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Abstract 

S.pneumoniae is the leading cause of bacterial pneumonia and meningitis. 

Pneumonia alone has been estimated to kill more children under the age of five 

than that caused by AIDS, malaria and tuberculosis combined. The current 

vaccines which are used to prevent pneumococcal infection only protect against 

a small number of the 90+ serotypes currently identified. Current issues which 

may prevent the long term use of these vaccines is capsular switching, a 

phenomenon observed where some strains are able to escape the vaccine 

through switching their capsule genes. Further serotype replacement has been 

shown to occur since the introduction of the PCV7 vaccine, where serotypes not 

protected against by the vaccine have caused a higher incidence of invasive 

pneumococcal disease compared to the pre vaccine era. One strategy to avoid 

this is via the use of a multi-component protein based vaccine which is serotype 

independent. 

The pneumococcus is normally found as a harmless commensal yet can also 

cause invasive disease as stated above, the pneumococcus is also the leading 

cause of otitis media. The ability for the pathogen to occupy a number of 

different niches and evade host defences is attributed to its large cache of 

virulence factors, including numerous cell surface adhesins. The ability of the 

bacteria to regulate genes required for adaptation to a specified niche is vital 

for survival. In this study a number of signalling systems that are able to 

modulate gene expression (specifically virulence factors) to facilitate adaptation 

to varying environmental conditions are assessed to determine the genes they 

regulate. Further key environmental signals are evaluated to determine the 

effect they have on regulation of important cell surface adhesins. 

The main systems used to modulate global expression changes are two-

component signal transduction systems (TCS). 13 TCS and one orphan response 

regulator are encoded in the pneumococcal genome. Little information is 

available with regards to the importance of each system, whether each system 

regulates its own separate collection of genes and the extent to which cross 

regulation may occur between these systems. This study used whole genome 

expression analysis data obtained through microarray analysis of single and 

double TCS mutants to assess the potential cross regulation of two chosen 
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systems. A number of the systems have also been shown to regulate the same 

islet, which encodes a pilus. Measuring expression of the islet itself enabled the 

role of the systems shown to regulate the islet to be assessed for potential 

interactions between the systems and whether a hierarchy exists. 

The pneumococcus is highly genetically variable due to its ability to become 

naturally competent, taking up DNA from the environment and recombining it 

into its genomic DNA to aid genetic variation and survival. The new era of whole 

genome sequencing has begun to shed light on just how variable this pathogen 

is. Although a number of TCS have been shown to regulate pilus expression, with 

the use of whole genome sequencing of two closely related strains (one contains 

reduced pili expression levels) a number of other factors have also been 

identified which have been shown to alter pilus expression, this includes a 

serine/ threonine protein kinase, pyruvate oxidase and lactate oxidase. Further 

the pneumococcus has been shown to respond to exogenously added hydrogen 

peroxide which increases pilus expression levels. Levels of hydrogen peroxide 

may act as a key environmental cue to signal to the bacterium that they are 

present in the nasopharynx and require increased levels of cell surface adhesins. 
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1.1 Streptococcus pneumoniae 

Streptococcus pneumoniae is a gram positive diplococcus that was first isolated 

simultaneously by George Sternberg and Louis Pasteur in 1881 (Sternberg, 1881, 

Pasteur, 1881). In the majority of instances this organism is found as a coloniser 

in the nasopharynx of children and adults but can also cause invasive disease. 

S.pneumoniae can cause a number of diseases but is most commonly associated 

with causing pneumonia, septicaemia, meningitis and otitis media, with the 

highest disease burden seen in young children, the elderly and the 

immunocompromised. 

The pneumococcus has a polysaccharide capsule, which is an important virulence 

factor and is also used as a classification system assigning each isolate into a 

serogroup. Over 90 pneumococcal capsular types (serotype) have currently been 

discovered, with serotype specific antibodies produced against each 

(Henrichsen, 1995, Park et al., 2007, van Dam et al., 1990, Bratcher et al., 

2010). Some serotypes induce the production of antibodies that are cross 

reactive to other serotypes due to similar capsule structure and some strains 

express no capsule and are known as non typables (Smart, 1986). S.pneumoniae 

can be further phenotypically identified in a number of ways, though production 

of alpha haemolysis on blood agar, bile solubility and optochin sensitivity. Yet 

these tests do not necessarily distinguish this pathogen from other viridans group 

streptococci with some S.pneumoniae strains observed that are optochin 

resistant and bile insoluble (Kontiainen & Sivonen, 1987, Phillips et al., 1987, 

Fenoll et al., 1990). For more reliable classification multi locus sequence typing 

(MLST) is used which allows characterisation of pneumococcal isolates based on 

the sequence of seven housekeeping genes (aroE, gki, gdh, xpt, recP, spi and 

ddl), with variation in the alleles of these genes in different isolates used to 

assign a sequence type (ST), which can then be used as a gauge of relatedness to 

other isolates, there are currently over 4000 different ST identified (Enright & 

Spratt, 1998).  

1.1.1 Disease burden 

In 2000 there were roughly 14.5 million cases of invasive pneumococcal disease 

(IPD) encompassing meningitis, septicaemia and pneumonia (O’Brien et al., 
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2009). S.pneumoniae is the leading cause of bacterial pneumonia and meningitis 

worldwide. Pneumococcal infections account for 11% of all child deaths between 

the age of 0-5 years old, which equates to roughly 800,000 deaths per year 

(Bryce et al., 2005). S.pneumoniae is the leading cause of bacterial pneumonia. 

WHO statistics state deaths from pneumonia equate to more deaths than that 

caused by tuberculosis, malaria and AIDS combined. Over 90% of deaths from 

pneumococcal infection occur in the developing world, with the highest burden 

present in Africa and Asia (O’Brien et al., 2009). The burden of pneumococcal 

disease is thought to be greatly underestimated due to less equipped diagnostics 

facilities in the developing world, inaccessibility of hospitals and potentially 

some deaths being attributed to alternative causes such as HIV or influenza, 

where pneumococci cause a secondary bacterial infection which is often the 

cause of death. 

Although there are over 90 serotypes only a small proportion contribute to the 

majority of IPD cases, with the most common disease causing serotypes globally 

including serotypes 1, 5, 6A, 6B, 14, 19F and 23F prior to the introduction of the 

first pneumococcal conjugate vaccine (PCV7) in 2000, discussed further in 

section 1.4 (Johnson et al., 2010). Serotypes 1, 5 and 14 accounted for 30% of all 

cases of IPD in 20 of the poorest countries (Johnson et al., 2010). The major 

disease causing serotypes often vary between different countries making it hard 

to produce a vaccine that gives global protection. Introduction of PCV7 in 2000 

gave protection against 49-82% of IPD causing serotypes with the greatest 

protection observed in Europe and North America where the disease burden in 

generally low comparatively to the developing world (WHO, 2012). Introduction 

of PCV10 and PCV13 however protects against roughly 70% of IPD causing 

serotypes globally (WHO, 2012). 

1.2 Pneumococcal carriage 

In most instances pneumococcal carriage in the nasopharynx does not lead to 

invasive disease. Yet the high instance of IPD is thought to be due to the high 

carriage rate of the pathogen, with 40% of children and 10% of adults colonised 

in the developed world, which can increase to 90% in the developing world 

(Regev-yochay et al., 2004, Austrian, 1986, Obaro & Adegbola, 2002). In 

children, carriage can occur from birth and may occur with more than one 
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serotype at once (Obaro & Adegbola, 2002). Carriage rates decrease over time 

with children thought to act as the main reservoir due to their high carriage rate 

(Gray et al., 1980, Bogaert et al., 2004, Leiberman et al., 1999). Vaccination of 

children promotes herd protection by removing the reservoir from which the 

elderly and at risk groups acquire pneumococcal carriage (Isaacman et al., 2008, 

O’Brien & Dagan, 2003).  

Although colonisation is assumed to be required for progression to invasive 

disease some strains vary in their ability to cause disease with some serotypes 

more readily associated with carriage including serotype 6B, 9V, 19F and 23F. 

Whereas some were found more commonly in disease including serotypes 1, 4, 

14 and 18C (Brueggemann et al., 2003). Carriage of one serotype can occur for a 

number of months. However this is not always the case and serotype 1 although 

causing a high incidence of invasive disease is almost never detected in carriage 

studies (Brueggemann et al., 2003, Brueggemann & Spratt, 2003), except in 

some indigenous Australian communities (Smith-Vaughan et al., 2009). 

Other serotypes are opportunistic pathogens with invasive disease only occurring 

if the host is immunocompromised. One main factor predisposing to IPD is 

influenza infection with pneumococcal infection often occurring secondary to 

the viral infection. S.pneumoniae in this instance is often the cause of death 

(Short et al., 2012). The majority of deaths during the 1918 influenza pandemic 

were due to pneumococcal infection rather than the virus itself. This was also 

observed in 2009 where 29% of deaths caused by H1N1 showed signs of secondary 

bacterial infection (Morens et al., 2009, Chien et al., 2009). This is also the case 

for HIV infected patients with roughly 100,000 of the 800,000 IPD disease 

associated deaths In 2000 occurring in HIV positive children (Amdahl et al., 1995, 

O’Brien et al., 2009). This is also a problem in the developed world with 

immunosuppressed patients such as the elderly or cancer patients etc.  

1.3 Pneumococcal disease 

1.3.1 Pneumonia 

S.pneumoniae is also termed the pneumococcus due to its ability to cause 

pneumonia, with S.pneumoniae being the commonest cause of community 
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acquired pneumonia accounting for 30-50% of hospitalisations due to pneumonia 

infections in Europe and America (WHO, 2012). Of the 800,000 deaths caused by 

IPD observed in 2000, 90% of these were caused by pneumococcal pneumonia 

(O’Brien et al., 2009). Pneumonia can often be treated with antibiotics, which 

upon their introduction has reduced the mortality rate of pneumococcal 

pneumonia from 60% to 9%, however antibiotic treatment in developing 

countries is still often unavailable (Flippin et al., 1951). 

As mentioned already certain factors increase the risk of developing 

pneumococcal pneumonia such as immunosuppression which may be caused by 

influenza infection, HIV infection, cancer, diabetes, smoking, alcoholism etc 

(Bogaert et al., 2004, Amdahl et al., 1995, Herrero & Olivas, 2012). A large scale 

study has been done investigating the bacterial genes essential for lung infection 

using a murine model of pneumonia (Hava & Camilli, 2002). Included in these 

genes are a number of key virulence factors including PhtD, Ply, PspA, CbpA, a 

number of transcription regulators including that of the pilus islet (RlrA) and a 

number of TCS (two component signal transduction system) response regulators 

(RR) including RR01, RR07, RR09 and the histidine kinase (HK) of TCS12 (Hava & 

Camilli, 2002).  

1.3.2 Bacteraemia 

Bacteraemia is characterised by bacteria being present in the normally sterile 

blood stream, during pneumococcal pneumonia over 50% of patients are found to 

have pneumococci in the blood, thought to occur via direct transmission from 

the alveoli to the blood stream (Musher et al., 2000). Mortality rates caused by 

pneumococcal septicaemia can be high with up to 20% mortality in the 

developing world, with the rate highest in children under 2 years of age. Even in 

the developing world where antibiotics are prescribed as prophylaxis there still 

remains a high mortality rate due to pneumococcal septicaemia, which can 

range from 15-20% in adults and 30-40% in the elderly (WHO, 2012). 

Studies into bacterial genes potentially important during bacteraemia have been 

performed looking at the gene expression changes of bacteria isolated from the 

blood of mice with septicaemia compared to growth in broth (Orihuela, Radin, 



Chapter 1 

 

24 

et al., 2004). This included up regulation of PspA and a number of choline 

binding proteins and up regulation of RR02 and RR10. 

1.3.3 Meningitis 

Meningitis can be caused by a number of bacteria however pneumococcal 

infection accounts for up to 37% of adult meningitis (Durand et al., 1993).This 

often occurs post bacteraemia or can also occur directly through the olfactory 

nerve from carriage bypassing pneumonia and bacteraemia (van Ginkel et al., 

2003). Meningitis is often preceded by pneumonia and otitis media with 18% and 

30% of meningitis sufferers having previously had one of these infections 

respectively (Østergaard et al., 2005). Meningitis is caused by the presence of 

bacteria in the cerebrospinal fluid and the meningeal covering of the brain, 

which leads to inflammation and swelling of the meninges. High morality rates 

are associated with meningitis which can be up to 50% in the developing world. 

As high as 58% of meningitis survivors suffer some form of neurological sequelae 

ranging from hearing loss, seizures to brain damage (Goetghebuer et al., 2000).  

Studies have been performed into the genes that are important for bacterial 

replication during meningitis using a rat model of meningitis (Molzen et al., 

2011). However none of the genes found to be important for this represent the 

key adhesins or TCS regulators other than that of the capsule. A number of ABC 

transporters were also shown to be important here which may be required due 

to the limited nutrients available in the CSF (Molzen et al., 2011). However, 

studies looking at the expression changes in a rabbit meningitis model relative to 

growth in broth show some virulence factors may be important during meningitis 

but perhaps non essential (Orihuela et al., 2004). Again although none of the 

well studied cell surface adhesins were differentially regulated in this study a 

down regulation of TCS03 and virulence factors SpxB, Ply and LytA was observed 

(Orihuela et al., 2004). 

1.3.4 Acute otitis media (AOM) 

Acute otitis media also known as earache is the most common form of 

pneumococcal infection, where pneumococci are present in the middle ear 

(Hausdorff et al., 2002). Although a generally mild infection the sheer number of 
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cases cause a huge burden on the health services worldwide. In American alone 

7 million cases are reported each year with a cost of treatment estimated to be 

around $5 billion (Bondy et al., 2000). Roughly 10% of AOM cases result in 

relapse and require further treatment (Sox et al., 2008). Introduction of PCV7 

has helped reduce the AOM cases as roughly 60-70% and 40-50% of the serotypes 

responsible for disease in children aged 6 months- 5 years old and of 0-6 months 

old are included in the vaccine respectively (Hausdorff et al., 2002). However 

further studies have indicated that although there has been a reduction in AOM 

cases caused by vaccine serotypes there has been no overall reduction in the 

total number of cases. Post PCV7 introduction Increasing numbers of AOM cases 

have been caused by non vaccine types, Haemophilus Influenzae and Moraxella 

catarrhalis (see review Dagan, 2004). 

Again studies have been performed into assessing the genes required for AOM 

using a chinchilla ear infection model, a number of virulence factors were shown 

to be essential for ear infection including PspA, CbpA, PhtE, SrtD (pilin sortase), 

RlrA (pilus transcription regulator) and HK06 and RR10 (Chen et al., 2008). 

1.3.5 Other 

Some of the less commonly associated diseases caused by the pneumococcus 

includes endocarditis, empyema, brain abscesses and haemolytic uraemic 

syndrome, which are often found as complications of pneumonia and meningitis 

(Lindberg & Fangel, 1999, Gigliotti et al., 1981, “Proceedings of the Society,” 

1929, Shayegani et al., 1982, Fincher, 1945, Byington et al., 2002). 

1.4 Vaccines 

1.4.1 Current vaccines in use 

All current vaccines on the market target the pneumococcal polysaccharide 

capsule. As there are over 90 different serotypes all the vaccines include only a 

small number of these which are found to cause the highest incidence of disease 

(Henrichsen, 1995, van Dam et al., 1990, Bratcher et al., 2010, Park et al., 

2007). Three vaccines are currently in the market PPSV23 (23-valent 

polysaccharide vaccine), PCV10 (10-valent polysaccharide conjugate vaccine) 

and PCV13 (13-valent polysaccharide conjugate vaccine) with one being phased 
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out PCV7 (7-valent polysaccharide conjugate vaccine). For information about 

vaccines below see review (Pittet & Posfay-Barbe, 2012). 

1.4.1.1 PPSV23 

PPSV23 (Pneumovax 23) was the first pneumococcal vaccine available (1983, 

Merck), which includes serotypes 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 

14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F. This vaccine consists of the 

capsular polysaccharide from each of the above serotypes and is currently used 

in the elderly and in some at risk groups and children over 2 years of age. 

However the vaccine is poorly immunogenic in children where a large incidence 

of disease occurs and this vaccine is therefore not used in the developing world. 

1.4.1.2 PCV (pneumococcal conjugate vaccine) 

Later came the pneumococcal polysaccharide conjugate vaccines which couple 

the capsular polysaccharide to that of a carrier protein used to elicit better 

immunity in children under the age of 2, as polysaccharide alone is poorly 

immunogenic in this at risk group.  

The first manufactured conjugate vaccine in use was PCV7 (Prevnar 7), made 

available in 2000 (Wyeth), which includes the polysaccharide from serotypes 4, 

6B, 9V, 14, 18C, 19F, 23F conjugated to a diphtheria toxoid. However although 

this vaccine has made a huge impact on the incidence of IPD as stated earlier 

the serotypes covered by this vaccine are more common in Europe and America 

where disease burden is much lower than that of the developing world. Due to 

this PCV7 is currently being phased out and replaced by PCV10 and PCV13, which 

protect against roughly 70% of all serotypes causing the highest incidence of IPD 

globally. 

PCV10 (Synflorix) was next to be made available in 2009 (GlaxoSmithKline), 

which again contains the capsular polysaccharide of 10 serotypes conjugated to 

a carrier protein. This includes serotypes 1, 4, 5, 6B, 7F, 9V, 14 and 23F 

conjugated to protein D (outer membrane protein of H.influenzae), serotype 19F 

conjugated to a diphtheria toxoid and serotype 18C conjugated to a tetanus 

toxoid. 
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Finally PCV13 (Prevnar 13) made available in 2010 (Pfizer), which contains the 

capsule polysaccharide of serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F 

and 23F conjugated to a non-toxic diphtheria carrier protein, CRM 197.  

These conjugate vaccines are currently only used in children and have shown to 

provide good protection from IPD, with a reduction in overall IPD observed by 

roughly 70%-90%, and 20% reduction in AOM cases caused by vaccine types in the 

years following PCV7 introduction (Bennett et al., 2003, Grijalva et al., 2006, 

Hennessy et al., 2005). Childhood vaccination with these vaccines has also shown 

benefits to the incidence of IPD in the elderly and immunocompromised as 

childhood vaccination removed the reservoir for adult infection (Isaacman et al., 

2008, O’Brien & Dagan, 2003). Nevertheless the cost of these vaccine are high 

which limits their use in the developing world and due to this only a small 

number of serotypes are included in the vaccine, because of this and the reasons 

stated below these vaccines may be limited in their long term efficiency. 

1.4.2 Serotype replacement 

One phenomenon which will limit the long term use of the conjugate vaccines is 

serotype replacement, which has been studied since the introduction of PCV7. 

This has indicated that although the serotypes that cause the highest incidence 

of IPD have been removed, and the overall incidence of IPD dropped since PCV7 

introduction there has been an increase in the incidence of IPD caused by non-

vaccine serotypes. In America between 1998-2004 incidence of invasive disease 

caused by non vaccine serotypes increased post PCV7 vaccination in both 

children under 5 and adults. This increase was mainly due to serotypes 3, 15, 

19A, 22F and 33F (Hicks et al., 2007), with the main disease causing serotype 

being 19A. In Alaska alone studies showed an increase in IPD in children under 2 

by 140%-180% caused by non vaccine serotypes from the pre vaccine era to 2004. 

Of this increase around 30% was caused by serotype 19A (Singleton et al., 2007, 

Kellner et al., 2009). Although overall the IPD disease still remained lower in 

2004 than in the pre vaccine era. Worryingly an increase in serotype 19A in AOM 

cases have also been observed post PCV7 introduction which is a multidrug 

resistant strain (Pichichero & Casey, 2007). Whether the post vaccine IPD 

incidence will rise to that of the pre vaccine incidence due to non-vaccine 
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serotypes remains to be seen. Some of the serotypes causing IPD in the PCV7 era 

are now protected against in the new vaccine compositions (PCV10/PCV13). 

1.4.3 Capsular switching 

Another phenomenon that may hinder the effectiveness of all the current 

pneumococcal vaccines is capsular switching. Due to the pneumococcus being 

naturally competent it is able to take up DNA out of the environment and 

recombine it into its own, switching genes with other strains. The ability of the 

pneumococcus to do this with the genes of the capsule locus means that strains 

protected against by the vaccines are able to change their capsule for that of 

one not protected against by the vaccine and therefore evade death. This has 

occurred in a number of antibiotic resistant strains including serotype 9V clones 

becoming serotype 14 and identification of 19F, 23F and 19A serotypes of the 

same clone, with evidence indicating this may be a frequent occurrence in the 

pneumococcus (Coffey et al., 1998, Coffey et al., 1999, Croucher et al., 2011). 

1.4.4 New vaccine development 

New efforts are focusing on development of a multi-component protein based 

vaccines, which will be immunogenic in children under 2 years of age. In most 

instances a single protein would not give protection as a number of the key 

virulence factors are only present in a proportion of strains including the 

pneumococcal pilus, PsrP etc. Using more than one protein also reduces the 

likelihood of the pneumococcus being able to evade the vaccine by removing this 

factor as they can do for the capsule (Blomberg et al., 2009). Current proposed 

vaccines include use of a RrgB (pilus backbone protein) fusion protein joining the 

three different variants of this pilin (Harfouche et al., 2012). StkP a serine/ 

threonine protein kinase, PcsB a murine hydrolase and a number of other surface 

associated virulence factors including PspA, CbpA, PhtD and the toxin 

pneumolysin are all included in multi-component protein based vaccine currently 

under investigation (Olafsdottir et al., 2012, Denoël et al., 2011, Ogunniyi et al., 

2007, Xin et al., 2009, Cao et al., 2007, Douce et al., 2010).  
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1.5 Genetic variation 

S.pneumoniae is one of the viridans group streptococci that is naturally 

competent. Streptococcus oralis and Streptococcus mitis can also become 

naturally competent (Håvarstein et al., 1997). This enables the bacteria to take 

up DNA out of the environment and recombine it into its genome, which can be 

used to acquire new genes which may be beneficial for survival or repair of 

genes made non functional via spontaneous mutations etc (Johnsborg, et al., 

2008, Steinmoen, et al., 2002).  

1.5.1 Development of natural competence 

The development of natural competence is controlled by TCS12 also known as 

ComDE. ComDE is one of the TCS that the extracellular stimulus is known, this 

TCS is activated by a small peptide known as CSP which is encoded by comC 

located directly upstream of the genes encoding the TCS (Havarstein et al., 

1995, Havarstein et al., 1996, Pestova et al., 1996). Activation of the TCS via 

binding of CSP leads to the regulation of two distinct sets of genes known as the 

early and late competence induced genes. The early competence induced genes 

include ComC/D/E as upon activation of ComDE a positive feedback occurs 

positively regulating the expression of all three gene, which increases the level 

of CSP and the TCS which are activated (Ween et al.,1999, Peterson et al., 

2004). Other early competence genes include ComA/B which are required for the 

maturation and export of pre-CSP. ComX is also an early competence gene which 

is an alternative sigma factor and is required for induction of expression of the 

late competence genes, which include genes required for the uptake and 

processing of DNA for recombination into the transformants (Lee & Morrison, 

1999, Luo, Li, & Morrison, 2003, Luo & Morrison, 2003). The ability of the 

pneumococcus to do this is the main reason for such high genetic variability, 

some of the studies elucidating this are discussed below. 

1.5.2 Regions of diversity (ROD) 

A number of studies have been performed looking into the regions that are 

diverse between different strains. Using comparative genome hybridisation, 

large scale studies have been performed looking at regions between strains of 

the same ST and serotype that are divergent. This kind of analysis would detect 



Chapter 1 

 

30 

large chunks of DNA that are missing/ present in certain strains but would not 

reveal whether the genes contain small changes such as SNPs or indels.  

The current methods used to assign pneumococci into groups that show high 

similarity is based on their serotype (capsule genes) and sequence type (based 

on 7 housekeeping genes), which has been described above. However recent 

studies have indicated that although these genes may be identical the rest of the 

genome may not with strains of the same ST and serotype varying greatly in their 

ability to cause disease (Silva et al., 2006, Sandgren et al., 2005). A total of 25 

ROD were observed by Silva et al., 2006 between the 14 strains assessed. In this 

study three serotype 14 strains ST124 which were all isolated from the blood of 

infected patients in 2000/2001 in Scotland showed a number of variable genes 

between the three strains and each strain also showed varied levels of 

bacteraemia after 6 hours post infection (Silva et al., 2006). Obert et al (2006) 

analysed a total of 72 strains for RODs that may be associated with virulence, 

with comparison performed between 42 strains taken from patients with invasive 

disease and 30 from non invasive disease. The accessory genome in this study 

equated to 27% of the genome, 153 genes were found to be associated with 

invasive disease and 176 with non invasive disease causing strains (Obert et al., 

2006). Further analysis of some of the ROD identified in this study was 

performed in Embry et al., 2007. Another larger scale study was done using a 

similar technique assessing the variable regions (accessory regions) between 47 

different strains of varying serotype and ST (some shared the same ST and 

serotype), which were taken in some instances from different origins of infection 

(Blomberg et al., 2009). A total of 41 accessory regions were identified 

containing 95 genes, roughly 34% of the genome was shown to contain genes that 

are non essential and therefore vary between different strains (Blomberg et al., 

2009). 

Some smaller scale studies have also been performed focusing on the 

distribution of the known virulence factors in different pneumococcal strains. A 

study looking a the presence of virulence factors in strains causing community 

acquired pneumonia in Japan indicated eno, pavA, piuA, cbpA and cbpG were in 

all strains and therefore may be important for this disease. Whereas other 

virulence factors were variable among strains including hly, piaA, rlrA, psrP, 

nanC and pspA (Imai et al., 2010). Along with the presence of virulence factors 
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assessed in different pneumococcal isolates this has also been performed looking 

at their presence in other viridans group streptococci, specifically S.oralis, 

S.mitis and Streptococcus pseudopneumoniae (Johnston et al., 2010). 

Interestingly a large number of the key pneumococcal virulence factors are also 

found in these species including NanA, NanB, PhtA,B,D, a large cache of choline 

binding proteins, penicillin binding protein and some of the regulatory genes 

including TCS05 and TCS12. However again their presence seem to vary 

depending on the strain (Johnston et al., 2010). This indicated DNA is also 

swapped between different streptococci.  

1.5.3 Whole genome sequencing 

Another way to assess genome diversity between different isolates is by the use 

of whole genome sequencing, which has revolutionised the ability to assess 

genetic variability and evolution of bacteria pathogens. The progress in 

technology and reduced cost of genome sequencing has made it accessible to the 

wider scientific community and permits larger scale studies to be performed 

enabling comparison of the whole genome of a number of different strains. The 

use of whole genome sequencing not only allows identification of large ROD 

between strains but also small changes such as SNPs and indels can be identified. 

This technology has been applied to include large scale genome comparisons to 

assess the conservation of genes between different strains which can be used to 

identify potential vaccine candidates, this approach has been used in 

Streptococcus agalactiae assessing the genes conserved in this pathogen and 

within other related streptococci (Tettelin et al., 2005). These studies have also 

linked genomic factors to invasive disease, for instance the association of a 

mutation in a transcription regulator in Staphylococcus aureus was shown to be 

key in progression from carriage to disease (Young et al., 2012). Similarly in 

Neisseria meningitidis the presence of a prophage was linked to the strains 

ability to cause meningitis (Bille et al., 2005). This technology was also used to 

assess the genotype of the Escherichia coli strain which caused an outbreak in 

Germany in summer 2011, the genome sequencing of this strain showed this 

strain has acquired a prophage which carried a shiga toxin responsible for its 

increased virulence (Rasko et al., 2012). Whole genome sequenceing has also 

been used to follow the evolution of a bacterium over time, which was 

performed on Vibrio cholerae strains isolated during a pandemic outbreak 
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(Mutreja et al., 2011). This technology has also proven to be useful in assessing 

the origin of infection of some bacterial pathogens such as that observed for 

Mycobacterium leprae which was found in wild Armadillos and was identified as 

a zoonotic source of human infection (Truman et al., 2011). This technology has 

also been used for metagenomic studies assessing the bacteria and viral flora 

that Is present in different host (human) niches (Lysholm et al., 2012, Nelson et 

al., 2010). Finally this technology will also pave the way for the potential for 

discovery of new microbial and viral species which are currently not identified as 

they cannot be cultured by standard methods (Hongoh & Toyoda, 2011). 

A large number of pneumococcal genome sequences are now available. The first 

pneumococcal genome sequences were made available in 2001 which was that of 

a serotype 4 strain (TIGR4), this was shortly followed by serotype 2 strain (R6), 

and then another serotype 2 strain (D39) in 2007 (Tettelin et al., 2001, Hoskins 

et al., 2001, Lanie et al., 2007). Findings from multiple genome comparisons 

have further confirmed the high genetic variability between different 

pneumococcal strains with genomes ranging from 2000-2200 kb, number of 

predicted coding sequences ranging between 2200-2800 and variations in the 

percentage of the core genome ranging from 21-33% deduced from comparing 

the genomes of 17 strains with different ST and serotype (Hiller et al., 2007). A 

further large scale study was performed comparing the whole genome sequence 

of 240 isolates of the PMEN1 serotype 23F multidrug resistant clone taken from 

Europe, South Africa, America and Asia between 1984-2008, to assess over time 

how the strain had evolved. This study further validates the genome plasticity of 

the pneumococcus, with multiple recombination events observed over a short 

period of time with some allowing development of antibiotic resistance and 

capsular switching to enable vaccine escape (Croucher et al., 2011).  

1.5.4 Phase variation 

Genetic variation can also be observed in the pneumococcus within the same 

bacterial population. In a single population of pneumococci there are often two 

colony types present, encompassing opaque and transparent phenotypes, this 

phenomenon can also be observed in other bacteria (Weiser, 1993, Weiser et al., 

1994). The two colony types can be distinguished between one another using a 

light microscope (Weiser, 1993, Weiser et al., 1994, Weiser et al., 1996). Both 
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phenotypes vary in a number of different ways with both showing different 

surface protein profiles, different membrane fatty acid compositions, different 

capsule levels, different teichoic acid levels, different bacteriocin activity and 

both also vary in the in vivo niche in which they are able to survive (Aricha et 

al., 2004, Overweg et al., 2000, Benisty et al., 2010, , Kim et al., 1998, Kim et 

al., 1999, Weiser et al., 1996, Dawid et al., 2009). Studies into what causes the 

difference between the two phenotypes have shown that mutations in a number 

of genes can lead to a switch from transparent to an opaque phenotype, 

including genes involved in glycerol metabolism, mutations in the capsule genes 

and mutations in pyruvate oxidase (McEllistrem et al., 2007, Saluja & Jeffrey, 

1995, Ramos-Montañez et al., 2008). 

1.6 Virulence factors (VF) 

1.6.1 Overview 

The pneumococcus contains a large number of VF which are important for its 

survival, which aid in adherence to host cells and help evade the host defences. 

An overview of the most important are shown in Figure 1-1. In large scale 

virulence screens a large number of genes are classed as virulence factors yet 

are not present on the cell surface or secreted and therefore are unlikely to 

interact directly with host factors. In this instance deletion of these genes may 

have a knock on effect to the expression of cell surface VF or alter the fitness of 

the cell through altered metabolism/ make required nutrients unavailable (Hava 

& Camilli, 2002). Below only the virulence factors found on the cells surface of 

the bacteria or secreted will be discussed in more detail with regards to their 

role in virulence. 

Protein VF present on the cell wall are initially targeted for secretion by the GSP 

(general secretion pathway), with the majority containing the typical cell wall 

targeting signal peptide, once secreted the VF can be retained in the cell wall 

via three mechanisms, see review Pérez-Dorado et al., 2012. LPXTG anchored 

proteins are covalently attached to the cell wall/ peptidoglycan via specific 

sortase enzymes, this includes the pneumococcal pilus, which contains three 

dedicated sortases for its attachment/ assembly, other LPXTG anchored surface 

proteins are attached via the house keeping sortase (SrtA) (Kharat & Tomasz, 
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2003, Paterson & Mitchell, 2006). The second class are retained in the cell wall 

via non-covalent attachment known as choline binding proteins of which most 

have a C-terminal choline binding domain which interacts with 

phosphorylcholine moiety in teichoic acid (TA) or lipoteichoic acid (LTA). The 

pneumococcus contains a large number of these proteins (19 TIGR4/ 13 D39) of 

which some will be discussed in more detail later (Tettelin et al., 2001, Lanie et 

al., 2007). The final group include proteins retained at the cell wall through 

weak interactions with lipids. 

 

Figure 1-1: Pneumococcal virulence factors 

Schematic diagram modified from (Mitchell, 2003) showing some of the known 
pneumococcal virulence factors and their function during pathogenesis. 
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1.6.2 Capsule 

The capsule is perhaps thought to be the most important virulence factor as 

strains with no capsule are avirulent, and vaccination with capsular 

polysaccharide can protect from IPD (Watson & Musher, 1990,  Brown et al., 

1983, MacLeod,. 1945). As described previously there are over 90 different 

capsule types currently known, due to the large number they cannot all be 

included in a vaccine (Henrichsen, 1995, van Dam et al., 1990, Bratcher et al., 

2010, Park et al., 2007). The genes which are required for capsule synthesis are 

always found to lie between dexB and aliA genes with the size of the intervening 

region varying between them depending on the serotype (Bentley et al., 2006, 

Jiang et al., 2006). The first four genes of the capsule are almost always 

conserved (cpsA-D), adjacent to these genes are varying numbers of 

glycosyltransferases which create the serotype specific capsule (Bentley et al., 

2006). Other genes present here are also involved in transport of the 

oligosaccharide repeat units to the cell surface and their polymerisation (Wzy 

polymerase/ Wzx flippase). Finally genes at the end of the locus are involved in 

synthesis of sugar precursors (Bentley et al., 2006, Morona et al., 2000, Kong et 

al., 2005).  

Little is know about regulation of the capsule yet it has been associated with 

phase variation as described above, with opaque variants having increase 

capsule levels and are more virulent during invasive disease and transparent 

variants having less capsule and are better able to colonise the nasopharynx 

(Kim & Weiser, 1998, Weiser et al., 1994). Further confirmation the capsule 

plays an important role in IPD is shown by the fact In vivo the capsule is up 

regulated (Ogunniyi et al., 2002). The importance of the capsule during IPD fits 

in with the role of the capsule in preventing phagocytosis via blocking 

complement deposition/ antibody binding, preventing being snared in neutrophil 

extracellular traps, it provides some resistance to antibiotic mediated cell lysis 

and reduces pneumococcal mucus mediated clearance, all features which would 

aid survival in the host (Wartha et al., 2007, Abeyta et al., 2003, Fernebro et 

al., 2004, Nelson et al., 2007, Hardy et al., 2000, Hyams et al., 2010). Further 

studies have linked expression of capsule genes to regulation of carbon 

catabolism with mutants in RegM (transcription regulator) showing reduced 

capsule expression (Giammarinaro & Paton, 2002).  
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Although virulence has been linked to the amount of capsule, more recent 

findings clearly show other factors are also important for virulence as strains of 

the same serotype can vary greatly in their disease causing potential, some of 

these other factors are described below (MacLeod & Krauss, 1950, Briles et al., 

1992, Harvey et al., 2011). 

1.6.3 Pneumolysin (Ply) 

Ply is a pore forming toxin which is included in the family of cholesterol 

dependant cytolysins (CDCs) found in a number of bacteria, see review Gilbert, 

2010. These toxins are able to form pores in the host cell membranes by binding 

cholesterol and inserting into the membrane forming large pores lysing the host 

cell (Tilley et al., 2005). Since its initial discovery a large number of studies 

have been performed assessing the role of Ply in virulence and how it get outside 

the cell. Ply unlike other CDC does not contain a signal sequence targeting it for 

secretion and is thought to be released during autolysis, caused by autolysin 

(LytA) which is described below (Guiral et al., 2005). However more recent 

studies have suggested that Ply is secreted and this function lies within the gene 

located upstream of Ply, yet this is still widely contested (Price et al., 2012). In 

the pneumococcus Ply has been well characterised as an important virulence 

factor and is associated with increased inflammation during meningitis and 

increased virulence in a pneumonia and bacteraemia model of infection (Rubins 

et al., 1996,  Jounblat et al., 2003, Berry et al., 1995, Alexander et al., 1998, 

Alcantara et al., 1999). Ply is generally conserved between strains with only 

small nucleotide changes between serotypes, however some strain that remain 

virulent have a non haemolytic Ply (Kirkham et al., 2006, Jefferies et al., 2007). 

Interestingly Ply has also been characterised to be a potential anti-virulence 

factor with low haemolytic variants giving a selective advantage for growth 

during bacteraemia and higher bacterial numbers are tolerated in the blood 

(Harvey et al., 2011, Benton & Everson, 1995). Some well characterised 

functions of Ply include induction of phagocyte respiratory burst plus cytokine 

release, CD4+ T-cell activation, activation of the classical complement pathway, 

cell lysis via pore formation inducing inflammation etc (McNeela et al., 2010, 

Kadioglu et al., 2004, Mitchell et al., 1991, for an overview see Marriott et al., 

2008). 
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1.6.4 Pilus 

More information will be given on the pneumococcal pilus as this will be a major 

focus within this thesis. 

Pili or fimbriae were first identified in 1949 in gram negative pathogens 

(Anderson, 1949). Pili in gram negative pathogens can be categorised into four 

groups: pili assembled by the chaperone usher pathway, pili assembled by the 

alternative chaperone usher pathway, Type IV pili and pili assembled by the 

nucleation/precipitation. Pili have been shown to play roles in biofilm 

formation, twitching motility, host cell invasion/ adherence, DNA transfer and 

phage binding (see review Proft & Baker, 2009). Pili in gram negative bacteria 

will not be discussed further unless comparisons made to gram positive pili. Pili 

in gram positive pathogens were discovered much later than gram negative pili, 

where in 1968 surface rods were observed on the cell surface of 

Corynebacterium renale via electron microscopy (Yanagaw et al., 1968). 

However a better understanding of the assembly, structure and importance of 

pili to virulence was not assessed till some time later, with interest in these 

structures initiated by Schneewind and colleagues (Ton-That & Schneewind, 

2003, Ton-That, et al., 2004, Ton-That et al., 2004, Budzik & Schneewind, 

2006). 

Since the initial discovery many gram positive species have been shown to 

contain surface exposed pili, two types have been indentified: short thin rods 

(Streptococcus salivarius/ S.oralis) and longer flexible pili (S.pneumoniae/ 

S.agalactiae/ Streptococcus pyogenes) (Pauline et al., 1984, Komiyama & 

Gibbons, 1984,  Barocchi et al., 2006). Long flexible gram positive pili have been 

shown to be composed of a long backbone reaching around 3µm beyond the cell, 

which is composed of the major pilin covalently linked to itself. Linkage of the 

pilins it catalysed by the sortase enzymes (transpeptidase reaction) encoded on 

the same genetic islet as the pilins (Ton-That & Schneewind, 2003). Minor pilins 

may also be encoded on the islet which can be present along the backbone or at 

the tip and often act as adhesins for host cells (Ton-That & Schneewind, 2003). 

Some streptococci contain more than one pilus, this includes 9 in S.pyogenes 

(FCT 1-9), 3 in S.agalactiae, 4 in Streptococcus suis and two in S.pneumoniae 

(Jacques et al., 1990, also see review Kreikemeyer et al., 2011). Between the 



Chapter 1 

 

38 

different pilus islets there are variations with regards to the number of pilins 

(range 2-3), number of sortase enzymes (1-5) and whether a positive 

transcription regulator is encoded on the islet (Kreikemeyer et al., 2011). The 

islets themselves are thought to have arisen from the same ancestor and 

diverged depending on the pathogen. Some islets also include a small signal 

peptidase gene, which is thought to act as a chaperone for the pilin proteins. 

Regulation of these operons is often complex and involves a number of 

transcription regulators and in the pneumococcus a number of two-component 

signal transduction systems (TCS) have also been shown to alter pilus expression 

(Haas et al., 2004, Hemsley et al., 2003, Hendriksen et al., 2007, Rosch et al., 

2008, Song et al., 2009, Sebert et al., 2002). . Regulation of pili has also been 

linked to certain physiological conditions, which may give a clearer idea of the 

importance of these adhesins in virulence/ survival. For instance in S.pyogenes 

pili regulation has been linked to changes in pH with increase levels of pili 

observed at pH 6.4 than at higher pH which is thought to be representative of 

the environment on the skin (low pH), enabling the bacteria to colonise (Manetti 

et al., 2010). Links in S.pyogenes have also been made to pili being regulated 

upon variations in hydrogen peroxide levels, with wild type (WT) strains showing 

increased expression of pili genes upon treatment with hydrogen peroxide, 

which may represent being present in and aerobic environment such as in the 

throat where colonisation is important (Grifantini et al., 2011).  

There are currently two islets identified in the pneumococcus which encode pili, 

PI-1 (pilus islet 1) and PI-2 (pilus islet 2) (Bagnoli et al., 2008, Hava & Camilli, 

2002). Both will be described here however the focus will be on PI-1 encoded 

pilus as this has been more widely studied and is the pilus that is studied further 

in this thesis. 
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B 

 

Figure 1-2: Genome organisation of islets encoding pili in the pneumococcus 

Schematic diagram modified from Bagnoli et al., 2008, representing the genome organisation of pilus islet 1 (A) and pilus islet 2 (B) present in some 
pneumococcal strains. (A) Gene names are present above the gene, dark blue arrows represent the pilins, red arrows the sortase enzymes, pink arrow the 
transcription regulator, green arrows the flanking insertion sequences and in pale blue genes not related to the functioning of the islet. (B) Gene names are 
present above the gene, dark blue arrows represent the pilins, red arrows the sortase enzymes and orange arrow signal peptidase like gene. Star next to 
the gene name means it contains a frameshift in all strains or some strains and is therefore non functional. 
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1.6.4.1 Pilus islet 1 (PI-1) 

Genes encoded on PI-1 (Figure 1-2) were first identified during a large scale 

virulence screen, which identified some of the pilus islet genes to be important 

in a pneumonia and colonisation model of infection (Hava & Camilli, 2002). One 

of these genes rlrA the positive transcription regulator of the operon was shown 

to have homology to the RofA and Nra transcription regulators in S.pyogenes 

(Fogg et al., 1994, Podbielski et al., 1999). Identified downstream of rlrA is 6 

genes, three that encode pilins designated rrgA, rrgB and rrgC and three that 

encode sortase enzymes designated srtB, srtC and srtD, and all 7 genes are 

flanked by IS1167 elements (Figure 1-2). Since this initial study a large effort has 

been put into characterising this islet as to assess its role in virulence, 

epidemiology, structure, regulation and its potential as a vaccine candidate. 

Epidemiological studies into the presence of the pilus islet in pneumococcal 

strains have shown that this islet is only present in a small proportion of strains 

depending on the study. The most encompassing study looking at the presence of 

the pilus in strains over the world found the PI-1 islet to be in 30% of strains 

(Moschioni et al., 2008). Whereas other studies looking at strains taken from one 

region have found a prevalence of around 21% of strains PI-1 positive in USA and 

35% positive from strains isolated from the Thailand/ Burma 2011 (Basset et al., 

2007, Turner et al., 2011). Basset et al., 2007 also assessed the levels of PI-1 pili 

positive strains prior to and after the introduction of PCV7, which showed a 

reduction in PI-1 positive strains from 40% to 21% post PCV7 introduction, this is 

not surprising as the PI-1 islet has been found to be more highly associated with 

serotypes present in the current vaccines (Basset et al., 2007). However the 

association of the PI-1 islet correlated better to the ST of the strain rather that 

the serotype, which has been observed in a number of studies (Basset et al., 

2007, Moschioni et al., 2008, Moschioni et al., 2010). 

Although PI-1 has been found to be more highly associated with vaccine 

serotypes no link has been made between strains being pili positive and causing 

invasive disease (Basset et al., 2007). Studies looking at the transmission of pili 

positive strains from mother to child showed that the pilus was also not 

associated with strains with increased carriage durations and increased 

transmission rates (Turner et al., 2011). However it has been hypothesised the 
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pilus must confer some selective advantage as re-emergence of the PI-1 islet in 

non vaccine serotypes has been observed in Massachusetts (Regev-Yochay et al., 

2010). The presence of the P1-1 islet in antibiotic resistant strains has also been 

observed in a number of studies but why this would be the case is unknown 

(Moschioni et al., 2010, Regev-Yochay et al., 2010). Carriage of strains that are 

PI-1 positive also seems to inversely correlate to carriage of S.aureus, suggesting 

these strains may confer an advantage during colonisation (Regev-Yochay et al., 

2009). However the PI-1 islet has been found to be more associated with strains 

causing AOM confirmed via in vivo studies using a chinchilla model where RlrA 

and SrtD have been found to be vital for middle ear infection (Vainio et al., 

2011, Chen et al., 2008). 

Studies into the genetic variation within the pilus islet have found three 

different variants of the islet exist classed clade I, II and III. Within the clades 

there is high sequence similarity between all the genes. However between the 

different clades there can be large variation in % homology (Moschioni et al., 

2008). The most conserved gene between the clades is rlrA, which shows 100% 

identity in all three followed by the three sortase enzymes which share 93-99% 

homology. The three pilins show the most sequence diversity between the three 

clades with 97-99% diversity between rrgC, 84-99% diversity of rrgA and 49-67% 

diversity observed in rrgB. The highest diversity being observed in rrgB is 

thought to be due to the fact that this pilin being the pilus backbone protein is 

likely more accessible by the host immune system and therefore the islet has 

undergone positive selection to escape this (Muzzi et al., 2008).  

Three structures of the PI-1 encoded pilus have currently been proposed, the 

first put forward in 2008 was that the main pilus shaft was composed of two RrgB 

profilaments arranged in a coiled-coil structure which contained along the length 

RrgA and RrgC minor pilins acting as the adhesins (Hilleringmann et al., 2008). A 

revised structure was published in 2009 by the same group which showed only a 

single RrgB backbone shaft and RrgA at the tip of the pilus acting as the adhesin 

and RrgC at the bottom anchoring the pilus to the cell wall (Hilleringmann et al., 

2009). Two years later a further structure was published based on careful 

assessment of the role of the sortase enzymes in attachment of the pilins to 

themselves/ each other (El Mortaji et al., 2012). Being the most recent structure 

this is diagrammatically represented below (Figure 1-3) with the current known 
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roles of the sortase enzymes. Time will tell whether other revisions will be made 

to this model. This model retains that RrgC acts as the anchor attaching the RrgB 

shaft to the cell wall/ peptidoglycan, this attachment although not designated 

to any of the three sortases currently is independent of the house keeping 

sortase (SrtA), which is not required for pilus assembly (LeMieux et al., 2008). A 

certain amount of redundancy occurs within the three sortase enzymes encoded 

on PI-1 so this function will likely lie with one of these (LeMieux et al., 2008). 

This model also retains that the backbone is composed of RrgB monomers and 

that RrgA is found at the tip and acts as an adhesin. One of the main variation 

within this structure is that RrgA is also able to polymerize forming long 

branches of RrgA adhesins coming from the tip of the pilus and also at varying 

positions along the RrgB shaft, which has been shown to be catalysed by SrtC. 

SrtC also catalyses the association of RrgB to RrgA whereas SrtD catalyses the 

integration of RrgA into the pilus shaft (El Mortaji et al., 2012).  

 

Figure 1-3: Structure of P1-1 encoded pilus 

Schematic diagram of pilus structure modified from (El Mortaji et al., 2012). Purple triangle 
represent RrgC, Blue RrgB and pink RrgA, boxed is the proposed function of each sortase 
enzyme with regards to their ability to polymerise the different pilins. 
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RrgA has long been recognised to act as the main adhesin which is present at the 

tip of the pilus, studies in a RrgA knockout have shown a clear reduced 

adherence to A549 cell lines (respiratory epithelium) and upon its over 

expression increased adherence (Nelson et al., 2007). Interestingly upon deletion 

of RrgB and RrgC adhesion was similar to that of the WT suggesting only RrgA is 

important, yet RrgA mutants still produced full length pili. In vivo analysis in a 

murine colonisation model further confirmed the importance of RrgA in 

adherence but not RrgB and RrgC (Nelson et al., 2007). The crystal structure of 

RrgA has been solved which gives a further indication what the pilus may bind to 

on host cells (El Mortaji et al., 2012). RrgA was found to have four flexible 

domains, which may enable it to bind to a number of host components. One 

domains shares high homology to a eukaryotic like integrin I domain which are 

important receptors involved in attachment of the cells to the extracellular 

matrix molecules (ECM). RrgAs core structure shares high homology to other 

streptococcal adhesins such as in S.pyogenes which have been shown to have 

collagen binding capabilities, which is what RrgA is hypothesised to bind to, 

which is a highly abundant ECM protein (El Mortaji et al., 2012, Kreikemeyer et 

al., 2005).  

A large number of studies have been performed into the role of the PI-1 encoded 

pilus in virulence, using the typical adherence assays and mouse models of 

infection. Yet as described above to date there is no evidence the pilus is more 

highly associated with strains that cause a higher incidence of disease or more 

severe disease. Upon its initial discovery all genes encoded on the PI-1 islet were 

assessed for their potential role in virulence in a murine model of infection 

assessing their ability to compete with their parent strain (Hava & Camilli, 

2002). RrgA and SrtD were shown to be important for pneumonia. During 

colonisation RrgA and SrtB to a lesser extent were shown to be important. 

Strangely deletion of SrtC and RrgC led to a hypercolonisation phenotype 

relative to the parent strain, which was not assessed further. Later studies 

placing the whole pilus islet into a non piliated strain (D39) showed the pilus aids 

adherence as an increased adherence of this strain to A549 cells was observed 

and gave a competitive advantage in vivo, conversely deletion of this islet from 

a piliated strains showed a reduced adherence and was out competed by the WT 

strain in a colonisation, pneumonia and bacteraemia model of infection 
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(Barocchi et al., 2006, Maisey et al., 2009). A similar study to this deleting the 

whole pilus islet in a TIGR4 strains rendered the strain practically avirulent when 

given via the intratracheal route of infection, which is not observed when given 

via an alternative route (Rosch et al., 2008). Due to this it was hypothesised the 

pilus may help protect the bacteria from killing by macrophages and neutrophils 

found in high numbers in the lung (Rosch et al., 2008). The pilus was also shown 

to stimulate the host immune system with higher TNF-! levels observed in 

piliated strains (Barocchi et al., 2006). This has led to the idea that the pilins 

could be used as a component of a protein based vaccine, with further studies 

showing that all three PI-1 encoded pilins are immunogenic upon vaccination of 

mice and that this is able to protect the mice from normally lethal challenge 

(Gianfaldoni et al., 2007). Although there is variability between the sequence of 

the major pilin RrgB this has been overcome by creating a fusion protein 

consisting of the three varying RrgB clades, of which each can protect against 

clade specific RrgB (Harfouche et al., 2012, Moschioni et al., 2012). The 

pneumococcal pilus has also been linked to a potential involvement in biofilm 

formation which is not surprising as promoting biofilm formation is a key role of 

pili in other pathogenic streptococci (Sanchez et al., 2010, Munoz-Elias et al., 

2008, Manetti et al., 2007).  

Studies have also been performed into how the pneumococcal pilus is regulated 

which have elucidated a large number of factors that seem to alter pilus 

expression. Initial studies assessed the role of RlrA in pilus regulation which is 

encoded on the islet itself. Upon deletion of rlrA the expression of all the pilins 

and sortases is reduced suggesting RlrA positively regulates all the genes in the 

operon (Hava et al., 2003). RlrA was shown to bind directly to four promoters in 

the operon, which includes its own suggesting it positively regulates itself, it 

also binds upstream of rrgA, upstream of rrgB and upstream of srtB. 

Interestingly four RlrA promoter binding regions were observed between rlrA–

rrgA, two upstream of rlrA and two upstream of rrgA, with one thought to 

perhaps compete with "70 RNA polymerase binding, however this has not been 

further confirmed (Hava et al., 2003). No putative "70  binding sites were 

observed upstream of genes rrgA, rrgB and srtB which led to the idea an 

alternative sigma factor may regulate these genes but again this has not been 

further assessed (Hava et al., 2003). Since this initial discovery a number of 
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other transcription regulators have been shown to alter pilus regulation such as 

MgrA which has been shown to act as a repressor of the pilus islet (Hemsley et 

al., 2003). To date six TCS have also been shown to alter expression of the pilus 

islet genes, this includes TCS03, TCS06, TCS08, TCS09 and TCS10 which all act as 

repressors of the islet shown by the fact that deletion caused an increase in pilus 

gene expression, and TCS05 acts as a positive regulator as its deletion reduced 

pilus expression (Rosch et al., 2008, Hendriksen et al., 2007, Haas et al., 2004, 

Song et al., 2009, Sebert et al., 2002). Both RR03 and RR06 have been shown to 

bind directly to the rlrA promoter region (Rosch et al., 2008). However this has 

not been assessed for the other four RR and they may also act directly at the 

rlrA promoter or alternatively regulate another factor which affects pilus 

regulation (Rosch et al., 2008). Pilus regulation has also been linked to the 

ability to regulate manganese levels as deletion of mntE (encoding a manganese 

efflux pump) or of psaR (encoding a manganese dependant regulator) an 

increase in pilus expression is observed (Hendriksen et al., 2009, Rosch et al., 

2008, Rosch et al., 2009, Johnston et al., 2006). Pilus regulation is also linked to 

regulation of the divalent cation zinc through MerR which has been shown to 

regulate transport of this ion, as deletion of merR causes an increase in pilus 

expression (Rosch et al., 2008, Kloosterman et al., 2007). A summary of the 

transcription regulators currently known to alter expression of the genes 

encoded on PI-1 (directly or indirectly) can be seen in Figure 1-4. 

 

Figure 1-4: Summary of the transcription regulators known to alter pilus expression in the 
pneumococcus. 
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Diagram summarises the role of a number of pneumococcal transcription regulators with 
regards to their ability to alter pilus expression. 
 

More recent findings have shown that within a growing bacterial population two 

populations exist, cells that are pili positive and cells that are pili negative. With 

a TIGR4 strains showing roughly 30% of cells pili positive (Basset et al., 2011, De 

Angelis et al., 2011). This has been shown in part to be regulated by the levels 

of RrgA, which can bind directly to RlrA, which prevents it from positively 

regulating itself and other genes present on the islet. Deletion of rrgA leads to 

almost all cells becoming pili positive (Basset et al., 2011, Basset et al., 2012). 

This bistable regulation of the pilus at the population level is also observed in 

S.pyogenes which has been shown to modulate the level of pilus expressed 

within the population depending on the temperature at which the bacteria are 

grown, thought to mimic conditions present during superficial skin infections 

(30°C) or systemic infection (37°C) (Nakata et al., 2009). However little is 

currently know about exactly how this phenomenon is modulated. 

It is important for bacteria to be able to adapt to changing environments 

quickly. Heterogeneity within a bacterial population is often modulated through 

two-component signal transduction systems, some examples in the 

pneumococcus include natural competence development (as discussed in section 

1.7.1.1.12). Where some bacterial cells become naturally competent and can 

take up DNA from the environment to aid genetic variation and therefore 

survival. Another TCS has also been shown to aid in protecting a proportion of 

the bacterial population from autolysis, which are the bacterial population 

though to lyse to create a DNA pool for the naturally competent population (as 

discussed in section 1.7.1.1.12).  

As already stated a number of these TCS in the pneumococcus also regulate the 

pilus, it is currently unknown if these modulate the pilus at the population level 

though (as described above). If this was the case its likely that these systems 

detect an external stimulus that signals being in a certain niche within the host 

and modulates the levels of pilus required at the population level accordingly. 

Assuming that the pilus is present on the surface of more cells when found in an 

environment where adhesion is required (e.g. nasopharynx). This seemed to be 

the case for GAS regulation of the pilus which showed higher expression levels at 
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the population level when grown at lower temperatures, thought to mimic being 

present on the skin where adherence is important (Nakata et al., 2009). It was 

hypothesised that regulation at this level may allow some bacteria within the 

population to avoid detection by the immune system as the pilus is 

immunogenic. This may enable survival of some of the population as is observed 

during natural competence development and autolysis. 

Heterogeneity can also be modulated through genome changes such as that 

observed for phase variants, which has been linked to SNPs etc in a number of 

pneumococcal genes (section 1.5.4). Changes at this level if beneficial to the 

bacterium would be positively selected for and spread through the population. 

1.6.4.2 Pilus islet 2 (PI-2) 

In 2008 a second pilus islet was identified in serotype 1 strain INV104 through 

analysis of its genome sequence, this islet showed high similarity to that of an 

islet encoding a pilus in S.pyogenes (Bagnoli et al., 2008, Mora et al., 2005). 

Further studies into this islet confirmed this was also the case in S.pneumoniae 

with this 6.6kb islet encoding 5 genes pitA, pitB, sipA, srtG1 and srtG2 (Figure 

1-2). Further analysis revealed in all strain pitA contained a premature stop 

codon and in all but 1 strain srtG2 is also non functional, yet their non 

functionality did not seem to effect pilus polymerisation and only pitB, sipA and 

srtG1 were required for pilus polymerisation (Bagnoli et al., 2008). PitB was 

confirmed to be the only pilin and made up the whole length of the pilus, which 

was polymerised via SrtG1. The role of SipA is still unknown but it is required for 

polymerisation, and thought to encode a small peptidase (Bagnoli et al., 2008). 

Homologues of this gene in S.pyogenes pili islets are thought to potentially act 

as a chaperone to the pilin (Zahner & Scott, 2008). 

Presence of P1-2 has been associated with serotypes 1, 2 7F, 11A, 19A, 19F 

however again its presence is more closely related to the ST of the strain 

(Bagnoli et al., 2008, Zähner et al., 2010). ST127 has been shown to encode both 

P1-1 and P1-2 however this does not seem to be common. Again like P1-1, P1-2 

is not present in all strains with roughly 16% of strains containing this pilus islet, 

this is lower in AOM causing strains dropping to 7% (Moschioni et al., 2010, 

Bagnoli et al., 2008). This islet is also not associated with strains causing IPD yet 
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has been shown to aid in adherence to a number of cell lines including A549, 

Detroit 562 (nasopharyngeal epithelium), 16 HBE 14O
- (bronchial epithelium) and 

Hep-2C (laryngeal epithelium) cell lines, which all showed a reduced adherence 

using a PI-2 mutant (Bagnoli et al., 2008). Little information is available about 

the structure of the PI-2 encoded pilus apart from data indicating PitB contains 

intramolecular isopeptide bonds stabilising them (Zähner et al., 2011). Even less 

is known about the regulation of this islet which encodes no transcription 

regulator unlike PI-1 and no studies have currently been performed to assess any 

other potential transcription regulator that may regulate this operon.  

1.6.5 Pneumococcal serine rich repeat protein (PsrP) 

PsrP is a very large cell surface protein present in the pneumococcus, this gene 

is encoded on a large islet spanning 37kb which consists of itself a large 4777 aa 

(amino acid) protein, 10 glycosyltransferase (function to glycosylate PsrP) and 7 

genes thought to encode a sec translocase system (Obert et al., 2006). PsrP 

itself gained its name from its protein structure which contains two serine rich 

repeat regions (SRR1/ SRR2), SRR1 is short and contains only 8 repeats however 

SRR2 contains 539 SRR2 repeats (Rose et al., 2008). This protein is covalently 

attached to the cell surface via its LPXTG motif like the pilus and is present in 

roughly 50% of strains (Munoz-Almagro et al., 2010). Strains containing PsrP 

positively correlates with strains causing IPD (Munoz-Almagro et al., 2010). PsrP 

is able to bind directly to keratin 10 on lung cells and aid adherence 

(Shivshankar et al., 2009), and knockouts show a reduced virulence in a mouse 

model of infection (Munoz-Almagro et al., 2010, Obert et al., 2006). Further 

study has also indicated PsrP to play a role in intra strain adhesion and biofilm 

formation (Sanchez et al., 2010). This protein is also a potential vaccine 

candidate as it is immunogenic and can protect mice from lethal challenge (Rose 

et al., 2008). 

1.6.6 Neuraminidase 

One of the other well studied cell surface proteins is neuraminidase (NanA) 

present in 100% of strains, its role is still under scrutiny however is thought to 

act by enzymatically cleaving sialic acid off the surface of host cells revealing 

receptors for bacterial adherence and modifying competing bacterial cell 
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surface glycoproteins (Bergmann & Hammerschmidt, 2006, Pettigrew et al., 

2006). More recently another role of NanA was proposed where it aids adherence 

to brain endothelial cells and can cause cytokine release followed by bacterial 

uptake (Banerjee et al., 2011, Uchiyama et al., 2009). Studies have shown 

varying roles of NanA in virulence, initial virulence screens implied no role for 

NanA in virulence using a intraperitoneal (I.P) and intranasal (I.N) route of 

infection yet later studies implied a role in nasopharyngeal colonisation and 

spread to the lungs and blood in a mouse model of infection (Berry & Paton, 

2000, Manco et al., 2006). The pneumococcus also contains two further 

neuraminidases, NanB and NanC but these have been less well characterised, 

they are present in 96% and 51% of strains respectively (Pettigrew et al., 2006). 

NanB unlike NanA does not contain the C-terminal cell wall anchoring domain so 

is not retained at the cell surface, however is thought to play a similar role in 

virulence as NanA (Manco et al., 2006, Lock et al., 1988). More recently NanB 

has been hypothesised to play a role in obtaining nutrients and NanC is thought 

to regulate NanA function (Xu et al., 2011) 

1.6.7 Choline binding proteins (CBPs) 

CBPs attach to the cell wall through non covalent attachments via interactions 

through their C-terminal choline binding domains (CBDs) to phosphorylcholine 

residues present in LTA and TA (Gosink et al., 2000, Yother & White, 1994). 

Although the CBD are generally highly conserved (roughly 20aa) between CBPs 

the N-terminal regions are highly diverse, and in the pneumococcus CBPs have a 

number of different functions, including adhesins and autolytic enzymes, and 

the number of CBPs varies between the strains with roughly 10-15 in 

S.pneumoniae (Bergmann & Hammerschmidt, 2006). The same CBP can also vary 

in its structure between different strains (Brooks-Walter et al., 1999, 

Hollingshead et al., 2000). Some of these CBPs also have homologues in other 

closely related streptococci which may act as a pool for acquisition of variants 

enabling escape from the immune system (Johnston et al., 2010). Some of the 

key CBPs are described below.  
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1.6.7.1 Adhesins? 

One well studies CBP is CbpA (PspC/ SpsA) which is known to act as an adhesin 

present on the surface of the pneumococcus, CbpA is highly variable and can be 

sorted into two clades (Brooks-Walter et al., 1999). Some variants attach to the 

cell wall not through interactions with phosphorylcholine but via LPXTG 

anchoring. This variant known as Hic shares homology to a group B streptococcal 

protein (Jarva et al., 2004, Janulczyk et al., 2000). This CBP has been shown to 

be important for virulence via knockouts showing a reduced ability to bind to 

epithelial cells, reduced nasopharyngeal colonisation and reduced survival in a 

mouse pneumonia and sepsis model (Rosenow et al., 1997, Iannelli et al., 2004, 

Quin et al., 2005, Quin et al., 2007). It functions in part through binding of 

polymeric immunoglobulin receptor, which transports secretory IgA, perturbing 

this function (Hammerschmidt et al., 2000, Zhang et al., 2000). CbpA is also able 

to bind factor H, which is important for activation of the alternative 

complement pathway leading to bacterial opsonophagocytosis (Dave et al., 2004, 

Cheng et al., 2000, Janulczyk et al., 2000, Quin et al., 2005, Quin et al., 2007) 

PspA is another well studied CBP found on the pneumococcal cell surface, again 

this protein is highly structurally variable and can be divided into three families 

and further split into six clades (Hollingshead et al., 2000). Like CbpA this 

protein is able to evade host defences via preventing complement deposition on 

the bacterial cell surface by inhibiting activation of the classical and alternative 

complement pathway (Ren et al., 2003, Ren et al., 2004a, Ren et al., 2004b, 

Ochs et al., 2009, Tu et al., 1999). PspA is also able to bind lactoferrin, a host 

iron transport protein, and is thought to help protect from apolactoferrin 

bactericidal activity (Shaper et al., 2004, Hakansson et al., 2001). With regards 

to virulence the data is conflicting but it may be required for in vitro growth 

(McDaniel et al., 1987, Ren et al., 2004a, Berry & Paton, 2000, Orihuela et al., 

2004, Hava & Camilli, 2002). PspA however is immunogenic and is a component 

in a number of protein based vaccine studies (Nguyen et al., 2011, Xin et al., 

2009, Yamamoto et al., 1997) 
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1.6.7.2 Hydrolytic enzymes 

The pneumococcus contains a number of cell wall hydrolytic enzymes of which 

the most well known are LytA/B/C. LytA has been shown to function as a N-

acetylmuramoyl-L-alanine amidase cleaving N-acetylmuramoyl-L-alanine 

moieties bond of pneumococcal peptidoglycan (Howard, et al., 1974, Tomasz et 

al., 1988). Its main activity has been shown to cause bacterial cell autolysis but 

may also contribute to cell wall turnover and growth. Why autolysis is 

physiologically important is still debated, one function is though to be to release 

Ply which is a VF, however this is now contested. Another suggestion is that the 

lysed cells provide DNA for recombination into surviving bacterial cells to aid 

genetic variation and survival (Steinmoen et al., 2002, Guiral et al., 2005). 

Studies into its role in virulence show conflicting information with some strains 

showing mutants are as virulent as WT however some show deficiencies in 

virulence (Berry et al., 1989, Tomasz et al., 1988, Hirst et al., 2008, Canvin et 

al., 1995, Berry & Paton, 2000, Orihuela et al., 2004). LytB functions during cell 

division localising to the cell septum, mutants in this gene are unable to properly 

separate and form long chains (Garcia et al., 1999, Rudner & Jarvis, 1999). LytCs 

function is less well characterised and shows little phenotype change unless 

deleted alongside LytA. However both LytB and LytC have been shown to be 

important during colonisation (Gosink, et al., 2000). 

