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Abstract

In this work I present a novel mechanistic cortical model derived from the
most current cortical anatomical data. The model is built at the cellular
level representing the mean laminar distribution and connectivity of the neo-
cortex. From this model I derive an extracellular field potential signal and
simulate ongoing cortical activity using top down, local and bottom up sen-
sory input. An information theoretic analysis is applied to the simulation
data in the context of a bottom up input. This identifies a relationship be-
tween cortico-cortical oscillatory activity across a number of frequencies and
the information contained in spiking neurons that have long range afferent
connections. From these model predictions three auditory perception exper-
imental paradigms are developed, implemented and analysed. I show that
the behavioural data is explained by the model predictions and offer a mech-
anistic explanation of the effect derived from model behaviour. I perform
an information analysis on magnetoencephalography data acquired from a
simple 50 % auditory perception task and demonstrate prestimulus ongoing
activity frequency power and phase features facilitate perception. In addition
there is evidence of attention related interaction between the auditory and
visual early cortices.
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Chapter 1

Introduction

Measurement of magnetic and electrical field potentials provide experimen-
tal neuroscience with a unique insight into the physiological activity of the
working brain. Magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) allow us to study the magnetic or electrical field produced by the
whole brain whilst extracellular electrophysiology gives us access to local field
potentials (LFP) produced by approximately one cubic millimetre of neural
tissue (Kandel, 2000). All of these measurements can be resolved at the mil-
lisecond scale. However, due to the nature of these signals and the means of
attaining them, a number of challenges associated with experimental design
and data interpretation present themselves.

In this work I will address three of these challenges. The first of these
is the question of what the signals actually represent. When measuring a
field potential you are determining the potential difference in the field be-
tween a single point in space and a reference point (Mizdorf, 1985). As such
any field potential measurement presents us with the inverse problem, i.e.
the potential number, location and strength of the field sources are infinite.
Fortunately there are a wealth of anatomical and physiological studies that
present us with the opportunity to constrain the potential sources of a given
signal.

A second challenge is to the integration of information from previous stud-
ies and experimental design posed by the scale and the invasiveness of the
various methods of measurement. Small scale investigations into neuroelec-
trophysiology tend to require invasive methods, and as such are carried out
in animal models. Large scale investigations tend to require a larger number
of sensors that are placed outside the brain, and as such are non-invasive
and thus available for use in human experimental participants. As a result of
this there tends to be little communication between the two areas of research.
However there is a large degree of anatomical and physiological generalities in
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mammalian brains that may allow us to have a basis of comparison between
the research fields(Thomson, 2003; Thomson, 2007). A further complication
is the difficulty in comparing results from different scales. Metrics repre-
senting widely varying measurement regimens and physical quantities can be
difficult to compare, as can statistical interpretation of results. Recent appli-
cation and development of information theory techniques have been shown
to provide a robust model free basis of comparison between different metrics
(Panzeri et al., 2008; Magri et al., 2009).

A third challenge is from the high level of variability in a recorded field po-
tential signal(Busch, 2009; Curto, 2009). A given neural source produces its
signal in the context of a high number of neural sources that produce signals
of comparable strength that are not related to the experimental paradigm.
This has been termed ongoing activity. What’s more is that recent work has
shown that ongoing activity impacts on the perception of stimuli and may
contribute to a neural coding scheme (Fries et al., 2007; Montemurro et al.,
2008; Vinck et al., 2010; Vanrullen et al., 2011).

The aim of this work is to address these issues through computer mod-
elling. A traditional approach to using modelling in neuroscience is to per-
form an experiment and develop a model to fit the data during the analysis
phase of the experimental process and use the model for interpretation of the
results (figure 1.1, top.) I have taken the approach of deriving a model from
anatomical and physiological experimental data, exploring the model its self
and using it as a forward model to develop an experimental paradigm to be
carried out with human participants, make predictions of the results from
the model and compare them to the model(figure 1.1, bottom.)

In chapter 2 I present a novel mechanistic cortical model derived from
the most current cortical anatomical data. The model is built at the cellular
level representing approximately three cubic millimetres of neocortex. Using
this model I explore the parameter space with the aim of extracting spiking
activity and, within the confined of the model, a signal representative of
the extracellular field potential. The model encompasses the mean laminar
distribution and connectivity of the neocortex. Due to the high number of
cells in these simulations I restrict my cellular investigations to the average
cell from each subpopulation.

In order to derive model behaviour that may be considered analogous to
realistic extracellular signals I develop and characterise the model’s response
to a variety of input conditions to simulate biological ongoing activity.

In chapter 3 I then investigate the response of the model in the simulated
ongoing activity state to a simple simulated sensory input. I investigate
the spiking and simulated field potential response and quantify this using
information theory. Lastly I investigate the response of the model to a sensory
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Figure 1.1: Two experimental approaches (Top) an experimental
paradigm is developed in the context of a theory and hypothesis, the exper-
iment is carried out, analysis and refinement of the experiment until it ad-
dresses the theoretical issue being tested, develop a new experiment. (Bottom)
a computer model is used in the context of theory to explore and develop the
paradigm and make predictions before the experiment is performed.
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input in the context of ongoing activity and an inter-cortical oscillatory input.
This is also quantified using information theory.

In chapter 4 from the results of the work with the model I derive a number
of testable hypotheses from which I develop three experimental paradigms.
Two of which relate to induced auditory steady state response (ASSR) corti-
cal oscillations and the phase related perception of a near threshold stimulus.
These were carried out as behavioural experiments. The results of the ex-
periment most closely related to the model work are predicted by the results
from the model. Next I carried out two MEG experiments derived from the
model. The ASSR paradigm was unsuccessful due to problems delivering an
equivalent stimulus. The second MEG experiment demonstrates that per-
ception of a near threshold stimulus is dependent upon the power and phase
of particular frequency components in preceding ongoing activity. This was
shown using information theory.

In this introductory chapter I will discuss firstly cortical anatomy and
the sources of the field potential signal. Secondly the role of modelling and
mechanistic cortical modelling.

1.1 Cortical anatomy and the field potential

signal

Some of the descriptive text and figures in this section have been adapted
from (Dempster, 2007).

1.1.1 Field potentials and the field potential signal

Electrophysiological signals are obtained by measuring the potential differ-
ence between a specific spatial position and a suitable ground. In the EEG
this is measured from the scalp, whilst in the LFP it is measured from within
the neural tissue. The electric field for a particular spatial location is defined
by the location and charge of all charged particles within the system. The
electric fields of the individual charges are summed, weighted by the dis-
tance of each charged particle from the measuring location. When there is a
change in the membrane conductance due to the opening of transmembrane
ion channels ionic current flows across the membrane to a new equilibrium
in accordance with the Nernst equation(Dayan and Abbott, 2001). Accord-
ingly there is a change of ionic concentration in the intracellular fluid. This
leads to an equal and opposite current in more distant regions of the cell in
accordance with Kirchovs law(Trappenberg, 2002). A region in which the
current is into the cell is know as a sink and a region in which the current



CHAPTER 1. INTRODUCTION 25

Figure 1.2: Basic current flow in pyramidal and stellate cells. The
blue connection represents an afferent synaptic connection to the dendrite of
a cell. The small circuit diagrams show the resultant direction of current flow
within and outwith the dendrite due to a synaptic event. (A) is a pyramidal
cell and (B) is a stellate cell.

is out of the cell is know as a source (Mitzdorf, 1985, , 1987). Figure 1.2
illustrates these currents.

The fast currents involved in the action potential create stereotypical
biphasic or triphasic fluctuations in the measured voltage. These events
have to be quite close to an extracellular measuring electrode to affect the
voltage measurement due to the comparatively weak field. The fields gener-
ated by the synaptic currents tend to cancel out for cells with radial dendritic
arbores(Mitzdorf, 1985, , 1987). This is known as a closed field configuration
1.2 (B). However synaptic currents in cells with dendritic extension in largely
one direction, open field configuration, affect the electromagnetic field in an
altogether different manner.

As mentioned above pyramidal cells have a stereotypical pattern of den-
dritic arbourisation. Synchronized synaptic input to the apical dendrites of a
single cell results in the creation of a strong dipole along the major axis of the
apical dendrites as shown in figure 1.2 (A). As the time course of synaptic ion
channels opening and closing is reasonably long compared to those involved
in the action potential, the dipole persists. Pyramidal cells are all orien-
tated perpendicularly to the pial surface, whenever there is a synchronized
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net current input to all cells these sum to produce a strong electromagnetic
field. These slow fluctuations make up the large part of the LFP. There are
other membrane phenomena that contribute to slow fluctuations in the elec-
tromagnetic field these are detailed in (Kobayashi et al., 1997; Kamondi et
al., 1998a; Kamondi et al., 1998b) and will not be discussed here.

Oscillations in neural activity are a widely observed phenomenon across
a variety of systems in a broad range of frequencies during many behavioural
states. Oscillatory behaviour occurs in both spiking and field potentials. The
frequency range has traditionally been subdivided into a number of different
classes. Namely alpha (8-13 Hz), beta (13-30 Hz), delta (0.5-4 Hz), gamma
(30-70 Hz) and theta (4-7 Hz)(Buzsaki, 2006). The mechanisms behind corti-
cal oscillations are not fully understood. A variety of mechanisms have been
proposed. One possibility is that activity is driven by a subpopulation of
cortical cells that have intrinsic oscillatory properties(Buzsaki, 2006). Cells
have been found in the rat frontal cortex that exhibit subthreshold oscilla-
tion and in cat striate cortex which fire in regular bursts in response to visual
stimulation(Buzsaki, 2006). Another possibility is that the oscillations arise
from the properties of the local intracortical network. Experimental evidence
for this is detailed in (Steriade et al., 1993)where they also outline evidence
from work done with neural networks.

1.1.2 Cortical Anatomy

The neocortex is an outgrowth of the telencephalon that makes up a signifi-
cant portion of the mammalian brain. It is the most prominent feature of the
primate and human brain, making up over half of the brain mass. Function
can be localized, but a particular function does not have to be performed
by a particular part of the cortex. For example, language areas of the brain
can usually be found in the left mediotemporal cortex, but this is by no
means the case for everyone. Function can be in other areas of the brain
or entirely non-local (Herron, 1980). This is not limited to higher cortical
areas primary sensory areas can be made to develop the response properties
of another modality. It has been shown that the auditory cortex of neonatal
ferrets can perform functions of the visual cortex when the normal auditory
input is replaced with visual projections (Sur, 1988; Sur et al., 1988). Similar
findings have been shown in visual cortex for somatosensory inputs(Schlaggar
and O’Leary, 1991). This level of plasticity in function is not limited to the
developing cortex, there is also much evidence of it occurring in the adult
(Phillips and Singer, 1997). The ability of the cortex to adapt to a variety
of computational functions strongly suggests that there may be information
processing operations common to all areas of the cortex. Support for this
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Figure 1.3: The laminar structure of the neocortex (Image from IBM
blue brain website: http://bluebrain.epfl.ch/)

viewpoint comes upon closer inspection of the anatomy and physiology of
the cortex. At various levels of inspection there are many features that are
consistent across cortical areas, between individuals and across species.

The neocortex develops from a sheet of cells into 6 layered structure,
there are some variations in the thickness of the layers depending on which
part of cortex, but it is always 2-4mm thick(Kandel et al., 2000). A detail
of the cortex where the layers are clearly visible is shown in figure 1.3. Each
layer is composed of a particular species of cell. The cells present in the
neocortex can be classified into two distinct types depending on the scope
of their connections. Projection neurons synapse with neighboring cells and
distant cortical and subcortical areas, and local interneurons synapse only
locally.

Pyramidal cells constitute the bulk of projection neurons. Pyramidal cells
make up approximately 70% of cortical neurons and their cell bodies can be
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found in layers II-VI. They have a pyramid shaped cell body when viewed
in cross section. Dendritic arbourisation is characterized by projections from
the apex of the pyramid which extend up through the higher layers of the
cortex, and basal projections which extend horizontally within the layer. The
axonal projection emerges from the base of the cell. The synapses they form
are excitatory and are mediated by glutamate(Kandel et al., 2000).

Local interneurons characteristically have dendritic arbourisations that
project radially from the cell body. The local interneurons can be further
subdivided into excitatory and inhibitory interneurons. Excitatory interneu-
rons make up 10 percent of cortical neurons and are largely spiny stellate
cells. These cells form glutamatergic synapses and their cell bodies are found
in layer IV. Inhibitory interneurons, which make up the remaining 20 % of
cortical neurons, are a morphological and physiological heterogeneous group
that can be found in all layers of the cortex. The majority of synapses
formed by interneurons are GABAergic, but many are non-GABAergic. In
addition to this some interneurons have been found to contain more than one
neuroactive substance(Kandel et al., 2000).

Cortical neurons can also be classified due to their spiking properties
under tonic stimulation. Spiny neurons, pyramidal and spiny stellate cells,
display spike rate adaptation. This is a reduction in interspike interval times
when the neuron is repetitively firing. Local cortical connectivity is sparse
and specific. Whilst a simple repeating microcircuit is not immediately ap-
parent, there are some gross features of interlaminar excitatory and inhibitory
connectivity that have been established in the literature. This model will ac-
count for 3 of the layers of the neocortex For a review of laminar structure
see Thomson and Bannister (Thomson and Bannister, 2003).

Recent work using paired and triple intracellular recordings in associa-
tion with dye filling techniques has revealed the connectivity ratios of cells of
different classes within the neocortex and the post synaptic potential prop-
erties and latencies (Thomson et al., 2002; Thomson and Lamy, 2007). This
work was performed in multiple regions of cortex of both the rat and the cat.
Whilst this work details the major connections, it should be noted that con-
nections which occur with low frequency but significantly affect the network
behaviour may have been overlooked (Haeusler and Maass, 2007).

1.2 Neuronal modelling

In this section I will outline some of the approaches taken in cortical mod-
elling used to gain insight into the mechanisms of external oscillatory signals.
Firstly I will look at the neural mass model approach, secondly I will look at
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Figure 1.4: A simplified cortical microcircuit The extended Jansen model
showing two populations of interneurons, excitatory and inhibitory, and a
population of pyramidal neurons

the full conductance model and thirdly I will look at the leaky integrate and
fire model used in this work.

Some of the descriptive text and figures in this section have been adapted
from (Dempster, 2007).

1.2.1 Mass models and dynamic causal modelling

The neural mass model was introduced by Lopes da Silva et al in the (Lopes
da Silva et al., 1974). They developed a mathematical model inspired by
cortical biology to simulate alpha activity in the EEG. Their model con-
sisted of two modules representing a population of excitatory neurons and a
population of inhibitory interneurons. A module consists of two equations,
the first representing the transformation of an input mean firing rate into a
mean membrane potential and the second transforming the mean membrane
potential of the population into a mean firing rate to be output to the other
module. The field potential is taken as the value of the mean membrane
potential of the excitatory population.

This model was extended by Jansen et al to include an additional exci-
tatory population that is named the excitatory interneurons module (shown
in figure 1.4)(Jansen et al., 1993; Jansen and Rit, 1995). This module rep-
resents the excitatory feedback within the local cortical circuit, so formally
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this represents both excitatory interneurons and pyramidal cells. Each of
the connections between the modules are weighted by a factor that repre-
sents the relative strength of synaptic connectivity derived from biological
data available at the time. Jansen shows that this system demonstrates a
wide range of oscillatory behavior when all three modules receive a random
noise input by varying the connectivity constant. Jansen develops the model
further by coupling two of these models together to represent two different
areas of the cortex. This configuration involves taking the mean firing rate of
the pyramidal cell module of one unit and using it as an additional input to
all the modules of the second unit. These interunit connections are weighted
by individual weighting factors. Using coupled units and varying the weights
of the interconnection Jansen et al are able to elicit a wider range of oscilla-
tory behavior. Another feature of this system is that by applying an impulse
to a single unit a response similar to the evoked potential can be shown.

Jansens cortical unit has been used by a variety of researchers to study
field potential activity. David et al expanded the detail of the interunit con-
nectivity to express the whole spectrum of EEG signals and investigate the
mechanisms of the event related potential (David and Friston, 2003; David
et al., 2005; David et al., 2006a). Figure 1.5 shows the hierarchical con-
nectivity utilized in this study. Dempster and Panzeri (Dempster, 2006)
carried out an investigation of information propagation in each of the hierar-
chical arrangements using Poisson spike generated input derived from firing
rates measured from the rat barrel cortex under different stimulus conditions.
They also demonstrated that specific LFP features could be fitted to specific
model architectures.

The neuronal mass model has and continues to prove useful in the in-
vestigation of field potential generation and compared to other mechanistic
models it is not computationally intensive. Jansen mentions that the as-
sumptions made in this model do not verify it as the mechanism behind
cortical oscillations and suggests that further verification be made (Jansen
et al., 1993; Jansen and Rit, 1995). One method of verification would be to
compare the behaviour of a model of finer detail. Also it does not directly
model individual cells so it cannot provide insight into the cellular and sub-
cellular mechanisms responsible for field potential signals, nor can it give a
spatial component to the model. The model developed in this work would
provide a suitable basis of comparison for further verification of this model.

1.2.2 Hodgkin-Huxley conductance models

An approach which places a far greater emphasis on the subcellular mecha-
nisms of the individual cells within a network are those that use models based
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Figure 1.5: Hierarchical connectivity in a mass modelEach of the three
network models show coupled mass models in (left) a bottom up configuration,
(middle) a top down configuration and (right) a lateral connection. (from
David et al., 2005)

on the dynamics of transmembrane ion channels as described by Hodgkin and
Huxley in 1952 (Hodgkin and Huxley, 1952d, 1952e, 1952f, 1952a, 1952b,
1952c; Hodgkin et al., 1952).

In these models individual cells are modelled in compartments where
dimensionality of the individual cells can be reproduced and internal cellular
currents are directly modelled.

Wilson and Bower have explored neural oscillations in models of the piri-
form cortex and the visual cortex (Wilson and Bower, 1992; Koch and Davis,
1994a; Koch and Davis, 1994b). These models are identical in all aspects with
the exception of the spatial extent of the association fibres, in the visual cor-
tex model these fibres are more spatially limited. There are three cell types in
the model organized in a two dimensional matrix. The largest is the five com-
partment pyramidal cell model with three linked compartments representing
the apical dendrites and two opposite representing the basal dendrites. The
other two cells types were feed forward and feed back inhibitory interneurons,
these were modelled as single compartments. Connections with the pyrami-
dal cells were compartment specific. The main findings of these models are
that oscillations typical of the EEG arise from the network under both pha-
sic and tonic external input and that inhibitory feed back is essential in the
production of oscillatory behaviour.

A major advantage to this type of modelling is that due to the spatial
components of the model, i.e. cell location and the apical segments extending
perpendicular to the sheet of neurons the field potentials can be derived



CHAPTER 1. INTRODUCTION 32

directly from the discrete currents rather than using the mean membrane
potential of the population. This also allows the measuring electrode to be
placed in different places within the plane of neurons.

Due to limitations in computational power there were many reduced rep-
resentations used in the implementation of the model used in this study. Due
to the high computational demand of multicompartmental Hodgkin-Huxley
conductance based models any approach which requires many repeated sim-
ulations of large scale networks is precluded.

1.2.3 Leaky integrate and fire models

The leaky integrate and fire model of the neuron is a widely used model for
the study of neural systems(Dayan and Abbott, 2001). This model offers a
simple description of the spiking behaviour of a given cell and concentrated on
the subthreshold dynamics of the membrane potential. This approach allows
the development of cellular models with realistic temporal characteristics.

The main features of the model are the capacitive properties of the mem-
brane, a leak current and a current representing the synaptic input. Each
current is defined by the change in conductance of each element and the
difference in voltage between the instantaneous membrane potential and the
reversal potential of that element(Dayan and Abbott, 2001).

Other currents can be added to this circuit to adapt the model to prop-
erties of specific neuron classes. The afterhyperpolarisation current models
post spike afterhyperpolarisation by resetting a conductance that decays ex-
ponentially to a maximum value each time the neuron spikes. The spike rate
adaptation current models spike rate adaptation in regular spiking neurons
by increasing an exponentially decaying conductance each time the neuron
spikes. This results in a polarizing current that increases with the firing rate,
thus dampening the firing rate as time goes on(Dayan and Abbott, 2001).
The specific equations of the leaky integrate and fire model used in this study
are introduced in chapter 2.

As the leaky integrate and fire model is relatively simple it allows ana-
lytical explorations of simple networks. Oscillations in networks have largely
been found to arise as the result of interactions between excitatory and in-
hibitory neurons. In a network of sparsely connected 80% excitatory and
20% inhibitory simple leaky integrate and fire neurons Nicolas Brunel has
demonstrated a wide range of states (Brunel and Hakim, 1999). These in-
clude synchronous regular firing, asynchronous firing with no global signal,
and global oscillation with irregular firing of the individual neurons. Further
work has shown that detailed single-cell properties have a substantial impact
on population oscillations (Brunel and Hakim, 1999; Brunel, 2000; Brunel
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and Wang, 2003). In particular the synaptic dynamics and the balance be-
tween excitation and inhibition play a key role.

As the models of individual neurons become more detailed in order to
characterize a particular species of neuron and network connectivity becomes
more biologically inspired, current analytical techniques become limited in
their scope and numerical simulation can play an important role in the dis-
covery of the properties of the system (Burkitt, 2006b, 2006a)



Chapter 2

A novel mechanistic cortical
model

2.1 Chapter introduction

The aim of this chapter is to introduce a novel mechanistic model with simu-
lated neural signals comparable to biological extracellular signals and spiking
data. This in order to be able to develop an experimental model paradigm
suitable for comparison with a biological experimental paradigm.

The model will represent a laminar volume of neocortex of approximately
3 cubic millimetres, or 3000 cells. The principle signal investigated is a
corollary of the electromagnetic field potential. This is interpreted as an
LFP/EEG/MEG signal.

First I will run simulations with an independent Gaussian white noise
stimulus applied to each cell. I will then present simulations with varying
means and standard deviations of the white noise stimulus. This is within
the range that best produces subthreshold responses most similar to cells in
a biological cortical network(Okun et al., 2010).

Secondly I will address the question of whether or not the network can
be scaled to represent a larger proportion of cortex by uniformly increasing
synaptic weights.

Thirdly I will explore network activity and its impact upon network be-
haviour. In this section I remove all synaptic connections, only the excitatory
connections and only the inhibitory connections to observe the contribution
each cell type gives to the network behaviour.

Lastly I will consider the response properties of ongoing field potential
and spiking activity. These investigations group the network according to
three input standard deviation conditions. The first is a low input standard

34
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deviation condition, the second is a mid range input standard deviation con-
dition and the third is a high input standard deviation condition. In each of
these conditions a range of input means.

2.2 Introduction to the model

In this section I will detail the individual cell models used in the network
model, the network connectivity, the simulation environment, the inputs used
for the network, the output derived from the simulations and the analysis
packages used.

2.2.1 Individual cells

The basic individual neuron model employed in the modelling portion of the
project is the leaky integrate and fire (LIF) model. The individual cell model
is described in equations 2.1 - 2.4. This is a one dimensional description of
the biophysical properties of the neuron. The equilibrium distribution of ions
across the cell membrane results in a build up of negative ions on the internal
surface of the lipid membrane and positive ions along the external surface.
The result is a capacitive effect with a measurable membrane capacitance.
This can be considered a constant as the ions available internally and ex-
ternally are much larger than those involved in information processing. The
membrane is semi permeable to certain ions resulting in the relaxation to a
resting membrane potential if it deviates, the time course of the relaxation
is dependent on the membrane capacitance (Cm) and the membrane decay
constant (τm).

The mechanisms of the action potential are not directly modelled in the
LIF neuron. A fixed value threshold (θ) is determined where, if the membrane
potential approaches it from below, the membrane potential is reset to the
equilibrium value (Vreset) for a fixed refractory period. This approximates the
action potential, however it should be noted that real neurons have variable
threshold levels dependent upon the previous activity of the cell. However
taking this approach reduces the model by three differential equations and
vastly reduces computation time in large models.

Deviation from the equilibrium membrane potential is due to any exter-
nal current across the membrane. In this model it is due to synaptic input
(ISyn) and a noise term (INoise+IAC). The noise term can be varied in quality
to account for the contribution of a number of different processes including
nondeterministic presynaptic vesicle release, somatic action potentials, ring-
ing and most importantly, synaptic input from neurons not included in the
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model. This will be addressed below in the section concerning model input.
The synaptic input to the model can take many forms. The simplest of

which, employed in this model, is an alpha function (s(t)), a fixed current re-
sponse where deviation of the membrane potential decays to zero over a fixed
time. This is the function that I have applied to the model. There are some
unrealistic properties of using this function including the lack of rise time
(although this is much shorted than the decay time), unrealistic summation
of the effect of presynaptic spiking on the postsynaptic membrane potential
at high firing rates, and the independence of postsynaptic effects from the
membrane potential of the post synaptic neuron. Alternative approaches to
the behaviour of synapses are available, again at a slight computational cost,
in particular conductance based synapses. Conductance based synapses are a
term that determines the conductance of the membrane for a given ion. The
effect of a presynaptic spike on the membrane potential of the postsynaptic
neuron is a function of this conductance and the membrane potential of the
post synaptic neuron.

The values of the fixed parameters are found in table 2.1.

Cm
dVm(t)

dt
= −Cm

τm
(Vm(t) − Vrest) + ISyn(t) + INoise(t) + IAC(t) (2.1)

where:

Isyn(t) =
∑
k,j

wks(t− tk,j) (2.2)

synaptic kernal:

s(t) = t
e

τSyn
e
( −t
τSyn

)
(2.3)

and if:

Vm > θ Vm = Vreset (2.4)

2.2.2 The cortical network

As computational power has increased to the point where large scale detailed
network simulations are possible, surveys of the general statistical properties
of populations of neurons have been undertaken with a view to acquiring
appropriate parameters. Of particular note is the work of Alex Thomson
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Variable Value
Cm 250 pF
τm 20 ms
τsyn 2 ms
Vrest -70 mV
Vreset -70 mV
θ -55 mV

Table 2.1: Fixed parameters

et al (Thomson et al., 2002; Thomson and Bannister, 2003; Thomson and
Lamy, 2007) from whose work the model parameters have been derived.

