of primitive CML 

LSCs, while maintaining their self-renewal capacity.  

Although the effects of NEPI and other neuromediators in CML cells have never been 

published before, it is worth mentioning that a single report published several years ago 

showed upregulation of G protein coupled receptors for neuromediators in CML CD34+ 

relative to normal CD34+ cells421, although their functional role was not investigated. More 

recently in AML a putative role for dopamine activated pathways has been shown in 

maintenance of LSC. A dopamine receptor antagonist was shown to reduce LSC 

engraftment in irradiated hosts and to reduce viability and CFC output of both AML cell 

lines and primary AML samples, while the opposite effects were seen when the dopamine 

receptor was stimulated. Moreover this could be combined with standard cytotoxic 

treatment (cytarabine) leading to almost complete elimination of CFC output at low, non 

toxic concentrations of cytarabine420. Although dopamine signals via different receptors 

compared to NEPI and ACH, it is a precursor of NEPI and overall these findings are 

supportive of the putative role of neuromediator signalling pathways in haematological 

malignancies and LSC survival (figure 6-10). 



Chapter 6  228 
 

SelfSe

Osteoblast

LSC↑ Self‐renewal
↑ TGF‐β1
↑ Wnt

 
Figure 6-10 Model for control of LSC self-renewal by different cell types in the BM niche 
LSC are exposed to several different cues from different cell types in the BM niche to 
control their self-renewal. A role for the nervous system has only recently being elucidated 
and appears to act via direct and indirect effects such as possibly stimulation of other 
pathways including Wnt and possibly TGF-β1. Abbreviations: MSC, mesenchymal cell.  

In conclusion, although preliminary, these findings are suggestive of a potential role of 

neuromediators, in particular NEPI, in CML LSC maintenance, which could be targeted 

for therapeutic purposes. However the limitations of the work presented should also be 

taken into account. Although CD34+ CD38- cells represent an enriched population of CML 

LSCs, they still contain a significant number of progenitors and therefore it is necessary to 

take this into account when discussing the role of neurotransmitters on CML LSC 

maintenance based on the experiments done. In fact, as already mentioned, the best way to 

confirm an effect on CML LSC is by functional in vivo assays. It might well be that using 

more stringent functional assays to assess maintenance of CML LSC, some of the effects 

seen could be amplified if these are truly CML LSC specific effects.  Also, as already 

mentioned the mechanisms of action for NEPI and ACH are still rather speculative and 

require further experimental evidence. In particular the involvement of TGF-β1 in the 

effects seen should be investigated by assessing the effects of NEPI on p-AKT and p-

SMAD levels and also FOXO activity in more detail. It might also be worth testing if the 

inhibition of the TGF-β1 pathway would reverse the effects seen with NEPI and ACH, 

including any effects detected at the molecular level. Moreover it is worth noting that in 

normal HSC a role for Wnt/β-catenin in the effects seen following NEPI stimulation108 had 

been proposed and this avenue might also be worth investigating. Eventually the role of 

these neuromediator related pathways in normal HSC maintenance versus CML LSC 

maintenance should be compared directly as this might clarify if these pathways could be 

exploited therapeutically. As is often the case in CML, there is a great degree of overlap 

between the pathways relevant to CML LSC and normal HSC maintenance and therefore 
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unless CML LSCs are proven to be more dependent on them, their therapeutic exploitation 

might be limited. 

6.3.2 TGF-β1 induces quiescence in primary CML LSC via 
downregulation of p-AKT levels and its effects can be 
reversed through a specific inhibitor 

The investigations on TGF-β1 in primary CML LSC were prompted by a variety of 

reasons. TGF-β1 has long been known to act as a negative regulator of both normal HSC 

and LSC proliferation. Moreover these effects on proliferation have only recently been 

linked to an increase in repopulating capacity of both normal HSC and CML LSC in 

mouse models. The observed upregulation of both TGF-β1 and its receptors following 

NEPI and ACH treatment of CML LSCs also sparked further interest in this pathway as a 

major regulator of primary CML LSC maintenance. While the effects in both normal and 

CML mouse models of TGF-β1 have recently been reported, its effects in the 

complementary model of primary CML LSCs has not been as thoroughly investigated. 

