
Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

MacIsaac, Liam J. (2013) Modelling smart domestic energy systems. PhD
thesis

http://theses.gla.ac.uk/4214/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given.

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4265/

Modelling Smart Domestic Energy
Systems

Liam J. MacIsaac

Submitted to the University of Glasgow, School of

Engineering, in fulfillment of the requirements for

the degree of Doctor of Philosophy.

April 2013

©2013 Liam MacIsaac

i

Abstract
The increasing price of fossil fuels, coupled with the increased worldwide focus on their

contribution to climate change has driven the need to develop cleaner forms of energy

generation. The transition to cleaner energy sources has seen a much higher penetration of

renewable sources of electricity on the grid than ever before. Among these renewable

generation sources are wind and solar power which provide intermittent and often

unpredictable energy generation throughout the day depending on weather conditions. The

connection of such renewable sources poses problems for electricity network operators

whose legacy systems have been designed to use traditional generation sources where

supply can be increased as required to meet demand. Among the solutions proposed to

address this issue with intermittency in generation are storage systems and automation

systems which aim to reduce demand in order to match the available renewable generation.

Such a transition would introduce a requirement for more advanced technology within

homes to provide network operators with greater control over domestic loads.

Another aspect to the transition towards a low-carbon society is the change that will be

required to domestic heating systems. Current domestic heating systems largely rely on

Natural Gas as their fuel source. In order to meet carbon reduction targets, changes will need

to be made to domestic buildings including insulation and other energy efficiency measures.

It is also possible that present systems will begin to be replaced by new heating technologies

such as ground and air source heat pumps.

Due to the effect that such technological transitions will have on domestic end-users, it is

important that these new technologies are designed with end-users in mind. It is therefore

necessary that software tools are available to model and simulate these changes at the

domestic level to guide the design of new systems.

This thesis provides a summary of some of the existing building energy analysis tools that are

available and shows that there is currently a shortcoming in the capabilities of existing tools

ii

when modelling future domestic smart grid technologies. Tools for developing these

technologies must include a combination of building thermal characteristics, electrical energy

generation and consumption, software control and communications.

A new software package was developed which allows for the modelling of small smart grid

systems, with a particular focus on domestic systems including electricity, heat transfer,

software automation and control and communications. In addition to the modelling of

electrical power flow and heat transfer that is available in existing building energy simulation

packages, the package provides the novel features of allowing the simulation of data

communication and human interaction with appliances. The package also provides a flexible

framework that allows system components to be developed in full object-orientated

programming languages at run time, rather than having to use additional third-party

development environments.

As well as describing the background to the work and the design of the new software, this

thesis describes validation studies that were carried out to verify the accuracy of the results

produced by the package. A simulation-based case study was also carried out to demonstrate

the features offered by the new platform in which a smart domestic energy control system

including photovoltaic generation, hot water storage and battery storage was developed.

During the development of this system, new algorithms for obtaining the operating point of

solar panels and photovoltaic maximum power point tracking were developed.

iii

Acknowledgements
I would like to take this opportunity to thank everybody who has helped me in some way or

another during the preparation of this thesis. My supervisor, Professor Andrew Knox for his

help and guidance throughout the project and for the time spent reviewing the material in

this thesis. Also, Graham Morton, Jeremiah Anonymous Matthey and Ed Pratt who made

sure that our office was never dull! I would also like to thank Dr James Buckle for his help and

advice. I would also like to thank Calum Cossar, Peter Miller and Ian Young of the power

group for their technical help throughout the project.

Finally, and most importantly, I would especially like to thank all of my friends and family

who have been very supportive throughout the duration of my PhD and especially Rachael

who has provided plenty of moral support and has put up with my constant stressing about

this Thesis for the last year!

Also to everyone else who has helped me in some way during the preparation of this thesis

and has not been mentioned here, thank you.

iv

Publications
L. MacIsaac, A. Knox, “Improved Maximum Power Point Tracking Algorithm for Photovoltaic

Systems”, International Conference on Renewable Energies and Power Quality: Granada,

Spain, March 2010

L. MacIsaac, A. Knox, “Improved Maximum Power Point Tracking Algorithm for Photovoltaic

Systems”, Renewable Energy and Power Quality Journal, Vol. 1, No. 8, April 2010

L. MacIsaac, A. Knox, “Domestic End-Use Modelling of Smart Grid Technologies”, IEEE

Innovative Smart Grid Technologies Europe Conference: Manchester, UK, December 2011

L. MacIsaac, A. Knox, “New Algorithm for Obtaining the Operating Point of Photovoltaic

Systems”, Proceedings of the Institution of Mechanical Engineers – Part A – Journal of Power

and Energy, vol. 226, no. 6, 2012

v

Contents
Abstract ... i

Acknowledgements ... iii

Publications ... iv

Contents ... v

List of Figures .. xiii

List of Tables ... xix

List of Abbreviations ... xxi

Chapter 1 Introduction ... 1

1.1. Aims and Objectives ... 2

1.2. Original Contributions of this Research .. 3

1.2.1. Flexible Software Platform .. 3

1.2.2. Photovoltaic Maximum Power Point Tracking ... 4

1.3. Outline ... 4

Chapter 2 Background .. 6

2.1. Smart Grids .. 6

2.1.1. 20th Century Energy Networks ... 6

2.1.2. Low-Carbon Electricity ... 9

2.1.3. Low-Carbon Heating .. 10

2.1.4. Low-Carbon Transport ... 13

2.1.5. Advanced Metering Infrastructure... 14

2.1.6. Smart Grids Summary .. 17

2.2. Smart Grid Software Modelling .. 18

vi

2.2.1. EnergyPlus ... 20

2.2.2. Other Building Energy Analysis Software ... 23

2.2.3. Summary of Smart Grid Software Modelling .. 26

2.3. Summary of Project Background .. 30

Chapter 3 Software Design ... 31

3.1. Choice of Application Development Platform ... 31

3.2. Representation of Models .. 32

3.2.1. Techniques in Existing Packages .. 32

3.2.2. Design of New Technique .. 33

3.3. Physical Domain Representations ... 35

3.3.1. Electrical .. 37

3.3.2. Thermal ... 40

3.3.3. Data Communication ... 42

3.3.4. Asynchronous Communication .. 45

3.3.5. Others ... 46

3.4. Defining & Simulating Component Behaviour ... 46

3.4.1. Component Appearance and Configuration ... 46

3.4.2. Simulation Technique .. 49

3.4.3. Implementing Component Behaviour .. 51

3.5. Simulation Results .. 59

3.5.1. Recording Results .. 59

3.5.2. Mathematical Operations on Results ... 66

3.5.3. Analysing Results ... 67

3.6. Persistence of Models .. 68

vii

3.7. Application Design Summary .. 76

Chapter 4 Implementation of Models .. 78

4.1. Electrical Components .. 78

4.1.1. Ideal Sources ... 78

4.1.2. Solar Panel .. 79

4.1.2.1. Operating Point Detection Algorithms .. 82

4.1.2.2. Comparison of Operating Point Detection Algorithms 86

4.1.3. Battery Storage ... 90

4.1.4. Connection and Control ... 92

4.1.4.1. Wire.. 94

4.1.4.2. Switch ... 95

4.1.4.3. Digital Switch .. 95

4.1.4.4. Relay ... 95

4.1.4.5. Smart Meter ... 96

4.1.5. Loads ... 100

4.1.5.1. Static Loads .. 101

4.1.5.2. Multi-Mode Loads .. 102

4.1.5.3. Time-Varying Loads .. 103

4.1.5.4. Dynamic Loads .. 104

4.2. Communication Components ... 107

4.2.1. Scheduled Data Generator .. 107

4.2.2. Repeater.. 107

4.3. Building Elements ... 108

4.3.1. Materials Database.. 108

viii

4.3.2. Surface .. 109

4.3.3. Door .. 112

4.3.4. Window ... 113

4.3.4.1. ISO 10077-1 Window Geometry ... 113

4.3.4.2. Software Modelling of Window Geometry .. 114

4.3.4.3. Translating Hierarchical Model to ISO Standard Model 117

4.3.4.4. Thermal Transmittance Calculation... 118

4.3.4.5. Window Model Definition ... 119

4.3.5. Room ... 119

4.3.6. Static Room ... 121

4.4. Heating and Ventilation .. 122

4.4.1. Natural Ventilation Component ... 122

4.4.2. Radiator... 123

4.4.3. Electric Heater ... 125

4.5. Weather ... 126

4.5.1. Ambient Temperature Pattern .. 126

4.5.2. Random Ambient Temperature ... 126

4.5.3. Solar Irradiation Pattern .. 127

4.6. Other Components ... 127

4.6.1. Scheduled Asynchronous Messaging ... 127

4.6.2. List and Table Parameter Watch .. 128

4.7. Summary .. 129

Chapter 5 Testing & Validation .. 130

5.1. Unit Testing .. 130

ix

5.2. Automated Functional Test Program .. 131

5.3. Graphical User Interface Testing... 133

5.4. Experimental Validation Studies – Thermal Models .. 134

5.4.1. Experimental Methodology ... 134

5.4.2. Test Room Experiment – Heat Loss Response .. 136

5.4.3. Test Room Experiment – Heated Room Response ... 143

5.5. Experimental Validation Study – Electrical Circuit ... 150

5.6. Summary of Testing and Validation .. 153

Chapter 6 Case Study ... 156

6.1. Home Energy System Overview .. 156

6.2. Maximum Power Point Tracking ... 158

6.2.1. Background ... 158

6.2.2. Newly Developed Algorithm .. 161

6.2.2.1. Description of the New Algorithm ... 161

6.2.2.2. Algorithm Comparison .. 164

6.2.3. MPPT Controller .. 166

6.2.4. Battery Controller .. 167

6.3. Water Heater ... 168

6.4. Domestic Load Model... 169

6.5. Metering System and Control Algorithm .. 170

6.6. Simulation Results .. 171

6.6.1. Baseline Case ... 171

6.6.2. Load Balance ... 172

6.7. Summary of Results .. 176

x

Chapter 7 Conclusions .. 178

7.1. Chapter Summary .. 178

7.2. Novel Contributions of the Research .. 182

7.3. Future Work and Improvements .. 183

Appendix A Component Scripting API .. 187

Appendix B Window Model Class Diagram .. 189

Appendix C Case Study Simulation Models .. 190

C.1. Case Study 1 – Home 1, Dining Room ... 190

C.2. Case Study 2 – Home 2, Lounge.. 191

C.3. Case Study 3 – Electrical Validation Model ... 191

Appendix D Power Analyser Unit ... 192

D.1. System Overview ... 192

D.2. Voltage and Current Sensors .. 193

D.3. Signal Conditioning Circuit ... 194

D.4. Signal Processing Circuit... 194

D.5. PC Software ... 194

D.6. Power Analyser Circuit Diagrams ... 196

D.6.1. Mains Wiring ... 196

D.6.2. Signal Conditioning Circuit .. 197

D.6.3. Signal Processing Circuit .. 198

Appendix E MPPT Algorithm Comparison Method .. 199

E.1. Control Software .. 199

E.2. Simulated Solar Panel ... 201

E.3. In-Circuit Solar Panel .. 201

xi

E.4. Result Recording .. 202

E.5. Maximum Power Point Tracking Algorithms ... 202

E.6. Control of Comparison Scenarios.. 202

Appendix F Software Implementation ... 204

F.1. Source Code Compilation ... 204

F.1.1. C# and VB.NET ... 204

F.1.1.1. Pre-Processing Code ... 205

F.1.1.2. Code Compilation ... 207

F.1.1.3. Loading Compiled Code .. 208

F.1.2. Mathematical Mark-up .. 209

F.1.2.1. Tokenising... 210

F.1.2.2. Shunting Yard Conversion ... 211

F.1.2.3. Reverse Polish Notation Solution .. 211

F.2. Simulation Engine ... 213

F.3. Result Viewers .. 215

F.3.1. Table ... 215

F.3.2. Line Graph ... 216

F.3.3. Pie Chart .. 216

F.4. Parameter Value Editors ... 217

F.5. Graphical Model Editor ... 224

F.5.1. Overview ... 224

F.5.2. General Design Considerations for Editor .. 226

F.5.3. Editor Design ... 227

F.5.4. User Input Handling ... 229

xii

F.5.5. Drawing ... 230

F.6. Graphical Component Editor .. 231

F.7. Implementation Summary .. 236

References ... 237

xiii

List of Figures
Figure 2-1: Diagram illustrating the current architecture of the UK’s domestic energy system.

 ... 7

Figure 2-2: UK heating fuel mix in 2007 [4].. 8

Figure 2-3: UK overall fuel mix for all energy sectors in 2009 [5]. .. 8

Figure 2-4: Share of citizens served by district heating schemes in selected European

countries... 12

Figure 2-5: Possible architecture of the future Smart grid, based on one proposed by the UK

electricity networks strategy group. [47]... 18

Figure 3-1: Internal representation of a system model within the software package. 36

Figure 3-2: Graphical representation of a sample system within the simulation package. 36

Figure 3-3: Software representation of the graphical model shown in Figure 3-2. 36

Figure 3-4: Illustration of the way in which (a) AC and (b) DC electrical pins are modelled on

components within the simulation package. ... 38

Figure 3-5: Equivalent schematic of an electrical node component. 40

Figure 3-6: Illustration of a thermal connection between two components. Heat transfer pins

are expressed in terms of temperature T (°C) and thermal resistance θ (°C/W).

The resulting heat transfer from left to right, Q (W), is illustrated. 42

Figure 3-7: Illustration of some of the possible communications channels involved in a smart

energy system. 1) A control and status reporting network between the smart

meter, in-home display and smart appliances. 2) PC connections to the smart

meter or smart appliances. 3) Uplink to the utility provider. 4) User connection

to the utility provider for control and monitoring of account. 43

Figure 3-8: Activity diagram illustrating the method used within the package to evaluate a

model. .. 51

Figure 3-9: Abstract class which provides the methods that component scripts should

implement to define component behaviour. ... 53

xiv

Figure 3-10: Activity diagram illustrating how the process of evaluating mathematical scripts

representing component behaviour maps onto the 4-function interface used by

C# or VB.NET scripts. Note that the “End” function is not included because it is

not used when evaluating mathematical scripts. .. 58

Figure 3-11: UML diagram illustrating the design of the watch system used to collect results

from the simulation. ... 61

Figure 3-12: Illustration of an electrical connection between two components showing

complex voltages V1 & V2, complex impedances Z1 and Z2 and complex current

I. ... 62

Figure 3-13: Illustration of a heat transfer connection between two components showing

temperatures T1 & T2 (°C), thermal resistances θ1 and θ2 (°C/W) and heat flow Q

(W). .. 64

Figure 3-14: Sequence diagram illustrating the processing of a communications message. The

optional block at the end of the sequence of events indicates the way in which a

message is intercepted for forwarding to an associated Data Watch object. 66

Figure 3-15: UML diagram illustrating mathematical operator system within the package. ... 67

Figure 3-16: XML schema for a component library file. ... 72

Figure 3-17: XML schema for a system model file. .. 73

Figure 3-18: XML schema for component behaviour elements.. 74

Figure 3-19: XML schema for component instance elements. ... 75

Figure 3-20: Diagram illustrating the architecture of the new simulation package. 77

Figure 4-1: Illustration of component symbols and source code for DC and AC ideal voltage

source components. Source code for these components is written in the

mathematical mark-up language... 79

Figure 4-2: Two-diode solar cell model. .. 79

Figure 4-3: Single-diode solar cell model. .. 79

Figure 4-4: Illustration of the I/V characteristic of a BP SX-80 solar panel showing the

equivalent load required to obtain each operating voltage. 82

xv

Figure 4-5: Illustration of the new algorithm developed to determine the operating point of a

solar panel when the load resistance is known. The output current I(V) is

obtained using (23) and R(V) =V/I(V). .. 85

Figure 4-6: Illustration showing the range over which the linear search algorithm was able to

obtain I/V operating points for the BP SX-80 solar panel. 87

Figure 4-7: Illustration showing the range over which the Newton’s method algorithm was

able to obtain I/V operating points for the BP SX-80 solar panel. 88

Figure 4-8: Illustration showing the range over which the newly developed algorithm was

able to obtain I/V operating points for the BP SX-80 solar panel. 88

Figure 4-9: Comparison of the time taken to reach a solution for each algorithm using an

irradiation level of 1000W/m2. The values for 500W/m2 are excluded from this

illustration because they are of similar magnitude. ... 89

Figure 4-10: Schematic of a connection or control component with impedance ZCONNECTION

inserted in series between two components. .. 92

Figure 4-11: Schematic illustrating the way in which the simulation package requires a series

component to be modelled... 93

Figure 4-12: Component which models the series resistance introduced by electrical wiring.

 ... 94

Figure 4-13: Smart electricity meter component. .. 96

Figure 4-14: Model used for an electrical load component. .. 101

Figure 4-15: Schematic diagram illustrating the model used for a surface component. 109

Figure 4-16: Example of initial surface temperature gradient calculation. 111

Figure 4-17: Dynamic model of a material within a surface. .. 111

Figure 4-18: Final surface model. .. 112

Figure 4-20: Hierarchical model of a window. ... 115

Figure 4-21: Illustration of how a moveable sash is defined within the window component.

 ... 116

Figure 4-22: Custom configuration dialog included within the “Window” component to allow

for the definition of window properties. ... 117

xvi

Figure 4-23: Schematic illustrating equivalent thermal resistance model for the window

component. .. 119

Figure 4-24: Electrical analogy for the thermal model of a room. .. 120

Figure 5-1: Automated test tool test case editor. .. 132

Figure 5-2: Automated test runner interface. .. 133

Figure 5-3: 3D Model of dining room used in case study showing neighbouring rooms. 139

Figure 5-4: Results of 24 hour simulation of dining room temperature compared to measured

room temperature. ... 140

Figure 5-5: Percentage error in simulated room temperature during 24-hour study. 141

Figure 5-6:Results of 48 hour simulation of dining room temperature compared to measured

temperature. .. 142

Figure 5-7: Percentage error in simulated temperature during the 48-hour study. 143

Figure 5-8: 3D model that was developed as a reference geometry model for the home used

in the second case study. .. 144

Figure 5-9: Comparison of measured and simulated room temperature in the second case

study. .. 148

Figure 5-10: Percentage error in simulated temperature in the second case study. 148

Figure 5-11: Comparison of physical measurements of domestic appliance power

consumption with simulated power consumption. ... 151

Figure 5-12: Comparison between the simulated and measured values of the total power

consumption of all appliances. .. 152

Figure 6-1: Domestic energy system modelled in this case study. Solid lines indicate electrical

connections while dashed lines indicate communication links. 157

Figure 6-2: Illustration of the current-voltage relationship of a solar panel for varying solar

irradiation levels. Maximum power points are indicated on each curve. 158

Figure 6-3: Sample illustration showing points collected during different runs of a

perturbation and observation algorithm and the maximum power point on each

occasion (indicated in bold). ... 162

Figure 6-4: Activity diagram of the newly-developed learning maximum power point tracking

algorithm. ... 163

xvii

Figure 6-5: Power output of a solar panel under experimental conditions when using the

Incremental Conductance maximum power point tracking algorithm. The dotted

line indicates the approximate maximum power point of the panel under fully-

illuminated experimental conditions. .. 165

Figure 6-6: Power output of a solar panel under experimental conditions when using the

Learning based maximum power point tracking algorithm. The dotted line

indicates the approximate maximum power point of the panel under fully-

illuminated experimental conditions. .. 166

Figure 6-7: Consumption of hot water per hour as recorded in a typical home within the

Energy Saving Trust hot water survey. .. 169

Figure 6-8: Simulated electrical power demand for the home. .. 170

Figure 6-9: Load profile of the home over 24 hours with no thermal or electrical storage. .. 172

Figure 6-10: Load profile of the home over 24 hours with only the thermal storage system

enabled... 173

Figure 6-11: Water heater temperature over 24 hours without control system enabled. 173

Figure 6-12:Water heater temperature over 24 hours with control system enabled. 174

Figure 6-13: Graph illustrating power imported from the grid when only the battery storage

system is enabled. .. 175

Figure 6-14: Graph illustrating power imported from the grid when both the battery and hot

water storage systems are used. ... 175

Figure F-1: Illustration of the C# code required to implement component behaviour. 207

Figure F-2: Class for evaluating mathematical statements within the simulator. 209

Figure F-3: Tokenising a mathematical expression. ... 210

Figure F-4: Illustration of tokenised mathematical expression being converted into reverse

polish notation. ... 211

Figure F-5: Activity diagram illustrating the process used by the simulation engine thread to

execute simulations while allowing the user interface to pause or stop

execution. ... 214

Figure F-6: Table result viewer control. ... 215

Figure F-7: Illustration of a line graph produced by the .NET 4.0 Chart control. 216

xviii

Figure F-8: Illustration of the pie chart result viewer included in the package. 217

Figure F-9: Configurable parameter list control shown within the component properties

viewer. .. 218

Figure F-10: Integer parameter editing dialog. .. 219

Figure F-11: Boolean parameter editing dialog.. 219

Figure F-12: String parameter editing dialog. .. 219

Figure F-13: Decimal parameter editing dialog. ... 220

Figure F-14: Time parameter editing dialog. .. 220

Figure F-15: List parameter editing dialog. .. 221

Figure F-16: Table parameter editing dialog in normal operating mode. 222

Figure F-17: Enhanced version of the table editing dialog for use at component design time.

Options to edit the table structure are also provided. 222

Figure F-18: Selection list editing dialog. ... 223

Figure F-19: Enhanced version of the selection list editing dialog used at component design

time. ... 223

Figure F-20: Custom configuration parameter editing dialog... 224

Figure F-21: Annotated diagram illustrating the main features of the graphical model editor.

 ... 225

Figure F-22: Model editor class diagram. .. 228

Figure F-23: Properties page from the component library editor. 232

Figure F-24: Component library editor pin configuration page. ... 233

Figure F-25: Parameter editing page of the library editor. ... 234

Figure F-26: Source code editing page of the component library editor. 235

xix

List of Tables
Table 2-1: Comparison of the domestic smart grid modelling capabilities of whole-building

energy analysis tools. A solid dot indicates that the package fully supports the

specified feature, a hollow dot indicates partial support and no dot indicates no

support. .. 29

Table 3-1: Summary of the key features of the mathematical mark-up language that has been

included in the simulation package. .. 56

Table 3-2: Illustration of the mapping process used in the mathematical mark-up language. 57

Table 3-3: Illustration comparing the implementation of a configurable voltage source in C#

to the implementation in the mathematical mark-up language. 57

Table 3-4: Illustration of the memory requirements for recording numeric simulation results

at different temporal resolutions. This table makes the assumption that 10

different result values are collected from the model on each iteration and that

these results are floating-point values. ... 59

Table 4-1: Comparison of result errors in operating point detection algorithms. 90

Table 4-2: Parameters used to configure the smart meter component. 99

Table 4-3: Parameters that store metering results within the smart meter component. 100

Table 4-4: Measured operational characteristics of household appliances and calculated

impedance value for use in models. .. 102

Table 4-5: Measured operational characteristics of household appliances with multiple

operating modes and calculated impedance for use in models. 103

Table 4-6: Properties of the Dimplex ECSd100-580 100 litre 3kW immersion heater. 104

Table 4-7: Description of the measurements of glazed areas or opaque panels that are

required for the ISO10077-1 window thermal transmittance calculation. 113

Table 4-8: Description of the measurements of the frame that are required for the ISO10077-

1 window thermal transmittance calculation. ... 114

Table 5-1: Results of room materials survey for first test home. ... 137

xx

Table 5-2: Survey of the materials used in the building construction around the room marked

“Lounge 1” in Figure 5-8. .. 145

Table 6-1: Results of simulation and experimental comparisons of maximum power point

tracking algorithms under slowly and rapidly changing atmospheric conditions.

 ... 164

Table F-1: Illustration of the Reverse Polish Notation solution of the expression in Figure F-4.

It is assumed that before solving this expression the variable “A” is set to 3.

Trigonometric functions are solved in degrees. ... 212

xxi

List of Abbreviations
AC Alternating current.

AMI Advanced metering infrastructure (otherwise known as “smart metering”).

API Application programming interface.

ASHRAE American society of heating, refrigerating and air-conditioning engineers.

AWG American wire gauge.

BEV Battery electric vehicle.

C# C#, a Microsoft programming language.

CAD Computer-aided design.

CCS Carbon capture and storage.

CHP Combined heat and power.

CPP Critical peak pricing.

DC Direct current.

DLL Dynamic link library – a Windows module containing re-usable software.

FPGA Field programmable gate array.

GUID Globally unique identifier.

HAN Home area network.

HVAC Heating, ventilation and air conditioning.

ISO International standards organisation.

LAN Local area network.

MPPT Maximum power point tracking.

.NET .NET, a Microsoft application development framework.

OSI Open systems interconnection – a standard model for networking.

PAN Personal area network.

xxii

PHEV Plug-in-hybrid electric vehicle.

PLC Programmable logic controller.

SEP Smart energy profile – a ZigBee profile designed specifically for
communication between smart metering equipment.

TOU Time of use electricity tariff.

T-TOU Tiered time of use electricity tariff.

UML Unified modelling language – a standard method of presenting software
design.

VB Visual Basic – a Microsoft programming language.

WAN Wide area network.

XML Extensible mark-up language – a standard method for machine- and human-
readable exchange of structured data.

1

Chapter 1

Introduction

A significant proportion of current research into energy systems is partially motivated by

government targets that have been set to reduce carbon emissions as part of the overall goal

to reduce the effect that our production of carbon dioxide has on climate change. A number

of advances are being made in improving carbon emissions at the point of energy generation

through the use of cleaner renewable sources of energy and through the use of new

technologies such as carbon capture and storage for traditional fuel-fired power stations.

Advances are also being made at the point of use such as the reduction of building energy

consumption through education of occupants and through technological advances which

improve the efficiency of appliances at the point of consumption.

The development of new technologies to reduce carbon emissions has, however, introduced

new problems within energy systems which must now be solved. Electricity generation which

has typically been centralised at large power stations is now moving to more remote parts of

the electricity grid where the availability of wind, tidal and wave power is at its greatest. This

introduces constraints at locations on the energy network where generation can exceed the

rated capacity of a section of network which was never designed to support large generators.

Increasing renewable generation also poses network stability issues whereby the export of

renewable generators is dictated by the weather rather than by the network operators,

which can result in availability of energy being high when demand is low and vice versa.

The term “Smart Grid” is used to collectively describe a set of technologies which aim to

mitigate some of these problems that are introduced by adding large amounts of renewable

generation to the electricity network. This broad term covers many aspects of grid operation

which are being made more intelligent. However, the overriding goal of all of these

2

technological improvements is to enable the introduction of renewable generation sources

into an electricity grid which was not originally designed for them. During the background

research phase of this project, shifting demand to times of higher generation availability and

introducing storage within the grid were the two broad approaches that were considered to

be most widely accepted as a potential solution to the intermittency of renewable

generation.

Additionally, other technologies such as low-carbon heating sources, electric vehicles, and

improvements to building thermal efficiency were identified as changes which could be

introduced at the domestic level as part of the overall transition to the smarter grid. These,

coupled with the introduction of smart meters which provide a two-way communications link

between the home and utility supplier and the wider availability of low-cost computing

devices pave the way for the development of smarter home energy control systems.

After a detailed study of existing software applications for modelling home energy systems, it

was concluded that much of the existing software available for this purpose takes a

traditional system modelling approach, with focus placed on the accurate simulation of

electrical and thermal properties of buildings. The goals of this project were therefore chosen

to examine home energy systems from a software engineering approach, focussing on the

control logic and communication issues involved in developing domestic smart grid systems,

while accommodating the simulation of the physical electrical and thermal domains which

these control systems ultimately interact with.

1.1. Aims and Objectives

Chapter 1 The overall aim of this project is to take a novel software engineering based

approach to the modelling of domestic energy systems, with the focus placed on the control

and communication elements of systems which will become available during the transition to

a smarter energy network. Rather than develop new algorithms which operate at grid-level,

this research aims to provide a tool that can be used to model energy systems within a home

as part of a wider grid-level control system.

3

The following project objectives have been set in order to work towards this overall aim:

 Carry out a survey of existing software for domestic energy modelling and identify the

features that are available in existing packages for smart grid modelling and which

new features would be desirable.

 Use the set of requirements developed in the literature survey to design and

implement a new domestic smart grid modelling package with a particular emphasis

on the software and data transfer aspects of the system. The new package should be

able to support the modelling of electrical energy flow and building thermal

characteristics to allow control systems to be modelled in context.

 Perform theoretical and experimental validation of the new package, where relevant,

to quantify the accuracy of simulations which are carried out within the package.

 Carry out a domestic smart grid case study using existing technologies combined with

novel ideas to demonstrate the suitability of the package for use within an overall

smart grid system deployment.

1.2. Original Contributions of this Research

The research presented in this thesis provides a number of original contributions to

knowledge in the field. These are described below.

1.2.1. Flexible Software Platform

A flexible software platform has been developed for the modelling of smart domestic energy

systems. As well as allowing for the simulation of electrical power flow and heat transfer

within a building – features commonly found in existing building energy simulation packages

– the package offers a number of novel features. The incorporation of data communication

simulation allows for systems within the home to communicate with each other to allow the

simulation of distributed control or monitoring systems. Human interaction with appliances

is modelled to allow for the consideration of the effect that human behaviour has on

domestic energy consumption. The package provides the ability to implement component

and control system behaviour directly in fully-featured object-orientated programming

4

languages directly, in contrast to existing building energy simulation packages which

generally rely on custom scripting languages or the implementation of additional software

modules for complex logic. The development of this package is the subject of a conference

paper [1].

1.2.2. Photovoltaic Maximum Power Point Tracking

A case study was carried out during the research that illustrates the features of the package.

During the development of this study, a new learning-based photovoltaic maximum power

point tracking algorithm was developed that offers improvements over some existing

methods of maximum power point tracking. The maximum power point tracking algorithm is

the subject of a conference paper [2]. An algorithm was also developed to obtain the

operating point of a solar panel when the load resistance on the panel’s terminals is known.

This algorithm is the subject of a journal paper [3].

1.3. Outline

The remaining chapters of this thesis are as follows:

Chapter 2 presents the background to this research project. Section 2.1 describes the

transition from the fossil-fuel based 20th century energy systems to the future low-carbon

smart grid and describes the need for software modelling packages to model the domestic-

level effects of these changes. Section 2.2 provides a comprehensive review of existing

software that could potentially be used for domestic smart grids which provides the basis for

the requirements of the new software package.

Chapter 3 describes in detail the design of the new software modelling package that was

developed during this project. The decisions behind the various parts of the package design

are discussed and UML models provided for various parts of the software. The chapter

concludes with an overview of the architecture of the new package.

Chapter 4 describes the selection of components that were developed for use with the

package to simulate the behaviour of building elements. These include electrical components

5

(generators, appliances and switching); thermal components (building structural elements,

heating, ventilation and weather); communication components (data sources and data

routing); and many other components to control logic within simulations.

Chapter 5 describes the testing that was carried out during and after the development of the

software package, including the theoretical and experimental validation of the simulation

results that were obtained. Two case studies were carried out within homes to compare the

output of the package against real-world scenarios.

Chapter 6 presents a case study of a proposed domestic smart grid system which was

developed using the new software package. This system includes an improved maximum

power point tracking algorithm for solar panels and an integrated home energy system which

is capable of utilising hot water and battery storage to modify the daily load profile of a

home.

The work presented in the thesis is summarised in the conclusions in Chapter 7. The chapter

describes the key findings of the project and the future improvements that could be made to

each phase of the project.

6

Chapter 2

Background

This chapter describes the current changes in energy generation, distribution and

consumption patterns that are taking place around the world which have provided the

motivation for this thesis. A particular emphasis is placed on the UK. A review of the changes

from the “top-down” energy systems of the 20th century to the new “Smart Grid” systems of

the 21st century is performed. An analysis of how these changes may impact the design of

domestic energy systems then follows. The chapter concludes with a study of existing

integrated building energy analysis software with a focus on assessing the capabilities of

packages for modelling smart domestic energy systems.

2.1. Smart Grids

2.1.1. 20th Century Energy Networks

In the UK, electricity has traditionally been generated at large, centralised power stations.

Coal, oil, gas and nuclear power stations are capable of producing a variable power output up

to a fixed maximum capacity when provided with a continuous supply of the necessary fuel.

While hydro-electric plants rely on a renewable source of energy in the form of stored water,

they can also be viewed as a form of generation which can be deployed when demand

requires, as long as the required volume of water has been stored or is available.

Traditional power stations are connected to a high-voltage transmission network which

transports energy around the country to where it is needed. Energy is then carried by lower

voltage distribution networks to the end-users. Throughout this process, a large amount of

control and monitoring is placed on the transmission side of the network. The energy leaving

power stations is monitored for both billing and quality purposes and the voltage and

frequency are monitored at multiple points around the transmission network to ensure that

7

they are kept within acceptable tolerances. Careful balancing of supply and demand is

required to keep the grid operating within its required voltage and frequency range.

Figure 2-1: Diagram illustrating the current architecture of the UK’s domestic

energy system.

In contrast to a reasonably widespread use of automated control and monitoring on the

generation and transmission side of the electricity network, there is significantly less control

and monitoring on the distribution network. Electricity consumption at the domestic end-

user level is carried out using either mechanical or digital meters from which the readings are

periodically recorded by the utility company. As a result of this process, no information is

available about the real-time use of energy on a per-user basis. An exception to this is for

customers with Economy 7 tariffs. These tariffs use two meters in a time-switched

configuration which provides energy companies with the ability to sell electricity at a cheaper

Gas Power Plant Wind Farm
Coal Power

Plant
Pumped Hydro

Storage

Nuclear Power

Plant

Transmission

Substation

Transmission

Substation

Distribution

Substation

Distribution

Substation

Buildings

G
e

n
e

ra
tio

n
T

ra
n

s
m

is
s
io

n
 &

D
is

trib
u

tio
n

C
o

n
s
u

m
p

tio
n

Hydro

Switching

Electricity &

Heating

Sensing

Renewable

Energy Source

Non-Renewable

Energy Source

Storage &

Demand Shifting
Infrastructure

Control &

Automation
Load

Multiple Roles – Main

Colour is Primary Role

Natural Gas

Gas Distribution

Network

8

rate during a seven hour off peak window during the night. However, this primitive form of

time-of-use tariff does not allow electricity suppliers to provide pricing which reflects real-

time energy demand. Figure 2-1 above illustrates the approximate architecture of the UK’s

energy system from generation, through transmission and distribution to the end-user.

Figure 2-2: UK heating fuel mix in 2007 [4].

Figure 2-3: UK overall fuel mix for all energy sectors in 2009 [5].

Heating and transport also play a major role in worldwide energy consumption. In the UK,

heating accounts for 46% of the overall energy budget with transport accounting for 37% [4].

Energy use statistics from 2007 shown in Figure 2-2 indicate that 69% of all heat energy was

produced from natural gas, with the next highest source of heat energy being electricity with

69%

11%

3%

14%
1% 2%

UK Heating Fuel Sources (2007)

Gas

Oil

Solid Fuel

Electricity

Renewables

Other

47.5%

30.5%

18%

4%

UK Energy Consumption Fuel Mix 2009

Petroleum

Natural Gas

Electricity

Other

9

a 14% share. Statistics from 2009 in Figure 2-3 show that the use of natural gas at the end-

user level accounted for 30.5% of overall energy consumption whereas electricity only

accounted for 18%. Figure 2-3 also shows that petroleum-based fuels which provide the

majority of the UK’s transport energy account for 47.5% of overall energy consumption.

These statistics illustrate the large role that heating and transport play in energy

consumption in the UK and also the extent to which the country relies on non-renewable

fossil fuels to meet these energy requirements.

2.1.2. Low-Carbon Electricity

EU statistics from 2004 indicate that the UK is largely dependent on imported coal and, for

the first time, is marginally dependent on imported natural gas due to depleting domestic

stocks. [6] The dependence on depleting fossil fuel resources - especially those from foreign

origins - coupled with European directives to reduce carbon emissions, has resulted in the UK

government publishing a long term strategy which sets a target for producing 40% of UK

electricity from low-carbon sources by 2020. [7] A proportion of this reduction will be made

up by generating 30% of the overall electricity budget from renewable sources. Coal and gas

use for generation with carbon capture and storage (CCS) in addition to new nuclear power

stations could also feature as part of this plan. From a domestic end-user point of view, the

main energy reductions dictated by this plan will be found by increased energy efficiency

within the home. Financial incentives are also likely to be given to install low carbon

electricity and heating systems, and energy companies will begin the roll-out of smart

meters. The Scottish Government aims to exceed UK targets by generating 100% of

electricity consumed in Scotland from renewable sources by 2020. [8] As of 2010, 24.1% of

energy consumed in Scotland was produced from renewable sources, a slight decrease on

the 27.3% figure of 2009 [9].

While the widespread incorporation of renewable generation sources into the power

network is generally positive in terms of producing low-carbon sustainable electricity, its

introduction also comes with some disadvantages. Renewable generation which depends on

weather conditions, most notably wind and solar generation, are intermittent and

unpredictable sources of energy generation. Hence excess energy may be generated at times

10

when it is not required, or conversely, not enough energy is generated when it is most

needed. A recent example [10] of this phenomenon occurred in Scotland between April 5th

and April 6th 2011 when larger than normal volumes of rain in conjunction with high wind

speeds resulted in more wind and hydroelectricity being generated than was being used. This

excess generation coupled with a network fault which prevented the export of excess

electricity to England resulted in a number of wind generation companies being required to

stop producing electricity and being compensated a total of £900,000 for the resulting loss of

income.

Storage systems have been proposed in recent research as one method of smoothing out

these intermittency issues [11-16]. A benefit of storage over other technologies for the

mitigation of intermittency issues is that it does not require a behavioural change from end

users – a continuous supply of energy is always available. A major disadvantage to

widespread use of storage technology at present is the relatively expensive cost per kWh of

electrical storage systems.

Another factor to be considered with a number of renewable generation systems –

particularly solar power – is the non-linear voltage-current relationship of the generators. In

the case of photovoltaic panels this means that for a given level of incident solar radiation,

there is a particular voltage-current combination which will yield the maximum power

generation. A large amount of research has been undertaken for various forms of renewable

generation into methods to track maximum power points [17-25]. These maximum power

point tracking algorithms (MPPT) generally operate by varying the load on the renewable

generation system to increase the power yield from the system. This ideal load setting can be

greater or less than the actual system demand.

2.1.3. Low-Carbon Heating

In section 2.1.1 it was stated that around 46% of the UK’s domestic energy consumption is

for heating buildings and water and that the primary domestic heating fuel in the UK is

natural gas [4] - around 1000TWh of natural gas is consumed annually [5]. While coal-fired

and gas-fired electrical energy generation with CCS is a viable option for producing cleaner

11

electricity from coal and gas on a larger scale, there is less that can be done to reduce

emissions from gas on a domestic level. One idea proposed in the UK low-carbon transition

plan is to replace existing gas boilers with more efficient models, therefore producing the

same quantity of heat while producing a lower level of emissions due to a reduced fuel

consumption. Other efficiency savings proposed include improving the levels of insulation in

homes and installing triple glazed windows to reduce heat loss through windows.

While limited carbon reductions can be achieved through efficiency savings, in the long term

different heating technologies will have to be used to achieve further reductions and to

reduce dependency on foreign imports of fossil fuels. Solar water heating systems which use

focussed sunlight to heat water pipes are already commercially available, as are ground, air

and water source heat pumps which use a small amount of electricity to circulate fluid to

recover stored heat. In areas where renewable sources of bio fuels are available in the form

of timber, farm crop by-products or organic waste, combustion systems can be used for

heating. While these heat sources may not be carbon-free, some of them may be considered

“carbon-neutral”. An example of this is that when wood from trees is burnt, CO2 is released,

but trees which are planted to replace them are capable of breaking down CO2 in the

atmosphere. Over long periods of time, the carbon cycle of trees is therefore essentially

neutral.

Another development in low-carbon heating technologies is the use of combined heat and

power (CHP) systems which provide both heating and electricity. Small-scale systems use

heat pumps, waste heat or combustion of fuel in conjunction with a heat-to-electricity

conversion system such as a Stirling Engine [26-27] or thermoelectric generators [28-29].

Larger scale systems known as district heating schemes use a centralised heat source to

provide hot water or steam for heating to surrounding homes and businesses through

insulated pipes. While there are only a small number of district heating systems currently

operating in the UK, this type of heat provision has been widely used throughout Europe for

some time with a large number of European countries generating a major proportion of their

domestic heating from such schemes. As illustrated in Figure 2-4, a number of European

12

countries are providing over half of their domestic heating energy from district heating

schemes while Iceland produces nearly all of its domestic heating through district heating.

 Some district heating systems rely on natural geothermal energy; others will use a readily

available source of industrial waste heat such as the cooling water from a coal or nuclear

power station while and others may rely on more traditional methods of heat generation

such as the combustion of oil, gas or solid fuels. An increasingly common method is to use

domestic waste as a heating fuel to reduce required landfill capacities. This method is used in

a district heating scheme in Nottingham in the UK [30] to provide heating to a number of

large commercial users and over 4600 domestic customers. Centralised heat generation

systems are advantageous for upgrading to low-carbon heat sources because they do not

require the expensive process of upgrading individual homes – the heat source only requires

to be changed at the distributor level. An example of this is the PDHU project [31] in London

which used waste heat from the now closed Battersea power station. When the power

station closed, gas-fired CHP units and boilers were installed to continue providing heat to

the connected homes.

Figure 2-4: Share of citizens served by district heating schemes in selected

European countries.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Sh
ar

e
o

f
C

it
iz

en
s

Se
rv

ed
 b

y
D

is
tr

ic
t

H
ea

ti
n

g

13

Multiple technologies have been described that could be used to make the transition to low-

carbon heating in the UK, however, one factor which most of them have in common is that

they require changes at the end-user level. This includes district heating schemes which,

despite being commonplace in other European countries, would require a large initial

investment in infrastructure in the UK. This is in contrast to the transition to low-carbon

electricity sources in which the majority of changes can be made at the generation and

distribution levels.

2.1.4. Low-Carbon Transport

In the document “Low Carbon Transport: A Greener Future” [32] published by the UK

Department for Transport, a number of measures are outlined for the reduction in carbon

emissions from the transport sector. The majority of the short-term measures described in

this report focus on improving the efficiency of internal combustion engine vehicles to

reduce their contribution to overall carbon emissions. However, the longer term measure of

introducing lower carbon alternatives to existing vehicle technologies are of greater interest

in the context of this work.

Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) which either

partially or fully use stored electricity as their main energy source provide an alternative to

internal combustion engine vehicles and offer very low or zero carbon emissions at the point

of use. A project is currently underway in London [33] to encourage the uptake of these

vehicles. As identified in the London project, the main barrier to the uptake of electric

vehicles is the need for charging points to regularly charge the Vehicle’s battery. The project

aims to address this by providing a large number of fast charging points (single phase 230V,

32A and three phase 500V, 200A) throughout the city in order to allow vehicles to be charged

when they are away from the home.