On top of the CBPs discussed above a number of other choline binding proteins 

exist with varying functions, briefly this included CbpJ and CbpI of which their 

function is currently unknown (Paterson et al., 2006). CbpF is thought to 

modulate in some way LytC function (another CBP) (Molina et al., 2007, Molina 

et al., 2009). CbpD plays a role in competence induced cell lysis and has been 

characterised as another hydrolytic enzyme (Steinmoen et al., 2003, Guiral et 

al., 2005, Kausmally et al., 2005). CbpE is also thought to act as a cell wall 

hydrolase also known as lytD and Pce, and has been shown to play a role in 

virulence (Höltje & Tomasz, 1974, De las Rivas et al., 2001, Vollmer & Tomasz, 

2001). PcpA is important for virulence in a mouse model of infection and is 

immunogenic (Glover et al., 2008, Hava & Camilli, 2002). 
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1.6.8 Lipoproteins 

PsaA is one of the many pneumococcal cell surface lipoproteins currently 

identified, with 40-50 known, some with roles in virulence (Overweg et al., 

2000,  Hermans et al., 2006). PsaA will be the only example discussed here. PsaA 

has been shown to be important in pneumococcal adherence to mammalian cells 

in vitro, and antibodies raised against this protein prevent adherence (Briles et 

al., 2000, Romero-steiner et al., 2003, Romero-Steiner et al., 2006, Berry & 

Paton, 2000). Recent studies have indicated it binds directly to E-cadherin 

present on surface of nasopharyngeal cells (Anderton et al., 2007), and can also 

aid in cell invasion (Rajam et al., 2008). Yet its role as an adhesin is contested 

as structural analysis implies that this surface protein would not protrude 

beyond the cell wall. Deletion mutants of this gene are avirulent in a mouse 

model of colonisation, pneumonia and septicaemia (McAllister et al., 2004, 

Tseng et al., 2002, Lawrence et al., 1998). PsaA has been further characterised 

as a component of an ABC transporter specific for manganese yet can also bind 

Zinc, the PsaA component acts as the metal ion binding component (Dintilhac et 

al., 1997, McAllister et al., 2004, Lawrence et al., 1998), and has also been 

shown to play a role in resistance to oxidative stress (Johnston et al., 2004, 

Tseng et al., 2002).The other ABC transporter components include PsaB and 

PsaC, which also show a reduced adherence upon their deletion (Johnston et al., 

2004). The final member of the operon is PsaD which is characterised as a 

putative thiol peroxidase, showing homology to an E.coli thiol peroxidase (Cha & 

Kim, 1996, Novak et al., 1998). This gene is also thought to play a role in 

resistance to oxidative stress as deletion mutants of this gene are hypersensitive 

to hydrogen peroxide (Johnston et al., 2004, Tseng et al., 2002). 

1.6.9 Other  

Pneumococcal adherence and virulence factor A (PavA) is found on the 

pneumococcal cell surface even though it contains no signal sequence or 

membrane anchoring motif (Holmes et al., 2001). One of its main functions has 

been shown to be binding of fibronectin which is found in the ECM surrounding 

host cells, of which It is though to contribute to 50% of the cells fibronectin 

binding capability (Holmes et al., 2001). A role in virulence has been assigned to 
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this protein with mutants showing a reduced virulence in a sepsis and meningitis 

model (Holmes et al., 2001, Pracht et al., 2005). 

1.6.10 Hydrogen peroxide 

The ability of the pneumococcus to produce high concentrations of hydrogen 

peroxide (H2O2) is used to its advantage, whereas in other bacteria H2O2 is 

produced merely as a by-product of aerobic metabolism and is degraded quickly 

via enzymes such as catalase etc to prevent toxic effects to the cell. In the 

pneumococcus H2O2 is produced as a by-product of the enzymatic reaction 

catalysed by SpxB (pyruvate oxidase), which converts pyruvate to acetyl 

phosphate during aerobic metabolism. SpxB produces over 90% of the total 

cellular H2O2 which can equate to 0.5-2mM (Spellerberg et al., 1996, Pericone et 

al., 2003). A small amount of H2O2 is also produced by LctO (lactate oxidase), 

which also functions under aerobic conditions converting lactate to pyruvate, 

which can then be processed by SpxB (Taniai et al., 2008). 

Little is known about the role of LctO in virulence but SpxB has long been 

recognised as a very important virulence factor, partly through production of 

H2O2 and through energy production as this is the main pathway used during 

aerobic metabolism to obtain ATP. ATP is produced by conversion of acetyl 

phosphate (product of SpxB reaction) to acetate via acetate kinase (Pericone et 

al., 2003). The use of H2O2 alone has been shown to be important for killing off 

competition in the nasopharynx due to the high levels produced (Pericone et al., 

2000). Bactericidal effects caused by H2O2 levels produced from the 

pneumococcus are high enough to kill other upper respiratory tract pathogens 

including H.influenzae and N.meningitidis (Pericone et al., 2000, Regev-Yochay 

et al., 2006). In a mouse model of infection spxB mutants are unable to colonise 

the nasopharynx and replicate in the blood and lungs in a mouse model. Analysis 

of in vivo gene expression also indicates spxB expression is higher in the 

nasopharynx therefore clearly plays an important role here (Spellerberg et al., 

1996, Orihuela et al., 2004, LeMessurier et al., 2006). 

Interestingly deletion of SpxB causes the loss of tolerance of the pneumococcus 

to H2O2 and therefore SpxB plays a currently unknown function in protecting 

itself from endogenously produced H2O2 (Regev-Yochay et al., 2007). This 
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phenomenon is thought to be in part due to the reduced ATP levels produced 

upon SpxB deletion which may be required to repair the damage caused by the 

H2O2. This can be backed up as upon deletion of acetate kinase (enzyme 

catalysing the last step in ATP production) spontaneous mutations are observed 

in SpxB (Ramos-Montañez et al., 2010). SpxB is also one of the genes important 

for phase variation as its deletion results in only opaque variants being observed, 

discussed above (Overweg et al., 2000, Ramos-Montañez et al., 2008). 

Hydrogen peroxide has recently been shown to directly oxidise a protein 

involved in fatty acid biosynthesis (FabF), which is important in regulating the 

level of membrane fatty acid saturation (Benisty et al., 2010)). 

1.7 Gene regulation 

To be able to adapt to different environmental conditions and stresses genes 

required in different niches need to be tightly regulated to enable survival, this 

includes regulation of cell surface adhesins and other virulence factors. For this 

a number of different signalling systems and signalling molecules are available in 

bacteria to enable this to happen, some of which are discussed below. 

1.7.1 Two component signal transduction systems (TCS) 

TCS are one of the major signalling systems utilised in bacteria to respond to 

changing environmental conditions, see review Stock et al, 1989. These systems 

are present in almost all bacterial species (bar Mycoplasma species) and can also 

be found in some lower eukaryotes. A prototypical TCS consists of two proteins: 

a membrane bound HK (histidine kinase) and a cytoplasmic RR (response 

regulator). The HK contains a N-terminal sensor domain, which responds to 

certain environmental changes, this domain is often extracellular and is followed 

by a C-terminal kinase domain, which is located within the cell. The second 

protein in a TCS pairs is the RR which is found in the cytoplasm, this protein 

contains a N-terminal receiver domain followed by a C-terminal output domain 

(often DNA binding function) (Stock et al, 1989). Upon recognition of an external 

stimulus by the HK which functions as a dimer, the HK is autophosphorylated in 

trans on a conserved histidine residue, the phosphoryl group is provided through 

ATP hydrolysis via the ATPase activity of the HK (Stock et al, 1989). Post 
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autophosphorylation the phosphate is transferred to a conserved aspartate 

residue on the receiver domain of the RR, which triggers a conformational 

change in the protein, usually modulating its DNA binding activity. This mode of 

action is diagrammatically depicted in Figure 1-5. 

 

Figure 1-5:Schematic diagram of TCS signal transduction 

Diagram modified from Paterson et al., 2006 representing prototypical TCS gene regulation. 
Upon recognition of specified extracellular stimulus the membrane associated HK is 
autophosphorylated. The phosphoryl group is subsequently transferred to its cognate RR 
which undergoes a conformational change enabling it to bind its DNA targets. 
 

HK and RR pairs are usually found in the genome adjacent to each other, in some 

cases the open reading frames overlap, and they are normally transcribed 

together (Lange et al., 1999). The numbers of TCS present in a single species 

varies with none found in Mycoplasma species, 13 in S.pneumoniae, roughly 30 in 

E.coli and B.subtilis, 63 in Pseudomonas aeruginosa and over 100 in Myxococcus 

xanthus (Rodrigue et al., 2000, Jung et al., 2012). Orphan RR have also been 

identified in a number of species, which have no cognate HK (Wang et al., 2009). 

The external stimulus recognised by the HK can range from recognition of short 

peptides, temperature changes, pH changes, recognition of metal ions, 
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antibiotics and recognition of oxygen etc, in many cases the external stimulus 

has not been identified (Perry et al., 2011). These TCS have been shown to act 

as global gene regulators regulating large caches of genes important for survival 

and often regulate genes required for virulence. More recently TCS have also 

been shown to regulate a number of small RNA (sRNA) molecules in a number of 

pathogens, which have been shown to regulate virulence. 

The description of the TCS functioning described above is somewhat simplified 

and other factors have more recently been shown to interact with these 

systems. This includes phosphorylation of some RR on an alternative threonine 

residue by a serine/threonine protein kinase, which has been observed in the 

pneumococcus (this is discussed further below) (Agarwal et al., 2012,  Ulijasz et 

al.,2009). Phosphorylation of orphan response regulators can also occur through 

a HK of a non cognate TCS pair (Wang et al., 2009). In some bacteria HK have 

also been shown to form heterodimers with HK of different TCS pairs, preventing 

signalling (Vincent et al., 2010). However in vivo cross talk between HK and RR 

of different TCS pairs does not occur to enable tight regulation of genes (Boll & 

Hendrixson, 2011). TCS have also been shown to regulate genes in both their 

phosphorylated and non phosphorylated forms, with different caches of genes 

regulated in both forms (Standish et al. , 2007). 

1.7.1.1 TCS in S.pneumoniae 

S.pneumoniae contains 13 TCS pairs and one orphan response regulator (Throup 

et al., 2000, Lange et al., 1999), summarised in Table 1-1. The RR of each TCS 

pair have been grouped based on their amino acid sequence identity to each 

other and RR of different species, the receiver domain of the RR share high 

homology to each other however the output domain (DNA binding domain) varies 

considerably due to their different DNA targets (Lange et al., 1999). The first 

family is classed the OmpR family which includes RR01, RR02, RR04, RR05, RR06, 

RR08, RR10 and ORR, the second family classed AraC contains RR07 and RR09, 

the third family is called LuxR and contains RR03 and RR11 and finally the fourth 

family classed AgrA contains RR12 and RR13 (Lange et al., 1999, Throup et al., 

2000).  
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These large scale studies for initial identification of all TCS in S.pneumoniae also 

showed a large number of these systems play some role in virulence (Throup et 

al., 2000). Interestingly the initial studies into their role in virulence performed 

by Lange et al., 1999 showed no difference in virulence of the RR knockouts 

compared to their parent strain in a mouse model of bacteraemia, except for 

RR02 and RR13 which could not be deleted and RR07 which could not be deleted 

in a virulent strain (Lange et al., 1999). This was contrary to the later study 

conducted by Throup et al., 2000 which showed a role in virulence of RR01, 

RR04, RR05, RR06, RR07, RR08, RR13 and ORR using a mouse model of 

pneumonia, with deletion mutants of the RR being attenuated compared to the 

WT (Throup et al., 2000). In this study RR07 and RR13 could be deleted however 

this is not the case for RR02 which has been shown to be the only vital RR in 

S.pneumoniae, which shares homology to the indispensible RR of B.subtilis, 

S.aureus etc (Fabret & Hoch, 1998, Martin et al., 1999). However HK02 can be 

deleted in the pneumococcus (Throup et al., 2000). Since these studies a large 

amount of effort has been put into assessing what genes each of these systems 

regulate. Some features which have added to the complexity of these studies it 

that they seem to regulate genes in a strain dependant manner, and therefore 

their role in virulence is also strain dependant (Lange et al., 1999, Blue & 

Mitchell, 2003, Hendriksen et al., 2007, Mccluskey et al., 2004). This may be 

why RR07, RR13 could not be deleted in the initial study (Lange et al., 1999). 

What is known currently about each of the TCS and genes they regulate will be 

described below. 

TCS Gene number 
(TIGR4) 

Alternative 
nomenclature 

Role in 
virulence? 

Virulence references 

TCS01 HK SP_1632 
RR SP_1633 

480 Yes (Throup et al., 2000) (Hava & 
Camilli, 2002) 

TCS02 HK SP_1226 
RR SP_1227 

YycFG, MicAB, 
VicRK, WalRK ,492 

Yes (Throup et al., 2000) (Lange et 
al., 1999) 

TCS03 HK SP_0386 
RR SP_0387 

LiaSR, 474 Yes (Rosch et al., 2008) 

TCS04 HK SP_2083 
RR SP_2082 

PnpRS, 481 Yes (Throup et al., 2000) (Mccluskey 
et al., 2004) 

TCS05 HK SP_0799 
RR SP_0798 

CiaRH, 494 Yes (Throup et al., 2000), (Hava & 
Camilli, 2002) (Sebert et al., 
2002) (Ibrahim et al., 2004) 

TCS06 HK SP_2192 
RR SP_2193 

CbpSR, 478 Yes (Throup et al., 2000) 

TCS07 HK SP_0157 
RR SP_0156 

539 Yes (Throup et al., 2000) (Lange et 
al., 1999) (Hava & Camilli, 2002) 
(Lau et al., 2001) 

TCS08 HK SP_0082 
RR SP_0083 

484 Yes (Throup et al., 2000) 
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TCS09 HK SP_0662 
RR SP_0661 

ZmpSR, 488 Yes (Hava & Camilli, 2002) 
(Hendriksen et al., 2007) (Blue & 
Mitchell, 2003) 

TCS10 HK SP_0604 
RR SP_0603 

VncRS, 491 No  

TCS11 HK SP_2001 
RR SP_2000 

479 No  

TCS12 HK SP_2236 
RR SP_2235 

ComDE, 498 Yes (Hava & Camilli, 2002) 

TCS13 HK SP_0527 
RR SP_0526 

BlpRH, SpiR1/2, 
SpiRH, 486 

Yes (Throup et al., 2000) (Lange et 
al., 1999) (Dawid et al., 2007) 

ORR RR SP_0376 RitR, 489 Yes (Throup et al., 2000) (Ulijasz et 
al., 2004) 

Table 1-1: Pneumococcal TCS 

Summary of all the current known pneumococcal TCS, information is provided with regards 
to their role in virulence and alternative names used in the literature. 
 

1.7.1.1.1 TCS01 

TCS01 is one of the systems to date that no information is available for with 

regards to what genes it regulates. However it has clearly been shown to play a 

role in virulence in the initial large scale screens (Throup et al., 2000), and a 

later screen has shown this gene is essential for lung infection (Hava & Camilli, 

2002). 

1.7.1.1.2 TCS02 

TCS02 is the only TCS in the pneumococcus which cannot be deleted and is 

essential (Throup et al., 2000, Lange et al., 1999). Homologues of this system 

are present in a large number of other gram positive pathogen where it is also 

essential (Fabret & Hoch, 1998, Liu et al., 2008, Dubrac & Msadek, 2004, 

Senadheera et al., 2005). Interestingly only the RR is essential in the 

pneumococcus rather than both the HK and RR seen in other pathogens (Throup 

et al., 2000, Martin et al., 1999, Fabret & Hoch, 1998). Due to its requirement it 

has made studies into the genes regulated by TCS02 hard to assess and 

mechanisms used to do this have included over expressing RR02 or reducing its 

expression (Ng et al., 2003, Mohedano et al., 2005). The genes regulated by this 

system were shown to include gene involved in peptidoglycan biosynthesis, fatty 

acid biosynthesis, cell division and some cell surface virulence factors, including 

PspA and PcsB which have been shown to be directly regulate by RR02 through 

binding in its phosphorylated form to their upstream promoter regions (Ng et al., 

2003, Ng et l., 2005, Mohedano et al., 2005). PcsB which is positively regulated 
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by this system is essential and upon its over expression RR02 can be deleted (Ng 

et al., 2003, Ng et al., 2004). This peptidoglycan hydrolase has been shown to be 

important for peptidoglycan biosynthesis and localises to the cell septum where 

it interacts with the cell division proteins (Sham et al., 2011). Mutants 

constructed altering the expression of pcsB or rr02 show clear defects in their 

ability to divide properly (Ng et al., 2004). HK02 has been shown to localise 

throughout the cell periphery (Wayne et al., 2010), contrary to the localisation 

of WalK to the cell septum in B.subtilis (Fukushima et al., 2009). The external 

stimulus of TCS02 is currently unknown but due to the genes regulated by the 

system it is thought to respond to change in the cell wall peptidoglycan 

responding to the presence of certain precursors etc (see review Dubrac et al., 

2008). 

1.7.1.1.3 TCS03 

TCS03 was not shown to play a role in virulence in the initial virulence screens 

but later studies have implicated it in playing a role in virulence. Deletion of 

HK03 in a serotype 4 strain (TIGR4) causes a significant increase in survival of 

infected mice (I.N) compared to the WT (Rosch et al., 2008). This correlated to 

a significant decrease in the number of bacteria present in the nasopharynx and 

blood of infected mice 24 hours post infection (Rosch et al., 2008). Within this 

study one of the genes shown to be regulated by this system was that of the 

pneumococcal pilus, with RR03 shown to bind directly to the rlrA promoter 

(Rosch et al., 2008). RR03 was also shown to be up regulated in the CSF of 

infected rabbits, using a meningitis model of infection (Orihuela et al., 2004). 

More recent studies have further characterised the role of TCS03 with regards to 

its function in the pneumococcus. This TCS has been shown to be important in 

helping protect the bacterial cell during autolysis/ fratricide (Eldholm et al., 

2010). As described above the pneumococcus is naturally competent, during 

competence some of the population autolyse to provide DNA for genetic 

variation etc, which is caused by a number of hydrolytic enzymes (LytA, CbpD, 

LytC) (Johnsborg, et al., 2008, Steinmoen, et al., 2002). Activity of these 

enzymes induces cell envelope stress which triggers activation of TCS03. To 

protect the bacteria from lysis this system regulates a number of genes which 

are important to prevent this occurring (Eldholm et al., 2010). This phenomenon 

is backed by earlier studies which show TCS03 is expressed to a higher level in 
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competent cells rather than non competent cells, protecting this population 

(Dagkessamanskaia et al., 2004). TCS03 has also been shown to be up regulated 

when bacterial cells are subjected to vancomycin, which would also cause cell 

envelope stress, activating this system (Haas et al., 2005). 

1.7.1.1.4 TCS04 

Initial studies into the role in virulence of RR04 were conflicting, although the 

Lange study showed no attenuation during a bacteraemia model of infection it 

did show a clear growth defect in vitro (Lange et al., 1999), later studies by 

Throup et al., 2000 identified this as an important virulence factor required 

during a pneumonia model of infection (Throup et al., 2000). Later studies 

looking at the role of this TCS in virulence suggested it plays a strain specific 

role in virulence, with attenuation during a pneumonia and bacteraemia model 

of infection only observed in a serotype 4 TIGR4 strain (Not serotype 2/3) 

(Mccluskey et al., 2004). Gene expression analysis was also performed in this 

study to characterise the genes regulated by this system, which was shown to 

also be strain specific. In the serotype 2 background (D39) genes regulated by 

this system included TCS05 and a serine protease HtrA (Mccluskey et al., 2004). 

In a serotype 3 background (0100993) genes regulated included RR08 and a 

number of PTS (phosphotransferase system) genes (Mccluskey et al., 2004). In 

the serotype 4 strain (TIGR4) some of the genes regulated included that of a 

manganese ABC transporter made up of PsaA, PsaB and PsaC, which is down 

regulated upon deletion of RR04 (Mccluskey et al., 2004). This ABC transporter 

has been shown to play a role in virulence in the pneumococcus (Dintilhac et al., 

1997, Berry & Paton, 1996, Ogunniyi et al., 2000, Marra et al., 2002). 

Homologues of this system in other bacteria have been shown to respond to 

divalent cations, which is hypothesised to be the external stimulus that activates 

this system (Groisman, 2001). 

1.7.1.1.5 TCS05 

TCS05 was the first characterised TCS in the pneumococcus (Guenzi et al., 

1994). This system is also called CiaRH (competence induction and altered 

cefotaxime susceptibility) after some of the phenotypes observed upon its 

deletion (Guenzi et al., 1994, Guenzi & Hakenbeck, 1995). This TCS has 

therefore been associated with repressing competence, protecting the cell from 
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#-lactam antibiotics and protecting the cell for autolysis (Guenzi & Hakenbeck, 

1995, Giammarinaro et al., 1999, Lange et al., 1999, Dagkessamanskaia et al., 

2004, Zähner et al., 2002, Mascher et al., 2006, Echenique et al., 2000). The 

genes regulated by this system have been well characterised which include 

repression of the genes required for competence development and positive 

regulation of HtrA (High temperature requirement protein A) (Mascher et al., 

2003, Sebert et al., 2002). Further the genes directly regulated through binding 

of RR05 to the upstream promoter have been identified (Halfmann et al., 2007), 

which has been shown to include a number of sRNA molecules and is the first 

study in the pneumococcus showing sRNAs regulated by a TCS (Halfmann et al., 

2007). Homologues of this system in other streptococci have been shown to also 

regulate sRNAs suggesting they may play an important role in survival as they are 

conserved (Marx et al., 2010). One other factor shown to be differentially 

regulated by this system is the pneumococcal pilus which upon deletion of this 

TCS is down regulated (Sebert et al., 2002), however this has not been further 

validated by any other methods and the pilus was not found to be directly 

regulated via RR05 (Halfmann et al., 2007). 

This system has been clearly shown to play a role in virulence through the initial 

screens and later studies, which show a clear role of the genes regulated by this 

system in aiding colonisation and systemic infection (Marra et al., 2002, Throup 

et al., 2000, Sebert et al., 2002). Upon contact of bacterial cells with Detroit 

562 cells this system is up regulated (Orihuela et al., 2004). The reduced 

virulence phenotype observed in a RR05 deletion mutant has been shown to be 

due to the reduced expression of HtrA, as deletion RR05 and HtrA show similar 

virulence phenotypes and over expression of HtrA in a RR05 mutant restores 

virulence (Ibrahim et al., 2004). HtrA has also been shown to post 

transcriptionally regulate bacteriocin activity, linking this system to that of 

TCS13 also (Dawid et al., 2009), and is the factor which modulates competence 

induction (Sebert et al., 2005). Upon deletion of a global gene regulator (serine/ 

threonine protein kinase) this system is down regulated suggesting this TCS may 

also be controlled by an alternative kinase (Saskova et al., 2007). This system is 

also down regulated in a RR04 mutant suggesting this system may regulate TCS05 

(Mccluskey et al., 2004). 
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1.7.1.1.6 TCS06 

TCS06 was one of the systems shown to be important for virulence (Throup et 

al., 2000), further studies have validated this with a decrease adherence 

observed to Detroit 562 and A549 cells upon deletion of either the HK or RR in a 

serotype 2 strain (D39) (Standish et al., 2005). Interestingly these strains when 

assessed in a mouse model of infection (I.N) showed in some instances opposite 

effects of the HK and RR mutants. In the RR mutant bacteria counts in the lung, 

blood and nasopharynx were statistically higher than the WT (Standish et al., 

2005). TCS06 has also been linked to biofilm formation as a mutant in HK06 

shows a reduced biofilm formation. Two virulence factors that are regulated by 

TCS06 including RlrA/ RrgA (pilus proteins) and CbpA showed a similar reduction 

in biofilm formation when containing transposon insertions (Muñoz-Elías et al., 

2008). 

This system has also been designated CbpS/R as the important adhesin CbpA 

(PspC) is located directly upstream of this TCS and regulates this genes (Standish 

et al., 2005). RR06 is able to bind directly to the promoter upstream of CbpA, 

which has been shown to occurs when RR06 is in its non phosphorylated form 

(Standish et al., 2005, Standish et al., 2007). Interestingly although this TCS 

contain a cognate HK it is also phosphorylated on a threonine residue by a 

serine/ threonine protein kinase, which has been shown to modulate its affinity 

for binding to the CbpA promoter region (Agarwal et al., 2012). Other genes 

have also been shown to be regulated by this systems this includes the virulence 

factors PspA which is repressed upon over expression of RR06 in D39. This 

repression has been shown to occur when RR06 is in its phosphorylated form 

(Standish et al., 2007). Another virulence factor regulated by this TCS is the 

pneumococcal pilus which is up regulated upon deletion of HK06, the RR has 

been shown to bind directly to the rlrA promoter region (Rosch et al., 2008). 

1.7.1.1.7 TCS07 

TCS07 is another system that has not been characterised with regards to the 

genes it regulates. This TCS however has been shown to play a role in virulence 

(Throup et al., 2000, Hava & Camilli, 2002, Lau et al., 2001). 

1.7.1.1.8 TCS08 
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TCS08 was also one of the TCS shown to play a role in virulence in the initial 

screens performed (Throup et al., 2000). Although this has not been further 

validated in a mouse model of infection deletion of TCS08 has been shown to 

affect the ability to adhere to A549 cells (Song et al., 2009). TCS08 has also 

been linked to phase variation with the two variant showing different virulence 

capabilities as described above, RR08 is down regulated in opaque variant 

compared to transparent (Trappetti et al., 2011). Studies have also been 

performed into the genes that are regulated by this TCS with initial studies in a 

serotype 2 stain (R6) showing this TCS regulates solely a number of genes 

important for cellobiose metabolism including a PTS (Mckessar & Hakenbeck, 

2007). Deletion of TCS08 renders the mutants unable to utilise this as a carbon 

source. However it is unlikely that the pneumococcus would come across 

cellobiose in the host and it is thought these systems recognise structural 

analogues of cellobiose (#-glucosides) which may be derived from the breakdown 

of host ECM proteins (see review King, 2010). Studies of the role of this TCS in a 

serotype 4 strain TIGR4 showed a different collection of genes to be regulated 

by this system, which again may suggest this system acts in a strain dependant 

manner (Song et al., 2009). Included was that of genes encoded on the pilus 

islet, which were up regulated upon deletion of RR08 (Song et al., 2009). 

1.7.1.1.9 TCS09 

In the initial virulence screen TCS09 was not shown to play a role in virulence 

however further studies suggested RR09 was essential during pneumonia (Throup 

et al., 2000, Hava & Camilli, 2002). Further characterisation of its role in 

virulence showed like RR04 it played a strain specific role in virulence (Blue & 

Mitchell, 2003). Deletion of RR09 in a serotype 2 (D39) background rendered the 

strain avirulent when administered via the I.P, I.N and Intravenous (I.V) route in 

a mouse model of infection (Blue & Mitchell, 2003). Conversely deletion of RR09 

in a serotype 4 (TIGR4) and serotype 3 (0100993) background strains rendered 

them attenuated via the I.N route of administration only, this was attributed to 

the inability of the strains to disseminate into the blood rather than an inability 

to grow in the lungs (Blue & Mitchell, 2003). Evaluation of the genes regulated 

by these systems showed this system also regulates genes in a strain dependant 

manner as only 7 genes were found to be commonly regulated by this TCS in D39 

and TIGR4, from the 102 and 80 found to be differentially regulated respectively 
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(Hendriksen et al., 2007). Genes regulated by RR09 in TIGR4 included that of the 

pilus islet genes, which were up regulated upon its deletion, PspA was down 

regulated upon its deletion. In D39 the genes encoding TCS12 were up regulated 

upon RR09 deletion, the serine protease HtrA was down regulated as well as a 

number of PTS encoding genes (Hendriksen et al., 2007). 

1.7.1.1.10 TCS10 

TCS10 has not been shown to play a role in virulence in the large scale screens 

(Lange et al., 1999, Throup et al., 2000). HK10 was shown to be up regulated 

upon contact with Detroit 562 cells and in the blood of infected mice (Orihuela 

et al., 2004). Early studies into the role of this system indicated it played a role 

in vancomycin tolerance as it lies directly downstream of genes shown to be 

important for this function, and may also play a role in autolysis (Novak et al., 

1999, Novak et al., 2000). However this has been revised and TCS10 was shown 

to not regulate the upstream genes important for vancomycin tolerance (Haas et 

al., 2004, Robertson et al., 2002). Upon deletion of RR10 an up regulation of 

some of the genes present on the pilus islet was observed, however this was not 

confirmed via any other methods (Haas et al., 2004). HK10 was one of the genes 

found to be down regulated upon deletion of the ORR and therefore may be 

regulated by this system (Ulijasz et al., 2004). 

1.7.1.1.11 TCS11 

TCS11 is one of the least well studied TCS. Currently no genes have been 

indentified that are regulated by this TCS. This system was also not identified to 

play a role in virulence in any of the large scale virulence screens so it may not 

regulate genes important for virulence. However this system has been found to 

be up regulated when cells are subjected to vancomycin stress (Haas et al., 

2005). Upon deletion of ORR this TCS was down regulated which may imply this 

system is also regulated by the ORR (Ulijasz et al., 2004). 

1.7.1.1.12 TCS12 

Early studies have suggested TCS12 to play a role in virulence showing HK12 is 

essential during pneumonia (Hava & Camilli, 2002), further studies have 

validated its role in virulence  where peptide inhibitors able to block TCS12 

activation cause an increased survival in infected mice (Zhu & Lau, 2011), 
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conversely alternative studies have suggested a fitness advantage upon deletion 

of TCS12 (Kowalko & Sebert, 2008). With regards to the function of this system 

this is one of the most well characterised. This system is known to function to 

allow natural competence development, allowing DNA uptake from the 

environment to allow horizontal gene transfer and genetic variation (Johnsborg, 

et al., 2008, Steinmoen, et al., 2002), which is discussed in section 1.5.1. Briefly 

this system has a know activation stimulus which is that of a small peptide 

named CSP encoded on a gene located upstream of the TCS (Havarstein et al., 

1996, Havarstein et al., 1995, Pestova et al., 1996). Genes regulated by this 

system include those important for DNA uptake and processing to allow 

recombination as well as positively regulating itself (Peterson et al., 2004). 

Some of the genes regulated by this system include some virulence factors (cell 

wall hydrolyses, LytA/ CbpD) which are important for inducing fratricide in a 

population of cells (Guiral et al., 2005, Kausmally et al., 2005), this phenomenon 

is also linked to TCS03 as described in section 1.7.1.1.3. 

This system has also been linked to the function of TCS05, which is known to 

repress competence (Dagkessamanskaia et al., 2004, Guenzi et al., 1994, 

Giammarinaro et al., 1999, Sebert et al., 2005), and plays an important role in 

autolysis which is important during competence for fratricide, discussed above. 

This system is also highly up regulated in a serine/ threonine protein kinase 

mutant, however a reduced expression of TCS05 is also observed in this mutant 

and therefore this may be due to a knock on effect of this, as TCS05 represses 

TCS12 expression (Saskova et al., 2007). RR12 and RR13 are the only two 

members of the AgrA family and both are activated in response to small 

peptides. This may not be surprising as they have been shown to converge in 

some instances on the same promoter and regulate the same gene (Knutsen et 

al., 2004). A number of the genes regulated by TCS13 have also been shown to 

be induced upon early competence development (Peterson et al., 2004). 

1.7.1.1.13 TCS13 

TCS13 was initially thought to be essential as knockouts of the system could not 

be obtained (Lange et al., 1999), although this was found not to be the case this 

TCS has been shown to play a role in virulence (Throup et al., 2000, Dawid et 

al., 2007). This TCS is most similar in aa sequence to TCS12 and is similar in that 
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it is activated by a small peptide encoded by blpC located directly downstream 

of the blpR/blpH encoded TCS (De Saizieu et al., 2000). Directly downstream of 

blpC there are also two genes blpA/ blpB which encode an ABC transporter 

required for BlpC export, which is homologous to the ComA/comB export system 

required for transport of CSP (De Saizieu et al., 2000). Recent studies of strains 

that do not contain a functional BlpA are unable to transport BlpC, however the 

system can still be activated by exogenously produced BlpC if other bacteria in 

the population are able to export BlpC (Son et al., 2011). Genes regulated by 

this system include a number of bacteriocin genes and immunity peptides which 

have been shown to be important for inter and intrastrain competition, 

important during colonisation where it has to compete to occupy this niche 

(Dawid et al., 2007, De Saizieu et al., 2000, Lux et al., 2007). The operons 

containing the genes regulated by this system are highly diverse with regards to 

the number of genes present which affects their ability to kill off other 

colonisers, with some strain more equipped to do so (Lux et al., 2007). As 

described above due to the similarity of TCS12 and TCS13 they are able to 

converge to regulate the same gene in some instances (Knutsen et al., 2004). 

This system has also been linked to TCS05 which regulates HtrA a serine 

protease, this protease has been shown to be able to post transcriptionally 

regulate bacteriocin activity in phase variants (Dawid et al., 2009). Transparent 

phase variant have been shown to have no bacteriocin activity yet opaque do, 

with both showing similar transcript levels, upon deletion of TCS05 or HtrA in 

transparent variants bacteriocin activity is restored (Dawid et al., 2009). 

1.7.1.1.14 ORR 

The orphan response regulator is found in the pneumococcal genome without a 

cognate HK (Throup et al., 2000). This RR was also found to be important for 

virulence in the large screens, which was further validated in a later study which 

showed it was important in a lung model of infection (Ulijasz et al., 2004). This 

study also assessed the genes regulated by this system, which included RR10 and 

RR11 of other TCS pairs. Other genes regulated by this system included genes 

required for iron uptake and led to the proposed name of RitR (repressor of iron 

transport) for this system, as it suppresses a number of genes important for iron 

transport (Ulijasz et al., 2004). ORR has also been shown to play a role in 

resistance to oxidative stress through the genes it regulates. The typical 
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aspartate phosphorylation site in RR is missing in this ORR, which is replaced by 

an asparagine residue. However ORR has been shown to be phosphorylated on its 

DNA binding domain (normally occurs on the receiver domain) by a serine/ 

threonine protein kinase, and this is removed by its cognate phosphatase (Ulijasz 

et al.,2009). Further to add to the complexity the cognate phosphatase of the 

kinase can bind directly through a protein-protein interaction with the DNA 

binding domain of ORR which alters its ability to bind to its promoter regions, 

the phosphatase does not bind to the DNA or compete with ORR binding (Ulijasz 

et al.,2009). This protein complex can be broken down via the kinase but how it 

does this is still unknown (Ulijasz et al.,2009). Other orphan response regulators 

in other bacteria have been shown to be phosphorylated through HK of a non 

cognate TCS pair but to date this has not been observed for ORR (Wang et al., 

2009). 

1.7.2 Serine/ threonine protein kinases 

The use of ESTPK (Eukaryotic-like serine threonine protein kinases) as global 

gene regulator in prokaryotes is currently being elucidated. It was previously 

thought that the mode of signal transduction in bacteria was distinct from that 

in eukaryotes with TCS as described above acting to regulate gene expression 

changes required for adaptation to environmental changes. Whereas in 

eukaryotes signalling normally occurs via signalling cascades made up of 

serine/threonine and tyrosine kinases and their cognate phosphatase. The recent 

discovery of ESTPK in a large number of bacteria has revised this role, which 

share roughly 35% sequence identity to their eukaryotic homologues (see review 

Burnside & Rajagopal, 2012). In prokaryotes these kinases typically consist of a 

N-terminal kinase domain and C-terminal PASTA (Penicillin binding protein and 

serine/threonine kinase associated domain) domains, which can range in number 

from 1-5. S.pneumoniae StkP contains four PASTA domains, S.agalactiae Stk1, 

S.pyogenes SP-STK, S.mutans PknB and S.aureus Stk1 contain three PASTA 

domains and E.faecalis PrkC contains five PASTA domains (see review Burnside & 

Rajagopal, 2012). The PASTA domains are extracellular domains and are thought 

to act to recognise a certain extracellular stimuli. In most instances the stimulus 

is unknown but PASTA domains function to bind unlinked peptidoglycan in PBPs 

(penicillin binding proteins) and this is also the case for PrkC in B.subtilis (Shah 

et al., 2010, Gordon et al. 2000, Maurer et al. 2012). The PASTA domains of StkP 
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in S.pneumoniae have been shown to bind to synthetic peptidoglycan which 

activates the kinase, this is also observed upon incubation with the #-lactam 

ampicillin which binds to the PASTA domains (Maestro et al. 2010, Beilharz et al. 

2012). 

ESTPK are often found adjacent to a STP (protein phosphatase) which function in 

unison with the kinase to dephosphorylate proteins phosphorylated by the kinase 

(Ulijasz et al. 2009). In most bacterial species only a single ESTPK and STP pair 

have found, some exceptions to this are M.tuberculosis which contains 11 ESTPK 

yet only PknB contains extracellular PASTA domains (see review Av-gay & 

Everett, 2000). Some S.aureus strains also contain two ESTKP (Didier et al., 

2010). 

Unlike TCS ESTPK do not contain a DNA binding domain to directly modulate 

gene expression and alter gene expression in a number of other ways discussed 

below. These kinases have however been shown to alter the expression of large 

caches of genes in a number of bacteria this includes S.pneumoniae, S.aureus, 

S.pyogenes and S.mutans (Banu et al., 2010, Bugrysheva et al., 2011, Donat et 

al., 2009, Burnside et al., 2010, Saskova et al., 2007).  

One mode of action through which ESTPK regulate large numbers of genes is via 

phosphorylating RR of TCS pairs, which in turn effects their DNA binding to gene 

targets. Some examples of this include the CovR/S TCS in S.agalactiae. CovR RR 

is normally phosphorylated on an aspartate residue which increased its affinity 

for its DNA targets (Lin et al., 2011, Lamy et al., 2004, Jiang et al., 2005). 

However Stk1 is able to phosphorylate CovR on a threonine residue which 

reduced its affinity for its DNA targets (Lin et al., 2011). In S.pyogenes its CovR 

homologue is also phosphorylated by its ESTPK (ST-STK) on a threonine residue 

(Agarwal et al., 2011), ST-STK also phosphorylates another RR in S.pyogenes that 

of WalR of the WalR/K TCS (Agarwal et al., 2011). This phenomenon is also 

observed in the pneumococcus as its ESTPK (StkP) phosphorylates the orphan 

response regulator known as RitR (Ulijasz et al. 2009), and also RR06 is 

phosphorylated on a threonine residue which increased its binding affinity to its 

DNA target (Agarwal et al. 2012). ESTPK also regulate other transcription 

regulators which modulate gene expression changes. This includes SarA from 

S.aureus which has over 100 known gene targets (Chien et al., 1999, Cheung et 
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al., 2008), which upon phosphorylation by Stk1 on a threonine residue increases 

its binding to its DNA targets four fold (Didier et al., 2010). EmbR transcription 

regulator in M.tuberculosis is also a target of PknH (ESTPK) which again 

enhances its ability to bind to promoter DNA (Sharma et al., 2006b), 

interestingly EmbR can also be phosphorylated by alternative kinases in 

M.tuberculosis including PknA and PknB (Sharma et al., 2006a, Sharma et al., 

2006b). 

ESTPK can also act to regulate gene expression through modification of histone 

proteins. These proteins upon DNA binding can modify the DNA structure and 

stop other regulatory proteins from binding (see review Dorman & Deighan, 

2003). In E.coli DNA binding like histone proteins can effect expression of 8% Of 

the genes in the genome (Oberto et al., 2009). In S.pyogenes SP-STK is able to 

phosphorylate a histone protein, which is thought to contribute to regulation of 

certain virulence factors (Jin & Pancholi, 2006), this phenomenon is also 

observed in S.aureus (Burnside et al., 2010).  

Another hypothesised function of ESTPK with regards to transcription regulation 

is via phosphorylating RNA or DNA polymerase. In L.monocytogenes PrkA (ESTPK) 

has been shown to interact with the alpha subunit of DNA polymerase and the 

alpha and beta subunit of RNA polymerase, but how this may alter genes 

expression in this bacterium is unknown (Lima et al., 2011). Initial studies into 

the protein targets of StkP in the pneumococcus also indicated it was able to 

phosphorylate RNA polymerase however further studies were unable to validate 

this (Novakova et al., 2005, Novakova et al., 2010). 

Finally ESTPK can alter translation through phosphorylation of elongation factors 

which play a vital role in protein biosynthesis. Phosphorylation of elongation 

factors has been observed in a number of bacteria including L.monocytogenes, 

B.subtilis and M.tuberculosis (Absalon et al., 2009, Sajid et al., 2011, Lima et 

al., 2011, Archambaud et al., 2005, Shah & Dworkin, 2010). In M.tuberculosis 

this causes an overall decrease in protein synthesis which can lead to dormancy 

(Sajid et al., 2011), in B.subtilis this phenomenon regulates spore germination 

(Shah & Dworkin, 2010, Shah et al., 2010). 
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With regards to their role in virulence ESTPK regulate a number of virulence 

factors in different bacterial species. In S.agalactiae deletion of the kinase and 

phosphatase lead to a reduction in virulence of 25-100 fold in a neonatal rat 

sepsis model, perhaps due to Stk1s positive regulation of its toxin #-hemolysin 

(Rajagopal et al., 2003, Rajagopal et al., 2008). Toxins are also regulated by SP-

STK in S.pyogenes (Jin & Pancholi, 2006) and by Stk1 in S.aureus, which play a 

role in virulence (Burnside et al., 2010, Débarbouillé et al., 2009, Donat et al., 

2009, Tamber et al., 2010). In S.mutans deletion of PknB leads to production of 

weaker biofilms and increased sensitivity to cellular stresses (oxidative/ 

osmotic/ pH) (Banu et al., 2010, Hussain et al., 2006, Zhu & Kreth, 2011). In the 

pneumococcus deletion of StkP leads to increased sensitivity to oxidative stress 

and heat, a reduction in transformation efficiency and reduced virulence in a 

mouse model of infection (Echenique et al. 2004, Saskova et al. 2007). Further 

PknB in M.tuberculosis is essential (Fernandez et al., 2006, Kang et al., 2005, 

Sassetti et al., 2003). 

1.7.3 Small RNAs 

The role of sRNA (small RNAs) in gene regulation in bacteria is currently at the 

forefront of research. New technology has enabled better identification of these 

small regulators for instance by tiling array and RNA-seq analysis and a number 

of internet prediction tools exist, enabling large scale studies to be performed 

(Rieder et al, 2012, Sharma & Vogel, 2001, Livny & Waldor, 2007). sRNA can 

function in a number of ways to alter gene expression/ translation, which are 

described below.  

One mode of sRNA regulation is through cis-encoded 5’UTR of mRNA, these 

sequences found upstream of the ATG start codon can function to prevent 

translation via blocking the ability of the ribosomes to bind. In a number of 

pathogens these 5’UTR act as thermometers where at certain temperatures this 

region is in a closed structure, preventing ribosome binding as it has formed a 

secondary structure, however upon increased temperature or vice versa the 

secondary structure is removed and translation initiation occurs (Giuliodori et 

al., 2010). The first discovered was that of lcrF mRNA in Yersinia pestis encoding 

a transcription activator (Hoe & Goguen, 1993, Bohme et al., 2012), further 

examples include prfA mRNA in L.monocytogenes which at temperatures below 



Chapter 1 

 

71 

37°C translation of the genes is blocked yet above these temperature translation 

can occur, PrfA is a transcription factor and regulates a number of genes 

involved in virulence (Johansson et al., 2002). These sRNA can also be regulated 

via binding of small metal ions or change in structure due to altered pH (see 

review Breaker, 2012). One example includes gpbA mRNA in V.cholerae which 

functions as a cell surface adhesin, this gene is regulated via the binding of 

cyclic diguanosine monophosphate (Kirn et al., 2005, Sudarsan et al., 2008). 

A large number of sRNA act through base pairing to the mRNA it regulates. These 

sRNA are either cis-antisense RNA which means they are encoded on the 

opposite strand to the gene that is being regulated and is transcribed alongside 

it. However trans encoded sRNA also exist which are transcribed from a region 

that is not linked to the gene it regulates. These elements are not likely to be 

perfect repeats of the mRNA it binds to and therefore form weaker interactions 

(Thomason & Storz, 2011). Again these sRNA have been linked to roles in 

virulence, both M.tuberculosis and Salmonella typhimurium contain cis-

antisense RNAs which can modulate virulence (Lee & Groisman, 2011, Padalon-

brauch et al., 2008, Gong et al., 2011, Arnvig & Young, 2012, Arnvig & Young, 

2009). This is also the case for trans-acting RNA, some examples of these factors 

modulating virulence can be seen in S.aureus, S.pyogenes, L.monocytogenes, 

S.typhimurium etc (Klenk et al., 2005, Toledo-Arana et al., 2009, Chevalier et 

al., 2010, Morfeldt et al., 1995, Padalon-brauch et al., 2008, Roberts & Scott, 

2007). 

Some trans-acting sRNAs require Hfq proteins, which function as sRNA binding 

proteins and act as a chaperone for the sRNA. These Hfq dependant sRNA have 

been well characterised in gram negative pathogens and are highly abundant, 

constituting the largest group of post transcriptional regulators (Sobrero & 

Valverde, 2012). Hfq proteins have currently not been identified in pathogenic 

streptococci so will not be discussed further here.  

sRNA can also function through direct binding to proteins which modulates their 

function, some examples of this activity include binding of sRNA to RNAP (RNA 

polymerase) in E.coli which can modulate the cache of genes the RNAP 

recognises (Cavanagh et al., 2012, Wassarman & Storz, 2000). These also 

function via modulating the activity of other RNA binding proteins which again 
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have clearly been shown to modulate virulence in a number of bacterial species 

(Fortune et al., 2006, Lenz et al., 2004, Rasis & Segal, 2009, Brencic et al., 

2010). 

As stated above a number of these sRNA are regulated by TCS further adding to 

the complexity of signalling networks. Conversely sRNA have also been shown to 

positively regulate TCS, for example translation is prevented of the PhoP/Q TCS 

in E.coli via base paring of the micA sRNA to phoP/Q mRNA (Coornaert et al., 

2011). This type of regulation is also seen in other TCS which form a feedback 

loop with the sRNA, with the TCS being controlled by and controls the sRNA 

(Guillier & Gottesman, 2008, Tu et al., 2010). 

Until recently in the pneumococcus only a small number of regulatory RNAs had 

been discovered (Kumar et al., 2010, Halfmann et al., 2007, Tsui et al., 2010), 

and little work had been done to assess the role of these sRNA in virulence. As 

described above one of the TCS was shown to regulate five sRNA with two found 

to be important for autolysis (Halfmann et al., 2007). The most recent studies 

have identified further sRNA in the pneumococcus with a total of 88-89 

identified (Mann et al., 2012, Acebo et al., 2012), the large number would 

suggest these like in other bacteria may play a key role in virulence gene 

regulation. Upon deletion of a number of these sRNA a number showed clear 

alterations in virulence, 26 were identified to be important for colonisation, 18 

were important during bacteraemia and 28 were important for lung infection 

(Mann et al., 2012), this is currently the most comprehensive study into the role 

of sRNAs in virulence in the pneumococcus and gives an insight into the genes 

that are regulated by these sRNAs. 

1.7.4 Other 

Other transcription regulators have been shown to also play key role in gene 

regulation and virulence in S.pneumoniae. A large number were found to be 

important in the large virulence screens (Hava & Camilli, 2002). Some of the 

better studied regulators are summarised in Table 1-2:, however due to their 

large numbers will not be discussed here in further detail. 
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Transcription 
regulator 

Function Role in virulence 

PsaR Manganese uptake/ virulence factor 
regulation 

(Hendriksen et al., 
2009) 
(Johnston et al., 
2006) 

CodY Amino acid metabolism/ iron uptake/ 
carbon metabolism. 

(Hendriksen et al., 
2008a) 

GlnR Glutamate and Glutamine metabolism. (Hendriksen et al., 
2008) 

RegR Competence regulation/ virulence factor 
regulation 

(Chapuy-regaud et 
al., 2003) 

Rgg Resistance to oxidative stress (Bortoni et al., 
2009) 

Table 1-2: pneumococcal transcription regulators 

Some example of pneumococcal transcription regulators which are important for virulence 
or regulate genes that are biologically important.  
 

Other modes of regulation occur which have not been well studied in the 

pneumococcus, examples include protein to protein interactions such as that of 

the pilus islet transcription regulation RlrA and adhesin RrgA, which can 

modulate expression levels of the islet (Basset et al., 2011, Basset et al., 2012). 

Post transcriptional regulation of bacteriocin activity is also modulated by HtrA 

in opacity variants perhaps through its protease activity (Dawid et al., 2009). 

Hydrogen peroxide has also been shown to be able to modulate fatty acid 

biosynthesis through oxidising FabF (Benisty et al., 2010). 

1.8 Aims of this study 

The aim of this study was to evaluate some of the key regulatory pathways used 

in the pneumococcus to modulate gene expression changes to environmental 

cues.  

This includes assessing the role of two-component signal transduction systems in 

virulence gene regulation. A number of the systems have been shown to regulate 

each other and their functions are often intertwined, with some systems shown 

to regulate the same genes. Therefore we wished to evaluate whether these 

systems are able to compensate for the deletion of another and whether a 

hierarchy exists between the systems. Analysis of this was performed using 

microarrays to assess the whole genome expression changes in single and double 

TCS mutants. 
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The serine/ threonine protein kinase is another signalling system used in the 

pneumococcus to modulate gene expression changes. We therefore also wanted 

to evaluate this system with regards to the genes it regulates. This kinase 

contain four extracellular sensing domains which are thought to recognise the 

extracellular stimulus, therefore the function of the kinase when one of these 

domains was deleted was also evaluated to assess how this affected its ability to 

modulate gene expression changes. 

Often for the above systems the environmental cue is not known. So a final aim 

was to assess the effect key environmental changes may have on expression of 

cell surface virulence factors. This includes looking at the role hydrogen 

peroxide plays in modulating cell surface constituents.  



 

 

 

 

 

 

 

 

 

 

2 Materials and Methods 
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2.1 Bacterial growth conditions and storage 

S.pneumoniae were grown on BAB (Blood agar base, Oxoid, UK) supplemented 

with 5% Horse blood (E&O laboratories) at 37°C. Throughout BAB will refer to 

that supplemented with 5% horse blood. Purity of culture was checked by placing 

an optochin disc (Mast diagnostics, UK) on the area streaked with S.pneumoniae 

prior to incubation. For S.pneumoniae strains requiring media supplemented 

with antibiotics, concentrations used can be found in Table 2-1.  For liquid 

culture and culture storage a single S.pneumoniae colony was inoculated into 

BHI broth (Brain heart infusion broth, Oxoid, UK) and grown statically to mid log 

(OD600nm 0.6), 15% sterile glycerol was added and 1ml culture aliquotes stored at 

-80°C (Aaberge et al. 1995). For strains grown anaerobically strains were grown 

in BHI broth in an anaerobic cabinet. All S.pneumoniae strains used in this study 

are shown in Table 2-2. 

E.coli strains were grown from a single colony on LB agar (Luria Bertani agar, 

Sigma- Aldrich, UK) or in LB (Luria broth, Sigma-Aldrich, UK) (unless otherwise 

stated) containing the appropriate antibiotic (Table 2-1) at 37°C with shaking 

200rpm. For storage cultures were centrifuged at 4000g for 5 minutes (4K15 

centrifuge, Sigma-Aldrich, UK) and resuspended in LB supplemented with 10% 

glycerol. 1ml aliquots were stored at -80°C. E.coli strains and plasmids used in 

this study can be found in Table 2-4 and Table 2-3 respectively. 

Antibiotic Stock concentration Working 
concentration 

E.coli 

Working 
concentration 

S.pneumoniae 

Ampicillin 100mg/ml 100!g/ml N/A 

Kanamycin 100mg/ml 100!g/ml 400µg/ml 

Chloramphenicol 10mg/ml N/A 10µg/ml 

Spectinomycin 100mg/ml N/A 200µg/ml 

Erythromycin 10mg/ml 1mg/ml 1µg/ml 

Table 2-1: Antibiotic stock and working concentrations used throughout the study. 
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Strain name Parent 

strain 

Description Resistance  

T4NO1 

 

 Serotype 4 TIGR4. Taken one passage from 

strains used in Aaberge et al., 1995. T4NO1 

genome sequence in Tettelin et al. 2001. 

N/A 

T4JH  Serotype 4 TIGR4. N/A 

Xen35  Serotype 4 TIGR4 strain containing luxA-E in 

SP_1914. (Francis et al., 2001, Orihuela et al. 

2003) 

KanR 

T4"stkP T4NO1 Serotype 4 TIGR4 strain containing a transposon 

insertion in stkP (SP_1732). 

SpecR 

T4"spxB T4NO1 Serotype 4 TIGR4 strain containing a transposon 

insertion in spxB (SP_0730). 

SpecR 

T4"lctO T4NO1 Serotype 4 TIGR4 strain with lctO  (SP_0715) 

deleted. 

KanR 

T4"spxB"lctO T4NO1 Serotype 4 TIGR4 strain containing a transposon 

insertion in spxB (SP_0730) and lctO  (SP_0715) 

deleted. 

SpecR/ KanR 

T4"rr06 T4JH Serotype 4 TIGR4 strain with rr06  (SP_2193) 

deleted. 

SpecR 

T4"rr08 T4JH Serotype 4 TIGR4 strain with rr08  (SP_0083) 

deleted. 

ChlorR 

T4"rr09 T4JH Serotype 4 TIGR4 strain with rr09 (SP_0661) 

deleted. (Throup et al. 2000, Hendriksen et al. 

2007) 

EryR 

T4"rr086 T4JH Serotype 4 TIGR4 strain with rr08 and rr06  

(SP_0083/SP_2193) respectively deleted. 

ChlorR/ 

SpecR 

T4"rr096 T4JH Serotype 4 TIGR4 strain with rr08 and rr06  

(SP_0083/ SP_2193) respectively deleted. 

EryR/ SpecR 

T4"rr098 T4JH Serotype 4 TIGR4 strain with rr09 and rr08 

(SP_0661/ SP_0083) respectively deleted. 

EryR/ ChlorR 

T4"rr0986 T4JH Serotype 4 TIGR4 strain with rr09, rr08 and rr06 

(SP_0661/ SP_0083/ SP_2193) respectively 

deleted. 

EryR/ ChlorR/ 

SpecR 

T4"stkP!ST T4NO1 Serotype 4 TIGR4 strain containing a transposon 

insertion in stkP (SP_1732). WT gene with P2 

promoter inserted in SP_1886. 

SpecR/ 

ChlorR 

T4"stkP!XST T4NO1 Serotype 4 TIGR4 strain containing a transposon 

insertion in stkP (SP_1732). Xen35 stkP gene with 

P2 promoter inserted in SP_1886. 

SpecR/ 

ChlorR 

T4P1 T4NO1 Serotype 4 TIGR4 strain with lux genes inserted KanR 
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in SP_1886 under the control of promoter P1. 

T4P2 T4NO1 Serotype 4 TIGR4 strain with lux genes inserted 

in SP_1886 under the control of promoter P2. 

KanR 

T4P3 T4NO1 Serotype 4 TIGR4 strain with lux genes inserted 

in SP_1886 under the control of promoter P3. 

KanR 

T4P4 T4NO1 Serotype 4 TIGR4 strain with lux genes inserted 

in SP_1886 under the control of promoter P4. 

KanR 

T4P19 T4NO1 Serotype 4 TIGR4 strain with lux genes inserted 

in SP_1886 under the control of promoter P19. 

KanR 

Xen35"19 Xen35 Serotype 4 TIGR4 strain containing luxA-E in 

SP_1914. also contains a transposon insertion 

upstream of SP_1915. 

SpecR /KanR 

T4"rrgB T4NO1 Serotype 4 TIGR4 strain with rrgB  (SP_0463) 

deleted. 

KanR 

T4"rlrA T4NO1 Serotype 4 TIGR4 strain with rlrA (SP_0461) 

deleted. 

KanR 

Table 2-2: Names of all S.pneumoniae strains used in this study. 

Table of all S.pneumoniae strains used in this study with their antibiotic profiles. All strains 
unless a reference is given were constructed by the author. T4!rr098 and T4!rr08 were 
constructed by Kanika Kapoor under the supervision of the author. 
 

Plasmid 

name 

Description Resistance Origin 

pCEP2 Plasmid containing 2Kb pneumococcal 

DNA flanking either side (allows 

integration into genome) of a MIP 

(Maltose inducible promoter). 

*AmpR / 

KanR 

(Guiral et al. 2006) 

pCEP2 lux lux genes cloned under the control of 

a maltose inducible promoter. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

pC2LSD pCEP2 lux plasmid containing a StuI 

restriction site upstream of MIP to 

allow promoter swapping. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

PCP1 pC2LSD plasmid containing promoter 

P1 in place of the MIP. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

PCP2 pC2LSD plasmid containing promoter 

P2 in place of the MIP. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

PCP3 pC2LSD plasmid containing promoter 

P3 in place of the MIP. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

PCP4 pC2LSD plasmid containing promoter 

P4 in place of the MIP. 

*AmpR/ 

KanR 

Generated in TJM lab by 

author Jenny Herbert 

PCP19 pC2LSD plasmid containing promoter *AmpR/ Generated in TJM lab by 
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P19 in place of the MIP. KanR author Jenny Herbert 

PCP2 ST PCP2 plasmid containing stkP in place 

of the lux genes and ChlorR in place of 

the KanR. 

*AmpR/ 

ChlorR 

Generated in TJM lab by 

author Jenny Herbert 

PCP2 XST PCP2 plasmid containing Xen35 stkP in 

place of the lux genes and ChlorR in 

place of the KanR. 

*AmpR 

/ChlorR 

Generated in TJM lab by 

author Jenny Herbert 

pET-33b Protein expression vector. *KanR N/A 

pET-33bRrgB rrgB gene encoding aa 40-600 cloned 

into pET-33b. 

*KanR Generated in TJM lab by 

author Jenny Herbert 

pR410 Plasmid with KanR cassette flanked by 

IR recognised by MarC9 transposase. 

*AmpR/ 

KanR 

(Prudhomme et al. 

2007) 

pR412 Plasmid with SpecR cassette flanked 

by IR recognised by MarC9 

transposase. 

*AmpR/ 

SpecR 

(Prudhomme et al. 

2007) 

pET-

29bMarC9 

marC9 hyperactive transposase cloned 

into pET-29b. 

*KanR (Lampe et al. 1999) 

Table 2-3: List of plasmids used in this study. 

Table of plasmids used in this study and their parent plasmid origins. * Indicates antibiotic 
added to media for selection in E.coli. 
 

Strain Genotype 

XL1-Blue™  recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F´ proAB lacIqZ#M15 Tn10 (Tetr)]. 

BL21(DE3) F– ompT gal dcm lon hsdSB(rB
- mB

-) $(DE3 [lacI 
lacUV5-T7 gene 1 ind1 sam7 nin5]) 

Stellar™ F–, endA1, supE44, thi-1, recA1, relA1, gyrA96, 
phoA, !80d lacZ" M15, " (lacZYA - argF) U169, " 
(mrr - hsdRMS - mcrBC), "mcrA, #– 

Table 2-4: Genotype of E.coli strains used in this study. 
 

2.1.1 Viable counting of S.pneumoniae frozen glycerol stocks  

At least 24 hours post freezing a vial per strain was thawed at 37°C for 3 

minutes. Mixed well and 20!l removed and serial 10 fold dilutions made in 180!l 

phosphate buffered saline (PBS, Sigma-Aldrich, UK) in a 96 well round bottom 

plate (Miles & Misra 1931), creating dilutions of 10-1 to 10-6. A BAB plate was 

divided into six sections and for each dilution 3x 20 !l was spotted onto 1 

section. Plates were allowed to dry and incubated overnight at 37°C in a candle 

jar. Colonies from each spot were counted and the dilution factor picked which 
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contained roughly 20-100 colonies per spot. From this the CFU/ml (colony 

forming units/ml) can be calculated see Equation 2-1. 

 

Equation 2-1: Equation used to calculate the CFU/ml of S.pneumoniae glycerol stocks. 
 

2.2 Cloning 

2.2.1 Restriction digest 

All restriction enzymes were sourced from NEB (New England Biolabs, UK) and 

used as per manufacturers instructions.  

2.2.2 Polymerase chain reaction (PCR) 

Throughout the study PCR performed for cloning or for sequencing was 

performed using high fidelity DNA polymerase Phusion" (NEB, UK), conditions 

Table 2-6. All other PCRs such as for confirming transformation were performed 

using GoTaq" DNA polymerase (Promega, UK), conditions Table 2-5. For both a 

55°C annealing temperature was kept constant unless otherwise stated. 72°C 

extension time was calculated using the expected PCR product size. For all PCR 

10mM dNTPs and 10mM forward and reverse primers solution were used. All PCRs 

were run in a Flexigene thermal cycler (Bibby Scientific, UK). 

Temperature Time Cycle number 
95°C 2 minutes 1 cycle 
95°C 30 seconds 
55°C 30 seconds 
72°C 1 minute/ Kb 

 
30 cycles 

72°C 5 minutes 1 cycle 
Hold 4°C   

Table 2-5: Program information used when performing PCR with GoTaq"  DNA polymerase. 

Number of colonies spot 1 + spot 2 + spot 3 =  N 

 

N / Divide by Three = A (Average of three spots) 

 

A x 50 =  A50 (gives number/ml) 

 

A50 x dilution factor = CFU/ml 
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Temperature Time Cycle number 
98°C 30 seconds 1 cycle 
98°C 10 seconds 
55°C 30 seconds 
72°C 20 seconds/ Kb 

 
30 cycles 

72°C 5 minutes 1 cycle 
Hold 4°C   

Table 2-6: Program information used when performing PCR with Phusion"  DNA 
polymerase. 
 

2.2.3 Colony PCR 

To screen for S.pneumoniae transformants single colonies were first streaked 

onto a BAB plate and grown for 12 hours to obtain more growth.  Using a pipette 

tip a sweep of bacterial growth was resuspended in 10µl of PCR grade water and 

placed in the microwave (800W microwave) for 2 minutes to lyse the bacterial 

cells. For PCR 1µl from the 10µl is added to a 50µl reaction replacing the 

genomic DNA. 

2.2.4 Agarose gel electrophoresis 

All DNA gels used were at 0.8% (UltraPure™ agarose, Life Technologies, UK) 

unless otherwise stated, containing SYBR"Safe DNA gel stain (Life Technologies, 

UK). Agarose was dissolved and run in 1xTAE buffer (Tris-Acetate EDTA) at 100V 

for 20 minutes. All DNA samples were run alongside 1Kb Plus DNA ladder (Life 

Technologies, UK) to gauge size. Gels were visualized using the UVPro gel doc 

system (UVTech). 

2.2.5 PCR purification/ gel extraction 

PCR purification and gel extraction were performed using the Wizard® SV gel 

and PCR clean up system (Promega) as per the manufacturers guidelines. 

2.2.6 Plasmid purification 

For Plasmid purification E.coli strains were grown in 5ml LB broth overnight, 

centrifuged at 4000g for 5 minutes (4K15 centrifuge, Sigma-Aldrich, UK) to pellet 
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cells and supernatant decanted. The bacterial pellet was processed using the 

QIAprep spin miniprep kit (QIAGEN) as per manufacturers guidelines. 

2.2.7 Ligation 

For ligation the plasmid backbone and PCR product was mixed at a ratio of 2:1 

(Vector (100ng): insert) calculated using the infusion molar ratio calculator 

(http://www.clontech.com/US/Support/xxclt_onlineToolsLoad.jsp?citemId=http

://bioinfo.clontech.com/infusion/molarRatio.do&section=16260&xxheight=750). 

2µl of T4 DNA ligase reaction buffer (10x), 1µl T4 DNA ligase (NEB, UK) were 

added and the reaction made to 20µl with PCR grade water. The reaction was 

incubated for 3 hours at room temperature and then stored at -20°C or 

immediately transformed into XL1-Blue™ chemically competent E.coli.  

2.2.8 In-Fusion cloning 

In-Fusion cloning was used when restriction sites were not available for ligation. 

For In-Fusion cloning plasmid backbone and PCR products were mixed at a ratio 

of 2:1 (Vector (100ng): insert) (In-Fusion molar ratio calculator), to this 2µl of 5x 

In-Fusion HD enzyme Premix (In-Fusion" HD cloning kit, Clontech, USA) was 

added and reaction made to 10µl with PCR grade water. Reaction mix was 

incubated for 15 minutes at 50°C and stored at -20°C until required. 

Transformation was performed into Stellar" competent E.coli cells as per the 

manufacturers guide. 

2.2.9 Transformation into E.coli 

Transformation into E.coli was performed using 50µl of competent cells (Stellar, 

XL1-Blue and BL21(DE3)) as per the manufacturers guide. Purified plasmids were 

transformed using 3-5µl (roughly 100ng/µl) and a volume of 5µl-10µl was used 

for transformation of In-Fusion and ligation reactions. 

2.2.10 Transformation into S.pneumoniae 

Pneumococcal strains to be transformed were grown in 10ml BHI supplemented 

with 1mM CaCl2 until OD600nm 0.07-0.12 was reached. 1ml aliquots were removed 

into sterile 1.5ml eppendorfs and 100ng/ml of competence stimulating peptide 
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(CSP-2) added. Tubes were incubated at 37°C for 15 minutes and then roughly 

1ug of DNA added, samples were then incubated at 37°C for 75 minutes. Samples 

were plated onto BAB containing the appropriate antibiotic to select for the 

transformants. Plates were incubated overnight in a candle jar at 37°C. 

2.2.11 Sequencing 

PCR samples were purified using the Wizard® SV gel and PCR clean up system 

(Promega) and Plasmids using the QIAprep miniprep kit. Samples were sent to 

Source Bioscience, Nottingham, UK for sequencing. Sample and primers were 

supplied at the concentrations required by the company.  

2.2.12 gDNA extraction 

S.pneumoniae strains were grown in 20ml BHI at 37°C to OD600nm 0.6. The culture 

was centrifuged at 4000g for 10 minutes to pellet the cells (4K15 centrifuge), 

the supernatant was removed and pellets froze at -20°C or processed 

immediately. To begin extraction the pellet was resusended in 1ml lysis buffer 

(10mM Tris, 100mM EDTA, 0.5% SDS) and incubated for 1 hour at 37°C.  

Subsequently 20!g/ml proteinase K (Life technologies, UK) was added and 

incubated for 3 hours at 50°C. 20!g/ml RNase A (Life technologies, UK) was then 

added and incubated for 30 minutes at 37°C followed by the addition of an equal 

volume of phenol:chloroform:isoamyl alcohol (25:24:1) (Sigma-Aldrich, UK), and 

samples inverted to mix. Samples were centrifuged at 13,000g for 3 minutes 

(113 centrifuge, Sigma-Aldrich, UK), the upper phase was transferred to a fresh 

tube and to this 0.2 volumes of 10M ammonium acetate (Sigma-Aldrich, UK) 

followed by 600!l of absolute ethanol were added. Tubes were inverted and DNA 

precipitation should be observed, the precipitate was then removed using a 

sterile 200!l pipette tip into a fresh tube. If DNA precipitate cannot be seen 

tubes were centrifuged for 30 minutes at 13,000g (1K15 centrifuge, Sigma-

Aldrich, UK), and the supernatant removed leaving the pellet. DNA pellets were 

air dried at room temperature for 20 minutes and then resuspended in 200!l PCR 

grade water, resuspension was aided by heating at 65°C if required. 
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2.3 Construction of gene knockouts using in vitro 
mariner mutagenesis 

A transposon based mutagenesis method was used for construction of T4"stkP 

and T4"spxB. This method was used as it requires only amplification of the PCR 

product in to which you wish the transposon to insert into. Four plasmidS are 

available for use with this system containing different antibiotic resistance 

cassettes, pR408 Erythromycin, pR410 kanamycin, pR412 spectinomycin, pEMCAT 

chloramphenicol. Each plasmid contains the antibiotic resistance cassette 

flanked by two inverted repeats that are recognized by the MarC9 transposase (a 

hyperactive form of the Himar1 transposase) (Lampe et al., 1996, Lampe et al., 

1999). After incubation of the chosen plasmid, PCR product and transposase 

enzyme the antibiotic resistance cassette flanked by inverted repeats is excised 

from the plasmid and is able to insert into the PCR product at random TA di-

nucleotide repeats. Creating PCR products with insertions at different positions 

along their length, this is transformed into S.pneumoniae giving a pool of 

mutants. Directionality of transposon can be assessed using primer MP128 and 

position along the PCR product length assessed using primer MP127. See Figure 

2-1 and Table 2-9. 