Moreover while in mouse models its mechanism of action has been linked to inactivation 

of AKT and consequent upregulation of FOXO3a activity111, the mechanisms underlying 

its putative effects in human primary CML LSC are still unknown. Finally a direct 

comparison of the sensitivity to TGF-β1 effects in normal HSC and CML LSC was felt 

necessary to clarify if these two cell types respond differently and therefore if this pathway 

could be therapeutically exploited. To clarify these issues different sets of experiments 

were performed, including in vitro culture experiments in the presence of exogenous TGF-

β1 and stromal coculture experiments with OP-9 cells to more closely mimic the BM 

niche.  

The results of the experiments performed showed that TGF-β1 is capable of inducing G0 

arrest in CML LSCs to a higher degree than in normal HSCs. These effects were not 

associated with toxic effects to the same cells and correlated with downregulation of AKT 

activity. In the stromal coculture experiments, inhibition of TGF-β1 signalling was 

associated with a reduction in undivided cells recovered relative to UT and also a reduction 

of overall cells recovered. These results suggested a role for TGF-β1 in preserving CML 

LSC quiescence and also their overall viability. Upon TGF-β1 R1 kinase inhibition, both 

CML LSC clonogenic potential and self-renewal capacity were reduced.  All these effects 

correlated with biologically consistent gene expression changes as negative cell cycle 

regulators, normally induced by TGF-β1, such as CDKN1A/p21 and CDKN1B/p27, were 

downregulated by the TGF-β1 R1 kinase inhibitor, while the opposite effects were 
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observed for a positive regulator of cell cycle, such as MYC, normally downregulated by 

TGF-β1 signalling117. 

All the above findings are consistent with those recently reported by Naka et al who 

studied the role of TGF-β1 in CML LSC maintenance using mouse models111 and support 

their conclusion in the complementary primary human CML LSC model system. Moreover 

they support the hypothesis that upregulation of TGF-β1 signalling might contribute to the 

biological effects seen following NEPI and ACH stimulation of CML LSCs. The overall 

downregulation of AKT signalling, as shown by both reduced AKT phosphorylation 

following TGF-β1 treatment and downregulation of PTEN gene expression levels upon 

treatment with the TGF-β1 R1 kinase inhibitor LY, support the hypothesis that AKT 

signalling plays a central role in the mechanism of action of TGF-β1 and its effects on 

CML LSC. The ability of TGF-β1 to reduce AKT signalling in HSC, possibly through its 

effects on lipid raft clustering97, has been already reported and discussed in the 

Introduction (see section 1.1.2.2.1). It is interesting to note that recently several reports 

have shown that phenotypically defined murine and human CML LSCs have lower levels 

of p-AKT compared to CML LPCs111,338, despite the fact that mRNA and protein 

expression of BCR-ABL oncoprotein appears to be even higher in the LSC subsets as 

previously reported329,434 (also personal data not shown). The findings from the 

experiments presented are therefore consistent with those already reported and with a 

model whereby although BCR-ABL protein and mRNA expression is increased in CML 

LSC, AKT activity is attenuated possibly explaining their quiescent phenotype. The 

observation that TGF-β1 is capable of modulating AKT activity and inducing quiescence 

in CML LSC would suggest that it might play a key role in both of these processes in CML 

LSC. In the Naka report this putative mechanism underlying TGF-β1 effects on CML LSC 

maintenance was taken further by showing that TGF-β1, by reducing AKT 

phosphorylation, caused reactivation of FOXO3a transcription factor which plays a central 

role in both HSC120 and LSC111 maintenance; however while this was not demonstrated in 

the experiments presented,  it is worth noting that recent evidence from our lab shows that 

p-AKT levels are lower with a concurrent activation of FOXO3a transcription factor in 

human CML LSCs compared to LPCs435. This observation provides a possible link 

between p-AKT levels and FOXO activity in the primary setting too and renders it possible 

to speculate that a similar pathway to the one shown in mouse CML LSC is also active in 

primary CML LSC following TGF-β1 stimulation (figure 6-11). 
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Figure 6-11 Putative mechanism for reduced AKT activity and TGF-β1 induced quiescence 
in CML LSC 