In the context of this research, the interesting aspect of electric vehicles is when they are

connected to the domestic power system for charging. In section 2.1.2, energy storage and

intelligent scheduling of demand were presented as two technologies which can potentially

be used to mitigate the power system stability issues posed by the intermittent generation

14

from renewable sources. Within the context of a smart home, an electric vehicle can operate

as a schedulable load. Additionally, with the correct type of bi-directional charging system

[34] the vehicle can operate as a battery energy storage system offering the ability to support

the grid when renewable generation output is reduced. Two separate German studies have

shown this use of electric vehicles to be a viable concept. The first [35] takes a conservative

estimate that electric vehicles would be connected to the grid around 81% of the time and

concludes that while unmanaged charging of vehicles increased peak grid load, charging can

be managed in a way that shifts the load to a more desirable time for the grid with little or no

effect on the mobility of the user of the vehicle. The second study [36], which takes a more

optimistic estimate that vehicles will be connected to the grid 89% of the time, concludes

that a reduction of up to 16% in the fluctuation of overall grid energy demand can be

achieved with 1 million electric vehicles in use.

2.1.5. Advanced Metering Infrastructure

The installation of Advanced Metering Infrastructure (AMI) or Smart Metering as it is also

known is an indication that the type of control and monitoring that was previously only

present at the generation and transmission levels of the electricity supply systems is now

filtering down to the end-user level. The UK smart meter policy [7] dictates that smart meters

should be installed in all UK households by 2020. This exceeds EU policy which mandates that

all EU countries should have deployed smart meters to 80% of the population by 2020. [37] A

number of other EU counties also plan to exceed the requirement. Italy has already deployed

smart meters to around 75% of its households and France has a penetration of around 25%.

[38]

The initial aims of installing AMI as described in the UK low-carbon transition plan [7] are to

encourage consumers to better understand their energy use and provide opportunities for

energy saving. The government’s intention is that the deployment will allow utility

companies to provide alternative tariffs which can reward energy saving and encourage end-

users to use energy when it is most desirable for the generation systems. Despite being

government-mandated for these reasons, the installation of smart meters is also desirable

15

for the energy suppliers because it provides data which can be used to analyse usage

patterns and also saves the manpower costs associated with reading traditional meters.

Despite these relatively modest initial requirements of smart metering systems, utility

companies within the UK are already deploying meters which far exceed these requirements.

British Gas have publicly released the specification for their smart metering system, which is

developed by Landis+Gyr [39]. GPRS communication is used to implement a two-way

connection between the meter and the billing company. This allows for the meters to either

transmit readings at predefined intervals back to the billing system, or for the billing system

to request readings from the meter at any time. Both prepayment and credit modes are

supported with the option of various all-day, on- and off- peak and time-of-use tariffs with

rate intervals as short as 30 minutes. A primitive form of load shedding is also available

within the meters whereby a power consumption limit (for example, 5kW) can be imposed

on the user. When power consumption is close to this level the meter will sound an alarm

and if the limit is exceeded the meter will cut all power to the property.

The British Gas smart meter uses Zigbee Smart Energy Profile (SEP) [40] for local

communication between the electricity meter, gas meter, communications unit and any in-

home displays. This is an industry-standard communications interface for smart energy

related systems and provides capabilities beyond smart metering such as the control of

smart appliances, heating and air conditioning systems. A software upgrade to enable these

features would allow the meters to dynamically control appliances in response to changing

electricity prices.

Scottish Power have started to roll out smart meters to their customers which are also

manufactured by Landis+Gyr and have similar capabilities to the British Gas meters [41].

Scottish and Southern Energy have also entered a partnership with Landis+Gyr to develop a

smart meter with a particular focus on green energy [42]. This meter has the capability to

allow the connection of local microgeneration to the grid as well as providing similar features

to the meter already been discussed. OnStream, the National Grid’s metering business, have

also developed a smart meter which has the ability to automatically control home appliances

[43].

16

A study into smart metering in the EU [38] has estimated that the installation of smart

meters in every home in the EU will cost around €51 billion. The direct benefits from this

installation to utility companies will be a saving in the operational costs of connection and

disconnection of supplies and meter reading. This saving is estimated to be in the region of

€26-41 billion which leaves a deficit of around €10-15 billion to recover. One of the main

benefits of smart metering which the study proposes to meet this funding gap is the

introduction of time of use tariffs (TOU) to reduce peak generation requirements.

Primitive time of use tariffs have been present in the UK for a number of years in the form of

the Economy 7 tariff [44] which provides seven hours of discounted electricity during the

night in return for paying slightly higher prices during the rest of the day. This tariff has

typically been provided by using two meters with a clock or radio based time-switch. While it

provides the ability to offset electric heating loads to a time of lower electricity consumption,

it does not have the ability to encourage customers to reduce loads at times when this is

critical to grid operation. The intermittent nature of renewable sources which was discussed

earlier provides a greater motivation to be able to adjust the times of day that these types of

peak and off-peak charges apply. The ability to reduce electricity load when renewable

generation levels are low reduces the need for expensive grid-based storage as described in

section 2.1.2.

Utility companies around the world, particularly in the USA, have developed time-of-use

tariffs which are specifically designed to address the issue of reducing load at times critical to

grid operation. In the state of California, a time of use pricing pilot project was carried out

using four separate time-of-use schemes [45]. The most basic scheme trialled was traditional

TOU that involves charging a price for a fixed peak period each day which is around double

the price of the off-peak periods. This is comparable to the Economy 7 scheme already in use

in the UK. The remainder of the schemes trialled are of a class known as critical peak pricing

(CPP). These schemes charge between five and six times the off-peak price for a small

number of critical hours during the day when the wholesale price of electricity is at its

highest. Two variants of this scheme that were trialled were one where the critical hours

were fixed and one where the critical hours could vary and participants were notified each

17

day when the critical priced hours, if any, would be. The advantage of the second scheme is

that it is able to respond to forecasts of renewable generation. Additionally, a fourth trial was

carried out where the CPP tariffs were assisted by smart thermostats which automatically

control air conditioning systems based on price. The conclusions of this study were that the

standard TOU scheme resulted in peak time energy use reductions of around 5% while the

CPP tariffs resulted in a reduction of 8-15%. In the trial where smart thermostats were also

used, peak consumption was reduced by as much as 25%. Another trial of CPP in Illinois

which used email or SMS to communicate information about peak periods to customers each

day showed similar results to the Californian trial, with peak reductions of around 15% [46].

It was noted that customers in this trial were more responsive to peak pricing events in the

evenings. This is due to the fact that no automating technology was used and therefore

customers had to be at home to be able to respond to price changes.

2.1.6. Smart Grids Summary

The primary motivation behind the transition to the smart grid from the existing power

distribution networks of the 20th century is the increasing political pressure to move to low-

carbon energy systems. As discussed in 2.1.2, the transition to renewable electricity sources

introduces more intermittency into the electricity supply which requires either storage or

demand management technologies to ensure a reliable supply when climatic conditions are

causing a low yield of renewable energy. In 2.1.5, the concept of AMI was discussed as a

possible solution to the problem of shedding load from the power network when renewable

energy generation is low. Smart meters using price signals sent from energy companies,

coupled with emerging technologies such as smart thermostats and smart appliances can

allow domestic end-users to play a more interactive role in the overall energy network. In

2.1.3, renewable heating technologies were discussed. Of particular note was the fact that

changes to renewable heating systems would require significant infrastructure changes at

the end-user level as heat energy is generally produced where it is needed rather than

centrally distributed.

In conclusion, the transition from the current energy system architecture shown in Figure 2-1

to a new Smart Grid system will involve extensive introduction of control and monitoring at

18

all stages of the energy system, from generation to the end user. New methods of renewable

generation known as distributed or embedded generation will begin to be connected at

remote points throughout the grid and microgeneration and storage devices may be

connected at the consumer level to reduce dependency on grid supplies. Changes to

buildings in the form of new heating systems and energy efficiency measures such as

insulation, draft-proofing and window replacement may also be required. A possible

architecture of this new grid is shown in Figure 2-5.

Figure 2-5: Possible architecture of the future Smart grid, based on one proposed

by the UK electricity networks strategy group. [47]

2.2. Smart Grid Software Modelling

As discussed in section 2.1, the transition to Smart Grid systems will involve changes at the

domestic and commercial end-user level in the form of smart metering systems, demand

management, distributed generation, distributed storage and new methods of heating.

Large Scale PV

Gas Plant with

CCS
Wind Farm

Coal Plant with

CCS

H2 Production

(Electrolysis of Water)

H2 Storage &

Generation

(e.g. Fuel Cells)

Pumped Hydro

Storage
Nuclear Plant

Transmission

Substation

Transmission

Substation

Distribution

Substation

Distribution

Substation

Wind Farm

Tidal Power

Smart

Buildings

Wind Turbine

Small Scale PV

Heat Pump

Solar Water

Heating

Smart

Appliances

Electric Vehicle

Battery Storage

G
e

n
e

ra
tio

n
T

ra
n

s
m

is
s
io

n
 &

D
is

trib
u

tio
n

C
o

n
s
u

m
p

tio
n

Hydro

Smart Metering

Switching

Non-Smart

Appliances

Sensing

Renewable

Energy Source

Non-Renewable

Energy Source

Storage &

Demand Shifting
Infrastructure

Control &

Automation
Load

Multiple Roles – Main

Colour is Primary Role

Natural Gas

Gas Distribution

Network

19

These changes involve new challenges when designing domestic energy systems as the flow

of energy is no longer unidirectional from the electricity or gas supply system to the

consumer. The use of energy from sources other than the grid will become more common

and the net energy flow may be either from the grid to the home or from the home to the

grid depending on installed microgeneration or storage capacity. Additionally, different

control strategies may be implemented to allow the energy supply network to schedule the

use of various domestic appliances and storage devices to coincide with times dictated by

available grid capacity.

The introduction of smart grid technology will require an ever-increasing number of design

decisions to be made when implementing domestic energy systems. Traditionally thought of

as separate entities, electricity and heating will become more interdependent with the

increased use of new technologies such as combined heat and power systems and electric

heating from renewable electricity sources. Such interdependency will see new types of

design criteria and constraints being considered when developing domestic energy systems.

For example, when designing a single-building microgeneration and electricity storage

system, maintaining a comfortable heating temperature while managing the use of electricity

from the grid may be a design parameter. Criteria relating to the “smart” aspects of the

future grid will also need to be considered. This would include communications between

domestic appliances, price signals from the utility network and software control algorithms

to co-ordinate the local use of energy.

Software modelling and simulation techniques have been widely applied to the solution of

system-level engineering problems in the past and it is therefore sensible to investigate their

application to the emerging concept of smart grids. In investigating software modelling tools,

it becomes apparent that the most appropriate category of tools for use with domestic smart

grid systems are tools known as building energy analysis tools. Building energy analysis tools

use some form of description of a building’s construction in addition to other input

parameters to perform analyses of the building’s energy usage. Inputs and outputs vary from

tool to tool, however typical inputs may be: building construction materials and dimensions;

weather data; local electricity generation and usage; choice of heating fuel; heating or air

20

conditioning system parameters; and occupancy data. Typical outputs are likely to include:

energy efficiency rating; heating fuel and electricity consumption details; room

temperatures; and costs. These tools are particularly appropriate for smart grid modelling

due to their support for electricity, heating and control system analyses.

A comprehensive comparison of building energy analysis tools is given in [48]. Rather than

reiterate the findings of previous comparisons in this thesis, a survey of the literature on one

of the most commonly used tools, EnergyPlus, will be presented to give the required insight

into the techniques widely used in this type of software. EnergyPlus, which is developed by

the US Department of Energy, was selected specifically because of its widespread use

internationally for building energy analysis and also because of the wealth of published

research on its operation. The review of EnergyPlus will be followed by brief summaries of a

number of other building energy analysis packages to compare the features available in each.

The section will conclude with a summary of the current state of the art of integrated

building modelling tools.

2.2.1. EnergyPlus

EnergyPlus [49-50] is a comprehensive building energy simulation tool which is developed by

the US Department of Energy. It is based on features from two separate packages – DOE-2

[51] and BLAST [52] – which were its predecessors. The main purpose of these two packages

is the simulation of heating, ventilation and air conditioning (HVAC) systems and as a result,

the core capability of EnergyPlus is a very mature HVAC systems simulation. Nonetheless, the

package also has the capability to model electrical loads and generation including some

complex analyses such as the yield of renewable energy systems at a particular location.

EnergyPlus is a simulation engine which is designed to accept its input and generate results

through text files. Inputs to the system are a complete model of the building’s construction,

definitions of the HVAC and electrical plant used in the building, and weather data for the

building’s location. Results including plant utilisation, heat flows, room temperatures and

total energy demand are provided in similar text files. The purpose of using text files rather

than a full user interface is to allow third parties to develop their own interfaces that are

21

suited to their particular problem, and to allow EnergyPlus to be integrated into larger

simulation systems. The Department of Energy develop a graphical interface for the package

which allows building models to be rapidly developed in Google Sketchup [53] and simulated

using EnergyPlus. This interface, known as OpenStudio [54], permits the whole process of

defining the building model, its simulation and viewing the results to be carried out from

Sketchup. Various architectural design software packages also provide their own interfaces

to EnergyPlus [55].

Simulations within EnergyPlus are undertaken in two distinct steps. For each time-step in the

simulation, a heat balance model calculates the temperatures of zones and surfaces within

the building in addition to the heat flow between zones and surfaces. The results of these

calculations are then fed into a building systems model which iteratively evaluates the

response of the building systems to the changes in temperature that were calculated.

The heat balance model within EnergyPlus is a single-pass calculation rather than an iterative

solver. The model takes the states of building zones and plant from the previous time-step of

the simulation and uses these to compute the changes in temperature and heat flow for the

current time-step. Two distinct modules are utilised for this purpose. The air mass module

deals with heat flow due to moving air, either through forced ventilation or infiltration. This

module assumes that in each zone of the building the air is of uniform temperature. The

surface mass module deals with conduction, convection and radiation of heat from surfaces.

This module assumes that surfaces have uniform temperature, uniform radiated heat and

one-dimensional conduction. Comprehensive coverage of the effects of windows on both

heating and lighting of rooms is included in the heat balance model [56].

The building systems model is an iterative solver which represents the HVAC and electrical

plant within a building. Building systems are simulated using a concept known as “loops”. A

loop is a set of connected nodes which, in the case of HVAC systems, model heating and

cooling plant connected by pipes or, in the case of electrical systems, model electrical

generators and loads connected by wires [57]. At present two HVAC loop types are

supported within the package – air loops and water loops. The iterative solver for HVAC loops

defines loops with two halves – a demand side which provides the heating or cooling to

22

zones, and a supply side which provides the heated or cooled air or water. Temperature set-

points are used for each zone to calculate the required heating or cooling input from its

HVAC equipment. The solver then iteratively tries different configurations of all of the

available plant within the room until the supply side of each HVAC loop can meet its demand

side. Users can add control algorithms to this process to control the temperature set points

of the rooms.

Electrical systems within EnergyPlus are also modelled as loops [58]. These loops can be

either AC or DC electrical networks with a combination of loads, storage devices and

generators. Conversion elements such as electronic inverters are included to bridge between

DC and AC loops. There are a number of built-in generation modules including photovoltaic,

wind, combined heat and power and internal combustion engines. Additionally, a number of

control strategies for electrical systems are also included in the package which control the

dispatch of generation and storage devices in response to both electricity demand and the

target amount of power to be drawn from the grid. This allows for control strategies which

encourage power consumption when grid prices are low and discourage consumption when

prices are higher.

To conclude the study of EnergyPlus, consideration must be given to the accuracy of the

results from its simulations. The package is tested using the ASHRAE standard 140-2007 (an

update to ASHRAE 140-2001 [59]) which defines standard test scenarios for the

benchmarking of building energy analysis software [60]. Results have been published which

indicate that the results from EnergyPlus correlate well with those of other simulation

packages [61-64]. In all of the tests presented in these results, the only situation in which the

results from EnergyPlus fell significantly outwith the range of other simulation packages was

in seven out of the thirteen building envelope tests where results varied by up to 15%

compared with other packages. In the HVAC and fuel-fire furnace tests, EnergyPlus produced

results that were within 2% of those of other packages.

23

2.2.2. Other Building Energy Analysis Software

As already described in section 2.2.1, the BLAST [65] and DOE-2 [51] packages have been

superseded by EnergyPlus. These packages contained a subset of the features available in

EnergyPlus and were both focussed on the simulation of the thermal properties of a building

and HVAC systems rather than the overall energy usage of a building. Similarly to EnergyPlus,

both of these packages accepted input and produced output in text file format with a

number of third parties producing graphical user interfaces.

ESP-r [66-67] is a complete building energy analysis tool which has been under development

for over thirty years at the University of Strathclyde. The capabilities of ESP-r very closely

match those of EnergyPlus in that it is capable of modelling heat transfer between building

zones and surfaces, HVAC systems, mass flow of air and water, sunlight and shading and

electrical power flow. In addition to the 1D heat conduction model that EnergyPlus employs

for surface heat transfer, ESP-r offers optional 2D and 3D conduction models for more

accurate simulations. An optional computational fluid dynamics (CFD) numerical approach

[68] can also be used within zones in contrast to the standard uniform air temperature model

to gain a greater understanding of the temperature gradients across each zone. ESP-r uses

similar solvers to EnergyPlus for the mass flow of air and water throughout a building

whereby a node-based representation is used to generate a model of the system [69].

Electrical power flow within a model is solved using a frequency-domain power flow solver

[70] to obtain the steady-state power for each time-step within the simulation. The concept

of “hybrid components” is used to enable components which convert electricity to heat and

vice versa to be represented. These components interact separately with both the thermal

and electrical solvers within the package. Definition of models within ESP-r can be carried out

using a basic graphical user interface and also through the import of building geometry from

CAD packages. A number of third party components are used to visually present simulation

results. Numerous studies have been carried out by the program’s development team in

order to validate the results produced by the package [71]. These studies include analytical

comparisons to ensure that the package produces the expected results according to the

theory that it is based on, empirical studies to compare the performance of the simulations

24

to real-world data, and comparative studies to compare the performance of ESP-r to other

packages. In these validation studies, the package has been found to be in agreement with

other similar packages.

BSim [72] is a suite of programs which is developed by the Danish Building Research Institute

for undertaking building energy simulations. Standard features of the package include the

ability to simulate heat transfer between building zones, zone temperatures and humidity

conditions. The effects of sunlight on a building’s climatic conditions and internal light levels,

including the effects of shading by surrounding buildings can also be simulated. BSim does

not provide any comprehensive coverage of electricity use within the modelled buildings.

Add-ons for the package allow for more advanced simulation of moisture conditions within

buildings [73-74] and for simulation of the approximate yield of photovoltaic panels installed

on the building [75]. One of the programs within the suite is a graphical user interface [76]

which allows for the definition of building models using a 3D view or 2D plan view. Another

program within the suite offers the capability to import building models from CAD packages

[77]. While the package has not been explicitly validated, the algorithms which make up the

main part of its functionality have been validated in a previous version of the simulation

engine.

The UK Building Research Establishment develops a simulation tool called SBEM (Simplified

Building Energy Model) with graphical user interface in the form of a Microsoft Access

database with macros called iSBEM [78-79]. Rather than being a complete building energy

analysis tool, SBEM is designed to test the compliance of buildings with EU and UK building

and energy efficiency regulations. This compliance is tested using a simplified set of

calculations known as the National Calculation Method (NCM). Two versions of the

calculation method are defined: one for Scotland [80] and another for England and Wales

[81]. As the tool is primarily a compliance and energy efficiency, its outputs are whole-

building energy metrics rather than detailed calculation of room and surface temperatures

and electricity usage. The developers of the tool therefore indicate that it should not be used

in design simulations and that other tools should be used for this purpose.

25

Energy-10 [82] is a proprietary software package which is aimed at assessing the effect of

installing different energy efficiency measures during the design of small residential or

commercial buildings. The focus of this package is on rapidly modelling buildings and running

hourly simulations to assess the benefit (both environmental and economic) of installing

various energy efficiency measures. It could therefore be described as a tool which assists in

decision-making rather than a complete energy analysis tool. Little information about this

package is available in the public domain due to its proprietary nature, however, available

features are: daylight simulation, passive solar heating and cooling, natural ventilation,

insulation, high performance windows, lighting and mechanical equipment.

The “Transient System Simulation Program” or TRNSYS [83-84] is a proprietary software

package which is developed by the University of Wisconsin-Madison in partnership with a

number of industrial partners. The package is a modular, general-purpose transient

simulator. However, the majority of the built-in mathematical models reflect the fact that it

is very much targeted at the modelling of energy systems. In contrast to the whole-building

definition approach, TRNSYS provides a more flexible method of modelling where individual

components which are represented by mathematical models that can be connected together

to form a complete system. In simple terms, the output of one mathematical model in the

system becomes the input to others. The TRNSYS solver performs a simultaneous solution of

the algebraic and differential equations which make up the model on each time-step of the

simulation and records the results [48]. Systems are designed using a graphical user interface

by adding mathematical models (either user-defined or from the built-in library) and making

connections between them with lines to indicate the flow of data. The OpenStudio plug-in for

EnergyPlus [54] which provides integration with Google Sketchup is also supported by

TRNSYS, allowing a geometrical description of a building to be automatically converted into a

mathematical model block for use in the package.

Matlab [85] is a mature mathematical programming environment which has gained

widespread acceptance in the engineering community. The Simulink [86] simulation

environment is a model-based simulation system which accompanies Matlab and enables the

creation of Matlab programs from a graphical drag and drop based modelling interface. From

26

a usability perspective, Matlab and Simulink provide a good environment for the rapid

development of system models. The SimPowerSystems package which is available for

Simulink provides a mature power system modelling capability and the Communications

System Toolbox provides a comprehensive communications system modelling capability,

from the high-level protocol level down to the physical link level. Where the package falls

short in meeting the requirements for domestic smart grid simulation is its lack of building

simulation capabilities.

2.2.3. Summary of Smart Grid Software Modelling

A comprehensive review of the current state of the art in integrated building energy analysis

tools has been carried out and it is apparent that a number of the tools have at least some of

the capabilities that will be required of simulation tools to model domestic smart grid

technologies. To compare the capabilities of the packages that have been described and to

identify any areas in which improvement is needed, a standard set of criteria have been

developed. These criteria will focus heavily on the abilities that will be required to model new

domestic smart grid technology within buildings, rather than to accurately model the

buildings themselves. The criteria which are described below have been selected with careful

consideration given to the review of smart grid technology carried out in section 2.1.

Core Features

 Individual appliance modelling – Simulations should be able to model down to the

individual appliance level as smart grid control strategies may rely on controlling

smart appliances to manage demand. In this case, the characteristics of each

individual appliance are important in dictating the ways in which the appliance can

respond to control signals.

 Basic “lumped” models – As well as advanced individual appliance models, it may

also be desired to lump the behaviour of a number of appliances into one simplified

block.

 Closely coupled electricity, heat transfer and communications – Every element

within a simulation should be able to interact with electricity, heat transfer and

communications simulations concurrently. This capability will be important in

27

modelling smart electrical appliances which may also have some thermal mass or

thermal output to their environment.

 Advanced software control of device behaviour – The ability to script the properties

of devices will allow more accurate modelling of their behaviour than a mathematical

model and will allow the implementation of “smart” control strategies which

communicate with other elements in the simulation.

 Rapid development – Packages should support rapid definition of models to aid in

the process of prototyping different strategies.

 Minimal constraints on system type – There should be no constraints on the type or

scale of the system being modelled. When modelling smart grid technologies it may

sometimes be necessary to model a whole building or community or a small number

of interacting buildings. In contrast there may also be situations in which modelling is

focussed on developing an individual piece of control equipment.

 Wide simulation time-step range – Detailed simulations of control systems such as

maximum power point trackers for renewable energy systems or battery

management systems may require microsecond resolution whereas whole building

systems may require only hourly, daily or seasonal simulation. Packages should

accommodate this by offering simulation time-steps in the range of microseconds to

months.

Environment

 Weather – The package should support the modelling of the effect of weather on

buildings and their systems.

 Importing weather data – To assist with the modelling of climate, packages should be

able to import weather data.

Electricity Modelling

 AC and DC Systems – Renewable energy sources and storage devices primarily utilise

DC while domestic power systems are primarily AC and therefore both types of

system and the conversion between each should be supported.

28

 Renewable Generation – As explained in section 2.1.3 of this review, distributed

renewable generation including CHP systems will be a core feature in future climate

policies and therefore its inclusion in modelling domestic smart grid systems is crucial.

 Grid Connections – The assessment of import from and export to the electricity grid

will be important in studying demand management algorithms. A grid connection and

metering capabilities are therefore required.

 Electrical Storage – Electrical storage systems will be important for both demand

management and smoothing the intermittency of local renewable sources.

Thermal Modelling

 Building Envelope – A building’s construction plays a key role in its energy usage and

therefore should feature in a smart grid modelling package.

 Heat Conduction – Heat conduction between spaces is an essential part of the

building envelope modelling capability.

 Infiltration and Natural Ventilation – Should also be an integral part of the building

envelope modelling capability.

 Heating and Cooling Systems – Modelling of both the central plant (e.g. boilers) and

heating elements (e.g. radiators) which perform conversion of energy to produce

heat.

Communication

 Internal Communication – Support for communication between appliances and

control systems within the building is required to model entities such as smart

appliances.

 External Communication – Support for communication with the utility company is

required to model smart metering systems and dynamic pricing tariffs.

The above set of criteria are not exhaustive but serve as a basic set of requirements for a

domestic smart grid modelling package from which further requirements can be drawn. They

do, however, serve as a useful standard set of test criteria for performing an at-a-glance

comparison of the available features in the packages that were studied in sections 2.2.1 and

29

2.2.2. Table 2-1 shows this comparison and was developed from research carried out in

preparing this literature review and through existing comparison tables available in [48].

Table 2-1: Comparison of the domestic smart grid modelling capabilities of whole-

building energy analysis tools. A solid dot indicates that the package fully supports

the specified feature, a hollow dot indicates partial support and no dot indicates

no support.

Criteria
Packages

Energy
Plus

BLAST DOE-2 ESP-r BSim SBEM Energy
-10

TRNSY
S

Matlab

Individual appliance modelling

Basic “lumped” models

Closely coupled electricity, heat
transfer and communications

Advanced software control of
device behaviour

1

Rapid model development
2

No constraints on system type
3

Wide simulation time-step
range

4

Weather / climate modelling

Importing weather data from
available formats

5

Modelling of AC and DC systems

Renewable generation

Grid Connections

Electrical storage

Building envelope modelling

Heat conduction between zones
and surfaces

Infiltration and natural
ventilation

Heating and cooling systems

Internal communications
between household devices

External communication for
weather data and utility
company connections

1 Rather than using mathematical models, the application is capable of modelling systems through scripting or other means
to allow for greater degrees of detail in component implementations and communication between components within a
system.
2
 The application provides a graphical method of constructing models.

3 The application is not constrained to building modelling; it can model multiple buildings or individual building systems.
4 The application is capable of assessing both transient effects along with hourly, monthly or seasonal effects.
5 The application can import weather data in a non-proprietary format.

30

2.3. Summary of Project Background

Table 2-1 shows that some of the applications studied – most notably EnergyPlus, ESP-r and

TRNSYS perform 80-90% of the requirements stipulated for a smart grid modelling package

but that they are missing crucial features like the ability to model communication, advanced

software control of devices within a building and the ability to model components which

closely couple communications, heat transfer and electricity. This justifies the development

of future tools which are specifically targeted at domestic smart grid systems. The set of

criteria discussed in section 2.2.3 and listed in Table 2-1 will be used as the set of

requirements on which to design a new smart domestic energy simulation package which is

fully described in Chapter 3.

Within the scope of this project, a particular emphasis will be placed on the development of

a platform that more tightly couples the interaction between the electrical and thermal

physical domains and places a strong emphasis on the integration of software control within

the home. The intention of this approach is to enable the merging of two branches of

research discussed in this section – the need for smarter control systems to solve network-

level constraints related to the introduction of renewables and the integration of these

systems within the home.

31

Chapter 3

Software Design

In Chapter 2, it was established that while there is currently a broad range of open-source

and proprietary software available to perform the modelling of some of the elements of a

domestic smart grid system, there is still room for improvement in their capabilities. This

deficiency has contributed to the motivation behind the main piece of work in this thesis –

the development of an integrated simulation suite for domestic smart grid systems. An aim

of creating such a simulation tool is to provide an environment that is capable of modelling

the electrical and heat energy requirements of buildings in a similar way to existing tools but

which also adds the element of communication between building systems and intelligent

control within appliances themselves.

This chapter presents a detailed design for the new simulation package, using the criteria

listed in Table 2-1 as a set of functional requirements. The design takes into account the

methods that will be used to represent physical systems within the computer software; the

methods that will be used to simulate AC and DC electrical systems, thermal systems and

communication systems; and the methods used to run simulations and analyse the results.

The chapter concludes with an overview of the design decisions and compromises made and

presents the architecture of the software package.

3.1. Choice of Application Development Platform

The Microsoft .NET Framework and C# programming language were chosen as the main

development platform for the application. The motivation behind this decision was that C# is

32

a high-level object orientated language which makes it suited to writing large, structured

software applications.

There are a number of alternatives to C# when selecting an object orientated programming

language, most notably C++ which can be used to program natively, and Java which targets

the Java Virtual Machine, an alternative to .NET. The reason for selecting C# over these other

languages was the selection of features provided by the .NET framework which seemed

particularly suited to the development of this application. These were: XML reading and

writing for model storage; windows graphical user interface libraries; the ability to invoke

native code for optimisation where required; graph drawing libraries; and the ability to

compile and run source code at runtime.

In terms of performance, native code written in C or C++ would be considered by most to be

faster than code run on a virtual machine such as .NET or Java code. This was indeed found

to be the case in a recent benchmark test [87] where, on average, code produced by the

Microsoft C++ compiler was 15.8% faster than the equivalent .NET code. However, it was felt

that this was an acceptable sacrifice in performance in return for the large selection of

libraries provided by the .NET framework and the shorter development time.

3.2. Representation of Models

3.2.1. Techniques in Existing Packages

There are two perspectives to consider when selecting a suitable representation of the

physical model: the representation that the user is required to use to present the model to

the simulator; and the internal representation within the simulation package itself. Within

the simulation packages discussed in Chapter 2, there are two distinct methods of model

representation used. These are discussed in this section and used as the basis to specify a

model representation for the new simulation package.

The more traditional building energy analysis tools which have their origins in HVAC

simulation (EnergyPlus, ESP-r, BLAST, DOE-2 and BSim) require the user to provide input to

the simulator in the form of a textual or CAD-based building geometry which is processed by

33

the package into a mathematical model that can be solved by the simulator. HVAC or

electrical plant is represented separately in the form of a behavioural transfer function for

the specific piece of plant and indications of the associated building zone and other plant

that are connected to it. This particular model representation performs well when separate

simulation subsystems are used to model the behaviour of the building and of the appliances

within it. A disadvantage of this type of approach is that the user is constrained to modelling

systems which fit the scenario of one or more building structures, each with a set of HVAC

and electrical plant.

The packages which are more orientated towards system simulation (TRNSYS and

Matlab/Simulink) represent each element within a model as a component which uses a set of

mathematical transformations on its inputs to produce one or more outputs which can be

fed into other elements of the system. Using this method of simulation requires the user to

perform the transformation of the building geometry into a set of components with

mathematical representations, possibly by using an automated tool. This requirement is a

potential disadvantage of this approach as it requires more work on the part of the user

when creating the initial model of the physical system. However, representing an entire

system as a single mathematical model rather than using individual models for the different

physical domains can also be advantageous. From the perspective of modelling domestic

smart grid technology, it offers an advantage because multiple types of physical systems (e.g.

electrical power flow, heat conduction, air flow, liquid flow, daylight) can be modelled

without having a dependency on the capability existing within the package. This

mathematical modelling technique is also more flexible in the types of system that can be

modelled – a model could contain a single solar panel connected to a battery or could

contain an entire street of buildings, each with its own smart energy system.

3.2.2. Design of New Technique

When designing the system modelling technique to be used in the Smart Grid modelling

package, a combination of the two broad strategies discussed in section 3.2.1 was used. The

connected-component approach of the latter strategy was chosen over the textual or CAD-

based building geometry model of the former because it provides a greater flexibility in the

34

type of systems that can be modelled – the software is not constrained to building

simulation. This strategy also allows the simulation of the electrical, thermal and

communication domains to be more closely coupled whereby a single component within the

simulation can contain logic that, for example, changes its electrical characteristics based on

incoming communications.

Despite adopting this integrated modelling strategy, the concept of having separate

simulation of electrical, thermal and communication systems within the package has been

partly employed. The approach that has been taken is for every component within a

simulation to have multiple connections, each with a defined type – electrical, heat transfer,

communication or “other”. Each connection on a component may only be connected to a

connection of the same type on another component. An advantage of this approach is that it

allows the simulation package to record results easily from known types of connection. For

example, electrical connections can support the monitoring of voltage, current and power

flow; heat transfer connections can support the monitoring of heat flow and temperature;

communication connections can support the monitoring of data transmission. The “other”

type of connection allows for the custom implementation of physical domains which do not

fall into the categories natively supported in the package – for example the flow of natural

gas into a heating appliance.

A graphical user interface is provided to allow the user to create models in a similar style to

Simulink and TRNSYS, where the user adds components to a model in the form of rectangular

blocks and creates connections between them with lines. The behaviour of components can

either be defined by a user or can be selected from built-in libraries of standard components.

This allows for more rapid prototyping of systems by providing a more intuitive approach to

designing the system than a textual definition language, giving constant visual feedback to

the user of the structure of the system being modelled. Additionally, this approach allows for

validation of the model as it is created by the user by preventing incorrect connections being

made between components at design-time rather than having to subsequently validate the

properties of the model during the running of the simulation.

35

Internally within the software, the user’s graphical model will be mapped onto an object-

orientated software representation of the model as shown in Figure 3-1 (page 36). This

representation holds three collections of objects. The first contains each of the component

types or behaviours which can be found in the model. For example, if a “Battery” component

is used multiple times in a model, the number of external connection pins, the configurable

parameters and the internal logic for the component need only be defined once regardless of

the number of times that instances of the component are used. The second collection is a list

of the specific instances of components that are used in the model, each with an associated

behaviour and values for its configurable parameters. The final collection is a list of the

connections that are made between components in the model.

To illustrate this mapping between graphical system models and an object-orientated

software model of a system, a simple example system is illustrated in Figure 3-2. This system

contains an electric heater connected to a grid supply which is used to heat a room. Figure

3-3 illustrates the properties of the software model that would be derived from such a

graphical model.

3.3. Physical Domain Representations

In section 3.2.2, the method of model representation to be used in the new simulation

package was defined. In the design of this method, it was proposed that different physical

modelling domains would be separated by requiring each pin on a component to model a

single physical domain and allowing a pin to be connected to another pin of the same type

only. This section describes in detail how the properties of each of these physical pin types

will be modelled in the package.

36

Figure 3-1: Internal representation of a system model within the software

package.

Figure 3-2: Graphical representation of a sample system within the simulation

package.

Figure 3-3: Software representation of the graphical model shown in Figure 3-2.

Model

 Behaviour

 Configuration

Components

 Pins

 Configurable Parameters

 Logic

Component Behaviours

 Source component & pin

 Destination component & pin

Connections

Grid

VOUT

Heater

Power Output

Room

1

2

3

4

Model

Behaviour: Room

 Pins: {1,2,3,4: Heat Transfer}

 Configurable Parameters: {Volume:

decimal value}

 [Logic defined for thermal model of room]

Behaviour: Grid

 Pins: {VOUT: Electrical}

 Configurable Parameters: {Voltage,

Frequency: decimal value}

 [Logic defined for grid connection model]

Behaviour: Heater

 Pins: {Power: Electrical, Output: Heat

Transfer}

 Configurable Parameters: {Rated Power

Output: decimal value}

 [Logic defined for electric heater]

Component: Room1

 Behaviour: Room

 Configuration: {Volume = 20m²}

Component: Heater1

 Behaviour: Heater

 Configuration: {Rated Power=2.5kW}

Component: Grid1

 Behaviour: Grid

 Configuration: {Voltage=230V,

Frequency=50Hz}

Connections

 Grid1.VOUT – Heater1.Power

 Heater1.Output – Room1.1

37

3.3.1. Electrical

The electrical energy simulation element within the package will be required to represent

existing AC power systems within buildings, as well as representing new microgeneration and

storage systems within buildings which are primarily DC systems. There are also two different

temporal resolution constraints imposed on simulation systems when analysing the electrical

components of new smart energy systems. When designing switched mode control devices

for local storage and microgeneration systems it may be desirable to examine the transient

performance of these devices at the sub-second level. When simulating the overall energy

use of appliances in the home, the transient behaviour of AC systems becomes less

important than the overall power flow from sources to loads.

The EnergyPlus package employs an electrical modelling system [58] where a central

component known as the “Load Centre Distribution Manager” controls the overall energy

flow within a building. Loads within the building are expressed in terms of their power

consumption. Generators are expressed in terms of their total generation capability (which in

the case of some generators such as solar may vary depending on external factors such as

weather). Storage devices are expressed in terms of their maximum charge and discharge

power ratings. The load centre distribution manager within the model controls local

generators and storage to supply the local loads, with reference to a given energy

management scheme. These schemes may be to minimise or maximise local generation,

charge or discharge local storage or to meet certain targets on power imported from or

exported to the utility provider. Any shortfall in local generation and storage capacity is met

by importing power from the utility provider and any excess is exported. This electrical

modelling system has shortcomings in what is required for a domestic smart grid simulation

package: it is essentially a lumped power flow calculation for a single building with a utility

provider and does not provide any detail into the power flows within the building or the

transient effects associated with electronic control systems.

The ESP-r package provides a more detailed electrical simulation capability [88] than

EnergyPlus where an electrical model is represented by a set of connected nodes. The model

is solved using Kirchhoff’s current law where simultaneous equations for the voltage at each

38

node are expressed in terms of the currents flowing in to or out of the node. To make the

solver more suited to building energy systems where sources and loads are usually expressed

in terms of power production and consumption rather than voltage and current, a

manipulation is made on the standard Kirchhoff equations to express the nodal equations in

terms of real and reactive power in and out of each node. This approach is suitable for

steady-state analysis of AC systems and can also be applied to DC systems by disregarding

the reactive power component. A disadvantage to this approach is that by expressing the

network in terms of power flows, large sets of simultaneous equations must be solved which

can become computationally intensive for larger systems.

Solution complexity for large sets of simultaneous equations is reduced in the new simulation

package by imposing the restriction on the main simulation engine of only being able to solve

electrical systems on a component by component basis. The solution chosen to represent

electrical systems was to represent every electrical pin on a component as a Thévenin

equivalent model. For AC pins this is a voltage source specified in terms of voltage (V),

frequency (Hz) and phase angle (°) in series with an impedance specified in terms of

magnitude (Ω) and phase angle (°). For DC pins this is a voltage source specified by voltage

only, in series with a resistance (Ω). All voltages are assumed to be referred to a common 0V

virtual ground point so that electrical systems only require a positive or live connection. The

negative or neutral paths are inferred as returning to a common point. Figure 3-4 illustrates

the equivalent circuits that are used to represent AC and DC electrical pins on components.

Figure 3-4: Illustration of the way in which (a) AC and (b) DC electrical pins are

modelled on components within the simulation package.

VRMS (V)

f (Hz)

Φ (°)
VDC (V)

Z (Ω,°) R (Ω)

(a) (b)

39

In simplifying the electrical domain implementation by modelling electrical systems as

component to component connections only, rather than as an entire electrical network, the

simulator is potentially providing users with the difficult task of having to create intermediate

“infrastructure” components. An example of this would be in connecting more than one load

to a single generation source – an intermediate component would be required to provide the

extra connections. In order to mitigate this potential pitfall, a built in “electrical node”

component was included in the simulator. This component is a fixed-voltage node to which

multiple electrical connections can be made. The Thévenin equivalent model of one pin on

the node is the combined Thévenin equivalent of the devices connected to every other pin

on the node. The component also has the special behaviour of being able to calculate the

node voltage for use in the package’s result recording system which is described in section

3.5.1.

Figure 3-5 illustrates a number of electrical components connected to an electrical node. To

simplify the implementation of electrical nodes, the design decision was taken to allow only

electrical connections of the same frequency to a single node – a mixture of AC and DC

sources or different frequencies of AC sources is not permitted at present. The voltage at a

node VNODE (V) can be calculated using (1) , where VX is the Thévenin equivalent voltage

connected to pin X on the node, ZX is the Thévenin equivalent impedance connected to pin X

on the node and N is the number of pins on the node. VNODE, VX and ZX are complex numbers

expressed in terms of magnitude and phase angle.

(1)

40

Figure 3-5: Equivalent schematic of an electrical node component.

The electrical model for a given pin on a node is the Thévenin equivalent combination of the

electrical models connected to all of the other pins on the component. For a given pin A, the

Thévenin voltage VTH,A is calculated using (2) and the Thévenin Impedance ZTH,A is calculated

using (3).

(2)

(3)

3.3.2. Thermal

The thermal simulation capabilities within the package will be required to simulate the

transfer of heat between two elements within a simulation. This may be, for example, the

transfer of heat between spaces within a building, the transfer of heat from a heating

appliance to a space, the loss of heat from a space due to drafts or ventilation, or heat gain

due to sunlight through windows.

VNODE

Z1V1

Z2V2

Z3V3

1

2

3

41

Existing simulation packages which were discussed in section 2.2 varying in their thermal

modelling capabilities, from simple 1D heat conduction models to advanced Computational

Fluid Dynamics models, capable of modelling variation in air temperature across a room. The

new simulation package is being targeted at smart grid system modelling rather than

attempting to accurately re-create any of the existing simulation packages and it was felt that

a basic model was suitable to model the heat transfer between spaces in a building. Using a

one-dimensional model also allows heat transfer between two components in a simulation to

be dealt with as a scalar rather than a vector quantity, simplifying the calculations that need

to be performed.

ISO Standard 12831-2003 [89] which specifies a method for calculating the design heat load

for a building when installing heating systems was chosen as a basis for developing the heat

transfer modelling capabilities of the package. It uses a one-dimensional linear model for

heat transfer between spaces within a building and its exterior. It also provides methods to

simplify effects such as ventilation through infiltration and forced ventilation to their

equivalent linear models.

 The heat transfer calculations presented in ISO 12831-2003 are based on (6) below where Q

is the heat transfer or heat loss (W), H is the heat transfer coefficient of a material (W/K or

W/°C) and T1 and T2 are the temperatures (K or °C) on each side of the material.

 (4)

Equation (4) utilises the heat transfer coefficient of a material which is analogous to electrical

conductance. To improve consistency between the electrical and thermal models used within

the new modelling package, the thermal resistance of materials will be used instead,

resulting in a model of the form shown in (5), where θ is the thermal resistance of a material

in K/W or °C/W.

(5)

42

To allow components within a simulation to conform to this model, the thermal circuit

shown in Figure 3-6 is used where each heat transfer pin is specified in terms of a

temperature in °C in series with a thermal resistance in °C/W.

Figure 3-6: Illustration of a thermal connection between two components. Heat

transfer pins are expressed in terms of temperature T (°C) and thermal resistance

θ (°C/W). The resulting heat transfer from left to right, Q (W), is illustrated.

A special “temperature node” component has been built into the package to assist with

thermal modelling. This component has a single pin which represents a user-specified

temperature in series with a 0°C/W thermal resistance. The component can also be set to

track the global “ambient temperature” setting.

3.3.3. Data Communication

One of the key features of the end-user experience of a smart grid is the concept of

communications between the utility company, smart meter, in-home energy displays and any

smart appliances. There may also be more complex interactions involved in the system

between the user and the various components of the smart energy system. This may involve

using a PC (either in the home or externally via the internet) to view smart meter data,

configure the smart meter’s ability to remotely control appliances or directly communicate

with internet-connected appliances without the involvement of the smart metering

infrastructure. Figure 3-7 below illustrates these different types of communication channel

by grouping them into four categories based on the potential underlying technology that

would be used to implement each channel.

