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Abstract 
The increasing price of fossil fuels, coupled with the increased worldwide focus on their 

contribution to climate change has driven the need to develop cleaner forms of energy 

generation. The transition to cleaner energy sources has seen a much higher penetration of 

renewable sources of electricity on the grid than ever before. Among these renewable 

generation sources are wind and solar power which provide intermittent and often 

unpredictable energy generation throughout the day depending on weather conditions. The 

connection of such renewable sources poses problems for electricity network operators 

whose legacy systems have been designed to use traditional generation sources where 

supply can be increased as required to meet demand. Among the solutions proposed to 

address this issue with intermittency in generation are storage systems and automation 

systems which aim to reduce demand in order to match the available renewable generation. 

Such a transition would introduce a requirement for more advanced technology within 

homes to provide network operators with greater control over domestic loads. 

Another aspect to the transition towards a low-carbon society is the change that will be 

required to domestic heating systems. Current domestic heating systems largely rely on 

Natural Gas as their fuel source. In order to meet carbon reduction targets, changes will need 

to be made to domestic buildings including insulation and other energy efficiency measures. 

It is also possible that present systems will begin to be replaced by new heating technologies 

such as ground and air source heat pumps. 

Due to the effect that such technological transitions will have on domestic end-users, it is 

important that these new technologies are designed with end-users in mind. It is therefore 

necessary that software tools are available to model and simulate these changes at the 

domestic level to guide the design of new systems.  

This thesis provides a summary of some of the existing building energy analysis tools that are 

available and shows that there is currently a shortcoming in the capabilities of existing tools 
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when modelling future domestic smart grid technologies. Tools for developing these 

technologies must include a combination of building thermal characteristics, electrical energy 

generation and consumption, software control and communications.  

A new software package was developed which allows for the modelling of small smart grid 

systems, with a particular focus on domestic systems including electricity, heat transfer, 

software automation and control and communications. In addition to the modelling of 

electrical power flow and heat transfer that is available in existing building energy simulation 

packages, the package provides the novel features of allowing the simulation of data 

communication and human interaction with appliances. The package also provides a flexible 

framework that allows system components to be developed in full object-orientated 

programming languages at run time, rather than having to use additional third-party 

development environments. 

As well as describing the background to the work and the design of the new software, this 

thesis describes validation studies that were carried out to verify the accuracy of the results 

produced by the package. A simulation-based case study was also carried out to demonstrate 

the features offered by the new platform in which a smart domestic energy control system 

including photovoltaic generation, hot water storage and battery storage was developed. 

During the development of this system, new algorithms for obtaining the operating point of 

solar panels and photovoltaic maximum power point tracking were developed. 
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Chapter 1  

Introduction 

A significant proportion of current research into energy systems is partially motivated by 

government targets that have been set to reduce carbon emissions as part of the overall goal 

to reduce the effect that our production of carbon dioxide has on climate change. A number 

of advances are being made in improving carbon emissions at the point of energy generation 

through the use of cleaner renewable sources of energy and through the use of new 

technologies such as carbon capture and storage for traditional fuel-fired power stations. 

Advances are also being made at the point of use such as the reduction of building energy 

consumption through education of occupants and through technological advances which 

improve the efficiency of appliances at the point of consumption.  

The development of new technologies to reduce carbon emissions has, however, introduced 

new problems within energy systems which must now be solved. Electricity generation which 

has typically been centralised at large power stations is now moving to more remote parts of 

the electricity grid where the availability of wind, tidal and wave power is at its greatest. This 

introduces constraints at locations on the energy network where generation can exceed the 

rated capacity of a section of network which was never designed to support large generators. 

Increasing renewable generation also poses network stability issues whereby the export of 

renewable generators is dictated by the weather rather than by the network operators, 

which can result in availability of energy being high when demand is low and vice versa. 

The term “Smart Grid” is used to collectively describe a set of technologies which aim to 

mitigate some of these problems that are introduced by adding large amounts of renewable 

generation to the electricity network. This broad term covers many aspects of grid operation 

which are being made more intelligent. However, the overriding goal of all of these 
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technological improvements is to enable the introduction of renewable generation sources 

into an electricity grid which was not originally designed for them. During the background 

research phase of this project, shifting demand to times of higher generation availability and 

introducing storage within the grid were the two broad approaches that were considered to 

be most widely accepted as a potential solution to the intermittency of renewable 

generation.  

Additionally, other technologies such as low-carbon heating sources, electric vehicles, and 

improvements to building thermal efficiency were identified as changes which could be 

introduced at the domestic level as part of the overall transition to the smarter grid. These, 

coupled with the introduction of smart meters which provide a two-way communications link 

between the home and utility supplier and the wider availability of low-cost computing 

devices pave the way for the development of smarter home energy control systems.  

After a detailed study of existing software applications for modelling home energy systems, it 

was concluded that much of the existing software available for this purpose takes a 

traditional system modelling approach, with focus placed on the accurate simulation of 

electrical and thermal properties of buildings. The goals of this project were therefore chosen 

to examine home energy systems from a software engineering approach, focussing on the 

control logic and communication issues involved in developing domestic smart grid systems, 

while accommodating the simulation of the physical electrical and thermal domains which 

these control systems ultimately interact with. 

1.1. Aims and Objectives 

Chapter 1 The overall aim of this project is to take a novel software engineering based 

approach to the modelling of domestic energy systems, with the focus placed on the control 

and communication elements of systems which will become available during the transition to 

a smarter energy network. Rather than develop new algorithms which operate at grid-level, 

this research aims to provide a tool that can be used to model energy systems within a home 

as part of a wider grid-level control system. 
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The following project objectives have been set in order to work towards this overall aim: 

 Carry out a survey of existing software for domestic energy modelling and identify the 

features that are available in existing packages for smart grid modelling and which 

new features would be desirable. 

 Use the set of requirements developed in the literature survey to design and 

implement a new domestic smart grid modelling package with a particular emphasis 

on the software and data transfer aspects of the system. The new package should be 

able to support the modelling of electrical energy flow and building thermal 

characteristics to allow control systems to be modelled in context. 

 Perform theoretical and experimental validation of the new package, where relevant, 

to quantify the accuracy of simulations which are carried out within the package. 

 Carry out a domestic smart grid case study using existing technologies combined with 

novel ideas to demonstrate the suitability of the package for use within an overall 

smart grid system deployment. 

1.2. Original Contributions of this Research 

The research presented in this thesis provides a number of original contributions to 

knowledge in the field. These are described below. 

1.2.1. Flexible Software Platform 

A flexible software platform has been developed for the modelling of smart domestic energy 

systems. As well as allowing for the simulation of electrical power flow and heat transfer 

within a building – features commonly found in existing building energy simulation packages 

– the package offers a number of novel features. The incorporation of data communication 

simulation allows for systems within the home to communicate with each other to allow the 

simulation of distributed control or monitoring systems. Human interaction with appliances 

is modelled to allow for the consideration of the effect that human behaviour has on 

domestic energy consumption. The package provides the ability to implement component 

and control system behaviour directly in fully-featured object-orientated programming 
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languages directly, in contrast to existing building energy simulation packages which 

generally rely on custom scripting languages or the implementation of additional software 

modules for complex logic. The development of this package is the subject of a conference 

paper [1]. 

1.2.2. Photovoltaic Maximum Power Point Tracking 

A case study was carried out during the research that illustrates the features of the package. 

During the development of this study, a new learning-based photovoltaic maximum power 

point tracking algorithm was developed that offers improvements over some existing 

methods of maximum power point tracking. The maximum power point tracking algorithm is 

the subject of a conference paper [2]. An algorithm was also developed to obtain the 

operating point of a solar panel when the load resistance on the panel’s terminals is known. 

This algorithm is the subject of a journal paper [3]. 

1.3. Outline 

The remaining chapters of this thesis are as follows: 

Chapter 2 presents the background to this research project. Section 2.1 describes the 

transition from the fossil-fuel based 20th century energy systems to the future low-carbon 

smart grid and describes the need for software modelling packages to model the domestic-

level effects of these changes. Section 2.2 provides a comprehensive review of existing 

software that could potentially be used for domestic smart grids which provides the basis for 

the requirements of the new software package. 

Chapter 3 describes in detail the design of the new software modelling package that was 

developed during this project. The decisions behind the various parts of the package design 

are discussed and UML models provided for various parts of the software.  The chapter 

concludes with an overview of the architecture of the new package. 

Chapter 4 describes the selection of components that were developed for use with the 

package to simulate the behaviour of building elements. These include electrical components 
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(generators, appliances and switching); thermal components (building structural elements, 

heating, ventilation and weather); communication components (data sources and data 

routing); and many other components to control logic within simulations. 

Chapter 5 describes the testing that was carried out during and after the development of the 

software package, including the theoretical and experimental validation of the simulation 

results that were obtained. Two case studies were carried out within homes to compare the 

output of the package against real-world scenarios. 

Chapter 6 presents a case study of a proposed domestic smart grid system which was 

developed using the new software package. This system includes an improved maximum 

power point tracking algorithm for solar panels and an integrated home energy system which 

is capable of utilising hot water and battery storage to modify the daily load profile of a 

home.  

The work presented in the thesis is summarised in the conclusions in Chapter 7. The chapter 

describes the key findings of the project and the future improvements that could be made to 

each phase of the project. 
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Chapter 2  

Background 

This chapter describes the current changes in energy generation, distribution and 

consumption patterns that are taking place around the world which have provided the 

motivation for this thesis. A particular emphasis is placed on the UK. A review of the changes 

from the “top-down” energy systems of the 20th century to the new “Smart Grid” systems of 

the 21st century is performed. An analysis of how these changes may impact the design of 

domestic energy systems then follows. The chapter concludes with a study of existing 

integrated building energy analysis software with a focus on assessing the capabilities of 

packages for modelling smart domestic energy systems. 

2.1. Smart Grids 

2.1.1. 20th Century Energy Networks 

In the UK, electricity has traditionally been generated at large, centralised power stations. 

Coal, oil, gas and nuclear power stations are capable of producing a variable power output up 

to a fixed maximum capacity when provided with a continuous supply of the necessary fuel. 

While hydro-electric plants rely on a renewable source of energy in the form of stored water, 

they can also be viewed as a form of generation which can be deployed when demand 

requires, as long as the required volume of water has been stored or is available. 

Traditional power stations are connected to a high-voltage transmission network which 

transports energy around the country to where it is needed. Energy is then carried by lower 

voltage distribution networks to the end-users. Throughout this process, a large amount of 

control and monitoring is placed on the transmission side of the network. The energy leaving 

power stations is monitored for both billing and quality purposes and the voltage and 

frequency are monitored at multiple points around the transmission network to ensure that 
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they are kept within acceptable tolerances. Careful balancing of supply and demand is 

required to keep the grid operating within its required voltage and frequency range. 

 

Figure 2-1: Diagram illustrating the current architecture of the UK’s domestic 

energy system. 

In contrast to a reasonably widespread use of automated control and monitoring on the 

generation and transmission side of the electricity network, there is significantly less control 

and monitoring on the distribution network. Electricity consumption at the domestic end-

user level is carried out using either mechanical or digital meters from which the readings are 

periodically recorded by the utility company. As a result of this process, no information is 

available about the real-time use of energy on a per-user basis. An exception to this is for 

customers with Economy 7 tariffs. These tariffs use two meters in a time-switched 

configuration which provides energy companies with the ability to sell electricity at a cheaper 
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rate during a seven hour off peak window during the night. However, this primitive form of 

time-of-use tariff does not allow electricity suppliers to provide pricing which reflects real-

time energy demand. Figure 2-1 above illustrates the approximate architecture of the UK’s 

energy system from generation, through transmission and distribution to the end-user. 

 

Figure 2-2: UK heating fuel mix in 2007 [4]. 

  

Figure 2-3: UK overall fuel mix for all energy sectors in 2009 [5]. 

Heating and transport also play a major role in worldwide energy consumption. In the UK, 

heating accounts for 46% of the overall energy budget with transport accounting for 37% [4]. 

Energy use statistics from 2007 shown in Figure 2-2 indicate that 69% of all heat energy was 
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a 14% share. Statistics from 2009 in Figure 2-3 show that the use of natural gas at the end-

user level accounted for 30.5% of overall energy consumption whereas electricity only 

accounted for 18%. Figure 2-3 also shows that petroleum-based fuels which provide the 

majority of the UK’s transport energy account for 47.5% of overall energy consumption. 

These statistics illustrate the large role that heating and transport play in energy 

consumption in the UK and also the extent to which the country relies on non-renewable 

fossil fuels to meet these energy requirements.  

2.1.2. Low-Carbon Electricity 

EU statistics from 2004 indicate that the UK is largely dependent on imported coal and, for 

the first time, is marginally dependent on imported natural gas due to depleting domestic 

stocks. [6] The dependence on depleting fossil fuel resources - especially those from foreign 

origins - coupled with European directives to reduce carbon emissions, has resulted in the UK 

government publishing a long term strategy which sets a target for producing 40% of UK 

electricity from low-carbon sources by 2020. [7] A proportion of this reduction will be made 

up by generating 30% of the overall electricity budget from renewable sources. Coal and gas 

use for generation with carbon capture and storage (CCS) in addition to new nuclear power 

stations could also feature as part of this plan. From a domestic end-user point of view, the 

main energy reductions dictated by this plan will be found by increased energy efficiency 

within the home. Financial incentives are also likely to be given to install low carbon 

electricity and heating systems, and energy companies will begin the roll-out of smart 

meters. The Scottish Government aims to exceed UK targets by generating 100% of 

electricity consumed in Scotland from renewable sources by 2020. [8] As of 2010, 24.1% of 

energy consumed in Scotland was produced from renewable sources, a slight decrease on 

the 27.3% figure of 2009 [9]. 

While the widespread incorporation of renewable generation sources into the power 

network is generally positive in terms of producing low-carbon sustainable electricity, its 

introduction also comes with some disadvantages. Renewable generation which depends on 

weather conditions, most notably wind and solar generation, are intermittent and 

unpredictable sources of energy generation. Hence excess energy may be generated at times 
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when it is not required, or conversely, not enough energy is generated when it is most 

needed. A recent example [10] of this phenomenon occurred in Scotland between April 5th 

and April 6th 2011 when larger than normal volumes of rain in conjunction with high wind 

speeds resulted in more wind and hydroelectricity being generated than was being used. This 

excess generation coupled with a network fault which prevented the export of excess 

electricity to England resulted in a number of wind generation companies being required to 

stop producing electricity and being compensated a total of £900,000 for the resulting loss of 

income. 

Storage systems have been proposed in recent research as one method of smoothing out 

these intermittency issues [11-16]. A benefit of storage over other technologies for the 

mitigation of intermittency issues is that it does not require a behavioural change from end 

users – a continuous supply of energy is always available. A major disadvantage to 

widespread use of storage technology at present is the relatively expensive cost per kWh of 

electrical storage systems. 

Another factor to be considered with a number of renewable generation systems – 

particularly solar power – is the non-linear voltage-current relationship of the generators. In 

the case of photovoltaic panels this means that for a given level of incident solar radiation, 

there is a particular voltage-current combination which will yield the maximum power 

generation. A large amount of research has been undertaken for various forms of renewable 

generation into methods to track maximum power points [17-25]. These maximum power 

point tracking algorithms (MPPT) generally operate by varying the load on the renewable 

generation system to increase the power yield from the system. This ideal load setting can be 

greater or less than the actual system demand.  

2.1.3. Low-Carbon Heating 

In section 2.1.1 it was stated that around 46% of the UK’s domestic energy consumption is 

for heating buildings and water and that the primary domestic heating fuel in the UK is 

natural gas [4] - around 1000TWh of natural gas is consumed annually [5]. While coal-fired 

and gas-fired electrical energy generation with CCS is a viable option for producing cleaner 
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electricity from coal and gas on a larger scale, there is less that can be done to reduce 

emissions from gas on a domestic level. One idea proposed in the UK low-carbon transition 

plan is to replace existing gas boilers with more efficient models, therefore producing the 

same quantity of heat while producing a lower level of emissions due to a reduced fuel 

consumption. Other efficiency savings proposed include improving the levels of insulation in 

homes and installing triple glazed windows to reduce heat loss through windows. 

While limited carbon reductions can be achieved through efficiency savings, in the long term 

different heating technologies will have to be used to achieve further reductions and to 

reduce dependency on foreign imports of fossil fuels. Solar water heating systems which use 

focussed sunlight to heat water pipes are already commercially available, as are ground, air 

and water source heat pumps which use a small amount of electricity to circulate fluid to 

recover stored heat. In areas where renewable sources of bio fuels are available in the form 

of timber, farm crop by-products or organic waste, combustion systems can be used for 

heating. While these heat sources may not be carbon-free, some of them may be considered 

“carbon-neutral”. An example of this is that when wood from trees is burnt, CO2 is released, 

but trees which are planted to replace them are capable of breaking down CO2 in the 

atmosphere. Over long periods of time, the carbon cycle of trees is therefore essentially 

neutral. 

Another development in low-carbon heating technologies is the use of combined heat and 

power (CHP) systems which provide both heating and electricity. Small-scale systems use 

heat pumps, waste heat or combustion of fuel in conjunction with a heat-to-electricity 

conversion system such as a Stirling Engine [26-27] or thermoelectric generators [28-29]. 

Larger scale systems known as district heating schemes use a centralised heat source to 

provide hot water or steam for heating to surrounding homes and businesses through 

insulated pipes. While there are only a small number of district heating systems currently 

operating in the UK, this type of heat provision has been widely used throughout Europe for 

some time with a large number of European countries generating a major proportion of their 

domestic heating from such schemes. As illustrated in Figure 2-4, a number of European 
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countries are providing over half of their domestic heating energy from district heating 

schemes while Iceland produces nearly all of its domestic heating through district heating. 

 Some district heating systems rely on natural geothermal energy; others will use a readily 

available source of industrial waste heat such as the cooling water from a coal or nuclear 

power station while and others may rely on more traditional methods of heat generation 

such as the combustion of oil, gas or solid fuels. An increasingly common method is to use 

domestic waste as a heating fuel to reduce required landfill capacities. This method is used in 

a district heating scheme in Nottingham in the UK [30] to provide heating to a number of 

large commercial users and over 4600 domestic customers. Centralised heat generation 

systems are advantageous for upgrading to low-carbon heat sources because they do not 

require the expensive process of upgrading individual homes – the heat source only requires 

to be changed at the distributor level. An example of this is the PDHU project [31] in London 

which used waste heat from the now closed Battersea power station. When the power 

station closed, gas-fired CHP units and boilers were installed to continue providing heat to 

the connected homes. 

 

Figure 2-4: Share of citizens served by district heating schemes in selected 

European countries. 
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Multiple technologies have been described that could be used to make the transition to low-

carbon heating in the UK, however, one factor which most of them have in common is that 

they require changes at the end-user level. This includes district heating schemes which, 

despite being commonplace in other European countries, would require a large initial 

investment in infrastructure in the UK. This is in contrast to the transition to low-carbon 

electricity sources in which the majority of changes can be made at the generation and 

distribution levels. 

2.1.4. Low-Carbon Transport 

In the document “Low Carbon Transport: A Greener Future” [32] published by the UK 

Department for Transport, a number of measures are outlined for the reduction in carbon 

emissions from the transport sector. The majority of the short-term measures described in 

this report focus on improving the efficiency of internal combustion engine vehicles to 

reduce their contribution to overall carbon emissions. However, the longer term measure of 

introducing lower carbon alternatives to existing vehicle technologies are of greater interest 

in the context of this work. 

Plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs) which either 

partially or fully use stored electricity as their main energy source provide an alternative to 

internal combustion engine vehicles and offer very low or zero carbon emissions at the point 

of use. A project is currently underway in London [33] to encourage the uptake of these 

vehicles. As identified in the London project, the main barrier to the uptake of electric 

vehicles is the need for charging points to regularly charge the Vehicle’s battery. The project 

aims to address this by providing a large number of fast charging points (single phase 230V, 

32A and three phase 500V, 200A) throughout the city in order to allow vehicles to be charged 

when they are away from the home.  

In the context of this research, the interesting aspect of electric vehicles is when they are 

connected to the domestic power system for charging. In section 2.1.2, energy storage and 

intelligent scheduling of demand were presented as two technologies which can potentially 

be used to mitigate the power system stability issues posed by the intermittent generation 
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from renewable sources. Within the context of a smart home, an electric vehicle can operate 

as a schedulable load. Additionally, with the correct type of bi-directional charging system 

[34] the vehicle can operate as a battery energy storage system offering the ability to support 

the grid when renewable generation output is reduced.  Two separate German studies have 

shown this use of electric vehicles to be a viable concept. The first [35] takes a conservative 

estimate that electric vehicles would be connected to the grid around 81% of the time and 

concludes that while unmanaged charging of vehicles increased peak grid load, charging can 

be managed in a way that shifts the load to a more desirable time for the grid with little or no 

effect on the mobility of the user of the vehicle. The second  study [36], which takes a more 

optimistic estimate that vehicles will be connected to the grid 89% of the time, concludes 

that a reduction of up to 16% in the fluctuation of overall grid energy demand can be 

achieved with 1 million electric vehicles in use.  

2.1.5. Advanced Metering Infrastructure 

The installation of Advanced Metering Infrastructure (AMI) or Smart Metering as it is also 

known is an indication that the type of control and monitoring that was previously only 

present at the generation and transmission levels of the electricity supply systems is now 

filtering down to the end-user level. The UK smart meter policy [7] dictates that smart meters 

should be installed in all UK households by 2020. This exceeds EU policy which mandates that 

all EU countries should have deployed smart meters to 80% of the population by 2020. [37] A 

number of other EU counties also plan to exceed the requirement. Italy has already deployed 

smart meters to around 75% of its households and France has a penetration of around 25%. 

[38] 

The initial aims of installing AMI as described in the UK low-carbon transition plan [7] are to 

encourage consumers to better understand their energy use and provide opportunities for 

energy saving. The government’s intention is that the deployment will allow utility 

companies to provide alternative tariffs which can reward energy saving and encourage end-

users to use energy when it is most desirable for the generation systems. Despite being 

government-mandated for these reasons, the installation of smart meters is also desirable 
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for the energy suppliers because it provides data which can be used to analyse usage 

patterns and also saves the manpower costs associated with reading traditional meters. 

Despite these relatively modest initial requirements of smart metering systems, utility 

companies within the UK are already deploying meters which far exceed these requirements. 

British Gas have publicly released the specification for their smart metering system, which is 

developed by Landis+Gyr [39]. GPRS communication is used to implement a two-way 

connection between the meter and the billing company. This allows for the meters to either 

transmit readings at predefined intervals back to the billing system, or for the billing system 

to request readings from the meter at any time. Both prepayment and credit modes are 

supported with the option of various all-day, on- and off- peak and time-of-use tariffs with 

rate intervals as short as 30 minutes. A primitive form of load shedding is also available 

within the meters whereby a power consumption limit (for example, 5kW) can be imposed 

on the user. When power consumption is close to this level the meter will sound an alarm 

and if the limit is exceeded the meter will cut all power to the property.  

The British Gas smart meter uses Zigbee Smart Energy Profile (SEP) [40] for local 

communication between the electricity meter, gas meter, communications unit and any in-

home displays. This is an industry-standard communications interface for smart energy 

related systems and provides capabilities beyond smart metering such as the control of 

smart appliances, heating and air conditioning systems. A software upgrade to enable these 

features would allow the meters to dynamically control appliances in response to changing 

electricity prices. 

Scottish Power have started to roll out smart meters to their customers which are also 

manufactured by Landis+Gyr and have similar capabilities to the British Gas meters [41]. 

Scottish and Southern Energy have also entered a partnership with Landis+Gyr to develop a 

smart meter with a particular focus on green energy [42]. This meter has the capability to 

allow the connection of local microgeneration to the grid as well as providing similar features 

to the meter already been discussed. OnStream, the National Grid’s metering business, have 

also developed a smart meter which has the ability to automatically control home appliances 

[43]. 
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A study into smart metering in the EU [38] has estimated that the installation of smart 

meters in every home in the EU will cost around €51 billion. The direct benefits from this 

installation to utility companies will be a saving in the operational costs of connection and 

disconnection of supplies and meter reading. This saving is estimated to be in the region of 

€26-41 billion which leaves a deficit of around €10-15 billion to recover. One of the main 

benefits of smart metering which the study proposes to meet this funding gap is the 

introduction of time of use tariffs (TOU) to reduce peak generation requirements. 

Primitive time of use tariffs have been present in the UK for a number of years in the form of 

the Economy 7 tariff [44] which provides seven hours of discounted electricity during the 

night in return for paying slightly higher prices during the rest of the day. This tariff has 

typically been provided by using two meters with a clock or radio based time-switch. While it 

provides the ability to offset electric heating loads to a time of lower electricity consumption, 

it does not have the ability to encourage customers to reduce loads at times when this is 

critical to grid operation. The intermittent nature of renewable sources which was discussed 

earlier provides a greater motivation to be able to adjust the times of day that these types of 

peak and off-peak charges apply. The ability to reduce electricity load when renewable 

generation levels are low reduces the need for expensive grid-based storage as described in 

section 2.1.2. 

Utility companies around the world, particularly in the USA, have developed time-of-use 

tariffs which are specifically designed to address the issue of reducing load at times critical to 

grid operation. In the state of California, a time of use pricing pilot project was carried out 

using four separate time-of-use schemes [45]. The most basic scheme trialled was traditional 

TOU that involves charging a price for a fixed peak period each day which is around double 

the price of the off-peak periods. This is comparable to the Economy 7 scheme already in use 

in the UK. The remainder of the schemes trialled are of a class known as critical peak pricing 

(CPP). These schemes charge between five and six times the off-peak price for a small 

number of critical hours during the day when the wholesale price of electricity is at its 

highest. Two variants of this scheme that were trialled were one where the critical hours 

were fixed and one where the critical hours could vary and participants were notified each 
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day when the critical priced hours, if any, would be. The advantage of the second scheme is 

that it is able to respond to forecasts of renewable generation. Additionally, a fourth trial was 

carried out where the CPP tariffs were assisted by smart thermostats which automatically 

control air conditioning systems based on price. The conclusions of this study were that the 

standard TOU scheme resulted in peak time energy use reductions of around 5% while the 

CPP tariffs resulted in a reduction of 8-15%. In the trial where smart thermostats were also 

used, peak consumption was reduced by as much as 25%. Another trial of CPP in Illinois 

which used email or SMS to communicate information about peak periods to customers each 

day showed similar results to the Californian trial, with peak reductions of around 15% [46]. 

It was noted that customers in this trial were more responsive to peak pricing events in the 

evenings. This is due to the fact that no automating technology was used and therefore 

customers had to be at home to be able to respond to price changes. 

2.1.6. Smart Grids Summary 

The primary motivation behind the transition to the smart grid from the existing power 

distribution networks of the 20th century is the increasing political pressure to move to low-

carbon energy systems. As discussed in 2.1.2, the transition to renewable electricity sources 

introduces more intermittency into the electricity supply which requires either storage or 

demand management technologies to ensure a reliable supply when climatic conditions are 

causing a low yield of renewable energy. In 2.1.5, the concept of AMI was discussed as a 

possible solution to the problem of shedding load from the power network when renewable 

energy generation is low. Smart meters using price signals sent from energy companies, 

coupled with emerging technologies such as smart thermostats and smart appliances can 

allow domestic end-users to play a more interactive role in the overall energy network. In 

2.1.3, renewable heating technologies were discussed. Of particular note was the fact that 

changes to renewable heating systems would require significant infrastructure changes at 

the end-user level as heat energy is generally produced where it is needed rather than 

centrally distributed.  

In conclusion, the transition from the current energy system architecture shown in Figure 2-1 

to a new Smart Grid system will involve extensive introduction of control and monitoring at 
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all stages of the energy system, from generation to the end user. New methods of renewable 

generation known as distributed or embedded generation will begin to be connected at 

remote points throughout the grid and microgeneration and storage devices may be 

connected at the consumer level to reduce dependency on grid supplies. Changes to 

buildings in the form of new heating systems and energy efficiency measures such as 

insulation, draft-proofing and window replacement may also be required. A possible 

architecture of this new grid is shown in Figure 2-5. 

 

Figure 2-5: Possible architecture of the future Smart grid, based on one proposed 

by the UK electricity networks strategy group. [47] 

2.2. Smart Grid Software Modelling 

As discussed in section 2.1, the transition to Smart Grid systems will involve changes at the 

domestic and commercial end-user level in the form of smart metering systems, demand 

management, distributed generation, distributed storage and new methods of heating. 
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These changes involve new challenges when designing domestic energy systems as the flow 

of energy is no longer unidirectional from the electricity or gas supply system to the 

consumer. The use of energy from sources other than the grid will become more common 

and the net energy flow may be either from the grid to the home or from the home to the 

grid depending on installed microgeneration or storage capacity. Additionally, different 

control strategies may be implemented to allow the energy supply network to schedule the 

use of various domestic appliances and storage devices to coincide with times dictated by 

available grid capacity. 

The introduction of smart grid technology will require an ever-increasing number of design 

decisions to be made when implementing domestic energy systems. Traditionally thought of 

as separate entities, electricity and heating will become more interdependent with the 

increased use of new technologies such as combined heat and power systems and electric 

heating from renewable electricity sources. Such interdependency will see new types of 

design criteria and constraints being considered when developing domestic energy systems. 

For example, when designing a single-building microgeneration and electricity storage 

system, maintaining a comfortable heating temperature while managing the use of electricity 

from the grid may be a design parameter. Criteria relating to the “smart” aspects of the 

future grid will also need to be considered. This would include communications between 

domestic appliances, price signals from the utility network and software control algorithms 

to co-ordinate the local use of energy.  

Software modelling and simulation techniques have been widely applied to the solution of 

system-level engineering problems in the past and it is therefore sensible to investigate their 

application to the emerging concept of smart grids. In investigating software modelling tools, 

it becomes apparent that the most appropriate category of tools for use with domestic smart 

grid systems are tools known as building energy analysis tools. Building energy analysis tools  

use some form of description of a building’s construction in addition to other input 

parameters to perform analyses of the building’s energy usage. Inputs and outputs vary from 

tool to tool, however typical inputs may be: building construction materials and dimensions; 

weather data; local electricity generation and usage; choice of heating fuel; heating or air 
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conditioning system parameters; and occupancy data. Typical outputs are likely to include: 

energy efficiency rating; heating fuel and electricity consumption details; room 

temperatures; and costs. These tools are particularly appropriate for smart grid modelling 

due to their support for electricity, heating and control system analyses. 

A comprehensive comparison of building energy analysis tools is given in [48]. Rather than 

reiterate the findings of previous comparisons in this thesis, a survey of the literature on one 

of the most commonly used tools, EnergyPlus, will be presented to give the required insight 

into the techniques widely used in this type of software. EnergyPlus, which is developed by 

the US Department of Energy, was selected specifically because of its widespread use 

internationally for building energy analysis and also because of the wealth of published 

research on its operation. The review of EnergyPlus will be followed by brief summaries of a 

number of other building energy analysis packages to compare the features available in each. 

The section will conclude with a summary of the current state of the art of integrated 

building modelling tools. 

2.2.1. EnergyPlus 

EnergyPlus [49-50] is a comprehensive building energy simulation tool which is developed by 

the US Department of Energy. It is based on features from two separate packages – DOE-2 

[51] and BLAST [52] –   which were its predecessors. The main purpose of these two packages 

is the simulation of heating, ventilation and air conditioning (HVAC) systems and as a result, 

the core capability of EnergyPlus is a very mature HVAC systems simulation. Nonetheless, the 

package also has the capability to model electrical loads and generation including some 

complex analyses such as the yield of renewable energy systems at a particular location. 

EnergyPlus is a simulation engine which is designed to accept its input and generate results 

through text files. Inputs to the system are a complete model of the building’s construction, 

definitions of the HVAC and electrical plant used in the building, and weather data for the 

building’s location. Results including plant utilisation, heat flows, room temperatures and 

total energy demand are provided in similar text files. The purpose of using text files rather 

than a full user interface is to allow third parties to develop their own interfaces that are 
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suited to their particular problem, and to allow EnergyPlus to be integrated into larger 

simulation systems. The Department of Energy develop a graphical interface for the package 

which allows building models to be rapidly developed in Google Sketchup [53] and simulated 

using EnergyPlus. This interface, known as OpenStudio [54], permits the whole process of 

defining the building model, its simulation and viewing the results to be carried out from 

Sketchup. Various architectural design software packages also provide their own interfaces 

to EnergyPlus [55]. 

Simulations within EnergyPlus are undertaken in two distinct steps. For each time-step in the 

simulation, a heat balance model calculates the temperatures of zones and surfaces within 

the building in addition to the heat flow between zones and surfaces. The results of these 

calculations are then fed into a building systems model which iteratively evaluates the 

response of the building systems to the changes in temperature that were calculated.  

The heat balance model within EnergyPlus is a single-pass calculation rather than an iterative 

solver. The model takes the states of building zones and plant from the previous time-step of 

the simulation and uses these to compute the changes in temperature and heat flow for the 

current time-step. Two distinct modules are utilised for this purpose. The air mass module 

deals with heat flow due to moving air, either through forced ventilation or infiltration. This 

module assumes that in each zone of the building the air is of uniform temperature. The 

surface mass module deals with conduction, convection and radiation of heat from surfaces. 

This module assumes that surfaces have uniform temperature, uniform radiated heat and 

one-dimensional conduction. Comprehensive coverage of the effects of windows on both 

heating and lighting of rooms is included in the heat balance model [56]. 

The building systems model is an iterative solver which represents the HVAC and electrical 

plant within a building. Building systems are simulated using a concept known as “loops”. A 

loop is a set of connected nodes which, in the case of HVAC systems, model heating and 

cooling plant connected by pipes or, in the case of electrical systems, model electrical 

generators and loads connected by wires [57]. At present two HVAC loop types are 

supported within the package – air loops and water loops. The iterative solver for HVAC loops 

defines loops with two halves – a demand side which provides the heating or cooling to 
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zones, and a supply side which provides the heated or cooled air or water. Temperature set-

points are used for each zone to calculate the required heating or cooling input from its 

HVAC equipment. The solver then iteratively tries different configurations of all of the 

available plant within the room until the supply side of each HVAC loop can meet its demand 

side. Users can add control algorithms to this process to control the temperature set points 

of the rooms. 

Electrical systems within EnergyPlus are also modelled as loops [58]. These loops can be 

either AC or DC electrical networks with a combination of loads, storage devices and 

generators. Conversion elements such as electronic inverters are included to bridge between 

DC and AC loops. There are a number of built-in generation modules including photovoltaic, 

wind, combined heat and power and internal combustion engines. Additionally, a number of 

control strategies for electrical systems are also included in the package which control the 

dispatch of generation and storage devices in response to both electricity demand and the 

target amount of power to be drawn from the grid. This allows for control strategies which 

encourage power consumption when grid prices are low and discourage consumption when 

prices are higher. 

To conclude the study of EnergyPlus, consideration must be given to the accuracy of the 

results from its simulations. The package is tested using the ASHRAE standard 140-2007 (an 

update to ASHRAE 140-2001 [59]) which defines standard test scenarios for the 

benchmarking of building energy analysis software [60]. Results have been published which 

indicate that the results from EnergyPlus correlate well with those of other simulation 

packages [61-64]. In all of the tests presented in these results, the only situation in which the 

results from EnergyPlus fell significantly outwith the range of other simulation packages was 

in seven out of the thirteen building envelope tests where results varied by up to 15% 

compared with other packages. In the HVAC and fuel-fire furnace tests, EnergyPlus produced 

results that were within 2% of those of other packages. 
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2.2.2. Other Building Energy Analysis Software 

As already described in section 2.2.1, the BLAST [65] and DOE-2 [51] packages have been 

superseded by EnergyPlus. These packages contained a subset of the features available in 

EnergyPlus and were both focussed on the simulation of the thermal properties of a building 

and HVAC systems rather than the overall energy usage of a building. Similarly to EnergyPlus, 

both of these packages accepted input and produced output in text file format with a 

number of third parties producing graphical user interfaces. 