The connectivity structure of the cortical network is the same as that
used in (Haeusler and Maass, 2007), however the individual cell models are
simple LIF cells, as opposed to the full Hodgkin-Huxley type used in the
paper. This allows for a larger network to be simulated in a realistic time
frame. The network model consists of six populations of neurons represent-
ing the excitatory and inhibitory cells of layers 2/3, 4 and 5. Layer 6 has
been omitted due to the sparse statistical data and the apparent relative
independence of this layer from the others.

The ratio of inhibitory to excitatory cells is 1:4. The proportion of cells
between layers is layer 2/3 : 30%, layer 4 : 20%, and layer 5 : 50%. The
interconnectivity is illustrated in figure 2.1. The percentage in brackets is the
probability that any two cells between two populations will have a synaptic
connection. The black arrows represent excitatory connections and the red
arrows inhibitory connections. For example the probability that a randomly
chosen cell from the layer 5 excitatory population will have an excitatory
synapse on a randomly chosen cell from the layer 5 inhibitory population
is 10%. It is also worth noting that there is a within group connectivity
probability. The number outside the brackets is a weighting factor for the
synapses derived from the average peak value of the post synaptic potential
following an arriving spike.

A connectivity matrix for each cell is generated from the connectivity
probabilities in this model. This is done by using the connectivity probability
of each individual cell to each population and randomly selecting cells from
that population of the correct proportion. This is carried out for all cells in
the network during the build phase. The individual cells are connected with a
weighting value (wk) set such that the PSP elicited from a single presynaptic
action potential elicits a PSP of one tenth of the experimentally measured
value.
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Figure 2.1: Cortical microcircuit template. Numbers at arrows denote
connection strengths (mean amplitude of PSPs measured at soma in mV) and
connection probabilities (in parentheses) according to Thomson and others
(2002), for connections between cortical neurons in 3 different layers, each
consisting of an excitatory (E) and an inhibitory (I) population, with an
estimated maximal horizontal distance of up to 100 m. Most of the data
are from rat cortex, except for interconnections in layer 4 (italic), which
are from cat. (Connections from L2/3-I to L5-E are reported in Thomson
and others [2002], but are discussed only qualitatively. Hence, the entry for
connections from L2/3-I to L5-E [marked by a question mark] is only an
extrapolation. The same applies to connections from L4-I to L2/3-I. No data
on the amplitudes of inhibitory PSPs from L5-I to L5-I are given in Thomson
and others [2002], hence the corresponding entry is just a guess.) Percentages
at the input stream denote connection probabilities for input neurons used in
our simulations. In addition, each neuron receives background noise reflecting
the synaptic inputs from a large number of more distal neurons(adapted from
(Haeusler and Maass, 2007))
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2.2.3 The simulation environment

The first step undertaken was to implement the model in MATLAB (MAT-
LAB 7.5.0, The MathWorks Inc., Natick, MA, 2000). The simulations took
7 hours to run one second. I explored methods of reducing the simulation
time. These included exploring optimisation of the integration method used
to solve the equations and testing of available simulation packages. I looked
at Neuron(Hines and Carnevale, 2003) and Genesis(Wilson and Bower, 1992),
these are appropriate for small networks of highly detailed individual neu-
rons. Another package, NEST (Gewaltig and Diesmann 2007), is now avail-
able for the simulation of large networks of simple, one dimensional neurons
with the ability to implement more detailed multicompartment models in the
source code. I implemented the model in NEST and the simulation time is
4 minutes per simulated second, a vast improvement. NEST is not as widely
established in the literature as the other two available packages, however its
usage is increasing with a number of theoretical neuroscience courses being
taught within the context of the package. It also has a growing support lit-
erature and an active users forum in which the developers regularly assist
with coding questions(Nordlie et al., 2009; Hanuschkin et al., 2010; Linden
et al., 2010).

An advantage of the NEST simulation environment is that it avoids using
the simulation time step as the integration time step for dynamic equations.
NEST integrates the dynamic equations with machine precision, using a tech-
nique termed “Exact Integration in the context of pulse coupled neuronal
systems” (Rotter and Diesmann, 1999).

The limitations of the version of the NEST simulation environment ver-
sion used in this work have been that there was no way to directly monitor
the incoming synaptic currents individually and that the connectivity matrix
returned for the generated networks only gave the afferent connectivity from
each cell and not the efferent synaptic connectivity from each cell.

2.2.4 Input to the network

The model employed in this study is of an isolated cortical area, and as
such is removed from sensory input by three direct synapses between sensory
transduction and the cortex. This means that the known phasic and tonic
responses to mechanical stimuli have been re-encoded by the nervous system
before they enter the cortex. The manner of this re-encoding is still a sub-
ject of much investigation. Inputs to the cortical layer 4 from the specific
thalamus are known to make up 4% of the synapses on these cells(Thomson,
2007). Other synaptic inputs not present in the model include distant cor-
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tical and subcortical contributions. Given this, the input to the model from
non-local connections is not trivial.

My initial approach has been to use Gaussian white noise current gen-
erated at the same sample rate as the integration time step (0.1ms) as an
independent input for all individual cells. This has allowed an exploration
of the behaviour of the network using the standard deviation and the mean
values of the noise.

As described in the next chapter to explore the interaction between sen-
sory input and ongoing oscillation a group of poisson generators were added
to the input. To further explore sensory input in the context of oscillations
I introduced a common sinusoidal current to all cells.

The direct injected current is straightforward to implement and useful in
the exploration of the qualitative properties of the model, but in real neural
systems all inputs are synaptic.

2.2.5 Output from the network

NEST outputs the simulation data in large text files. I have written MAT-
LAB code to reduce the file size of this data and convert it into a number
of useful formats such as the field potential signal, firing rates and mem-
brane potentials of the individual cells and subpopulations based upon the
type and layer of the cell. In this for a wide number of tools developed in
computational neuroscience are available for analysis.

Deciding upon which of the model parameters from which to derive an
equivalent signal to the MEG/EEG/LFP is a challenge in modelling. The
physical signal is derived from the net electric or magnetic field of all cur-
rents in the brain, with a particular weight given to open field cells in the
cortex, the pyramidal cells. The cortex its self is a convoluted surface so the
first reduction is to consider it a flat surface. In this model where 1 mm3

is explored this is less problematic than in intercortical models that span
differently orientated surfaces.

The next issue is describing internal current flow in a one dimensional
model of a highly structured pyramidal cell. In a recent paper by (Mazzoni,
2011) a difference of synaptic currents was used to express the equivalent
signal. Assuming AMPA signals to be apical and GABA synapses to be
perisomatic the absolute values of synaptic currents were summed. Whilst
a current based approach would be preferable, in the model I present the
synaptic currents are of a fixed duration and magnitude unrelated to the
membrane potential, so any signal derived from the summation of these cur-
rents would be unrelated to the state of the model neuron. In addition to
this the version of NEST used in simulation does not allow direct access to
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incoming synaptic signals, only outgoing spikes. So any additional calcula-
tions derived from the available metrics of the simulation environment would
add a significant processing time to each simulation.

In my model the signal extracted from the model to represent the EEG/MEG/LFP
signal is the mean membrane potential of all the pyramidal cells, i.e. the ex-
citatory cells of layer 2/3 and 5. As the LIF model is a one dimensional
model there is no representation of the internal movement of charge carriers
to give a direct equivalent of the signal. However, as the movement of charge
within the cell is dependent upon the potential difference between points
on the neural membrane, the membrane potential is a closer correlate of the
electrophysiological signal than the firing rate that is traditionally used to ex-
plore population activity in these networks. The membrane potential allows
for the integration of synaptic signals including the instantaneous state of the
neuron on which the incoming signals act. The membrane potential had been
used as an equivalent signal in Ursino and in neural mass modelling(Ursino,
2006; David 2003).

2.3 Initial explorations of the model using

white noise input

2.3.1 Introduction

With specific connectivity to an abstract cortical area being largely unknown,
the first investigation into network behaviour was carried out using indepen-
dent white noise currents injected into each cell. This type of input can be
thought to loosely model the intracortical post synaptic currents summed
over the cell body. The initial aim was to find the parameters of an input
that would illicit a membrane potential in individual cells and the simulated
field potential with a 1/f like response, as has been measured electrophysi-
ologically, and roughly realistic individual cortical cell firing rates (Okun et
al., 2010).

The white noise is defined by two parameters, the mean and the standard
deviation, both expressed in pA. Theoretically each of these parameters may
be thought of as modelling a type of input. A high mean could be considered
an asynchronous input of a number of excitatory post synaptic potentials
possibly from long range cortical connections, as these are only excitatory
in nature. A high standard deviation could be considered as complex local
synaptic inputs as they will include positive and negative deflections of the
individual cell’s membrane potential.
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An illustration of a typical individual simulation response is given, fol-
lowed by an investigation into the firing rate and simulated field potential
mean and standard deviation values. Subsequently the power spectrum of
sampled parameter space is investigated in order to investigate the 1/f like
properties of the network across parameter space. Finally an approximate
phase diagram illustrating network behaviour across parameter space is pre-
sented in order to explain the smaller regions of parameter space chosen for
further investigation in the subsequent sections of the thesis.

2.3.2 Methods

2.3.2.1 Simulations

Four hundred simulations were carried out using a single network structure.
Each simulation had a unique value for the white noise parameters: White
noise mean and White noise standard deviation. These parameters were
taken from a 20X20 matrix where one axis contained the white noise mean
values -270pA increasing in steps of 30pA to 300pA ; the second axis con-
tained the white noise standard deviation values 580pA increasing in steps
of 80pA to 2100pA. These parameters were used to drive independent white
noise generators at a ratio of one noise generator to each cell. For each sim-
ulation the random number generator was set with the same seed, ensuring
that the structure of the Gaussian white noise input was identical in each
simulation, with only the magnitudes being influenced by the white noise
parameters. All cells had a membrane potential of -70mV at t=0ms. No
cells were firing at the initiation of the simulation. Each simulation lasted
1000ms.

2.3.2.2 Analysis

For each simulation analyses were performed on the simulated field potential
signal and the combined spike trains of each population. Each analysis was
performed on the time period 200 to 1000 ms to remove artefacts from the
network’s initial response to the stimulus. Each of the population firing
rate means were calculated first by dividing by the number of cells in that
population and then expressing the rate in Hz. The simulated field potential
mean and standard deviations were calculated using the appropriate Matlab
function. The power spectral density of the simulated field potential was
calculated using the Matlab periodogram function.

For assessment of the 1/f like response of the simulated field potential to
a given input parameter 20 simulations were carried out with differing input
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seeds, the mean power spectral distribution was calculated and plotted on
a log log power-frequency plot. The Matlab best fitting line algorithm was
used on the data points between 3 and 40 Hz to obtain a linear function and
magnitude of the PSD response.

The parameter space property diagram was produced by hand based upon
the response properties of the network at a number of sampling resolutions
and the specific boundaries are for illustrative purposes only.

2.3.3 Results

2.3.3.1 A single simulation

In this section I will show an example of a single simulation to determine
whether or not the simulations can produce mean field potentials that are
qualitatively similar to biological field potentials. I will inspect the raw signal,
the power spectral density (PSD) of the signal, the spike patterns of all cells
and types in each layer and the average firing rate of the average cell in each
layer and cell type.

Figure 2.2 shows the mean field potential from a single simulation. Be-
tween 0-100ms the network is responding to the input mean. As the starting
membrane potential values for the individual cells is -70mV, the mean of the
input determines the mean of the field potential adjusting according to the
membrane time constants of the individual cells. Although it is not shown
in the figure, when the white noise input is turned off, the field potential will
return to -70mV over a similar time period.

Once the network has reached a mean value in accordance with the input
mean it behaves in a complex manner reminiscent of a biological electro-
physiological signal. The similarity can be further shown in the 1/fα like
characteristics of the PSD of the signal. This is shown in figure 2.3 and is
similar to the power frequency content of biological electrophysiological sig-
nals which are not stimulus linked(Okun et al., 2010). This similarity will
be quantified below.

Figure 2.4 shows the number of spikes per 0.1ms time sample over the
whole simulation period. This can be thought of as the result of spike sorting
from an idealised multiunit activity signal taken across the depth of the
cortex. The spikes are grouped by both cell type and cortical layer. The
inhibitory spikes (in red) are sparser than the excitatory spikes (in blue)
due to the lower proportion of inhibitory cells. The spikes are relatively
uniformly distributed across time reflecting the independent inputs supplied
to each cell. The mean firing rate for each cell type in each layer is given
in the right hand column. The firing rates fall within the range typical for
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Figure 2.2: The mean field potential from a single trial. Each cell in
the model receives an independent white noise input generated with a mean
value of 30 pA and a standard deviation of 1300pA.
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Figure 2.3: The power spectrum of a single trial. The power spectral
density of the mean field potential of a 1 second simulation where each cell in
the model receives an independent white noise input generated with a mean
value of 30 pA and a standard deviation of 1300pA.
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Figure 2.4: The number of spikes per 0.1ms in each cell type and
layer in a single trial with the mean firing rate of an average cell.
Each cell in the model receives an independent white noise input generated
with a mean value of 30 pA and a standard deviation of 1300pA. The subplots
each represent a layer population in the model by number and type. The blue
plots represent the population spike rates in the excitatory layers. The red
plots represent the population spike rates in the inhibitory layers. The right
hand frequency is the average spike rate for an average cell calculated over 1
second.

cortical cells during ongoing activity(Wolfe et al., 2008).
In this section I have shown that the mean field potential and the spik-

ing behaviour of the network has demonstrable qualitative similarities with
biological electrophysiological signals.

2.3.3.2 Exploring white noise parameters

In this section I will explore the network behaviour over a range of biologically
realistic parameters for the white noise input. I will demonstrate that the
network behaves in a number of different modes depending upon the white
noise mean and standard deviation. I will look at the mean and standard
deviation of the simulated field potential, the firing rates of the cells in each
layer, and the raw signal and PSD of the field potential from different sections
of the parameter space. I will also demonstrate the 1/fα properties of the
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simulated field potential.
The main question addressed here is whether or not the network is di-

rectly encoding the information in the input, performing a computation on
the input, or obliterating the information entirely. If the information is en-
coded in the output there should be a one to one correspondence between the
input state and the output state. If a computation is performed, some rep-
resentations of the input would have the same representations in the output,
i.e. there would be a reduction in the information. And if the information is
obliterated there would be no representation of the input in the output.

Figure 2.5 consists of two plots. The top plot shows the mean value in
mV of the mean field potential after the settling period (from 100ms after
the simulation begins). The bottom plot shows the standard deviation in
mV after the settling period.

In the plot of the mean, input mean values less than 0 pA are directly
encoded into the field potential mean. It proportionally increases along with
the input mean with a one to one relationship between the input mean and
the output mean. Where the input mean is greater than 0 pA the field
potential mean may hold the same value when all other parameters of the
simulation remain the same. With input standard deviations less than ap-
proximately 1620 pA a given field potential mean may represent two or more
input mean values. For input means above zero the field potential mean
value approaches a maximum. The maximum value of the field potential
mean is in the region of input mean value of 120-150 pA. The representation
is not symmetrical around the maximum value. As the input mean increases
beyond the maximum value of the field potential mean, the field potential
mean approaches a fixed value. With input standard deviations greater than
approximately 1620 pA, the field potential mean quickly approaches a fixed
value as the input mean increases from zero. As the standard deviation of
the input increases there is a region in the bottom left of the parameter space
where the standard deviation of the input is encoded in the field potential
mean up to a point where the output is uniform.

The network behaviour is such that over this parameter space there are
three regions where firstly the mean of the input is directly encoded into
the mean of the output, with little representation of the input standard
deviation. Secondly, the mean value of the field potential may represent more
than one value for the input mean and the standard deviation of the input is
represented in the mean. And thirdly, a region where the information about
the input mean and standard deviation of the mean is largely obliterated in
the field potential mean.

In the bottom plot of figure 2.5 we can see the distribution of the standard
deviation of the mean field potential. Parameter space is roughly bisected
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Figure 2.5: The mean and standard deviations of the simulated field
potential as a function of input mean and standard deviation.In both
subfigures the input parameter space is represented with the white noise input
mean on the y-axis ranging top to bottom from -270pA to 300pA in steps of
30pA, and the input standard deviation on the x-axis ranging from 580pA to
2100pA in steps of 80pA. (Top) The average value of the mean field potential
in mV. (bottom) The standard deviation of the mean field potential in mV
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diagonally where the upper left hand side shows a direct encoding of both
the mean and the standard deviation of the input in the standard deviation
of the field potential. Neither of the input parameters could be read off
independently from the field potential standard deviation, as the input mean
could be from the output mean. However a strong component of each of
the parameters appears to be represented in the standard deviation of the
field potential. To the bottom right of the bisecting line of the parameter
space there appears to be three regions where the network behaves in different
manners. The first region is roughly perpendicular to the bisecting line where
values of the standard deviation are largely identical, suggesting that the
input values are not systematically encoded in the standard deviation of the
field potential. Either side of this perpendicular line there is a single maxima
of standard deviation around which there is a drop off of standard deviation.
Around each of these there is a systematic computation dependent upon the
input mean and standard deviation.

Figure 2.6 shows the mean firing rate of the average excitatory or in-
hibitory cell in each layer across all combinations of input mean and standard
deviation values. Table 2.7 is a table of the firing rates of the average excita-
tory cell from layer five. The common features for all cell types are a firing
rate threshold, where the firing rate is zero to the top left of the region of the
diagonal line that bisects the standard deviation plot of figure 2.5. There is
then a region to the bottom right of this line where there is a slight increase
in firing rate according to the input mean, two or three spikes per second
per unit increase of input mean, and an approximate increase of one spike
per second per unit increase in input standard deviation. Below this second
region the representation of the input mean sees an increase in firing rate of
12 spikes per second per unit increase in the input mean. The firing rates
are within the range of recorded instantaneous firing rates for cortical cells.
It should be noted that the different regions of network behaviour marked
out in the mean of the field potential and the standard deviation of the field
potential (figure 2.5) are not evident in the firing rates of the cells.

Although there are general trends for cell firing rates across cell types,
there is some variation according to cell type and layer shown in figure 2.6.
In layer 3 and layer 5 the excitatory cells have a higher firing rate than the
inhibitory cells. In layer 4, the ’input layer’ for bottom up connections, the
inhibitory cells have higher firing rates than the excitatory cells. Layer 3
excitatory cells have a slightly lower firing rate than the layer 5 excitatory
cells, whilst the layer 4 excitatory cells have a far lower firing rate than either
layer 3 or layer 5 excitatory cells. Layer 3 and layer 4 inhibitory cells have a
similar firing rate, whilst layer 5 inhibitory cells have a far lower firing rate
than layer 3 and layer 4 inhibitory cells. This suggests that the cell types in
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each layer may each have differing roles in processing information.
Returning to table 2.7 I have marked out two lines, the uppermost marks

the firing threshold where cells are either firing or silent. The lower line
marks the change in firing rate where the encoding of the input mean changes
from 2-3 spikes per unit increase to 12-13 spikes per unit increase. I have
also marked out twenty five points on the parameter space, five for each
particular value of standard deviation covering all the separate regions of
network behaviours identified from the field potential and firing rates.

Figure 2.8 shows the mean power spectral density of two simulated field
potentials illustrative of different regions of parameter space. The top plot is
typical of the response of the network with input parameters from the zero
or low firing rate region. α values are typically between 1.3 and 1.4 in this
region. bottom plot is typical of the response of the network in the regions
in which the firing rate is unrealistically high. α values are typically around
zero in this region, however at low input standard deviation near the low
firing rate condition the α value tends to be less than zero.

1/fα like behaviour has been demonstrated in biological neural networks
where α takes a value between 0.5 and 1.5 at frequencies below 40 Hz
(Novikov 1997). It has been hypothesized that this indicates a state of
self-organized criticality(Linkenkaer-Hansen, 2001), however it has also been
suggested that this is a consequence of filtering of neural signals through
the cortical tissue (Bedard, 2006). In this model it seems to arise from the
filtering of a white noise input through the membrane response function.

Field potential simulations from a network with a white noise standard
deviation of 0pA and then from each of these points in parameter space will
be looked at in detail over the subsequent six figures (2.9, 2.10, 2.11, 2.12,
2.13, 2.14)

Figure 2.9 shows the simulated field potential and the power spectral
density of the simulations with an input standard deviation of 0 pA and an
increasing mean. The simulated field potentials are completely flat until the
input passes the threshold of the individual cells. After this the network
shows oscillations at around 20 Hz modulated by a 1.5 Hz component and
then increasing in the next higher simulation to an unmodulated oscillation
of around 35 Hz. With no white noise the network tends to oscillate with
one or two strong dominant frequencies.

Figure 2.10 shows the field potential and the power spectral density of
the simulations with an input standard deviation of 580pA in table 2.7. The
input mean values of 90 pA (blue) and 120 pA (green) are situated in the
region where the mean value and the standard deviation of the field potential
directly encode the mean and the standard deviation of the input. The blue
field potential is in the region where no cells are firing. The green field
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Figure 2.6: The mean firing rate of the average cell in each cell class
and layer across the input parameter space. In all plots the input
parameter space is represented with the white noise input mean on the y-axis
ranging top to bottom from -270pA to 300pA in steps of 30pA, and the input
standard deviation on the x-axis ranging from 580pA to 2100pA in steps of
80pA. The left hand plots are the mean firing rates of the average excitatory
cells from each population. The right hand plots are the mean firing rates of
the average inhibitory cells from each population. Each layer is represented
with layer 3 at the top, layer 4 in the middle and layer 5 at the bottom.
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Figure 2.7: Average layer 5 excitatory cell firing rate across input
parametersThe input parameter space is represented with the white noise
input mean on the y-axis ranging top to bottom from -270pA to 300pA in
steps of 30pA, and the input standard deviation on the x-axis ranging from
580pA to 2100pA in steps of 80pA. The top line across parameter space
represents the threshold where the cells begin to fire. The bottom line across
parameter space represents the threshold where network firing increases at a
higher gradient. The blue numbers identify the parameter space sampled in
subsequent figures.
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Figure 2.8: 1/fα like properties of the power spectral density of the
simulated field potential In both figures the PSD of the signal is in blue.
The best fitting line between 3 and 40 Hz is in red with the magnitude given
in the linear formula. The upper black line represents 1/f−0.5 and the lower
black line represents 1/f−1.5. The top plot is an example of the low firing
rate condition network. The bottom plot represents the biologically unrealistic
high firing rate condition network.
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Figure 2.9: The simulated field potentials and PSDs of a selection
of input means with input standard deviation of 0 pA The top figure
shows the simulated field potentials with input standard deviation of 0pA and
five different input mean values. The bottom figure shows the Power spectral
density of simulated field potentials with input standard deviation of 0pA and
five different input mean values.
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Figure 2.10: The simulated field potentials and PSDs of a selection of
input means with input standard deviation of 580 pA The top figure
shows the simulated field potentials with input standard deviation of 580pA
and five different input mean values. The bottom figure shows the Power
spectral density of simulated field potentials with input standard deviation of
580pA and five different input mean values.
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potential is in the region where the cells are firing at a low rate. There is an
initial rise in the field potential voltage to a mean that is dependent upon
the input mean, with the green field potential higher than the blue. The
initial slope of the rising phase is higher depending upon the input mean.
The PSD of the blue and the green field potentials take a 1/f like shape with
no particular frequency largely deviating from this.

The input mean values of 150 pA (red), 210 pA (cyan), and 300 pA
(magenta) are in a different class of behaviour from the blue and green field
potentials. There is the initial rise where the slope increases with the input
mean, however this seems to reach a threshold point around -60 mV. This
is followed by a negative deflection to settle around a mean value that does
not follow the encoding of the field potentials that do not reach the -60
mV threshold. Although in this plot the mean value the field potential
settles around appears inversely proportional to the input mean figure 2.5
shows that this is not the case. The next most important feature is that the
field potential begins to oscillate around the mean with a single dominant
frequency. This is apparent in both the field potential plots and in the PSDs.
It appears that the dominant frequency increases as the input mean increases.
The red plot has a dominant frequency range of 15-40 Hz, possibly with
two or three major components in this range. The cyan plot has a dominant
frequency range from 45-75 Hz, possibly with two or three major components
in this range. The magenta plot has a dominant frequency range of 75-125
Hz, possibly with a number of components in this range. All three plots are
in the region of the parameter space where the firing rate of the network
increases by 12-13 Hz per cell per input mean unit. In this region there is
no dominant frequency in the input, along with the -60 mV threshold, the
nonlinear dependence of the field potential mean on the input mean and the
’dominant frequency’ of the field potential it would suggest that the network
is entering a computational state where its internal activity is dominating
the input activity in the field potential signal.