 

Figure 2-1: Schematic diagram representing the key steps during in vitro mariner 
mutagenesis. 
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2.3.1 Transposase purification 

2.3.1.1 Protein expression 

pET-29bMarC9 plasmid was isolated and transformed into BL21(DE3) cells as 

described in materials and methods 2.2.9. An overnight starter culture was 

prepared inoculating a single colony into 10ml LB media and grown at 37°C. 5ml 

of the starter culture was inoculated into 500ml 2xYTmedia (Sigma-Aldrich, UK) 

and grown to OD600nm 0.6 at 160rpm, 37°C. IPTG (Isopropyl %-D-

thiogalactopyranoside, Melford, UK) was subsequently added to a final 

concentration of 1mM and culture grown for a further 2 hours under the same 

conditions. Sample was centrifuged at 5000g at 4°C for 20 minutes (4K15 

centrifuge) and resuspended in 5ml resuspension buffer (Table 2-7), 1ml aliquots 

made and stored at -80°C until purification. 

2.3.1.2 Purification 

One of the 1ml aliquots was thawed and 10µl of 25mg/ml lysozyme (Fluka, 

Sigma-Aldrich, UK) solution added, and incubated at room temperature for 5 

minutes, followed by 1ml of lysis buffer (Table 2-7) and incubated at room 

temperature for 15 minutes. 60µl of 1mg/ml DNase 1 from bovine pancreas 

(Sigma-Aldrich, UK) and 10mM MgCl2 was added and incubated at room 

temperature for 20 minutes. The sample was centrifuged at 12,000g for 2 

minutes at 4°C (1K15 centrifuge) and supernatant discarded. Pellet was washed 

once in 1ml washing buffer (Table 2-7) and centrifuged at 12,000g for 2 minutes 

at 4°C (1K15 centrifuge), supernatant discarded. Pellet was subsequently washed 

twice with 1ml 6M Urea (Fisher Scientific, UK) centrifuged at 12,000g for 2 

minutes at 4°C (1K15 centrifuge) and supernatant discarded. Pellet was 

resuspended in 500µl of column buffer (Table 2-7) centrifuged at 12,000g for 2 

minutes at 4°C (1K15 centrifuge) and supernatant collected. 

A HiTrap™ DEAE FF 5ml column (GE Healthcare, Fisher Scientific, UK) was 

equilibrated with column buffer, 500µl of sample supernatant was loaded onto 

the column at 4°C, followed immediately by 8ml of column buffer. Samples were 

collected manually in 500µl fractions and run on a SDS gel (Figure 2-2) to 

confirm protein presence. Fractions 1-3 were pooled, dialysed in dialysis buffer 
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(Table 2-7) at 4°C while stirring, changing dialysis buffer twice in 8-12 hours. 

Sample was centrifuged at 12,000g 4°C for 2 minutes (1K15 centrifuge) and 

supernatant collected (remove any precipitate). Remaining sample was then 

mixed with an equal volume of 100% glycerol and stored at -80°C. 

Buffer Composition 

Resuspension buffer 20mM Tris-HCl pH 7.6, 25% sucrose, 2mM MgCl2, 1mM DTT, 

1mM Benzamidine 

Lysis Buffer 20mM Tris-HCl pH 7.6, 4mM EDTA, 200mM NaCl, 1% 

Deoxycholic acid, 1% NP-40, 1mM DTT, 1mM Benzamidine, 

0.6mM PMSF (Phenylmethylsulfonyl fluoride) 

Washing buffer 0.5% NP-40, 1mM EDTA 

Column buffer 20mM Tris-HCl pH 7.6, 4M Guanidine/ HCl, 50mM NaCl, 5mM 

DTT, 1mM Benzamidine, 1mM PMSF 

Dialysis buffer 50mM Tris-HCl pH 7.6, 100mM NaCl, 10mM MgCl2, 1mM DTT 

Table 2-7: Buffers used during MarC9 purification. 
 

 

Figure 2-2: Coomassie stained gel of transposase (MarC9) elution fractions. 

Boxed are the three fractions containing the 46kDa transposase MarC9, three fractions were 
pooled and used in later experiments. Left is size in kDa of bands from the SeeBlue"  Plus2 
pre-stained ladder. 
 

2.3.2 Transposase reaction conditions 

Initially the chosen pR plamid was purified using the QIAprep miniprep kit 

(QIAGEN). The desired PCR product amplified and cleaned using the Wizard® SV 

gel and PCR clean up system (Promega). The reaction mixture consisted of 1µg 
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of PCR product, 10µl 2x transposition buffer (Table 2-8), 1µg plasmid DNA, 0.5µl 

transposase and made to 20µl with PCR grade water.  

Buffer Composition 

Transposition buffer 10% glycerol, 2mM DTT, 25mM Hepes pH 7.9, 250µg/ml 

BSA, 100mM NaCl, 10mM MgCl2 

Prepared fresh each time 

Table 2-8: Composition of transposition buffer used in transposase reactions. 
 

The reaction mix was incubated for 6 hours at 30°C, cleaned using the Wizard® 

SV gel and PCR clean up system (Promega) (eluted in 100µl PCR grade water), 

and heated for 10 minutes at 75°C to inactivate the transposase. To the elute 

10µl 10x T4 DNA reaction buffer, 1.5µl 2mM dNTPS, 2µl T4 DNA polymerase 

(3U/µl) (NEB, UK) and 0.5µl 10mg/ml BSA was added and incubated at 16°C for 

30 minutes followed by 75°C for 10 minutes to inactivated the enzyme.  Finally 

2µl of 1mM NAD+ (#-Nicotinamide adenine dinucleotide, NEB, UK) and 4µl E.coli 

DNA ligase (NEB, UK) were added, incubated at 16°C overnight and then stored 

at 4°C until transformation.  

The whole reaction mix was subsequently transformed into an un-encapsulated 

TIGR4 strain due to its increased transformation efficiency as described in 

materials and methods 2.2.10. Transformants were screened using the original 

primers used for amplification of the PCR product (Table 2-9), which would show 

a band size or roughly 1.2kb larger due to transposon insertion. MP127 primers 

were also used in combination with the original primers to show positioning 

within the PCR fragment and MP128 was used for sequencing to assess 

directionality of insertion. 

Once sequencing was confirmed the original primers were used to amplify the 

larger fragment from the un-encapsulated TIGR4 strain. This was then 

transformed into encapsulated T4NO1 creating T4"stkP and T4"spxB, for both of 

which the pR412 plasmid was used giving spectinomycin resistance.  

Also included in Table 2-9 are primers 1917F and 1915R. Transposase reaction 

was also performed on this PCR product and a resulting mutant constructed with 
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the transposon inserting 20 nucleotides upstream of SP_1915. This insertion was 

moved from the unencapsulated T4 strain into Xen35 to assess the insertions 

affects on bioluminescence expression, resulting strain X35"19. This mutant was 

also constructed using plasmid pR412. 

Gene Gene 

number 

Primer 

name 

DNA sequence 5’-3’ size (bp) 

stkP SP_1732 StkPF FL ATGATCCAAATCGGCAAGA 1980 

  StkPR TTAAGGAGTAGCTGAAGTTG  

spxB SP_0730 spxB F ATGACTCAAGGGAAAATTACTG 1776 

  spxB R TTATTTAATTGCGCGTGATTG  

  1917F GATGCAGGAAATACGTCGCTT 1157 

  1915R TTACCTCATGTTTCTTAGATTTTC  

  MP127 CCGGGGACTTATCAGCCAACC  

  MP128 TACTAGCGACGCCATCTATGTG  

Table 2-9: Primers used for construction and confirmation of transposase mutants. 
 

 

Figure 2-3: Example of PCR confirmation of transposon insertion 

In this example a transposon was inserted into stkP. PCR was performed using stkP primer 
pair in Table 2-9. stkP is roughly 2Kb in size and with transposon insertion !stkP is roughly 
3.2Kb as seen on gel. Numbers on left indicate size of bands in the 1Kb+ ladder. 
 

2.4 Construction of gene knockouts using splice overlap 
PCR 

A number of gene knockouts were also constructed by splice overlap PCR, this 

included T4"lctO, T4"rrgB, T4"rlrA, T4"rr08, T4"rr06. For splice overlap PCR 

primers were designed containing approx 20bp of gene specific nucleotides and 

roughly 15bp corresponding to the gene the PCR product is to be joined to. For 

each gene knockout three primer pairs were required, one to amplify the 
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upstream region of the gene to be removed, one for the downstream region and 

one to amplify an antibiotic resistance cassette to replace the gene. For each 

gene knockout the whole gene was removed unless there was any overlap with 

another open reading frame, in this instance a small number of nucleotides 

would remain so as to not perturb the function of surrounding genes. For 

T4"lctO, T4"rrgB and T4"rlrA lctO/ rrgB and rlrA were replaced with a 

kanamycin resistance cassette amplified from the plasmid pR410. For T4"rr08 

rr08 was replaced with a chloramphenicol resistance cassette amplified from the 

strain T4"pspC. For T4"rr06 rr06 was replaced with a spectinomycin resistance 

cassette amplified from the plasmid pR412. Some observations upon growth of 

mutants in BHI indicated the StkP mutants, T4"rr098, SpxB mutants and Xen35 

all seemed to grow slower than the parent strains. Further microscopy indicated 

StkP mutants had an altered morphology showing increased chain length and 

altered septation, which was also observed in Xen35. Mutants containing the 

rr09 deletion also seemed so show smaller colony morphology. 

2.4.1 Construction of single gene knockouts 

Each PCR fragment was amplified individually and PCR purified using the 

Wizard® SV gel and PCR clean up system (Promega). To join the three fragments 

together 1µl of each fragment was added to a PCR reaction using the outermost 

primers indicated by a * in Table 2-10, PCR was performed using an extension 

time that would amplify the correct size band to join all three fragments 

together. Resulting PCR products were run on a 0.8% agarose gel (UltraPure™ 

agarose, Life Technologies, UK) and the band of the correct size gel extracted 

using the Wizard® SV gel and PCR clean up system (Promega). Fragments were 

then transformed into the desired S.pneumoniae strain as described in materials 

and methods 2.2.10, using the correct antibiotic for selection. Transformants 

were screened for using PCR and then sequencing.  

 

Figure 2-4: Example of PCR confirmation of splice overlap PCR gene knockouts 
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In these examples from left to right rrgB, lctO and rr06, the whole gene was replaced by an 
antibiotic resistance cassette. PCR was performed using primer pairs in Table 2-10. Sizes 
corresponding to the expected WT and ! band are shown in Table 2-10. Numbers on left 
indicate size of bands in the 1Kb+ ladder. 
 

Gene 

removing 

Gene 

number 

Primer name DNA sequence 5’-3’ size 

(bp) 

lctO  SP_0715 SP_0715 UPF* TTCGACCAATTCAAGGTTGAGGC 768 

WT- 2.7Kb  SP_0715 UPR ATCCCCAGCTTGAAACTGTCCTCCTCGATT
AAG 

 

"lctO- 2.3Kb  KAN0715 F AGGAGGACAGTTTCAAGCTGGGGATCCGT
TTGA 

795 

  KAN0715 R GGCAATCTGTTTTACTAAAACAATTCATCC
AGTAA 

 

  SP_0715 DWNF GAATTGTTTTAGTAAAACAGATTGCCTCC
ACTG 

766 

  SP_0715 DWNR* AGCTACGCAGGCACCCAGC  

rrgB SP_0463 0462F-25C* CAAGATGGTACTATAACG 1350 

WT- 4.1Kb  0462 R TCCCCAGCTTGGATTTCTCCTTATTCATATC  

"rrgB- 2.9Kb  KANGB-F AGGAGAAATCCAAGCTGGGGATCCGTTTG 795 

  KANGB-R CCTTTCTCTCTTACCTAAAACAATTCATCC
AGTAA 

 

  0464F ATGAATTGTTTTAGGTAAGAGAGAAAGGA
GCCATT 

807 

  0464 R-34R* TTCTGATTGACAACCGTAATCG  

rlrA SP_0461 0460F* ACGTCTGTTATCAAGAATGGTC 834 

WT- 3.2Kb  0460R TGAATTGTTTTAGGTTCATCGTACTGTCT
ACACA 

 

"rlrA- 2.4Kb  KANRL-F TTCGGTAACTCAAGCTGGGGATCCGTTTGA 795 

  KANRL-R GTACGATGAACCTAAAACAATTCATCCAGT  

  0462F ATCCCCAGCTTGAGTTACCGAATCTTAGTTGC 804 

  0462RT-R* CTTCTGTCAAGGTGTATGTCC  

rr06 SP_2193 36O* CTTTAGTGGCAAGTTTGGCTG 878 

WT – 2.1Kb  2194 R N 
GTTCTAGAGCGGTCTCTCCCTTTCTACTA

CCAG 
 

"rr06 – 2.6Kb  Spec06F-N 
TAGAAAGGGAGAGACCGCTCTAGAACTAG

TGGATCC 
1150 

  Spec06R-N 

GGATTTTTTATCATCAATTTTTTTATAATT

TTTTTAATC  

  2192 F N 

TAAAAAAATTGATGATAAAAAATCCTAAAT

TAT 546 

  36P* TTGCATTTTACTAGTCACTTC  

rr08 SP_0083 14Y* ACGATGGCAGGTGAAAACA 356 

WT – 1.45Kb  0082R CAAACAAATTTTTCAG 
ATCTGTCTCTCCTTTGATAAAA  

"rr08 – 1.6Kb  Chlor08F CAAAGGAGAGACAGAT 
CTGAAAAATTTGTTTGATTTTT 

850 

  Chlor08R ACTTTTTAGTTTCATTTATAAAAGCCAGTC
ATTAGGC 

 

  0084F GACTGGCTTTTATAAATGAAACTAAAAAG 385 
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TTATATTTTGG 
  14Z* GCGACAACTGGGCAATCATCAA  

rr09 SP_0661 R9F* GCGGAGCCGAGTAGGAGATTCTCACC  

WT- 1.5Kb  R9R* TGTAGAAATGACCTGACCAG  

"rr09 – 1.7Kb     

Table 2-10: Primers used for construction of splice overlap PCR gene knockouts. 

Primers and related information used to construct all splice overlap PCR gene knockouts. * 
Indicates primers used for splice overlap PCR. Blue nucleotides indicate region of the 
primer specific to the gene being amplified. !rr09 was not constructed in this study and 
therefore primers stated above are used to amplify and confirm the insertion only. 
 

2.4.2 Construction of double/ triple gene knockouts 

Construction of Double and triple mutants were performed via amplification of 

the " PCR products using the splice overlap primers from the parent strain. 

These were transformed into the desired recipient strain and screened for 

recombination using PCR. 

2.5 Construction of a new bioluminescent strain 

To test the potential metabolic burden of high expression of the lux genes 

(required for bioluminescence) luxA-E were put under the control of different 

strength promoters. For this pCEP2 plasmid was used as it allows chromosomal 

integration of genes cloned into SP_1886 (contained within the plasmid) (Guiral 

et al. 2006). This plasmid contains a maltose inducible promoter with a multiple 

cloning site downstream. Flanking either side of this is 2Kb of pneumococcal DNA 

(SP_1885 and SP_1887) allowing upon transformation integration into the 

pneumococcal genome, the plasmid is unable to replicate in the pneumococcus 

and therefore favors recombination. As to not perturb the function of any of the 

surrounding genes the region containing the maltose inducible promoter 

recombines out a small part of SP_1886, a IS1167 element containing a 

frameshift and is therefore already non functional.  

2.5.1 Cloning lux genes into pCEP2 

Initial cloning steps consisted of cloning the lux genes (luxA-E) into plasmid 

pCEP2 (Figure 2-5) at restriction sites NcoI and BamHI. The lux genes were 

amplified from Xen35 using primers in Table 2-11. Plasmid and lux genes were 
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digested with NcoI and BamHI and subsequently ligated together as described in 

materials and methods 2.2.7. Correct insertion was confirmed by PCR and 

sequencing resulting in the plasmid pCEP2 lux (Figure 2-6). This construct 

contains the lux genes under the control of a maltose inducible promoter 

however when transferred into TIGR4 no bioluminescence was visualized (data 

not shown) implying the promoter was not strong enough to drive expression of 

luxA-E.  

 

Figure 2-5: Plasmid map of pCEP2  

Plasmid map was visulaised in CLC Genomics Workbench 4.5.1. 
 

Primer name DNA sequence 5’-3’ size 

(bp) 

PcepluxF TGCTACCATGGAATTTGGAAACTTTTTGC 5606 

PcepluxR CAAACGGATCCTTAACTATCAAACGCTTCGGTT  

Table 2-11: Primers used for amplification of the lux genes for cloning into pCEP2. 

Primers and related information used for amplification of the lux genes from Xen35 for 
cloning into pCEP2. Light blue and pink region indicates BamHI and NcoI restriction site 
respectively. 
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Figure 2-6: Plasmid map of pCEP2lux. 

Plasmid map of pCEP2lux constructed from plasmid pCEP2 (Figure 2-5) in CLC Genomics 
Workbench 4.5.1. pCEP2lux contains the lux genes from Xen35 between restriction sites 
NcoI and BamHI, constructed using primers in Table 2-11. 
 

2.5.2 Creating a StuI site in pCEP2 lux 

Due to this we wished to remove the maltose inducible promoter and replace it 

for a stronger one. Therefore a StuI restriction site was engineered upstream of 

the maltose inducible promoter allowing complete excision via restriction digest 

with NcoI and StuI. Site directed mutagenesis was performed to create a StuI 

site in pCEP2lux using primers in Table 2-13, with PCR conditions in Table 2-12. 

SDM was performed using 100ng of starting plasmids using high fidelity DNA 

polymerase Phusion" (NEB, UK). Once run 40µl of the reaction was digested with 

DpnI enzyme as per the manufacturers guide at 37°C for 3 hours. The reaction 

was then stored at -20°C until transformed. Transformation was performed into 

XL1-Blue™ competent E.coli and transformants selected for on 100µg/ml 

ampicillin and confirmed by sequencing and restriction digest. Creating plasmid 

pC2LSD. 

Temperature Time Cycle number 
98°C 30 seconds 1 cycle 
98°C 10 seconds 
55°C 30 seconds 
68°C 4.5 minutes 

 
18 cycles 

68°C 10 minutes 1 cycle 
Hold 4°C   

Table 2-12: PCR program conditions used for site directed mutagenesis on pCEP2lux. 
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Primer name DNA sequence 5’-3’ Size (bp) 

Puc18 LSD F GTTCCGAAAACCAAAGGCCTTGCGCTTGATAAGTTTG 12,431 

Puc18 LSD R CAAGGCTTTTGGTTTCCGGAACGCGAACTATTCAAAC  

Table 2-13: Primers used for Site directed mutagenesis on pCEP2lux.  

Primers used for Site directed mutagenesis on pCEP2lux plasmid to create a StuI restriction 
site. Blue indicates the StuI restriction site, and red the nucleotide that is to be altered in the 
pCEP2lux plasmid to create the StuI site (A>C/ T>G). 
 

 

Figure 2-7: Plasmid map of pC2LSD. 

Plasmid map of pC2LSD constructed from plasmid pCEP2lux (Figure 2-6) in CLC Genomics 
Workbench 4.5.1. pC2LSD has had a single nucleotide change creating a StuI restriction site 
using primers in Table 2-13.  
 

2.5.3 Replacing the maltose inducible promoter 

To decide what strong promoters to use RNA-seq data was used to identify genes 

with high expression (RNA-seq data performed by Dr Jiangtao Ma and Dr Andrea 

Mitchell). Genes with the highest expression (RPKM) values were identified and 

the upstream region assessed for the likelihood of a promoter being present. 

Expression of surrounding genes was also taken into consideration as they may 

be expressed as part of an operon. Finally sequence regions upstream of chosen 

genes were further assessed for the presence of promoter sequences using 

BPROM-softberry program that detects potential sigma70 promoter recognition 

sites: 

(http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgro

up=gfindb). All regions selected contained a potential sigma70 binding site and 

as a control the program was run using the region containing the maltose 

inducible promoter from pCEP2, which also contained a binding site.  
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For promoter cloning pC2LSD was digested using restriction enzymes StuI and 

NcoI removing the maltose inducible promoter. Promoters were amplified from 

TIGR4 using primers in Table 2-14, and products PCR purified, digested with 

restriction enzymes StuI and NcoI and then PCR purified again for cloning. Vector 

and insert were ligated together as described in materials and methods 2.2.7, 

and then transformed into XL1-Blue cells. Transformants were selected for on 

100µg/ml ampicillin and confirmed by PCR and sequencing. Plasmids constructed 

were pC2LSD P1/P2/P3/ P4 and P19.  

 

 

Figure 2-8: Plasmid map of pC2LSD P2 

Plasmid map of pC2LSD P2 constructed from plasmid pC2LSD (Figure 2-7) in CLC 
Genomics Workbench 4.5.1. pC2LSD contains the P2 promoter amplified from T4 and 
cloned between restriction sites StuI and NcoI constructed using primers in Table 2-14. 
Other promoter plasmids are identical to pC2LSD P2 with variations only between StuI and 
NcoI restriction sites. 
 

All plasmids were isolated and transformed into T4NO1, selected for on 

100µg/ml kanamycin, and integration into the genome confirmed by PCR using 

primer amiFF T4G (Table 2-15) and the corresponding promoter reverse primer. 

Gene 

number 

Primer name DNA sequence 5’-3’ size 

(bp) 

5’ SP_1489 P1 F GCTAGGCCTGTGGATGGATAATGCTGA 206 

 P1 R TAGCCATGGTTGAGTAAAAGCCTCCAAT  

5’ SP_2012 P2 F CTAGGCCTTAAGGGATTCCTTGGTTTAC 176 
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 P2 R TAGCCATGGTAGTGATTTCCTCCTTATG  

5’ SP_1128 P3 F GCTAGGCCTGAAAACAGTATATCATAAA 163 

 P3 R TAGCCATGGTTTTTACTCTCCTTATGAG  

5’ SP_0232 P4 F TAGGCCTAGCGTTTTTCACACTTGC 116 

 P4 R GCCATGGGCAAAAGCACCTCCATAA  

5’ SP_1915 P19 F TAGGCCTCATGTAAGTTAAGCTAGTC 140 

 P19 R GCCATGGATCTCCTTTCTGACTCTA  

Table 2-14: Primers used for cloning different S.pneumoniae promoters into pC2LSD. 

Primers and related information used for cloning different S.pneumoniae promoters into 
pC2LSD. Blue nucleotides indicate region of the primer specific to the gene being amplified. 
 

2.6 Complementation of gene knockouts 

Complementation of the stkP gene in T4"stkP was performed to assess the 

functionality of the Xen35 stkP allele, which contains a deletion of one of the 

extracelleular sensing domins (PASTA domains) in the C-terminal of the protein. 

To do this stkP was amplified from T4NO1 and Xen35 and cloned into the plasmid 

pC2LSD P2. This put the different stkP alleles under the control of the strong P2 

promoter. The kanamycin resistance cassette was also removed from the pC2LSD 

P2 plasmid and replaced with a chloramphenicol resistance cassette to allow 

transformation into Xen35 (KanR) and T4"stkP.  

 

Figure 2-9: Plasmid map of pCP2 ST and pCP2 XST. 

Plasmid map of pCP2 ST (A) and pCP2 XST (B) created in CLC Genomics workbench 4.5.1. 
Constructed from cloning T4 stkP and Xen35 stkP into plasmid pC2LSD P2 respectively 
along with a chloramphenicol resistance cassette using primers in Table 2-15. 
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pC2LSD P2 plasmid was isolated using the Wizard® SV gel and PCR clean up 

system (Promega) and then restriction digested with NcoI and EcoRV. The digest 

was run on an agarose gel and the required band gel extracted. PCR was 

performed to amplify the two stkP alleles from T4NO1 and Xen35 and the 

chloramphenicol resistant cassette was amplified from T4"rr08. Initially the stkP 

alleles were joined via splice overlap PCR to the chloramphenicol resistance 

cassette (Primers Table 2-15). The correct size band was gel extracted and this 

used for cloning into pC2LSD P2. For cloning In-Fusion cloning technology was 

used (In-Fusion" HD cloning kit, Clontech, USA), see materials and methods 

2.2.8. Transformants were selected for on 100µg/ml ampicillin and confirmed by 

PCR and sequencing. From this plasmids pCP2 ST and pCP2 XST were isolated 

using the QIAprep spin miniprep kit (QIAGEN). Plasmids were subsequently 

transformed into T4"stkP and transformants selected for on 10µg/ml 

chloramphenicol and confirmed by PCR, using primer amiFF T4G to confirm 

integration into the genome (primer binds outside of the plasmids). Creating 

strains T4"stkP!ST and T4"stkP!XST containing the T4 stkP allele and Xen35 

stkP allele respectively between genes SP_1885/SP_1887. No positive 

transformants were obtained when transforming these plasmids into Xen35. 

Gene Gene 

number 

Primer name DNA sequence 5’-3’ size (bp) 

stkP SP_1732 STKP COMP F* CACTACCATGGATGATCCAAATCGGCAAG 

1980 (T4) 

1764 (X35) 

  STKP COMP R TTTCAGGGATCCTTAAGGAGTAGCTGAAGTT
G  

  CHLOR ST C F CCTTAAGGATCCCTGAAAAATTTGTTTGATTT 850 

  

CHLOR COMP 

R* CTTCCCCGATATCTTATAAAAGCCAGTCATTA
G  

amiF SP_1886 amiFF T4G AGGATGAAGAAGAACGTAAAG  

Table 2-15: Primers used for cloning of two stkP alleles into plasmid pC2LSD P2. 

Primers and other related information used for the cloning of two stkP alleles into plasmid 
pC2LSD P2 for T4!stkP complementation. * indicates primers used for splice overlap PCR. 
Blue nucleotides indicate region of the primer specific to the gene being amplified. 
 

No complemented strains were constructed for any of the other gene knockouts 

due to time limitiations therefore phenotypic observations seen in the knockout 

strains would need to be further confirmed to ensure this is not due to 

accumulation of mutations at other regions within the genome.  
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2.7 Whole genome sequencing (WGS) 

Whole genome sequencing was performed on strains Xen35, T4NO1, T4JH and 

T4P2. Genomic DNA extraction was performed by Dr Andrea Mitchell. 

Pre sequencing DNA was fragmented using a Bioruptor sonicator and processed 

using a TruSeq DNA library preparation kit (Illumina, USA). Quality and quantity 

was checked using the bioanalyser and Kapa library quantification kits (KAPA 

Biosystems, UK) respectively. Samples were loaded onto the flow cells at 12pM 

on the Illumina Cluster station and sequenced using the IlluminaGA$$ (Xen35) or 

IlluminaGA$$x (T4NO1, T4JH and T4P2). Pre sequencing preparation was 

performed by Mrs Julie Galbraith at the Glasgow Polyomics Facility. 

Post sequencing processing was performed by Dr Pawel Herzyk. 

Data analysis was performed in CLC Genomics Workbench 4.5.1 (CLC bio). Xen35 

genome sequence was reference assembled to T4 genome sequence available at 

NCBI (NC_003028), followed by SNP and Indel analysis. A De Novo assembly was 

also performed assembling the reads against themselves to give an indication if 

regions of low coverage are too divergent from the reference to assemble or are 

deletions. Preliminary assemblies, SNP and Indel testing were performed by Dr 

Andrea Mitchell.  

Only prelimnary genome sequence data is available for T4NO1, T4JH and T4P2. 

Where genome sequence data was reference assembled to T4 genome sequence 

available at NCBI (NC_003028), followed by SNP and Indel analysis. Analysis was 

performed by Dr Andrea Mitchell. None of the genome changes have been 

further validated. 

A number of changes detected in Xen35 were confirmed via PCR followed by 

sequencing using primers in Table 2-16. 

Gene 

number 

Primer 

name 

DNA sequence 5’-3’ size 

(bp) 

Changes 

confirmed 

SP_1732 StkPF AAGAAGGAACGAAAATCAAT 716 40/ 41 

 StkPR TTAAGGAGTAGCTGAAGTTG   

SP_1915 1915F ATGAAGTTACGAATTGAGATTG 447 125-142 
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 1915R TTACCTCATGTTTCTTAGATTTTC   

SP_201 201F GAGGAGACAAATACGGAAG 302 2 

 201R CAAGATATTGATTTGGTTATTT   

SP_1908 1908F ATGTATAATAAAGTTATCTTGATTGG 396 47-59 

 1908R TTAAAATGGCAATTCTTCCTC   

SP_1909 1909F ATGGCAAAAAATGTTGTGAT 762 62-67 

 1909R TTATTTTTTATGAACCATGAAACC   

SP_1910 1910F AAAAGGAAACAATGATTTTTACAT 639 68-106 

 1910R  TTAGGCAGTCCAGTGTTTCGC   

SP_1911 1911F ATGATACAGCCAGCAAGTTT 336 107-116 

 1911R CATTGTTTCCTTTTTCTCCTAT   

SP_1927 1927F AGTAAAAACTGGACTATAACTTATT 459 189-195 

 1927R ACCAGAATCATTCGCTAAT   

SP_1928 1928F ATGAAGGCTCAAGCGATT 473 196-208 

 1928R GTTGTGAATGGATAAATATATCAT   

SP_1935 1935F GTGAAGAAGAGTTCAGTCAG 396 236-240 

 1935R GTTATTTTCTAAAAGTTGTTCAG   

0885-0886 0885-0886F CTATCGGATTAAGGAAATTAAC 505 16 

 0885-0886R ATATCTTCCCTTTTCTTTAGTT   

1029-1030 1029-1030F CATTTTTATATTTAAAGGAGCG 557 19 

 1029-1030R TTCATTCAATCTTACATTGAT   

1199-1200 1199-1200F GCTATAAGTATAACACTATATGAAA 426 26-29 

 1199-1200R AGTTATCAGAAATGCCTTTC   

1717-1718 1717-1718F TTTCACCTCCGAAATTTCT 391 36-39 

 1717-1718R AACAATTCAGGATTAAAAATAG   

1777-1778 1777-1778F GAGAAAATTGACAACCGCTA 546 44 

 1777-1778R AATTGAAACTCAAAAAGCC   

1851-1852 1851-1852F AGATAACCACCAAACCACT 404 45 

 1851-1852R ACGGATAAAGAAAAAGCCC   

2105-2106 2105-2106F TAAGGCTGAGGACAGTAAAAAC 396 243 

 2105-2106R GCTTGCTGACTACGAAGAC   

SP_0927 0927F ATGAACATTCAACAATTACGC 880 18 

 0927R CTTGCATGACTTCTACGAA   

0482-0483 0482F GAATTGCCAATGGTGTATCTGT 515 6/7 

 0483R GTGTTTCATACCGGAAAGAGA   

1912-1913 1913R AGATGCTTCGCAATACCTAC 946 117-120 

 1911R As above   

1928-1929 1928F As above 838 209-214 

 1929R AAGCAGAAGTGTACTATTCTAG   

 1918F CCTGACCTTTGAAGTTTTCA 1601 152-167 

 1920R TAGATGGGTTTTAATTTAAC   
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Table 2-16: Primers used for confirmation of genome sequence changes seen in Xen35.  

Primers and other related information used for confirmation of genome sequence changes 
seen in Xen35. Changes confirmed refer to the table of Xen35 whole genome changes seen 
in appendix III. 
 

2.8 RNA WORK 

2.8.1 RNA extraction 

For RNA extraction 10ml S.pneumoniae cultures were grown to mid log (OD600nm 

0.6) in BHI, centrifuged at 4000g for 5 minutes (4K15 centrifuge, Sigma-Aldrich, 

UK), supernatant decanted and pellets froze in liquid nitrogen and stored at -

80°C until extraction. For each strain three cultures were grown at the same 

time in the same broth to reduce variability. Therefore three RNA extractions 

were performed per strain giving three biological replicas. 

To begin extraction the bacterial pellet was resuspended in 200µl lysis buffer 

(lysozyme from chicken egg white 15mg/ml (Sigma-Aldrich, UK), 1mM EDTA 

(0.5M EDTA pH8.0), 10mM Tris (1M Tris HCl, Ambion, Life Technologies, UK)) 

made in nuclease free water (Ambion, Life Technologies, UK), and incubated at 

room temperature for 15 minutes, vortexing (rotamixer, Hook and Tucker 

instruments, UK) every 2 minutes. All buffers used throughout are from the 

RNeasy mini RNA purification kit (Qiagen, UK) unless otherwise stated. Samples 

were transferred to 1.5ml eppendorfs and 700µl RLT buffer added to each and 

vortexed for 10 seconds. Samples were then transferred into a 1.5ml eppendorf 

containing 25-50mg of 100µm glass beads (Sigma-Aldrich, UK) and cells lysed 

using a Hybaid Ribolyser (Hybaid, UK) at speed 4 for 4x 20 seconds. Samples 

were centrifuged briefly for 10 seconds at 13,000g (1K15 centrifuge, Sigma-

Aldrich, UK) and supernatant removed into a 1.5ml eppendorf. 500µl of 100% 

ethanol (Fisher Scientific, UK) was added and mixed without vortexing. 700µl of 

sample was added to an RNeasy column and centrifuged for 30 seconds at 

13,000g, flow through discarded and the remaining volume of sample applied to 

the column and centrifuged for 30 seconds at 13,000g, flow through discarded. 

350µl of RW1 buffer was added to the column and centrifuged for 5 minutes at 

13,000g. 80µl of RNase-free DNase 1 (27.3 Kunitz units) (Qiagen, UK) was 

pippetted directly onto the column membrane and incubated at room 
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temperature for 15 minutes. 700µl of RW1 buffer was added to the column and 

centrifuged for 30 seconds at 13,000g discarding flow through. 500µl of RPE 

buffer was added to the column and centrifuged for 30 seconds at 13,000g, flow 

through discarded, a further 500µl of RPE buffer was added and centrifuged for 

2 minutes at 13,000g to remove any residual ethanol. The column was 

transferred to a new 1.5ml eppendorf and 50µl of nuclease free water pippetted 

directly onto the membrane and left to stand for 2 minutes at room 

temperature. Samples were centrifuged at 13,000g for 1 minute to elute RNA. 

For all RNA samples a second DNase step was performed at this stage to ensure 

removal of any contaminating DNA. The TURBO DNA-free™ kit (Ambion, Life 

Technologies, UK) was use as per the manufacturers guide. RNA was aliquoted 

into 5µl samples and stored at -80°C until required. 

2.8.2 RNA quantity and quality 

RNA concentration was measure on the nanodrop ND 1000 (Thermo Scientific, 

UK), and quality assessed using the Bioanalyser 2100 (Agilent, UK). PCR was also 

performed on RNA samples to confirm absence of DNA contamination. 

 

Figure 2-10: Bioanalyser 2100 total RNA readout. 

Bioanalyser 2100 total RNA readout showing two prominent peaks (16S and 23S RNA), 
which are used as an indicator of RNA isolation and purity. If RNA is degraded these peaks 
decrease in size and shift to the left. 
 

2.8.3 RNA vs. RNA Microarray 

Microarray technology was used to look at gene expression differences in mutant 

strains. Microarrays used were designed and printed at the Bacterial Microarray 

Assay Origin Path:

16S    23S 

mRNA 
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group at St. Georges Hospital, London (Bµg@S). Probes printed onto the 

microarray slide were designed based on the genome sequenced strain TIGR4 

(Tettelin et al., 2001), representing all 2236 open reading frames, a further 117 

probes were added to represent unique genes seen in the R6 genome sequence 

(Hoskins et al., 2001), array version SPv1.1.0. 

On each microarray slide was a Cy3 labelled control sample (always T4 RNA) 

used as a baseline for expression and a Cy5 labelled sample (RNA of strain 

tested). Microarrays were done in pairs each slide containing the Cy5 labelled 

samples to be compared e.g. T4 vs. Xen35 both Cy5 labelled on separate slides 

(also contains a Cy3 labelled T4 sample). Arrays were performed in triplicate (6 

slides per experiment, 3 per strain) with RNA on each slide being from a 

different biological replica. 

2.8.3.1 Microarray slide preparation 

Microarray slide preparation was performed alongside microarray sample 

preparation. Microarray slides were placed in 0.2µm filtered pre-hybridised 

solution (8.75ml 20x SSC buffer, 250µl 20% SDS, 5ml 100mg/ml BSA, made to 

50ml with sterile distilled water) pre-heated to 65°C. Slides were incubated at 

65°C for 30 minutes before washing in sterile distilled water for 1 minute and 

then in propan-2-ol for a further minute. Slides were centrifuged to remove any 

residual liquid for 5 minutes at 1500g (4K15 centrifuge, Sigma-Aldrich, UK) and 

stored in a dust free box until required. 

2.8.3.2 cDNA synthesis  

All incubations were performed using a Techgene thermal cycler (Bibby 

Scientific, UK). 2µg of total RNA was mixed with 1µl of random primers (Life 

Technologies, UK) and made to 11µl with nuclease free water. Samples were 

incubated at 70°C for 10 minutes and allowed to snap cool on ice. To each 

sample 5µl 5x first strand buffer*, 2.5µl DTT* (100mM), 2.3µl dNTP mix (5mM 

dGTP/ dATP/ dTTP and 2mM dCTP, Life Technologies, UK), 1.7µl Cy3-dCTP/ Cy5-

dCTP (GE Healthcare, Fisher Scientific, UK) and 2.5µl Superscript 11 (200U/µl) 

were added. Samples were incubated at 25°C for 10 minutes followed by 45°C 

for 90 minutes.   
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* Came as a kit with Superscript 11 from Life Technologies, UK.  

Post incubation a Cy3 labelled sample (control) was combined with a Cy5 

labelled sample (test strain) and cDNA sample purified using the MinElute PCR 

purification kit (Qiagen, UK) as per manufacturers guide. Final elution was 

performed in 15.9µl nuclease free water. 14.9µl of sample was mixed with 4.6µl 

of filtered 20x SSC buffer (Ambion, Life Technologies, UK) and 3.5µl of 0.2µm 

filtered 2% SDS (20% sodium dodecyl sulphate, Ambion, Life Technologies, UK). 

Samples were incubated at 95°C for 2 minutes, briefly allowed to cool and then 

pippetted under the raised lifter slip (Erie Scientific Company, USA) covering the 

microarray. Samples were pippetted from the bottom left hand corner of the 

lifter slip and liquid drawn up over the array area via capillary flow action. 

Microarray slides were sealed in hybridization cassettes, submerged in water 

pre-warmed to 65°C and incubated over night in the dark for 16-20 hours in a 

Techne Hybridiser HB-1D (Techne, USA).  

After incubation microarray slides were washed in 65°C pre-warmed wash A 

(20ml 20xSSC, 1ml 20% SDS made to 400ml with sterile distilled water) for 2 

minutes with agitation, allowing the lifter slips to slide off the array slide. Slides 

were subsequently washed in wash B (1.2ml 20xSSC made to 400ml with sterile 

distilled water) for 4 minutes with agitation. Slides were centrifuged to remove 

any residual liquid at 1500g for 5 minutes, and stored in a dust free box until 

scanning.  

2.8.3.3 Microarray analysis 

Microarray slides were scanned using ScanArray Express™ (Packard biosciences, 

Biochip Technologies, Perkin Elmer) and the resulting TIFF (tagged image file 

format) images created used for analysis. TIFF images were imported into 

Bluefuse for microarrays 3.5© (BlueGnome LTD, UK) with control data (Cy3 

labelled) in channel 1 and test strain data (Cy5 labelled) in channel 2. The files 

containing the microarray gridmap were created and provided by BµG@S, this 

(SPv1_1_0_CGH_Gridmap.bcf) automatically removes control spots from the 

analysis in Bluefuse. Further preliminary post processing analysis involved initial 

exclusion of unreliable data due to poor hybridization with a confidence 

estimate of below 0.1. To account for spatial, intensity and dye related effects a 
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“Global Lowess excluding all with text.” normalization step was performed with 

confidence flags set at default. Replicas of each dye swap were combined by 

fusion.  

Further data analysis was performed in Genespring GX 7.3.1 (Agilent 

Technologies, USA). Files created in Bluefuse (Output_fused.xls) for each of the 

three biological replicas were imported into Genespring 7.3.1. Initial 

normalization consisted of a “dye swap” and a “per gene” step.  Statistical 

analysis of RNA expression was performed in Genespring using the statistical 

analysis (ANOVA) tool, performing a 1-way parametric test without assuming 

variances are equal. False discovery rate was set to 0.05 (5% gene false 

discovery rate), and a Benjamini and Hochberg false discovery rate multiple 

testing correction applied. This analysis was used to create lists of genes that 

were statistically differentially regulated between the parent strain and the 

mutant strains. Although in the literature the cutoff for a true change is classed 

a 2 fold or above however all the data was included in the analysis as small 

changes such as a 1.1 fold change would still equate to a 10% change in 

transcript level which may be biologically relevant. This was validated by the 

fact some genes showed low expression changes but were true changes 

confirmed by RT-PCR and were of important cell surface virulence factors.  

Validation of microarray experiments was performed using real time PCR (RT-

PCR). RT-PCR was performed to confirm some of the gene expression changes 

seen from the microarray experiments. The same starting RNA was use as for the 

microarrays so a direct comparison can be made between techniques. For each 

condition RNA was extracted from three biological replicas as for microarrays, 

cDNA synthesis was performed on each replica and each ran as an individual 

sample. Analysis was then performed on the three replicas.  

2.8.4 cDNA synthesis 

For real time PCR cDNA synthesis was performed as described for the 

microarrays however all DNTPs concentrations were 5mM, and the Cy dye was 

replaced with 1.7µl of nuclease free water. Alongside cDNA synthesis a No-RT 

(no reverse transcriptase) control was performed for each cDNA sample, where 

the Superscript 11 was replaced with 2.5µl nuclease free water. All cDNA 
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samples and their No-RT control were diluted 1/50 in nuclease free water and 

stored at -20°C until required. 

2.8.5 RT-PCR  

Real-time PCR was performed using FastStart Universal SYBR green master mix 

(ROX) (Roche, UK). Each sample consisted of 12.5µl of master mix, 1µl of 

forwards and reverse primer mix (10mM working solution), 0.5µl of sample (cDNA 

1/50 dilution or No-RT control etc) and made to 25µl with nuclease free water. 

Samples were run in 0.2ml white 96 well PCR plates (ABgene, Fisher Scientific, 

UK) or 0.2ml white 8-well strips (ABgene, Fisher Scientific, UK), with optically 

clear 8- strip caps (ABgene, Fisher Scientific, UK). All samples were run under 

the same conditions (Table 2-17) unless otherwise stated on a Chromo4™ system 

CFB-3240 (Bio-Rad, USA).  

Temperature Time Cycle number 
50°C 2 minutes 1 cycle 
95°C 10 minutes 1 cycle 
95°C 15 seconds 
55°C 30 seconds 
72°C 30 seconds 

 
40 cycles 

72°C 5 minutes 1 cycle 
Hold 4°C   
72°C- 95°C  Melting curve 

Table 2-17: RT-PCR program information. 
 

2.8.5.1 RT-PCR primers 

gyrA  was used as an internal control to normalize for cDNA synthesis variations  

as its expression shouldn’t vary under different conditions. For each primer pair 

along with the cDNA samples and their corresponding No-RT control a gDNA 

sample was run to ensure the primers amplify and a no-DNA control to ensure 

the master mix was not contaminated with DNA. Primers were designed 

manually against the TIGR4 whole genome sequence (NC_003028). Primers were 

confirmed to not form primer dimers and to form no secondary structure using 

the online primer design tool provided by Sigma Aldrich 

(http://www.sigmaaldrich.com/configurator/servlet/DesignTool), as this may 

give false positives results during RT-PCR by forming DS-DNA that the SYBR green 
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dye would bind to. This would also be corrected for in the No-RT control. All 

primers used for RT-PCR analysis can be seen in Table 2-18. 

Gene Gene 

number 

Primer name DNA sequence 5’-3’ size 

(bp) 

rr01 SP_1633 RR01 RT-F GGGAAAATGCTCTCTGAAT 120 

  RR01 RT-R ACAAGGGCAAACCAATATC  

rr02 SP_1227 RR02 RT-F GGTCGTGAAGCGCTAGAG 106 

  RR02 RT-R TACGAATGGTCTTAGCAACTT  

rr03 SP_0387 RR03 RT-F GACCTCCAAGACGATGTAGA 143 

  RR03 RT-R ATTGCTAAGGTCGCGTCA  

rr04 SP_2082 RR04 RT-F GTGACAAATGGACGGAAG 166 

  RR04 RT-R ATTCATCACTTTTCGCAGA  

rr05 SP_0798 RR05 RT-F GATTTTGCTGGATTTGATGTTGCC 146 

  RR05 RT-R CCGCTCCCAGTTCAAATCCAT  

rr06 SP_2193 RR06 RT-F TGAGTGCTCTGGGAGATGAAACT 148 

  RR01 RT-F         CGCCAAAGATCCTCTATGACG  

rr07 SP_0156 RR07 RT-F GTGGGATATGGAGGTCGTCG 132 

  RR07 RT-R TCCCGAATCATATCAAGCCCT  

rr08 SP_0083 RR08 RT-F GGCAGGTTATCAGGTCTTGG 157 

  RR08 RT-R AGGCTGCTCTGGTGATAAGTA  

rr09 SP_0661 RR09 RT-F CAGGTGCCAGATATCATTT 147 

  RR09 RT-R GACAGCAGACAAGGCATAA  

rr10 SP_0603 RR10 RT-F GTGGCTATGAAACTATTGAGG 120 

  RR10 RT-R GGACTTCTAAGCCGTTGAG  

rr11 SP_2000 RR11 RT-F GCTTCAACCGGATGTAGAG 151 

  RR11 RT-R TTCTGCTCGTATCCACTCC  

rr12 SP_2235 RR12 RT-F CCAATATCATACAAGACAACG 130 

  RR12 RT-R GAGCCACTTCAAATCCCT  

rr13 SP_0526 RR13 RT-F AAAGCACATCATATCATTCC 137 

  RR13 RT-R AGTCCCTTCATCTCTTCATT  

orr SP_0376 ORR RT-F CCAGAAAGAGCAGTATCGG 145 

  ORR RT-R TCGGCTCAATTTTTCTGC  

psrP SP_1772 PsrP RT-F AATGAGTCAGCAGTACTTG 100 

  PsrP RT-R TCGCTGAATTACTTGTAG  

rlrA SP_0461 0461 RT-F CCATCGCAACAGGCTACC 185 

  0461 RT-R                 
TGTGACCCAATCCATACTTCC 

 

rrgA SP_0462 0462 RT-F AACCAGTCCAGCGATAGG 185 

  0462 RT-R                 
CTTCTGTCAAGGTGTATGTCC  

rrgB SP_0463 0463 RT-F ATACACCTGTGAACCACCAAG 104 



Chapter 2 

 

107 

  0463 RT-R                 
CATTCTATCGCTCCAGTTTGC  

rrgC SP_0464 0464 RT-F GTATCTTCTTTGTTATGGCTCTG 185 

  0464 RT-R             
ATCATCATAGGAATACGAATCATC 

 

srtB SP_0466 0466 RT-F GGTGTCTCGCTTGTATTATCG 86 

  0466 RT-R                 TGTCAGCCTCATCCAACG  

srtC SP_0467 0467 RT-F GTGTCTCGTTATTATTATCGTATTG 91 

  0467 RT-R                 
CCTCAAGTTCTGCCTTATCC  

srtD SP_0468 0468 RT-F TCTCGCCTACAATCAACGC 169 

  0468 RT-R               
ATAATCTGCTCCCAAATAAACCG  

hyp SP_1914 1914 RT-F TGGCGTGTAGATTTGAAAGTAG 127 

  1914 RT-R                
CGTAGACAATTTCCAACAACC  

hyp SP_1915 RT-1915F*N TCAAGCTCTATGAGTTGGAGTC 118 

  1915 RT-R               
TTAGGAGGGATTGGTAATGCCG  

Ser/thr 

phosphatase SP_1201 SP_1201 RT-F GCTGGGATGCTGGAAGAC 150 

  SP_1201 RT-R GGACAAACAGATAGCCCCTT  

gyrA SP_1219 gyrA RT-F GCGCGAGCTCTTCCTGATGT 100 

  gyrA RT-R             
TATGGGGTTTGTCTGGGGTC  

luxA Xen35_ LuxA RT-F GGAGCATCATTTCACGGAGTTTG 114 

  LuxA RT-R GTGGGAAGAACAATAGCGGCAGT  

luxB Xen35_ LuxB RT-F CAGATAATGGTGTTGTCGGCG 120 

  LuxB RT-R N CTATGCGGACAGGATGATGAGTTG  

luxC Xen35_ LuxC RT-F GTGTTTACCTGCCAATATTGAATGAC 166 

  LuxC RT-R TTTAAGTCACGAATGTATGTCCTGCG  

luxD Xen35_ LuxD RT-F GCCAGAAGAAAACAGCCCAAAGAG 88 

  LuxD RT-R CGCCAGACCAGCAAAATGAT  

luxE Xen35_ LuxE RT-F TGATGATTTGATTTTTTCGAGCG 161 

  LuxE RT-R CCGTAATATTGTCATCTACTTTGTGT
GC  

Table 2-18: Primers used for RT-PCR. 
 

2.8.5.2 Analysis RT PCR 

Analysis was performed in Opticom Monitor™ version 3.1. Background was 

subtracted in the software and replicas grouped together with at least two 

replicas used for analysis. Data was analysed using the 2-""C
T method (Livak & 

Schmittgen 2001), graphical data represent was performed in Prism version 4.0b 

(GraphPad Software), each bar representing the sample replica means ± 
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standard deviation error bars. Statistical analysis was performed using a 1-way 

ANOVA with a Tukeys testing correction comparing the dCT values (Ct of test 

gene minus Ct of control genes (gyrA)) of the control strain (normally TIGR4) 

against that of the test strain.  

2.9 RNA-seq 

2.9.1 mRNA purification for transcriptomics 

RNA-seq analysis was performed on T4JH and Xen35. Starting total RNA used was 

from the same batch as that used for microarray and RT-PCR, allowing direct 

comparison of the techniques. Starting RNA for each sample was 20µg, ribosomal 

RNA was depleted using the MICROBExpress™ Kit (Ambion, Fisher Scientific, UK) 

as per manufacturers instructions with the following exceptions. Volume used of 

everything was doubled, as the recommended starting RNA concentration is 2-

10µg. Volume of Oligo MagBeads used per sample was 200µl to increase 

efficiency of rRNA binding. And final resuspension volume was decreased to 

16.5µl to obtain a more concentrated mRNA preparation. To confirm rRNA 

depletion samples were run on the Bioanalyser 2100 (Agilent, UK) and 

concentration measures using the nanodrop ND 1000 (Thermo Scientific, UK). 

 

Figure 2-11: Bioanalyser 2100 readout of rRNA depleted total RNA. 

Bioanalyser 2100 readout of rRNA depleted total RNA showing small 16S and 23S RNA 
peaks due to rRNA depletion. mRNA labelled is represented by the prominent peak now the 
most abundant RNA due to rRNA depletion. 
 

Assay Origin Path:

16S   23S 

mRNA 
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2.9.2 cDNA synthesis from mRNA 

cDNA synthesis was performed on a starting volume of 2µg of mRNA. Added to 

2µg of mRNA was 1µl (3µg) Random hexamers (Life Technologies, UK) this was 

made to 23µl with RNase free water and incubated at 70°C for 10 minutes. 8µl of 

5x first strand buffer, 4µl 0.1M DTT and 2µl 10mM dNTPs was added and 

incubated at 25°C for 2 minutes. A further 3µl of superscript III was added and 

incubated for 25°C for 10 minutes, 42°C for 90 minutes and 70°C for 15 minutes. 

Added to this reaction on ice was 186µl DNase free water, 60µl 5x second strand 

reaction buffer, 6µl 10mM dNTP mix, 2µl E.coli DNA ligase (10U/µl), 4µl E.coli 

DNA polymerase (10U/µl), 2µl E.coli RNase H (2U/µl) giving a total volume of 

300µl.This was incubated at 16°C for 3 hours. 

300µl of phenol:chlorophorm:isomayl (25:24:1) was added, vortexed for 30 

seconds and centrifuged for 1 minute at 12,000g. The aqueous phase removed to 

a fresh tube and 300µl of chloroform added, vortexed for 30 seconds and 

centrifuged for 1 minute at 12,000g. The aqueous phase was removed into a 

fresh tube and 3µl of Glycogene (10mg/ml, Gene Link, USA) added. 300µl 4M 

ammonium acetate and 300µl of isopropanol were added, and samples mixed via 

inverting 4 times and incubated at 4°C overnight to aid precipitation of cDNA. 

Samples were then centrifuged at 4°C, 12,000g for 30 minutes (1K15 centrifuge, 

Sigma-Aldrich, UK), supernatant carefully removed and pellet rinsed with 500µl 

70% ethanol twice centrifuging in between at 14,000g for 2 minutes and 

discarding supernatant. The pellet was dried at 37°C for 10 minutes and finally 

resuspended in 10µl DNase free water. cDNA concentration and quality was 

measure on the nanodrop ND 1000  and Bioanalyser 2100 respectively. 2µg of 

cDNA was sent from each sample for sequencing. 

2.9.3 Downstream cDNA processing and sequencing 

Pre sequence processing was performed as described in materials and methods 

2.7, by Mrs Julie Galbraith. Paired end RNA-seq was performed using the 

IlluminaGA$$x at the Glasgow Polyomics Facility. 
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Data analysis was performed in CLC Genomics Workbench 4.5.1 (CLC bio, USA) 

T4JH RNA-seq data was assembled to the genome sequence TIGR4 data (NCBI) 

and Xen35 RNA-seq data was assembled to the Xen35 genome sequence 

(Assembled from WGS data by author and Dr Andrea Mitchell). RPKM (reads per 

kilobase of exon model per million mapped reads) values given were used for 

comparison between expression analysis performed by microarray. 

2.10 Western blotting  

2.10.1 Sample preparation 

For all western blots S.pneumoniae strains were grown to OD600m 0.6 in 15ml BHI, 

strains were centrifuged at 4000g for 10 minutes (4K15 centrifuge) and the 

supernatant discarded. The bacterial pellets were then resuspended in 750µl PBS 

and sonicated on ice at 10 microns for four repeats of 30 seconds with 30 

seconds break using a Soniprep 150 sonicator (MSE, UK).  Protein concentration 

in each sample was measured using the Qubit" fluorometer (Life Technologies, 

UK) as per the manufacturers manual. Protein samples being compared were 

normalised to that of the sample with the lowest concentration, samples were 

diluted if required with PBS and NuPAGE" LDS sample buffer (4X) (Novex", Life 

Technologies, UK) added in the appropriate volume. Samples were boiled at 

70°C for 10 minutes.  

2.10.2 SDS-PAGE gels and western blotting 

Samples prepared as above were run on NuPAGE" Novex 4-12% Bis-Tris gels, 15 

well (Life Technologies, UK). Gels were run in XCell SureLock" Mini-Cell tank 

(Life Technologies, UK) for 50-60 minutes at 200V. 5-10µl of sample were run in 

each well along with 5µl of SeeBlue" Plus2 pre-stained standard marker (Life 

Technologies, UK).  Gels were transferred using the iBlot" module and iBlot" 

transfer stack, mini (nitrocellulose) (Life Technologies, UK), transfer was run on 

program 2 as per the manufacturers guide. The membrane was blocked in 3% 

skimmed milk (Marvel, UK) in PBS overnight at 4°C or shaking at 37°C for 1 hour.  

The membrane was then incubated with a 1/4000 dilution of the primary 

antibody* in 3% skimmed milk for 3 hours shaking at 37°C, washed 6x 5 minutes 

in PBS with 0.1% Tween 20 (Sigma-Aldrich, UK). A 1/20,000 dilution of the HRP 
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labelled secondary antibody (Goat Anti-Rabbit IgG HRP linked F(ab)2, GE 

Healthcare, Fisher Scientific, UK) was added and incubated shaking at 37°C for 1 

hour, washed 6x5 minutes in PBS with 0.1% Tween 20 (Sigma-Aldrich, UK). 

Membranes were developed using Immobilon Western Chemiluminescent HRP 

substrate (Millipore, UK) with 18x24cm X-ray film (Kodak, USA).  

* Anti-Rabbit RrgB – Kindly provided by Novartis Vaccines (De Angelis et al. 2011) 

* Anti-Rabbit GroEL (E.coli) pAb (Enzo Life Sciences, UK) 

2.11 Tissue culture 

2.11.1 Maintenance of cells 

HBMEC (Human brain microvascular endothelia cells) were grown in advanced 

RPMI 1640 media (Life technologies, UK) supplemented with 20% FBS (Fetal 

bovine serum (EU approved), Biosera, UK), 2mM L-Glutamine (Sigma Aldrich, 

UK), 1% 100X Penicillin streptomycin solution (Sigma Aldrich, UK), and 1% 

Fungizone" Antimycotic (Gibco", Life Technologies. UK).  

A549 (Human lung epithelial carcinoma cell line, ATCC-CCL-185) cells were 

grown in Hams F12K (Kaighns modification) media (Life Technologies, UK) 

supplemented with 10% FBS, Penicillin streptomycin and Fungizone" as above.  

Detroit 562 (Human Pharyngeal epithelial carcinoma cell line, ATCC-CCL-138) 

cells were grown in Minimal Essential Media Eagle (Sigma-Aldrich, UK) 

supplemented with 10% FBS, 2mM L-glutamine, Penicillin streptomycin and 

Fungizone" as above. 

2.11.2 Growing cells from liquid nitrogen 

When resuscitating cells from liquid nitrogen 1ml aliquots were thawed quickly, 

cells were made up to 10ml with pre-warmed media in a falcon and centrifuged 

at 1000g for 2 minutes (4K15 centrifuge, Sigma-Aldrich, UK). The supernatant 

was then removed and the cell pellet resuspended in 15ml media placed into a 

75cm2 vented flask and grown at 37°C in 5% CO2. The exception to this is the 
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HBMEC cells which once the 1ml vial was thawed were placed immediately into 

15ml pre-warmed media in a 75cm2 vented flask without centrifugation. 

2.11.3 Splitting cells 

Cells were split when they reached 70-80% confluence.  The tissue culture media 

was decanted and roughly 15ml of sterile PBS washed over the cells to remove 

any residual FBS. To digest the cells off the flask 4ml 0.25% Trypsin-EDTA 

(Sigma-Aldrich, UK) was added and incubated for 5 minutes at 37°C. When cells 

were visually detached they were removed into a flacon and made up to 10ml 

with media, centrifuged at 1000g for 2 minutes, supernatant removed and the 

pellet resuspended in 10ml media. The cell suspension was diluted 1/10 in a 

75cm2 vented flask containing fresh media and grown at 37°C in 5% CO2. 

2.11.4 Adherence assay 

For adherence assay all cell lines were grown in the same media as stated in 

section Error! Reference source not found., however the penicillin 

streptomycin solution and fungizone" was removed. All adherence assays were 

performed in 24 well microtitre plates. For adherence assays the protocol for 

splitting cells was followed however the bacterial suspension produced was used 

to seed the correct number of tissue culture cells into the 24 well plates. Cell 

numbers from the bacterial suspension were first counted using a 

haemocytometer and the volume containing 2x105 viable cells seeded into each 

well and made to 1ml with media. The plates were incubated at 37°C in 5% CO2 

for 48 hours (cells confluent) and could then be used for the adherence assay. 

Prior to seeding the HBMEC cells into the 24 wells plates the plates were 

incubated overnight with a fibronectin solution to allow the cells to adhere. 

150µl of 1mg/ml fibronectin from bovine plasma (Sigma-Aldrich, UK) was added 

to 10ml of sterile PBS, 200µl of this solution was added to each well of the 24 

well plate and incubated overnight at 37°C in 5% CO2. The fibronectin solution 

was then removed and stored at 4°C, the solution can be used twice. 

To begin adherence assay 1ml of S.pneumoniae at 107 CFU/ml are seeded in to a 

single well containing tissue culture cells. The volume of glycerol stock 
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containing the required number of bacteria was calculated using Equation 2-1. 

The required volume was centrifuged at 13,000g for 3 minutes (113 centrifuge) 

the supernatant discarded and the bacterial pellet resuspended in 1ml tissue 

culture media. The assay was incubated at 37°C in 5% CO2 for 2 hours. Each 

strain per assay was performed in duplicate and each assay run in triplicate. 

After two hours 100µl of media was removed from each well, samples from wells 

containing the same strain (two wells per assay) are pooled and serial dilutions 

made and viable count performed as stated in materials and methods 2.1.1. The 

CFU/ml is calculated using Equation 2-1 giving the number of non-adherent cells. 

The remaining media is removed and the cells washed 3 times with 1ml PBS, 

200µl of 0.25% Trypsin-EDTA added to each well to detach the cells and the 

plate incubated at 37°C for 10 minutes. 800µl of 0.0125% Triton-X-100 (Sigma-

Aldrich, UK) in PBS was then added to each well to lyse the tissue culture cells. 

200µl was removed from each well into a 96 well plate from each individual 

well. Serial dilutions of these were created as described previously and neat to 

10-5 dilutions plated onto BAB plates. The CFU/ml is then calculated from this 

giving the number of adherent bacteria, from this an average of the two 

duplicate wells is calculated. Percentage adherence is then calculated by adding 

the non-adherent and adherent CFU/ml values together and from this calculating 

the percentage of adherent from the total. Graphical presentation and 

statistical analysis was performed in Prism version 4.0b (GraphPad Software). 

Data presented was normalized to that of the wild type strain (100%), so 

percentage adherence was calculated relative to this. Error bars on graphs 

represent the standard error of the mean from three replicas. Statistical analysis 

was performed using a one-way ANOVA with Tukey’s multiple comparison test. 

2.12 Electron microscopy 

2.12.1 Sample preparation 

Samples for electron microscopy were taken from 1ml frozen S.pneumoniae 

glycerol stock. Stocks were first defrosted and 500µl centrifuged at 4000g for 5 

minutes (113 centrifuge, Sigma-Aldrich, UK), supernatant removed and the 

pellet washed once in an equal volume of 0.2µm filtered 1x PBS, supernatant 

was removed and the pellet resuspended in 100µl 0.2µm filtered 1x PBS. 
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20µl of the prepared bacterial suspension were pippetted onto glow discharge 

poly-lysine coated nickel grid and incubated at room temperature for 15 minutes 

to allow bacterial attachment. Grids were then placed sample side down onto 

20µl droplets of 1% PFA (paraformaldehyde, Sigma-Aldrich, UK) in 1X PBS on 

Nescofilm (VWR Jencons) to fix cells and left for 30 minutes at room 

temperature. All further washed mentioned were performed via placing the grids 

sample side down on 20µl droplets of the solution on Nescofilm.  Grids were then 

washed 5x for 2 minutes in 0.2µm filtered 1xPBS followed by 3x 5 minute washes 

in 0.2% BSA (Albumin from bovine sera, Sigma-Aldrich, UK) in 1xPBS.  Any excess 

liquid was removed using filter paper. The grid was then placed sample side 

down onto 20µl droplets of a 1/10 dilution of the primary antibody (Anti-Mouse 

RrgB, see section 2.18) in 0.2% BSA PBS, and incubated at room temperature for 

1 hour. Grids were then washed 6x 5 minutes in 0.2% BSA PBS, and any excess 

liquid removed. Grids were then placed onto 20µl of a 1/20 dilution of the 

secondary antibody (Goat-anti-Mouse IgG (H&L) gold conjugate (10nm particles), 

Aurion, Holland) in 0.2% BSA PBS and incubated at room temperature for 1 hour. 

Grids were subsequently washed 6x 5 minutes in 0.2% BSA PBS, then 5x 2 

minutes in 0.2µm filtered 1xPBS. Cells were then fixed again in 1% PFA for 30 

minutes at room temperature. Grids were washed 6x 2 minute washes in 0.2µm 

filtered 1xPBS followed by 6x 5 minute washes in 0.2µm filtered distilled water. 

Any residual liquid was removed using filter paper and finally grids stained for 20 

seconds with 0.5% aqueous uranyl acetate (Sigma-Aldrich, UK) (made in distilled 

water). Residual uranyl acetate was removed using filter paper and grids allowed 

to dry at room temperature for 10 minutes.  

2.12.2 Viewing samples 

Grids were viewed between x5000 and x16,000 magnification on a LEO 912 

Transmission Electron Microscope.  

2.13 Fluorescence activated cell sorting (FACS) 

2.13.1 Sample preparation 

S.pneumoniae strains were grown to OD600nm 0.6 in 5ml BHI. Cultures were 

centrifuged at 4000g for 5 minutes (4K15 centrifuge), and bacterial pellet 
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resuspended in 1ml 2% paraformaldehyde (Sigma-Aldrich, UK) and incubated at 

room temperature for 1 hour to fix the cells.  Cells were centrifuged at 4000g 

for 5 minutes (113 centrifuge) and resuspended in 1ml buffer 1 (0.2µm filtered 

1x PBS, 1% BSA) (Sigma-Aldrich, UK), and blocked at 4°C over night.   

For antibody staining 100µl of fixed bacterial suspension was centrifuged at 

4000g for 5 minutes (113 centrifuge, Sigma-Aldrich, UK) and resuspended in 

500µl buffer 2 (0.2µm filtered 1x PBS, 1% BSA, 0.05% Tween 20) (Sigma-Aldrich, 

UK), 1µl of each primary antibody* (1/500 dilution) was added and incubated at 

room temperature for 1 hour. Cells were washed once (buffer 2) and then 

resuspended in 500µl buffer 2. 1µl of each secondary antibody** was added and 

incubated for 1 hour in the dark at room temperature.  Cells were washed three 

times in 500µl buffer 2 and then resuspended in 500µl buffer 1.  

* Anti-Mouse RrgB polyclonal (Made in house, see section 2.18) 

* Anti-Rabbit Type Serum 4 (Statens Serum Institute, Denmark) 

** Goat Anti-Rabbit IgG (H&L chain specific) Allophycocyanin (APC) conjugate 

(Southern Biotech, USA). 

** Goat Anti-Mouse IgG (% chain specific) Fluorescein (FITC) Conjugate (Southern 

Biotech, USA). 