θ1T1 θ2 T2Q
.

43

Figure 3-7: Illustration of some of the possible communications channels involved

in a smart energy system. 1) A control and status reporting network between the

smart meter, in-home display and smart appliances. 2) PC connections to the

smart meter or smart appliances. 3) Uplink to the utility provider. 4) User

connection to the utility provider for control and monitoring of account.

Current efforts to develop communications specifications for smart energy devices are

focussing on the utilisation of standardised communications methods to increase the

potential for interoperability between different manufacturers’ devices. This is particularly

the case in countries with open energy markets such as the UK where consumers may

regularly switch energy suppliers. In the UK, the Home Area Network (HAN) which is used to

communicate between one or more smart meters in the building and the in-home display is

implemented using the ZigBee Smart Energy Profile [39, 90-91]. ZigBee is a wireless

communications system which uses the unlicensed 2.4GHz spectrum and is based on the IEEE

802.15.4 personal area network (PAN) standard [92]. The Smart Energy Profile [93] extension

provides a standardised framework for transmitting smart meter data over the ZigBee

network. It is expected that new firmware for the current generation of smart meters in the

UK will make use of the built-in ZigBee hardware and add the Home Automation Profile [94]

to allow smart meters to control smart appliances. Similar functionality to ZigBee is provided

by the proprietary Z-Wave wireless home automation system [95] to communicate between

smart meters, home displays and smart appliances. Another possibility for this technology is

to use the IEEE 1901 or HomePlug standard [96-97] which allows fast communication over a

short distance of existing power line wiring however the ZigBee or Z-Wave standards would

normally be preferred for their lower power consumption.

Smart Meter

Smart Appliance

In-Home Display

User Access

through PC

Utility Provider

1

1

2

2

3

4

44

Numerous technologies also exist for the wide area network (WAN) connection between

smart meters and the utility provider. Again, in the UK, interoperability has been defined as

one of the key aspects of such a technology. However, unlike the standard specification of

ZigBee as the implementation medium for the HAN, no standard technology has yet been

proposed for the implementation of the WAN. The main reason for this is that no single

communications technology has yet been defined which is capable of serving every smart

meter in the country. To allow for interoperability between different systems, it is more likely

in this case that a standard interface will be provided to connect to smart meter data once it

has reached an IP-based network. Routing systems will connect the different last-mile

connections to this central gateway. [90] The current methods used in the UK for

connections between smart meters and the utility network include GSM (mobile phone)

networks and dedicated long-range wireless networks. The smart meters that have already

been rolled out by British Gas and Scottish Power use GSM communication although the

British Gas specification [39] states that this can be easily replaced with a module to

implement a different form of communication. In recent developments in long-range

wireless communication, BT and a number of prominent smart meter manufacturers [98-99]

have announced that they will support the Sensus FlexNET [100] wireless communication

system – a proprietary system which operates in licensed 890-960MHz spectrum – to provide

the backhaul network for remote meter reading and control. This will provide a dedicated

network for smart metering which requires fewer base stations than the GSM network to

provide UK-wide coverage and is not prone to congestion from voice and data

communications in the way that the GSM network is. An alternative wireless communication

technique which could also be used for this purpose but has yet to be considered for use in

the UK is the IEEE 802.16 WiMAX [101] standard. This standard provides wireless network

access in a similar manner to Wi-Fi but over much longer distances. A non-wireless option of

power-line communication to the nearest substation has also been discussed in recent

literature [102-103].

User interaction within the home energy system may involve scheduling the times that smart

appliances may run at, viewing consumption data from the smart meter or remotely

switching on or off smart appliances. This type of communication may be achieved locally

45

from a PC using standard networking protocols such as IEEE 802.3 Ethernet [104]or IEEE

802.11 Wi-Fi [105]. It may also be achieved remotely through the internet in two ways. The

end-user may be able to interact with web pages that present historical data collected from

the smart meter and may also be able to control appliances through these web pages by

using the utility provider’s connection to the smart meter. Alternatively, the user may be able

to control internet-enabled appliances either directly or through special pages on the

manufacturer’s website.

This brief survey of the communication channels that are involved at the end-user stage of a

smart energy system illustrates that there are a multitude of potential communications

topologies and protocols that could be supported within a domestic smart grid simulation

package. To reduce the complexity of the design of the communications simulation platform

within the package, the different protocols that were discussed – Wi-Fi, Ethernet, WiMAX,

GSM, FlexNET, HomePlug, Zigbee and Z-Wave – were analysed under the seven-layer OSI

model [106].

When considering each of these methods, it can be noted that while the lower OSI layers of

the protocols differ, considering only the transport layer and above allows every protocol to

be represented as a stream of bytes being transmitted from one point to another. This is the

communications mechanism that will be provided in the simulation package – one

component may send a multi-byte communications packet through any of its pins which can

then be read by the connected component. The weakness in this approach is that many of

the underlying problems with the communications protocols such as transmission latency

and corruption or loss of data during communication are not modelled. This, however, can be

resolved by implementing intermediate components that introduce time delays or errors into

transmissions to simulate these conditions.

3.3.4. Asynchronous Communication

In addition to data communication between electronically controlled systems within a home,

it was observed that a more ad-hoc form of communication also occurs as a consequence of

the interaction between people and their appliances. In order to represent this separately

46

from byte-orientated data communications, an asynchronous messaging system was also

implemented within the simulation framework. This messaging system would allow one

component within a simulation to send a text string to another to indicate that some form of

external event (such as a system user activating a physical control) had taken place. Such a

message would be handled instantly by the receiving component by executing a dedicated

piece of code responsible for processing these messages.

3.3.5. Others

Thus far the design of three physical simulation domains – electrical, heat flow and

communication – has been covered. One of the requirements of the software was that

physical domains which were not natively supported within the application should be easily

added. The obvious approach to the design of such a feature would be to ensure that during

implementation of the physical domain modelling capabilities, a sufficient level of abstraction

is used to ensure that new domains may be added with relative ease to the application’s

source code. While this will be enforced as a design requirement, the design should go

further than this and provide a basic method of simulating extra physical domains without

having to alter the application’s source code.

This requirement of providing support for extra physical domains where the properties are

not natively known by the application will be fulfilled by including a fourth type of pin that

may be included on components simply known as an “Other” type pin. In this case, rather

than providing a distinct set of configurable properties as in the case of heat transfer or

electrical pins, a single configurable property which can contain a scalar value or data

structure holding multiple values will be made available.

3.4. Defining & Simulating Component Behaviour

3.4.1. Component Appearance and Configuration

In order to meet the requirement that the application should be extendable and not

constrained in the types of system that it can model, it is important that users should be able

to define new components when needed to meet a particular system requirement.

47

The first stage in creating a component would be to define the name of the component and

its physical interface to other components within a model. To implement this functionality,

the application will provide a user interface to define the component name and a description

as well as the pins on the component that will be used to connect it to other components. In

line with the physical modelling domains described in section 3.3, the following types will be

available for each pin: electrical, heat transfer, communication and “other”. Additionally,

each pin will have the ability to be allocated a name – both for use internally for referencing

the pin within the simulator, and as a visual aid to the user when making connections.

Another aspect of components that is important to define is the configurable parameters

which will allow the customisation of a component without having to recreate new logic each

time a slightly different version of the component is used. Examples of the use of such

parameters would be the creation of a generic voltage source component with a parameter

to specify the required voltage, or the creation of a room model for use in a building with

parameters to specify the physical properties of the particular room. This allows for more

general component models to be created and re-used in many situations. In accounting for

all possible configuration types that may be required for a component, a number of different

configurable parameter types should be allowed for components. The types that were

eventually selected in the design stage can be grouped into three broad categories: scalar

types, vector/matrix types and special types.

The following scalar configuration parameter types can be used on a component:

 Boolean – To store true/false values.

 Decimal – To store decimal numeric values. This type will be represented internally as

a floating point number to improve its performance in calculations over a fixed point

representation.

 Integer – To store integer numeric values. A 64-bit signed representation will be used

to provide a wide range of permitted values.

 String – To store textual data.

 Date / Time – Building simulations are heavily based on time of day and season,

hence it is important to provide a date and time type. A particular option that should

48

exist within this type is the provision of nanosecond resolution to provide a time type

which can be used even when simulating high resolution transient effects.

The following vector or matrix configuration parameter types will be provided:

 List – A list is a vector type parameter capable of holding a collection of a particular

type of primitive parameter from the types defined above.

 Table – A table is used to hold a matrix of data for use by the component. Tables will

be constrained to hold a single type of primitive parameter in each column.

Finally, there are additional settings for which it may not be logical to present to the user a

primitive, vector or matrix parameter from the types given above, and two special types will

also be provided to deal with these situations:

 Option List – The option list type will be handled internally in the same way as the

“string” primitive type in that it will store a single string value. The main difference to

the string parameter is that it will present to the user a drop-down list of pre-set

values to choose from rather than providing the option to enter any string. This

allows the user to be constrained to choosing a valid option for a given setting.

 Custom Configuration Method – For all other options where none of the built-in

types are capable of easily representing the setting to be configured, a completely

custom configuration option will be provided. This option will internally store the

setting value as an array of bytes, allowing the implementer of the component to

select the representation to be used for the setting. From the user’s perspective, the

implementer of the component will be required to provide a reference to an external

plug-in which will display a dialog to the user to collect the required configuration

information.

Graphical user interfaces will be provided within the application to edit each provided

configurable parameter type (with the exception of the custom type). A separate interface

will also be provided to allow the editing of the available parameters on a component to

define a name, description, type and default value for each.

49

3.4.2. Simulation Technique

In section 3.3, the physical domain representations were designed such that each point to

point component interconnection is solved independently of the rest of the system,

regardless of the physical domain being modelled. The key motivation behind this approach

was to simplify the implementation of the main simulation engine so that it is not dependent

on having solvers for each of the individual physical domains.

Despite the physical behaviour of a model being simulated entirely by the components

themselves, there are still a number of tasks which need to be carried out by a central

simulation engine. The first of these is the management of time during a simulation. There

are two main objectives to temporal control within a smart-grid simulation. The first is to

keep the simulated date and time current so that the behaviour of components can respond

to the time of day when required. This is particularly important for weather-related

components which may be influenced by season or time of day. The second aspect of time

management is to control the granularity and duration of the simulation. These parameters

will be configurable by the user to allow long, low-resolution simulations to be run to assess

seasonal effects on a model while allowing shorter high-resolution simulations to assess for

example the transient effects of switching in electrical systems. The time management

component of the main simulation engine will be responsible for advancing the time by the

required amount after the evaluation of the model for each time-step and stopping the

simulation when the required duration has been simulated. To ensure that both seasonal and

transient simulations can be supported in the software, simulation run times from 2ns to 10

years will be specified along with a time-step granularity of 1ns to 1 hour.

The second of the main tasks of the central simulation engine is the management of a global

“ambient temperature” reference. This was seen as a useful property to provide globally in

the simulation for use when creating building models because it provides a single point of

reference for the exterior temperature, rather than having to implement a component to

hold the property which must then be connected to multiple points throughout the model.

The provision will also be made to allow this value to be changed by components during a

50

simulation – for example a “weather” component may alter the ambient temperature value

over time.

The third main task which should be managed by the central simulation engine is the

management of a set of global configuration parameters that may be accessed by all

components. These may include data about the weather; settings to control the type of

simulation carried out by the model; or may simply be a convenient way to pass data

between components. These parameters should be allowed to be of any of the types defined

for component parameters in section 3.4.1.

The final task required of the central simulation engine, and the most important, is the

running of simulations which involves evaluating the behaviour of each component in a

model for each time-step within the simulation. The design of this simulation method is

important in the overall design of the package as it will also influence the design of the

method used to model component behaviour. The initial stage of designing this method

selected a general set of phases that the simulation engine would go through in order to

evaluate a simulation which can then be developed into a full method of running simulations.

A total of five logical phases were chosen as follows:

 A Reset phase will take place at the start of the simulation, resetting the simulated

time to the user-selected date and time. All previous simulation results should be

cleared and all components reset to their starting state.

 An Initialise Time-Step phase will take place at the start of each new time-step within

the simulation to increment the time by the user-selected step size and prepare each

component for evaluation for the current time-step.

 An Evaluate phase will perform an iterative evaluation for the current time-step until

a stable solution is reached. This is an important phase because in a model where a

component’s output depends on its input, the other components providing the inputs

may not necessarily be evaluated before the component in question, so it may be

necessary to perform multiple passes of evaluation of the model before all

components converge to stable solutions.

51

 A Result Recording phase will take place after a stable solution for each time-step is

reached to record the results for the time-step.

 An End of Simulation phase will run at the termination of the simulation to perform

any final operations that components require in order to save their state and display

the simulation results.

The design of the chosen simulation method is depicted formally in the activity diagram in

Figure 3-8.

Figure 3-8: Activity diagram illustrating the method used within the package to

evaluate a model.

3.4.3. Implementing Component Behaviour

In section 3.4.2, the simulation technique for the package was designed to have five phases,

with four specifically related to performing operations on components to evaluate their

Initialise Time-Step

Reset Simulation

Evaluate Time-Step

Record Time-Step Results

End Simulation

Increment Time

Simulation not complete

Time-step stable.

Time-step

not stable.

Simulation complete.

52

behaviour: Reset, Initialise Time-Step, Evaluate and End Simulation. In order to allow

advanced software control of components’ behaviours as stated in the original requirements

it was decided that a scripting interface mapping directly to these five phases of the

simulation technique should be exposed to users of the package in order to implement

component behaviour.

Two options are available to design such a scripting interface: implement a custom scripting

language for the application, or adapt an existing scripting or programming language to fit

the system requirements. The former has the advantage that it allows for the development

of a language that exactly meets the requirements of the application but has the

disadvantage of longer development time due to the need to write a compiler and syntax

guide for the new language. Implementation of a new language may also potential problems

for users of the package due to the learning curve involved with an entirely new language.

The advantage of using an existing language to implement component behaviour is that

many users will already be familiar with popular scripting languages and also that compilers

are already available for existing languages. The disadvantage to using an existing language is

that the features of the language may not map directly onto the requirements of the

application and some intermediate-level “glue” code may be required to bind the scripting

code onto the underlying simulation engine model.

The decision was taken to begin using a standard scripting language for faster development

of the package, rather than spending time implementing a completely new scripting

language. The choice of the C# language on the .NET framework 3.5 as the development

platform for the application provided a convenient method for the inclusion of a scripting

framework within the application. This is because the .NET framework provides the

Microsoft.CodeDom.Compiler namespace which provides compilation services to application

programmers as well as the Microsoft.CSharp and Microsoft.VisualBasic namespaces which

provide language-specific compilers for the C# and VB.NET languages. All .NET compilers

generate common intermediate language (IL) code which is then interpreted by the .NET

runtime components to perform the actual computation on the target processor. This

feature can be exploited to take source code entered by the user at run-time in any .NET

53

language, compile it and then load it into the running application regardless of the language

that the running application was written in. The use of this technique to add run-time

scripting to a .NET application is demonstrated in the Microsoft article “Script Happens.NET”

[107].

In order to allow a user script to implement the required simulation phases, the abstract

class shown in Figure 3-9 was designed to define a set of functions which component scripts

can implement to control the behaviour of the component. The default implementations of

these functions are empty to allow the user to omit functions which are not required from

the component’s script code.

Figure 3-9: Abstract class which provides the methods that component scripts

should implement to define component behaviour.

In line with the simulation technique design from section 3.4.2, the Reset method should

return the component to a known starting state; the InitialiseIteration method should

prepare the component for evaluation of the current time-step and the EndSimulation

method should update the component’s parameter values if required at the end of the

simulation. The Evaluate method implements the iterative evaluation process of the

simulation engine and should return a Boolean value – true if the component state is stable,

or false if the component has changed any of its pin or parameter properties during the time-

step. The MessageHandler method is responsible for implementing the asynchronous

communications system described in section 3.3.4. Each time that an asynchronous

communication message is sent to a component, the MessageHandler function will be called

with the message passed as a parameter to allow the component’s code to process the

message as required.

+Reset() : void

+InitialiseIteration() : void

+Evaluate() : bool

+EndSimulation() : void

+MessageHandler(in message : string) : void

ComponentBase

54

In order to allow C# or VB.NET scripting code to control the behaviour of a component, an

API will be provided which will be exposed to the scripting code as two variables. One will be

a class which provides access to the simulation engine in order to obtain global parameter

values, the current time-step value, and various methods to generate error messages and

control the running of the simulation. The other will be a class which provides access to the

component being controlled by the scripting code to manipulate the component’s pins and

parameters and determine the properties of other components which are connected to the

pins of the component.

During the design of this scripting interface, it became apparent that while the four-method

interface using C# and VB.NET was extremely flexible for implementing components with

complex behaviour, it was also cumbersome for simpler components which require few

computational operations to define their behaviour. Examples of such components are

voltage sources or resistors which have a single fixed value that is set at the beginning of a

simulation and never changes. In order to simplify the modelling of these components a

mathematical mark-up notation was added to the selection of programming languages

available to model components. While the language was purpose-built for this particular

application, it borrows standard mathematical syntax from the majority of current

programming languages and some pre-processor and comment syntax from the C

programming language. Table 3-1 illustrates the key features which have been included in

this language. The notable features missing from this language that are available in the full

programming languages are: support for communications, accessing non-numeric

configurable parameters, and storing of state variables between iterations of the solution

process.

The language provides a method of mapping configurable parameters and pins from

components onto variables within a mathematical script. A number of standard

mathematical operators and functions are then provided which can be used to manipulate

these values to implement the component behaviour. Once the execution of the

mathematical script is complete, any changes to the mapped variable values are copied back

to the main simulation engine. Three optimisation options are provided in the language to

55

specify the way in which mathematical scripts defining component behaviour are evaluated.

Table 3-2 illustrates the way in which mapping features of the language work and the activity

diagram in Figure 3-10 illustrates the way in which the evaluation of mathematical models

maps onto the 4-function evaluation interface used by C# and VB.NET code that is shown in

Figure 3-9. Table 3-3 provides an example of the implementation of a configurable DC

voltage source in both C# and the mathematical mark-up language.

56

Table 3-1: Summary of the key features of the mathematical mark-up language

that has been included in the simulation package.

Comments // Indicates the start of a single line comment. No multiple
line comment equivalent is provided.

Operators + - * / Basic mathematical operators: addition, subtraction,
multiplication.

^ Power.

% Modulo.

! Factorial.

== != Logical equality and inequality.

< > Logical less than and greater than.

<= >= Logical less than or equal and greater than or equal.

= Variable assignment.

Functions Sin(x), Cos(x), Tan(x) Trigonometric functions operating in radians.

ASin(x), ACos(x), ATan(x) Inverse trigonometric functions returning values in
radians.

Sinh(x), Cosh(x), Tanh(x) Hyperbolic trigonometric functions.

Exp(x) Raises e to the power x.

Ln(x), Log10(x), Log(x,a) Natural logarithm of x, logarithm to the base 10 of x or
logarithm to the base a of x.

Max(a,b), Min(a,b) Minimum or maximum of two values.

Deg(x), Rad(x) Converts a value in radians to degrees or a value in
degrees to radians.

Infinity(), NegativeInfinity() Returns the values infinity or negative infinity.

Floor(x), Ceiling(x), Round(x) Rounds values down to the nearest integer, up to the
nearest integer or to the nearest integer either way.

If(x, true_value, false_value) Logical if statement: returns the true value if the
condition x is met or the false value if not.

Abs(x) Gets the absolute value of a number.

Sign(x) Returns -1 if x is negative, 1 if positive or 0 if 0.

Global
Variables

Time The time in seconds since the beginning of the
simulation.

Mapping
Keywords

#parameter variable=”name” Maps a configurable parameter of the component called
name to the variable called variable within the
mathematical script.

#global variable=”name” Maps a global parameter called name to the variable
called variable within the mathematical script.

#pin variable=”name” Maps the pin called name on the component to a
mathematical variable called variable.

Optimisation
Keywords

#opt none
(Default Option)

Specifies that the component’s mathematical mark-up
must be evaluated on each pass of the iterative
simulation engine.

#opt time Specifies that the component’s mathematical mark-up
must be evaluated only once per time-step.

#opt single Specifies that the component’s mathematical mark-up
only needs to be evaluated once per simulation.

57

Table 3-2: Illustration of the mapping process used in the mathematical mark-up

language.

Mapping Syntax Variables Made Available in
Mathematical Script

Description of Variables

#pin Name=”Pin 1”
Where “Pin 1” is an electrical pin.

Name.vmag Voltage magnitude (V) of the pin.

Name.vrms RMS voltage (V) of the pin (equal
to magnitude if DC).

Name.phase Phase angle (°) of the pin if AC.

Name.freq Frequency of the pin (Hz) if AC.

Name.dc 1 if the pin is DC or 0 if AC.

Name.zmag Magnitude of series impedance
(Ω).

Name.zphase Phase angle of series impedance
(°).

Name.connected.vmag Properties of the pin that is
connected to the named pin (read-
only variables).

Name.connected.vrms

Name.connected.phase

Name.connected.freq

Name.connected.dc

Name.connected.zmag

Name.connected.zphase

#pin Name=”Pin 2”
Where “Pin 2” is a heat transfer
pin.

Name.temperature Pin temperature (°C).

Name.resistance Pin thermal resistance (°C/W).

Name.connected.temperature Properties of the pin that is
connected to the named pin (read-
only).

Name.connected.resistance

#parameter a=”Parameter 1” a Parameter containing the value of
“Parameter 1”.

#global g=”Global 1” g Parameter containing the value of
the global parameter “Global 1”.

Table 3-3: Illustration comparing the implementation of a configurable voltage

source in C# to the implementation in the mathematical mark-up language.

C# Code Mathematical Mark-Up Code
public override void Reset() {
 double v =
 Component.Parameters[“Voltage”];

 ElectricalPin Ep =
 Component.Pins[“OUT”];

 Ep.DC = true;
 Ep.Voltage = v;
 Ep.LoadMagnitude = 0;
 Ep.LoadPhase = 0;
}

#opt single
#parameter v=”Voltage”
#pin Ep=”OUT”

Ep.dc=0
Ep.vmag=v
Ep.zmag=0
Ep.zphase=0

58

Figure 3-10: Activity diagram illustrating how the process of evaluating

mathematical scripts representing component behaviour maps onto the 4-

function interface used by C# or VB.NET scripts. Note that the “End” function is

not included because it is not used when evaluating mathematical scripts.

Reset

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = Single

Initialise Iteration

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = Time

Evaluate

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = None

Return False

Mapped Variable Values Changed During Execution

No change to

variables

Return True

59

3.5. Simulation Results

3.5.1. Recording Results

When simulating across multiple physical domains, there is a potentially very large number

of results that could be obtained. In the electrical elements of a simulation the important

values would be voltage; current; phase angle in AC systems; power flow (real, reactive and

apparent in AC systems); and energy use in terms of both kWh used and cost. In the thermal

elements of the simulation, the important values would be heat flow and temperature. In the

communication elements, data transfer between systems would be recorded.

Considering the number of different parameters that could be recorded in a simulation and

considering that even in the simplest models there may be a large number of connected

components, it becomes clear that recording every possible value for each time-step of a

simulation would begin to put a strain on system memory and disk resources. It is therefore

imperative that the design of the results recording mechanism considers only the relevant

results for the particular study being carried out and that the resolution of result recording

should be independent of the temporal resolution of the simulation. Examples of the

memory requirements of the package for recording results at different temporal resolutions

are provided in Table 3-4.

Table 3-4: Illustration of the memory requirements for recording numeric

simulation results at different temporal resolutions. This table makes the

assumption that 10 different result values are collected from the model on each

iteration and that these results are floating-point values.

Result Recording Resolution Memory Requirement per
Second of Simulated Time

Total Memory Requirement for
a Simulation of 1 Hour

Simulated Time
1ns 3.2 GB 11.25 TB
1s 320 bytes 1.09MB

1min 5.3 bytes 18 KB
1hour 0.08 bytes 288 bytes

Taking these requirements into account, the result recording mechanism was designed on

the principle that users should be able to instruct the package to “watch” certain properties

60

within a model with the values of these properties recorded in memory during the result

recording phase at the end of each time-step, which is depicted in Figure 3-8. To reduce the

volume of results generated for analysis, the user will be provided with the option to record

results at a lower resolution than the simulation is evaluated at.

The user interface for recording results will be designed so that the user can select a

component, electrical node or connection to obtain results from. Options will then be

presented for the type of results that can be obtained from the selected object – these will

depend on the physical domains that are represented by the selected object. In addition to

physical values from a model, the option will also be included to take snapshots of both

component and global configurable parameter values during a simulation. This will allow

components such as controllers to report their state by altering parameter values during the

course of a simulation.

The object-orientated software representation shown in the UML class diagram in Figure

3-11 was designed for the result recording capabilities within the software. The top-most

interface ISimulationResultGenerator provides a generic interface for an entity that can

record result values from a simulation. This provides a property containing a description of

the result generator, an array of results generated and methods to perform result-gathering

operations. These methods clear stored results at the beginning of a new simulation, allocate

memory to store the results for a simulation and record results for a given time-step in the

simulation. Pre-allocation of memory was selected over dynamic allocation of memory

during a simulation so that any memory shortages could be identified before beginning to

run a simulation rather than the program being unable to allocate memory after a

considerable length of simulation time. The SimulationResultValue class is used to store each

individual result value and contains properties to store numeric (double-precision floating

point), string or binary (byte array) values. This covers all possible value types that can be

generated by physical domain models, parameters and data communication.

61

Figure 3-11: UML diagram illustrating the design of the watch system used to

collect results from the simulation.

A more specific interface for recording physical properties from the model is specified in the

form of the IWatch interface. This defines additional methods which determine if the watch

records values from a specific component or connection. These methods are provided to

allow watches to be removed from the model if the associated component or connection is

removed. This interface is then implemented by individual watch classes which record results

from a model: Voltage; Current; Power Flow, Phase Angle and Power Factor; Cumulative

Energy Flow and Cost; Heat Transfer; Temperature; Data Flow; Parameter Value. The

remainder of this chapter describes the methods used to record each of these values.

The Voltage, Temperature and Parameter Value watch classes contain the simplest design in

the package – these values are directly extracted from the model. Section 3.3.1 described

how the design of electrical nodes involves the computation of node voltage. Voltage

watches placed on a node read this voltage value to record their results. If the instantaneous

rather than RMS voltage is requested for AC systems, it is obtained using equation (6) where

VRMS is the RMS voltage computed by the node, f is the AC voltage frequency at the node, φ

+Description() : string

+Reset() : void

+Allocate(in resultCount : int) : void

+Record(in time_nanos : ulong) : void

+Results() : SimulationResultValue[0..*]

«interface»

ISimulationResultGenerator
+NumericValue[1] : double

+StringValue[1] : string

+BinaryValue[0..*] : byte

+Time[1] : ulong

SimulationResultValue

+WatchesComponent(in component) : bool

+WatchesConnection(in connection) : bool

«interface»

IWatch

VoltageWatch

CurrentWatchPowerFlowAndPhaseWatch

CumulativeEnergyWatch HeatTransferWatch

TemperatureWatch

DataWatch

ParameterWatch

62

is the phase angle of the voltage relative to a reference phase angle of 0° and t is the time in

seconds since the beginning of the simulation.

 (6)

 Section 3.3.2 described how components could be set to support the concept of having

temperature (for example a component representing a room within a building). Temperature

watches extract the currently set temperature from components which support this.

Parameter watches behave similarly by taking a snapshot of either a component parameter

or global parameter when requested to record a result.

Electrical current, power flow and phase angle values are not directly available within models

and therefore must be calculated when required by the associated watch objects. To

illustrate how these values are calculated, we will consider the electrical connection of two

Thévenin equivalent circuits shown in Figure 3-12.

Figure 3-12: Illustration of an electrical connection between two components

showing complex voltages V1 & V2, complex impedances Z1 and Z2 and complex

current I.

In this system the voltages V1 and V2 and impedances Z1 and Z2 are complex values. For

RMS AC values and DC values, the same calculations can be used under the assumption that

the phase angle of the values will be set to zero for DC systems. The Ohm’s law calculation in

(7) is used to obtain DC or RMS current where the variable I is a complex number with

magnitude IRMS (A) and phase angle φ (°). Instantaneous AC current can be obtained using (8)

in a similar manner to the instantaneous voltage where f is the voltage frequency on the link

(Hz)6 and t is the time in seconds since the beginning of the simulation.

6 As described in section 3.3.1, the simulator places the restriction on models that all voltages in an electrical network must
have the same frequency.

V1 V2
IZ1 Z2

63

(7)

 (8)

The phase angle of an AC system is the phase of the current relative to the voltage. As the

simulator refers all currents to a reference phase angle of 0°, the phase angle of a particular

link φAC (°) can be calculated using (9) below where φV is the voltage phase angle and φI is

the current phase angle.

 (9)

AC Power flow values are computed using the magnitude of the complex current value

obtained in (7) along with the magnitudes of the voltages V1 and V2 from Figure 3-12 and

the phase angle φAC. Real power P (W), reactive power Q (VAr) and apparent power S (VA)

are calculated using equations (10), (11) and (12) respectively.

 (10)

 (11)

 (12)

The AC power factor can be calculated from the phase angle φAC using equation (13).

 (13)

For DC systems, the DC power PDC (W) can be calculated using the magnitudes of the

voltages V1 and V2 and the current I as shown in equation (14).

 (14)

The final electrical watch included within the package will be the cumulative energy flow

watch. This watch will calculate the net import or export of energy over the course of a

whole simulation along a connection with imports indicated by a positive value and exports

by a negative value. To calculate the cumulative flow of energy, the real power P or PDC value

– depending whether the connection is part of an AC or DC system – is used. As energy is the

64

integral of power flow with respect to time, a trapezium method approximation is used to

compute the energy flow between the previous simulation time-step and the current time-

step ETIMESTEP (J). This relies on the knowledge of the present power flow PNOW (W), previous

time-step power flow PPREV (W) and the simulation time-step size T as in (15).

(15)

Once the energy use in the last time-step has been computed, it can be used in three ways

depending on the type of energy metric required. If the energy use in joules is required

directly, ETIMESTEP is simply added to a running energy use total. If the energy use in kWh is

required then ETIMESTEP is divided by 3.6x106 to convert joules to kWh and then added to a

running total. If energy cost is required then ETIMESTEP is divided to 3.6x106 to convert to

kWh, then multiplied by the user specified price per kWh before being added to the running

price total.

In section 3.3.2 it was proposed that heat transfer connections should use a series

temperature and thermal resistance circuit to make their definition analogous to the

electrical simulation features within the package. This means that calculation of heat transfer

between two points is very similar to the calculation of electrical current. Given the thermal

link illustrated in Figure 3-13 with the temperatures T1 and T2 (°C) and thermal resistances

θ1 and θ2 (°C/W), the heat flow Q ˙ (W) can be calculated using (16).

(16)

Figure 3-13: Illustration of a heat transfer connection between two components

showing temperatures T1 & T2 (°C), thermal resistances θ1 and θ2 (°C/W) and heat

flow Q (W).

θ1T1 θ2 T2Q
.

65

In addition to the transfer of heat between two components, it is also desirable at times to

measure the temperature at points within a model. As described in section 3.3.2, ambient

and absolute temperature points within a model are represented by special “temperature

node” components. The option is also provided to allow components, such as those

representing heated spaces, to have a temperature. A watch object is provided which can

read this temperature value from temperature nodes and also other components which

indicate that they provide temperature information.

In section 3.3.3, it was indicated that data communication between two components is

modelled as a stream of bytes being transferred from one component to another. The initial

design for this communication process involved having an input queue for every data pin on

a component. When a component’s implementation performed a data transmission

operation to another component, the transferred data was written directly to the input

queue of the connected component. This process proved to be problematic for observing the

data transmission between components so it was redesigned such that an intermediate

“communications processor” was added to the main simulation engine to assist with the

recording of transmitted data. A data watch object is provided to record the data transmitted

along a connection. When a data watch is created, it registers itself with the intermediate

communications processor entity so that any transmitted over the watched connection is

sent to its destination component and in addition is also recorded by the watch object. Data

is recorded in raw binary form and can be processed by a result viewer into decimal,

hexadecimal or ASCII for viewing. The process of sending data from one component to

another while it is being recorded by a data watch is illustrated in the sequence diagram in

Figure 3-14.

66

Figure 3-14: Sequence diagram illustrating the processing of a communications

message. The optional block at the end of the sequence of events indicates the

way in which a message is intercepted for forwarding to an associated Data Watch

object.

3.5.2. Mathematical Operations on Results

Often when analysing data from simulations it is desirable to perform some form of

mathematical operation on one or more results to generate further useful data. In light of

this, a limited number of mathematical operators are built into the package and should

generate results in the same way as watch objects. The main difference is that mathematical

operator values for a time-step will be computed using watch results for that time-step and

will therefore be evaluated after the successful evaluation of watch data. The UML diagram

in Figure 3-15 illustrates the IMathOperator interface which extends the

ISimulationResultGenerator interface in the same way as IWatch to provide additional

functionality. Mathematical operators provide the same interface as watches so that the

Simulation Engine may record results using them in the same way, but add an extra method

to determine if a mathematical operator depends on a specific watch. This allows the

operator to be removed from the model in the case where one of the watches that it

depends on is removed.

Message Source Communications Processor Message Destination Data Watch

Data Transmission

Forward message to destination

Copy transmitted data to watch object

Optional: Communications link has data watch associated

67

Figure 3-15: UML diagram illustrating mathematical operator system within the

package.

The Average, Maximum, Minimum, Product and Sum operators operate on two or more

watches to obtain their values. The Difference operator computes the difference between

two watch values. The Percentage Error operator computes the percentage error in a given

actual value when the expected value is also available within the model (for example, a

controller output based on a given reference signal). The value for a percentage operator is

computed using (17).

(17)

3.5.3. Analysing Results

Two options were identified for the analysis of the results generated by the simulation

package. The first was to rely on external packages to analyse results. This could be achieved

by either using the API provided by a third party data analysis package – for example

Microsoft Excel – to export data and generate the required graphs and tables upon the

+Description() : string

+Reset() : void

+Allocate(in resultCount : int) : void

+Record(in time_nanos : ulong) : void

+Results() : SimulationResultValue[0..*]

«interface»

ISimulationResultGenerator
+NumericValue[1] : double

+StringValue[1] : string

+BinaryValue[0..*] : byte

+Time[1] : ulong

SimulationResultValue

+DependsOnWatch(in watch) : bool

«interface»

IMathOperator

ProductOperator

MaxOperatorAverageOperator

SumOperator PercentErrorOperator

DifferenceOperator MinOperator

68

completion of simulations, or more simply by saving simulation data to a file format which is

supported by such tools.

The second option was to include data analysis tools within the simulation package itself,

removing the requirement for any third party software to be installed on the system. This

would require the implementation of various visualisation tools, adding to development

time, but provides the benefit of providing a more streamlined process for running

simulations. In this scenario, settings within a model can be changed, the simulation run and

the built-in result viewers checked to see if the model has achieved the required output. The

main disadvantage to this type of approach would be that the analysis features may not be

as comprehensive as those provided in a dedicated package.

The final design for the results analysis features incorporates the best parts of both of these

approaches. Three simple visualisation tools are provided within the package itself to allow

for more rapid development and verification of models, with the ability to also export the

results in a CSV spreadsheet format for compatibility with most off-the-shelf data analysis

packages, thereby providing the capability for more advanced analysis. The three built-in

analysis features that were chosen were: tables to view numerical values or communication

link data values; line graphs to view numerical results over time; and pie charts to show the

contribution of a number of variables to a total value. Line graphs were selected because

they clearly illustrate how the value of a particular variable (for example, electrical power

consumption) varies over the course of a simulation. Pie charts were selected because they

illustrate the contribution that various values (for example, the sources of heat loss from a

building) make to a total value (for example, the total heat loss from a building) at a given

instant in time.

3.6. Persistence of Models

In order to be able to re-use components between different models, as well as to store and

re-open models themselves at a later date, there needs to be some form of storage system

built into the application. In assessing the storage requirements for the application, the

storage of libraries of components and the storage of system models were identified as two

69

separate actions that users may wish to perform. Separating the storage in this way allows

libraries of components to be re-used between different simulations and updated centrally,

rather than having different versions of a component throughout different model files.

In order to save a component library or a model to a file, a transformation of the

application’s internal object-orientated representation into a representation that can be

saved to a file is required. The XML format [108] was chosen for this purpose because it is

particularly suited to storing collections of data in a hierarchical fashion. XML has the benefit

of being human-readable which is useful for debugging purposes and reading and writing of

XML files is natively supported by the .NET framework which simplifies implementation of

this file format. The XML format does have the disadvantage of using more storage space

than binary file formats due to its human-readable nature – especially if large amounts of

whitespace are used to display the hierarchical structure of the document. This larger space

requirement can however be mitigated by compressing the XML data before storing to disk,

for example in the ZIP or GZIP formats which are also natively supported in the .NET

framework.

When designing the file formats for storing both component libraries and models, some

important clarifications about the exact method of storage had to be made. These were:

what to do if a model is used on a workstation other than the one it was designed on which

does not have the required component library files; what to do if a model uses a component

for which the library is subsequently upgraded; how to make changes to the file format to

incorporate new features without making the application unable to load older files; how to

store information about the type of simulation required and which results to display; and

how to uniquely identify elements of a model and the relationships between them when

saving to files.

To mitigate the issue of simulating models on different workstations which may or may not

have the required libraries, and to handle upgrades to component libraries, a version number

is included within the definition of each component. Additionally, when saving a model to a

file, the model file will contain cached copies of all of the components used within the model

to ensure that the model can be used on any system, including those which may have a

70

different version of the component in a library file. In the case where a component library

has been updated since a model was created, the provision is made in the application to

update affected components to the latest version.

As the development of any software package evolves it is likely that new features will be

added or existing features may be changed. To reflect this, changes may be made to the

storage format. To avoid having to re-create model files each time features within the

software are changed, it is essential that the software should be backward compatible with

files created in an older version. To allow for this, a version number will be included in each

file created by the application. For each new file version that is defined, a set of rules will be

created which instruct the application how to modify the XML content of a file to upgrade

from the previous file format to the current file format. A per-version upgrade system like

this provides the advantage that it allows any previous file format to be used by the

application by incrementally upgrading the file structure until it is at the latest format. It also

simplifies the logic which converts the internal representation of system models and

components to their XML counterparts and vice versa since this logic will always operate on

the latest file version.

To store the simulation properties which were introduced in section 3.4.2 – start time,

duration, time-step size, global parameters and ambient temperature – it was decided that

an extra section known as a “Simulation Environment” would be added to the definition of a

model. As well as these simulation-engine-related properties, the result generator objects

discussed in section 3.5.1 and information about the types of viewer (graph, pie chart or

table) selected to view these results would also be included under this section. The

advantage of taking this approach to storing simulation properties is that multiple different

types of simulation may be defined for each model, from short transient simulations to

longer seasonal simulations, and the appropriate results generated for each simulation.

There is a relationship between an instance of a component used within a model and the

underlying component behaviour. Internally within the application, this is represented by an

object reference within the component class to the associated behaviour class. When models

are saved to a file, this relationship must also be preserved and therefore a method is

71

required to uniquely identify a component’s behaviour so that is can be referred to in within

the XML representation of a particular component instance. The chosen solution to this

problem was that in addition to a descriptive name, each component behaviour would be

assigned a GUID (Globally Unique ID). GUIDs are 128-bit integers generated by an algorithm

built into Windows which is designed to produce numbers based on the current time that are

statistically unlikely to be repeated and can therefore be considered “globally unique”. GUIDs

were chosen as the preferred unique identifier because they allow component libraries

created on different computers to be used on other systems with very little risk of ID clashes

between components. The XML definition of a component instance will contain a field

specifying the GUID of the associated behaviour.

Similarly, a component link is represented internally by object references to the start and end

pins that the link connects. These must also be converted to a textual representation. The

chosen textual representation in this case is to store the name of a component instance and

pin that represents each end of the link. Pin names can be used directly as long as the

restriction of no duplicate pin names on components is enforced. For this representation to

work, component instances will also need to be uniquely named within a model. Again, a

GUID could be used for this purpose but it was felt that because the scope for duplicate

names was limited to an individual model file and was not global, user-defined names would

be used to represent individual components within a simulation, with the package initially

providing a default name based on the associated component behaviour name (for example,

“Building_1”).

Figure 3-16 and Figure 3-17 illustrate the hierarchical structure of the XML storage of

component libraries and system models. For clarity, component behaviour and component

instance elements from the XML files have been shown separately in Figure 3-18 and Figure

3-19 respectively. Component library files will contain only a list of component behaviours to

be used within new models while system model files will contain a system model definition

(including the required component behaviours) as described in section 3.2.2 and illustrated in

Figure 3-1. Additionally, a system model file will make the provision for including illustrative

72

line, rectangle and textbox elements which can be used to annotate models for the benefit of

users viewing the models.

Figure 3-16: XML schema for a component library file.

73

Figure 3-17: XML schema for a system model file.

74

Figure 3-18: XML schema for component behaviour elements.

<component>

<name>

CDATA : string

<guid>

CDATA : string

<category>

CDATA : string

<description>

CDATA : string

<version>

CDATA : integer

<supportsheattransfer>

CDATA : boolean

<supportsparallel>

CDATA : boolean

<logicblock>

CDATA : boolean

<pins>

<pin>

name : string
type : enum {Electrical,Thermal,Communication,Other}

direction : enum {In,Out,Unspecif ied}
placement : enum {Lef t,Right}

[0..*]

<params>

<param>

name : string
type : emum {Integer,Decimal,String,Boolean,Time,Dialog,List,Table,Option}

runtime : boolean

[0..*]

<description>

CDATA : string

<value>

CDATA : variable

<code>

language : enum {cs,vb,math}

CDATA : string

75

Figure 3-19: XML schema for component instance elements.

<instance>

<class>

<simple>

guid : string

[0..1]

<special>

type : enum {electrical,temperature}
pins : integer

variant : enum {ambient,absolute}

[0..1]

<name>

CDATA : string

<position>

x : integer
y : integer

<flip>

horizontal : boolean

<params>

<param>

name : string
type : emum {Integer,Decimal,String,Boolean,Time,Dialog,List,Table,Option}

runtime : boolean

[0..*]

<description>

CDATA : string

<value>

CDATA : variable

76

3.7. Application Design Summary

The diagram in Figure 3-20 illustrates the architecture of the new domestic smart grid

simulation package. The package will perform the simulation of a component-based system,

where each component in the system may contain one or more pins that represent an

electrical system, heat source or sink or data communications endpoint. The behaviour of

each of these components will be governed by source code which can be written in a choice

of three languages. Each component may also have one or more configurable parameters to

provide control over its behaviour in a specific system. A graphical editor will be provided to

enable the creation and editing of libraries of components.

A graphical model editor will be provided to create system models. These models will be

created by linking pins on components selected from the available libraries. Models created

using this editor can then be passed to the simulation engine within the package which will

perform the simulation of the models.

Results generated by the simulation engine are passed to one or more result viewers

specified by the user. These can be pie charts, line graphs or tables. The results displayed in

these viewers can be exported to image file formats or spreadsheet formats for further

processing and analysis.

77

Figure 3-20: Diagram illustrating the architecture of the new simulation package.