Figure 2.11 shows the field potential and the power spectral density of
the simulations with an input standard deviation of 900pA in table 2.7. The
features noted when discussing figure 2.10 hold with three main exceptions.
The network activity threshold under the higher input standard deviation is
reduced to a value between -62 and -61 mV. The range of the post network
threshold field potential mean is smaller than the with the smaller input
standard deviation. The dominant frequency content of the post network
threshold field potential, although still present is reduced. However there
appears to be a clearer multiple number of frequencies in the dominant fre-
quency range. The red plot has a peak at 20Hz and a separate peak at
35Hz. The cyan and magenta plots also appear to have separate peaks.
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Figure 2.11: The simulated field potentials and PSDs of a selection of
input means with input standard deviation of 900 pA The top figure
shows the simulated field potentials with input standard deviation of 900pA
and five different input mean values. The bottom figure shows the Power
spectral density of simulated field potentials with input standard deviation of
900pA and five different input mean values.
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Figure 2.12: The simulated field potentials and PSDs of a selection of
input means with input standard deviation of 1300 pA The top figure
shows the simulated field potentials with input standard deviation of 1300pA
and five different input mean values. The bottom figure shows the Power
spectral density of simulated field potentials with input standard deviation of
1300pA and five different input mean values.
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Figure 2.12 shows the field potential and the power spectral density of the
simulations with an input standard deviation of 1300pA in table 2.7. In these
plots the features of the network activity threshold are maintained. However
the network activity threshold has reduced to less than -62 mV and the post
network activity threshold field potential mean range has reduced again to
-62 mV. The oscillatory activity of the super threshold field potentials is no
longer visually apparent in the field potential, but suggests its self in the
PSDs. There are no longer dominant frequencies in the red plot below 50Hz,
but there are reduced frequencies at 80 Hz and 100 Hz. In the cyan plot
there is increased power between 50 and 100 Hz. In the magenta plot there
are increased frequencies in the >Hz range. The blue plot demonstrates the
reduction in the input mean required for the network to have a zero firing
rate with the increased input standard deviation.

Figure 2.13 shows the field potential and the power spectral density of the
simulations with an input standard deviation of 1700pA in table 2.7. In this
plot the network activity threshold has been further reduced to -64 mV. The
range of post network activity threshold mean has almost approached unity(cf
the discussion of encoding in the mean in figure 2.5). Increased frequency
content is only apparent in the magenta plot. The cyan PSD shows a reduced
power content at 40Hz. In this plot I selected three simulations that did
not reach the network activity threshold: input mean -90 pA (blue), -30 pA
(green), and 60 pA (red). The blue plot has a cell firing rate of zero and
the red plot has a low firing rate, the features of their field potentials after
200 ms are largely identical excluding the mean. This demonstrates that the
field potential is strongly determined by the input. The red plot is far less
like the other two due to its higher firing rate, this shows that even in the
sub network activity threshold region the network firing rate does have an
impact on the characteristics of the field potential. Although this is a single
trial it may also have an impact on the frequency content of the signal, as
there are some reduced powers at certain frequencies when compared to the
blue and green PSDs.

Figure 2.14 shows the field potential and the power spectral density of
the simulations with an input standard deviation of 2100pA in table 2.7. In
this region of parameter space the network activity threshold and mean have
reduced to a unity of -65 mV. The sub threshold simulations have a similar
representation of the input as in figure 2.13. All PSDs take a roughly 1/f
form with a number of frequencies reduced in a non systematic way.
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Figure 2.13: The simulated field potentials and PSDs of a selection of
input means with input standard deviation of 1700 pA The top figure
shows the simulated field potentials with input standard deviation of 1700pA
and five different input mean values. The bottom figure shows the Power
spectral density of simulated field potentials with input standard deviation of
1700pA and five different input mean values.
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Figure 2.14: The simulated field potentials and PSDs of a selection of
input means with input standard deviation of 2100 pA The top figure
shows the simulated field potentials with input standard deviation of 2100pA
and five different input mean values. The bottom figure shows the Power
spectral density of simulated field potentials with input standard deviation of
2100pA and five different input mean values.
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2.3.4 Discussion

In this section I have carried out a qualitative description of the network
where each cell is driven by an independent white noise current. In each
simulation the normalized white noise input to a particular cell would be
identical. All white noise signals were modified by two parameters, the mean,
which could be considered an additive DC current; and the standard devi-
ation, which would be a multiplicative weighting. I have carried out the
simulations included in this section using a number of white noise seeds and
network connection random number generator seeds and all qualitative ob-
servations reported here hold true.

Whilst a white noise is not biologically realistic I have chosen to use it
for a number of reasons. Ideally each neuron would have as its input synap-
tic contacts from something in the order of 1000 neurons with a small white
noise component representing thermal noise, misfiring ion channels and other
biological noise an order of magnitude smaller than an average post synaptic
current. However, determining the origin and the firing statistics of these
neurons would prove to be a task out with current anatomical and physi-
ological knowledge. This would result in a reduction of the input neurons
to a set of poisson generated action potentials. Firstly this would increase
simulation time and secondly this takes no account of the dendritic location
of the afferent synapse. The individual neuron models are one dimensional,
so there would have to be at least a weighting of groups of synaptic inputs
according to how distally they synapse from the cell body. As the LIF neu-
ron can be considered a model of the axon hillock, rather than the whole
cell I decided to model all nonthalamic input (which I introduce below) as
white noise as this gives membrane potential characteristics similar to that
of intracellular recordings from awake behaving animals.

Given that the input has been abstracted from biological reality the ques-
tion remains: how can we interpret the parameter space investigated in terms
of the biology of the cortical network? In the first instance I would posit that
the mean value of the input would represent the sum of asynchronous exci-
tatory and inhibitory postsynaptic potentials. As the regions of interest in
the parameter space are all in the positive input mean space, long distance
connections in the cortex are only excitatory, the connections from cortical
areas higher in the cortical hierarchy are generally distributed across the cells
and layers, and that spike timing contains less information for top down con-
nections, it can be assumed that the mean parameter may roughly represent
top down cortical input.

In the second instance I would posit that the standard deviation of the
input would represent something like the level of synchrony of local cortical
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connections. Increasing the standard deviation of the input will increase the
input amplitude at all frequencies, so any local frequency content will be
amplified, equivalent to increasing the number of synchronous excitatory or
inhibitory post synaptic potentials, dependent upon the phase of the locally
dominant frequency in the white noise. This random process is far from ideal
considering that local connections have been shown to have correlations in
firing times and should be dependent upon the firing of cells within the
simulated network. However, it is worth further investigation along this
dimension as we know that stochastic resonance is employed by the cortex
and we have no biological constraint to limit this abstracted parameter.

Based on these two assumptions I will now consider the behaviours of the
network across the parameter space. Figure 2.15 shows 7 areas in parameter
space where the input is encoded in different ways in the field potential and
mean firing rate of the cells. This figure has been assembled by eye for
illustrative purposes.

In region A there is a strong negative current, where a general inhibitory
signal is applied to the cells. The local synchronised signals increase only as
the inhibitory signal increases. Where there is a low level of local synchro-
nised cortical input there can be a small general excitatory current. In this
region the input mean, and possibly the combined input mean and standard
deviation are encoded in the field potential mean. The combined input mean
and standard deviation are encoded in the field potential standard deviation.
Nothing is encoded in the firing rate.

In region B there is a small contribution from local connections and a
small contribution from long range connections. In this region there is an en-
coding of the input mean in the mean of the field potential and the combined
signal is represented in both the standard deviation of the field potential and
the firing rate of the cells.

In region C there is a high contributions from local synapses and no
contribution from long range synapses. The input mean is directly encoded
in the field potential mean. This may be thought of as local inhibitory input
being encoded in the field potential mean. The combined input signal is
represented in the field potential standard deviation. The combined signal is
represented in the firing rate of the cells with each parameter unit increasing
the firing rate by an equal amount.

In region D there is a low to medium input contribution from local cortical
cells and a high contribution from distant cortical excitatory cells. This is
the region where local network activity dominates the firing rate and the
simulated field potential signal. The linear relationship between input mean
and simulated field potential brakes down and there appears to be a linear
relationship between input mean and the frequency of oscillations in the
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Figure 2.15: Behaviours of the networkA - the firing rate is zero, but
the simulated field potential mean represents the input mean and the input
standard deviation linearly. B - as region A, but with a low firing rate. C - a
low firing rate with a nonlinear representation of the input in the simulated
field potential standard deviation. D - a higher rate of increase in firing rate
according to input mean, oscillatory simulated field potentials and a nonlinear
representation of the input mean in the simulated field potential mean. E - a
higher rate of firing rate as the input mean increases, nonlinear representation
of the input mean in the simulated field potential standard deviation. F - very
high firing rates, flat power spectra and a small representation of the input
parameters in the simulated field potential standard deviation. G - high a
synchronous firing rate, no representation of the input parameters in the
simulated field potential.
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simulated field potential.
In region E there is a high input contribution from local cortical cells and

a medium to high contribution from distant cortical excitatory cells.
In region F there is a low input contribution from local cortical cells and a

high contribution from distant cortical excitatory cells. This region produces
flat power spectra and unrealistic high firing rates in the individual cells.
The input standard deviation is somewhat represented in the simulated field
potential standard deviation.

In region G there is a high input contribution from local cortical cells
and a high contribution from distant cortical excitatory cells. This region
produces flat power spectra and unrealistic high firing rates in the individual
cells.

In the subsequent two sections there are investigations into synaptic
weighting and network connectivity using inputs from across this parame-
ter space. However, by the criteria of realistic firing rates and simulated field
potential power spectra, in particular the prominence of oscillatory behaviour
and 1/f like features, further investigation of the model will be carried out
in the parameter space along and bisecting the two threshold lines where the
network transitions from zero firing rate through low firing rate to the point
where the local network activity dominates network activity signals over the
input activity.

2.4 An investigation into network scaling

2.4.1 Introduction

Is it possible to scale a network by increasing the synaptic weight? If so the
features identified in the previous section should be preserved.

2.4.2 Methods

2.4.2.1 Simulations

In this section the simulations carried out in section 2.3.2 were twice repeated
identically, with the exception that a synaptic weight was applied uniformly
to all synapses. The weighting values were 10 and 100.

2.4.2.2 Analysis

The same analysis was carried out on these simulations as in section 2.3.2.
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2.4.3 Results

2.4.3.1 Scaling using synaptic weights

Figure 2.16 shows the average value of the mean field potential for synaptic
weights of 10 and 100. The parameter space explored is the input Gaussian
white noise mean between -270 and 300 pA and the input Gaussian white
noise standard deviation between 580 and 2100 pA. With both the synaptic
weights investigated the region where there is no firing preserves the encod-
ing of input mean and standard deviation observed in the networks with a
synaptic weight of 1. Where there is a synaptic weight of 10 there is a small
region of low mean and high standard deviation where there is a very low
firing rate in the cells and the input parameters are encoded in the mean.
This region is not present where the synaptic weight is 100. In both synaptic
weights there is a distinct network activity threshold where no input param-
eters are encoded in the mean and all parameters result in the same fixed
mean. In this region the firing rate of the cells is between 417-430 Hz.

In figure 2.17 the standard deviation of the mean field potential is shown
in the same parameter space as in figure 2.16. In the non firing state the
encoding of the input parameters are the same as in the network with a
synaptic weight of 1. Along the threshold line of network activity the stan-
dard deviation increases towards that of an individual cell firing at maximal
rate. Simulations above this have a very low standard deviation approaching
zero as the input parameters increase.

2.4.4 Discussion

Below the network firing threshold level the network with increased synaptic
weights behaves in the same way as a network with unitary weights. This
is to be expected as the field potential is determined by the subthreshold
properties of the cells integrating the input. At the threshold there is a
region where there is maximal synchronised firing of the network around a
fixed mean, this is demonstrated by the high standard deviation. In this
situation network communication allows the cells to synchronise in maximal
firing. Above this threshold there is unsynchronised firing of the network as
each cell initially enters maximal firing at a time determined by the white
noise input.

In simulations carried out at values of synaptic weights of two or three
the properties of the network described with a unitary weighting are greatly
reduced or absent, with firing rates quickly reaching an unrealistic range. It
has been suggested that leaky integrate and fire cells perform individually
in a realistic range at a weighting of up to 3, however within a network the
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Figure 2.16: Average values of the mean field potential for synaptic
weights of 10 and 100(Top) the average value of the mean field potential
(mV) with a weighting of 10. (Bottom) the average value of the mean field
potential (mV) with a weighting of 100.
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Figure 2.17: The standard deviations of the mean field potential for
synaptic weights of 10 and 100(Top) the standard deviation of the mean
field potential (mV) with a weighting of 10. (Bottom) the standard deviation
of the mean field potential (mV) with a weighting of 100.
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biologically plausible activity response range is reduced and possible input
encoding regions are less distinct or absent(Burkitt 2006). As such scaling
of the network using increased weights was not a desirable avenue of investi-
gation.

2.5 An investigation into network connectiv-

ity

2.5.1 Introduction

Having posited in section 2.3 a region where network activity performs a
computation on the input this section will address the role of network con-
nectivity in the behaviour of the simulated field potential and the population
firing rates.

I will compare the network behaviour with that in section 2.3 in a net-
work with the connections intact, a network with all connections severed, a
network with only the excitatory connections and a network with only in-
hibitory connections. This will be in order to asses whether or not previous
observations are down to the passive membrane properties of the neurons,
full network activity or if the response properties are dominated by either
the inhibitory or the excitatory synaptic connections.

2.5.2 Methods

2.5.2.1 Simulations

In this section four sets of four hundred simulations were carried out. The
four sets had synaptic weights adjusted to switch the excitatory or inhibitory
synapses on or off. The values were, for excitatory and inhibitory synapses
(We and Wi): 1 1, 1 0, 0 1 and 0 0. The white noise parameters covered a
larger range than the previous simulations. The white noise mean range was
from -50 pA to 900 pA in steps of 50 pA. The white noise standard deviation
range was from 0 pA to 2280 pA in steps of 120 pA. The white noise seed
was the same for all simulations.

2.5.2.2 Analysis

All means and standard deviations were calculated as above. The power spec-
tral density of the simulated field potential was calculated using the Matlab
function periodogram. The instantaneous firing rate of the average cell from
each population was calculated by dividing the summed firing rate for each
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population by the number of cells in that population and then dividing by
the duration of the simulation segment.

2.5.3 Results

2.5.3.1 The mean and standard deviation of the simulated field
potential

Figure 2.18 show mean value of the simulated field potential across a larger
parameter space than in the previous sections. The a comparison between
the fully connected network and the disconnected network shows that the
most significant differences in the mean values are at the areas where there is
a low contribution from long range connections and a high contribution from
local synchronised connections, the top right of the plots; and a reduced
mean value for higher input means, in particular where there is a lower
contribution from synchronised local connections. The similarity between the
excitatory only network and the fully connected network shows a significant
contribution from the excitatory synapses. However there is a contribution
from the inhibitory only connections as the plots are not identical.

Figure 2.19 shows the mean values of the simulated field potential in par-
tially and fully connected networks with the disconnected values subtracted.

Immediately apparent from this figure is that the network activity con-
tribution to the output mean has an opposite effect depending upon whether
long range or local input dominates either side of a line of equilibrium that is
roughly perpendicular to the network activation threshold. The gradient of
this line is not identical in the case of the excitatory only and the inhibitory
only networks. The second feature of note is that the excitatory only net-
work drives the simulated field potential toward the negative on the left hand
side of this line and towards the positive on the right hand side, whilst the
inhibitory only network has the opposite polarity. In the excitatory only
network there is a peak in the mean for high local input and low long range
input. In the inhibitory only network there is a peak in the mean at the low
local input and near the network activity threshold. This is the region where
the network has been shown to produce high power oscillatory field potential
activity.

Figure 2.20 shows the standard deviation value of the simulated field
potential. The bimodal activity identified in the subtracted mean figure is
apparent in these standard deviation plots. The disconnected network shows
a high standard deviation in the left hand side region that is largely absent
from the excitatory only and fully connected network. This is reduced, but
still present in the inhibitory only network. Whilst the excitatory network
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Figure 2.18: The mean of the simulated field potential in all four
connectivity statesIn each of the four plots parameter space on the x-axis
is the input mean, top to bottom, from -50pA to 300pA in increments of 50pA
and the y axis is the input standard deviation, left to right, 0pA to 2280pA in
increments of 120pA. (Top left) both excitatory and inhibitory synapses are
disconnected. (Top right) the excitatory synapses are disconnected. (Bottom
left) the inhibitory synapses are disconnected. (Bottom right) all synapses
are connected.
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Figure 2.19: The means of the simulated field potential in partially
and fully connected networks with the disconnected values sub-
tracted In each of the three plots parameter space on the x-axis is the input
mean, top to bottom, from -50pA to 300pA in increments of 50pA and the
y axis is the input standard deviation, left to right, 0pA to 2280pA in incre-
ments of 120pA. (Top left) the fully connected network mean values with the
mean values of the disconnected network subtracted. (Top right) the excita-
tory connected network mean values with the mean values of the disconnected
network subtracted. (Bottom) the inhibitory connected network mean values
with the mean values of the disconnected network subtracted.
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Figure 2.20: The standard deviation of the simulated field potential
in all four connectivity states In each of the four plots parameter space
on the x-axis is the input mean, top to bottom, from -50pA to 300pA in
increments of 50pA and the y axis is the input standard deviation, left to
right, 0pA to 2280pA in increments of 120pA. (Top left) both excitatory and
inhibitory synapses are disconnected. (Top right) the excitatory synapses
are disconnected. (Bottom left) the inhibitory synapses are disconnected.
(Bottom right) all synapses are connected.
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more closely reflects the standard deviation distribution of the fully connected
network it should be noted that in the region of low local connection input
around the network activity threshold there is a higher standard deviation.
This suggests that the inhibitory cells contribute to the oscillatory nature
of the simulated field potential. The right hand side of the plots are largely
similar

Figure 2.21 shows the standard deviation values of the simulated field
potential in partially and fully connected networks with the disconnected
values subtracted. These figures are largely similar, however the higher stan-
dard deviation values around the network activity threshold on the left hand
side of the plot are notable. The fully connected network has significantly
higher standard deviation values in this region that in either of the partially
connected networks suggesting a synergistic interaction between the two cell
types.

2.5.3.2 The population firing rates

Figure 2.22 shows the mean firing rate of the average cell in each population
across the whole simulation time versus the input mean. In all populations
across all input mean the general trend is the lowest firing rate is in the
inhibitory only connected network followed by the disconnected network,
then the fully connected network and finally the highest firing rates in the
excitatory only network. The only exception to this is at the high input mean
in the layer 5 inhibitory cells, where the disconnected network cells fire at a
slightly higher rate than the fully connected network. The reduction in firing
rate between the disconnected network and the inhibitory only network is
approximately equal to the reduction in firing rate between the excitatory
only network and the fully connected network.

Where the input mean is less than approximately 300 pA the firing rate
of the cells are more sensitive to the local input than above this, where the
input mean is reflected linearly in the firing rate. It is also in this range that
the cell firing rates are within a biologically realistic instantaneous firing rate
range. The simulated field potential is oscillatory here too.

2.5.3.3 The simulated field potential and its power spectral den-
sity

In the figures presented in this section the simulated field potentials from
all four connectivity conditions will be presented along with their power
spectral densities from a named point in parameter state. In each axes the
Disconnected network will be represented with a red line. The fully con-
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Figure 2.21: The standard deviations of the simulated field potential
in partially and fully connected networks with the disconnected
values subtractedIn each of the three plots parameter space on the x-axis
is the input mean, top to bottom, from -50pA to 300pA in increments of 50pA
and the y axis is the input standard deviation, left to right, 0pA to 2280pA
in increments of 120pA. (Top left) the fully connected network standard de-
viation values with the standard deviation values of the disconnected network
subtracted. (Top right) the excitatory connected network standard deviation
values with the standard deviation values of the disconnected network sub-
tracted. (Bottom) the inhibitory connected network standard deviation values
with the standard deviation values of the disconnected network subtracted.
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Figure 2.22: The mean firing rate of the average cell in all popula-
tionsIn each figure the y-axis is the mean firing rate from 0Hz to 250Hz in
increments of 50Hz and the x-axis is the input mean from -30pA to 900pA
in increments of 100pA. The left hand plots are the excitatory cells, the right
hand plots are the inhibitory cells. The top plots are the layer 3 cells, the
middle plots are the layer 4 cells and the bottom plots are the layer 5 cells.
The red lines are the disconnected network simulations. The blue lines are
the fully connected network simulations. The green lines are the excitatory
only connected network simulations. The black lines are the inhibitory only
connected network simulations.
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nected network with a blue line. The excitatory only by a green line and the
inhibitory only network by a black line.

Figure 2.23 shows the network with a simple ramp input, i.e. the standard
deviation of the input is 0pA. In the disconnected network plot it is apparent
that there is a strong synchronised oscillation of around 20 Hz. This feature
is present in all network connectivity conditions with the inhibitory only net-
work damping this until it is significantly less prominent in the simulation
time window. In the excitatory only network the 20Hz signal becomes damp-
ened, and less sawtoothed in shape, but maintains its amplitude. In the fully
connected network it is amplitude modulated with an envelope frequency of
1.5 Hz.

Figure 2.24 shows the simulated field potential in a region of parameter
space where the cells have zero firing rate. All networks’ simulated field
potentials respond in the exact same way to the input. We can see from the
PSDs that they have a characteristic 1/fα power frequency relationship.

In figure 2.25 the oscillatory nature of the simulated field potential is ap-
parent. In all networks the initialisation of the network causes the simulated
field potential to rebound and oscillate. In the disconnected network the syn-
chronisation of the cells decays until about 450 ms, where it shows a signal
similar to the non firing network in figure 2.24. The inhibitory only net-
work desynchronises by 200 ms then begins to re synchronise at around 500
ms. The excitatory only network desynchronises until about 180 ms where it
reaches a persistent level of synchronisation for the remainder of the simula-
tion. The fully connected network desynchronises until around 220 ms where
it stabilizes at a slightly higher fundamental frequency than the excitatory
only network and with a slightly higher amplitude. In the power spectral
density plot was calculated from 200 - 1000 ms to remove the majority of the
onset synchronisation oscillation. The fully connected network has a larger
oscillatory power than the other networks. It has peaks that are correlated
with peaks in the excitatory only network at approximately 24 Hz, 40 Hz,
60 Hz and those that are not at 30 Hz, 48 Hz, 70 Hz and 90 Hz. There is a
peak in the inhibitory only network at 20 Hz and one at 30 Hz associated
with the fully connected network.

In figure 2.26 all network conditions have a higher fundamental frequency.
The disconnected network has a higher gain, but it still decays as it desyn-
chronises. The inhibitory only network oscillates between 100 and 500 ms,
desynchronises and the begins to oscillate between 800 and 900 ms. The
excitatory only network desynchronises to a stable level of synchronisation
around 100 ms. The fully connected network desynchronises to a stable level
by around 150 ms. In the power spectral density plot the fully connected
network has a peak around 40 Hz this is flanked at 35 Hz by the disconnected
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Figure 2.23: The simulated field potential and its PSD with input
mean of 200 pA and a standard deviation of 0 pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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Figure 2.24: The simulated field potential and its PSD with input
mean of 0 pA and a standard deviation of 120 pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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Figure 2.25: The simulated field potential and its PSD with input
mean of 200 pA and a standard deviation of 120pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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Figure 2.26: The simulated field potential and its PSD with input
mean of 250 pA and a standard deviation of 120 pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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network and at about 42 Hz by the excitatory only network. There is a peak
in the inhibitory only network between 20 and 35 Hz. Around 70 to 90 Hz
there is a peak in the fully connected network that is slightly correlated with
a peak in the excitatory only network.

In figures 2.27 and 2.28 the characteristics noted of figure 2.26 persist, but
shifted to a higher frequency band as the input mean increases. In addition
there emerges a low frequency synchronisation and de-synchronisation of each
of the partially or fully connected networks.

Figure 2.29 shows the simulated field potentials and their power spectral
densities with an input standard deviation of 1200 pA and an input of 0,
150 and 500 pA for all four network connectivities. At an input mean of 0
pA the network has a low firing rate and the simulated field potentials vary
slightly accordingly. Although they do largely follow the input. Their PSDs
are strongly correlated and follow a 1/f power frequency relationship.

At an input mean of 150 pA the networks enter a higher firing rate net-
work activation. The simulated field potentials of the fully connected and
excitatory connection only networks have a higher mean value and some sim-
ilarities in the low frequency high amplitude fluctuations. The disconnected
and the inhibitory only networks have a slightly lower mean and share some
low frequency fluctuations with the inhibitory only network amplifying the
negative deflections. Their PSDs do not have any distinctive power differ-
ences other than the marginal reduction in power at 60 Hz which is absent
in the excitatory only network.

At an input mean of 500 pA the simulated field potential means separate
further, with the fully connected and excitatory only networks having a more
negative mean. The PSDs take on a flatter white noise characteristic with a
notable power increase in the inhibitory only network between 40 and 100Hz.

Figure 2.30 shows the simulated field potentials and their power spectral
densities with an input standard deviation of 2280 pA and an input of 0, 150
and 400 pA for all four network connectivities. With an input mean of 0 pA
the simulated field potentials are separated by their mean valued, but have
highly correlated time series. The excitatory only and fully connected net-
works match each other especially strongly, and do the disconnected and in-
hibitory only networks. The PSDs are also very similar differing only slightly
from each other. They maintain a 1/f power frequency relationship.

With an input mean of 150 pA the simulated field potentials maintain
the correlation pattern as at 0 pA, however they are less strongly correlated.
The PSDs have a higher activity between 30 and 50 Hz with a flatter power
distribution above 50 Hz.

With an Input mean of 400 Hz there is little correlation between network
connectivities. The PSDs are largely flat above 25 Hz with the exception of
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Figure 2.27: The simulated field potential and its PSD with input
mean of 300 pA and a standard deviation of 120 pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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Figure 2.28: The simulated field potential and its PSD with input
mean of 500 pA and a standard deviation of 120 pA The top plot is the
simulated field potential, the bottom plot is the corresponding power spectral
density. In each plot the disconnected network is shown in red, the fully
connected network is shown in blue, the excitatory only connected network is
shown in green and the inhibitory only network is shown in black.
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Figure 2.29: The simulated field potentials and their PSDs with
input mean from 0 to 500 pA and a standard deviation of 1200
pA The left hand plots are the simulated field potentials, the right hand plots
are the power spectral densities. (Top) input mean 0pA, (middle) input mean
150pA and (bottom)input mean 500pA. In each plot the disconnected network
is shown in red, the fully connected network is shown in blue, the excitatory
only connected network is shown in green and the inhibitory only network is
shown in black.
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Figure 2.30: The simulated field potentials and their PSDs with
input mean from 0 to 500 pA and a standard deviation of 2280
pA The left hand plots are the simulated field potentials, the right hand plots
are the power spectral densities. (Top) input mean 0pA, (middle) input mean
150pA and (bottom)input mean 500pA. In each plot the disconnected network
is shown in red, the fully connected network is shown in blue, the excitatory
only connected network is shown in green and the inhibitory only network is
shown in black.
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a small peak at 40 Hz in the inhibitory only network.