2.13.2 Running fluorescence activated cell sorting 

Samples were diluted 1:1 in buffer 1 and run on a FACScalibur flow cytometer 

(BD biosciences, USA), samples were acquired in CellQuest-Pro software (BD 

biosciences, USA). FACS settings were as follows: the primary parameter was set 

as the forwards scatter (FSC), voltage set at E00 on a log scale, side scatter 

(SSC) voltage was set at 587 on a linear scale, FL1 voltage was set at 624 on a 

log scale and FL4 voltage was set at 682 on a log scale. The threshold was set at 

0 and no compensation was required. FACS analysis was performed in FlowJo 

9.4.10 for Macintosh (Tree Star, USA). Cells were gated initially on being capsule 

positive (APC+) and then this population gated on selecting RrgB positive (FITC+) 

and RrgB negative populations. Percentage RrgB positive and negative 
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populations were compared between parent and mutant strains. Cell populations 

throughout this study refer to these gates.  

2.13.3 Fluorescence activated cell sorting controls 

FACS controls were performed to confirm no cross reactivity between the two 

antibodies. This was performed by using the Anti-rabbit capsule antibody with 

the Anti-mouse FITC secondary and the Anti-mouse RrgB antibody with the Anti-

rabbit APC secondary. This was also confirmed by staining a T4NO1 bacterial 

population with the single antibody pairs alone and confirmed they gave the 

same percentage positive and negative populations. FACS analysis was also 

confirmed in all cases by visually assessing the samples using fluorescence 

microscopy.  

Based on the unstained T4NO1 population data the values for the capsule 

positive (FL4) and RrgB positive (FL1) gates were set. For capsule positive cells 

anything above 101 log FL4 were classed as capsule positive, during fluorescence 

microscopy no events were observed to be APC positive and not be a bacterial 

cell. For RrgB positive cells anything above 121 log FL1 were classed as RrgB 

positive and anything below this negative for RrgB. All values referring to 

different cell population throughout this study refer to these gates. 
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Figure 2-12: FACS controls swapping the secondary antibodies. 

FACS was performed on T4NO1 and T4!rrgB. T4NO1 was run as an unstained sample, 
stained with a anti-mouse RrgB/ anti-rabbit APC, stained with a anti-rabbit capsule/ anti-
mouse FITC or stained with a anti-mouse RrgB/ anti-mouse FITC and anti-rabbit capsule/ 
anti-rabbit APC. T4!rrgB was stained with anti-mouse RrgB/ anti-mouse FITC and anti-rabbit 
capsule/ anti-rabbit APC antibody combinations. (A) Shows histograms of the capsule 
positive population of T4NO1 and the negative controls showing no APC positive cells. 
Histograms/ polychromatic plot show negative (left) and positive (right) capsule 
populations. (B) Shows the capsule stained populations being gated on for being RrgB 
positive in T4NO1, and the negative controls being negative for FITC (RrgB). Histograms/ 
polychromatic plot show negative (left) and positive (right) RrgB populations in each strain. 
 

Strain FL4- (%) FL4+ (%) 
T4NO1 0 100 
T4 anti-CAP FITC 100 0.01 
T4 anti-RRGB APC 99.9 0.07 
T4NO1 unstained 99.9 0.1 

 

Strain FL1- (%) FL1+ (%) 
T4NO1 12.1 87.9 
T4 anti-CAP FITC 98 2 
T4 anti-RRGB APC 100 0.04 
T4"rrgB 98.4 1.6 
T4NO1 unstained 100 0.006 

Table 2-19: Percentage APC and FITC positive cells in FACS control samples. 

(A) Shows the percentage APC (FL4) positive and negative cells in T4NO1 samples 
unstained or stained with different antibody combinations. (B) Shows the percentage FITC 
(FL1) positive and negative cells in T4NO1 samples unstained or stained with different 
antibody combinations and T4!rrgB. FACS analysis was performed in FlowJo. 

!"

#"
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From the control FACS data the secondary antibody was swapped for one that 

should not bind to the primary antibody (Figure 2-12). This confirmed in most 

instances that both the antibodies were unable to cross react with another 

antibody or cellular components (Table 2-19). Based on the gates however there 

may be a small amount of cross reactivity between the capsule antibody and the 

FITC antibody with the cells stained with this antibody combination showing 2% 

of events FITC positive. Alternatively the FITC antibody may bind weakly to 

some other cellular component irrespective of the capsule antibody binding. The 

pilus knockout strain T4&rrgB also showed 1.6% of cells positive for FITC when 

stained with both antibody pairs, however fluorescence microscopy confirmed 

T4&rrgB cells to be negative for FITC and therefore could potentially be very 

weak FITC positive cells undetectable by fluorescence microscopy. This finding 

must be kept in mind when looking at FACS data analysis.  

FACS controls were also performed with the single antibody pairs to confirm that 

using the double antibody staining simultaneously didn’t alter the results (Figure 

2-13). The capsule stained population of T4NO1 from the single stained and 

double stained cells gave the same number of cells positive for the capule (Table 

2-20). The RrgB populations in T4NO1 with the single and double stained 

populations were roughly 2% different, this can be seen from the histogram as an 

increase in the unstained RrgB population (left hand side) in the single stained 

T4NO1 sample and can likely be put down to the fact this is where the events 

would be that weren’t cells, as with this sample there is no way of selecting the 

cells from the debris as APC staining was not performed and this is likely the 

cause of this difference (Table 2-20). Corroborated by the fact the T4NO1 

double stained population showed roughly 2% of event were unstained for the 

capsule and were therefore not cells. 
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Figure 2-13: FACS controls staining T4NO1 with single antibody pairs 

FACS was performed on T4NO1. T4NO1 was run as a sample stained with the two antibody 
pairs anti-mouse RrgB/ anti-mouse FITC and anti-rabbit capsule/ anti-rabbit APC or with 
each antibody pair singly. (A) Shows histograms of the capsule positive (APC) population of 
T4NO1 with the double and single antibody staining and the single RrgB stained population 
negative for APC positive cells. Histograms/ polychromatic plot show negative (left) and 
positive (right) capsule populations. (B) Shows the capsule stained populations being gated 
on for being RrgB positive in T4NO1, and the single RrgB and capsule antibody stained 
T4NO1 sample gated on also. Histograms/ polychromatic plot show negative (left) and 
positive (right) RrgB populations in each strain. 
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Strain FL4+ (%) FL4- (%) 
T4NO1 98.3 1.7 
T4 anti-CAP 98 2 

 

Strain FL1- (%) FL1+ (%) 
T4NO1 12.1 87.9 
T4 anti-RrgB 14.9 85.1 

Table 2-20: Percentage APC and FITC positive cells in FACS single antibody pair control 
samples. 

(A) Shows the percentage APC (FL4) positive and negative cells in T4NO1 samples stained 
with both or a single antibody pair. (B) Shows the percentage FITC (FL1) positive and 
negative cells in T4NO1 samples stained with both or a single antibody pair. FACS analysis 
was performed in FlowJo. 
 

2.13.4 Fluorescence microscopy 

10µl of antibody stained bacteria preparation was pippetted onto a 76x22mm 

glass slide (Menzel Gläser, Germany) and a 22x22mm glass cover slip (Menzel 

Gläser, Germany) placed over the sample. Samples were heated for 60 minutes 

at 50°C to fix the sample. All fluorescence microscopy images were taken at X40 

and X100 magnification using a Zeiss AxioscopeM1 fluorescence microscope with 

the correct filters. Images were analysed in Volocity software 6.0.1 (Perkin 

Elmer). Images were arranged in Adobe Photoshop elements 10. 

2.14 Measuring bioluminescence over time. 

To follow bioluminescence over time, 1x106 CFU of S.pneumoniae were added in 

20µl volumes to a black F96 MicroWell™ plate (Nunc, Fisher Scientific, UK) 

containing 180µl BHI, each strain was tested in triplicate. Luminescence was 

measured on a FLUOstar OPTIMA (BMG) taking readings every 20 to 30 minutes 

for roughly 10 hours. Graphical presentation was performed in Prism version 4.0b 

(GraphPad Software), each data point representing the mean of the triplicate 

luminescence reading. 

#"

!"
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2.15 Preparation of T4!spxB samples with addition of 
hydrogen peroxide 

The volume of culture grown will vary depending on the downstream technique 

being used e.g. FACS/ western blotting. Cultures of T4"spxB were grown in BHI 

to OD600nm 0.3 and then 10µl/ml of Hydrogen peroxide 30% w/v AnalaR 

NORMAPUR" (VWR, UK) added from 1/10 (contains 9mM), 1/25 (contains 3.6mM) 

and 1/50 (contains 1.8mM) dilutions. Higher concentrations were used at roughly 

20mM but all T4"spxB bacteria were killed by this concentration. Samples were 

grown to OD600nm 0.6 and processed according to the technique being used. 

2.16 Hydrogen peroxide assay 

Hydrogen peroxide assay was performed on some strains to look at their ability 

to produce hydrogen peroxide. S.pneumoniae cultures were grown to OD600nm 0.6 

in BHI, 180µ of culture were added in triplicate to a 96 well flat bottom plate. 

To this 20µl of 3mg/ml ABTS (2,2 azinobis (3-ethylbenzthiazolinesulfonic acid) 

diammonium salt, Sigma-Aldrich, UK), 0.2mg/ml HRP (Peroxidase from 

horseradish Type II, Sigma-Aldrich, UK) in a 0.1M sodium phosphate buffer pH7.0 

was added. The assay was left to develop for 30 minutes at 37°C followed by 

centrifugation at 1500g for 3 minutes (4K15 centrifuge). 100µl from each well 

was removed and placed into a fresh well. Absorbance was measured using a 

spectrophotometer at 540nm (FLUOstar OPTIMA, BMG). Hydrogen peroxide 

standards were used as a positive control by making serial dilutions of Hydrogen 

peroxide 30% w/v AnalaR NORMAPUR" (VWR, UK) in BHI. From this a standard 

curve was generated in Microsoft Excel plotting known hydrogen peroxide 

concentrations against the absorbance (Figure 2-14). From this the concentration 

of Hydrogen peroxide produced from pneumococcal strains was obtained. 

Graphical presentation of hydrogen peroxide assay data was performed in Prism 

version 4.0b (GraphPad Software). Data presented was the hydrogen peroxide 

(mM) produced from each strain tested, obtained from averaging a triplicate 

absorbance value and from this value using the standard curve below to give the 

amount of H2O2 produced in mM. No statistical analysis was performed. 
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Figure 2-14: Hydrogen peroxide assay standard curve 

Standard curve of known hydrogen peroxide concentrations and absorbance values 
obtained when usied in a hydrogen peroxide assay. Graph used throughout the thesis to 
calculate hydrogen peroxide concentration produced by pneumococcal strains. 
 

2.17 In Vivo experiments 

All animal experiments were performed in 6-8 week old MF1 outbred mice 

(Harlan, UK). 

2.17.1 Animal passage 

Prior to challenge S,pneumoniae strains were intraperitoneally passaged through 

MF1 outbred mice (Harlan, UK). To ensure the correct dosing glycerol stocks 

were viable counted giving the CFU/ml (materials and methods 2.1.1). From the 

CFU/ml a calculation was performed (Equation 2-2) giving the volume containing 

2.5x106 CFU/dose (1x107 CFU/ml). The dosage volume is 200µl/ mouse, the 

amount of inoculum prepared will vary depending on the number of mice 

infecting. 
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Equation 2-2: Equation used to calculate the volume required from glycerol stocks for 
intraperitoneal passage of S.pneumoniae strains through MF1 mice.  

*0.5 is the amount in ml of inoculum you wish to prepare (in this case 0.5ml). 

**1x107 as stated above is the concentration /ml you wish the inoculum to be. 

***Dose in ml containing the number of bacteria required to give 1x107 CFU/ml in 0.5ml, the 
volume is made up to the required volume (0.5ml) with 1x PBS. 
 

2.17.1.1 Standard inoculum preparation 

Glycerol stocks were thawed and centrifuged at 13,000g for 3 minutes (113 

centrifuge, Sigma-Aldrich, UK) to pellet the bacteria, supernatant removed and 

the pellet resuspended in an equal volume of sterile PBS. From this the 

calculated volume of glycerol stock required was removed into a new sterile 

eppendorf and made to the correct volume with PBS.  

2.17.1.2 Challenge 

MF1 mice were infected via the I.P route with 2.5x106 CFU in 200!l, at 6 hours 

post infection mice were culled via terminal exsanguination under general 

anesthetic and death confirmed via cervical dislocation. Blood obtained was 

placed into 20ml BHI and incubated overnight at 37°C. 1ml of overnight culture 

was then place in 50ml BHI plus 20% FBS (Fetal bovine serum, Life Technologies, 

UK) and grown at 37°C to OD600nm 0.6, 1ml aliquots were made and stored at -

80°C.  

2.17.1.3 Viable counting of S.pneumoniae frozen standard inoculum 

For counting of bacterial SI (standard inoculum) at least 24 hours post freezing 

three x 1ml vials were thawed per strain at 37°C for 3 minutes. SI were 

centrifuged at 13,000g for 3mins (113 centrifuge, Sigma-Aldrich, UK), 

supernatant removed and the pellet resuspended in 1ml PBS. Each vial was then 

viable counted (materials and methods 2.1.1), and from the three vials an 

 

0.5* x 1x107**  = N 

 

N divide by CFU/ml of glycerol stock = dose in ml*** 
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average CFU/ml was calculated. This value was used to calculate the dosage for 

challenge experiments. 

2.17.2 In vivo challenge intranasal (I.N) 

For intranasal challenge mice were infected with 5x106 CFU in 50!l, 25µl given 

into each nostril. To calculate the dosage Error! Reference source not found. 

was used as for the IP passage, 1.5ml of inoculum was made per strain as 20 

mice were infected per strain. 

2.17.2.1 Preparation of inoculum 

A vial of SI per strain was thawed at 37°C for 3 minutes. SI was centrifuged at 

13,000g for 3mins (113 centrifuge, Sigma-Aldrich, UK), supernatant removed and 

the pellet resuspended in 1ml PBS. The volume required containing the correct 

number of bacteria as calculated from Error! Reference source not found. was 

moved to a new sterile 5ml bijoux. This volume was then made up to 1.5ml with 

PBS giving a final concentration of 1x108 CFU/ml. Prior to inoculation the 

inoculum was viable counted (materials and methods 2.1.1) to confirm the 

correct dosing this is also performed post animal inoculation to account for any 

death/growth of the bacteria in this period of time. 

2.17.2.2 T4 vs. Xen35 vs. T4P2 

20 MF1 mice were infected I.N per strain (T4NO1/ Xen35/ T4P2). Mice were split 

into four groups of 5, 24 hour group, 48 hour group, 72 hour group and a survival 

group. 24 hours post inoculation the 24 hour group mice were sacrificed and 

lungs, brain, nasal wash and blood removed for bacterial enumeration. The same 

was done at 48 hours for the 48 hour group and at 72 hours for the 72 hour 

group. If mice became sick before this period of time they were culled and time 

of death noted. The survival group was left until the mice became sick or culled 

at the end of the experiment 100 hours post inoculation. 

For enumeration of bacterial counts from blood and nasal wash viable counting 

was performed as previously described, for blood dilutions of 10-1 to 10-6 were 

created and plated onto BAB, as described in section 2.1.1. For nasal wash 
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dilutions of 10-1 to 10-5 were created and plated onto BAB along with the neat 

wash, CFU/ml for both was calculated using Equation 2-1.  

Enumeration of bacterial counts from organs varied slightly. Upon removal from 

mice the lungs and brain were placed into 3ml PBS. The weight of the PBS was 

measured prior to and post addition of the organ to obtain the exact weight of 

the organ, allowing us to work out the CFU/ gram of tissue. The organs in PBS 

were homogenized followed by viable counting of the homogenate, dilutions 10-1 

to 10-5 were created and plated onto BAB along with the neat homogenate. The 

CFU/ml was calculated for each organ using Equation 2-1 and then this used to 

calculated the CFU/gram of tissue as seen in Equation 2-3. 

 

Equation 2-3: Equation used for calculating the bacterial burden in mouse organs from 
animal challenge experiments.  

*3 indicated volume of PBS organ placed in. 

** O indicated organ weight, calculated from subtracting the PBS weight from that of the 
organ and PBS together. 
 

2.17.2.3 Analysis 

Graphical presentation and statistical analysis was performed in Prism version 

4.0b (GraphPad Software). CFU/ml data for nasal wash and blood were used to 

compare colonization and bacteremia between different strains. CFU/gram of 

tissue was used for lungs and brain to compare the organ bacterial load between 

strains. Comparisons were made at time points 24/ 48 and 72 hours. Statistical 

analysis was performed using a non-parametric Mann-Whitney two sample rank 

test, significance P<0.05. This statistical test was also used for comarison of the 

percentage weight loss of the mice over time. Survival of mice infected with 

different strains was compared using a Kaplain meier survival curve and analysed 

using a Log-rank Test (P<0.05). 

CFU/ml x 3* = T (total CFU/organ) 

 

T x O** = CFU/gram of tissue 
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T4NO1 and Xen35 animal inoculations were performed by Mr Ryan Ritchie and Dr 

Kirsty ross. Processing was performed by Mr Ryan Ritchie, Dr Kirsty Ross, Dr Carol 

McInally and author. For T4P2 all inoculations and processing was performed by 

author. 

2.17.3 IVIS imaging 

Mice infected with Xen35 or T4P2 were imaged for 5 minutes while under 

general anesthetic using the IVIS spectrum CCD camera (Xenogen corporation, 

USA). All images were displayed using the same settings in Living image 4.0 

software (Xenogen corporation, USA), to allow comparison between images and 

strains. Images allowed visualization of progression of pneumococcal disease in 

vivo. 

Help was supplied throughout by Mr Ryan Ritchie for animal imaging. 

2.18 RrgB antibody production 

2.18.1 Cloning rrgB into pET-33b  

A partial fragment of the rrgB gene encoding amino acid 40-600 (to remove cross 

reactivity with other pilins) was cloned into pET-33b at restriction sites BamHI 

and HindIII. pET-33b was initially isolated using the QIAprep miniprep kit 

(QIAGEN), digested with the stated restriction enzymes for 3 hours at 37°C and 

then purified using the Wizard® SV gel and PCR clean up system (Promega). rrgB 

was amplified using primers in Table 2-21, with the primers incorporating the 

required restriction sites at the end of the PCR product, the PCR product was 

purified using the Wizard® SV gel and PCR clean up system (Promega) followed 

by restriction digest with the required enzymes as above, followed by a further 

purification and ligation into plasmid (materials and methods 2.2.7).  

Transformation was performed as described into XL1-Blue cells and sample 

plated onto LB agar containing 100µg/ml kanamycin. Positive colonies were 

screened for by PCR using T7 and RrgBR-Ab primers and confirmed by sequencing 

(Table 2-21).  
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pET-33bRrgB plasmid was then purified using the QIAprep miniprep kit (QIAGEN) 

and transformed into BL21(DE3) chemically competent cells, and transformants 

screened for as above. This strain was used for protein expression. 

 

Figure 2-15: Plasmid map of pET-33bRrgB. 

Plasmid map of pET-33bRrgB from CLC Genomics Workbench 4.5.1. Constructed via 
cloning part of rrgB encoding amino acid 40-600 at restriction sites BamHI and HindIII using 
primers in Table 2-21. 
 

Gene Gene 

number 

Primer 

name 

DNA sequence 5’-3’ Size 

(bp) 

rrgB SP_0463 RrgBF AATGGGTCGGGATCCGCATAAACTATTGGCAACAGAT 1731 

  RrgBR-Ab AGTGCGGCCGCAAGCTTTTAATAAGAAGTTGCAGTGA
CTTC  

  Pet T7 TAATACGACTCACTATAGGG  

Table 2-21: Primers used for cloning of rrgB into pET33b. 

Primers and related information used for cloning and confirmation of insertion of rrgB into 
pET33b for protein expression and purification. Dark Blue nucleotides indicate region of the 
primer specific to the gene being amplified. Red indicates the stop codon incorporated at 
the end of the rrgB gene sequence. Light blue and green represent BamHI and HindIII 
restriction site respectively. 
 

2.18.2 RrgB protein purification 

2.18.2.1 Expression 

BL21(DE3) pET33bRrgB was grown in 10ml LB overnight containing 100µg/ml 

kanamycin. The starting culture in the morning was inoculated into 1 liter of LB 
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containing 100µg/ml kanamycin and cells were grown at 37°C, 220rpm until 

OD600nm 0.8 was reached, IPTG (Melford, UK) was added to a final concentration 

of 1mM and cells grown at 30°C, 220rpm for a further 4 hours. Culture was then 

centrifuged at 4000g for 40 minutes (Beckman" J-6B centrifuge) supernatant 

decanted and pellets stored at -20°C until purification.  

2.18.2.2 Purification 

Cell pellet was resuspended in 50ml PBS, Benzamidine and DNase 1 added 

(Sigma-Aldrich, UK) and sonicated on ice with rotation for 4x 30 seconds with 1 

minute in between each at 84% amplitude. Samples were further centrifuged for 

45 minutes at 4°C at 17,000g (4K15 centrifuge), pellet discarded and supernatant 

filtered using a 0.2µm filter and placed in a fresh falcon tube. 

Due to the addition of 6 Histidines at the C-terminal of RrgB in pET33b the Initial 

purification step consisted of Nickel affinity chromatography. A 1ml HisTrap HP 

(GE Healthcare, Fisher Scientific, UK) nickel affinity column was charged by 

running through 5ml of 0.2M nickel solution (benchtop peristaltic pump, 

masterflex C/L). Sample was then looped through the column for 30 minutes 

using a benchtop peristaltic pump, leaving the protein bound to the column. To 

elute the protein off the column 15ml of elution buffer was run through the 

column using a peristaltic pump and fractions collected on ice manually. Elution 

buffer consisted of dilutions made of a 0.5M NaCl and 0.5M imidazole pH7.4 

solution made with PBS, giving final solution concentrations of 0.03125M, 

0.0625M, 0.125M, 0.175M, 0.25M and 0.5M. Buffers were run through the column 

as above starting with the lowest concentration. As the buffer concentration 

increases imidazole displaced the bound protein, all collected fractions were run 

on a SDS gel (Figure 2-16). Fractions 0.175M, 0.125M and 0.0625 were pooled and 

purified further by anion exchange chromatography. Samples were dialysed 

overnight at 4°C and buffer exchanged into in 20mM Tris-HCl pH7.4.  
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Figure 2-16: Coomassie stained gel of nickel affinity chromatography elution fractions 
during RrgB purification. 

Boxed are the three fractions containing the 64kDa RrgB protein, three fractions were 
pooled and taken forward to anion exchange. Left is size in kDa of bands from the 
SeeBlue"  Plus2 pre-stained ladder. 
 

To begin anion exchange 20ml anion exchange starter buffer (20mM Tris-Hcl 

pH8.0) was run through a HiTraP™ Capto™Q column followed by the pooled 

dialysed protein fractions for 30 minutes to allow protein to bind. Column was 

transferred to the ÄKTAprimer plus (GE Healthcare, Fisher Scientific, UK) and an 

anion exchange protocol performed eluting protein in fractions using a gradient 

of anion exchange elution buffer ranging from 0- 1M NaCl (20mM Tris-HCl pH8.0). 

Following anion exchange fractions were run on a SDS gel (Figure 2-17) and 

fractions 14-19 pooled, dialysed overnight at 4°C in PBS. Purified protein was 

used for antibody production (2.18.3). 
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Figure 2-17: Coomassie stained gel of anion exchange chromatography elution fractions 
during RrgB purification. 

Boxed are the six fractions containing the 64kDa RrgB protein, these fractions were pooled 
and used for later experiment. Left is size in kDa of bands from the SeeBlue"  Plus2 pre-
stained ladder. 
 

2.18.3 Antibody production 

Anti-RrgB antibody was made via vaccinating five MF1 mice with purified RrgB 

protein. Mice were vaccinated subcutaneously with 10µg of purified RrgB protein 

emulsified in 50µl of Freunds adjuvant incomplete (Sigma-Aldrich, UK) made to 

100µl with PBS, on three occasions, with two week intervals between each 

vaccination. Two weeks after the final vaccination mice were culled via terminal 

exsanguination under general anesthetic and death confirmed by cervical 

dislocation. The blood was transferred to sterile 1.5ml eppendorfs and stored at 

4°C overnight for the blood to clot and then spun at 13,000g for 10 minutes at 

4°C (1K15 centrifuge, Sigma-Aldrich, UK), the clear sera was removed into fresh 

1.5ml eppendorfs and pooled from all 5 mice. The antibody specificity for RrgB 

was tested by western blotting and subsequently used for all FACS experiments. 

Vaccination and bleeds were performed by Dr Kirsty Ross. 



 

 

 

 

 

 

 

 

 

 

3 Virulence gene regulation by two-component 
signal transduction systems 
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3.1 Aims of this chapter 

In S.pneumoniae there are 13 TCS and one orphan response regulator (ORR) 

(Lange et al., 1999), described in chapter 1.7.1.1. The aim of the work 

described in this chapter is to assess virulence gene regulation by TCS (two-

component signal transduction systems), determined via microarray analysis of 

single TCS mutants. As well as looking at virulence factors regulated by these 

systems in these single knockouts the expression levels of all the other RR of TCS 

pairs were evaluated elucidating whether there is potential cross regulation 

between the systems and whether a hierarchy exists. Initial experiments were 

performed on a rr08 and rr09 knockout constructed in TIGR4 assessing the global 

expression changes seen upon their deletion. Further analysis was performed 

looking at what effects removal of both systems has to global expression 

changes. 

Interestingly deletion of six TCS (TCS03, TCS05, TCS06, TCS08, TCS09 and TCS10) 

in the pneumococcus have shown to cause changes in the expression of the 

pneumococcal pilus. To further assess the potential interactions between TCS a 

knockout was constructed in rr06, and from this construction of a number of 

double mutants (T4&rr086 and T4&rr096) and a triple mutant (T4&rr0986) 

performed. As all single mutants have been shown to regulate the pilus, in these 

mutants the expression levels of the whole pilus islet was evaluated by RT-PCR, 

to illuminate further any potential cross regulation between the systems. FACS 

analysis was also performed on all strains to assess potential changes in 

expression of the pilus at the population level. Due to time limitations no 

mutants were constructed in TCS10, TCS05 and TCS03. Adherence capabilities of 

these TCS mutants were also assessed to different cell lines to try and pinpoint 

where these TCS may be important in vivo, during pneumonia, meningitis or 

colonisation.  

Studies performed on TCS are often performed in different parental strains and 

under different laboratory conditions, which can make it hard to compare 

between their functions reported in the literature. TCS have been shown to 

regulate different genes in different strains and under different growth 

conditions, therefore this study enables clear comparisons to be made with 
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regards to what genes are commonly regulated by RR09 and RR08 under the 

same conditions and how these systems may interact with one another. 
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3.2 Genes regulated by RR08 

Initial analysis was performed on T4&rr08 to assess gene regulation by this TCS 

and its regulation of other transcription regulators including other TCS. A total 

of 57 genes were differentially regulated in T4&rr08 compared to T4JH, (Table 

3-1). When increasing the P value to P<0.1 a total of 131 genes were 

differentially regulated (data not shown). 

Gene Description Abbrev 
Fold 
change 

SP_0043  Competence factor transport protein comB 1.8 
SP_0044  Phosphoribosylaminoimidazole-succinocarboxamide purM 15.5 
SP_0048  Glycinamide ribonucleotide transformylase purN 17.0 
SP_0049  vanZ protein vanZ 15.6 
SP_0050  phosphoribosylamine purH 14.5 
SP_0051  Hypothetical protein  14.0 
SP_0053  Phosphoribosylaminoimidazole carboxylase purE 14.4 
SP_0055  Hypothetical protein  4.3 
SP_0271  Ribosomal protein S12 rpsL 1.2 
SP_0288  Xanthine/ uracil permease protein  6.9 
SP_0409  Hypothetical protein  4.6 
SP_0461  Transcriptional regulator rlrA 2.1 
SP_0462  Cell surface anchor family protein rrgA 1.9 
SP_0626  Branched chain amino acid transport system  1.4 
SP_0703  Hypothetical protein  2.1 
SP_0785  Hypothetical protein  2.1 
SP_0786  ABC transporter  2.0 
SP_0802  ATP dependant DNA helicase  1.1 
SP_0820  ATP dependant Clp protease clpE 1.2 
SP_0825  5,10-methylene tetrahydrofolate dehydrogenase folD 1.1 
SP_0918  Spermidine synthase speE 1.4 
SP_1225  VicX protein vicX 1.7 
SP_1226  Histidine kinase 02 hk02 1.7 
SP_1227  Response regulator 02 rr02 1.6 
SP_1228  A/G specific adenine glycosylase  2.6 
SP_1269  Choline kinase  1.3 
SP_1357  ABC transporter  1.4 
SP_1368  PSR protein psr 1.8 
SP_1369  Prephenate dehydratase pheA 2.0 
SP_1370  Shikimate kinase aroK 1.9 
SP_1371  3-phosphoshikimate 1- carboxyvinyltransferase aroA 1.8 
SP_1501  ABC transporter  1.5 
SP_1527  ABC transporter aliB 3.3 
SP_1552  Cation efflux pump mntE 1.2 
SP_1587  Oxalate: formate antiporter  6.6 
SP_1626  Ribosomal protein S15 rspO 1.5 
SP_1697  ATP dependant DNA helicase recG 1.4 
SP_1699  Phosphopantetheinyl transferase acpS 1.4 
SP_1701  Phospho-2-dehydro-3-deoxyheptonate aldolase aroG 1.5 
SP_1709  GTP binding protein engA 1.3 
SP_1802  Hypothetical protein  2.3 
SP_1804  General stress protein 24  2.4 
SP_1814  Tryptophan biosynthesis trpC 2.1 
SP_1862  Hypothetical protein  1.5 
SP_1871  Iron ABC transporter fecE 3.6 
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SP_1978  Diaminopimelate decarboxylase lysA 1.7 
SP_1986  Hypothetical protein  1.8 
SP_1987  ABC transporter, ATP binding protein  1.7 
SP_1988  Immunity protein, putative  1.9 
SP_2072  Glutamate amidotransferase guaA 4.1 
SP_2077  Transcriptional repressor, putative argR 1.2 
SP_2078  Aminoacyl-tRNA synthetase argS 1.4 
SP_2095  5-formyltetrahydrofolate cyclo-ligase family  1.4 
SP_2105  Hypothetical protein  1.9 
SP_2167  L-fuculose kinase fucK 5.3 
SP_2194  ATP dependant Clp protease  1.4 
SP_2201  Choline binding protein D cpbD 1.9 

Table 3-1 : Table of genes differentially regulated in T4&rr08 

Table shows genes differentially regulated in T4&rr08 compared to its parent T4JH (P<0.05). 
Fold change represents that seen in T4&rr08 compared to T4JH, red showing genes up 
regulated in T4&rr08 and blue are those that are down regulated. 
 

Genes that are regulated by RR08 include a number of the genes present on the 

pilus islet, which are up regulated in T4&rr08 including the rlrA regulator. A 

number of genes involved in purine biosynthesis (SP_0044/ SP_0048/ SP_0050/ 

SP_0053) and the virulence factor cbpD are also up regulated upon RR08 

deletion. The transcriptional repressor argR is down regulated in T4&rr08, which 

may be responsible for some of the genes that are differentially regulated in 

T4&rr08, discussed later. A number of ABC transporter including one for iron, a 

PTS system, and a manganese efflux pump are also all differentially regulated in 

the knockout. Interestingly both rr02 and hk02 are up regulated in T4&rr08, 

which suggest RR08 is a repressor of this TCS. Alternatively TCS02 expression 

could be modulated indirectly by RR08 as deletion of rr08 could cause a stress 

on the cell which induces expression of this gene.  

RR02 is part of TCS02 which is also referred to as vicRK, micAB, yycFG and 

walRK, this system was shown to be differentially regulated by microarray 

analysis of T4&rr08. So RT-PCR analysis was performed to confirm this change 

and the expression levels of all the other RR were also evaluated (Figure 3-1), as 

subtle changes may not have been identified by microarray analysis. RT-PCR 

analysis confirmed there is a trend towards an increase in expression of rr02 in 

T4&rr08 however this was not statistically significant, perhaps due to the small 

change, and would need further validation. Interestingly a statistically 

significant down regulation of rr01 was observed by RT-PCR, which was not 

observed during microarray analysis suggesting RR08 positively regulates this 
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TCS. Although some of the other RR including rr07, rr09 and rr12 look to show a 

small down regulation these were not statistically significant. With regards to 

the other genes shown to regulate the pilus there seems to be no expression 

change in the TCS known to regulate the pilus (rr03, rr05, rr06, rr10). RT-PCR 

analysis and microarray analysis also did not show any other genes shown to 

regulate the pilus to be differentially regulated by RR08, other than that of 

mntE. However MntE is unlikely to modulate pilus expression through its direct 

binding to the islet, so RR08 may act through direct binding to the pilus islet. A 

summary of the major genes regulated by RR08 can be seen in Figure 3-2, 

including virulence factors, transcription regulators and groups of genes showing 

a big expression difference in T4&rr08. 

 

Figure 3-1: RT-PCR graph of response regulator expression in T4&rr08. 

Graph shows RT-PCR of all the pneumococcal response regulators in T4&rr08. Fold change 
represents that T4&rr08 compared to T4JH. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. Statistical 
analysis was performed by a 1-way ANOVA with a Tukeys testing correction comparing the 
dCt values of the control strain (TIGR4) to the test strain (T4&rr08), * P<0.05. 
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Figure 3-2: Summary of genes regulated by RR08 

Summary of genes regulated by RR08 has been compiled from microarray and RT-PCR 
data. Arrow represents RR08 positively regulating the gene and a bar represent RR08 
repression of the gene. Values indicate the fold change of the gene observed during 
microarray analysis or RT-PCR in T4&rr08. 
 

3.3 Genes regulated by RR09 

Further microarray analysis was performed on T4&rr09, which has also previously 

been shown to regulate the pneumococcal pilus. A total of 43 genes were shown 

to be differentially regulated between T4&rr09 and its parent strain T4JH, 

shown in Table 3-2. When increasing the P value to P<0.1 a total of 87 genes 

were shown to be differentially regulated between the two (data not shown). 

Gene Description Abbrev 
Fold 
change 

SP_0047  Phosphoribosylaminoimidazole synthetase purM 11.8 
SP_0048  Glycinamide ribonucleotide transformylase purN 11.5 
SP_0055  Hypothetical protein  2.2 
SP_0117  Pneumococcal surface protein A pspA 2.3 
SP_0287  Xanthine/ uracil permease protein  4.2 
SP_0290  Dihydrofolate synthetase folC 2.4 
SP_0409  Hypothetical protein  3.6 
SP_0415  Enoyl-CoA hydratase phaB 1.4 
SP_0461  Transcriptional regulator rlrA 4.6 
SP_0463  Cell surface anchor family protein rrgB 5.1 
SP_0464  Cell surface anchor family protein rrgC 6.4 
SP_0648  Beta-galactosidase bgaA 3.8 
SP_0715  Lactate oxidase lctO 2.2 
SP_0862  Ribosomal protein S1 rpsA 1.2 
SP_0868  Hypothetical protein  1.7 
SP_0875  Lactose phosohotransferase system repressor lacR 15.2 
SP_0876  Phosphofruktokinase fruB 14.0 
SP_0877  PTS system, fructose specific fruA 13.4 
SP_1225  VicX protein vicX 1.5 
SP_1501  ABC transporter  1.3 
SP_1578  Hypothetical protein  1.6 
SP_1675  ROK family protein glk 2.1 
SP_1676  N-acetyl neuraminate lyase npl 2.5 
SP_1677  Hypothetical protein  2.6 
SP_1682  ABC transporter  3.2 
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SP_1708  Hypothetical protein  3.0 
SP_1724  Sucrose-6-phosphate hydrolase scrB 12.7 
SP_1801  Hypothetical protein  2.6 
SP_1803  Hypothetical protein  2.7 
SP_1804  General stress protein 24  2.8 
SP_1853  Galactokinase galK 6.1 
SP_1884  Trehalosse PTS system treP 3.5 
SP_1895  Sugar ABC transporter msmG 10.8 
SP_1896  Sugar ABC transporter msmF 10.5 
SP_1897  Sugar ABC transporter msmE 10.4 
SP_1898  Alpha-galactosidase aga 12.5 
SP_1922  Hypothetical protein  2.0 
SP_1924  Hypothetical protein  2.3 
SP_1925  Hypothetical protein  2.3 
SP_1967  Hypothetical protein  1.2 
SP_2063  lysM domain containing protein  1.6 
SP_2107  4-alpha-gluconotransferase malM 1.7 
SP_2150  Ornithine carbamoyltransferase argF 3.8 

Table 3-2 : Table of genes differentially regulated in T4&rr09 

Table shows genes differentially regulated in T4&rr09 compared to its parent T4JH (P<0.05). 
Fold change represents that seen in T4&rr09 compared to T4JH, red showing genes up 
regulated in T4&rr09 and blue are those that are down regulated. 
 

No TCS were differentially regulated in a rr09 knockout strain as determined by 

microarray analysis. However RT-PCR was performed to assess the expression 

levels of all the other RR incase as seen in T4&rr08 some were differentially 

regulated yet not detected by microarray analysis. RT-PCR analysis of rr 

expression in T4&rr09 showed a potential down regulation of rr01, rr07 and rr08 

suggesting RR09 acts as a positive regulator of these TCS (Figure 3-3). However 

none were found to be statistically significant.  
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Figure 3-3: RT-PCR graph of response regulator expression in T4&rr09. 

Graph shows RT-PCR of all the pneumococcal response regulators in T4&rr09. Fold change 
represents that T4&rr09 compared to T4JH. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. No statistical 
difference was observed. 
 

A summary of the genes regulated by RR09 can be seen below in Figure 3-4. 

Encompassing virulence factors, transcription regulators and groups of genes 

showing a big expression difference in T4&rr09. When comparing this to what 

genes are regulated by RR08 we see a number of similarities, both repress the 

expression of the pilus islet and genes involved in purine biosynthesis. They 

potentially both regulate RR01 to a similar level (not significant difference in 

T4&rr09) and RR09 may positively regulate RR08, however again this difference 

was not seen as significant. 
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Figure 3-4: Summary of genes regulated by RR09 

Summary of genes regulated by RR09 has been compiled from microarray and RT-PCR 
data. Arrow represents RR08 positively regulating the gene and a bar represent RR09 
repression of the gene. Values indicate the fold change of the gene observed during 
microarray analysis or RT-PCR in T4&rr09. 
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3.4 Genes differentially regulated in T4&rr098 

To try and understand further the potential cross regulation of these TCS a 

double knockout was constructed and microarray analysis performed on this 

strain. A total of 122 genes were differentially regulated in the double knockout 

compared to the parent strain T4JH, shown in Table 3-3. When increasing the P 

value to P<0.1 a total of 327 genes are differentially regulated (data not shown). 

Gene Description Abbrev 
Fold 
change 

SP_0004  GTP dependant nucleic acid binding protein engD 1.3 
SP_0044  Phosphoribosylaminoimidazole-succinocarboxamide purM 13.1 
SP_0048  Glycinamide ribonucleotide transformylase purN 12.3 
SP_0049  vanZ protein vanZ 12.3 
SP_0050  phosphoribosylamine purH 9.3 
SP_0051  Hypothetical protein  13.1 
SP_0053  Phosphoribosylaminoimidazole carboxylase purE 9.8 
SP_0054  Phosphoribosylaminoimidazole carboxylase purK 11.1 
SP_0055  Hypothetical protein  3.1 
SP_0056  Adenylosuccinate lyase purB 2.2 
SP_0063  PTS system IID component  2.5 
SP_0064  PTS system IIA component  2.0 
SP_0066  Aldolase-1 epimerase  2.0 
SP_0099  Hypothetical protein  1.5 
SP_0107  LysM domain containing protein  2.3 
SP_0199  Cardiolipin synthetase cls 1.5 
SP_0201  Hypothetical protein  1.6 
SP_0258  Hypothetical protein  1.9 
SP_0259  Hypothetical protein ruvB 1.2 
SP_0288  Hypothetical protein  6.5 
SP_0290  Dihydrofolate synthetase folC 2.1 
SP_0341  Hypothetical protein  1.3 
SP_0409  Hypothetical protein  4.0 
SP_0419  Enoyl-(acyl-carrier protein) reductase fabK 1.4 
SP_0422  3-oxacyl-(acyl-carrier protein) synthase II fabF 1.3 
SP_0461  Transcriptional regulator rlrA 4.4 
SP_0462  Cell surface anchor family protein rrgA 3.6 
SP_0464  Cell surface anchor family protein rrgC 2.9 
SP_0467  Sortase srtC 4.1 
SP_0468  sortase srtD 2.8 
SP_0487  Hypothetical protein  1.4 
SP_0626  Branched chain amino acid transport system   1.6 
SP_0627  Hypothetical protein  1.3 
SP_0657  Ribonuclease BN, putative  1.2 
SP_0688  UDP-N-acetly muramoylalanine- D-glutamate ligase murD 1.2 

SP_0689  
Undecaprenyldiphospho-muramoylpentapeptide 
beta-N-acetylglucosaminyltransferase 

murG 
1.1 

SP_0703  Hypothetical protein  1.6 
SP_0720  ABC transporter ATP binding protein  1.3 
SP_0742  Hypothetical protein  2.2 
SP_0746  ATP dependant clp protease clpP 1.3 
SP_0784  Glutathione reductase  1.4 
SP_0785  Hypothetical protein  2.3 
SP_0786  Hypothetical protein  2.2 
SP_0787  Hypothetical protein  2.0 
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SP_0790  Hypothetical protein  1.2 
SP_0811  Transposase family protein  1.2 
SP_0820  ATP dependant Clp protease clpE 1.4 
SP_0835  Purine nuceloside phosphorylase deoD 1.3 
SP_0898  Transcriptional repressor, degenerate  1.2 
SP_0966  Adherence and virulence protein A pavA 1.1 
SP_1018  Thymidine kinase tdk 1.2 
SP_1023  acetyltransferase  1.3 
SP_1026  Hypothetical protein  1.8 
SP_1070  Hypothetical protein  1.4 
SP_1103  Hypothetical protein  1.4 
SP_1107  Ribosomal protein L27 rpmA 1.3 
SP_1114  ABC transporter, ATP binding protein  1.2 
SP_1119  Glyceraldehyde-3-phosphate dehydrogenase gapdh 1.6 
SP_1160  Lipoate protein ligase  1.7 
SP_1161  Acetoin dehydrogenase, E3 component  1.5 
SP_1162  Dihydrolipoamide acetyltransferase  1.5 
SP_1163  Acetoin dehydrogenase, E1 component  1.5 
SP_1225  VicX protein vicX 1.7 
SP_1226  Histidine kinase 02  1.6 
SP_1227  Response regulator 02  1.8 
SP_1228  A/G specific adenine glycosylase  2.4 
SP_1231  Phoshpopantothenoylcystein decarboxylase  1.6 
SP_1232  Hypothetical protein  1.7 
SP_1249  Guanosine 5’-monophosphate oxido reductase  2.3 
SP_1299  Ribosomal protein L31 type B rpmE2 1.3 
SP_1356  chlorohydrolase Atz 2.0 
SP_1357  ABC transporter, ATP binding/permease protein.  1.7 
SP_1369  Prephenate dehydratase  1.9 
SP_1371  3-phosphoshikimate 1-carboxyvinyltransferase  1.8 
SP_1393  Putative membrane protein pstA 1.6 
SP_1396  Phosphate transporter, ATP binding protein pst 1.3 
SP_1415  Glucosamine-6-phosphate isomerase nagB 1.9 
SP_1427  U32 family peptidase  1.6 
SP_1428  Hypothetical protein  1.5 
SP_1501  Amino acid ABC transporter, ATP binding protein  1.6 
SP_1509  F0F1 ATP synthase gamma subunit alpG 1.1 
SP_1526  ABC transporter authentic frameshift  3.5 
SP_1527  Oligopeptide ABC transporter aliB 3.7 
SP_1532  Authentic frameshift   1.5 
SP_1535  Hypothetical protein  1.3 
SP_1554  tRNA CCA-pyrophosphorylase  1.5 
SP_1572  Starved cell/ iron storage peroxide induced protein dpr 1.4 
SP_1584  Transcriptional repressor codY 1.3 
SP_1587  Oxalate formate antiporter  2.1 
SP_1626  Ribosomal protein S15 rpsO 1.3 
SP_1697  ATP dependant DNA helicase recG 1.4 
SP_1701  Phospho-2-dehydro-3-deoxyheptonate aldolase  1.5 
SP_1708  Hypothetical protein  2.9 
SP_1749  GTP binding protein yqeH 1.1 
SP_1772  Cell wall surface anchor family protein psrP 1.3 
SP_1802  Hypothetical protein  3.1 
SP_1804  General stress protein 24  3.4 
SP_1941  Competence damage inducible protein A cinA 1.3 
SP_1978  Diaminopimelate decarboxylase  1.7 
SP_1983  Ribulose-3-phosphate epimerase  1.4 
SP_1985  Dimethyladenosine transferase ksgA 1.5 
SP_1987  ABC transporter, ATP binding protein  1.9 
SP_1988  Immunity protein, putative  2.0 
SP_2039  Hypothetical protein sapR 1.6 
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SP_2065  MATE efflux family protein  1.6 
SP_2066  Threonine synthase  1.5 
SP_2071  Hypothetical protein  2.0 
SP_2072  Glutamine amidotransferase  3.3 
SP_2073  ABC transporter, ATP binding/permease protein  1.4 
SP_2075  ABC transporter, ATP binding/permease protein  1.6 

SP_2091  
NADH dependant glyceraldehyde-3-phosphate 
dehydrogenase 

gpsA 
1.2 

SP_2095  5-formyltetrahydrofolate cyclo-ligase family  1.3 
SP_2105  Hypothetical protein  1.8 
SP_2148  Arginine deiminase  3.3 
SP_2167  L-fuculose kinase fucK 3.0 
SP_2193  Response regulator 06 cbpS 1.4 
SP_2194  ATP dependant Clp protease  1.7 
SP_2196  ABC transporter, ATP binding protein  1.4 
SP_2198  ABC transporter, permease protein  1.5 
SP_2199  Hypothetical protein  2.1 
SP_2218  Rod shape determining protein mreC 1.2 
SP_2238  rRNA large subunit transferase  1.9 

Table 3-3 : Table of genes differentially regulated in T4&rr098 

Table shows genes differentially regulated in T4&rr098 compared to its parent T4JH 
(P<0.05). Fold change represents that seen in T4&rr098 compared to T4JH, red showing 
genes up regulated in T4&rr098 and blue are those that are down regulated. 
 

RT-PCR analysis was performed to assess the expression levels of the other RR 

after deletion of both rr08 and rr09 (Figure 3-5). Not surprisingly a down 

regulation of rr01 is observed in T4&rr098 as this has already been seen in 

T4&rr08, however this down regulation is more than the fold change observed in 

T4&rr08, which may indicate the change in rr01 expression observed in T4&rr09 

although not significant may be a true change and in the double knockout the 

increased difference is due to the effect of both of these systems. In the double 

knockout a similar down regulation of rr07 to that observed in T4&rr09 alone is 

seen, although again in T4&rr09 this was not significant it may indicate this is a 

true change and suggests RR09 alone acts to regulate RR07. In the double 

knockout rr02 expression was increased to a level similar to that observed in 

T4&rr08 alone as measured by microarray, but in T4&rr098 the increased 

expression of rr02 was not validated by RT-PCR. rr06 was shown to be up 

regulated by microarray analysis in T4&rr098 however again this was not 

validated by RT-PCR. Interestingly in T4&rr098 statistically significant expression 

changes are observed in a number of the other RR that were not seen in the 

single mutants alone, including down regulation of rr04, rr05 and rr13. A direct 

comparison between rr expression differences via RT-PCR in T4&rr08, T4&rr09 

and T4&rr098 can be seen in appendix II. 
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Figure 3-5: RT-PCR graph of response regulator expression in T4&rr098. 

Graph shows RT-PCR of all the pneumococcal response regulators in T4&rr098. Fold 
change represents that of T4&rr098 compared to T4JH. Each bar represents the average of 
three replicas (three biological replicas) and errors bars the standard deviation. Statistical 
analysis was performed by a 1-way ANOVA with a Tukeys testing correction comparing the 
dCt values of the control strain (TIGR4) to the test strain (T4&rr098), * P<0.05, ** P<0.01, *** 
P<0.001. 
 

 

Figure 3-6: Summary of genes regulated by RR09 and RR08 alone or together. 

Summary of genes regulated by RR09 and RR08 has been compiled from microarray and 
RT-PCR data. Arrow represents positively regulated genes and bars represent genes 
repressed. Values indicate the fold change of the gene observed during microarray analysis 
or RT-PCR in T4&rr098. Genes present to either side represent genes regulated by RR09 
and RR08 alone, genes below represent genes regulated by both RR09 and RR08 shown 
from differential regulation upon deletion of both. 
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A summary of the genes regulated by RR08 or RR09 alone and genes regulated by 

both is shown in Figure 3-6. The genes regulated encode virulence factors, 

transcription regulators and includes groups of genes showing a big expression 

difference in T4&rr098. A large number of these changes include genes that are 

not differentially regulated in the single knockout mutants alone. This suggests 

that single knockout mutants can be compensated for by the other systems, in 

the double knockout this cannot happen. 

Direct comparison of the genes regulated by each single mutant and double 

mutant by microarray analysis can be seen in Figure 3-7. Comparisons were 

performed on both the P<0.05 (Figure 3-7) and P<0.1 (appendix V) gene lists 

from each experiment. From this it is clear only a small proportion of genes are 

commonly differentially regulated in all three strains, 7 genes P<0.05 and 22 

genes P<0.1 (appendix V). The majority of these genes show similar expression 

levels in all three knockout mutants suggesting RR08 and RR09 (not significant) 

both regulate these genes equally, perhaps through a common gene regulated by 

both. For instance RR01, which is controlled by RR08 and RR09 and may 

therefore control a common set of genes. However the pilus expression in the 

single RR08 mutant is lower than that of the single RR09 and double mutant. 

Alternatively these systems may respond to a common stress which cannot occur 

when either is deleted leading to differential expression of a common set of 

genes. 

In most instances it is clear that both RR act independently of each other and 

regulate their own set of genes. Only a quarter to half of the genes differentially 

regulated in the single RR09 mutant were seen to also be differentially regulated 

in the double mutant. This was slightly higher in the RR08 single mutant with 

two thirds of the genes regulated in the single mutant seen to also be 

differentially regulated in the double mutant. The fact a large number of genes 

are differentially regulated in the double mutant that are not observed in either 

of the single mutant alone would however suggest they both may converge on 

some of the same pathways and perhaps compensate for the deletion of the 

other. Deletion of both leads to a large collection of genes being differentially 

regulated, with roughly two thirds of all the genes differentially regulated in 

T4&rr098 not seen to be differentially regulated in either of the single mutants. 
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Figure 3-7: Venn diagram of gene commonly regulated by rr08 and rr09 in T4JH. 

Venn diagrams were compiled from our gene expression data of T4&rr08, T4&rr09 and 
T4&rr098. (A) Compares the gene list In Table 3-1, Table 3-2 and Table 3-3 (P<0.05). 
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3.5 TCS regulation of the pneumococcal pilus 

To further assess how TCS may interact with one another, a further set of RR 

mutants were constructed. A deletion mutant of rr06 in T4JH was constructed 

and subsequently transformed into the other RR mutants creating a total of 

seven mutants, the three described previously and T4&rr06, T4&rr096, T4&rr086 

and T4&rr0986. All of the systems chosen have previously been shown to 

regulate the pneumococcal pilus. These mutants were used to assess potential 

cross regulation of these systems via evaluating their effect on pilus islet 

expression.  

Analysis was performed on all mutants comparing the expression level of the 

pilus islet genes by RT-PCR, including the transcription regulator (rlrA), the 

three pilins (rrgA, rrgB, rrgC) and the three sortases (srtB, srtC, srtD). FACS 

analysis was performed to assess the expression of the pilus at the population 

level. To allow systematic evaluation of the effect of each deletion to the 

double and triple mutants the analysis has been split into three sections, 

comparing T4&rr06, T4&rr08, T4&rr086 and T4&rr0986, then T4&rr06, T4&rr09, 

T4&rr096, T4&rr0986, and finally T4&rr08, T4&rr09, T4&rr098 and T4&rr0986.  

3.5.1 Regulation of the pilus in T4!rr06, T4!rr08, T4!rr086 and 
T4!rr0986 

RT-PCR analysis of pilus expression in T4&rr06 showed a decrease in pilus 

expression compared to T4JH (Figure 3-8), this is contrary to its role as a 

repressor stated in the literature. Possible reasons for this will be discussed 

later. In this study, RR06 acts as a positive regulator of the pilus islet. T4&rr08 

pilus expression shows a small increase in pilus expression compared to T4JH, 

validating what is observed via microarray analysis. Interestingly in the double 

mutant (T4&rr086) there is a large increase in pilus expression, which would 

suggest that RR06 acts as a repressor in this instance. Further to this deletion of 

RR09 in T4&rr086 (T4&rr0986) led to a drop in pilus expression to that of levels 

similar to T4&rr08, suggesting in this case RR09 acts as a positive regulator of 

the pilus. 
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Figure 3-8: RT-PCR graph of pilus expression in T4&rr06, T4&rr08, T4&rr086 and T4&rr0986. 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4&rr06, 
T4&rr08, T4&rr086 and T4&rr0986. Fold change represents that of T4&rr06, T4&rr08, 
T4&rr086 and T4&rr0986 compared to T4JH. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. 
 

FACS analysis performed on these mutants showed variation in the level of pilus 

positive cells in a growing population rather than increased levels on a single cell 

(Figure 3-9, Table 3-4). Analysis confirmed the decrease in pilus expression in 

T4&rr06 with only 4% of cells positive for RrgB on the cell surface compared to 

20.5% of that of the parent T4JH, this was also seen via fluorescence microscopy 

(Figure 3-14).  

T4&rr08 had an increase in 17% of RrgB positive cells compared to T4JH. There is 

likely no difference in the amount of pili on single cells with the RrgB positive 

peak lying directly above that of T4JH suggesting a similar fluorescence intensity 

of RrgB positive cells (similar levels of pili), fluorescence microscopy confirmed 

the increase in pili positive cells shown inFigure 3-14.  

T4&rr086 had 57% of RrgB positive cells within a growing population confirmed in 

Figure 3-14, this is 37% more than in T4JH, 20% higher than T4&rr08 and 53% 

higher than T4&rr06. Interestingly by FACS analysis there is only one large peak 
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compared to that of the normal double peak showing clear RrgB positive and 

negative populations. This larger peak is also shifted to the left suggesting a 

decrease in fluorescence intensity of the RrgB positive cells compared to T4JH 

and the other mutants. This suggests deletion of both RR06 and RR08 causes the 

cells to lose the ability to regulate the amount of pili on the cell surface, as well 

as that at the population level. 

Further deletion of RR09 in T4&rr086 caused the pilus expression to drop. With 

T4&rr0986 showing only 27% of cells to be RrgB positive shown in Figure 3-14, 

this is only 7% higher than that of T4JH. In this mutant we again see two distinct 

peaks representing that of RrgB positive and negative populations, with the 

positive population of a similar fluorescence intensity to T4JH and T4&rr08. 
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Figure 3-9: FACS analysis of RrgB surface expression in T4&rr06, T4&rr08, T4&rr086 and 
T4&rr0986. 

FACS was performed on T4JH, T4&rr06, T4&rr08, T4&rr086, T4&rr0986 and T4!rrgB. (A) 
Shows histograms of the capsule positive populations selected for from samples stained 
with a capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic plot show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4JH 79.5 20.5 
T4"rr06 95.9 4.1 
T4"rr08 63.1 36.9 
T4"rr086 42.8 57.2 
T4"rr0986 73.1 26.9 
T4"rrgB 98.4 1.6 

Table 3-4: Percentage RrgB positive cells in a T4&rr06, T4&rr08, T4&rr086 or T4&rr0986 
population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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3.5.2 Regulation of the pilus in T4!rr06, T4!rr09, T4!rr096 and 
T4!rr0986 

The RT-PCR data for T4&rr06 and T4&rr0986 is that already discussed in section 

3.5.1, with an increase in pilus expression observed in T4&rr0986 and a decrease 

seen in T4&rr06 (Figure 3-10). This data confirms the findings observed by 

microarray analysis for T4&rr09, as all the pilus islet genes are statistically up 

regulated in this strain. Deletion of RR09 in T4&rr06 creating T4&rr096 shows a 

drop in expression compared to T4&rr09 but an increase compared to T4&rr06, 

with expression levels of the pilus islet now only marginally higher than that of 

T4JH. Further deletion of RR08 in T4&rr096 causes little difference in the 

expression levels of the pilus islet compared to T4&rr096.  

 

Figure 3-10: RT-PCR graph of pilus expression in T4&rr06, T4&rr09, T4&rr096 and 
T4&rr0986. 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4&rr06, 
T4&rr09, T4&rr096 and T4&rr0986. Fold change represents that of T4&rr06, T4&rr09, 
T4&rr096 and T4&rr0986 compared to T4JH. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. 
 

FACS analysis was performed comparing the RrgB surface exposure of these TCS 

mutants (Figure 3-11, Table 3-5). As already discussed a T4&rr06 knockout shows 
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only 4% of cells positive for RrgB on the cell surface. Upon deletion of RR09 we 

know from earlier that we see an increase in pilus expression and this 

corresponds to an increase in the number of cells expressing RrgB on the cells 

surface compared to T4JH. 91% of cells upon RR09 deletion contain pili on the 

surface (confirmed by fluorescence microscopy,Figure 3-14), this is 70% more 

than that of T4JH. Interestingly there is one large peak similar to T4&rr086, 

suggesting an inability to regulate the cell surface constituents. However the 

RrgB positive peak lies above that of T4JH, T4&rr096 and T4&rr0986 suggesting 

the amount of pili on the single cells is similar, and there is not large shift to the 

left as observed with T4&rr086. 

Deletion of RR06 in T4&rr09 causes a large drop in the number of pili positive 

cells with only 28% of cells pili positive in T4&rr096 (Figure 3-14). Again there 

are two peaks representing RrgB positive and negative populations. Further 

deletion of RR08 in T4&rr096 has little effect on the number of pili positive cells 

with 27% of cells positive for RrgB on the cell surface. The fact there is only 1% 

difference between T4&rr096 and T4&rr0986 may suggest that without the 

presence of RR06 and RR09 RR08 is unable to perform its role in regulating pilus 

expression. 

 



Chapter 3 

 

153 

 

 

Figure 3-11: FACS analysis of RrgB surface expression in T4&rr06, T4&rr09, T4&rr096 and 
T4&rr0986. 

FACS was performed on T4JH, T4&rr06, T4&rr09, T4&rr096, T4&rr0986 and T4!rrgB. (A) 
Shows histograms of the capsule positive populations selected for from samples stained 
with a capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic plot show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4JH 79.5 20.5 
T4"rr06 95.9 4.1 
T4"rr09 9.3 90.7 
T4"rr096 71.8 28.2 
T4"rr0986 73.1 26.9 
T4"rrgB 98.4 1.6 

Table 3-5: Percentage RrgB positive cells in a T4&rr06, T4&rr09, T4&rr096 or T4&rr0986 
population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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3.5.3 Regulation of the pilus in T4!rr08, T4!rr09, T4!rr098 and 
T4!rr0986 

The RT-PCR data has already been described above in sections 3.5.1 and 3.5.2 

for pilus islet expression of T4&rr08, T4&rr09 and T4&rr0986, this data compares 

the pilus expression in these strains and T4&rr098 (Figure 3-12). Interestingly 

pilus expression in T4&rr098 is lower than that of T4&rr09, which was not clear 

from microarray analysis, and higher than that of T4&rr08. Therefore deletion of 

rr08 in T4&rr09 causes a decrease in pilus expression. Deletion of RR06 in 

T4&rr098 causes a further drop in pilus expression, which is at a similar level to 

that of T4&rr08. 

 

Figure 3-12: RT-PCR graph of pilus expression in T4&rr08, T4&rr09, T4&rr098 and 
T4&rr0986. 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4&rr08, 
T4&rr09, T4&rr098 and T4&rr0986. Fold change represents that of T4&rr08, T4&rr09, 
T4&rr098 and T4&rr0986 compared to T4JH. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. 
 

FACS analysis on T4&rr08, T4&rr09 and T4&rr0986 has already been described 

above in sections 3.5.1 and 3.5.2. T4&rr098 pilus expression level as already 

shown by RT-PCR is in between that of T4&rr08 and T4&rr09. FACS analysis 

confirmed this with 56% of cells positive for RrgB on the cell surface in T4&rr098 
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compared to T4&rr08 (37%) and T4&rr09 (91%) (Figure 3-13, Table 3-6). Deletion 

of RR08 in T4&rr09 restored the two clear populations (RrgB positive and 

negative). Similar pili positive cell numbers were observed in T4&rr086 (57%). 

However only one large peak was observed during FACS analysis, which was not 

seen in T4&rr098. This can also be observed via fluorescence microscopy shown 

in Figure 3-14. 
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Figure 3-13: FACS analysis of RrgB surface expression in T4&rr08, T4&rr09, T4&rr098 and 
T4&rr0986. 

FACS was performed on T4JH, T4&rr08, T4&rr09, T4&rr098, T4&rr0986 and T4!rrgB. (A) 
Shows histograms of the capsule positive populations selected for from samples stained 
with a capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic plot show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4JH 79.5 20.5 
T4"rr08 63.1 36.9 
T4"rr09 9.3 90.7 
T4"rr098 44 56 
T4"rr0986 73.1 26.9 
T4"rrgB 98.4 1.6 

Table 3-6: Percentage RrgB positive cells in a T4&rr08, T4&rr09, T4&rr098 or T4&rr0986 
population from FACS analysis.  

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 3-14: Fluorescence microscopy of TCS mutants  

One representative images of fluorescently labelled TCS mutants used for FACS analysis. 
Cells were stained for the presence of RrgB (FITC) and the capsule (APC). Scale bars above 
represent, T4JH-140µm, T4&rr06 - 140µm, T4&rr08 - 210µm and T4&rr09 - 140µm. The same 
representative image will be used throughout this study for each strain, more images with 
can be seen in appendix I. 
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Figure 3-15: Fluorescence microscopy of TCS mutants  

One representative images of fluorescently labelled TCS mutants used for FACS analysis. 
Cells were stained for the presence of RrgB (FITC) and the capsule (APC). Scale bars above 
represent, T4JH-140µm, T4&rr086 - 22µm, T4&rr096 - 14µm, T4&rr098 - 140µm and 
T4&rr0986 - 140µm. The same representative image will be used throughout this study for 
each strain, more images with can be seen in appendix I. 
 

With regards to the pneumococcal pilus being regulated at the population level, 

currently only one gene has been shown to modulate this function, which is 

RrgA. RrgA has been shown to bind directly to RlrA through a protein-protein 

interaction and modulate RlrAs ability to positively regulate the pilus islet. Upon 

deletion of rrgA almost all cells within a growing population are shown to 

contain pili on the cell surface (Basset et al., 2011, Basset et al., 2012). All of 
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the TCS have been shown to modulate the pilus at the population level, 

therefore direct comparisons were made between the expression levels of rrgA 

and rlrA of all TCS mutants, shown in Figure 3-16. This RT-PCR data has already 

been shown previously in sections 3.5.1, 3.5.2 and 3.5.3 along with the 

expression of the other genes present on the islet. This graph provides a direct 

comparison between the rrgA and rlrA expression levels in all of the TCS 

mutants. This data may indicate if the regulation at the population level of the 

pilus by TCS is through modulating the expression levels of rlrA and rrgA. 

However it must be kept in mind that RNA for RT-PCR was isolated from all the 

bacterial cells present in a growing population, and therefore this analysis gives 

the average expression of these genes in the whole population, which must vary 

from cell to cell as FACS analysis has shown in all mutants different numbers of 

pili positive and negative cells. 

 

Figure 3-16: RT-PCR graph of rlrA and rrgA expression in TCS mutants 

Graph shows RT-PCR of rlrA and rrgA in all the TCS mutants. The data represented here is 
that already seen in previous graphs, this graph provides a direct comparison of rlrA and 
rrgA levels in all TCS mutants. Fold change represents that of T4&rr08, T4&rr09, T4&rr098 
and T4&rr0986 compared to T4JH. Each bar represents the average of three replicas (three 
biological replicas) and errors bars the standard deviation. Statistical analysis was 
performed by a 1-way ANOVA with a Tukeys testing correction comparing the dCt values of 
the control strain (TIGR4) to the test strain (TCS mutant), * P<0.05, **P<0.01, ***P<0.001. 
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With regards to the TCS modulating the rlrA and rrgA levels this seems to be the 

case for T4&rr086, which shows a much higher level of rlrA relative to rrgA. This 

may be why there is a large increase in pili positive cells in this strain. Other 

strains show a similar pattern such as T4&rr096 and T4&rr0986 which show 

moderately higher expression levels of rlrA relative to rrgA. This is not the case 

for T4&rr08 and T4&rr098 however as the difference in the expression of both 

genes is small. T4&rr06 has a clear drop in both rlrA and rrgA expression levels, 

the decrease in rrgA expression is higher than rlrA so is likely not modulated via 

the repression of the islet through binding of RrgA to RlrA. Interestingly T4&rr09 

shows very similar expression levels of rlrA and rrgA yet shows the biggest 

increase in pili positive cells, with 91% of cells pili positive in T4&rr09. This 

suggests RR09 modulates its activity by an alternative means than through 

changing the expression levels of rrgA and rlrA. The phenotype of almost all 

cells being pili positive in T4&rr09 is similar to that of the rrgA knockout noted 

in the literature. Therefore RR09 may act to modulate in some way the protein-

protein interaction of RlrA and RrgA. 

3.5.4 Expression of other RR in TCS mutants 

RT-PCR analysis was also performed on TCS mutants to assess whether deletion 

of any RR altered the expression levels of any of the others, focusing on rr06, 

rr08 and rr09. This may give an indication if one of the studied RR regulates 

another, modulating pilus expression through regulation of another.  

RT-PCR analysis showed no variation in rr06 expression in T4&rr08, T4&rr09 and 

T4&rr098 (Figure 3-17), this data has already been seen for T4&rr08, T4&rr09 

and T4&rr098, but below directly compares this on the same graph. rr08 

expression was slightly lower in T4&rr09 and T4&rr096 however neither were 

statistically significant perhaps due to the small change, but as this is seen in 

both mutants this could be a true change and RR09 may positively regulate rr08 

expression. rr09 expression is slightly lower in T4&rr08 suggesting RR08 may 

regulate rr09 expression, however this was not seen in T4&rr086, and neither 

were noted to be statistically different. 
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Figure 3-17: RT-PCR graph of RR expression in TCS mutants. 