Library of

Components

Component

Library Files

System Model

Component

Behaviour

Cache

Component

Instance List

Watches &

Mathematical

Operators

Connections

Simulation

Environments

Simulation Engine

Result Viewers

Graphical Model Editor

Model Editing

Surface

Component

Selection List

Watch &

Operator

Editing

Graphical Component Editor

Pin Editor
Parameter

Editor

Source Code

Editor

Image FilesSpreadsheet Files

Model File

78

Chapter 4

Implementation of Models

Chapter 3 discussed the design and implementation of a new software simulation package

for domestic smart grid systems. Detailed information about the implementation of the

package is provided in Appendix F. This package is a generic simulation platform for such

systems which provides the basic framework upon which system models can be built. To

enable such models to be built, libraries of components must also be created for use within

the package. This chapter describes the collection of components which have been

developed to date.

4.1. Electrical Components

4.1.1. Ideal Sources

Two single-pin components were created to represent idealised DC sources and AC grid

connections. These components are implemented as a voltage source in series with zero

resistance or impedance. A configurable parameter is provided on each component to allow

the required voltage to be specified. On the AC source component, additional parameters are

provided to specify the frequency and phase angle (with respect to a system reference of 0°)

of the voltage source. Figure 4-1 below illustrates the component symbol and source code

for each of these components.

79

#opt single
#param voltage=”Voltage”
#pin out=”OUT”

out.zmag = 0
out.zphase = 0
out.vrms = voltage
out.dc = 1

#opt single
#param freq=”Frequency”
#param phase=”Phase”
#param voltage=”Voltage”
#pin out=”OUT”

out.zmag = 0
out.zphase = 0
out.vrms = voltage
out.freq = freq
out.phase = phase
out.dc = 0

Figure 4-1: Illustration of component symbols and source code for DC and AC ideal

voltage source components. Source code for these components is written in the

mathematical mark-up language.

4.1.2. Solar Panel

Photovoltaic electricity generation is a popular form of microgeneration: existing buildings

can easily be retro-fitted to accommodate the technology through the use of roof-mounted

solar panels. Solar cells have a non-linear current-voltage relationship which is commonly

modelled using either the two-diode model [109-112] shown in Figure 4-2 or the single-diode

model [113-115] shown in Figure 4-3.

Figure 4-2: Two-diode solar cell model.

Figure 4-3: Single-diode solar cell model.

D1 RP

RS

VIPH D2

D1 RP

RS

VIPH

80

For the purposes of the simulation package, the single-diode model was selected since it has

fewer parameters to compute when fitting the model to a particular type of solar panel and

is less computationally demanding to evaluate.

The single diode model in Figure 4-3 represents a solar cell as a current source in parallel

with a diode, a series resistance RS which represents the losses in the connection to the cell

and a shunt resistance RP which represents losses in the photovoltaic conversion process.

This model is described by equation (18) as:

(18)

IOUT is the output current of the solar cell (A), V is the voltage across the cell (V), RS and RP

are the series and shunt resistances (Ω), and m is the dimensionless ideality factor of the

diode in the solar cell model. VT is the thermal voltage for a given cell temperature T (K)

given by (19) where k is the Boltzmann constant (1.38x10-23J/K) and q is the electron charge

(1.6x10-19C).

(19)

IRS is the reverse saturation current (A) which is a temperature-dependent loss in the

photovoltaic conversion process given by (20) where IRSR is the reverse saturation current at

a given reference temperature TR (K), ϵ is the band gap energy of the semiconductor material

used to manufacture the solar cell (1.12eV for silicon) and m is the diode ideality factor

described previously.

(20)

IPH is the photocurrent (A) generated by the cell which is dependent on incident solar

irradiation as shown in (21) where IPHR is the photocurrent (A) generated by the cell at a

reference irradiation level SR (W/m2) and S is the incident irradiation level (W/m2).

81

(21)

In equation (18), current appears on both sides of the expression and hence requires the use

of numerical methods to obtain a solution. In order to allow the equation to be solved

analytically, the assumption can be made that if RS is sufficiently small and RP is sufficiently

large then these values can be removed from the expression, giving the simplified model in

(22).

(22)

In order to model a panel made up of multiple solar cells connected in series and parallel,

some changes must be made to the model in (22). In equation (21), IPHR is given by IPHR =

IPHR_PANEL / NP where IPHR_PANEL is the panel’s photocurrent at reference conditions and NP is

the number of parallel networks of cells in the panel. Similarly in (20), IRSR is given by IRSR =

IRSR_PANEL / NP. To obtain the output current of the panel, the modified version of (22) given

in (23) should be used where NP is the number of parallel networks of cells in the panel, NS is

the number of cells in series within each parallel network and V is the voltage across the

panel.

(23)

From (23), the output current of a solar panel can be obtained trivially if the voltage is

known. The equation can also be re-arranged to obtain the voltage if the current is known.

However, it is non-trivial to determine the voltage and current if only the resistance of the

load connected to the panel is known. Within the smart grid simulation package, this is the

scenario in which the properties of the solar panel must be calculated.

To simplify the solution to this problem, consider Figure 4-4 which illustrates the model from

(23) using the parameters of a BP SX-80 solar panel (IPHR=4.7A, IRSR=9.84x10-10A, m=2.13,

SR=1000W/m2, TR=298.15K), with atmospheric conditions of S=1000W/m2 and T=25°C

(298.15K). Additionally, the plot shows the load resistance with respect to voltage.

82

Figure 4-4: Illustration of the I/V characteristic of a BP SX-80 solar panel showing

the equivalent load required to obtain each operating voltage.

If the load resistance is known, it is possible to determine the operating point of the solar

panel by obtaining the operating voltage from the R/V curve and hence the current using

(23). This technique is a variation on the “load line” technique for finding the operating point

of a diode as described by Hambley et. al. in [116]. However, when carrying out simulations

involving photovoltaic systems, a graphical method provides little benefit and therefore

some form of computational equivalent is required. Section 4.1.2.1 describes two existing

algorithmic options for the detection of the operating point of a solar panel and presents a

new algorithm that was developed during the course of this research.

4.1.2.1. Operating Point Detection Algorithms

Linear Search

The most basic form of evaluation of the operating point is to find the desired point on the

R/V curve for the solar panel and hence compute the current for the given voltage. Search

83

algorithms allow for the R/V curve to be searched for a given load resistance and the voltage

to be extracted from the curve. The linear search algorithm [117] is one of the simplest forms

of search algorithm.

To determine the operating point using the linear search algorithm, the current should be

computed using (23), initially setting V=0. The resistance can then be calculated by dividing

the voltage by the calculated current. If the resistance is less than the desired load value, the

voltage should be incremented by a small value and the process repeated until the algorithm

either finds the desired resistance, or finds a value larger than the desired load. The accuracy

of this algorithm is directly dependent on the value that the voltage is incremented by –

smaller values will produce more accurate results but cause the algorithm to take longer to

reach the solution.

Newton’s Method

An alternative to searching for the operating point by using the panel’s R/V curve is to use

Ohm’s law in conjunction with equation (23) to express resistance in terms of voltage, as in

(24). To determine the operating point of the solar panel, (24) can be solved for V for a given

value of R. The voltage obtained may then be used with equation (23) to determine the

current.

)1)
)(

)(exp(()(
TmVN

V
TISIN

V
R

TS
RSPHP

(24)

Although there is no analytical solution to (24), Newton’s method [118] may be used to solve

for the voltage. Newton’s method, defined in (25) is a successive approximation solver which

begins with an initial estimate at the solution, xn and uses this to determine a more accurate

approximation to the solution, xn+1. This process is continued with each approximate solution

until xn+1 is within a given tolerance of xn.

)('

)(
1

n

n
nn

xf

xf
xx

(25)

84

In order to solve (24) using Newton’s method, it must be rearranged into the form given in

(26) and additionally the derivative given in (27) is required.

R

TmVN

V
TISIN

V
vf

TS
RSPHP

)1)
)(

)(exp(()(

)(

(26)

1
)(

)()()(

)(
)(

1
)(

)()(

1
)('

TVmN

V
ExpTISITVmNN

TVmN

V
ExpVTI

TVmN

V
ExpTISIN

vf

TS
RSPHTPS

TS
RS

Ts
RSPHP

(27)

New Operating Point Detection Algorithm

For the purposes of the smart grid simulation package, a new solar panel operating point

detection algorithm was developed. The algorithm utilises a variant of the well-known binary

search technique [119] to search the R/V curve of a solar panel for a known load resistance

to find its operating point.

The algorithm, illustrated in Figure 4-5, begins by setting a voltage variable to zero. Equation

(23) is then used to calculate the current and hence the resistance for that voltage. If the

resistance is less than the known load resistance, the voltage is incremented by a given step

size and the algorithm begins its next iteration. If the resistance is greater than the known

load resistance, the voltage is set to its previous value and the step size is divided by 10. This

process continues until either the load resistance is found or the step size reaches a specified

minimum value.

85

Figure 4-5: Illustration of the new algorithm developed to determine the

operating point of a solar panel when the load resistance is known. The output

current I(V) is obtained using (23) and R(V) =V/I(V).

The overall effect of the algorithm is to rapidly converge to an approximation close to the

known load value and then to search more precisely to reach the optimum value. The

principal property which governs the accuracy of the algorithm is the minimum step size.

Smaller values will result in the algorithm taking longer to converge to a more accurate

solution while larger values will result in faster convergence to a less accurate solution.

86

On each simulation time-step, the new operating point detection algorithm is used to

determine the operating point of the solar panel for the connected load. However, a further

processing step is required to define a Thévenin equivalent model of the panel at this

operating point. This step is to find the equation of the tangent to the I/V curve at the

computed operating point that provides a linear model of the panel’s I/V characteristic which

is accurate at the computed operating point. The tangent to the I/V curve at a particular

operating voltage VOP is defined by (28) where IOUT(S,T,V) is given by (23) and IOUT’ S T V is

the derivative of (23) with respect to V, given by (29). The Thévenin equivalent model can be

obtained from the equation of the tangent by setting V=0 to obtain the Norton current IN

and then setting I=0 to obtain the Thévenin voltage. The Thévenin resistance can be

computed using RTH = VTH/IN.

 (28)

(29)

4.1.2.2. Comparison of Operating Point Detection Algorithms

A comparison of the new algorithm was carried out with the linear search method and the

Newton method to measure its performance against that of the other algorithms.

Comparisons will be performed on the range of resistance values for which the algorithms

can obtain a solution, the time taken to reach a solution and the accuracy of the solutions

obtained. The comparison was carried out by selecting voltage points between 0V and 25V in

increments of 0.01V and calculating the current and resistance for each for the a BP SX-80

module. The calculated resistances are used as the test inputs to each of the algorithms and

the voltage and current values are used as the reference operating point for each resistance

which the values calculated by the algorithms can be compared to. To provide a fair

comparison between each algorithm, the tolerance for the Newton solver was set at 1nV and

the minimum step sizes for the linear search algorithm and the new algorithm were also set

at 1nV. The Newton solver was set to have an initial guess of 0V for the operating point in

each instance.

87

The first comparison that was carried out was of the range of resistance values for which the

algorithms can obtain a solution. Figure 4-6 shows the results for linear search algorithm,

Figure 4-7 shows the results for the Newton method algorithm and Figure 4-8 shows the

results for the newly developed algorithm. It can be seen from these results that the linear

algorithm is able to solve over the entire range of resistances provided to it, the Newton

method algorithm begins to fail nearer the open circuit voltage and new algorithm solves for

all given values, with a slight error near the open circuit voltage. The reason for the Newton

solver failing near the open circuit voltage is that equation (30) has a stationary point near

the open circuit which will cause a division by zero error in the Newton method calculation

when it operates in this region.

Figure 4-6: Illustration showing the range over which the linear search algorithm

was able to obtain I/V operating points for the BP SX-80 solar panel.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

C
u

rr
e

n
t

(A
)

Voltage (V)

Linear Solver Current (A) @ 500W/m2 Linear Solver Current (A) @ 1000W/m2

88

Figure 4-7: Illustration showing the range over which the Newton’s method

algorithm was able to obtain I/V operating points for the BP SX-80 solar panel.

Figure 4-8: Illustration showing the range over which the newly developed

algorithm was able to obtain I/V operating points for the BP SX-80 solar panel.

The second comparison was the time that was taken for each algorithm to obtain a solution

for the same set of test data used previously. The results of this comparison using an

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25

C
u

rr
e

n
t

(A
)

Voltage (V)

Newton Method Current @ 500W/m2 Newton Method Current @ 1000W/m2

-1

0

1

2

3

4

5

0 5 10 15 20 25

C
u

rr
e

n
t

(A
)

Voltage (V)

New Algorithm Current (A) @ 500W/m2 New Algorithm Current (A) @ 1000W/m2

89

irradiation of 1000W/m2 are shown in Figure 4-9. It can be observed from these results that

Newton’s method was the fastest to reach a solution with an average time of 0.01ms,

followed by the new algorithm with an average time of 0.1ms. The linear search was

considerably slower as the time taken to obtain each solution was directly proportional to

the resistance value. The average time for the linear search algorithm to find a solution was

2.14s.

Figure 4-9: Comparison of the time taken to reach a solution for each algorithm

using an irradiation level of 1000W/m2. The values for 500W/m2 are excluded

from this illustration because they are of similar magnitude.

The final comparison performed between the three algorithms was one of the accuracy of

each algorithm. In this case, the error between the operating voltage obtained by each

algorithm and the actual operating voltage of the panel was used for the comparison. The

comparison was carried out using irradiation levels of 500W/m2 and 1000W/m2. The results

are presented in Table 4-1. It can be observed from this table that the Newton’s method

solver provides the most accurate results, followed by the linear search algorithm with the

new algorithm performing most poorly. It should be noted, however that the large error

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.0005

0.001

0.0015

0.002

0.0025

0 5 10 15 20 25

So
lu

ti
o

n
 T

im
e

 f
o

r
Li

n
e

ar
 S

e
ar

ch
 (

s)

So
lu

ti
o

n
 T

im
e

 f
o

r
N

e
w

 A
lg

o
ri

th
m

 &
 N

e
w

to
n

 A
lg

o
ri

th
m

(s

)

Voltage (V)

Newton's Method Time (s) New Algorithm Time (s) Linear Search Time (s)

90

contribution in the new algorithm is in the voltage range within 1V of the open circuit

voltage, which is well beyond the range that the Newton method solver is capable of

obtaining solutions in. If this range is disregarded then the maximum error is reduced to

around 1x10-9V in both cases.

Table 4-1: Comparison of result errors in operating point detection algorithms.

Algorithm 500W/m2 Comparison 1000W/m2 Comparison
Minimum
Error (V)

Average
Error (V)

Maximum
Error (V)

Minimum
Error (V)

Average
Error (V)

Maximum
Error (V)

Linear
Search

0 6.56x10-7
1x10-6 0 6.35x10-7

1x10-6

Newton’s
Method

0 9.61x10-17 1.06x10-14
0 3.91x10-17

1.06x10-14

New
Algorithm

0 0.012 1 0 0.022 1

4.1.3. Battery Storage

Energy storage was highlighted in Chapter 2 as one of the technologies which could become

important in mitigating the supply stability issues introduced by adding increasing amounts

of renewable generation to the electricity network. A representation of a battery was added

to the simulation package in order to allow for the modelling of electrical storage at the

domestic level. A number of different battery chemistries are available and all have the

potential for use in future storage systems. These include Lithium Ion (including Lithium

Polymer), Nickel Cadmium, Nickel Metal Hydride and Lead Acid. Different battery chemistries

have different electrical characteristics and therefore different mathematical models defining

their behaviour. A number of mathematical models have been created for simulating the

properties of batteries, some battery chemistry specific [120-122] and others independent of

battery chemistry [123]. The model that was chosen for use is the battery model provided

within the SimElectronics package within the Matlab / Simulink software [124]. This generic

battery model models batteries as a controlled voltage source in series with a resistance

which makes it ideal for use in the simulation software. The only dependent parameter

within the model is the state of charge and hence it is less computationally intensive to

evaluate during a simulation compared to other models.

91

The voltage of the source V (V) within the battery model is described by (30) where V0 (V) is

the battery open-circuit voltage when fully charged, x (%) is the state of charge of the battery

and α and β are constants which govern the charge and discharge rate of the battery. The

model is simplified by making the assumption that the charge and discharge I/V

characteristics of the battery are the same.

(30)

The battery model parameters α and β are calculated using (31) and (32) respectively where

V1 (V) is the battery open-circuit voltage at a known state of charge x1 (%) which is less than

100%.

(31)

(32)

The series resistance in the battery model is the internal resistance of the battery which

governs the charge and discharge rate of the battery.

Within the simulation package, the battery model was implemented with the following

configurable parameters: Fully-charged open circuit voltage (V0, V); Calibration Voltage (V1,

V); Calibration Charge State (x1, %); Battery Capacity (QT, Ah); Initial Charge (QINITIAL, Ah);

Short-Circuit Current (ISC, A).

The battery model is initialised by setting the internal resistance to V0 / ISC. The state of

charge x is initialised to (QINITIAL / QT). On each time-step of a simulation, the change in state

of charge is calculated by performing a trapezium rule integration using the instantaneous

output current value measured at the battery’s output terminal (negative if charging) and the

instantaneous current measured during the previous time-step. Logic within the model

prevents the state of charge from falling below 0Ah or from going above the total capacity

QT. After calculating the change in state of charge, the new battery voltage V is calculated

using (30).

92

4.1.4. Connection and Control

Each of the electrical connection and control components is inserted between two

components to perform either a control action such as switching or to model the properties

of a conductor. Connection or control components are therefore desired to behave like the

schematic shown in Figure 4-10 where V1, V2, Z1 and Z2 model the properties of the two

components and ZCONNECTION is the series impedance of the connection or control

component.

Due to the way that electrical pins are modelled in the simulation package, inserting a two-

pin intermediate component between two other components results in the equivalent

schematic shown in Figure 4-11.

Figure 4-10: Schematic of a connection or control component with impedance

ZCONNECTION inserted in series between two components.

ZCONNECTION

V1

Z1

V2

Z2

Component 1 Component 2Connection / Control Component

93

Figure 4-11: Schematic illustrating the way in which the simulation package

requires a series component to be modelled.

In order to model a connection or control component which follows the schematic shown in

Figure 4-10 using the topology set in Figure 4-11, the properties of the component must be

set as shown in (33).

VC1 = V2

VC2 = V1

ZC1 = Z2 + ZCONNECTION

ZC2 = Z1 + ZCONNECTION

(33)

The properties shown in (33) are set during the Evaluate phase of connection and control

components’ code execution. The Evaluate function will return false if any changes are made

to the connected pin properties V1, V2, Z1 or Z2 and true if these properties have not changed

since the last evaluation of the component’s behaviour. This will ensure that the iterative

simulation engine continues to run until a stable circuit is obtained for each side of the

connection and control component.

This generic approach is used for all of the connection and control components that were

designed. The remainder of this section details with the specific behaviour of each of the

different components.

VC1

ZC1

VC2

ZC2

V1

Z1

V2

Z2

Component 1 Component 2Connection / Control Component

94

4.1.4.1. Wire

Electrical connections between two components in the simulation package are ideal zero-

resistance connections; however, wiring in a building has a non-zero resistance which is a

factor that must be considered in building models, especially when long cable runs are used

around a building. A special component, shown in Figure 4-12, was included in the package

to account for the series resistance introduced by wiring. This component can be connected

between any two electrical components.

Figure 4-12: Component which models the series resistance introduced by

electrical wiring.

The component has the following configurable parameters: wire construction material

(Copper, Aluminium, Silver or Lead), wire length (metres), wire cross-sectional area (mm2 or

AWG).

The resistance of the wire, R (Ω), is calculated during the component’s Reset phase using (34)

below where ρ is the resistivity of the material used to construct the wire (Ωm), l is the

length of the wire (m) and A is the cross-sectional area of the wire (m2).

(34)

The cross-sectional area of the wire is converted from mm2 to m2 by multiplying by 10-6. In

the case where the wire size is specified in AWG, formula (35) is used to convert the AWG

size to mm2, before then being converted to m2.

(35)

A lookup table of standard resistivity values for Copper, Aluminium, Silver and Lead is used to

retrieve the resistivity for the selected wire material.

95

Once the resistance of the wire has been obtained, the method described at the beginning of

section 4.1.4 is used in the component’s Evaluate phase to model the wire component as a

series resistance.

4.1.4.2. Switch

The switch component is designed to allow for the simulation of users switching appliances

on or off. The component uses the asynchronous communications mechanism of the package

to receive “ON” or “OFF” messages to control its state. When in the on state, the series

resistance of the switch is set to a contact resistance which is specified through a

configurable parameter. When in the off state, the series resistance of the switch is set to

infinity, making it act as an open circuit.

4.1.4.3. Digital Switch

The digital switch component is designed to provide electronic control over an appliance

using a communications link from a control device. The switch has a configurable one-byte

address which is used to uniquely distinguish it from other switches using the same

communications network. When a two byte packet containing the configured single-byte

address followed by 0 is received, the switch is set to the off state. When the address is

received followed by 1, the switch is set to the on state. The digital switch behaves in an

identical manner to the basic switch component in the on and off states by acting as a

configured contact resistance when on and as an open circuit when off.

4.1.4.4. Relay

The relay component is designed to provide lower-level electronic control over appliances

than the digital switch. In place of the communications pin, the relay provides an electrical

pin on which it expects a DC control voltage. The coil resistance and switch-on threshold for

this pin can be set through configurable parameters. Similarly to the previous two switch

components, the relay functions as a configured contact resistance when the control voltage

is above the switch-on threshold and as an open circuit when the control voltage is below the

threshold value.

96

4.1.4.5. Smart Meter

A smart electricity metering component was seen as an essential element of a smart grid

modelling package because, as discussed in section 2.1.5, smart metering has been identified

as one of the key features of future domestic energy systems. A metering component is also

important when designing new smart energy control systems as it can illustrate the energy

used by the system during a given period of time, or the total cost of energy used.

The implementation of the smart meter component is based on the Smart Meter Technical

Specification that was made publicly available by British Gas [39]. Following the requirements

set out in this specification allows the smart meter component to closely follow the features

available in industry-standard meters. Additional communication features relating to the

control of in-home appliances, storage and generation systems which are not yet in use in

deployed meters have also been added to provide a degree of future-proofing to the

software package. The meter component, shown in Figure 4-13, has electrical connections

for the in-home power system and the electricity supplier network. Communication

connections are provided for communication with the electricity supplier and with in-home

systems.

Figure 4-13: Smart electricity meter component.

The European Standard BS EN 50470-1 [125] specifies the requirements for the electrical and

physical properties of electricity metering devices used in the UK. Among these requirements

is that the meter should monitor active (real) power consumption over the metered time

period as shown in (36), where P is the metered power in kWh over the given time period T

in hours and p is the instantaneous power in kilowatts.

97

(36)

This is the calculation that is used within the smart metering component to monitor power

consumption. As simulations within the modelling package are carried out in discrete time

steps, the trapezium integration rule [118] is used to perform the integration of power as

shown in (37).

(37)

The electricity meter’s characteristics will be modelled using the method for modelling series

components defined at the beginning of section 4.1.4, with the meter having zero insertion

resistance – essentially behaving as a short circuit between the input and output pins.

Instantaneous power flow out of a pin on a component is a property provided by the

package’s scripting API hence no calculation of power flow is required within the

component’s logic.

Three power consumption tariff systems are provided within the component. These tariff

systems were selected because they are available within the smart meters currently being

deployed by British Gas in the UK. These are the Time of Use (TOU), Tiered Time of Use (T-

TOU) and Critical Peak Pricing (CPP) systems. The Time of Use (TOU) tariff system divides the

24 hours of the day into 48 half-hour segments and a price is specified for each segment. The

Tiered Time of Use (T-TOU) operates by using an 8x8 grid of electricity prices. The columns

within the grid represent 3-hour segments of the day. The appropriate column for looking up

electricity prices is selected by the meter based on the time of day. Each row within the grid

represents a different pricing tier. The appropriate row to look up electricity prices in is based

on the amount of energy already used in the current billing period. For example, one rate

may be charged for the first 250kWh used, followed by a lower or higher rate for the next

250kWh and so on. Either TOU or T-TOU is selected within the meter as the active pricing

scheme for normal electricity use.

98

The Critical Peak Pricing (CPP) tariff is used in conjunction with one of the two regular pricing

schemes mentioned above. Critical peak periods are invoked by the utility provider sending a

message to the meter to notify that a critical peak period is in operation, during which a

significantly higher price per kWh will be charged. A second message returns the meter to

the regular TOU or T-TOU scheme when the critical peak period is over. The meter stores a

single configurable price to use during critical peak periods.

The smart metering component also has support for a feed-in tariff in the case that local

microgeneration is generating more power than can be used locally and is feeding power

back into the grid. For simplicity, a single configurable rate is used by the meter for billing

power fed back into the grid.

Three different types of communication are supported on the utility provider side of the

meter. These are:

 Notification of entering a critical peak period.

 Notification of leaving a critical peak period.

 Message to request meter readings. The meter responds with a 48x1 table of TOU

readings or an 8x8 table of T-TOU readings, depending on the tariff that is currently in

use.

To enable control of domestic appliances based on meter pricing events, three user-

configurable tables are specified within the component. These specify communication

messages to be sent in response to changing prices. The three types of messaging supported

are:

 Sending one or more messages when the pricing tier changes.

 Sending one or more messages when the Time-Of-Use period changes.

 Sending one or more messages when entering or leaving a critical peak period.

Additionally, devices within the home may communicate with the meter to query the billing

price per kWh in use or the instantaneous power consumption.

99

Configuration of the smart meter component is undertaken through the use of a number of

configurable parameters provided on the component. These are shown in Table 4-2. Results

can be collected from the component by monitoring one or more of the read-only

parameters shown in Table 4-3.

Table 4-2: Parameters used to configure the smart meter component.

Parameter Type Description

Pricing Scheme Option List Specifies the default pricing scheme to use for normal
metering – TOU or T-TOU.

TOU Prices 48x1 Table Specifies the price per kWh in £ for each of the time of
use pricing slots.

T-TOU Prices 8x8 Table Specifies the price per kWh in £ for each of the T-TOU
pricing slots.

T-TOU Thresholds 8x1 Table Specifies the kWh thresholds for each of the tiers in the
T-TOU scheme.

T-TOU Period Integer Specifies the billing period over which the T-TOU pricing
scheme operates before resetting back to the first tier.

Feed-In Rate Decimal Specifies the price in £/kWh for energy fed back into the
grid.

CPP Rate Decimal Price in £/kWh to use during critical peak periods.

Meter ID Integer A unique ID number for the meter which is used in
communications with the utility provider. This allows
multiple meters to be used on the same communications
link.

100

Table 4-3: Parameters that store metering results within the smart meter

component.

Parameter Type Description

Instantaneous Power Decimal Instantaneous power flow in kW.

Active TOU Slot Integer A number (1-8 for T-TOU or 1-48 for TOU) indicating the
active time of use slot used for billing.

Active Tier Integer A number (1-8) indicating the active billing tier.

CPP Active Boolean A flag indicating whether or not Critical Peak Pricing is
active.

Feed In Active Boolean A flag indicating whether or not the meter is in feed-in
mode.

Tiered Rate Register Decimal The energy use in kWh since the beginning of the current
billing period if T-TOU is active.

Tiered Rate Day Count Integer The number of days since the beginning of the current
billing period if T-TOU is active.

Active Rate Decimal The current rate in £/kWh that is being used to bill
electricity.

TOU Readings 48x1 Table A table holding the kWh readings for each billing slot if
the TOU scheme is in use.

T-TOU Readings 8x8 Table A table holding the kWh readings for each billing slot if
the T-TOU scheme is in use.

CPP Reading Decimal The amount of energy used in kWh during critical peak
periods.

Feed In Readings Decimal The amount of energy in kWh that has been fed back into
the grid.

Consumption Cost Decimal The cost of energy consumed in £ during normal billing
periods.

CPP Cost Decimal The cost of energy consumed in £ during CPP periods.

Feed In Payment Decimal The amount due from the utility provider in £ for energy
fed back into the grid.

4.1.5. Loads

Domestic electrical loads are classified into multiple groups for the purposes of modelling in

software. These groups are: static loads which have constant power consumption when

switched on; multi-mode loads which have constant power consumption for each of their

operating modes (for example, full power and standby); time-varying loads in which power

consumption varies predictably over the duration of use of the appliance; and dynamic loads

in which electric power consumption is based on the properties of another dependent

parameter (for example the temperature within a water heating appliance).

101

Each of the load components has a single electrical connection which represents its

connection to the home AC power system. The pin is modelled as an impedance-to-ground

connection as shown in Figure 4-14. The magnitude and phase angle properties of the

impedance are evaluated by each component’s logic as described in sections 4.1.5.1 - 4.1.5.4.

Figure 4-14: Model used for an electrical load component.

4.1.5.1. Static Loads

Static loads – loads where the power consumption is constant while power is applied to the

device – were characterised in a set of in-home experiments that were carried out during this

project. An in-line power analyser was used to measure the voltage, current and the phase

difference between voltage and current. The value of the impedance for the model was

calculated using Ohm’s law as in (38) where Z is the complex impedance value used in the

model, V is the measured RMS voltage (V), I is the measured RMS current (A) and Φ is the

phase difference between the current and voltage (°).

(38)

Table 4-4 shows the measured properties of the devices that were characterised and the

resulting impedance value that was used in the model for each.

Supply

Z

102

Table 4-4: Measured operational characteristics of household appliances and

calculated impedance value for use in models.

Appliance Measured
Voltage (V)

Measured
Current (A)

Measured
Phase Angle

(°)

Model Impedance

Magnitude (Ω) Phase Angle
(°)

Microwave
Oven

236.5 6.54 24.5 36.16 -24.5

Incandescent
Light Bulb

238 0.237 0 1004.22 0

Carbon
Fluorescent
Light Bulb

238 0.08 -50.95 2975.00 50.95

Wireless
Router

239 0.053 -58.67 4509.43 58.67

Vacuum
Cleaner

234 5.46 14.07 42.86 -14.07

Electric
Shower

238 38.57 8.11 6.17 -8.11

4.1.5.2. Multi-Mode Loads

Loads which have similarly constant power consumption properties to those in the “static

loads” group but have more than one operating mode where the power consumption may be

different were categorised as multi-mode loads. These loads include appliances which have

constant power consumption but which also have, for example, a standby mode. The

components were categorised and implemented in the same way as the static loads, with the

impedance value to use being selected depending on the value of a state variable indicating

the operating mode. The operating mode of each appliance can be changed during a

simulation using the asynchronous communications mechanism within the package. Upon

receiving an asynchronous message, a component compares the message to the names of its

operating modes and if a match is found, the operating mode is changed. Table 4-5 below

illustrates the measured properties of a variety of the components for each operating mode

and the calculated impedance.

103

Table 4-5: Measured operational characteristics of household appliances with

multiple operating modes and calculated impedance for use in models.

Appliance Operating
Mode

Measured
Voltage (V)

Measured
Current (A)

Measured
Phase Angle

(°)

Model Impedance

Magnitude
(Ω)

Phase Angle
(°)

Phone
Charger

On 237 0.049 -50.95 4836.73 50.95

Standby 236 0 0 ∞ 0

LCD TV On 238 0.495 -25.84 480.81 25.84

Standby 237 0.059 -85.41 4016.95 85.41

XBOX 360 On 238 0.315 -53.13 755.56 53.13

Standby 238 0.047 0 5063.83 0

PC On 230 0.54 -42.27 425.93 42.27

Sleep 230 0.053 -65.17 4339.62 65.17

Off 230 0.043 -77.88 5348.84 77.88

TFT Monitor On 237 0.135 -61.31 1755.56 61.31

Standby 237 0.05 -85.41 4740.00 85.41

4.1.5.3. Time-Varying Loads

A washing machine was identified as an appliance which could be suitably modelled as a load

which varies in a predictable way over time. A number of typical washing machine cycles

(40°C normal spin, 40°C short spin, 60°C normal spin, 60°C short spin) were recorded using an

AC power analyser and used to create lookup tables within the washing machine

component’s logic. The component supports commands using the asynchronous messaging

system to indicate a programme being started by the user (START 40N, START 40S, START

60N, START 60S). The instantaneous load value for the component’s model is determined by

identifying the time-point within the selected programme that the machine is currently at

and selecting the relevant load magnitude and phase angle from the lookup table. If the

machine is not currently running a programme then it is modelled as an infinite resistance

(i.e. zero power consumption).

A second more generic time-varying load component, named “Time-Varying Load” was

included which allows a load pattern to be followed based on an imported table of values.

This will allow for the modelling of any time-varying load not included in the standard library

of components.

104

4.1.5.4. Dynamic Loads

During the course of the project, the only “Dynamic Load” device which was implemented

was an electric water heater. The motivation behind the implementation of this water

heating component was to provide a water-based energy storage device which could be used

within domestic demand side management experiments later on in the project. This

electrical load is classed as a dynamic load within this discussion as the electricity consumed

by the device is related to the internal water temperature within the tank which is related to

the end-user consumption of water.

In order to develop a simplified model of a hot water immersion heater, the properties of a

commercially available immersion heater were used for reference. The heater that was

selected was the ECSd100-580 immersion heater which is manufactured by Dimplex. The

properties of this heater are summarised in Table 4-6.

Table 4-6: Properties of the Dimplex ECSd100-580 100 litre 3kW immersion

heater.

Height of Tank 0.81m

Diameter of Tank 0.58m

Insulation 6cm Polyurethane Foam

Tank Material 0.5cm Stainless Steel7

Water Storage Volume 100 litres

Heating Element 1x 3kW element

Maximum Water Temperature 90°C

Inlet Water Flow Rate
(Minimum)

15 litres / min
(Output at Mains Pressure)

Heat Loss 0.9kWh/24 Hours (Estimated)

The first stage in implementing a simplified, generic immersion heater model was to define a

constant for the tank’s thermal resistance. As no specific conditions were placed on the

manufacturer-specified heat loss in Table 4-6, the assumption was made that within the

component logic, the thermal resistance of the tank would be calculated for a set condition

of 75°C water temperature (the mid-point between the 90°C maximum and the UK

regulation of 60°C minimum storage temperature). The ambient temperature will be taken as

7 The tank wall thickness (including insulation) was not explicitly stated in the specification and has therefore been
estimated from the other parameters provided, assuming a cylindrical tank shape.

105

20°C when calculating the thermal resistance of the tank. Based on a configurable heat-loss

parameter within the component (kWh/24h), the thermal resistance (°C /W) of the tank

material is therefore calculated as shown in (39).

(39)

The second stage of developing the water tank model was the simulation of the cooling of

water within the tank due to the heat loss through the casing. In order to simplify this

calculation, the assumption was made that the water in the tank is always well-stirred and

has uniform temperature throughout. The specific heat capacity of water in the tank is taken

to be 4180J/kg∙°C. The assumption is also made that the tank is always full. The mass of

water in the tank is therefore equal to its volume (1 litre of water = 1kg).

Using Newton’s Law of Cooling, the temperature decrease in the tank’s water during one

time-step of a simulation can be calculated using (40) where TNEW is the new temperature of

the water in the tank after cooling (°C), TOLD is the temperature of the water in the tank prior

to the calculation (°C), TAMBIENT is the ambient temperature (°C), t is the simulation time-step

size in seconds, RTH is the thermal resistance of the tank casing (°C /W), CP is the specific heat

capacity of water (J/kg∙°C) and m is the mass of water in the tank (kg).

(40)

The third stage within the model’s evaluation is the calculation of the heat loss in the tank

due to hot water consumption. For this stage of the calculation, a configurable parameter is

supplied to define the temperature at which hot water should be delivered. A monthly table

is provided of cold water inlet temperatures. In immersion heater systems, the water in the

tank may be significantly higher than the hot water delivery temperature and the required

hot water temperature is delivered through the use of a thermostatic mixing valve to mix hot

and cold water.

106

The heater is initially assumed to be supplying no hot water at the beginning of a simulation

and water flow is indicated to the heater by other components within a model through the

use of the asynchronous messaging capability. Components send messages to the tank in the

format “FLOW Q” where Q is a flow rate in litres per minute. On each time-step the

component calculates the temperature decrease due to water flow as shown in (41).

(41)

The final stage in the evaluation of the heater’s behaviour is the calculation of the

temperature increase in the stored water when the heating elements are active. The

assumption is again made that the water in the tank is well-stirred with uniform temperature

throughout and the assumption that the heating elements always transfer their full rated

electrical power as thermal energy when heating the water. The temperature of the water

after heating for a single time-step, TNEW (°C) is calculated using the water temperature

before the heating calculation TOLD, the power delivered by the heating elements P (W), the

specific heat capacity of water CP (J/kg∙°C), the mass of water in the tank m (kg) and the time-

step size t (s) as shown in (42).

 (42)

On each time-step of the simulation, the new water temperature of the tank is calculated by

first performing the heat-loss calculation, followed by the water-flow calculation and finally

107

the heating calculation. An electrical connection on the component models the power drawn

by the heating elements.

The decision on whether to switch the heating elements on or off is made by comparing the

tank temperature to a thermostat temperature setting. The initial value of this setting, along

with its dead-band, are configurable parameters on the component. The thermostat value of

the water heater may be adjusted during a simulation by sending messages of the format

“TEMP X” to the heater’s communication port, where X is the new thermostat setting.

4.2. Communication Components

4.2.1. Scheduled Data Generator

A number of the communication events that take place within a smart grid system (for

example, pricing events sent by a utility provider to a smart meter) may, in a particular

simulation scenario, occur at “hard-coded” times. These can therefore be modelled by a

component which contains a look-up table of messages to be sent at a particular time. The

Scheduled Data Generator was included within the package for this purpose. The component

has a single communications pin on which messages are sent. A configuration table is

included within the component with each row in the table storing a time and a message that

should be sent over the communications channel at that time. For entries where the

message dispatch time falls between two simulation time-steps, the message is sent on the

latter of the two time-steps. The component allows for a multiple messages to be specified

for the same time-step.

4.2.2. Repeater

The Repeater component is a communications infrastructure component that allows a simple

communications network to be formed between many different components. Each repeater

component has 8 communication pins which provide point to point connections between the

repeater and the connected component. Any message received on one of the

communications ports on the repeater is forwarded to every other port on the repeater. This

allows a single component to communicate with up to seven other components.

108

The repeater component provides no routing capability and therefore the content of

messages sent in a network made up of repeaters must contain information that indicates

the destination of a message.

4.3. Building Elements

The modelling of building construction was a key requirement in the new smart grid

simulation package. To enable this modelling, a set of components for modelling building

surfaces, heated spaces, doors and windows was created. Each of these components was

based on the models described in the international standards that are used to calculate the

heat loss from buildings when developing specifications for heating systems. Additions were

made to these standardised models when necessary – either when the standards did not

provide a model for a particular building element or when more detail was required than the

model presented in the standard was able to provide.

4.3.1. Materials Database

When modelling building elements, the thermal properties of the materials that they are

made up from are an important factor. In order to avoid duplication of the thermal

properties of building materials across the implementation of multiple modelling

components, a database was created containing the thermal properties of a standard set of

building materials. A table of materials already exists in the form of the standard BS EN ISO

10456 [126]. This standard contains a tabulated list of common building construction

materials along with the density (kg/m3), design thermal conductivity (W/m∙K), specific heat

capacity (J/kg∙K) and wet and dry water vapour resistance factors (μ-value) of each.

The information contained in the ISO standard was compiled into a database and embedded

in a DLL library file that can be loaded by components’ C# or VB.NET source code. An API

provided in the DLL allows the database to be queried for either a list of materials or for one

of the thermal properties of a given material.

109

4.3.2. Surface

The surface component was designed to represent any kind of surface that separates two

thermal zones within a building, or separates a zone in a building from the exterior. The roof,

exterior walls, interior walls, ceilings and floors can all be modelled using the surface

component. The principle of the surface component was derived from the standard BS EN

12831:2003 [89] which describes the calculation of design heat load for buildings. Within this

standard, a surface is modelled as an area made up of layers of material, each with a defined

thickness and thermal transmittance. The calculations in the standard are solely for steady-

state behaviour of the building and therefore only take into account the thermal

transmittance of surfaces and not their ability to store heat.

In order to provide a more accurate dynamic model of surface behaviour, the surface

component was designed to also take the heat capacity of each material within the surface

into account. In order to allow for this calculation, the configurable parameters for the

component allow a surface of up to eight layers to be defined in terms of: surface area A

(m2), thickness of each layer l (m) and material for each layer. The materials available within

the model are the set of materials defined in the database described in section 4.3.1. Each of

these materials has a thermal conductivity Φ (W/m∙K), density ρ (kg/m3) and specific heat

capacity cp (J/kg∙K) which is used in the surface calculations.

During the “reset” phase of the component’s evaluation, a model of the surface is initialised

from the specified parameters. This model takes the form shown in Figure 4-15.

Figure 4-15: Schematic diagram illustrating the model used for a surface

component.

C1

R1/2 R1/2 R2/2

C2

R2/2
Pin 1 Pin 2

T1 T2

110

Within this model, CX (J/K) represents the heat capacity of a given layer X. This is calculated

from the thickness of the material l (m), area of the surface A (m2), density of the material ρ

(kg/m3) and specific heat capacity of the material cp (J/kg∙K) as shown in (43).

(43)

RX (K/W) represents the thermal resistance of a given layer X. This is calculated from the

thickness of the material l (m3), area of the surface A (m2) and design thermal conductivity Φ

(W/m∙K) as shown in (44).

Φ

(44)

To simplify the thermal calculation of the surface, rather than model the temperature

gradient across each material within the surface, the assumption is taken that the

temperature of each material TX (K) is the temperature at the centre of the material. The

material is therefore modelled as shown in Figure 4-15 with half of the thermal resistance on

each side of the central temperature.

To initialise the temperature gradient across the surface, the initial temperatures provided in

the simulation model are used in conjunction with the thermal resistance of the surface’s

materials to calculate the temperature of each material within the surface. As an example,

consider a scenario where in the schematic in Figure 4-15, material 1 has a thermal

resistance of 0.2 K/W and material 2 has a thermal resistance of 0.4 K/W. Also consider that

the initial temperature of the zone connected to the pin 1 of the component is 20°C and the

initial temperature of the zone connected to pin 2 of the component is 22°C. This would

produce a model of the format shown in Figure 4-16.

111

Figure 4-16: Example of initial surface temperature gradient calculation.

In this example, the total thermal resistance is 0.6W/K and the total temperature difference

across the surface is 2K. The temperatures at T1 and T2 respectively are calculated as a

proportion of the total temperature difference across the surface as shown in (45) and (46)

respectively.

 (45)

(46)

To determine the dynamic characteristics of a material within the surface, the material is

considered to be modelled in the form shown in Figure 4-17. In this model, T1 and T2 (K)

represent the temperatures on either side of the material. These are either the temperatures

of neighbouring materials within the surface or the temperatures of the zones that the

surface is connected to in the case of a material at one of the edges of the surface. The

thermal resistances R1 and R2 (K/W) are the sum of half of the material’s thermal resistance

and either: half the neighbouring material’s thermal resistance in the case of an internal

connection to another material within the surface; or, the thermal resistance of another

component connected to the surface in the case of a material at the edge of the surface.

CMATERIAL is the heat capacity of the material (J/K).

Figure 4-17: Dynamic model of a material within a surface.

0.1 0.1 0.2 0.2
20°C 22°C

T1 T2

R1 R2

T1 T2

TMATERIAL

CMATERIAL

112

The first step in determining the dynamic temperature of a material is to compute the steady

state temperature of the material using (47).

 T T T

 (47)

The steady state temperature is then used in Newton’s cooling equation [127] as shown in

(48) to calculate the new material temperature based on the current temperature.

(48)

In this equation, tstep (s) is the time-step size used in the simulation and RP is the parallel

combination of the thermal resistances R1 and R2, calculated using (49).