ESP-r [66-67] is a complete building energy analysis tool which has been under development 

for over thirty years at the University of Strathclyde. The capabilities of ESP-r very closely 

match those of EnergyPlus in that it is capable of modelling heat transfer between building 

zones and surfaces, HVAC systems, mass flow of air and water, sunlight and shading and 

electrical power flow. In addition to the 1D heat conduction model that EnergyPlus employs 

for surface heat transfer, ESP-r offers optional 2D and 3D conduction models for more 

accurate simulations. An optional computational fluid dynamics (CFD) numerical approach 

[68] can also be used within zones in contrast to the standard uniform air temperature model 

to gain a greater understanding of the temperature gradients across each zone. ESP-r uses 

similar solvers to EnergyPlus for the mass flow of air and water throughout a building 

whereby a node-based representation is used to generate a model of the system [69]. 

Electrical power flow within a model is solved using a frequency-domain power flow solver 

[70] to obtain the steady-state power for each time-step within the simulation. The concept 

of “hybrid components” is used to enable components which convert electricity to heat and 

vice versa to be represented. These components interact separately with both the thermal 

and electrical solvers within the package. Definition of models within ESP-r can be carried out 

using a basic graphical user interface and also through the import of building geometry from 

CAD packages. A number of third party components are used to visually present simulation 

results. Numerous studies have been carried out by the program’s development team in 

order to validate the results produced by the package [71]. These studies include analytical 

comparisons to ensure that the package produces the expected results according to the 

theory that it is based on, empirical studies to compare the performance of the simulations 
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to real-world data, and comparative studies to compare the performance of ESP-r to other 

packages. In these validation studies, the package has been found to be in agreement with 

other similar packages.  

BSim [72] is a suite of programs which is developed by the Danish Building Research Institute 

for undertaking building energy simulations. Standard features of the package include the 

ability to simulate heat transfer between building zones, zone temperatures and humidity 

conditions. The effects of sunlight on a building’s climatic conditions and internal light levels, 

including the effects of shading by surrounding buildings can also be simulated. BSim does 

not provide any comprehensive coverage of electricity use within the modelled buildings. 

Add-ons for the package allow for more advanced simulation of moisture conditions within 

buildings [73-74] and for simulation of the approximate yield of photovoltaic panels installed 

on the building [75]. One of the programs within the suite is a graphical user interface [76] 

which allows for the definition of building models using a 3D view or 2D plan view. Another 

program within the suite offers the capability to import building models from CAD packages 

[77]. While the package has not been explicitly validated, the algorithms which make up the 

main part of its functionality have been validated in a previous version of the simulation 

engine. 

The UK Building Research Establishment develops a simulation tool called SBEM (Simplified 

Building Energy Model) with graphical user interface in the form of a Microsoft Access 

database with macros called iSBEM [78-79]. Rather than being a complete building energy 

analysis tool, SBEM is designed to test the compliance of buildings with EU and UK building 

and energy efficiency regulations. This compliance is tested using a simplified set of 

calculations known as the National Calculation Method (NCM). Two versions of the 

calculation method are defined: one for Scotland [80] and another for England and Wales 

[81]. As the tool is primarily a compliance and energy efficiency, its outputs are whole-

building energy metrics rather than detailed calculation of room and surface temperatures 

and electricity usage. The developers of the tool therefore indicate that it should not be used 

in design simulations and that other tools should be used for this purpose. 
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Energy-10 [82] is a proprietary software package which is aimed at assessing the effect of 

installing different energy efficiency measures during the design of small residential or 

commercial buildings. The focus of this package is on rapidly modelling buildings and running 

hourly simulations to assess the benefit (both environmental and economic) of installing 

various energy efficiency measures. It could therefore be described as a tool which assists in 

decision-making rather than a complete energy analysis tool. Little information about this 

package is available in the public domain due to its proprietary nature, however, available 

features are: daylight simulation, passive solar heating and cooling, natural ventilation, 

insulation, high performance windows, lighting and mechanical equipment.  

The “Transient System Simulation Program” or TRNSYS [83-84] is a proprietary software 

package which is developed by the University of Wisconsin-Madison in partnership with a 

number of industrial partners. The package is a modular, general-purpose transient 

simulator. However, the majority of the built-in mathematical models reflect the fact that it 

is very much targeted at the modelling of energy systems. In contrast to the whole-building 

definition approach, TRNSYS provides a more flexible method of modelling where individual 

components which are represented by mathematical models that can be connected together 

to form a complete system. In simple terms, the output of one mathematical model in the 

system becomes the input to others. The TRNSYS solver performs a simultaneous solution of 

the algebraic and differential equations which make up the model on each time-step of the 

simulation and records the results [48]. Systems are designed using a graphical user interface 

by adding mathematical models (either user-defined or from the built-in library) and making 

connections between them with lines to indicate the flow of data. The OpenStudio plug-in for 

EnergyPlus [54] which provides integration with Google Sketchup is also supported by 

TRNSYS, allowing a geometrical description of a building to be automatically converted into a 

mathematical model block for use in the package. 

Matlab [85] is a mature mathematical programming environment which has gained 

widespread acceptance in the engineering community. The Simulink [86] simulation 

environment is a model-based simulation system which accompanies Matlab and enables the 

creation of Matlab programs from a graphical drag and drop based modelling interface. From 
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a usability perspective, Matlab and Simulink provide a good environment for the rapid 

development of system models. The SimPowerSystems package which is available for 

Simulink provides a mature power system modelling capability and the Communications 

System Toolbox provides a comprehensive communications system modelling capability, 

from the high-level protocol level down to the physical link level. Where the package falls 

short in meeting the requirements for domestic smart grid simulation is its lack of building 

simulation capabilities.  

2.2.3. Summary of Smart Grid Software Modelling 

A comprehensive review of the current state of the art in integrated building energy analysis 

tools has been carried out and it is apparent that a number of the tools have at least some of 

the capabilities that will be required of simulation tools to model domestic smart grid 

technologies. To compare the capabilities of the packages that have been described and to 

identify any areas in which improvement is needed, a standard set of criteria have been 

developed. These criteria will focus heavily on the abilities that will be required to model new 

domestic smart grid technology within buildings, rather than to accurately model the 

buildings themselves. The criteria which are described below have been selected with careful 

consideration given to the review of smart grid technology carried out in section 2.1.  

Core Features 

 Individual appliance modelling – Simulations should be able to model down to the 

individual appliance level as smart grid control strategies may rely on controlling 

smart appliances to manage demand. In this case, the characteristics of each 

individual appliance are important in dictating the ways in which the appliance can 

respond to control signals. 

 Basic “lumped” models – As well as advanced individual appliance models, it may 

also be desired to lump the behaviour of a number of appliances into one simplified 

block. 

 Closely coupled electricity, heat transfer and communications – Every element 

within a simulation should be able to interact with electricity, heat transfer and 

communications simulations concurrently. This capability will be important in 
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modelling smart electrical appliances which may also have some thermal mass or 

thermal output to their environment. 

 Advanced software control of device behaviour – The ability to script the properties 

of devices will allow more accurate modelling of their behaviour than a mathematical 

model and will allow the implementation of “smart” control strategies which 

communicate with other elements in the simulation. 

 Rapid development – Packages should support rapid definition of models to aid in 

the process of prototyping different strategies. 

 Minimal constraints on system type – There should be no constraints on the type or 

scale of the system being modelled. When modelling smart grid technologies it may 

sometimes be necessary to model a whole building or community or a small number 

of interacting buildings. In contrast there may also be situations in which modelling is 

focussed on developing an individual piece of control equipment. 

 Wide simulation time-step range – Detailed simulations of control systems such as 

maximum power point trackers for renewable energy systems or battery 

management systems may require microsecond resolution whereas whole building 

systems may require only hourly, daily or seasonal simulation. Packages should 

accommodate this by offering simulation time-steps in the range of microseconds to 

months. 

Environment 

 Weather – The package should support the modelling of the effect of weather on 

buildings and their systems. 

 Importing weather data – To assist with the modelling of climate, packages should be 

able to import weather data. 

Electricity Modelling 

 AC and DC Systems – Renewable energy sources and storage devices primarily utilise 

DC while domestic power systems are primarily AC and therefore both types of 

system and the conversion between each should be supported. 
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 Renewable Generation – As explained in section 2.1.3 of this review, distributed 

renewable generation including CHP systems will be a core feature in future climate 

policies and therefore its inclusion in modelling domestic smart grid systems is crucial. 

 Grid Connections – The assessment of import from and export to the electricity grid 

will be important in studying demand management algorithms. A grid connection and 

metering capabilities are therefore required. 

 Electrical Storage – Electrical storage systems will be important for both demand 

management and smoothing the intermittency of local renewable sources. 

Thermal Modelling 

 Building Envelope – A building’s construction plays a key role in its energy usage and 

therefore should feature in a smart grid modelling package. 

 Heat Conduction – Heat conduction between spaces is an essential part of the 

building envelope modelling capability. 

 Infiltration and Natural Ventilation – Should also be an integral part of the building 

envelope modelling capability. 

 Heating and Cooling Systems – Modelling of both the central plant (e.g. boilers) and 

heating elements (e.g. radiators) which perform conversion of energy to produce 

heat. 

Communication 

 Internal Communication – Support for communication between appliances and 

control systems within the building is required to model entities such as smart 

appliances. 

 External Communication – Support for communication with the utility company is 

required to model smart metering systems and dynamic pricing tariffs. 

The above set of criteria are not exhaustive but serve as a basic set of requirements for a 

domestic smart grid modelling package from which further requirements can be drawn. They 

do, however, serve as a useful standard set of test criteria for performing an at-a-glance 

comparison of the available features in the packages that were studied in sections 2.2.1 and 
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2.2.2. Table 2-1 shows this comparison and was developed from research carried out in 

preparing this literature review and through existing comparison tables available in [48].  

Table 2-1: Comparison of the domestic smart grid modelling capabilities of whole-

building energy analysis tools. A solid dot indicates that the package fully supports 

the specified feature, a hollow dot indicates partial support and no dot indicates 

no support. 

Criteria 
Packages 

Energy 
Plus 

BLAST DOE-2 ESP-r BSim SBEM Energy
-10 

TRNSY
S 

Matlab 
 

Individual appliance modelling 
        

Basic “lumped” models 
        

Closely coupled electricity, heat 
transfer and communications 

        

Advanced software control of 
device behaviour

1
 

        

Rapid model development
2
 

        

No constraints on system type
3
         

Wide simulation time-step 
range

4
 

        

Weather / climate modelling 
        

Importing weather data from 
available formats

5
 

        

Modelling of AC and DC systems 
        

Renewable generation 
        

Grid Connections 
        

Electrical storage 
        

Building envelope modelling 
        

Heat conduction between zones 
and surfaces 

        

Infiltration and natural 
ventilation 

        

Heating and cooling systems 
        

Internal communications 
between household devices 

        

External communication for 
weather data and utility 
company connections 

        

 

                                                        
1 Rather than using mathematical models, the application is capable of modelling systems through scripting or other means 
to allow for greater degrees of detail in component implementations and communication between components within a 
system. 
2
 The application provides a graphical method of constructing models. 

3 The application is not constrained to building modelling; it can model multiple buildings or individual building systems. 
4 The application is capable of assessing both transient effects along with hourly, monthly or seasonal effects. 
5 The application can import weather data in a non-proprietary format. 
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2.3. Summary of Project Background 

Table 2-1 shows that some of the applications studied – most notably EnergyPlus, ESP-r and 

TRNSYS perform 80-90% of the requirements stipulated for a smart grid modelling package 

but that they are missing crucial features like the ability to model communication, advanced 

software control of devices within a building and the ability to model components which 

closely couple communications, heat transfer and electricity. This justifies the development 

of future tools which are specifically targeted at domestic smart grid systems. The set of 

criteria discussed in section 2.2.3 and listed in Table 2-1 will be used as the set of 

requirements on which to design a new smart domestic energy simulation package which is 

fully described in Chapter 3. 

Within the scope of this project, a particular emphasis will be placed on the development of 

a platform that more tightly couples the interaction between the electrical and thermal 

physical domains and places a strong emphasis on the integration of software control within 

the home. The intention of this approach is to enable the merging of two branches of 

research discussed in this section – the need for smarter control systems to solve network-

level constraints related to the introduction of renewables and the integration of these 

systems within the home.  
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Chapter 3  

Software Design 

In Chapter 2, it was established that while there is currently a broad range of open-source 

and proprietary software available to perform the modelling of some of the elements of a 

domestic smart grid system, there is still room for improvement in their capabilities. This 

deficiency has contributed to the motivation behind the main piece of work in this thesis – 

the development of an integrated simulation suite for domestic smart grid systems. An aim 

of creating such a simulation tool is to provide an environment that is capable of modelling 

the electrical and heat energy requirements of buildings in a similar way to existing tools but 

which also adds the element of communication between building systems and intelligent 

control within appliances themselves.  

This chapter presents a detailed design for the new simulation package, using the criteria 

listed in Table 2-1 as a set of functional requirements. The design takes into account the 

methods that will be used to represent physical systems within the computer software; the 

methods that will be used to simulate AC and DC electrical systems, thermal systems and 

communication systems; and the methods used to run simulations and analyse the results. 

The chapter concludes with an overview of the design decisions and compromises made and 

presents the architecture of the software package. 

3.1. Choice of Application Development Platform 

The Microsoft .NET Framework and C# programming language were chosen as the main 

development platform for the application. The motivation behind this decision was that C# is 



 

32 

a high-level object orientated language which makes it suited to writing large, structured 

software applications.  

There are a number of alternatives to C# when selecting an object orientated programming 

language, most notably C++ which can be used to program natively, and Java which targets 

the Java Virtual Machine, an alternative to .NET. The reason for selecting C# over these other 

languages was the selection of features provided by the .NET framework which seemed 

particularly suited to the development of this application. These were: XML reading and 

writing for model storage; windows graphical user interface libraries; the ability to invoke 

native code for optimisation where required; graph drawing libraries; and the ability to 

compile and run source code at runtime. 

In terms of performance, native code written in C or C++ would be considered by most to be 

faster than code run on a virtual machine such as .NET or Java code. This was indeed found 

to be the case in a recent benchmark test [87] where, on average, code produced by the 

Microsoft C++ compiler was 15.8% faster than the equivalent .NET code. However, it was felt 

that this was an acceptable sacrifice in performance in return for the large selection of 

libraries provided by the .NET framework and the shorter development time. 

3.2. Representation of Models 

3.2.1. Techniques in Existing Packages 

There are two perspectives to consider when selecting a suitable representation of the 

physical model: the representation that the user is required to use to present the model to 

the simulator; and the internal representation within the simulation package itself. Within 

the simulation packages discussed in Chapter 2, there are two distinct methods of model 

representation used. These are discussed in this section and used as the basis to specify a 

model representation for the new simulation package. 

The more traditional building energy analysis tools which have their origins in HVAC 

simulation (EnergyPlus, ESP-r, BLAST, DOE-2 and BSim) require the user to provide input to 

the simulator in the form of a textual or CAD-based building geometry which is processed by 
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the package into a mathematical model that can be solved by the simulator. HVAC or 

electrical plant is represented separately in the form of a behavioural transfer function for 

the specific piece of plant and indications of the associated building zone and other plant 

that are connected to it. This particular model representation performs well when separate 

simulation subsystems are used to model the behaviour of the building and of the appliances 

within it. A disadvantage of this type of approach is that the user is constrained to modelling 

systems which fit the scenario of one or more building structures, each with a set of HVAC 

and electrical plant. 

The packages which are more orientated towards system simulation (TRNSYS and 

Matlab/Simulink) represent each element within a model as a component which uses a set of 

mathematical transformations on its inputs to produce one or more outputs which can be 

fed into other elements of the system. Using this method of simulation requires the user to 

perform the transformation of the building geometry into a set of components with 

mathematical representations, possibly by using an automated tool. This requirement is a 

potential disadvantage of this approach as it requires more work on the part of the user 

when creating the initial model of the physical system. However, representing an entire 

system as a single mathematical model rather than using individual models for the different 

physical domains can also be advantageous. From the perspective of modelling domestic 

smart grid technology, it offers an advantage because multiple types of physical systems (e.g. 

electrical power flow, heat conduction, air flow, liquid flow, daylight) can be modelled 

without having a dependency on the capability existing within the package. This 

mathematical modelling technique is also more flexible in the types of system that can be 

modelled – a model could contain a single solar panel connected to a battery or could 

contain an entire street of buildings, each with its own smart energy system.  

3.2.2. Design of New Technique 

When designing the system modelling technique to be used in the Smart Grid modelling 

package, a combination of the two broad strategies discussed in section 3.2.1 was used. The 

connected-component approach of the latter strategy was chosen over the textual or CAD-

based building geometry model of the former because it provides a greater flexibility in the 
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type of systems that can be modelled – the software is not constrained to building 

simulation. This strategy also allows the simulation of the electrical, thermal and 

communication domains to be more closely coupled whereby a single component within the 

simulation can contain logic that, for example, changes its electrical characteristics based on 

incoming communications. 

Despite adopting this integrated modelling strategy, the concept of having separate 

simulation of electrical, thermal and communication systems within the package has been 

partly employed. The approach that has been taken is for every component within a 

simulation to have multiple connections, each with a defined type – electrical, heat transfer, 

communication or “other”. Each connection on a component may only be connected to a 

connection of the same type on another component. An advantage of this approach is that it 

allows the simulation package to record results easily from known types of connection. For 

example, electrical connections can support the monitoring of voltage, current and power 

flow; heat transfer connections can support the monitoring of heat flow and temperature; 

communication connections can support the monitoring of data transmission. The “other” 

type of connection allows for the custom implementation of physical domains which do not 

fall into the categories natively supported in the package – for example the flow of natural 

gas into a heating appliance. 

A graphical user interface is provided to allow the user to create models in a similar style to 

Simulink and TRNSYS, where the user adds components to a model in the form of rectangular 

blocks and creates connections between them with lines. The behaviour of components can 

either be defined by a user or can be selected from built-in libraries of standard components. 

This allows for more rapid prototyping of systems by providing a more intuitive approach to 

designing the system than a textual definition language, giving constant visual feedback to 

the user of the structure of the system being modelled. Additionally, this approach allows for 

validation of the model as it is created by the user by preventing incorrect connections being 

made between components at design-time rather than having to subsequently validate the 

properties of the model during the running of the simulation. 
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Internally within the software, the user’s graphical model will be mapped onto an object-

orientated software representation of the model as shown in Figure 3-1 (page 36). This 

representation holds three collections of objects. The first contains each of the component 

types or behaviours which can be found in the model. For example, if a “Battery” component 

is used multiple times in a model, the number of external connection pins, the configurable 

parameters and the internal logic for the component need only be defined once regardless of 

the number of times that instances of the component are used. The second collection is a list 

of the specific instances of components that are used in the model, each with an associated 

behaviour and values for its configurable parameters. The final collection is a list of the 

connections that are made between components in the model. 

To illustrate this mapping between graphical system models and an object-orientated 

software model of a system, a simple example system is illustrated in Figure 3-2. This system 

contains an electric heater connected to a grid supply which is used to heat a room. Figure 

3-3 illustrates the properties of the software model that would be derived from such a 

graphical model. 

3.3. Physical Domain Representations 

In section 3.2.2, the method of model representation to be used in the new simulation 

package was defined. In the design of this method, it was proposed that different physical 

modelling domains would be separated by requiring each pin on a component to model a 

single physical domain and allowing a pin to be connected to another pin of the same type 

only. This section describes in detail how the properties of each of these physical pin types 

will be modelled in the package.  
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Figure 3-1: Internal representation of a system model within the software 

package. 

 

Figure 3-2: Graphical representation of a sample system within the simulation 

package. 

 

Figure 3-3: Software representation of the graphical model shown in Figure 3-2. 
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Model

Behaviour: Room

 Pins: {1,2,3,4: Heat Transfer}

 Configurable Parameters: {Volume: 

decimal value}

 [Logic defined for thermal model of room]

Behaviour: Grid

 Pins: {VOUT: Electrical}

 Configurable Parameters: {Voltage, 

Frequency: decimal value}

 [Logic defined for grid connection model]

Behaviour: Heater

 Pins: {Power: Electrical, Output: Heat 

Transfer}

 Configurable Parameters: {Rated Power 

Output: decimal value}

 [Logic defined for electric heater]

Component: Room1

 Behaviour: Room

 Configuration: {Volume = 20m²}

Component: Heater1

 Behaviour: Heater

 Configuration: {Rated Power=2.5kW}

Component: Grid1

 Behaviour: Grid

 Configuration: {Voltage=230V, 

Frequency=50Hz}

Connections

 Grid1.VOUT – Heater1.Power

 Heater1.Output – Room1.1
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3.3.1. Electrical 

The electrical energy simulation element within the package will be required to represent 

existing AC power systems within buildings, as well as representing new microgeneration and 

storage systems within buildings which are primarily DC systems. There are also two different 

temporal resolution constraints imposed on simulation systems when analysing the electrical 

components of new smart energy systems. When designing switched mode control devices 

for local storage and microgeneration systems it may be desirable to examine the transient 

performance of these devices at the sub-second level. When simulating the overall energy 

use of appliances in the home, the transient behaviour of AC systems becomes less 

important than the overall power flow from sources to loads. 

The EnergyPlus package employs an electrical modelling system [58] where a central 

component known as the “Load Centre Distribution Manager” controls the overall energy 

flow within a building. Loads within the building are expressed in terms of their power 

consumption. Generators are expressed in terms of their total generation capability (which in 

the case of some generators such as solar may vary depending on external factors such as 

weather). Storage devices are expressed in terms of their maximum charge and discharge 

power ratings. The load centre distribution manager within the model controls local 

generators and storage to supply the local loads, with reference to a given energy 

management scheme. These schemes may be to minimise or maximise local generation, 

charge or discharge local storage or to meet certain targets on power imported from or 

exported to the utility provider. Any shortfall in local generation and storage capacity is met 

by importing power from the utility provider and any excess is exported. This electrical 

modelling system has shortcomings in what is required for a domestic smart grid simulation 

package: it is essentially a lumped power flow calculation for a single building with a utility 

provider and does not provide any detail into the power flows within the building or the 

transient effects associated with electronic control systems. 

The ESP-r package provides a more detailed electrical simulation capability [88] than 

EnergyPlus where an electrical model is represented by a set of connected nodes. The model 

is solved using Kirchhoff’s current law where simultaneous equations for the voltage at each 
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node are expressed in terms of the currents flowing in to or out of the node. To make the 

solver more suited to building energy systems where sources and loads are usually expressed 

in terms of power production and consumption rather than voltage and current, a 

manipulation is made on the standard Kirchhoff equations to express the nodal equations in 

terms of real and reactive power in and out of each node. This approach is suitable for 

steady-state analysis of AC systems and can also be applied to DC systems by disregarding 

the reactive power component. A disadvantage to this approach is that by expressing the 

network in terms of power flows, large sets of simultaneous equations must be solved which 

can become computationally intensive for larger systems. 

Solution complexity for large sets of simultaneous equations is reduced in the new simulation 

package by imposing the restriction on the main simulation engine of only being able to solve 

electrical systems on a component by component basis. The solution chosen to represent 

electrical systems was to represent every electrical pin on a component as a Thévenin 

equivalent model. For AC pins this is a voltage source specified in terms of voltage (V), 

frequency (Hz) and phase angle (°) in series with an impedance specified in terms of 

magnitude (Ω) and phase angle (°). For DC pins this is a voltage source specified by voltage 

only, in series with a resistance (Ω). All voltages are assumed to be referred to a common 0V 

virtual ground point so that electrical systems only require a positive or live connection. The 

negative or neutral paths are inferred as returning to a common point. Figure 3-4 illustrates 

the equivalent circuits that are used to represent AC and DC electrical pins on components. 

 

Figure 3-4: Illustration of the way in which (a) AC and (b) DC electrical pins are 

modelled on components within the simulation package. 
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In simplifying the electrical domain implementation by modelling electrical systems as 

component to component connections only, rather than as an entire electrical network, the 

simulator is potentially providing users with the difficult task of having to create intermediate 

“infrastructure” components. An example of this would be in connecting more than one load 

to a single generation source – an intermediate component would be required to provide the 

extra connections. In order to mitigate this potential pitfall, a built in “electrical node” 

component was included in the simulator. This component is a fixed-voltage node to which 

multiple electrical connections can be made. The Thévenin equivalent model of one pin on 

the node is the combined Thévenin equivalent of the devices connected to every other pin 

on the node. The component also has the special behaviour of being able to calculate the 

node voltage for use in the package’s result recording system which is described in section 

3.5.1. 

Figure 3-5 illustrates a number of electrical components connected to an electrical node. To 

simplify the implementation of electrical nodes, the design decision was taken to allow only 

electrical connections of the same frequency to a single node – a mixture of AC and DC 

sources or different frequencies of AC sources is not permitted at present.  The voltage at a 

node VNODE (V) can be calculated using (1) , where VX is the Thévenin equivalent voltage 

connected to pin X on the node, ZX is the Thévenin equivalent impedance connected to pin X 

on the node and N is the number of pins on the node. VNODE, VX and ZX are complex numbers 

expressed in terms of magnitude and phase angle. 
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Figure 3-5: Equivalent schematic of an electrical node component. 

The electrical model for a given pin on a node is the Thévenin equivalent combination of the 

electrical models connected to all of the other pins on the component. For a given pin A, the 

Thévenin voltage VTH,A is calculated using (2) and the Thévenin Impedance ZTH,A is calculated 

using (3). 
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3.3.2. Thermal 

The thermal simulation capabilities within the package will be required to simulate the 

transfer of heat between two elements within a simulation. This may be, for example, the 

transfer of heat between spaces within a building, the transfer of heat from a heating 

appliance to a space, the loss of heat from a space due to drafts or ventilation, or heat gain 

due to sunlight through windows. 
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Existing simulation packages which were discussed in section 2.2 varying in their thermal 

modelling capabilities, from simple 1D heat conduction models to advanced Computational 

Fluid Dynamics models, capable of modelling variation in air temperature across a room. The 

new simulation package is being targeted at smart grid system modelling rather than 

attempting to accurately re-create any of the existing simulation packages and it was felt that 

a basic model was suitable to model the heat transfer between spaces in a building. Using a 

one-dimensional model also allows heat transfer between two components in a simulation to 

be dealt with as a scalar rather than a vector quantity, simplifying the calculations that need 

to be performed. 

ISO Standard 12831-2003 [89] which specifies a method for calculating the design heat load 

for a building when installing heating systems was chosen as a basis for developing the heat 

transfer modelling capabilities of the package. It uses a one-dimensional linear model for 

heat transfer between spaces within a building and its exterior. It also provides methods to 

simplify effects such as ventilation through infiltration and forced ventilation to their 

equivalent linear models. 

 The heat transfer calculations presented in ISO 12831-2003 are based on (6) below where Q 

is the heat transfer or heat loss (W), H is the heat transfer coefficient of a material (W/K or 

W/°C) and T1 and T2 are the temperatures (K or °C) on each side of the material. 

            (4) 

 

Equation (4) utilises the heat transfer coefficient of a material which is analogous to electrical 

conductance. To improve consistency between the electrical and thermal models used within 

the new modelling package, the thermal resistance of materials will be used instead, 

resulting in a model of the form shown in (5), where θ is the thermal resistance of a material 

in K/W or °C/W. 

   
       

 
 

(5) 
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To allow components within a simulation to conform to this model, the thermal circuit 

shown in Figure 3-6 is used where each heat transfer pin is specified in terms of a 

temperature in °C in series with a thermal resistance in °C/W. 

 

Figure 3-6: Illustration of a thermal connection between two components. Heat 

transfer pins are expressed in terms of temperature T (°C) and thermal resistance 

θ (°C/W). The resulting heat transfer from left to right, Q (W), is illustrated. 

A special “temperature node” component has been built into the package to assist with 

thermal modelling. This component has a single pin which represents a user-specified 

temperature in series with a 0°C/W thermal resistance. The component can also be set to 

track the global “ambient temperature” setting. 

3.3.3. Data Communication 

One of the key features of the end-user experience of a smart grid is the concept of 

communications between the utility company, smart meter, in-home energy displays and any 

smart appliances. There may also be more complex interactions involved in the system 

between the user and the various components of the smart energy system. This may involve 

using a PC (either in the home or externally via the internet) to view smart meter data, 

configure the smart meter’s ability to remotely control appliances or directly communicate 

with internet-connected appliances without the involvement of the smart metering 

infrastructure. Figure 3-7 below illustrates these different types of communication channel 

by grouping them into four categories based on the potential underlying technology that 

would be used to implement each channel. 

θ1T1 θ2 T2Q
.
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Figure 3-7: Illustration of some of the possible communications channels involved 

in a smart energy system. 1) A control and status reporting network between the 

smart meter, in-home display and smart appliances. 2) PC connections to the 

smart meter or smart appliances. 3) Uplink to the utility provider. 4) User 

connection to the utility provider for control and monitoring of account. 

Current efforts to develop communications specifications for smart energy devices are 

focussing on the utilisation of standardised communications methods to increase the 

potential for interoperability between different manufacturers’ devices. This is particularly 

the case in countries with open energy markets such as the UK where consumers may 

regularly switch energy suppliers. In the UK, the Home Area Network (HAN) which is used to 

communicate between one or more smart meters in the building and the in-home display is 

implemented using the ZigBee Smart Energy Profile [39, 90-91]. ZigBee is a wireless 

communications system which uses the unlicensed 2.4GHz spectrum and is based on the IEEE 

802.15.4 personal area network (PAN) standard [92]. The Smart Energy Profile [93] extension 

provides a standardised framework for transmitting smart meter data over the ZigBee 

network. It is expected that new firmware for the current generation of smart meters in the 

UK will make use of the built-in ZigBee hardware and add the Home Automation Profile [94] 

to allow smart meters to control smart appliances. Similar functionality to ZigBee is provided 

by the proprietary Z-Wave wireless home automation system [95] to communicate between 

smart meters, home displays and smart appliances. Another possibility for this technology is 

to use the IEEE 1901 or HomePlug standard [96-97] which allows fast communication over a 

short distance of existing power line wiring however the ZigBee or Z-Wave standards would 

normally be preferred for their lower power consumption. 
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Numerous technologies also exist for the wide area network (WAN) connection between 

smart meters and the utility provider. Again, in the UK, interoperability has been defined as 

one of the key aspects of such a technology. However, unlike the standard specification of 

ZigBee as the implementation medium for the HAN, no standard technology has yet been 

proposed for the implementation of the WAN. The main reason for this is that no single 

communications technology has yet been defined which is capable of serving every smart 

meter in the country. To allow for interoperability between different systems, it is more likely 

in this case that a standard interface will be provided to connect to smart meter data once it 

has reached an IP-based network. Routing systems will connect the different last-mile 

connections to this central gateway. [90] The current methods used in the UK for 

connections between smart meters and the utility network include GSM (mobile phone) 

networks and dedicated long-range wireless networks. The smart meters that have already 

been rolled out by British Gas and Scottish Power use GSM communication although the 

British Gas specification [39] states that this can be easily replaced with a module to 

implement a different form of communication. In recent developments in long-range 

wireless communication, BT and a number of prominent smart meter manufacturers [98-99] 

have announced that they will support the Sensus FlexNET [100] wireless communication 

system – a proprietary system which operates in licensed 890-960MHz spectrum – to provide 

the backhaul network for remote meter reading and control. This will provide a dedicated 

network for smart metering which requires fewer base stations than the GSM network to 

provide UK-wide coverage and is not prone to congestion from voice and data 

communications in the way that the GSM network is. An alternative wireless communication 

technique which could also be used for this purpose but has yet to be considered for use in 

the UK is the IEEE 802.16 WiMAX [101] standard. This standard provides wireless network 

access in a similar manner to Wi-Fi but over much longer distances. A non-wireless option of 

power-line communication to the nearest substation has also been discussed in recent 

literature [102-103]. 

User interaction within the home energy system may involve scheduling the times that smart 

appliances may run at, viewing consumption data from the smart meter or remotely 

switching on or off smart appliances. This type of communication may be achieved locally 



 

45 

from a PC using standard networking protocols such as IEEE 802.3 Ethernet [104]or IEEE 

802.11 Wi-Fi [105]. It may also be achieved remotely through the internet in two ways. The 

end-user may be able to interact with web pages that present historical data collected from 

the smart meter and may also be able to control appliances through these web pages by 

using the utility provider’s connection to the smart meter. Alternatively, the user may be able 

to control internet-enabled appliances either directly or through special pages on the 

manufacturer’s website.  

This brief survey of the communication channels that are involved at the end-user stage of a 

smart energy system illustrates that there are a multitude of potential communications 

topologies and protocols that could be supported within a domestic smart grid simulation 

package. To reduce the complexity of the design of the communications simulation platform 

within the package, the different protocols that were discussed – Wi-Fi, Ethernet, WiMAX, 

GSM, FlexNET, HomePlug, Zigbee and Z-Wave – were analysed under the seven-layer OSI 

model [106].  

When considering each of these methods, it can be noted that while the lower OSI layers of 

the protocols differ, considering only the transport layer and above allows every protocol to 

be represented as a stream of bytes being transmitted from one point to another. This is the 

communications mechanism that will be provided in the simulation package – one 

component may send a multi-byte communications packet through any of its pins which can 

then be read by the connected component. The weakness in this approach is that many of 

the underlying problems with the communications protocols such as transmission latency 

and corruption or loss of data during communication are not modelled. This, however, can be 

resolved by implementing intermediate components that introduce time delays or errors into 

transmissions to simulate these conditions. 

3.3.4. Asynchronous Communication 

In addition to data communication between electronically controlled systems within a home, 

it was observed that a more ad-hoc form of communication also occurs as a consequence of 

the interaction between people and their appliances. In order to represent this separately 
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from byte-orientated data communications, an asynchronous messaging system was also 

implemented within the simulation framework. This messaging system would allow one 

component within a simulation to send a text string to another to indicate that some form of 

external event (such as a system user activating a physical control) had taken place. Such a 

message would be handled instantly by the receiving component by executing a dedicated 

piece of code responsible for processing these messages.  

3.3.5. Others 

Thus far the design of three physical simulation domains – electrical, heat flow and 

communication – has been covered. One of the requirements of the software was that 

physical domains which were not natively supported within the application should be easily 

added. The obvious approach to the design of such a feature would be to ensure that during 

implementation of the physical domain modelling capabilities, a sufficient level of abstraction 

is used to ensure that new domains may be added with relative ease to the application’s 

source code. While this will be enforced as a design requirement, the design should go 

further than this and provide a basic method of simulating extra physical domains without 

having to alter the application’s source code. 

This requirement of providing support for extra physical domains where the properties are 

not natively known by the application will be fulfilled by including a fourth type of pin that 

may be included on components simply known as an “Other” type pin. In this case, rather 

than providing a distinct set of configurable properties as in the case of heat transfer or 

electrical pins, a single configurable property which can contain a scalar value or data 

structure holding multiple values will be made available. 

3.4. Defining & Simulating Component Behaviour 

3.4.1. Component Appearance and Configuration 

In order to meet the requirement that the application should be extendable and not 

constrained in the types of system that it can model, it is important that users should be able 

to define new components when needed to meet a particular system requirement.  
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The first stage in creating a component would be to define the name of the component and 

its physical interface to other components within a model. To implement this functionality, 

the application will provide a user interface to define the component name and a description 

as well as the pins on the component that will be used to connect it to other components. In 

line with the physical modelling domains described in section 3.3, the following types will be 

available for each pin: electrical, heat transfer, communication and “other”. Additionally, 

each pin will have the ability to be allocated a name – both for use internally for referencing 

the pin within the simulator, and as a visual aid to the user when making connections. 

Another aspect of components that is important to define is the configurable parameters 

which will allow the customisation of a component without having to recreate new logic each 

time a slightly different version of the component is used. Examples of the use of such 

parameters would be the creation of a generic voltage source component with a parameter 

to specify the required voltage, or the creation of a room model for use in a building with 

parameters to specify the physical properties of the particular room. This allows for more 

general component models to be created and re-used in many situations. In accounting for 

all possible configuration types that may be required for a component, a number of different 

configurable parameter types should be allowed for components. The types that were 

eventually selected in the design stage can be grouped into three broad categories: scalar 

types, vector/matrix types and special types. 

The following scalar configuration parameter types can be used on a component: 

 Boolean – To store true/false values. 

 Decimal – To store decimal numeric values. This type will be represented internally as 

a floating point number to improve its performance in calculations over a fixed point 

representation. 

 Integer – To store integer numeric values. A 64-bit signed representation will be used 

to provide a wide range of permitted values. 

 String – To store textual data. 

 Date / Time – Building simulations are heavily based on time of day and season, 

hence it is important to provide a date and time type. A particular option that should 
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exist within this type is the provision of nanosecond resolution to provide a time type 

which can be used even when simulating high resolution transient effects. 