Graph shows (A) RT-PCR of rr06 expression in T4&rr08, T4&rr09 and T4&rr098, (B) RT-PCR 
of rr08 expression in T4&rr06, T4&rr09 and T4&rr096, (C) RT-PCR of rr09 expression in 
T4&rr06, T4&rr08 and T4&rr086. Fold change represents that of the TCS mutant compared to 
T4JH. Each bar represents the average of three replicas (three biological replicas) and 
errors bars the standard deviation. No statistical difference was observed. 
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3.6 Adherence assay analysis of TCS mutants 

All RR mutants were tested for their ability to adhere to different cell lines. A 

number of the TCS have been shown to regulate pneumococcal virulence factors 

and adhesins, which affect adherence. None of the genes required for capsule 

biosynthesis were shown to be differentially regulated in T4&rr08, T4&rr09 and 

T4&rr098 ascertained through microarray analysis. Therefore it is assumed 

variation in capsule levels would not be the cause of any changes in adherence 

in these strains, which has been shown to alter the cell surface exposure of 

adhesins (Sanchez et al., 2011). The capsule level was not evaluated in T4&rr06, 

T4&rr086, T4&rr096 and T4&rr0986. In the double and triple mutants there is 

also no data which may indicate if surface adhesins other than the pilus are 

differentially regulated in these strains which may alter adhesion. RR06 is known 

to also regulate CbpA and PspA therefore we assume these factors may also 

modulate changes in adhesion in T4&rr06 (Standish et al., 2005,  Standish et al., 

2007). In T4&rr08 no known cell surface adhesins were shown to be differentially 

regulated other than the pilus. In T4&rr09 PsaA was shown to be down regulated 

which may alter adherence. Finally In T4&rr098 the adhesin PsrP was down 

regulated 1.3 fold and PavA was up regulated 1.1 fold. 

Adherence assay analysis showed clear difference in adherence capabilities upon 

deletion of a number of the TCS (Figure 3-18). Strains with a deletion of rr09 

showed the biggest increase in adherence compared to T4JH to all cell lines, 

with the biggest increase seen in T4&rr09 and T4&rr098. In this instance this 

would correspond to the strains producing the highest amount of pili shown the 

highest adherence. It would perhaps in this instance be expected that T4&rr086 

would also show an increased adherence. However, this was not the case and 

this strain showed a trend towards a reduced adherence to HBMEC and A549 

cells and a trend towards an increase in adherence to D562 cells, however these 

differences were not significant. Deletion of RR08 alone showed a trend towards 

a small reduction in adherence to all cell lines, however again this was not 

significant compared to T4JH. 

Deletion of RR06 showed no difference in adherence to HBMEC cells, however 

roughly a 5 fold increase in adherence to A549 and D562 cells was observed 
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compared to T4JH, but this is not significant. As we see a reduced level of pili in 

T4&rr06 this is clearly not causing the altered adherence and is likely due to 

another surface protein differentially expressed in T4&rr06, for instance CbpA.  

We see no significant difference in adherence between T4&rr09 and T4&rr098, 

suggesting RR08 deletion in T4&rr09 does not significantly alter adherence. 

However there is a significant difference in adherence of T4&rr096 and 

T4&rr0986 compared to T4&rr09 and T4&rr098, suggesting deletion of RR06 in 

these strains causes the decrease in adherence. Similar adherence capabilities 

are observed between T4&rr0986 and T4&rr096, which show similar levels of pili 

expressed on the cell surface. 

 

!"
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Figure 3-18: Adherence of TCS mutants to different cell lines. 

Adherence of TCS mutant strains was assessed to HBMEC (A), A549 (B) and (C) Detroit 562 
cell lines. Data is represented as percentage adherence relative to that of T4JH (100%, 
dashed line), each bar is an average of three replicas except for all HBMEC data and 
T4&rr09, T4&rr086, T4&rr098 Detroit 562 data which is an average of two repeats, the error 
bars represent the standard error of the mean. Statistical analysis was performed using a 1-
way ANOVA with a Tukeys testing correction, for (A) and (C) * P<0.05, ** P<0.001, for (B) * 
P<0.05, ** P<0.01. * above the bar represent statistical significance compared to T4JH (not 
represented as a bar on the graphs). 
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3.7 Discussion 

It must initially be noted that the mutants evaluated within this chapter have 

not been complemented to confirm the phenotype observed in these mutants is 

not due to accumulation of genetic changes at an alternative point within the 

genome. However with regards to the alterations in pilus expression all three RR 

evaluated have been linked in the literature to regulation of this virulence factor 

and therefore we assume this is due to true regulation by the TCS. Further the 

gene expression data for RR09 mutant matches that observed in the literature, 

indicating these changes are due to the RR09 deletion. To fully confirm all 

changes complementation of all mutants needs to be performed. 

A number of the genes regulated by RR08 in our microarray experiments 

confirmed what was already known from the literature about genes regulated by 

this system. This system causes repression of the pneumococcal pilus as a 

deletion mutant showed increased expression of the pilus islet genes (Song et 

al., 2009). Our microarray data showed no similarities to that of genes 

differentially regulated in a HK08 mutant constructed in R6, which suggested a 

role of RR08 in cellobiose metabolism (Mckessar & Hakenbeck, 2007). This may 

be due to strain specific regulation of genes via this system, as observed in other 

systems. However in the McKessar study genes classed to be differentially 

regulated had to show a change in expression of 3 fold or above. This cut off has 

not been applied to our data sets and therefore genes differentially regulated in 

this strain below the threshold may show similarities to our data. As this study 

evaluated a HK kinase mutant rather than a RR mutant this may also be why 

there are few similarities. 

One of the genes differentially regulated in T4&rr08 is that of argR (SP_2077) 

which in D39 has been shown to regulate a number of genes involved in arginine 

metabolism (Kloosterman & Kuipers, 2011). In the Kloosterman & Kuipers study a 

single knockout of argR showed no similarities between genes regulated by argR 

and RR08. However deletion of another ArgR type regulator ahrC (SP_1203) 

creating D39&argR&ahrC shared a number of similarities to that of genes 

regulated by RR08 in this study, including purM, purN, vanZ, purH and aliB. In 

D39&argR&ahrC bgaA is differentially regulated which has previously been shown 

to be regulated by RR08 (Song et al., 2009). Although ahrC was not differentially 
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regulated in our study it may be that in TIGR4 ArgR regulates these genes alone. 

However, this would need further study.  

RR08 in TIGR4 positively regulates rr01. Microarray analysis also indicated RR08 

regulates RR02 which is repressed by RR08. However this was not shown to be 

significant via RT-PCR. With regards to RR01 no studies have been performed to 

assess what genes are regulated alone by this system and so we cannot attribute 

any of the expression changes observed in T4&rr08 to that of differential 

expression of this gene. 

RR02 was repressed by deletion of RR08 in TIGR4. When comparing the genes 

regulated by RR02 to that seen in T4&rr08 there were very few similarities 

perhaps due to experiment being performed in different parent strains (R6 and 

JNR7/87) which may again suggest RR02 acts in a strain dependant manner (Ng 

et al., 2005, Mohedano et al., 2005). Both of these studies show RR02 plays a 

clear role in fatty acid metabolism of which none of the genes required for this 

are differentially regulated in T4&rr08. This may indicate that the change in rr02 

expression in T4&rr08 is not a true change. Alternatively perhaps the fact RR02 

is the only system which is indispensible means that its regulation is controlled 

tightly and small changes in its expression are compensated for. 

Other than the pilus islet RR08 has been shown to negatively regulate cbpD a 

putative murein hydrolase shown to play a role in competence induced cell lysis 

(Kausmally et al., 2005). Deletion of cbpD in TIGR4 causes a reduced ability to 

colonise the nasopharynx in an infant rat model and showed a slightly reduced 

adherence to Detroit 562 cells (Gosink et al., 2000). A RR08 knockout in TIGR4 

has previously been shown to be attenuated upon intranasal infection (Throup et 

al., 2000). However no other studies have analysed the in vivo role of RR08. 

Adherence to D562 cells and HBMEC cells showed a trend towards a reduced 

adherence in T4&rr08, however again this was not statistically significant.  

One of the other genes shown to be up regulated in T4&rr08 is mntE a 

manganese efflux pump, which has been linked to altered pilus expression, with 

a T4&mntE strain when grown in high manganese concentrations showing 

increased expression of the pilus islet genes (Rosch et al., 2010). There are a 
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number of other similarities between the expression changes in T4&mntE and 

T4&rr08 including in both cbpD, SP_1501 and SP_2095 are up regulated and fucK 

is down regulated. From this it could be hypothesised that HK08 responds to 

external manganese levels and modulates its cellular content by regulating 

mntE. Deletion of RR08 causes an increase in expression of mntE, which would 

correspond with RR08 acting as a repressor of mntE. Variations in magnesium 

concentrations in vivo could correspond to being present in a certain niche 

where lower levels of pili are required and this islet is repressed alongside mntE 

by RR08. 

Genes regulated by RR09 in this study again confirmed what was already known 

about genes regulated by RR09. This includes an up regulation of the pilus islet 

genes, genes involved in purine biosynthesis and down regulation of a general 

stress protein, beta-glalctosidase, pspA (adhesin) and a ABC transporter 

(SP_1895-1897) (Hendriksen et al., 2007).  

One transcription regulator showing a large down regulation of 15 fold in a RR09 

mutant is that of lacR (lactose phosphotransferase system repressor). 

Interestingly this was opposite to that seen in the Hendriksen study, which 

showed an up regulation of this gene in a RR09 deletion mutant (Hendriksen et 

al., 2007). lacR is known to act as a repressor of genes required for lactose 

uptake and catabolism. However little data is available in the pneumococcus as 

to what genes may be differentially regulated when lacR is deleted and 

therefore its contribution to the gene expression changes observed in T4&rr09 

cannot be evaluated (Zeng et al., 2010). Other than lacR there is no differential 

regulation of genes in T4&rr09 that are linked to lactose metabolism. The reason 

for this may be due to the fact there are two lacR genes in S.pneumoniae, that 

of SP_0875 differentially regulated in this study and that of SP_1182, which is 

located next to a large number of genes important for lactose metabolism. This 

is not the case for SP_0875 and perhaps this lacR gene is redundant, or its 

reduced expression is compensated for by the other lacR gene (SP_1182). 

In T4&rr09 no other TCS were shown to be statistically differentially regulated. 

However rr01, rr07 and rr08 looked to be marginally down regulated. Indication 

these may be true changes have come from the fact rr01 and rr07 are shown to 
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be statistically differentially regulated in T4&rr098, which cannot be fully 

accounted for due to the rr08 mutant. Further rr08 expression levels are also 

down regulated in T4&rr096 to a similar level as in T4&rr09, which is not due to 

the rr06 deletion, and may indicate RR09 positively regulate RR08 at the 

expression level. This may account for why some of the genes are commonly 

regulated by RR09 and RR08. As mentioned earlier little is known about RR01 

and what genes are regulated by this system, however if this is a true change it 

seems to be positively regulated by both RR08 and RR09 to a similar level. rr07 

may also be positively regulated by RR09, this system is also one of the other 

systems that has not been evaluated with regards to what genes it regulates and 

would likely contribute to regulating some of the large number of genes 

differentially regulated in T4&rr09, but which ones are unknown. 

RR09 has also been shown to positively regulate the choline binding protein 

PspA, as in T4&rr09 pspA expression is reduced. This virulence factor is highly 

immunogenic which is why it is a candidate protein to include in a protein based 

pneumococcal vaccine and has been shown to interfere with complement 

activation and can bind lactoferrin (Talkington et al., 1991, Hammerschmidt et 

al., 1999, Tu et al., 1999, Briles et al., 1996). Currently none of the genes shown 

to be regulated by RR09 have been implicated in regulating pspA and therefore 

this TCS may regulate this gene through binding directly to its promoter region. 

There is a large increase in the adherence capability of T4&rr09 to all cell lines 

compared to its parent. The only virulence factor that is up regulated in this 

strain is that of the pneumococcal pilus so it is assumed this is the reason for the 

increased adherence. Looking at the cell surface adhesins expression in T4&rr08, 

T4&rr09 and T4&rr098 there seems to be no pattern of reduced expression of 

one cell surface adhesin while there is an increase in expression of the pilus. 

Once the genes regulated by the single systems alone were evaluated it allowed 

estimation of how these systems may interact with regards to the gene they 

regulate and the potential for each to compensate for the deletion of the other 

through the use of a double mutant. Comparison of the gene regulated by each 

system and the double mutant via microarray analysis were done using a venn 

diagram. From this it seemed that the systems when deleted alone generally 

regulated their own set of genes as only a small number of genes were shown to 
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be commonly differentially regulated in both the single and double mutants. 

This includes rr07, which in the double knockout shows similar expression levels 

to that of the single RR09 mutant, which would indicate this decreased 

expression is due to regulation by RR09 alone.  

22 genes (P<0.1) were shown to be commonly regulated in all three microarray 

experiments. In most instances the expression differences of the genes in this 

group compared to T4JH were similar in all three knockout strains. This would 

suggest that in terms of regulating these genes both systems play an equal role. 

With perhaps both systems regulating the same gene, which regulates these 

common genes, for example RR01. Although if this was the case it would be 

expected in the double mutant that the change in expression of these genes 

would be equal to the sum of both of the expression changes seen in each of the 

single mutants. Alternatively there is evidence upon deletion of rr09 that rr08 is 

down regulated so genes found to be similar between the two mutants may be 

due to the fact RR09 deletion has a knock on effect on rr08 expression levels. 

Regulation in this way is summarised in Figure 3-19 using the repression of the 

genes involved in purine biosynthesis as an example.  

 



Chapter 3 

 

170 

Figure 3-19: Hypothetical mode of regulation of common genes by RR08 and RR09. 

Diagram represents a potential mode of how RR09 and RR08 regulate the same gene., using 
the regulation of purine biosynthesis genes as an example. Arrows represents positively 
regulated genes and bars represent genes repressed. Hypothesis is based on RR09 
positively regulating rr08 and RR08 positively regulating rr09. 
 

If this was the case it would be expected that genes regulated by RR09 would 

include all the genes regulated by RR09 alone and all the genes shown to be 

regulated by RR08. Yet only a small number of genes are shown to be commonly 

regulated by the two systems. Further the expression of the pilus islet showed 

the regulation is more complex as deletion of both rr09 and rr08 results in a 

phenotype which shows expression levels between that of the single mutants. 

These systems must to some extent interact with one another as deletion of 

both TCS leads to a large number of genes being differentially regulated that are 

not seen in the single mutants alone. In the double mutant a total of 210 genes 

(P<0.1) were not differentially regulated in either of the single mutants. The 

fact deletion of both leads to a totally new collection of genes being 

differentially regulated would suggest that deletion of both singly is 

compensated for by the other systems. Whether this would occur upon deletion 

of two different RR would give an indication if this is common or RR09 and RR08 

are both important TCS.  

However another explanation for this observation may be that deletion of both 

systems puts a stress on the cell, or alters in some way the surrounding 

environment, which leads to the differential expression of the genes which are 

not shown to be differentially regulated by the single systems alone. The large 

number of genes shown to be differentially regulated in the double mutant are 

likely due to the differential expression of rr04, rr05 and rr13 in the double 

mutant which are not seen to be differentially regulated in the single mutants.  

codY is one of the genes differentially regulated in the double mutant but not in 

the single mutants. codY is a global regulator of genes that are important for 

adaptation to different nutritional environments. In T4&rr098 there is only one 

gene shown to be regulated by codY in D39 that is also regulated in the double 

RR mutant, this is that of dpr (SP_1572) a starvation induced protein (Hendriksen 

et al., 2008). These two genes are both down regulated in the double RR mutant 
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to similar levels. However it has been shown that codY cannot be deleted and in 

the above study genome changes had accumulated in the strain to counteract 

this harmful deletion, shown via whole genome sequence (Caymaris et al., 

2010). Due to this some of the genes shown to be regulated by codY in this study 

may not fully represent its true function. This latter paper links codY function 

with potentially playing a role in altering competence therefore suggesting some 

regulation of RR12 and potentially having an interaction with ritR (ORR). 

However there was not statistical differential regulation of these systems in 

T4&rr098 (Caymaris et al., 2010).  

Microarray analysis in the double mutant showed an increase in the expression of 

rr02 however this was not confirmed by RT-PCR. Yet in T4&rr098 a number of 

genes involved in fatty acid biosynthesis (P<0.1) were differential regulated 

shown via microarray analysis, which are known to be regulated by RR02 

(Mohedano et al., 2005). However due to the number of regulators that are 

changed in the double mutant its not unlikely that this may have come about 

due to one of these. For this reason the genes regulated by each of these 

systems will not be discussed further with regard to their likely contribution to 

the genes differentially regulated in T4&rr098. In regards to rr06 this like rr02 

was shown to be up regulated by microarray however this was not confirmed by 

RT-PCR. 

In the double mutant along with some RR there are also virulence factors that 

are differentially regulated that are not observed in the single mutants alone, 

including psrP and pavA. pspA was not observed to be differentially regulated in 

the double mutant at all yet cbpD which was differentially regulated in T4&rr08 

is observed in the P<0.1 gene list of the double mutant. psrP (pneumococcal 

serine rich repeat protein) is found in the genome downstream of a large number 

of glycosyltransferase which function to glycosylate this protein, none of these 

were differentially regulated in the double mutant bar psrPs adjacent gene 

SP_1771, and therefore whether this is a true change would require further 

validation.  

psrP has been shown to be important for biofilm formation and lung infection, 

with it able to bind to keratin 10 on lung epithelial cells (Sanchez et al., 2010, 
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Shivshankar et al., 2009). PsrP was down regulated in T4&rr098 so wouldn’t 

contribute to the increased adherence to all cell lines observed in this strain, 

with the highest to that of A549 cells. Although not significant there is a trend 

towards a lower adherence in T4&rr098 compared to T4&rr09 to HBMEC and 

D562 cells, this correlates well with the lower number of pili expressing cells in 

the double mutant compared to the single. 

With regards to expression of pavA in the double mutant there is only a small 1.1 

fold increase in the expression of this gene, this was not further validated by RT-

PCR and may not be a true change. This fibronectin binding protein has been 

shown to be essential for virulence in D39 in a mouse model of bacteraemia 

(Holmes et al., 2001). Upon deletion of PavA in a serotype 35A and R800 strain a 

large reduction in adherence and invasion of A549 and HBMEC cells is observed, 

this may in part account for the increased adherence of the double mutant to 

these cell lines as pavA is marginally up regulated in this strain. However this 

would not account for the increased adherence in the single rr09 mutant, which 

shows similar adherence to the double mutant. 

We can clearly see that these systems interact with one another from the data 

obtained in this study, yet this is just looking at one aspect (gene expression 

changes). For a clearer picture on how they interact more information is 

required about the genes that are directly regulated by each RR, which has only 

been assessed for RR05 on a large scale (Halfman et al., 2007), which evaluated 

the promoters that RR05 directly bound to through its DNA binding domain. 

Another key feature elucidated in this paper is that of the role of RR in 

regulation of small non-coding RNAs, which would not be picked up by our 

microarrays. Information about whether there is potential for the RR to interact 

with each other at the protein level may further add to the complexity, but 

more likely is the potential of one HK to phosphorylate multiple RR. Another key 

to understanding these systems is what the extracellular stimulus to which they 

respond. This is known to be CSP for HK12 and BLP for HK13 yet this is still 

unknown for all the other systems, (de Saizieu et al., 2000, Pestova et al., 

1996). This is vital to understand during infection where these systems might be 

activated.  
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Further studies to try and understand potential communication between these 

systems was using the expression of the pilus genes to give an indication of their 

interactions, as the systems chosen were all able to alter pilus expression. This 

was performed by assessing the expression level of all seven genes on the pilus 

islet in the mutant strains relative to T4JH. FACS analysis was used to determine 

the RrgB expression within a population of these mutants, as recent studies have 

indicated within a growing population pili negative and positive cells exist 

(Basset et al., 2011, De Angelis et al., 2011). To date only RrgA has been shown 

to modulate this function through forming a protein-protein interaction with 

RlrA, preventing it from positively regulating the islet, upon deletion of rrgA 

almost all bacterial cells are pili positive (Basset et al., 2011, Basset et al., 

2012). This analysis will show in these TCS mutants whether the altered pili 

expression is due to increases in pili on a single cells or increased numbers 

containing the pilus, or perhaps both. 

Contrary to the published role of TCS06 in pilus regulation our data showed RR06 

to act as a positive regulator of the operon rather than that of a repressor 

(Rosch et al., 2008). The most likely reason for this is that studies performed by 

Rosch were performed in a HK06 mutant rather than a RR06 mutant which is 

used in this study (Rosch et al., 2008). In an earlier study when assessings TCS06 

role in virulence deletions of HK06 or RR06 showed opposite effect with regards 

to virulence, it is therefore possible different genes are regulated upon deletion 

of RR06 or HK06, which may be linked to the fact RR06 can be phosphorylated by 

an alternative kinase (StkP) (Standish et al., 2005, Agarwal et al., 2012). 

Alternatively this could also be due to variations in the growth conditions under 

which both experiments were performed, with TCS06 acting as a repressor of the 

pilus islet upon growth in C+Y media when grown to mid log (Rosch et al., 2008), 

and TCS06 acting as a positive regulator of the operon when grown in BHI to 

OD600nm 0.6 (this study). Variations in growth conditions of a T4&rr09 strain have 

been shown to alter whether RR09 acts as a repressor or activator of the pilus 

islet (Hendriksen et al., 2007). In our study all three RR have also shown to act 

both as repressors and positive regulators of the pilus islet depending on the 

presence of the other RR and this may be why we see variations in the RR 

function when grown under different conditions as variations in the activity of 



Chapter 3 

 

174 

other interacting TCS are occurring. The role of the three RR in the presence of 

others is summarised in Table 3-7. 

Strain RR remaining RrgB positive cells Repressor/ activator 
T4JH RR06, RR08, 

RR09 
20% N/A 

T4&rr06 RR08, RR09 4% RR06 activator (dec exp comp T4JH) 
T4&rr08 RR06, RR09 37% RR08 repressor (inc exp comp T4JH) 
T4&rr09 RR06, RR08 91% RR09 repressor (inc exp comp T4JH) 
T4&rr086 RR09 57% RR08 repressor (inc exp comp T4&rr06) 

RR06 repressor (inc exp comp T4&rr08) 
T4&rr096 RR08 28% RR09 repressor (inc exp comp T4&rr06) 

RR06 activator (dec exp comp T4&rr09) 
T4&rr098 RR06 56% RR09 repressor (inc exp comp T4&rr08) 

RR08 activator (dec exp comp T4&rr09) 
T4&rr0986 NONE 27% RR06 activator (dec exp comp T4&rr098) 

RR08 neither (no diff comp T4&rr096) 
RR09 activator (dec exp comp T4&rr086) 

Table 3-7: Summary table of RR function 

Summary table of findings in this study. Showing strain, which RR are still present after 
deletion, the amount of RrgB positive cells within a growing population and whether in each 
strain the RR acts as a repressor or activator of the pilus operon. Dec = decrease, inc= 
increase, exp= expression, comp = compared to. 
 

One initial hypothesis taken from this data is that RR08 does not modulate the 

altered pilus expression observed upon its deletion in T4JH via direct binding to 

the rlrA promoter. Indication this is the case is that deletion of RR08 in T4&rr096 

(T4&rr0986), causes no difference in pilus expression and no change in the 

number of pili positive cells within a population compared to T4&rr096. However 

upon deletion of RR08 in T4&rr09 or T4&rr06 mutants alone there is a decrease 

and increase in pilus expression and pili positive cells observed respectively. This 

may suggest RR08 regulates alterations in pili via both RR09 and RR06, however 

this is likely not at the expression level as there is no observed difference in rr06 

and rr09 expression in T4&rr08. 

Even in the triple RR mutant there is still an increased pilus expression with an 

increase of roughly 6% more pili positive cells compared to T4JH, this confirms 

there are other factors than these three RR interacting to alter pilus expression 

under the conditions of our experiment. This may suggest that factors 

competatively bind to the pilus islet promoters, and deletion of RR08, RR09 and 

RR06 allows binding of other factor, however whether RR09 and RR08 bind 

directly to the islet is still unknown. 
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The single RR09 mutant alone causes a large increase in the number of pili 

positive cells within a population with 91% of cells pili positive upon its deletion. 

In this strain the ability to distinguish between positive and negative cells is lost 

with one large peak seen via FACS rather than the two clear positive and 

negative populaitons seen in T4JH.  

As already noted RR06 in our studies acts as a positive regulator of the pilus islet 

as upon its deletion there is a decrease in pilus expression as well as a decrease 

in the number of pili positive cells (4%). However when rr06 is deleted in 

T4&rr08 there is an increase in pili expression. Interstingly FACS analysis of 

T4&rr086 again showed one single peak rather than the two positive and 

negative populations. This could either indicate that RR09 is non-functional in 

T4&rr086 or in the rr09 knockout the alterations in pilus expression is due to 

RR08 and RR06 being non-functional in T4&rr09. Another interesting finding is 

that upon deletion of rr06 or rr09 in T4&rr08 the same phenotype is observed 

with 56% and 57% of cells being pili positive in T4&rr098 and T4&rr086 

respectively.  

It has been shown that modulation of the number of pili positive cells at the 

population levels occurs through a protein-protein interaction of RlrA and RrgA 

(Basset et al., 2011, Basset et al., 2012). RrgA once bound to RlrA prevents it 

binding to the promoters of the pilus islet and positively regulating its 

expression. All the TCS tested in this study have been shown to alter pilus 

expression at the population level and this may be through modulating the 

expression levels of rrgA realtive to rlrA. T4&rr086 shows a large increase in 

expression of rlrA relative to rrgA, which may account for why over double the 

number of T4&rr086 cells contain pili on the surface relative to T4JH. Both 

T4&rr0986 and T4&rr096 also show marginally higher expression levels of rlrA 

relative to rrgA. However this is not the case for T4&rr098 and T4&rr08 which 

have slighlty lower rlrA levels relative to rrgA. Most surprisingly rrgA and rlrA 

expression levels are almost identical in T4&rr09 yet this strain showed the 

largest increase in the number of pili positive cells within the population. 

Therefore RR09 must act to modulate pilus expression at the population level by 

another means.  
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From this data a model of how these systems regulate the pilus and therfore 

interact has not been constructed as no data it available yet as to whether RR08 

and RR09 bind directly to the rlrA promoter. A further limiting factors is in this 

study only three of the genes known to affect pilus expression are being 

assessed, yet data is available to show RR03, MgrA and MerR bind directly to the 

rlrA promoter modulating its activity(Rosch et al., 2008, Hemsley et al., 2003). 

Further RR10 and RR05 alter pilus expression upon their deletion either directly 

or indirectly through another factor (Haas et al., 2004, Sebert et al., 2002). 

Regulation at the population level of pili has also been observed in S.pyogenes 

but how this is modulated is yet to be discovered. It may be that TCS in this 

species are also important in this function (Nakata et al., 2009). In this instance 

however the link has been made to the conditions under which this phenomenon 

is modulated, with varying pili levels observed when grown at different 

temperatures. It is likely in the pneumococcus that some form of environmental 

cue is also modulating this regulation and this function as shown in this study is 

through the regulation by TCS. 

It perhaps seems unnecessary for these RR to all act on the pilus islet, however 

in vivo this is likely not the case. Our experiments are performed upon growth in 

BHI media, which contains all the nutrients required for growth. In vivo in 

different niches (lungs, nasopharynx, brain, blood) different nutrients will be 

limited and it is likely under these conditions there would be variations in the 

regulation of the pilus by these RR. It being the case that one TCS is able to 

recognise presence in the nasopharynx, and alter pilus expression accordingly, 

one may sense being in the lungs and modulate pilus expression etc. Currently 

the external stimulus that activates these TCS is unknown and requires further 

study.  

More recent data has indicated that response regulators are not always 

phosphorylated by their cognate HK on an aspartate residue. Two pneumococcal 

response regulators RitR (ORR) and RR06 are also phosphorylated by StkP 

(serine/ threonine protein kinase). Although RitR has no cognate HK, RR06 does. 

RR06 phosphorylation by StkP is on a threonine residue and has been shown to 

alter its binding capacity for target genes, when aspartate is not phosphorylated 

(Agarwal et al., 2012), this has also been seen in other bacterial species (Lin et 
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al., 2011). StkP in the pneumococcus contains four extracellular PASTA domains 

which in penicillin binding proteins have been shown to bind to unlinked 

peptidoglycan (Gordon et al. 2000, Maurer et al. 2012). The PASTA domains in 

StkP have been shown to bind to synthetic peptidoglycan, which activates the 

kinase which then functions to phosphorylate protein targets (Maestro et al. 

2010, Beilharz et al. 2012). The fact StkP phosphorylates RR06 may suggest this 

kinase is also able to modulate the cell surface constituents as this RR has been 

shown to regulate three key pneumococcal adhesins (pilus, PspA, CbpA) (Rosch 

et al. 2008, Standish et al., 2005,  Standish et al., 2007). 

This may indicate a more complex scenario of how RR modulate gene expression 

by being able to modulate genes in more that two forms. RR could be found in a 

non phosphorylated state, phosphorylated on an aspartate residue or 

phosphorylated on a threonine residue, with in each form a different set of 

genes can be regulated due to the conformational change of the DNA binding 

domain. It could perhaps be envisaged that phosphorylation on both sites at the 

same time could create another conformation, regulating another set of genes. 

There is currently no data available which directly compares phosphorylation on 

different sites and how this may alter gene regulation.  

We can summarise from this study that all three RR do interact with each other, 

whether that be competing for the same binding site or forming some protein-

protein interaction with one another etc, currently it is not know which and 

would require further study. Binding of two response regulators to each other 

has not been observed, but HK from two different TCS pairs can act in this way 

to impede autophosphorylation (Vincent et al., 2010). RR08 seems to require 

either RR06 or RR09 to function properly, as RR08 shows no functionality when 

both are deleted. Upon deletion of RR06 or RR09 in a T4&rr08 mutant we see the 

same resulting phenotype, suggesting RR08 is required in some way to modulate 

their function. Deletion of RR09 alone causes a phenotype where the amount of 

pili positive cells is deregulated, we also see this upon deletion of RR08 and 

RR06, this again may suggest RR09 requires RR06 or RR08 to modulate its 

function and in T4&rr086 RR09 has a reduced function.  

Genes regulated by these systems are often important for virulence confirmed 

by our adherence assay data, this data has also given an indication on potential 
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niche specific regulatory functions of these RR. The highest increase in 

adherence to all cell lines was observed upon deletion of RR09. With the highest 

increase seen in T4&rr09 and T4&rr098, with no statistical difference between 

the percentage adherences of the two strains to all cell lines. The highest 

increase in the adherence of the RR09 mutant strains was observed to A549 cell 

lines suggesting a role of this RR in pneumonia, perhaps modulating the levels of 

adhesins required in certain environments. 

T4&rr09 has been shown to have a reduced virulence upon intranasal infection, 

with a reduced ability to disseminate to the blood (Hendriksen et al., 2007). 

Perhaps an inability to regulate the pilus hinders translocation to the blood 

where you would perhaps require fewer surface adhesins. Other adhesins were 

also differentially regulated in T4&rr09 from our microarray data including pspA 

in T4&rr09 and psrP in T4&rr098, however both were down regulated and 

therefore wouldn’t contribute to the increased adherence.  

In T4&rr096 and T4&rr0986 there is a drop in adherence to all cell lines 

compared to T4&rr09 and T4&rr098 however there is a trend towards a higher 

adherence than that of T4JH, yet not significant. The drop correlates with that 

of decreased pilus expression with both strains showing 26-27% pili positive cells 

within a population, both show similar adherence capabilities to all cell lines 

with no significant difference between the two.  

Deletion of RR08 has shown an increase in adherence to A549 cells after 

incubation for 3 hours and a reduced adherence to D562 cells post 3 hours 

incubation (Song et al., 2009), no difference was observed post 1 hour 

incubation. In the adherence assays reported here bacteria were incubated with 

cells for 2 hours and no statistical difference in adherence of T4&rr08 compared 

to T4JH to all cell lines was seen. There is a trend towards a reduced adherence 

to HBMEC cell lines however this was not significant. There is an increase in 

expression of the pilus in T4&rr08 so you would perhaps expect to observe an 

increased adherence in this strain however this is not the case.  

Adherence assay data of T4&rr086 showed no statistical difference in adherence 

to all cell lines compared to T4JH, with its adherence capabilities similar to that 
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of T4&rr08. There is a trend towards an increase in adherence to D562 cells 

however this is not significant. The large increase in pili positive cells in 

T4&rr086 would be expected to cause a marked increase in adherence, but 

although more cells contain pili on the surface there are less pili per cell as 

indicated by a shift to the left of the FITC peak via FACS analysis. This could 

indicate the pili are shorter, or perhaps just fewer pili per cell and therefore are 

unable to bind as efficiently. T4&rr08 has been shown to be attenuated using 

intranasal infection models (Throup et al., 2000), however no other studied have 

analysed the in vivo role of RR08. 

The decreased expression of the pneumococcal pilus in T4&rr06 was not 

associated with reduced adherence to all cell lines. A reduced adherence was 

observed to D562 and A549 cells in a RR06 mutant constructed in D39 and R6 

background (Standish et al., 2005, Ma & Zhang, 2007). Whole genome expression 

analysis was not performed on our T4&rr06 mutant, however that of published 

data showed another important virulence factor cbpA is regulated by RR06 and 

may be affecting adherence (Standish et al., 2005, Ma & Zhang, 2007). Deletion 

of RR06 in D39 caused a increase colonisation phenotype in a in vivo mouse 

model and showed an increased ability to cause lung infection, this was shown 

not to be due to CbpA and D39 does not contain the pilus and is therefore not 

due to this, which could be due to other virulence factors also regulated by 

RR06, such as PspA (Standish et al., 2005, Standish et al., 2007). Upon deletion 

of HK06 in TIGR4 no virulence defect was observed in a pneumonia mouse model 

(Rosch et al., 2008). 

The facts in all RR mutants we see variations at the population level in pilus 

expression rather than at the single cell level (bar in T4&rr086 where we see 

variations in both) would suggest these systems may act as quorum sensing 

systems. With the set environmental stimulus e.g. Mn2+ concentration upon 

reaching a certain level causes activation of the TCS. Cells in the proximity of 

the set external stimulus will therefore have activated TCS and for example up 

regulate cellular pili levels and the cells further away will contain no pili. During 

in vitro growth you would perhaps not expect much variation in the external 

environment conditions with regards to metabolite proximity to certain cells, 

however metabolites produced by some bacterial cells and not others may 
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provide this external stimulus e.g. exogenous H2O2 levels. A number of other TCS 

in the pneumococcus are regulated by quorum sensing (ComDE, BlpHR), which 

recognise levels of an external peptide, which upon reaching a critical level 

activates the TCS (de Saizieu et al., 2000, Pestova et al., 1996). Further study 

into the external stimulus activating the TCS would help to confirm or refute this 

hypothesis. 



 

 

 

 

 

 

 

 

 

 

4 Xen35 
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4.1 Aim of this chapter 

Xen35 is a bioluminescent serotype 4 S.pneumoniae strain, used for studying 

disease progression in vivo. This strain enables users to visually track disease 

progression in a mouse model of pneumonia, septicaemia and meningitis. 

However this strain has been genetically manipulated to enable this trait yet has 

not been fully characterised to show no other genotype and phenotype changes 

have occurred upon genetic manipulation. Preliminary experiments using Xen35 

showed some clear differences in phenotypic traits compared to TIGR4 therefore 

in this chapter Xen35 is fully evaluated in regards to genotype and phenotype 

changes compared to is parent TIGR4. 

Preliminary experiments indicated Xen35 was less virulent than TIGR4. Initial 

whole genome sequencing was performed on Xen35 to deduce any genetic 

changes in this strain lying outwith the known lux insertion site, and confirmed 

positioning of this insertion. Gene expression changes were also analysed using 

microarray, RT-PCR and RNA-seq analysis. There were noticeable amount of 

genomic and expression changes, including those of some key virulence factors 

in the pneumococcus.  

To further evaluate changes in one of these virulence factors, the pneumococcal 

pilus, western blotting and FACS analysis was performed to see if differences 

seen by microarray correspond to that of changes at the protein level. Finally to 

further assess the potential impact of all these changes on virulence MF1 mice 

were infected with Xen35 and TIGR4 and both of their abilities to cause disease 

determined. 
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4.2 Background 

Bioluminescence is produced by a chemical reaction that occurs in living 

organism resulting in the emission of energy in the form of light (see reviews 

Engebrecht & Silverman., 1984, Meighen., 1991). A wide variety of organism in 

nature are able to do this, including fungi, fish, squid and most importantly here 

bacteria. Five genes encode the required proteins needed for the 

bioluminescence reaction. LuxA and LuxB form the luciferase enzyme 

heterodimer required for catalysing the bioluminescence reaction. LuxC, LuxD 

and LuxE form a multienzyme fatty acid reductase complex, composed of a 

reductase, transferase and a synthetase respectively. These enzymes are 

required for the synthesis of the aldehyde substrate required during the 

bioluminescence reaction. These five genes are common to all species that 

bioluminesce however the substrate of the reactions can vary (see reviews 

Engebrecht & Silverman., 1984, Meighen., 1991). A common feature of all 

bioluminescence reactions is that of the requirement of oxygen for the reaction 

to occur. Other regulatory genes are also often found in a number of species 

however these are not vital for the reaction. The bioluminescence reaction itself 

consists of oxidisation of reduced flavin mononucleotide (FMNH2) and a long 

chain aldehyde (RCHO) producing light, flavin mononucleotide (FMN), fatty acids 

(RCOOH) and water shown below in Equation 4-1. 

FMNH2 + RCHO + O2   '   FMN + H2O + RCOOH + Light (490nm) 

Equation 4-1: Equation of bioluminescence reaction. 
 

This chemistry can be used as a scientific tool by using the lux genes as reporter 

genes in vitro and in vivo (Engebrecht et al., 1985, Contag et al., 1995, Jenkins 

et al., 2003). Xen35 the bioluminescent version of S.pneumoniae strain TIGR4 

(Tettelin et al., 2001). Xen35 is one of a number of S.pneumoniae Xen strain 

constructed by Xenogen Corporation. These Xen strains have been used widely in 

the pneumococcal field to assess virulence and disease progression of different 

strains, strains tissue tropisms and in vivo gene expression (Orihuela et al., 2003, 

Orihuela et al., 2004).  
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The first Xen strain constructed was that of a serotype 2 strain D39 (Xen7) 

(Francis et al., 2001). This strain was constructed via placing the lux genes 

(luxA-E) amplified from Photorhabdus luminescens (formerly known as 

Xenorhabdus luminescens) upstream of a kanamycin resistance cassette into a 

plasmid flanked by two S.aureus transposon (Tn4001) inverted repeats, this 

plasmid (pAUL-A Tn4001 luxABCDE KmR) also contained the transposon gene 

required for excision of this region (Francis et al., 2001). The lux gene 

configuration luxABCDE was previously altered from that of luxCDABE naturally 

seen in P.luminescens, and the ribosome binding site altered for use in gram 

positive pathogens (Francis et al., 2000). Upon transformation of pAUL-A Tn4001 

luxABCDE KmR Into the naturally competent S.pneumoniae strain D39 the 

transposon flanked lux genes were excised from the plasmid and randomly 

integrated into the D39 genome. Transformants were selected using kanamycin. 

As no promoter was placed upstream of the lux genes in the plasmid 

transformants were screened using an ICCD camera for high bioluminescence 

indicating the insertion of the lux genes downstream of a promoter, creating 

Xen7. Xen7 genomic DNA was then isolated and transformed into a number of 

other S.pneumoniae strains constructing a collection of S.pneumoniae 

bioluminescent strains that can be used for in vivo analysis of disease 

progression (Francis et al., 2001, Orihuela et al., 2003). This technology allowed 

integration into the genome of the lux genes whereas previous studies expressed 

the lux genes on a plasmid. Using chromosomal integration increases the length 

bioluminescence can be followed as no antibiotic selection is required unlike 

with the plasmid based method (Francis et al., 2000). 
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4.3 Xen35 whole genome sequence 

4.3.1 Genome sequence 

Preliminary virulence analysis showed Xen35 was less virulent that TIGR4. 

Therefore whole genome sequencing was performed on Xen35 to assess any 

genome changes other than the lux insertion found in this strain compared to 

TIGR4, which may alter virulence. Sequence reads were reference assembled to 

the TIGR4 genome sequence data available at NCBI (NC_003028). A de novo 

assembly, assembling the sequence reads against themselves was also 

performed. Upon reference assembly of the sequence reads there were a total 

of 18 low coverage regions, where the sequence data was either of too low 

quality, sequence reads did not assemble due to variation within the region 

between the two strains, or this region was not present in Xen35. All of these 

low coverage regions were analysed further by Sanger sequencing to confirm 

changes in these regions. The de novo assembly created 271 contigs of which 

contig 48 contained the lux genes (unable to align to the TIGR4 sequence). The 

de novo assembly enabled further assessment of the low coverage regions, as 

divergent regions in Xen35 would assemble. SNP and indel analysis was also 

performed on the reference assembly. A total of 243 changes (SNPs/insertions/ 

deletions) were seen in Xen35 when compared to TIGR4, all of which can be seen 

in appendix III. This includes 8 deletions (Table 4-1), 15 insertions (Table 4-2) 

and 220 SNPs. Of theses SNPs 139 are located in intergenic regions or 

synonymous, but 81 lead to 73 amino acid changes in 34 genes (Table 4-3).  

Gene Function Position 

TIGR4 

Position 

Xen35 

NT Outcome 

SP_0200

/ 0201 

SP_0200 Competence-

induced protein Ccs4. 

SP_0201 Hypothetical 

protein 

188293 188292-
188293 
 

C SP_0200 removal of stop 

codon. 

SP_0201 frame shift. 

Premature stop codon. 

INT 

SP_0296

-0297 

 273379 273378-
273379 

G  

SP_0491 Hypothetical protein 469288 469286-
469287 

C Frameshift. Removal of stop 

codon 

INT 

SP_1029

 972510 972509-
972510 

T  
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-1030 

SP_1732 Serine/Threonine protein 

kinase. 

1634948
-
1635163 

1634951
-
1634952 

 216bp deletion between 

amino acid repeats 

TQIVLTVAKKA/ 

TQIVLTVAKKV, removing 

PASTA domain 3. 

INT 

SP_1851

-1852 

 1759031 1758820
-
1758821 

A  

SP_1920 MarR family 

transcriptional regulator. 

1829756 1837438
-
1837439 
 

T Frameshift. Premature stop 

codon. 

SP_1920 As above. 1829840 
 

1837521
-
1837522 

A Frameshift. Premature stop 

codon. 

Table 4-1: Deletions in Xen35 compared to TIGR4. 

INT refers to changes observed in intergenic regions. 
 

Gene Function Position TIGR4 Position Xen35 NT Outcome 

SP_0206 Hypothetical 
protein 

192436-192437 192435 C Frameshift, removal 

of stop codon. 

INT SP_0630-

0631 

 597325-597326 597324 G  

INT SP_0885-

0886 

 834922-834923 834923 C  

INT SP_1053-

1054 

 991106-991107 991106 C  

INT SP_1199-
1200 

 1132344-

1132345 

1132346 G  

INT SP_1199-

1200 

 1132391-

1132392 

1132394 G  

SP_1715 Hypothetical 
protein 

1618515-
1618516 

1618519 G Frameshift. 

Premature stop 

codon. 

INT SP_1775-
1776 

 1113285-
1113286 

1113286 C  

INT SP_1776-
1777 

 1695199-
1695200 

1694988 T  

INT SP_1777-

1778 

 1696085-

1696086 

1695875 C  

INT SP_1928-
1929 

 1835757-
1835758 

1843439-
1843440 

AT  

INT SP_1928-
1929 

 1835782-
1835783 

1843466-
1843489 

24b  
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p 

INT SP_1928-
1929 

 1835840-
1835841 

1843548 A  

SP_2076 Authentic 
frameshift 

1985218-
1985219 

1992927 G Frameshift, removal 

of frameshift. 

INT 2105-
2106 

 2016331-
2016332 

2024041 G  

Table 4-2: Insertions in Xen35 compared to TIGR4 

INT refers to changes observed in intergenic regions. 
 

Gene Function Position 

TIGR4 

Position 

Xen35 

Amino acid 

TIGR4 

Amino 

acid 

Xen35 

Origin 

(D39/ 

TIGR4) 

SP_0148 ABC transporter, 

substrate binding 

protein. 

146055 146055 Leu (TTG) Phe (TTC) D39 

SP_0272 30S ribosomal protein 

S7. 

247805 247805 Lys (AAA) Glu (GAA) D39 

SP_0715 Lactate oxidase 681177 681176 Gly (GGA) Stop 

(TGA) 

Neither 

SP_0730 Pyruvate oxidase 695462 695461 Glu (GAG) Stop 

(TAG) 

Neither 

SP_0784 Glutathione reductase. 737108 737107 Cys (TGC) Arg (CGC) D39 

SP_0807  Septation ring 

formation regulator 

EzrA. 

762843 762842 Gln (CAA) Lys (AAA) Neither 

SP_0904 Hypothetical protein. 857447 857447 Asn (AAC) Thr (ACC) Neither 

SP_0927 LysR family 

transcriptional 

regulator. 

880600 880600 Ala (GCT) Val (GTT) Neither 

SP_1166 MATE efflux family 

protein. 

1101585/
1101586 

1101585
/110158
6 

Arg (CGT) Ala (GCT) D39 

SP_1190 Tagatose 1,6- 

diphosphate aldolase. 

1127020 1127022 Val (GTT) Leu (CTT) D39 

SP_1190 As above. 1127021 1127023 Cys (TGC) Trp (TGG) D39 

SP_1343 Prolyl oligopeptide 

family protein. 

1267219/
1267220 

1267222
/ 
1267223 

Thr (ACG) Ser (AGC) D39 

SP_1715 Hypothetical protein 1618223 1618226 Glu (GAA) Gly (GGA) D39 

SP_1733 Phosphatase, putative. 1636745 1636533 Ala (GCT) Gly (GGT) Neither 

SP_1891 ABC transporter, 

oligopeptide binding 

1796273 1796062 His (CAT) Tyr (TAT) Neither 
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protein AmiA. 

SP_1908 Single stranded DNA 

binding protein. 

1822699 1822488 
 

Ala (GCT) Val (GTT) Neither 

SP_1908 As above. 1822817 1822606 Leu (TTG) Met (ATG) D39 

SP_1909 Short chain 
dehydrogenase/ 
reductase family 
oxidoreductase. 

1823433/ 

1823434 

1823222

/ 

1823223 

Gln (CAG) Arg (AGG) D39 

SP_1910 Hypothetical protein. 1823880 1823669 Leu (CTC) Phe (TTC) D39 

SP_1910 As above. 1823968/ 

1823969 

1823757

/ 

1823758 

Thr (ACT) Ile (ATA)  D39 

SP_1910 As above. 1824141 1823930 Thr (ACA) Ser (TCA) D39 

SP_1910 As above. 1824220 1824009 Asp (GAT) Glu (GAA) D39 

SP_1910 As above. 1824264 1824053 Asp (GAT) Asn (AAT) D39 

SP_1911 Putative thioredoxin 1824391/ 

1824393 

1824180

/ 

1824182 

Glu (CAA) Asp (GAC) Neither 

SP_1911 As above. 1824588 1824377 Ser (AGC) Gly (GGC) D39 

SP_1911 As above. 1824609 1824398 Ile (ATT) Leu (CTT) D39 

SP_1913 Authentic frameshift. 1825256 1825045 Ser (AGT) Gly (GGT) D39 

SP_1914 Hypothetical protein 1825712 1825501 Ile (CTA) Thr (ACT) D39 

SP_1914 As above. 1826142 1825931 Leu (CTC) Ile (ATC) D39 

SP_1915 Hypothetical protein 1826478/ 

1826479 

1834161

/ 

1834162 

Ala (GCA) Val (GTT) D39 

SP_1915 As above. 1826503 1834186 Asn (AAT) Ser (AGT) D39 

SP_1915 As above. 1826525 1834208 Ser (TCT) Leu (GCT) D39 

SP_1916 PAP2 family protein. 1827142 1834825 Asp (GAT) Asn (AAT) D39 

SP_1916 As above. 1827352 1835035 Cys (TGT) Arg (CGT) D39 

SP_1916 As above. 1827368 1835051 Ser (AGC) Arg (AGA) D39 

SP_1918 ABC transporter, ATP 

binding protein. 

1828094 1835777 Pro (CCG) Ser (TCG) D39 

SP_1918 As above. 1828115 1835798 Arg (CGT) Cys (TGT) D39 

SP_1918 As above. 1828142 1835825 Arg (AGA) Gly (GGA) D39 

SP_1919 ABC transporter, 

permease protein. 

1828907 1836590 Leu (CTC) Phe (TTC) D39 

SP_1919 As above. 1829040/
1829041 

1836723
/182902
4 

Leu (TTG) Stp (TAA) D39 

SP_1919 As above. 1829231 1836914 Ile (ATC) Val (GTC) D39 

SP_1919 As above. 1829312 1836995 Ser (TCA) Pro (CCA) D39 

SP_1919 As above. 1829318 1837001 Arg (CGT) Cys (TGT) D39 
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SP_1919 As above. 1829335 1837018 Gly (GGC) Asp (GAC) D39 

SP_1919 As above. 1829383 1837066 Thr (ACG) Met (ATG) D39 

SP_1919 As above. 1829537 1837220 Ser (TCC) Pro (CCC) D39 

SP_1919 As above. 1829561 1837244 Ser (TCG) Pro (CCG) D39 

SP_1919 As above. 1829587 1837270 Glu (GAA) Gly (GGA) D39 

SP_1920 MarR family 

transcriptional 

regulator. 

1829980 1837661 Pro (CCT) Ser (TCT) D39 

SP_1920 As above. 1830130 1837811 His (CAC) Tyr (TAC) D39 

SP_1923 Pneumolysin. 1832174 1839855 Asn (AAT) Asp (GAT) D39 

SP_1924 Hypothetical protein. 1833393 1841074 Tyr (TAC) His (CAC) D39 

SP_1927 IS1381, transposase 

OrfA 

1834935 1842616 Tyr (TAT) Asp (GAT) D39 

SP_1927 As above. 1834962 1842643 Ala (GCA) Thr (ACA) Neither 

SP_1927 As above. 1835012 1842693 Ile (ATA) Met (ATG) D39 

SP_1928 IS1381, transposase 

OrfB 

1835482/ 

1835483 

1843163

/ 

1843164 

Gly (GGT) Asp (AAT) Neither 

SP_1928 As above. 1835507 1843188 Cys (TGT) Tyr (TAT)  D39 

SP_1928 As above. 1835558 1843239 Ala (GCT) Val (GTT) Neither 

SP_1928 As above. 1835629 1843310 Glu (GAA) Lys (AAA) D39 

SP_1928 As above. 1835657 1843338 Tyr (TAT) Cys (TGT) Neither 

SP_1928 As above. 1835699 1843380 Ile (ATT) Ser (AGT) D39 

SP_1930 Hypothetical protein 1836482 1844190 Leu (CTC) Phe (TTC) D39 

SP_1931 Hypothetical protein 1836923 1844631 Glu (GAA) Val (GTA) D39 

SP_1931 As above. 1836993 1844701 His (CAT) Tyr (TAT) D39 

SP_1931 As above. 1837074 1844782 Pro (CCT) Ser (TCT) D39 

SP_1933 Hypothetical protein. 1837534 1845242 Stp (TGA) Gly (GGA) Neither 

SP_1933 As above. 1837543 1845251 Val (GTT) Ile (ATT) Neither 

SP_1933 As above. 1837602 1845310 Ile (ATT) Thr (ACT) Neither 

SP_1934 Hypothetical protein. 1838778 1846486 Tyr (TAT) His (CAT) D39 

SP_1934 As above. 1838873 1846581 Gly (GGG) Ala (GCG) D39 

SP_1934 As above. 1839074 1846782 Leu (TTG) Ser (TCG) D39 

SP_1935 Hypothetical protein 1839292 1847000 Gly (GGA) Val (GTA) Neither 

SP_1935 As above. 1839298 1847006 Ala (GCA) Val (GTA) D39 

Table 4-3: SNPs causing amino acid changes in Xen35 genes compared to TIGR4 
 

Using the table above the major genome changes have been compiled into Table 

4-4, consisting of genes that contain frameshifts due to insertions or deletions or 

contain amino acid changes leading to introduction of a premature stop codon. 
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Or includes genes that contain large deletions which may alter the functionality 

of the resulting protein. Although SNPs leading to single amino acid changes in 

the resulting protein may have a severe effect on the proteins function these 

have not been further validated with regards to their effect in Xen35 due to 

their shear number. 

Gene Function Change Outcome 
SP_0200/ 

0201 

SP_0200 -Competence-

induced protein Ccs4. 

SP_0201 Hypothetical protein 

C deletion SP_0200 removal of stop codon. 

SP_0201 frame shift. Premature stop 

codon. 

SP_0206 Hypothetical protein C insertion Frameshift, removal of stop codon. 

SP_0491 Hypothetical protein C deletion Frameshift. Removal of stop codon 

SP_0715 Lactate oxidase (LctO) SNP (G>T) Amino acid change, Glycine > stop. 

SP_0730 Pyruvate oxidase (SpxB) SNP (G>T) Amino acid change, Glutamine > 

stop. 

SP_1715 Hypothetical protein G Insertion Frameshift. Premature stop codon. 

SP_1732 Serine/Threonine protein 

kinase. (StkP) 

216bp deletion Removal of PASTA domain 3 
between amino acid repeats 
TQIVLTVAKKA/ TQIVLTVAKKV,  

SP_1914 Hypothetical protein luxA-E 
insertion 

Gene loss of function 

SP_1919 ABC transporter, permease 

protein. 

SNP (TG>AA) Amino acid change, Leucine > stop 

SP_1920 MarR family transcriptional 

regulator. 

T and A 

deletion 

Frameshift. Premature stop codon. 

SP_2076 Authentic frameshift G Insertion Frameshift, removal of frameshift. 

Table 4-4: Genome changes in Xen35 resulting in loss of function of the protein encoded or 
proteins containing large in frame deletions. 

Table compiling the changes in Xen35 that cause the gene encoded protein to become non-
functional or to likely cause a reduced function. 
 

Included in Table 4-4 is the gene encoding the eukaryotic like serine/ threonine 

protein kinase, a global regulator of gene expression in S.pneumoniae, which 

contains a deletion of 216bp (72 amino acid) (Saskova et al., 2007). This deletion 

still leaves the protein in frame so whether this affects the functionality of StkP 

is unknown. It appears that the deletion has occurred between two identical 10 

amino acid repeats (TQIVLTVAKK) present at the end of the second and third 

PASTA (penicillin binding protein and serine threonine kinase associated) 

domains respectively. Which have been shown to play a role in sensing the 

external environment and relaying this information to the N-terminal kinase 
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domain (Biol et al., 2002). SP_1914 is non-functional as this is the gene into 

which the lux genes were inserted (Figure 4-1). Interestingly both the pyruvate 

oxidase and lactate oxidase which function under aerobic growth conditions 

contain amino acid changes creating a premature stop codon in both genes 

(Taniai et al., 2008). Gene alignments of spxB and lctO from Xen35 to other 

genome sequenced S.pneumoniae strains available at NCBI showed this amino 

acid change is not common, not being seen in any other strains (data not 

shown). SpxB has been shown to be an important virulence factor in 

S.pneumoniae producing hydrogen peroxide as a by-product of its enzymatic 

reaction, and is important for intraspecies competition in the nasopharynx 

(Pericone et al., 2000).  

Of the changes seen in Xen35 a large proportion were located around the lux 

gene insertion, summarised in Table 4-5. Due to this each change was mapped as 

to whether it corresponded to that seen in the corresponding gene in D39 

(NC_008533). Xen35 was constructed via transformation of Xen7 (D39) genomic 

DNA into TIGR4. Therefore it was hypothesised that along with the lux gene 

insertion a large proportion of the genes surrounding the lux insertion in Xen7 

were also recombined into TIGR4 to make Xen35. This seemed to be the case as 

170 out of 194 of the gene changes seen surrounding the lux insertion 

corresponded to the changes of a D39 gene rather than a TIGR4 gene. There 

were a few exceptions to this, which may be due to some variation of the TIGR4 

strain Xen35 was constructed in compared to the genome sequenced TIGR4 

strain (Tettelin et al., 2001). Or potential variations in the D39 strain Xen7 was 

constructed in compared to that of the genome sequenced strain (Lanie et al., 

2007). Figure 4-2 shows the region surrounding the lux genes (17kb), which was 

also recombined into TIGR4 creating Xen35.  

Change  Surrounding lux insertion Rest of the Genome 
SNPS 189 31 
Insertions 3 12 
Deletions 2 6 

Table 4-5: Location of genome changes seen in Xen35 
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Figure 4-1: Schematic diagram of the lux gene insertion site in Xen35 

Diagram showing the lux insertion site in Xen35, constructed in CLC genomics workbench. LuxA-E are the five genes required for the bioluminescence 
reaction which are inserted into SP_1914 in Xen35. 
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Figure 4-2: Schematic diagram showing region recombined into Xen35 from Xen7 (D39) 

Diagram shows whole region SP_1908-1935 in Xen35 that now contains Xen7 (D39) alleles rather than TIGR4, which spans roughly 17kb not including the 
lux genes. Boxed in purple is the lux genes. Diagram was constructed in CLC genomics workbench. 
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The rest of the genome changes lying outwith the lux insertion site were also 

mapped to the D39 genome sequence. A number of these changes were also 

shown to be in D39, which could indicate multiple recombination events 

occurring during a single transformation, which has been shown can occur 

(Croucher et al., 2012). However it could also be from genome variations in the 

Xen35 TIGR4 parent to that of the genome sequenced strain, which is likely the 

case for the in frame deletion in StkP. PCR was performed and this deletion was 

shown not to be present in Xen7, which contains the full length StkP(data not 

shown). The only other explanation would be this deletion has occurred in Xen35 

over time in the laboratory. The SNP causing the loss of function of SpxB is also 

not present in Xen7, as Xen7 produced similar levels of hydrogen peroxide to 

TIGR4 (Figure 4-3). 

4.3.2 Hydrogen peroxide production of Xen35 

Due to the noted SNP in spxB in Xen35, a hydrogen peroxide assay was 

performed on this strain to confirm the resulting SpxB protein was non-

functional. SpxB produces over 90% of the cells H2O2 as a by-product of its 

enzymatic reaction therefore it would be expected to see severely reduced 

levels of H2O2 in Xen35 compared to T4JH (Pericone et al., 2000). The presence 

of hydrogen peroxide leads to a colour change to purple visualised in the assay. 

This assay was also performed on all the other Xen strains created. This included 

Xen7 (serotype 2, D39), Xen9 (serotype 19, HUS-TMBIG), Xen10 (serotype 3, 

A66), Xen11 (serotype 19, Ef3030), Xen12 (serotype 14, 140301) and Xen34 

(serotype 23, 230401). This assay will assess if reduced H2O2 production is a 

common feature of all the Xen strains, which is brought about due to the 

insertion of the lux genes or expression of the lux genes. These strains were 

compared to T4JH as we did not have their parent strains available for 

comparison. 
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Figure 4-3: Hydrogen peroxide production of Xen strains 

Each strain was represented in triplicate in the Hydrogen peroxide assay. (A) The graph 
gives the hydrogen peroxide production in mM of each strain calculated using a standard 
curve of known hydrogen peroxide concentrations (See Figure 2-14), the dotted line 
represent the limit of detection. (B) Shows visually the assay performed in a 96 well plate 
with each strain represented in triplicate. 
 

Hydrogen peroxide assay confirmed the lack of H2O2 production in Xen35 and 

therefore the fact that SpxB is non-functional in this strain. Although there is 

only a small decrease in Xen35 H2O2 production compared to T4JH, visually it is 

clear there is no H2O2 produced by Xen35 (Figure 4-3). The other Xen strains all 

produce H2O2 and therefore this SNP in Xen35 spxB is clearly not a common 

feature in all Xen strains. The fact this is not the case in Xen7 would also 

indicate this change did not come from this strain during production of Xen35. 

This SNP in Xen35 likely arose from the original TIGR4 strain Xen35 was 

constructed in. 
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4.4 Expression changes in Xen35 

4.4.1 Microarray analysis of Xen35 

Due to the large number of genome changes seen in Xen35 gene expression 

changes were assessed to deduce the downstream effect these genome changes 

may have in Xen35. For this microarray analysis was performed on Xen35 

compared to T4JH.  

A total of 33 genes were differentially regulated between Xen35 and T4JH 

(P<0.05) shown in Table 4-6. When increasing the P value to P<0.1 a total of 65 

genes were differentially regulated (data shown in appendix IIII). Although not 

within our designated P<0.05 cut off this list is referred to as it may contain 

genes that show true expression changes, for instance it may include genes that 

are contained within the same operon of genes in the P<0.05 list.  

Included in the genes that were differentially regulated is that encoding the 

pilus backbone protein (rrgB), and a number of glycosyltransferases, which 

function to glycosylate a large surface protein know as the pneumococcal serine 

rich repeat protein (PsrP). psrP was shown to be differentially regulate in the 

P<0.1 gene list. Both are important for virulence in S.pneumoniae contributing 

to adherence and biofilm formation respectively (Hemsley et al., 2003, Sanchez 

et al., 2010). rlrA, rrgA and rrgC were also shown to be differentially regulated 

in the P<0.1 list. Also Included were a number of transcriptional regulators and a 

HK (hk06) of a TCS pair, the RR (rr06) was also differentially regulated in the 

increased P value list (P<0.1). The lactate oxidase (lctO) was shown to be down 

regulated in Xen35, however from the genome sequence data we know this gene 

encodes a truncated protein.  

Interestingly the genes surrounding the lux insertion were both highly up 

regulated in Xen35. SP_1914 a hypothetical protein is non-functional due to the 

lux insertion, however the adjacent gene SP_1915 also encoding a hypothetical 

protein still remains functional (contains a number of SNPs). SP_1915 located 

downstream to SP_1914 is up regulated over 100 fold in Xen35. The surrounding 

genes were not differentially regulated and therefore we hypothesise the 

promoter driving the expression of the lux genes lies downstream of SP_1915. 
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Due to their huge up regulation it is likely the lux genes interruption of SP_1914 

altered some regulatory unit causing the huge up regulation of both SP_1914 and 

SP_1915. Both protein are of unknown function and therefore the effect of this 

to virulence of Xen35 is unknown.  

Gene Description Abbrev Fold 
change 

SP_0095  Hypothetical protein  2.9 
SP_0107  LysM domain containing protein  3.3 
SP_0202  Anaerobic ribonucleoside triphosphate reductase nrdD 1.5 
SP_0463  Cell wall surface anchor family protein rrgB 13.7 
SP_0663 Hypothetical protein  1.8 
SP_0715  Lactate dehydrogenase lctO 2.3 
SP_0726  Phosphomethylpyrimidine kinase thiD 2.8 
SP_1159  Tyrosine recombinase (chromosome seg) xerS 1.4 
SP_1427  U32 family peptidase  1.7 
SP_1464  Acetyltransferase  1.3 
SP_1468  Pyridoxal biosynthesis lyase pdxS 2.4 
SP_1546  Hypothetical protein  2.1 
SP_1572  Non-heme containing ferritin  1.9 
SP_1587  Oxalate formate antiporter  4.6 
SP_1757  Hypothetical protein  5.4 
SP_1764  Glycosyltransferase family protein  5.9 
SP_1765  Glycosyltransferase family protein  2.5 
SP_1766  Glycosyltransferase family protein  4 
SP_1767  Glycosyltransferase family protein  3.8 
SP_1769 Glycosyltransferase family protein, authentic frameshift.  4.2 
SP_1861  Choline transporter proV 1.7 
SP_1862  Hypothetical protein  2.1 
SP_1863 MarR family transcriptional regulator marR 2.2 
SP_1895 Sugar ABC transporter, permease protein  5 
SP_1898  Alpha-galactosidase aga 5 
SP_1914  Hypothetical protein  66.1 
SP_1915  Hypothetical protein  185.6 
SP_2010  Penicillin binding protein 2A PBP 2A 1.1 
SP_2057  Hypothetical protein  1.4 
SP_2106  Glycogen phosphorylase family protein  1.7 
SP_2185  Hypothetical protein  1.7 
SP_2192  Sensor Histidine kinase hk06 1.6 
SP_2195  Transcriptional regulator  ctsR 1.5 

Table 4-6: Genes differentially regulated in Xen35 compared to T4JH 

Table shows genes differentially regulated in Xen35 compared to T4JH (P<0.05). Fold 
change represents that seen in Xen35 compared to T4JH, red showing genes up regulated 
in Xen35 and blue are those that are down regulated. 
 

4.4.2 Real time PCR validation of microarray analysis 

RT-PCR (Real-time PCR) was performed on a number of genes shown to be 

differentially regulated in Xen35 to confirm changes seen by microarray analysis. 

Of the genes included were the whole pneumococcal pilus islet (SP_0461-64/ 
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SP_0466-68), PsrP (SP_1772) and the two hypothetical proteins surrounding the 

lux insertions (SP_1914/ SP_1915). 

 

Figure 4-4: RT-PCR graph of pilus islet genes, psrP and SP_1914/15 expression in Xen35 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, rrgB, rrgC, srtB, srtC, srtD), psrP, 
SP_1914 and SP_1915 in Xen35. Fold change represents that of Xen35 compared to TIGR4. 
Each bar represents the average of three replicas (three biological replicas) and errors bars 
the standard deviation. Statistical analysis was performed by a 1-way ANOVA with a Tukeys 
testing correction comparing the dCt values of the control strain (T4JH) to the test strain 
(Xen35), * P<0.01, **P<0.001. 
 

Gene Microarray RT-PCR 

SP_0461 (rlrA) 6.3 12.8 
SP_0462 (rrgA) 13.3 28.1 
SP_0463 (rrgB) 13.7 16.2 
SP_0464 (rrgC) 7.1 12.6 
SP_0466 (srtB) 2.4 11.8 
SP_0467 (srtC) 2.0 7.5 
SP_0468 (srtD) 1.8 5.6 

SP_1914 66.1 59.7 
SP_1915 185.6 96.3 

SP_1772 (psrP) 4.3 6.3 

Table 4-7: Comparison of expression changes of the pilus islet genes, psrP, SP_1914 and 
SP_1915 in Xen35 from microarray (P<0.05/ P<0.1) and RT-PCR analysis. 
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Table shows fold changes in gene expression of the whole pilus islet, psrP, SP_1914 and 
SP_1915 in Xen35 compared to T4JH. Fold changes show that from microarray data and 
those from RT-PCR analysis. 
 

RT-PCR for the selected genes confirmed the changes seen by microarray 

analysis. RT-PCR was performed on the same RNA preparations that microarray 

analysis was performed on so variations between the two experimental 

techniques could also be assessed. Microarray seemed to slightly underestimate 

the down regulation of the pneumococcal pilus in Xen35, showing a decrease in 

28-5.5 fold in the different genes required for pilus assembly. RT-PCR also 

showed the huge difference in the genes surrounding the lux insertion is a true 

change. The up regulation of psrP was also confirmed. 