 
TGF-β1 signalling has been involved in maintenance of other CSC, such as glioma CSC, 

thus suggesting that its effects on stem cell maintenance might be more generalised and 

relevant to different cell contexts436. TGF-β1’s ability to also regulate normal HSC 

quiescence leads to the central question if its effects on inducing CML LSC quiescence can 

be exploited therapeutically without detrimental effects on normal HSC maintenance. An 

interesting finding from the work presented was that normal HSCs appeared to be less 

sensitive to TGF-β1 stimulation than CML LSCs as the induction of quiescence in normal 

HSCs was rather limited upon TGF-β1 exposure. Consistent with this, AKT activity in 

normal HSCs was already very low and did not decrease any further upon TGF-β1 

exposure. This is consistent also with the observations from Naka et al where CML mice 

treated with TGF-β1 R1 kinase inhibitor alongside IM showed prolonged survival with no 

evidence of toxicity to normal HSCs. This suggests a preferential effect of TGF-β1 in 

controlling quiescence of CML LSC versus normal HSC, via its effects on AKT activity. 

Another report has also suggested that the presence of BCR-ABL upregulates TGF-β1 

signalling pathway activity in CML cells and this could contribute to their increased 

sensitivity to TGF-β1 exposure433. Finally, it has long been known that while normal HSCs 

are responsive to a variety of negative cell cycle regulators, such as TGF-β1 and 

chemokines, such as MCP-1259, CML cells are only responsive to some of the above 

regulators, such as TGF-β1. This would support a model where CML LSCs are more 

heavily reliant on TGF-β1 signalling relative to normal HSCs (possibly because of its 
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ability to control the constitutive AKT activity of CML LSC) as TGF-β1 is one of the few 

signalling pathways capable of controlling their quiescence given their lack of response to 

other negative regulators. Conversely in normal HSCs, their response to other negative cell 

cycle regulators can compensate for a lack of TGF-β1 signalling and preserve their 

quiescence. Taken together these observations suggest that inhibition of TGF-β1 signalling 

could preferentially push CML LSCs into cell cycle and make them sensitive to TKI 

treatment, while preserving normal HSCs quiescence, and could therefore be exploited 

therapeutically as supported by the results of Naka report in the CML mouse model (figure 

6-12).  

However, it has to be said that no evidence was provided in the experiments described for 

a therapeutic strategy targeting TGF-β1 signalling in CML and this is a limitation of the 

current experimental work which will require further investigation in the future, by 

combining TGF-β1 inhibitors with TKI, in both CML LSCs and normal HSCs, to assess 

their effects. In any case, application of TGF-β1 inhibitors to the treatment of CML 

warrants careful consideration mainly because a therapeutic strategy aiming to increase the 

proliferation of CML LSC carries the obvious risk of potentially leading to disease 

progression. It is worth noting that in their report Naka et al share, on similar grounds, the 

same concerns regarding such a therapeutic approach. Nevertheless it is indeed possible 

that in CML CP patients with minimal residual disease after long term TKI therapy, a 

therapeutic approach targeting TGF-β1 signals (or in that respect any other pathway central 

to CML LSC quiescence), together with TKI, might be safe and indeed capable of 

depleting CML LSCs leading to disease eradication and, as discussed in section 1.3.7.4.1, 

this is an approach currently being actively pursued  in the CML research field which will 

continue to attract further investigation over the next few years. 
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Figure 6-12 Putative model for the higher sensitivity of CML LSC to TGF-β1 signalling 
Normal HSC proliferation is controlled through multiple factors (such as TGF-β1, MCP-1 and 
others). In CML LSC, the presence of BCR-ABL reduces their responsiveness to some of 
these negative regulators, such as MCP-1. As a result, upon inhibition of TGF-β1 signalling, 
CML LSC are more easily pushed into cycle compared to normal HSC which can still rely on 
the control provided by other active negative regulators. This could provide a therapeutic 
advantage as CML LSC could be preferentially pushed into cycle by TGF-β1 inhibition and 
exhausted with little or no detrimental effect to normal HSC maintenance. 
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7 Final conclusions and future directions 

 

CML represents to date the most paradigmatic tumour in the field of cancer research. Since 

its original description, it was the first cancer for which a specific and consistent genetic 

lesion was demonstrated and subsequently shown to be pathogenic. Many other cancers are 

now being shown to have similarly specific and recurrent genetic abnormalities and with 

improved technology it is possible that such a feature will be recognised in the majority, if 

not almost all, known cancers enabling classification and diagnosis on more reliable 

genetic grounds rather than the currently used morphological features371,437. CML is also a 

paradigmatic example of a cancer following a stem cell model and as such represents an 

elegant disease model to study cancer stem cell biology. Finally CML is also the first 

disease where a better understanding of the tumour cell biology led to the development of 

rationally designed, targeted therapy and which again paved the way for similar 

developments in many other forms of both solid and haematological tumours372,438. These 

are probably the main reasons why CML, despite the fact that it is currently an area of less 

clinical need compared to other forms of cancer, still attracts the attention of so many 

researchers. 