The following vector or matrix configuration parameter types will be provided: 

 List – A list is a vector type parameter capable of holding a collection of a particular 

type of primitive parameter from the types defined above. 

 Table – A table is used to hold a matrix of data for use by the component. Tables will 

be constrained to hold a single type of primitive parameter in each column. 

Finally, there are additional settings for which it may not be logical to present to the user a 

primitive, vector or matrix parameter from the types given above, and two special types will 

also be provided to deal with these situations: 

 Option List – The option list type will be handled internally in the same way as the 

“string” primitive type in that it will store a single string value. The main difference to 

the string parameter is that it will present to the user a drop-down list of pre-set 

values to choose from rather than providing the option to enter any string. This 

allows the user to be constrained to choosing a valid option for a given setting. 

 Custom Configuration Method – For all other options where none of the built-in 

types are capable of easily representing the setting to be configured, a completely 

custom configuration option will be provided. This option will internally store the 

setting value as an array of bytes, allowing the implementer of the component to 

select the representation to be used for the setting. From the user’s perspective, the 

implementer of the component will be required to provide a reference to an external 

plug-in which will display a dialog to the user to collect the required configuration 

information.  

Graphical user interfaces will be provided within the application to edit each provided 

configurable parameter type (with the exception of the custom type). A separate interface 

will also be provided to allow the editing of the available parameters on a component to 

define a name, description, type and default value for each. 
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3.4.2. Simulation Technique 

In section 3.3, the physical domain representations were designed such that each point to 

point component interconnection is solved independently of the rest of the system, 

regardless of the physical domain being modelled. The key motivation behind this approach 

was to simplify the implementation of the main simulation engine so that it is not dependent 

on having solvers for each of the individual physical domains. 

Despite the physical behaviour of a model being simulated entirely by the components 

themselves, there are still a number of tasks which need to be carried out by a central 

simulation engine. The first of these is the management of time during a simulation. There 

are two main objectives to temporal control within a smart-grid simulation. The first is to 

keep the simulated date and time current so that the behaviour of components can respond 

to the time of day when required. This is particularly important for weather-related 

components which may be influenced by season or time of day. The second aspect of time 

management is to control the granularity and duration of the simulation. These parameters 

will be configurable by the user to allow long, low-resolution simulations to be run to assess 

seasonal effects on a model while allowing shorter high-resolution simulations to assess for 

example the transient effects of switching in electrical systems. The time management 

component of the main simulation engine will be responsible for advancing the time by the 

required amount after the evaluation of the model for each time-step and stopping the 

simulation when the required duration has been simulated. To ensure that both seasonal and 

transient simulations can be supported in the software, simulation run times from 2ns to 10 

years will be specified along with a time-step granularity of 1ns to 1 hour. 

The second of the main tasks of the central simulation engine is the management of a global 

“ambient temperature” reference. This was seen as a useful property to provide globally in 

the simulation for use when creating building models because it provides a single point of 

reference for the exterior temperature, rather than having to implement a component to 

hold the property which must then be connected to multiple points throughout the model. 

The provision will also be made to allow this value to be changed by components during a 
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simulation – for example a “weather” component may alter the ambient temperature value 

over time. 

The third main task which should be managed by the central simulation engine is the 

management of a set of global configuration parameters that may be accessed by all 

components. These may include data about the weather; settings to control the type of 

simulation carried out by the model; or may simply be a convenient way to pass data 

between components. These parameters should be allowed to be of any of the types defined 

for component parameters in section 3.4.1. 

The final task required of the central simulation engine, and the most important, is the 

running of simulations which involves evaluating the behaviour of each component in a 

model for each time-step within the simulation. The design of this simulation method is 

important in the overall design of the package as it will also influence the design of the 

method used to model component behaviour. The initial stage of designing this method 

selected a general set of phases that the simulation engine would go through in order to 

evaluate a simulation which can then be developed into a full method of running simulations. 

A total of five logical phases were chosen as follows: 

 A Reset phase will take place at the start of the simulation, resetting the simulated 

time to the user-selected date and time. All previous simulation results should be 

cleared and all components reset to their starting state. 

 An Initialise Time-Step phase will take place at the start of each new time-step within 

the simulation to increment the time by the user-selected step size and prepare each 

component for evaluation for the current time-step. 

 An Evaluate phase will perform an iterative evaluation for the current time-step until 

a stable solution is reached. This is an important phase because in a model where a 

component’s output depends on its input, the other components providing the inputs 

may not necessarily be evaluated before the component in question, so it may be 

necessary to perform multiple passes of evaluation of the model before all 

components converge to stable solutions. 
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 A Result Recording phase will take place after a stable solution for each time-step is 

reached to record the results for the time-step. 

 An End of Simulation phase will run at the termination of the simulation to perform 

any final operations that components require in order to save their state and display 

the simulation results. 

The design of the chosen simulation method is depicted formally in the activity diagram in 

Figure 3-8. 

 

Figure 3-8: Activity diagram illustrating the method used within the package to 

evaluate a model. 

3.4.3. Implementing Component Behaviour 

In section 3.4.2, the simulation technique for the package was designed to have five phases, 

with four specifically related to performing operations on components to evaluate their 
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behaviour: Reset, Initialise Time-Step, Evaluate and End Simulation. In order to allow 

advanced software control of components’ behaviours as stated in the original requirements 

it was decided that a scripting interface mapping directly to these five phases of the 

simulation technique should be exposed to users of the package in order to implement 

component behaviour. 

Two options are available to design such a scripting interface: implement a custom scripting 

language for the application, or adapt an existing scripting or programming language to fit 

the system requirements. The former has the advantage that it allows for the development 

of a language that exactly meets the requirements of the application but has the 

disadvantage of longer development time due to the need to write a compiler and syntax 

guide for the new language. Implementation of a new language may also potential problems 

for users of the package due to the learning curve involved with an entirely new language. 

The advantage of using an existing language to implement component behaviour is that 

many users will already be familiar with popular scripting languages and also that compilers 

are already available for existing languages. The disadvantage to using an existing language is 

that the features of the language may not map directly onto the requirements of the 

application and some intermediate-level “glue” code may be required to bind the scripting 

code onto the underlying simulation engine model. 

The decision was taken to begin using a standard scripting language for faster development 

of the package, rather than spending time implementing a completely new scripting 

language. The choice of the C# language on the .NET framework 3.5 as the development 

platform for the application provided a convenient method for the inclusion of a scripting 

framework within the application. This is because the .NET framework provides the 

Microsoft.CodeDom.Compiler namespace which provides compilation services to application 

programmers as well as the Microsoft.CSharp and Microsoft.VisualBasic namespaces which 

provide language-specific compilers for the C# and VB.NET languages. All .NET compilers 

generate common intermediate language (IL) code which is then interpreted by the .NET 

runtime components to perform the actual computation on the target processor. This 

feature can be exploited to take source code entered by the user at run-time in any .NET 
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language, compile it and then load it into the running application regardless of the language 

that the running application was written in. The use of this technique to add run-time 

scripting to a .NET application is demonstrated in the Microsoft article “Script Happens.NET”  

[107].  

In order to allow a user script to implement the required simulation phases, the abstract 

class shown in Figure 3-9 was designed to define a set of functions which component scripts 

can implement to control the behaviour of the component. The default implementations of 

these functions are empty to allow the user to omit functions which are not required from 

the component’s script code.  

 

Figure 3-9: Abstract class which provides the methods that component scripts 

should implement to define component behaviour. 

In line with the simulation technique design from section 3.4.2, the Reset method should 

return the component to a known starting state; the InitialiseIteration method should 

prepare the component for evaluation of the current time-step and the EndSimulation 

method should update the component’s parameter values if required at the end of the 

simulation. The Evaluate method implements the iterative evaluation process of the 

simulation engine and should return a Boolean value – true if the component state is stable, 

or false if the component has changed any of its pin or parameter properties during the time-

step. The MessageHandler method is responsible for implementing the asynchronous 

communications system described in section 3.3.4. Each time that an asynchronous 

communication message is sent to a component, the MessageHandler function will be called 

with the message passed as a parameter to allow the component’s code to process the 

message as required. 

+Reset() : void

+InitialiseIteration() : void

+Evaluate() : bool

+EndSimulation() : void

+MessageHandler(in message : string) : void

ComponentBase
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In order to allow C# or VB.NET scripting code to control the behaviour of a component, an 

API will be provided which will be exposed to the scripting code as two variables. One will be 

a class which provides access to the simulation engine in order to obtain global parameter 

values, the current time-step value, and various methods to generate error messages and 

control the running of the simulation. The other will be a class which provides access to the 

component being controlled by the scripting code to manipulate the component’s pins and 

parameters and determine the properties of other components which are connected to the 

pins of the component.  

During the design of this scripting interface, it became apparent that while the four-method 

interface using C# and VB.NET was extremely flexible for implementing components with 

complex behaviour, it was also cumbersome for simpler components which require few 

computational operations to define their behaviour. Examples of such components are 

voltage sources or resistors which have a single fixed value that is set at the beginning of a 

simulation and never changes. In order to simplify the modelling of these components a 

mathematical mark-up notation was added to the selection of programming languages 

available to model components. While the language was purpose-built for this particular 

application, it borrows standard mathematical syntax from the majority of current 

programming languages and some pre-processor and comment syntax from the C 

programming language. Table 3-1 illustrates the key features which have been included in 

this language. The notable features missing from this language that are available in the full 

programming languages are: support for communications, accessing non-numeric 

configurable parameters, and storing of state variables between iterations of the solution 

process. 

The language provides a method of mapping configurable parameters and pins from 

components onto variables within a mathematical script. A number of standard 

mathematical operators and functions are then provided which can be used to manipulate 

these values to implement the component behaviour. Once the execution of the 

mathematical script is complete, any changes to the mapped variable values are copied back 

to the main simulation engine. Three optimisation options are provided in the language to 
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specify the way in which mathematical scripts defining component behaviour are evaluated. 

Table 3-2 illustrates the way in which mapping features of the language work and the activity 

diagram in Figure 3-10 illustrates the way in which the evaluation of mathematical models 

maps onto the 4-function evaluation interface used by C# and VB.NET code that is shown in 

Figure 3-9. Table 3-3 provides an example of the implementation of a configurable DC 

voltage source in both C# and the mathematical mark-up language. 
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Table 3-1: Summary of the key features of the mathematical mark-up language 

that has been included in the simulation package. 

Comments // Indicates the start of a single line comment. No multiple 
line comment equivalent is provided. 

Operators + - * / Basic mathematical operators: addition, subtraction, 
multiplication. 

^ Power. 

% Modulo. 

! Factorial. 

== != Logical equality and inequality. 

< > Logical less than and greater than. 

<= >= Logical less than or equal and greater than or equal. 

= Variable assignment. 

Functions Sin(x), Cos(x), Tan(x) Trigonometric functions operating in radians. 

ASin(x), ACos(x), ATan(x) Inverse trigonometric functions returning values in 
radians. 

Sinh(x), Cosh(x), Tanh(x) Hyperbolic trigonometric functions. 

Exp(x) Raises e to the power x. 

Ln(x), Log10(x), Log(x,a) Natural logarithm of x, logarithm to the base 10 of x or 
logarithm to the base a of x. 

Max(a,b), Min(a,b) Minimum or maximum of two values. 

Deg(x), Rad(x) Converts a value in radians to degrees or a value in 
degrees to radians. 

Infinity(), NegativeInfinity() Returns the values infinity or negative infinity. 

Floor(x), Ceiling(x), Round(x) Rounds values down to the nearest integer, up to the 
nearest integer or to the nearest integer either way. 

If(x, true_value, false_value) Logical if statement: returns the true value if the 
condition x is met or the false value if not. 

Abs(x) Gets the absolute value of a number. 

Sign(x) Returns -1 if x is negative, 1 if positive or 0 if 0. 

Global 
Variables 

Time The time in seconds since the beginning of the 
simulation. 

Mapping 
Keywords 

#parameter variable=”name” Maps a configurable parameter of the component called 
name to the variable called variable within the 
mathematical script. 

#global variable=”name” Maps a global parameter called name to the variable 
called variable within the mathematical script. 

#pin variable=”name” Maps the pin called name on the component to a 
mathematical variable called variable. 

Optimisation 
Keywords 

#opt none 
(Default Option) 

Specifies that the component’s mathematical mark-up 
must be evaluated on each pass of the iterative 
simulation engine. 

#opt time Specifies that the component’s mathematical mark-up 
must be evaluated only once per time-step. 

#opt single Specifies that the component’s mathematical mark-up 
only needs to be evaluated once per simulation. 
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Table 3-2: Illustration of the mapping process used in the mathematical mark-up 

language. 

Mapping Syntax Variables Made Available in 
Mathematical Script 

Description of Variables 

#pin Name=”Pin 1” 
Where “Pin 1” is an electrical pin. 

Name.vmag Voltage magnitude (V) of the pin. 

Name.vrms RMS voltage (V) of the pin (equal 
to magnitude if DC). 

Name.phase Phase angle (°) of the pin if AC. 

Name.freq Frequency of the pin (Hz) if AC. 

Name.dc 1 if the pin is DC or 0 if AC. 

Name.zmag Magnitude of series impedance 
(Ω). 

Name.zphase Phase angle of series impedance 
(°). 

Name.connected.vmag Properties of the pin that is 
connected to the named pin (read-
only variables). 

Name.connected.vrms 

Name.connected.phase 

Name.connected.freq 

Name.connected.dc 

Name.connected.zmag 

Name.connected.zphase 

#pin Name=”Pin 2” 
Where “Pin 2” is a heat transfer 
pin. 

Name.temperature Pin temperature (°C). 

Name.resistance Pin thermal resistance (°C/W). 

Name.connected.temperature Properties of the pin that is 
connected to the named pin (read-
only). 

Name.connected.resistance 

#parameter a=”Parameter 1” a Parameter containing the value of 
“Parameter 1”. 

#global g=”Global 1” g Parameter containing the value of 
the global parameter “Global 1”. 

 

Table 3-3: Illustration comparing the implementation of a configurable voltage 

source in C# to the implementation in the mathematical mark-up language. 

C# Code Mathematical Mark-Up Code 
public override void Reset() { 
 double v = 
 Component.Parameters[“Voltage”]; 
 
 ElectricalPin Ep = 
 Component.Pins[“OUT”]; 
 
 Ep.DC = true; 
 Ep.Voltage = v; 
 Ep.LoadMagnitude = 0; 
 Ep.LoadPhase = 0; 
} 

#opt single 
#parameter v=”Voltage” 
#pin Ep=”OUT” 
 
Ep.dc=0 
Ep.vmag=v 
Ep.zmag=0 
Ep.zphase=0 
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Figure 3-10: Activity diagram illustrating how the process of evaluating 

mathematical scripts representing component behaviour maps onto the 4-

function interface used by C# or VB.NET scripts. Note that the “End” function is 

not included because it is not used when evaluating mathematical scripts. 

Reset

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = Single

Initialise Iteration

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = Time

Evaluate

Create Mapped Parameter and Pin Variables

Run Mathematical Script

Copy Variable Values back to Mapped Entities

Optimisation option = None

Return False

Mapped Variable Values Changed During Execution

No change to 

variables

Return True
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3.5. Simulation Results 

3.5.1. Recording Results 

When simulating across multiple physical domains, there is a potentially very large number 

of results that could be obtained. In the electrical elements of a simulation the important 

values would be voltage; current; phase angle in AC systems; power flow (real, reactive and 

apparent in AC systems); and energy use in terms of both kWh used and cost. In the thermal 

elements of the simulation, the important values would be heat flow and temperature. In the 

communication elements, data transfer between systems would be recorded. 

Considering the number of different parameters that could be recorded in a simulation and 

considering that even in the simplest models there may be a large number of connected 

components, it becomes clear that recording every possible value for each time-step of a 

simulation would begin to put a strain on system memory and disk resources. It is therefore 

imperative that the design of the results recording mechanism considers only the relevant 

results for the particular study being carried out and that the resolution of result recording 

should be independent of the temporal resolution of the simulation. Examples of the 

memory requirements of the package for recording results at different temporal resolutions 

are provided in Table 3-4. 

Table 3-4: Illustration of the memory requirements for recording numeric 

simulation results at different temporal resolutions. This table makes the 

assumption that 10 different result values are collected from the model on each 

iteration and that these results are floating-point values. 

Result Recording Resolution Memory Requirement per 
Second of Simulated Time 

Total Memory Requirement for 
a Simulation of 1 Hour 

Simulated Time 
1ns 3.2 GB 11.25 TB 
1s 320 bytes 1.09MB 

1min 5.3 bytes 18 KB 
1hour 0.08 bytes 288 bytes 

Taking these requirements into account, the result recording mechanism was designed on 

the principle that users should be able to instruct the package to “watch” certain properties 
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within a model with the values of these properties recorded in memory during the result 

recording phase at the end of each time-step, which is depicted in Figure 3-8. To reduce the 

volume of results generated for analysis, the user will be provided with the option to record 

results at a lower resolution than the simulation is evaluated at. 

The user interface for recording results will be designed so that the user can select a 

component, electrical node or connection to obtain results from. Options will then be 

presented for the type of results that can be obtained from the selected object – these will 

depend on the physical domains that are represented by the selected object. In addition to 

physical values from a model, the option will also be included to take snapshots of both 

component and global configurable parameter values during a simulation. This will allow 

components such as controllers to report their state by altering parameter values during the 

course of a simulation. 

The object-orientated software representation shown in the UML class diagram in Figure 

3-11 was designed for the result recording capabilities within the software. The top-most 

interface ISimulationResultGenerator provides a generic interface for an entity that can 

record result values from a simulation. This provides a property containing a description of 

the result generator, an array of results generated and methods to perform result-gathering 

operations. These methods clear stored results at the beginning of a new simulation, allocate 

memory to store the results for a simulation and record results for a given time-step in the 

simulation. Pre-allocation of memory was selected over dynamic allocation of memory 

during a simulation so that any memory shortages could be identified before beginning to 

run a simulation rather than the program being unable to allocate memory after a 

considerable length of simulation time. The SimulationResultValue class is used to store each 

individual result value and contains properties to store numeric (double-precision floating 

point), string or binary (byte array) values. This covers all possible value types that can be 

generated by physical domain models, parameters and data communication. 
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Figure 3-11: UML diagram illustrating the design of the watch system used to 

collect results from the simulation. 

A more specific interface for recording physical properties from the model is specified in the 

form of the IWatch interface. This defines additional methods which determine if the watch 

records values from a specific component or connection. These methods are provided to 

allow watches to be removed from the model if the associated component or connection is 

removed. This interface is then implemented by individual watch classes which record results 

from a model: Voltage; Current; Power Flow, Phase Angle and Power Factor; Cumulative 

Energy Flow and Cost; Heat Transfer; Temperature; Data Flow; Parameter Value. The 

remainder of this chapter describes the methods used to record each of these values. 

The Voltage, Temperature and Parameter Value watch classes contain the simplest design in 

the package – these values are directly extracted from the model. Section 3.3.1 described 

how the design of electrical nodes involves the computation of node voltage. Voltage 

watches placed on a node read this voltage value to record their results. If the instantaneous 

rather than RMS voltage is requested for AC systems, it is obtained using equation (6) where 

VRMS is the RMS voltage computed by the node, f is the AC voltage frequency at the node, φ 

+Description() : string

+Reset() : void

+Allocate(in resultCount : int) : void

+Record(in time_nanos : ulong) : void

+Results() : SimulationResultValue[0..*]

«interface»

ISimulationResultGenerator
+NumericValue[1] : double

+StringValue[1] : string

+BinaryValue[0..*] : byte

+Time[1] : ulong

SimulationResultValue

+WatchesComponent(in component) : bool

+WatchesConnection(in connection) : bool

«interface»

IWatch

VoltageWatch

CurrentWatchPowerFlowAndPhaseWatch

CumulativeEnergyWatch HeatTransferWatch

TemperatureWatch

DataWatch

ParameterWatch
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is the phase angle of the voltage relative to a reference phase angle of 0° and t is the time in 

seconds since the beginning of the simulation. 

                          (6) 

 Section 3.3.2 described how components could be set to support the concept of having 

temperature (for example a component representing a room within a building). Temperature 

watches extract the currently set temperature from components which support this. 

Parameter watches behave similarly by taking a snapshot of either a component parameter 

or global parameter when requested to record a result. 

Electrical current, power flow and phase angle values are not directly available within models 

and therefore must be calculated when required by the associated watch objects. To 

illustrate how these values are calculated, we will consider the electrical connection of two 

Thévenin equivalent circuits shown in Figure 3-12. 

 

Figure 3-12: Illustration of an electrical connection between two components 

showing complex voltages V1 & V2, complex impedances Z1 and Z2 and complex 

current I. 

In this system the voltages V1 and V2 and impedances Z1 and Z2 are complex values. For 

RMS AC values and DC values, the same calculations can be used under the assumption that 

the phase angle of the values will be set to zero for DC systems. The Ohm’s law calculation in 

(7) is used to obtain DC or RMS current where the variable I is a complex number with 

magnitude IRMS (A) and phase angle φ (°). Instantaneous AC current can be obtained using (8) 

in a similar manner to the instantaneous voltage where f is the voltage frequency on the link 

(Hz)6 and t is the time in seconds since the beginning of the simulation. 

                                                        
6 As described in section 3.3.1, the simulator places the restriction on models that all voltages in an electrical network must 
have the same frequency. 

V1 V2
IZ1 Z2
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(7) 

                          (8) 

The phase angle of an AC system is the phase of the current relative to the voltage. As the 

simulator refers all currents to a reference phase angle of 0°, the phase angle of a particular 

link φAC (°) can be calculated using (9) below where φV is the voltage phase angle and φI is 

the current phase angle. 

          (9) 

AC Power flow values are computed using the magnitude of the complex current value 

obtained in (7) along with the magnitudes of the voltages V1 and V2 from Figure 3-12 and 

the phase angle φAC. Real power P (W), reactive power Q (VAr) and apparent power S (VA) 

are calculated using equations (10), (11) and (12) respectively. 

                                  (10) 

                                  (11) 

                        (12) 

The AC power factor can be calculated from the phase angle φAC using equation (13). 

          (13) 

For DC systems, the DC power PDC (W) can be calculated using the magnitudes of the 

voltages V1 and V2 and the current I as shown in equation (14). 

                    (14) 

The final electrical watch included within the package will be the cumulative energy flow 

watch. This watch will calculate the net import or export of energy over the course of a 

whole simulation along a connection with imports indicated by a positive value and exports 

by a negative value. To calculate the cumulative flow of energy, the real power P or PDC value 

– depending whether the connection is part of an AC or DC system – is used. As energy is the 
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integral of power flow with respect to time, a trapezium method approximation is used to 

compute the energy flow between the previous simulation time-step and the current time-

step ETIMESTEP (J). This relies on the knowledge of the present power flow PNOW (W), previous 

time-step power flow PPREV (W) and the simulation time-step size T as in (15).  

            
          

 
 

(15) 

Once the energy use in the last time-step has been computed, it can be used in three ways 

depending on the type of energy metric required. If the energy use in joules is required 

directly, ETIMESTEP is simply added to a running energy use total. If the energy use in kWh is 

required then ETIMESTEP is divided by 3.6x106 to convert joules to kWh and then added to a 

running total. If energy cost is required then ETIMESTEP is divided to 3.6x106 to convert to 

kWh, then multiplied by the user specified price per kWh before being added to the running 

price total. 

In section 3.3.2 it was proposed that heat transfer connections should use a series 

temperature and thermal resistance circuit to make their definition analogous to the 

electrical simulation features within the package. This means that calculation of heat transfer 

between two points is very similar to the calculation of electrical current. Given the thermal 

link illustrated in Figure 3-13 with the temperatures T1 and T2 (°C) and thermal resistances 

θ1 and θ2 (°C/W), the heat flow Q ˙ (W) can be calculated using (16). 

   
     

     
 

(16) 

 

 

Figure 3-13: Illustration of a heat transfer connection between two components 

showing temperatures T1 & T2 (°C), thermal resistances θ1 and θ2 (°C/W) and heat 

flow Q (W). 

θ1T1 θ2 T2Q
.



 

65 

In addition to the transfer of heat between two components, it is also desirable at times to 

measure the temperature at points within a model. As described in section 3.3.2, ambient 

and absolute temperature points within a model are represented by special “temperature 

node” components. The option is also provided to allow components, such as those 

representing heated spaces, to have a temperature. A watch object is provided which can 

read this temperature value from temperature nodes and also other components which 

indicate that they provide temperature information. 

In section 3.3.3, it was indicated that data communication between two components is 

modelled as a stream of bytes being transferred from one component to another. The initial 

design for this communication process involved having an input queue for every data pin on 

a component. When a component’s implementation performed a data transmission 

operation to another component, the transferred data was written directly to the input 

queue of the connected component. This process proved to be problematic for observing the 

data transmission between components so it was redesigned such that an intermediate 

“communications processor” was added to the main simulation engine to assist with the 

recording of transmitted data. A data watch object is provided to record the data transmitted 

along a connection. When a data watch is created, it registers itself with the intermediate 

communications processor entity so that any transmitted over the watched connection is 

sent to its destination component and in addition is also recorded by the watch object. Data 

is recorded in raw binary form and can be processed by a result viewer into decimal, 

hexadecimal or ASCII for viewing. The process of sending data from one component to 

another while it is being recorded by a data watch is illustrated in the sequence diagram in 

Figure 3-14. 
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Figure 3-14: Sequence diagram illustrating the processing of a communications 

message. The optional block at the end of the sequence of events indicates the 

way in which a message is intercepted for forwarding to an associated Data Watch 

object. 

3.5.2. Mathematical Operations on Results 

Often when analysing data from simulations it is desirable to perform some form of 

mathematical operation on one or more results to generate further useful data. In light of 

this, a limited number of mathematical operators are built into the package and should 

generate results in the same way as watch objects. The main difference is that mathematical 

operator values for a time-step will be computed using watch results for that time-step and 

will therefore be evaluated after the successful evaluation of watch data. The UML diagram 

in Figure 3-15 illustrates the IMathOperator interface which extends the 

ISimulationResultGenerator interface in the same way as IWatch to provide additional 

functionality. Mathematical operators provide the same interface as watches so that the 

Simulation Engine may record results using them in the same way, but add an extra method 

to determine if a mathematical operator depends on a specific watch. This allows the 

operator to be removed from the model in the case where one of the watches that it 

depends on is removed. 

Message Source Communications Processor Message Destination Data Watch

Data Transmission

Forward message to destination

Copy transmitted data to watch object

Optional: Communications link has data watch associated
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Figure 3-15: UML diagram illustrating mathematical operator system within the 

package. 

The Average, Maximum, Minimum, Product and Sum operators operate on two or more 

watches to obtain their values. The Difference operator computes the difference between 

two watch values. The Percentage Error operator computes the percentage error in a given 

actual value when the expected value is also available within the model (for example, a 

controller output based on a given reference signal). The value for a percentage operator is 

computed using (17). 

       
                    

             
      

(17) 

3.5.3. Analysing Results 

Two options were identified for the analysis of the results generated by the simulation 

package. The first was to rely on external packages to analyse results. This could be achieved 

by either using the API provided by a third party data analysis package – for example 

Microsoft Excel – to export data and generate the required graphs and tables upon the 
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completion of simulations, or more simply by saving simulation data to a file format which is 

supported by such tools. 

The second option was to include data analysis tools within the simulation package itself, 

removing the requirement for any third party software to be installed on the system. This 

would require the implementation of various visualisation tools, adding to development 

time, but provides the benefit of providing a more streamlined process for running 

simulations. In this scenario, settings within a model can be changed, the simulation run and 

the built-in result viewers checked to see if the model has achieved the required output. The 

main disadvantage to this type of approach would be that the analysis features may not be 

as comprehensive as those provided in a dedicated package. 

The final design for the results analysis features incorporates the best parts of both of these 

approaches. Three simple visualisation tools are provided within the package itself to allow 

for more rapid development and verification of models, with the ability to also export the 

results in a CSV spreadsheet format for compatibility with most off-the-shelf data analysis 

packages, thereby providing the capability for more advanced analysis. The three built-in 

analysis features that were chosen were: tables to view numerical values or communication 

link data values; line graphs to view numerical results over time; and pie charts to show the 

contribution of a number of variables to a total value. Line graphs were selected because 

they clearly illustrate how the value of a particular variable (for example, electrical power 

consumption) varies over the course of a simulation. Pie charts were selected because they 

illustrate the contribution that various values (for example, the sources of heat loss from a 

building) make to a total value (for example, the total heat loss from a building) at a given 

instant in time. 

3.6. Persistence of Models 

In order to be able to re-use components between different models, as well as to store and 

re-open models themselves at a later date, there needs to be some form of storage system 

built into the application. In assessing the storage requirements for the application, the 

storage of libraries of components and the storage of system models were identified as two 
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separate actions that users may wish to perform. Separating the storage in this way allows 

libraries of components to be re-used between different simulations and updated centrally, 

rather than having different versions of a component throughout different model files. 

In order to save a component library or a model to a file, a transformation of the 

application’s internal object-orientated representation into a representation that can be 

saved to a file is required. The XML format [108] was chosen for this purpose because it is 

particularly suited to storing collections of data in a hierarchical fashion. XML has the benefit 

of being human-readable which is useful for debugging purposes and reading and writing of 

XML files is natively supported by the .NET framework which simplifies implementation of 

this file format. The XML format does have the disadvantage of using more storage space 

than binary file formats due to its human-readable nature – especially if large amounts of 

whitespace are used to display the hierarchical structure of the document. This larger space 

requirement can however be mitigated by compressing the XML data before storing to disk, 

for example in the ZIP or GZIP formats which are also natively supported in the .NET 

framework. 

When designing the file formats for storing both component libraries and models, some 

important clarifications about the exact method of storage had to be made. These were: 

what to do if a model is used on a workstation other than the one it was designed on which 

does not have the required component library files; what to do if a model uses a component 

for which the library is subsequently upgraded; how to make changes to the file format to 

incorporate new features without making the application unable to load older files; how to 

store information about the type of simulation required and which results to display; and 

how to uniquely identify elements of a model and the relationships between them when 

saving to files. 

To mitigate the issue of simulating models on different workstations which may or may not 

have the required libraries, and to handle upgrades to component libraries, a version number 

is included within the definition of each component. Additionally, when saving a model to a 

file, the model file will contain cached copies of all of the components used within the model 

to ensure that the model can be used on any system, including those which may have a 
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different version of the component in a library file. In the case where a component library 

has been updated since a model was created, the provision is made in the application to 

update affected components to the latest version. 

As the development of any software package evolves it is likely that new features will be 

added or existing features may be changed. To reflect this, changes may be made to the 

storage format. To avoid having to re-create model files each time features within the 

software are changed, it is essential that the software should be backward compatible with 

files created in an older version. To allow for this, a version number will be included in each 

file created by the application. For each new file version that is defined, a set of rules will be 

created which instruct the application how to modify the XML content of a file to upgrade 

from the previous file format to the current file format. A per-version upgrade system like 

this provides the advantage that it allows any previous file format to be used by the 

application by incrementally upgrading the file structure until it is at the latest format. It also 

simplifies the logic which converts the internal representation of system models and 

components to their XML counterparts and vice versa since this logic will always operate on 

the latest file version.   

To store the simulation properties which were introduced in section 3.4.2 – start time, 

duration, time-step size, global parameters and ambient temperature – it was decided that 

an extra section known as a “Simulation Environment” would be added to the definition of a 

model. As well as these simulation-engine-related properties, the result generator objects 

discussed in section 3.5.1 and information about the types of viewer (graph, pie chart or 

table) selected to view these results would also be included under this section. The 

advantage of taking this approach to storing simulation properties is that multiple different 

types of simulation may be defined for each model, from short transient simulations to 

longer seasonal simulations, and the appropriate results generated for each simulation. 

There is a relationship between an instance of a component used within a model and the 

underlying component behaviour. Internally within the application, this is represented by an 

object reference within the component class to the associated behaviour class. When models 

are saved to a file, this relationship must also be preserved and therefore a method is 
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required to uniquely identify a component’s behaviour so that is can be referred to in within 

the XML representation of a particular component instance. The chosen solution to this 

problem was that in addition to a descriptive name, each component behaviour would be 

assigned a GUID (Globally Unique ID). GUIDs are 128-bit integers generated by an algorithm 

built into Windows which is designed to produce numbers based on the current time that are 

statistically unlikely to be repeated and can therefore be considered “globally unique”. GUIDs 

were chosen as the preferred unique identifier because they allow component libraries 

created on different computers to be used on other systems with very little risk of ID clashes 

between components. The XML definition of a component instance will contain a field 

specifying the GUID of the associated behaviour. 

Similarly, a component link is represented internally by object references to the start and end 

pins that the link connects. These must also be converted to a textual representation. The 

chosen textual representation in this case is to store the name of a component instance and 

pin that represents each end of the link. Pin names can be used directly as long as the 

restriction of no duplicate pin names on components is enforced. For this representation to 

work, component instances will also need to be uniquely named within a model. Again, a 

GUID could be used for this purpose but it was felt that because the scope for duplicate 

names was limited to an individual model file and was not global, user-defined names would 

be used to represent individual components within a simulation, with the package initially 

providing a default name based on the associated component behaviour name (for example, 

“Building_1”). 

Figure 3-16 and Figure 3-17 illustrate the hierarchical structure of the XML storage of 

component libraries and system models. For clarity, component behaviour and component 

instance elements from the XML files have been shown separately in Figure 3-18 and Figure 

3-19 respectively. Component library files will contain only a list of component behaviours to 

be used within new models while system model files will contain a system model definition 

(including the required component behaviours) as described in section 3.2.2 and illustrated in 

Figure 3-1. Additionally, a system model file will make the provision for including illustrative 
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line, rectangle and textbox elements which can be used to annotate models for the benefit of 

users viewing the models. 

 

Figure 3-16: XML schema for a component library file. 
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Figure 3-17: XML schema for a system model file. 
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Figure 3-18: XML schema for component behaviour elements. 

<component>

<name>

CDATA : string

<guid>

CDATA : string

<category>

CDATA : string

<description>

CDATA : string

<version>

CDATA : integer

<supportsheattransfer>

CDATA : boolean

<supportsparallel>

CDATA : boolean

<logicblock>

CDATA : boolean

<pins>

<pin>

name : string
type : enum {Electrical,Thermal,Communication,Other}

direction : enum {In,Out,Unspecif ied}
placement : enum {Lef t,Right}

[0..*]

<params>

<param>

name : string
type : emum {Integer,Decimal,String,Boolean,Time,Dialog,List,Table,Option}

runtime : boolean

[0..*]

<description>

CDATA : string

<value>

CDATA : variable

<code>

language : enum {cs,vb,math}

CDATA : string
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Figure 3-19: XML schema for component instance elements. 

 

<instance>

<class>

<simple>

guid : string

[0..1]

<special>

type : enum {electrical,temperature}
pins : integer

variant : enum {ambient,absolute}

[0..1]

<name>

CDATA : string

<position>

x : integer
y : integer

<flip>

horizontal : boolean

<params>

<param>

name : string
type : emum {Integer,Decimal,String,Boolean,Time,Dialog,List,Table,Option}

runtime : boolean

[0..*]

<description>

CDATA : string

<value>

CDATA : variable
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3.7. Application Design Summary 

The diagram in Figure 3-20 illustrates the architecture of the new domestic smart grid 

simulation package. The package will perform the simulation of a component-based system, 

where each component in the system may contain one or more pins that represent an 

electrical system, heat source or sink or data communications endpoint. The behaviour of 

each of these components will be governed by source code which can be written in a choice 

of three languages. Each component may also have one or more configurable parameters to 

provide control over its behaviour in a specific system. A graphical editor will be provided to 

enable the creation and editing of libraries of components. 

A graphical model editor will be provided to create system models. These models will be 

created by linking pins on components selected from the available libraries. Models created 

using this editor can then be passed to the simulation engine within the package which will 

perform the simulation of the models. 

Results generated by the simulation engine are passed to one or more result viewers 

specified by the user. These can be pie charts, line graphs or tables. The results displayed in 

these viewers can be exported to image file formats or spreadsheet formats for further 

processing and analysis. 
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Figure 3-20: Diagram illustrating the architecture of the new simulation package. 
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Chapter 4  

Implementation of Models 

Chapter 3 discussed the design and implementation of a new software simulation package 

for domestic smart grid systems. Detailed information about the implementation of the 

package is provided in Appendix F. This package is a generic simulation platform for such 

systems which provides the basic framework upon which system models can be built. To 

enable such models to be built, libraries of components must also be created for use within 

the package. This chapter describes the collection of components which have been 

developed to date. 