2.5.4 Discussion

The primary observation from these simulations and analyses is that each
aspect of the simulated signal is variable according to the network connec-
tivity conditions. In all networks below the firing rate threshold the 1/f
like shape of the power spectra is dependent upon the white noise nature of
the input, above this the network shows oscillatory behaviour which deviates
from this shape. As the standard deviation of the input decreases individual
frequencies tend to dominate.

In the disconnected network synchronized oscillations tend to desynchro-
nise over time, at a quicker rate with lower frequencies. In the inhibitory only
network the oscillation amplitude is dampened and reduced in frequency but
synchronization is maintained for a longer period of time. In excitatory only
networks the oscillation frequency is increased and dampened, but sustained
for the duration of the simulation. In the fully connected network the fre-
quency content is slightly more complex showing influence from excitatory
and inhibitory networks with some emergent new frequencies.

In the next section I will explore the relationship between input mean and
network responses over a twenty trials under three input standard deviation
conditions, low, medium and high, in order to obtain a more statistically
robust impression of simulated field potential properties and laminar cell
firing rates.

2.6 Exploring over twenty trials

2.6.1 Introduction

In this section I explore the nature of the ongoing activity in multiple trials
with the same parameter conditions. Firstly I will look at the average power
spectral distribution of the simulated field potential according to input mean
in three input standard deviation conditions. I hypothesise from previous
results that there will be a sustained relationship between input mean and
the power spectral density distribution.

Secondly I explore the population firing rates under different input mean
conditions. I hypothesise that there will be a relationship between input
mean and population mean firing rate. A secondary hypothesis is that dur-
ing network activity the different populations will have different response
properties.
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Thirdly I explore the power spectral distribution derived from the mean
instantaneous firing rate from each population. I hypothesise that there
will be a relationship between the input mean and oscillatory firing rates.
A secondary hypothesis is that each cell population will have a different
response profile. A tertiary hypothesis is that if there is oscillatory content in
the firing rate it will relate to the oscillatory content of the ongoing simulated
field potential.

2.6.2 Methods

2.6.2.1 Simulations

In this section six sets of four hundred simulations were carried out. Two
sets had a Gaussian white noise input standard deviation of 580 pA, two
had a standard deviation of 1300 pA and two had a standard deviation of
2100 pA. In each of these pairs one set used a fully connected network with
weights We = 1 and Wi = -1. The second of the pair used a completely
disconnected network with the weights We = 0 and Wi = 0. Each set of
four hundred simulations consisted of twenty sets of twenty simulations with
identical Gaussian white noise input parameters and a different input seed.
Each of the twenty subsets had a different Gaussian white noise input mean.
For the Gaussian white noise standard deviation 580 pA sets the means were
drawn from the range 90 to 280 pA in steps of 10 pA. For the Gaussian white
noise standard deviation 1300 pA sets the means were drawn from the range
-14.5 to 280 pA in steps of 15.5 pA. For the Gaussian white noise standard
deviation 2100 pA sets the means were drawn from the range -128.5 to 280
pA in steps of 21.5 pA. All simulations used the same build seed.

2.6.2.2 Analysis

Power spectral distributions for these simulations were carried out using
FieldTrip(Oostenveld 2011). Either the simulated field potential or the in-
stantaneous firing rate for the average cell of each population was analysed.
The signal was downsampled at a sample rate of 2000 Hz and demeaned.
The power spectrum was calculated using a multi-taper fast Fourier trans-
form with a frequency of interest range from 0 - 150 Hz. The taper was a
hanning window and the output was in units power. The firing rates of the
cells were calculated as above.
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2.6.3 Results

2.6.3.1 The frequency power by input mean over a selection of
input standard deviations

In this analysis I seek to establish whether or not there is any regular rela-
tionship between the input mean and the frequency content of the simulated
field potential. Firstly I establish the case in a network with no white noise
input and then I look at the relationship between input mean and simulated
field potential under three white noise conditions.

Figure 2.31 shows the average power spectral density from twenty trials
at each of the twenty input mean values with an input standard deviation of
0 pA in disconnected and connected networks.

Below an input mean of 180 pA the network activity is flat, so there is
no variation in the power spectral density. Above this input mean there is a
clear strong fundamental frequency with the harmonic components preserved
in the disconnected network, and only the first harmonic component in the
connected network a significant feature.

As the input mean increases the fundamental frequency increases propor-
tionally. This figure offers a basis of comparison with subsequent figures.

Figure 2.32 shows the average power spectral density from twenty trials
at each of the twenty input mean values with an input standard deviation
of 580 pA in disconnected and connected networks. The top plot shows
the connected network. For input means below 130 pA the network cells
have an average firing rate of less than 20 Hz and exhibit a 1/f like power
frequency distribution. For values above 130 pA the network exhibits a
dominant oscillatory frequency beginning around 15 Hz increasing almost
linearly with the input mean to around 120 Hz. There is most power in
the low gamma range with power dropping off as it approaches the higher
gamma range. There is a less powerful second peak at the first harmonic of
the dominant frequency.

In comparison with figure 2.31 the trend of the fundamental frequency
extends to lower frequencies than in the white noise free network’s thresh-
old showing an increased range of input representation where white noise is
present. The relationship between input mean and fundamental frequency
shows a higher gradient in the network with a white noise component.

The bottom plot shows the disconnected network. The power range in
this plot is 1/5 of the range in the top plot. There is a peak in oscillation
frequency that increases with input mean in a roughly linear fashion that
is of a lower gradient than in the connected network. This has maximal
power around 45 Hz at input mean of 250 pA. It should be noted from the



CHAPTER 2. A NOVEL MECHANISTIC CORTICAL MODEL 90

Figure 2.31: The average power spectral density as input mean in-
creases in a connected and disconnected network. Input standard
deviation of 0 pA in each plot the mean power spectral density for each of
the twenty input mean parameter condition is shown with power being repre-
sented by the colour intensity. The top plot is the connected model network
and the bottom plot is the network with no intercellular connections.
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Figure 2.32: The average power spectral density as input mean in-
creases in a connected and disconnected network. Input standard
deviation of 580 pA in each plot the mean power spectral density for each
of the twenty input mean parameter condition is shown with power being rep-
resented by the colour intensity. The top plot is the connected model network
and the bottom plot is the network with no intercellular connections.
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previous section that the oscillatory content of the disconnected network is
not persistent across the whole simulation period. Rather, it is an artefact
of network initialization that decays in amplitude over time as the cell firing
desynchronises.

Figure 2.33 shows the average power spectral density from twenty trials
at each of the twenty input mean values with an input standard deviation
of 1300 pA in disconnected and connected networks. The top plot shows
the connected network. As in figure 2.32 with input means below 130 pA
the network cells have a low firing rate with the simulated field potential
exhibiting a 1/f like power frequency distribution. However, there is a slight
additional power in the frequency bands less than 10 Hz. With an input
mean greater than 130 pA the relationship between a peak in the power of the
frequency band and input mean shown in figure 2.32 is present, if the power
is somewhat diminished. The bottom plot shows the disconnected network.
Below input mean of 130 pA the network exhibits a similar distribution of
power to the disconnected network, however at a two magnitude reduction
in power. Above 130 pA there is a relationship between peak frequency and
input mean similar to that in figure 2.32 at a vastly reduced power.

Figure 2.34 shows the average power spectral density from twenty trials
at each of the twenty input mean values with an input standard deviation
of 2100 pA in disconnected and connected networks. In each of the plots
containing a white noise input the sub 130 pA mean characteristics shown
in figure 2.33 are similar. The frequency content relationship to the mean in
figure 2.32 is still marginally present at a greatly reduced power.

This analysis has shown that there is a relationship between input mean
and the fundamental frequency of the simulated field potential. In the case
where there is no white noise this is a linear relationship once the network
passes an “activation threshold” with the addition of white noise there is
an extension of this linear relationship at input means below the “activa-
tion threshold” of the ramp only network. Under the white noise condition
the slope of the linear relationship is increased in the connected network,
showing that local activity modulated the fundamental frequency of the in-
put response. There is also a region between 140 pA and 200 pA where the
power of the fundamental frequency is maximal. As the white noise stan-
dard deviation increases the fundamental frequency has a less strong power
representation in comparison to other frequencies. and the power spectral
density flattens out.

In the next section I will explore the population mean firing rates in
order to determine if this linear relationship between input mean is reflected
therein.
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Figure 2.33: The average power spectral density as input mean in-
creases in a connected and disconnected network. Input standard
deviation of 1300 pA in each plot the mean power spectral density for each
of the twenty input mean parameter condition is shown with power being rep-
resented by the colour intensity. The top plot is the connected model network
and the bottom plot is the network with no intercellular connections.
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Figure 2.34: The average power spectral density as input mean in-
creases in a connected and disconnected network. Input standard
deviation of 2100 pA in each plot the mean power spectral density for each
of the twenty input mean parameter condition is shown with power being rep-
resented by the colour intensity. The top plot is the connected model network
and the bottom plot is the network with no intercellular connections.
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2.6.3.2 The population firing rates

In this analysis I look at the relationship between the input mean and the
firing rate of the average cell from each population. I wish to establish if there
is any difference in response between each population that is an indicator of
local network activity.

Figure 2.35 shows the mean firing rate of the average cell under a constant
input in pA. Figure 2.36 shows the mean firing rate of the average cell in each
population according to input mean at input standard deviations of 580, 1300
and 2100 pA.

In all plots the firing rate of each cell type reaches the same value by an
input mean of 280 pA. Above this the relationship is linear as shown in figure
2.22. In the disconnected network plots all cells have the same firing rate to
input mean relationship. The plots are roughly sigmoidal in shape with an
increase in input standard deviation leading to in increase in firing rate and
the linear relationship beginning at a lower input mean.

In the connected network the average cell from each population has a
different mean firing rate. From highest to lowest we have the layer 5 exci-
tatory cell, the layer 3 excitatory cell, the layer 3 inhibitory cell, the layer 4
inhibitory cell, the layer 4 excitatory cell and the layer 5 inhibitory cell.

As the white noise standard deviation value increases the linear phase of
the sigmoid extends meaning the input mean is able to be better represented
at lower population firing rates.

In this analysis I have established that there is a relationship between
the input mean and the firing rate. Further to this the addition of a white
noise input allows a better representation of input mean in the low firing
rate condition of each cell, in particular in the less than 180 pA mean input
condition. In the disconnected networks the individual cells all show the
same firing rate relationship, however in the connected network each cell
type has a different relationship. Of particular note is the higher slope of the
projection neurons, layer 3 and 5 excitatory cells. This range would offer a
finer representation of variation in the input mean whilst staying within the
biologically realistic range of cell firing rate.

In the next section I will explore the power spectral distribution in each
cell population in order to establish whether the individual cell populations
show a relationship similar to the psd of the simulated field potential.

2.6.3.3 The oscillatory content of instantaneous cell firing rates

In this analysis I look at the power spectral density response in the firing rate
of each cell type in order to establish any relationship to the input mean.
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Figure 2.35: Mean cell firing rates by population under different
ramp input means The top plot shows the connected network and the bot-
tom plot shows the disconnected network. The blue lines are the excitatory
cell populations and the red lines are the inhibitory cell populations. The solid
lines are layer 3, the dashed lines are layer 4 and the dotted lines are layer
5.
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Figure 2.36: Mean cell firing rates by population under different
white noise input parameters The left hand plots are from the connected
model the right hand plots are from the disconnected model. (Top) input
standard deviation of 580pA. (Middle)input standard deviation of 1300pA.
(Bottom) input standard deviation of 2100pA. In all plots the blue lines are
the excitatory cell populations and the red lines are the inhibitory cell popula-
tions. The solid lines are layer 3, the dashed lines are layer 4 and the dotted
lines are layer 5.
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Figure 2.37: Average layer 5 excitatory cell’s instantaneous firing
rates over time by increasing input mean for individual simulations
The mean firing rate increases with the increasing input mean.
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Figure 2.37 shows the average layer 5 excitatory cell’s instantaneous firing
rates over time by increasing input mean for individual simulations. Each line
is a simulation with a different mean. As there is an increasing relationship
between mean firing rate and input mean they represent increasing input
means. The bottom three lines show no initial spike at onset, and can be
considered as the network operating below ’network activation.’

Figure 2.38 shows the power spectral distribution of the instantaneous
firing rate of the average cell from each layer and type of population in a
connected network with a d.c. current only. The figures are dominated by
a single fundamental frequency and its harmonics. The maximum power is
highest in the excitatory cells with layer 5 cells having the most high power.
The gradient of the relationship between the fundamental frequency and the
input mean value is slightly higher in the layer 5 cells with all inhibitory cells
having a lower gradient than their equivalent excitatory cells. In figure 2.39
the relationship is virtually the same, however the maximum power in each
plot is higher and has a more defined fundamental frequency. This is due to
the synchrony of the starting states of the cells.

Figure 2.40 shows the power spectral distribution of the instantaneous
firing rate of the average cell from each layer, by the input mean with input
standard deviation 580 pA in a connected network. For simulations below the
network activation threshold the distributions are flat. Above the threshold
there is a peak frequency at each input mean. The relationship between
input mean and peak frequency is reminiscent of the simulated field potential
relationship in subsection 2.6.3.1. The gradient of this relationship varies
according to the population layer and cell type. This is not the case in the
disconnected networks of figure 2.41 which are largely the same gradient.

In the connected network as the input white noise standard deviation
increases, in figures 2.42 and 2.44, the fundamental frequency becomes less
distinct with a variety of other frequencies carrying a similar power value
across cell types. However there is a remnant of the inter cell type funda-
mental frequency gradient relationships.

In this analysis I have been able to establish that the individual cell
populations show a periodic relationship to the input mean. This is related
to the simulated field potential, showing the same slope in the projection
neurons. However in the interneurons the slope is closer to that of the neurons
in the disconnected state. The layer 5 inhibitory neurons demonstrate a more
complex frequency composition than the other populations. As the white
noise is increased, again the psd flatten and there is less representation of
the fundamental frequency.
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Figure 2.38: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 0 pA in a connected network left hand plots are
excitatory cells, right hand plots are inhibitory cells. Top plots are layer 3
cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.39: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 0 pA in a disconnected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.40: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 580 pA in a connected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.41: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 580 pA in a disconnected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.42: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 1300 pA in a connected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.43: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 1300 pA in a disconnected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.44: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 2100 pA in a connected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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Figure 2.45: Power spectral distribution of the instantaneous firing
rate of the average cell from each layer by input mean with input
standard deviation 2100 pA in a disconnected network left hand plots
are excitatory cells, right hand plots are inhibitory cells. Top plots are layer
3 cells, middle plots are layer 4 cells and bottom plots are layer 5 cells. Each
plot has its own power range in its colour bar.
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2.6.4 Discussion

In this section I have further characterised the network’s response across pa-
rameter space and shown that there are regular changes in ongoing activity
dependent upon the balance of local and long distant synaptic input. In
particular the model suggests that during network activation there is a dom-
inant oscillatory frequency that ranges from 25 - 100 Hz. This is the gamma
range that is has been proposed as a marker for local processing in biological
networks(Fries, 2005).

It is interesting to note that the frequency is dependent upon the intensity
of the long distance input. This may suggest that in analysis of experimental
data it may be worth investigating encoding across a wider range of frequen-
cies than the usual narrow band.

The investigation into population firing rates and frequency content strongly
support the use of laminar structure in modelling as each populations ap-
pears to have a different encoding scheme and given the frequency content
disparity, suggests a different role for each population in computation.

All the regularities in the network are reduced when the synchronised local
input is introduced through the increased white noise standard deviation.
This suggests that there is an inhibition of encoding when a neighbouring
cortical area is activated. This would suggest that any spike timing specificity
is disrupted and that there is a switch to a rate coding scheme.

2.7 Chapter summary

In this chapter I have introduced a novel mechanistic cortical model. I have
shown that under an independent Gaussian white noise input, in certain pa-
rameter ranges the network exhibits a number of characteristics in broad
commonality with biological cortical networks. In particular that there is a
threshold where the local network becomes active and performs a computa-
tion on the input. This activation of a local network has been proposed as a
mechanism in neural communication(Fries, 2005).

I have demonstrated that the network behaves differently under vary-
ing input conditions, which I suggest represent a balance between local and
long distant inputs to a cortical area. In particular when long range inputs
impinge on the local network when there are low contributions from the sur-
rounding cortex, the simulated network exhibits oscillatory behaviour within
the same frequency range observed in biological local field potentials. When
local inputs synchronise there is an inhibition of oscillatory behaviour in the
network’s field potential. This may be similar to centre-surround inhibition
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observed in columnar organised neocortex(Kandel, 2000).
By isolating synaptic connectivity I have shown that although not all cell

types generate a field potential, each cell type makes a contribution to the to
the firing rate, and as such the information processing, of the network and
to the oscillatory power and frequency of the network.

I believe that these initial observations support the verification of the
model as being representative of a cortical network and its behaviour. When
analysed on a single trial basis there are already some distinguishing features
and regularities emerging in the network that merit further investigation.

In the next chapter I will introduce a sensory input and dynamically ex-
plore the input mean parameter space to explore non-static top-down cortico-
cortical connections.



Chapter 3

Introducing a bottom up signal
to the model

3.1 Chapter introduction

In this chapter I will explore the mean response of the network over multiple
trials of a range of ongoing activity parameter conditions. The Gaussian
white noise input mean will be considered as a corollary of intra cortical
input. The Gaussian white noise input standard deviation will be considered
as a rough representation of local synchronised synaptic input.

Firstly I will consider the introduction of a simulated bottom up, or sen-
sory input to the network over the three input white noise conditions pa-
rameter space explored in the final section of the previous chapter, 580pA,
1300pA and 2100pA. The sensory input is provided by Poisson spike gener-
ators to the input layers of the network as detailed in figure 2.1. The mean
firing rate of these cells range from 0 to 100 Hz.

This input allows an evoked potential to be derived from each stimulus
condition, an ’evoked firing rate’ from each population of cells and inspection
of the mean time frequency response in both the power and phase dimensions.
Further to this an information analysis of the relationship between sensory
input and network response is carried out on the simulated field potential, the
instantaneous firing rate of each population of cells and the time frequency
power and phase of the simulated field potential.

In the second section I consider that the static mean representing intra-
cortical input to the local network does not represent the oscillatory nature
of long range connectivity observed experimentally. As such I introduce a
sinusoidal mean to the network whilst maintaining a white noise input of
580pA. This sinusoidal input ranges across the mean levels explored in the
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previous section and has 4 frequency conditions: 5 Hz, 10 Hz, 20 Hz and
40 Hz. I then investigate the relationship between a sensory input and the
phase of the oscillatory intracortical input in the local network.

I then perform an analysis of the results in terms of the evoked potential,
the evoked firing rate in each population and the relative mean power of the
time frequency response. Subsequently I carry out an information analysis
of the simulated field potential time series, the firing rate in each population,
the time frequency response power and the time frequency response phase.

Information theory is the mathematical theory of communication estab-
lished by Shannon. (Shannon, 1948) It has been used to quantify the amount
of stimulus linked information in measurable neural signals and address ques-
tions of neural encoding. In particular spiking data and more recently LFPs
and other field signals. (Arabzadeh, 2004; Montemurro, 2008; Magri 2009)
Information theory results in neurophysiological data can suffer from a sys-
tematic error due to limited sampling, however a number of techniques have
recently been developed to alleviate this bias. (Panzeri, 2007; Panzeri, 1996;
Paninski, 2003; Nemenman 2004; Montemurro, 2007) These techniques have
been packaged together in a Matlab toolbox and will be used for analysis in
this and the subsequent chapter (Magri, 2009).

3.2 The introduction of a sensory input

3.2.1 Introduction

In this section I explore the response of the network to a bottom up or
sensory input in the same parameter space as the previous section. The
input is provided by a group of 40 Poisson spike generators feeding into the
network for 100 ms according to the input connectivity described in figure
2.1. The input frequency conditions are from 0 -100 Hz in steps of 10 Hz.

Firstly I look at the evoked potentials from the simulated field potentials
under different sensory input conditions, input means and connected and
disconnected networks in different input standard deviations. I hypothesise
that there will be a dependence on the sensory input frequency and input
mean. A secondary hypothesis is that the shape of the evoked potential will
be more complex as the network enters the network activity range.

Secondly I look at the evoked instantaneous firing rates of each popu-
lation in response to a sensory input. I hypothesise that each population
will respond differently to the input. A secondary hypothesis is that there
will be evidence of information flow in the network based upon the timing of
maximal firing rates.
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Thirdly I look at the time frequency response power of the simulated field
potential. I hypothesise that there will be input mean dependent variability
in the structure of the time frequency power.

Fourthly I look at the time frequency response phase of the simulated
field potential. I hypothesise that there will be evidence of phase resetting
in different frequency bands associated with the sensory input. A secondary
hypothesis is that there will be phase locking between frequency bands.

Next I perform an information analysis across time of a number of network
output metrics. Firstly I look at the information content across time in
the raw simulated field potential signal. I hypothesise that there will be a
stimulus related increase in power. A secondary hypothesis is that there will
be structural differences in the information content according to the white
noise mean value.

Secondly I look at the information content in the instantaneous firing rate
in each cell population. I hypothesise that the information will be represented
differently according to the population the cell comes from. A secondary hy-
pothesis is that there will be a different response in each population according
to the input mean.

Thirdly I look at the information content in the time frequency response
power. I hypothesise that different frequency bands will contain different
mutual information values. A secondary hypothesis is that the information
content will respond to different aspects of the stimulus. A tertiary hypoth-
esis is that there will be evidence of different information content according
to network activation state.

Lastly I look at the mutual information between sensory input and the
time frequency phase. I hypothesise that there will be increased information
in the phase. A secondary hypothesis is that this information will vary over
the duration of the stimulus.

3.2.2 Methods

3.2.2.1 Simulations

In this section the set of six times four hundred simulations of the previous
section were carried out ten times with the addition of a bottom up synaptic
input with increasing firing rates. The bottom up input was provided by
forty NEST spike generator models connected to the network as described
in(Haeusler and Maass). The independent spike train for each spike generator
was generated in Matlab using a poisson process. The firing rate of the input
cells ranged from 0 to 100Hz increasing in steps of 10 Hz. In each of the
twenty simulations where all parameters were identical, the spike generators
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were given a different seed. The duration of the bottom up input was 100ms
from simulation time 500ms to 600ms.

Combined with the simulations from the previous section the data set
can be thought of as a three dimensional input parameter space: Input mean
(20)X Input standard deviation (3)X bottom up input frequency (11). Each
point in the parameter space has 20 simulations each with one of twenty
independent randomly generated white noise and synaptic inputs.

3.2.2.2 Analysis

Evoked potentials and evoked instantaneous firing rates for each parameter
space point were made using FieldTrip(Oostenveld, 2011). Each of the twenty
simulation time series, from 100 to 1000 ms, were downsampled to 2000Hz
and demeaned. Then they were averaged to give the evoked potential.

The mean time frequency power for each parameter space point was cal-
culated with FieldTrip. Each of the twenty simulation time series, from 100
to 1000 ms, were downsampled to 2000Hz and demeaned. A time frequency
matrix was calculated for each individual time series. This was calculated
using the multi-taper convolution method with a hanning window of three
times the wavelength of the frequency investigated. The frequencies of in-
terest were integer values between one and one hundred hertz. The time
steps of interest were from 100ms to 1000ms in 10 ms steps. All of the time
frequency matrices were combined to give the mean time frequency power.

The mean time frequency phase was calculated using FieldTrip. Each of
the twenty simulation time series, from 100 to 1000 ms, were downsampled
to 2000Hz and demeaned. A time frequency matrix was calculated for each
individual time series. This was calculated using the multi-taper convolution
method with a hanning window of three times the wavelength of the fre-
quency investigated. The frequencies of interest were integer values between
one and one hundred hertz. The time steps of interest were from 100ms to
1000ms in 1 ms steps. The Fourier value was returned and the phase angle
was computed using the Matlab ’angle’ function. The phase angle means
and significance were tested using the circular statistics toolbox (Berens,
2009). Where significance was tested using the parametric Watson-Williams
multi-sample test for equal means with a significance of p <0.01.

The mutual information between the instantaneous value of the simulated
field potential or the firing rate and the frequency of bottom up synaptic in-
put was calculated using the Information Breakdown ToolBox (ibTB)(Magri,
2009). For each time step at each input mean value and input standard
deviation value, twenty trials in each of the eleven input frequency condi-
tions were segmented into ten equal bins and the mutual information cal-
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culated. The direct method and the Panzeri Treves bias correction method
was used(Panzeri, 1996). In order to establish significance in the informa-
tion measures the bootstrap algorithm was performed 20 time and Matlab’s
ttest function was carried out between the mutual information and the boot-
strapped values with a significance of P <0.05.

The mutual information between the frequency power and the bottom up
input frequency, and the mutual information between the frequency phase
and the bottom up input frequency were calculated at each time step as
above. The individual trial time frequency values were used.

3.2.3 Results

3.2.3.1 Evoked potentials

In this analysis I present the evoked potentials of a number of input parameter
conditions in a connected and disconnected network. This is with the view
of establishing whether or not there is a network response in the simulated
field potential when a bottom up input is introduced to the network.