Recently one of the main focuses of research in the CML field has been trying to 

understand if CML LSCs are “oncogene addicted”. This term, first coined by Weinstein, 

refers normally to the passive dependence of tumour cells on a particular activated 

oncogene for maintenance of their malignant phenotype and was originally illustrated 

using transgenic mouse models, whereupon inactivation of the oncogene, all tumour cells 

underwent proliferative arrest and/or apoptosis439. The situation in humans however might 

be more complex than in mouse models, partly because in mouse models oncogenes play 

an unusually potent role, and also because in humans the carcinogenic process is longer, 

thus allowing additional genetic/epigenetic changes to happen in cancer cells that might 

reduce their dependence on the oncogene. Nevertheless in CP CML, BCR-ABL represents 

the active oncogene in all patients and also a relevant therapeutic target given its 

pathogenic role which might support the notion that all CML cells are oncogene addicted. 

However, the clinical observations that, despite prolonged TKI therapy, CML stem cells 

persisted in patients’ BM, coupled with the in vitro insensitivity of the same cells to all 

currently used TKI (fully reviewed in section 1.3.7.4), has led many investigators to 

question the actual relevance of the BCR-ABL oncogene in the specific survival of LSC. 
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Two recent papers have addressed this issue and, using different assays and 

complementary models, came to the same conclusion, i.e. CML LSCs are not BCR-ABL 

oncogene addicted, or more precisely addicted to its TK activity337,338. The immediate 

consequence of this finding is that BCR-ABL TK alone is no longer a legitimate target for 

the eradication of CML LSCs and novel therapeutic targets intrinsic to the CML LSCs 

have to be found to achieve disease cure.  This has inevitably opened the research field in 

CML as now several novel avenues have to be investigated to understand specific LSC 

survival mechanisms. It is worth noting that this is also likely to have applications in other 

forms of cancer and will possibly be one of the reasons why CML will continue to be a 

paradigmatic disease in the future. 

With the current development of high throughput technologies and the emergence of a 

systems biology approach to biological research, a current method used to direct research 

in CML LSC biology has been to obtain, analyse and integrate, often using mathematical 

modelling, complex data sets generated using various technology platforms from different 

experimental sources. This means integrating information from genome, epigenome, 

transcriptome and proteome-wide data sets to identify specific features within a biological 

system (in this case CML LSC) to generate experimentally testable hypotheses which can 

further the understanding of the functions of specific gene/protein/pathways within a cell. 

The great advantage of such an approach is its unbiased nature which can, for example, 

highlight otherwise unknown mechanisms necessary to the survival of a LSC and which 

can be exploited therapeutically. 

The experimental work presented in this thesis fits into the wider perspective of 

understanding novel survival mechanisms of CML LSC. Moreover it stems from a 

combination of systems biology approach and more traditional hypothesis driven research. 

The interest in the role of GFs signalling in CML biology and pathogenesis is longstanding 

as it originates from original observations of the autocrine production of GFs in both BCR-

ABL positive cell lines and primary CD34+ cells270, and from the observations that CML 

SPC, although normally responsive to some GF signals, also show aberrant responses to 

others, which might explain their highly proliferative behaviour259. More recently however, 

results of genome and epigenome-wide screening performed in our laboratory have also 

highlighted the potential role of various known and novel GFs [N.B. as already mentioned 

in the Introduction the term GF/cytokine are used here in an interchangeable fashion to 

include any extrinsic regulator of SPC] in CML LSC maintenance, thus confirming, using 
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an unbiased screen, the validity of an investigation of the role of GFs signalling in CML 

LSC biology, while also providing novel specific research areas to focus on. 