4.1. Electrical Components 

4.1.1. Ideal Sources 

Two single-pin components were created to represent idealised DC sources and AC grid 

connections. These components are implemented as a voltage source in series with zero 

resistance or impedance. A configurable parameter is provided on each component to allow 

the required voltage to be specified. On the AC source component, additional parameters are 

provided to specify the frequency and phase angle (with respect to a system reference of 0°) 

of the voltage source. Figure 4-1 below illustrates the component symbol and source code 

for each of these components. 



 

79 

  
#opt single 
#param voltage=”Voltage” 
#pin out=”OUT” 
 
out.zmag = 0 
out.zphase = 0 
out.vrms = voltage 
out.dc = 1 

#opt single 
#param freq=”Frequency” 
#param phase=”Phase” 
#param voltage=”Voltage” 
#pin out=”OUT” 
 
out.zmag = 0 
out.zphase = 0 
out.vrms = voltage 
out.freq = freq 
out.phase = phase 
out.dc = 0 

Figure 4-1: Illustration of component symbols and source code for DC and AC ideal 

voltage source components. Source code for these components is written in the 

mathematical mark-up language. 

4.1.2. Solar Panel 

Photovoltaic electricity generation is a popular form of microgeneration: existing buildings 

can easily be retro-fitted to accommodate the technology through the use of roof-mounted 

solar panels. Solar cells have a non-linear current-voltage relationship which is commonly 

modelled using either the two-diode model [109-112] shown in Figure 4-2 or the single-diode 

model [113-115] shown in Figure 4-3.  

 

Figure 4-2: Two-diode solar cell model. 

 

Figure 4-3: Single-diode solar cell model. 
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For the purposes of the simulation package, the single-diode model was selected since it has 

fewer parameters to compute when fitting the model to a particular type of solar panel and 

is less computationally demanding to evaluate. 

The single diode model in Figure 4-3 represents a solar cell as a current source in parallel 

with a diode, a series resistance RS which represents the losses in the connection to the cell 

and a shunt resistance RP which represents losses in the photovoltaic conversion process. 

This model is described by equation (18) as: 

                              
     

       
     

     

  
 

(18) 

IOUT is the output current of the solar cell (A), V is the voltage across the cell (V), RS and RP 

are the series and shunt resistances (Ω), and m is the dimensionless ideality factor of the 

diode in the solar cell model. VT is the thermal voltage for a given cell temperature T (K) 

given by (19) where k is the Boltzmann constant (1.38x10-23J/K) and q is the electron charge 

(1.6x10-19C). 

      
   

 
 

(19) 

IRS is the reverse saturation current (A) which is a temperature-dependent loss in the 

photovoltaic conversion process given by (20) where IRSR is the reverse saturation current at 

a given reference temperature TR (K), ϵ is the band gap energy of the semiconductor material 

used to manufacture the solar cell (1.12eV for silicon) and m is the diode ideality factor 

described previously. 

            
 

  
 
 

    
 

 
 

 

      
 

 

     
   

(20) 

IPH is the photocurrent (A) generated by the cell which is dependent on incident solar 

irradiation as shown in (21) where IPHR is the photocurrent (A) generated by the cell at a 

reference irradiation level SR (W/m2) and S is the incident irradiation level (W/m2). 
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(21) 

In equation (18), current appears on both sides of the expression and hence requires the use 

of numerical methods to obtain a solution. In order to allow the equation to be solved 

analytically, the assumption can be made that if RS is sufficiently small and RP is sufficiently 

large then these values can be removed from the expression, giving the simplified model in 

(22). 

                              
 

       
     

(22) 

In order to model a panel made up of multiple solar cells connected in series and parallel, 

some changes must be made to the model in (22). In equation (21), IPHR is given by IPHR = 

IPHR_PANEL / NP where IPHR_PANEL is the panel’s photocurrent at reference conditions and NP is 

the number of parallel networks of cells in the panel. Similarly in (20), IRSR is given by IRSR = 

IRSR_PANEL / NP. To obtain the output current of the panel, the modified version of (22) given 

in (23) should be used where NP is the number of parallel networks of cells in the panel, NS is 

the number of cells in series within each parallel network and V is the voltage across the 

panel. 

                                 
 

          
      

(23) 

From (23), the output current of a solar panel can be obtained trivially if the voltage is 

known. The equation can also be re-arranged to obtain the voltage if the current is known. 

However, it is non-trivial to determine the voltage and current if only the resistance of the 

load connected to the panel is known. Within the smart grid simulation package, this is the 

scenario in which the properties of the solar panel must be calculated.  

To simplify the solution to this problem, consider Figure 4-4 which illustrates the model from 

(23) using the parameters of a BP SX-80 solar panel (IPHR=4.7A, IRSR=9.84x10-10A, m=2.13, 

SR=1000W/m2, TR=298.15K), with atmospheric conditions of S=1000W/m2 and T=25°C 

(298.15K). Additionally, the plot shows the load resistance with respect to voltage. 
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Figure 4-4: Illustration of the I/V characteristic of a BP SX-80 solar panel showing 

the equivalent load required to obtain each operating voltage. 

If the load resistance is known, it is possible to determine the operating point of the solar 

panel by obtaining the operating voltage from the R/V curve and hence the current using 

(23). This technique is a variation on the “load line” technique for finding the operating point 

of a diode as described by Hambley et. al. in [116]. However, when carrying out simulations 

involving photovoltaic systems, a graphical method provides little benefit and therefore 

some form of computational equivalent is required. Section 4.1.2.1 describes two existing 

algorithmic options for the detection of the operating point of a solar panel and presents a 

new algorithm that was developed during the course of this research. 

4.1.2.1. Operating Point Detection Algorithms 

Linear Search 

The most basic form of evaluation of the operating point is to find the desired point on the 

R/V curve for the solar panel and hence compute the current for the given voltage. Search 
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algorithms allow for the R/V curve to be searched for a given load resistance and the voltage 

to be extracted from the curve. The linear search algorithm [117] is one of the simplest forms 

of search algorithm.  

To determine the operating point using the linear search algorithm, the current should be 

computed using (23), initially setting V=0. The resistance can then be calculated by dividing 

the voltage by the calculated current. If the resistance is less than the desired load value, the 

voltage should be incremented by a small value and the process repeated until the algorithm 

either finds the desired resistance, or finds a value larger than the desired load. The accuracy 

of this algorithm is directly dependent on the value that the voltage is incremented by – 

smaller values will produce more accurate results but cause the algorithm to take longer to 

reach the solution. 

Newton’s Method 

An alternative to searching for the operating point by using the panel’s R/V curve is to use 

Ohm’s law in conjunction with equation (23) to express resistance in terms of voltage, as in 

(24). To determine the operating point of the solar panel, (24) can be solved for V for a given 

value of R. The voltage obtained may then be used with equation (23) to determine the 

current. 
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Although there is no analytical solution to (24), Newton’s method [118] may be used to solve 

for the voltage. Newton’s method, defined in (25) is a successive approximation solver which 

begins with an initial estimate at the solution, xn and uses this to determine a more accurate 

approximation to the solution, xn+1. This process is continued with each approximate solution 

until xn+1 is within a given tolerance of xn.   
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In order to solve (24) using Newton’s method, it must be rearranged into the form given in 

(26) and additionally the derivative given in (27) is required. 

R

TmVN

V
TISIN

V
vf

TS
RSPHP




















)1)
)(

)(exp(()(

)(

 

(26) 










































































































1
)(

)()()(

)(
)(

1
)(

)()(

1
)('

TVmN

V
ExpTISITVmNN

TVmN

V
ExpVTI

TVmN

V
ExpTISIN

vf

TS
RSPHTPS

TS
RS

Ts
RSPHP

 

(27) 

New Operating Point Detection Algorithm 

For the purposes of the smart grid simulation package, a new solar panel operating point 

detection algorithm was developed. The algorithm utilises a variant of the well-known binary 

search technique [119] to search the R/V curve of a solar panel for a known load resistance 

to find its operating point. 

The algorithm, illustrated in Figure 4-5, begins by setting a voltage variable to zero. Equation 

(23) is then used to calculate the current and hence the resistance for that voltage. If the 

resistance is less than the known load resistance, the voltage is incremented by a given step 

size and the algorithm begins its next iteration. If the resistance is greater than the known 

load resistance, the voltage is set to its previous value and the step size is divided by 10. This 

process continues until either the load resistance is found or the step size reaches a specified 

minimum value. 
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Figure 4-5: Illustration of the new algorithm developed to determine the 

operating point of a solar panel when the load resistance is known. The output 

current I(V) is obtained using (23) and R(V) =V/I(V). 

The overall effect of the algorithm is to rapidly converge to an approximation close to the 

known load value and then to search more precisely to reach the optimum value. The 

principal property which governs the accuracy of the algorithm is the minimum step size. 

Smaller values will result in the algorithm taking longer to converge to a more accurate 

solution while larger values will result in faster convergence to a less accurate solution. 
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On each simulation time-step, the new operating point detection algorithm is used to 

determine the operating point of the solar panel for the connected load. However, a further 

processing step is required to define a Thévenin equivalent model of the panel at this 

operating point. This step is to find the equation of the tangent to the I/V curve at the 

computed operating point that provides a linear model of the panel’s I/V characteristic which 

is accurate at the computed operating point. The tangent to the I/V curve at a particular 

operating voltage VOP is defined by (28) where IOUT(S,T,V) is given by (23) and IOUT’ S T V  is 

the derivative of (23) with respect to V, given by (29). The Thévenin equivalent model can be 

obtained from the equation of the tangent by setting V=0 to obtain the Norton current IN 

and then setting I=0 to obtain the Thévenin voltage. The Thévenin resistance can be 

computed using RTH = VTH/IN. 

                                                    (28) 

                        
    

 
          

 

          
 

(29) 

4.1.2.2. Comparison of Operating Point Detection Algorithms 

A comparison of the new algorithm was carried out with the linear search method and the 

Newton method to measure its performance against that of the other algorithms. 

Comparisons will be performed on the range of resistance values for which the algorithms 

can obtain a solution, the time taken to reach a solution and the accuracy of the solutions 

obtained. The comparison was carried out by selecting voltage points between 0V and 25V in 

increments of 0.01V and calculating the current and resistance for each for the a BP SX-80 

module. The calculated resistances are used as the test inputs to each of the algorithms and 

the voltage and current values are used as the reference operating point for each resistance 

which the values calculated by the algorithms can be compared to. To provide a fair 

comparison between each algorithm, the tolerance for the Newton solver was set at 1nV and 

the minimum step sizes for the linear search algorithm and the new algorithm were also set 

at 1nV. The Newton solver was set to have an initial guess of 0V for the operating point in 

each instance. 
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The first comparison that was carried out was of the range of resistance values for which the 

algorithms can obtain a solution. Figure 4-6 shows the results for linear search algorithm, 

Figure 4-7 shows the results for the Newton method algorithm and Figure 4-8 shows the 

results for the newly developed algorithm. It can be seen from these results that the linear 

algorithm is able to solve over the entire range of resistances provided to it, the Newton 

method algorithm begins to fail nearer the open circuit voltage and new algorithm solves for 

all given values, with a slight error near the open circuit voltage. The reason for the Newton 

solver failing near the open circuit voltage is that equation (30) has a stationary point near 

the open circuit which will cause a division by zero error in the Newton method calculation 

when it operates in this region. 

 

Figure 4-6: Illustration showing the range over which the linear search algorithm 

was able to obtain I/V operating points for the BP SX-80 solar panel. 
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Figure 4-7: Illustration showing the range over which the Newton’s method 

algorithm was able to obtain I/V operating points for the BP SX-80 solar panel. 

 

Figure 4-8: Illustration showing the range over which the newly developed 

algorithm was able to obtain I/V operating points for the BP SX-80 solar panel. 

The second comparison was the time that was taken for each algorithm to obtain a solution 
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irradiation of 1000W/m2 are shown in Figure 4-9. It can be observed from these results that 

Newton’s method was the fastest to reach a solution with an average time of 0.01ms, 

followed by the new algorithm with an average time of 0.1ms. The linear search was 

considerably slower as the time taken to obtain each solution was directly proportional to 

the resistance value. The average time for the linear search algorithm to find a solution was 

2.14s. 

 

Figure 4-9: Comparison of the time taken to reach a solution for each algorithm 

using an irradiation level of 1000W/m2. The values for 500W/m2 are excluded 

from this illustration because they are of similar magnitude. 

The final comparison  performed between the three algorithms was one of the accuracy of 

each algorithm. In this case, the error between the operating voltage obtained by each 

algorithm and the actual operating voltage of the panel was used for the comparison. The 

comparison was carried out using irradiation levels of 500W/m2 and 1000W/m2. The results 

are presented in Table 4-1. It can be observed from this table that the Newton’s method 

solver provides the most accurate results, followed by the linear search algorithm with the 

new algorithm performing most poorly. It should be noted, however that the large error 
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contribution in the new algorithm is in the voltage range within 1V of the open circuit 

voltage, which is well beyond the range that the Newton method solver is capable of 

obtaining solutions in. If this range is disregarded then the maximum error is reduced to 

around 1x10-9V in both cases. 

Table 4-1: Comparison of result errors in operating point detection algorithms. 

Algorithm 500W/m2 Comparison 1000W/m2 Comparison 
Minimum 
Error (V) 

Average 
Error (V) 

Maximum 
Error (V) 

Minimum 
Error (V) 

Average 
Error (V) 

Maximum 
Error (V) 

Linear 
Search 

0 6.56x10-7 
1x10-6 0 6.35x10-7 

1x10-6 

Newton’s 
Method 

0 9.61x10-17 1.06x10-14 
0 3.91x10-17 

1.06x10-14 

New 
Algorithm 

0 0.012 1 0 0.022 1 

4.1.3. Battery Storage 

Energy storage was highlighted in Chapter 2 as one of the technologies which could become 

important in mitigating the supply stability issues introduced by adding increasing amounts 

of renewable generation to the electricity network. A representation of a battery was added 

to the simulation package in order to allow for the modelling of electrical storage at the 

domestic level. A number of different battery chemistries are available and all have the 

potential for use in future storage systems. These include Lithium Ion (including Lithium 

Polymer), Nickel Cadmium, Nickel Metal Hydride and Lead Acid. Different battery chemistries 

have different electrical characteristics and therefore different mathematical models defining 

their behaviour. A number of mathematical models have been created for simulating the 

properties of batteries, some battery chemistry specific [120-122] and others independent of 

battery chemistry [123]. The model that was chosen for use is the battery model provided 

within the SimElectronics package within the Matlab / Simulink software [124]. This generic 

battery model models batteries as a controlled voltage source in series with a resistance 

which makes it ideal for use in the simulation software. The only dependent parameter 

within the model is the state of charge and hence it is less computationally intensive to 

evaluate during a simulation compared to other models. 
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The voltage of the source V (V) within the battery model is described by (30) where V0 (V) is 

the battery open-circuit voltage when fully charged, x (%) is the state of charge of the battery 

and α and β are constants which govern the charge and discharge rate of the battery. The 

model is simplified by making the assumption that the charge and discharge I/V 

characteristics of the battery are the same. 

     
      

        
  

(30) 

The battery model parameters α and β are calculated using (31) and (32) respectively where 

V1 (V) is the battery open-circuit voltage at a known state of charge x1 (%) which is less than 

100%. 

   
         
       

 
(31) 

   
       
       

 
(32) 

The series resistance in the battery model is the internal resistance of the battery which 

governs the charge and discharge rate of the battery. 

Within the simulation package, the battery model was implemented with the following 

configurable parameters: Fully-charged open circuit voltage (V0, V); Calibration Voltage (V1, 

V); Calibration Charge State (x1, %); Battery Capacity (QT, Ah); Initial Charge (QINITIAL, Ah); 

Short-Circuit Current (ISC, A). 

The battery model is initialised by setting the internal resistance to V0 / ISC. The state of 

charge x is initialised to (QINITIAL / QT). On each time-step of a simulation, the change in state 

of charge is calculated by performing a trapezium rule integration using the instantaneous 

output current value measured at the battery’s output terminal (negative if charging) and the 

instantaneous current measured during the previous time-step. Logic within the model 

prevents the state of charge from falling below 0Ah or from going above the total capacity 

QT. After calculating the change in state of charge, the new battery voltage V is calculated 

using (30). 
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4.1.4. Connection and Control 

Each of the electrical connection and control components is inserted between two 

components to perform either a control action such as switching or to model the properties 

of a conductor. Connection or control components are therefore desired to behave like the 

schematic shown in Figure 4-10 where V1, V2, Z1 and Z2 model the properties of the two 

components and ZCONNECTION is the series impedance of the connection or control 

component. 

Due to the way that electrical pins are modelled in the simulation package, inserting a two-

pin intermediate component between two other components results in the equivalent 

schematic shown in Figure 4-11. 

 

Figure 4-10: Schematic of a connection or control component with impedance 

ZCONNECTION inserted in series between two components. 

ZCONNECTION

V1

Z1

V2

Z2

Component 1 Component 2Connection / Control Component
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Figure 4-11: Schematic illustrating the way in which the simulation package 

requires a series component to be modelled. 

In order to model a connection or control component which follows the schematic shown in 

Figure 4-10 using the topology set in Figure 4-11, the properties of the component must be 

set as shown in (33). 

VC1 = V2 

VC2 = V1 

ZC1 = Z2 + ZCONNECTION 

ZC2 = Z1 + ZCONNECTION 

(33) 

The properties shown in (33) are set during the Evaluate phase of connection and control 

components’ code execution. The Evaluate function will return false if any changes are made 

to the connected pin properties V1, V2, Z1 or Z2 and true if these properties have not changed 

since the last evaluation of the component’s behaviour. This will ensure that the iterative 

simulation engine continues to run until a stable circuit is obtained for each side of the 

connection and control component.  

This generic approach is used for all of the connection and control components that were 

designed. The remainder of this section details with the specific behaviour of each of the 

different components. 
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ZC2
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4.1.4.1. Wire 

Electrical connections between two components in the simulation package are ideal zero-

resistance connections; however, wiring in a building has a non-zero resistance which is a 

factor that must be considered in building models, especially when long cable runs are used 

around a building. A special component, shown in Figure 4-12, was included in the package 

to account for the series resistance introduced by wiring. This component can be connected 

between any two electrical components. 

 

Figure 4-12: Component which models the series resistance introduced by 

electrical wiring. 

The component has the following configurable parameters: wire construction material 

(Copper, Aluminium, Silver or Lead), wire length (metres), wire cross-sectional area (mm2 or 

AWG).  

The resistance of the wire, R (Ω), is calculated during the component’s Reset phase using (34) 

below where ρ is the resistivity of the material used to construct the wire (Ωm),  l is the 

length of the wire (m) and A is the cross-sectional area of the wire (m2).  

  
  

 
 

(34) 

The cross-sectional area of the wire is converted from mm2 to m2 by multiplying by 10-6. In 

the case where the wire size is specified in AWG, formula (35) is used to convert the AWG 

size to mm2, before then being converted to m2. 

                 
      
     

 
(35) 

A lookup table of standard resistivity values for Copper, Aluminium, Silver and Lead is used to 

retrieve the resistivity for the selected wire material. 
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Once the resistance of the wire has been obtained, the method described at the beginning of 

section 4.1.4 is used in the component’s Evaluate phase to model the wire component as a 

series resistance. 

4.1.4.2. Switch 

The switch component is designed to allow for the simulation of users switching appliances 

on or off. The component uses the asynchronous communications mechanism of the package 

to receive “ON” or “OFF” messages to control its state. When in the on state, the series 

resistance of the switch is set to a contact resistance which is specified through a 

configurable parameter. When in the off state, the series resistance of the switch is set to 

infinity, making it act as an open circuit. 

4.1.4.3. Digital Switch 

The digital switch component is designed to provide electronic control over an appliance 

using a communications link from a control device. The switch has a configurable one-byte 

address which is used to uniquely distinguish it from other switches using the same 

communications network. When a two byte packet containing the configured single-byte 

address followed by 0 is received, the switch is set to the off state. When the address is 

received followed by 1, the switch is set to the on state. The digital switch behaves in an 

identical manner to the basic switch component in the on and off states by acting as a 

configured contact resistance when on and as an open circuit when off. 

4.1.4.4. Relay 

The relay component is designed to provide lower-level electronic control over appliances 

than the digital switch. In place of the communications pin, the relay provides an electrical 

pin on which it expects a DC control voltage. The coil resistance and switch-on threshold for 

this pin can be set through configurable parameters. Similarly to the previous two switch 

components, the relay functions as a configured contact resistance when the control voltage 

is above the switch-on threshold and as an open circuit when the control voltage is below the 

threshold value.  
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4.1.4.5. Smart Meter 

A smart electricity metering component was seen as an essential element of a smart grid 

modelling package because, as discussed in section 2.1.5, smart metering has been identified 

as one of the key features of future domestic energy systems. A metering component is also 

important when designing new smart energy control systems as it can illustrate the energy 

used by the system during a given period of time, or the total cost of energy used.  

The implementation of the smart meter component is based on the Smart Meter Technical 

Specification that was made publicly available by British Gas [39]. Following the requirements 

set out in this specification allows the smart meter component to closely follow the features 

available in industry-standard meters. Additional communication features relating to the 

control of in-home appliances, storage and generation systems which are not yet in use in 

deployed meters have also been added to provide a degree of future-proofing to the 

software package. The meter component, shown in Figure 4-13, has electrical connections 

for the in-home power system and the electricity supplier network. Communication 

connections are provided for communication with the electricity supplier and with in-home 

systems. 

 

Figure 4-13: Smart electricity meter component. 

The European Standard BS EN 50470-1 [125] specifies the requirements for the electrical and 

physical properties of electricity metering devices used in the UK. Among these requirements 

is that the meter should monitor active (real) power consumption over the metered time 

period as shown in (36), where P is the metered power in kWh over the given time period T 

in hours and p is the instantaneous power in kilowatts.  
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(36) 

This is the calculation that is used within the smart metering component to monitor power 

consumption. As simulations within the modelling package are carried out in discrete time 

steps, the trapezium integration rule [118] is used to perform the integration of power as 

shown in (37). 

                
                             

 
 

(37) 

The electricity meter’s characteristics will be modelled using the method for modelling series 

components defined at the beginning of section 4.1.4, with the meter having zero insertion 

resistance – essentially behaving as a short circuit between the input and output pins. 

Instantaneous power flow out of a pin on a component is a property provided by the 

package’s scripting API hence no calculation of power flow is required within the 

component’s logic. 

Three power consumption tariff systems are provided within the component. These tariff 

systems were selected because they are available within the smart meters currently being 

deployed by British Gas in the UK. These are the Time of Use (TOU), Tiered Time of Use (T-

TOU) and Critical Peak Pricing (CPP) systems. The Time of Use (TOU) tariff system divides the 

24 hours of the day into 48 half-hour segments and a price is specified for each segment. The 

Tiered Time of Use (T-TOU) operates by using an 8x8 grid of electricity prices. The columns 

within the grid represent 3-hour segments of the day. The appropriate column for looking up 

electricity prices is selected by the meter based on the time of day. Each row within the grid 

represents a different pricing tier. The appropriate row to look up electricity prices in is based 

on the amount of energy already used in the current billing period. For example, one rate 

may be charged for the first 250kWh used, followed by a lower or higher rate for the next 

250kWh and so on. Either TOU or T-TOU is selected within the meter as the active pricing 

scheme for normal electricity use. 
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The Critical Peak Pricing (CPP) tariff is used in conjunction with one of the two regular pricing 

schemes mentioned above. Critical peak periods are invoked by the utility provider sending a 

message to the meter to notify that a critical peak period is in operation, during which a 

significantly higher price per kWh will be charged. A second message returns the meter to 

the regular TOU or T-TOU scheme when the critical peak period is over. The meter stores a 

single configurable price to use during critical peak periods. 

The smart metering component also has support for a feed-in tariff in the case that local 

microgeneration is generating more power than can be used locally and is feeding power 

back into the grid. For simplicity, a single configurable rate is used by the meter for billing 

power fed back into the grid. 

Three different types of communication are supported on the utility provider side of the 

meter. These are: 

 Notification of entering a critical peak period. 

 Notification of leaving a critical peak period. 

 Message to request meter readings. The meter responds with a 48x1 table of TOU 

readings or an 8x8 table of T-TOU readings, depending on the tariff that is currently in 

use. 

To enable control of domestic appliances based on meter pricing events, three user-

configurable tables are specified within the component. These specify communication 

messages to be sent in response to changing prices. The three types of messaging supported 

are: 

 Sending one or more messages when the pricing tier changes. 

 Sending one or more messages when the Time-Of-Use period changes. 

 Sending one or more messages when entering or leaving a critical peak period. 

Additionally, devices within the home may communicate with the meter to query the billing 

price per kWh in use or the instantaneous power consumption. 
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Configuration of the smart meter component is undertaken through the use of a number of 

configurable parameters provided on the component. These are shown in Table 4-2. Results 

can be collected from the component by monitoring one or more of the read-only 

parameters shown in Table 4-3. 

Table 4-2: Parameters used to configure the smart meter component. 

Parameter Type Description 

Pricing Scheme Option List Specifies the default pricing scheme to use for normal 
metering – TOU or T-TOU. 

TOU Prices 48x1 Table Specifies the price per kWh in £ for each of the time of 
use pricing slots. 

T-TOU Prices 8x8 Table Specifies the price per kWh in £ for each of the T-TOU 
pricing slots. 

T-TOU Thresholds 8x1 Table Specifies the kWh thresholds for each of the tiers in the 
T-TOU scheme. 

T-TOU Period Integer Specifies the billing period over which the T-TOU pricing 
scheme operates before resetting back to the first tier. 

Feed-In Rate Decimal Specifies the price in £/kWh for energy fed back into the 
grid. 

CPP Rate Decimal Price in £/kWh to use during critical peak periods. 

Meter ID Integer A unique ID number for the meter which is used in 
communications with the utility provider. This allows 
multiple meters to be used on the same communications 
link. 
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Table 4-3: Parameters that store metering results within the smart meter 

component. 

Parameter Type Description 

Instantaneous Power Decimal Instantaneous power flow in kW. 

Active TOU Slot Integer A number (1-8 for T-TOU or 1-48 for TOU) indicating the 
active time of use slot used for billing. 

Active Tier Integer A number (1-8) indicating the active billing tier. 

CPP Active Boolean A flag indicating whether or not Critical Peak Pricing is 
active. 

Feed In Active Boolean A flag indicating whether or not the meter is in feed-in 
mode. 

Tiered Rate Register Decimal The energy use in kWh since the beginning of the current 
billing period if T-TOU is active. 

Tiered Rate Day Count Integer The number of days since the beginning of the current 
billing period if T-TOU is active. 

Active Rate Decimal The current rate in £/kWh that is being used to bill 
electricity. 

TOU Readings 48x1 Table A table holding the kWh readings for each billing slot if 
the TOU scheme is in use. 

T-TOU Readings 8x8 Table A table holding the kWh readings for each billing slot if 
the T-TOU scheme is in use. 

CPP Reading Decimal The amount of energy used in kWh during critical peak 
periods. 

Feed In Readings Decimal The amount of energy in kWh that has been fed back into 
the grid. 

Consumption Cost Decimal The cost of energy consumed in £ during normal billing 
periods. 

CPP Cost Decimal The cost of energy consumed in £ during CPP periods. 

Feed In Payment Decimal The amount due from the utility provider in £ for energy 
fed back into the grid. 

4.1.5.  Loads 

Domestic electrical loads are classified into multiple groups for the purposes of modelling in 

software. These groups are: static loads which have constant power consumption when 

switched on; multi-mode loads which have constant power consumption for each of their 

operating modes (for example, full power and standby); time-varying loads in which power 

consumption varies predictably over the duration of use of the appliance; and dynamic loads 

in which electric power consumption is based on the properties of another dependent 

parameter (for example the temperature within a water heating appliance). 
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Each of the load components has a single electrical connection which represents its 

connection to the home AC power system. The pin is modelled as an impedance-to-ground 

connection as shown in Figure 4-14. The magnitude and phase angle properties of the 

impedance are evaluated by each component’s logic as described in sections 4.1.5.1 - 4.1.5.4. 

 

Figure 4-14: Model used for an electrical load component. 

4.1.5.1. Static Loads 

Static loads – loads where the power consumption is constant while power is applied to the 

device – were characterised in a set of in-home experiments that were carried out during this 

project. An in-line power analyser was used to measure the voltage, current and the phase 

difference between voltage and current. The value of the impedance for the model was 

calculated using Ohm’s law as in (38) where Z is the complex impedance value used in the 

model, V is the measured RMS voltage (V), I is the measured RMS current (A) and Φ is the 

phase difference between the current and voltage (°). 

  
    

    
  

 

 
      

(38) 

Table 4-4 shows the measured properties of the devices that were characterised and the 

resulting impedance value that was used in the model for each. 

Supply

Z
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Table 4-4: Measured operational characteristics of household appliances and 

calculated impedance value for use in models. 

Appliance Measured 
Voltage (V) 

Measured 
Current (A) 

Measured 
Phase Angle 

(°) 

Model Impedance 

Magnitude (Ω) Phase Angle 
(°) 

Microwave 
Oven 

236.5 6.54 24.5 36.16 -24.5 

Incandescent 
Light Bulb 

238 0.237 0 1004.22 0 

Carbon 
Fluorescent 
Light Bulb 

238 0.08 -50.95 2975.00 50.95 

Wireless 
Router 

239 0.053 -58.67 4509.43 58.67 

Vacuum 
Cleaner 

234 5.46 14.07 42.86 -14.07 

Electric 
Shower 

238 38.57 8.11 6.17 -8.11 

 

4.1.5.2.  Multi-Mode Loads 

Loads which have similarly constant power consumption properties to those in the “static 

loads” group but have more than one operating mode where the power consumption may be 

different were categorised as multi-mode loads. These loads include appliances which have 

constant power consumption but which also have, for example, a standby mode. The 

components were categorised and implemented in the same way as the static loads, with the 

impedance value to use being selected depending on the value of a state variable indicating 

the operating mode. The operating mode of each appliance can be changed during a 

simulation using the asynchronous communications mechanism within the package. Upon 

receiving an asynchronous message, a component compares the message to the names of its 

operating modes and if a match is found, the operating mode is changed. Table 4-5 below 

illustrates the measured properties of a variety of the components for each operating mode 

and the calculated impedance. 
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Table 4-5: Measured operational characteristics of household appliances with 

multiple operating modes and calculated impedance for use in models. 

Appliance Operating 
Mode 

Measured 
Voltage (V) 

Measured 
Current (A) 

Measured 
Phase Angle 

(°) 

Model Impedance 

Magnitude 
(Ω) 

Phase Angle 
(°) 

Phone 
Charger 

On 237 0.049 -50.95 4836.73 50.95 

Standby 236 0 0 ∞ 0 

LCD TV On 238 0.495 -25.84 480.81 25.84 

Standby 237 0.059 -85.41 4016.95 85.41 

XBOX 360 On 238 0.315 -53.13 755.56 53.13 

Standby 238 0.047 0 5063.83 0 

PC On 230 0.54 -42.27 425.93 42.27 

Sleep 230 0.053 -65.17 4339.62 65.17 

Off 230 0.043 -77.88 5348.84 77.88 

TFT Monitor On 237 0.135 -61.31 1755.56 61.31 

Standby 237 0.05 -85.41 4740.00 85.41 

4.1.5.3. Time-Varying Loads 

A washing machine was identified as an appliance which could be suitably modelled as a load 

which varies in a predictable way over time. A number of typical washing machine cycles 

(40°C normal spin, 40°C short spin, 60°C normal spin, 60°C short spin) were recorded using an 

AC power analyser and used to create lookup tables within the washing machine 

component’s logic. The component supports commands using the asynchronous messaging 

system to indicate a programme being started by the user (START 40N, START 40S, START 

60N, START 60S). The instantaneous load value for the component’s model is determined by 

identifying the time-point within the selected programme that the machine is currently at 

and selecting the relevant load magnitude and phase angle from the lookup table. If the 

machine is not currently running a programme then it is modelled as an infinite resistance 

(i.e. zero power consumption). 

A second more generic time-varying load component, named “Time-Varying Load” was 

included which allows a load pattern to be followed based on an imported table of values. 

This will allow for the modelling of any time-varying load not included in the standard library 

of components. 
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4.1.5.4. Dynamic Loads 

During the course of the project, the only “Dynamic Load” device which was implemented 

was an electric water heater. The motivation behind the implementation of this water 

heating component was to provide a water-based energy storage device which could be used 

within domestic demand side management experiments later on in the project. This 

electrical load is classed as a dynamic load within this discussion as the electricity consumed 

by the device is related to the internal water temperature within the tank which is related to 

the end-user consumption of water.  

In order to develop a simplified model of a hot water immersion heater, the properties of a 

commercially available immersion heater were used for reference. The heater that was 

selected was the ECSd100-580 immersion heater which is manufactured by Dimplex. The 

properties of this heater are summarised in Table 4-6. 

Table 4-6: Properties of the Dimplex ECSd100-580 100 litre 3kW immersion 

heater. 

Height of Tank 0.81m 

Diameter of Tank 0.58m 

Insulation 6cm Polyurethane Foam 

Tank Material 0.5cm Stainless Steel7 

Water Storage Volume 100 litres 

Heating Element 1x 3kW element 

Maximum Water Temperature 90°C 

Inlet Water Flow Rate 
(Minimum) 

15 litres / min  
(Output at Mains Pressure) 

Heat Loss 0.9kWh/24 Hours (Estimated) 

The first stage in implementing a simplified, generic immersion heater model was to define a 

constant for the tank’s thermal resistance. As no specific conditions were placed on the 

manufacturer-specified heat loss in Table 4-6, the assumption was made that within the 

component logic, the thermal resistance of the tank would be calculated for a set condition 

of 75°C water temperature (the mid-point between the 90°C maximum and the UK 

regulation of 60°C minimum storage temperature). The ambient temperature will be taken as 

                                                        
7 The tank wall thickness (including insulation) was not explicitly stated in the specification and has therefore been 
estimated from the other parameters provided, assuming a cylindrical tank shape. 
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20°C when calculating the thermal resistance of the tank. Based on a configurable heat-loss 

parameter within the component (kWh/24h), the thermal resistance (°C /W) of the tank 

material is therefore calculated as shown in (39). 

                   
     

  
    

          
 

(39) 

The second stage of developing the water tank model was the simulation of the cooling of 

water within the tank due to the heat loss through the casing. In order to simplify this 

calculation, the assumption was made that the water in the tank is always well-stirred and 

has uniform temperature throughout. The specific heat capacity of water in the tank is taken 

to be 4180J/kg∙°C. The assumption is also made that the tank is always full. The mass of 

water in the tank is therefore equal to its volume (1 litre of water = 1kg).  

Using Newton’s Law of Cooling, the temperature decrease in the tank’s water during one 

time-step of a simulation can be calculated using (40) where TNEW is the new temperature of 

the water in the tank after cooling (°C), TOLD is the temperature of the water in the tank prior 

to the calculation (°C), TAMBIENT is the ambient temperature (°C), t is the simulation time-step 

size in seconds, RTH is the thermal resistance of the tank casing (°C /W), CP is the specific heat 

capacity of water (J/kg∙°C) and m is the mass of water in the tank (kg). 

                               
 

  
          

 
 

(40) 

The third stage within the model’s evaluation is the calculation of the heat loss in the tank 

due to hot water consumption. For this stage of the calculation, a configurable parameter is 

supplied to define the temperature at which hot water should be delivered. A monthly table 

is provided of cold water inlet temperatures. In immersion heater systems, the water in the 

tank may be significantly higher than the hot water delivery temperature and the required 

hot water temperature is delivered through the use of a thermostatic mixing valve to mix hot 

and cold water.  
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The heater is initially assumed to be supplying no hot water at the beginning of a simulation 

and water flow is indicated to the heater by other components within a model through the 

use of the asynchronous messaging capability. Components send messages to the tank in the 

format “FLOW Q” where Q is a flow rate in litres per minute. On each time-step the 

component calculates the temperature decrease due to water flow as shown in (41). 