Due to their being such a large change in the expression of the pneumococcal 

pilus RT-PCR was performed on some of the genes known to regulate the 

pneumococcal pilus. This includes TCS shown to all be repress expression of the 

pilus genes (Hendriksen et al., 2006, Rosch et al., 2008, Song et al., 2009). rr06 

was also shown to be differentially expressed in Xen35 by microarray (P<0.1). 

This will assess whether they may be causing this decrease in pilus expression 

seen in Xen35.  

 

Figure 4-5: RT-PCR graph of TCS expression in Xen35 

Graph shows RT-PCR of rr03, rr06, rr08 and rr09 in Xen35. Fold change represents that of 
Xen35 compared to TIGR4. Each bar represents the average of three replicas (three 
biological replicas) and errors bars the standard deviation. No statistical difference was 
observed. 
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Gene Microarray RT-PCR 

SP_0387 (rr03) 1.2 1.9 
SP_2193 (rr06) 1.6 2.2 
SP_0083 (rr08) 1.4 1.1 
SP_0661 (rr09) 1.8 1.6 

Table 4-8: Comparison of expression changes of TCS in Xen35 from microarray and RT-PCR 
analysis. 

Table shows fold changes in gene expression of rr03, rr06, rr08 and rr09 in Xen35 compared 
to TIGR4. Fold changes show that from microarray data and those from RT-PCR.  
 

RT-PCR performed on the four TCS known to regulate the pneumococcal pilus 

showed three of them were up regulated in Xen35, however none were classed 

as statistically significant (Table 4-8, Figure 4-5). rr06 was shown to be up 

regulated by RT-PCR (not significant) and by microarray analysis. Whether this 

may contribute to the altered pilus expression would require further study. 

4.4.3 RNA-seq analysis of expression changes in Xen35 

RNA-seq analysis was also performed on Xen35 compared to T4JH. mRNA 

purification was performed on the same total RNA preparation used for 

microarray analysis and RT-PCR analysis and therefore is directly comparable. No 

statistical analysis has been performed on this data set to date so comparison is 

performed using the RPKM (reads per kilobase of exon model per million mapped 

reads) expression values assigned in CLC genomics workbench. Only a few chosen 

genes are shown below in Table 4-9. This gives an indication of the expression 

levels of both genes in the two strains and from this the fold change is 

calculated. 

Gene RPKM 
Xen35 

RPKM 
TIGR4 

Fold 
change 
RNA-seq 

Fold 
change 
Microarray 

Fold 
change RT-
PCR 

SP_0461 (rlrA) 3.33 38.6 11.6 6.3 12.8 
SP_0462 (rrgA) 11.17 249.34 22.3 13.3 28.1 
SP_0463 (rrgB) 41.22 612.78 14.9 13.7 16.2 
SP_0464 (rrgC) 41.34 671.84 16.3 7.1 12.6 
SP_0466 (srtB) 4.58 40.56 8.9 2.4 11.8 
SP_0467 (srtC) 10.32 57.22 5.5 2.0 7.5 
SP_0468 (srtD) 11.35 60.25 5.3 1.8 5.6 
SP_1772 (psrP) 21.07 4.63 4.6 4.3 6.3 
SP_0387 (rr03) 92.64 99.76 1.1 1.2 1.9 
SP_2193 (rr06) 304.3 239.65 1.3 1.6 2.2 
SP_0083 (rr08) 53.1 102.04 1.9 1.4 1.1 
SP_0661 (rr09) 56.36 129.27 2.3 1.8 1.6 
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Table 4-9: Comparison of expression changes of the pilus islet, psrP and TCS in Xen35 from 
microarray, RT-PCR and RNA-seq analysis. 

Table shows fold changes in gene expression of the pilus islet (rlrA, rrgA, rrgB, rrgC, srtB, 
srtC, srtD), psrP, rr03, rr06, rr08 and rr09 in Xen35 compared to TIGR4. Fold changes show 
that in Xen35 from microarray, RT-PCR and RNA-seq analysis.  
 

Initial comparisons were performed looking at the pilus islet genes expression 

which showed as for the microarray and RT-PCR a decrease in pilus islet 

expression in Xen35, with the fold change values being similar to both RT-PCR 

and microarray analysis. This was also the case with psrP, which also showed an 

up regulation in the RNA-seq data corresponding to that shown by microarray 

and RT-PCR analysis. Analysis of the four TCS shown to play a role in pilus 

regulation by RNA-seq showed some variations to the data obtained by 

microarray and RT-PCR analysis. rr03 and rr09 expression shown by RNA-seq 

analysis was opposite to that shown by RT-PCR and microarray, perhaps 

confirming that these are not true changes and would need further validation. 

rr08 showed a down regulation in Xen35 by RNA-seq analysis however RT-PCR 

showed no difference. rr06 still showed a small up regulation in Xen35 during 

RNA-seq analysis. Due to the small fold changes in the TCS it is hard to validate 

if this is a true change due to variation within the techniques used. 

4.5 Changes in pilus expression in Xen35 

To further confirm this decrease in pilus expression in Xen35 western blotting 

was performed to assess if this correlates to a decrease in protein levels. And 

FACS analysis was performed to assess the spread of the pilus in the population 

level. 

4.5.1 Western blot analysis of Xen35 

Western blot analysis was used to determine the amount of pilus backbone 

protein (RrgB) in Xen35 and T4JH. Western blot analysis was performed on 

samples prepared at varying ODs (OD600nm 0.2/ 0.6 and 1.0) to assess any 

variation in the pilus at different ODs. Analysis showed a clear decrease in the 

amount of RrgB in Xen35 compared to T4JH at all ODs (Figure 4-6). There does 

seem to be some variation at the different ODs with the biggest difference in 

RrgB expression seen at OD600nm 0.6. There is likely some variation in the fold 
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changes stated due to variations in the technique, however at all ODs it is clear 

there is a large decrease in RrgB expression in Xen35 compared to T4JH. 

 

Figure 4-6: Western blot of Xen35 RrgB expression compared to TIGR4. 

Western blotting analysis was performed on TIGR4, Xen35 at varying ODs (OD600nm 0.2/ 0.6/ 
1.0) and T4!rrgB looking for RrgB protein levels in all (!-RrgB antibody). Equal protein 
loading was confirmed by equal expression of GroeL (!-GroeL antibody), normalised 
against in analysis. Western blotting quantification was performed using ImageJ with fold 
changes in RrgB expression in Xen35 compared to TIGR4 boxed below the strain, analysis 
was performed comparing the Xen35 OD sample to that of its corresponding TIGR4 same 
OD sample. Left hand side numbers represent the size in kDa of proteins run to the same 
point. 
 

It has recently been shown that the pneumococcal pilus in a population is not 

distributed evenly between cells. Within a growing population a number of cells 

are positive for the pilus and some negative (Basset et al., 2011, De Angelis et 

al., 2011). It was therefore important to evaluate in Xen35 if the decrease in 

pilus expression correlated with a decrease in pili on single cells or if the 

number of cells expressing the pilus were fewer than T4JH. 

4.5.2 FACS and fluorescence microscopy analysis of Xen35 

FACS analysis was performed initially by staining a fixed bacterial population 

grown in BHI (OD600nm 0.6) with a anti-rabbit capsule antibody specific for the 

serotype 4 capsule and co-staining with a anti-mouse RrgB antibody. Samples 

were then stained with a anti-rabbit APC conjugate and a anti-mouse FITC 

conjugate antibody. This left the bacterial cells stained positive for the capsule 
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(APC+), which were gated on to confirm events acquired were that of the 

bacterial population. This capsule stained population was then gated on for 

being RrgB positive (FITC+) or RrgB negative (FITC-).  

FACS performed to look at the change in pilus expression at the population level 

was performed on Xen35 and two TIGR4 strains, T4JH used for all experiments to 

date and T4NO1 a strain taken only a single passage from the original genome 

sequenced strain (Tettelin et al., 2001, Aaberge et al., 1995). Both strains were 

used as we do not have access to the parent strain of Xen35 (Figure 4-7). We 

know from the Xen35 genome sequence data there is a degree of variability 

between different strains and likely strains of the same serotype. We thought it 

important then to confirm the same pilus expression in the two TIGR4 strains 

with T4JH being used for microarray, RT-PCR, RNA-seq, western blotting 

experiments and T4NO1 being used as the reference for the genome sequence 

data. 

FACS analysis performed on Xen35 showed that only 5.5% of the population were 

positive for the pneumococcal pilus (Table 4-10). This showed that rather than a 

decrease in pili present on a single cell there are fewer cells that contain the 

pilus on their cell surface. 

With regards to the TIGR4 strains, interestingly there is a big difference in the 

number of cells expressing the pilus on the cell surface. T4NO1 showed 88% of 

cells positive for the pilus however T4JH only showed 20.5% of the cells 

expressing the pilus (Table 4-10), which is similar to the 30% seen in TIGR4 in 

published data (Basset et al., 2011). The reasons for this difference in these two 

strains will be discussed in section 4.8. Due to this it was decided that all future 

experiments would be performed using T4NO1 (the strain the original genome 

sequence was performed on) (Tettelin et al., 2001, Aaberge et al., 1995).  
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Figure 4-7: FACS analysis of RrgB surface expression in Xen35 

FACS was performed on Xen35, T4NO1, T4JH and T4!rrgB. (A) Shows histograms of the 
capsule positive populations selected for from samples stained with a capsule antibody, 
population used for further analysis. (B) Shows the capsule stained populations being gated 
on for being RrgB positive, histograms/ polychromatic plot show negative (left) and positive 
(right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4JH 79.5 20.5 
Xen35 94.7 5.35 
T4!rrgB 98.4 1.6 

Table 4-10: Percentage RrgB positive cells in a Xen35 population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Fluorescence microscopy confirmed all changes seen during FACS analysis as 

seen in Figure 4-8. T4NO1 showed the majority of cells contain the pilus and this 

is present over the whole cell, this is also the case for T4JH however a smaller 

number of cells have the pili. Xen35 showed a number of cells with pili present 

all over the cell surface but some also contained just a small region on the cells 

where pili were present. No T4!rrgB cells were observed to be RrgB positive by 

fluorescence microscopy shown in Figure 4-8. Further representative fluorescent 

microscopy images can be seen in appendix I. 

 

Figure 4-8: Fluorescence microscopy of Xen35. 

One representative image of fluorescently labelled T4NO1, T4JH, T4"rrgB and Xen35 used 
for FACS analysis. Cells were stained for the presence of RrgB (FITC) and the capsule 
(APC). Scale bars above represent, T4NO1-9µm, T4"rrgB - 140µm, T4JH - 140µm and Xen35 
- 140µm. The same representative image will be used throughout this study for each strain, 
more images can be seen in appendix I. 
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4.6 Electron microscopy analysis of Xen35 

Electron microscopy was performed on Xen35 to evaluate mainly any obvious 

structural changes in the pilus, but also any changes in cell morphology, which 

may give a hint as to whether StkP in Xen35 is non-functional. StkP mutants have 

been shown to affect cell division forming longer cells with multiple septa 

(Giefing et al., 2008). Microscopy was performed using a !-RrgB primary 

antibody with a 10nm gold particle conjugate secondary antibody. This labelled 

the length of the pilus shaft with gold particles. Microscopy was also performed 

on T4NO1. T4!rrgB was used to confirm absence of the pilus and no cross 

reactivity of the antibody to any other surface proteins. Images were taken 

between 4000x and 16000x magnification. 
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Figure 4-9: Electron microscopy of T4NO1, Xen35 and T4!rrgB. 

Electron microscopy images of T4NO1 (A), Xen35 (B) and T4!rrgB (C). Cells were stained 
using a !-RrgB antibody and a secondary 10nm gold conjugate antibody. Cells were 
visualised at 4000-16000x magnifications. 
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Electron microscopy further confirmed that T4!rrgB contains no pili on the 

surface, and the gold conjugate antibody did not cross react with any other 

bacterial surface component (Figure 4-9). Images of Xen35 cells showed that 

some cells did express the pneumococcal pilus on the surface as shown by FACS 

however a large majority did not. One of the Xen35 cells visualised showed an 

elongated morphology with multiple septa along the length suggesting this cell is 

unable to divide properly. Which may indicate StkP in this strain is non-

functional or has a reduced functionality (Figure 4-9). The majority of T4NO1 

cells contained pili on the surface with often more than one pilus coming from 

the same cell. However some had no pili. These structures reach a long way 

from the cell surface in T4NO1. In Xen35 the pili appear shorter, however when 

performing electron microscopy fewer Xen35 cells were observed on the nickel 

grid and therefore these cells imaged may not be representative of a normal 

Xen35 population. More experiments would have to be performed to assess the 

length of pili in Xen35 cells compared to T4NO1. 

4.7 Analysis of virulence of Xen35  

Due to the huge genome changes, expression changes and changes in the surface 

expression of the pilus we wanted to assess difference in virulence of Xen35 

compared to T4NO1. 

4.7.1 Adherence assay analysis of Xen35 

Initial experiments were performed assessing the ability of Xen35 to adhere to 

different cell lines. Chosen cell lines included HBMEC cells (human brain 

microvascular endothelial cells), A549 cells (Human lung epithelial carcinoma 

cells line) and D562 cells (Detroit 562, Human pharyngeal carcinoma cell line), 

used to mimic meningitis, pneumonia and colonisation respectively. The 

pneumococcal pilus has been shown to aid adherence to A549 cells (Hemsley et 

al., 2003). psrP has also been shown to be important for pneumonia and aids 

adherence to A549 cells (Shivshankar et al., 2009). SpxB has been shown to be 

important for colonisation and is non-functional in Xen35 (Pericone et al., 2000). 

All these factors likely affect the virulence of Xen35. 
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Figure 4-10: Adherence of Xen35 to different cell lines. 

Adherence of Xen35 was assessed to HBMEC, A549 and Detroit 562 cell lines. Data is 
represented as percentage adherence relative to that of T4NO1 (100%, dashed line), each 
bar is an average of three replicas and the error bars represent the standard error of the 
mean. Statistical analysis was performed using a 1-way ANOVA with a Tukeys testing 
correction, no statistical difference was observed.  
 

Adherence of Xen35 to all cells lines showed a trend towards an increase 

compared to T4NO1, however none were significant. With the highest trend 

towards an increase seen to the A549 cells, this is likely due to the increased 

expression of psrP. It is possible psrP is also able to aid adherence to other cells, 

and may also contribute to the trend towards an increase in adherence observed 

to HBMEC and D562 cells also. 

4.7.2 In vivo analysis of Xen35 

Virulence was also assessed in vivo using a mouse model of infection. For this 

MF1 mice were infected intranasally with 5x106 cfu/50µl with either Xen35 or 

T4NO1 (already animal passaged). 20 mice were infected per bacterial strain and 

mice split into four groups, 24hour time point, 48hour time point, 72hour time 

point and survival. At each time point the mice in each group were culled and 

nasal wash, blood, lung and brain bacterial counts enumerated. If mice got sick 

before their time point they were culled and time of death noted. The survival 

group were culled if sick or culled at the end of the experiment at 96 hours post 

inoculation. 
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Initial analysis was performed comparing the survival of mice infected with both 

strains using a Kaplan-meier survival curve. This analysis was performed only on 

the 5 mice of the survival group of each strain. From this it is clear T4NO1 is 

more virulent than Xen35 showing a statistically significant increase in survival 

time with mice infected with Xen35 (Figure 4-11). The average survival time of 

mice infected with T4NO1 was 43 hours whereas the mice infected with Xen35 

had an average survival time of 76 hours. 

Over the course of the experiment the weight of the mice was noted as this can 

be used to assess disease progression. Percentage weight loss of mice infected 

with T4NO1 or Xen35 was compared at different time points over the course of 

the experiment. Data showed at all time points mice infected with T4NO1 had a 

statistically significant higher percentage weight loss than mice infected with 

Xen35 (Figure 4-11). This suggests disease progression in T4NO1 is quicker than 

in Xen35. To assess at what point during infection Xen35 is attenuated bacterial 

count from the brain, lung, blood and nasal wash of each mouse were compared 

to that of T4NO1 at varying time points. 

 

Figure 4-11: Survival and weight loss of mice infected with Xen35 

(A) Shows percentage survival of mice infected with T4NO1 or Xen35 over time, statistical 
analysis was performed using a logrank Test, ** P<0.01. ** above the strain indicated a 
statistical difference compared to Xen35. (B) Shows percentage weight loss of mice infected 
with either Xen35 or T4NO1. Statistical analysis was performed using a non-parametric 
Mann-Whitney two sample rank test, **P< 0.01 and ***P<0.001. 
 

Comparison of bacterial counts in body organs and fluids were performed 

comparing the four groups stated above against each other. Dotted lines on the 
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graphs represent the limit of detection, if no counts were observed in the 

organs/ bodily fluids the limit of detection value was ascribed. It must be taken 

into account when analysing this data that the mice in each group did not 

necessarily die at the same time, for instance for the 72 hour group all T4NO1 

infected mice were culled between 31-66 hours post inoculation (mice were too 

sick) and these counts are represented in the 72 hour graph, whereas the Xen35 

72 hour group were culled between 55- 72 hours. This is less so the case at 

earlier time points, at 24 hours all the mice of both groups were culled at the 

same time, and therefore this data is a good direct comparison of disease 

progression. For the 48 hour group all Xen35 infected mice were culled at this 

time point however T4NO1 infected mice were culled between 31-48 hours.  

Comparison of bacterial counts at different time points showed a statistically 

significant difference in nasal wash bacterial counts at 24 hour and survival time 

points (Figure 4-12). This suggests perhaps Xen35 is unable to colonise as well as 

T4NO1 in mice. This could be due to the decrease in pilus expression (although 

this has not been validated in vivo) or due to the non-functional SpxB. There is a 

trend towards lower bacterial counts in the lungs at 24 hours in Xen35 infected 

mice, however not significant (Figure 4-12). At later time points there is a trend 

towards higher numbers of bacteria counts in Xen35 infected mice in the lungs, 

perhaps due to up regulation of PsrP which is known to play a role in biofilm 

formation and pneumonia (although this has not been validated in vivo). 

Bacterial counts in the brain of mice infected with either strain seem to be fairly 

similar at all time points with no statistical difference between them. However 

analysis of tail vein bleeds at the 24 hours time point showed a statistical 

significant decrease in the bacterial number in the blood of Xen35 infected mice 

when comparing all 20 mice infected per strain (data not shown). This again is 

perhaps due to the decreased number of bacteria able to colonise in Xen35 

infected mice causing a lag in the time taken for invasive disease to be initiated. 

Xen35 infected mice were imaged at each time point to visually assess disease 

progression shown in (Figure 4-13). 



Chapter 4 
 

 

213 

 

 



Chapter 4 
 

 

214 

 

 

Figure 4-12: Bacterial counts in organs and bodily fluids of MF1 mice infected with Xen35 or 
T4NO1. 
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Bacterial counts were enumerated from brain, lungs, nasal wash and blood of mice infected 
with either Xen35 or T4NO1. Counts were enumerated from 5 mice for each strain over 
varying time points, graph (A) represent the 24 hour post infection time point, (B) 48 hours, 
(C) 72 hours and (D) the survival time point. Statistical analysis was performed using a non-
parametric Mann-Whitney two sample rank test, *P< 0.05. 
 

 

Figure 4-13: Images of mice infected with Xen35 

Images of mice infected with Xen35 over time showing in vivo infection in the lungs and 
abdomen of some mice. Images were acquired using the IVIS spectrum in vivo imaging 
system, imaging for 5 minutes for each image. Hours above the images indicate that of the 
time elapsed since inoculation. Numbers to the side indicate the mice numbers in each 
group. If mice are not present in the image they have been culled. 
 

4.8 T4NO1 and T4JH genome sequence 

Whole genome sequence analysis was also performed on T4NO1 and T4JH to 

assess any genome changes between these strains and that of the genome 

sequenced strain (NC_003028). One clear phenotypic change noticed between 

T4NO1 and T4JH is that in a growing population 88% of T4NO1 cells contain pili 

(RrgB) on the cells surface whereas only 20.5% contain pili on the cell surface in 

T4JH. This difference may be due to a genetic difference between the strains. 

Only preliminary data is currently available for the genome sequence data of 

these strains, which includes reference assembling the sequence reads of both 

strains to the available genome sequence (NC_003028), followed by SNP and 
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indel testing and assessing if there are any low coverage regions. This analysis 

was performed by Dr Andrea Mitchell. The changes observed have currently not 

been confirmed by other methods.  

4.8.1 T4NO1 

Preliminary whole genome sequence changes in T4NO1 compared to the genome 

sequence data available at NCBI (NC_003028) can be seen in Table 4-11. T4NO1 

was taken only a single passage from that of the genome sequence strain 

(NC_003028) and therefore few genome changes would be expected. Only three 

changes were observed, one indel, one SNP and one region of low coverage. Only 

one change was located in a gene, which was a SNP in comF. However this did 

not result in an amino acid change and probably does not alter the genes 

function. The region of low coverage was located in the intergenic region 

between SP_1199 and SP_1200. This region was also found to contain a number 

of changes in Xen35. It may be that this region is a mutational hotspot and 

readily accumulates changes, as an indel in this region is also seen in T4JH 

(Table 4-12). Alternatively there may have been mistakes in the assembly of the 

original genome sequence and these changes are common to all TIGR4 strains. 

The final indel was located in an intergenic region located between SP_1045 and 

SP_1046, again the function of this change is not known. 

Gene Information Position 
TIGR4 

Variant  In Xen35? 

INT SP_1045-
1046 

 985056 Indel T  No 

INT SP_1199-
1200 

  Low 
coverage 

 Likely, Xen35 contains 
4 Indel/ SNPS in this 
region 

SP_2207 ComF 2127997 SNP G>T (no aa 
change) 

No 

Table 4-11: Preliminary whole genome sequence changes in T4NO1. 
 

4.8.2 T4JH 

Preliminary whole genome sequence changes of T4JH compared to the genome 

sequence data available at NCBI (NC_003028) can be seen in Table 4-12. A total 

of five indels and three SNPs were observed in this strain. Interestingly six of 

these changes are also observed in Xen35, which may indicate these are 
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mutational hotspots. The majority of these changes are found in intergenic 

regions however two are located in genes. This includes the indel in SP_0206, 

which results in removal of the stop codon, this is also seen in Xen35. This gene 

is a hypothetical protein and its function is currently unknown. There are no 

genome changes in any of the genes known to regulate the pilus islet, which may 

account for the differences in expression of the pilus at the population level in 

T4NO1 and T4JH. However there is a SNP in the pilus anchor protein (rrgC) which 

has been shown to be present at the base of the pilus (El Mortaji et al., 2012). 

Currently no structure is available for RrgC so if this amino acid change (His>Tyr) 

would alter its function is unknown. The change occurs at aa 20 and is present in 

the N-terminal of the protein so would not effect the cell wall sorting signal or 

the LPXTG variant (VPDTG) motif required for sortase recognition. This data may 

suggest that like RrgA, RrgC plays a role in modulating expression of the pilus 

islet. Perhaps through a protein- protein interaction with one of the other pilus 

proteins (Basset et al., 2011, Basset et al., 2012).  

Gene Information Position 
TIGR4 

Variant  Amino acid 
change 

In 
Xen35? 

SP_0206 Hypothetical 
protein 

192436 Indel C  Yes 

SP_0464 RrgC- pilus 
anchor protein 

443333 SNP C>T His>Tyr (aa 
20) 

No 

INT SP_0482-
0483 

 463630 SNP G>A  Yes 

INT SP_0496-
0497 

 476406 SNP G>T  Yes 

INT SP_1199-
1200 

 1132344 Indel G  Yes 

INT SP_1359-
1360 

 1282011 Indel G  No 

INT SP_1777-
1778 

 1696086 Indel C  Yes 

INT SP_2105-
2106 

 2016331 Indel G  Yes 

Table 4-12: Preliminary whole genome sequence changes in T4JH. 
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4.9 Discussion 

In this study the phenotype and genotype changes in the bioluminescent strain 

Xen35 used to study in vivo disease progression was assessed. This strain showed 

a decrease in virulence compared to T4NO1, with mice infected with Xen35 

showing an increased survival time to those infected with T4NO1. Corresponding 

to decreased counts in the nasal wash at 24 hours and survival time points and a 

slower disease progression indicated by a reduced percentage weight loss 

compared to mice infected with T4NO1. Contrary to this a trend towards an 

increase in Xen35 adherence capabilities to A549, D562 and HBMEC cells was 

observed, however this was not significant. This could indicate not an inability 

of Xen35 to adhere in vivo but a decreased ability to disseminate through the 

host.  

One of the key phenotype changes observed in Xen35 was the large decrease in 

the presence of the pneumococcal pilus on the cell surface. Recent findings have 

shown that the pneumococcal pilus expression is regulated at the single cell 

level with a number of cells within a growing population being negative for the 

pilus (Basset et al., 2011, De Angelis et al., 2011). Xen35 only contains 5.5% of 

cells in a growing population positive for the pilus on the cell surface compared 

to that of 30% in TIGR4 stated in the literature, and 20.5% in T4JH and 88% in 

T4NO1. In S.pyogenes the ability to modulate pili at the population level is 

linked to disease state (Nakata et al., 2009). The fact we see almost an inability 

for Xen35 to modulate the pilus at the population level may give an indication as 

to why the strain in less virulent than the wild type. The regulation of this 

phenomenon is tightly controlled with a number of TCS regulating it suggesting 

in the pneumococcus it is also an important regulatory mechanism for survival 

and virulence.  

To assess the contributions of any genome changes in Xen35 causing this 

decrease in virulence/ pilus expression genome sequencing was performed. 

Whole genome sequencing of Xen35 showed a large number of genome changes. 

Xen35 was constructed via transformation of Xen7 genomic DNA (bioluminescent 

version of D39, serotype 2) into TIGR4. In Xen35 along with the lux gene 

insertion (into SP_1914) a large region surrounding these genes in Xen7 was also 

recombined into TIGR4. This left these genes in Xen35 that of a D39 allele rather 
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than a TIGR4 allele. Although the majority of these changes were synonymous a 

number caused amino acid changes in the resulting protein, whether this would 

affect the functionality of the protein is unknown. Genes in different strains 

have been shown to act in a strain specific manner so this is definitely possible 

(Blue & Mitchell., 2003). Also due to this recombination event two genes 

(SP_1919/ SP_1920) are non-functional in Xen35 due to frameshifts present in 

the D39 alleles. These genes encode a component of an ABC transporter and 

transcriptional regulator respectively. Neither gene has been studied for their 

effect on virulence and therefore their role in Xen35 is unknown. Of the genes 

recombined in with the lux insertion some have been implicated to play a in role 

in virulence including SP_1909, SP_1913, SP_1923 and SP_1931. SP_1913 

although being up regulated in the blood of infected mice contains an authentic 

frameshift in TIGR4 and therefore is unlikely to play a role in virulence changes 

in Xen35 (Orihuela, et al., 2004). SP_1923 encodes the pneumococcal toxin 

pneumolysin (ply) which has been shown to be important for lung infection, ply 

contains 1 amino acid change in Xen35, however this change likely doesn’t alter 

ply function (Hava & Camilli, 2002). SP_1909 was shown to be up regulated in 

the CSF of infected rabbits and therefore may play a role in meningitis however 

this gene was not found to be important in replication during meningitis. This 

gene also contains only a single amino acid change and again is unlikely to cause 

the virulence differences in Xen35 (Orihuela et al., 2004, Molzen et al., 2011). 

SP_1931 has been shown to be important for bacterial replication during 

meningitis increasing in expression over time, three amino acid changes are 

observed in this gene and again seems unlikely to cause the huge changes in 

virulence seen in Xen35 (Molzen et al., 2011). 

Xen35 is widely used to assess the virulence of TIGR4 in vivo and assess genes in 

TIGR4 important to virulence (Orihuela et al., 2003, Orihuela et al., 2004). 

However due to genotype and phenotype changes this perhaps is not the best 

model. This also shows the importance of proper characterisation of strains 

genetically manipulated and importance of designing mutants ensuring 

recombination events only introduce the desired mutations. With the increasing 

accessibility of genome sequencing and genome sequence data it is becoming 

easier to assess whole genome changes in mutants and whether SNPs etc may be 
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introduced due to allele variations between strains, when producing identical 

mutations in different serotypes. 

A number of genome changes in Xen35 were also located outside of the 

recombination region, although fewer than that seen in this region. Some of 

these changes could also be mapped to that of what would be seen in D39, 

indicating perhaps multiple recombination events during a single transformation 

(Croucher et al., 2012). This could also indicate variation in the original TIGR4 

strain used to construct Xen35 (we do not have access to this strain for 

comparison) to that of the available TIGR4 genome sequence data (Tettelin et 

al., 2001). Some of these changes are located in genes important for virulence. 

This included an in frame deletion of the 3rd PASTA domain of the serine/ 

threonine protein kinase, which was not seen in Xen7 and therefore likely came 

from the TIGR4 parent of Xen35. There were also SNPs causing introduction of 

premature stop codons in SpxB and LctO. The spxB SNP was also not from Xen7 

shown by the fact Xen7 produces similar levels of hydrogen peroxide as T4JH, 

whereas Xen35 produces none. These findings would also indicate variation not 

only between different serotypes but that of the same strains. The Xen35 parent 

TIGR4 seems to contain changes not seen in the TIGR4 strain that was genome 

sequenced.  

This is also validated by some of our data concerning the surface expression of 

pili on two TIGR4 strains (T4JH and T4NO1). Both show in a growing population 

variations in the amount of cells positive for the pilus backbone protein on the 

cell surface. Although not confirmed this is likely due to a SNP present in rrgC in 

T4JH which is not seen in T4NO1. There are further genome changes observed in 

T4JH which are not present in T4NO1 which further validates the idea that the 

“same strain” can be genetically different. In this instance the changes lead to 

differentially regulation of a key virulence factors which may alter virulence. 

However in this study the virulence of T4JH and T4NO1 were not directly 

compared. 

Of the gene changes observed outwith the lux insertion region a number have 

been shown to play a role in virulence. The genes only containing amino acid 

changes include SP_0784, SP_0807, SP_0927, SP_1343 and SP_1891 will not be 

discussed further as their function is likely not perturbed (Hava & Camilli, 2002, 
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Molzen et al., 2011, Orihuela et al., 2004). A number of genes however do 

contain changes that make them non-functional and have shown a role in 

virulence, including SP_0200, SP_0201, SP_0206, SP_0730, SP_1715, SP_1732 and 

SP_2076. There is a deletion in SP_200/ SP_201 in Xen35, the same deletion lies 

in the region where both genes overlap causing removal of the stop codon in 

SP_0200 and introduction of a premature stop codon in SP_0201. This change is 

seen in the D39 genome sequence data however shows one larger gene 

encompassing SP_0200 and half of SP_0201 (SPD_0186). Both of these genes 

were down regulated in the CSF of infected rabbits in TIGR4, and SP_0200 was 

up regulated on contact to D562 cells suggesting a role of SP_0200 in adherence. 

SP_0206 contains an insertion in Xen35 causing a frameshift, again in D39 a gene 

is annotated encompassing SP_0206 and part of SP_0207 (SPD_0191). SP_0206 is 

up regulated in a mouse model of bacteraemia in TIGR4 so this deletion may 

contribute to an attenuation of Xen35 invasion into the blood. Although data was 

not shown, discussed was a statistical decrease in bacterial counts in the blood 

taken form the tail veins of mice infected with Xen35 24 hours post inoculation. 

SP_1715 a component of an ABC transporter contains an insertion creating a 

frameshift, this gene has been noted to play a role in lung infection and 

meningitis (Hava & Camilli, 2002, Molzen et al., 2011). SP_2076 contains an 

insertion, this gene is non-functional in TIGR4 however this insertion removes 

the authentic frameshift restoring its function in Xen35, this gene is important 

for lung infection in TIGR4 (Hava & Camilli, 2002). 

SP_1732 encoding StkP as stated earlier contains an in frame deletion of the 

third PASTA domain in the N-terminal of the protein. As the protein is still in 

frame we cannot assess the impact in Xen35 or this change. StkP has been shown 

to be important for virulence in a bacteraemia and pneumonia models of 

infection. However Xen35 does not seem attenuated during lung infection and 

therefore perhaps the deletion in StkP does not perturb its function (Echenique 

et al. 2004, Hava & Camilli, 2002, Saskova et al. 2007). The role of the deletion 

in StkP is discussed further in chapter 5 and therefore will not be covered here. 

The SNP causing the introduction of a premature stop codon in SpxB may also 

affect virulence of Xen35. SpxB has been widely studies showing a role in phase 

variation with cells non-functional in SpxB showing only opaque colonies, a trait 

seen with Xen35 (data not shown). This gene has been shown to play a role in 
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colonisation and to a lesser extent a role in replication in the lungs and 

translocation to the bloodstream (Orihuela et al, 2004, LeMessurier et al, 2006). 

This gene is also important for competing in the nasopharynx with other 

coloniser and does this through production of hydrogen peroxide as a by-product 

of its enzymatic reaction (Pericone et al., 2000). The role of SpxB in Xen35 will 

be discussed later in this study in chapter 6 and so will not be covered further 

here. 

Microarray analysis was performed on Xen35 comparing it to TIGR4 to assess the 

expression changes in this strain. A number of the genes shown to be 

differentially regulated have been shown to play a role in virulence and 

therefore may contribute to the decrease in virulence of Xen35 in vivo. Of these 

genes SP_0095, SP_0726, SP_0663, SP_1861 and SP_1898 have been shown to be 

important during lung infection (Hava & Camilli, 2002). SP_0107, SP_0202 and 

SP_1587 show increased expression in the blood of infected mice and SP_1572 

decreased expression. SP_1468 and SP_1587 show increased expression in the 

CSF of infected rabbits and SP_1572 and SP_1863 showed a decreased expression 

(Orihuela, et al., 2004). The two genes surrounding the lux insertion SP_1914 

and SP_1915 were not shown to be important for virulence from the large scale 

virulence screens or in vivo expression experiments. These genes have however 

been shown to be variable between strains not being present in some, this may 

indicate a non vital role of these genes in the pneumococcus, and we assume 

from this are not causing the decrease in virulence in vivo of Xen35 (Silva et al., 

2006). Interestingly two important virulence factors in the pneumococcus were 

differentially regulated in Xen35. Up regulation of psrP (pneumococcal serine 

rich repeat protein) and down regulation of the pneumococcal pilus was 

observed in Xen35. 

psrP although only present in roughly 50% of clinical isolates is an important 

virulence factor in the pneumococcus (Mun et al., 2010). This gene is up 

regulated 4-6 fold in Xen35 along with its surrounding glycosyltransferases. 

These genes are found on a large 37kb islet whose presence has been associated 

with pneumonia causing clinical isolates (Sanchez et al., 2011, Obert et al., 

2006) . PsrP has been shown to be important for biofilm formation with biofilms 

showing a hyper adhesive phenotype to A549 and D562 cell lines (Sanchez et al., 

2011). With PsrP able to bind directly to keratin 10 on lung epithelia cells (Rose 
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et al., 2008, Shivshankar et al., 2009). Although only confirmed at the 

expression level we assume this increase in expression of psrP in Xen35 

correlates with that of surface expressed protein, as Xen35 shows an increased 

biofilm formation (data not shown) and shows a trend towards an increased 

adherence to A549 cells. A psrP homologue in Group B streptococci has been 

shown to adhere to and aid penetration of the blood brain barrier (Barrier et al., 

2009). Although no current data shows association of psrP with meningitis in the 

pneumococcus this could be why a trend towards an increased adherence to 

HBMEC cells is observed in Xen35. 

The pneumococcal pilus another major virulence factor is down regulated 15-25 

fold in Xen35. The pneumococcal pilus is encoded on a 14kb islet containing 7 

genes, a positive regulator of the operon (rlrA), three pilins rrgA, rrgB and rrgC 

and three sortases srtB, srtC and srtD (Hava & Camilli, 2002). The Hava & 

Camilli study showed rlrA and srtD were important during lung infection. Later 

studies also implicated the pilus in playing a role in colonisation and 

bacteraemia, as a non piliated TIGR4 strain was out competed in a pneumonia, 

colonisation and bacteraemia model of infection (Barocchi et al., 2006). The 

pilus knockout strain also showed an increased survival time compared to its 

parent (Barocchi et al., 2006). The pilus has also been shown to aid in adherence 

to A549 cells. In Xen35 a trend towards an increased adherence to all cell lines is 

observed, which would not be expected due to the decrease in pilus expression, 

however this is likely the cause of psrP which may be able to compensate for the 

decrease in pilus. In vivo analysis did however show a statistical decrease in 

nasal wash counts of Xen35 infected mice compared to T4NO1 at 24 hours and 

survival time points and may be due to this decrease in pilus. The decrease in 

pilus was confirmed as a decrease in the number of cells expressing the pilus on 

the cell surface and therefore in vivo you could envisage fewer Xen35 bacterial 

cells being able to adhere in the nasopharynx upon inoculation, which causes a 

lag in disease progression. Xen35 infected mice showed an increased survival 

time to that of T4NO1 infected mice mimicking the increased survival data of 

the non piliated TIGR4 strain published.  

Due to the large number of genome and expression level changes in Xen35 it is 

hard to pinpoint the exact culprit of this decreased virulence or if this is 

multifaceted. To start to narrow down on the factors contributing to the altered 
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phenotype of Xen35 we further studied the single contribution of a number of 

genes to the most prominent phenotypic change in Xen35 (the decrease in pilus 

expression). This includes evaluating the role of StkP, SpxB and LctO in pilus 

regulation, which are discussed in later chapters. Another potential contributor 

to this altered pilus expression is the high expression of the lux genes and the 

potential metabolic burden this places on the bacterial cell. The effect this has 

on pilus expression is also evaluated in chapter 7. 



 

 

 

 

 

 

 

 

 

 

5 Studying the role of StkP in virulence gene 
regulation. 
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Aim of this chapter 

Eukaryotic like serine/threonine protein kinases have been discovered in a 

number of bacteria, which function as an alternative signalling system than the 

highly abundant TCS, described in chapter 1.7.2. The aim of the work described 

in this chapter was to examine the potential role of the pneumococcal serine/ 

threonine protein kinase (StkP) in virulence gene regulation, specifically focusing 

on regulation of the pneumococcal pilus. Serine/threonine protein kinases are 

known to regulate pili in other species (Panichkin et al. 2006). The genome 

sequence data of strain Xen35 showed an in frame deletion within the stkP gene. 

Further Xen35 has been shown to have a decrease in pilus expression at the 

transcript and protein level. In this chapter the potential contribution of the 

deletion in StkP to the decrease in pilus expression seen in Xen35 is evaluated.  

Initial experiments performed were on a knockout of stkP constructed in T4NO1. 

To look at genome wide changes in gene expression microarray analysis was 

performed followed by RT-PCR to confirm microarray findings on a number of 

genes of interest. Specifically looking for changes in pilus expression, western 

blots were performed on T4!stkP to assess any changes in RrgB levels, followed 

by FACS analysis to assess the expression of the pilus in the population as a 

whole. 

As the deletion in stkP in Xen35 is an in frame deletion the stkP knockout is not 

necessarily representative of this change in Xen35. To elucidate the 

functionality of the in frame deletion in Xen35 stkP, both alleles from Xen35 and 

T4NO1 were cloned into T4!stkP at an alternative region in the genome under 

the control of a strong promoter (P2). Western blotting and FACS was then 

performed on these strains (T4!stkP"ST/ T4!stkP"XST) investigating pilus 

expression, to see how the different alleles are able to complement T4!stkP. 

The role of StkP in adherence in T4NO1 was also assessed and the contribution of 

the pneumococcal pilus to this validated. Potential variation in adherence to 

different cell lines was also assessed (HBMEC/ A549/ D562). 
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5.1 Background 

In the pneumococcus there is a single serine/threonine protein kinase (StkP) 

making it an easy model to study their function (Yeats et al. 2002, Echenique et 

al. 2004). StkP is highly conserved between pneumococcal strains and although 

not indispensible clearly plays an important role in survival and virulence 

(Giefing et al. 2008). The pneumococcal StkP is a global regulator of gene 

expression (Saskova et al. 2007). Null mutants show a decreased ability to 

survive under stressful conditions (heat/ osmotic/ oxidative and acid stress) 

(strain dependant)(Saskova et al. 2007), a reduced transformation efficiency and 

a decrease in virulence in vivo in a bacteraemia and pneumonia model of 

infection (Echenique et al. 2004, Saskova et al. 2007).  

StkP directly regulates genes via phosphorylation of target proteins on a serine 

or threonine residue (Novakova et al. 2005). StkP is known to phosphorylate a 

number of pneumococcal protein including two pneumococcal response 

regulators (RR06, RitR) (Novakova et al. 2010, Novakova et al. 2005, Agarwal et 

al. 2012, Ulijasz et al. 2009).  

Structurally StkP contains a N-terminal kinase domain joined by a hydrophobic 

linker to a C-terminal extracellular domain (Yeats et al. 2002, Pallova et al. 

2007). The extracellular domain consists of four PASTA domains (penicillin 

binding protein and serine threonine kinase associated domain), which function 

as a extracellular sensor domain (Maestro et al. 2010). PASTA domains in PBPs 

function to recognise the amount of unlinked peptidoglycan and regulate via 

their transpeptidase domain the amount of cross linking (Gordon et al. 2000, 

Maurer et al. 2012). This is also thought to be the case in StkP with the PASTA 

domains shown to be able to bind to synthetic peptidoglycan and #-lactam 

antibiotics (Maestro et al. 2010, Beilharz et al. 2012). The PASTA domains have 

also been shown to be important for localisation of StkP to the cell septum 

(Beilharz et al. 2012, Giefing et al. 2010).  

StkP functions as a dimer in vivo and is found in the genome adjacent to its 

cognate protein phosphatase which dephosphorylates proteins phosphorylated by 

the kinase, forming a signalling couple (Pallova et al. 2007, Ulijasz et al. 2009). 

In the pneumococcus PhpP also affects gene regulation indirectly through 
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altering the phosphorylation state of key regulatory proteins, which has been 

shown for RR06 and RitR (Agarwal et al. 2012, Ulijasz et al. 2009). PhpP also 

regulates a number of important pneumococcal surface proteins and genes 

involved in cell wall biosynthesis (cbpA, pspA, lytA, ftsZ, enolase etc) (Agarwal 

et al. 2012).  
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5.2 Gene expression changes seen in T4!stkP 

5.2.1 Microarray analysis of T4!stkP 

Microarray analysis was performed comparing expression changes in T4!stkP to 

its parent strain (T4NO1). StkP is already known to be a global regulator of gene 

expression as a StkP knockout made in strain CP1015 showed a large number of 

genes to be differentially regulated (Saskova et al. 2007). However other global 

gene regulators (TCS) are known to function in a strain specific manner 

(Hendriksen et al. 2007). Therefore we thought it important to perform 

microarray analysis on a stkP knockout in TIGR4, as this is the background strain 

of Xen35. This will also give an indication if StkPs regulation is strain specific 

like PhpPs. 

When performing microarray analysis on T4!stkP a total of 32 genes were 

differentially regulated, shown in Table 3-2. Microarray analysis indicates StkP 

likely regulates the biosynthesis of certain cells wall components in TIGR4. In 

T4!stkP genes involved in lipoteichoic acid biosynthesis and incorporation of 

choline into the cell wall components were up regulated. Further SecY the major 

component of the SecYEG translocase was down regulated in T4!stkP, implying a 

role of StkP in regulation of protein translocation onto the cell surface. This 

translocase is required for transport of the pilins to the cells surface therefore 

StkP may modulate cell surface pili levels through modulating protein 

translocation. The serine protease htrA was also up regulated in T4!stkP 

functioning to maintain protein quality under conditions of cellular stress and is 

known to play a role in virulence. A number of sugar transporters were also 

differentially regulated and a number of ribosomal proteins were down 

regulated. Although a smaller number of genes were statistically differentially 

regulated than in CP1015 when increasing the P value cut off to 0.1 (10% genes 

false positive) a total of 188 genes were differentially regulated. Some of these 

genes are likely true differences. Included in this list was some of the genes that 

encode the pneumococcal pilus (data not show).
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Gene Description Abbrev 
Fold 
change 

SP_0209  
50S ribosomal protein L3. Binds 3’ end 23S rRNA, nucleates 
assembly of 50S subunit. rplC 1.5 

SP_0213  
30S ribosomal protein S19. complexes with S13 that binds 
strongly to 16S rRNA. rpsS 1.6 

SP_0218  30S ribosomal protein S17, involved in translation fidelity.  rpsQ 1.4 
SP_0230  Forms heterotrimeric complex in the membrane. secY 1.5 
SP_0282  PTS system mannose specific, IID component. manN 1.5 
SP_0283  PTS system mannose specific, IIC component. manM 1.5 
SP_0284  PTS system mannose specific, IIAB component. manL 1.6 
SP_0645  PTS system IIA component, putative.  1.8 
SP_0742  Hypothetical protein.  1.3 
SP_0801  Hypothetical protein.  1.3 
SP_1000  Thioredoxin family protein  1.2 

SP_1164  
Acetoin dehydrogenase E1 component, alpha subunit, 
putative. acoA 1.3 

SP_1260  Copper homeostasis protein cutC 1.4 
SP_1274  Phosphorylcholine metabolism. licD2 1.5 
SP_1356  Chlorohydrolase trzA 1.8 
SP_1462  Hypothetical protein.  1.9 
SP_1599  Mediates pseudouridylation at the tRNA anticodon region. truA 1.6 
SP_1646  Metallo-beta-lactamase superfamily protein.  1.31 
SP_1734  rRNA methyltransferase. rsmB 6.2 

SP_1735  
Modifies the free amino group of the aminoacyl moiety of 
methionyl-tRNA. fmt 4.9 

SP_1736  Primosome assembly protein. priA 3.9 
SP_1803  Hypothetical protein.  1.5 
SP_1884  Trehalose PTS system, IIABC component.  5.2 
SP_1972 Hypothetical protein.  1.4 
SP_1994 Aminotransferase. alaT 1.4 
SP_2086 Phosphate ABC transporter, permease protein. pstA 1.4 
SP_2096 M20/ M25/ M40 family peptidase. hipO 1.3 
SP_2106 Glycogen phosphorylase family protein. malP 1.6 
SP_2107  4-alpha-glucanotransferase. malM 1.6 
SP_2175  Incorporate D-alanine into Lipoteichoic acid. dltB 1.2 
SP_2239  Serine protease. htrA 2.2 

 Table 5-1 : Table of genes differentially regulated in T4!stkP 

Table shows genes differentially regulated in T4!stkP compared to its parent T4NO1 
(P<0.05). Fold change represents that seen in T4!stkP compared to T4NO1, red showing 
genes up regulated in T4!stkP and blue are those that are down regulated. 
 

When comparing the T4!stkP gene expression changes to that of Xen35, only 1 

gene was found to be common to both (SP_2106) (Figure 5-1), However this gene 

was up regulated in !stkP (+1.6) and down regulated in Xen35 (-1.7). This means 

that the gene expression changes seen in Xen35 are likely not due to inactivation 

of StkP.  
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Figure 5-1: Venn diagram of gene expression changes in T4!stkP and Xen35. 

Venn diagram showing genes commonly regulated in T4!stkP compared to Xen35. Diagram 
shows only 1 gene common to both evaluated from strains individual gene expression 
changes compared to their parent strains. 
 

5.2.2 StkP regulates genes in a strain specific manner 

Microarray analysis was performed in strain CP1015!stkP (Saskova et al. 2007). 

StkPs cognate phosphatase has been shown to regulate genes in a strain specific 

manner. Therefore this may also be the case for StkP. Using already published 

data we compared our microarray data to that of the published data using a 

venn diagram (Figure 5-2) to see if many genes were commonly differentially 

regulated between the two strains. Although different methodologies were used 

between the two studies it could give an indication if genes regulated were 

similar. When comparing the data sets only 3 genes were common between the 

two strains (SP_0742/ SP_1462/ SP_1803). To ensure there were not a large 

number of genes similar that just missed our statistical test we increased the P 

value cut off to 0.1 and compared this data set to that of CP1015!stkP (Saskova 

et al. 2007). 188 genes came out in our P<0.1 list (data not shown) (10% are 

potential false positives). When comparing this gene list to that of the published 

data only 11 genes were found to be common between the two (appendix VI). 

Although a number of genes were commonly regulated between the two strains, 

comparatively to the total number of genes differentially regulated the number 

is small. This gives a good indication that StkPs regulation is also strain specific. 
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Figure 5-2: Venn diagram of gene commonly regulated by StkP in T4NO1 and CP1015. 

Venn diagrams were compiled from our gene expression data in T4!stkP and that of already 
published data in CP1015. (A) Compares the gene list In Table 3-2 (P<0.05) to that of 
published CP1015 gene lists, showing only 3 genes commonly regulated by StkP.  
 

5.2.3 Real-time PCR validation of microarray analysis 

RT-PCR (Real-time PCR) was performed on a number of genes to confirm findings 

from the microarray. Although not in the list above a number of the genes 

encoding the pneumococcal pilus (SP_0461-63/ SP_0466) came out in the gene 

list with an increased P value (P<0.1). We therefore decided to perform RT-PCR 

on the whole pilus islet to see if this was a true difference.  
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Figure 5-3: RT-PCR graph of pilus expression in T4!stkP 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4!stkP. Fold 
change represents that of T4!stkP compared to T4NO1. Each bar represents the average of 
three replicas (three biological replicas) and errors bars the standard deviation. Statistical 
analysis was performed by a 1-way ANOVA with a Tukeys testing correction comparing the 
dCt values of the control strain (TIGR4) to the test strain (T4!stkP), * P<0.01. 
 

Gene Microarray RT-PCR 

SP_0461 (rlrA) 2.0 1.8 
SP_0462 (rrgA) 1.7 2.7 
SP_0463 (rrgB) 1.4 1.2 
SP_0464 (rrgC) 1.4 1.2 
SP_0466 (srtB) 1.7 1.8 
SP_0467 (srtC) 1.3 1.8 
SP_0468 (srtD) 1.2 1.3 

Table 5-2: Comparison of expression changes of the pilus islet in T4!stkP from microarray 
and RT-PCR. 

Table shows fold changes in gene expression of the whole pilus islet in T4!stkP compared 
to T4NO1. Fold changes show that from microarray data and those from RT-PCR. 
 

The RT-PCR of the pilus islet genes in T4!stkP is shown in Figure 5-3. rrgA 

expression in T4!stkP was the only gene showing a statistically significant 

increased expression. rlrA, srtB and srtC showed a trend towards an increase in 

expression in the StkP deletion mutant, however this was not significant. rrgB, 
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rrgC and srtD although potentially showing a very small increase in expression, 

this again was not significant. Expression values from microarray analysis and 

RT-PCR were compared in Table 5-2, showing good correlation between both 

techniques. 

StkP has been shown to directly interact with a number of TCS altering their 

phosphorylation states and therefore their conformation and ability to bind to 

target genes. Again although not in the list above some of the TCS were shown 

to be differentially regulated in the P<0.1 gene list (rr05, rr06, rr10, rr13). RT-

PCR analysis was performed on all the response regulator of the TCS to see if 

deleting StkP affected their expression.  

 

Figure 5-4: RT-PCR graph of TCS expression in T4!stkP 

Graph shows RT-PCR of all the known TCS in S.pneumoniae in T4!stkP. Fold change 
represents that of T4!stkP compared to T4NO1. Each bar represents the average of three 
replicas (three biological replicas) and errors bars the standard deviation. No statistical 
difference was observed. 
 

Gene Microarray RT-PCR 
SP_1633 (rr01) 1.2 1.2 
SP_1227 (rr02) 1.2 1.3 
SP_0387 (rr03) 1.0 1.4 
SP_2082 (rr04) 1.0 1.0 
SP_0798 (rr05) 1.6 1.2 
SP_2193 (rr06) 1.3 1.3 
SP_0156 (rr07) 1.4 1.0 
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SP_0083 (rr08) 1.0 1.1 
SP_0661 (rr09) 1.4 1.2 
SP_0603 (rr10) 1.2 1.4 
SP_2000 (rr11) 1.2 1.5 
SP_2235 (rr12) 1.0 1.8 
SP_0526 (rr13) 1.2 1.2 
SP_0376 (orr) 1.1 1.2 

Table 5-3: Comparison of expression changes of TCS in T4!stkP from microarray and RT-
PCR. 

Table shows fold changes in gene expression of all the TCS in T4!stkP compared to T4NO1. 
Fold changes show that from microarray data and those from RT-PCR. Genes highlighted in 
red are up regulated in T4!stkP and those in blue down regulated. 
 

The changes in the expression of the TCS are very subtle with no fold change 

over 2 (Figure 5-4). Of the four TCS that were shown to be differentially 

expressed by microarray analysis, three showed similar expression levels by RT-

PCR (rr06, rr10, rr13) (Table 5-3), although none of the changes were 

significant. rr05 when performing RT-PCR showed a change in the opposite 

direction to that seen in the RT-PCR and therefore is not a true change. 

Interestingly rr12 upon RT-PCR seemed to show a trend towards a decreased 

expression although again this was not significant, and was not seen as 

significantly differentially regulated in either P<0.05/ P<0.1 lists during 

microarray analysis.  

5.3 Changes in pilus expression in T4!stkP 

To try and confirm any changes in pilus expression in the T4!stkP strain western 

blotting was performed using an antibody against the pilus backbone protein 

(RrgB) to see if there was a noticeable change at the protein level. FACS was 

also performed to deduce changes in the population of pilus expression. And 

finally electron microscopy performed to note any obvious changes in the 

structure or localisation of the pilus in T4!stkP. 
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5.3.1 Western blot analysis of T4!stkP 

 

Figure 5-5: Western blot of T4!stkP RrgB expression compared to T4NO1. 

Western blotting analysis was performed on T4NO1, T4!stkP and T4!rrgB looking for 
expression of RrgB in all strains ($-RrgB antibody). Equal protein loading was confirmed by 
equal expression of GroeL ($-GroeL antibody), normalise against in analysis. Western 
blotting quantification was performed using ImageJ with fold changes in RrgB expression 
compared to T4NO1 boxed below the strain. 
 

Western blotting analysis showed no difference between T4NO1 and T4!stkP in 

RrgB expression. The high molecular weight ladder of the pilus visually looks 

more abundant in T4!stkP compared to T4NO1, however on analysis taking into 

account the loading control GroeL a slight decrease in RrgB in T4!stkP was 

noted.  

5.3.2 FACS and fluorescence microscopy analysis of T4!stkP 

FACS (fluorescence activated cell sorting) was performed to further validate 

changes seen by western blotting. As well as looking at RrgB abundance it will 

show the number of cells in the population that are RrgB positive. Cells were 

initially stained using an antibody against the capsule (APC), this population was 

gated on and from this cells positive for the pilus gated on (FITC). Confirmation 

of the data seen by FACS analysis was performed via studying the same sample 

using fluorescence microscopy, visually confirming the FACS findings. 
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Figure 5-6: FACS analysis of RrgB surface expression in T4!stkP 

FACS was performed on T4!stkP, T4NO1, T4!stkP!rrgB and T4!rrgB. (A) Shows 
histograms of the capsule positive populations selected for from samples stained with a 
capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic plot show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4!stkP 0.628 99.4 
T4!stkP!rrgB 98.3 1.66 
T4!rrgB 98.4 1.6 

Table 5-4: Percentage RrgB positive cells in a T4!stkP population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 5-7: Fluorescence microscopy of T4!stkP. 

One representative image of fluorescently labelled T4NO1, T4!rrgB and T4!stkP used for 
FACS analysis. Cells were stained for the presence of RrgB (FITC) and the capsule (APC). 
Scale bars above represent, T4NO1- 9µm, T4!rrgB - 140µm, T4!stkP - 210µm and 
T4!stkP!rrgB - 140µm. The same representative image will be used throughout this study 
for each strain, more images can be seen in appendix I. 
 

FACS clearly showed a difference in RrgB at the population level in T4!stkP 

compared to T4NO1. As already seen in a T4NO1 population when grown in BHI 

88% of the cells are positive for the pneumococcal pilus. When removing StkP 

there is an increase of roughly 10% of cells containing the pilus on the cell 

surface (Figure 5-6). In StkP 99.4% of a growing population contain the 

pneumococcal pilus on the cell surface, suggesting a total loss of ability to 

regulate the amount of the pilus being placed onto the cell surface (Figure 5-6). 

Visually from the FACS histograms there is a total loss in T4!stkP of the 
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population seen on the left hand side representing the pilus negative cells (RrgB 

negative), which can be seen in T4NO1. 

Confirmation of RrgB positive cells is performed via fluorescence microscopy on 

the same samples used during FACS analysis. The intensity of the RrgB positive 

population in T4!stkP and T4NO1 were similar and therefore the amount of pili 

on a single cell in T4!stkP is similar to that of T4NO1 (Figure 5-7). Fluorescence 

microscopy of T4!stkP showed no cells were pili negative (FITC-) and therefore 

we assume 100% of T4!stkP cells contain pili on the cell surface. Both the RrgB 

knockouts show roughly a 1.6% positive RrgB population however this was not 

confirmed via fluorescence microscopy (Figure 5-7) and Is likely an artefact of a 

small amount of non specific binding of the "-RrgB or "- Mouse FITC antibody.  

5.3.3 Electron microscopy analysis of T4!stkP 

Electron microscopy was performed on T4!stkP to evaluate mainly any potential 

structural changes in the pilus but also any changes in cell morphology already 

observed in strains when deleting StkP. Microscopy was performed using a "-

RrgB primary antibody with a 10nm gold particle conjugate secondary antibody, 

with pili shown by gold particles labelled along the length of the shaft. 

Microscopy was also performed on T4!stkP!rrgB to further confirm absence of 

the pilus and no cross reactivity to any other surface proteins. Images were 

taken between 4000x and 10000x magnification (Figure 5-8). 
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Figure 5-8: Electron microscopy of T4!stkP and T4!stkP!rrgB. 

Electron microscopy images of T4!stkP (A) and T4!stkP!rrgB (B). Cells were stained using 
a "-RrgB antibody and a secondary 10nm gold conjugate antibody. Cells were visualised at 
4000-10000x magnifications. 
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With regards to pili on T4!stkP cell surface the images clearly show pili on all 

cells. The number varies from cell to cell with some containing one and others 

numerous. The projections coming from the cells are not all labelled along the 

whole pilus shaft compared to T4NO1, which could indicate a change in 

structure at these regions, which hinders the binding of the RrgB antibody. This 

could occur through increased RrgA pilin numbers along the RrgB shaft however 

this has not been validated. These projections are confirmed to be pili as 

microscopy of T4!stkP!rrgB do not show any of these structures (Figure 5-8). 

There is no discernable difference in the localisation of the pili between the WT 

train and T4!stkP. 

T4!stkP was visualised via EM in large clumps (Figure 5-8), which was noticeably 

different to T4NO1 and T4!stkP!rrgB, which formed small clumps/ chains or no 

clumps respectively. This implicates a role for the pilus in the clumping of 

T4!stkP. The inability of T4!stkP to divide properly probably also plays a role in 

clumping. Elongated cells with numerous septa and cells with a bulging 

appearance can be seen in T4!stkP due to the cells inability to divide properly, 

a phenotype already noted in the literature. However this phenotype varies with 

some cells appearing to divide normally and show a regular shape like T4NO1.  

5.4 Role of StkP in adherence 

Adherence assays were performed to study the role of StkP in adherence. PhpP 

has already been shown to play a strain specific role in adherence and therefore 

as its function is coupled to that of StkP it would be expected that StkP will also 

alter adherence. Adherence assays were performed on three cell lines to assess 

if genes regulated by StkP are important at a specific niche. As FACS has 

indicated an increase in the pilus in T4!stkP at the population level, the role of 

pilus in adherence of T4!stkP was also elucidated. For this adherence assays 

were also performed on strain T4!stkP!rrgB and T4!rrgB. 

5.4.1 Adherence assay analysis of T4!stkP 

Adherence assays showed StkP affects adherence, with a statistical increase 

seen to all cell lines in T4!stkP (Figure 5-9). However deletion of the pilus (RrgB) 

in T4!stkP causes the increase in adherence to be lost, dropping the adherence 
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capabilities to that similar to T4!rrgB and T4NO1. The biggest increase in 

adherence of T4!stkP is observed to A549 cells (1500%). Upon deletion of the 

pilus (RrgB) there is a large drop in adherence to levels similar to the WT strain. 
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Figure 5-9: Adherence assay of T4!stkP to different cell lines. 

Adherence of strains T4NO1, T4!stkP, T4!stkP!rrgB and T4!rrgB was assessed to HBMEC 
(A), A549 (B) Detroit 562 (C) cell lines. Data is represented as percentage adherence relative 
to that of T4NO1 (100%, dashed line), each bar is an average of three replicas and the error 
bars represent the standard error of the mean. Statistical analysis was performed using a 1-
way ANOVA with a Tukeys testing correction, * P<0.05/ ** P<0.001/ *** P<0.0001. * above the 
bar represent statistical significance compared to T4NO1 (not represented as a bar on the 
graphs). 
 

!"
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5.5 Studying the functionality of PASTA domains in pilus 
regulation.  

As described previously the C-terminal sensor domain of StkP consists of four 

PASTA domains. In Xen35 the third PASTA domain has been deleted. This still 

leaves StkP in frame but the functionality of the resulting StkP protein is not 

known. To study the functionality of Xen35 StkP this stkP allele and T4NO1 stkP 

allele were cloned into plasmid pC2LSD P2, placing stkP under the control of the 

strong P2 promoter (pCP2 ST/ pCP2 XST). Once transformed into T4!stkP this 

left the stkP alleles in the genome between genes SP_1885/ SP_1887 along with 

the P2 promoter (T4!stkP#ST/ T4!stkP#XST). Both strains were tested for their 

ability to complement T4!stkP in regards to its altered pilus expression. For this 

western blotting for RrgB was performed as well as FACS to see if there were 

changes in the population as a whole expressing the pilus. Adherence assays 

were also performed to see if complementation of T4!stkP alters the strains 

ability to adhere to HBMEC and A549 cells. 

5.5.1 Western blot analysis of T4!stkP complements 

Western blotting again showed no difference between T4NO1 and T4!stkP likely 

due to detection limits of western blotting. However differences in RrgB 

expression could clearly be seen in T4!stkP#ST and analysis showed a 2 fold 

decrease in RrgB expression compared to T4NO1 (Figure 5-10). T4!stkP#XST also 

showed a decrease in RrgB expression of 1.2 fold compared to T4NO1 (Figure 

5-10). This gives an indication that StkP from T4NO1 has increased activity than 

StkP from Xen35, and therefore the third PASTA domain is important in StkP 

signalling. 
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Figure 5-10: Western blot of T4!stkP complements RrgB expression compared to T4!stkP 
and T4NO1. 

Western blotting analysis was performed on T4NO1, T4!stkP, T4!stkP#ST, T4!stkP#XST 
and T4!rrgB analysing expression of RrgB in all strains ("-RrgB antibody). Equal protein 
loading was confirmed by equal expression of GroeL ("-GroeL antibody), normalise against 
in analysis. Western blotting quantification was performed using ImageJ with fold changes 
in RrgB expression compared to T4NO1 boxed below the strain. 
 

5.5.2 FACS and fluorescence microscopy analysis of T4!stkP 
complements. 

FACS analysis was also performed on the complement strains to see how pili 

were distributed throughout the population. FACS analysis clearly showed a large 

reduction in pilus expressing cells in T4!stkP#ST with only 26% of cells 

remaining pilus positive compared to 100% of T4!stkP and 88% of T4NO1 cells 

(Figure 5-11/ Table 5-5). The majority of T4!stkP#ST RrgB positive cells also 

seem to show a large reduction in the amount on a single cells, with just small 

single pilus positive regions visualised in most cases (Figure 5-12). The exact 

locality is hard to assess and would require a more sensitive technique. This 

however may indicate StkP is regulating the positioning of the pilus on the cell 

surface. However there is not shift to the left of the pilus positive population in 
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T4!stkP#ST observed via FAC, which would indicate that the pili positive cells 

have a lower fluorescent intensity (less pili) than the other strains tested. 

In T4!stkP#XST there was also a decrease in the population of pilus expressing 

cells with only 51% of cells being pilus positive. Indicating Xen35 StkP has 

roughly half the functionality of T4NO1 StkP containing all four PASTA domains. 

These cells similarly compared to T4NO1 and T4!stkP show in the majority of 

cases pili spread all over the cell surface (Figure 5-12) 
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Figure 5-11: FACS analysis of RrgB surface expression in T4!stkP complements. 

FACS was performed on T4!stkP, T4NO1, T4!stkP#ST, T4!stkP#XST, T4!rrgB. (A) Shows 
histogram of the capsule positive populations selected for from samples stained with a 
capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4!stkP 0.628 99.4 
T4!stkP#ST 74 26 
T4!stkP#XST 48.7 51.3 
T4!rrgB 98.4 1.6 

Table 5-5: Percentage RrgB positive cells in a T4!stkP population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 5-12: Fluorescence microscopy of T4!stkP#ST and T4!stkP#XST. 

One representative image of fluorescently labelled T4NO1, T4!rrgB, T4!stkP, T4!stkP!rrgB, 
T4!stkP#ST and T4!stkP#XST used for FACS analysis. Cells were stained for the presence 
of RrgB (FITC) and the capsule (APC). Scale bars above represent, T4NO1- 9µm, T4!rrgB - 
140µm, T4!stkP - 210µm, T4!stkP#XST - 9µm and T4!stkP#XST - 9µm. The same 
representative image will be used throughout this study for each strain, more images can be 
seen in appendix I. 
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5.5.3 Adherence assay analysis of T4!stkP complements 

Due to the clear differences seen in pilus expression in T4!stkP#ST and 

T4!stkP#XST adherence assays were performed on these strains to HBMEC and 

A549 cells (Figure 5-13).  

Adherence assay data clearly showed a reduced adherence to both cells lines of 

both strains with complemented StkP. T4!stkP#ST showed the biggest statistical 

decrease in adherence with adherence to both cell lines dropping to nearly that 

of T4NO1. T4!stkP#XST showed a trend towards a drop in adherence compared 

to T4!stkP, although this was not statistically significant. This data further 

validates StkPs role in regulation of the pneumococcal pilus and its importance 

in adherence to different cell lines. With the pneumococcal pilus in this strain 

being a large contributing factor to adherence to different cell types.  

This data also confirms the importance of the four PASTA domains in StkP as 

complementation of T4!stkP with StkP with only three PASTA domains was 

unable to complement the mutant to the same level as the full length StkP. Why 

this may be the case is discussed further in section 5.6. 

 

!"
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Figure 5-13: Adherence assay of T4!stkP complements to different cell lines. 