Figure 3.1 shows the evoked potential with input cells firing at 10 Hz and
white noise standard deviation of 580 pA with a varying input mean in a
connected network. Figure 3.2 shows the evoked potential in a disconnected
network. Any contribution to the evoked potential from the bottom up input
is of the same magnitude and standard deviation as that from the ongoing
activity. In the connected network with an input mean of 140pA there is
a larger overall standard deviation than in the disconnected network. This
represents the network in a higher synchronized oscillatory state.

Figure 3.3 shows the evoked potential with input cells firing at 40 Hz and
white noise standard deviation of 580 pA with input varying input means.
Figure 3.4 shows the evoked potential in the disconnected network under the
same conditions.

With the bottom up input frequency of 40 Hz there is an evoked potential
at almost all conditions. When the white noise input mean is 100 pA there is
an immediate positive deflection to a plateau with a return to the mean after
the offset. This is present in both the connected and disconnected networks,
although it is more pronounced in the connected network.

When the white noise input mean is at 120 pA there is an immediate
small positive deflection during the bottom up input in the disconnected
network. In the connected network after approximately 20 ms there is a
positive deflection reaching a plateau with a return to the mean after the
bottom up input with a slight overshoot and a return the mean.

When the white noise input mean is at 140 pA the disconnected network
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Figure 3.1: The evoked potential with input cells firing at 10 Hz and
white noise standard deviation of 580 pA in a connected network
in all four subplots the evoked potential is shown in blue whilst the evoked po-
tential plus and minus one standard deviation is shaded in grey. The sensory
input was applied between 0.4 and 0.5 seconds. the top left subplot shows the
condition with an input mean of 100pA, the top right 120pA, the bottom left
140pA and the bottom right 240pA
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Figure 3.2: The evoked potential with input cells firing at 10 Hz
and white noise standard deviation of 580 pA in a disconnected
network in all four subplots the evoked potential is shown in blue whilst the
evoked potential plus and minus one standard deviation is shaded in grey. The
sensory input was applied between 0.4 and 0.5 seconds. the top left subplot
shows the condition with an input mean of 100pA, the top right 120pA, the
bottom left 140pA and the bottom right 240pA
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Figure 3.3: The evoked potential with input cells firing at 40 Hz
and white noise standard deviation of 580 pA in all four subplots the
evoked potential is shown in blue whilst the evoked potential plus and minus
one standard deviation is shaded in grey. The sensory input was applied
between 0.4 and 0.5 seconds. the top left subplot shows the condition with
an input mean of 100pA, the top right 120pA, the bottom left 140pA and the
bottom right 240pA
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Figure 3.4: The evoked potential with input cells firing at 40 Hz
and white noise standard deviation of 580 pA in a disconnected
network in all four subplots the evoked potential is shown in blue whilst the
evoked potential plus and minus one standard deviation is shaded in grey. The
sensory input was applied between 0.4 and 0.5 seconds. the top left subplot
shows the condition with an input mean of 100pA, the top right 120pA, the
bottom left 140pA and the bottom right 240pA
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has a very small positive deflection with a sharper post stimulus return to the
mean, however this is within the range of the preceding standard deviation.
In the connected network after approximately 30 ms there is a large negative
deflection to a plateau where there is a short period of oscillation. About
15 ms after stimulus offset there is a return to mean with a slight positive
overshoot.

When the white noise input mean is 240 pA there is a slight stimulus
related offset effect in the disconnected network. In the connected network
there is a slight negative deflection within the standard deviation range of
the prestimulus condition.

Figure 3.5 shows the evoked potential with input cells firing at 100 Hz and
white noise standard deviation of 580 pA with varying input mean. Figure
3.6 shows the evoked potentials in the disconnected networks.

When the white noise input mean is 100 pA there is an immediate pos-
itive deflection to a plateau with a return to the mean at stimulus offset in
the disconnected network. In the connected network there is an immediate
positive deflection with a sharp gradient until about 40 ms then there is a
continued positive deflection at a lower gradient until stimulus offset when
there is a decay to the mean.

When the white noise input mean is 120 pA there is an immediate pos-
itive deflection to a plateau with a return to the mean at stimulus offset in
the disconnected network. In the connected network after approximately 15
ms there is a positive deflection to a peak after which there is a negative
deflection to a plateau less than the mean value. At stimulus offset there is
a negative deflection to a plateau for approximately 40 ms then there is a
return to the mean value.

When the white noise input mean is 140 pA there is no noticeable effect
in the disconnected network. In the connected network after approximately
15 ms there is a large sharp negative deflection until a peak around 45 ms
when there is a smaller sharp positive deflection to a peak followed by a
negative deflection to a peak immediately before stimulus offset where there
is a positive deflection extending beyond stimulus offset. Approximately 10
ms post stimulus the gradient of the positive deflection increases as it returns
to the mean with a small positive overshoot. The remainder of the simulation
appears to have a stronger oscillatory content than those where the stimulus
input was 10 or 40 Hz.

When the white noise input mean is 240 pA there is a very slight neg-
ative deflection during the stimulus period in the disconnected network. In
the connected network there is a slightly larger negative deflection for the
duration of the input with a reduction of ongoing oscillations.

Figure 3.7 shows the evoked potential with input cells firing at 80 Hz and
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Figure 3.5: The evoked potential with input cells firing at 100 Hz
and white noise standard deviation of 580 pA in all four subplots the
evoked potential is shown in blue whilst the evoked potential plus and minus
one standard deviation is shaded in grey. The sensory input was applied
between 0.4 and 0.5 seconds. the top left subplot shows the condition with
an input mean of 100pA, the top right 120pA, the bottom left 140pA and the
bottom right 240pA
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Figure 3.6: The evoked potential with input cells firing at 100 Hz
and white noise standard deviation of 580 pA in a disconnected
network in all four subplots the evoked potential is shown in blue whilst the
evoked potential plus and minus one standard deviation is shaded in grey. The
sensory input was applied between 0.4 and 0.5 seconds. the top left subplot
shows the condition with an input mean of 100pA, the top right 120pA, the
bottom left 140pA and the bottom right 240pA
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Figure 3.7: The evoked potential with input cells firing at 80 Hz
and white noise standard deviation of 1300 pA in all four subplots the
evoked potential is shown in blue whilst the evoked potential plus and minus
one standard deviation is shaded in grey. The sensory input was applied
between 0.4 and 0.5 seconds. the top left subplot shows the condition with an
input mean of -14.5pA, the top right 47.5pA, the bottom left 125pA and the
bottom right 233.5pA
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Figure 3.8: The evoked potential with input cells firing at 80 Hz
and white noise standard deviation of 1300 pA in a disconnected
network in all four subplots the evoked potential is shown in blue whilst the
evoked potential plus and minus one standard deviation is shaded in grey. The
sensory input was applied between 0.4 and 0.5 seconds. the top left subplot
shows the condition with an input mean of -14.5pA, the top right 47.5pA, the
bottom left 125pA and the bottom right 233.5pA
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white noise standard deviation of 1300 pA with varying input means. Figure
3.8 shows the evoked potential in the disconnected network.

When the white noise input mean is -14.5 pA in both networks there is an
immediate positive deflection with a reducing gradient until stimulus offset
where there is a negative deflection to the mean.

When the white noise input mean is 47.5 pA in the disconnected network
there is an immediate positive deflection to a plateau until stimulus offset
where there is a negative deflection to the mean. In the connected network
after about 10 ms there is a positive deflection to a small peak where there
is a short negative deflection followed by a second positive deflection, with
a lower gradient than the first, so a peak where there is a slight negative
deflection until around 10 ms post stimulus where there is a decay to the
mean.

When the white noise input mean is 125 pA in both networks there is
a slight positive deflection to a plateau until stimulus offset when there is a
return to the mean. This is more pronounce in the disconnected network.
In the connected network there is a slight negative deflection 10 ms before
stimulus offset followed by a positive peak and an apparent reduction in
oscillation until 90 ms post stimulus offset. These are within the range of
the prestimulus standard deviation.

When the white noise mean is 233.5 pA there is no noticeable effect in
the disconnected network. In the connected network there is a small negative
deflection and return to the mean during stimulus time. These are within
the range of the prestimulus standard deviation.

Figure 3.7 shows the evoked potential with input cells firing at 80 Hz and
white noise standard deviation of 2100 pA with varying input means. Figure
3.8 shows the evoked potential in the disconnected network.

When the white noise input mean is -128 pA there is a virtually identical
positive deflection towards a plateaux and the a return to the mean in both
the connected and the disconnected networks.

When the white noise input mean is 22 pA there is an immediate slight
positive deflection and a return to the mean at stimulus offset in the discon-
nected network. In the connected network after about 10 ms there is a sharp
positive deflection with a reduction in gradient to a plateau until stimulus
offset where there is a decay to the mean over up to 200 ms.

When the white noise input mean is 151 pA there is no noticeable effect
in the disconnected network. In the connected network there is a positive
deflection to a plateau with a quick deflection to the mean at stimulus offset.
This is within the prestimulus standard deviation range.

When the white noise input mean is 237 pA there is no noticeable effect
in either network.
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Figure 3.9: The evoked potential with input cells firing at 80 Hz
and white noise standard deviation of 2100 pA in all four subplots the
evoked potential is shown in blue whilst the evoked potential plus and minus
one standard deviation is shaded in grey. The sensory input was applied
between 0.4 and 0.5 seconds. the top left subplot shows the condition with an
input mean of 22pA, the top right 128.5pA, the bottom left 151pA and the
bottom right 237pA
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Figure 3.10: The evoked potential with input cells firing at 80 Hz
and white noise standard deviation of 2100 pA in a disconnected
network in all four subplots the evoked potential is shown in blue whilst the
evoked potential plus and minus one standard deviation is shaded in grey. The
sensory input was applied between 0.4 and 0.5 seconds. the top left subplot
shows the condition with an input mean of 22pA, the top right -128.5pA, the
bottom left 151pA and the bottom right 237pA
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Overall each of the network inputs conditions produce a response to
bottom up input, with differences between the disconnected and connected
networks. However it is only under certain conditions that the amplitude
changes in the evoked potential are larger than one standard deviation. In
the connected networks this tends to be in the conditions where the white
noise input mean is round the “network activation” threshold. In the con-
ditions where the white noise standard deviation is 1300 and 2100 pA this
produces a deflection from the stimulus mean and a return to that mean.
In the 580 pA condition there are more complex responses, particularly at
120 pA input mean where the response is biphasic and at 140 pA where the
evoked potential deflects in a direction opposite to all other conditions. In
the next analysis I will look for similar features in the evoked firing rate.

3.2.3.2 Evoked firing rate

In this section I will present the evoked firing rates across each of the six
population cell types in order to establish whether individual cell types have
varying responses to a bottom up input.

Figure 3.11 shows the evoked firing rate of the average cell from each pop-
ulation with input cells firing at 100 Hz and white noise standard deviation
of 580 pA. Figure 3.12 shows the evoked firing rate in the disconnected net-
work. These plots correspond with the evoked potentials presented in figure
3.5.

All disconnected networks show a rise to a new mean value with a return
to the original mean value post stimulus.

When the white noise input mean is 100 pA the average firing rate of
all cell populations is less than 2 Hz as shown in figure 2.36. The strongest
bottom up input is to the layer 4 excitatory cells which see an increase in
firing rate to about 8 Hz after about 10 ms. This is roughly sustained until
about 70 ms where its reduced to about 4 Hz for 10 ms then returning to
about 8 Hz until about 10 ms after stimulus offset. Layer 4 inhibitory cells
see a doubling of firing rate to about 4 Hz after about 10 ms. This is roughly
sustained until about 60 ms where there is a short increase to about 10 Hz
followed by a reduction to about 2 Hz for 10 ms followed by a return to
about 4 Hz until a return to the mean at stimulus offset. Layer 3 and 5
excitatory cells have a ramped increase in firing rate until stimulus offset.
Layer 3 reaches about 8 Hz and layer 5 reaches about 4 Hz. Layer 3 and
5 inhibitory cells maintain their firing rate during the stimulus but have a
reduced standard deviation of instantaneous firing rates. Layer 5 inhibitory
cells double in firing rate for about 20 ms post stimulus.

When the white noise input mean is 120 pA the average firing rate of all
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Figure 3.11: The evoked firing rate of the average cell from each
population with input cells firing at 100 Hz and white noise stan-
dard deviation of 580 pA in each of the four plots the subplots from top
to bottom are the excitatory layer 3 cells, the inhibitory layer 3 cells, the ex-
citatory layer 4 cells, the inhibitory layer 4 cells, the excitatory layer 5 cells
and the inhibitory layer 5 cells. Each plot has been normalized. The input
was delivered between 0.4 and 0.5 seconds. The top left plot is the condition
where the white noise input mean is 100pA, the top right 120 pA, the bottom
left 140pA and the bottom right 240pA.
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Figure 3.12: The evoked firing rate of the average cell from each
population with input cells firing at 100 Hz and white noise stan-
dard deviation of 580 pA in a disconnected network in each of the
four plots the subplots from top to bottom are the excitatory layer 3 cells,
the inhibitory layer 3 cells, the excitatory layer 4 cells, the inhibitory layer 4
cells, the excitatory layer 5 cells and the inhibitory layer 5 cells. Each plot
has been normalized. The input was delivered between 0.4 and 0.5 seconds.
The top left plot is the condition where the white noise input mean is 100pA,
the top right 120 pA, the bottom left 140pA and the bottom right 240pA.
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cell populations is less than 5 Hz as shown in figure 2.36. Layer 4 excitatory
cells rise to a firing rate of about 17 Hz by 20 ms, maintain this with some
fluctuations until stimulus offset then return to the mean value over 20 ms.
Layer 4 inhibitory cells rise to a firing rate of about 12 Hz and reduce slowly,
with some fluctuations, to about 8 Hz by stimulus offset. There is a slight
reduction of firing rate to about 6 Hz for 20 ms, then a drop below mean for
about 10 ms returning to mean firing rate about 35 ms post stimulus. The
layer 3 excitatory cells have a slow rise in firing rate from mean at 10 ms
from stimulus onset to about 20 Hz at around 50 ms. This rate is maintained
until stimulus offset when there is a decay to mean over about 35 ms. The
layer 3 inhibitory cells have a ramped increase in firing rate to about 10 Hz
at stimulus offset, where it decays to mean over about 30 ms. The layer 5
excitatory cells have a ramped increase in firing rate to about 25 Hz at about
80 ms followed by a ramped decrease to about 18 Hz at 20 ms post stimulus
followed by a decay to mean over about 10 ms. The layer 5 inhibitory cells
have a slight ramped increase to about 7 Hz at stimulus offset after which
there is a decay back to mean over about 20 ms.

When the white noise input mean is 140 pA the average firing rate of all
cell populations ranges from 15 - 5 Hz as shown in figure 2.36. There is a
common structure to five of the six cell populations with a latency according
to cell population. In layer 3, 4 and 5 excitatory there is an initial sharp rise
in firing rate to a peak followed by a drop to a plateau for the duration of
the stimulus followed by a decay back to the mean. This may be the case in
layer 5 inhibitory cells too, but the increase in firing rate is slight. The onset
in this structure is layer 4 excitatory cells about 5 ms, layer 4 inhibitory cells
about 10 ms, layer 3 excitatory cells about 15 ms, layer 3 inhibitory cells
about 20 ms, layer 5 excitatory cells about 25 ms and layer 5 inhibitory cells
reach a maximum firing rate about 50 ms. The offset decay also follow the
layer 4, 3 then 5 pattern, with inhibitory cell firing rates taking longer to
decay than the excitatory cells of the same layer.

When the white noise input mean is 240 pA the average firing rate of
all cell populations ranges from 90 - 35 Hz as shown in figure 2.36. All
cell layers show a slight increase in firing rate during stimulus onset with
layer 4 excitatory cells reaching their plateau slightly earlier than the other
populations.

Figure 3.13 shows the evoked firing rate of the average cell from each
population with input cells firing at 80 Hz and white noise standard deviation
of 1300 pA. Figure 3.14 shows the evoked firing rate in the disconnected
network. These plots correspond with the evoked potentials presented in
figure 3.7.

All disconnected networks show a rise to a new mean value with a return
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Figure 3.13: The evoked firing rate of the average cell from each pop-
ulation with input cells firing at 80 Hz and white noise standard
deviation of 1300 pA in each of the four plots the subplots from top to
bottom are the excitatory layer 3 cells, the inhibitory layer 3 cells, the excita-
tory layer 4 cells, the inhibitory layer 4 cells, the excitatory layer 5 cells and
the inhibitory layer 5 cells. Each plot has been normalized. The input was
delivered between 0.4 and 0.5 seconds. The top left plot is the condition where
the white noise input mean is -14.5pA, the top right 47.5pA, the bottom left
125pA and the bottom right 233.5pA.
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Figure 3.14: The evoked firing rate of the average cell from each
population with input cells firing at 80 Hz and white noise standard
deviation of 1300 pA in a disconnected network in each of the four
plots the subplots from top to bottom are the excitatory layer 3 cells, the
inhibitory layer 3 cells, the excitatory layer 4 cells, the inhibitory layer 4
cells, the excitatory layer 5 cells and the inhibitory layer 5 cells. Each plot
has been normalized. The input was delivered between 0.4 and 0.5 seconds.
The top left plot is the condition where the white noise input mean is -14.5pA,
the top right 47.5pA, the bottom left 125pA and the bottom right 233.5pA.
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to the original mean value post stimulus.
When the white noise input mean is -14.5 pA the average firing rate of all

cell populations is less than 2 Hz as shown in figure 2.36. There is very little
structure to the stimulus response, with firing rates being largely identical
to the disconnected network.

When the white noise input mean is 47.5 pA the average firing rate of all
cell populations is less than 5 Hz as shown in figure 2.36. There is a small
increase in firing rate in all populations. In this instance the layer 4 inhibitory
cells have a slight peak at 10 ms whilst the excitatory cells to not reach their
plateau until 30 ms. Layer 3 excitatory cells has a ramped response peaking
at about 90 ms. Layer 5 excitatory cells reach a plateau around 10 ms and
maintain this rate for the duration of the stimulus. All cells decay back to
the mean at stimulus offset, except layer 3 and 5 inhibitory cells which have
a short and slightly longer post stimulus peak on firing rate.

When the white noise input mean is 125 pA the average firing rate of all
cell populations ranges from 40 - 10 Hz as shown in figure 2.36. The patterns
of increased firing rates are similar to when ther input mean is 47.5 Hz with
the exceptions that Layer 5 excitatory cells do not reach their plateau until
around 30 ms and inhibitory cells don’t have offset peaks.

When the white noise input mean is 233.5 pA the average firing rate of
all cell populations ranges from 90 - 35 Hz as shown in figure 2.36. All layers
show a slight increase in firing rate with the exception of layer 5 inhibitory
cells, which have a slight decrease. Both layer 4 populations reach their
plateau in about 10 ms. layer 3 excitatory cells reach a maximum about 80
ms and layer 5 excitatory cells around the same time.

Figure 3.15 shows the evoked firing rate of the average cell from each
population with input cells firing at 80 Hz and white noise standard deviation
of 2100 pA. Figure 3.15 shows the evoked firing rate in the disconnected
network. These plots correspond with the evoked potentials presented in
figure 3.9.

All disconnected networks show a rise to a new mean value with a return
to the original mean value post stimulus.

With the exception of the network with an input white noise mean of
-128.5 pA, all connected networks demonstrate slight increases in firing rate
with maxima being reached in layer 4 first followed by layer 3 excitatory cells
then layer 5 excitatory cells.

The overall picture that emerges from this analysis is that the input is
reflected by an increased firing rate in the populations according to the bot-
tom up connectivity. In the cases where the input white noise is 1300 to
2100 pA there are minor differences between the connected and disconnected
networks, with the inputs being of the same order of magnitude to the on-
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Figure 3.15: The evoked firing rate of the average cell from each
population with input cells firing at 80 Hz and white noise stan-
dard deviation of 2100 pA in each of the four plots the subplots from top
to bottom are the excitatory layer 3 cells, the inhibitory layer 3 cells, the ex-
citatory layer 4 cells, the inhibitory layer 4 cells, the excitatory layer 5 cells
and the inhibitory layer 5 cells. Each plot has been normalized. The input
was delivered between 0.4 and 0.5 seconds. The top left plot is the condition
where the white noise input mean is 22pA, the top right -128.5pA, the bottom
left 151pA and the bottom right 237pA.
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Figure 3.16: The evoked firing rate of the average cell from each
population with input cells firing at 80 Hz and white noise standard
deviation of 2100 pA in a disconnected network in each of the four
plots the subplots from top to bottom are the excitatory layer 3 cells, the
inhibitory layer 3 cells, the excitatory layer 4 cells, the inhibitory layer 4
cells, the excitatory layer 5 cells and the inhibitory layer 5 cells. Each plot
has been normalized. The input was delivered between 0.4 and 0.5 seconds.
The top left plot is the condition where the white noise input mean is 22pA,
the top right -128.5pA, the bottom left 151pA and the bottom right 237pA.
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going firing rates. However in the case where the input white noise standard
deviation is 580 pA there is noticeable stimulus related increases in firing
rate which evolves in structure over the duration of the input. The features,
particularly in the projection neurons relate to the biphasic and negative
deflection of the simulated field potential evoked potential.

3.2.3.3 Time frequency analysis

In this analysis I present an exploration of the time frequency power changes
in the simulated field potential between identical simulations with and with-
out a bottom up stimulus. This is with a view to establishing whether there
are any frequency bands that can be associated with features of the bottom
up stimulus.

Figure 3.17 show regions of significant increases and decreases in the time
frequency power average over twenty trials between 0 and 100 Hz bottom up
input. The network white noise input standard deviation is 580 pA with vari-
ous input mean values. The connected network power range is approximately
fifty times that of the disconnected network(figure 3.18).

When the white noise input mean is 120 pA the connected network shows
an increase in power at the onset in the frequency range 5 - 15 Hz. This lasts
for the duration of the input and extends to 0.1 after the bottom up input
off set. Mid stimulus there is a significant increase in power in the 15 - 35 Hz
range. This extends for the duration of the stimulus with increased power
in the 15-20 Hz range extending 50 ms after stimulus offset. Stimulus onset
is marked by an increase in power in the 45 - 65 Hz range. This does not
extend beyond the mid stimulus point. The stimulus offset is marked by an
increase in power in the >70 Hz range. In the disconnected network there
is a stimulus related increase in power in the <10 Hz range from stimulus
onset extending 0.1 seconds beyond stimulus offset.

When the white noise input mean is 130 pA the connected network shows
a <10 Hz increase in power for the duration of the stimulus extending 0.1
seconds beyond stimulus offset. In the 10 Hz range there is an onset increase
in power at stimulus onset with no significant change in power mid stimulus
and an increase post stimulus. in the 12-45 Hz range there is an increase
in power for the duration of the stimulus extending 50 ms beyond stimulus
offset. Both stimulus onset and offset are marked by a short increase in
power in the 50 -90 Hz range. In the disconnected network there is a stimulus
related increase in power in the <10 Hz range from stimulus onset extending
0.1 seconds beyond stimulus offset.

When the white noise input mean is 140 pA the connected network shows
an increase in power in the 5 Hz range throughout the stimulus. There is a
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Figure 3.17: Significant changes in the time frequency power between
0 and 100 Hz bottom up input with a white noise input standard
deviation of 580 pA in all plots red means a significant increase in power
and blue mean a significant decrease in power with p <0.05. The top left plot
has an input white noise mean of 120 pA, top right has 130 pA, bottom left
has 140 pA and the bottom right 190 pA
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Figure 3.18: Significant changes in the time frequency power between
0 and 100 Hz bottom up input with a white noise input standard
deviation of 580 pA in a disconnected network in all plots red means
a significant increase in power with p <0.05. The top left plot has an input
white noise mean of 120 pA, top right has 130 pA, bottom left has 140 pA
and the bottom right 190 pA
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midstimulus decrease in power in the 10 Hz range. There is a midstimulus
increase in power in the 20 Hz range. There is an onset increase in power
in the 30 - 60 Hz range lasting the duration of the input. Stimulus offset
is marked by an increase in power in the 65 -85 Hz range. There are brief
increases and decreases in the >50Hz range that may be associated with
the 5 Hz oscillation offset. There is no significant power changes in the
disconnected network.

When the white noise input mean is 190 pA the connected network shows
an increase in power in the 5 -15 Hz range throughout the stimulus. There
is a midstimulus lack of significance of the power in the 10 Hz range. There
is a brief midstimulus increase in power in the 20 Hz range. There is a
midstimulus decrease in power in the 30 -40 Hz range. There is a 55 - 100 Hz
increase in power at the stimulus off set. 100 ms after stimulus offset there is
an increase in power in the 30 - 50 Hz range, this may be associated with the
offset of the low frequency stimulus related oscillations. In the disconnected
network there is a stimulus related increase in power in the <10 Hz range
from stimulus onset extending 0.1 seconds beyond stimulus offset.

Figure 3.19 show regions of significant increases and decreases in the time
frequency power average over twenty trials between 0 and 80 Hz bottom up
input. The network white noise standard deviation is 1300 pA with various
input mean values. The disconnected network is not shown as there are no
significant changes in power.

In all input mean conditions of the network there is a stimulus related
increase in power in the <10 Hz range from stimulus onset extending 0.05 -
0.1 seconds beyond stimulus offset.

Figure 3.20 show regions of significant increases and decreases in the time
frequency power average over twenty trials between 0 and 80 Hz bottom up
input. The network white noise standard deviation is 2100 pA with various
input mean values. The disconnected network is not shown as there are no
significant changes in power.

In the first three input mean conditions of the network there is a stimulus
related increase in power in the <10 Hz range from stimulus onset extending
slightly beyond stimulus offset. This is absent when the white noise input
mean is 129.5 pA. In the bottom two subplots the stimulus offset is marked
by an increase in power, respectively, in the 70 - 90 Hz and the 50 -70 Hz
range.