               
              
           

 

               

                 
                 

                                
 

                                                     

                         
                               

  
  

                 
               

            
           

               

            
       

(41) 

The final stage in the evaluation of the heater’s behaviour is the calculation of the 

temperature increase in the stored water when the heating elements are active. The 

assumption is again made that the water in the tank is well-stirred with uniform temperature 

throughout and the assumption that the heating elements always transfer their  full rated 

electrical power as thermal energy when heating the water. The temperature of the water 

after heating for a single time-step, TNEW (°C) is calculated using the water temperature 

before the heating calculation TOLD, the power delivered by the heating elements P (W), the 

specific heat capacity of water CP (J/kg∙°C), the mass of water in the tank m (kg) and the time-

step size t (s) as shown in  (42). 

     
   

    
      (42) 

On each time-step of the simulation, the new water temperature of the tank is calculated by 

first performing the heat-loss calculation, followed by the water-flow calculation and finally 
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the heating calculation. An electrical connection on the component models the power drawn 

by the heating elements.  

The decision on whether to switch the heating elements on or off is made by comparing the 

tank temperature to a thermostat temperature setting. The initial value of this setting, along 

with its dead-band, are configurable parameters on the component. The thermostat value of 

the water heater may be adjusted during a simulation by sending messages of the format 

“TEMP X” to the heater’s communication port, where X is the new thermostat setting. 

4.2. Communication Components 

4.2.1. Scheduled Data Generator 

A number of the communication events that take place within a smart grid system (for 

example, pricing events sent by a utility provider to a smart meter) may, in a particular 

simulation scenario, occur at “hard-coded” times. These can therefore be modelled by a 

component which contains a look-up table of messages to be sent at a particular time. The 

Scheduled Data Generator was included within the package for this purpose. The component 

has a single communications pin on which messages are sent. A configuration table is 

included within the component with each row in the table storing a time and a message that 

should be sent over the communications channel at that time. For entries where the 

message dispatch time falls between two simulation time-steps, the message is sent on the 

latter of the two time-steps. The component allows for a multiple messages to be specified 

for the same time-step. 

4.2.2. Repeater 

The Repeater component is a communications infrastructure component that allows a simple 

communications network to be formed between many different components. Each repeater 

component has 8 communication pins which provide point to point connections between the 

repeater and the connected component. Any message received on one of the 

communications ports on the repeater is forwarded to every other port on the repeater. This 

allows a single component to communicate with up to seven other components.  
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The repeater component provides no routing capability and therefore the content of 

messages sent in a network made up of repeaters must contain information that indicates 

the destination of a message.  

4.3. Building Elements 

The modelling of building construction was a key requirement in the new smart grid 

simulation package. To enable this modelling, a set of components for modelling building 

surfaces, heated spaces, doors and windows was created. Each of these components was 

based on the models described in the international standards that are used to calculate the 

heat loss from buildings when developing specifications for heating systems. Additions were 

made to these standardised models when necessary – either when the standards did not 

provide a model for a particular building element or when more detail was required than the 

model presented in the standard was able to provide. 

4.3.1. Materials Database 

When modelling building elements, the thermal properties of the materials that they are 

made up from are an important factor. In order to avoid duplication of the thermal 

properties of building materials across the implementation of multiple modelling 

components, a database was created containing the thermal properties of a standard set of 

building materials. A table of materials already exists in the form of the standard BS EN ISO 

10456 [126]. This standard contains a tabulated list of common building construction 

materials along with the density (kg/m3), design thermal conductivity (W/m∙K), specific heat 

capacity (J/kg∙K) and wet and dry water vapour resistance factors (μ-value) of each. 

The information contained in the ISO standard was compiled into a database and embedded 

in a DLL library file that can be loaded by components’ C# or VB.NET source code. An API 

provided in the DLL allows the database to be queried for either a list of materials or for one 

of the thermal properties of a given material. 



 

109 

4.3.2. Surface 

The surface component was designed to represent any kind of surface that separates two 

thermal zones within a building, or separates a zone in a building from the exterior. The roof, 

exterior walls, interior walls, ceilings and floors can all be modelled using the surface 

component. The principle of the surface component was derived from the standard BS EN 

12831:2003 [89] which describes the calculation of design heat load for buildings. Within this 

standard, a surface is modelled as an area made up of layers of material, each with a defined 

thickness and thermal transmittance. The calculations in the standard are solely for steady-

state behaviour of the building and therefore only take into account the thermal 

transmittance of surfaces and not their ability to store heat.  

In order to provide a more accurate dynamic model of surface behaviour, the surface 

component was designed to also take the heat capacity of each material within the surface 

into account. In order to allow for this calculation, the configurable parameters for the 

component allow a surface of up to eight layers to be defined in terms of: surface area A 

(m2), thickness of each layer l (m) and material for each layer. The materials available within 

the model are the set of materials defined in the database described in section 4.3.1. Each of 

these materials has a thermal conductivity Φ (W/m∙K), density ρ (kg/m3) and specific heat 

capacity cp (J/kg∙K) which is used in the surface calculations.  

During the “reset” phase of the component’s evaluation, a model of the surface is initialised 

from the specified parameters. This model takes the form shown in Figure 4-15. 

 

Figure 4-15: Schematic diagram illustrating the model used for a surface 

component. 
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Within this model, CX (J/K) represents the heat capacity of a given layer X. This is calculated 

from the thickness of the material l (m), area of the surface A (m2), density of the material ρ 

(kg/m3) and specific heat capacity of the material cp (J/kg∙K) as shown in (43). 

      

      

       

(43) 

RX (K/W) represents the thermal resistance of a given layer X. This is calculated from the 

thickness of the material l (m3), area of the surface A (m2) and design thermal conductivity Φ 

(W/m∙K) as shown in (44). 

  
Φ

 
  

  
 

   
 

(44) 

To simplify the thermal calculation of the surface, rather than model the temperature 

gradient across each material within the surface, the assumption is taken that the 

temperature of each material TX (K) is the temperature at the centre of the material. The 

material is therefore modelled as shown in Figure 4-15 with half of the thermal resistance on 

each side of the central temperature.  

To initialise the temperature gradient across the surface, the initial temperatures provided in 

the simulation model are used in conjunction with the thermal resistance of the surface’s 

materials to calculate the temperature of each material within the surface. As an example, 

consider a scenario where in the schematic in Figure 4-15, material 1 has a thermal 

resistance of 0.2 K/W and material 2 has a thermal resistance of 0.4 K/W. Also consider that 

the initial temperature of the zone connected to the pin 1 of the component is 20°C and the 

initial temperature of the zone connected to pin 2 of the component is 22°C. This would 

produce a model of the format shown in Figure 4-16. 
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Figure 4-16: Example of initial surface temperature gradient calculation. 

In this example, the total thermal resistance is 0.6W/K and the total temperature difference 

across the surface is 2K. The temperatures at T1 and T2 respectively are calculated as a 

proportion of the total temperature difference across the surface as shown in (45) and (46) 

respectively. 

              
   

   
           (45) 

             
   

   
          

(46) 

To determine the dynamic characteristics of a material within the surface, the material is 

considered to be modelled in the form shown in Figure 4-17. In this model, T1 and T2 (K) 

represent the temperatures on either side of the material. These are either the temperatures 

of neighbouring materials within the surface or the temperatures of the zones that the 

surface is connected to in the case of a material at one of the edges of the surface. The 

thermal resistances R1 and R2 (K/W) are the sum of half of the material’s thermal resistance 

and either: half the neighbouring material’s thermal resistance in the case of an internal 

connection to another material within the surface; or, the thermal resistance of another 

component connected to the surface in the case of a material at the edge of the surface. 

CMATERIAL is the heat capacity of the material (J/K). 

 

Figure 4-17: Dynamic model of a material within a surface. 
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The first step in determining the dynamic temperature of a material is to compute the steady 

state temperature of the material using (47). 

        T    T  T    
  

     
   (47) 

The steady state temperature is then used in Newton’s cooling equation [127] as shown in 

(48) to calculate the new material temperature based on the current temperature. 

                                                   
      

            
  

(48) 

In this equation, tstep (s) is the time-step size used in the simulation and RP is the parallel 

combination of the thermal resistances R1 and R2, calculated using (49). 

   
 

 
  
 
 
  

 
(49) 

Once the temperature of each material within a surface has been evaluated for a given time-

step, the final equivalent model of the surface can then be derived for that time-step in the 

format shown in Figure 4-18. In this model TA and TB (°C) are the temperatures of the 

materials at each edge of the surface. RA and RB (K/W) are half of the thermal resistance of 

the material at each edge of the surface. 

 

Figure 4-18: Final surface model. 

4.3.3. Door 

The door model that is currently implemented uses the same logic as the surface component 

to model a closed door separating two zones within a building or a door to the exterior of the 

building. Future improvements to the door model will include the calculations from the ISO 

RA RB

TA TAPin 1 Pin 2
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10077-1 standard to allow for doors with glazed sections and calculations for the effect of 

infiltration around the edges of a door. It would also be desirable to include an option for an 

open door to be modelled. 

4.3.4. Window 

The window component that was developed is based on the ISO standard 10077-1:2006 

[128] which specifies a method for the calculation of the thermal transmittance of doors, 

windows and shutters. At present, only a calculation of heat conduction using this standard is 

carried out – the component does not support the solar gain calculations that are carried out 

in more established window models [56, 129].  

4.3.4.1. ISO 10077-1 Window Geometry 

The ISO standard defines a standard method of modelling the geometry of a window. This 

method defines a number of properties of the window which are required in order to 

perform the thermal transmittance calculation. In the standard, a window is defined as being 

made up of the frame (which includes any moveable sashes) and a number of glazed areas or 

opaque panels. Table 4-7 describes the geometrical measurements that are required for 

glazed areas and opaque panels. 

Table 4-7: Description of the measurements of glazed areas or opaque panels that 

are required for the ISO10077-1 window thermal transmittance calculation. 

Parameter Units Description 

lg or lp m The perimeter of the glazed area or opaque panel in metres. If the perimeter 
is different on each side then the larger value should be used. 

Ag or Ap m2 The area of the glazed area or opaque panel. This is the smallest area visible 
from either side of the window. 

Table 4-8 describes the geometrical measurements that are required for the frame of the 

window. Each of these measurements is illustrated in the diagram in Figure 4-19. 
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Table 4-8: Description of the measurements of the frame that are required for the 

ISO10077-1 window thermal transmittance calculation. 

Parameter Units Description 

Af,i m2 The area of the internal window frame, including moveable sashes, which is 
parallel to the glazed or panelled area. 

Af,e m2 The area of the external window frame, including moveable sashes, which is 
parallel to the glazed or panelled area. 

Af m2 The frame area – the maximum of Af,i and Af,e. 

Af,di m2 The internal developed frame area – the total area of the internal window 
frame which is in contact with the air. 

Af,de m2 The external developed frame area – the total area of the external window 
frame which is in contact with the air. 

 

Figure 4-19: Dimensions of a window frame as required by ISO10077-1 for the 

calculation of the window’s thermal transmittance. 

4.3.4.2. Software Modelling of Window Geometry 

The window geometry used by the thermal transmittance calculation combines a number of 

properties of the window’s geometry into single calculation parameters using assumptions 

such as including any moveable sashes as part of the frame. In order to provide a method to 

easily define a window’s geometry within a model, a hierarchical method of defining a 

window as a combination of the frame, moveable sashes and glazed areas or opaque panels 

Internal

External

Af,di

Af,de

Af,i

Af,e

1 2

1. Frame (including movable sash)

2. Glazing or opaque panels
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was used. An illustration of this hierarchical window model is shown in Figure 4-20. In order 

to simplify the specification of a window model, the following assumptions are made: all 

frames, glazed areas and opaque panels are rectangular; the faces of the frame and all 

moveable sashes are parallel or perpendicular to the glazing of the window; and the frame 

and all moveable sashes are constructed from the same material.  

 

Figure 4-20: Hierarchical model of a window. 

The root component in this model represents the frame of the window. It will be defined by 

its width, height and thickness, all in metres, and the material that the window is constructed 

from. The list of available materials will be restricted to polyurethane, UPVC, hardwood and 

softwood since standard values for each of these materials are included in the ISO standard. 

The window component will contain references to each of the glazed areas, opaque panels 

and moveable sashes included within it. 

A moveable sash8 will be defined as illustrated in Figure 4-21. The inner and outer 

dimensions are defined to allow for overlap with the frame on one side as shown. The 

thickness of the sash in metres will be defined as well as a dimension DOPEN which specifies 

the distance that the sash protrudes from the frame on the opening side of the window. The 

position of the sash on the window is defined in terms of the X and Y distances in metres of 

the top-left corner of the sash from the top-left corner of the window frame.  

                                                        
8 This model is only valid for hinged sash windows. A separate model would be required for sliding sash windows. 
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Figure 4-21: Illustration of how a moveable sash is defined within the window 

component. 

The final components within the hierarchical window model are the glazed or opaque 

panelled areas on a window. Similarly to moveable sashes, the position of these will be 

expressed as an offset in metres from the top-left corner of the frame or moveable sash that 

contains the glazed or panelled area. The thermal properties of an opaque panel are defined 

by selecting the material that the panel is made of from the materials database described in 

section 4.3.1. The thermal properties of single glazing are specified by defining the thickness 

of the glazing in metres. Calculation of the thermal properties of double glazing is specified in 

terms of three properties: glass type, normal emissivity and gas between glazing layers. A 

lookup table of glass type, emissivity and gas is provided in the ISO standard, along with the 

thermal conductivity for each combination of options. To simplify the calculation of the 

window’s thermal properties, only the combinations provided in the standard are supported 

in the hierarchical window model.  

The window hierarchical model is stored within a window component as the “Custom 

Configuration Dialog” type parameter. The parameter displays the dialog shown in Figure 

4-22 to allow users to define the geometry and thermal properties of the window. These 

properties are then stored in the class structure illustrated in Appendix B for use by the 

window model. 
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Figure 4-22: Custom configuration dialog included within the “Window” 

component to allow for the definition of window properties. 

4.3.4.3. Translating Hierarchical Model to ISO Standard Model 

The following steps are taken by the Window component logic to translate the hierarchical 

window model into an ISO standard model: 

1. Extract Ag and lg for each glazed area on the window directly each glazing definition. 

2. Extract Ap and lp for each opaque panel directly from each panel definition. 

3. Calculate Af,i, Af,e and hence Af by computing the area of the frame including 

moveable sashes which does not contain glazing or opaque panels on each side of the 

window. 

4. To calculate Af,di and Af,de, it will be assumed that all glazed areas or moveable sashes 

are exactly at the mid-point of the sash or frame in which they are installed. The 
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exposed thickness of frame perpendicular to the glazing or opaque panel will 

therefore be calculated using lEXPOSED = ([FRAME THICKNESS] – [GLAZING OR PANEL 

THICKNESS]) / 2. This can then be used in conjunction with the glazing or panel’s 

width or height to calculate the exposed areas. The internal and external dimensions 

of each moveable sash will be used to calculate the areas of the sash that are 

perpendicular to the frame for use in this calculation.  

4.3.4.4. Thermal Transmittance Calculation 

The ISO standard defines the thermal transmittance of a window UW (W/m2∙K) using 

equation (50). The parameters of this equation are as described in section 4.3.4.1, as well as 

the following parameters: Ug (W/m2∙K) – thermal transmittance of a glazed area; Up (W/m2∙K) 

– thermal transmittance of an opaque panel; Uf (W/m2∙K) – thermal transmittance of frame 

material; ϕg (W/m∙K) – linear thermal transmittance of a glazed area; ϕp (W/m∙K) – linear 

thermal transmittance of an opaque panel. The linear thermal transmittance takes into 

account the combined thermal effect of the glazing, spacers and frame in double or triple 

glazed windows. Standard values for this parameter are provided for different types of 

frame. The value can be set to zero when single glazing is used. The standard also specifies 

that a value of zero can be used when opaque panels with thermal conductivity of less than 

0.5W/m∙K are used. The assumption that this is always the case is used to simplify the 

window model. 

   
                         φ      φ 

           
 (50) 

The ISO standard provides tables of values of Uf for various frame materials and tables of Ug 

for double and triple glazing of various types. Lookup tables of these values are used within 

the component logic to compute these values. For single glazing, equation (51) is used to 

calculate Ug where d is the thickness of the glazing. This equation assumes non-laminated, 

vertically positioned soda lime glass. 
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 (51) 

4.3.4.5. Window Model Definition 

Once the thermal transmittance of the window has been determined using equation (50), 

this is used in conjunction with the total area of the window AW (m2) to obtain the linear 

thermal resistance RW (K/W) of the window as shown in (52). 

   
 

     
 (52) 

The calculated linear thermal resistance is then used as shown in Figure 4-23 to define a 

model of the window that is compatible with the simulation package. In this model R1 and R2 

are the thermal resistances of the pins connected to pin 1 and pin 2 of the window 

respectively and T1 and T2 are the temperatures defined for the pins connected to pins 1 and 

2 of the window. 

 

Figure 4-23: Schematic illustrating equivalent thermal resistance model for the 

window component. 

4.3.5. Room 

The room component is designed to model a room or other space within a building (for 

example a loft or basement space). The component models the temperature of the air within 

the room based on a given initial room temperature and room volume. The assumption is 

made that the air within the room is well-stirred and has a uniform temperature throughout. 

Four variants of the room component are provided with 4, 8, 16 and 24 external connections, 

although the internal logic is identical for each. 

RW + R2 RW + R1

T2 T1Pin 1 Pin 2
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The external connections on a room component are used to connect to the surfaces, doors 

and windows which join the room to the surrounding areas as well as components which 

model heating or ventilation sources. Each of these connected components is represented by 

a temperature source in series with a thermal resistance, as described in section 3.3.2. 

In order to model the thermal characteristics of the room, the electrical circuit analogy 

shown in Figure 4-24 can be used where the capacitance of the capacitor CROOM represents 

the heat capacity of the air within the room in J/K; TROOM represents the instantaneous 

temperature of the air in the room in °C. TSTEADY represents the steady-state temperature of 

the room in °C – this is the temperature that the air in the room will eventually reach should 

the present conditions of the room’s surroundings, heating and ventilation remain the same. 

θRATE is a thermal resistance (K/W) which governs the rate at which the room will heat up or 

cool down to its steady state temperature. 

 

Figure 4-24: Electrical analogy for the thermal model of a room. 

The steady state temperature TSTEADY and heating rate resistance θRATE model the net power 

flow into the room from all of the other thermal components which are connected to the 

room component. To calculate these values, assume that if there are N other components 

connected to the room, there are two vectors which contain the temperatures and thermal 

resistances of the connected components T= (T1, T2  …, TN) and θ (θ1  θ2  …  θN). Using 

these values, the steady state temperature of the room can be calculated using (53) and the 

charge rate resistance can be calculated using (54). 

TSTEADY θRATE

CROOM

TROOM
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(53) 

      
 

 
 
  

 
   

 
(54) 

The steady state characteristics of the room component are calculated by its model on each 

time-step of the simulation. In a similar manner as used previously, the steady-state 

temperature is used in conjunction with Newton’s cooling equation to calculate the new 

temperature for the next time-step as shown in (55). In this equation, tSTEP is the simulation 

time-step size in seconds. 

                                  
      

           
  

(55) 

In calculating the transient characteristics of the room, the heat capacity of the air in the 

room CROOM is required. The heat capacity of the air in the room is calculated by first 

calculating the mass of air in the room, mAIR (kg) using (56) where ρAIR is the density of air 

and V is the volume of air in the room (m3). This is then used in (57) to calculate the heat 

capacity of the air in the room CAIR (J/K) using a constant value for the specific heat capacity 

of air CP,AIR (1012 J/kg K).  

             (56) 

                 (57) 

4.3.6. Static Room 

While performing building model validation studies, it became apparent that it may in some 

cases be desirable to simulate the behaviour of a small part of a building to prove that the 

simulated behaviour matches experimental readings. To do this, the simulation package 

would need to be aware of the properties of the areas surrounding the areas being simulated 
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in order to produce results that are accurate to the experimental readings. In order to allow 

for this, the “Static Room” component was developed. The component acts as an area within 

the building that has a fixed temperature that is set based on values in a lookup table, rather 

than dynamically calculated. This allows the temperature of the room to follow experimental 

readings that have been imported into the package. 

4.4. Heating and Ventilation 

4.4.1. Natural Ventilation Component 

Natural ventilation of a heated space within a building is one of the many factors which 

contribute to the loss of heat from a room. The European Standard EN 12831 [89] provides a 

method for calculating the heat loss through natural ventilation of a space. In this standard, 

heat loss is given by (58) where Φ is the heat loss (W), UV is the ventilation heat loss 

coefficient (W/K), TI is the internal temperature of the space (K) and TE is the outside 

temperature (K). 

Φ            (58) 

The heat loss coefficient UV is given by (59) where V̇  is the air flow rate of the heated space 

(m3/s), ρ is the density of air (kg/m3) and cp is the specific heat capacity of air (kJ/kg∙K). Using 

the assumption of constant values for ρ and cp, the standard simplifies (59) to (60), where V 

is now expressed in m3/h. 

           (59) 

           (60) 

The value of V̇ is taken as the maximum of V̇ INF and V̇ MIN where V̇ INF is the air flow rate due 

to infiltration through the building fabric. V̇ MIN is the minimum design air flow rate that is 

used for hygiene reasons within buildings and varies depending on the type of room. The 

infiltration air flow rate V̇ INF is given by (61) where VR is the volume of the room (m3), n50 is 

the air exchange per hour that occurs due to a 50Pa difference between the inside and 

outside air pressure which is dependent on the air-tightness of the building, ei is a shielding 
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coefficient which is dependent on the shielding provided by the building’s surroundings and 

the number of exposed openings in the room and ϵi is a height correction factor which is 

dependent only on the building’s height. Typical values of n50, ei and ϵi are given in the 

standard. 

                     (61) 

The hygiene air flow rate is given by (62) where VR is the volume of the room (m3) and nmin is 

the minimum number of air exchanges per hour required for hygiene reasons for that 

particular type of room. Typical values of nmin are given within the standard for different 

types of room. 

              (62) 

The Natural Ventilation component that is provided within the simulation package has a 

number of user configurable parameters which allow is to carry out the calculations 

described above. These are: Volume of Room (m3); Type of Room (Kitchen, Bathroom, Office, 

Meeting Room, Others); Building Air Tightness (0-100%); Building Shielding (Light, Medium, 

Heavy); Number of Exposed Openings in Room; Height of Room above Ground Level (m). 

These configurable parameters are used in conjunction with the lookup tables provided in 

the standard document to determine the heat loss coefficient UV for the room. The inverse of 

this value in (W/K) is then taken to produce a thermal resistance θV in K/W (°C/W). 

The component has two pins, one for a connection to the room and another for a connection 

to the ambient (outside) temperature. The model of the component behaves as a series 

resistance with value θV between the room temperature and outside temperature, modelling 

the resulting heat loss as described in (58). 

4.4.2. Radiator 

A basic model of a radiator for a water-based heating system was developed, primarily for a 

validation study that was carried out on the package using a home with a gas-fired heating 

system. The main requirement of this component was not to model the water temperatures 
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within the heating system but rather to model the heating effect that a radiator has on room 

temperature. A radiator manufacturer’s catalogue [130] was used to obtain heat output 

specifications for different types of radiator. Within this catalogue, radiator heat outputs in 

watts were specified for a selection of different radiator constructions and sizes. Radiator 

sizes were specified in millimetres in terms of length and height. The different types of 

construction documented in the catalogue were: single panel; double panel with fins on one 

panel; double panel with two sets of fins; triple panel with three sets of fins. The heat output 

for each type of heater is specified in watts at a temperature difference (ΔT) of 60°C 

between the water temperature in the radiator and the room temperature. Correction 

factors are provided as fractions of the ΔT=60°C heat output for other values of ΔT. 

The radiator model that was implemented provides the list of radiators defined in the 

catalogue as a configurable “Radiator Type” drop down list parameter. A second parameter is 

provided to specify the initial temperature of the water within the radiator. In order to 

simulate dynamic adjustment of the heating system output throughout a simulation, the 

component supports messages using the asynchronous messaging system in the package in 

the format “TEMP X” where X is the average water temperature in °C across the radiator. 

This information can be imported into the package using physical measurements from a 

home.  

The radiator has a single heat transfer connection to a room which has a temperature T (°C) 

and thermal resistance RTH (°C/W). The temperature T is set to be the average water 

temperature in the radiator. The value of RTH is calculated based on the radiator power 

output in the manufacturer’s data lookup table.  

The process of calculating RTH begins by calculating the temperature difference between the 

radiator water and the room. This temperature difference is used to determine a correction 

factor for the ΔT=60°C power output quoted by the manufacturer. This correction factor is 

determined by creating a piecewise linear model of the correction factor based on 

temperature using the manufacturer supplied correction factor data. Once the correction 

factor has been established, the radiator power output for the present ΔT value can be 

calculated by multiplying the ΔT=60°C output by the correction factor. The thermal 
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resistance value RTH is then calculated by dividing the temperature of the water in the 

radiator by the calculated power output for the given ΔT. 

4.4.3. Electric Heater 

An ideal electric heater component was implemented for use in models to study the smart 

control of heating appliances. This heating component has the following features: adjustable 

rating; 100% efficiency – all electrical input converted to heat output; configurable 

thermostat dead-band; and thermostat setting adjustable using communication messages. 

The component has three connections – a heat transfer connection to the room being 

heated, an electrical connection to the home’s mains supply and an optional communications 

link on which thermostat temperature setting messages can be received. The logic within the 

heater is programmed such that the heater operates with its element at 150°C when in its 

heating mode, providing its full output power when the room temperature is 0°C. The heat 

output of the heater decreases linearly with increasing room temperature. The electrical load 

resistance of the heater is determined by dividing the square of the heater’s nominal voltage 

by the instantaneous heat output power. This simplified model assumes uniform element 

resistance over the entire operating temperature range of the heater. 

The control algorithm built into the heater uses a combination of the heater thermostat 

setting values and dead-band value to determine whether the heating elements are switched 

on or off. If the room temperature falls below (Thermostat Setting - Dead-band / 2) then the 

heating element is turned on; if the room temperature rises above (Thermostat Setting + 

Dead-band /2) then the heating element is turned off. The heater consumes no power and 

has no heat output when the element is turned off. 

Basic communication support is built into the heater. When a message in the format “TEMP 

X” is received, the thermostat setting on the heater is set to the value X (°C). While this 

heating component is a relatively simplistic implementation of an electric heater, it is 

sufficient to allow for investigations into control over heating appliances. 
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4.5. Weather 

4.5.1. Ambient Temperature Pattern 

The Ambient Temperature Pattern component allows the ambient temperature used in a 

model to be varied during the course of a simulation. The component provides a configurable 

table parameter in which each row contains a time and a temperature to be set at the given 

time. In the case that a time falls between two simulation time-steps, the temperature value 

is set of the latter of the two time-steps – consistent with the behaviour of other 

components. Using this logic, it may be possible that more than one temperature entry exists 

for each time-step. In this case, the temperature point with the latest time value is used 

during that time-step. 

Using this component, ambient temperature patterns can be set using historical or predicted 

weather data to perform simulations which are valid in the context of a particular area or can 

be set to specifically test the temperature response of a particular simulation component. 

4.5.2. Random Ambient Temperature 

In contrast to the Ambient Temperature Pattern component, the Random Ambient 

Temperature component uses an initial starting temperature and then varies the 

temperature randomly over the course of a simulation. A set of configurable properties 

define the way in which the temperature should be varied. 

The user-specified properties that govern the random variation in temperature are the 

maximum allowed temperature (TMAX), minimum allowed temperature (TMIN) and the 

maximum variation in temperature (TMAXVAR) on each time-step. Additionally, the user may 

also specify an integer seed value for the pseudo-random number generator used to ensure 

that the random temperature variation carried out is the same on each run of the simulation. 

Given the user properties defined above and the previous ambient temperature TOLD, the 

new ambient temperature TNEW is generated using the algorithm shown in (63). 
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Sign = Random selection from [-1,1] 
Random = Random decimal value between 0 and 1 
TNEW = TOLD + Sign * (TMAXVAR * Random) 
If TNEW > TMAX Then TNEW = TMAX 
If TNEW < TMIN Then TNEW = TMIN 

(63) 

4.5.3. Solar Irradiation Pattern 

The Solar Irradiation Pattern component is responsible for updating a global parameter 

within the simulation to a representative solar irradiation level in W/m2 for the current 

season and time of day. The component contains a configurable look-up table of solar 

irradiation levels containing 24 rows representing each hour of the day. Within each row, 

there are twelve columns containing a representative solar irradiation value for that time of 

day on each month of the year. A second configurable parameter specifies the name of the 

global parameter that the component should store the current solar irradiation level in. 

The component uses the simulated date and time during each time-step to determine the 

correct solar irradiation level within the lookup table and stores the selected value in the 

specified global parameter. This approach means that other components (for example a solar 

panel) which rely on the solar irradiation level can use the global parameter setting rather 

than each component having to use its own lookup table. Representative solar irradiation 

levels for various locations around the world are provided in the weather files distributed by 

the EnergyPlus project [131]. 

4.6. Other Components 

4.6.1. Scheduled Asynchronous Messaging 

In section 4.2.1, the Scheduled Data Generator Component was discussed. This component 

sends a message using the simulation package’s built in data communications system based 

on a schedule table containing messages and the associated time at which each message 

should be sent. A similar component has been implemented to allow messages to be sent 

according to a schedule using the package’s asynchronous messaging system which is 

designed to model user actions rather than data communications. The Scheduled 

Asynchronous Messaging component has no pins and instead provides a second configurable 
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parameter which specifies the instance name of the component that scheduled messages 

should be sent to.  

4.6.2. List and Table Parameter Watch 

The result recording mechanism within the simulation package, described in section 3.5.1, 

only allows for the recording of the values of scalar parameters within components. 

Occasionally, it may be more suitable to record run-time results in lists or tables within 

components and therefore it may also necessary to record certain values from lists or tables 

as a simulation runs for post-simulation analysis.  

The List and Table Parameter watch component enables the recording of numeric values 

from lists or tables by reading values from specific elements of a list or table and storing 

them in scalar parameters. The built-in result recording mechanism can then be used to 

record the values of the scalar parameters and present them in graphs or tables. The 

component contains two configurable parameters which specify the instance name of the 

component containing the list or table to watch and the name of the list or table parameter 

within the component to watch. Ten read-only decimal parameters are provided within the 

component named “1-10” to which list or table values can be mapped. A configurable table 

parameter is also included within the component which contains 10 rows to store the 

mapping of list or table elements to the ten scalar parameters within the component. Each 

row has two columns in which the row and column number of up to 10 list or table elements 

to be watched are entered. In the case of lists, the column number is entered. 

During the course of a simulation, the component examines the associated list or table to 

determine the value of the mapped elements and stores these values in the associated read-

only parameter. If any of the mapped row or column indices are outwith the bounds of the 

list or table or do not contain numeric data then the value is recorded as NaN (not a 

number). 
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4.7. Summary 

A selection of components including electrical appliances and infrastructure, building 

construction elements, heating appliances and communication systems has been presented 

in this chapter. While the set of components that has been developed is far from exhaustive, 

and many components have room for improvement in the detail of their models, the library 

provides a good starting point for the evaluation of the package. In the next chapter, the 

testing of the package and the validation of a number of the components that have been 

developed is described. This is followed by a case study in Chapter 6 which makes use of the 

library of components that has been implemented in this chapter.  
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Chapter 5  

Testing & Validation 

Testing and validation were an essential part of the development of the new domestic smart 

grid simulation package to ensure that the results obtained from the package were accurate 

and reliable. This chapter describes the testing that took place during the development of the 

package to test the correctness of the simulation results and functionality of the application. 

This is followed by the description of three experimental validation studies that took place in 

which rooms within buildings were modelled and physical measurements were taken of 

temperature and electrical power consumption within the rooms. These tests measured the 

performance of the simulator against real-world results. 

5.1. Unit Testing 

Throughout the development of the software, the Microsoft Visual Studio Unit Testing 

Framework was used to create unit tests. These unit tests check the functionality of the 

individual methods which make up each class in the software. Unit tests operate by providing 

test inputs to a method, executing the method and then checking that the outputs from the 

method match the output expected for the given test inputs.  

Unit tests were extremely useful during the development of the software as they provide a 

method of constantly checking that changes to the implementation of the software have not 

broken its functionality. The unit test coverage of the software was estimated to be around 

60% of all of the source code. This was due to a large part of the software’s code base being 

made up of graphical user interface components for which test automation is difficult. To 

supplement the test-driven development approach, automated functional tests as well as 

manual inspections of the graphical user interface were undertaken. 
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5.2. Automated Functional Test Program 

Automated functional tests of the software were performed to ensure that the simulation 

results produced by the completed package were theoretically correct. Testing of simulation 

results was not possible using the unit test framework as the component models used within 

simulations are loaded from XML files and compiled at run time. Therefore, in order to 

automate the testing of generated simulation results, a small test application was written in 

which test cases could be created and then run. 

To enable the creation of an automated test suite for the application, a command-line 

version of the simulation package was created. The command-line tool, which is a cut-down 

version of the full simulation package, takes two input parameters. These are the file name of 

a system model which has been created using the full version of the software and the name 

of a CSV spreadsheet file in which to store the simulation results.  

The automated test tool has a user interface to allow a test case to be specified which is 

shown in Figure 5-1. A test case consists of a system model file name and a set of expected 

result values to check against the simulation results. Each test case is saved in an XML file. 

Additionally, multiple test case filenames may be specified in a text file to run a batch of tests 

sequentially. 
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Figure 5-1: Automated test tool test case editor. 

To run a test, the tool uses the command-line version of the simulation package to run the 

simulation defined in the test case. The results spreadsheet produced by the command-line 

simulator is then analysed to ensure that the results match the expected results entered in 

the test case. An example of a test run is shown in Figure 5-2. 

The majority of the library components described in Chapter 4 were tested using the 

automated functional test program during development. The test program was also used to 

validate the electrical and temperature node components which were built into the package. 

During the software’s development, on many occasions the test suite highlighted side-effects 

of code changes which caused the package to produce erroneous results. The stringent test 

process that was used during development provides a high level of confidence in the results 

that are produced by the package. 
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Figure 5-2: Automated test runner interface.  

5.3. Graphical User Interface Testing 

Automated testing of graphical user interfaces is problematic due to the volume of 

commands that may be obtained from a user when performing even the simplest of 

operations. For example, when using the graphical model editor, the same system model 

may be created multiple times within the software by performing a different sequence of 

actions each time. This is due to the different order of creation of model parts and also 

because the user may position components in different locations on the screen, despite the 

underlying logic model being identical. 

Testing of the graphical user interface therefore took a more informal approach whereby 

when a new user interface feature was implemented or an existing feature modified, the 

application was run and the feature was manually tested. This approach was more useful in 

some scenarios than others. For example, dialogs which were used to edit simulation settings 

or parameter values were easy to test because data could be entered in the dialog and the 

dialog could then be closed and re-opened to confirm that the data entered were accepted 
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correctly by the dialog and saved to the underlying data store. Other more complex graphical 

user interface elements were also tested in this way – for example, the system model editing 

canvas and the graphical component editor. The system model editor was tested by creating 

a model, saving the model to a file and re-loading the model to ensure that the underlying 

representation of the model correctly represents the user’s input. While this approach 

generally worked adequately for these more complicated user interface components, bugs 

were occasionally discovered during the use of the package which were not immediately 

apparent during testing.  The majority of these bugs were focussed around usability 

problems more than the ability of the package to produce models and obtain accurate 

simulation results. 

It was of particular benefit from a testing perspective that the development of the modelling 

package was tightly coupled to the production of results for this project. This meant that the 

package was being actively used as it was developed. This allowed for first-hand experience 

of the types of bugs in software that are easily overlooked during a formal testing process 

but are picked up at the end-use stage. 

5.4. Experimental Validation Studies – Thermal Models 

5.4.1. Experimental Methodology 

The main purpose of the thermal model experimental validation studies that were carried 

out was to verify that the room temperatures obtained from a simulated building model 

were correlated with the temperatures obtained through measurements of a modelled 

room. Three key aspects of the experimental method were therefore the measurement of 

room temperatures, the measurement of the behaviour of heating devices within the rooms 

and the accurate characterisation of the construction of the rooms and their surroundings for 

use in developing simulation models. 