Adherence of strains T4NO1, T4!stkP, T4!stkP!rrgB, T4!stkP#ST, T4!stkP#XST and 
T4!rrgB was assessed to HBMEC (A), A549 (B) cell lines. Data is represented as percentage 
adherence relative to that of T4NO1 (100%, dashed line), each bar is an average of three 
replicas and the error bars represent the standard error of the mean. Statistical analysis was 
performed using a 1-way ANOVA with a Tukeys testing correction, * P<0.05. * above the bar 
represent statistical significance compared to T4NO1 (not represented as a bar on the 
graphs). 
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5.6 Discussion 

StkP has already been shown to be a global regulator of gene expression 

(Saskova et al. 2007), our data also indicates that this is the case with 32 genes 

differentially regulated in a stkP deletion mutant constructed in T4NO1 (P< 

0.05). When decreasing the stringency of analysis a total of 188 genes were 

differentially regulated (P<0.1). Comparison of these gene lists with genes 

known to be regulated by StkP in CP1015 showed very few were commonly 

regulated between the two strains, indicating a strain specific role in regulation 

of StkP (Saskova et al. 2007). This phenomenon has been shown for alternative 

signalling systems (TCS) and has recently been shown for StkPs cognate 

phosphates (PhpP) (Blue et al. 2003, Hendriksen et al. 2007, Agarwal et al. 

2012). 

Some of the genes shown to be differentially regulated in T4!stkP were those of 

genes involved in choline metabolism. Phosphorlycholine is an essential part of 

the two teichoic acids (TA (Lipoteichoic acid, teichoic acid)) present in the cell 

wall of the pneumococcus (Tomasz 1967b, Brundish & Baddiley 1968). Removal 

of choline in growth media results in the hindrance of pneumococcal growth 

showing altered chain formation, loss of transformability and no autolysis 

(Tomasz 1967a). Choline metabolism is controlled by two main operons lic1 and 

lic2. lic1 operon consists of 5 genes licABC involved in choline uptake and tarI/J 

involved in ribitol formation. lic1 was not shown to be differentially regulated in 

T4!stkP (Kharat & Tomasz 2006, Baur et al. 2009). lic2 consists of 3 genes licD1/ 

licD2 involved in attachment of phosphorylcholine to TA and tacF involved in 

transport of TA across the membrane (Damjanovic et al. 2007). licD2 has been 

shown to directly affect the amount of choline present in the cell wall with a 

deletion mutant containing a 50% reduction of the amount of choline in the cell 

wall (Zhang et al. 1999). licD2 (P<0.05) and licD1 (P<0.1) were up regulated on 

deletion of stkP, implicating a role of StkP in regulation of the amount of choline 

in the cell wall components. S.pneumoniae contains a number of important 

virulence factors, which are dependant on the presence of choline in the cell 

wall for cell surface attachment (Yother & White 1994, Hakenbeck et al. 2009). 

These choline binding proteins include a number of adhesins and virulence 

factors (CbpA, PspA etc) and autolytic enzymes (LytA-D, CbpD) important for 

cell division and autolysis (Gillespie et al. 1997, Hakenbeck et al. 1983, De Las 
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Rivas et al. 2002). Altering the amount of cell wall choline will likely effect the 

abundance of these proteins on the cell surface, determining if they attach or 

are released into the supernatant (Hakenbeck et al. 1983). The alterations in 

some of these proteins potentially affected by variations in cell surface choline 

composition corresponds to the phenotypes changes seen when deleting StkP. 

T4!stkP shows reduction in competence, a phenomenon noted upon growth in 

choline limited media (Tomasz 1967a, Regine Hakenbeck et al. 1983). StkP 

mutants show a deficiency in ability to divide a phenotype associated to that of 

a LytB mutant, which may correlate in T4!stkP with decreased amounts of LytB 

on the cell surface (Tomasz 1967a, Hakenbeck et al. 1983). Along with choline 

incorporation into the cell wall dltB was also up regulated in T4!stkP, which is 

important for LTA biosynthesis (Poyart et al. 2001).  

Although TCS CiaRH was not shown to be regulated at the transcript level by 

StkP other data indicates a potential interaction of StkP and RR05 potentially 

through phosphorylation as seen with StkP for RR06 and RitR (Agarwal et al. 

2012, Ulijasz et al. 2009). A study in 2007 evaluated the direct interaction of 

CiaR with the promoters of its target genes, which showed a number of 

similarities to the genes seen to be differentially regulated in T4!stkP (Halfmann 

et al. 2007). Of these common genes included were manM/ manM and manL 

which function as a mannose phosphotransferase system (Cochu et al. 2003),  

malM and malP encoding enzymes involved in maltosaccharide metabolism 

(Nieto et al. 1997). Interestingly the lic1 operon was regulated by CiaR whereas 

we saw differences in the lic2 operon, and finally the serine protease htrA and 

parB (P<0.1) involved in chromosomal segregation (Halfmann et al. 2007, Minnen 

et al. 2011). From this the hypothesis would be that StkP may also phosphorylate 

CiaR affecting its binding capacity to these promoter regions causing the changes 

in gene expression seen in T4!stkP. For the genes that are know to be regulated 

by CiaR and were not shown in our !stkP gene list, it could be that these were 

not regulated by CiaR in a TIGR4 background. 

Along with potentially regulating the attachment of the cell surface proteins to 

the cell wall our data indicates a potential role of StkP in translocation of 

proteins onto the cell surface. In T4!stkP secY was also differentially regulated, 

which function as a transmembrane pore vital for protein translocation across 



Chapter 5 

 

253 

the cell membrane. Other members of the translocase secE and secG were not 

differentially regulated and normally function on a 1:1:1 ratio with secY. secA 

which functions as a protein chaperone was also not differentially regulated 

(Dalal & Duong 2011). However if this is the case it indicates another level at 

which StkP Is able to regulate the content of the cell surface. Interestingly 

recent data has shown that during exponential growth SecY localises to the cell 

septum at the point where active peptidoglycan synthesis is occurring (Tsui et 

al. 2011). StkP has already been shown to localise to the midcell and partakes in 

sensing the cell wall peptidoglycan (Giefing et al. 2010, Maestro et al. 2010). 

Therefore a role could be envisaged for StkP to act in conjunction with SecY 

regulating at the expression level the amount of SecY available for protein 

translocation and therefore the amount of proteins translocated.  

Another component shown to interact with the Sec translocase is HtrA a serine 

protease that works in conjunction with SecA (chaperone for proteins being 

directed to the SecYEG translocase) (Tsui et al. 2011). HtrA is thought to act 

here as quality control for the proteins targeted to the translocase and cell 

surface. HtrA also localises to the cell septum along with SecA and SecY (Tsui et 

al. 2011). htrA is up regulated in T4!stkP indicating a requirement for protein 

degradation. 

High temperature requirement A (HtrA) protein has been extensively studied in 

the pneumococcus, functioning as a temperature induced serine protease 

(Ibrahim et al. 2004a), and in other streptococci has been shown to alter the 

expression of some cell surface proteins (S. Biswas & I. Biswas 2005). HtrA 

activity is more evident upon increased temperature and has been shown to help 

the cell survive environmental stresses (Ibrahim et al. 2004a). HtrA has been 

shown to be an important virulence factor showing increased survival in a mouse 

pneumonia and bacteraemia model (Ibrahim et al. 2004b, Ibrahim et al. 2004a). 

A phenotype of decreased competence associated with HtrA is one that is also 

seen in T4!stkP (Sebert et al. 2005, ). In T4!stkP an increase in HtrA expression 

is observed, which may correlate to a decrease in competence (Sebert et al. 

2005). This could potentially be the cause of the decrease in competence in 

T4!stkP.  
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htrA is found adjacent to parB in the genome and they are likely expressed as a 

single operon. ParB has recently been shown to be involved in chromosomal 

segregation upon replication recruiting condensing to the pneumococcal oriC 

(Minnen et al. 2011). This gene is also up regulated in T4!stkP (P<0.1), as StkP 

has been shown to be involved in cell division its not unlikely that it may also 

regulate proteins involved in chromosome segregation as cell division and DNA 

segregation would likely be required to work in unison. 

We did not study further the affect of the StkP deletion on the presence of 

choline and choline binding proteins on the cell surface. As the pneumococcal 

pilus was differentially regulated in the increased P<0.1 list we studied further 

changes in this virulence factor in T4!stkP. RT-PCR was performed and 

confirmed an expression change in rrgA, however expression of the other genes 

on the pilus islet were not shown to be statistically significant. Western blotting 

for the pilus backbone protein (RrgB) showed no discernable change in T4!stkP 

RrgB levels. However FACS analysis looking for the presence of RrgB on the cell 

surface showed roughly a 10% increase in the number of cells containing the 

pilus in T4!stkP. If there was a true decrease in expression of secY you would 

perhaps expect a decrease in proteins on the cell surface, including RrgB. 

However perhaps such a small fold change is too small to see a large change in 

phenotype. This increase in pilus shown by FACS was confirmed by fluorescence 

microscopy and corresponded to 100% of T4!stkP cells having pili on their cell 

surface. Therefore StkP seems to regulate whether individual cells produce pili 

at the population level, which could also be the case for a number of other 

surface proteins regulated by StkP. StkP cognate phosphatase has shown to 

regulate a number of cell surface components, as they work as a pair, StkP 

therefore likely affects oppositely the expression of these surface proteins. 

Implicating a global role for StkP in regulation of cell surface components, 

however none of these surface proteins showed expression change from our 

microarray analysis.  

A recent finding has shown that the pneumococcal pilus is regulated at the 

population level, with within a population two cell types existing, high pilus 

expressing cells and low pilus expressing cells. As of the moment no genes lieing 

outwith the pilus islet have been characterised as altering at the population 
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level the amount of pili that are seen on the cell surface in a growing population 

(Basset et al. 2011, De Angelis et al. 2011). Between the two populations no 

expression differences were observed indicating changes in the cell that are 

expression independent (De Angelis et al. 2011). Further studies showed that 

this phenotype is modulated via RrgA through its binding to RlrA (Basset et al., 

2011, Basset et al., 2012). However there is a large increase in rrgA expression 

in T4!stkP relative to the expression of rlrA therefore it is unlikely StkP 

modulates its regulation at the population level through altering levels of these 

two proteins. StkP has been shown to phosphorylate RR06. RR06 has also been 

shown to repress the expression of the pneumococcal pilus as in a deletion 

mutant of HK06 an increase in expression of the pilus islet is observed (Rosch et 

al. 2008). RR06 could potentially be the factor modulating the expression of the 

pilus at the population level in T4!stkP.  

StkP cognate partner PhpP has been shown to regulate genes that affect 

adherence to D562 cells in a strain specific manner. Here we show that StkP in 

T4NO1 also regulates adherence to different cell types. The contribution of the 

pneumococcal pilus to this increased adherence phenotype in T4!stkP was also 

evaluated. The role of StkP in adherence varied between all three cell lines, 

with the biggest increase in adherence seen to A549 cells with an increase of 

1500% compared to T4NO1, HBMEC cells showed an increase of 700% and D562 

cells 250%. In HBMEC cells it is clear this increased adherence phenotype is due 

to the increase in the pneumococcal pilus in T4!stkP, as upon deletion of the 

pilus (RrgB) the adherence phenotype is reverted to that of T4!rrgB. This 

phenotype is seen for all cell lines, as deletion mutants of RrgB in T4!stkP are 

no longer able to adhere to the same level and reverts to the level of adherence 

of T4!rrgB. However in A549 cells there is potentially another unknown factor 

contributing to the increased adherence to this cell line as upon deletion of the 

pilus (RrgB) the strain does not fully revert to that of T4!rrgB and has a similar 

adherence to the WT strain. D562 cells showed the smallest increase in 

adherence in T4!stkP perhaps indicating a less important role of the pilus in 

colonisation to that of pneumonia and meningitis.  

Considering there is only a 10% increase in the number of cells containing the 

pilus in T4!stkP the huge increase in adherence seems disproportionate relative 
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to T4NO1. However due to the most recent structure of the pneumococcal pilus 

it has been shown that RrgA is also able to multimerise and form branches of 

adhesins (RrgA) coming from varying positions along the RrgB backbone shaft (El 

Mortaji et al., 2012). As there was a clear increase in rrgA expression and likely 

corresponding protein expression we could hypothesis that as well as the 

increased amounts of RrgB present in the population on the cell surfaces, these 

cells may contain increased amounts of branched RrgA molecules, further 

increasing the adhesive capabilities of the cells. RrgA has also been associated 

with increased biofilm formation and may promote bacterial cell to cell 

attachment in T4!stkP (Muñoz-Elías et al. 2008). Therefore increasing the 

number of cells adherent during the adherence assays, not only through those 

that are directly associated with the tissue culture cells but also through 

bacteria- bacteria interactions. Upon deletion of RrgB this removes the 

backbone at which RrgA anchors itself to and likely depletes RrgA adhesive 

capabilities by removing the length at which RrgA can reach beyond the cell 

wall. Indications that this may be the case was shown by immunogold labelling 

of pili in T4!stkP visualised by electron microscopy. With pili from T4!stkP not 

always being labelled along the whole length of the RrgB shaft compared to that 

seen in T4NO1, this could indicate an inability for the antibody to efficiently 

reach the RrgB backbone due to other proteins blocking them (RrgA). However 

this could also be a staining problem and would need to be validated further. 

To evaluate the role of the deletion of the 3rd PASTA domain in the Xen35 stkP 

allele we looked at its potential role in regulation of the pneumococcal pilus. 

StkP regulates the pneumococcal pilus however this is opposite to what we 

would expect to see if this deletion was causing the huge decrease in pilus 

expression seen in Xen35. However the exact effect the deletion of the 3rd 

PASTA domain has on StkP in Xen35 is not know. To study this T4!stkP was 

complemented with stkP amplified from T4NO1 (Four PASTA domains) and Xen35 

(three PASTA domains), and both alleles were put under the control of a strong 

promoter (P2) in T4!stkP. This resulted in the over expression of these 

complemented StkP alleles in T4!stkP. It is assumed these alleles were 

expressed to the same level in the two strains as they were constructed using 

the same plasmid, this is currently being validated via western blot for StkP, to 
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confirm similar expression levels. The role of these different StkP alleles 

functionality was then assessed for their ability to effect pilus expression.  

These experiments further confirmed that StkP regulates the pneumococcal pilus 

as western blotting showed a clear decrease in RrgB when T4!stkP was 

complemented with both alleles. However there was a marked difference in the 

amount of RrgB between both T4!stkP#ST and T4!stkP#XST. T4!stkP 

complemented with T4 StkP showed a higher reduction in RrgB than that 

complemented with Xen35 StkP, implying that Xen35 StkP has a reduced 

functionality and that the 3rd PASTA domain is important for downstream 

signalling.  

FACS performed on these complemented strains also showed that these changes 

in protein expression are at the population level. With T4!stkP#ST now only 

showing 26% of the population are positive for the pneumococcal pilus compared 

to 51% of T4!stkP#XST to 100% of T4!stkP. Further studies would need to be 

performed on these strains to elucidate the downstream gene causing these 

changes seen in the pilus. Fluorescence microscopy of T4!stkP#ST cells also 

seemed to show a decrease in the amount of pili on each cell compared to that 

of T4!stkP#XST, T4!stkP and T4NO1. To see if StkP also affects the localisation 

of the pilus electron microscopy would have to be performed on T4!stkP#ST. 

Yet from this we can say StkP clearly also regulates the amount of pili on a 

single cell as well as that in the population. Maintaining heterogeneity within a 

bacterial population is important to allow bacterial survival, the fact StkP 

modulates this function fits in with the idea that these systems sense the 

external environment and modulate responses to the outside accordingly. With 

StkP in each bacterial cell acting according to the environment within which it is 

present in this instance modulating expression changes depending on the levels 

of unlinked peptidoglycan on the cell surface. StkP has also been shown to 

interact with a TCS, which may be the downstream system which modulated the 

change in pilus expression directly.  

Adherence assay were performed on both complement strains using A549 and 

HBMEC cells. The adherence seen to both cell lines correlated directly to the 

amount of pili positive cells, with T4!stkP#ST showing a large reduction in 
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adherence to both cell lines. However this was still higher than that of T4!rrgB 

and T4!stkP!rrgB due to 26% of cells still containing the pilus. T4!stkP#XST also 

showed a trend towards a decrease in adherence to both cell lines compared to 

T4!stkP (no significant difference). Yet this was still higher than T4!stkP#ST 

due to 51% of cells containing the pilus. 

The importance of PASTA domains with regards to the functionality of StkP have 

been elucidated in Beilharz et al 2012. Mutants constructed removing the PASTA 

domains were no longer able to localise to the cell septum (Where WT StkP 

localises too), with mutants containing only the kinase domain or 

transmembrane and kinase domain showing a cytoplasmic and membrane 

localisation pattern respectively (Beilharz et al. 2012). When replacing the four 

PASTA domains of StkP with the Three PASTA domain of PrkC (B.subtilis) StkP no 

longer localised to the cells septum indicating that the PASTA domains are 

species specific with regards to their substrate binding (Beilharz et al. 2012). 

Which in this instance is to unlinked peptidoglycan, as blocking these moietys 

with vancomycin lead to delocalisation of StkP from the midcell (Beilharz et al. 

2012). The consequence of the removal of the PASTA domains not only affects 

StkP localisation but also that of its cognate phosphatase, which localised to the 

midcell along with StkP in a WT cell, however upon StkP deletion PhpP is only 

seen in the cytoplasm and therefore requires StkP to function properly (Beilharz 

et al. 2012). The outcome of this leads to alterations in the protein 

phosphorylation levels of the targets of StkP and PhpP, which has been shown to 

be modulated through StkP activity. Beilharz et al 2012 showed blocking the 

activity of StkP via incubating cells with vancomycin (binds to the substrate of 

StkP) lead to reduced phosphorylation of protein targets, however incubating 

cells with ampicillin which binds to the PASTA domains (mimics peptidoglycan 

substrate) hyperphosphorylation of StkP protein targets is observed. Some of 

StkPs protein targets are that of cell division proteins (FtsA and DiviVA) which is 

why when StkP is deleted an altered cell morphology is observed, as deletion of 

StkP alters the localisation of these cell division proteins which also colocalise at 

the cell septum with StkP (Beilharz et al. 2012). 

As we observed some cells that had an elongated cell morphology for Xen35 we 

assume this is due to the deletion of the third PASTA domain within StkP, which 
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is likely a consequence of alteration in the localisation of StkP and cell division 

protein to their correct cellular positions. Interestingly Beilharz et al 2012 also 

showed that this elongated morphology is selected against and multiple passages 

show fewer cells with this morphology, which may be why not all Xen35 cells 

showed this altered morphology (Beilharz et al. 2012). Further as we know the 

deletion of PASTA domains alters StkP localisation and interaction with its 

protein targets, its likely this is also the cause of the altered pilus expression 

observed in the mutants. RR06 has been shown to regulate the pilus and is a 

protein target of StkP, its therefore likely that deletion of the third PASTA 

domain affects the level of phosphorylation of this protein target altering its 

activity (Agarwal et al. 2012). 

StkP clearly plays a multifaceted role in gene regulation and is already know to 

affect the expression of a large number of genes, and phosphorylate a number of 

other proteins. In this study we also show a potential role of StkP in regulation 

of protein translocation through the cell membrane and incorporation of some of 

these proteins onto the cell wall via regulation of choline abundance in the cells 

wall TA. Both of these phenomenon fit in with StkPs role in regulation and 

sensing of cell wall components, however require further study for validation. A 

role of StkP regulating genes at the population level has also been envisaged, a 

mode of regulation only recently touched upon in the pneumococcal field. Our 

studies have also shown that StkP regulates the pneumococcal pilus which has 

not been shown before and we further validated the importance of the PASTA 

domains in downstream gene regulation. More studies are required for further 

confirmation of exactly how the deletion of the third PASTA domain affects StkP 

functionality.  



 

 

 

 

 

 

 

 

 

 

6 Studying the role of oxidative stress on pilus 
expression
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6.1 Aim of this chapter 

The aim of the work described in this chapter is to investigate the potential role 

of the pneumococcal pyruvate oxidase (SpxB) and lactate oxidase (LctO) in pilus 

gene regulation. The genome sequence data of Xen35 a bioluminescent strain 

used to track in vivo disease progression contained SNPs in both of these genes, 

causing the introduction of a premature stop codon, resulting in truncated 

proteins. Xen35 showed a clear reduction in the expression of the pneumococcal 

pilus and in this chapter the contribution of these mutations to this phenotype is 

assessed.  

Initial experiments were performed to assess the pilus expression in a SpxB and 

LctO mutant constructed in T4NO1. For this RT-PCR, western blot analysis and 

FACS analysis was performed to look at the expression of RrgB in both strains. 

This analysis was also performed using a double mutant. The expression of the 

whole pilus islet was assessed in all strains. Adherence assays were also 

performed to evaluate the role of these genes in adherence and if this is niche 

specific as SpxB is thought to play an important role during colonisation. 

Both genes are involved in growth under aerobic conditions so we sought to 

assess pilus expression in a wild type strain when grown aerobically and 

anaerobically. The enzymatic reactions catalysed by both SpxB and LctO lead to 

production of hydrogen peroxide as a by-product. Therefore the effect of 

hydrogen peroxide alone on pilus expression was evaluated. For all western 

blotting and FACS analysis was performed.  
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6.2 Background 

Both SpxB and LctO play a role in energy production in a bacterium that contains 

no tricarboxylic acid cycle or electron transport chain (Hoskins et al., 2001, 

Tettelin et al., 2001). spxB encodes a pyruvate oxidase which functions to 

convert pyruvate from glycolysis to acetyl phosphate, which is eventually 

converted by acetate kinase to acetate to produce ATP (Pericone et al., 2003). 

The reaction catalysed by SpxB occurs during aerobic growth producing 85% of 

the cells acetyl phosphate with hydrogen peroxide produced as a by-product 

(Pericone et al, 2003). spxB deletion mutants show reduced levels of ATP 

production (Pericone et al., 2003). lctO encoding a lactate oxidase has not been 

as extensively studied as SpxB. LctO converts the lactate normally seen as a 

dead end product of fermentation back to pyruvate which can then be processed 

by the pyruvate oxidase to acetyl phosphate and eventually ATP (Taniai et al., 

2008, Udaka et al., 1959).  

Both genes work in a concerted manner under aerobic growth conditions with 

1/4th of pyruvate converted by SpxB to acetyl phosphate resulting in ATP 

production (Taniai et al., 2008, Liu et al., 2012). The remaining pyruvate is 

converted to lactate via lactate dehydrogenase, which acts as a reservoir until 

the lactate oxidase converts the lactate back to pyruvate resulting in an end 

product of ATP production (Taniai et al., 2008). This has been hypothesised to 

maximise ATP production under aerobic growth. Both enzymes are flavoproteins 

and produce hydrogen peroxide as a by-product of their enzymatic reaction, 

with SpxB being the main contributor to the high hydrogen peroxide levels 

produced by the pneumococcus (0.5-2mM) (Liu et al, 2012, Taniai et al., 2008, 

Pericone et al, 2003). Hydrogen peroxide is an important virulence factor in the 

pneumococcus, as already discussed in section 1.6.10. 
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Figure 6-1: Pathway of glucose metabolism in S.pneumoniae 

(Modified from Taniai et al., 2008) Boxed in blue is the two enzymes discusses in this 
section. Boxed in pink is the hydrogen peroxide produced as a by-product of said 
enzymatic reactions 
 

Changes in a number of different genes have been linked to phase variation, 

including mutations in SpxB (Weiser et al., 1994, Pericone et al., 2000, Ramos-

Montañez et al., 2008). For more information see section 1.5.4. 
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6.3 Role of SpxB and LctO in pilus regulation 

To assess the role that SpxB and LctO play in pilus regulation two knockout 

mutants were constructed. A spxB mutant was constructed using a transposon 

insertion based method and a lctO mutant constructed using a splice overlap PCR 

method to replace the whole gene. Both mutants were constructed in T4NO1. 

The spxB mutant was constructed using a spectinomycin resistance cassette and 

the lctO mutant using a kanamycin resistance cassette. Use of different 

selection markers allowed construction of a double knockout creating 

T4!spxB!lctO. 

6.3.1 Microarray analysis of T4!spxB 

Initial experiments assessed the expression changes in T4!spxB, in an attempt to 

attribute the gene expression changes seen in Xen35 to this deletion. For this 

microarray analysis was performed on T4!spxB compared to T4NO1.  

Gene Description Abbrev 
Fold 
change 

SP_0413  Aspartate kinase  1.3 
SP_0461  Transcription regulator, putative rlrA 2.1 

Table 6-1 : Table of genes differentially regulated in T4!spxB 

Table shows genes differentially regulated in T4!spxB compared to its parent T4NO1 
(P<0.05). Fold change represents that seen in T4!spxB compared to T4NO1, red showing 
genes up regulated in T4!spxB and blue are those that are down regulated. 
 

Microarray analysis showed only two genes differentially regulated between 

T4NO1 and T4!spxB (Table 3-2). Neither of these genes were differentially 

regulated in Xen35 as measured by microarray analysis (P<0.05). However when 

increasing the P value to 0.1 two genes were commonly down regulated in Xen35 

and T4!spxB (SP_0461 and SP_0462), of which both encode components of the 

pneumococcal pilus. This gives an indication the non-functional SpxB in Xen35 

may contribute to the decreased pilus expression. However it is likely not the 

only cause as only a 2 fold decrease in rlrA expression is observed in T4!spxB 

compared to a decrease of 6 fold in Xen35 shown by microarray analysis. 

Microarray analysis performed on a spxB mutant in a R6 strain showed 21 genes 

differentially regulated compared to its parent (Ramos-Montañez et al., 2008). 
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6.3.2 Real-time PCR analysis of pilus islet and TCS expression in 
T4!spxB, T4! lctO and T4!spxB! lctO 

RT-PCR analysis was performed to confirm the change in rlrA expression 

observed in T4!spxB by microarray analysis, as well as any expression changes 

seen in the rest of the pilus islet. RT-PCR analysis was also performed on 

T4!lctO and T4!spxB!lctO knockout strains to assess if LctO also affects pilus 

expression and if removal of both lead to a similar pilus expression level as 

observed in Xen35 (Figure 5-3). 

 

Figure 6-2: RT-PCR graph of pilus expression in T4!spxB, T4! lctO and T4!spxB! lctO. 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4!spxB, 
T4! lctO and T4!spxB! lctO. Fold change represents that of stated mutant compared to 
T4NO1. Each bar represents the average of three replicas (three biological replicas) and 
errors bars the standard deviation. Statistical analysis was performed by a 1-way ANOVA 
with a Tukeys testing correction comparing the dCt values of the control strain (TIGR4) to 
the test strain (T4!spxB, T4! lctO and T4!spxB! lctO), * P<0.05, **P<0.001. 
 

RT-PCR analysis confirmed the difference in pilus expression seen in T4!spxB, 

showing roughly a 2-3 fold statistical decrease in expression of all the genes 

encoded on the pilus islet shown in Figure 5-3. RT-PCR showed perhaps a small 

drop in expression of some of the pilus islet genes in T4!lctO compared to 

T4NO1 however this was not the case for the sortase enzymes and only the 
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reduced expression of rrgC was shown to be statistically significant (Figure 5-3). 

T4!spxB!lctO showed a similar statistical decrease in pilus expression compared 

to that of T4!spxB. RT-PCR was also performed on some of the RR of the TCS 

pairs that have been shown to alter pilus regulation in the pneumococcus, to try 

and attribute pilus expression changes to that of varied expression of the RR 

(Figure 5-4). 

 

Figure 6-3: RT-PCR graph of TCS expression in T4!spxB, T4! lctO and T4!spxB! lctO 

Graph shows RT-PCR of rr03, rro6, rro8 and rr09 TCS in T4!spxB, T4! lctO and 
T4!spxB! lctO. Fold change represents that of the stated mutant compared to T4NO1. Each 
bar represents the average of three replicas (three biological replicas) and errors bars the 
standard deviation. No statistical difference were observed. 
 

RT-PCR of some of the TCS shown to alter pilus regulation were all slightly up 

regulated in T4!spxB and T4!spxB!lctO, however none were statistically 

significant. T4!lctO also showed no statistical difference in expression of any of 

the TCS RR. Due to none of the changes being significant it is unlikely any of 

these TCS contribute to the altered pilus expression in these strains. 

To further confirm changes in pilus expression western blot analysis was 

performed on all strains comparing the total amount of RrgB (Figure 5-10). FACS 

analysis was also performed to assess the distribution of the pilus on the cell 

surface of the bacterial population (Figure 5-6).  
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6.3.3 Western blot analysis of T4!spxB, T4! lctO and 
T4!spxB! lctO 

Western blot analysis was performed on T4!spxB, T4!lctO and T4!spxB!lctO to 

assess the total amount of RrgB. Western blotting showed differences in the 

expression of RrgB in T4!spxB, T4!lctO and T4!spxB!lctO (Figure 5-10). 

T4!spxB!lctO showed a 1.9 fold decrease in RrgB levels compared to T4NO1 and 

T4!spxB showed a 1.4 fold decrease. T4!lctO showed a small decrease of 1.1 

fold. These finding correlate well with the RT-PCR values. 

 

Figure 6-4: Western blot of T4!spxB, T4! lctO and T4!spxB! lctO RrgB expression 
compared to T4NO1. 

Western blotting analysis was performed on T4NO1, T4!spxB, T4! lctO, T4!spxB! lctO and 
T4!rrgB looking for expression of RrgB in all strains ("-RrgB antibody). Equal protein 
loading was confirmed by equal expression of GroeL ("-GroeL antibody), normalise against 
in analysis. Western blotting quantification was performed using ImageJ with fold changes 
in RrgB expression compared to T4NO1 boxed below the strain. Left hand side numbers 
represent the size in kDa of proteins run to the same point. 
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6.3.4 FACS and fluorescence microscopy analysis of T4!spxB, 
T4! lctO and T4!spxB! lctO 

To further analyse the difference in pilus expression in these strains FACS 

analysis was performed to assess within a growing population the number of cells 

positive for RrgB on the cell surface and therefore pilus positive. 
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Figure 6-5: FACS analysis of RrgB surface expression in T4!spxB, T4! lctO and 
T4!spxB! lctO 

FACS was performed on T4!spxB, T4! lctO, T4!spxB! lctO, T4NO1 and T4!rrgB. (A) Shows 
histograms of the capsule positive populations selected for from samples stained with a 
capsule antibody, population used for further analysis. (B) Shows the capsule stained 
populations being gated on for being RrgB positive, histograms/ polychromatic plot show 
negative (left) and positive (right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4!spxB 80.1 19.9 
T4!lctO 43.1 56.9 
T4!spxB!lctO 81 19 
T4!rrgB 98.4 1.6 

Table 6-2: Percentage RrgB positive cells in T4!spxB, T4! lctO and T4!spxB! lctO 

 populations from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 6-6: Fluorescence microscopy of T4!spxB, T4! lctO and T4!spxB! lctO. 

One representative image of fluorescently labelled T4!spxB, T4! lctO and T4!spxB! lctO 
used for FACS analysis. Cells were stained for the presence of RrgB (FITC) and the capsule 
(APC). Scale bars above represent, T4NO1- 9µm, T4!rrgB - 140µm, T4!spxB - 210µm, 
T4! lctO - 140µm and T4!spxB! lctO - 210µm. The same representative image will be used 
throughout this study for each strain, more images can be seen in appendix I. 
 

FACS analysis on T4!spxB, T4!lctO and T4!spxB!lctO showed clear differences 

in the cell surface exposure of RrgB at the population level compared to T4NO1 

(Figure 5-6). There was a large decrease in the number of RrgB positive cells in a 

growing population of T4!spxB and T4!spxB!lctO both showing only 19-20% RrgB 
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positive cells compared to that of 88% in a T4NO1 population (Table 6-2). 

Although there was a difference in RrgB expression seen via western blot there 

seems to be roughly the same number of cells positive for RrgB in T4!spxB and 

T4!spxB!lctO. Interestingly there was also a large drop in the number of cells 

positive for RrgB in T4!lctO showing 57% of a growing population positive 

compared to that of 88% of T4NO1 (Table 6-2). As there is only a small drop in 

RrgB levels in T4!lctO this would suggest that the reduced pili expression at the 

population level is not due to this and may be due to another factor, such as 

reduced protein export to the cell surface. The fact that almost the same 

percentage of RrgB positive cells is observed in T4!spxB!lctO and T4!spxB 

would suggest that knocking out lctO has no effect on T4!spxB. And therefore 

the decrease in the RrgB positive cells in T4!lctO is likely due to a knock on 

effects of this deletion to the SpxB catalysed reaction. 

Variations in pilus expression via FACS analysis was visualised using fluorescence 

microscopy of T4!spxB, T4!lctO and T4!spxB!lctO shown in Figure 6-6. 

Due to clear change in the pilus expression at the population level in T4!spxB, 

T4!lctO and T4!spxB!lctO we wanted to assess the adherence capabilities to 

different cell lines which may show potential roles of SpxB and LctO in tissue 

tropisms during infection. 

6.4 Role of SpxB and LctO in adherence 

6.4.1 Adherence assay analysis of T4!spxB, T4! lctO and 
T4!spxB! lctO 

Adherence assays were performed on three different cell lines HBMEC, A549 and 

Detroit 562 cells to mimic the blood brain barrier, lung and nasopharynx 

respectively. This assay was performed to assess the adherence capabilities of 

T4!spxB, T4!lctO and T4!spxB!lctO.  

The adherence assay data shows that T4!spxB and T4!spxB!lctO have reduced 

adherence capabilities to all cell lines compared to T4NO1. With the largest 

decrease being to HBMEC cells, showing approximately a 90-95% reduction in 

adherence compared to that of T4NO1. This level of adherence is similar to a 
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non pilated strain (Figure 5-9). Interestingly T4!lctO also showed a reduced 

ability to adhere to all cell lines compared to T4NO1 (Figure 5-9). The decrease 

in adherence was similar to that of T4!spxB and T4!spxB!lctO to A549 and D562 

cells, with no statistical difference in the adherence capabilities of the three 

strains. Adherence of T4!lctO to HBMEC cells however was statistically different 

to that of T4!spxB and T4!spxB!lctO suggesting SpxB plays a more important 

role in meningitis, corroborating the ability of transparent variants to cross the 

blood brain barrier more efficiently (Ring et al., 1998). This difference in the 

adherence to HBMEC cells correlates well with the number of pilus positive cells 

within the bacterial populations, with T4!lctO showing a higher adherence than 

that of T4!spxB and T4!spxB!lctO as it contains 30-40% more pili positive cells.  
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Figure 6-7: Adherence assay of T4!spxB, T4! lctO and T4!spxB! lctO to different cell lines. 

Adherence of strains T4NO1, T4!spxB, T4! lctO and T4!spxB! lctO, T4!rrgB was assessed 
to HBMEC (A), A549 (B) Detroit 562 (C) cell lines. Data is represented as percentage 
adherence relative to that of T4NO1 (100%, dashed line), each bar is an average of three 
replicas except that of T4!spxB, T4! lctO and T4!spxB! lctO HBMEC data and T4! lctO D562 
data which is an average of two repeats, the error bars represent the standard error of the 
mean. Statistical analysis was performed using a 1-way ANOVA with a Tukeys testing 
correction, * P<0.05/ ** P<0.001. * above the bar represent statistical significance compared 
to T4NO1 (not represented as a bar on the graphs). 
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6.5 Variation in pilus expression under different growth 
conditions 

Due to the fact that there is a differences in the expression of the pilus in 

T4!spxB, T4!lctO and T4!spxB!lctO which contain knockouts in genes important 

during aerobic growth, pilus expression under both aerobic and anaerobic growth 

conditions were evaluated. T4NO1 was either grown statically under aerobic 

conditions at 37°C or statically anaerobically at 37°C in an anaerobic cabinet. 

Samples were processed for western blotting or FACS analysis. 

6.5.1 Western blot analysis of T4NO1 grown anaerobically 

Initial western blot analysis comparing cellular levels of RrgB under the two 

conditions showed a clear decrease (2.6 fold) in the amount of RrgB when T4NO1 

was grown anaerobically compared to aerobically (Figure 6-8).  

 
Figure 6-8: Western blot of T4NO1 RrgB expression when grown aerobically or 
anaerobically. 

Western blotting analysis was performed on T4NO1 when grown under aerobic (T4NO1) or 
anaerobic (T4 AN) conditions looking for expression of RrgB ("-RrgB antibody). Equal 
protein loading was confirmed by equal expression of GroeL ("-GroeL antibody), 
normalised against in analysis. Western blotting quantification was performed using ImageJ 
with fold changes in RrgB expression compared to T4NO1 grown aerobically boxed below 
the strain. Left hand side numbers represent the size in kDa of proteins run to the same 
point. 
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6.5.2 FACS and fluorescence microscopy analysis of T4NO1 
grown anaerobically 

FACS analysis was performed to assess if the decrease in pilus under anaerobic 

conditions is due to that of a reduction in the amount of pili on a single cell or if 

there is a reduction in the number of cells expressing the pilus.  

Analysis showed that unlike the reduction at the population level of pili positive 

cells in T4!spxB, T4!lctO and T4!spxB!lctO, T4NO1 grown under anaerobic 

conditions shows around a 1% increase in pilus positive cells and therefore this 

cannot account for the decrease in expression seen via western blotting (Figure 

6-9,Table 6-3). FACS data does however show a clear shift to the left in the FITC 

pilus positive population grown under anaerobic conditions, suggesting a 

decrease in the amount of pili on a single cell. No change in the pilus at the 

population level was confirmed by fluorescence microscopy as seen in Figure 

6-10. 
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Figure 6-9: FACS analysis of RrgB surface expression in T4NO1 grown anaerobically. 

FACS was performed on T4 AN, T4NO1 and T4!rrgB. (A) Shows histograms of the capsule 
positive populations selected for from samples stained with a capsule antibody, population 
used for further analysis. (B) Shows the capsule stained populations being gated on for 
being RrgB positive, histograms/ polychromatic plot show negative (left) and positive (right) 
RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4 AN 11.3 88.7 
T4!rrgB 98.4 1.6 

Table 6-3: Percentage RrgB positive cells in a T4 AN population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 6-10: Fluorescence microscopy of T4NO1 grown anaerobically. 

One representative image of fluorescently labelled T4NO1, T4!rrgB and T4NO1 grown under 
anaerobic conditions used for FACS analysis. Cells were stained for the presence of RrgB 
(FITC) and the capsule (APC). T4NO1- 9µm, T4!rrgB - 140µm and T4AN - 14µm. The same 
representative image will be used throughout this study for each strain, more images can be 
seen in appendix I. 
 

6.6 Role of H2O2 in pilus expression 

One of the common features of the enzymatic reactions catalysed by SpxB and 

LctO is that both produce hydrogen peroxide as a by-product, although to 

varying levels. To confirm this we performed a hydrogen peroxide assay on 

T4!spxB, T4!lctO and T4!spxB!lctO using T4NO1 and Xen35 as positive and 

negative controls respectively (Figure 6-11). 

6.6.1 Hydrogen peroxide production of T4!spxB, T4! lctO and 
T4!spxB! lctO 

Hydrogen peroxide levels were significantly reduced in T4!spxB compared to 

T4NO1 with no visible hydrogen peroxide production after 30 minutes. However 

after 24 hours we can see that T4!spxB can produce hydrogen peroxide but this 

is at a much slower rate. SpxB clearly produces the majority of the cellular 
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hydrogen peroxide however some is still produced by LctO as T4!lctO also shows 

a reduction in hydrogen peroxide levels compared to T4NO1 after 30 minutes. 

Xen35 shows no hydrogen peroxide production after 24 hours due to it containing 

a non-functional SpxB and LctO. This is also the case for T4!spxB!lctO showing 

no hydrogen peroxide production after incubation for 24 hours. 

 
Figure 6-11: Hydrogen peroxide assay of T4!spxB, T4! lctO and T4!spxB! lctO strains 

Each strain was represented in triplicate in the Hydrogen peroxide assay. (A) The graph 
gives the hydrogen peroxide production in mM of each strain calculated using a standard 
curve of known hydrogen peroxide concentrations (See Figure 2-14), the dotted line 
represent the limit of detection. Hydrogen peroxide production above 9mM could not be 
accurately measured therefore a maximum value of 9mM was assigned. (B) Shows visually 
the assay performed in a 96 well plate with each strain represented in triplicate after 30 
minutes incubation at 37°C. (C) Shows visually the assay performed in a 96 well plate with 
each strain represented in triplicate after 24 hour incubation at room temperature. 
 

Due to hydrogen peroxide production being a common factor altered in both of 

these mutants the role of hydrogen peroxide alone on the expression of the 

pneumococcal pilus was assessed. A culture of T4!spxB, which has a severely 

reduced rate of hydrogen peroxide production, was grown and hydrogen 

peroxide added back in at varying concentrations.  

6.6.2 Western blot analysis of T4!spxB grown with exogenously 
added H2O2 

To assess any variation in pilus expression upon addition of exogenous hydrogen 

peroxide western blot analysis (Figure 6-12) and FACS analysis (Figure 6-13) was 

performed on these samples. The H2O2 concentrations added to the growing 

bacterial cultures are noted in the figures as the dilutions used which were made 
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from a 30% H2O2 solution. The final concentrations for each dilution was 9mM 

(1/10 dilution), 3.6mM (1/25 dilution) and 1.8mM (1/50 dilution). Higher 

concentrations were tested however this killed the bacterial cells. The lowest 

concentration is likely similar to the normal levels of exogenous H2O2 produced 

by the cell (0.5-2mM) (Pericone et al., 2003). 

 

Figure 6-12: Western blot of T4!spxB RrgB expression when grown in the presence of 
varying concentrations of H2O2. 

Western blotting analysis was performed on T4!spxB when grown in the presence of 
varying concentrations of H2O2 looking for expression of RrgB ("-RrgB antibody). Equal 
protein loading was confirmed by equal expression of GroeL ("-GroeL antibody), 
normalised against in analysis. Western blotting quantification was performed using 
ImageJ. Left hand side numbers represent the size in kDa of proteins run to the same point. 
 

Western blot analysis clearly showed an increase in pilus expression when adding 

exogenous hydrogen peroxide to a growing culture of T4!spxB, shown in Figure 

6-12. However this was not dose dependant as the highest concentration showed 

only a 1.1 fold increase In pilus expression, this may be due to toxic effects by 

H2O2 on the cells limiting growth. This was certainly the case at higher 

concentrations with cells dying (data not shown). However this could also be due 



Chapter 6 

 

280 

to variation in the western blotting technique. Upon further analysis of lower 

concentrations we may begin to see a dose dependent increase of pili with 

increasing amounts of hydrogen peroxide, however this was not assessed.  

6.6.3 FACS and fluorescence microscopy analysis of T4!spxB 
grown with exogenously added H2O2 

FACS analysis confirmed findings seen by western blot showing an increase in 

pilus positive cells (Figure 6-13). However there is only an increase by roughly 

10% of pilus positive cells compared to T4!spxB and is therefore still much lower 

than the parent T4NO1 (Figure 6-13). It may be the case that other factors in 

T4!spxB are altering pilus expression. Or addition of exogenous hydrogen 

peroxide does not compensate for the loss of endogenous hydrogen peroxide, 

which would likely be higher in T4NO1. We also see an increase via FACS in the 

percentage of RrgB positive cells in the 1.10 H2O2 concentration sample, which 

showed no increase in RrgB levels by western blot analysis. This may suggest that 

the lower dilutions (1/25 and 1/50) contain higher levels of cellular RrgB but are 

unable to transport it to the cell surface. 

Key points 

• Addition of H2O2 to a growing T4!spxB culture increases the cellular 

amount of RrgB. This is not dose dependant at the concentrations used 

here, likely due to the toxic effects on the cell at the higher 

concentrations. 

• Although cellular RrgB levels increase, addition of H2O2 is unable to fully 

modulate the RrgB levels present on the cell surface. Perhaps via protein 

export which may be limited in T4!spxB due to reduced ATP levels. 
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Figure 6-13: FACS analysis of RrgB surface expression in T4!spxB plus H2O2 

FACS was performed on T4NO1, T4!spxB, T4!rrgB and T4!spxB grown in the presence of 
varying concentrations of H2O2. (A) Shows histograms of the capsule positive populations 
selected for from samples stained with a capsule antibody, population used for further 
analysis. (B) Shows the capsule stained populations being gated on for being RrgB positive, 
histograms/ polychromatic plot show negative (left) and positive (right) RrgB populations in 
each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4!spxB 80.1 19.9 
T4!spxB 1.10 H2O2 70.8 29.2 
T4!spxB 1.25 H2O2 70.3 29.7 
T4!spxB 1.50 H2O2 70.9 29.1 
T4!rrgB 98.4 1.6 

Table 6-4: Percentage RrgB positive cells in a T4!spxB population grown in the presence of 
H2O2 from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 6-14: Fluorescence microscopy of T4!spxB grown in the presence of H2O2. 

One representative image of fluorescently labelled T4NO1, T4!rrgB, T4!spxB and T4!spxB 
grown in the presence of varying concentrations of H2O2, samples used for FACS analysis. 
Cells were stained for the presence of RrgB (FITC) and the capsule (APC). T4NO1- 9µm, 
T4!rrgB - 140µm, T4!spxB - 210µm, T4!spxB 1:10 - 14µm, T4!spxB 1:10 - 9µm and 
T4!spxB 1:50- 22µm. The same representative image will be used throughout this study for 
each strain, more images can be seen in appendix I. 
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6.7 Discussion 

It must initially be noted that the mutants analysed within this chapter were not 

complemented which is required to ensure the phenotype observed in the 

mutants strains is due to the deletion of the gene removed and not due to 

accumulation of other genetic changes. However we can assume the alterations 

to the levels of hydrogen peroxide is a true consequence of the gene deletions as 

their known function in the literature is enzymes that produce hydrogen 

peroxide as a by-product of the reaction. As we have been able to link the levels 

of hydrogen peroxide to pilus levels it’s likely the gene deletions cause the 

altered pilus expression, but to fully confirm this complementation is required. 

SpxB and LctO both play a role in energy production under aerobic conditions 

(Tettelin et al., 2001). Both are non-functional in the strain Xen35 which shows a 

reduced virulence and reduced expression of the pilus. SpxB alone has been 

shown to be important in the ability of the pneumococcus to colonise, replicate 

in the lungs and translocate to the blood (Orihuela et al., 2004, Spellerberg et 

al., 1996, Ramos-Montañez et al., 2008, Regev-Yochay et al., 2007). This lack of 

SpxB is therefore likely to be one of the reasons for the reduced virulence in 

Xen35. However, other virulence factors are also altered in this strain and the 

reasons for this reduced virulence is likely multifaceted. 

As pilus expression in Xen35 was reduced the contribution of both LctO and SpxB 

to this decrease was assessed. Western blot analysis and RT-PCR showed a 

decrease in pilus expression in the spxB knockout. This was not the case for the 

lctO knockout. FACS analysis of the knockout strains T4!spxB showed only 20% of 

cells were now RrgB positive compared to 88% of the parent strain. Interestingly 

T4!lctO also showed a reduction in the percentage of RrgB positive cells with 

now only 57% positive for RrgB compared to its parent, however no difference in 

the total cellular amount of RrgB was observed. 

The double knockout T4!spxB!lctO showed a similar number of RrgB positive 

cells to that of the single spxB knockout and therefore it was concluded that the 

effects seen on the pilus expression in the lctO knockout are likely via having a 

knock on effect on SpxB functionality. This could occur as SpxB and LctO work in 

a concerted manner in the pneumococcus, similar to that for S.mutans (Liu et 
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al., 2012, Taniai et al., 2008). Under aerobic conditions only 1/4th of pyruvate is 

converted to acetyl phosphate and the rest converted to lactate. If lactate 

oxidase is non-functional then the lactate cannot be converted back to pyruvate, 

which may be followed by a reduced activity of SpxB as there is less substrate 

available for its enzymatic reaction (Taniai et al., 2008). In contrast in a SpxB 

knockout there is no pyruvate converted to acetyl phosphate, which presumably 

explains the more severe phenotype in the SpxB knockout.  

Due to the dependence of pilus expression on SpxB it is predicted that a product 

of the SpxB reaction may cause the changes in pilus expression. One of these 

products is acetyl phosphate which is produced from pyruvate via SpxB. This 

reaction produces 85% of the cells acetyl phosphate (Pericone et al., 2003). 

Acetyl phosphate has been shown to act as a phosphate donor for 

phosphorylation of response regulators of TCS pairs. As a number of TCS regulate 

the pilus in the pneumococcus, this could be responsible for the altered pilus 

expression (McCleary & Stock, 1994). However if this was the case there should 

be global expression changes upon deletion of SpxB (as noted in Ramos-Montañez 

et al., 2008). However this is not the case in our data or in published data and 

therefore is likely not the cause. Phosphorylation of RR by small phosphate 

containing molecules has also been shown to be limited to prevent in vivo cross 

talk between the systems (Boll & Hendrixson, 2011).  

The end product of the reaction catalysed by SpxB followed by acetate kinase is 

ATP, vital for cell survival (Ramos-Montañez et al., 2010). The functionality of 

LctO during aerobic metabolism is thought to maximise ATP production (Taniai 

et al., 2008). Upon deletion of SpxB there is a severe reduction in ATP 

production. However some is still produced via conversion of pyruvate to acetyl 

Co-A via pyruvate formate lyase followed by conversion to acetyl phosphate via 

phosphotransacetylase. This production of ATP is at a much slower rate than 

that produced in a cell with a functional SpxB (Pericone et al., 2003,  Ramos-

Montañez et al., 2008). ATP is vital for a large number of cellular processes, so 

reduced amount may reduce the overall fitness of the growing cells. Although 

the assembly of the pneumococcal pilus by sortase enzymes is not energy taxing 

on the cell, the secretion of proteins to the cell surface is ATP dependent and 

therefore protein translocation may be reduced in a cell with reduced ATP levels 

(Lill et al., 1989, Economou & Wickner, 1994). This may account for why we see 
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no expression change in pilus expression in T4!lctO yet a clear reduction in the 

number of cells expressing the pilus on the cell surface compared to the parent. 

Another common feature of both of these enzymes is the fact they both produce 

hydrogen peroxide as a by-product of their reactions. H2O2 is an important 

molecule produced by the pneumococcus as it is able to kill off other colonising 

bacterial inhabitants of the upper respiratory tract (Pericone et al., 2000, 

Mcleod & Gordon, 1922). H2O2 production however is a double edged sword 

eventually producing deleterious effects on the pneumococcus which does not 

produce a catalase enzyme (Tettelin et al., 2001). As both SpxB and LctO 

function under aerobic conditions we wondered if H2O2 production under these 

conditions acts as a signal to being in the nasopharynx where the bacterium 

would require up regulation of the cell surface adhesins to aid colonisation. 

To assess the effect of hydrogen peroxide alone on the reduced pilus phenotype 

western blot and FACS analysis was performed assessing whether addition of 

exogenously added H2O2 restores pilus expression in T4!spxB. Addition of 

hydrogen peroxide clearly caused an increase in pilus expression with this 

corresponding to an increase in the number of cells positive for the pilus by 

roughly 10%. However this was still much lower than the T4NO1 level of 88% 

positive cells. As previously noted the ability to modulate pilus expression at the 

population level has been linked in S.pyogenes to changes in temperature which 

are thought to signal to the bacterium where it is present within the host. It may 

be that in the pneumococcus hydrogen peroxide is the environmental cue which 

signals to the bacterium that it is present in the nasopharynx where increased 

adhesive capabilities are required, which is modulated by the pilus. As TCS have 

been shown in this study to modulate the expression of the pilus at the 

population level we can hypothesise that this is likely the environmental signal 

which activates one of the TCS known to modulate pilus expression. 

The lack of complete recovery of pilus expression to the WT level could be due 

to other factors also playing a role. Alternatively it could be that hydrogen 

peroxide given exogenously is unable to restore the level of endogenous H2O2 

normally produced within the cell. 
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The changes seen upon addition of hydrogen peroxide to a growing culture 

suggests this alone is able to alter cellular functions. We did not assess the 

mRNA expression level of the pilus after addition of H2O2 but increased amounts 

of protein were seen via western blot. With regards to H2O2 or another ROS 

(reactive oxygen species) acting as a signalling molecule this could be the case 

as this has been observed in plants, animals and bacteria (see reviews Stone & 

Yang, 2006 and Lushchak, 2011). Some proteins are able to sense changes in 

oxidative stress (ROS levels) and alter gene expression by either being oxidised 

directly by ROS or indirectly affected through reaction with another protein that 

has an altered confirmation due to interaction with ROS. The levels of 

intracellular ROS can be modulated by the large number of enzymes used to 

break down these molecules such as catalases and peroxidises etc (Mishra & 

Imlay, 2012). 

There are a number of bacterial proteins directly modified by ROS including the 

well studied OxyR transcriptional regulator of E.coli which is oxidised by H2O2 

directly on a cystein residue altering its confirmation and therefore its binding 

efficiency for target DNA molecules (Toledano et al., 1994, Storz et al., 1990). 

In B.subtilis no homolog for OxyR exists but there are two other peroxide sensing 

proteins OhrR and PerR. OhrR homologues can also be seen in a number of other 

bacteria including S.aureus, E.faecalis, P.aeruiginosa and Agrobacterium 

tumefaciens (Chen et al., 2006, Giard et al., 2001, Ochsner et al., 2001, 

Chuchue et al., 2006). OhrR a member of the MarR family of transcription 

regulators doesn’t recognise H2O2 but organic hydroperoxides (ROOH), and 

regulates the expression of ohr a thiol peroxide which catalyses their conversion 

to a less harmful alcohol (Fuangthong & Helmann, 2002, Panmanee et al., 2002).  

PerR homologues have also been seen in a number of bacteria including 

S.aureus, S.pyogenes, Campylobacter jejuni, Streptomyces reticuli, 

Streptomyces coelicolor and Borrelia burgdorferi (Horsburgh et al., 2001, King 

et al., 2000, Van Vliet et al., 1999, Ortiz de Orué Lucana & Schrempf, 2000, 

Hahn et al., 2000, Boylan et al., 2003). PerR a metallo protein is a member of 

the ferric uptake regulator family, which contains two metal binding sites. One 

that binds zinc (structurally required) and another which binds either iron or 

magnesium which regulate its function. Fe2+ or Mn2+ when bound act to retain 

binding of PerR to its target DNA (Herbig & Helmann, 2001). PerR like OxyR 
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responds to H2O2 levels resulting in the metal dependant catalysed oxidation of a 

histidine residue in PerR resulting in the release of the metal ion and release of 

PerR from DNA (J.-won Lee & Helmann, 2006). This oxidation is dependent on 

production of a hydroxyl radical via the Fenton reaction.  

Interestingly PerR in S.pyogenes has been associated with alterations in pilus 

expression (Grifantini et al., 2011). Addition of hydrogen peroxide to a WT strain 

of S.pyogenes causes an increase in the expression of the genes required for 

pilus expression and assembly, of roughly 3-7 fold. This increase in pilus 

expression is also observed in one of the sortase genes after deletion of perR. 

This would give an indication that recognition of hydrogen peroxide levels by 

bacteria can lead to alterations in cell surface components. S.pyogenes is found 

in the pharynx causing minor throat infections but can also cause serious soft 

tissue infections. In the pharynx S.pyogenes has been shown to adhere to human 

tonsil epithelium and it was hypothesised here would require increased levels of 

pili which would be augmented by sensing by PerR of increased levels of ROS 

(Abbot et al., 2007). Interestingly as discussed in the Rosch study (2008) the 

promoter lying upstream of rlrA shows high homology to PerR binding sites in 

other Streptococci, with only a single mismatch between the two (Brenot et al., 

2005, Rosch et al., 2008). Currently no homologues of PerR have been found in 

S.pneumoniae and perhaps this pathogen has evolved another means to respond 

to ROS. With ROS acting as a key signal to being present in the nasopharynx 

where regulation of cell surface adhesins is required.  

Although not associated with PerR increasing levels of hydrogen peroxide have 

been associated with increase pili expression in the pneumococcus (Rosch et al., 

2010). This was observed in a mutant defective in a manganese efflux pump 

MntE (SP_1552), causing increases in intracellular manganese. Manganese has 

been shown to affect oxidative stress response, and perhaps in this strain 

alterations in this causes accumulation of H2O2 which in turn alters expression of 

the pilus (Mcallister et al., 2004, Tseng et al., 2002). SodA (Superoxide 

dismutase) in the pneumococcus converts superoxide radicals to H2O2, this 

enzyme is manganese dependant and therefore increased levels of intracellular 

manganese may lead to increase activity of SodA and resulting H2O2 production 

(Yesilkaya et al., 2000).  
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The role of manganese in pilus regulation was also further confirmed in two 

studies where deletions of psaR resulted in increased expression of the pilus islet 

genes (Johnston et al., 2006, Hendriksen et al., 2009). PsaR is a transcription 

regulator which directly regulates a number of genes on the psa operon, 

including those coding for a manganese ABC transporter present (PsaA, PsaB and 

PsaC). Deletion of PsaR causes an increase in pilus expression, with low Mn2+ 

concentrations associated with high pilus expression and high Mn2+ associated 

with low pilus expression. This is contrary to that seen with high intracellular 

Mn2+ associated with high pilus expression however it is clear manganese directly 

or indirectly affects pilus expression. PsaD also present on the psa operon is 

thought to function in the breakdown of H2O2 which is why deletion mutants 

show a reduced resistance to oxidative stress (Cha & Kim, 1996, Novak et al., 

1998, Johnston et al., 2004, Tseng et al., 2002). However this gene has its own 

promoter and is not regulated by PsaR and therefore is likely not modulating 

H2O2 levels which is causing the altered pilus expression in the PsaR mutant 

(Johnston et al., 2006, McAllister et al., 2004, Hendriksen et al., 2009).  

merR which has previously been shown to modulate pilus expression was shown 

to be up regulated in the Hendriksen study (2009) (in a PsaR deletion mutant). 

However MerR was shown to act as a repressor of the islet and the pilus genes 

were up regulated in this study, so is likely not the reason for this change (Rosch 

et al., 2008, Hendriksen et al., 2009). psaD is also present on the psa operon 

which encodes a putative thiol peroxide (Novak et al., 1998). Although the 

Hendriksen (2009) study did not observe any expression changes in spxB or lctO 

in the PsaR mutant strain. Deletion mutants in psaA have shown to effect the 

expression of both spxB and lctO (Ogunniyi et al., 2010). This study however was 

performed in a non piliated strain (D39) and therefore its effect on pilus 

expression is unknown. If this was also the case in TIGR4 there could be subtle 

change in SpxB and LctO levels in the PsaR mutants in the Hendriksen (2009) and 

Johnston (2006) studies which account for the changes in pilus expression 

(Johnston et al., 2006, Hendriksen et al., 2009). Both of these studies did not 

assess the H2O2 levels produced in the PsaR mutants. 

However in this study we have not assessed whether it is H2O2 directly altering 

pilus expression or if it may be due to a breakdown product of H2O2. H2O2 itself 

has a short half life and is rapidly degraded by the Fenton reaction into hydroxyl 
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radicals and a hydroxide ion (Imlay et al., 1988). The effect of break down 

products of H2O2 on pilus regulation could be assessed further by growing 

T4!spxB not only with H2O2 but also with iron chelators to block the Fenton 

reaction or hydroxyl radical scavenger. We would assume that this may be the 

case as roughly 30 minutes passed after addition of H2O2 to the growth media 

before samples were collected.  

The deletion of SpxB has been linked to the ability of the pneumococcus to 

phase vary, with a single bacterial population consisting of two colony types that 

of transparent and opaque (Weiser et al., 1994). Transparent colony types have 

been associated with having a 2.1-3.8 increase in amounts of cell surface 

teichoic acid compared to opaque types, showing increase ability to colonises 

the nasopharynx (Kim & Weiser, 1998, Weiser et al., 1994). Whereas opaque 

phenotype is associated with a 1.2-5.6 fold increase in the amount of capsule on 

the cell, having an increased virulence during invasive disease and decreased 

ability to be phagocytosed due to the increased levels of the capsule (Kim & 

Weiser, 1998, Kim et al., 1999). Along with this a number of variations in the 

levels of surface proteins has been noticed between the two phenotypes with 

increased levels of PspA seen in opaque variant and decreased levels of LytA, 

PpmA and CbpA (Kim & Weiser, 1998, Weiser et al., 1996, Overweg et al., 2000). 

Increased levels of LytA and CbpA, both choline binding proteins may be due to 

increased levels of teichoic acid in transparent variants and therefore 

phosphorylcholine levels creating more anchoring points for these proteins. 

PpmA (proteinase maturation protein A) is also thought to aid protein maturation 

on the cell surface and therefore may regulate the abundance of proteins on the 

cell surface. PpmA has also been shown to play a role in colonisation during 

infection (Cron et al., 2009).  

Our microarray data measuring expression differences between T4NO1 and 

T4!spxB did not show any of these genes to be differentially regulated but 

whether there were differences in protein levels was not assessed. The fact we 

see difference in a number of surface proteins in the two phenotypes and the 

fact the transparent phenotype is better equipped during colonisation fits with 

our data, as the T4!spxB mutant shows only opaque variants (data not shown), 

and has reduced levels of the pilus on the cell surface (Ramos-Montañez et al., 
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2008). Currently no literature has made a link between phase variation and pilus 

expression which may be in part due to the fact the majority of studies assessing 

cell surface constituents in phase variants is performed in non piliated strains. 

Clearly if there are changes in the capsule levels in T4!spxB etc this may effect 

the surface exposure of levels of the pilus and skew the FACS data (Sanchez et 

al., 2011). However microarray analysis did not indicate differential expression 

of any of the capsule genes and FACS analysis did not indicate there was an 

increase in the fluorescence intensity of the capsule stained population, which 

would be expected if capsule levels were increased in the strains studied. 

Another variation that may be affecting the cell surface constituents is that 

caused by differences in the cell membrane fluidity. This has also been shown to 

vary between opaque and transparent phenotypes with a lower degree of 

unsaturated fatty acids seen in opaque variants compared to transparent (Aricha 

et al., 2004). Variations in the fatty acid saturation of the cell membrane alters 

membrane fluidity which is important for bacterial adaptation under varying 

environmental conditions. The ability to regulate the membrane fluidity is called 

homeoviscous adaptation (Sinensky, 1974). Membrane fluidity can affect the 

functionality of proteins within the cell membrane including those involved in 

cell signalling and transport (Lee, 2004). In the pneumococcus variations in the 

cell membrane fatty acid saturation and H2O2 have been directly linked 

(Pesakhov et al., 2007). FabF an enzyme involved in the fatty acid synthesis is 

oxidised directly by hydrogen peroxide on a cystein residue which inhibits its 

activity (Benisty et al., 2010).  

This may link in to why we see upon addition of H2O2 to a growing culture of 

T4!spxB increased levels of pilus on the cell surface. Hydrogen peroxide addition 

may alter the membrane permeability and directly effect the translocation of 

proteins through the membrane or alter functionality of proteins retained in the 

cell membrane that have signalling capabilities. Six pneumococcal TCS have 

been shown to regulate the pneumococcal pilus, perhaps their signalling 

functionality is altered upon variation in the membrane fluidity. In the 

pneumococcus a link between membrane fluidity and variation in surface 

exposed protein has not been directly assessed and would require further study. 

Interestingly addition of exogenous H2O2 in a SpxB mutant strain was unable to 
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revert the membrane fatty acid composition to that of the WT strain, suggesting 

this does not complement to the full extent the levels of endogenous hydrogen 

peroxide levels (Pesakhov et al., 2007). This as discussed earlier, may be why we 

only see a slight increase in pilus expression in T4!spxB upon addition of 

exogenous hydrogen peroxide. 

Contradictory to our hypothesis when grown under anaerobic conditions we did 

not see a similar effect on pilus expression to that of the T4!spxB mutant. Pilus 

expression was reduced suggesting an important role in colonisation, however 

upon FACS analysis T4NO1 grown anaerobically showed a decrease in the amount 

of pili on the surface of a single cell. Whereas in T4!spxB and T4!lctO we 

observed a reduction at the population level in the total number of cells positive 

for pili on the cell surface. H2O2 production has been shown to be reduced to 

almost nothing in pneumococci grown under anaerobic conditions, likely due to 

reduced activity of SpxB and LctO (Pesakhov et al., 2007). Growth under 

anaerobic conditions has also been shown to have altered membrane fatty acid 

saturation due to varying levels of H2O2 production (Pesakhov et al., 2007). 

However the change in fatty acid composition of the membrane during growth 

anaerobically was more subtle than the huge shift seen upon deletion of SpxB 

and therefore these differences may account for the differences observed in our 

data (Pesakhov et al., 2007).  

The fact that we see variations in adherence upon deletion of SpxB is not 

surprising with its role in colonisation is clearly noted in the literature 

(Spellerberg et al., 1996, Weiser et al., 1996). T4!spxB showed a statistical 

decrease in adherence to all cell lines compared to T4NO1, which would suggest 

a multifaceted role in virulence, which is also clear from the literature. Being 

important for ATP production within the bacterial cell it would be expected to 

be the case. T4!spxB!lctO also showed a statistical decrease in adherence to all 

cell lines compared to T4NO1, this was to a similar level as that of T4!spxB.  

Interestingly T4!lctO also showed a statistically reduced adherence to all cell 

lines compared to T4NO1. No in vivo data is available in the literature assessing 

the bacterial fitness when this gene is deleted, however due to similar 

adherence capabilities to T4!spxB we would expect it to play some role in 
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virulence. However its role in meningitis is perhaps less than that of T4!spxB as 

it showed a statistical increase in adherence to HBMEC cells compared to 

T4!spxB and T4!spxB!lctO. This difference correlated well with the differing 

amount of surface exposed RrgB/ pili, again suggesting an important role of the 

pilus in meningitis. This was also observed when looking at StkP variants 

expressing different surface levels of RrgB/pili (Chapter 5). 

In conclusion we have shown that both SpxB and LctO alter the expression of the 

pneumococcal pilus at the population level. Microarray data looking at 

expression differences in T4!spxB did not give an indication of any other genes 

that may be affected by this deletion and cause the decrease in expression of 

the pneumococcal pilus. With regards to our initial question of what contribution 

these deletions make in Xen35 to the reduced pilus expression, we can conclude 

from this data they likely cause some of the decreased pilus expression. 

However the pilus expression seen in Xen35 is still lower than that of T4!spxB 

showing 5.5% and 20% cells positive for RrgB on the surface within a population, 

respectively. This may suggest there are other factors contributing to the 

reduced pilus expression in Xen35. However it is hard to compare between the 

two strains as we do not know the level of expression of the pilus in the parent 

TIGR4 strain Xen35 was constructed in. This could be similar to T4JH which 

showed only 20.5% of cells positive for RrgB on the cell surface and in that case 

would equate to around 75% reduction in pilus expressing cells in Xen35, a value 

that would be similar to that when comparing between T4NO1 and T4!spxB. 

No genome or expression changes were observed in Xen35 in either mntE, psaA, 

psaB, psaC and psaR. However microarray data of a MntE mutant grown in the 

presence of high levels of manganese showed some similar expression changes to 

those seen in Xen35, but oppositely expressed (Rosch et al., 2010). This included 

up regulation of SP_515, SP_516, SP_1757, SP_1764-67, SP_1769-71 in Xen35 

which were all down regulated in T4!mntE. SP_0461-64 and SP_0875-77 were up 

regulated in Xen35 and down regulated in T4!mntE. Finally SP_1895-98 and 

SP_1676 were down regulated in both strains. The fact we see no variations in 

genes which function to modulate intracellular manganese levels in Xen35 would 

suggest perhaps another common factor between the two strains is causing the 

common expression changes, which could be due to variations in H2O2 
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production, with none produced in Xen35 and higher levels than the parent 

TIGR4 strain produced in T4!mntE. Further studies would be needed to assess 

whether any genome or expression changes in Xen35 could be altering the ability 

to regulate manganese uptake/ efflux. 