(49)

Once the temperature of each material within a surface has been evaluated for a given time-

step, the final equivalent model of the surface can then be derived for that time-step in the

format shown in Figure 4-18. In this model TA and TB (°C) are the temperatures of the

materials at each edge of the surface. RA and RB (K/W) are half of the thermal resistance of

the material at each edge of the surface.

Figure 4-18: Final surface model.

4.3.3. Door

The door model that is currently implemented uses the same logic as the surface component

to model a closed door separating two zones within a building or a door to the exterior of the

building. Future improvements to the door model will include the calculations from the ISO

RA RB

TA TAPin 1 Pin 2

113

10077-1 standard to allow for doors with glazed sections and calculations for the effect of

infiltration around the edges of a door. It would also be desirable to include an option for an

open door to be modelled.

4.3.4. Window

The window component that was developed is based on the ISO standard 10077-1:2006

[128] which specifies a method for the calculation of the thermal transmittance of doors,

windows and shutters. At present, only a calculation of heat conduction using this standard is

carried out – the component does not support the solar gain calculations that are carried out

in more established window models [56, 129].

4.3.4.1. ISO 10077-1 Window Geometry

The ISO standard defines a standard method of modelling the geometry of a window. This

method defines a number of properties of the window which are required in order to

perform the thermal transmittance calculation. In the standard, a window is defined as being

made up of the frame (which includes any moveable sashes) and a number of glazed areas or

opaque panels. Table 4-7 describes the geometrical measurements that are required for

glazed areas and opaque panels.

Table 4-7: Description of the measurements of glazed areas or opaque panels that

are required for the ISO10077-1 window thermal transmittance calculation.

Parameter Units Description

lg or lp m The perimeter of the glazed area or opaque panel in metres. If the perimeter
is different on each side then the larger value should be used.

Ag or Ap m2 The area of the glazed area or opaque panel. This is the smallest area visible
from either side of the window.

Table 4-8 describes the geometrical measurements that are required for the frame of the

window. Each of these measurements is illustrated in the diagram in Figure 4-19.

114

Table 4-8: Description of the measurements of the frame that are required for the

ISO10077-1 window thermal transmittance calculation.

Parameter Units Description

Af,i m2 The area of the internal window frame, including moveable sashes, which is
parallel to the glazed or panelled area.

Af,e m2 The area of the external window frame, including moveable sashes, which is
parallel to the glazed or panelled area.

Af m2 The frame area – the maximum of Af,i and Af,e.

Af,di m2 The internal developed frame area – the total area of the internal window
frame which is in contact with the air.

Af,de m2 The external developed frame area – the total area of the external window
frame which is in contact with the air.

Figure 4-19: Dimensions of a window frame as required by ISO10077-1 for the

calculation of the window’s thermal transmittance.

4.3.4.2. Software Modelling of Window Geometry

The window geometry used by the thermal transmittance calculation combines a number of

properties of the window’s geometry into single calculation parameters using assumptions

such as including any moveable sashes as part of the frame. In order to provide a method to

easily define a window’s geometry within a model, a hierarchical method of defining a

window as a combination of the frame, moveable sashes and glazed areas or opaque panels

Internal

External

Af,di

Af,de

Af,i

Af,e

1 2

1. Frame (including movable sash)

2. Glazing or opaque panels

115

was used. An illustration of this hierarchical window model is shown in Figure 4-20. In order

to simplify the specification of a window model, the following assumptions are made: all

frames, glazed areas and opaque panels are rectangular; the faces of the frame and all

moveable sashes are parallel or perpendicular to the glazing of the window; and the frame

and all moveable sashes are constructed from the same material.

Figure 4-20: Hierarchical model of a window.

The root component in this model represents the frame of the window. It will be defined by

its width, height and thickness, all in metres, and the material that the window is constructed

from. The list of available materials will be restricted to polyurethane, UPVC, hardwood and

softwood since standard values for each of these materials are included in the ISO standard.

The window component will contain references to each of the glazed areas, opaque panels

and moveable sashes included within it.

A moveable sash8 will be defined as illustrated in Figure 4-21. The inner and outer

dimensions are defined to allow for overlap with the frame on one side as shown. The

thickness of the sash in metres will be defined as well as a dimension DOPEN which specifies

the distance that the sash protrudes from the frame on the opening side of the window. The

position of the sash on the window is defined in terms of the X and Y distances in metres of

the top-left corner of the sash from the top-left corner of the window frame.

8 This model is only valid for hinged sash windows. A separate model would be required for sliding sash windows.

Window

Glazing

Sash

Glazing

116

Figure 4-21: Illustration of how a moveable sash is defined within the window

component.

The final components within the hierarchical window model are the glazed or opaque

panelled areas on a window. Similarly to moveable sashes, the position of these will be

expressed as an offset in metres from the top-left corner of the frame or moveable sash that

contains the glazed or panelled area. The thermal properties of an opaque panel are defined

by selecting the material that the panel is made of from the materials database described in

section 4.3.1. The thermal properties of single glazing are specified by defining the thickness

of the glazing in metres. Calculation of the thermal properties of double glazing is specified in

terms of three properties: glass type, normal emissivity and gas between glazing layers. A

lookup table of glass type, emissivity and gas is provided in the ISO standard, along with the

thermal conductivity for each combination of options. To simplify the calculation of the

window’s thermal properties, only the combinations provided in the standard are supported

in the hierarchical window model.

The window hierarchical model is stored within a window component as the “Custom

Configuration Dialog” type parameter. The parameter displays the dialog shown in Figure

4-22 to allow users to define the geometry and thermal properties of the window. These

properties are then stored in the class structure illustrated in Appendix B for use by the

window model.

Sash

DOPEN

S
a

s
h

T
h

ic
k
n

e
s
s

Opening

Direction

Sash

FrameFrame

F
ra

m
e

T
h

ic
k
n

e
s
s

Sash Outer Width

Sash Inner Width

117

Figure 4-22: Custom configuration dialog included within the “Window”

component to allow for the definition of window properties.

4.3.4.3. Translating Hierarchical Model to ISO Standard Model

The following steps are taken by the Window component logic to translate the hierarchical

window model into an ISO standard model:

1. Extract Ag and lg for each glazed area on the window directly each glazing definition.

2. Extract Ap and lp for each opaque panel directly from each panel definition.

3. Calculate Af,i, Af,e and hence Af by computing the area of the frame including

moveable sashes which does not contain glazing or opaque panels on each side of the

window.

4. To calculate Af,di and Af,de, it will be assumed that all glazed areas or moveable sashes

are exactly at the mid-point of the sash or frame in which they are installed. The

118

exposed thickness of frame perpendicular to the glazing or opaque panel will

therefore be calculated using lEXPOSED = ([FRAME THICKNESS] – [GLAZING OR PANEL

THICKNESS]) / 2. This can then be used in conjunction with the glazing or panel’s

width or height to calculate the exposed areas. The internal and external dimensions

of each moveable sash will be used to calculate the areas of the sash that are

perpendicular to the frame for use in this calculation.

4.3.4.4. Thermal Transmittance Calculation

The ISO standard defines the thermal transmittance of a window UW (W/m2∙K) using

equation (50). The parameters of this equation are as described in section 4.3.4.1, as well as

the following parameters: Ug (W/m2∙K) – thermal transmittance of a glazed area; Up (W/m2∙K)

– thermal transmittance of an opaque panel; Uf (W/m2∙K) – thermal transmittance of frame

material; ϕg (W/m∙K) – linear thermal transmittance of a glazed area; ϕp (W/m∙K) – linear

thermal transmittance of an opaque panel. The linear thermal transmittance takes into

account the combined thermal effect of the glazing, spacers and frame in double or triple

glazed windows. Standard values for this parameter are provided for different types of

frame. The value can be set to zero when single glazing is used. The standard also specifies

that a value of zero can be used when opaque panels with thermal conductivity of less than

0.5W/m∙K are used. The assumption that this is always the case is used to simplify the

window model.

 φ φ

 (50)

The ISO standard provides tables of values of Uf for various frame materials and tables of Ug

for double and triple glazing of various types. Lookup tables of these values are used within

the component logic to compute these values. For single glazing, equation (51) is used to

calculate Ug where d is the thickness of the glazing. This equation assumes non-laminated,

vertically positioned soda lime glass.

119

 (51)

4.3.4.5. Window Model Definition

Once the thermal transmittance of the window has been determined using equation (50),

this is used in conjunction with the total area of the window AW (m2) to obtain the linear

thermal resistance RW (K/W) of the window as shown in (52).

 (52)

The calculated linear thermal resistance is then used as shown in Figure 4-23 to define a

model of the window that is compatible with the simulation package. In this model R1 and R2

are the thermal resistances of the pins connected to pin 1 and pin 2 of the window

respectively and T1 and T2 are the temperatures defined for the pins connected to pins 1 and

2 of the window.

Figure 4-23: Schematic illustrating equivalent thermal resistance model for the

window component.

4.3.5. Room

The room component is designed to model a room or other space within a building (for

example a loft or basement space). The component models the temperature of the air within

the room based on a given initial room temperature and room volume. The assumption is

made that the air within the room is well-stirred and has a uniform temperature throughout.

Four variants of the room component are provided with 4, 8, 16 and 24 external connections,

although the internal logic is identical for each.

RW + R2 RW + R1

T2 T1Pin 1 Pin 2

120

The external connections on a room component are used to connect to the surfaces, doors

and windows which join the room to the surrounding areas as well as components which

model heating or ventilation sources. Each of these connected components is represented by

a temperature source in series with a thermal resistance, as described in section 3.3.2.

In order to model the thermal characteristics of the room, the electrical circuit analogy

shown in Figure 4-24 can be used where the capacitance of the capacitor CROOM represents

the heat capacity of the air within the room in J/K; TROOM represents the instantaneous

temperature of the air in the room in °C. TSTEADY represents the steady-state temperature of

the room in °C – this is the temperature that the air in the room will eventually reach should

the present conditions of the room’s surroundings, heating and ventilation remain the same.

θRATE is a thermal resistance (K/W) which governs the rate at which the room will heat up or

cool down to its steady state temperature.

Figure 4-24: Electrical analogy for the thermal model of a room.

The steady state temperature TSTEADY and heating rate resistance θRATE model the net power

flow into the room from all of the other thermal components which are connected to the

room component. To calculate these values, assume that if there are N other components

connected to the room, there are two vectors which contain the temperatures and thermal

resistances of the connected components T= (T1, T2 …, TN) and θ (θ1 θ2 … θN). Using

these values, the steady state temperature of the room can be calculated using (53) and the

charge rate resistance can be calculated using (54).

TSTEADY θRATE

CROOM

TROOM

121

(53)

(54)

The steady state characteristics of the room component are calculated by its model on each

time-step of the simulation. In a similar manner as used previously, the steady-state

temperature is used in conjunction with Newton’s cooling equation to calculate the new

temperature for the next time-step as shown in (55). In this equation, tSTEP is the simulation

time-step size in seconds.

(55)

In calculating the transient characteristics of the room, the heat capacity of the air in the

room CROOM is required. The heat capacity of the air in the room is calculated by first

calculating the mass of air in the room, mAIR (kg) using (56) where ρAIR is the density of air

and V is the volume of air in the room (m3). This is then used in (57) to calculate the heat

capacity of the air in the room CAIR (J/K) using a constant value for the specific heat capacity

of air CP,AIR (1012 J/kg K).

 (56)

 (57)

4.3.6. Static Room

While performing building model validation studies, it became apparent that it may in some

cases be desirable to simulate the behaviour of a small part of a building to prove that the

simulated behaviour matches experimental readings. To do this, the simulation package

would need to be aware of the properties of the areas surrounding the areas being simulated

122

in order to produce results that are accurate to the experimental readings. In order to allow

for this, the “Static Room” component was developed. The component acts as an area within

the building that has a fixed temperature that is set based on values in a lookup table, rather

than dynamically calculated. This allows the temperature of the room to follow experimental

readings that have been imported into the package.

4.4. Heating and Ventilation

4.4.1. Natural Ventilation Component

Natural ventilation of a heated space within a building is one of the many factors which

contribute to the loss of heat from a room. The European Standard EN 12831 [89] provides a

method for calculating the heat loss through natural ventilation of a space. In this standard,

heat loss is given by (58) where Φ is the heat loss (W), UV is the ventilation heat loss

coefficient (W/K), TI is the internal temperature of the space (K) and TE is the outside

temperature (K).

Φ (58)

The heat loss coefficient UV is given by (59) where V̇ is the air flow rate of the heated space

(m3/s), ρ is the density of air (kg/m3) and cp is the specific heat capacity of air (kJ/kg∙K). Using

the assumption of constant values for ρ and cp, the standard simplifies (59) to (60), where V

is now expressed in m3/h.

 (59)

 (60)

The value of V̇ is taken as the maximum of V̇ INF and V̇ MIN where V̇ INF is the air flow rate due

to infiltration through the building fabric. V̇ MIN is the minimum design air flow rate that is

used for hygiene reasons within buildings and varies depending on the type of room. The

infiltration air flow rate V̇ INF is given by (61) where VR is the volume of the room (m3), n50 is

the air exchange per hour that occurs due to a 50Pa difference between the inside and

outside air pressure which is dependent on the air-tightness of the building, ei is a shielding

123

coefficient which is dependent on the shielding provided by the building’s surroundings and

the number of exposed openings in the room and ϵi is a height correction factor which is

dependent only on the building’s height. Typical values of n50, ei and ϵi are given in the

standard.

 (61)

The hygiene air flow rate is given by (62) where VR is the volume of the room (m3) and nmin is

the minimum number of air exchanges per hour required for hygiene reasons for that

particular type of room. Typical values of nmin are given within the standard for different

types of room.

 (62)

The Natural Ventilation component that is provided within the simulation package has a

number of user configurable parameters which allow is to carry out the calculations

described above. These are: Volume of Room (m3); Type of Room (Kitchen, Bathroom, Office,

Meeting Room, Others); Building Air Tightness (0-100%); Building Shielding (Light, Medium,

Heavy); Number of Exposed Openings in Room; Height of Room above Ground Level (m).

These configurable parameters are used in conjunction with the lookup tables provided in

the standard document to determine the heat loss coefficient UV for the room. The inverse of

this value in (W/K) is then taken to produce a thermal resistance θV in K/W (°C/W).

The component has two pins, one for a connection to the room and another for a connection

to the ambient (outside) temperature. The model of the component behaves as a series

resistance with value θV between the room temperature and outside temperature, modelling

the resulting heat loss as described in (58).

4.4.2. Radiator

A basic model of a radiator for a water-based heating system was developed, primarily for a

validation study that was carried out on the package using a home with a gas-fired heating

system. The main requirement of this component was not to model the water temperatures

124

within the heating system but rather to model the heating effect that a radiator has on room

temperature. A radiator manufacturer’s catalogue [130] was used to obtain heat output

specifications for different types of radiator. Within this catalogue, radiator heat outputs in

watts were specified for a selection of different radiator constructions and sizes. Radiator

sizes were specified in millimetres in terms of length and height. The different types of

construction documented in the catalogue were: single panel; double panel with fins on one

panel; double panel with two sets of fins; triple panel with three sets of fins. The heat output

for each type of heater is specified in watts at a temperature difference (ΔT) of 60°C

between the water temperature in the radiator and the room temperature. Correction

factors are provided as fractions of the ΔT=60°C heat output for other values of ΔT.

The radiator model that was implemented provides the list of radiators defined in the

catalogue as a configurable “Radiator Type” drop down list parameter. A second parameter is

provided to specify the initial temperature of the water within the radiator. In order to

simulate dynamic adjustment of the heating system output throughout a simulation, the

component supports messages using the asynchronous messaging system in the package in

the format “TEMP X” where X is the average water temperature in °C across the radiator.

This information can be imported into the package using physical measurements from a

home.

The radiator has a single heat transfer connection to a room which has a temperature T (°C)

and thermal resistance RTH (°C/W). The temperature T is set to be the average water

temperature in the radiator. The value of RTH is calculated based on the radiator power

output in the manufacturer’s data lookup table.

The process of calculating RTH begins by calculating the temperature difference between the

radiator water and the room. This temperature difference is used to determine a correction

factor for the ΔT=60°C power output quoted by the manufacturer. This correction factor is

determined by creating a piecewise linear model of the correction factor based on

temperature using the manufacturer supplied correction factor data. Once the correction

factor has been established, the radiator power output for the present ΔT value can be

calculated by multiplying the ΔT=60°C output by the correction factor. The thermal

125

resistance value RTH is then calculated by dividing the temperature of the water in the

radiator by the calculated power output for the given ΔT.

4.4.3. Electric Heater

An ideal electric heater component was implemented for use in models to study the smart

control of heating appliances. This heating component has the following features: adjustable

rating; 100% efficiency – all electrical input converted to heat output; configurable

thermostat dead-band; and thermostat setting adjustable using communication messages.

The component has three connections – a heat transfer connection to the room being

heated, an electrical connection to the home’s mains supply and an optional communications

link on which thermostat temperature setting messages can be received. The logic within the

heater is programmed such that the heater operates with its element at 150°C when in its

heating mode, providing its full output power when the room temperature is 0°C. The heat

output of the heater decreases linearly with increasing room temperature. The electrical load

resistance of the heater is determined by dividing the square of the heater’s nominal voltage

by the instantaneous heat output power. This simplified model assumes uniform element

resistance over the entire operating temperature range of the heater.

The control algorithm built into the heater uses a combination of the heater thermostat

setting values and dead-band value to determine whether the heating elements are switched

on or off. If the room temperature falls below (Thermostat Setting - Dead-band / 2) then the

heating element is turned on; if the room temperature rises above (Thermostat Setting +

Dead-band /2) then the heating element is turned off. The heater consumes no power and

has no heat output when the element is turned off.

Basic communication support is built into the heater. When a message in the format “TEMP

X” is received, the thermostat setting on the heater is set to the value X (°C). While this

heating component is a relatively simplistic implementation of an electric heater, it is

sufficient to allow for investigations into control over heating appliances.

126

4.5. Weather

4.5.1. Ambient Temperature Pattern

The Ambient Temperature Pattern component allows the ambient temperature used in a

model to be varied during the course of a simulation. The component provides a configurable

table parameter in which each row contains a time and a temperature to be set at the given

time. In the case that a time falls between two simulation time-steps, the temperature value

is set of the latter of the two time-steps – consistent with the behaviour of other

components. Using this logic, it may be possible that more than one temperature entry exists

for each time-step. In this case, the temperature point with the latest time value is used

during that time-step.

Using this component, ambient temperature patterns can be set using historical or predicted

weather data to perform simulations which are valid in the context of a particular area or can

be set to specifically test the temperature response of a particular simulation component.

4.5.2. Random Ambient Temperature

In contrast to the Ambient Temperature Pattern component, the Random Ambient

Temperature component uses an initial starting temperature and then varies the

temperature randomly over the course of a simulation. A set of configurable properties

define the way in which the temperature should be varied.

The user-specified properties that govern the random variation in temperature are the

maximum allowed temperature (TMAX), minimum allowed temperature (TMIN) and the

maximum variation in temperature (TMAXVAR) on each time-step. Additionally, the user may

also specify an integer seed value for the pseudo-random number generator used to ensure

that the random temperature variation carried out is the same on each run of the simulation.

Given the user properties defined above and the previous ambient temperature TOLD, the

new ambient temperature TNEW is generated using the algorithm shown in (63).

127

Sign = Random selection from [-1,1]
Random = Random decimal value between 0 and 1
TNEW = TOLD + Sign * (TMAXVAR * Random)
If TNEW > TMAX Then TNEW = TMAX
If TNEW < TMIN Then TNEW = TMIN

(63)

4.5.3. Solar Irradiation Pattern

The Solar Irradiation Pattern component is responsible for updating a global parameter

within the simulation to a representative solar irradiation level in W/m2 for the current

season and time of day. The component contains a configurable look-up table of solar

irradiation levels containing 24 rows representing each hour of the day. Within each row,

there are twelve columns containing a representative solar irradiation value for that time of

day on each month of the year. A second configurable parameter specifies the name of the

global parameter that the component should store the current solar irradiation level in.

The component uses the simulated date and time during each time-step to determine the

correct solar irradiation level within the lookup table and stores the selected value in the

specified global parameter. This approach means that other components (for example a solar

panel) which rely on the solar irradiation level can use the global parameter setting rather

than each component having to use its own lookup table. Representative solar irradiation

levels for various locations around the world are provided in the weather files distributed by

the EnergyPlus project [131].

4.6. Other Components

4.6.1. Scheduled Asynchronous Messaging

In section 4.2.1, the Scheduled Data Generator Component was discussed. This component

sends a message using the simulation package’s built in data communications system based

on a schedule table containing messages and the associated time at which each message

should be sent. A similar component has been implemented to allow messages to be sent

according to a schedule using the package’s asynchronous messaging system which is

designed to model user actions rather than data communications. The Scheduled

Asynchronous Messaging component has no pins and instead provides a second configurable

128

parameter which specifies the instance name of the component that scheduled messages

should be sent to.

4.6.2. List and Table Parameter Watch

The result recording mechanism within the simulation package, described in section 3.5.1,

only allows for the recording of the values of scalar parameters within components.

Occasionally, it may be more suitable to record run-time results in lists or tables within

components and therefore it may also necessary to record certain values from lists or tables

as a simulation runs for post-simulation analysis.

The List and Table Parameter watch component enables the recording of numeric values

from lists or tables by reading values from specific elements of a list or table and storing

them in scalar parameters. The built-in result recording mechanism can then be used to

record the values of the scalar parameters and present them in graphs or tables. The

component contains two configurable parameters which specify the instance name of the

component containing the list or table to watch and the name of the list or table parameter

within the component to watch. Ten read-only decimal parameters are provided within the

component named “1-10” to which list or table values can be mapped. A configurable table

parameter is also included within the component which contains 10 rows to store the

mapping of list or table elements to the ten scalar parameters within the component. Each

row has two columns in which the row and column number of up to 10 list or table elements

to be watched are entered. In the case of lists, the column number is entered.

During the course of a simulation, the component examines the associated list or table to

determine the value of the mapped elements and stores these values in the associated read-

only parameter. If any of the mapped row or column indices are outwith the bounds of the

list or table or do not contain numeric data then the value is recorded as NaN (not a

number).

129

4.7. Summary

A selection of components including electrical appliances and infrastructure, building

construction elements, heating appliances and communication systems has been presented

in this chapter. While the set of components that has been developed is far from exhaustive,

and many components have room for improvement in the detail of their models, the library

provides a good starting point for the evaluation of the package. In the next chapter, the

testing of the package and the validation of a number of the components that have been

developed is described. This is followed by a case study in Chapter 6 which makes use of the

library of components that has been implemented in this chapter.

130

Chapter 5

Testing & Validation

Testing and validation were an essential part of the development of the new domestic smart

grid simulation package to ensure that the results obtained from the package were accurate

and reliable. This chapter describes the testing that took place during the development of the

package to test the correctness of the simulation results and functionality of the application.

This is followed by the description of three experimental validation studies that took place in

which rooms within buildings were modelled and physical measurements were taken of

temperature and electrical power consumption within the rooms. These tests measured the

performance of the simulator against real-world results.

5.1. Unit Testing

Throughout the development of the software, the Microsoft Visual Studio Unit Testing

Framework was used to create unit tests. These unit tests check the functionality of the

individual methods which make up each class in the software. Unit tests operate by providing

test inputs to a method, executing the method and then checking that the outputs from the

method match the output expected for the given test inputs.

Unit tests were extremely useful during the development of the software as they provide a

method of constantly checking that changes to the implementation of the software have not

broken its functionality. The unit test coverage of the software was estimated to be around

60% of all of the source code. This was due to a large part of the software’s code base being

made up of graphical user interface components for which test automation is difficult. To

supplement the test-driven development approach, automated functional tests as well as

manual inspections of the graphical user interface were undertaken.

131

5.2. Automated Functional Test Program

Automated functional tests of the software were performed to ensure that the simulation

results produced by the completed package were theoretically correct. Testing of simulation

results was not possible using the unit test framework as the component models used within

simulations are loaded from XML files and compiled at run time. Therefore, in order to

automate the testing of generated simulation results, a small test application was written in

which test cases could be created and then run.

To enable the creation of an automated test suite for the application, a command-line

version of the simulation package was created. The command-line tool, which is a cut-down

version of the full simulation package, takes two input parameters. These are the file name of

a system model which has been created using the full version of the software and the name

of a CSV spreadsheet file in which to store the simulation results.

The automated test tool has a user interface to allow a test case to be specified which is

shown in Figure 5-1. A test case consists of a system model file name and a set of expected

result values to check against the simulation results. Each test case is saved in an XML file.

Additionally, multiple test case filenames may be specified in a text file to run a batch of tests

sequentially.

132

Figure 5-1: Automated test tool test case editor.

To run a test, the tool uses the command-line version of the simulation package to run the

simulation defined in the test case. The results spreadsheet produced by the command-line

simulator is then analysed to ensure that the results match the expected results entered in

the test case. An example of a test run is shown in Figure 5-2.

The majority of the library components described in Chapter 4 were tested using the

automated functional test program during development. The test program was also used to

validate the electrical and temperature node components which were built into the package.

During the software’s development, on many occasions the test suite highlighted side-effects

of code changes which caused the package to produce erroneous results. The stringent test

process that was used during development provides a high level of confidence in the results

that are produced by the package.

133

Figure 5-2: Automated test runner interface.

5.3. Graphical User Interface Testing

Automated testing of graphical user interfaces is problematic due to the volume of

commands that may be obtained from a user when performing even the simplest of

operations. For example, when using the graphical model editor, the same system model

may be created multiple times within the software by performing a different sequence of

actions each time. This is due to the different order of creation of model parts and also

because the user may position components in different locations on the screen, despite the

underlying logic model being identical.

Testing of the graphical user interface therefore took a more informal approach whereby

when a new user interface feature was implemented or an existing feature modified, the

application was run and the feature was manually tested. This approach was more useful in

some scenarios than others. For example, dialogs which were used to edit simulation settings

or parameter values were easy to test because data could be entered in the dialog and the

dialog could then be closed and re-opened to confirm that the data entered were accepted

134

correctly by the dialog and saved to the underlying data store. Other more complex graphical

user interface elements were also tested in this way – for example, the system model editing

canvas and the graphical component editor. The system model editor was tested by creating

a model, saving the model to a file and re-loading the model to ensure that the underlying

representation of the model correctly represents the user’s input. While this approach

generally worked adequately for these more complicated user interface components, bugs

were occasionally discovered during the use of the package which were not immediately

apparent during testing. The majority of these bugs were focussed around usability

problems more than the ability of the package to produce models and obtain accurate

simulation results.

It was of particular benefit from a testing perspective that the development of the modelling

package was tightly coupled to the production of results for this project. This meant that the

package was being actively used as it was developed. This allowed for first-hand experience

of the types of bugs in software that are easily overlooked during a formal testing process

but are picked up at the end-use stage.

5.4. Experimental Validation Studies – Thermal Models

5.4.1. Experimental Methodology

The main purpose of the thermal model experimental validation studies that were carried

out was to verify that the room temperatures obtained from a simulated building model

were correlated with the temperatures obtained through measurements of a modelled

room. Three key aspects of the experimental method were therefore the measurement of

room temperatures, the measurement of the behaviour of heating devices within the rooms

and the accurate characterisation of the construction of the rooms and their surroundings for

use in developing simulation models.

Within the simulation package, a well-stirred air model is used to model the air temperature

within a room. This model makes the assumption that the air temperature within a room is

completely uniform. In reality, this is not the case. Therefore, the experiments that were

135

carried out relied on recording average room temperatures. To provide a good

representation of average room temperatures, multiple temperature readings were taken in

order to record an average temperature of the hot (for example, near heating appliances)

and cold (for example, near doors and windows) areas of the room.

In order to take a number of different temperature readings from the rooms while

minimising disruption to the homeowners, Lascar Electronics EL-USB-1 sensors were used.

These sensors are small, battery powered units which can be connected to a USB port for

configuration and then operate in a standalone mode for logging of temperatures. The

sensors can then be reconnected over USB when the temperature logging is complete to

download the data. The sensors have an accuracy of 1°C and a resolution of 0.5°C. The range

of -35°C to 80°C makes them suitable for recording room temperatures. Prior to being used

in the experiment, the correlation of the values read by different sensors was verified by

recording data from co-located sensors for 24 hours at ten second intervals. The

temperatures recorded were found to be within the manufacturer’s quoted accuracy of 1°C.

Twenty of these sensors were acquired for use in the thermal validation experiments.

Although utility software is provided with the EL-USB-1 units to configure the logging and to

download datasets, this software has the restriction of only being able to configure a single

unit at a time. Therefore, a custom-built utility application was written for these experiments

to allow multiple devices to be programmed with the same configuration simultaneously.

The application also allows for the temperature data to be downloaded from multiple units

simultaneously upon completion of an experiment.

The units provide the useful capability of assigning a textual label within the configuration

parameters which is stored along with any data downloaded from the unit. This label was set

to a unique identification number for each sensor, which was also physically marked on the

sensor. When positioning sensors for data collection, the location of each sensor number was

recorded to allow the downloaded data to be associated with the sensor’s location for

analysis.

136

The approach taken to record the behaviour of radiators within a room was to measure the

temperature of the water inlet and outlet pipes of the radiator. An average water

temperature could then be established from these two measurements to use as input to the

radiator model within a simulation. Due to the higher temperatures involved and the need

for a direct contact with the radiator pipes for measurement, thermocouples were deemed

more suitable for obtaining these measurements than the EL-USB-1 loggers. J-Type

thermocouples were fastened to the radiator pipes using cable ties and heat transfer

compound was applied to the tip of each thermocouple of ensure good thermal conductivity

between the pipe and the thermocouple junction. An Agilent data acquisition unit was used

to log the thermocouple temperatures every minute. The data from this unit was saved onto

a USB drive for analysis on a PC.

The characterisation of the construction of rooms for use in simulations was carried out using

a survey process. This process involved obtaining the physical dimensions of the rooms, as

well as a list of the materials used in the construction of the floors, ceilings, walls, doors and

windows at the boundaries of the room.

In the first home that was studied, described in section 5.4.2, no original plans of the building

were available and therefore measurements were taken to establish the geometry of the

room. The materials used in the construction of the building were obtained through a visual

survey, with the help of the homeowner who had detailed knowledge of the building’s

construction due to a recent refurbishment of the room being studied. In the second home,

described in section 5.4.3, original plans were available describing the building geometry and

the materials used in the construction. However, a visual survey of the doors, windows,

flooring and decoration was carried out to complete the materials list. In both cases, Google

Sketchup 3D models were created of the areas of interest within the buildings for reference

use during the creation of the simulation models.

5.4.2. Test Room Experiment – Heat Loss Response

The first of the thermal model experimental validation studies carried out on the package

was designed to assess how well the package’s thermal modelling capabilities could model

137

the thermal behaviour of a room within a building without the presence of any forced

heating or ventilation. This study defines the baseline error rate of the package which can

then be taken into consideration when performing studies on heating and cooling systems.

The decision was taken to perform the study on a single room rather than a whole building:

this allowed a room of the building to be chosen where the construction was well known and

the geometry of the room and its surroundings were easily measurable. It also reduced the

amount of measurement equipment that was required to gather data for the study.

The home used for this study was an early 20th century detached sandstone house. The home

was chosen because it was in the process of being refurbished so the construction of the

building was well-known. The dining room within the home was chosen for use in the study.

During the visit to the home, detailed measurements were taken of the geometry of the

selected room, doors and windows. A survey was also performed, with the assistance of the

homeowner, of the materials used in the construction of the building around the selected

room. This information was used to create an accurate 3D reference model of the room,

shown in Figure 5-3, for use when creating the software model of the room. The 3D model

also illustrates the areas bordering the room being measured. The results of the materials

survey are shown in Table 5-1.

Table 5-1: Results of room materials survey for first test home.

Building Element Material Thickness (m) Area (m2)

South Wall Doors 500kg/m3 Timber 0.04 1.8146

East Wall Door 500kg/m3 Timber 0.04 1.8990

Fireplace Limestone 0.18 1.672

West Wall Behind
Fireplace

Sandstone
Air Gap
Sandstone

0.3
0.0508
0.3

1.672

West Wall 1000kg/m3 Plaster
450kg/m3 Timber
Sandstone
Air Gap
Sandstone

0.0127
0.0064
0.3
0.0508
0.3

14.098

South Wall 1000kg/m3 Plaster
Clay Brick
1000kg/m3 Plaster

0.0127
0.1145
0.0127

9.064

138

Building Element Material Thickness (m) Area (m2)

East Wall 1000kg/m3 Plaster
Clay Brick
1000kg/m3 Plaster

0.0127
0.1145
0.0127

13.855

North Wall Around
Windows

500kg/m3 Timber
Air Gap
Sandstone
Air Gap
Sandstone

0.016
0.0508
0.3
0.0508
0.3

7.147

Remainder of North
Wall

1000kg/m3 Plaster
450kg/m3 Timber
Sandstone
Air Gap
Sandstone

0.0127
0.0064
0.3
0.0508
0.3

6.585

Floor Oak
Pine

0.022
0.028

24.108

Ceiling 1000kg/m3 Plaster
Air Gap
450kg/m3 Timber
Cinders
Air Gap
450kg/m3 Timber
Underlay
Carpet

0.0127
0.045
0.015
0.04
0.045
0.028
0.005
0.015

23.177

139

Figure 5-3: 3D Model of dining room used in case study showing neighbouring

rooms.

Measurements of the thermal behaviour of the room were taken using the EL-USB-1

standalone temperature sensors, sampling once per minute. A number of sensors were

placed at different points around the room to take an average temperature for the room.

Sensors were also placed in the neighbouring rooms and the room on the floor above. A

sensor was placed outside the building to measure the exterior temperature. These

temperature sensors were allowed to run for five days in order to collect a suitable amount

of information for use in the study.

A software model was created of the test room and its surroundings. This software model, an

illustration of which is provided in Appendix B, was created by modelling the construction of

the measured room and its surrounding floor, walls and ceilings using the library of

components described in Chapter 4. Surrounding spaces were modelled using the “Static

Room” component described in section 4.3.6 using a lookup table of temperatures measured

during the experiment. The dining room was modelling using the dynamically evaluated

room component, described in section 4.3.5.

140

The first experiment that was run involved simulating the thermal behaviour of the dining

room over a 24 hour period within the 5 day recorded data period. The graph in Figure 5-4

illustrates the simulated room temperature compared with the measured value from the

temperature sensors. Figure 5-5 illustrates the percentage error in the simulated

temperature. During this simulation run, the average error in temperature was 1.8% and the

maximum error was 3.7%. This shows that the simulated temperature is in agreement with

the measured value.

Figure 5-4: Results of 24 hour simulation of dining room temperature compared to

measured room temperature.

0

2

4

6

8

10

12

14

16

18

20

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Te
m

p
e

ra
tu

re
 (

°C
)

Time (s)

Simulated Dining Room Temperature Measured Dining Room Temperature

141

Figure 5-5: Percentage error in simulated room temperature during 24-hour study.

During the 24 hour study, the measured room temperature was relatively constant and

therefore a second study was carried out on a more interesting period of the collected data

where the temperature rose sharply for a short period of time due to incident sunlight on the

north face of the building. In this second study, the thermal behaviour of the room was

simulated for 48 hours. The simulated and measured temperatures are illustrated in Figure

5-6 and the percentage error in the simulated temperature is shown in Figure 5-7. The

average error during this study was 2.3% and the maximum error was 17.2%.

The maximum error occurred during the brief period of sunlight which raised the room

temperature significantly. While the simulation was able to follow the room temperature

with good accuracy during the majority of the study, it was unable to model the increase in

temperature caused by the sunlight. The main reason for the large error during this period is

that the window model provided in the simulation package, described in section 4.3.4, does

not model solar gain through the window, it only models heat conduction through the

window. The future accuracy of thermal simulations of buildings with windows could be

142

improved by incorporating a model of incident sunlight on buildings in addition to a window

model which supports heat transfer due to solar irradiation. Despite this inaccuracy in the

model, the results of both the 24 hour and 48 hour studies show that the package is capable

of producing thermal simulation results which agree well with measured experimental

values. In both cases, the average error in the results was less than 5%.

Figure 5-6:Results of 48 hour simulation of dining room temperature compared to

measured temperature.

0

5

10

15

20

25

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

Te
m

p
e

ra
tu

re
 (

°C
)

Time (s)

Measured Dining Room Temperature Simulated Dining Room Temperature

143

Figure 5-7: Percentage error in simulated temperature during the 48-hour study.

5.4.3. Test Room Experiment – Heated Room Response

A second validation study was carried out on the thermal modelling capabilities of the

package. This time, as well as verifying the behaviour of the building element components

provided in the package, the radiator component described in section 4.4.2 was also

considered. In this case, a modern home (built around 1990) with gas-fired central heating

was studied.

The development of a model of the home was made significantly easier in this case due to

the availability of the original plans for the building. The 3D model shown in Figure 5-8 was

developed from the floor plans in order to provide a reference model of the building

geometry.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

P
e

rc
e

n
ta

ge
 E

rr
o

r
in

 T
e

m
p

e
ra

tu
re

 (
%

)

Time (s)

144

Figure 5-8: 3D model that was developed as a reference geometry model for the

home used in the second case study.

The particular room that was studied in this case was the room marked as “Lounge 1” on the

model in Figure 5-8. A materials survey of the construction of the building around the room

was carried out, the results of which are shown in Table 5-2. It should be noted that in the

selected room, the floor height is lower than the rest of the ground floor of the building,

leading to a number of different material cross-sections making up each interior partition.

Additionally, a portion of the wall between the lounges at the front and rear of the house is

of external wall construction because “Lounge 2” is a garage conversion.

145

Table 5-2: Survey of the materials used in the building construction around the

room marked “Lounge 1” in Figure 5-8.

Building Element Material Thickness (m) Area (m2)

West Wall

Exterior Wall Cement Finish
Concrete Block
Cavity
Insulation
Concrete Block
Plasterboard

0.015
0.1
0.05
0.075
0.1
0.015

13.756

North Wall

Exterior Wall Cement Finish
Concrete Block
Cavity
Insulation
Concrete Block
Plasterboard

0.015
0.1
0.05
0.075
0.1
0.015

11.745

East Wall

Internal Partition to
Lounge 2 (Exterior Wall
Standard)

Plasterboard
Concrete Block
Insulation
Cavity
Concrete Block
Plasterboard

0.015
0.1
0.075
0.05
0.1
0.015

7.38

Internal Partition to
Lounge 2 (Interior
Partition Standard)

Plasterboard
Insulation
Concrete Block
Insulation
Plasterboard

0.015
0.025
0.1
0.025
0.015

2.1936

Internal Partition to
Hall

Plasterboard
Insulation
Concrete Block
Insulation
Plasterboard

0.015
0.025
0.1
0.025
0.015

5.76

Partition to Under-
Floor Space

Plasterboard
Insulation
Concrete Block

0.015
0.025
0.1

3.328

146

Building Element Material Thickness (m) Area (m2)

South Wall

Door Solid Pine 0.035 1.509

Partition to Hall Plasterboard
Insulation
Concrete Block
Insulation
Plasterboard

0.015
0.025
0.1
0.025
0.015

0.32

Partition to Cupboard Plasterboard
Insulation
Concrete Block
Insulation
Plasterboard

0.015
0.025
0.1
0.025
0.015

5.04

Partition to Under-
Floor Space

Plasterboard
Insulation
Concrete Block

0.015
0.025
0.1

1.65

Exterior Wall Cement Finish
Concrete Block
Cavity
Insulation
Concrete Block
Plasterboard

0.015
0.1
0.05
0.075
0.1
0.015

2.175

Floor

Floor Oak Flooring
Underlay
Particleboard

0.015
0.005
0.018

26.325

Ceiling

Ceiling to Bedroom 1 Plasterboard
Insulation
Air Gap
Particleboard
Underlay
Carpet

0.015
0.1
0.1
0.018
0.005
0.008

16.15

Ceiling to Bedroom 2 Plasterboard
Insulation
Air Gap
Particleboard
Underlay
Carpet

0.015
0.1
0.1
0.018
0.005
0.008

9.72

The total volume of air in the room is 76.3795m3.

Experimental measurements of the room temperature, the temperature of surrounding

rooms and the exterior temperature were taken over the course of 16 hours using the same

portable data logging devices as in the previous experiment.

147

There are two radiators installed in the room – both double-panel, double-fin 900x600mm

heaters with a rated output of 2.06kW at a temperature difference of 60°C. In order to

record the approximate power output of these radiators for use in the model, thermocouples

were attached to the water inlet and outlet pipes and temperature data was logged each

second using an Agilent data acquisition unit.

Upon completion of the experimental phase of the study, a model of the room was created

in a similar manner to the previous experiment, modelling the surrounding rooms using the

“static room” component which uses the temperature data collected in the experiment. The

exterior temperature is modelled to follow the temperature data collected in the

experimental phase of this study. The heat output of the radiators in the room is simulated

using the Radiator component described in section 4.4.2, with the average of the measured

radiator inlet and outlet temperatures being used for the radiator water temperature in the

component. The full model of the room is illustrated in Appendix C.2.

Figure 5-9 below illustrates the simulated room temperature compared to the actual room

temperature measured in the experimental phase of the study. Figure 5-10 illustrates the

percentage error in the simulated temperature compared to the measured temperature over

the course of the simulation.

148

Figure 5-9: Comparison of measured and simulated room temperature in the

second case study.

Figure 5-10: Percentage error in simulated temperature in the second case study.

0

5

10

15

20

25

17:31:00 19:55:00 22:19:00 00:43:00 03:07:00 05:31:00 07:55:00 10:19:00

Te
m

p
e

ra
tu

re
 (°

C
)

Time

Measured Room Temperature (°C) Simulated Room Temperature (°C)

0

2

4

6

8

10

12

14

16

18

17:30:00 19:54:00 22:18:00 00:42:00 03:06:00 05:30:00 07:54:00 10:18:00

P
er

ce
n

ta
ge

 E
rr

o
r i

n
 S

im
u

la
te

d
 T

em
p

er
at

u
re

 (%
)

Time

149

The results in Figure 5-9 and Figure 5-10 show that there is a greater error in the simulated

values for this case study than in the first case study that did not involve room heating. The

maximum error encountered during the simulation was 16.2%, with an average error of 7.5%

- around double the error in the previous case study.

The larger error is related to an inaccuracy in the radiator model from section 4.4.2 that was

used in the simulations, along with errors introduced by the water temperature data that

was recorded from the home and used in the simulated radiator models. The largest error

contribution was introduced by water temperature measurement used in the experimental

phase of the study. Water temperature measurements were taken using thermocouples

attached to the inlet and outlet pipes on the radiators. These measurements can provide an

accurate reflection of the water temperature in the radiator under steady-state conditions

when the heating system has been running for some time. However, they are not an accurate

representation of the water temperature in the radiator under the following conditions:

when the radiator is initially cold and water begins to flow in the heating system; when the

thermostatic valves close on the radiator and water stops flowing through the heater; and

when the heating system pump stops and water stops flowing.

The contribution of this error can be observed at both of the peaks in the simulated room

temperature in Figure 5-9. At the first peak, the measured water temperature from the

radiators has momentarily risen due to water flowing in the heating system. In the simulated

data this has caused the room temperature to momentarily heat up. However, in the

measured data, it can be observed that despite the water temperature in the heating system

rising, the system was not running long enough for the radiator’s water temperature to rise

to a level that caused the room to begin heating up significantly. At the second peak in the

simulated room temperature, the simulated room temperature is shown to rise more rapidly

than the measured temperature. Again, this can be attributed to the temperature in the

radiator inlet and outlet pipes rising and falling more rapidly than the overall temperature of

the water within the radiator and hence the simulation failing to accurately reflect the time

taken for the radiator to heat up and the time taken for the radiator to cool down once the

heating system is switched off (or the thermostatic valve closes).