Therefore the overall aim of this thesis was to investigate in further detail the role of 

known and novel GFs and their downstream pathways in CML SPC biology. The work 

started by characterising further the autocrine expression of GFs and cognate receptors by 

CML SPC relative to normal SPC, and in response to BCR-ABL kinase inhibition, to 

identify candidate GFs or downstream signalling pathways on which to concentrate the 

ensuing work (chapter 3).  The JAK2/STAT5 pathway as the downstream common 

signalling pathway of several GFs produced in an autocrine fashion by the CML cells 

relative to normal (chapter 4), and the BCR-ABL kinase independent autocrine TNF-α 

production by CML SPC (chapter 5), were thus identified respectively as a candidate 

signalling pathway and GF to study further. In particular their function in survival, 

proliferation and maintenance of CML SPC was tested mainly in the context of BCR-ABL 

kinase inhibition to try and validate their role as legitimate and exploitable therapeutic 

targets which specifically contribute to CML SPC survival in a BCR-ABL kinase 

independent fashion. The responses to the inhibition or stimulation of the same candidate 

GFs and signalling pathways were also assessed in normal SPC to test if any difference 

could be detected in the sensitivity of normal SPC to the modulation of these GFs 

signalling pathways to predict the potential toxicity of any therapeutic approach targeting 

them.  Finally, starting from the results of an unbiased screen, the putative role of novel 

neurotransmitter signalling pathways, specifically in CML LSC proliferation, viability and 

self-renewal, was also investigated (chapter 6). 

A detailed discussion of the research findings for each studied GF or downstream pathway 

function in CML SPC survival, proliferation and maintenance was presented at the end of 

each result chapter. Therefore in this final discussion, some overall conclusions stemming 

from the whole of the work presented in this thesis will be discussed. 
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7.1 GF signals control several aspects of CML SPC 
biology and interact with each other: identification of 
common therapeutically exploitable signalling hubs  

The overall work presented in this thesis supports a role for several GFs, whether produced 

in an autocrine fashion or by BM stromal cells, in supporting CML cell survival, 

proliferation and maintenance, even when the BCR-ABL kinase activity is inhibited. One 

overall interesting observation from the presented work is that there is evidence of 

crosstalk between different GFs signals with each of them potentially contributing to 

stimulate/inhibit through positive and negative feedback, the activity of the others. The 

ability, for example, of TNF-α to upregulate CSF2RB in CML CD34+ while also 

upregulating the mRNA expression of several GFs, such as GM-CSF and SCF, supports 

such a model. This observation suggests the existence of a more complicated network of 

GF interactions which requires further investigation to be fully elucidated. In this regard, it 

is also worth noting that GF signalling pathways often directly overlap or interact with 

each other, and that in CML cells, a physical interaction via BCR-ABL between 

JAK2/AKT and NFκB leading to modulation of MYC expression has already been 

shown366 that might be relevant in the crosstalk between different GFs previously 

mentioned. In any case a better understanding of these interactions could be potentially 

therapeutically exploitable if relevant key players amongst the GFs and downstream 

signals are identified which allow several potentially important pathways to be targeted at 

once.  

JAK2 has emerged from the work presented as one such possible key player given not only 

its ability to relay signals from a variety of GFs, but also the fact that its inhibition 

appeared to modulate the expression of other GFs, such as TNF-α  and the IL-4 receptor. 

Moreover JAK2 inhibition would also reduce signalling emanating from CSF2RB, which 

is upregulated by TNF-α itself. Although JAK2 is a possible example of a central 

signalling hub, further investigations could still help to identify both other relevant hubs 

within GFs signalling pathways, which should be targeted therapeutically, and potential 

resistance mechanisms of CML SPC to the therapies tested. Such investigations could 

benefit grossly from unbiased gene expression and (phospho)proteomics screens as shown 

only in a preliminary fashion by the presented JAK2 inhibitor + TKI proteomic screen 

which is currently being extended to the phosphoproteome. 
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In this regard, it is noteworthy that for example BCL6 and MYC have emerged as possible 

examples for, respectively, resistance mechanism and relevant downstream target in the 

work presented. BCL6, which recently was shown to be central to CML LSC resistance to 