Overall in the disconnected and medium and high white noise input stan-
dard deviation networks there is a low frequency significant increase in power
associated with the bottom up input. However in the 580 pA white noise con-
dition there is significant marking of stimulus onset, mid stimulus, stimulus
offset and post stimulus markers. These occur in different frequency bands
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Figure 3.19: Significant changes in the time frequency power between
0 and 80 Hz bottom up input with a white noise input standard
deviation of 1300 pA in all plots red means a significant increase in power
with p <0.05. The top left plot has an input white noise mean of 47.5 pA,
top right has 78.5 pA, bottom left has 94 pA and the bottom right 109.5 pA
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Figure 3.20: Significant changes in the time frequency power between
0 and 80 Hz bottom up input with a white noise input standard
deviation of 2100 pA in all plots red means a significant increase in power
with p <0.05. The top left plot has an input white noise mean of 0.5 pA, top
right has 65 pA, bottom left has 86.5 pA and the bottom right 129.5 pA
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and are dependent upon white noise input means. They also show both in-
creases and decreases in power. These conditions are the same conditions in
which we see more complex evoked potentials and evoked firing rates of a
different order of complexity. In the next section the significant mean time
frequency phase of the simulated field potential will be explored in order to
establish further stimulus related activity in these input conditions.

3.2.3.4 Time Frequency Phase Analysis

In this analysis I present the significant time frequency phase differences
between identical simulations with and without a bottom up input.

Figure 3.21 shows the significant differences in the mean phase of the
simulated field potential between a 0 Hz and a 100 Hz bottom up input in a
network with a white noise input mean of 580 pA.

When the input mean is 100 pA there is an onset, mid stimulus, off set
and post stimulus phase change in the >40 Hz range. There is an advance
in the phase angle except in the mid stimulus period where there is a lag.
Between 20 and 40 Hz there is an onset and offset phase difference with no
significant change mid stimulus. Each of these show an advance in phase
followed by a lag in phase. Around 10 Hz stimulus onset is marked by a lag
in phase. Around 5 Hz stimulus offset is marked by an advance in phase.

When the input mean is 120 pA there is an mid stimulus and post stimulus
lag in phase in the frequencies >40 Hz. In the 20 - 30 Hz range stimulus
onset is marked by a lag in phase and stimulus offset is marked by an advance
in phase followed by a lag. Around 10 Hz the duration of the stimulus id
marked by a lag in phase. Around 5 Hz a lag in phase is present for the
duration of the stimulus followed by a post stimulus advance.

When the input mean is 140 pA in the >40 Hz range there are periodic
advances in phase mid stimulus with a lag at stimulus offset and subsequent
differences in phase for the duration of the simulation. In the 20 - 40 Hz
range there is an onset and offset lag in phase with a post stimulus advance
in phase. In the 5 - 10 Hz range there is a general advance in phase for the
duration of the input and post stimulus. Around 10 Hz stimulus onset is
marked by a lag in phase changing to an advance mid stimulus.

When the input mean is 220 pA in the >40 Hz range stimulus onset and
offset are marked by significant differences in the phase, with more activity
in the post stimulus region extending the whole duration of the simulation.
In the 20 - 30 Hz range there is an advance in phase marking stimulus onset
followed by a lag mid stimulus. There are additional lagging features at 100
and 300 ms post stimulus. in the 10 - 20 Hz range there is a lag marking
stimulus onset followed by a mid stimulus advance returning to a lag 100
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Figure 3.21: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 100 Hz bottom up
input in a connected network with white noise input standard de-
viation of 580 pA In all figures the colour represents the advance (blue) or
lag (red) of the 100Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 100 pA, the top right of 120 pA, the bottom left of 140 pA and
the bottom right of 220 pA.
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Figure 3.22: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 100 Hz bottom up
input in a disconnected network with white noise input standard
deviation of 580 pA In all figures the colour represents the advance (blue)
or lag (red) of the 100Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 100 pA, the top right of 120 pA, the bottom left of 140 pA and
the bottom right of 220 pA.
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ms post stimulus. Around the 5 Hz range there is mid stimulus advance in
phase extending beyond the stimulus offset.

Figure 3.22 shows the significant differences in the mean phase of the
simulated field potential between a 0 Hz and a 100 Hz bottom up input in
a disconnected network with a white noise input mean of 580 pA. There are
some fragments of the phase behaviour observed in figure 3.21 particularly
where the white noise input mean is 100 and 120 pA. Other than this being
far more fragmentary than in the connected network the only major difference
is with 120 pA the 10 - 20 Hz activity is more closely reltaed to the 100 pA
connected network than the 120 pA connected network. This suggests that
this pattern of phase changes are due to summed individual cell responses to
the input rather than network responses to the input.

Figure 3.23 shows the significant differences in the mean phase of the
simulated field potential between a 0 Hz and a 80 Hz bottom up input in a
network with a white noise input mean of 1300 pA.

In these sub plots >40 Hz phase differences mark mid stimulus, offset
and post stimulus periods of the simulation. with a mean of 16.5 pA the
onset is also marked with a phase difference. The 15 - 40 Hz band marks the
stimulus offset and when the mean is 125 pA it also marks the post stimulus
time. The 8 - 15 Hz band marks the stimulus onset and partially the post
stimulus condition. <5 Hz marks the stimulus duration.

Figure 3.24 shows the disconnected network under the same conditions
as figure 3.23. The general trend highlighted for the connected network are
far more fragmentary, yet the hold.

Figure 3.25 shows the significant differences in the mean phase of the
simulated field potential between a 0 Hz and a 80 Hz bottom up input in a
network with a white noise input mean of 2100 pA. Figure 3.26 shows the
disconnected network. A very similar pattern to that shown with the network
where the white noise input standard deviation is 1300 pA can be observed.

Overall there is a greater structure in the mean phase differences between
simulations with and without a bottom up input than in the differences in
power. A general trend is that there is less structure the higher the input
standard deviation, and there is less structure between the connected and
disconnected networks.

Stimulus linked events are represented differently in different frequency
bands. Of particular note however, is that in the 580 pA input standard
deviation condition there is a slower change in the comparative phase angle
across time, suggestion a locking of the oscillations.

Each of the measures of network activity, the raw simulated field poten-
tial, the firing rates of cells by layer and type, the time frequency power
and the time frequency phase have shown a representation of the bottom up



CHAPTER 3. INTRODUCING A BOTTOMUP SIGNAL TO THEMODEL146

Figure 3.23: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 80 Hz bottom up
input in a connected network with white noise input standard de-
viation of 1300 pA In all figures the colour represents the advance (blue)
or lag (red) of the 80Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 16.5 pA, the top right of 63 pA, the bottom left of 94 pA and
the bottom right of 125 pA.
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Figure 3.24: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 80 Hz bottom up
input in a disconnected network with white noise input standard
deviation of 1300 pA In all figures the colour represents the advance (blue)
or lag (red) of the 80Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 16.5 pA, the top right of 63 pA, the bottom left of 94 pA and
the bottom right of 125 pA.
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Figure 3.25: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 80 Hz bottom up
input in a connected network with white noise input standard de-
viation of 2100 pA In all figures the colour represents the advance (blue)
or lag (red) of the 80Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 0.5 pA, the top right of 65 pA, the bottom left of 86.5 pA and
the bottom right of 126.5 pA.
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Figure 3.26: Significant (p <0.01) simulated field potential time fre-
quency mean phase differences between 0 and 80 Hz bottom up
input in a disconnected network with white noise input standard
deviation of 1300 pA In all figures the colour represents the advance (blue)
or lag (red) of the 80Hz input mean phase compared to the 0 Hz input. The
input was delivered at 400 ms. The top left shows the input white noise mean
condition of 0.5 pA, the top right of 65 pA, the bottom left of 86.5 pA and
the bottom right of 126.5 pA.
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stimulus in their responses. In the next sections I will present information
theory analyses in order to quantify the transmission of information using
these experimentally available metrics.

3.2.3.5 Information analysis of the simulated field potential

In this section I present the significant mutual information between eleven
bottom up input values of the poisson spike generators set between 0 and
100 Hz firing rates in steps of 10 Hz and the raw simulated field potential
magnitude. By inspecting this it looks at the value of using magnitude and
rise gradient as experimental metrics.

Figure 3.27 shows the mutual information between the absolute field po-
tential voltage and the stimulus rate for a range of input means across three
input standard deviations in connected and disconnected networks at each
simulations time step.

When the input white noise standard deviation is 580 pA, between an
input mean of 90 and 120 pA, both the connected and disconnected networks
show significant stimulus related mutual information values shortly after the
stimulus is applied. There is a brief drop at stimulus offset followed by
around 30 ms of significant mutual information. The connected network
shows a higher value of mutual information than the disconnected network.
At input means between 120 and 180 pA only the connected network shows
significant mutual information between the stimulus and the response. At
130 pA this is only associated with stimulus onset and offset. At 140 pA
the mutual information latency from stimulus onset is greater than in other
conditions. At 150 - 180 pA the significant mutual information values reduce
towards insignificance.

When the input white noise standard deviation is 1300 pA the connected
network mutual information values mark the onset by the appearance of sig-
nificant mutual information values and the offset with a brief reduction in
information values. The disconnected network has lower significant mutual
information values. At 30 - 70 pA the connected network stimulus offset
period is marked with an increase in mutual information whilst the discon-
nected network shows a reduction towards insignificance.from 70 - 100 pA
there are significant, but reduced mutual information values in the connected
network.

When the input white noise standard deviation is 2100 pA a similar pat-
tern at lower input means can be seen where the connected network has a
slight increase in mutual information when the input mean reaches -60 pA
whilst the disconnected network decays to insignificance.

Overall the measures show that the simulated field potential magnitude
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Figure 3.27: The mutual information between the absolute field po-
tential voltage and the stimulus rate in all plots only the information
values significantly greater than bootstrapped values are shown. The bottom
up stimulus was applied between 0.4 and 0.5 seconds. The left hand plots are
connected networks and the right hand plots are disconnected networks. The
top plots have an input standard deviation of 580 pA, the middle 1300 pA
and the bottom 2100 pA. The mutual information is in bit units
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is only sensitive to input in short regions of input mean values. The highest
information values are in the 580 PA range where input means of 90 to 170 pA
produce values. This band is not represented in the other white noise input
standard deviation conditions. Around 120 pA input mean the information
values show a structure where only the onset of the stimulus contains mutual
information, rather than the whole duration of the stimulus. This suggests
that in the experimentally available signals there may be a value in trying
different encoding schemes based upon preceding ongoing activity.

3.2.3.6 Information analysis of the instantaneous firing rate

In this analysis I present the mutual information between the eleven bottom
up input conditions and the average spike rate from the average cell in each
population. This is in order to characterize the role each population plays in
representing a bottom up input according to pre stimulus input means.

Figure 3.28 the mutual information between the instantaneous firing rate
of the average cell in each population and the stimulus rate in the connected
network with a Gaussian white noise input standard deviation of 580 pA.

The most striking feature of this figure is that there is no stimulus linked
increase in mutual information between the stimulus and the firing rate in
the layer 3 and layer 5 inhibitory cells. This should be interpreted as a lack of
precise spike timing coding. All the other populations show a similar pattern
of information values. At low input means there is a longer onset latency
of increased information than at higher input means. As the input mean
increases there is an extended post stimulus increase in information. The
transition from low to higher firing rate is marked by a reduction in onset
latency and increasing post stimulus persistence of increased information.
Between the population types the latency of layer 4 is shortest, followed by
layer 3 then layer 5. Between input means of 120 and 150 pA the maximum
information is found in the layer 3 and layer 5 excitatory cells. At 120 pA
this is at stimulus offset and at 130 pA it is at stimulus onset.

These results indicate that around 120 - 150 pA input mean the network
is in an optimal state for transmitting information about a bottom up input
to other cortical or subcortical regions.

3.2.3.7 Information analysis of the time frequency response power

In this analysis I present the significant information values between the eleven
bottom up conditions and the time frequency power response of the simulated
field potential. This offers a comparison with the significant differences in
power presented above.
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Figure 3.28: The mutual information between the instantaneous fir-
ing rate of the average cell in each population and the stimulus rate
in all plots only the information values significantly greater than bootstrapped
values are shown. The bottom up stimulus was applied between 0.4 and 0.5
seconds. The left hand plots are the excitatory cells, the right the inhibitory
cells. The top plots are the layer 3 cells, the middle plots are the layer 4 cells
and the bottom are the layer 5 cells.
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Figure 3.29: The mutual information between the time frequency
response power and the stimulus rate with an input standard de-
viation of 580 pA in each of the subplots only the significant mutual in-
formation between the input and response is shown. Mutual information is
given in bits. The top left plot shows the response with a white noise input
mean of 110pA, the top right 130 pA, the middle left 140pA, the middle right
160 pA and the bottom 180 pA.
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Figure 3.29 the significant mutual information between the time frequency
response power and the stimulus rate with an input standard deviation of
580 pA. In all inpt mean conditions there is significant mutual information
values in the <10 Hz range. In teh disconnected networks (not shown) there
is a slight significant mutual information increase in this band and no other
bands showing significant values across simulation time. As the input mean
increases there is significant mutual information between the input and other
frequency bands.

When the white noise input mean is 110 pA there is a short period of
mutual information in the simulated field potential at bottom up stimulus
offset in the 15 Hz and 25 Hz range.

When the input mean is 130 pA the onset and offset of the bottom up
inputs are marked at the 10 Hz and the 65 - 80 Hz frequencies. There is an
significant mutual information in the 15 - 40 Hz for the whole duration of the
stimulus and extending up to 50 ms beyond stimulus offset. From 25 - 40 Hz
the stimulus onset is not strongly marked, with significant values occurring
mid stimulus. The peak mutual information values can be found at the 25 -
30 Hz range at stimulus offset.

When the white noise input mean is 140 pA stimulus onset and off set are
marked in the 10 Hz range and in the 35 - 55 Hz range, with onset having
slightly higher mutual information values. outside the <10 Hz range there
are no mid stimulus significant mutual information values.

When the white noise input mean is 160 pA stimulus onset is marked by
significant mutual information in the 10 Hz range. Midstimulus and stimulus
offset are not marked in this range. Midstimulus is marked in the 20 - 25 Hz
range and at around 70 Hz. Stimulus offset is marked in the >40 Hz range
with some features in this range significantly after the stimulus offset.

When the white noise input mean is 180 pA stimulus onset is marked in
the 15 Hz range extending to mid stimulus. Stimulus offset is marked around
80 Hz with post stimulus features at 20 Hz, 15 Hz and >30 Hz bands.

Figure 3.30 the significant mutual information between the time frequency
response power and the stimulus rate with an input standard deviation of
1300 pA. When the white noise input mean is 16.5 pA the stimulus onset
and offset are marked in the 5 Hz range. In all other conditions the whole
duration of the stimulus is marked in this range, with the stimulus offset
containing slightly more mutual information. The 63 pA condition shows
the highest mutual information values. In the 94 pA condition the is also
a post stimulus mark in the 80 - 90 Hz range. In the disconnected network
there are no significant information values between the stimulus input and
the simulated field potential time frequency power values.

In the white noise input standard deviation condition of 2100 pA there is
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Figure 3.30: The mutual information between the time frequency
response power and the stimulus rate with an input standard de-
viation of 1300 pA in each of the subplots only the significant mutual
information between the input and response is shown. Mutual information is
given in bits. The top left plot shows the response with a white noise input
mean of 16.5pA, the top right 47.5 pA, the bottom left 63pA, the bottom right
94 pA.
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no significant mutual information in any of the conditions.
Overall the best condition for extracting information from the field po-

tential time frequency power is in the white noise input standard deviation
580 pA condition between 110 and 180 pA. The information values are dif-
ferent depending upon prestimulus conditions of the network. these regions
of significant information roughly match up with the significant changes in
power presented above, although some features are not present in the infor-
mation analysis. This suggests that although they may show up at extremes
of presentation they do not encode the finer scale changes in input values.

3.2.3.8 Information analysis of the time frequency response phase

In this analysis I present the mutual information values between the eleven
bottom up stimulus conditions and the phase angle of the time frequency
response.

Figure 3.31 the significant mutual information between the time frequency
response phase and the stimulus rate with an input standard deviation of 580
pA. When the input mean is 110 Hz the significant mutual information <8
Hz marks the whole bottom up stimulus with more information in stimulus
onset. Around 10 Hz there is a marker for stimulus off set.

When the white noise input mean is 130 pA the <8 Hz range favours the
offset. The 10 - 15 Hz range marks the duration of the stimulus with the 15
Hz range marking on set and offset. There is a small amount of significant
information marking the offset around 70 Hz.

When the white noise input mean is 140 pA the <8 Hz range marks the
stimulus duration favouring the onset the 10 Hz range marks mid stimulus
through offset to about 100 ms post stimulus. There is a small contribution
from the 20 Hz range marking the stimulus off set. The 40 - 60 Hz range has
a small mid stimulus marker and there is a small post stimulus representation
in the >40 Hz range.

When the white noise input mean is 160 Hz the <8 Hz marks the duration
of the stimulus. The 8 - 12 Hz range marks the duration of the input with
the highest mutual information values appearing mid stimulus. the 15 Hz
range marks stimulus onset and stimulus off set. Around 18 Hz there is a mid
stimulus marker with a small post stimulus contribution. About 25 Hz there
is a post stimulus marker. At 40 - 55 Hz mid stimulus there is a brief high
information marker. At >70 Hz there is a small post stimulus contribution.

When the white noise input mean is 180 pA Hz the <8 Hz marks the
duration of the stimulus. The 8 - 12 Hz range marks the duration of the
input with the highest mutual information values appearing post stimulus.
The 10 Hz range marks stimulus onset and post stimulus periods. around
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Figure 3.31: The mutual information between the time frequency
response phase and the stimulus rate with an input standard de-
viation of 580 pA in each of the subplots only the significant mutual in-
formation between the input and response is shown. Mutual information is
given in bits. The top left plot shows the response with a white noise input
mean of 110pA, the top right 130 pA, the middle left 140pA, the middle right
160 pA and the bottom 180 pA.
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12 Hz there is a stimulus onset marker. In the 15 Hz range there is a mid
stimulus and a post stimulus marker. At 20 Hz there is a strong mid stimulus
marker. At the >80 Hz range there is a stimulus offset marker.

In the disconnected network (not shown) there is a slight <5 Hz compo-
nent in all conditions, but no other features.

Figure 3.32 the mutual information between the time frequency response
phase and the stimulus rate with an input standard deviation of 1300 pA. In
all subplots there is a <5 Hz increase in mutual information. In each of the
subplots the is a 8 Hz component which marks either the stimulus offset (16.5
and 63 pA) or the stimulust offset (47.5 and 94 pA). There is no significant
mutual information content in the disconnected network.

In the white noise input condition where the standard deviation is 2100
pA there is no significant mutual information between bottom up input and
the time frequency phase response of the simulated field potential.

Overall there is an optimal prestimulus condition influence on the avail-
ability of stimulus linked information. The optimal range is in the 580 pA
white noise standard deviation condition with a mean between 110 and 180
pA.

3.2.4 Discussion

In this section I have presented a number of complex and potentially realistic
responses of a cortical network to a bottom up sensory input. These results
show a marked difference in network response below and above the network
activation threshold. There is also further evidence to suggest that when
local cortical networks are activated there is a suppression of encoding in
the surrounding areas. The data presented regarding the spiking activity in
laminar cells also strongly supports specific roles in information processing
for each population.

The simulated field potential demonstrates that in low local input areas
near activation threshold there are a variety of different features that encode
stimulus features. The evoked potential in this region of parameter space
becomes more complex, the maximal information in the raw signal allows
latency encoding, and the stimulus onset, duration and offset are encoded in
the power and phase of the time frequency breakdown.

The spiking activity in each of the laminar populations and cell types
further demonstrate a different role in information processing. In the evoked
instantaneous firing rates there is strong evidence for a rate coding flow of
information through the network. In the information content in the instanta-
neous firing rate there is evidence that each population has a different level
of spike timing coding, with it being absent entirely from the layer 3 and
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Figure 3.32: The mutual information between the time frequency
response phase and the stimulus rate with an input standard de-
viation of 1300 pA in each of the subplots only the significant mutual
information between the input and response is shown. Mutual information is
given in bits. The top left plot shows the response with a white noise input
mean of 16.5pA, the top right 47.5 pA, the bottom left 63pA, the bottom right
94 pA.
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layer 5 inhibitory cells. It should be born in mind that they show stimulus
associated changes in rate. The highest stimulus related information is in
the layer 4 excitatory cells, which suggests a strong spike timing regimen.

It is clear from this analysis that in this model there is an optimal re-
gion of parameter space where experimentally available information via the
simulated field potential and the physiologically available information in the
projection neurons maximized. This suggests that any incoming variable
synchronized input will result in changes in the coding scheme in the local
cortical network. However this does not suggest that in this variable condi-
tion these results will hold, as they have been carried out with a static mean
value. In the next section I will present a network with a low white noise
input standard deviation with a sinusoidal input varying across the range of
the mean values that provided the clearest representations of the input in
order to investigate this further.

3.3 Oscillatory input with a sensory input

3.3.1 Introduction

In this section I look at simulations with an oscillatory mean representing
an oscillatory cortico-cortical input. The frequencies of this sinusoidal input
explored are 5 Hz, 10 Hz, 20 Hz and 40 Hz. Within this context I introduce
two sensory inputs of 30 ms with frequency values as in the previous section.
In addition to this I run 20 batches of simulations with the input time of the
bottom up stimulus covering the entire wavelength of the oscillatory input.
This is to explore the response of the network under the context of a specific
oscillation band of ongoing activity.

Firstly I look at all the evoked potentials under each oscillatory input
condition in the connected and disconnected network. I hypothesise that
there will be a different EP depending upon whether or not the network is
connected or not.

Secondly I look at the evoked instantaneous firing rate in the 5 Hz condi-
tion. I hypothesize that this will vary according to the timing of the sensory
input, being facilitated depending upon the phase of the ongoing oscillations.

Thirdly I look at the relative mean field potential time frequency response
power in all conditions. I hypothesise that there will be a phase dependent
variation in response and this will be different in different frequency bands.

Next I perform an information analysis on the response. Firstly I look
at the mutual information between input and magnitude at each time step
in the simulated field potential for every input time condition. I hypothesise
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that there will be a variation in the mutual information depending upon the
phase of the ongoing activity at the time of stimulus application. A secondary
hypothesis is that this will vary according to the frequency of the oscillatory
input.

Secondly I look at the mutual information between the input frequency
and the instantaneous firing rate of the average cell from each population at
each time step and stimulus time. I hypothesise that there will be a stimulus
time related variation in stimulus related information.

Thirdly I look at the mutual information between the time frequency
response power and the input frequency. I hypothesise that there will be
a variation in information across different frequency bands according to the
application time os the stimulus. A secondary hypothesis is that different
frequency bands will represent the input differently over time. A tertiary
hypothesis is that the information representation will vary according to the
oscillatory input frequency.

Finally I look at the mutual information between the time frequency
response phase and he input frequency. I hypothesise that there will be a
variation in information across different frequency bands according to the
application time os the stimulus. A secondary hypothesis is that different
frequency bands will represent the input differently over time. A tertiary
hypothesis is that the information representation will vary according to the
oscillatory input frequency.

3.3.2 Methods

3.3.2.1 Simulations

In this section all simulations were carried out with a Gaussian white noise
input standard deviation of 580 pA and a mean of 140 pA. A sinusoidal
ac input was applied to all cells with a mean value of 0, and amplitude of
50 pA, phase zero at time zero and a frequency of 5, 10, 20 or 40Hz. An
identical 30 ms bottom up spike input was applied at 400 ms and 600 ms.
The bottom up input covered the firing rate range 0 - 100 Hz. The stimuli
were shifted by 1/20 th of the wavelength of the AC input. The parameter
space explored was: AC frequency (4) X bottom up phase shift(20) X bottom
up firing rate frequency (11). At each point in the parameter space twenty
trials were carried out with a different Gaussian white noise input seed but
the same poisson spike generator seed at both bottom up impulses. All
simulations were replicated with a disconnected network resulting in a total
of 1760 simulations.
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3.3.2.2 Analysis

The analysis procedures were carried out in the same way as in the previous
section with the exception that the mean time frequency power or phase
from the network with no bottom up input was subtracted from the mean
values of those with a bottom up input. This served as a baseline to highlight
differences due to the bottom up input.

3.3.3 Results

3.3.3.1 The evoked potential

In this section I present the evoked potentials across four input frequen-
cies in the connected and disconnected networks with two bottom up inputs
presented at different phases of the injected oscillatory current. This is to
establish whether there are visible changes in the evoked potential due to the
bottom up input and whether network connectivity yields a different evoked
potential shape.

Figure 3.33 shows the evoked potentials from all input phases with oscil-
latory inputs of 5 and 10 Hz with a bottom up input of 100 Hz. Figure 3.33
shows the evoked potentials from all input phases with oscillatory inputs of
20 and 40 Hz with a bottom up input of 100 Hz.

In the disconnected networks the evoked potentials are simpler than the
connected networks. The overall shape is very close to the sinusoidal input.
For the 5 and 10 Hz input the initial rise in the first quarter wavelength has
a steeper gradient than a sinusoid followed in the second quarter wavelength
by a negative deflection and a smaller positive deflection with a trace high
frequency component. The second half of the wavelength follows the general
shape of a sinusoid. In the 20 and 40 Hz evoked potentials the shape is
far closer to the sinusoid, if a little sawtoothed. The introduction of the
stimulus input sees an increased standard deviation of the evoked responses
for a duration of around one and a half wavelengths. In the 5 Hz input
evoked response this can be observed in the second input.