150

Despite the error introduced by the inaccuracies in the modelling of radiators in this

particular model, it can be observed that the general trend of the simulated and measured

temperatures shown in Figure 5-9 is correlated and that improvement of the radiator

modelling would enhance the accuracy of the results obtained.

5.5. Experimental Validation Study – Electrical Circuit

A short validation study was carried out on the electrical modelling capabilities of the

package. The two main objectives of this validation study were to verify the accuracy of the

representative models of household electrical appliances that were described in section 4.1.5

and to verify the accuracy of a simulated electrical circuit involving a collection of household

appliances.

A set of household appliances – an LCD TV, a BT Vision Set-Top Box and a lamp with a CFL

bulb – were connected to the domestic mains supply through a power analyser unit

(described in Appendix D). The power analyser unit provided measurements of current,

power, power factor and phase angle for each connected appliance. A measurement of the

mains voltage was provided in addition to overall readings for the power and power factor of

all of the connected appliances combined. The power analyser was connected to a laptop

computer which logged measurements at one second intervals between 17:52 and 22:28 of a

typical evening’s usage of the appliances. As a supplement to this automated logging of the

physical measurements, a diary was kept of the times that the television was in the “On” and

“Standby” modes for use in the simulation of the system.

A simulation model equivalent to the experimental setup was developed, a schematic

diagram of which is provided in Appendix C.3. The times logged in the TV use diary were set

in a scheduler component within the model so that the modelled system matched the

behaviour of the real system. Additionally, the results obtained during the physical

measurement phase of the validation experiment were imported into the software package

so that they could be displayed with the simulated results inside the package for comparison.

151

Figure 5-11 illustrates the comparison of the measured power of the appliances with the

simulated values of each appliance’s measured power. Upon initial visual inspection of this

graph, it appears that the modelling package has produced results that model the real

behaviour of the appliances with acceptable accuracy. However, upon analysis of the errors

within the measured power values, it became apparent that the BT Vision Box and TV had an

average error of 9.8% and 9.2% respectively in the simulated value when compared to the

measured value. The electric lamp had a lower error at only 2%. The error in these values

was attributed to the fact that each appliance was modelled as a constant impedance, rather

than an impedance which dynamically varied. Such a model has shown to be acceptable for

the electric lamp – a relatively simple appliance in which the power consumption rarely

varies. However, the BT Vision Box and TV are more complex appliances in which the power

consumption dynamically varies throughout their use to a larger extent and therefore the

lumped impedance model provides a poorer fit to the dynamic behaviour of the appliance.

Figure 5-11: Comparison of physical measurements of domestic appliance power

consumption with simulated power consumption.

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000 14000 16000

P
o

w
e

r (
W

)

Time (s)

BT Vision Power - Measured (W) TV Power - Measured (W)

Lamp Power - Measured (W) BT Vision Power - Simulated (W)

TV Power - Simulated (W) Lamp Power - Simulated (W)

152

In addition to comparing the individual appliance power consumption, a comparison was also

carried out between the total measured power of the electrical circuit formed by the three

appliances compared to the simulated value of overall power consumption. Again, upon

visual inspection of Figure 5-12, the simulated and measured power consumption appears to

be well correlated. After an analysis of the error in the values, the average error between the

simulated and measured value of total power consumption was 4.16%. It can be concluded

from this result that while constant impedance models of domestic appliances may be less

desirable for certain types of appliance, the larger errors observed when examining a home

model in detail become less significant when considering the power consumption of the

home as a whole.

Figure 5-12: Comparison between the simulated and measured values of the total

power consumption of all appliances.

The simulated and measured values of the difference in phase angle between voltage and

current for each appliance were also compared in this validation experiment. The simulation

of these values was considered more successful than the total power consumption as

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000 16000

P
o

w
e

r (
W

)

Time (s)

Total Power - Measured (W) Total Power - Simulated (W)

153

average error in phase angle for the BT Vision Box, TV and Lamp were 1.78%, 0.5% and 5%

respectively. These lower errors were attributed to the fact that although the power

consumption of each appliance varied during its operation unlike the constant power model

used in the simulations, the phase angle of each appliance remained relatively constant

throughout the operation.

Dynamic variation in the power consumption of devices that is not accurately reflected in the

simulation models has already been described as one source of error in this validation

experiment. However, for completeness it is important to consider the other sources of error

in the experiment. The experimental apparatus used to obtain the physical measurements

for this comparison consisted of a custom-made power analyser unit which used a

microcontroller in conjunction with off-the-shelf sensors to obtain voltage, current and phase

angle measurements and used these measurements to calculate power and power factor.

Taking into account the quoted errors of the sensor and amplifier components used in the

system, along with the quantisation error in the microcontroller’s ADC, the error in this unit

is estimated to be no more than 7%. Electrical noise should also be considered as a potential

source of error in the measurements when using this apparatus: the unit lacks the shielding

provided in professional-grade measurement equipment.

The RMS voltage of the electrical grid connection used in the simulation model is a source of

error for the comparison. The simulated voltage was fixed at 233 – the average value of the

measured voltage. The actual measured voltage fluctuated between 231V and 240V

throughout the experiment. The average error in the simulated voltage compared to the

measured value was 1.4%.

5.6. Summary of Testing and Validation

Three validation experiments that were carried out on the simulation package have been

presented in this chapter. These experiments have shown good agreement between the

simulated results and the actual measured values with varying but small absolute errors.

154

In the first experiment – the analysis of the thermal properties of a room with no forced

heating or cooling system – the simulated results were shown to agree well with the

experimental values. In the first comparison, the average error in the simulated results was

1.8% with a maximum error of 3.7%. However, in a second comparison during this

experiment, a weakness was found in the thermal modelling components’ lack of ability to

model heat gain due to solar irradiation. This produced a transient error of 17.2% in the

simulated temperature value during a brief period of intense sunlight through the window at

the front of the room. However, the average error during this experiment was still low at

1.8%. These results show that while there are some shortcomings in the implementation of

the surface and window models provided in the package, it provides a good representative

model of a room’s thermal properties.

In the second experiment – the analysis of the thermal properties of a room with forced

heating – the simulated results differ significantly from the measured room temperature

values. The average error in the simulated results was 7.5% with a maximum error of 16.2%.

However, the source of this error was identified as a problem with the collection of radiator

temperature data which resulted in the simulation under-estimating the time taken for water

to heat up and cool down within the radiator itself. If the periods when the radiators were in

operation are excluded from this study then the maximum error in the simulated

temperature falls to around 7%. This illustrates that an improvement of the modelling of the

radiators in the room would yield significantly improved rates of error in the simulation. The

incorporation of flow rate sensors in the experimental measurements would have also

contributed to a more accurate set of inputs to the validation model. However, in an existing

domestic system, these sensors cannot be easily fitted on a temporary basis and therefore

the inlet and outlet pipe temperature measurements were averaged as an approximation to

the water temperature within the radiator.

In the third experiment – the comparison of simulated domestic electrical appliances to

measured values from real appliances – a number of deficiencies in the electrical models

provided in the package were highlighted. The initial assumption was made during the

development of the electrical models that appliances have a constant power output

155

throughout their operation while experimental measurements of the appliances have shown

that this is not the case. This initial assumption resulted in average errors of nearly 10% in

some of the individual appliance measurements. However, when considering the total power

consumption of all appliances together the individual errors become less significant and an

average error of around 4% was achieved. In the appliances considered, phase angle was

shown to vary less than power consumption and therefore the constant impedance models

provided a maximum average error of 5% in an individual appliance’s phase angle. These

results illustrate that the simulation package provides good accuracy for the simulation of the

power consumption of a home as a whole, but further work would be required to refine

appliance models if a more detailed analysis of individual parts of a home’s electrical system

is to be undertaken.

The validation results presented in this chapter show that the new simulation package

provides good accuracy in its initial results, with a number of the comparisons yielding an

error of 5% or less. Areas for enhanced accuracy of the modelling elements included in the

package have also been identified. These initial results establish the necessary confidence

level that the package is able to provide sufficiently accurate results for the detailed

simulation studies which are presented in Chapter 6.

156

Chapter 6

Case Study

Chapters 3 - 5 describe the design, implementation and testing of a new software package

for the modelling of intelligent domestic energy control systems. The package provides the

benefit of allowing for the modelling of the existing heat and electrical energy systems within

a home and allowing for the prototyping of new smart energy control systems. This case

study illustrates one use case of the software – the modelling of an integrated smart home

control system.

6.1. Home Energy System Overview

Chapter 2 discussed how electricity networks are currently being upgraded to permit more

renewable methods of generation, including microgeneration devices in domestic and

business premises.

One of the associated problems with the increased deployment of renewable generators

throughout electricity networks is the fluctuating output provided by wind or solar

generators. These generators may produce surplus electricity when it is not required by end-

users and conversely may also not produce enough electricity at the peak times when it is

most needed. Demand side management and energy storage were identified as two methods

which could be used at the domestic level in order to allow consumption to more closely

match generation.

The software system presented in this case study combines a number of elements of

research work carried out during this project, most notably the development of a maximum

power point tracking algorithm for small-scale photovoltaic systems [2] and the adaption of a

smaller case study involving controllable loads and critical-peak-pricing tariffs [1]. The

157

system, illustrated in Figure 6-1, includes a roof-mounted photovoltaic panel, a battery

storage system and a hot water storage system.

The photovoltaic system uses a new maximum power point tracking algorithm developed to

maximise the power output of the PV panel. The battery can be used to store energy from

either the microgeneration system or directly from the grid. An electric water heater

provides a thermal energy storage option for the system whereby water can be heated

during off-peak times and used when required within the home. All other uncontrollable

electrical load within the home is modelled as a time-varying lumped load component. The

smart domestic energy controller within the system is capable of reading the energy

consumption data from the smart meter and using these data to issue control actions to the

in-home appliances.

Figure 6-1: Domestic energy system modelled in this case study. Solid lines

indicate electrical connections while dashed lines indicate communication links.

Solar Panel

Battery

MPPT

Controller

Uncontrollable

Load

Water Heater

Smart MeterGrid Supply

Domestic

Energy

Controller

Battery

Controller

158

6.2. Maximum Power Point Tracking

6.2.1. Background

In section 4.1.2, the implementation of a generic solar panel model for use in simulations was

described. In the discussion of this model, the non-linear relationship between voltage and

current in a solar panel (64) was described. An example of the current-voltage relationship

for varying solar irradiation levels is shown in Figure 6-2. On this illustration, the point on

each curve that yields the maximum power output from the solar panel is indicated. This

point is known as the maximum power point.

 (64)

Figure 6-2: Illustration of the current-voltage relationship of a solar panel for

varying solar irradiation levels. Maximum power points are indicated on each

curve.

In order to obtain the maximum power output from a solar panel, the load resistance RLOAD

(Ω) has to be carefully chosen to match the case described in (65) where VMPPT (V) and IMPPT

(A) are the respective voltage and current at the solar panel’s maximum power point.

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
I/V Curve for Solar Cell, Varying Light Level from 100W/m2 to 1000W/m2. T=25oC

V (V)

I
(A

)

100W/m2

200W/m2

300W/m2

400W/m2

500W/m2

600W/m2

700W/m2

800W/m2

900W/m2

1000W/m2

159

 (65)

In reality, a solar panel connected directly to the electrical load that it is supplying is unlikely

to yield its maximum power output. In order to address this issue, power converters with

maximum power point tracking systems are commonly used to interface photovoltaic

generation systems to the electrical grid. These algorithms use switched mode power

supplies to constantly vary the load on the solar panel in an attempt to yield more power

from the panel – in effect matching the output impedance of the panel to the input

impedance presented by the converter and thereby satisfying the maximum power transfer

theorem requirement for matched source and load impedance.

Two broad classes of maximum power point tracking algorithm are available: model-based

approaches, and perturbation and observation approaches. Model-based approaches use the

model of the solar cell from (64) to accurately calculate and set the maximum power point. A

model-based approach is presented in [20] which uses manufacturer-supplied data in

addition to measurements of the solar irradiation and cell temperature to calculate the

maximum power point. Model-based approaches offer the benefit of being able to very

accurately track the maximum power point regardless of how quickly irradiation changes but

are highly dependent on the particular solar panel in use and require extra hardware to

measure irradiation and temperature.

Perturbation and observation based algorithms provide a more generic approach to

maximum power point tracking and rely only on measured voltage and current as inputs to

the algorithm. The most basic form of perturbation and observation algorithm operates by

making an adjustment to the operating voltage of a photovoltaic system9 and observing

whether this yields an increase or decrease in the power output of the system. If a decrease

is observed, the algorithm adjusts the voltage in the opposite direction. If an increase is

observed, then the algorithm continues to make voltage adjustments in the same direction.

The overall effect of the algorithm is that the output power of the panel converges to close

to the maximum power point and oscillates around the maximum point when it is found.

9 In practice, changes to the operating voltage of a photovoltaic system are made by adjusting the load on the solar panel
through the use of an electronically-controlled switched mode power supply.

160

The hardware required to implement this type of algorithm consists of voltage and current

transducers, a switched mode power supply to vary the load on the panel and an electronic

control system such as a PLC, FPGA or microcontroller on which to implement the algorithm.

Optimisations such as varying the perturbation size [24] or varying the sampling speed [25]

are trivial to implement, requiring only a software change on the control system.

The Incremental Conductance algorithm [23] is an improvement on the basic perturbation

and observation algorithm and reduces power losses due to oscillation around the maximum

power point and tracking in the wrong direction during rapid changes in atmospheric

conditions. These improvements stem from the use of a technique which controls the

perturbation direction based on the photovoltaic system’s power-voltage curve.

The maximum power point represents a peak in the power-voltage curve of a solar panel,

hence at this point dP/dV = 0. At any point on the curve to the left of the maximum, dP/dV

> 0. To the right of the maximum, dP/dV < 0. Determining the sign of the slope represented

by dP/dV allows a decision to be made on how to adjust the voltage. The voltage should be

increased if dP/dV > 0 and decreased if dP/dV < 0, to move closer to the maximum power

point. If dP/dV = 0 then no change is required: the photovoltaic system is operating at its

maximum power point.

In order to compute dP/dV using only voltage and current measurements, equation (66) can

be used [23]. Voltage and current measurements can be taken directly from transducers

while approximations for dV and dI can be made using (67) and (68) respectively. VN and IN

are the voltage and current readings taken during an iteration of the algorithm and VB and IB

are the voltage and current readings taken on the previous iteration of the algorithm.

 (66)

 (67)

 (68)

161

The addition of the curve-tracking technique ensures that the maximum power point is

tracked correctly, even under rapidly changing atmospheric conditions. Additionally, by

performing no voltage adjustments when the maximum power point is reached, losses

caused by oscillating around the maximum are eliminated. The hardware requirements of

this algorithm are the same as those of the basic perturbation and observation algorithm and

this makes it an attractive replacement. Results from the literature ([23], [132]) have shown

that this algorithm provides significant improvements in power yield over the basic

perturbation and observation algorithm.

6.2.2. Newly Developed Algorithm

While the Incremental Conductance algorithm addresses some of the shortcomings of basic

perturbation and observation algorithms, a particular situation in which it continues to offer

reduced efficiency is in its tracking stage when the operating point is moving between two

significantly different maximum power points (e.g. during partial cloud cover). Perturbation

and observation algorithms, including the incremental conductance algorithm are limited in

their tracking speed as a consequence of the fixed-size adjustments to the operating voltage

on each iteration. This limitation provided the motivation for the development of a new

algorithm to improve the tracking speed of perturbation and observation based algorithms.

6.2.2.1. Description of the New Algorithm

To introduce this new algorithm, consider the current-voltage plot shown in Figure 6-3. This

plot provides a hypothetical example of different situations in which a perturbation and

observation algorithm has been used to determine the maximum power point of a system.

The graph illustrates the sets of current-voltage points that were recorded when the

algorithm tracked from one maximum power point to another and the maximum power

point on each occasion. The benefit that the new algorithm aims to introduce is to quickly

find the maximum power point for an unknown curve for which a single data value has been

recorded.

162

Figure 6-3: Sample illustration showing points collected during different runs of a

perturbation and observation algorithm and the maximum power point on each

occasion (indicated in bold).

To find the new maximum power point for the system after a large change in measured

output, a K-Nearest-Neighbours classifier [133] can be used to find the nearest recorded data

points to the presently measured current-voltage point U. In the example in Figure 6-3,

taking K=3, the nearest neighbours to U are two points belonging to curve 3 and a single

point belonging to curve 2. At this stage it is assumed that U lies on curve 3 and the

operating voltage for the panel is set to the maximum power point voltage for curve 3. A

simple perturbation and observation phase is then carried out to refine the estimate of the

maximum power point until the algorithm begins to oscillate around the maximum power

point. At this stage the solar panel output voltage is held constant and all of the current-

voltage points recorded during the perturbation and observation stage are stored.

Once the perturbation and observation stage is complete, the maximum power point is

compared to the maximum power points of previously stored curves. If the maximum power

point does not lie within a tolerance value ±ΔP of any other maximum power point, a new

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V (V)

I (A)

U

Curve 1
Curve 2
Curve 3

163

curve is defined and all of the recorded data points, the maximum power point and the

maximum power point voltage are stored and associated with that curve. If the maximum

power point does lie within ±ΔP of another curve’s maximum power point then all of the

data points recorded during the tracking phase are associated with the existing curve.

Once the new maximum power point has been found, and the associated information

recorded, the algorithm enters a waiting state where the power output of the solar panel is

monitored until it changes by more than a specified value PDRIFT. Under this circumstance,

the classification and tracking process begins again. A full formal definition of the algorithm is

provided in the activity diagram in Figure 6-4.

Figure 6-4: Activity diagram of the newly-developed learning maximum power

point tracking algorithm.

State = PO_TRACK

Pp = 0

MPP = 0

Direction = FORWARD

Count = 0

Read I,V

P=I*V

State?

(I*V)<Pp

Direction?

Count = MAX_OSC?

(I*V) within ΔP

of another curve's

MPP?

I*V within

±PDRIFT of

MPP?

V=V+ΔV V=V-ΔV

Store I,V

Change Direction

Count = Count + 1

Pp = I*V

State = STORE_CURVE

Associate stored

points with

existing curve

Define new curve

and store points,

P and V with it

MPP = I*V

State = WATCH

State = KNN_TRACK

Find K nearest points

to (I,V)

Find most common

curve within nearest

points

V=VMPP for selected

curve

State = PO_TRACK

FORWARD REVERSE

YES NO

YES

NO

YES NO

YES

NO

PO_TRACK STORE_CURVE WATCH KNN_TRACK

164

6.2.2.2. Algorithm Comparison

In order to assess the effectiveness of the new algorithm, both simulation and experimental

comparisons were carried out between the basic perturbation and observation algorithm,

the incremental conductance algorithm and the new learning algorithm. Full details of the

methods used to perform the comparisons are provided in Appendix E. The results of these

comparisons are presented in Table 6-1.

The simulation results indicate that the new algorithm provides a higher average power

output than the existing algorithms under both slowly and rapidly changing atmospheric

conditions. However, the experimental comparison indicates that the Incremental

Conductance algorithm provides slightly better performance under slowly changing

conditions. The new algorithm is shown to provide an improvement on average power

output of 7% under rapidly changing conditions. The poorer performance of the new

algorithm under experimental conditions was attributed to the presence of noise in the

measurements which was not modelled in the simulation. This noise causes the algorithm to

oscillate at certain points during the tracking process and is wrongly interpreted as indicating

the presence of the maximum power point.

Table 6-1: Results of simulation and experimental comparisons of maximum

power point tracking algorithms under slowly and rapidly changing atmospheric

conditions.

Algorithm

Average Power Output (W)10

Simulation Comparison Experimental Comparison

Slowly Changing
Conditions

Rapidly Changing
Conditions

Slowly Changing
Conditions

Rapidly Changing
Conditions

Perturbation and
Observation

50.0878 53.3551 1.8206 2.4781

Incremental
Conductance

50.0890 53.3736 1.8214 2.5246

Learning
Algorithm

40.4403 53.9427 1.7875 2.7231

10 The large difference in simulated and experimental power outputs is attributed to the fact that in the simulation, the solar
panel was subjected to levels of solar irradiation that could not be repeated in an experimental setup.

165

The best illustration of the improved tracking performance offered by the new algorithm is

its ability to rapidly track to a previously discovered maximum power point. Figure 6-5 and

Figure 6-6 illustrate the performance of the Incremental Conductance and the Learning

algorithms when compared under experimental conditions using the same solar irradiation

pattern. It can be observed from the second graph that the new algorithm behaves similarly

to the Incremental Conductance method on the first attempt at obtaining the maximum

power point. This is due to no prior knowledge of the system. Upon subsequent occurrences

of the same maximum power point, the new algorithm reaches the maximum power point

almost instantly. In comparison, the incremental conductance method takes the same

amount of time as the initial tracking on each occasion.

Figure 6-5: Power output of a solar panel under experimental conditions when

using the Incremental Conductance maximum power point tracking algorithm.

The dotted line indicates the approximate maximum power point of the panel

under fully-illuminated experimental conditions.

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Time (ms)

P
o

w
e
r

(W
)

Power(W) Approximate MPP (W)

166

Figure 6-6: Power output of a solar panel under experimental conditions when

using the Learning based maximum power point tracking algorithm. The dotted

line indicates the approximate maximum power point of the panel under fully-

illuminated experimental conditions.

6.2.3. MPPT Controller

The “MPPT Controller” component that is shown in Figure 6-1 (page 132) is responsible for

implementing the learning-based maximum power point tracking algorithm described in

section 6.2.2 to extract the maximum available energy from the roof-mounted solar panel.

The logical block within the system model that implements this controller runs the new

maximum power point tracking algorithm to constantly extract power from the solar panel.

The controller modifies the voltage on its output pin so that the power flowing to the home

electricity network is equal to the power extracted from the solar panel multiplied by an

efficiency percentage to model the losses in the power electronics of such a controller.

Minimum and maximum voltage constraints are provided within the controller. The

maximum voltage limit is applied when the photovoltaic panel is generating more power

than can be consumed by the home energy network, storage systems or through grid export.

0

1

2

3

4

5

6

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Power(W) Estimated MPP (W)

167

In this case, excess power generated by the photovoltaic panel will be unused within the

system. The minimum voltage constraint relates to a scenario when no grid connection or

battery storage is available and the controller is solely responsible for supplying electricity to

the home. If the energy consumption in the home is sufficient to reduce the controller’s

output to the minimum voltage level then the controller’s output will simulate the tripping of

an overload protection device and disconnect the energy supply.

In this study, an 80W solar panel model was used, in conjunction with a typical Scottish solar

irradiation pattern for the month of March [131].

6.2.4. Battery Controller

The “Battery Controller” component shown in Figure 6-1 is responsible for managing

charging and discharging of the battery storage system. The controller accepts set-points for

operation between -100% and 100% where a negative set-point indicates charging and a

positive set-point indicates discharging. The controller will use these set-points to charge or

discharge the battery at a percentage of its maximum charge or discharge rate. When

charging the battery, the controller will model a resistive load connected to the home energy

system and set the voltage at the battery terminal such that the power flow is equal to the

requested charging rate. Conversely, when discharging the battery the controller will model a

resistive load connected to the battery to discharge the battery at the requested rate and will

use the same method as the MPPT controller to inject power into the home energy network.

Output voltage constraints are used on this component in a similar manner to the MPPT

controller. However, under limiting conditions, the charge or discharge rate of the battery

reflects the limited power input or output at the connection to the home energy system. To

allow the controller to detect the battery’s state of charge, the minimum and maximum

open-circuit voltage for the battery are defined in configurable parameters. When these

values are reached, the controller will enter an idle state and cease to import from or export

to the home’s electricity network.

In this study a 1kWh battery system model is used with a maximum charge rate of 1kW and a

maximum discharge rate of 3kW.

168

6.3. Water Heater

The electric water heater component described in section 4.1.5.4 was used within this model

as the controllable thermal storage element. An additional capability was added to the

heater for use in the smart energy system. Instead of heating water based on a thermostat

setting, water is heated based on a percentage of input power setting. This means that when

sent a percentage set-point, the heating elements will operate at the given percentage of

their maximum power. To ensure that hot water comfort requirements are met, the power

setting will be overridden to operate at maximum power when the water temperature is

below a configured minimum value. Similarly, the heating elements will be switched off when

the water temperature reaches a configured maximum value. This mode of operation places

the focus on maximising the tank’s thermal energy storage capability. The heater was

configured as a 6kW immersion heater in a 120 litre storage tank with a maximum tank

temperature of 90°C, minimum tank temperature of 55°C and a loss of 0.9kWh/24h.

The results of an Energy Saving Trust study into domestic hot water usage [134] were used as

a basis for creating hot water usage patterns. Figure 6-7 illustrates the total hourly

consumption of hot water as recorded for a typical home in their survey. To provide a simple

representative consumption of hot water for the simulated home model, the total hourly

consumption in litres for each hour was divided by 60 to provide a constant consumption

rate in litres per minute for that hour which matched the total water consumption for the

hour.

169

Figure 6-7: Consumption of hot water per hour as recorded in a typical home

within the Energy Saving Trust hot water survey.

6.4. Domestic Load Model

In order to simplify the model for this case study, the domestic electricity load not under the

control of the energy management system was modelled as a single time-varying lumped

load, rather than as a set of individually scheduled appliances. To ensure that the simulated

load was representative of the actual load in a typical UK dwelling, the model proposed by

Richardson et al [135] was used to generate a 24-hour load profile with a one-minute

resolution. The probability-based model used to generate this profile uses three steps:

simulation of building occupancy based on maximum occupancy and time of day; assignment

of appliances to the building; and modelling of appliance energy use dependent on building

occupancy and probability of appliance use. Lighting load within the building is calculated

based on a seasonal lighting model developed by the same authors [136].

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

H
o

t
W

at
e

r
C

o
n

su
m

p
ti

o
n

 (
li

tr
e

s)

Hour of Day (From Midnight)

170

Figure 6-8: Simulated electrical power demand for the home.

The inputs to the model were set up to model a home with four occupants, with the seasonal

profile initialised for the month of March. During the appliance assignment phase of the

profile generation, the initial assignment made by the algorithm was taken as a starting

point, but was modified to ensure that there were no electric space heating or water heating

appliances assigned to the home before generating the profile. The resulting profile that was

generated by the model is shown in Figure 6-8.

6.5. Metering System and Control Algorithm

The smart metering component described in section 4.1.4.5 was used to measure the energy

import or export between the home and utility grid network. This meter supports the ability

for the control system within the home to request the real-time power flow to or from the

home using the meter’s communications link.

The main in-home energy control system is capable of working in conjunction with the smart

meter in a load-levelling mode. When operating in this mode, the system uses a single output

to control the behaviour of appliances within the home. This control parameter, known as

the energy controller set-point (SPEC) has a range of -100% to 100%. A set-point of 0% to any

device indicates that the device should operate normally. A negative set-point indicates that

the device should export energy, with -100% indicating the maximum energy export that is

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

00:00 04:48 09:36 14:24 19:12 00:00

P
o

w
e

r
D

e
m

an
d

 (
W

)

Time

171

possible from the device. A positive set-point indicates that the device should consume and

store energy where possible, with 100% indicating that the device should consume energy at

its maximum rate.

The battery controller supports receiving set-points directly in the range -100% to 100%,

however, the water heater is only capable of responding to a set-point in the range 0% to

100% as it has no electricity export capability. An Intermediate communications component

has therefore been included to convert set-points in the range-100% to 100% to a set-point

in the correct range. The logic within the intermediate component converts any set-points

between -100% and 0% to 0%.

A simple control algorithm is used to determine the set-point that should be issued to each

controllable appliance in order to achieve the required control action. The controller uses a

one-minute time-slot based average demand profile for the home for that particular day of

the week. The average demand over the whole day is then calculated for use as a target

constant load profile for the home. If the home energy use is less than the target average

demand level, SPEC is increased and if greater, SPEC is decreased.

6.6. Simulation Results

6.6.1. Baseline Case

To provide an initial baseline for comparison of the different control inputs for the domestic

energy controller, a 24-hour simulation of the home’s electricity use was carried out with the

controller set to perform no control operations. In this case, the water heater operates by

following a fixed thermostat setting. The photovoltaic generation system is allowed to run

normally but the battery storage system is not used. After reviewing a selection of tariffs

offered by UK energy providers, the metering rate for the electricity was set to 22p/kWh and

the PV feed-in rate to 39p/kWh. Figure 6-9 illustrates the load profile for the home in terms

of power imported from the utility supplier. The net energy imported from the distribution

network was 26.82kWh at a net cost of £5.90.

172

Figure 6-9: Load profile of the home over 24 hours with no thermal or electrical

storage.

6.6.2. Load Balance

The next stage of this comparison involves adding some intelligent control to the home

energy system by enabling the smart energy controller. The aim of this control strategy is to

attempt to smooth the domestic load profile over the course of a day using the local storage

capability. The results from the baseline case were used as the reference daily profile for the

home from which to calculate average daily load for the home. Again, a fixed electricity tariff

was used with the same energy prices as in the previous simulation.

Figure 6-10 illustrates the smoothed load profile for the home in terms of power imported

from the supplier using only the hot water storage system. The net energy imported from the

distribution network was 28.66kWh at a net cost of £6.30. The difference in the heating

pattern used by the controller when the control system is enabled, compared to water

heating without the control system is illustrated in Figure 6-11 and Figure 6-12.

0

1000

2000

3000

4000

5000

6000

7000

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 00:00:00

P
o

w
e

r I
m

p
o

rt
 f

ro
m

 G
ri

d
 (

W
)

Time

173

Figure 6-10: Load profile of the home over 24 hours with only the thermal storage

system enabled.

Figure 6-11: Water heater temperature over 24 hours without control system

enabled.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00

P
o

w
e

r I
m

p
o

rt
 F

ro
m

 G
ri

d
 (

W
)

Time

0

10

20

30

40

50

60

70

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00

Te
m

p
e

ra
tu

re
 (°

C
)

Time

174

Figure 6-12:Water heater temperature over 24 hours with control system enabled.

Figure 6-13 illustrates the smoothed load profile for the home in terms of power imported

from the supplier using only the battery storage system. The net energy imported from the

distribution network was 22.51kWh at a net cost of £4.95.

Figure 6-14 illustrates the smoothed load profile for the home in terms of power imported

from the supplier using both the hot water and battery storage systems. The net energy

imported from the distribution network was 26.84kWh at a net cost of £5.90. Table 6-2

summarises the simulation results for the four control strategies.

Table 6-2: Summary of the results obtained by different domestic energy

controller strategies.

Case Study Net Energy Import from
Distribution Network (kWh)

Net Energy Cost (£)

Baseline (No Control) 26.82 5.90

Thermal Storage Only 28.66 6.30

Battery Storage Only 22.51 4.95

Thermal and Battery Storage 26.84 5.90

0

10

20

30

40

50

60

70

80

90

100

00:00:00 04:48:00 09:36:00 14:24:00 19:12:00 00:00:00

Te
m

p
e

ra
tu

re
 (°

C
)

Time

175

Figure 6-13: Graph illustrating power imported from the grid when only the

battery storage system is enabled.

Figure 6-14: Graph illustrating power imported from the grid when both the

battery and hot water storage systems are used.

-2000

-1000

0

1000

2000

3000

4000

5000

6000

04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 00:00:00

P
o

w
er

 Im
p

o
rt

 f
ro

m
 G

ri
d

 (
W

)

Time

-1000

-500

0

500

1000

1500

2000

2500

3000

3500

4000

00:00:00 04:00:00 08:00:00 12:00:00 16:00:00 20:00:00 00:00:00

P
o

w
er

 Im
p

o
rt

 f
ro

m
 G

ri
d

 (
W

)

Time

176

6.7. Summary of Results

The baseline case illustrates a constant variation in power output throughout the day, with

regular 3kW peaks due to the charging of the water cylinder. The baseline load from the

home shows obvious peaks around 8AM and in the evening period from around 4PM.

Adding the control algorithm to the water heater only reduces the average load in the earlier

part of the day by using a constant trickle charge rather than a large instantaneous charge in

the water heater. The exceptions to this are periods around 7AM and 3PM when the water in

the tank has been heated to its maximum temperature, as illustrated in Figure 6-12. A

disadvantage of the control strategy used in this case is that the total daily power

consumption has actually increased by around 2kWh because more energy has been stored

in the water tank. This is because the control algorithm has only taken into account

instantaneous power consumption and not the total energy requirement over the whole day.

If the total hot water energy requirement was taken into account, this would prevent over-

charging of the water tank.

As shown in Figure 6-13, using only the battery storage system with the control algorithm is

less effective than the water cylinder for smoothing the power consumption in the earlier

part of the day. This is due in part to the lower capacity of the battery system in comparison

to the water storage system and also due to the battery being discharged to balance out the

3kW peaks introduced by running the water cylinder in its normal thermostat-based

operation mode. However, the cost of electricity when using this system is lower, both due

to the battery being 50% charged at the start of the simulation and also due to the higher

feed-in tariff being used for electricity exported back to the grid for short periods.

The final scenario considered which uses both storage systems provides the best results for

smoothing the load profile over the earlier part of the day. This is due to the battery charging

sharing the power consumption with the water heater and therefore reducing the effect of

the water heater being fully charged at 7AM and 3PM that was experienced previously.

However, there is little effect on the evening peak load. The lack of any reduction in the peak

177

load is due to the battery quickly discharging within 20 minutes due to its low 1kWh total

capacity.

The results obtained in this case study illustrate that smaller generation and storage systems

have the ability to significantly alter the load shape of a home across a 24 hour period, which

makes demand side management a useful tool for matching electricity load to grid demand.

However, it has also been shown that if the control algorithm does not take into account the

total energy requirements of the home then it is possible to increase the daily energy

consumption using such systems, resulting in a negative financial impact on the home. It was

also shown that a daily averaging profile like that used here has done little to reduce the

evening peak consumption and therefore it may have been more beneficial to schedule

charging of the storage to coincide with the time prior to the peak period.

178

Chapter 7

Conclusions

7.1. Chapter Summary

In Chapter 2, the background to this research project was described. In particular, the

process that is currently being carried out in the UK to transition from a fossil-fuel based

energy system to a system that is more dependent on renewable and sustainable energy

sources was described. With these changes come new challenges based around the fact that

renewable sources of energy generation may not always be available at the same time as the

demand for energy. While there are larger-scale methods of addressing some of these

problems, the focus of the work in this thesis was to look at ways in which the energy

systems in individual homes could contribute to the storage or demand management

requirements of the grid as a whole. Smart metering, microgeneration and local electrical

and thermal storage were identified as possible technologies which could assist in offsetting

the effect of increased penetration of renewable generation which does not coincide with

demand. The second half of Chapter 2 describes different building energy simulation

packages that could be used to model “smart micro-grids” within homes, taking into account

the modelling of the electrical, thermal, communication and software control aspects of

these packages. This summary provided the foundation for the development of a new

package which better suited the requirements for the modelling of domestic smart grid

systems.

Chapter 3 describes the design of the new domestic smart grid modelling package that was

developed as the main part of the work for this thesis. The final design that was selected for

the package models systems using block-based components representing different elements

of a building’s energy system that are connected to other components through one or more

pins on each component. Central to the design of the package is the support for multiple

179

physical modelling domains within each component. The domains currently supported are AC

and DC electrical connections, one-dimensional heat transfer connections and byte-

orientated communication connections. An asynchronous messaging system that does not

rely on explicit connections between components is also provided to model external events

such as user interaction with appliances in the home. The package itself simply provides the

framework for defining components, creating models using these components and running

simulations on the developed models. As well as allowing interactions between multiple

physical domains to be modelled in a single component, one of the major benefits of the

package is its ability to describe complex component behaviour or software control strategies

through the use of full programming language support. Simple components can be

implemented in a mathematical scripting language, but support for full C# and Visual Basic

language use is also provided to implement complex components. Behaviour within each

component can also be controlled by providing configurable parameters which can be

changed at model design time, eliminating the need to modify components’ source code for

the design of each different system model.

In Chapter 4, the development of a number of component models for use in the package was

described. Ideal voltage sources as well as a detailed solar panel model were developed to

allow for the simulation of grid-based generation and local microgeneration from solar

panels. A set of wire and switch components was developed to automate electrical

connections and to model the losses in the connections. A smart meter component was also

developed to represent the two-way communication interface with the utility supplier which

could be expected in the future. A number of different household electrical loads were

modelled with the majority of the models based on the characterisation of real appliances.

The library of building elements developed for the package includes a room component and

a surface component that can be used to model walls, floors, ceilings and roofs. Separate

components were developed to model the heat conduction through doors and windows.

Components were developed to model an electric water heater, electric space heater and

water-filled space heater. Another component simulates the heat loss from a room due to

natural ventilation.

180

Chapter 5 described the testing and validation processes that were carried out both during

and after the development of the package. Two forms of testing were carried out during the

development of the package and the component libraries. Automated unit testing using the

Microsoft Test Framework was used to test the package itself. This proved to be a very useful

form of testing as every time that a change was made to the software, the existing set of

tests could be re-run to ensure that the changes did not break any existing functionality. For

the testing of component libraries, as well as performing manual testing of the functionality

of components during development, an automated test program was used to run simulations

of pre-defined system models and verify that the results produced by the components were

as expected.

To validate the simulations carried out in the package against experimental data, three case

studies were carried out. The first involved assessing the ability of the package to model the

thermal properties of a room within a building with no forced heating or cooling systems in

operation. The results of this study showed that the package was able to accurately model

the thermal properties of a room, excluding the situation where direct sunlight caused a

fluctuation in the measured room temperature which was not accurately captured in the

simulations. This identified the need for improvement of the solar gain modelling capabilities

of the package.

The second validation study built upon the first study, adding a space heating system into the

simulation and validating against a room with two radiators operating from a gas-fired

central heating boiler. This study identified a problem with the implementation of the

radiator component within the package, which requires further work in order to more

accurately model heating systems. This problem was partially due to the model of the

radiator itself and also partially due to the way in which radiator temperature data was

collected in the experimental phase of the experiment and input into the simulation. A basic

linear model of a radiator was used, the inputs to which were the instantaneous temperature

of the water in the radiator and the nominal heat output of the radiator for a given

temperature difference between the water and the room. The temperature data collected

for the validation study was from the water inlet and outlet pipes only. Due to the

181

significantly smaller volume of water in these pipes when water is not flowing to the radiator,

the pipes cool significantly more quickly than the radiator itself. This resulted in erroneous

input data being collected for the validation study. A resolution to this problem would be

improve the radiator component to more fully model the physical properties of a radiator,

taking into account the flow rate of water through the radiator, and the rate of cooling of the

radiator once water has stopped flowing. The experimental measurements could be

improved to support a new model of this type by collecting flow rate data along with the

water temperature data.

The third validation study was based upon the simulation of electrical appliances within a

home. This study illustrated good correlation between the simulated and measured data but

identified a discrepancy in the results when the electrical power consumption of the

appliances varied dynamically. This discrepancy was due to the fact that all electrical

appliances used in the simulation were modelled as non-varying static loads when in fact the

appliances do have some variation in their power consumption when operating. The errors in

this validation experiment could be reduced by a more detailed characterisation of the

power consumption of each appliance. More detailed models would also require a more in-

depth model of the interactions between occupants of the home and their appliances.

Chapter 6 describes an example domestic smart energy system that was modelled using the

package. The purpose of this example system is to illustrate each of the different features of

the package being used to solve a real-life domestic smart grid problem. In the example

presented, a domestic energy system consisting of a photovoltaic microgeneration system, a

battery storage system and thermal storage in the form of a hot water tank was considered.

The home additionally had a load pattern representing the remainder of the home’s

uncontrollable electrical load. The aim of the study was to illustrate how the controllable

generation and storage devices could be used to control net domestic energy consumption

from the domestic supply.

The results from the study in Chapter 6 illustrate that while local microgeneration can slightly

reduce the instantaneous power requirements of a home when energy is available, thermal

and electrical energy storage systems are extremely effective in changing the shape of the

182

home’s daily load profile. Thermal energy storage systems can level out troughs in the load

profile while electrical energy storage systems have the additional capability of shaving peaks

in the load profile. However, the study also highlighted the potential negative effects of

automated domestic energy controllers where algorithms attempting to solve grid-level

constraints can adversely affect end-users. In this case, one of the control scenarios was

shown to increase users’ energy consumption through wasted thermal storage and hence

increase the cost of energy.

7.2. Novel Contributions of the Research

The smart domestic energy system simulation package, described in Chapter 3, provides the

unique features of: full object-orientated programming language support within each

component in a modelled system; modelling of data communication between components

within a system; and modelling of interaction between occupants of a home and their

appliances. These features are in addition to the modelling of electrical power flow and one-

dimensional heat transfer – features already commonly available in building energy

simulation packages. The object orientated programming language support with the platform

provides the flexibility for it to be easily extended to accommodate new physical domain

models, or enhancements to the existing models provided. This support also provides the

potential for interaction with other simulation tools.

The development of a new learning-based maximum power point tracking algorithm,

described in section 6.2.2 and a related conference paper, was another novel contribution of

the work presented in this thesis. The algorithm provides the ability to learn the

characteristics of a solar panel over time, allowing it to improve the tracking speed when

tracking in a previously-encountered operating region. The new algorithm, which was shown

to increase operating efficiency of a solar panel over a standard perturbation and

observation approach, has the advantage over model-based maximum power point tracking

approaches of not being prescribed to a particular type of solar panel. In the process of

developing this algorithm, a related algorithm was developed for obtaining the current-

voltage operating point of a solar panel when only the load and atmospheric conditions are

183

known. This algorithm, described in section 4.1.2 and a related journal paper, was used to

create a solar panel model within the new domestic energy simulation package in order to

perform studies on the new algorithm.

7.3. Future Work and Improvements

After some time spent reviewing the work from Chapter 2, it was concluded that the main

improvement that could be made to this chapter would be to expand the scope of the

literature search that was carried out. This would include other fields of research such as

building automation which are related to the work presented in this thesis.

The experience of using the package to carry out the work in the latter chapters of this thesis

identified a number of potential improvements to the design that is described in Chapter 3.

The decision to use a component-based modelling paradigm was taken to simplify the overall

implementation of the package. In hindsight, for the simulation of building fabric, a method

of modelling based on architectural design similar to the Google Sketch-up input used by the

EnergyPlus package would be preferable. When buildings are modelled using individual

components for each room, surface, door and window the component-based models soon

become very large. A future improvement to the design of the package would be to find

some way to allow for an architectural input of building characteristics while maintaining the

ability to have direct interaction between the electrical, thermal and communication

domains within a single component.

The decision to use an inferred ground path for electrical connections was taken so that each

electrical connection could be represented in the model as a single connection line, rather

than a pair of connections. Combined with the Thévenin equivalent models used for each

electrical pin, this allowed all electrical connections to be solved on a point to point basis

rather than a system-wide solution. In hindsight, a preferable design would be to move to a

system-wide solution of electrical systems as the point to point solution resulted in instability

in some models which prevented timely convergence to a solution. This resulted in the

necessity for a number of the components to have configurable convergence tolerances

within their source code. This type of configurable parameter should actually be

184

implemented within the simulation engine itself, rather than being the responsibility of

individual components.