Within the simulation package, a well-stirred air model is used to model the air temperature 

within a room. This model makes the assumption that the air temperature within a room is 

completely uniform. In reality, this is not the case. Therefore, the experiments that were 
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carried out relied on recording average room temperatures. To provide a good 

representation of average room temperatures, multiple temperature readings were taken in 

order to record an average temperature of the hot (for example, near heating appliances) 

and cold (for example, near doors and windows) areas of the room.  

In order to take a number of different temperature readings from the rooms while 

minimising disruption to the homeowners, Lascar Electronics EL-USB-1 sensors were used. 

These sensors are small, battery powered units which can be connected to a USB port for 

configuration and then operate in a standalone mode for logging of temperatures. The 

sensors can then be reconnected over USB when the temperature logging is complete to 

download the data. The sensors have an accuracy of 1°C and a resolution of 0.5°C. The range 

of -35°C to 80°C makes them suitable for recording room temperatures. Prior to being used 

in the experiment, the correlation of the values read by different sensors was verified by 

recording data from co-located sensors for 24 hours at ten second intervals. The 

temperatures recorded were found to be within the manufacturer’s quoted accuracy of 1°C. 

Twenty of these sensors were acquired for use in the thermal validation experiments. 

Although utility software is provided with the EL-USB-1 units to configure the logging and to 

download datasets, this software has the restriction of only being able to configure a single 

unit at a time. Therefore, a custom-built utility application was written for these experiments 

to allow multiple devices to be programmed with the same configuration simultaneously. 

The application also allows for the temperature data to be downloaded from multiple units 

simultaneously upon completion of an experiment.  

The units provide the useful capability of assigning a textual label within the configuration 

parameters which is stored along with any data downloaded from the unit. This label was set 

to a unique identification number for each sensor, which was also physically marked on the 

sensor. When positioning sensors for data collection, the location of each sensor number was 

recorded to allow the downloaded data to be associated with the sensor’s location for 

analysis.  
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The approach taken to record the behaviour of radiators within a room was to measure the 

temperature of the water inlet and outlet pipes of the radiator. An average water 

temperature could then be established from these two measurements to use as input to the 

radiator model within a simulation. Due to the higher temperatures involved and the need 

for a direct contact with the radiator pipes for measurement, thermocouples were deemed 

more suitable for obtaining these measurements than the EL-USB-1 loggers. J-Type 

thermocouples were fastened to the radiator pipes using cable ties and heat transfer 

compound was applied to the tip of each thermocouple of ensure good thermal conductivity 

between the pipe and the thermocouple junction. An Agilent data acquisition unit was used 

to log the thermocouple temperatures every minute. The data from this unit was saved onto 

a USB drive for analysis on a PC. 

The characterisation of the construction of rooms for use in simulations was carried out using 

a survey process. This process involved obtaining the physical dimensions of the rooms, as 

well as a list of the materials used in the construction of the floors, ceilings, walls, doors and 

windows at the boundaries of the room.  

In the first home that was studied, described in section 5.4.2, no original plans of the building 

were available and therefore measurements were taken to establish the geometry of the 

room. The materials used in the construction of the building were obtained through a visual 

survey, with the help of the homeowner who had detailed knowledge of the building’s 

construction due to a recent refurbishment of the room being studied. In the second home, 

described in section 5.4.3, original plans were available describing the building geometry and 

the materials used in the construction. However, a visual survey of the doors, windows, 

flooring and decoration was carried out to complete the materials list. In both cases, Google 

Sketchup 3D models were created of the areas of interest within the buildings for reference 

use during the creation of the simulation models. 

5.4.2. Test Room Experiment – Heat Loss Response 

The first of the thermal model experimental validation studies carried out on the package 

was designed to assess how well the package’s thermal modelling capabilities could model 
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the thermal behaviour of a room within a building without the presence of any forced 

heating or ventilation. This study defines the baseline error rate of the package which can 

then be taken into consideration when performing studies on heating and cooling systems. 

The decision was taken to perform the study on a single room rather than a whole building: 

this allowed a room of the building to be chosen where the construction was well known and 

the geometry of the room and its surroundings were easily measurable. It also reduced the 

amount of measurement equipment that was required to gather data for the study. 

The home used for this study was an early 20th century detached sandstone house. The home 

was chosen because it was in the process of being refurbished so the construction of the 

building was well-known. The dining room within the home was chosen for use in the study. 

During the visit to the home, detailed measurements were taken of the geometry of the 

selected room, doors and windows. A survey was also performed, with the assistance of the 

homeowner, of the materials used in the construction of the building around the selected 

room. This information was used to create an accurate 3D reference model of the room, 

shown in Figure 5-3, for use when creating the software model of the room. The 3D model 

also illustrates the areas bordering the room being measured. The results of the materials 

survey are shown in Table 5-1.  

Table 5-1: Results of room materials survey for first test home. 

Building Element Material Thickness (m) Area (m2) 

South Wall Doors 500kg/m3 Timber 0.04 1.8146 

East Wall Door 500kg/m3 Timber 0.04 1.8990 

Fireplace Limestone 0.18 1.672 

West Wall Behind 
Fireplace 

Sandstone 
Air Gap 
Sandstone 

0.3 
0.0508 
0.3 

1.672 
 

West Wall 1000kg/m3 Plaster 
450kg/m3 Timber 
Sandstone 
Air Gap 
Sandstone 

0.0127 
0.0064 
0.3 
0.0508 
0.3 

14.098 

South Wall 1000kg/m3 Plaster 
Clay Brick 
1000kg/m3 Plaster 

0.0127 
0.1145 
0.0127 

9.064 
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Building Element Material Thickness (m) Area (m2) 

East Wall 1000kg/m3 Plaster 
Clay Brick 
1000kg/m3 Plaster 

0.0127 
0.1145 
0.0127 

13.855 

North Wall Around 
Windows 

500kg/m3 Timber 
Air Gap 
Sandstone 
Air Gap 
Sandstone 

0.016 
0.0508 
0.3 
0.0508 
0.3 

7.147 

Remainder of North 
Wall 

1000kg/m3 Plaster 
450kg/m3 Timber 
Sandstone 
Air Gap 
Sandstone 

0.0127 
0.0064 
0.3 
0.0508 
0.3 

6.585 

Floor Oak 
Pine 

0.022 
0.028 

24.108 

Ceiling 1000kg/m3 Plaster 
Air Gap 
450kg/m3 Timber 
Cinders 
Air Gap 
450kg/m3 Timber 
Underlay 
Carpet 

0.0127 
0.045 
0.015 
0.04 
0.045 
0.028 
0.005 
0.015 

23.177 
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Figure 5-3: 3D Model of dining room used in case study showing neighbouring 

rooms. 

Measurements of the thermal behaviour of the room were taken using the EL-USB-1 

standalone temperature sensors, sampling once per minute. A number of sensors were 

placed at different points around the room to take an average temperature for the room. 

Sensors were also placed in the neighbouring rooms and the room on the floor above. A 

sensor was placed outside the building to measure the exterior temperature. These 

temperature sensors were allowed to run for five days in order to collect a suitable amount 

of information for use in the study.  

A software model was created of the test room and its surroundings. This software model, an 

illustration of which is provided in Appendix B, was created by modelling the construction of 

the measured room and its surrounding floor, walls and ceilings using the library of 

components described in Chapter 4. Surrounding spaces were modelled using the “Static 

Room” component described in section 4.3.6 using a lookup table of temperatures measured 

during the experiment. The dining room was modelling using the dynamically evaluated 

room component, described in section 4.3.5. 
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The first experiment that was run involved simulating the thermal behaviour of the dining 

room over a 24 hour period within the 5 day recorded data period. The graph in Figure 5-4 

illustrates the simulated room temperature compared with the measured value from the 

temperature sensors. Figure 5-5 illustrates the percentage error in the simulated 

temperature. During this simulation run, the average error in temperature was 1.8% and the 

maximum error was 3.7%. This shows that the simulated temperature is in agreement with 

the measured value. 

 

Figure 5-4: Results of 24 hour simulation of dining room temperature compared to 

measured room temperature. 
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Figure 5-5: Percentage error in simulated room temperature during 24-hour study. 

During the 24 hour study, the measured room temperature was relatively constant and 

therefore a second study was carried out on a more interesting period of the collected data 

where the temperature rose sharply for a short period of time due to incident sunlight on the 

north face of the building. In this second study, the thermal behaviour of the room was 

simulated for 48 hours. The simulated and measured temperatures are illustrated in Figure 

5-6 and the percentage error in the simulated temperature is shown in Figure 5-7. The 

average error during this study was 2.3% and the maximum error was 17.2%.  

The maximum error occurred during the brief period of sunlight which raised the room 

temperature significantly. While the simulation was able to follow the room temperature 

with good accuracy during the majority of the study, it was unable to model the increase in 

temperature caused by the sunlight. The main reason for the large error during this period is 

that the window model provided in the simulation package, described in section 4.3.4, does 

not model solar gain through the window, it only models heat conduction through the 

window. The future accuracy of thermal simulations of buildings with windows could be 
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improved by incorporating a model of incident sunlight on buildings in addition to a window 

model which supports heat transfer due to solar irradiation. Despite this inaccuracy in the 

model, the results of both the 24 hour and 48 hour studies show that the package is capable 

of producing thermal simulation results which agree well with measured experimental 

values. In both cases, the average error in the results was less than 5%. 

 

Figure 5-6:Results of 48 hour simulation of dining room temperature compared to 

measured temperature.  
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Figure 5-7: Percentage error in simulated temperature during the 48-hour study. 

5.4.3. Test Room Experiment – Heated Room Response 

A second validation study was carried out on the thermal modelling capabilities of the 

package. This time, as well as verifying the behaviour of the building element components 

provided in the package, the radiator component described in section 4.4.2 was also 

considered. In this case, a modern home (built around 1990) with gas-fired central heating 

was studied. 

The development of a model of the home was made significantly easier in this case due to 

the availability of the original plans for the building. The 3D model shown in Figure 5-8 was 

developed from the floor plans in order to provide a reference model of the building 

geometry. 
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Figure 5-8: 3D model that was developed as a reference geometry model for the 

home used in the second case study. 

The particular room that was studied in this case was the room marked as “Lounge 1” on the 

model in Figure 5-8. A materials survey of the construction of the building around the room 

was carried out, the results of which are shown in Table 5-2. It should be noted that in the 

selected room, the floor height is lower than the rest of the ground floor of the building, 

leading to a number of different material cross-sections making up each interior partition. 

Additionally, a portion of the wall between the lounges at the front and rear of the house is 

of external wall construction because “Lounge 2” is a garage conversion.  
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Table 5-2: Survey of the materials used in the building construction around the 

room marked “Lounge 1” in Figure 5-8. 

Building Element Material Thickness (m) Area (m2) 

West Wall 

Exterior Wall Cement Finish 
Concrete Block 
Cavity 
Insulation 
Concrete Block 
Plasterboard 

0.015 
0.1 
0.05 
0.075 
0.1 
0.015 

13.756 

North Wall 

Exterior Wall Cement Finish 
Concrete Block 
Cavity 
Insulation 
Concrete Block 
Plasterboard 

0.015 
0.1 
0.05 
0.075 
0.1 
0.015 

11.745 

East Wall 

Internal Partition to 
Lounge 2 (Exterior Wall 
Standard) 

Plasterboard 
Concrete Block 
Insulation 
Cavity 
Concrete Block 
Plasterboard 

0.015 
0.1 
0.075 
0.05 
0.1 
0.015 

7.38 

Internal Partition to 
Lounge 2 (Interior 
Partition Standard) 

Plasterboard 
Insulation 
Concrete Block 
Insulation 
Plasterboard 

0.015 
0.025 
0.1 
0.025 
0.015 

2.1936 

Internal Partition to 
Hall 

Plasterboard 
Insulation 
Concrete Block 
Insulation 
Plasterboard 

0.015 
0.025 
0.1 
0.025 
0.015 

5.76 

Partition to Under-
Floor Space 

Plasterboard 
Insulation 
Concrete Block 

0.015 
0.025 
0.1 

3.328 
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Building Element Material Thickness (m) Area (m2) 

South Wall 

Door Solid Pine 0.035 1.509 

Partition to Hall Plasterboard 
Insulation 
Concrete Block 
Insulation 
Plasterboard 

0.015 
0.025 
0.1 
0.025 
0.015 

0.32 

Partition to Cupboard Plasterboard 
Insulation 
Concrete Block 
Insulation 
Plasterboard 

0.015 
0.025 
0.1 
0.025 
0.015 

5.04 

Partition to Under-
Floor Space 

Plasterboard 
Insulation 
Concrete Block 

0.015 
0.025 
0.1 

1.65 

Exterior Wall Cement Finish 
Concrete Block 
Cavity 
Insulation 
Concrete Block 
Plasterboard 

0.015 
0.1 
0.05 
0.075 
0.1 
0.015 

2.175 

Floor 

Floor Oak Flooring 
Underlay 
Particleboard  

0.015 
0.005 
0.018 

26.325 

Ceiling 

Ceiling to Bedroom 1 Plasterboard 
Insulation 
Air Gap 
Particleboard  
Underlay 
Carpet 

0.015 
0.1 
0.1 
0.018 
0.005 
0.008 

16.15 

Ceiling to Bedroom 2 Plasterboard 
Insulation 
Air Gap 
Particleboard  
Underlay 
Carpet 

0.015 
0.1 
0.1 
0.018 
0.005 
0.008 

9.72 

The total volume of air in the room is 76.3795m3. 

Experimental measurements of the room temperature, the temperature of surrounding 

rooms and the exterior temperature were taken over the course of 16 hours using the same 

portable data logging devices as in the previous experiment.  
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There are two radiators installed in the room – both double-panel, double-fin 900x600mm 

heaters with a rated output of 2.06kW at a temperature difference of 60°C. In order to 

record the approximate power output of these radiators for use in the model, thermocouples 

were attached to the water inlet and outlet pipes and temperature data was logged each 

second using an Agilent data acquisition unit. 

Upon completion of the experimental phase of the study, a model of the room was created 

in a similar manner to the previous experiment, modelling the surrounding rooms using the 

“static room” component which uses the temperature data collected in the experiment. The 

exterior temperature is modelled to follow the temperature data collected in the 

experimental phase of this study. The heat output of the radiators in the room is simulated 

using the Radiator component described in section 4.4.2, with the average of the measured 

radiator inlet and outlet temperatures being used for the radiator water temperature in the 

component. The full model of the room is illustrated in Appendix C.2. 

Figure 5-9 below illustrates the simulated room temperature compared to the actual room 

temperature measured in the experimental phase of the study. Figure 5-10 illustrates the 

percentage error in the simulated temperature compared to the measured temperature over 

the course of the simulation.  
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Figure 5-9: Comparison of measured and simulated room temperature in the 

second case study. 

 

Figure 5-10: Percentage error in simulated temperature in the second case study. 

0

5

10

15

20

25

17:31:00 19:55:00 22:19:00 00:43:00 03:07:00 05:31:00 07:55:00 10:19:00

Te
m

p
e

ra
tu

re
 (°

C
)

Time

Measured Room Temperature (°C) Simulated Room Temperature (°C)

0

2

4

6

8

10

12

14

16

18

17:30:00 19:54:00 22:18:00 00:42:00 03:06:00 05:30:00 07:54:00 10:18:00

P
er

ce
n

ta
ge

 E
rr

o
r i

n
 S

im
u

la
te

d
 T

em
p

er
at

u
re

 (%
)

Time



 

149 

The results in Figure 5-9 and Figure 5-10 show that there is a greater error in the simulated 

values for this case study than in the first case study that did not involve room heating. The 

maximum error encountered during the simulation was 16.2%, with an average error of 7.5% 

- around double the error in the previous case study. 

The larger error is related to an inaccuracy in the radiator model from section 4.4.2 that was 

used in the simulations, along with errors introduced by the water temperature data that 

was recorded from the home and used in the simulated radiator models. The largest error 

contribution was introduced by water temperature measurement used in the experimental 

phase of the study. Water temperature measurements were taken using thermocouples 

attached to the inlet and outlet pipes on the radiators. These measurements can provide an 

accurate reflection of the water temperature in the radiator under steady-state conditions 

when the heating system has been running for some time. However, they are not an accurate 

representation of the water temperature in the radiator under the following conditions: 

when the radiator is initially cold and water begins to flow in the heating system; when the 

thermostatic valves close on the radiator and water stops flowing through the heater; and 

when the heating system pump stops and water stops flowing. 

The contribution of this error can be observed at both of the peaks in the simulated room 

temperature in Figure 5-9. At the first peak, the measured water temperature from the 

radiators has momentarily risen due to water flowing in the heating system. In the simulated 

data this has caused the room temperature to momentarily heat up. However, in the 

measured data, it can be observed that despite the water temperature in the heating system 

rising, the system was not running long enough for the radiator’s water temperature to rise 

to a level that caused the room to begin heating up significantly. At the second peak in the 

simulated room temperature, the simulated room temperature is shown to rise more rapidly 

than the measured temperature. Again, this can be attributed to the temperature in the 

radiator inlet and outlet pipes rising and falling more rapidly than the overall temperature of 

the water within the radiator and hence the simulation failing to accurately reflect the time 

taken for the radiator to heat up and the time taken for the radiator to cool down once the 

heating system is switched off (or the thermostatic valve closes). 



 

150 

Despite the error introduced by the inaccuracies in the modelling of radiators in this 

particular model, it can be observed that the general trend of the simulated and measured 

temperatures shown in Figure 5-9 is correlated and that improvement of the radiator 

modelling would enhance the accuracy of the results obtained. 

5.5. Experimental Validation Study – Electrical Circuit 

A short validation study was carried out on the electrical modelling capabilities of the 

package. The two main objectives of this validation study were to verify the accuracy of the 

representative models of household electrical appliances that were described in section 4.1.5 

and to verify the accuracy of a simulated electrical circuit involving a collection of household 

appliances. 

A set of household appliances – an LCD TV, a BT Vision Set-Top Box and a lamp with a CFL 

bulb – were connected to the domestic mains supply through a power analyser unit 

(described in Appendix D). The power analyser unit provided measurements of current, 

power, power factor and phase angle for each connected appliance. A measurement of the 

mains voltage was provided in addition to overall readings for the power and power factor of 

all of the connected appliances combined. The power analyser was connected to a laptop 

computer which logged measurements at one second intervals between 17:52 and 22:28 of a 

typical evening’s usage of the appliances. As a supplement to this automated logging of the 

physical measurements, a diary was kept of the times that the television was in the “On” and 

“Standby” modes for use in the simulation of the system. 

A simulation model equivalent to the experimental setup was developed, a schematic 

diagram of which is provided in Appendix C.3. The times logged in the TV use diary were set 

in a scheduler component within the model so that the modelled system matched the 

behaviour of the real system. Additionally, the results obtained during the physical 

measurement phase of the validation experiment were imported into the software package 

so that they could be displayed with the simulated results inside the package for comparison. 



 

151 

Figure 5-11 illustrates the comparison of the measured power of the appliances with the 

simulated values of each appliance’s measured power. Upon initial visual inspection of this 

graph, it appears that the modelling package has produced results that model the real 

behaviour of the appliances with acceptable accuracy. However, upon analysis of the errors 

within the measured power values, it became apparent that the BT Vision Box and TV had an 

average error of 9.8% and 9.2% respectively in the simulated value when compared to the 

measured value. The electric lamp had a lower error at only 2%. The error in these values 

was attributed to the fact that each appliance was modelled as a constant impedance, rather 

than an impedance which dynamically varied. Such a model has shown to be acceptable for 

the electric lamp – a relatively simple appliance in which the power consumption rarely 

varies. However, the BT Vision Box and TV are more complex appliances in which the power 

consumption dynamically varies throughout their use to a larger extent and therefore the 

lumped impedance model provides a poorer fit to the dynamic behaviour of the appliance.  

 

Figure 5-11: Comparison of physical measurements of domestic appliance power 

consumption with simulated power consumption. 
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In addition to comparing the individual appliance power consumption, a comparison was also 

carried out between the total measured power of the electrical circuit formed by the three 

appliances compared to the simulated value of overall power consumption. Again, upon 

visual inspection of Figure 5-12, the simulated and measured power consumption appears to 

be well correlated. After an analysis of the error in the values, the average error between the 

simulated and measured value of total power consumption was 4.16%. It can be concluded 

from this result that while constant impedance models of domestic appliances may be less 

desirable for certain types of appliance, the larger errors observed when examining a home 

model in detail become less significant when considering the power consumption of the 

home as a whole. 

 

Figure 5-12: Comparison between the simulated and measured values of the total 

power consumption of all appliances. 
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average error in phase angle for the BT Vision Box, TV and Lamp were 1.78%, 0.5% and 5% 

respectively. These lower errors were attributed to the fact that although the power 

consumption of each appliance varied during its operation unlike the constant power model 

used in the simulations, the phase angle of each appliance remained relatively constant 

throughout the operation. 

Dynamic variation in the power consumption of devices that is not accurately reflected in the 

simulation models has already been described as one source of error in this validation 

experiment. However, for completeness it is important to consider the other sources of error 

in the experiment. The experimental apparatus used to obtain the physical measurements 

for this comparison consisted of a custom-made power analyser unit which used a 

microcontroller in conjunction with off-the-shelf sensors to obtain voltage, current and phase 

angle measurements and used these measurements to calculate power and power factor. 

Taking into account the quoted errors of the sensor and amplifier components used in the 

system, along with the quantisation error in the microcontroller’s ADC, the error in this unit 

is estimated to be no more than 7%. Electrical noise should also be considered as a potential 

source of error in the measurements when using this apparatus: the unit lacks the shielding 

provided in professional-grade measurement equipment. 

The RMS voltage of the electrical grid connection used in the simulation model is a source of 

error for the comparison. The simulated voltage was fixed at 233 – the average value of the 

measured voltage. The actual measured voltage fluctuated between 231V and 240V 

throughout the experiment. The average error in the simulated voltage compared to the 

measured value was 1.4%. 

5.6. Summary of Testing and Validation 

Three validation experiments that were carried out on the simulation package have been 

presented in this chapter. These experiments have shown good agreement between the 

simulated results and the actual measured values with varying but small absolute errors. 
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In the first experiment – the analysis of the thermal properties of a room with no forced 

heating or cooling system – the simulated results were shown to agree well with the 

experimental values. In the first comparison, the average error in the simulated results was 

1.8% with a maximum error of 3.7%. However, in a second comparison during this 

experiment, a weakness was found in the thermal modelling components’ lack of ability to 

model heat gain due to solar irradiation. This produced a transient error of 17.2% in the 

simulated temperature value during a brief period of intense sunlight through the window at 

the front of the room. However, the average error during this experiment was still low at 

1.8%. These results show that while there are some shortcomings in the implementation of 

the surface and window models provided in the package, it provides a good representative 

model of a room’s thermal properties. 

In the second experiment – the analysis of the thermal properties of a room with forced 

heating – the simulated results differ significantly from the measured room temperature 

values. The average error in the simulated results was 7.5% with a maximum error of 16.2%. 

However, the source of this error was identified as a problem with the collection of radiator 

temperature data which resulted in the simulation under-estimating the time taken for water 

to heat up and cool down within the radiator itself. If the periods when the radiators were in 

operation are excluded from this study then the maximum error in the simulated 

temperature falls to around 7%. This illustrates that an improvement of the modelling of the 

radiators in the room would yield significantly improved rates of error in the simulation. The 

incorporation of flow rate sensors in the experimental measurements would have also 

contributed to a more accurate set of inputs to the validation model. However, in an existing 

domestic system, these sensors cannot be easily fitted on a temporary basis and therefore 

the inlet and outlet pipe temperature measurements were averaged as an approximation to 

the water temperature within the radiator. 

In the third experiment – the comparison of simulated domestic electrical appliances to 

measured values from real appliances – a number of deficiencies in the electrical models 

provided in the package were highlighted. The initial assumption was made during the 

development of the electrical models that appliances have a constant power output 
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throughout their operation while experimental measurements of the appliances have shown 

that this is not the case. This initial assumption resulted in average errors of nearly 10% in 

some of the individual appliance measurements. However, when considering the total power 

consumption of all appliances together the individual errors become less significant and an 

average error of around 4% was achieved. In the appliances considered, phase angle was 

shown to vary less than power consumption and therefore the constant impedance models 

provided a maximum average error of 5% in an individual appliance’s phase angle. These 

results illustrate that the simulation package provides good accuracy for the simulation of the 

power consumption of a home as a whole, but further work would be required to refine 

appliance models if a more detailed analysis of individual parts of a home’s electrical system 

is to be undertaken. 

The validation results presented in this chapter show that the new simulation package 

provides good accuracy in its initial results, with a number of the comparisons yielding an 

error of 5% or less. Areas for enhanced accuracy of the modelling elements included in the 

package have also been identified. These initial results establish the necessary confidence 

level that the package is able to provide sufficiently accurate results for the detailed 

simulation studies which are presented in Chapter 6. 
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Chapter 6  

Case Study 

Chapters 3 - 5 describe the design, implementation and testing of a new software package 

for the modelling of intelligent domestic energy control systems. The package provides the 

benefit of allowing for the modelling of the existing heat and electrical energy systems within 

a home and allowing for the prototyping of new smart energy control systems. This case 

study illustrates one use case of the software – the modelling of an integrated smart home 

control system.  

6.1. Home Energy System Overview 

Chapter 2 discussed how electricity networks are currently being upgraded to permit more 

renewable methods of generation, including microgeneration devices in domestic and 

business premises.   

One of the associated problems with the increased deployment of renewable generators 

throughout electricity networks is the fluctuating output provided by wind or solar 

generators. These generators may produce surplus electricity when it is not required by end-

users and conversely may also not produce enough electricity at the peak times when it is 

most needed. Demand side management and energy storage were identified as two methods 

which could be used at the domestic level in order to allow consumption to more closely 

match generation.  

The software system presented in this case study combines a number of elements of 

research work carried out during this project, most notably the development of a maximum 

power point tracking algorithm for small-scale photovoltaic systems [2] and the adaption of a 

smaller case study involving controllable loads and critical-peak-pricing tariffs [1]. The 
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system, illustrated in Figure 6-1, includes a roof-mounted photovoltaic panel, a battery 

storage system and a hot water storage system.  

The photovoltaic system uses a new maximum power point tracking algorithm developed to 

maximise the power output of the PV panel. The battery can be used to store energy from 

either the microgeneration system or directly from the grid. An electric water heater 

provides a thermal energy storage option for the system whereby water can be heated 

during off-peak times and used when required within the home. All other uncontrollable 

electrical load within the home is modelled as a time-varying lumped load component. The 

smart domestic energy controller within the system is capable of reading the energy 

consumption data from the smart meter and using these data to issue control actions to the 

in-home appliances. 

 

Figure 6-1: Domestic energy system modelled in this case study. Solid lines 

indicate electrical connections while dashed lines indicate communication links. 
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6.2. Maximum Power Point Tracking 

6.2.1. Background 

In section 4.1.2, the implementation of a generic solar panel model for use in simulations was 

described. In the discussion of this model, the non-linear relationship between voltage and 

current in a solar panel (64) was described. An example of the current-voltage relationship 

for varying solar irradiation levels is shown in Figure 6-2. On this illustration, the point on 

each curve that yields the maximum power output from the solar panel is indicated. This 

point is known as the maximum power point. 

                           
 

       
     (64) 

 

 

Figure 6-2: Illustration of the current-voltage relationship of a solar panel for 

varying solar irradiation levels. Maximum power points are indicated on each 

curve. 

In order to obtain the maximum power output from a solar panel, the load resistance RLOAD 

(Ω) has to be carefully chosen to match the case described in (65) where VMPPT (V) and IMPPT 

(A) are the respective voltage and current at the solar panel’s maximum power point. 
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 (65) 

In reality, a solar panel connected directly to the electrical load that it is supplying is unlikely 

to yield its maximum power output. In order to address this issue, power converters with 

maximum power point tracking systems are commonly used to interface photovoltaic 

generation systems to the electrical grid. These algorithms use switched mode power 

supplies to constantly vary the load on the solar panel in an attempt to yield more power 

from the panel – in effect matching the output impedance of the panel to the input 

impedance presented by the converter and thereby satisfying the maximum power transfer 

theorem requirement for matched source and load impedance. 

Two broad classes of maximum power point tracking algorithm are available: model-based 

approaches, and perturbation and observation approaches. Model-based approaches use the 

model of the solar cell from (64) to accurately calculate and set the maximum power point. A 

model-based approach is presented in [20] which uses manufacturer-supplied data in 

addition to measurements of the solar irradiation and cell temperature to calculate the 

maximum power point. Model-based approaches offer the benefit of being able to very 

accurately track the maximum power point regardless of how quickly irradiation changes but 

are highly dependent on the particular solar panel in use and require extra hardware to 

measure irradiation and temperature.  

Perturbation and observation based algorithms provide a more generic approach to 

maximum power point tracking and rely only on measured voltage and current as inputs to 

the algorithm. The most basic form of perturbation and observation algorithm operates by 

making an adjustment to the operating voltage of a photovoltaic system9 and observing 

whether this yields an increase or decrease in the power output of the system. If a decrease 

is observed, the algorithm adjusts the voltage in the opposite direction. If an increase is 

observed, then the algorithm continues to make voltage adjustments in the same direction. 

The overall effect of the algorithm is that the output power of the panel converges to close 

to the maximum power point and oscillates around the maximum point when it is found. 

                                                        
9 In practice, changes to the operating voltage of a photovoltaic system are made by adjusting the load on the solar panel 
through the use of an electronically-controlled switched mode power supply. 
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The hardware required to implement this type of algorithm consists of voltage and current 

transducers, a switched mode power supply to vary the load on the panel and an electronic 

control system such as a PLC, FPGA or microcontroller on which to implement the algorithm. 

Optimisations such as varying the perturbation size [24] or varying the sampling speed [25] 

are trivial to implement, requiring only a software change on the control system. 

The Incremental Conductance algorithm [23] is an improvement on the basic perturbation 

and observation algorithm and reduces power losses due to oscillation around the maximum 

power point and tracking in the wrong direction during rapid changes in atmospheric 

conditions. These improvements stem from the use of a technique which controls the 

perturbation direction based on the photovoltaic system’s power-voltage curve. 

The maximum power point represents a peak in the power-voltage curve of a solar panel, 

hence at this point dP/dV = 0. At any point on the curve to the left of the maximum, dP/dV 

> 0. To the right of the maximum, dP/dV < 0. Determining the sign of the slope represented 

by dP/dV allows a decision to be made on how to adjust the voltage. The voltage should be 

increased if dP/dV > 0 and decreased if dP/dV < 0, to move closer to the maximum power 

point. If dP/dV = 0 then no change is required: the photovoltaic system is operating at its 

maximum power point.  

In order to compute dP/dV using only voltage and current measurements, equation (66) can 

be used [23]. Voltage and current measurements can be taken directly from transducers 

while approximations for dV and dI can be made using (67) and (68) respectively. VN and IN 

are the voltage and current readings taken during an iteration of the algorithm and VB and IB 

are the voltage and current readings taken on the previous iteration of the algorithm. 

  

  
 
      

  
   

    

  
 (66) 

           (67) 

           (68) 
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The addition of the curve-tracking technique ensures that the maximum power point is 

tracked correctly, even under rapidly changing atmospheric conditions. Additionally, by 

performing no voltage adjustments when the maximum power point is reached, losses 

caused by oscillating around the maximum are eliminated. The hardware requirements of 

this algorithm are the same as those of the basic perturbation and observation algorithm and 

this makes it an attractive replacement. Results from the literature ([23], [132]) have shown 

that this algorithm provides significant improvements in power yield over the basic 

perturbation and observation algorithm. 

6.2.2. Newly Developed Algorithm 

While the Incremental Conductance algorithm addresses some of the shortcomings of basic 

perturbation and observation algorithms, a particular situation in which it continues to offer 

reduced efficiency is in its tracking stage when the operating point is moving between two 

significantly different maximum power points (e.g. during partial cloud cover). Perturbation 

and observation algorithms, including the incremental conductance algorithm are limited in 

their tracking speed as a consequence of the fixed-size adjustments to the operating voltage 

on each iteration. This limitation provided the motivation for the development of a new 

algorithm to improve the tracking speed of perturbation and observation based algorithms. 

6.2.2.1. Description of the New Algorithm 

To introduce this new algorithm, consider the current-voltage plot shown in Figure 6-3. This 

plot provides a hypothetical example of different situations in which a perturbation and 

observation algorithm has been used to determine the maximum power point of a system. 

The graph illustrates the sets of current-voltage points that were recorded when the 

algorithm tracked from one maximum power point to another and the maximum power 

point on each occasion. The benefit that the new algorithm aims to introduce is to quickly 

find the maximum power point for an unknown curve for which a single data value has been 

recorded. 
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Figure 6-3: Sample illustration showing points collected during different runs of a 

perturbation and observation algorithm and the maximum power point on each 

occasion (indicated in bold). 

To find the new maximum power point for the system after a large change in measured 

output, a K-Nearest-Neighbours classifier [133] can be used to find the nearest recorded data 

points to the presently measured current-voltage point U. In the example in Figure 6-3, 

taking K=3, the nearest neighbours to U are two points belonging to curve 3 and a single 

point belonging to curve 2. At this stage it is assumed that U lies on curve 3 and the 

operating voltage for the panel is set to the maximum power point voltage for curve 3. A 

simple perturbation and observation phase is then carried out to refine the estimate of the 

maximum power point until the algorithm begins to oscillate around the maximum power 

point. At this stage the solar panel output voltage is held constant and all of the current-

voltage points recorded during the perturbation and observation stage are stored. 

Once the perturbation and observation stage is complete, the maximum power point is 

compared to the maximum power points of previously stored curves. If the maximum power 

point does not lie within a tolerance value ±ΔP of any other maximum power point, a new 
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curve is defined and all of the recorded data points, the maximum power point and the 

maximum power point voltage are stored and associated with that curve. If the maximum 

power point does lie within ±ΔP of another curve’s maximum power point then all of the 

data points recorded during the tracking phase are associated with the existing curve. 

Once the new maximum power point has been found, and the associated information 

recorded, the algorithm enters a waiting state where the power output of the solar panel is 

monitored until it changes by more than a specified value PDRIFT. Under this circumstance, 

the classification and tracking process begins again. A full formal definition of the algorithm is 

provided in the activity diagram in Figure 6-4. 

 

Figure 6-4: Activity diagram of the newly-developed learning maximum power 

point tracking algorithm. 
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6.2.2.2. Algorithm Comparison 

In order to assess the effectiveness of the new algorithm, both simulation and experimental 

comparisons were carried out between the basic perturbation and observation algorithm, 

the incremental conductance algorithm and the new learning algorithm. Full details of the 

methods used to perform the comparisons are provided in Appendix E. The results of these 

comparisons are presented in Table 6-1. 

The simulation results indicate that the new algorithm provides a higher average power 

output than the existing algorithms under both slowly and rapidly changing atmospheric 

conditions. However, the experimental comparison indicates that the Incremental 

Conductance algorithm provides slightly better performance under slowly changing 

conditions. The new algorithm is shown to provide an improvement on average power 

output of 7% under rapidly changing conditions. The poorer performance of the new 

algorithm under experimental conditions was attributed to the presence of noise in the 

measurements which was not modelled in the simulation. This noise causes the algorithm to 

oscillate at certain points during the tracking process and is wrongly interpreted as indicating 

the presence of the maximum power point. 

Table 6-1: Results of simulation and experimental comparisons of maximum 

power point tracking algorithms under slowly and rapidly changing atmospheric 

conditions. 

Algorithm 

Average Power Output (W)10 

Simulation Comparison  Experimental Comparison 

Slowly Changing 
Conditions 

Rapidly Changing 
Conditions 

Slowly Changing 
Conditions 

Rapidly Changing 
Conditions 

Perturbation and 
Observation 

50.0878 53.3551 1.8206 2.4781 

Incremental 
Conductance 

50.0890 53.3736 1.8214 2.5246 

Learning 
Algorithm 

40.4403 53.9427 1.7875 2.7231 

                                                        
10 The large difference in simulated and experimental power outputs is attributed to the fact that in the simulation, the solar 
panel was subjected to levels of solar irradiation that could not be repeated in an experimental setup. 
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The best illustration of the improved tracking performance offered by the new algorithm is 

its ability to rapidly track to a previously discovered maximum power point. Figure 6-5 and 

Figure 6-6 illustrate the performance of the Incremental Conductance and the Learning 

algorithms when compared under experimental conditions using the same solar irradiation 

pattern. It can be observed from the second graph that the new algorithm behaves similarly 

to the Incremental Conductance method on the first attempt at obtaining the maximum 

power point. This is due to no prior knowledge of the system. Upon subsequent occurrences 

of the same maximum power point, the new algorithm reaches the maximum power point 

almost instantly. In comparison, the incremental conductance method takes the same 

amount of time as the initial tracking on each occasion. 