TKI and have a central role in self-renewal signals of CML LSC378, was upregulated 

following JAK2 inhibitor and TKI combined treatment, highlighting a potential resistance 

mechanism to this treatment approach by CML SPC whose relevance warrants further 

investigation. This observation suggests that, despite its efficacy, JAK2 inhibition 

combined with TKI might still encounter resistance in a proportion of patients. Conversely 

the observation that both, JAK2 inhibition plus TKI and TNF-α inhibition plus TKI led to 

downregulation of MYC expression is an interesting finding which highlights MYC as a 

relevant therapeutic target in CML CD34+ cell survival. MYC has been reported to be 

central to BCR-ABL transforming capacity for a long time247, however only recently has 

its importance in CML cells as a central survival hub been fully appreciated366. A recent 

report using unbiased combined proteomic and gene expression analysis has shown MYC, 

in BCR-ABL positive cell lines, to be the convergence point of combined treatment with 

the TKI BOS and the multikinase inhibitor danusertib, while either agent alone was 

ineffective384. Also, in that setting, combined treatment was particularly effective in 

eliminating BCR-ABL positive cells carrying a multiresistant T315I mutation.  

Recently, MYC was shown to be a central transcription factor whose expression is under 

the control of epigenetic regulators often aberrantly regulated in AML cells. Newly 

developed targeted drugs interacting with these epigenetic regulators have now been 

shown to reduce MYC mRNA and protein expression and the activation of its downstream 

pathways necessary for maintenance of AML LSC, thus reinforcing the role of MYC in a 

closely related haemopoietic malignancy417. Its role in CML LSC survival needs further 

investigation. Indeed, recent work carried out in our laboratory in collaboration with 

Professor Tony Whetton in Manchester, using an extensive unbiased proteomic and 

phosphoproteomic screen, has shown that in CML LSC, several pathways under the 

control of MYC are more active relative to normal HSC, thus also suggesting in the 

primary CML model the importance of MYC to CML LSC survival. Although MYC 

transcription factor in itself has been always difficult to target because of the lack of a 

druggable enzymatic activity, the recent aforementioned development of novel drugs 

acting on the epigenetic regulation of its expression have made its therapeutic targeting 

possible. Initial results of work carried out in our lab using such drugs are indeed showing 

promise, as interference with MYC activity appears to specifically and effectively target 

CML SPC, while sparing normal counterparts (unpublished data). 
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7.2 Therapeutic exploitation of GF survival signals: 
advantages and pitfalls 

Overall the work presented in this thesis suggests that therapeutic targeting of various GF 

signals, or of their downstream pathways, is potentially helpful in improving the 

eradication of CML CD34+ cells when combined with standard TKI therapy. While this is 

potentially opening the opportunity to novel treatment options for CML patients 

(particularly as some of the drugs shown in this thesis to be effective in vitro have already 

reached clinical development), concern remains regarding the safety of all these treatment 

approaches. GF signals are often relevant to normal HSC survival and proliferation and 

indeed there is great overlap between CML and normal CD34+ cells in their reliance on 

these signals for their survival. Potential toxicity to normal CD34+ cells of some of the 

treatment approaches investigated in this thesis have been highlighted. These 

considerations stress the importance of improving our understanding of the differences in 

production and response to GFs of CML cells compared to normal.  

Autocrine production is indeed a mechanism which appears more relevant in some cases to 

CML cells. For example, the high level autocrine TNF-α production is peculiar to CML 

cells and in this context is mainly relaying proliferative and survival signals, therefore 

providing a potentially specific and hence non toxic therapeutic target. Moreover, it might 

even be possible to exploit high autocrine TNF-α production by CML CD34+ cells 

indirectly if its effects are redirected towards induction of apoptosis, by targeting the 

mechanisms which allow TNF-α to relay survival signals, such as NFκB activity and 

expression of IAPs, as shown in other cancer systems401. Another example is given by the 

higher expression of CSF2RB in CML compared to normal cells which would suggest that 

JAK2 signalling might indeed be more active in CML cells, thus providing a therapeutic 

window there too. These are just some of the examples originating from this work that 

show how a better understanding of the peculiarity of CML cell production and response to 

GFs might be exploited therapeutically. Therefore while it is likely that targeting some of 

these signalling pathways might inevitably lead to a certain degree of toxicity towards 

normal HSPC, it is possible that an improved understanding of the exact role of each GF in 