The data communications simulation method used in the package is a primitive byte-

orientated data communications mechanism which does not model the lower physical layer

or the higher protocol layers of a full data communications system. A future improvement to

the package would be to include these layers, allowing the communication system to be fully

specified (for example, IP over 802.11g wireless). This would allow problems like interference

in the physical layer to be fully simulated.

Two key features that were initially not included in the design of the package were identified

later on in the project during the development of models within the package. The ability to

embed smaller system models within a larger model would be useful to allow a number of

individual rooms within a home to be modelled separately and then incorporated into a large

home model, with each room represented by a single component in the larger model. This

feature would allow the package to become more scalable by allowing for the re-use of

subsystems within larger models. Another feature that would be a useful addition to the

package is the ability to model the flow of both hot and cold water within a building. This

would allow for more detailed simulation of water heating systems and water use within a

building.

A number of potential improvements were identified in both the electrical and thermal

component libraries that were described in Chapter 4. The electrical component library

developed for the package could be improved by adding a greater range of generation

devices including micro-hydro, micro-wind and a combined heat and power system.

Additionally the modelling of some of the appliances could be improved to more accurately

model the dynamic variation in the power consumed by each appliance.

To improve the library of thermal modelling components, a more accurate radiator model

could be developed for the heating appliances, as the validation experiments carried out in

Chapter 5 determined that there was a relatively large error in the results produced by the

simulation of space heating. This would be carried out through both better characterisation

185

of real heating appliances and also through a more in-depth literature search to find existing

methods of modelling water-based space heaters. The modelling of the thermal properties of

a room within the package was found to be accurate when forced heating was not

considered, with the main area for improvement being the addition of solar gain through

windows doors and walls.

In order to improve the accuracy of the package, it is important that further validation

studies are carried out in addition to those described in Chapter 5. Two areas for significant

improvement in the validation process were identified. The first is that the electrical

validation experiments should use a larger electrical network within a home with a greater

range of appliances since the range of appliances tested in the one study carried out was

small. The second area for improvement was in the thermal validation studies. Both studies

that were carried out modelled a single room, using the measured temperatures from the

surrounding rooms as inputs to the simulation model. To more fully exercise the package, a

much larger study which involves modelling a whole building should ideally be carried out,

using only the outside temperature as an input to the model. This will more accurately assess

the package’s ability to model the heat flow between rooms in a building. Before such a

study could be carried out, more work would be required to accurately model heating

systems within the buildings and to add the ability to the package to model solar gain.

 The case study that was carried out in Chapter 6 used a very simple domestic control system

which relied on a perturbation and observation based control algorithm. The weaknesses in

the algorithm were illustrated by oscillations in the load profile when a fast response to

changing load was required. Further work to enhance the controller could introduce a

control strategy with error feedback such as a P-I (proportional-integral) controller.

Although this study illustrated smoothing of the domestic load over the course of a whole

day, the control technique could be enhanced through the addition of communication from

the utility supplier. This would allow the home energy controller to manage demand in

response to pricing events, for example through the use of the time-of-use (TOU) or critical

peak pricing (CPP) tariffs described in section 2.1.5. Integration with the energy supplier in

186

this way would allow storage to be charged prior to high-priced periods and then stored

energy could subsequently be fully utilised during these periods.

In addition to the control strategy itself, a number of potential improvements have been

identified for the model of the home used in the study to make it more representative of a

real home. The water consumption model currently used simulates water use at a constant

rate over a whole hour to make up the total hourly consumption for that hour. In reality,

water consumption will take place at a higher flow rate for shorter periods throughout the

hour and this may have a different effect on the thermal storage tank than that simulated. To

improve the water model, a stochastic model of water consumption based on known total

hourly consumption could be developed. Solar irradiation is also varied based on known

hourly values and a similar model could be developed to simulate faster changes in the

irradiation, for example due to cloud cover. Such a model would more fully exercise the

maximum power point tracking algorithm.

Finally, the solar panel model used in conjunction with the maximum power point tracking

algorithm was the same 80W solar panel model used throughout the project. An

enhancement to this study would be to characterise a larger solar panel (for example, 1-4kW,

typical of current domestic installations) for use with the maximum power point tracker.

187

Appendix A

Component Scripting API
This appendix illustrates the classes which make up the Scripting API provided within the

application that users can access from within the C# or VB.NET code that implements the

behaviour of components. As an entry point to the API, two properties, one of type

“Component” and one of type “Simulation” are accessible from inside the scope of a

component’s code. These objects provide access to all other aspects of the API.

188

189

Appendix B

Window Model Class Diagram

190

Appendix C

Case Study Simulation Models
C.1. Case Study 1 – Home 1, Dining Room

191

C.2. Case Study 2 – Home 2, Lounge

C.3. Case Study 3 – Electrical Validation Model

Date / Time Schedule

Imported Data

Imported Data

Electric Lamp

Power

BT Vis ion Box

POWER

TV

POWER

User Control

Electrical Grid

OUT

TV On/Off Schedule

Appliance Experimental Measurements

Total Power Experimental Measurements

192

Appendix D

Power Analyser Unit
This appendix describes a purpose-built power analyser unit that was built for use in the

electrical validation studies carried out in section Error! Reference source not found.. The

reason for designing a purpose-built analyser was that the validation experiments had a

requirement to measure the power consumption and power factor of domestic appliances

without any modification of the appliances or connections to the appliances. The

measurement system therefore had to be inserted in series with the connection to the mains

supply and hence a power analyser with standard 13A sockets was required.

Figure D-1: Purpose-built power analyser unit with three standard 13A sockets

and a 10A phase-controlled output.

D.1. System Overview

The power measurement system (Figure D-1) that was created is a self-contained unit mains-

powered unit that provides four independent outlets from which measurements can be

taken. One outlet is connected through a phase controller to permit the analysis of phase

193

controlled devices such as heating and lighting. Measurements can be taken from the system

in two ways: 1. BNC connectors on the unit provide analogue measurement of scaled

representations of the voltage and the current through each outlet. 2. A USB port enables

connection to a PC which, when used with the appropriate software, can provide frequency,

RMS voltage, RMS current, power and power factor readings for all outlets. Readings for all

channels can be provided once per second. Alternatively, a single channel can be sampled at

high speed. For a 50Hz mains waveform the maximum sampling rate is 15KHz with a

resolution of 10 bits. The former is useful for steady-state analysis of power consumption

while the latter is more useful for analysing transient behaviour of appliances. Figure D-2

illustrates the main components of the system.

Figure D-2: Block diagram illustrating the main components of the power analyser

system.

D.2. Voltage and Current Sensors

The voltage measurement in the unit is obtained using a 1.6VA 230V:9V toroidal transformer

connected directly to the mains input to the system. The output of this transformer is

connected through a potential divider to the signal conditioning circuit. This reduces the peak

supply voltage from ±370V to approximately ±10V and enables the system to measure

voltages up to 260V RMS. The transformer has a relatively poor regulation of 29%. However,

the load on the transformer is essentially constant over the range of input voltages the unit

will be used with and hence the poor regulation does not affect measurement accuracy.

Laboratory tests were performed to verify linearity over the range 200-260V RMS.

The use of a current transformer around the live connection to each outlet on the unit and

an additional current transformer on the live supply connection to the unit provides readings

of individual and total current consumed by the devices connected to the unit. AC104 current

transformers with a ratio of 1000:1 were used in conjunction with 240Ω burden resistors. A

primary RMS current of 13A, the maximum supported by the apparatus, provides a voltage

Voltage and

Current Sensors

Signal Conditioning

Circuit

Signal Processing

Circuit
PC Software

194

across the burden resistor of 9.1V peak. The potentials across the burden resistors are fed

into the signal conditioning circuit.

D.3. Signal Conditioning Circuit

A signal conditioning stage was implemented using six AD628 programmable gain differential

amplifiers – one for the voltage signal and for each of the five current signals. These

amplifiers were configured with a gain of 0.25 to reduce signals in the range ±10V to the

±2.5V range. An offset voltage of 2.5V was added so that the resulting output signal was in

the range 0-5V, centred around 2.5V, to correspond with the acceptable range of input

voltages to the analogue to digital converter used.

The signal conditioning circuit contains a frequency detection subsystem consisting of LM339

comparators which convert the processed sine waves into square waves, the rising edges of

which can be used to detect the frequency and phase of each waveform. Both the processed

voltage signals and frequency detection signals are fed from the signal conditioning circuit

into the processing circuit.

D.4. Signal Processing Circuit

The final stage of processing within the unit is to digitise the voltage and frequency signals

from the signal conditioning circuit and calculate the RMS voltage, the frequency, the RMS

current and phase angle for each outlet. The circuit, which is powered by a freescale S12C128

microcontroller, is also responsible for sending these values to the computer when requested

to by the software. As well as sending RMS data for all channels once per second, the circuit

is capable of streaming the raw voltage and current readings from a single channel to the PC.

D.5. PC Software

The accompanying PC software application for the power measurement unit, shown in Figure

D-3, displays the live readings of voltage, current, power, phase angle and power factor for

each channel on the unit. Additionally, the software also has the facility to request a finite

number of high-resolution samples for a particular channel and save these in spreadsheet

format.

195

Figure D-3: Illustration of the PC software developed to interface with the power

analyser unit.

196

D.6. Power Analyser Circuit Diagrams

D.6.1. Mains Wiring

197

D.6.2. Signal Conditioning Circuit

198

D.6.3. Signal Processing Circuit

199

Appendix E

MPPT Algorithm Comparison

Method
This appendix describes a system of hardware and software that was developed to allow for

both simulation and experimental comparison of different photovoltaic maximum power

point tracking algorithms. The purpose of this test system is to allow a standard test – for

example, a pattern of changing solar irradiation on a solar panels – to be repeated using

different maximum power point tracking algorithms. The system was designed to provide

support for both simulated solar panel models and physical connections to a solar panel.

E.1. Control Software

The central component of the MPPT algorithm comparison system is a control software

application, shown in Figure E-1.The application consists of three main components – the

simulated or connected solar panel, the control system and the maximum power point

tracking algorithm. The interface between the control system and solar panel is defined so

that the control system can set the voltage across the solar panel and the solar panel can

respond with the output current from the panel. The interface between the control system

and the maximum power point tracking algorithms is defined so that the control system can

report current, voltage and power readings for the solar panel to the MPPT algorithm and

the MPPT algorithm can provide voltage set-points to the control system to be used with the

solar panel. The interface definition also specifies that maximum power point tracking

algorithms must have defined iterations so that the control system can periodically perform

iterations of the algorithm to obtain new voltage set-points. An additional interface is

provided to support simulated solar panel models which allows the solar irradiation and cell

temperature values to be set in the solar panel model by the control system. The block

diagram in Figure E-2 illustrates the architecture of the control software.

200

Figure E-1: Maximum power point tracking algorithm comparison system – control

software user interface.

201

Figure E-2: Block diagram illustrating the architecture of the maximum power

point tracking comparison software.

E.2. Simulated Solar Panel

The simulated solar panel model uses the single diode solar cell model which is described in

detail in section 4.1.2. The model uses the voltage across the panel V (V) as well as the solar

irradiation S (W/m2) and cell temperature T (K) to evaluate the output current I (A) from the

cell. The input parameters are provided by the control software, either by being directly

entered by a user or through a pre-defined script. The properties of the modelled solar panel

are defined through the user interface.

E.3. In-Circuit Solar Panel

To allow the use of an in-circuit MPPT comparison, the Agilent N6700 electronic load was

used to provide a connection to a solar panel, along with a method to be able to control the

load on the panel in order to set the panel voltage. This was achieved through the use of the

load’s constant voltage mode, which utilises the voltage setting provided to the panel from

the control software. The controllable load has a built-in current measurement which can be

passed back to the control software. Using this hardware set-up allows both simulated and

in-circuit solar panels to be presented to the software through an identical interface.

Solar Panel
(Simulated or Physical

Connection)

Control

Software

V

I

MPPT

Algorithm

V,I,P

New V

S,T

(Simulated Panel Only)

Iteration()

202

E.4. Result Recording

The comparison software constantly displays voltage, current and power readings from

either the simulated or in-circuit solar panel. Additionally, when using a simulated solar panel

the maximum power point and corresponding MPP voltage can be displayed on traces along

with these readings.

A logging facility is also built into the control software to log periodic readings of voltage,

current and power to a spreadsheet file.

E.5. Maximum Power Point Tracking Algorithms

The software supports any iteration-based maximum power point tracking algorithm. New

algorithms are added by creating a DLL file that implements the required interfaces to report

the algorithm name, perform an iteration of the algorithm and to display a dialog to define

the algorithm settings. The control software searches for these DLL files in its program folder

upon start-up and loads any algorithms that are found into the list of available algorithms.

E.6. Control of Comparison Scenarios

Manual comparison of algorithms can be performed by selecting an algorithm in the user

interface and running it. Solar panel parameters can then be modified to observe the

algorithm’s response to changes in atmospheric conditions. However, to perform equal

comparisons of different algorithms in response to the same conditions, the software has a

basic scripting support built in. A text file of the format shown in Figure E-3 can be used to

run a MPPT algorithm, script changes in atmospheric conditions, perform with time delays

and record results when using a simulated solar panel.

203

#Run the MPPT algorithm – replace name for a different algorithm
RUN Perturbation and Observation

#Vary irradiation, adding 20s delay in between each change
SETIRRADIATION 985
DELAY 20
SETIRRADIATION 970
DELAY 20

#Stop Algorithm
RESET

Figure E-3: Script used for the comparison of maximum power point tracking

algorithms using a simulated solar panel.

When using an in-circuit solar panel, scripts cannot be used to set the atmospheric

conditions, however a script like the one shown in Figure E-4 can be use to perform the same

comparison of algorithms as the script in Figure E-3 by prompting the experiment’s operator

to vary the atmospheric conditions on the panel.

#Run the MPPT algorithm – replace name for a different algorithm
RUN Perturbation and Observation

#Vary irradiation, adding 20s delay in between each change
WAIT Modify illumination on panel for 985W/m2 illumination.
DELAY 20
WAIT Modify illumination on panel for 500W/m2 illumination.
DELAY 20

#Stop Algorithm
RESET

Figure E-4: Script used for the comparison of maximum power point tracking

algorithms using an in-circuit solar panel. This script differs from the script for a

simulated solar panel because the adjustment of atmospheric conditions is carried

out through manual intervention by the user.

204

Appendix F

Software Implementation
Chapter 3 described the design of the new software package which was used as a basis for its

implementation. In this appendix, more detail will be provided on the exact methods used to

implement the certain parts of the package. Due to the size of the package it is not possible

to document in detail the implementation of every element of the software. The sections

within this appendix have therefore been carefully selected to describe parts of the

implementation which were unique to this package or which were technically challenging.

F.1. Source Code Compilation

In section 3.4.3, the design of the mechanism for implementing component behaviour within

the package was described. Two methods are provided – the use of full programming

languages in the form of C# or VB.NET to implement complex behaviour, or the use of a

mathematical scripting system to implement basic components. This section describes the

technology used to implement each of these programming methods within the package.

F.1.1. C# and VB.NET

The general principle of using the fully-featured programming languages C# and VB.NET to

implement component behaviour was described in section 3.4.3. Component models are

based on a parent class which provides an empty implementation of the five methods which

can be used to control component behaviour. The implementation of each component can

override the default implementation of any number of these methods as required for that

particular component. The remainder of this section describes how a set of user-defined

methods and other source code defining a component’s behaviour are processed and

compiled into source code that can eventually be run by the simulation engine. The steps

that are used to transform user-defined source code into an executable binary for use in the

simulation engine are as follows: pre-processing of the code into a C# or VB.NET class;

205

compiling the class into an executable code component reporting any compilation errors to

the user; and loading the executable code in the simulation engine. The remainder of this

section describes this process for the C# language as the process is similar for both C# and

VB.NET.

F.1.1.1. Pre-Processing Code

The full source code that is required to implement a typical C# class for a model component

is shown in Figure F-1. The base class, ComponentBase, that defines the default behaviour

for the component also contains the references to the properties Component and

Simulation that provide the API for implementing the component behaviour.

In order to provide the simplest possible code implementation for components, users are

only required to enter the source code illustrated as section 3 in Figure F-1. This is the section

of code containing the component’s behavioural functions, along with any extra functions or

sub-classes which are necessary to implement the component’s behaviour. This keeps the

focus of a component’s source code on the component behaviour, rather than the semantics

of creating the code in the correct format for this particular application. The method follows

the approach documented in the “Script Happens .NET” [107] and other similar articles on

using .NET languages for scripting.

The initial implementation of the pre-processing stage of code compilation took the user

defined code (indicated as “3” in Figure F-1) and inserted it within the full .NET class source

code shown in Figure F-1. During testing of the completed compilation process a number of

issues were found with this procedure.

Any errors reported by the compiler in the user-defined code referred to a line number

which was different to the line numbers on the user interface due to the user only viewing

the code shown in section 3 of Figure F-1. This problem was easily overcome in the C#

implementation since C# has a pre-processor statement “#line N” which instructs the

compiler to treat the line that immediately follows as line N of the code for the purposes of

error reporting. Therefore, “#line 1” was inserted immediately before the user-defined code

section before compiling. The problem was not as easily overcome in VB.NET as the language

206

did not provide the same pre-processor statement. The problem therefore had to be

manually resolved by inserting a comment of the form “#line1” before the user-defined code

and subtracting the position of that comment line from the line numbers generated in error

messages.

Another issue that was identified was that because the list of imported namespaces shown in

section 1 of the sample source code is hard-coded, component implementations would be

required to fully qualify any .NET libraries that they needed to use. For example

“System.Collections.Generic.List” would have to be used throughout the code rather than

defining “using System.Collections.Generic” at the top of the source code and then referring

to the class as “List” within the component’s implementation. This is because “using” (or

“import” in VB.NET) statements can only be defined outside a class. To resolve this issue, a

custom pre-processor statement was added to the C# and VB.NET scripting capabilities

where a user could define “#namespace X” at any point in the source code as an alternative

of the “using” or “import” statement. When the source code was processed to convert it into

the class format shown in Figure F-1, each “#namespace” statement was replaced with a

blank line and the required namespace was declared with the appropriate “using” or

“import” statement at the top of the generated class.

A related issue was discovered at the compilation stage where if a particular component

relied on a 3rd party library then the particular library file required would have to be linked

into the component’s code at compile time. To provide the option to include additional

external libraries in the code, a second custom pre-processor statement “#dll X” was added

to both languages. When processing the code into the full class format, these “dll”

statements were replaced with blank lines and a list of required external DLL files was

generated for use by the compiler.

207

Figure F-1: Illustration of the C# code required to implement component

behaviour.

F.1.1.2. Code Compilation

The .NET framework provides a set of libraries in the form of the System.CodeDom.Compiler

namespace which provide runtime code compilation facilities for applications. These libraries

provide a generic method for compiling code written in any language into a .NET executable

file. Separate libraries must be used with the compilation classes to provide bindings for

particular languages. The Microsoft.CSharp and Microsoft.VisualBasic.CompilerServices

language binding namespaces are provided in the end-user distribution of the .NET

framework and therefore these languages were chosen to be supported in the simulation

package. The compilation classes were used to compile the pre-processed component source

code into a DLL file for use by the simulation engine. Any errors during the compilation

1. Required Namespaces

2. Class Definition

3. Component

Implementation

Code

208

process are reported in the form of a line number and an error message by the compilation

classes. This can be used in the relevant part of the application’s user interface.

F.1.1.3. Loading Compiled Code

The generated DLL files were loaded for use in the simulation engine using the .NET Assembly

class which is an element of the .NET code reflection features. The class within the DLL

containing the actual component source code was then identified by searching for classes in

the DLL file which implement the ComponentBase class. A new instance of the class was

then created and the Simulation and Component properties of the class set to represent

the model being simulated. One problem with this method of dynamically loading code is

that once an assembly (DLL or EXE file) has been loaded into memory, it cannot be unloaded

until the application exits. To minimise the effect of the memory leak caused by this

constraint, the executable code for each component within a model was only compiled once

per application session an re-used wherever possible. An exception to this rule is when the

component’s source code is changed using the component editor. The code must then be re-

compiled to reflect the new behaviour, leaving the old code in memory until the application

exits.

A potential solution for this memory leak was found. However, it requires a significant

architectural change to the software and therefore its implementation was not possible

during the time available. Briefly, the solution is to run the simulation engine in a separate

.NET application domain to the user interface of the software. This is essentially equivalent to

running in a separate process but with the benefit of being able to communicate between

the processes using a method known as remote method calls. Creating a new application

domain for each simulation run and then destroying it at the end of the simulation would

eliminate the slight memory leak caused by loading compiled component code. Using a

separate application domain would also allow the component code to be run in an

environment with greater security than the application’s main code, restricting access to

system resources for security.

209

F.1.2. Mathematical Mark-up

In section 3.4.3, a mathematical mark-up language was defined for the implementation of

simpler component models which did not require the use of a full programming language. A

mathematical solver engine was created to solve single-line mathematical expressions. The

ability to handle simple numeric variables and functions was included in the mathematical

solver to allow it to be used with the main simulation engine.

In contrast to the fully-featured programming languages the mathematical scripts were not

compiled into executable code but instead interpreted at run-time. The “compilation” stage

of a mathematical script merely involves parsing the script, checking it for syntax errors and

creating a class which can be used to execute the mathematical code. The class,

MathMarkupEvaluator, which is an implementation of ComponentBase pre-processes the

mathematical script to identify pre-processor statements, comments and script lines. Pre-

processor statements are handled directly by the MathMarkupEvaluator class to identify

the mappings of component properties onto mathematical variables and the type of

optimisation to use for running the mathematical script.

A separate mathematical statement evaluator class was developed for performing the actual

evaluation of mathematical statements. This class, illustrated in Figure F-2, has two methods

for setting and retrieving the values of variables within the mathematical solver and a

method for evaluating a single line of mathematical script.

Figure F-2: Class for evaluating mathematical statements within the simulator.

The MathMarkupEvaluator class uses the pre-processor statements detected in a

mathematical script to set variables containing the component state before evaluating the

+SetVariable(in Name : string, in Value : double) : void

+GetVariable(in Name : string) : double

+Evaluate(in Markup : string) : double

MathSolver

210

mathematical script. The script is then passed line-by-line into the MathSolver class before

retrieving the updated variable values from it to feed into the simulation model.

A number of third-party mathematical solution libraries were considered for the

implementation of the MathSolver class, however the majority of these were either not

directly compatible with the .NET framework or offered significantly more functionality and

therefore memory overhead than was required for this purpose. Despite there being no off-

the-shelf solution that was fit for purpose, there are established methods of solving

mathematical expressions within computer programs. Two such methods were combined to

create the MathSolver class for this application. These are the Shunting Yard Algorithm and

the Reverse Polish Notation solution method. Combining these methods to solve a

mathematical expression requires three stages: Tokenising; Shunting Yard Conversion;

Reverse Polish Solution.

F.1.2.1. Tokenising

Tokenising is the process of converting a string representation of an expression into a format

that can be understood by a computer. For the purposes of this solver, six token types were

defined. These were numeric literals, variables, functions, operator symbols and opening and

closing brackets. Figure F-3 illustrates how an example mathematical expression is converted

into tokens.

Figure F-3: Tokenising a mathematical expression.

1

Literal

+

Operator

2

Literal

*

Operator

(

Bracket

A

Variable

+

Operator

3

Literal

)

Bracket

*

Operator

Sin

Function

(

Bracket

30

Literal

)

Bracket

1 + 2 * (A + 3) * Sin(30)

211

F.1.2.2. Shunting Yard Conversion

The purpose of the shunting yard algorithm is to convert a mathematical expression in the

standard notation shown in Figure F-3 (known as infix notation) into a notation that can be

solved easily within a computer program. In this particular case, Reverse Polish Notation

(RPN) was chosen as the output format because the solution of an expression in this notation

is trivial within a computer program. The shunting yard algorithm takes into account the

operator and bracket precedence rules within the expression to produce a RPN output

expression which can be solved directly by the program. A number of open-source

implementations of the algorithm are available. The implementation used in this case was

based on [137]. Figure F-4 shows an example of the equation in Figure F-3 being converted

into reverse polish notation.

Figure F-4: Illustration of tokenised mathematical expression being converted into

reverse polish notation.

F.1.2.3. Reverse Polish Notation Solution

Mathematical statements expressed in reverse polish notation can be solved using a stack-

based solution algorithm. The basic premise of the algorithm is to iterate through tokens

1

Literal

+

Operator

2

Literal

*

Operator

(

Bracket

A

Variable

+

Operator

3

Literal

)

Bracket

*

Operator

Sin

Function

(

Bracket

30

Literal

)

Bracket

A

Variable

3

Literal

+

Operator

2

Literal

*

Operator

30

Literal

Sin

Function

*

Operator

1

Literal

+

Operator

212

within the expression, pushing each numeric token onto a last-in-first-out (LIFO) stack until

an operator or function token is found. When an operator or function token is found, the

number of parameters required by the function is removed from the stack and the operator

or function is evaluated. The result of the function is then pushed onto the stack. This

process continues until every token within the expression has been processed. The result of

the expression is the numeric value that remains on the stack.

In the version of the algorithm implemented for use in the simulation package, variables can

be used as well as numeric literal values. These variables are treated in the same manner as

numeric literals when processing the tokens in an expression and are only treated differently

during the final function or operator evaluation step. In the case that a function or operator

is a standard mathematical function, the mathematical solver will attempt to resolve the

variable to its numeric value. If the variable has not been set, an error will be generated at

this stage. The assignment operator “=” has a special behaviour when dealing with variables

in that if the first argument for the operator is a variable, its value will be set to the value

specified in the second argument. Table F-1 below illustrates the process involved in solving

the reverse polish notation expression shown in Figure F-4.

Table F-1: Illustration of the Reverse Polish Notation solution of the expression in

Figure F-4. It is assumed that before solving this expression the variable “A” is set

to 3. Trigonometric functions are solved in degrees.

Expression Tokens
Remaining

Token Stack Before
Solution

Operation Carried
Out

Token Stack After
Solution

A 3 + 2 * 30 Sin * 1 +

2 * 30 Sin * 1 + A 3 + A+3 = 6 6

30 Sin * 1 + 6 2 * 6*2 = 12 12

* 1 + 12 30 Sin Sin(30) = 0.5 12 0.5

1 + 12 0.5 * 12*0.5 = 6 6

 6 1 + 6+1=7 7 (Final Solution)

The implementation of this mathematical solver is an example of the type of functionality

provided in the application that was well-suited to a test-driven development approach.

While developing the mathematical solver, a large number of test case calculations were

implemented in the Microsoft Test Framework to ensure that expressions were solved as

213

desired. These tests established a good level of confidence that the solution method was

operating as intended.

F.2. Simulation Engine

The part of the package referred to as the “Simulation Engine” is the set of classes that are

responsible for running simulations and collecting results. The method that is used for

simulating models was described in detail in the design in section 3.4.2. This method involves

executing user-defined source code iteratively to evaluate the behaviour of individual

components. When the solution of each component is deemed to have reached a stable

state, a set of result generators are used to take measurements at the desired points within

the model and store these measurements for analysis at the end of the simulation.

While the algorithm proposed in section 3.4.2 is conceptually simple to implement, one

practical difficultly that was encountered during the initial implementation of the algorithm

concerns when control of the execution of the code is handed over to user-defined code, the

simulation engine no longer has control over the application’s execution. Should an

erroneous section of component logic enter a section of code that is either slow to converge

or loops infinitely then the main application has no way of stopping the execution of the

code using the originally proposed logic.

In order to give the user interface complete control over the execution of a simulation, the

simulation engine logic was executed in a separate thread. This thread has the logic shown in

Figure F-5 which allows for simulations to be paused or stopped by the user interface. When

pausing a simulation, the simulation engine thread continues to execute but waits in a loop

until allowed to continue. In this case, if component logic is executing when the pause

request is made, it is allowed to complete execution before the thread transitions into the

pause state. If the user interface requests simulation execution to be terminated, the first

step that is taken is to make a cancel request to the simulation thread. This request is

comprised of two actions: a “user cancel request” flag is set and a 10 second timer is started.

As illustrated in Figure F-5, the cancel request flag is handled during the normal thread

214

processing to end the simulation once component logic for a particular time-step has been

complete.

If the normal stop request process is not sufficient to cause a simulation to end gracefully,

the 10-second timer that was started when the stop request was made is used to perform a

more severe form of thread exit. When the timer elapses, the logic that is executed checks

whether or not the simulation has stopped through the normal method. If the cancellation

request has not caused the simulation to stop, the timer logic calls the .NET Thread.Abort

method which throws an asynchronous exception within the simulation engine thread. This

results in the thread being forcibly stopped. Due to the asynchronous nature of this method,

there is no way of reliably determining which execution phase the simulation engine was in

when it was stopped and therefore all results generated during the simulation run are

cleared. If the simulation is successfully stopped using the request method then it is

guaranteed that a time-step has completed and therefore the results generated up to that

time-step can be used for analysis.

Figure F-5: Activity diagram illustrating the process used by the simulation engine

thread to execute simulations while allowing the user interface to pause or stop

execution.

Initialise Simulation

Simulation Complete

User Cancel Requested

Evaluate Time-Step & Record Results

Simulation Paused

215

F.3. Result Viewers

F.3.1. Table

The table result viewer, shown in Figure F-6, was implemented entirely using off-the-shelf

software components that are included as part of the .NET framework. The DataGridView

control was used as the viewing mechanism for the table data. This provides the built-in

features such as cell resizing, copying of table content and sorting by column that would be

expected in any standard spreadsheet package. The control also has the benefit of operating

in a mode called “Virtual Mode” where the names of the columns in the table are specified

along with the number of rows required but no data is added to the table contents. The

control then raises an event each time that it requires data to display in a particular cell.

These events can then be used to pass data from the simulation results to the control as

required. The benefit of this approach is that the control does not need to store a separate

copy of the entire set of simulation results – it only needs to know the data for the section of

the results currently being viewed. This improves the responsiveness of the control and

reduces the memory requirements of the application.

Figure F-6: Table result viewer control.

216

F.3.2. Line Graph

During the initial stages of development of the application, a purpose-built .NET line graph

control was used. This control served the purpose that it was required for, i.e. displaying

readable graphs that could be used in reports and presentations. However, the control had

minor layout bugs and lacked the formatting features of a full graphing package.

The reason behind creating a custom graphing control was that there were no suitable free-

to-use controls that could be easily integrated into the environment at the time. However,

upon the release of version 4.0 of the .NET framework, a chart control was added to the .NET

core libraries which could be used to display numerous types of graph. Due to the loosely

coupled architecture used around the result viewer system within the package, it was

relatively easy to swap in the new .NET chart control in place of the custom line graph

control. The new control, shown in Figure F-7, provides a vast array of formatting options for

graphs and has built in methods to export the displayed graph to a file. Using this control also

allows the application to be expanded in the future to include other types of graph.

Figure F-7: Illustration of a line graph produced by the .NET 4.0 Chart control.

F.3.3. Pie Chart

As with the line graph result viewer, pie chart rendering was initially carried out using a

custom-made control. Manually drawing a pie chart to screen was significantly less complex

than a line graph because the Windows drawing libraries contain built-in function calls to

217

draw or fill a pie chart segment on screen. Despite the good quality of chart image obtained,

it was decided to swap the pie chart control for the built-in .NET version when it became

available. This removed the need for any further development work to be carried out in

future on the drawing of charts.

The pie chart result viewer displays a snapshot in time of the state of a system. The result

viewer control therefore requires a method of allowing the user to select which instant in

time that the chart control should provide an illustration of. As shown in Figure F-8, this was

implemented by providing a scrollbar to select a particular time to view.

Figure F-8: Illustration of the pie chart result viewer included in the package.

F.4. Parameter Value Editors

In section 3.4.1 of the application design, a number of different configurable parameter types

were proposed for components. Within the graphical user interface, a method was required

to display all of the configurable parameters of a component, both during the initial creation

of components and for editing purposes when a component was used within a simulation.

218

A customised implementation of the .NET ListBox component was used for the purpose of

displaying lists of configurable parameters on screen. The list uses a custom drawing method

to display the list of parameters by name, type and value as shown in Figure F-9.

Figure F-9: Configurable parameter list control shown within the component

properties viewer.

A number of user interfaces were developed to allow editing of configurable parameter

values. Some parameters – the Integer, Decimal, Boolean, String, Time and List types – use

the same editor dialog in all parts of the application. The Table and Selection List parameter

types require extra user interface options at component design over the options that are

provided during normal model editing and therefore these parameter types have two version

of the editing dialog. The custom configuration parameter type loads a dialog from an

external DLL file for its configuration and therefore no edit-time dialog is required for this

parameter type. A dialog is provided at component design time to allow the class name of

the custom configuration dialog to be specified.

The Integer, Boolean and String parameter types are edited using the dialogs shown in Figure

F-10, Figure F-11 and Figure F-12 respectively.

219

Figure F-10: Integer parameter editing dialog.

Figure F-11: Boolean parameter editing dialog.

Figure F-12: String parameter editing dialog.

The Decimal parameter editing dialog, shown in Figure F-13 provides extra editing options so

that the value may be specified in Standard Notation, Scientific Notation or set to Infinity. It

should be noted that “Infinity” is supported as a native feature of the .NET double-precision

floating point type and is treated as a special numeric value of this type.

220

Figure F-13: Decimal parameter editing dialog.

The time parameter editing dialog, shown in Figure F-14, contains three fields which allow for

the entry of different parts of the time parameter. Standard .NET date and time controls

allow for the entry of the date and time components and a separate Numeric field is

provided for entry of the nanoseconds component of the time. The nanoseconds field

contains validation logic to ensure that the value is within the range 0 → 999,999,999.

Figure F-14: Time parameter editing dialog.

The list parameter editing dialog, shown in Figure F-15, uses a combination of the .NET

DataGridView control which displays data in tabular format and some of the custom

parameter editors described above in order to edit tabular data. The dialog also provides

buttons which allow list items to be added, removed and re-ordered. When editing lists of

String, Integer or Decimal values, the list editor operates in a spreadsheet-style mode, where

items are edited directly by the user. Validation is performed on values that are entered to

221

ensure that they are compatible with the underlying data type. Should the value not be

compatible, no change is made to the edited list item and a warning is displayed to the user.

When editing lists of Boolean parameters, the grid cells become drop-down menus

containing the entries “true” and “false” from which the value can be selected. When editing

Time parameters, the cells display the time value currently set in each list item. To edit the

value, the user must click on a button within the cell which displays the full time value editor

shown in Figure F-14.

Figure F-15: List parameter editing dialog.

The table parameter editor, shown in Figure F-16 uses the same principle for editing data

values as the list editor control but provides an additional option to import tabular data from

a spreadsheet file. The import option validates data to ensure that each column is in the

correct format for that column’s data type before performing the import.

An enhanced version of the table editing dialog is provided for use in component design

mode to allow the structure of the table as well as the data that it contains to be edited. The

222

additional options provided in this enhanced version of the dialog, shown in Figure F-17, are

the capabilities to add, re-order and delete columns.

Figure F-16: Table parameter editing dialog in normal operating mode.

Figure F-17: Enhanced version of the table editing dialog for use at component

design time. Options to edit the table structure are also provided.

223

The selection list parameter editor, shown in Figure F-18 provides users with a single drop-

down list from which to select a value for the parameter. The enhanced version of the editor,

shown in Figure F-19, which is used at component design time provides additional options to

add or remove entries from the list. Additionally, an option is provided to import a list of

items from a text file. The file can either be a plain-text file containing one list entry per line,

or a CSV spreadsheet. If a spreadsheet file is used, list entries are imported from the first

column of the spreadsheet only – the remainder of the columns are ignored.

Figure F-18: Selection list

editing dialog.

Figure F-19: Enhanced

version of the selection

list editing dialog used at

component design time.

While the custom configuration dialog parameter type uses a custom dialog to allow the user

to edit the parameter value during the editing of a model, a configuration dialog of the

format shown in Figure F-20 is used at component design time to specify the name of the

.NET class containing the dialog that should be displayed to configure the parameter. The

dialog also provides an option to enter a URL where the DLL file for the custom configuration

dialog can be downloaded from when running the application if it is not installed. Buttons are

provided to allow the loading of the dialog and the download URL to be tested.

224

Figure F-20: Custom configuration parameter editing dialog.

F.5. Graphical Model Editor

Alongside the central simulation engine, the graphical model editor is one of the key features

of the modelling package. This editor provides a visual method for the creation and editing of

system models within the package. Due to the bespoke nature of the graphical editor, there

were no off-the-shelf software components that were suitable for use in its implementation.

The editor was therefore purpose built for this application.

F.5.1. Overview

The graphical model editor that was provided within the package originally had the

requirement of being able to place components on a canvas and create connections between

them in order to create a system model. As the design of the package progressed, the

additional requirement of being able to add simple shapes and text for the purpose of

annotating diagrams was added.

The discussion in the remainder of this section focuses on the implementation of the editing

canvas itself. However, to provide context for the description of the implementation of the

canvas, a short overview of the functionality of the editor will be provided.

The annotated screenshot in Figure F-21 shows the main editing interface of the application.

The central feature within this interface is the editing canvas itself (1). The tool selection

palette (2) is used to select which editing tool is used by the canvas at any given time. The

hint status bar (3) is used to provide hints to the user while performing editing actions within

the canvas. For example, in this case after selecting a pin on a component, the hint is

225

provided to select a second pin to complete the connection. The component library browser

(4) provides a list of all of the components currently loaded from library files which can be

used in the model being edited.

Figure F-21: Annotated diagram illustrating the main features of the graphical

model editor.

The editing canvas supports seven basic shape types. These are: nodes, component

instances, connections between components, illustrative rectangles, illustrative lines and

illustrative text. Components are added to a model by dragging the relevant component from

the library browser onto the editing canvas. Connections between components are created

by using the arrow tool to select the component pins that form the start and end of the

connection. Intermediate routing points can be added by right-clicking on a line. Additionally,

an auto-route option is included.

Nodes – special electrical or thermal components – are created by selecting the node tool.

Selecting this tool will display a pop-up menu to allow the user to choose which type of node

226

to create. Clicking on the diagram with the node tool active will create the selected node

type on the diagram. Shapes – rectangles and lines – are created by selecting the relevant

tool and clicking and dragging at the appropriate location on the diagram. Context menus

provide options for formatting lines and rectangles. Selecting the text tool and clicking on the

diagram will add text at the selected location. A context menu option is provided to edit and

format text.

F.5.2. General Design Considerations for Editor

During the process of designing the editor, a number of prototype editors were developed in

order to determine the best method to use to implement the editor. Two broad categories of

implementation emerged from this process: 1) an editor created using a Windows Forms

Panel Control with child components to represent the shapes; 2) an editor created using a

Windows Forms Panel Control using manually programmed user interaction and drawing

behaviour.

The former approach relies on using individual windows forms components to represent

each shape on the diagram which offers the benefit of a reduction in implementation time.

This is due to the fact that the majority of the drawing and user input processing functionality

is already provided by the Windows Forms Framework. However, the critical drawback to

this approach that resulted in the latter implementation technique being selected was that

the Windows Forms library does not provide any built in controls which can easily represent

a line. Therefore, the drawing of connections between components and illustrative lines had

to be carried out manually by painting directly to the panel control containing the diagram.

Using this drawing method resulted in a large amount of flicker when moving components

and a significant lag in scrolling around the diagram.

The latter approach was chosen and uses a Windows Forms Panel (an empty, scrollable area

within a form) as the parent control for the editor but uses completely custom logic to draw

the visible portion of the diagram on the surface of the panel and to handle user input to the

panel. This method was chosen because the initial prototype developed provided a much

better editing experience than the Windows Component based method. Despite the

227

disadvantage of a slightly longer implementation time, it was felt that this editor architecture

had significant benefits both in terms of usability and in scope for future enhancements.

F.5.3. Editor Design

Figure F-22 illustrates the design of the model editing canvas and its associated user interface

elements. The main editor class, AdvancedDiagramEditor, implements two interfaces. The

IEditPane interface is used by the main application to pass commands to the editor, to

access the model being edited and to obtain status information from the editor such as

whether or not a copy or paste operation can be carried out on the editor. The IShapeHost

interface is used to provide a set of call-back functions that shapes hosted within the editor

can use to control the editor and provide feedback about operations that have been carried

out as a result of user interaction with shapes. The EnhancedDiagramEditor class holds a

reference to the IDiagramEditorToolbar interface to provide access to the user-selected

editing tool. This interface is implemented by the EnhancedDiagramEditorToolbar class

which implements the graphical palette (2) on Figure F-21. The editor also holds a reference

to the IHintStatusBar interface which provides a generic interface for a status bar providing

editing hints. This interface is implemented directly by the ApplicationInterface class which

is the main Windows Form shown in Figure F-21. Calling any of the methods in the

IHintStatusBar class changes the text shown at the bottom of the form (3).

Shapes used within model diagrams are implemented by the ComponentShape, LinkShape,

RectangleShape, LineShape and TextShape classes, each of which implements the

IDiagramShape interface. This interface defines a set of methods which allow the diagram

editor to control the drawing of shapes and the communication of user input actions to each

shape. The EnhancedDiagramEditor class stores a collection of IDiagramShape objects

which make up the model currently being edited.

228

Figure F-22: Model editor class diagram.

229

F.5.4. User Input Handling

User input actions can be broadly described in three categories: direct interaction with

shapes including clicking on shapes, dragging shapes and pressing keys while a shape is

selected; group selection of shapes by dragging a selection box on the diagram around a

group of shapes; and indirect movement of shapes which involves dragging one shape within

a selected group to move the entire group.

Direct interaction with shapes is handled using a multi-stage process. When a mouse button

is pressed within the editor panel, the editor queries each shape in the diagram to determine

if the point clicked lies within the shape’s bounds. If this is the case then the editor issues a

“Mouse Down” event to the shape with the selected co-ordinates. Logic within each shape

then determines whether or not any action should be taken according to the position of the

mouse click. An example of a shape-specific action that could be taken would be if one of the

pins on a component shape was clicked, the pin would be selected and marked as the

beginning of a new connection between components. Examples of non-shape-specific actions

to take would be to mark the shape as selected if the mouse is clicked within its bounds.

In order to reduce the number of computational operations performed to process user

interaction, only “Mouse Down” events are universally reported to all shapes. Two flags

HasMouseInterest and HasKeyboardInterest are made available in the IDiagramShape

interface which informs the editor whether or not a particular shape would like to receive

“Mouse Move”, “Mouse Up” and “Key Press” events. For all of the shapes currently

implemented, shapes set their “Mouse Interest” flag upon a “Mouse Down” event and clear

the flag upon a “Mouse Up” event. The “Keyboard Interest” flag is set when shapes are

selected and cleared when they are no longer selected.

Upon processing a “Mouse Down” event, if the editor detects that the mouse has been

pressed on an area of the canvas that does not lie within the bounds of any shape, then the

group selection process begins. The first step of this process is to de-select all shapes within

the diagram by setting the Selected property of each IDiagramShape object to false. As the

mouse is moved, a box is drawn which can be used to select a group of shapes. When the

230

mouse is released, the editor queries the ShapeLiesWithinRectangle method of each shape

within the diagram to determine which shapes lie within the user-drawn box. Any shapes

which lie within the box have their Selected property set to true. As well as providing a

group selection technique, this process also provides the benefit of de-selecting all selected

shapes if the user clicks the mouse on a blank area of the panel.