 

Figure 6-5: Power output of a solar panel under experimental conditions when 

using the Incremental Conductance maximum power point tracking algorithm. 

The dotted line indicates the approximate maximum power point of the panel 

under fully-illuminated experimental conditions. 
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Figure 6-6: Power output of a solar panel under experimental conditions when 

using the Learning based maximum power point tracking algorithm. The dotted 

line indicates the approximate maximum power point of the panel under fully-

illuminated experimental conditions. 

6.2.3. MPPT Controller 
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implementing the learning-based maximum power point tracking algorithm described in 
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The logical block within the system model that implements this controller runs the new 

maximum power point tracking algorithm to constantly extract power from the solar panel. 
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In this case, excess power generated by the photovoltaic panel will be unused within the 

system. The minimum voltage constraint relates to a scenario when no grid connection or 

battery storage is available and the controller is solely responsible for supplying electricity to 

the home. If the energy consumption in the home is sufficient to reduce the controller’s 

output to the minimum voltage level then the controller’s output will simulate the tripping of 

an overload protection device and disconnect the energy supply. 

In this study, an 80W solar panel model was used, in conjunction with a typical Scottish solar 

irradiation pattern for the month of March [131].  

6.2.4. Battery Controller 

The “Battery Controller” component shown in Figure 6-1 is responsible for managing 

charging and discharging of the battery storage system. The controller accepts set-points for 

operation between -100% and 100% where a negative set-point indicates charging and a 

positive set-point indicates discharging. The controller will use these set-points to charge or 

discharge the battery at a percentage of its maximum charge or discharge rate. When 

charging the battery, the controller will model a resistive load connected to the home energy 

system and set the voltage at the battery terminal such that the power flow is equal to the 

requested charging rate. Conversely, when discharging the battery the controller will model a 

resistive load connected to the battery to discharge the battery at the requested rate and will 

use the same method as the MPPT controller to inject power into the home energy network. 

Output voltage constraints are used on this component in a similar manner to the MPPT 

controller. However, under limiting conditions, the charge or discharge rate of the battery 

reflects the limited power input or output at the connection to the home energy system. To 

allow the controller to detect the battery’s state of charge, the minimum and maximum 

open-circuit voltage for the battery are defined in configurable parameters. When these 

values are reached, the controller will enter an idle state and cease to import from or export 

to the home’s electricity network. 

In this study a 1kWh battery system model is used with a maximum charge rate of 1kW and a 

maximum discharge rate of 3kW. 
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6.3. Water Heater 

The electric water heater component described in section 4.1.5.4 was used within this model 

as the controllable thermal storage element. An additional capability was added to the 

heater for use in the smart energy system. Instead of heating water based on a thermostat 

setting, water is heated based on a percentage of input power setting. This means that when 

sent a percentage set-point, the heating elements will operate at the given percentage of 

their maximum power. To ensure that hot water comfort requirements are met, the power 

setting will be overridden to operate at maximum power when the water temperature is 

below a configured minimum value. Similarly, the heating elements will be switched off when 

the water temperature reaches a configured maximum value. This mode of operation places 

the focus on maximising the tank’s thermal energy storage capability. The heater was 

configured as a 6kW immersion heater in a 120 litre storage tank with a maximum tank 

temperature of 90°C, minimum tank temperature of 55°C and a loss of 0.9kWh/24h. 

The results of an Energy Saving Trust study into domestic hot water usage [134] were used as 

a basis for creating hot water usage patterns. Figure 6-7 illustrates the total hourly 

consumption of hot water as recorded for a typical home in their survey. To provide a simple 

representative consumption of hot water for the simulated home model, the total hourly 

consumption in litres for each hour was divided by 60 to provide a constant consumption 

rate in litres per minute for that hour which matched the total water consumption for the 

hour. 



 

169 

 

Figure 6-7: Consumption of hot water per hour as recorded in a typical home 

within the Energy Saving Trust hot water survey. 

6.4. Domestic Load Model 

In order to simplify the model for this case study, the domestic electricity load not under the 

control of the energy management system was modelled as a single time-varying lumped 

load, rather than as a set of individually scheduled appliances. To ensure that the simulated 

load was representative of the actual load in a typical UK dwelling, the model proposed by 

Richardson et al [135] was used to generate a 24-hour load profile with a one-minute 

resolution. The probability-based model used to generate this profile uses three steps: 

simulation of building occupancy based on maximum occupancy and time of day; assignment 

of appliances to the building; and modelling of appliance energy use dependent on building 

occupancy and probability of appliance use. Lighting load within the building is calculated 

based on a seasonal lighting model developed by the same authors [136]. 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

H
o

t 
W

at
e

r 
C

o
n

su
m

p
ti

o
n

 (
li

tr
e

s)

Hour of Day (From Midnight)



 

170 

 

Figure 6-8: Simulated electrical power demand for the home. 

The inputs to the model were set up to model a home with four occupants, with the seasonal 

profile initialised for the month of March. During the appliance assignment phase of the 

profile generation, the initial assignment made by the algorithm was taken as a starting 

point, but was modified to ensure that there were no electric space heating or water heating 

appliances assigned to the home before generating the profile. The resulting profile that was 

generated by the model is shown in Figure 6-8. 

6.5. Metering System and Control Algorithm 

The smart metering component described in section 4.1.4.5 was used to measure the energy 

import or export between the home and utility grid network. This meter supports the ability 

for the control system within the home to request the real-time power flow to or from the 

home using the meter’s communications link. 

The main in-home energy control system is capable of working in conjunction with the smart 

meter in a load-levelling mode. When operating in this mode, the system uses a single output 
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possible from the device. A positive set-point indicates that the device should consume and 

store energy where possible, with 100% indicating that the device should consume energy at 

its maximum rate. 

The battery controller supports receiving set-points directly in the range -100% to 100%, 

however, the water heater is only capable of responding to a set-point in the range 0% to 

100% as it has no electricity export capability. An Intermediate communications component 

has therefore been included to convert set-points in the range-100% to 100% to a set-point 

in the correct range. The logic within the intermediate component converts any set-points 

between -100% and 0% to 0%. 

A simple control algorithm is used to determine the set-point that should be issued to each 

controllable appliance in order to achieve the required control action. The controller uses a 

one-minute time-slot based average demand profile for the home for that particular day of 

the week. The average demand over the whole day is then calculated for use as a target 

constant load profile for the home. If the home energy use is less than the target average 

demand level, SPEC is increased and if greater, SPEC is decreased. 

6.6. Simulation Results 

6.6.1. Baseline Case 

To provide an initial baseline for comparison of the different control inputs for the domestic 

energy controller, a 24-hour simulation of the home’s electricity use was carried out with the 

controller set to perform no control operations. In this case, the water heater operates by 

following a fixed thermostat setting. The photovoltaic generation system is allowed to run 

normally but the battery storage system is not used. After reviewing a selection of tariffs 

offered by UK energy providers, the metering rate for the electricity was set to 22p/kWh and 

the PV feed-in rate to 39p/kWh. Figure 6-9 illustrates the load profile for the home in terms 

of power imported from the utility supplier. The net energy imported from the distribution 

network was 26.82kWh at a net cost of £5.90. 
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Figure 6-9: Load profile of the home over 24 hours with no thermal or electrical 

storage. 

6.6.2. Load Balance 

The next stage of this comparison involves adding some intelligent control to the home 

energy system by enabling the smart energy controller. The aim of this control strategy is to 

attempt to smooth the domestic load profile over the course of a day using the local storage 

capability. The results from the baseline case were used as the reference daily profile for the 

home from which to calculate average daily load for the home. Again, a fixed electricity tariff 

was used with the same energy prices as in the previous simulation.  

Figure 6-10 illustrates the smoothed load profile for the home in terms of power imported 

from the supplier using only the hot water storage system. The net energy imported from the 

distribution network was 28.66kWh at a net cost of £6.30. The difference in the heating 

pattern used by the controller when the control system is enabled, compared to water 

heating without the control system is illustrated in Figure 6-11 and Figure 6-12. 
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Figure 6-10: Load profile of the home over 24 hours with only the thermal storage 

system enabled. 

 

Figure 6-11: Water heater temperature over 24 hours without control system 

enabled. 
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Figure 6-12:Water heater temperature over 24 hours with control system enabled. 

Figure 6-13 illustrates the smoothed load profile for the home in terms of power imported 

from the supplier using only the battery storage system. The net energy imported from the 

distribution network was 22.51kWh at a net cost of £4.95. 

Figure 6-14 illustrates the smoothed load profile for the home in terms of power imported 

from the supplier using both the hot water and battery storage systems. The net energy 

imported from the distribution network was 26.84kWh at a net cost of £5.90. Table 6-2 

summarises the simulation results for the four control strategies. 

Table 6-2: Summary of the results obtained by different domestic energy 

controller strategies. 

Case Study Net Energy Import from 
Distribution Network (kWh) 

Net Energy Cost (£) 

Baseline (No Control) 26.82 5.90 

Thermal Storage Only 28.66 6.30 

Battery Storage Only 22.51 4.95 

Thermal and Battery Storage 26.84 5.90 
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Figure 6-13: Graph illustrating power imported from the grid when only the 

battery storage system is enabled. 

 

Figure 6-14: Graph illustrating power imported from the grid when  both the 

battery and hot water storage systems are used. 
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6.7. Summary of Results 

The baseline case illustrates a constant variation in power output throughout the day, with 

regular 3kW peaks due to the charging of the water cylinder. The baseline load from the 

home shows obvious peaks around 8AM and in the evening period from around 4PM. 

Adding the control algorithm to the water heater only reduces the average load in the earlier 

part of the day by using a constant trickle charge rather than a large instantaneous charge in 

the water heater. The exceptions to this are periods around 7AM and 3PM when the water in 

the tank has been heated to its maximum temperature, as illustrated in Figure 6-12. A 

disadvantage of the control strategy used in this case is that the total daily power 

consumption has actually increased by around 2kWh because more energy has been stored 

in the water tank. This is because the control algorithm has only taken into account 

instantaneous power consumption and not the total energy requirement over the whole day. 

If the total hot water energy requirement was taken into account, this would prevent over-

charging of the water tank. 

As shown in Figure 6-13, using only the battery storage system with the control algorithm is 

less effective than the water cylinder for smoothing the power consumption in the earlier 

part of the day. This is due in part to the lower capacity of the battery system in comparison 

to the water storage system and also due to the battery being discharged to balance out the 

3kW peaks introduced by running the water cylinder in its normal thermostat-based 

operation mode. However, the cost of electricity when using this system is lower, both due 

to the battery being 50% charged at the start of the simulation and also due to the higher 

feed-in tariff being used for electricity exported back to the grid for short periods.  

The final scenario considered which uses both storage systems provides the best results for 

smoothing the load profile over the earlier part of the day. This is due to the battery charging 

sharing the power consumption with the water heater and therefore reducing the effect of 

the water heater being fully charged at 7AM and 3PM that was experienced previously. 

However, there is little effect on the evening peak load. The lack of any reduction in the peak 
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load is due to the battery quickly discharging within 20 minutes due to its low 1kWh total 

capacity.  

The results obtained in this case study illustrate that smaller generation and storage systems 

have the ability to significantly alter the load shape of a home across a 24 hour period, which 

makes demand side management a useful tool for matching electricity load to grid demand. 

However, it has also been shown that if the control algorithm does not take into account the 

total energy requirements of the home then it is possible to increase the daily energy 

consumption using such systems, resulting in a negative financial impact on the home. It was 

also shown that a daily averaging profile like that used here has done little to reduce the 

evening peak consumption and therefore it may have been more beneficial to schedule 

charging of the storage to coincide with the time prior to the peak period. 
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Chapter 7  

Conclusions 

7.1. Chapter Summary 

In Chapter 2, the background to this research project was described. In particular, the 

process that is currently being carried out in the UK to transition from a fossil-fuel based 

energy system to a system that is more dependent on renewable and sustainable energy 

sources was described. With these changes come new challenges based around the fact that 

renewable sources of energy generation may not always be available at the same time as the 

demand for energy. While there are larger-scale methods of addressing some of these 

problems, the focus of the work in this thesis was to look at ways in which the energy 

systems in individual homes could contribute to the storage or demand management 

requirements of the grid as a whole. Smart metering, microgeneration and local electrical 

and thermal storage were identified as possible technologies which could assist in offsetting 

the effect of increased penetration of renewable generation which does not coincide with 

demand. The second half of Chapter 2 describes different building energy simulation 

packages that could be used to model “smart micro-grids” within homes, taking into account 

the modelling of the electrical, thermal, communication and software control aspects of 

these packages. This summary provided the foundation for the development of a new 

package which better suited the requirements for the modelling of domestic smart grid 

systems. 

Chapter 3 describes the design of the new domestic smart grid modelling package that was 

developed as the main part of the work for this thesis. The final design that was selected for 

the package models systems using block-based components representing different elements 

of a building’s energy system that are connected to other components through one or more 

pins on each component. Central to the design of the package is the support for multiple 
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physical modelling domains within each component. The domains currently supported are AC 

and DC electrical connections, one-dimensional heat transfer connections and byte-

orientated communication connections. An asynchronous messaging system that does not 

rely on explicit connections between components is also provided to model external events 

such as user interaction with appliances in the home. The package itself simply provides the 

framework for defining components, creating models using these components and running 

simulations on the developed models. As well as allowing interactions between multiple 

physical domains to be modelled in a single component, one of the major benefits of the 

package is its ability to describe complex component behaviour or software control strategies 

through the use of full programming language support. Simple components can be 

implemented in a mathematical scripting language, but support for full C# and Visual Basic 

language use is also provided to implement complex components. Behaviour within each 

component can also be controlled by providing configurable parameters which can be 

changed at model design time, eliminating the need to modify components’ source code for 

the design of each different system model. 

In Chapter 4, the development of a number of component models for use in the package was 

described. Ideal voltage sources as well as a detailed solar panel model were developed to 

allow for the simulation of grid-based generation and local microgeneration from solar 

panels. A set of wire and switch components was developed to automate electrical 

connections and to model the losses in the connections. A smart meter component was also 

developed to represent the two-way communication interface with the utility supplier which 

could be expected in the future. A number of different household electrical loads were 

modelled with the majority of the models based on the characterisation of real appliances.  

The library of building elements developed for the package includes a room component and 

a surface component that can be used to model walls, floors, ceilings and roofs. Separate 

components were developed to model the heat conduction through doors and windows. 

Components were developed to model an electric water heater, electric space heater and 

water-filled space heater. Another component simulates the heat loss from a room due to 

natural ventilation. 
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Chapter 5 described the testing and validation processes that were carried out both during 

and after the development of the package. Two forms of testing were carried out during the 

development of the package and the component libraries. Automated unit testing using the 

Microsoft Test Framework was used to test the package itself. This proved to be a very useful 

form of testing as every time that a change was made to the software, the existing set of 

tests could be re-run to ensure that the changes did not break any existing functionality. For 

the testing of component libraries, as well as performing manual testing of the functionality 

of components during development, an automated test program was used to run simulations 

of pre-defined system models and verify that the results produced by the components were 

as expected.  

To validate the simulations carried out in the package against experimental data, three case 

studies were carried out. The first involved assessing the ability of the package to model the 

thermal properties of a room within a building with no forced heating or cooling systems in 

operation. The results of this study showed that the package was able to accurately model 

the thermal properties of a room, excluding the situation where direct sunlight caused a 

fluctuation in the measured room temperature which was not accurately captured in the 

simulations. This identified the need for improvement of the solar gain modelling capabilities 

of the package.  

The second validation study built upon the first study, adding a space heating system into the 

simulation and validating against a room with two radiators operating from a gas-fired 

central heating boiler. This study identified a problem with the implementation of the 

radiator component within the package, which requires further work in order to more 

accurately model heating systems. This problem was partially due to the model of the 

radiator itself and also partially due to the way in which radiator temperature data was 

collected in the experimental phase of the experiment and input into the simulation. A basic 

linear model of a radiator was used, the inputs to which were the instantaneous temperature 

of the water in the radiator and the nominal heat output of the radiator for a given 

temperature difference between the water and the room. The temperature data collected 

for the validation study was from the water inlet and outlet pipes only. Due to the 
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significantly smaller volume of water in these pipes when water is not flowing to the radiator, 

the pipes cool significantly more quickly than the radiator itself. This resulted in erroneous 

input data being collected for the validation study. A resolution to this problem would be 

improve the radiator component to more fully model the physical properties of a radiator, 

taking into account the flow rate of water through the radiator, and the rate of cooling of the 

radiator once water has stopped flowing. The experimental measurements could be 

improved to support a new model of this type by collecting flow rate data along with the 

water temperature data. 

The third validation study was based upon the simulation of electrical appliances within a 

home. This study illustrated good correlation between the simulated and measured data but 

identified a discrepancy in the results when the electrical power consumption of the 

appliances varied dynamically. This discrepancy was due to the fact that all electrical 

appliances used in the simulation were modelled as non-varying static loads when in fact the 

appliances do have some variation in their power consumption when operating. The errors in 

this validation experiment could be reduced by a more detailed characterisation of the 

power consumption of each appliance. More  detailed models would also require a more in-

depth model of the interactions between occupants of the home and their appliances. 

Chapter 6 describes an example domestic smart energy system that was modelled using the 

package. The purpose of this example system is to illustrate each of the different features of 

the package being used to solve a real-life domestic smart grid problem. In the example 

presented, a domestic energy system consisting of a photovoltaic microgeneration system, a 

battery storage system and thermal storage in the form of a hot water tank was considered. 

The home additionally had a load pattern representing the remainder of the home’s 

uncontrollable electrical load. The aim of the study was to illustrate how the controllable 

generation and storage devices could be used to control net domestic energy consumption 

from the domestic supply.  

The results from the study in Chapter 6 illustrate that while local microgeneration can slightly 

reduce the instantaneous power requirements of a home when energy is available, thermal 

and electrical energy storage systems are extremely effective in changing the shape of the 
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home’s daily load profile. Thermal energy storage systems can level out troughs in the load 

profile while electrical energy storage systems have the additional capability of shaving peaks 

in the load profile. However, the study also highlighted the potential negative effects of 

automated domestic energy controllers where algorithms attempting to solve grid-level 

constraints can adversely affect end-users. In this case, one of the control scenarios was 

shown to increase users’ energy consumption through wasted thermal storage and hence 

increase the cost of energy. 

7.2. Novel Contributions of the Research 

The smart domestic energy system simulation package, described in Chapter 3, provides the 

unique features of: full object-orientated programming language support within each 

component in a modelled system; modelling of data communication between components 

within a system; and modelling of interaction between occupants of a home and their 

appliances. These features are in addition to the modelling of electrical power flow and one-

dimensional heat transfer – features already commonly available in building energy 

simulation packages. The object orientated programming language support with the platform 

provides the flexibility for it to be easily extended to accommodate new physical domain 

models, or enhancements to the existing models provided. This support also provides the 

potential for interaction with other simulation tools. 

The development of a new learning-based maximum power point tracking algorithm, 

described in section 6.2.2 and a related conference paper, was another novel contribution of 

the work presented in this thesis. The algorithm provides the ability to learn the 

characteristics of a solar panel over time, allowing it to improve the tracking speed when 

tracking in a previously-encountered operating region. The new algorithm, which was shown 

to increase operating efficiency of a solar panel over a standard perturbation and 

observation approach, has the advantage over model-based maximum power point tracking 

approaches of not being prescribed to a particular type of solar panel. In the process of 

developing this algorithm, a related algorithm was developed for obtaining the current-

voltage operating point of a solar panel when only the load and atmospheric conditions are 
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known. This algorithm, described in section 4.1.2 and a related journal paper, was used to 

create a solar panel model within the new domestic energy simulation package in order to 

perform studies on the new algorithm. 

7.3. Future Work and Improvements 

After some time spent reviewing the work from Chapter 2, it was concluded that the main 

improvement that could be made to this chapter would be to expand the scope of the 

literature search that was carried out. This would include other fields of research such as 

building automation which are related to the work presented in this thesis. 

The experience of using the package to carry out the work in the latter chapters of this thesis 

identified a number of potential improvements to the design that is described in Chapter 3. 

The decision to use a component-based modelling paradigm was taken to simplify the overall 

implementation of the package. In hindsight, for the simulation of building fabric, a method 

of modelling based on architectural design similar to the Google Sketch-up input used by the 

EnergyPlus package would be preferable. When buildings are modelled using individual 

components for each room, surface, door and window the component-based models soon 

become very large. A future improvement to the design of the package would be to find 

some way to allow for an architectural input of building characteristics while maintaining the 

ability to have direct interaction between the electrical, thermal and communication 

domains within a single component.  

The decision to use an inferred ground path for electrical connections was taken so that each 

electrical connection could be represented in the model as a single connection line, rather 

than a pair of connections. Combined with the Thévenin equivalent models used for each 

electrical pin, this allowed all electrical connections to be solved on a point to point basis 

rather than a system-wide solution. In hindsight, a preferable design would be to move to a 

system-wide solution of electrical systems as the point to point solution resulted in instability 

in some models which prevented timely convergence to a solution. This resulted in the 

necessity for a number of the components to have configurable convergence tolerances 

within their source code. This type of configurable parameter should actually be 
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implemented within the simulation engine itself, rather than being the responsibility of 

individual components. 

The data communications simulation method used in the package is a primitive byte-

orientated data communications mechanism which does not model the lower physical layer 

or the higher protocol layers of a full data communications system. A future improvement to 

the package would be to include these layers, allowing the communication system to be fully 

specified (for example, IP over 802.11g wireless). This would allow problems like interference 

in the physical layer to be fully simulated. 

Two key features that were initially not included in the design of the package were identified 

later on in the project during the development of models within the package. The ability to 

embed smaller system models within a larger model would be useful to allow a number of 

individual rooms within a home to be modelled separately and then incorporated into a large 

home model, with each room represented by a single component in the larger model. This 

feature would allow the package to become more scalable by allowing for the re-use of 

subsystems within larger models. Another feature that would be a useful addition to the 

package is the ability to model the flow of both hot and cold water within a building. This 

would allow for more detailed simulation of water heating systems and water use within a 

building. 

A number of potential improvements were identified in both the electrical and thermal 

component libraries that were described in Chapter 4. The electrical component library 

developed for the package could be improved by adding a greater range of generation 

devices including micro-hydro, micro-wind and a combined heat and power system. 

Additionally the modelling of some of the appliances could be improved to more accurately 

model the dynamic variation in the power consumed by each appliance. 

To improve the library of thermal modelling components, a more accurate radiator model 

could be developed for the heating appliances, as the validation experiments carried out in 

Chapter 5 determined that there was a relatively large error in the results produced by the 

simulation of space heating. This would be carried out through both better characterisation 
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of real heating appliances and also through a more in-depth literature search to find existing 

methods of modelling water-based space heaters. The modelling of the thermal properties of 

a room within the package was found to be accurate when forced heating was not 

considered, with the main area for improvement being the addition of solar gain through 

windows doors and walls. 

In order to improve the accuracy of the package, it is important that further validation 

studies are carried out in addition to those described in Chapter 5. Two areas for significant 

improvement in the validation process were identified. The first is that the electrical 

validation experiments should use a larger electrical network within a home with a greater 

range of appliances since the range of appliances tested in the one study carried out was 

small. The second area for improvement was in the thermal validation studies. Both studies 

that were carried out modelled a single room, using the measured temperatures from the 

surrounding rooms as inputs to the simulation model. To more fully exercise the package, a 

much larger study which involves modelling a whole building should ideally be carried out, 

using only the outside temperature as an input to the model. This will more accurately assess 

the package’s ability to model the heat flow between rooms in a building. Before such a 

study could be carried out, more work would be required to accurately model heating 

systems within the buildings and to add the ability to the package to model solar gain. 

 The case study that was carried out in Chapter 6 used a very simple domestic control system 

which relied on a perturbation and observation based control algorithm. The weaknesses in 

the algorithm were illustrated by oscillations in the load profile when a fast response to 

changing load was required. Further work to enhance the controller could introduce a 

control strategy with error feedback such as a P-I (proportional-integral) controller. 

Although this study illustrated smoothing of the domestic load over the course of a whole 

day, the control technique could be enhanced through the addition of communication from 

the utility supplier. This would allow the home energy controller to manage demand in 

response to pricing events, for example through the use of the time-of-use (TOU) or critical 

peak pricing (CPP) tariffs described in section 2.1.5. Integration with the energy supplier in 
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this way would allow storage to be charged prior to high-priced periods and then stored 

energy could subsequently be fully utilised during these periods. 

In addition to the control strategy itself, a number of potential improvements have been 

identified for the model of the home used in the study to make it more representative of a 

real home. The water consumption model currently used simulates water use at a constant 

rate over a whole hour to make up the total hourly consumption for that hour. In reality, 

water consumption will take place at a higher flow rate for shorter periods throughout the 

hour and this may have a different effect on the thermal storage tank than that simulated. To 

improve the water model, a stochastic model of water consumption based on known total 

hourly consumption could be developed. Solar irradiation is also varied based on known 

hourly values and a similar model could be developed to simulate faster changes in the 

irradiation, for example due to cloud cover. Such a model would more fully exercise the 

maximum power point tracking algorithm. 

Finally, the solar panel model used in conjunction with the maximum power point tracking 

algorithm was the same 80W solar panel model used throughout the project. An 

enhancement to this study would be to characterise a larger solar panel (for example, 1-4kW, 

typical of current domestic installations) for use with the maximum power point tracker. 
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Appendix A  

Component Scripting API 
This appendix illustrates the classes which make up the Scripting API provided within the 

application that users can access from within the C# or VB.NET code that implements the 

behaviour of components. As an entry point to the API, two properties, one of type 

“Component” and one of type “Simulation” are accessible from inside the scope of a 

component’s code. These objects provide access to all other aspects of the API. 
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Appendix B  

Window Model Class Diagram 
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Appendix C  

Case Study Simulation Models 
C.1. Case Study 1 – Home 1, Dining Room 
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C.2. Case Study 2 – Home 2, Lounge 

 

C.3. Case Study 3 – Electrical Validation Model 

 

Date /  Time Schedule

Imported Data

Imported Data

Electric  Lamp

Power

BT Vis ion Box

POWER

TV

POWER

User Control

Electrical Grid

OUT

TV On/Off Schedule

Appliance Experimental Measurements

Total Power Experimental Measurements



 

192 

Appendix D  

Power Analyser Unit 
This appendix describes a purpose-built power analyser unit that was built for use in the 

electrical validation studies carried out in section Error! Reference source not found.. The 

reason for designing a purpose-built analyser was that the validation experiments had a 

requirement to measure the power consumption and power factor of domestic appliances 

without any modification of the appliances or connections to the appliances. The 

measurement system therefore had to be inserted in series with the connection to the mains 

supply and hence a power analyser with standard 13A sockets was required. 

 

Figure D-1: Purpose-built power analyser unit with three standard 13A sockets 

and a 10A phase-controlled output. 

D.1. System Overview 

The power measurement system (Figure D-1) that was created is a self-contained unit mains-

powered unit that provides four independent outlets from which measurements can be 

taken. One outlet is connected through a phase controller to permit the analysis of phase 
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controlled devices such as heating and lighting. Measurements can be taken from the system 

in two ways: 1. BNC connectors on the unit provide analogue measurement of scaled 

representations of the voltage and the current through each outlet. 2. A USB port enables 

connection to a PC which, when used with the appropriate software, can provide frequency, 

RMS voltage, RMS current, power and power factor readings for all outlets. Readings for all 

channels can be provided once per second. Alternatively, a single channel can be sampled at 

high speed. For a 50Hz mains waveform the maximum sampling rate is 15KHz with a 

resolution of 10 bits. The former is useful for steady-state analysis of power consumption 

while the latter is more useful for analysing transient behaviour of appliances. Figure D-2 

illustrates the main components of the system.  

 

Figure D-2: Block diagram illustrating the main components of the power analyser 

system. 

D.2. Voltage and Current Sensors 

The voltage measurement in the unit is obtained using a 1.6VA 230V:9V toroidal transformer 

connected directly to the mains input to the system. The output of this transformer is 

connected through a potential divider to the signal conditioning circuit. This reduces the peak 

supply voltage from ±370V to approximately ±10V and enables the system to measure 

voltages up to 260V RMS. The transformer has a relatively poor regulation of 29%. However, 

the load on the transformer is essentially constant over the range of input voltages the unit 

will be used with and hence the poor regulation does not affect measurement accuracy. 

Laboratory tests were performed to verify linearity over the range 200-260V RMS. 

The use of a current transformer around the live connection to each outlet on the unit and 

an additional current transformer on the live supply connection to the unit provides readings 

of individual and total current consumed by the devices connected to the unit. AC104 current 

transformers with a ratio of 1000:1 were used in conjunction with 240Ω burden resistors. A 

primary RMS current of 13A, the maximum supported by the apparatus, provides a voltage 
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across the burden resistor of 9.1V peak. The potentials across the burden resistors are fed 

into the signal conditioning circuit.  

D.3. Signal Conditioning Circuit 

A signal conditioning stage was implemented using six AD628 programmable gain differential 

amplifiers – one for the voltage signal and for each of the five current signals. These 

amplifiers were configured with a gain of 0.25 to reduce signals in the range ±10V to the 

±2.5V range. An offset voltage of 2.5V was added so that the resulting output signal was in 

the range 0-5V, centred around 2.5V, to correspond with the acceptable range of input 

voltages to the analogue to digital converter used. 

The signal conditioning circuit contains a frequency detection subsystem consisting of LM339 

comparators which convert the processed sine waves into square waves, the rising edges of 

which can be used to detect the frequency and phase of each waveform. Both the processed 

voltage signals and frequency detection signals are fed from the signal conditioning circuit 

into the processing circuit. 

D.4. Signal Processing Circuit 

The final stage of processing within the unit is to digitise the voltage and frequency signals 

from the signal conditioning circuit and calculate the RMS voltage, the frequency, the RMS 

current and phase angle for each outlet. The circuit, which is powered by a freescale S12C128 

microcontroller, is also responsible for sending these values to the computer when requested 

to by the software. As well as sending RMS data for all channels once per second, the circuit 

is capable of streaming the raw voltage and current readings from a single channel to the PC.  

D.5. PC Software 

The accompanying PC software application for the power measurement unit, shown in Figure 

D-3, displays the live readings of voltage, current, power, phase angle and power factor for 

each channel on the unit. Additionally, the software also has the facility to request a finite 

number of high-resolution samples for a particular channel and save these in spreadsheet 

format. 
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Figure D-3: Illustration of the PC software developed to interface with the power 

analyser unit. 
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D.6. Power Analyser Circuit Diagrams 

D.6.1. Mains Wiring 
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D.6.2. Signal Conditioning Circuit 
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D.6.3. Signal Processing Circuit 

 

  



 

199 

Appendix E  

MPPT Algorithm Comparison 

Method 
This appendix describes a system of hardware and software that was developed to allow for 

both simulation and experimental comparison of different photovoltaic maximum power 

point tracking algorithms. The purpose of this test system is to allow a standard test – for 

example, a pattern of changing solar irradiation on a solar panels – to be repeated using 

different maximum power point tracking algorithms. The system was designed to provide 

support for both simulated solar panel models and physical connections to a solar panel.  

E.1. Control Software 

The central component of the MPPT algorithm comparison system is a control software 

application, shown in Figure E-1.The application consists of three main components – the 

simulated or connected solar panel, the control system and the maximum power point 

tracking algorithm. The interface between the control system and solar panel is defined so 

that the control system can set the voltage across the solar panel and the solar panel can 

respond with the output current from the panel. The interface between the control system 

and the maximum power point tracking algorithms is defined so that the control system can 

report current, voltage and power readings for the solar panel to the MPPT algorithm and 

the MPPT algorithm can provide voltage set-points to the control system to be used with the 

solar panel. The interface definition also specifies that maximum power point tracking 

algorithms must have defined iterations so that the control system can periodically perform 

iterations of the algorithm to obtain new voltage set-points. An additional interface is 

provided to support simulated solar panel models which allows the solar irradiation and cell 

temperature values to be set in the solar panel model by the control system. The block 

diagram in Figure E-2 illustrates the architecture of the control software. 
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Figure E-1: Maximum power point tracking algorithm comparison system – control 

software user interface. 
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Figure E-2: Block diagram illustrating the architecture of the maximum power 

point tracking comparison software. 

E.2. Simulated Solar Panel 

The simulated solar panel model uses the single diode solar cell model which is described in 

detail in section 4.1.2. The model uses the voltage across the panel V (V) as well as the solar 

irradiation S (W/m2) and cell temperature T (K) to evaluate the output current I (A) from the 

cell. The input parameters are provided by the control software, either by being directly 

entered by a user or through a pre-defined script. The properties of the modelled solar panel 

are defined through the user interface. 

E.3. In-Circuit Solar Panel 

To allow the use of an in-circuit MPPT comparison, the Agilent N6700 electronic load was 

used to provide a connection to a solar panel, along with a method to be able to control the 

load on the panel in order to set the panel voltage. This was achieved through the use of the 

load’s constant voltage mode, which utilises the voltage setting provided to the panel from 

the control software. The controllable load has a built-in current measurement which can be 

passed back to the control software. Using this hardware set-up allows both simulated and 

in-circuit solar panels to be presented to the software through an identical interface. 
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E.4. Result Recording 

The comparison software constantly displays voltage, current and power readings from 

either the simulated or in-circuit solar panel. Additionally, when using a simulated solar panel 

the maximum power point and corresponding MPP voltage can be displayed on traces along 

with these readings. 

A logging facility is also built into the control software to log periodic readings of voltage, 

current and power to a spreadsheet file. 

E.5. Maximum Power Point Tracking Algorithms 

The software supports any iteration-based maximum power point tracking algorithm. New 

algorithms are added by creating a DLL file that implements the required interfaces to report 

the algorithm name, perform an iteration of the algorithm and to display a dialog to define 

the algorithm settings. The control software searches for these DLL files in its program folder 

upon start-up and loads any algorithms that are found into the list of available algorithms. 

E.6. Control of Comparison Scenarios 

Manual comparison of algorithms can be performed by selecting an algorithm in the user 

interface and running it. Solar panel parameters can then be modified to observe the 

algorithm’s response to changes in atmospheric conditions. However, to perform equal 

comparisons of different algorithms in response to the same conditions, the software has a 

basic scripting support built in. A text file of the format shown in Figure E-3 can be used to 

run a MPPT algorithm, script changes in atmospheric conditions, perform with time delays 

and record results when using a simulated solar panel. 
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#Run the MPPT algorithm – replace name for a different algorithm 
RUN Perturbation and Observation 
 
#Vary irradiation, adding 20s delay in between each change 
SETIRRADIATION 985 
DELAY 20 
SETIRRADIATION 970 
DELAY 20 
 
#Stop Algorithm 
RESET 

Figure E-3: Script used for the comparison of maximum power point tracking 

algorithms using a simulated solar panel. 

When using an in-circuit solar panel, scripts cannot be used to set the atmospheric 

conditions, however a script like the one shown in Figure E-4 can be use to perform the same 

comparison of algorithms as the script in Figure E-3 by prompting the experiment’s operator 

to vary the atmospheric conditions on the panel. 

#Run the MPPT algorithm – replace name for a different algorithm 
RUN Perturbation and Observation 
 
#Vary irradiation, adding 20s delay in between each change 
WAIT Modify illumination on panel for 985W/m2 illumination. 
DELAY 20 
WAIT Modify illumination on panel for 500W/m2 illumination. 
DELAY 20 
 
#Stop Algorithm 
RESET 

Figure E-4: Script used for the comparison of maximum power point tracking 

algorithms using an in-circuit solar panel. This script differs from the script for a 

simulated solar panel because the adjustment of atmospheric conditions is carried 

out through manual intervention by the user. 
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Appendix F  

Software Implementation  
Chapter 3 described the design of the new software package which was used as a basis for its 

implementation. In this appendix, more detail will be provided on the exact methods used to 

implement the certain parts of the package. Due to the size of the package it is not possible 

to document in detail the implementation of every element of the software. The sections 

within this appendix have therefore been carefully selected to describe parts of the 

implementation which were unique to this package or which were technically challenging.  