In the connected networks in the first quarter wavelength there is a steep
positive deflection followed by a steeper negative deflection. In the second
quarter wavelength there is a high frequency oscillation leading to a positive
deflection. In the second half wavelength there is a component somewhat
matching the trough of the second half of the sinusoidal input. As the fre-
quency increases the complex oscillation component is reduced. The intro-
duction of stimulus input also sees an increased standard deviation of the
evoked responses for a duration of around one and a half wavelengths. There
is an increase in the magnitude of the negative deflection associated with the
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Figure 3.33: Evoked potentials from all input phases with 5 and 10
Hz oscillatory inputs each plot shows an overlay of 20 evoked potentials
with a bottom up input presented at 0.4 and 0.6 seconds plus 0

20
λ to 19

20
λ. The

left hand plots show the connected networks and the right hand plots show
the disconnected networks. The top plots show an a.c. input delivered at 5
Hz and the bottom plots show an a.c. input delivered at 10 Hz.
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Figure 3.34: Evoked potentials from all input phases with 20 and 40
Hz oscillatory inputs each plot shows an overlay of 20 evoked potentials
with a bottom up input presented at 0.4 and 0.6 seconds plus 0

20
λ to 19

20
λ. The

left hand plots show the connected networks and the right hand plots show
the disconnected networks. The top plots show an a.c. input delivered at 20
Hz and the bottom plots show an a.c. input delivered at 40 Hz.
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stimulus inputs. In the 40 Hz input oscillation the stimulus also produces a
reduced positive deflection in the first quarter wavelength.

It should be noted that the complex oscillation in the second quarter
wavelength varies in the evoked potential before the first bottom up stimulus
input.

Overall there is a significant difference between the evoked potential in
the connected and disconnected states. The evoked potentials also, although
there is a repeating feature, do not directly represent the sinusoidal shape of
the injected input.

3.3.3.2 The evoked instantaneous firing rates

In this section I present the evoked firing potential of the individual cells
under the 5 Hz stimulation condition in both the connected and the discon-
nected networks. This is in order to establish where there are any prominent
stimulus related features in the firing rates and whether or not they are cell
type specific.
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Figure 3.35: The mean instantaneous spike count of each population
with a 5 Hz oscillatory input with a bottom up input at various
input times across wavelength in a disconnected networkReading left
to right top to bottom the plots have the bottom up input at 0, 0.2, 0.4, 0.6,
0.8, 1, 1.2, 1.4, 1.6, 1.8 pi units. Each plot from top to bottom shows the
layer 3 excitatory cells, layer 3 inhibitory cells, layer 4 excitatory cells, layer
4 inhibitory cells, layer 5 excitatory cells and layer 5 inhibitory cells. Phase 0
of the second sinusoid begins at 0.1 seconds. The bottom up input is delivered
at 0.3 and 0.5 seconds plus the phase shift of each plot.
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Figure 3.35 shows the mean instantaneous spike count of each population
with a 5 Hz oscillatory input with a bottom up input at various input times
across wavelength in a disconnected network.

The sinusoidal oscillatory input is represented in the firing rate largely
in the first half wavelength. The second half wavelength has a relatively flat
response. In the first half the sinusoidal shape is slightly skewed to the left.
When the bottom up input is presented in the first half there is a slight
additive peak in the firing rate.
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Figure 3.36 shows the mean instantaneous spike count of each population
with a 5 Hz oscillatory input with a bottom up input at various input times
across wavelength in a connected network.

The sinusoidal oscillatory input is represented in the firing rate largely
in the first half wavelength. The second half wavelength has a relatively flat
response. in all layers the first half is characterized by a rise in firing rate
with a steeper gradient than the sinusoid. After this there is and oscillatory
period in the layer 3 cells and the layer 5 excitatory cells. In the layer 4
cells and the layer 5 inhibitory cells there is an initial peak superimposed on
the left skewed sinusoidal shape. With the addition of the bottom up input
this pattern is changed depending upon the phase of oscillation at which it
is applied. During the second half wavelength there is a small increase in
the firing rate, but that portion remains flat. In the first half wavelength the
input either facilitates or reduces the oscillation in the oscillatory populations
depending in what point it is applied. In the peaked populations it either
facilitates the peak, reduces it or introduces a second peak depending upon
the time that it is applied. The first and second bottom up inputs have a
slightly effect, in particular at 0.2 pi the secondary peak in the second input
is far more pronounced.

Overall there is a difference between the connected and disconnected net-
works, with network contributions to the firing rate structure, particularly
in the projection neurons and the layer 3 excitatory cells.

3.3.3.3 The relative mean power

In this analysis I present the significant time frequency mean power differ-
ence between the 0 Hz and the 100 Hz bottom up input across different
phase input values for stimulus presentation. This is in order to establish
whether different frequencies respond differently and input and whether this
varies according to the phase of the injected oscillation current at which it is
presented.

Figure 3.37 shows the relative difference in power in the time frequency
response according to the phase of the input in a connected network with an
oscillatory input of 5 Hz.

In each figure a relatively stereotypical response is shown in each stimulus
delivery, with slight changes in the second stimulus delivery.

When the stimulus is delivered at 0.1 π there are 5 clear frequency bands
with separable significant changes in power. Around 5 Hz there is an increase
in power covering the whole stimulus period. In the 8 - 12 Hz band there is
a decrease in power associated with each stimulus. In the 20 Hz range there
is an increase in power for each stimulus and an increase in the post stimulus
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Figure 3.36: The mean instantaneous spike count of each population
with a 5 Hz oscillatory input with a bottom up input at various
input times across wavelength in a connected networkReading left to
right top to bottom the plots have the bottom up input at 0, 0.2, 0.4, 0.6, 0.8,
1, 1.2, 1.4, 1.6, 1.8 pi units. Each plot from top to bottom shows the layer
3 excitatory cells, layer 3 inhibitory cells, layer 4 excitatory cells, layer 4
inhibitory cells, layer 5 excitatory cells and layer 5 inhibitory cells. Phase 0
of the second sinusoid begins at 0.1 seconds. The bottom up input is delivered
at 0.3 and 0.5 seconds plus the phase shift of each plot.
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condition. In the 30 Hz range there is an increase in power during stimulus
delivery followed by a post stimulus decrease in power. In the >40 Hz range
there is a stimulus linked increase in power.

When the stimulus is delivered at 0.3 π there is a stimulus linked increase
in power in the 5 - 20 Hz range. In the 25 - 45 Hz range there is a stimulus
linked decrease in power, with a post stimulus increase in power in the 20 -30
Hz range after the second stimulus. In the >50 Hz range there is a stimulus
linked increase in power.

When the stimulus is delivered at 0.5 π there is a stimulus linked increase
in power in the <10 Hz range. In the 12 - 20 Hz range there is a stimulus
linked decrease in power followed by a post stimulus increase in power. In
the 40 Hz range there is a stimulus offset decrease in power. In the >70 Hz
range there is a stimulus offset increase in power followed by a post stimulus
decrease in power on the first stimulus.

When the stimulus is delivered at 0.7 π there is at around 5 Hz an increase
in power covering the whole stimulus period. In the 8 - 12 Hz band there is a
decrease in power associated with each stimulus, post stimulus this decrease
reduces in frequency. In the 20 Hz range there is an increase in power for
each stimulus and an increase in the post stimulus condition. In the >80 Hz
range there is a stimulus offset decrease in power in the first stimulus. In the
second stimulus there is a post stimulus increase in power in the 20 - 50 Hz
range and a stimulus linked increase in power in the >50 Hz range.

When the stimulus is delivered at 0.9 π there is a similar response as to
when it is delivered at 0.7 π with the exception that there is a a 20 - 30 Hz
increase in power during the stimulus and there is a reduction in power at
20 Hz at stimulus onset and offset.

When the stimulus is delivered at 1.1 π there is no >30 Hz component
with the lower frequency components having a similar feature make up to
the previous two plots. There is an additional stimulus linked decrease in
power at 30 Hz.

When the stimulus is delivered at 1.3 π at <8 Hz there is an increase in
power. Between 8 and 20 Hz there is a stimulus linked decrease in power.
From 20 - 55 Hz there is a stimulus linked increase in power.

When the stimulus is delivered at 1.5 π there is a <8 Hz increase in
power. From 10 - 30 Hz there is a stimulus linked decrease in power. There
is a stimulus onset increase in power at 30 - 40 Hz, a decrease in power at
the >40 Hz range and a post stimulus increase in power around 80 Hz.

When the stimulus is delivered at 1.7 π there is an increase in power at
the <8 Hz range. from 8 - 12 Hz there is a decrease in power at stimulus
onset there is an increase in power from >12 Hz followed by a stimulus offset
decrease in power.
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Figure 3.38 shows the relative difference in power in the time frequency
response according to the phase of the input in a disconnected network with
an oscillatory input of 5 Hz.

In comparison with the connected network, some of the stimulus linked
components are present in a simplified way, however none of the >40 Hz
components are present. The low frequency increases in power are absent
and from 0.5 π to 0.9 π there is virtually no significant difference associated
with the stimulus.

Figure 3.39 shows the relative difference in power in the time frequency
response according to the phase of the input in a connected network with an
oscillatory input of 10 Hz.

Under the 10 Hz oscillatory input condition there is a clear separation of
the significant power changes into frequency bands. The <8 Hz band shows
an increase in power across the simulation time with the exception of around
1.3 π where is not continuous.

The 8 Hz band shows a significant decrease in power at stimulus onset
followed by an increase in power during offset and post stimulus. The de-
crease in power is dominant from 0.1 π to 0.5 π and between 1.5 π and 1.7
π, with the increase in power being dominant between 0.7 π and 1.3 π.

The 10 - 15 Hz band shows a stimulus related increase in power followed
by a decrease in power at 0.1 π and 1.1 π to 1.7 π, with only an increase in
power shown when the stimulus is applied between 0.3 π and 0.9 π.

The 15 - 20 Hz band shows a decrease in power followed by an increase
in power at 0.1 π and between 1.1 π to 1.7 π. Is shows an increase in power
followed by a decrease in power between 0.3 π and 0.5 π. It shows only a
decrease in power between 0.7 π and 0.9 π.

The 25 - 40 Hz band shows an increase in power followed by a decrease
in power and a post stimulus decrease in power at 0.1 π and from 1.1 π to
1.7 π. From 0.3 π to 0.5 π only the decrease in power is present. At 0.7 π
there is a decrease followed by a broader band increase in power and at 0.9
π there is only an increase in power at stimulus onset.

In the >40 Hz band there is a significant increase in power at 0.1 to 0.3
π. This is smaller in breadth at 0.5 π. at 0.7 to 0.9 π it is only present in
the first of the two stimulus. From 1.1 π to 1.7 π this increase recovers with
a mid stimulus decrease in power.
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Figure 3.40 shows the relative difference in power in the time frequency
response according to the phase of the input in a connected network with an
oscillatory input of 20 Hz.

Under this oscillatory input condition the response is stereotypical across
all input phase conditions, with the exception of 10 Hz and 30 Hz. The
general condition is that <8Hz there is an increase in power. at 12 Hz there
is an increase in power. At 15 - 20 Hz there is a decrease in power followed
by an increase in power. at 20 - 30 Hz there is an increase in power followed
by a decrease in power. At >40 Hz there is an increase in power followed by
a decrease in power, this is variable in structure. In the 10 Hz range there is
an increase in power with the exception that between 0.1 π and 0.5 π there
is no significant change in power. In the 30 Hz range there is a decrease in
power followed by an increase, followed by a decrease in power followed by
an increase at 0.1 π and 1.3 to 1.7 π. At 0.3 π to 0.5 π there is an increase,
followed by a decrease in power followed by an increase in power. At 0.7 π to
1.1 π there is a decrease in power followed by an increase in power followed
by a post stimulus increase in power.

Figure 3.41 shows the relative difference in power in the time frequency
response according to the phase of the input in a connected network with an
oscillatory input of 40 Hz.

In this oscillatory input condition below 15 Hz shows a stereotypical in-
crease in power around the stimulus across all input phases. In the 15 - 25
Hz range there is a general absence of significant power changes with the
exception of 0.3 π to 0.7 π where the second bottom up stimulus shows a
stimulus related increase in power followed by on or two post stimulus de-
creases in power. At 30 Hz from 0.7 π to 1.7 π there is a stimulus related
increase in power preceded and then flanked by a short decrease in power
in the second bottom up stimulus. above 40 Hz there is a stimulus related
increase in powere followed by a post stimulus decrease in power, with the
exception of 0.7 π. From 1.3 π to 1.7 π this is followed by another increase
in power.

Overall the network clearly splits into frequency bands that are largely
stable over the whole stimulus presentation. In each case there is a clear
power response dependence upon when the input is presented relative to
the oscillatory input. In the lower frequencies of oscillation there is greater
variability in the network response with whole frequency ranges being absent
particularly around the 1 π period. In the next sections I will present an
information analysis of the four metrics used in the static mean section.
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Figure 3.42: Mutual information between the field potential value
and input frequency for all oscillatory frequencies in a connected
network The top left shows the 5 Hz oscillatory input, the top right shows
the 10 Hz input, the bottom left 20 Hz and the bottom right 40 Hz. The
information is given in bits.

3.3.3.4 Mutual information in the raw field potential signal

In this section I present the mutual information between the bottom up in-
put with a range of 0 to 100 Hz firing rate conditions in the poisson spike
generators and the raw simulated field potential signal according to the pre-
sentation phase of the stimulus. This is in order to establish whether or not
there is an optimal phase condition in which the raw signal best represents
the input.

Figure 3.42 shows the mutual information between the field potential
value and bottom up input frequency for all oscillatory frequencies in the
connected network and figure 3.43 shows the disconnected network.

When the oscillatory input frequency is 5 Hz the stimulus duration of the
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Figure 3.43: Mutual information between the field potential value
and input frequency for all oscillatory frequencies in a disconnected
network The top left shows the 5 Hz oscillatory input, the top right shows
the 10 Hz input, the bottom left 20 Hz and the bottom right 40 Hz. The
information is given in bits.
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input is significantly shorter than the oscillatory input wavelength (1/6th).
In the disconnected network there is only information about the stimulus in
the region where the oscillatory input is at a minimum. In the connected
network the information is at a maximum when the stimulus is presented
in the earliest quarter of the oscillatory input and the second half of the
input. If the input is presented in the final quarter of the wavelength There is
information in the subsequent sinusoid. In the first quarter of the subsequent
sinusoid there is a short period of no information followed by a maximum of
information.

When the oscillatory input frequency is 10 Hz the stimulus input dura-
tion is 1/3rd of the oscillatory input wavelength. In the disconnected network
there is only information about the stimulus during the lowest values of the
oscillatory input. There is a slight representation in the first quarter of the
subsequent sinusoid when the input is presented in the last quarter of the
first sinusoid. The connected network shows the same pattern of reduced
information in the second quarter of the oscillatory input, however due to
the stimulus extending beyond this quarter there is a slight representation of
the stimulus in the second half of the sinusoid. There is an additional repre-
sentation in the subsequent oscillatory input sinusoid with zero information
at the start of the first quarter and reduced information during the second
quarter increasing in the second half of the subsequent sinusoid.

When the oscillatory input frequency is 20 Hz the stimulus input duration
is 2/3rds of the oscillatory input wavelength. In the disconnected network the
stimulus is represented in the second half of the oscillatory wavelength with
some representation in the second sinusoid when the stimulus is presented
later. In the connected network the only reduction in information is at the
initial portion of the representation in the second sinusoid. There is a step
in the latency of the representation of the input when it is presented in the
second quarter of the oscillatory input from 0.4 to 1 pi. This shows that the
initial portion of the input is not represented in the same way as when the
oscillatory input is 5 or 10 Hz.

When the oscillatory input frequency is 40 Hz the stimulus input is 1
and 1/3rd of the oscillatory input wavelength. In the disconnected network
the information is marginally present. In the connected network the input is
represented in the second and when it’s presented later, third post stimulus
sinusoids. From 1.2 to 2 pi you can see reduced information in the second
quarter of the second stimulus wavelength.

Over all it is clear that the phase of presentation has in impact on the
information regarding the input we are able to extract from the simulated
field potential, some phases providing no information at all. There are indi-
cations that, particularly in the lower frequencies that the network activity
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is sustaining information regarding the input, especially around 1.8 π.

3.3.3.5 Mutual Information in firing rate

In this section I present the mutual information between the bottom up
input and the firing rate of the mean cell types in the network model. This
is in order to establish whether or not each cell type plays a different role in
information processing.

Figure 3.45 shows the mutual information between the spike count in each
population and bottom up input frequency according to the phase of the
input in a connected network with an oscillatory input of 5 Hz. Figure 3.44
shows the disconnected network. In the disconnected network only the layer
4 cells, the main input of the bottom up stimulus, show a mutual information
value, with the majority being shown in the excitatory cells. This is present
shortly after the stimulus is delivered with a slightly higher value between
1.6 π and 1.8 π.

In the connected network the information structure in the layer 4 cells is
similar to that in the disconnected network with a slightly higher information
value between 1.4 π and 1.9 π. In the projection neurons, the excitatory cells
in layer 3 and 5, there is a strong pattern in the mutual information values.
From 0 to 1 π there is stimulus linked mutual information with a stable
time lag giving a clear diagonal line. from 1 to 1.5 π there is no mutual
information between the stimulus input and the firing rate. From 1.5 to 1.9
π there is the highest mutual information values, with a broader duration
than at lower phase offsets. There is also a variable response latency with
higher phase offsets having a quicker response latency, this is shown by the
near vertical structure of the information content in this range. There is
also a small mutual information representation in the inhibitory cells at this
phase offset period.

Figure 3.46 shows the mutual information between the spike count in
each population and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 10 Hz.

In the layer 4 populations there is an increase in mutual information
between the firing rate with a relatively fixed latency in the excitatory cells.
Between 1.1 π and 1.9 π there is a higher mutual information value.

In the layer 3 and layer 5 excitatory cells there is vertical arrangement of
the mutual information suggesting that the maximum information is locked
to a fixed phase of the ongoing oscillation. The information is maximal
between 1 π and 1.9 π with a lower value between 0 π and 1.5 π. In the
layer 5 excitatory cells there is a gap in the maximal information where the
mutual information is not significant. In the layer 3 inhibitory cells there is



CHAPTER 3. INTRODUCING A BOTTOMUP SIGNAL TO THEMODEL183

Figure 3.44: The mutual information between the spike count in
each population and bottom up input frequency in a disconnected
network with an oscillatory input of 5 Hz Each bottom up stimulus is
delivered at 0.3 and 0.5 seconds shifted by 0 - 1.9 π. The left hand axis in
each figure shows the phase shift of the stimulus. The left hand plots are the
excitatory populations and the right hand plots are the inhibitory populations.
The top plots are the layer 3 cells, the middle plots are the layer 4 cells and
the bottom plots are the layer 5 cells. Information is given in bits.
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Figure 3.45: The mutual information between the spike count in each
population and bottom up input frequency in a connected network
with an oscillatory input of 5 Hz Each bottom up stimulus is delivered
at 0.3 and 0.5 seconds shifted by 0 - 1.9 π. The left hand axis in each figure
shows the phase shift of the stimulus. The left hand plots are the excitatory
populations and the right hand plots are the inhibitory populations. The top
plots are the layer 3 cells, the middle plots are the layer 4 cells and the bottom
plots are the layer 5 cells. Information is given in bits.
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Figure 3.46: The mutual information between the spike count in each
population and bottom up input frequency in a connected network
with an oscillatory input of 10 Hz Each bottom up stimulus is delivered
at 0.3 and 0.5 seconds shifted by 0 - 1.9 π. The left hand axis in each figure
shows the phase shift of the stimulus. The left hand plots are the excitatory
populations and the right hand plots are the inhibitory populations. The top
plots are the layer 3 cells, the middle plots are the layer 4 cells and the bottom
plots are the layer 5 cells. Information is given in bits.
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a small mutual information value between 1.4 π and 1.6 π.
Figure 3.47 shows the mutual information between the spike count in

each population and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 20 Hz. In
the layer 4 excitatory cells ther are two vertical arrangements of the mutual
information. Between 0 and 0.4 π it comes earlier than between 0.5 π and 1.9
π. There is a band of increased information value between 0.7 and 1.4 π, this
region features in the layer 4 inhibitory cells. In the layer 3 and 5 excitatory
cells there are three vertical bands in which the mutual information is present.
between 0 and 0.2 π the information is in the first two bands. Between 0.2 π
and 1.6 π the information is only in the middle band. This region contains the
highest mutual information values. Between 1.6 π and 1.9 π the information
is in the middle and the third band. The layer 4 inhibitory cells show mutual
information content between 0.6 and 1.3 π arranged vertically.

Figure 3.48 shows the mutual information between the spike count in
each population and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 40 Hz. This
shows a very similar arrangement of the information to the 20 Hz condition
With the exception that the information content is maximal towards the 0
to 0.7 π stimulus offset phase.

Overall there is a clear picture that the presentation phase has a strong
impact on the mutual information values in the projection neurons. In partic-
ular where the stimulus duration is much less than the duration of one cycle
of oscillatory input. There appears to be a point in the oscillation where if
the stimulus is delivered near it the information is packaged and locked to
the phase of the oscillation regardless of when it was delivered. The phase
of 1.8 π appears to give the maximal information at 5 Hz and around 1.6 π
at 10 Hz.

3.3.3.6 Mutual Information in time frequency power

In this analysis I present the mutual information between the bottom up
stimulus and the time frequency power according to probe phase. This is in
order to establish whether on not the phase dependence shown in the raw
signal and in the firing rates is contained in the power of particular frequency
bands.

Figure 3.49 shows the mutual information between power in the time
frequency power response and bottom up input frequency according to the
phase of the input in a disconnected network with an oscillatory input of 5
Hz. With the exception of the 1 π to 1.4 π input range there is no significant
mutual information between the stimulus and the power of the simulated field
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Figure 3.47: The mutual information between the spike count in each
population and bottom up input frequency in a connected network
with an oscillatory input of 20 Hz Each bottom up stimulus is delivered
at 0.3 and 0.5 seconds shifted by 0 - 1.9 π. The left hand axis in each figure
shows the phase shift of the stimulus. The left hand plots are the excitatory
populations and the right hand plots are the inhibitory populations. The top
plots are the layer 3 cells, the middle plots are the layer 4 cells and the bottom
plots are the layer 5 cells. Information is given in bits.
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Figure 3.48: The mutual information between the spike count in each
population and bottom up input frequency in a connected network
with an oscillatory input of 40 Hz Each bottom up stimulus is delivered
at 0.3 and 0.5 seconds shifted by 0 - 1.9 π. The left hand axis in each figure
shows the phase shift of the stimulus. The left hand plots are the excitatory
populations and the right hand plots are the inhibitory populations. The top
plots are the layer 3 cells, the middle plots are the layer 4 cells and the bottom
plots are the layer 5 cells. Information is given in bits.
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potential. In teh excepted region of input there is a broad mutual information
representation in the <8 Hz region. There is a stimulus linked feature in the
10 - 20 Hz range.

Figure 3.50 shows the mutual information between power in the time
frequency response power and bottom up input frequency according to the
phase of the input in a connected network with an oscillatory input of 5 Hz.
There is a general stimulus linked mutual information value at the <8 Hz
range with the exception of 0 to 0.2 π input phase. in the 10 Hz range there is
occasional mutual information representation at the presentation of the first
stimulus. in the 15 Hz range there is a stimulus linked mutual information
value.in the 30 - 40 Hz range there is representation of the stimulus at 0 - 0.2
π and at 1.6 π. In the later case it marks both stimulus onset and offset. In
the >40 Hz range stimulus representation is only present in the 0 π and the
1.6 π condition, however between 1.6 and 0 π there is also representation in
this frequency range too.

Figure 3.51 shows the mutual information between power in the time
frequency response and bottom up input frequency according to the phase
of the input in a connected network with an oscillatory input of 10 Hz. In
this group there is a somewhat stereotypical representation of the stimulus
fixed to the rising phase of the ongoing stimulus. Features of this pattern
are enhanced or lost depending upon what phase the input is delivered. Of
particular not is the >40 Hz component which is absent from 0.4 to 1 π. This
is also the case for the 30 Hz component. There is no mutual information
in the 10 Hz range. The <8 Hz range is not present between 1 and 1.4 π,
exclusive.

Figure 3.52 shows the mutual information between power in the time
frequency response and bottom up input frequency according to the phase
of the input in a connected network with an oscillatory input of 20 Hz.
Again this condition produces a stereotypical input oscillation phase locked
response. Between 0 and 0.4 π the information is minimal. At 0 π you can
see the locked response of the high frequency component has a secondary
representation on full cycle after the first stronger representation. At 0.2 π
the secondary representation is stronger and at 0.4 π the second phase lock
becomes the position the remainder of the plots are locked to. 0.8 to 1.2 π
show the highest valuse for the mutual information in all bands.

Figure 3.53 shows the mutual information between power in the time fre-
quency response and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 40 Hz. This
again shows a stereotypical response to both inputs with information repre-
sentation in the <8 Hz, 8 -15 Hz band and the 30 -60 Hz band. In the 30
- 60 Hz band there is an increase in the range and value of the representa-
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tion in the second stimulus presentation phase. This is highest where the
presentation is between 0.8 π and 1.2 π. In the first presentation there is a
weaker representation in this frequency range when the stimulus is delivered
between 1.4 an 1.9 π.

Overall there is a demonstrable phase dependence on the representation of
the stimulus according to the phase at which the bottom up input is delivered.
In the higher frequencies this modulates a pattern of representation fixed to
the phase of the injected sinusoid. In the lower frequencies this changes the
frequency bands in which information is carried. This shows up particularly
in the gamma range, with a sensitivity to transmitting maximal information
between 1.6 and 1.8 π.

In the next analysis I explore the time frequency phase as a basis of
comparison.

3.3.3.7 Mutual information and phase

In this analysis I present the mutual information between the bottom up
stimulus and the time frequency phase according to probe phase. This is in
order to establish whether on not the phase dependence shown in the raw
signal and in the firing rates is contained in the phase of particular frequency
bands.

Figure 3.54 shows the mutual information between phase in the time
frequency response and bottom up input frequency according to the phase
of the input in a disconnected network with an oscillatory input of 5 Hz.
Between 1 π and 1.6 π there is a small mutual information representation
in the <25 Hz range, otherwise there is no significant information in any
frequency band.