 

 

 

 

 

 

 

 

 

 

7 Evaluating the potential burden of lux gene 
expression in the pneumococcus 
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7.1 Aim of this chapter 

As seen previously Xen35 shows a reduced pilus expression compared to TIGR4. 

The work described in this chapter evaluates the role of the lux genes insertion 

and expression with regards to potentially contributing to the reduced pilus 

expression in Xen35, and causing a metabolic burden on the bacterial cell.  

To assess this a new collection of bioluminescent S.pneumoniae strains were 

constructed, placing the lux genes at an alternative region in the genome and 

under the control of different strength promoters, including that of the 

promoter driving the lux gene expression in Xen35. Placing the genes at an 

alternative, clearly defined location in the chromosome eliminates the risk of 

effects due to insertion into functional genes e.g. SP_1914 in Xen35. These 

bioluminescent strains were assessed via western blotting to determine the 

effect expression of the lux genes has on pilus expression (RrgB levels).  

One of the constructed strains T4P2 was further characterised by determining 

the effects the lux genes have on whole genome expression changes. For this 

microarray analysis was performed on T4P2 compared to its parent T4NO1. This 

data was compared to the genome expression changes observed in Xen35 to see 

whether common genes are differentially regulated between T4P2 and Xen35. 

And are therefore likely due to the lux genes over expression in both strains. 

Further the expression of the lux genes and pilus genes expression were 

validated in T4P2 relative to Xen35. T4P2 virulence was also evaluated in a 

mouse model of infection and compared to the data obtained for T4NO1 and 

Xen35 virulence. Finally to determine whether expression of the lux genes 

resulted in accumulation of specific genome changes in Xen35, whole genome 

sequence analysis was performed in T4P2. 
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7.2 Background 

As described previously Xen35 is a bioluminescent serotype 4 S.pneumoniae 

strain, used to visualise in vivo disease progression (see section 4.2). Chapter 4 

elucidated the genome changes that were present in this strain however the high 

expression of the lux genes alone remains to be evaluated.  

The bioluminescence reaction can be seen in Figure 4-1. As well as the 

requirement for oxygen the rate limiting step for this reaction is production of 

the long chain aldehyde substrate (RCHO) not normally synthesised within the 

bacterial cell which is catalysed by the luxC-E encoded fatty acid reductase 

complex, which channelling fatty acids from the fatty acid biosynthesis pathway 

to produce the substrate for the luciferase (LuxA/ LuxB) (Boylan et al., 1985, 

Boylan et al., 1989). Initial steps in the synthesis of the aldehyde are catalysed 

by the transferase (luxD), which catalyses the transfer of fatty acyl groups from 

acyl-ACP or acyl-CoA onto water, resulting in a fatty acid (Byers & Meighen, 

1985). The next step involves the synthetase (luxE), which only functions when 

bound to the reductase. The enzyme activates the fatty acid forming a fatty 

acyl-AMP intermediate bound to the enzyme (Boylan et al., 1985, Boylan et al., 

1989). The acyl group is then transferred to the synthetase followed by the 

reductase, which in turn is reduced to give the aldehyde. During the reactions 

catalysed by the synthetase and reductase ATP and NADPH are utilised. The 

reaction equation is shown in Equation 7-1. 

RCOOH + ATP + NADPH   #   NADP + AMP + PPi + RCHO 

Equation 7-1: Reaction catalysed by luxE and luxC 

Reaction catalysed by the synthetase and reductase component of the fatty acid reductase 
complex, producing the aldehyde substrate for the luciferase (LuxA/ LuxB). RCOOH (fatty 
acids), ATP (adenosine triphosphate), NADPH (reduced nicotinamide adenine dinucleotide 
phosphate), NADP (nicotinamide adenine dinucleotide phosphate), AMP (adenosine 
monophosphate), PPi (pyrophosphate), RCHO (long chain aldehyde) 
 

The reaction also required the constant recycling of FMN to its reduced form 

FMNH2, which is performed in luminescent bacteria by flavin reductase, which is 

not encoded on the lux operon (reaction is NAD(P)H dependant) (Jablonski & 

DeLuca, 1977, Michaliszyn et al., 1977). The fact in normally non bioluminescent 
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bacteria we observe bioluminescence suggests this enzyme is also present, likely 

due to the requirement for FMNH2 in a number of other biological processes. 

SP_1627 in S.pneumoniae is homologous to a putative NADH flavin reductase. In 

this instance for FMNH2 production NADH is oxidised reducing FMN giving FMNH2 

and NAD+. The cloning of the lux genes into a bacterium that does not normally 

bioluminesce may pose a metabolic burden to the cell via using ATP for aldehyde 

production and altering the availability of molecules with reducing power, 

required for energy production and redox balance.  
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7.3 Promoter disruption 

Initial experiments were performed to confirm the promoter driving the 

expression of the lux genes in Xen35 it that lying downstream of SP_1915. A 

mutant was constructed in T4NO1 inserting a spectinomycin resistance cassette 

20 nucleotides downstream of the start of SP_1915, using a transposon based 

mutagenesis method. This separated the predicted -10 and -35 sigma70 binding 

recognition sites from that of the start of the SP_1915 gene (Figure 7-1). This 

was initially constructed in a TIGR4 background and then PCR amplified from this 

strain and transformed into Xen35 producing Xen35!19. This insertion enabled 

evaluation of whether this is the promoter driving the expression of the lux 

genes in Xen35.  

To assess the ability of Xen35!19 to bioluminescence bacterial strains were 

inoculated at 1x106 cfu/20µl into 180µl of BHI in a black 96 well plate in 

triplicate, with Xen35 and TIGR4 used as controls. Bioluminescence was 

measured over time in a plate reader taking measurements every 30 minutes 

over a period of approximately 10 hours. Average of the three readings was 

calculated and plotted as shown in Figure 7-2. Insertion of the resistance 

cassette down stream of SP_1915 removed the ability of the strain to 

bioluminesce (Figure 7-2), confirming that this promoter drives the high 

expression of the lux genes in Xen35. 
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Figure 7-1: Schematic diagram of transposon insertion in Xen35!19 

Diagram of downstream region of gene XEN35_1915 where its predicted promoter lies (BPROM), red box encircles the predicted -10 box and the blue box 
the -35 box. Blue cross represents the insertion site of the transposon insertion of roughly 1.1kb in size. 
 
 
 
 



Chapter 7 

 

300 

 

Figure 7-2: Bioluminescence of Xen35!19 

Graph of bioluminescence of strains Xen35, TIGR4 and Xen35!19 over time. Each point on 
the graph represents the average of a triplicate reading, Readings were taken every 30 
minutes. 
 

7.4 Construction of a new bioluminescent strain 

To assess the metabolic burden that the high expression of the lux genes may 

have on the bacterial cell a collection of bioluminescent strains were 

constructed. Initial experiments performed were to clone the lux genes (luxA-E) 

into plasmid pCEP2 (Guiral et al., 2006), which placed the genes under the 

control of a maltose inducible promoter (pCEP2lux). This plasmid was then 

transformed into T4NO1 and these genes recombined into SP_1886 (IS1167 

element, frameshift). This plasmid was designed to allow chromosomal 

expression of genes and no deleterious effects from affecting adjacent genes, as 

this insertion is into a non-functional element (Figure 7-3).  

Once transformed into T4NO1 the lux gene expression was induced using 

maltose. However no bioluminescence was observed (data not shown). This was 

attributed to the requirement for a strong promoter and the maltose inducible 

promoter was not strong enough to drive expression of all five lux genes. 

Therefore bioluminescence produced by this strain was below the detection limit 

of the plate reader used for analysis. 
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The maltose inducible promoter was therefore swapped for that of alternative 

pneumococcal promoters chosen from high expression of the downstream gene 

shown by RNA-seq analysis, see Table 7-1. Promoter presence was predicted in 

the upstream regions of the highly expressed genes by using the BPROM internet 

tool to detect potential sigma70 binding sites. The promoter present upstream 

of SP_1915 was also chosen as this is the promoter driving the expression of the 

lux genes in Xen35. In some instances the highly expressed gene contained no 

promoter directly upstream and therefore the expression of the surrounding 

genes was gauged to assess whether the gene is contained within an operon. In 

this instance the nearest upstream promoter was chosen as for SP_0236. Site 

directed mutagenesis was performed on pCEP2lux to create a restriction site 

upstream of the maltose inducible promoter to allow excision and replacement 

with the new promoters, which was performed for all chosen promoters. 

Plasmids constructed were then transformed into T4NO1 creating strains T4P1, 

T4P2, T4P3, T4P4 and T4P19. These strains were initially assessed for their 

ability to bioluminesce. 

Promoter Gene 

number 

Gene function RPKM 

expression 

value 

Promoter 5’ 

of gene 

P1 SP_1489 Elongation factor Tu 
8,057.38 SP_1489 

P2 SP_2012 GAPDH 
5,126.58  SP_2012 

P3 SP_1128 Enolase 
3,202.48 SP_1128 

P4 SP_0236 DNA directed RNA 
polymerase alpha 3,178.91 SP_0232 

P19 SP_1915 Hypothetical protein 
34.84 SP_1915 

Table 7-1: Table of promoters used to drive expression of the lux genes 

Table of promoters chosen for cloning into pC2LSD upstream of the lux genes, and 
information regarding their expression in TIGR4. 
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Figure 7-3: Schematic diagram of cloning region in pC2LSD plasmid and recombination site into TIGR4. 
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7.4.1 Bioluminescence of T4P strains 

The different T4P strains were assessed for their ability to bioluminesce, which 

gives an indication of the strength of the promoter placed upstream of the lux 

genes. Bacterial strains were inoculated at 1x106 cfu/20µl into 180µl of BHI in a 

black 96 well plate in triplicate. Bioluminescence was measured over time in a 

plate reader taking measurements every 20 minutes over a period of 10 hours. 

Average of the three readings was calculated and plotted as shown in Figure 7-4. 

 

Figure 7-4: Bioluminescence of T4P strains 

Graph of bioluminescence of Xen35, TIGR4 and the T4P strains over time. Each point on the 
graph represents the average of a triplicate reading, Readings were taken every 20 minutes. 
 

T4NO1 was used as a negative control for bioluminescence measurement and 

Xen35 as a positive control. All T4P1-4 strains showed bioluminescence using the 

plate reader, however to varying extents. T4P2 and T4P3 showed the highest 

bioluminescence, T4P1 showed slightly lower levels and T4P4 bioluminescence 

levels were almost undetectable. When comparing these strains to Xen35 none 

of them were as bioluminescent with T4P3 and T4P2 showing roughly 3-4 times 

less bioluminescence respectively. T4P19 although containing the promoter that 

drives the lux gene expression in Xen35 showed no bioluminescence. This would 

indicate that some of the other genome changes seen in Xen35 effect the 
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activity of this promoter, which is why the bioluminescence is so bright in Xen35 

and other Xen strains.  

7.4.2 Western blot analysis of T4P strains 

Western blot analysis was performed on strains T4P1-4 to assess the effect of lux 

gene expression on RrgB expression, as RrgB levels were severely reduced in 

Xen35. 

 

Figure 7-5: Western blot of T4P strains RrgB expression compared to T4NO1. 

Western blotting analysis was performed on T4NO1, T4P1, P2, P3, P4 and T4!rrgB looking 
for expression of RrgB in all strains (!-RrgB antibody). Equal protein loading was confirmed 
by equal expression of GroeL (!-GroeL antibody), normalise against in analysis. Western 
blotting quantification was performed using ImageJ with fold changes in RrgB expression 
compared to T4NO1 boxed below the strain. Left hand side numbers represent the size in 
kDa of proteins run to the same point. 
 

Expression of the pilus backbone protein (RrgB) showed a large decrease in the 

RrgB levels in all T4P strains, shown in Figure 7-5. All strains showed a decrease 

of 40-280 fold in RrgB pilus protein levels compared to T4NO1. Xen35 was not 

included in the analysis so the relative RrgB levels in these strains and Xen35 

may vary. The fold change observed in these strains is much higher than that 

observed in Xen35. However Xen35 was compared against T4JH and the T4P 

strains were constructed in T4NO1. Pilus expression varies between the two 
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TIGR4 strains with roughly a four fold increase in T4NO1 pilus positive cells 

compared to T4JH, which may account for why a bigger drop in RrgB expression 

is observed in the T4P strains. 

7.4.3 Hydrogen peroxide production of T4P strains 

Levels of hydrogen peroxide were measured to see whether expression of the lux 

genes effects hydrogen peroxide production. In Xen35 there is no hydrogen 

peroxide production due to the SNPs located in spxB and lctO resulting in 

truncated proteins. Both of these protein are important during aerobic growth. 

As both are non-functional in Xen35 this may indicate they were non-functional/ 

had a reduced functionality anyway and therefore mutations were able to 

accumulated in these genes. 

 

Figure 7-6: Hydrogen peroxide production of T4P strains 

Each strain was represented in triplicate in the Hydrogen peroxide assay. (A) The graph 
gives the hydrogen peroxide production in mM of each strain calculated using a standard 
curve of known hydrogen peroxide concentrations (See Figure 2-14), the dotted line 
represent the limit of detection. Hydrogen peroxide production above 9mM could not be 
accurately measured therefore a maximum value of 9mM was assigned. (B) Shows visually 
the assay performed in a 96 well plate with each strain represented in triplicate. 
 

SpxB is functional in the T4P strains shown from Figure 7-6, however all show 

reduced levels of hydrogen peroxide production compared to T4NO1. This may 

suggest SpxB has a reduced function in these strains. However even after 
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deletion of SpxB we did not observe the same level of reduced pilus expression 

that we see in Xen35 and the T4P strains. Therefore there must be another 

factor causing this reduction in pilus expression in the T4P strains and Xen35, 

which is in some way linked to high expression of the lux genes. 

Only one of the T4P strains was chosen for further analysis, so further 

experiments were performed on T4P2. 

7.5 Characterisation of T4P2 

7.5.1 FACS and fluorescence microscopy analysis of T4P2 

Differences seen in pilus expression in T4P2 were further confirmed by FACS 

analysis and fluorescence microscopy. This assessed if the difference in RrgB 

expression is that of a reduction in the RrgB levels on a single cells or that of a 

reduction in the number of pili positive cells within the population as a whole. 

FACS analysis confirmed the reduction in RrgB and like Xen35 this reduction was 

at the population level (Figure 7-7, Figure 7-8), with now only 7.6% of T4P2 cells 

expressing RrgB on their cell surface compared to that of its parent T4NO1 (88% 

RrgB+) (Table 7-2). A population of Xen35 however still contained fewer RrgB+ 

cells (5.4%). As observed for some Xen35 pili positive cells, some T4P2 cells 

contained pili just at set location on the cell and a small number also showed 

pili over the whole cell surface (Figure 7-8). The level of expression of the lux 

genes and pilus islet genes in T4P2 were analysed comparing their expression 

levels to Xen35. 
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Figure 7-7: FACS analysis of RrgB surface expression in T4P2 

FACS was performed on T4P2, T4NO1, Xen35 and T4!rrgB. (A) Shows histograms of the 
capsule positive populations selected for from samples stained with a capsule antibody, 
population used for further analysis. (B) Shows the capsule stained populations being gated 
on for being RrgB positive, histograms/ polychromatic plot show negative (left) and positive 
(right) RrgB populations in each strain. 
 

Strain RrgB- (%) RrgB+ (%) 
T4NO1 12.1 87.9 
T4P2 92.4 7.6 
Xen35 94.7 5.4 
T4!rrgB 98.4 1.6 

Table 7-2: Percentage RrgB positive cells in a T4P2 population from FACS analysis. 

Table shows the percentage RrgB positive and negative cells in a growing bacterial 
population. FACS analysis was performed in FlowJo. 
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Figure 7-8: Fluorescence microscopy of T4P2. 

One representative image of fluorescently labelled T4NO1, T4"rrgB, Xen35 and T4P2 used 
for FACS analysis. Cells were stained for the presence of RrgB (FITC) and the capsule 
(APC). Scale bars above represent, T4NO1-9µm, T4"rrgB - 140µm, T4P2 - 14µm and Xen35 - 
140µm. The same representative image will be used throughout this study for each strain, 
more images can be seen in appendix I. 
 

7.5.2 Lux gene and pilus expression in T4P2 

RT-PCR analysis was performed to measure the expression levels of the lux genes 

(luxA-E) and the pilus islet in T4P2 relative to that of Xen35. 
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Figure 7-9: RT-PCR graph of lux and pilus genes expression in T4P2 

Graph shows RT-PCR of luxA-E and the whole pilus islet (rlrA, rrgA, rrgB, rrgC, srtB, srtC, 
srtD) in T4P2. Fold change represents that of T4P2 compared to Xen35. Each bar represents 
the average of three replicas (three biological replicas) and error bars the standard 
deviation. Statistical analysis was performed by a 1-way ANOVA with a Tukeys testing 
correction comparing the dCt values of the control strain (Xen35) to the test strain (T4P2), * 
P<0.05, **P<0.001. 
 

RT-PCR showed roughly a 3-5 fold decrease in the expression of the lux genes in 

T4P2 compared to Xen35, this correlates well with the difference in 

bioluminescence levels produced between the two strains, shown in Figure 7-4. 

Interestingly this also correlates with an increase in pilus expression of 2-4 fold 

seen in T4P2 compared to Xen35. This would indicate a potential metabolic 

burden on the cell of expressing the lux genes, with higher expression of the lux 

genes resulting in decreased pilus expression. 

7.5.3 Microarray analysis of T4P2 

Microarray analysis was performed on T4P2 to assess whole genome expression 

changes compared to T4NO1, this will also enable evaluation of the contribution 
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of the expression of the lux genes to variations in gene expression in T4P2 and 

Xen35. 

Gene Description Abbrev Fold 
change 

SP_0453 Amino acid ABC transporter, permease protein.  1.2 
SP_0461 Transcriptional regulator, pilus islet rlrA 36.3 
SP_0494  CTP synthase, catalyses amination of UTP to CTP pyrG 1.4 
SP_1071  ABC transporter ATP binding protein.  1.8 
SP_1296 Hypothetical protein  1.5 
SP_1356  Chlorohydrolase, Atz/Trz family protein  2.1 
SP_1500  Amino acid ABC transporter, amino acid binding protein.  1.7 
SP_1501  Amino acid ABC transporter, ATP binding protein.  1.8 

SP_1576  
Homoserine-o succinyltransferase, methionine 
biosynthesis. 

 
1.1 

SP_1578  Hypothetical protein  1.3 
SP_1675  ROK family protein  3.0 
SP_1676  N-acetlyneuraminate lyase  2.8 
SP_1682  Sugar ABC transporter, permease protein  2.8 
SP_1684  PTS system, IIBC component  2.4 
SP_1688  ABC transporter permease protein  4.3 
SP_1816  Anthranilite synthase component II trpG 3.2 

SP_1852  
Galactose-1-phosphate uridylyltransferase, galactose 
metabolism. 

 
3.7 

SP_1874  Ribosomal large subunit pseudouridine synthase  2.2 
SP_1875  Functions during chromosome segregation. scpB 2.0 
SP_1878  CBS domain containing protein  1.9 
SP_1879  Hypothetical protein  2.0 

SP_1880  
Putative deoxyribonucleotide triphosphate 
pyrophosphatase 

 
2.1 

SP_1882  Hypothetical protein  4.1 
SP_1894  Sucrose phosphorylase gtfA 3.0 
SP_1895  Sugar ABC transporter, permease protein rafE 3.0 
SP_1897  Sugar ABC transporter, sugar binding protein rafG 4.4 
SP_2000  DNA binding response regulator rr11 1.8 
SP_2196  ABC transporter, ATP binding protein.  1.6 

Table 7-3: Genes differentially regulated in T4P2 

Table shows genes differentially regulated in T4P2 compared to its parent T4NO1 (P<0.05). 
Fold change represents that seen in T4P2 compared to T4NO1, red showing genes up 
regulated in T4P2 and blue are those that are down regulated. 
 

A total of 28 genes were shown to be differentially regulated between T4P2 and 

T4NO1 shown in Table 7-3. Included in this are a number that have been shown 

to play a role in virulence. SP_0494 and SP_1356 have been shown to play a role 

in meningitis (Molzen et al., 2011). SP_0461, SP_0494, SP_1816 and SP_1879 are 

important for lung infection (Hava & Camilli, 2002). SP_1356 is up regulated 

upon contact with D562 cells, SP_1578, 1852, 1875 and 1878 are up regulated in 

the blood of infected mice and SP_1675 and SP_2196 are up regulated in the CSF 

of infected rabbits (Orihuela et al., 2004). 
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The genes differentially regulated in the T4P2 were compared to those that 

were differentially regulated in Xen35, with common genes likely due to 

expression of the lux genes. A comparison was made between the P<0.05 (Figure 

7-10) and P<0.1 (appendix VII) gene lists from microarray analysis of both strains 

compared to TIGR4. Comparison was performed using a venn diagram. 

 

Figure 7-10: Venn diagram of gene expression changes in T4P2 and Xen35. 

Venn diagram showing genes commonly regulated in T4P2 compared to Xen35. Diagram 
shows only 1 gene (P<0.05) (A) and 16 genes (P<0.1) (B) common to both evaluated from 
strains individual gene expression changes compared to TIGR4. 
 

When comparing gene expression changes between T4P2 and Xen35 only 1 gene 

was commonly regulated in both (P<0.05) SP_1895, a component of a sugar ABC 

transporter. SP_1895 was down regulated in Xen35 and T4P2 5 and 3 fold 

respectively. When comparing the gene lists with an increased P value (P<0.1) 

there were a further 15 genes commonly differentially regulated in the two 

strains shown in appendix VII. Of the genes a number are regulated oppositely in 

the two strains and therefore are likely not genes regulated commonly by the lux 

genes. The genes that were common to both and aren’t oppositely regulated 

include SP_0461-64 (the pilus pilins and transcription regulator), SP_1895-98 

(sugar ABC transporter genes and a alpha galactosidase) and SP_2193 (rr06, 

response regulator). 
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7.5.4 Real-time PCR validation of microarray analysis in T4P2 

Microarray analysis was confirmed by RT-PCR analysis of the genes encoded on 

the pilus islet. Microarray analysis showed a large decrease in pilus expression in 

T4P2 compared to T4NO1. This decrease is larger than that of Xen35, but this is 

due to the fact Xen35 pilus expression was compared to that of T4JH, which 

shows roughly a 4 fold decrease in pilus expression compared to T4NO1. As T4P2 

was constructed in T4NO1 this is the appropriate comparison. 

 

Figure 7-11: RT-PCR graph of pilus expression in T4P2 

Graph shows RT-PCR of the whole pilus islet (rlrA, rrgA, B, C, srtB, C, D) in T4P2. Fold 
change represents that of T4P2 compared to T4NO1. Each bar represents the average of 
three replicas (three biological replicas) and error bars the standard deviation. Statistical 
analysis was performed by a 1-way ANOVA with a Tukeys testing correction comparing the 
dCt values of the control strain (TIGR4) to the test strain (T4P2), * P<0.001. 
 

Gene Microarray RT-PCR 

SP_0461 (rlrA) 36.3 39.9 
SP_0462 (rrgA) 24.9 36.5 
SP_0463 (rrgB) 25.1 47.5 
SP_0464 (rrgC) 23.2 36.8 
SP_0466 (srtB) 5.0 21.3 
SP_0467 (srtC) 9.3 14.7 
SP_0468 (srtD) 13.5 12.3 



Chapter 7 

 

313 

Table 7-4: Comparison of expression changes of the pilus islet in T4P2 from microarray and 
RT-PCR analysis. 

Table shows fold changes in gene expression of the whole pilus islet in T4P2 compared to 
T4NO1. Fold changes show that from microarray data and those from RT-PCR. 
 

RT-PCR further confirmed the down regulation of the pneumococcal pilus in 

T4P2 showing a 35-50 fold down regulation of the genes that encode the pilins 

and the transcriptional regulator and a 10-20 fold down regulation of the sortase 

enzymes (Figure 7-11). Comparison of the pilus islet expression by microarray 

and RT-PCR analysis showed very similar expression levels, confirming this 

change (Table 7-4). 

7.5.5 In vivo analysis of T4P2 

To assess the virulence of T4P2 in vivo a mouse model of infection was 

performed as described previously for T4NO1 and Xen35 (experimental design 

identical to that of Xen35 vs. T4NO1). The data below is that of the T4NO1 and 

Xen35 data already presented above and comparisons made between these data 

sets and T4P2. In this data set statistical analysis was performed comparing 

T4NO1 and T4P2/ Xen35 and T4P2 only as the T4NO1 and Xen35 comparison have 

been assessed earlier in this study.  

Initial analysis was performed looking at the survival of MF1 mice infected with 

T4P2 and the percentage weight loss of these mice over time (Figure 7-12). Mice 

infected with T4P2 had a statistically significantly longer survival time than mice 

infected with T4NO1. However their survival time was similar to that of mice 

infected with Xen35, showing no statistical difference between the two (Figure 

7-12). Percentage weight loss of mice infected with T4P2 was statistically lower 

than that of mice infected with T4NO1 suggesting a slower disease progression in 

this strain compared to T4NO1 (Figure 7-12). Mice infected with Xen35 showed a 

similar percentage weight loss to that of T4P2 infected mice indicating a similar 

disease progression. 



Chapter 7 

 

314 

 

Figure 7-12: Survival and weight loss of mice infected with T4P2 

(A) Shows percentage survival of mice infected with T4NO1, Xen35 or T4P2 over time, 
statistical analysis was performed comparing T4P2 to T4NO1 or T4P2 to Xen35 using a 
logrank Test, ** P<0.01. ** above the strain indicated a statistical difference compared to 
T4P2. (B) Shows percentage weight loss of mice infected with Xen35, T4NO1 or T4P2. 
Statistical analysis was performed using a non-parametric Mann-Whitney two sample rank 
test, **P< 0.01 and ***P<0.001. 
 

To assess at what point during infection this attenuation of T4P2 is occurring 

enumerated of the bacterial load in the mouse lungs, brain, blood and nasal 

wash over time was performed.  

At 24 hours post infection there seemed to be no statistical difference in counts 

from any organs/ bodily fluids when comparing T4P2 to T4NO1 and Xen35. 

However there is a trend towards lower counts in all compared to T4NO1 except 

the nasal wash (Figure 7-13). At later time points there are some clear 

differences in virulence between T4P2 and T4NO1/Xen35. At 48 hours and 

survival time points there is a statistical difference in bacterial counts in the 

nasal wash, blood and brain of T4P2 infected mice compared to T4NO1, at 72 

hours post infection bacterial counts in the blood and brain were statistically 

lower compared to T4NO1. This may suggest an inability of T4P2 to spread into 

the blood and to the brain. The decrease in colonisation is likely due to the 

decrease in pilus as T4P2 has a functional SpxB confirmed by hydrogen peroxide 

production (Figure 7-6). Interestingly at this time point there was also a 

statistical decrease in bacterial counts in the brain, blood and lungs of T4P2 

infected mice compared to Xen35, suggesting a decrease in virulence of T4P2 

compared to Xen35 (Figure 7-13). T4P2 infected mice were imaged at each time 

point to visually assess disease progression, shown in Figure 7-14. 
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Figure 7-13: Bacterial counts in organs and bodily fluids of MF1 mice infected with Xen35, 
T4NO1 or T4P2. 
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Bacterial counts were enumerated from brain, lungs, nasal wash and blood of mice infected 
with either Xen35, T4NO1 or T4P2. Counts were enumerated from 5 mice for each strain over 
varying time points, graph (A) represent the 24 hour post infection time point, (B) 48 hours, 
(C) 72 hours and (D) the survival time point. Statistical analysis was performed comparing 
T4NO1 to T4P2 or Xen35 to T4P2 using a non-parametric Mann-Whitney two sample rank 
test, *P< 0.05, ** P<0.01. 
 

 

Figure 7-14: Images of mice infected with T4P2 

Images of mice infected with T4P2 over time showing in vivo infection in the lungs and 
abdomen of some mice. Images were acquired using the IVIS spectrum in vivo imaging 
system, imaging for 5 minutes for each. Hours above the images indicate that of the time 
elapsed since inoculation. Numbers to the side indicate the mice numbers in each group. If 
mice are not present in the image they have been culled. 

 

7.6 T4P2 whole genome sequence 

Whole genome sequence analysis was performed on T4P2 to assess whether 

expression of the lux genes leads to accumulation of genetic changes. 

Preliminary whole genome sequence changes of T4P2 compared to the genome 

sequence data available at NCBI (NC_003028) can be seen in Table 7-5. 

Preliminary analysis included reference assembling the sequence reads of T4P2 

to the available genome sequence (NC_003028), followed by SNP and indel 

testing and assessing if there are any low coverage regions. This analysis was 
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performed by Dr Andrea Mitchell. Only three genome changes were observed in 

T4P2 compared to the genome sequenced strain. One of these changes included 

a low coverage region in gene SP_1886, which is where the lux genes have been 

inserted, as these would not align to the TIGR4 genome sequence. A second low 

coverage regions was observed in the intergenic region between genes SP_1199-

SP_1200, this was also observed in the parent strain of T4P2 (T4NO1) so this 

change likely came from this. Finally the indel in the intergenic region between 

SP_1777 and SP_1778 was not observed in T4NO1. Interestingly this change was 

observed in T4JH and Xen35. Whether this change is linked to any biological 

function would require further study. Interestingly there were two genome 

changes in T4NO1 that were not observed in T4P2. 

Gene Information Position 
TIGR4 

Variant  In 
T4NO1? 

INT SP_1199-
1200 

  Low 
coverage 

 Yes 

INT SP_1777-
1778 

 1696086 Indel T  No 

SP_1886 New lux gene 
insertion site 

 Low 
coverage 

 No 

Table 7-5: Preliminary whole genome sequence changes in T4P2 
 

The fact only a small number of genome changes were observed in T4P2 would 

suggest the reason for the reduced pilus expression in this strain is solely due to 

the metabolic burden expression of the lux genes places on the cell. In this 

experiment T4P2 had only been passaged once whereas it could be that some of 

the genome sequence changes in Xen35 were able to accumulate over time if 

passaged multiple times. 
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7.7 Discussion 

To assess the metabolic burden of bioluminescence on the bacterial cells the lux 

genes were placed at a different genomic region (into SP_1886) to that in Xen35 

and expressed at a high level using different pneumococcal promoters. Inserting 

the genes into a different genomic region removes any potential effects to pilus 

regulation the lux insertion site has in Xen35, such as SP_1914 becoming non-

functional and the high expression of SP_1915. The plasmids constructed only 

contained roughly 2kb of pneumococcal DNA required for recombination either 

side of the cloning site, which removed the potential contributions of 

introducing other changes via recombining in large amounts of surrounding DNA, 

which occurred in Xen35 (Guiral et al., 2006). 

Xen35"19 containing a transposon insertion downstream of XEN35_1915 

(SP_1915) confirmed the promoter downstream of SP_1915 was that driving the 

lux gene expression, as no bioluminescence was observed in this strain. The new 

collection of bioluminescent strains produced include T4P19 which contained the 

SP_1915 promoter in front of the lux genes. However this strain showed no 

bioluminescence suggesting this promoter alone is unable to drive the high 

expression of the lux genes. This may indicate disruption in Xen35 of some 

regulatory network surrounding the lux insertion site, which results in the high 

expression of SP_1915. Perhaps though perturbing the function of a repressor of 

this gene via the SNPs/ indels recombined in from Xen7 surrounding the lux 

insertion site. Both SP_1919 and SP_1920 are non-functional in Xen35 due to 

changes recombined in from Xen7, however further study would need to be done 

to assess a potential role of these genes in regulation of SP_1915. 

Bioluminescence produced by all T4P strains was observed however to varying 

levels, with T4P2 and T4P3 showing the highest levels. Yet this was still lower 

than that observed in Xen35. Western blot analysis for expression of the pilus 

backbone protein RrgB showed a large decrease in RrgB levels in all T4P strains 

compared to T4NO1, showing a similar reduction in RrgB levels to that seen in 

Xen35. However the RrgB levels were not directly compared by western blot. 

The fold change observed in RrgB levels compared to T4NO1 correlated well with 

the level of bioluminescence with T4P3 showing the largest decrease in RrgB 

levels and the highest bioluminescence, followed by T4P2, T4P1 and T4P4. 
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T4P19 showed no difference in RrgB levels compared to T4NO1 (data not shown), 

and no bioluminescence. In T4P1-4 hydrogen peroxide levels were reduced by 

around 25%-50% compared to T4NO1, which may suggest a decreased 

functionality of SpxB. 

T4P2 was taken forward for further analysis. RT-PCR comparing the pilus islet 

genes and lux genes expression in T4P2 relative to Xen35 further validated the 

likelihood that the lux gene expression puts a metabolic burden on the bacterial 

cell. Observed was a 3-5 fold reduction of the lux gene expression in T4P2 

compared to Xen35, corroborated by a lower bioluminescence in T4P2 seen on 

the plate reader. Simultaneously T4P2 has a 2-4 fold increase in expression of 

the pilus islet genes compared to Xen35. This would indicate that the expression 

of the lux genes places a metabolic burden on the cell as the lower levels of lux 

gene expression in T4P2 correlates to an increased expression of the pilus islet 

genes. 

Although T4P2 was not complemented to ensure the change in pilus expression is 

due to lux expression we assume that the expression of the lux genes is the 

cause of the phenotypic change and not due to any other genetic changes as all 

mutant strains showed the same phenotype. Further whole genome sequencing 

was performed on T4P2 to show one a very small number of genetic changes had 

occurred in the strain which did not seem to be linked to pilus expression. 

Further analysis by FACS showed as in Xen35, T4P2 had a large decrease in the 

number of cells positive for RrgB on the cell surface, with only 7.6% of cells RrgB 

positive compared to 88% in T4NO1. In T4P2 only 2% more cells were RrgB 

positive than Xen35. For both in the majority of instances pili were only 

observed at set locations on the bacterial cell rather than spread over the whole 

cell as seen in T4NO1.  

To assess genes commonly effected by the lux gene expression comparison of 

the genes differentially regulated in T4P2 and Xen35 were compared. Using both 

the P<0.05 and P<0.1 genes lists a total of 8 genes were shown to be commonly 

regulated including the pilus islet genes rlrA, rrgA, rrgB, rrgC and SP_1895, 

SP_1896, SP_1897, SP_1898 and SP_2193. SP_1895-97 encode an ABC transporter 

enabling growth on raffinose, stachyose and melibiose (Bidossi et al., 2012). 
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SP_1896 and SP_1898 were also shown to be important for lung infection (Hava & 

Camilli, 2002). The response regulator SP_2193 was also commonly regulated in 

both T4P2 and Xen35 and has been shown to regulate the pneumococcal pilus 

and is therefore likely the cause of the decrease in pilus in both strains (Rosch et 

al., 2008). However this difference was not shown to be statistically significant 

by RT-PCR in Xen35 and has not been validated by this method in T4P2. Further 

analysis of the expression of rr06 in the other T4P strains may give a clearer 

indication if this is a common feature of all strains. If this is the case RR06 in 

this instance acts as a repressor of the pilus islet genes, as shown in the 

literature (Rosch et al., 2008). 

How the expression of the lux genes may have such a pronounced effect on the 

bacterial cell is likely due to two factors: through utilisation of ATP for aldehyde 

production and a requirement for large amounts of reducing power for the 

recycling of FMN to FMNH2 (Jablonski & DeLuca, 1977, Boylan et al., 1985). 

Natural bioluminescent bacteria are equipped for this however in normally non 

bioluminescent bacteria expression of the lux genes may lead to depletion of 

ATP levels and altered redox balance, leading to alterations in normal cell 

functioning and virulence. 

The production of energy in the pneumococcus is strictly fermentative via 

glycolysis followed by pyruvate metabolism to lactate, acetate, formate or 

ethanol, with no genes found encoding the required enzymes for the TCA cycle 

of electron transport chain (Hoskins et al., 2001, Tettelin et al., 2001), see 

Figure 7-15. Glycolysis yields two ATP molecules, two NADH molecules and two 

molecules of pyruvate. Pyruvate fermentation follows glycolysis, under both 

anaerobic and aerobic conditions. During fermentation pyruvate is converted to 

lactate via lactate dehydrogenase (NADH dependant), simultaneously NADH is 

converted to NAD+ required for glycolysis. Under aerobic conditions there is a 

shift to mixed acid fermentation resulting in acetate, formate and ethanol 

production rather than lactate (Yesilkaya et al., 2009). During this pyruvate is 

either processed via SpxB (pyruvate oxidase) under aerobic conditions to acetyl 

phosphate followed by conversion to acetate via AckA (acetate kinase). The 

latter reaction producing ATP as a by-product, which contributes to the majority 

of the cells ATP production, ATP levels severely drop upon deletion of SpxB or 

AckA (Ramos-Montañez et al., 2010, Pericone et al, 2003). Alternatively 
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pyruvate is converted to Acetyl CoA and formate via pyruvate formate lyase, 

acetyl CoA can then either be converted to acetyl phosphate by Pta 

(phosphotransacetylase) and processed by AckA, converted to ethanol via 

acetaldehyde CoA/ alcohol dehydrogenase or used as a precursor for fatty acid 

biosynthesis (Yesilkaya et al., 2009). Lactate is not a dead end metabolic 

product in the pneumococcus and under aerobic conditions can be converted 

back to pyruvate via LctO (lactate oxidase), which is thought to enable further 

processing by SpxB and AckA for increased ATP production (Taniai et al., 2008). 

The ability to maintain the redox balance within the cell is vital for proper 

cellular growth and functioning. NADH and NAD+ are required during carbon 

catabolism and the constant recycling between the two factors must be 

maintained. During glycolysis NAD+ is oxidised producing its reduced equivalent 

NADH, which is recycled back to NAD+ during fermentation of pyruvate to lactate 

by lactate dehydrogenase. As described earlier one of the requirements of the 

bioluminescence reaction is the availability of FMNH2 (reduced riboflavin), which 

is oxidised during the reaction giving FMN, recycling between the two via flavin 

reductase is NAD(P)H dependent (Jablonski & DeLuca, 1977, Michaliszyn et al., 

1977). In the pneumococcus the NADH dependant flavin reductase upon 

conversion of FMN to FMNH2 results in NADH oxidation giving NAD+, potentially 

altering the levels of NAD+ relative to NADH.  

Variations in redox balance may affect the functionality of NADH dependant 

enzymes such as NADH oxidase in the pneumococcus. NADH oxidase converts 

oxygen to water helping prevent the toxic effects oxygen may have on the cell 

(Auzat et al., 1999). If this enzyme is unable to function oxygen may be broken 

down into harmful reactive oxygen species such as superoxide anions/hydroxyl 

radicals, causing harm to the bacterial cell. 

Changes in redox balance have been shown to cause variation in gram positive 

and gram negative bacterial metabolism (Bennett & San, 2005, Berrıos-Rivera et 

al., 2002, Ramos et al., 2004, Neves et al., 2002, Vemuri et al., 2006). Over 

expression of a NAD+ dependant formate dehydrogenase from Candida boidinii in 

E.coli, causes an increase in NADH levels, which results in a shift in the final 

carbon catabolite concentrations both under aerobic and anaerobic growth 

conditions (Berrıos-Rivera et al., 2002). In this instance increased levels of NADH 
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caused a shift away from fermentation (lactate production) and resulted in 

increased levels of ethanol and acetate production. Further studies expressing 

NADH oxidase from S.pneumoniae in E.coli resulted in the oxidisation of NADH 

into NAD+ (Vemuri et al., 2006). NADH levels are thought to act as a sensor which 

when NADH levels are high metabolism is directed into acetate production to 

prevent further accumulation of NADH produced from the TCA cycle. Over 

expression of NADH oxidase, results in reduced NADH levels causing a shift to 

glucose metabolism via the TCA cycle. Under these conditions a 70% increase in 

glucose uptake was observed, confirming a clear link between NADH levels and 

glucose metabolism. 

Disruption in catabolism has been shown in the pneumococcus to alter regulation 

of large groups of genes, altering virulence and regulation of virulence factors. 

Deletion of the global regulator of catabolite metabolism CcpA in D39 shows 

altered expression levels of up to 19% of genes in the genome (Carvalho et al., 

2011). Along with differential regulation of genes involved in metabolism, there 

was differential regulation of a number of TCS, transcription regulators (codY), 

psaR the capsule and surface proteins pcpA, nanA and nanB and the lic1 operon 

regulating choline metabolism. The D39 genome does not encode the 

pneumococcal pilus and therefore would not be seen in this study (Lanie et al., 

2007). Virulence studies showed a reduced virulence of ccpA mutants compared 

to their parent strain (TIGR4), with ccpA mutants being out competed in a 

pneumonia and colonisation model of infection (Iyer et al., 2005).  

From this a hypothesis has been drawn where upon expression of the lux genes 

in S.pneumoniae there is a change in the redox balance within the cell, due to 

the requirement for the oxidation of NADH occurring during the production of 

FMNH2. How this may affect the NAD+/NADH balance is unknown. This change 

could lead to an increased shift towards lactic acid fermentation if NAD+ levels 

were increased, as in E.coli upon decreased NAD+ levels there was a shift away 

from fermentation (lactate production). This may be why there is reduced 

hydrogen peroxide production in T4P2 as SpxB has a reduced activity.  

Fermentation resulting in mainly lactate formation occurs to a greater extent 

under anaerobic condition which in the pneumococcus would likely signal being 

present in low oxygen environments, for instance in the blood. Under these 
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conditions you would perhaps need reduced levels of adhesins such as the pilus, 

and variations in redox balance under these conditions may be the trigger for its 

down regulation. The fact we observe up regulation of rr06 in Xen35 and T4P2 

which is known to regulate the pilus would suggest this factor may be causing 

the pilus down regulation in both strains. However currently it is not known 

whether RR06 modulates pilus expression in its phosphorylated or non 

phosphorylated form and therefore the change in expression levels may not 

directly correlate to its ability to regulate the pilus if it is not present in the 

correct form. The external stimulus required for the activation of rr06 is 

unknown and may be via sensing intracellular redox potential. There is some 

evidence to back up this theory as deletion of RR06 in D39 causes a 6 fold 

increase in the expression of a NADPH dependant flavin mononucleotide 

reductase, confirming a link between RR06 expression and redox potential 

(Standish et al., 2007). Redox potential varies depending on the usage of 

different sugars during growth and it could be envisaged during in vivo growth 

different carbon sources are available, with free sugars in short supply, but 

glycoproteins readily available (Philips et al., 2003, Voynow & Rubin, 2009). 

Availability of different sugars could indicate the niche in which the bacterium is 

present via the redox potential of the cell, which in turn leads to regulation of 

virulence factors required for survival within that niche.  

Shifts in metabolism will also affect the ATP pool present within the cell, which 

is required for a large number of cellular processes and cell survival. The 

majority of the ATP produced within the pneumococcus is synthesised under 

aerobic conditions via SpxB and AckA. If metabolism is shifted towards lactate 

fermentation lower ATP amounts will be produced. Coupled to this is the fact 

aldehyde production for the bioluminescence reaction requires ATP, further 

depleting the intracellular ATP stores. Mutations in AckA (acetate kinase) have 

been shown to be unstable and result in spontaneous mutation in SpxB or SpxR 

(SpxB regulator) (Ramos-Montañez et al., 2010). This may be due to the 

requirement for ATP to repair the cellular damage created via H2O2 production, 

as cellular ATP levels are severely reduced in AckA mutants (Ramos-Montañez et 

al., 2010). This may be why we see SNPs in both SpxB and LctO in Xen35 as both 

produce hydrogen peroxide as a by-product of their reactions, and likely reduced 

ATP levels. There is no SNP in spxB or lctO in T4P2, therefore expression of the 
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lux genes which may lead to reduced ATP levels may not be the cause of the SNP 

in spxB and lctO in Xen35. 

One of the TCS known to regulate the pneumococcal pilus (HK03) was shown to 

be down regulated upon deletion of spxB, ackA and pta, however differential 

regulation of this TCS was not observed in Xen35 and T4P2 so is likely not the 

factor causing the pilus repression in these strains (Rosch et al., 2008, Yesilkaya 

et al., 2009). 

The idea that reduced ATP levels are causing this reduced pilus expression in the 

both bioluminescent strain is also supported by data in previous chapters. A SpxB 

mutant showed only 20% pili positive cells compared to 88% in T4NO1 and SpxB 

mutants have been shown to have reduced ATP levels (Pericone et al., 2003). 

The LctO mutant also has reduced pili expression with only 57% of cells pili 

positive, upon deletion of SpxB in this strain the same number of pili positive 

cells as a single SpxB mutant is observed, suggesting the reduced pili phenotype 

in the LctO mutant is acting via knock on effects to SpxB. If LctO functions to 

convert lactate back to pyruvate to be processed via SpxB, in a knockout this 

would not occur and perhaps lead to reduced ATP levels within the cell. If this is 

the case in the bioluminescent strains there must be less ATP available than in 

the SpxB and LctO mutants as both strains have lower number of pili positive 

cells (Xen35 5.4% and T4P2 7.6%). Differential expression of any other surface 

proteins is not observed in both bioluminescent strains, which would suggest the 

pilus alone is dependant on the reduced ATP levels, or resulting from a knock on 

effect this has to the cell. In S.aureus deletion of PknB a serine/threonine 

protein kinase showed a significant alteration in the cellular levels of NADH and 

FMN as well as intermediates required during glycolysis, cell wall biosynthesis 

and fatty acid biosynthesis (Liebeke et al., 2010). As hypothesised for SpxB and 

LctO the mutation seen in StkP in Xen35 may have occurred in this strain due to 

metabolic stresses on the cell, which required a reduction in StkP functionality.  

To validate what is happening in T4P2 and Xen35 with regards to having a 

potentially altered metabolism, metabolomic analysis could be performed, 

which was not done due to time limitations. This would enable validation of 

what the effect the lux genes expression has on levels of different metabolites 

within the cell. This could also be performed on strain T4"SpxB and T4"lctO 
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which would allow us to understand if variations in pilus expression in these 

strains are due to the same effect on metabolism changes or due to variations in 

hydrogen peroxide levels, ATP levels, or both.  

From this it is not surprising a reduced virulence is observed in T4P2 as seen in 

Xen35. T4P2 infected mice showed a statistical increase in survival time 

compared to T4NO1, and a slower disease progression deduced from a 

statistically reduced percentage weight loss compared to T4NO1 at all time 

points. No difference in organ, nasal wash and blood bacterial counts was 

observed at 24 hours post infection when compared to Xen35 and T4NO1, yet at 

48 hours post inoculation and survival time points nasal wash bacterial counts 

were lower compared to T4NO1 and blood and brain counts at 48, 72 and 

survival time points. Interestingly there was also a significant decrease in 

bacterial counts in the brain, lungs and blood at 72 hours post inoculation in 

T4P2 infected mice compared to Xen35. This would indicate Xen35 is more 

virulent than T4P2.  

Interestingly unlike Xen35, T4P2 only contains a small number of genome 

changes compared to its parent T4NO1. One is a SNP in an intergenic region of 

which its function is unknown. This SNP is also found in Xen35 so could be linked 

to changes in pilus expression, however it is also found in T4JH. The other 

change is a region of low coverage, which was expected as this is the insertion 

site of the lux genes (SP_1886) in T4P2. This data further validates that the 

reduced expression of the pilus is due to a metabolic burden placed on the cell. 

It was also hypothesised that the metabolic stress on the cell may promote the 

accumulation of specific SNPs and indels, due to the fact such a large number of 

genome changes were observed in Xen35. This seems not to be the case for T4P2 

however it may be that over time SNPs would accumulate in this strain in genes 

such as SpxB. As the genome sequence of T4P2 was performed on the strain 

taken only a single passage from the original constructed strain, it may be that 

this has not had time to occur. 
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Figure 7-15: Glycolysis and Pyruvate metabolism in S.pneumoniae 

Diagram of glycolysis and pyruvate metabolism in S.pneumoniae, adapted from (Carvalho et 
al., 2011).  
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8.1 Final Discussion 

The key aims of this study were to evaluate genes regulated by some of the key 

signalling systems used by the pneumococcus to adapt to different niches in 

response to external stimuli. This study has hopefully made a contribution to the 

current understanding of how these systems work, what genes they regulate and 

gives examples of external stimuli these systems may respond to. 

One key element to take from this study is the substantiation it provides to show 

the complexity of the signal transduction pathways in the pneumococcus, 

especially with regards to regulation by TCS. In the literature it has already been 

shown that TCS12 and TCS13 are able to converge on the same promoter of an 

ABC transporter and a number of the other systems have been implicated to 

regulate other systems, shown by microarray analysis (Knutsen et al., 2004, 

Mccluskey et al., 2004, Peterson et al., 2004). In this study a similar 

phenomenon was observed between TCS08 and TCS09 where some genes were 

commonly regulated by both but in most instances they regulated their own 

collection of genes. In a double knockout a large number of genes were shown to 

be regulated which were not observed in the single knockouts alone. This could 

indicate the systems are able to compensate for the deletion of the other. 

However, another reason for this may be that deletion of both systems puts a 

stress on the cell which leads to differential expression of these genes. Our 

current data is unable to distinguish between these two phenomenon and further 

study is required to evaluate this.  

Although no clear conclusions can be made about the potential cross regulation 

of these systems and whether a hierarchy exists it is clear these systems are 

connected in some way, whether that be responding to a similar stimulus or 

regulating each other etc. In the literature expression analysis on TCS mutants 

are often performed under different conditions and in different background 

strains. This is the first study to assess the whole genome expression changes in 

more than once mutant and a double mutant. This study only assessed the 

expression changes upon deletion of these TCS and further studies into the genes 

directly regulated by each system, whether these genes are regulated by the RR 

in the phosphorylated or non phosphorylated form, protein-protein interactions 
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of these systems and the external stimulus activating the system need to be 

performed. 

An alternative signalling system was also assessed in this study looking at the 

genes it regulates. The serine/ threonine protein kinase although the only 

signalling system of its type in the pneumococcus is able to interact with the TCS 

(Agarwal et al., 2012, Ulijasz et al., 2009). No differential regulation of the 

pneumococcal RR was observed in a StkP deletion mutant however this system 

has been shown to phosphorylate two of these RR (Agarwal et al., 2012, Ulijasz 

et al., 2009). This further adds another layer of complexity to the regulation of 

genes by both of these systems. The fact deletion of the HK of TCS pairs results 

in a less severe phenotype of a number of systems would suggest these are not 

as vital (Throup et al., 2000). This would also suggest that the RR can function 

without the requirement of phosphorylation by its cognate kinase and is perhaps 

phosphorylated by another means. Although currently only evaluated for two RR 

it may be that all the pneumococcal RR are also phosphorylated by StkP, which 

is able to modulate the binding affinity to certain promoter targets. This could 

allow different groups of genes to be regulated by each system in its different 

forms which would include the non phosphorylated form, the phosphorylation on 

an aspartate residue (typically by the HK), phosphorylation on a threonine (or 

serine) residue (by StkP) and potentially phosphorylation of both at once. 

Evidence this may be the case for other RR has come from this study. Although 

RR05 was not differentially regulated in the StkP knockout, a number of genes 

were shown to be directly regulated by RR05, through the binding of RR05 to the 

upstream promoter regions, which were also differentially regulated in T4!stkP. 

This may also be the case for RR02 as homologues of this RR in S.pyogenes are 

phosphorylated by its serine/ threonine protein kinase (ST-STK) (Agarwal et al., 

2011).  

A further role attributed to StkP in this study is to modulate protein 

translocation to the cell wall. SecY of the SecYEG translocase was down 

regulated in the StkP deletion mutant. Interestingly this resulted in an increase 

in pili on the cell surface so it could be that deletion of StkP results in a 

dysregulation of cell wall constituents. StkP has been shown to localise to the 

cell septum and is important for cell division (Giefing et al. 2010, Maestro et al. 
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2010). Through the use of its extracellular PASTA domains which can bind to 

peptidoglycan it can perhaps sense the presence of cell wall surface components 

and modulate from this the level of protein translocation to the cell surface 

(Beilharz et al. 2012). Interestingly also differentially regulate in the StkP 

deletion mutant was HtrA a serine protease and ParB a chromosomal division 

protein (Ibrahim et al. 2004a, Minnen et al. 2011). HtrA has recently been shown 

to colocalise with SecA (a protein chaperone) to the midcell/ septum during cell 

division. SecA functions as a chaperone for proteins being directed to the 

SecYEG translocase (Tsui et al. 2011). From this data it could be inferred that 

these above protein all function together localising to the midcell/ septum 

during cell division. This protein complex contains StkP which functions to sense 

the changes in the cell wall. Which relays information to the SecA, SecYEG and 

HtrA protein complex, modulating its activity. This complex would be present at 

the midcell/ septum which is the point at which new protein are placed onto the 

cell wall, which is also the site at which new peptidoglycan biosynthesis occurs 

(Tsui et al. 2011). ParB which is also regulated by StkP could also functions 

alongside this complex, as you would expect chromosome segregation to occur 

alongside cell division (Minnen et al. 2011). 

Another key feature elucidated in this study is the potential impact that genome 

changes may have on the bacterial cell with regards to gene regulation and 

regulation of key virulence factors. The new era of affordable genome 

sequencing enables better validation of genetically manipulated strains with 

regards to assessing that they only contain the desired mutation. The genome 

sequence of Xen35 has clearly shown that the genetic manipulation of strains 

can lead to major genome changes depending on how the strain has been 

constructed. This leads to a big issue about strains used in studies that have 

been genetically manipulated and whether along with the desired mutation 

other genome change have also occurred. Perhaps through multiple 

recombination events if transformed with large PCR products or gDNA. In the 

literature there is also evidence that deletion of some genes results in 

accumulation of genomic changes in other genes, which are required to 

counteract the deleterious effect on the cell of the required deletion. This has 

been observed in deletion mutants of AckA (Acetate kinase) which when deleted 

acquires mutations in SpxB or SpxR (Ramos-Montañez et al., 2010). This 
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phenomenon has also been shown to occur in deletion mutants of CodY 

(Caymaris et al., 2010). 

One example of how genetic manipulation of a strain can severely affect its 

phenotype includes Xen35 (the bioluminescent version of TIGR4), which had 

acquired a large number of genetic changes, some in part due to the 

construction of the strain, which highlights the need to ensure when genetically 

manipulating strains that only the desired genetic mutations are introduced. 

Other genetic changes in this strain were likely due to variations in the genome 

of the parent strain Xen35 was constructed in (TIGR4) which can vary as noted 

below. Changes at the genome level in this strain likely contributed to the 

reduced virulence of the strain and the changes in gene expression observed in 

this strain compared to TIGR4. 

However, in this instance the drop in pilus expression observed in Xen35 was not 

due to the genome changes observed and was shown to be due to the over 

expression of the lux genes (genes required for bioluminescence). This also gives 

an insight into the potential effects of expression of foreign genes in a non 

native species, and whether these constructed strains used for in vivo disease 

progression etc can really give a true picture of disease caused by these strains. 

In this instance the expression of these genes resulted in a reduction in the 

expression and level of a key virulence factor the pilus (adhesin) on the cell 

surface in Xen35. Perhaps in the pneumococcus an alternative reporter gene 

should be used for this type of study as expression of and/ or the enzymatic 

reactions catalysed by the lux genes/ LuxA-E respectively alter other biological 

functions within the cell. As no other cell surface virulence factors were shown 

to be commonly differentially regulated in Xen35 and T4P2 it is assumed the 

over expression of the lux genes specifically effects a biological function that is 

linked to how the pilus is regulated, which our current studies did not identify.  

This study also sheds light on the genetic diversity between the supposed same 

strain. Globally TIGR4 a serotype 4 S.pneumoniae strain is used as a laboratory 

standard to enable comparisons between work performed in different 

laboratories. In this study two un-manipulated TIGR4 strains were found to vary 

at the genome level and variations between the two altered expression of a key 

cell surface adhesin. Therefore studies performed in different background 
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strains (TIGR4 etc in different laboratories) may result in different findings if 

genome changes are present that affect the expression of the genes being 

assessed. In this instance it is not known whether the regulation of the pilus islet 

by TCS in T4JH would be effected by the SNP present in RrgC. 

It is assumed that this SNP which causes an amino acid change in RrgC in T4JH is 

the reason for the variations in the level of pilus expression at the population 

level. With T4NO1 showing 88% of cells to be pili positive whereas in T4JH only 

20.5% are pili positive. Why this single amino acid change would cause reduced 

expression of the pilus suggests RrgC also plays a regulatory role in pilus 

expression. It is not known to have any DNA binding functions and therefore may 

modulate expression changes through some sort of protein-protein interaction. 

This type of regulation has been seen for RrgA which binds to RlrA (Basset et al., 

2011, Basset et al., 2012). It may be that RrgC also binds to RlrA or perhaps to 

RrgA modulating its regulatory function. The pneumococcal orphan response 

regulator RitR has been shown to form a protein-protein interaction with PhpP 

(Ulijasz et al., 2009). Therefore perhaps other response regulators are also 

regulated in this manner. The three TCS evaluated in this study have all been 

shown to regulate pilus expression at the population level so perhaps RrgC 

modulates the function of one of these proteins through a protein-protein 

interaction. It may be that the pilus islet itself is temporally regulated as it 

would be unnecessary for the bacteria to produce RrgA and RrgB if there is no 

way to anchor the proteins to the cell wall. Perhaps the SNP in RrgC in T4JH 

renders the protein unable to anchor properly to the cell wall of hinders 

transport to the cell surface at which point there is a checkpoint which initiates 

synthesis of the other pilins. This may be hindered in T4JH which is why there is 

fewer cells at the population level that are pili positive. 

This study has clearly shown that expression of the pilus likely poses a metabolic 

burden on the cell. T4NO1 was originally isolated from a case of IPD, isolated 

from the blood of a 30 year old male from Norway and was found to be highly 

invasive in a mouse model of infection (Aaberge et al., 1995, Tettelin et al., 

2001). This strain was used in these studies only one passage from the original 

strain and therefore likely retained the phenotypic traits of the strain taken 

from the infected male. Whereas T4JH is a lab strain and may perhaps have 

acquired mutations in the pilus islet due to the metabolic burden it places on 
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the cell, which render its unable to express high levels of pili as this trait is not 

required in lab strains. 

As already mentioned these two strains differ in the amount of pili expressed at 

the population level, with T4JH having 20.5% of cells pili positive whereas T4NO1 

has 88% of cells pili positive. This ability to regulate the pilus at the population 

level may be key to why there has been no clear association of strains that carry 

pili with increased incidence of IPD, yet it has been shown that it must convey 

some advantage otherwise strains wouldn’t have it (Moschioni et al., 2008, 

Regev-Yochay et al., 2010). Although strains may have the pilus islet all studies 

assessing its association with strains able to cause IPD do not assess the level at 

which each strain expresses the pilus (Moschioni et al., 2008, Regev-Yochay et 

al., 2010). Which has been shown in this study to vary even between two closely 

related TIGR4 strains. Therefore strains that are able to express the pilus on the 

surface of a larger proportion of cells may be more invasive and are associated 

with higher levels of IPD. No animal data is currently available comparing the 

virulence of T4NO1 and T4JH. Data to support this idea is seen when RR09 is 

deleted in T4JH which results in 91% of cells become pili positive. Adherence 

assay data of this strain shows a large increase in adherence to all cell lines 

tested. Therefore it would be assumed T4NO1 is able to adhere better than T4JH 

as it contains roughly four times more pili on the cell surface and in the host 

perhaps causes a more severe disease. However, more pili does not necessarily 

lead to increased adherence as observed for T4!rr086 which had a similar 

number of pili on the cell surface as T4!rr098 yet showed no increase in 

adherence compared to the parent. This strain however also showed when 

stained with FITC for the pilus a lower fluorescence intensity than that of pili 

positive cells in the WT strain suggesting in this strain there are fewer pili per 

cell or the pili are shorter. 

From this study more factors shown to alter pilus expression have been 

identified including the serine/ threonine protein kinase, pyruvate oxidase and 

lactate oxidase. These add to the six TCS that have been shown to alter pilus 

expression, three transcription regulators and the differential expression 

observed in response to vancomycin stress (Haas et al., 2004, Haas et al., 2005,  

Hendriksen et al., 2007, Hendriksen et al., 2009, Hemsley et al., 2003, Johnston 
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et al., 2006, Rosch et al., 2008, Sebert et al., 2002, Song et al., 2009). Due to 

the large number of genes that regulate this islet it has been concluded that 

pilus expression is probably closely linked to the overall fitness of the cells as a 

number of the genes shown to regulate the pilus are involved in modulating and 

responding to changes in cell wall integrity and energy production. This includes 

StkP, which regulates genes important for cell wall integrity, RR03, (binds 

directly to the rlrA promoter) responds to cell envelope stress, and post 

treatment with vancomycin (induce cell wall stress) the pilus is down regulated 

(Giefing et al., 2010, Haas et al., 2005, Rosch et al., 2008, Suntharalingam et 

al., 2009). The role of LctO and SpxB in pilus regulation supports this idea 

further with regards to pilus regulation being linked to the fitness of the cell. As 

both show reduced pilus expression when they are deleted and both are 

important for energy production during aerobic metabolism, with knockouts of 

SpxB shown to have reduced cellular levels of ATP (Pericone et al., 2003, Taniai 

et al., 2008). This is further validated by the fact the over expression of the lux 

genes also causes reduction in pilus expression which is assumed to lead to 

reduced ATP levels in the cell, however this would need further confirmation. If 

this is the case it may explain why only 30% of strains contain the PI-1 encoded 

islet as some strains may not be able to generate enough energy to maintain all 

the required cellular processes as well as maintain large cell surface structures. 

This may also be the case for other large cell surface proteins such as PsrP, 

which is only present in roughly 50% of strains (Munoz-Almagro et al., 2010). 

The exact function of the pilus in the pneumococcus still remains elusive, 

however it likely plays an important function. In other bacteria functions have 

been assigned to pili which may play a similar role in the pneumococcus. For 

instance pili in S.pyogenes have been shown to aid in resistance to phagocytosis 

and killing by neutrophils (Maisey et al., 2009). During invasive disease 

neutrophils and macrophages have been shown to be key factors in clearance of 

the pneumococcus from the lung (Kadioglu & Andrew, 2004). Neutrophils 

function in one way through release of reactive oxygen species including 

hydrogen peroxide, which have bactericidal effects on bacterial cells (Kadioglu 

& Andrew, 2004). It could therefore be envisaged that the release of hydrogen 

peroxide by neutrophils could induce pilus expression in the pneumococcus, 

which helps protect the bacteria from killing. 
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To conclude, this study has offered a further insight into the complexity of gene 

regulation by signal transduction systems in the pneumococcus. It has offered 

insights into not only the regulatory mechanisms used to modulate gene 

expression but also the potential to regulate protein export. Another key feature 

touched upon is the requirement for a metabolically fit cell and its importance 

in maintaining normal cellular functioning. One major finding to be taken from 

this study is the potential impact of a small number of genetic changes between 

two very closely related strains and how this may have a big impact on the 

phenotype of the strain. This study has hopefully contributed to a better 

understanding of gene regulation in the pneumococcus. 
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Appendices 

Appendices can be found on a CD at the back of this thesis. The contents 

included in this are noted below. 

Appendix I 

Fluorescent microscopy images of capsule and pili stained bacteria, including 3-4 

representative fluorescent images and DIC images of T4NO1, T4JH, Xen35, T4P2, 

T4!stkP, T4!stkP"ST, T4!stkP"XST, T4!spxB, T4!lctO, T4!spxB!lctO, T4!rr06, 

T4!rr08, T4!rr09, T4!rr086, T4!rr096, T4!rr098, T4!rr0986, T4AN and T4!spxB 

grown in the presence of varying hydrogen peroxide concentrations. 

Appendix II 

Graph directly comparing RR expression in T4!rr08, T4!rr09 and T4!rr098, 

deduced from RT-PCR analysis. Expression values are located below in a table 

showing the average fold change in RR expression in the TCS mutants stated 

above. 

Appendix III 

Table summarising all the genome changes in Xen35 compared to the TIGR4 

genome sequence (NC_003028).  

Appendix IIII 

Table of genes differentially regulated in Xen35 compared to T4JH (P<0.1). 

Appendix V 

Venn diagram comparing the genes differentially regulated in T4!rr08, T4!rr09 

and T4!rr098 via microarray analysis when compared to T4JH, comparison was 

performed using the P<0.1 genes lists. A table of the genes found to be 

commonly differentially regulated in all three strains was compiled comparing 

the expression differences. 
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Appendix VI 

Venn diagram comparing the genes commonly differentially regulated in StkP 

mutant strains in a T4NO1 background (this study) and CP1015 (published data) 

via microarray analysis, the data from this study shows a comparison using the 

P<0.1 genes lists. The commonly regulated genes are noted below the diagram. 

Appendix VII 

Venn diagram comparing the genes differentially regulated in Xen35 and T4P2 

via microarray analysis when compared to T4JH and T4NO1 respectively, 

comparison was performed using the P<0.1 genes lists. A table of the genes 

found to be commonly differentially regulated between the two strains was 

compiled comparing the expression differences below. 
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Future work 

With regards to further assessing gene regulation by TCS future work includes 

assessing the genes regulated by each TCS through direct binding of the RR to 

the upstream promoter regions. And assessing whether these RR form any 

protein-protein interactions with each other or other key proteins. Little is 

known about the external stimulus which activates the majority of these systems 

and this knowledge is vital for a better understand of where genes regulated by 

these systems are important in vivo, studies into this are also required. With 

regards to their regulation of the pilus more information is required as to 

whether RR08 and RR09 bind directly on the pilus islet promoters, and whether 

the RR that modulate this activity compete for binding, or bind to different 

promoter sites within the islet. 

To further evaluate the metabolic burden placed on the cell by expression of the 

lux genes metabolomic analysis could be performed. This will evaluate if 

expression of these genes alters levels of a certain metabolites such as ATP, 

which may accounts for the pilus expression changes. This analysis could also be 

performed on Xen35, T4!spxB, T4!lctO and T4!spxB!lctO which may give an 

indication if the reason for the reduced pili expression in all strains is linked to 

alterations of the same factor. 

Other key studies include assessing further the function of the pilus in the 

pneumococcus, whether like in S.pyogenes it is able to protect against death by 

neutrophils. Important studies could also be performed into elucidating whether 

clinical isolates vary in their pili expression at the population level and if this 

correlates with invasive disease potential.  

Further studies need to also be performed to assess whether StkP is also able to 

modulate other cell surface components and whether this is performed via 

regulating protein translocation. If this is the case, whether StkP modulated this 

activity through direct interactions with the SecYEG translocase at the cell 

septum during cell division needs to be evaluated. And further whether this 

potential protein complex also contains HtrA, SecA and ParB.  
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