F.1. Source Code Compilation 

In section 3.4.3, the design of the mechanism for implementing component behaviour within 

the package was described. Two methods are provided – the use of full programming 

languages in the form of C# or VB.NET to implement complex behaviour, or the use of a 

mathematical scripting system to implement basic components. This section describes the 

technology used to implement each of these programming methods within the package. 

F.1.1. C# and VB.NET 

The general principle of using the fully-featured programming languages C# and VB.NET to 

implement component behaviour was described in section 3.4.3. Component models are 

based on a parent class which provides an empty implementation of the five methods which 

can be used to control component behaviour. The implementation of each component can 

override the default implementation of any number of these methods as required for that 

particular component. The remainder of this section describes how a set of user-defined 

methods and other source code defining a component’s behaviour are processed and 

compiled into source code that can eventually be run by the simulation engine. The steps 

that are used to transform user-defined source code into an executable binary for use in the 

simulation engine are as follows: pre-processing of the code into a C# or VB.NET class; 
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compiling the class into an executable code component reporting any compilation errors to 

the user; and loading the executable code in the simulation engine. The remainder of this 

section describes this process for the C# language as the process is similar for both C# and 

VB.NET. 

F.1.1.1. Pre-Processing Code 

The full source code that is required to implement a typical C# class for a model component 

is shown in Figure F-1. The base class, ComponentBase, that defines the default behaviour 

for the component also contains the references to the properties Component and 

Simulation that provide the API for implementing the component behaviour. 

In order to provide the simplest possible code implementation for components, users are 

only required to enter the source code illustrated as section 3 in Figure F-1. This is the section 

of code containing the component’s behavioural functions, along with any extra functions or 

sub-classes which are necessary to implement the component’s behaviour. This keeps the 

focus of a component’s source code on the component behaviour, rather than the semantics 

of creating the code in the correct format for this particular application. The method follows 

the approach documented in the “Script Happens .NET” [107] and other similar articles on 

using .NET languages for scripting. 

The initial implementation of the pre-processing stage of code compilation took the user 

defined code (indicated as “3” in Figure F-1) and inserted it within the full .NET class source 

code shown in Figure F-1. During testing of the completed compilation process a number of 

issues were found with this procedure.  

Any errors reported by the compiler in the user-defined code referred to a line number 

which was different to the line numbers on the user interface due to the user only viewing 

the code shown in section 3 of Figure F-1. This problem was easily overcome in the C# 

implementation since C# has a pre-processor statement “#line N” which instructs the 

compiler to treat the line that immediately follows as line N of the code for the purposes of 

error reporting. Therefore, “#line 1” was inserted immediately before the user-defined code 

section before compiling. The problem was not as easily overcome in VB.NET as the language 
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did not provide the same pre-processor statement. The problem therefore had to be 

manually resolved by inserting a comment of the form “#line1” before the user-defined code 

and subtracting the position of that comment line from the line numbers generated in error 

messages. 

Another issue that was identified was that because the list of imported namespaces shown in 

section 1 of the sample source code is hard-coded, component implementations would be 

required to fully qualify any .NET libraries that they needed to use. For example 

“System.Collections.Generic.List” would have to be used throughout the code rather than 

defining “using System.Collections.Generic” at the top of the source code and then referring 

to the class as “List” within the component’s implementation. This is because “using” (or 

“import” in VB.NET) statements can only be defined outside a class. To resolve this issue, a 

custom pre-processor statement was added to the C# and VB.NET scripting capabilities 

where a user could define “#namespace X” at any point in the source code as an alternative 

of the “using” or “import” statement. When the source code was processed to convert it into 

the class format shown in Figure F-1, each “#namespace” statement was replaced with a 

blank line and the required namespace was declared with the appropriate “using” or 

“import” statement at the top of the generated class. 

A related issue was discovered at the compilation stage where if a particular component 

relied on a 3rd party library then the particular library file required would have to be linked 

into the component’s code at compile time. To provide the option to include additional 

external libraries in the code, a second custom pre-processor statement “#dll X” was added 

to both languages. When processing the code into the full class format, these “dll” 

statements were replaced with blank lines and a list of required external DLL files was 

generated for use by the compiler. 
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Figure F-1: Illustration of the C# code required to implement component 

behaviour. 

F.1.1.2. Code Compilation 

The .NET framework provides a set of libraries in the form of the System.CodeDom.Compiler 

namespace which provide runtime code compilation facilities for applications. These libraries 

provide a generic method for compiling code written in any language into a .NET executable 

file. Separate libraries must be used with the compilation classes to provide bindings for 

particular languages. The Microsoft.CSharp and Microsoft.VisualBasic.CompilerServices  

language binding namespaces are provided in the end-user distribution of the .NET 

framework and therefore these languages were chosen to be supported in the simulation 

package. The compilation classes were used to compile the pre-processed component source 

code into a DLL file for use by the simulation engine. Any errors during the compilation 
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process are reported in the form of a line number and an error message by the compilation 

classes. This can be used in the relevant part of the application’s user interface. 

F.1.1.3. Loading Compiled Code 

The generated DLL files were loaded for use in the simulation engine using the .NET Assembly  

class which is an element of the .NET code reflection features. The class within the DLL 

containing the actual component source code was then identified by searching for classes in 

the DLL file which implement the ComponentBase class. A new instance of the class was 

then created and the Simulation and Component properties of the class set to represent 

the model being simulated. One problem with this method of dynamically loading code is 

that once an assembly (DLL or EXE file) has been loaded into memory, it cannot be unloaded 

until the application exits. To minimise the effect of the memory leak caused by this 

constraint, the executable code for each component within a model was only compiled once 

per application session an re-used wherever possible. An exception to this rule is when the 

component’s source code is changed using the component editor. The code must then be re-

compiled to reflect the new behaviour, leaving the old code in memory until the application 

exits. 

A potential solution for this memory leak was found. However, it requires a significant 

architectural change to the software and therefore its implementation was not possible 

during the time available. Briefly, the solution is to run the simulation engine in a separate 

.NET application domain to the user interface of the software. This is essentially equivalent to 

running in a separate process but with the benefit of being able to communicate between 

the processes using a method known as remote method calls. Creating a new application 

domain for each simulation run and then destroying it at the end of the simulation would 

eliminate the slight memory leak caused by loading compiled component code. Using a 

separate application domain would also allow the component code to be run in an 

environment with greater security than the application’s main code, restricting access to 

system resources for security. 
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F.1.2. Mathematical Mark-up 

In section 3.4.3, a mathematical mark-up language was defined for the implementation of 

simpler component models which did not require the use of a full programming language. A 

mathematical solver engine was created to solve single-line mathematical expressions. The 

ability to handle simple numeric variables and functions was included in the mathematical 

solver to allow it to be used with the main simulation engine.  

In contrast to the fully-featured programming languages the mathematical scripts were not 

compiled into executable code but instead interpreted at run-time. The “compilation” stage 

of a mathematical script merely involves parsing the script, checking it for syntax errors and 

creating a class which can be used to execute the mathematical code. The class, 

MathMarkupEvaluator, which is an implementation of ComponentBase pre-processes the 

mathematical script to identify pre-processor statements, comments and script lines. Pre-

processor statements are handled directly by the MathMarkupEvaluator class to identify 

the mappings of component properties onto mathematical variables and the type of 

optimisation to use for running the mathematical script. 

A separate mathematical statement evaluator class was developed for performing the actual 

evaluation of mathematical statements. This class, illustrated in Figure F-2, has two methods 

for setting and retrieving the values of variables within the mathematical solver and a 

method for evaluating a single line of mathematical script.  

 

Figure F-2: Class for evaluating mathematical statements within the simulator. 

The MathMarkupEvaluator class uses the pre-processor statements detected in a 

mathematical script to set variables containing the component state before evaluating the 

+SetVariable(in Name : string, in Value : double) : void

+GetVariable(in Name : string) : double

+Evaluate(in Markup : string) : double

MathSolver
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mathematical script. The script is then passed line-by-line into the MathSolver class before 

retrieving the updated variable values from it to feed into the simulation model.  

A number of third-party mathematical solution libraries were considered for the 

implementation of the MathSolver class, however the majority of these were either not 

directly compatible with the .NET framework or offered significantly more functionality and 

therefore memory overhead than was required for this purpose. Despite there being no off-

the-shelf solution that was fit for purpose, there are established methods of solving 

mathematical expressions within computer programs. Two such methods were combined to 

create the MathSolver  class for this application. These are the Shunting Yard Algorithm  and 

the Reverse Polish Notation solution method. Combining these methods to solve a 

mathematical expression requires three stages: Tokenising; Shunting Yard Conversion; 

Reverse Polish Solution. 

F.1.2.1. Tokenising 

Tokenising is the process of converting a string representation of an expression into a format 

that can be understood by a computer. For the purposes of this solver, six token types were 

defined. These were numeric literals, variables, functions, operator symbols and opening and 

closing brackets. Figure F-3 illustrates how an example mathematical expression is converted 

into tokens. 

 

Figure F-3: Tokenising a mathematical expression. 
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F.1.2.2. Shunting Yard Conversion 

The purpose of the shunting yard algorithm is to convert a mathematical expression in the 

standard notation shown in Figure F-3 (known as infix notation) into a notation that can be 

solved easily within a computer program. In this particular case, Reverse Polish Notation 

(RPN) was chosen as the output format because the solution of an expression in this notation 

is trivial within a computer program. The shunting yard algorithm takes into account the 

operator and bracket precedence rules within the expression to produce a RPN output 

expression which can be solved directly by the program. A number of open-source 

implementations of the algorithm are available. The implementation used in this case was 

based on [137]. Figure F-4 shows an example of the equation in Figure F-3 being converted 

into reverse polish notation. 

 

Figure F-4: Illustration of tokenised mathematical expression being converted into 

reverse polish notation. 

F.1.2.3. Reverse Polish Notation Solution 

Mathematical statements expressed in reverse polish notation can be solved using a stack-

based solution algorithm. The basic premise of the algorithm is to iterate through tokens 
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within the expression, pushing each numeric token onto a last-in-first-out (LIFO) stack until 

an operator or function token is found. When an operator or function token is found, the 

number of parameters required by the function is removed from the stack and the operator 

or function is evaluated. The result of the function is then pushed onto the stack. This 

process continues until every token within the expression has been processed. The result of 

the expression is the numeric value that remains on the stack. 

In the version of the algorithm implemented for use in the simulation package, variables can 

be used as well as numeric literal values. These variables are treated in the same manner as 

numeric literals when processing the tokens in an expression and are only treated differently 

during the final function or operator evaluation step. In the case that a function or operator 

is a standard mathematical function, the mathematical solver will attempt to resolve the 

variable to its numeric value. If the variable has not been set, an error will be generated at 

this stage. The assignment operator “=” has a special behaviour when dealing with variables 

in that if the first argument for the operator is a variable, its value will be set to the value 

specified in the second argument. Table F-1 below illustrates the process involved in solving 

the reverse polish notation expression shown in Figure F-4.  

Table F-1: Illustration of the Reverse Polish Notation solution of the expression in 

Figure F-4. It is assumed that before solving this expression the variable “A” is set 

to 3. Trigonometric functions are solved in degrees. 

Expression Tokens 
Remaining 

Token Stack Before 
Solution 

Operation Carried 
Out 

Token Stack After 
Solution 

A 3 + 2 * 30 Sin * 1 +    

2 * 30 Sin * 1 + A 3 + A+3 = 6 6 

30 Sin * 1 + 6 2 * 6*2 = 12 12 

* 1 + 12 30 Sin Sin(30) = 0.5 12 0.5 

1 + 12 0.5 * 12*0.5 = 6 6 

 6 1 + 6+1=7 7 (Final Solution) 

The implementation of this mathematical solver is an example of the type of functionality 

provided in the application that was well-suited to a test-driven development approach. 

While developing the mathematical solver, a large number of test case calculations were 

implemented in the Microsoft Test Framework to ensure that expressions were solved as 
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desired. These tests established a good level of confidence that the solution method was 

operating as intended. 

F.2. Simulation Engine 

The part of the package referred to as the “Simulation Engine” is the set of classes that are 

responsible for running simulations and collecting results. The method that is used for 

simulating models was described in detail in the design in section 3.4.2. This method involves 

executing user-defined source code iteratively to evaluate the behaviour of individual 

components. When the solution of each component is deemed to have reached a stable 

state, a set of result generators are used to take measurements at the desired points within 

the model and store these measurements for analysis at the end of the simulation. 

While the algorithm proposed in section 3.4.2 is conceptually simple to implement, one 

practical difficultly that was encountered during the initial implementation of the algorithm 

concerns when control of the execution of the code is handed over to user-defined code, the 

simulation engine  no longer has control over the application’s execution. Should an 

erroneous section of component logic enter a section of code that is either slow to converge 

or loops infinitely then the main application has no way of stopping the execution of the 

code using the originally proposed logic.  

In order to give the user interface complete control over the execution of a simulation, the 

simulation engine logic was executed in a separate thread. This thread has the logic shown in 

Figure F-5 which allows for simulations to be paused or stopped by the user interface. When 

pausing a simulation, the simulation engine thread continues to execute but waits in a loop 

until allowed to continue. In this case, if component logic is executing when the pause 

request is made, it is allowed to complete execution before the thread transitions into the 

pause state. If the user interface requests simulation execution to be terminated, the first 

step that is taken is to make a cancel request to the simulation thread. This request is 

comprised of two actions: a “user cancel request” flag is set and a 10 second timer is started. 

As illustrated in Figure F-5, the cancel request flag is handled during the normal thread 
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processing to end the simulation once component logic for a particular time-step has been 

complete.  

If the normal stop request process is not sufficient to cause a simulation to end gracefully, 

the 10-second timer that was started when the stop request was made is used to perform a 

more severe form of thread exit. When the timer elapses, the logic that is executed checks 

whether or not the simulation has stopped through the normal method. If the cancellation 

request has not caused the simulation to stop, the timer logic calls the .NET Thread.Abort 

method which throws an asynchronous exception within the simulation engine thread. This 

results in the thread being forcibly stopped. Due to the asynchronous nature of this method, 

there is no way of reliably determining which execution phase the simulation engine was in 

when it was stopped and therefore all results generated during the simulation run are 

cleared. If the simulation is successfully stopped using the request method then it is 

guaranteed that a time-step has completed and therefore the results generated up to that 

time-step can be used for analysis. 

 

Figure F-5: Activity diagram illustrating the process used by the simulation engine 

thread to execute simulations while allowing the user interface to pause or stop 

execution. 

Initialise Simulation

Simulation Complete

User Cancel Requested

Evaluate Time-Step & Record Results

Simulation Paused
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F.3. Result Viewers 

F.3.1. Table 

The table result viewer, shown in Figure F-6, was implemented entirely using off-the-shelf 

software components that are included as part of the .NET framework. The DataGridView  

control was used as the viewing mechanism for the table data. This provides the built-in 

features such as cell resizing, copying of table content and sorting by column that would be 

expected in any standard spreadsheet package. The control also has the benefit of operating 

in a mode called “Virtual Mode” where the names of the columns in the table are specified 

along with the number of rows required but no data is added to the table contents. The 

control then raises an event each time that it requires data to display in a particular cell. 

These events can then be used to pass data from the simulation results to the control as 

required. The benefit of this approach is that the control does not need to store a separate 

copy of the entire set of simulation results – it only needs to know the data for the section of 

the results currently being viewed. This improves the responsiveness of the control and 

reduces the memory requirements of the application.  

 

Figure F-6: Table result viewer control. 
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F.3.2. Line Graph 

During the initial stages of development of the application, a purpose-built .NET line graph 

control was used. This control served the purpose that it was required for, i.e. displaying 

readable graphs that could be used in reports and presentations. However, the control had 

minor layout bugs and lacked the formatting features of a full graphing package.  

The reason behind creating a custom graphing control was that there were no suitable free-

to-use controls that could be easily integrated into the environment at the time. However, 

upon the release of version 4.0 of the .NET framework, a chart control was added to the .NET 

core libraries which could be used to display numerous types of graph. Due to the loosely 

coupled architecture used around the result viewer system within the package, it was 

relatively easy to swap in the new .NET chart control in place of the custom line graph 

control. The new control, shown in Figure F-7, provides a vast array of formatting options for 

graphs and has built in methods to export the displayed graph to a file. Using this control also 

allows the application to be expanded in the future to include other types of graph. 

 

Figure F-7: Illustration of a line graph produced by the .NET 4.0 Chart control. 

F.3.3. Pie Chart 

As with the line graph result viewer, pie chart rendering was initially carried out using a 

custom-made control. Manually drawing a pie chart to screen was significantly less complex 

than a line graph because the Windows drawing libraries contain built-in function calls to 
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draw or fill a pie chart segment on screen. Despite the good quality of chart image obtained, 

it was decided to swap the pie chart control for the built-in .NET version when it became 

available. This removed the need for any further development work to be carried out in 

future on the drawing of charts. 

The pie chart result viewer displays a snapshot in time of the state of a system. The result 

viewer control therefore requires a method of allowing the user to select which instant in 

time that the chart control should provide an illustration of. As shown in Figure F-8, this was 

implemented by providing a scrollbar to select a particular time to view.  

 

Figure F-8: Illustration of the pie chart result viewer included in the package. 

F.4. Parameter Value Editors 

In section 3.4.1 of the application design, a number of different configurable parameter types 

were proposed for components. Within the graphical user interface, a method was required 

to display all of the configurable parameters of a component, both during the initial creation 

of components and for editing purposes when a component was used within a simulation.  



 

218 

A customised implementation of the .NET ListBox component was used for the purpose of 

displaying lists of configurable parameters on screen. The list uses a custom drawing method 

to display the list of parameters by name, type and value as shown in Figure F-9. 

 

Figure F-9: Configurable parameter list control shown within the component 

properties viewer. 

A number of user interfaces were developed to allow editing of configurable parameter 

values. Some parameters – the Integer, Decimal, Boolean, String, Time and List types – use 

the same editor dialog in all parts of the application. The Table and Selection List parameter 

types require extra user interface options at component design over the options that are 

provided during normal model editing and therefore these parameter types have two version 

of the editing dialog. The custom configuration parameter type loads a dialog from an 

external DLL file for its configuration and therefore no edit-time dialog is required for this 

parameter type. A dialog is provided at component design time to allow the class name of 

the custom configuration dialog to be specified. 

The Integer, Boolean and String parameter types are edited using the dialogs shown in Figure 

F-10, Figure F-11 and Figure F-12 respectively.  
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Figure F-10: Integer parameter editing dialog. 

 

Figure F-11: Boolean parameter editing dialog. 

 

Figure F-12: String parameter editing dialog. 

The Decimal parameter editing dialog, shown in Figure F-13 provides extra editing options so 

that the value may be specified in Standard Notation, Scientific Notation or set to Infinity. It 

should be noted that “Infinity” is supported as a native feature of the .NET double-precision 

floating point type and is treated as a special numeric value of this type. 



 

220 

 

Figure F-13: Decimal parameter editing dialog. 

The time parameter editing dialog, shown in Figure F-14, contains three fields which allow for 

the entry of different parts of the time parameter. Standard .NET date and time controls 

allow for the entry of the date and time components and a separate Numeric field is 

provided for entry of the nanoseconds component of the time. The nanoseconds field 

contains validation logic to ensure that the value is within the range 0 → 999,999,999.  

 

Figure F-14: Time parameter editing dialog. 

The list parameter editing dialog, shown in Figure F-15, uses a combination of the .NET 

DataGridView control which displays data in tabular format and some of the custom 

parameter editors described above in order to edit tabular data. The dialog also provides 

buttons which allow list items to be added, removed and re-ordered. When editing lists of 

String, Integer or Decimal values, the list editor operates in a spreadsheet-style mode, where 

items are edited directly by the user. Validation is performed on values that are entered to 
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ensure that they are compatible with the underlying data type. Should the value not be 

compatible, no change is made to the edited list item and a warning is displayed to the user.  

When editing lists of Boolean parameters, the grid cells become drop-down menus 

containing the entries “true” and “false” from which the value can be selected. When editing 

Time parameters, the cells display the time value currently set in each list item. To edit the 

value, the user must click on a button within the cell which displays the full time value editor 

shown in Figure F-14. 

 

Figure F-15: List parameter editing dialog. 

The table parameter editor, shown in Figure F-16 uses the same principle for editing data 

values as the list editor control but provides an additional option to import tabular data from 

a spreadsheet file. The import option validates data to ensure that each column is in the 

correct format for that column’s data type before performing the import.  

An enhanced version of the table editing dialog is provided for use in component design 

mode to allow the structure of the table as well as the data that it contains to be edited. The 
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additional options provided in this enhanced version of the dialog, shown in Figure F-17, are 

the capabilities to add, re-order and delete columns. 

 

Figure F-16: Table parameter editing dialog in normal operating mode. 

 

Figure F-17: Enhanced version of the table editing dialog for use at component 

design time. Options to edit the table structure are also provided. 
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The selection list parameter editor, shown in Figure F-18 provides users with a single drop-

down list from which to select a value for the parameter. The enhanced version of the editor, 

shown in Figure F-19, which is used at component design time provides additional options to 

add or remove entries from the list. Additionally, an option is provided to import a list of 

items from a text file. The file can either be a plain-text file containing one list entry per line, 

or a CSV spreadsheet. If a spreadsheet file is used, list entries are imported from the first 

column of the spreadsheet only – the remainder of the columns are ignored. 

 

Figure F-18: Selection list 

editing dialog. 

 

Figure F-19: Enhanced 

version of the selection 

list editing dialog used at 

component design time. 

While the custom configuration dialog parameter type uses a custom dialog to allow the user 

to edit the parameter value during the editing of a model, a configuration dialog of the 

format shown in Figure F-20 is used at component design time to specify the name of the 

.NET class containing the dialog that should be displayed to configure the parameter. The 

dialog also provides an option to enter a URL where the DLL file for the custom configuration 

dialog can be downloaded from when running the application if it is not installed. Buttons are 

provided to allow the loading of the dialog and the download URL to be tested. 
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Figure F-20: Custom configuration parameter editing dialog. 

F.5. Graphical Model Editor 

Alongside the central simulation engine, the graphical model editor is one of the key features 

of the modelling package. This editor provides a visual method for the creation and editing of 

system models within the package. Due to the bespoke nature of the graphical editor, there 

were no off-the-shelf software components that were suitable for use in its implementation. 

The editor was therefore purpose built for this application.  

F.5.1. Overview 

The graphical model editor that was provided within the package originally had the 

requirement of being able to place components on a canvas and create connections between 

them in order to create a system model. As the design of the package progressed, the 

additional requirement of being able to add simple shapes and text for the purpose of 

annotating diagrams was added.  

The discussion in the remainder of this section focuses on the implementation of the editing 

canvas itself. However, to provide context for the description of the implementation of the 

canvas, a short overview of the functionality of the editor will be provided. 

The annotated screenshot in Figure F-21 shows the main editing interface of the application. 

The central feature within this interface is the editing canvas itself (1). The tool selection 

palette (2) is used to select which editing tool is used by the canvas at any given time. The 

hint status bar (3) is used to provide hints to the user while performing editing actions within 

the canvas. For example, in this case after selecting a pin on a component, the hint is 
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provided to select a second pin to complete the connection. The component library browser 

(4) provides a list of all of the components currently loaded from library files which can be 

used in the model being edited.  

 

Figure F-21: Annotated diagram illustrating the main features of the graphical 

model editor. 

The editing canvas supports seven basic shape types. These are: nodes, component 

instances, connections between components, illustrative rectangles, illustrative lines and 

illustrative text. Components are added to a model by dragging the relevant component from 

the library browser onto the editing canvas. Connections between components are created 

by using the arrow tool to select the component pins that form the start and end of the 

connection. Intermediate routing points can be added by right-clicking on a line. Additionally, 

an auto-route option is included.  

Nodes – special electrical or thermal components – are created by selecting the node tool. 

Selecting this tool will display a pop-up menu to allow the user to choose which type of node 
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to create. Clicking on the diagram with the node tool active will create the selected node 

type on the diagram. Shapes – rectangles and lines – are created by selecting the relevant 

tool and clicking and dragging at the appropriate location on the diagram. Context menus 

provide options for formatting lines and rectangles. Selecting the text tool and clicking on the 

diagram will add text at the selected location. A context menu option is provided to edit and 

format text. 

F.5.2. General Design Considerations for Editor 

During the process of designing the editor, a number of prototype editors were developed in 

order to determine the best method to use to implement the editor. Two broad categories of 

implementation emerged from this process: 1) an editor created using a Windows Forms 

Panel Control with child components to represent the shapes; 2) an editor created using a 

Windows Forms Panel Control using manually programmed user interaction and drawing 

behaviour.  

The former approach relies on using individual windows forms components to represent 

each shape on the diagram which offers the benefit of a reduction in implementation time. 

This is due to the fact that the majority of the drawing and user input processing functionality 

is already provided by the Windows Forms Framework. However, the critical drawback to 

this approach that resulted in the latter implementation technique being selected was that 

the Windows Forms library does not provide any built in controls which can easily represent 

a line. Therefore, the drawing of connections between components and illustrative lines had 

to be carried out manually by painting directly to the panel control containing the diagram. 

Using this drawing method resulted in a large amount of flicker when moving components 

and a significant lag in scrolling around the diagram.  

The latter approach was chosen and uses a Windows Forms Panel (an empty, scrollable area 

within a form) as the parent control for the editor but uses completely custom logic to draw 

the visible portion of the diagram on the surface of the panel and to handle user input to the 

panel. This method was chosen because the initial prototype developed provided a much 

better editing experience than the Windows Component based method. Despite the 
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disadvantage of a slightly longer implementation time, it was felt that this editor architecture 

had significant benefits both in terms of usability and in scope for future enhancements.  

F.5.3. Editor Design 

Figure F-22 illustrates the design of the model editing canvas and its associated user interface 

elements. The main editor class, AdvancedDiagramEditor, implements two interfaces. The 

IEditPane interface is used by the main application to pass commands to the editor, to 

access the model being edited and to obtain status information from the editor such as 

whether or not a copy or paste operation can be carried out on the editor. The IShapeHost  

interface is used to provide a set of call-back functions that shapes hosted within the editor 

can use to control the editor and provide feedback about operations that have been carried 

out as a result of user interaction with shapes. The EnhancedDiagramEditor class holds a 

reference to the IDiagramEditorToolbar interface to provide access to the user-selected 

editing tool. This interface is implemented by the EnhancedDiagramEditorToolbar  class 

which implements the graphical palette (2) on Figure F-21. The editor also holds a reference 

to the IHintStatusBar interface which provides a generic interface for a status bar providing 

editing hints. This interface is implemented directly by the ApplicationInterface class which 

is the main Windows Form shown in Figure F-21. Calling any of the methods in the 

IHintStatusBar class changes the text shown at the bottom of the form (3). 

Shapes used within model diagrams are implemented by the ComponentShape, LinkShape, 

RectangleShape, LineShape and TextShape classes, each of which implements the 

IDiagramShape interface. This interface defines a set of methods which allow the diagram 

editor to control the drawing of shapes and the communication of user input actions to each 

shape. The EnhancedDiagramEditor class stores a collection of IDiagramShape objects 

which make up the model currently being edited. 
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Figure F-22: Model editor class diagram. 
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F.5.4. User Input Handling 

User input actions can be broadly described in three categories: direct interaction with 

shapes including clicking on shapes, dragging shapes and pressing keys while a shape is 

selected; group selection of shapes by dragging a selection box on the diagram around a 

group of shapes; and indirect movement of shapes which involves dragging one shape within 

a selected group to move the entire group. 

Direct interaction with shapes is handled using a multi-stage process. When a mouse button 

is pressed within the editor panel, the editor queries each shape in the diagram to determine 

if the point clicked lies within the shape’s bounds. If this is the case then the editor issues a 

“Mouse Down” event to the shape with the selected co-ordinates. Logic within each shape 

then determines whether or not any action should be taken according to the position of the 

mouse click. An example of a shape-specific action that could be taken would be if one of the 

pins on a component shape was clicked, the pin would be selected and marked as the 

beginning of a new connection between components. Examples of non-shape-specific actions 

to take would be to mark the shape as selected if the mouse is clicked within its bounds. 

In order to reduce the number of computational operations performed to process user 

interaction, only “Mouse Down” events are universally reported to all shapes. Two flags 

HasMouseInterest and HasKeyboardInterest are made available in the IDiagramShape 

interface which informs the editor whether or not a particular shape would like to receive 

“Mouse Move”, “Mouse Up” and “Key Press” events. For all of the shapes currently 

implemented, shapes set their “Mouse Interest” flag upon a “Mouse Down” event and clear 

the flag upon a “Mouse Up” event. The “Keyboard Interest” flag is set when shapes are 

selected and cleared when they are no longer selected.  

Upon processing a “Mouse Down” event, if the editor detects that the mouse has been 

pressed on an area of the canvas that does not lie within the bounds of any shape, then the 

group selection process begins. The first step of this process is to de-select all shapes within 

the diagram by setting the Selected property of each IDiagramShape object to false. As the 

mouse is moved, a box is drawn which can be used to select a group of shapes. When the 
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mouse is released, the editor queries the ShapeLiesWithinRectangle  method of each shape 

within the diagram to determine which shapes lie within the user-drawn box. Any shapes 

which lie within the box have their Selected property set to true. As well as providing a 

group selection technique, this process also provides the benefit of de-selecting all selected 

shapes if the user clicks the mouse on a blank area of the panel. 

Group movement of objects requires interactions between the logic built into shapes and the 

logic within the editor, unlike shape-specific operations such as re-sizing which can be 

handled directly by internal shape logic. In order to support movement of both single and 

multiple objects, the editor’s design enforces a particular pattern for handling the movement 

of shapes. If a shape detects that user input is causing it to move (for example, in the case of 

a component shape, the mouse is pressed within the body of the shape and is moving) then 

rather than deal with the movement operation directly, the shape is required to invoke the 

call-back method NotifyMoveEvent within the IShapeHost interface, reporting the 

amount by which the shape has been moved. When this method is invoked, the 

editor will iterate through all selected shapes on the diagram and call the 

HandleMovementDelta  for each shape with the difference in X and Y co-ordinates by 

which to move the shape. This logic within this method is then responsible for 

moving each shape and re-drawing the shape at the new location. 

F.5.5. Drawing 

The shape-drawing logic within the editing component uses a double-buffering system to 

reduce flicker during the drawing process. Further efficiency is added to the drawing process 

by only drawing shapes which need to be re-drawn each time the editor is drawn. The 

process of drawing the contents of the editor can be initiated by a number of events: the 

operating system requesting a re-draw of the component; the component scrollbar positions 

being changed by the user; and a component’s code requesting a re-draw (for example, 

when a component becomes “Selected” it may change its colour or paint a selection box 

around the component or when a shape is moved it will be required to be re-drawn at its 

new location).  
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Each IDiagramShape instance has a Boolean property, IsVolatile, that is used by shape to 

indicate when it is in a state where it is likely to need re-drawn frequently. Examples of such 

states are when the shape is being moved or when the shape is selected. Each time that the 

IsVolatile property of a shape is changed, the shape invokes a call-back method on the 

IShapeHost interface to inform the editor of the change. Upon such a change of volatile 

state, the editor will create a bitmap buffer on which all non-volatile shapes are drawn by 

invoking the Draw method of each shape. Each time a re-draw of the diagram is requested, 

the editor will first re-draw the bitmap buffer of non-volatile shapes to the editing surface, 

followed by each non-volatile shape. This process improves the performance of the editor’s 

drawing process while moving shapes, almost entirely eliminating flicker while moving 

shapes. 

F.6. Graphical Component Editor 

As well as providing an editor for creating system models, an editor was also required within 

the application to create and edit individual components for use within the models. This 

editor is responsible for four main aspects of component configuration: naming, description 

and categorisation of components; defining the number, name and type of pins on 

components; defining and initialising configurable parameters within components; and 

defining component logic through C#, VB.NET or Mathematical scripting code. 

A single user interface was created to handle each of these four configuration tasks. The 

interface is split into four tabs, each handling an aspect of component configuration. Before 

displaying the interface, the user is prompted to either select an existing library of 

components or to create a new empty file. The contents of the selected file are then loaded 

into a collection of “Component Behaviour” classes11 for use within the editor. Any changes 

made to components within the editor are made in-memory to these classes which are then 

saved back to the file when the user selects the save option.  

The first stage of component configuration is shown in the annotated screen-shot in Figure F-

23. The configuration interface displays a list at the top of the screen (1) containing all of the 

                                                        
11 See section 3.2.2 for a full description of the “Component Behaviour” class. 
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components that are currently available in the loaded library file. When a component is 

selected within this list, its configuration is loaded into the main editor tabs. A set of toolbar 

buttons (2) allows users to add and remove components as well as save any change to the 

library file. The text boxes (3) allow the name, category, version number and description of 

the component to be edited. Checkboxes allow for configuration of advanced options within 

the component. A preview of the component appearance is provided (4) by using a modified 

version of the model editor described in section F.5. This preview control has been modified 

to make it read-only and is populated with only one component.  

 

Figure F-23: Properties page from the component library editor. 

The second stage of component configuration is shown in the annotated screen-shot in 

Figure F-24. This tab allows for the configuration of the pins on the component. A list (1) of 

the pins currently on the component is shown, along with the properties of each pin. Buttons 

(2) are provided to add or remove pins. When a pin within the list is selected, its properties 

are shown at the bottom of the screen (3) for editing. Options are provided to edit the pin 
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Name, Type and Placement on the component. Any changes made to pins are reflected 

instantly on the component preview. 

 

Figure F-24: Component library editor pin configuration page. 

The third page of the library editor, shown in Figure F-25, configures the parameters that are 

made available within the component which allow for user configuration of each 

component’s behaviour. Similarly to the pin editor, this editor displays a list of the current 

parameters available within the component (1) and provides buttons to create or delete 

parameters (2). Selecting the “New Parameter” buttons displays a menu of available 

parameter types to create – the type cannot be changed after creation. Buttons are also 

provided to duplicate existing parameters and change the order of parameters within the list. 

The properties of the selected parameter can be edited using the controls at the bottom of 

the screen (3). The default value of a parameter is modified by selecting the button beside 
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the value (4). Selecting this button displays the relevant editing dialog12 for the selected 

parameter type. 

 

Figure F-25: Parameter editing page of the library editor. 

The final configuration page within the graphical component editor, shown in Figure F-26, 

provides a source code editor (1) for defining the component logic. The source code editor 

that is used in this interface is a third-party component taken from the open-source 

SharpDevelop IDE [138]. The editor provides useful built-in features for code editing such as 

undo/redo, syntax highlighting, find and replace and code region folding. Minor changes 

were made to the built-in functionality to add syntax highlighting for the scripting API 

elements, the custom pre-processor statements that were introduced and the Mathematical 

Mark-up language. 

A menu of available programming languages above the source code editor (2) controls the 

syntax highlighting and code folding strategies that are in use within the editor. The selected 

language is also saved within each component’s behaviour so that the simulator knows which 

                                                        
12 Parameter editing dialogs are described in section F.4. 
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compiler to use to compile the code when running simulations. A syntax checker (3) is 

included within the editor. This syntax checker uses the compiler for the selected 

programming language and reports any compilation errors along with their line numbers in 

the information box (4). Additionally, the editor supports the highlighting of lines which 

generate compiler errors or warnings. The toolbar (5) provides common text editing 

operations. Additionally the toolbar provides access to API documentation and a menu of 

commonly used code-snippets. Code snippets are defined in all programming languages and 

code for the current language is inserted when a snippet is chosen. 

 

Figure F-26: Source code editing page of the component library editor. 

The main model editor stores all component libraries in memory and therefore any changes 

to a library file using the component library editor require component libraries to be re-

loaded in the model editor. To simplify this process, a “re-load” option is provided in the 

model editor to refresh all libraries. This option also invokes an upgrade process on the 

currently open model if any of its components have been edited. 
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F.7. Implementation Summary 

The design and implementation described up to this point is the culmination of multiple 

iterations of re-design and re-implementation that were carried out. First-hand experience of 

using the package provided a helpful insight into defects in the software and useful 

enhancements. Continuous testing of the software throughout the implementation process 

was also extremely useful in quickly resolving defects and immediately identifying an errors 

that were introduced by the implementation of new features. 

The implementation of the package that has been described in this appendix was concluded 

in a state where the package was suitable for use for this project. While there are endless 

future enhancements that could be carried out to the program to improve its functionality, 

usability and performance, the current implementation was felt to offer sufficient features to 

continue with the implementation of a library of components within the package to enable 

the modelling of domestic smart grid systems. 
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