CML SPC biology relative to normal and its characterisation at the molecular level might 

render possible the identification of novel specific therapeutic targets. Further 

investigations are definitely warranted in this respect.  
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This issue is particularly relevant when mechanisms central to CML LSC maintenance and 

survival are identified, as it is likely that therapies targeting these mechanisms will be 

mainly employed in the eradication of persistent low level residual disease. It is therefore 

paramount to ensure that no damage to normal haemopoiesis occurs as a result of treatment 

approaches targeting CML LSC maintenance/survival pathways as this would potentially 

result in harm to a group of patients which is currently enjoying good responses and 

quality of life on TKI treatment. In this regard it is always important to compare directly in 

each case CML SPC and normal HSPC responses to the different treatment approaches 

investigated as was done most of the time in the work presented. Nevertheless, the final 

proof of lack of toxicity of any treatment approach will require in vivo data which 

obviously represents a limitation of the work presented. However when possible, the 

confirmation of any in vitro finding through in vivo data was sought through active 

collaboration with other groups active in the research field and in the future, as our 

laboratory animal facility develops, this will become possible in each case. In conclusion, 

although therapeutic exploitation of targeting GFs signals was shown in this thesis to be 

possible, particularly for those GFs differentially produced by CML cells, or for which the 

CML cell showed higher sensitivity, further confirmation of these findings is awaited 

through in vivo experiments currently underway or planned for the future and therefore a 

degree of caution is required before supporting these as possible treatment approaches. 
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7.3 Novel potential regulators of CML LSC 
quiescence/maintenance: avenues for future work 

CML LSC quiescence/self-renewal mechanisms, which have been shown to be BCR-ABL 

kinase independent, are amongst the main reasons behind CML LSC persistence in patients 

harbouring minimal residual disease on long term TKI therapy. In some of the work 

presented in this thesis the potential role of TGF-β1 and novel neurotransmitters in the 

control of both quiescence and self-renewal has been investigated. An interesting 

observation, which was common to both the neuromediator and TGF-β1 work, was the 

modulation of CDKN1A/p21, which suggests that this regulator of cell cycle can indeed 

play a central role in CML LSC quiescence/maintenance. Cdkn1a/p21 is known to control 

normal HSC maintenance, particularly under stressful conditions95. More recently however 

its role in AML LSC, and possibly colon cancer initiating cell maintenance, has been 

shown and it appears to be secondary to its ability to reduce DNA damage normally caused 

by the expression of oncogenes in malignant cells383,440. Its potential role in CML LSC 

maintenance is, however, novel. Given its recurrent appearance amongst the mechanisms 

of action of several putative regulators of CML LSC quiescence and self-renewal, its role 

could be central in this process and is worth further investigation in the future. Together 

with CDKN1A/p21, ID1 (an inhibitor of basic helix-loop-helix transcription factors) gene 

expression levels also appeared to be upregulated following NEPI and ACH treatment. 

Moreover its levels were downregulated by combined JAK2 inhibitor therapy and TKI and 

correlated with toxic effects on CML SPC. These results taken together suggest a potential 

role of ID1 in CML SPC survival and potentially also maintenance of more primitive LSC.  

ID1 has been shown to play a central role in HSC self-renewal 380,381 with more recent 

reports also supporting its potential role in promoting a myeloproliferative disorder in 

vivo382 and in maintaining colon cancer initiating cells383. Interestingly in the latter report, 

ID1 effects appeared to be secondary to its ability to upregulate CDKN1A/p21 expression, 

thus providing a speculative link between these two proteins. The simultaneous 

upregulation of both ID1 and CDKN1A/p21 by NEPI and ACH treatment raises the 

question of whether a similar mechanism to the one present in colon cancer initiating cells 

is also present in CML LSC.  Its role in CML LSC therefore warrants further 

investigations, including its potential link to CDKN1A/p21 function. In a similar manner to 

the importance of identifying central hubs common to different GFs pathways (such as  

MYC) when trying to therapeutically exploit GFs survival signalling, the identification of 

novel key regulators of CML LSC quiescence and self-renewal is necessary when trying to 
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understand the mechanisms of these processes. Both ID1 and CDKN1A/p21 appear to be 

two biologically plausible candidate regulators of these processes based on the results 

presented and published literature and might attract further future investigation as central 

convergence points of different signals regulating CML LSC quiescence and self-renewal. 