Group movement of objects requires interactions between the logic built into shapes and the

logic within the editor, unlike shape-specific operations such as re-sizing which can be

handled directly by internal shape logic. In order to support movement of both single and

multiple objects, the editor’s design enforces a particular pattern for handling the movement

of shapes. If a shape detects that user input is causing it to move (for example, in the case of

a component shape, the mouse is pressed within the body of the shape and is moving) then

rather than deal with the movement operation directly, the shape is required to invoke the

call-back method NotifyMoveEvent within the IShapeHost interface, reporting the

amount by which the shape has been moved. When this method is invoked, the

editor will iterate through all selected shapes on the diagram and call the

HandleMovementDelta for each shape with the difference in X and Y co-ordinates by

which to move the shape. This logic within this method is then responsible for

moving each shape and re-drawing the shape at the new location.

F.5.5. Drawing

The shape-drawing logic within the editing component uses a double-buffering system to

reduce flicker during the drawing process. Further efficiency is added to the drawing process

by only drawing shapes which need to be re-drawn each time the editor is drawn. The

process of drawing the contents of the editor can be initiated by a number of events: the

operating system requesting a re-draw of the component; the component scrollbar positions

being changed by the user; and a component’s code requesting a re-draw (for example,

when a component becomes “Selected” it may change its colour or paint a selection box

around the component or when a shape is moved it will be required to be re-drawn at its

new location).

231

Each IDiagramShape instance has a Boolean property, IsVolatile, that is used by shape to

indicate when it is in a state where it is likely to need re-drawn frequently. Examples of such

states are when the shape is being moved or when the shape is selected. Each time that the

IsVolatile property of a shape is changed, the shape invokes a call-back method on the

IShapeHost interface to inform the editor of the change. Upon such a change of volatile

state, the editor will create a bitmap buffer on which all non-volatile shapes are drawn by

invoking the Draw method of each shape. Each time a re-draw of the diagram is requested,

the editor will first re-draw the bitmap buffer of non-volatile shapes to the editing surface,

followed by each non-volatile shape. This process improves the performance of the editor’s

drawing process while moving shapes, almost entirely eliminating flicker while moving

shapes.

F.6. Graphical Component Editor

As well as providing an editor for creating system models, an editor was also required within

the application to create and edit individual components for use within the models. This

editor is responsible for four main aspects of component configuration: naming, description

and categorisation of components; defining the number, name and type of pins on

components; defining and initialising configurable parameters within components; and

defining component logic through C#, VB.NET or Mathematical scripting code.

A single user interface was created to handle each of these four configuration tasks. The

interface is split into four tabs, each handling an aspect of component configuration. Before

displaying the interface, the user is prompted to either select an existing library of

components or to create a new empty file. The contents of the selected file are then loaded

into a collection of “Component Behaviour” classes11 for use within the editor. Any changes

made to components within the editor are made in-memory to these classes which are then

saved back to the file when the user selects the save option.

The first stage of component configuration is shown in the annotated screen-shot in Figure F-

23. The configuration interface displays a list at the top of the screen (1) containing all of the

11 See section 3.2.2 for a full description of the “Component Behaviour” class.

232

components that are currently available in the loaded library file. When a component is

selected within this list, its configuration is loaded into the main editor tabs. A set of toolbar

buttons (2) allows users to add and remove components as well as save any change to the

library file. The text boxes (3) allow the name, category, version number and description of

the component to be edited. Checkboxes allow for configuration of advanced options within

the component. A preview of the component appearance is provided (4) by using a modified

version of the model editor described in section F.5. This preview control has been modified

to make it read-only and is populated with only one component.

Figure F-23: Properties page from the component library editor.

The second stage of component configuration is shown in the annotated screen-shot in

Figure F-24. This tab allows for the configuration of the pins on the component. A list (1) of

the pins currently on the component is shown, along with the properties of each pin. Buttons

(2) are provided to add or remove pins. When a pin within the list is selected, its properties

are shown at the bottom of the screen (3) for editing. Options are provided to edit the pin

233

Name, Type and Placement on the component. Any changes made to pins are reflected

instantly on the component preview.

Figure F-24: Component library editor pin configuration page.

The third page of the library editor, shown in Figure F-25, configures the parameters that are

made available within the component which allow for user configuration of each

component’s behaviour. Similarly to the pin editor, this editor displays a list of the current

parameters available within the component (1) and provides buttons to create or delete

parameters (2). Selecting the “New Parameter” buttons displays a menu of available

parameter types to create – the type cannot be changed after creation. Buttons are also

provided to duplicate existing parameters and change the order of parameters within the list.

The properties of the selected parameter can be edited using the controls at the bottom of

the screen (3). The default value of a parameter is modified by selecting the button beside

234

the value (4). Selecting this button displays the relevant editing dialog12 for the selected

parameter type.

Figure F-25: Parameter editing page of the library editor.

The final configuration page within the graphical component editor, shown in Figure F-26,

provides a source code editor (1) for defining the component logic. The source code editor

that is used in this interface is a third-party component taken from the open-source

SharpDevelop IDE [138]. The editor provides useful built-in features for code editing such as

undo/redo, syntax highlighting, find and replace and code region folding. Minor changes

were made to the built-in functionality to add syntax highlighting for the scripting API

elements, the custom pre-processor statements that were introduced and the Mathematical

Mark-up language.

A menu of available programming languages above the source code editor (2) controls the

syntax highlighting and code folding strategies that are in use within the editor. The selected

language is also saved within each component’s behaviour so that the simulator knows which

12 Parameter editing dialogs are described in section F.4.

235

compiler to use to compile the code when running simulations. A syntax checker (3) is

included within the editor. This syntax checker uses the compiler for the selected

programming language and reports any compilation errors along with their line numbers in

the information box (4). Additionally, the editor supports the highlighting of lines which

generate compiler errors or warnings. The toolbar (5) provides common text editing

operations. Additionally the toolbar provides access to API documentation and a menu of

commonly used code-snippets. Code snippets are defined in all programming languages and

code for the current language is inserted when a snippet is chosen.

Figure F-26: Source code editing page of the component library editor.

The main model editor stores all component libraries in memory and therefore any changes

to a library file using the component library editor require component libraries to be re-

loaded in the model editor. To simplify this process, a “re-load” option is provided in the

model editor to refresh all libraries. This option also invokes an upgrade process on the

currently open model if any of its components have been edited.

236

F.7. Implementation Summary

The design and implementation described up to this point is the culmination of multiple

iterations of re-design and re-implementation that were carried out. First-hand experience of

using the package provided a helpful insight into defects in the software and useful

enhancements. Continuous testing of the software throughout the implementation process

was also extremely useful in quickly resolving defects and immediately identifying an errors

that were introduced by the implementation of new features.

The implementation of the package that has been described in this appendix was concluded

in a state where the package was suitable for use for this project. While there are endless

future enhancements that could be carried out to the program to improve its functionality,

usability and performance, the current implementation was felt to offer sufficient features to

continue with the implementation of a library of components within the package to enable

the modelling of domestic smart grid systems.

237

References
[1] L. MacIsaac and A. Knox, "Domestic end-use simulation of smart grid technologies," in

Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd IEEE PES International
Conference and Exhibition on, Manchester, 2011, pp. 1-6.

[2] L. MacIsaac and A. Knox, "Improved Maximum Power Point Tracking Algorithm for
Photovoltaic Systems," in International Conference on Renewable Energies and Power
Quality, Granada, Spain, 2010.

[3] L. MacIsaac and A. Knox, "A New Algorithm for Obtaining the Operating Point of
Photovoltaic Systems," Proceedings of the Institution of Mechanical Engineers, Part A:
Journal of Power and Energy, vol. 226, no. 6, 2012.

[4] HM Government, "Postnote: Renewable Heating," Parliamentary Office of Science
and Technology, 2010

[5] HM Government, "Digest of UK Energy Statistics (DUKES)," Department of Energy and
Climate Change, 2010

[6] European Commission, "UK Energy Mix Fact Sheet," 2007
[7] HM Government, "The UK Low Carbon Transition Plan: National strategy for climate

and energy," DECC, 2009
[8] Scottish Government, "Draft Electricity Generation Policy Statement 2010: Scotland –

A Low Carbon Society," 2010
[9] Scottish Government. "National Indicators: Increase Renewable Energy Production."

Internet:
http://www.scotland.gov.uk/About/Performance/scotPerforms/indicator/renewable,
22nd December 2011 [Accessed: 1st May 2012,]

[10] BBC News. "Scots windfarms paid cash to stop producing energy." Internet:
http://www.bbc.co.uk/news/uk-scotland-13253876, 1st May 2011 [Accessed: 21st
September 2011]

[11] A. Al-Kandari, M. Gilany, and A. Shaltout, "A PLC Controller Algorithm for Optimum
Operation of Photovoltaic-Battery System," in Power Engineering, 2006 Large
Engineering Systems Conference on, 2006, pp. 112-118.

[12] S. S. Choi, K. J. Tseng, D. M. Vilathgamuwa, and T. D. Nguyen, "Energy storage systems
in distributed generation schemes," in Power and Energy Society General Meeting -
Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp.
1-8.

[13] J. Mendez, A. Falcon, and D. Hernandez, "Simulation of Storage Systems for increasing
the Power Quality of Renewable Energy Sources," in International Conference of
Renewable Energies and Power Quality, Granada, Spain, 2010.

[14] J. A. Carr, J. C. Balda, and H. A. Mantooth, "A Survey of Systems to Integrate
Distributed Energy Resources and Energy Storage on the Utility Grid," in Energy 2030
Conference, 2008. ENERGY 2008. IEEE, 2008, pp. 1-7.

[15] E. G. Cazalet, "Role of storage technologies for increased deployment of distributed
and renewable resources," in Innovative Smart Grid Technologies (ISGT), 2010, pp. 1-
1.

http://www.scotland.gov.uk/About/Performance/scotPerforms/indicator/renewable
http://www.bbc.co.uk/news/uk-scotland-13253876

238

[16] G. Celli, S. Mocci, F. Pilo, and M. Loddo, "Optimal integration of energy storage in
distribution networks," in PowerTech, 2009 IEEE Bucharest, 2009, pp. 1-7.

[17] R. Datta and V. T. Ranganathan, "A method of tracking the peak power points for a
variable speed wind energy conversion system," Energy Conversion, IEEE Transactions
on, vol. 18, no. 1, pp. 163-168, 2003.

[18] S. Armstrong and W. G. Hurley, "Self-regulating maximum power point tracking for
solar energy systems," UPEC 2004: 39th International Universitities Power Engineering
Conference, Vols 1-3, Conference Proceedings, pp. 604-609, 2005.

[19] A. M. A. Mahmoud, H. M. Mashaly, S. A. Kandil, H. El Khashab, and M. N. F. Nashed,
"Fuzzy logic implementation for photovoltaic maximum power tracking," in Industrial
Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE, 2000, pp.
735-740 vol.1.

[20] M. A. Vitorino, L. V. Hartmann, A. M. N. Lima, and M. B. R. Correa, "Using the model
of the solar cell for determining the maximum power point of photovoltaic systems,"
in Power Electronics and Applications, 2007 European Conference on, 2007, pp. 1-10.

[21] I. H. Altas and A. M. Sharaf, "A novel on-line MPP search algorithm for PV arrays,"
Energy Conversion, IEEE Transactions on, vol. 11, no. 4, pp. 748-754, 1996.

[22] K. Yeong-Chau, L. Tsorng-Juu, and C. Jiann-Fuh, "Novel maximum-power-point-
tracking controller for photovoltaic energy conversion system," Industrial Electronics,
IEEE Transactions on, vol. 48, no. 3, pp. 594-601, 2001.

[23] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, "Maximum photovoltaic power
tracking: an algorithm for rapidly changing atmospheric conditions," Generation,
Transmission and Distribution, IEE Proceedings-, vol. 142, no. 1, pp. 59-64, 1995.

[24] J. Youngseok, S. Junghun, Y. Gwonjong, and C. Jaeho, "Improved perturbation and
observation method (IP&O) of MPPT control for photovoltaic power systems," in
Photovoltaic Specialists Conference, 2005. Conference Record of the Thirty-first IEEE,
2005, pp. 1788-1791.

[25] X. Liu and L. A. C. Lopes, "An improved perturbation and observation maximum power
point tracking algorithm for PV arrays," in Power Electronics Specialists Conference,
2004. PESC 04. 2004 IEEE 35th Annual, 2004, pp. 2005-2010 Vol.3.

[26] S. Parmigiani, D. Zani, C. Invernizzi, A. Mazzu, V. Villa, and A. Lezzi, "A biomass
powered Ringbom-Stirling engine for developing countries: a low-budget solution for
distributed electricity generation," in International Conference of Renewable Energies
and Power Quality, Granada, Spain, 2010.

[27] D. G. Thombarse, K. H. J. Buschow, W. C. Robert, C. F. Merton, I. Bernard, J. K.
Edward, M. Subhash, and V. Patrick, "Stirling Engine: Micro-CHP System for
Residential Application," in Encyclopedia of Materials: Science and Technology Oxford:
Elsevier, 2008, pp. 1-8.

[28] M. Chen, H. Lund, L. A. Rosendahl, and T. J. Condra, "Energy efficiency analysis and
impact evaluation of the application of thermoelectric power cycle to today's CHP
systems," Applied Energy, vol. 87, no. 4, pp. 1231-1238, 2009.

[29] X. Gou, H. Xiao, and S. Yang, "Modeling, experimental study and optimization on low-
temperature waste heat thermoelectric generator system," Applied Energy, vol. 87,
no. 10, pp. 3131-3136, 2010.

239

[30] EnviroEnergy. "Welcome to Nottingham Green Energy." Internet:
http://www.enviroenergy.co.uk/index2.htm, 16th July 2004 [Accessed: 21st
September 2011]

[31] D. Wickersham. "Pimlico District Heating Undertaking Presentation." Internet:
http://www.lep.org.uk/uploads/David%20Wickersham%20CityWest%20Homes.pdf,
6th July 2008 [Accessed: 21st September 2009]

[32] HM Government, "Low Carbon Transport: A Greener Future," Department for
Transport, 2009

[33] Mayor of London. "An Electric Vehicle Delivery Plan for London." Internet:
http://www.london.gov.uk/sites/default/files/uploads/electric-vehicles-plan.pdf, May
2009 [Accessed: 10th January 2012]

[34] J. Gallardo-Lozano, M. I. Milanés-Montero, M. A. Guerrero-Martínez, and E. Romero-
Cadaval, "Electric vehicle battery charger for smart grids," Electric Power Systems
Research, vol. 90, no. 0, pp. 18-29.

[35] M. Metz and C. Doetsch, "Electric vehicles as flexible loads - A simulation approach
using empirical mobility data," Energy, 2012.

[36] N. Hartmann and E. D. Özdemir, "Impact of different utilization scenarios of electric
vehicles on the German grid in 2030," Journal of Power Sources, vol. 196, no. 4, pp.
2311-2318, 2011.

[37] Energy Efficiency News. "EU takes first steps towards a smart grid." Internet:
http://www.energyefficiencynews.com/i/2376/, 7th September 2009 [Accessed: 4th
April 2011]

[38] A. Faruqui, D. Harris, and R. Hledik, "Unlocking the €53 billion savings from smart
meters in the EU: How increasing the adoption of dynamic tariffs could make or break
the EU's smart grid investment," Energy Policy, vol. 38, no. 10, pp. 6222-6231, 2010.

[39] Centrica. "British Gas plans two million smart meters in British homes by 2012."
Internet: http://www.centrica.co.uk/index.asp?pageid=39&newsid=1970, [Accessed:
13th April]

[40] ZigBee Alliance. "ZigBee Smart Energy Overview." Internet:
http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Overview.aspx, 2011
[Accessed: 12th April 2011]

[41] Scottish Power. "ScottishPower Ramps Up Smart Meter Trials Following Government
Announcement." Internet: http://www.scottishpower.com/PressReleases_1968.htm,
2nd December 2009 [Accessed: 19th March 2011]

[42] Landis+Gyr. "Scottish and Southern." Internet:
http://www.landisgyr.com/en/pub/products_and_services/case_studies/scottish_an
d_southern.cfm, 2009 [Accessed: 19th March 2011]

[43] National Grid. "OnStream launches revolutionary new smart meters." Internet:
http://www.nationalgrid.com/uk/Media+Centre/PressReleases/2010/20.04.10+Onstr
eam.htm, 20th April 2010 [Accessed: 18th March 2011]

[44] Energy Choices. "Economy 7 energy tariffs." Internet:
http://www.energychoices.co.uk/economy-7.html, 26th May 2009 [Accessed: 12th
April 2011]

[45] A. Faruqui and S. George, "Quantifying Customer Response to Dynamic Pricing," The
Electricity Journal, vol. 18, no. 4, pp. 53-63, 2005.

http://www.enviroenergy.co.uk/index2.htm
http://www.lep.org.uk/uploads/David%20Wickersham%20CityWest%20Homes.pdf
http://www.london.gov.uk/sites/default/files/uploads/electric-vehicles-plan.pdf
http://www.energyefficiencynews.com/i/2376/
http://www.centrica.co.uk/index.asp?pageid=39&newsid=1970
http://www.zigbee.org/Standards/ZigBeeSmartEnergy/Overview.aspx
http://www.scottishpower.com/PressReleases_1968.htm
http://www.landisgyr.com/en/pub/products_and_services/case_studies/scottish_and_southern.cfm
http://www.landisgyr.com/en/pub/products_and_services/case_studies/scottish_and_southern.cfm
http://www.nationalgrid.com/uk/Media+Centre/PressReleases/2010/20.04.10+Onstream.htm
http://www.nationalgrid.com/uk/Media+Centre/PressReleases/2010/20.04.10+Onstream.htm
http://www.energychoices.co.uk/economy-7.html

240

[46] A. Faruqui, R. Hledik, and S. Sergici, "Piloting the Smart Grid," The Electricity Journal,
vol. 22, no. 7, pp. 55-69, 2009/9// 2009.

[47] ESNG. "A Smart Grid Routemap." Internet:
http:/www.ensg.gov.uk/assets/ensg_routemap_final.pdf, February 2010 [Accessed:
18th March 2011]

[48] D. B. Crawley, J. W. Hand, M. Kummert, and B. T. Griffith, "Contrasting the capabilities
of building energy performance simulation programs," Building and Environment, vol.
43, no. 4, pp. 661-673, 2008.

[49] US Department of Energy. "Building Technologies Program: EnergyPlus." Internet:
http://apps1.eere.energy.gov/buildings/energyplus/, [Accessed: January 30th]

[50] D. B. Crawley, L. K. Lawrie, C. O. Pedersen, R. K. Strand, R. J. Liesen, F. C. Winkelman,
W. F. Buhl, Y. J. Huang, M. J. Witte, R. J. Henninger, J. Glazer, D. E. Fisher, and D.
Shirey, "EnergyPlus: New, Capable and Linked," Journal of Architectural and Planning
Research, vol. 21, no. 4, pp. 292-302, 2004.

[51] F. Winkelmann, B. Birdsall, W. Buhl, K. Ellington, A. Erdem, J. Hirsch, and S. Gates,
"DOE-2 supplement: version 2.1 E," Lawrence Berkeley Lab., CA (United States);
Hirsch (James J.) and Associates, Camarillo, CA (United States)1993.

[52] D. Jacobson, "Bibliography of BLAST Related Articles," BLAST Support Office,
University of Illiniois at Urbana-Champaign1986.

[53] Google. "Google Sketchup." Internet: http://sketchup.google.com/, 2011 [Accessed:
1st June 2011]

[54] US Department of Energy. "EnergyPlus Simulation Software: Learn more about
OpenStudio." Internet:
http://apps1.eere.energy.gov/buildings/energyplus/openstudio.cfm, 7th March 2011
[Accessed: 1st June 2011]

[55] US Department of Energy. "EnergyPlus Energy Simulation Software: EnergyPlus
Graphical User Interfaces." Internet:
http://apps1.eere.energy.gov/buildings/energyplus/ep_interfaces.cfm, 7th March
2011 [Accessed: 1st June 2011]

[56] F. C. Winkelmann, "Modeling windows in EnergyPlus," Proc. IBPSA, Building
Simulation, 2001.

[57] D. E. Fisher, R. D. Taylor, F. Buhl, R. J. Liesen, and R. K. Strand, "A modular, loop-based
approach to HVAC energy simulation and its implementation in EnergyPlus," in
Proceedings of Building Simulation, 1999, pp. 1245-1252.

[58] US Department of Energy, "EnergyPlus Engineering Reference," 2010.
[59] R. Judkoff and J. Neymark, "Model validation and testing: The methodological

foundation of ASHRAE Standard 140," Transactions - American Society of Heating
Refrigerating and Air Conditioning Engineers, vol. 112, no. 2, p. 367, 2006.

[60] M. J. Witte, R. H. Henninger, J. Glazer, and D. B. Crawley, "Testing and validation of a
new building energy simulation program," Proceedings of Building Simulation 2001,
pp. 353-360, 2001.

[61] R. H. Henninger and M. J. Witte, "EnergyPlus Testing with Building Thermal Envelope
and Fabric Load Tests from ANSI/ASHRAE Standard 140-2007," 2006.

[62] R. H. Henninger and M. J. Witte, "EnergyPlus Testing with HVAC Equipment
Performance Tests CE100 to CE200 from ANSI/ASHRAE Standard 140-2007," 2009.

http://www.ensg.gov.uk/assets/ensg_routemap_final.pdf
http://apps1.eere.energy.gov/buildings/energyplus/
http://sketchup.google.com/
http://apps1.eere.energy.gov/buildings/energyplus/openstudio.cfm
http://apps1.eere.energy.gov/buildings/energyplus/ep_interfaces.cfm

241

[63] R. H. Henninger and M. J. Witte, "EnergyPlus Testing with HVAC Equipment
Performance Tests CE300 to CE545 from ANSI/ASHRAE Standard 140-2007," 2010.

[64] R. H. Henninger and M. J. Witte, "EnergyPlus Testing with Fuel-Fired Furnace Tests
HE100 to HE230 from ANSI/ASHRAE Standard 140-2007 " 2010.

[65] R. D. Taylor, C. O. Pedersen, and L. Lawrie, "Simultaneous simulation of buildings and
mechanical systems in heat balance based energy analysis programs," in Proceedings
of the 3rd International Conference on System Simulation in Buildings, 1990, pp. 3-5.

[66] University of Strathclyde. "ESP-r." Internet:
http://www.esru.strath.ac.uk/Programs/ESP-r.htm, 6th December 2010 [Accessed:
1st June 2011]

[67] J. Clarke and J. Hensen, "Integrated simulation for building design: an example state-
of-the-art system," in Proceedings International Conference Construction Information
Technology, 2000, pp. 465-475.

[68] J. Clarke, W. Dempster, and C. Negrao, "The implementation of a computational fluid
dynamics algorithm within the ESP-r system," in Proc. Building Simulation. vol. 95:
Citeseer, 1995, pp. 166-75.

[69] J. Hensen and J. Clarke, "A simulation approach to the evaluation of coupled heat and
mass transfer in buildings," in Proc. 2nd IBPSA World Congress" Building Simulation.
vol. 91, 1991, pp. 219-226.

[70] J. A. Clarke and N. J. Kelly, "Integrating power flow modelling with building
simulation," Energy and Buildings, vol. 33, no. 4, pp. 333-340, 2001.

[71] P. A. Strachan, G. Kokogiannakis, and I. A. Macdonald, "History and development of
validation with the ESP-r simulation program," Building and Environment, vol. 43, no.
4, pp. 601-609, 2008.

[72] Danish Building Research Institute. "BSim - Building Simulation — Danish Building
Research Institute (SBi)." Internet:
http://www.en.sbi.dk/publications/programs_models/bsim, 4th November 2009
[Accessed: 1st June 2011]

[73] K. Grau and C. Rode, "Simulation of Whole-Building Hygrothermal Conditions," in
Proceedings of 8th International Conference on Air Distribution in Rooms Copenhagen,
Denmark, 2002.

[74] C. Rode and K. Grau, "Integrated calculation of hygrothermal conditions of buildings,"
in Proceedings of the 6th Symposium on Building Physics in the Nordic Countries. vol. 1
Trondheim, Norway, 2002, pp. 23-30.

[75] K. B. Wittchen, "Building Integrated Photovoltaics in a Themal Building Simulation
Tool," in Eighth International IBPSA Conference Eindhoven, Netherlands, 2003.

[76] K. Grau, K. B. Wittchen, and C. G. Sørensen, "Visualisation of Building Models," in
Eighth International IBPSA Conference Eindhoven, Netherlands, 2003.

[77] K. Grau and K. B. Wittchen, "Building Design System and CAD Integration," in
Procedings of IBPSA Conference: Building Simulation. vol. 99 Kyoto, Japan, 1999.

[78] Building Research Establishment, "iSBEM User Guide," Building Research
Establishment2010.

[79] Building Research Establishment. "NCM: National Calculation Method." Internet:
http://www.ncm.bre.co.uk/, 8th April 2011 [Accessed: 1st June 2011]

http://www.esru.strath.ac.uk/Programs/ESP-r.htm
http://www.en.sbi.dk/publications/programs_models/bsim
http://www.ncm.bre.co.uk/

242

[80] Building Research Establishment, "National Calculation Methodology (NCM)
Modelling Guide for Non-Domestic Buildings in Scotland " Directorate for the Built
Environment Building Standards Division, 2010

[81] HM Government, "National Calculation Methodology (NCM) modelling guide (for
buildings other than dwellings in England and Wales)," Department for Communities
and Local Government, 2008

[82] Sustainable Buildings Industry Council. "Energy 10 Software." Internet:
http://www.sbicouncil.org/energy10-soft, 2011 [Accessed: 1st June 2011]

[83] Solar Energy Laboratory, "TRNSYS 17: A Transient System Simulation Program," Univ.
of Wisconsin-Madison,2010.

[84] University of Wisconsin-Madison. "TRNSYS - Official Website." Internet:
http://sel.me.wisc.edu/trnsys, 11th January 2011 [Accessed: 1st June 2011]

[85] Mathworks. "MATLAB - The language of technical computing." Internet:
http://www.mathworks.co.uk/products/matlab/, 2012 [Accessed: 10th January 2012]

[86] Mathworks. "Simulink - Simulation and Model-Based Design." Internet:
http://www.mathworks.co.uk/products/simulink/, 2012 [Accessed: 10th January
2012]

[87] O. Gumu. "C# versus C++ versus Java performance comparison." Internet:
http://reverseblade.blogspot.com/2009/02/c-versus-c-versus-java-performance.html,
7th February 2009 [Accessed: 20th December 2011]

[88] N. Kelly and J. Clarke, "The simulation of building electrical power flows," in
Proceedings of the 6th International IBPSA Conference, International Building
Performance Simulation Association, Kyoto, 1999, p. 15.

[89] Heating systems in buildings - Method for calculation of design heat load, BS EN
12831, 2003.

[90] J. Brogden, "Smart metering interoperability in the GB market," in Smart Metering -
Making It Happen, 2009 IET, 2009, pp. 1-29.

[91] J. Brogden, "ERA View on Smart Metering and Interoperability," in Smart Metering -
Gizmo or Revolutionary Technology, 2008 IET Seminar on, 2008, pp. 1-19.

[92] IEEE Standard for Local and Metropolitan Area Networks - Part 15.4: Low-rate
Wireless Personal Area Networks, IEEE Standard 802.15.4, 2011.

[93] ZigBee Smart Energy Profile Specification, 2011.
[94] ZigBee Home Automation Public Application Profile, 2010.
[95] Z-Wave Alliance. "Z-Wave." Internet: http://www.z-wave.com, 2011 [Accessed: 24th

October 2011]
[96] IEEE Standard for Broadband over Power Line Networks: Medium Access Control and

Physical Layer Specifications, IEEE Standard 1901, 2010.
[97] HomePlug Powerline Alliance. "HomePlug 1.0 Technology White Paper." Internet:

https://www.homeplug.org/tech/whitepapers/HP_1.0_TechnicalWhitePaper_FINAL.p
df, 10th February 2005 [Accessed: 24th October 2011]

[98] Sensus. "BT Chooses Sensus-Arquiva Partnership for Smart Grid Communication."
Internet: http://www.sensus.com/web/usca/news/display/bt-chooses-sensus-arqiva-
partnership-for-smart-grid-communication-press-release-html-page, 5th August 2010
[Accessed: 24th October 2011]

http://www.sbicouncil.org/energy10-soft
http://sel.me.wisc.edu/trnsys
http://www.mathworks.co.uk/products/matlab/
http://www.mathworks.co.uk/products/simulink/
http://reverseblade.blogspot.com/2009/02/c-versus-c-versus-java-performance.html
http://www.z-wave.com/
http://www.homeplug.org/tech/whitepapers/HP_1.0_TechnicalWhitePaper_FINAL.pdf
http://www.homeplug.org/tech/whitepapers/HP_1.0_TechnicalWhitePaper_FINAL.pdf
http://www.sensus.com/web/usca/news/display/bt-chooses-sensus-arqiva-partnership-for-smart-grid-communication-press-release-html-page
http://www.sensus.com/web/usca/news/display/bt-chooses-sensus-arqiva-partnership-for-smart-grid-communication-press-release-html-page

243

[99] Arquiva. "Leading Meter Manufacturers to Integrate FlexNet, from Sensus." Internet:
http://www.arqiva.com/corporate/press/archive/2011/2011-8-12%20-
%20Leading%20meter%20manufacturers%20to%20integrate%20FlexNet,%20from%2
0Sensus.pdf, 12th August 2011 [Accessed: 24th October 2011]

[100] Sensus. "FlexNet System Specifications." Internet:
http://www.sensus.com/documents/10157/32460/amr_456.pdf, 22nd April 2010
[Accessed: 24th October 2011]

[101] IEEE Standard for Metropolitan Area Networks - Part 16: Air Interface for Broadband
Wireless Access Systems, IEEE Standard 802.16, 2009.

[102] R. P. Lewis, P. Igic, and Z. Zhongfu, "Assessment of communication methods for smart
electricity metering in the U.K," in Sustainable Alternative Energy (SAE), 2009 IEEE
PES/IAS Conference on, 2009, pp. 1-4.

[103] S. Kim, E. Y. Kwon, M. Kim, J. H. Cheon, S. Ju, Y. Lim, and M. Choi, "A Secure Smart-
Metering Protocol Over Power-Line Communication," Power Delivery, IEEE
Transactions on, vol. 26, no. 4, pp. 2370-2379, 2011.

[104] IEEE Standard for Information Technology - Part 3: Carrier sense multiple access with
Collison Detection Access Method and Physical Layer Specifications, IEEE Standard
802.3, 2008.

[105] IEEE Standard for Information Technology Specific Requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendent
5: Enhancements for Higher Throughput, IEEE Standard 802.11n, 2009.

[106] W. Stallings, "Data and computer communications," 8th ed. ed Upper Saddle River,
N.J.: Pearson Prentice Hall ; London : Pearson Education Ltd., 2007, p. 43.

[107] A. Clinick. "Script Happens.NET." Internet: http://msdn.microsoft.com/en-
us/library/ms974577.aspx, 25th June 2001 [Accessed: 14th November 2011]

[108] W3C. "Extensible Markup Language (XML) 1.0 (Fifth Edition)." Internet:
http://www.w3.org/TR/REC-xml/, 26 November 2008 [Accessed: 23rd November
2011]

[109] S. Chowdhury, G. A. Taylor, S. P. Chowdhury, A. K. Saha, and Y. H. Song, "Modelling,
simulation and performance analysis of a PV array in an embedded environment," in
Universities Power Engineering Conference, 2007. UPEC 2007. 42nd International,
2007, pp. 781-785.

[110] J. A. Gow and C. D. Manning, "Development of a photovoltaic array model for use in
power-electronics simulation studies," Electric Power Applications, IEE Proceedings -,
vol. 146, no. 2, pp. 193-200, 1999.

[111] K. Kurobe and H. Matsunami, "New two-diode model for detailed analysis of
multicrystalline silicon solar cells," Japanese journal of applied physics, vol. 44, no. p.
8314, 2005.

[112] K. Ishaque, Z. Salam, and Syafaruddin, "A comprehensive MATLAB Simulink PV system
simulator with partial shading capability based on two-diode model," Solar Energy,
vol. 85, no. 9, pp. 2217-2227, 2011.

[113] M. AbdulHadi, A. M. Al-Ibrahim, and G. S. Virk, "Neuro-fuzzy-based solar cell model,"
Energy Conversion, IEEE Transactions on, vol. 19, no. 3, pp. 619-624, 2004.

http://www.arqiva.com/corporate/press/archive/2011/2011-8-12%20-%20Leading%20meter%20manufacturers%20to%20integrate%20FlexNet,%20from%20Sensus.pdf
http://www.arqiva.com/corporate/press/archive/2011/2011-8-12%20-%20Leading%20meter%20manufacturers%20to%20integrate%20FlexNet,%20from%20Sensus.pdf
http://www.arqiva.com/corporate/press/archive/2011/2011-8-12%20-%20Leading%20meter%20manufacturers%20to%20integrate%20FlexNet,%20from%20Sensus.pdf
http://www.sensus.com/documents/10157/32460/amr_456.pdf
http://msdn.microsoft.com/en-us/library/ms974577.aspx
http://msdn.microsoft.com/en-us/library/ms974577.aspx
http://www.w3.org/TR/REC-xml/

244

[114] L. Ho, L. Min-Jung, L. Se-Na, L. Hwa-Chun, N. Hae-Kon, and P. Sung-Jun, "Development
of photovoltaic simulator based on DC-DC converter," in Telecommunications Energy
Conference, 2009. INTELEC 2009. 31st International, 2009, pp. 1-5.

[115] M. R. AlRashidi, M. F. AlHajri, K. M. El-Naggar, and A. K. Al-Othman, "A new
estimation approach for determining the I/V characteristics of solar cells," Solar
Energy, vol. 85, no. 7, pp. 1543-1550, 2011.

[116] A. R. Hambley, Electrical engineering : principles and applications, 2nd ed. ed. Upper
Saddle River, N.J. :: Prentice Hall, 2001.

[117] N. B. Dale, C. Weems, and J. McCormick, "Programming and problem solving with
Ada," Lexington, Mass: D. C. Heath, 1994, p. 722.

[118] T. Croft, R. Davison, and M. Hargreaves, Engineering mathematics : a foundation for
electronic, electrical, communications, and systems engineers, 3rd ed. ed. Harlow:
Prentice Hall, 2001.

[119] N. B. Dale, C. Weems, and J. McCormick, Programming and problem solving with Ada.
Lexington, Mass: D. C. Heath, 1994.

[120] R. Rynkiewicz, "Discharge and charge modeling of lead acid batteries," in Applied
Power Electronics Conference and Exposition, 1999. APEC '99. Fourteenth Annual,
1999, pp. 707-710 vol.2.

[121] M. Durr, A. Cruden, S. Gair, and J. R. McDonald, "Dynamic model of a lead acid battery
for use in a domestic fuel cell system," Journal of Power Sources, vol. 161, no. 2, pp.
1400-1411, Oct 2006.

[122] H. J. Schaetzle and D. P. Boden, "Lead-Acid Batteries for Remote Photovoltaic
Applications," in Telephone Energy Conference, 1978. INTELEC '78. International,
1978, pp. 244-248.

[123] O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, "A Generic Battery Model for the
Dynamic Simulation of Hybrid Electric Vehicles," in Vehicle Power and Propulsion
Conference, 2007. VPPC 2007. IEEE, 2007, pp. 284-289.

[124] Mathworks. "Simple Battery Model." Internet:
http://www.mathworks.co.uk/help/toolbox/physmod/elec/ref/genericbattery.html,
[Accessed: 29th September 2009]

[125] Electricity metering equipment (a.c.). General requirements, tests and test conditions.
Metering equipment (class indexes A, B and C), BS EN ISO 50470-1, 2006.

[126] Building materials and products. Procedures for determining declared and design
thermal values, BS EN ISO 10456, 2007.

[127] F. P. Incropera, Fundamentals of heat and mass transfer, 6th ed. ed. Hoboken, N.J.:
Wiley, 2007.

[128] Thermal performance of windows, doors and shutters - Calculation of thermal
transmittance - Part 1: General, BS EN ISO 10077-1, 2006.

[129] R. Perez, P. Ineichen, R. Seals, J. Michalsky, and R. Stewart, "Modeling daylight
availability and irradiance components from direct and global irradiance," Solar
Energy, vol. 44, no. 5, pp. 271-289, 1990.

[130] Heatline Radiators. "Radiators Specification." Internet:
http://www.heatlineradiators.co.uk/menu_radiators_spec.htm, [Accessed: 30th
September 2010]

http://www.mathworks.co.uk/help/toolbox/physmod/elec/ref/genericbattery.html
http://www.heatlineradiators.co.uk/menu_radiators_spec.htm

245

[131] US Department of Energy. "EnergyPlus Weather Data." Internet:
http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm,
[Accessed: 22nd January 2012]

[132] G. M. S. Azevedo, M. C. Cavalcanti, K. C. Oliveira, F. A. S. Neves, and Z. D. Lins,
"Evaluation of maximum power point tracking methods for grid connected
photovoltaic systems," in Power Electronics Specialists Conference, 2008. PESC 2008.
IEEE, 2008, pp. 1456-1462.

[133] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: MIT Press, 2004.
[134] Energy Saving Trust, "Measurement of Domestic Hot Water Consumption in

Dwellings," 2008.
[135] I. Richardson, M. Thomson, D. Infield, and C. Clifford, "Domestic electricity use: A

high-resolution energy demand model," Energy and Buildings, vol. 42, no. 10, pp.
1878-1887, 2010.

[136] I. Richardson, M. Thomson, D. Infield, and A. Delahunty, "Domestic lighting: A high-
resolution energy demand model," Energy and Buildings, vol. 41, no. 7, pp. 781-789,
2009.

[137] "The Shunting Yard Algorithm." Internet:
http://en.literateprograms.org/Shunting_yard_algorithm_%28C%29, 1st February
2008 [Accessed: 10th January 2012]

[138] ic#code. "SharpDevelop." Internet: http://www.icsharpcode.net/OpenSource/SD/,
2012 [Accessed: 10th January 2012]

http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm
http://en.literateprograms.org/Shunting_yard_algorithm_%28C%29
http://www.icsharpcode.net/OpenSource/SD/

	Modelling Smart Domestic Energy Systems
	Liam J. MacIsaac
	Abstract
	Acknowledgements
	I would like to take this opportunity to thank everybody who has helped me in some way or another during the preparation of this thesis. My supervisor, Professor Andrew Knox for his help and guidance throughout the project and for the time spent revie...
	Finally, and most importantly, I would especially like to thank all of my friends and family who have been very supportive throughout the duration of my PhD and especially Rachael who has provided plenty of moral support and has put up with my constan...
	Also to everyone else who has helped me in some way during the preparation of this thesis and has not been mentioned here, thank you.
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1. Aims and Objectives
	1.2. Original Contributions of this Research
	1.2.1. Flexible Software Platform
	1.2.2. Photovoltaic Maximum Power Point Tracking

	1.3. Outline

	Chapter 2 Background
	2.1. Smart Grids
	2.1.1. 20th Century Energy Networks

	Figure 2-2: UK heating fuel mix in 2007 [4].
	Figure 2-3: UK overall fuel mix for all energy sectors in 2009 [5].
	2.1.2. Low-Carbon Electricity
	2.1.3. Low-Carbon Heating
	2.1.4. Low-Carbon Transport
	2.1.5. Advanced Metering Infrastructure
	2.1.6. Smart Grids Summary
	2.2. Smart Grid Software Modelling
	2.2.1. EnergyPlus
	2.2.2. Other Building Energy Analysis Software
	2.2.3. Summary of Smart Grid Software Modelling
	Core Features
	Environment
	Electricity Modelling
	Thermal Modelling
	Communication

	2.3. Summary of Project Background

	Chapter 3 Software Design
	3.1. Choice of Application Development Platform
	3.2. Representation of Models
	3.2.1. Techniques in Existing Packages
	3.2.2. Design of New Technique

	3.3. Physical Domain Representations

	Figure 3-3: Software representation of the graphical model shown in Figure 3-2.
	3.3.1. Electrical

	Figure 3-5: Equivalent schematic of an electrical node component.
	3.3.2. Thermal
	3.3.3. Data Communication
	3.3.4. Asynchronous Communication
	3.3.5. Others
	3.4. Defining & Simulating Component Behaviour
	3.4.1. Component Appearance and Configuration
	3.4.2. Simulation Technique
	3.4.3. Implementing Component Behaviour

	3.5. Simulation Results
	3.5.1. Recording Results
	3.5.2. Mathematical Operations on Results
	3.5.3. Analysing Results

	3.6. Persistence of Models

	Figure 3-16: XML schema for a component library file.
	Figure 3-17: XML schema for a system model file.
	Figure 3-18: XML schema for component behaviour elements.
	Figure 3-19: XML schema for component instance elements.
	3.7. Application Design Summary

	Figure 3-20: Diagram illustrating the architecture of the new simulation package.
	Chapter 4 Implementation of Models
	4.1. Electrical Components
	4.1.1. Ideal Sources
	4.1.2. Solar Panel
	4.1.2.1. Operating Point Detection Algorithms
	4.1.2.2. Comparison of Operating Point Detection Algorithms

	4.1.3. Battery Storage
	4.1.4. Connection and Control
	4.1.4.1. Wire
	4.1.4.2. Switch
	4.1.4.3. Digital Switch
	4.1.4.4. Relay
	4.1.4.5. Smart Meter

	4.1.5. Loads
	4.1.5.1. Static Loads
	4.1.5.2. Multi-Mode Loads
	4.1.5.3. Time-Varying Loads
	4.1.5.4. Dynamic Loads

	4.2. Communication Components
	4.2.1. Scheduled Data Generator
	4.2.2. Repeater

	4.3. Building Elements
	4.3.1. Materials Database
	4.3.2. Surface
	4.3.3. Door
	4.3.4. Window
	4.3.4.1. ISO 10077-1 Window Geometry
	4.3.4.2. Software Modelling of Window Geometry
	4.3.4.3. Translating Hierarchical Model to ISO Standard Model
	4.3.4.4. Thermal Transmittance Calculation
	4.3.4.5. Window Model Definition

	4.3.5. Room
	4.3.6. Static Room

	4.4. Heating and Ventilation
	4.4.1. Natural Ventilation Component
	4.4.2. Radiator
	4.4.3. Electric Heater

	4.5. Weather
	4.5.1. Ambient Temperature Pattern
	4.5.2. Random Ambient Temperature
	4.5.3. Solar Irradiation Pattern

	4.6. Other Components
	4.6.1. Scheduled Asynchronous Messaging
	4.6.2. List and Table Parameter Watch

	4.7. Summary

	Chapter 5 Testing & Validation
	5.1. Unit Testing
	5.2. Automated Functional Test Program
	5.3. Graphical User Interface Testing
	5.4. Experimental Validation Studies – Thermal Models
	5.4.1. Experimental Methodology
	5.4.2. Test Room Experiment – Heat Loss Response
	5.4.3. Test Room Experiment – Heated Room Response

	5.5. Experimental Validation Study – Electrical Circuit
	5.6. Summary of Testing and Validation

	Chapter 6 Case Study
	6.1. Home Energy System Overview
	6.2. Maximum Power Point Tracking
	6.2.1. Background
	6.2.2. Newly Developed Algorithm
	6.2.2.1. Description of the New Algorithm
	6.2.2.2. Algorithm Comparison

	6.2.3. MPPT Controller
	6.2.4. Battery Controller

	6.3. Water Heater
	6.4. Domestic Load Model
	6.5. Metering System and Control Algorithm
	6.6. Simulation Results
	6.6.1. Baseline Case
	6.6.2. Load Balance

	6.7. Summary of Results

	Chapter 7 Conclusions
	7.1. Chapter Summary
	7.2. Novel Contributions of the Research
	7.3. Future Work and Improvements

	References