In conclusion, since its original description almost two centuries ago by Bennett441 and 

Virchow442, the CML research field has witnessed unparalleled progress in the 

understanding of the pathogenesis and, as a result, in the management of this condition. 

However the ultimate goal of disease cure achieved through non toxic and targeted 

therapies has still eluded the CML community. The recent clarification that CML LSCs are 

not BCR-ABL kinase dependent for their survival has however generated a revived effort 

to improve our understanding of the biology of LSC in the hope that this will lead to the 

development of therapies targeted towards this highly resistant (at least to current treatment 

approaches) population. It is now believed in the CML research community that only an 

approach combining a TKI to reduce disease burden and an agent to target the LSC is 

likely to achieve CML cure.  The work presented in this thesis fits in this bigger 

perspective by highlighting the contribution of GFs to the survival, proliferation and 

maintenance of CML SPC, while also investigating possible ways of therapeutically 

targeting some of these candidate GF signals. It is likely that at least some of these novel 

therapeutic strategies will reach clinical testing in the near future. Meanwhile more bench 

work, partly originating from some observations presented in this thesis, will be carried out 

in the future to clarify in further detail the role and interaction of these and novel GFs in 

CML SPC survival. This will help to improve our ability to target GFs survival signals in a 

more specific and effective fashion to eradicate the CML SPC. 
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Appendix I 

Custom designed PCR primer sequences 

GENE FORWARD 
PRIMER 

REVERSE 
PRIMER 

ANNEALING 
T°/ NUMBER 
OF CYCLES 

EXPECTED 
AMPLICON 
SIZE 

GM-CSF AACCTGAGTAGA
GACACTGC 

GATAATCTGGG
TTGCACAGG 

60°/40 225 basepairs 
(bp) 

HGF GAGTGGCATCAA
ATGTCAGC 

TCGATAACTCT
CCCCATTGC 

60°/40 214/229 bp (2 
splicing variant) 

IL-2 CAAACCTCTGGA
GGAAGTGC 

ATGGTTGCTGT
CTCATCAGC 

60°/40 153 bp 

IL-4 GTGCGATATCAC
CTTACAGG 

CACAGGACAGG
AATTCAAGC 

58°/40 298/250 bp (2 
splicing variant) 

SCF TCATTCAAGAGC
CCAGAACC 

TAAGGCTCCAA
AAGCAAAGC 

58° /40 330/240 bp (2 
splicing variant) 

TGF-β1 ACTGCAAGTGGA
CATCAACG 

TGCGGAAGTCA
ATGTACAGC 

60°/40 218 bp 

TNF-α CCTCAGCCTCTT
CTCCTTCC 

GGCTACAGGCT
TGTCACTCG 

60°/40 148 bp 
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TaqMan Gene expression assays 

GENE NAME ASSAY ID 
ADRA2A Hs01099503_s1 
APO-E Hs00171168_m1 
BCL6 Hs00277037_m1 
BCL-XL Hs01067345_g1 
CDKN1A/p21 Hs00355782_m1 
CDKN1B/p27 Hs00153277_m1 
CHRM3 Hs00327458_m1 
CSF2RB Hs00166144_m1 
Cyclin D1 Hs00765553_m1 
Cyclin D2 Hs00277041_m1 
Cyclin D3 Hs00426901_m1 
GAPDH Hs99999905_m1 
Gi Hs01053355_m1 
GM-CSF Hs00929873_m1 
GUSB Hs99999908_m1 
HGF Hs00300159_m1 
HPRT1 Hs02800695_m1 
IAP1 Hs01112284_m1 
IAP2 Hs01112284_m1 
ID1 Hs03676575_s1 
IL-4 Hs00174122_m1 
IL-4Rα Hs00166237_m1 
MCL1 Hs03043899_m1 
MYC Hs00905030_m1 
PLCB1 Hs00248563_m1 
PRKCE Hs00178435_m1 
PTEN Hs03673482_s1 
SCF Hs01030222_m1 
SURVIVIN Hs04194392_s1 
TBP  Hs99999910_m1 
TGF-β1 Hs00998129_m1 
TGF-β1R1 Hs00610320_m1 
TGF-β1R2 Hs00234253_m1 
TNF-α  Hs99999043_m1 
XIAP Hs01597783_m1 
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