Figure 3.55 shows mutual information between phase in the time fre-
quency response and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 5 Hz. Between
0.4 π and 1.2 π there is a small mutual information representation of the
stimulus in the time frequency phase in the 20 and 10 Hz ranges. Between
1.4 π and 0 π there is a wide broad band phase linked representation in the
time frequency phase.

Figure 3.56 shows the mutual information between phase in the time
frequency response and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 10 Hz. There is
a stereotypical pattern of significant information that is phase locked to the
input stimulus here. The magnitude of the information is dependent upon
the oscillatory phase the bottom up input is applied, with the maximal values
at between 1.4 and 1.6 π. between 0.2 π and 0.8 π the >25 Hz component
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is absent. Another point to note is that in the 20 - 30 Hz range there is a
gap in mid to post stimulus significance, with the whole band being absent
in the 0 π stimulus phase.z feature

Figure 3.57 shows the mutual information between phase in the time
frequency response and bottom up input frequency according to the phase of
the input in a connected network with an oscillatory input of 20 Hz. There is
a stereotypical stimulus locked mutual information pattern across all input
phase conditions. There appears to be two components, a 15 - 30 Hz feature
and a >30Hz feature. Phase locking can be seen in the 0 π and 1.6 π plots
where the >30 Hz component splits across two oscillatory input cycles. The
highest mutual information values can be seen in the 0.6 - 1 π bottom up
input conditions.

Figure 3.58 shows the mutual information between phase in the time
frequency response and bottom up input frequency according to the phase
of the input in a connected network with an oscillatory input of 40 Hz. This
is similar to the mutual information in the time frequency power plot with
the exception that the 30 -60 Hz band is split in half into two segments
where the lower frequencies phase lock on the cycle preceding that of the
higher frequency range. The first and second stimulus are represented in an
opposite way here when the stimulus is delivered at 1.4 to 1.6 π. Whereas
in the power’s case the first stimulus is not represented, in the phase it’s the
second stimulus that is not represented.

Overall there is a similar, although more broadband, response profile of
the mutual information between input and time frequency phase as with the
time frequency power.

3.3.4 Discussion

In this section I have demonstrated that oscillatory long range inputs are able
to alter the encoding of a bottom up stimulus in the field potential and in
the spiking activity. It is also apparent that the stimulus information may be
eliminated dependent on the phase of the top down input. The information
is also packaged by the oscillation, in that maximal information is locked to
the phase of the long range input oscillation.

The strongest determinant of the information processing of the entire net-
work is the point where the oscillatory input drives the network into network
activation, when is crosses the activation threshold. This resets the informa-
tion in the spiking activity of the network to zero or near zero. This is also
marked by a resetting of information in the field potential power and phase.

The role of different laminar populations in the network for computation
is sharply brought into focus. Whilst there is a similar information content
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in most layers related to the stimulus no matter what time it is applied, even
for the duration of the stimulus when applied during the network activation
period, in the layer 3 and layer 5 excitatory cells there is a strong increase in
information for stimulus immediately following the crossing of the network
threshold.

3.4 Chapter Summary

In this chapter I have shown the network behaviour over an increasingly
realistic range of inputs. I have identified a number of input and stimulus
encoding features in the discussion of each section. I have shown the laminar
organisation of the network to carry out different and important roles for
encoding of stimulus information. And I have identified a potential gating
mechanism for the communication of computation performed upon stimulus
information to long distance areas within the cortical hierarchy.

This phase dependent gating mechanism is the strongest testable hypoth-
esis to be derived from the simulation results presented in this work. Plainly
stated an ongoing or induced oscillation in a sensory network will change the
state of a primary sensory cortical area and thus its response to bottom up
information from a stimulus that’s duration is shorter than the wavelength.
There is a point during the rise time of the oscillation where the local net-
work enters the activated state. Stimuli presented immediately after this
point will be facilitated. Stimulus presented closely preceding this point will
be attenuated. This effect will be independent of the ongoing or induced
oscillation frequency. This effect will also be represented in a concurrently
recorded field potential measurement.

In the next chapter I will derive and carry out a number of experiments
to test this hypothesis.



Chapter 4

Behavioural and MEG studies

4.1 Chapter introduction

In this chapter I will present two behavioural studies and two MEG studies
whose paradigms were derived from the results of the modelling study. The
modelling study suggests that the information relating to a bottom up input
or stimulus available to experimenters from recorded field potential activity
and the information available to higher and lower areas of the brain are
dependent on the coincidence with the phase of a cortico-cortical oscillatory
input.

To investigate this experimentally I was presented with two options, to
come up with a simple sensory task and analyse the field potential state
preceding a stimulus or to induce oscillations in the cortex and control the
relative timing of a sensory stimulus. I decided to pursue both approaches.

Firstly, to investigate endogenous oscillations presents the problem that
there can be no behavioural pilots without recording neural oscillations. Sec-
ondly, repeated stimuli are likely to induce task related anticipatory oscilla-
tions(Worden et al., 2000; Kelly et al., 2006; Thut et al., 2006). Nonetheless,
this presents a simpler set of tasks available for investigation when measuring
field potentials.

A simple task had to be devised in order to be considered equivalent
at both the small scale and the large scale level. Areili et al (Arieli et al.,
1996) showed that variability in the optical dye and local field potential
(LFP) event related potential (ERP) response to repeated stimulus in the
cat visual cortex depended upon the amplitude of the LFP. Haslinger et al
(Haslinger et al., 2006) demonstrated that the phase of a 1 Hz LFP oscillation
in the barrel cortex of the rat predicts the spiking response of that area to
whisker deflection. Linkenkaer-Hansen et al (Linkenkaer-Hansen et al., 2004)

203
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have shown that the amplitude of prestimulus oscillations 10, 20 and 40Hz
influences the detection of near threshold stimuli in human somatosensation.
These results suggested a simple near threshold perception task would be
an appropriate paradigm to investigate the interaction between information
flow and cortical oscillations.

I was then presented with the challenge of selecting a method of reli-
ably inducing oscillations. Oscillatory input has been shown to induce phase
locked neural oscillation in a number of sensory modalities (Nakayama and
Mackeben, 1982; Tobimatsu et al., 1999; Bergholz et al., 2008; Manganotti
et al., 2009). Upon consideration of ease of delivery, cortical localization and
the limited number of studies in this modality I decided on using the audi-
tory steady state response. This response is easily reproduced and utilized in
audiology, neurology and in surgery to ascertain depth of anaesthesia(Azzena
et al., 1995; Santarelli et al., 1995; John and Picton, 2000; Ross et al., 2000).

The effects of oscillatory input and facilitation of perceptual response
have been shown in a number of recent studies (Fries, 2005; Schnitzler and
Gross, 2005; Schoffelen et al., 2005). Their potential for use investigation of
endogenous brain rhythms has recently been discussed by Thut, Schyns and
Gross(Thut et al., 2011).

Thus I derived the three experimental paradigms presented in this study.
The first is the detection of a near threshold auditory stimulus in the context
of a steady state stimulus. This is closest to the paradigm explored in the
final section of the second modelling chapter. Four auditory steady state
frequencies were explored in a behavioural study and in an MEG study.

The second paradigm was based on the assumption that entrained en-
dogenous rhythms would persist beyond the offset of an auditory steady
state stimulus. Thus a steady state stimulus would be played long enough
to induce the entrainment of a rhythm and then near threshold perception
would be measured post stimulus.

The third paradigm was a simple near threshold detection task of an
auditory stimulus to be performed in the MEG.

Each of these experiments and their results will now be presented.

4.2 A behavioural study of ongoing auditory

steady state

In this behavioural study participants undertook a near threshold perception
test in the presence of a continuous auditory steady state stimulus. Four
entrainment frequencies were employed, 4 Hz, 10 Hz, 20 Hz and 39 Hz. Each
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stimulus lasted 200 seconds and each frequency was presented three times.
I hypothesise that there will be a phase dependent change in the percep-

tion of a stimulus. A secondary hypothesis is that it will be facilitated during
the rising phase of the stimulus and inhibited during the falling phase. A
tertiary hypothesis is that the perception relationship to the phase will be
independent of the frequency.

4.2.1 Methods

4 participants with an average age of 29 took part in this study. There were
2 males and 2 females. Participants reported no known hearing problems.
The study was approved by the local ethics committee (University of Glas-
gow Faculty of Information and Mathematical Sciences) and conducted in
conformity with the declaration of Helsinki. Each subject provided informed
consent.

The experiment was carried out in a quiet lab. Participants used a dell
laptop computer and Sennheiser HD 205-II Headphones.

The experiment was a within subjects design with two factors. The first
factor was a 200 second presentation of a 250 Hz sinusoidal tone. This
had four conditions. It was either played with amplitude modulated with a
sinusoid with a modulation depth of 100 per cent. The modulation frequency
was 4, 10, 20 or 39 Hz. The second factor was a 5 ms burst of Gaussian
white noise presented at near 50 percent perception level. The noise probe
was presented 99 times in the context of the sinusoidal tone with a 2 second
interstimulus time plus a random duration of between 0 and 1 seconds. Each
modulation frequency was presented three times.

The experimental procedure was as follows. The participant was seated
in front of the computer screen with the headphones on. The experimenter
initialised the program and asked the participant to follow the on screen
instructions. The white noise probe was played and the participant was asked
to adjust this to a barely audible level by adjusting it until they couldn’t
hear it, then increasing it to the first stepwise point where it was audible.
This level was then used to determine the perception threshold psychometric
curve.

The white noise probe was played 100 times with the amplitude randomly
adjusted each time to cover the range of 0 - 100 percent perceived levels.
After each presentation there was a pause where the participant was asked
to respond whether or not they heard the probe by entering a keystroke.
The responses were binned according to 10 amplitude levels and plotted in a
Matlab figure. This was sufficient to produce the classical sigmoid threshold
response. The experimenter then determined the 50 percent threshold level
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and entered it into the computer. This level was used to set the 0 decibel
level and determine the level of the ongoing sinusoidal carrier wave.

The probe perception threshold was the determined in the context of the
carrier wave. The 250 Hz carrier wave was set at 70 dB. A 200 ms carrier wave
was played with the white noise probe played 99 times with the amplitude
randomly adjusted each time to cover the range of 0 - 100 percent perceived
levels. The noise probe was presented in the context of the sinusoidal tone
with a 2 second interstimulus time plus a random duration of between 0 and
1 seconds. The participant was asked to respond by a keystroke whenever
they hear a probe stimulus. The responses were binned according to 10 am-
plitude levels and plotted in a Matlab figure. This was sufficient to produce
the classical sigmoid threshold response. The experimenter then determined
the 50 percent threshold level and entered it into the computer. This level
was used to set the threshold level of the noise probe in the context of the
sinusoidal signal.

The experiment was as follows. The participant was presented with three
blocks of four trials with the participant able to determine the start of each
block and trial. Each block consisted of a trial at each of the modulation
frequencies. Each trial consisted of a 200 ms amplitude modulated 250 Hz
carrier wave with 99 presentations of the noise probe at 50 percent percep-
tion level. The noise probes were presented with a 2 second interstimulus
time plus a random duration of between 0 and 1 seconds.The participant
responded with a key stroke each time the probe was perceived. The time
of each keystroke was recorded. After the experiment the participants were
fully debriefed.

4.2.2 Results

Figures 4.1, 4.2, 4.3 and 4.4 show the perception response for all participants.
These results demonstrate that there is a significant difference in the mean
phase angle at which the probe stimulus is applied. Although non of the
participants have a significant difference for all probe frequencies, three of
the participants show a significant difference in three of the four conditions
and the remaining participant in two of the four. The mean angle for a
correct response is approximately 1.8 π, the mean angle for an incorrect
response is approximately 0.8 π, although this is more variable. There is not
a significant difference in the mean angle according to steady state stimulus
frequency.

Figures 4.5, 4.6, 4.7 and 4.8 show the reaction time histograms and the
median and mean values for each correct response at each of the steady
state probe frequencies. Although testing for statistical significance does not
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Figure 4.1: The mean correct and incorrect response mean phase
and the normalized summery of results - participant 1 the blue plots
show the normalized correct responses by the phase at which they were applied.
The red plots show the normalized incorrect responses by the phase at which
they were applied. The black centre vector in each plot is the mean phase
angle for the given response. The text gives the percentage of perceived and
unperceived trials and whether or not the difference between the two mean
angles are significant. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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Figure 4.2: The mean correct and incorrect response mean phase
and the normalized summery of results - participant 2 the blue plots
show the normalized correct responses by the phase at which they were applied.
The red plots show the normalized incorrect responses by the phase at which
they were applied. The black centre vector in each plot is the mean phase
angle for the given response. The text gives the percentage of perceived and
unperceived trials and whether or not the difference between the two mean
angles are significant. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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Figure 4.3: The mean correct and incorrect response mean phase
and the normalized summery of results - participant 3 the blue plots
show the normalized correct responses by the phase at which they were applied.
The red plots show the normalized incorrect responses by the phase at which
they were applied. The black centre vector in each plot is the mean phase
angle for the given response. The text gives the percentage of perceived and
unperceived trials and whether or not the difference between the two mean
angles are significant. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.



CHAPTER 4. BEHAVIOURAL AND MEG STUDIES 210

Figure 4.4: The mean correct and incorrect response mean phase
and the normalized summery of results - participant 4 the blue plots
show the normalized correct responses by the phase at which they were applied.
The red plots show the normalized incorrect responses by the phase at which
they were applied. The black centre vector in each plot is the mean phase
angle for the given response. The text gives the percentage of perceived and
unperceived trials and whether or not the difference between the two mean
angles are significant. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.



CHAPTER 4. BEHAVIOURAL AND MEG STUDIES 211

Figure 4.5: The reaction time histogram for each stimulus condition
- participant 1 the red line shows the median reaction time and the green
shows the mean. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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Figure 4.6: The reaction time histogram for each stimulus condition
- participant 2 the red line shows the median reaction time and the green
shows the mean. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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Figure 4.7: The reaction time histogram for each stimulus condition
- participant 3 the red line shows the median reaction time and the green
shows the mean. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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Figure 4.8: The reaction time histogram for each stimulus condition
- participant 4 the red line shows the median reaction time and the green
shows the mean. From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz
condition is presented.
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yield any clear answers, in the first three of the four participants there is
a suggestion that as the probe frequency increases reaction time is longer.
Further experimentation would be required to confirm this.

4.2.3 Discussion

The behavioural results response probabilities show a strong correlation with
the mechanism identified through the modelling study. The phase depen-
dence in both is independent of the induced frequency. There is a point
during the rise time of the sinusoid after which there is greater information
about the stimulus available. Preceding this there is a period where informa-
tion about the sensory input is reduced. This lends strong support for the
mechanism of network activation identified in the model.

4.3 A behavioural study of auditory steady

state phase

In this experiment 25 participants were presented with either a one second
auditory steady state stimulus modulated at 10 Hz or an unmodulated carrier
wave followed by a 50% perception level probe stimulus with a post stimulus
delay of one of eight equally spaced levels within a single wavelength.

I hypothesise that there will be an effect on perception level related to
the phase of the absent auditory steady state cycle.

4.3.1 Methods

25 participants with an average age of 21 took part in this study. There were
10 males and 15 females. Participants reported no known hearing problems.
The study was approved by the local ethics committee (University of Glas-
gow Faculty of Information and Mathematical Sciences) and conducted in
conformity with the declaration of Helsinki. Each subject provided informed
consent.

The experiment was carried out in a quiet lab. Participants used a dell
desktop computer and Sennheiser HD 205-II Headphones.

The experiment was a within subjects design with two factors. The first
factor was a 1 second presentation of a 250 Hz sinusoidal tone. This had two
conditions. It was either played unmodulated or amplitude modulated with
a 10 Hz sinusoid with a modulation depth of 0.8. The second factor was a
5 ms burst of Gaussian white noise presented at near 50 percent perception
level. This had eight conditions. The noise probe was presented after the
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modulated or unmodulated sinusoidal stimulus with a time delay of 1 - 8
eighths of the amplitude modulation frequency wavelength.

The experimental procedure was as follows. The participant was seated
in front of the computer screen with the headphones on. The experimenter
initialised the program and asked the participant to follow the on screen
instructions. The initial stimulus level was set by playing the unmodulated
sinusoidal tone and asking the participant to adjust it to a loud, but not
uncomfortable level. This level was saved for future factor 1 presentation.

The white noise probe was played and the participant was asked to adjust
this to a barely audible level by adjusting it until they couldn’t hear it, then
increasing it to the first stepwise point where it was audible. This level was
then used to determine the perception threshold psychometric curve in the
context of the sinusoidal input.

To determine the curve there 50 presentations of the unmodulated 1 sec
sinusoidal tone followed by a probe tone of varying amplitude levels. For
each presentation the participant was asked to respond by a key press ’y’
if perceived and ’n’ if not perceived. The responses were binned according
to 10 amplitude levels and plotted in a Matlab figure. This was sufficient
to produce the classical sigmoid threshold response. The experimenter then
determined the 50 percent threshold level and entered it into the computer.
This level was used for factor 2 presentation.

The experiment was as follows. The participant was presented with two
blocks of 160 trials. Each trial consisted of a sinusoidal tone, either modu-
lated or unmodulated, followed by a noise probe played with one of the eight
time delays. All possible combinations of tone and delay were presented 10
times with random presentation. Between blocks the participant was asked
to sit quietly and begin the second block with a keystroke. After the second
block the participants were fully debriefed.

4.3.2 Results

Figure 4.9 shows the mean response across participants to the probe stimu-
lus at different phases for modulated and unmodulated auditory steady state
stimulus. The top plot shows the number of positive responses to ten pre-
sentations of the probe at each post condition delay time. The delay data
point times each represent an increase of 1/8 th of the auditory steady state
stimulus wavelength. The blue plot is teh modulated carried wave and the
green plot is the unmodulated carrier wave. The bottom plot shows the val-
ues of the modulated carrier wave responses minus the responses following
the unmodulated carrier wave.

Both lines in the top plot show a sigmoidal increase in perception rate
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Figure 4.9: The mean response across participants to the probe stimulus
at different phases for modulated and unmodulated auditory steady state
stimulus
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following the pre probe stimulus. The 50 percent perception rate is reached
by approximately one wavelength post condition. The perception rate is
facilitated by the 10 Hz auditory steady stimulus at all time points. The
central section of the modulated carrier wave condition is not linear.

The bottom plot shows the difference between the modulated and un-
modulated response. It is clear that the facilitation is phase dependent upon
the post auditory steady state stimulus. Facilitation is maximal in the an-
ticipated falling section of the modulating sinusoid.

4.3.3 Discussion

This study supports the hypothesis that induced oscillations alter post stim-
ulus responses. That the curve in the second plot is the opposite of that
found in the previous behavioural experiment suggests that there may be
some adaptive compensation to the ASSR stimulus from a higher area in the
cortex.

4.4 An MEG study of auditory steady state

signals

In this study a similar paradigm to the first behavioural experiment was
presented in the MEG. The paradigm was altered slightly to accommodate
restrictions presented by the MEG set up. The frequencies of the auditory
steady state stimuli were changed to avoid interference from the mains elec-
tricity artefact.

There were significant problems delivering the auditory stimulus to the
participant in the magnetically shielded room (MSR). In initial runs there
was a strong temporal response to the auditory steady state stimulus, how-
ever upon further investigation it was found that this was an artefact from
the headset speakers. At the volume required to induce an auditory steady
state response the headset shielding proved infective in removing any related
magnetic contribution to the signal.

In response to this I sourced an alternative delivery system which con-
sisted of speakers external to the MSR driving a column of air in a ten foot
silicone tube connected with the participants ear canal through an in ear
device. This system produced a filtering effect on the low and high frequen-
cies, however this was not in effect in the frequency of the carrier wave. It
did attenuate the white noise stimulus to the point where in the context of
the auditory steady state response it could not be perceived at its highest



CHAPTER 4. BEHAVIOURAL AND MEG STUDIES 219

volume. As such the probe stimulus was replaced with a 1 kHz burst which
was able to be perceived very close to maximum volume.

This system resulted in an over all reduction in volume, with the maxi-
mum volume only at the lowest limits reported to produce an auditory steady
state response.

4.4.1 Methods

3 right handed participants with an average age of 30 took part in this study.
There were 2 males and 1 female. Participants reported no known hearing
problems. The study was approved by the local ethics committee (Univer-
sity of Glasgow Faculty of Information and Mathematical Sciences) and con-
ducted in conformity with the declaration of Helsinki. Each subject provided
informed consent. All subjects participated in the behavioural experiment
presented in 4.2.1 and were familiar with the paradigm.

The recording session consisted of two auditory experiments. All stimuli
were presented binaurally. The first experiment was a within subject design
with one factor. The subject had to respond with a button press when a 5
ms burst of a 1000 Hz sinusoid presented at near 50 percent perception level.
The noise probe was presented 99 times over 200 seconds with a 2 second
interstimulus time plus a random duration of between 0 and 1 seconds. This
was carried out three times.

The second experiment was a within subjects design with two factors.
The first factor was a 200 second presentation of a 250 Hz sinusoidal tone.
This had four conditions. It was either played with amplitude modulated
with a sinusoid with a modulation depth of 100 per cent. The modulation
frequency was 4, 9, 19 or 39 Hz. The second factor was a 5 ms burst of a 1000
Hz sinusoid presented at near 50 percent perception level. The noise probe
was presented 99 times in the context of the sinusoidal tone with a 2 second
interstimulus time plus a random duration of between 0 and 1 seconds. Each
modulation frequency was presented three times.

Brain activity was recorded with a 248-magnetometer whole-head MEG
system (MAGNES 3600 WH, 4-D Neuroimaging) confined in a magnetically
shielded room. The MEG signal was high-pass filtered at 0.1 Hz and digitized
at 508 Hz. Before starting the recording session, five coils were positioned
on the participant’s head. These coils, together with three fiducial points
and the subject’s head shape, were digitized using a Polhemus Fastrak sys-
tem. At the beginning and end of each run the five coils were activated to
localise the participants head with respect to the MEG sensor array. During
the recording session, subjects were seated in a reclining chair and supported
their head against the back and top of the magnetometer. Some of them
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opted for using an additional neck support to increase their comfort. Partic-
ipants were asked to remain as still as possible during the recording session
and were continuously monitored by a video camera.

Instruction was presented through a DLP projector (PT-D7700E-K, Pana-
sonic) placed outside the shielded room onto a screen situated 1.90 m away
from participants via an in-room mirror. All stimuli were generated off-line
using Matlab 7.5 (The MathWorks) and were presented using Psychtool-
box (Brainard, 1997). Auditory stimulus was presented using a Behringer
POWERPLAY PRO-XL HA4700 amplifier delivered by Etymotics ER30
dual mono headphones with 20 ft silicone delivery tubes feeding to moulded
ear inserts within the magnetically shielded room. Participants responded
using one non-magnetic response pad (Lumitouch) held in the right hand.
Responses during the setup phase were using the right index finger or the
right ring finger. Responses during the experimental phase were the right
index finger only.

The experimental procedure was as follows. The experimenter initialised
the program and asked the participant to follow the on screen instructions.
The 1000 Hz burst probe was played and the participant was asked to adjust
this to a barely audible level by adjusting it until they couldn’t hear it, then
increasing it to the first stepwise point where it was audible. This level was
then used to determine the perception threshold psychometric curve.

The 1000 Hz burst probe was played 100 times with the amplitude ran-
domly adjusted each time to cover the range of 0 - 100 percent perceived
levels. After each presentation there was a pause where the participant was
asked to respond whether or not they heard the probe by entering a keystroke.
The responses were binned according to 10 amplitude levels and plotted in a
Matlab figure. This was sufficient to produce the classical sigmoid threshold
response. The experimenter then determined the 50 percent threshold level
and entered it into the computer. This level was used to set the 0 decibel level
and determine the level of the ongoing sinusoidal carrier wave in experiment
2.

The first experiment was as follows. The participant was presented with
three blocks of 200 ms with 99 presentations of the 5 ms 1000 Hz sinusoid
probe. The 1000 Hz sinusoid probes were presented with a 2 second in-
terstimulus time plus a random duration of between 0 and 1 seconds.The
participant responded with a key stroke each time the probe was perceived.
The time of each keystroke was recorded. The participant determined the
onset of each block.

In preparation for the second experiment the probe perception threshold
was the determined in the context of the carrier wave. The 250 Hz carrier
wave was set at 70 dB. A 200 ms carrier wave was played with the 1000 Hz
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burst probe played 99 times with the amplitude randomly adjusted each time
to cover the range of 0 - 100 percent perceived levels. The 1000 Hz burst was
presented in the context of the sinusoidal tone with a 2 second interstimulus
time plus a random duration of between 0 and 1 seconds. The participant
was asked to respond by a keystroke whenever they hear a probe stimulus.
The responses were binned according to 10 amplitude levels and plotted in a
Matlab figure. This was sufficient to produce the classical sigmoid threshold
response. The experimenter then determined the 50 percent threshold level
and entered it into the computer. This level was used to set the threshold
level of the 1000 Hz sinusoid probe in the context of the sinusoidal signal.

The second experiment was as follows. The participant was presented
with three blocks of four trials with the participant able to determine the
start of each block and trial. Each block consisted of a trial at each of
the modulation frequencies. Each trial consisted of a 200 ms amplitude
modulated 250 Hz carrier wave with 99 presentations of the 1000 Hz sinusoid
probe at 50 percent perception level. The 1000 Hz sinusoid probes were
presented with a 2 second interstimulus time plus a random duration of
between 0 and 1 seconds. The participant responded with a key stroke each
time the probe was perceived. The time of each keystroke was recorded.
After the experiment the participants were fully debriefed.

4.4.2 Results

After a number of pilots only one participant was determined to be able
to perceive the probe stimulus in the context of the ASSR stimulus when
the probe was at maximum volume. Upon investigation of the MEG signal
there was no evidence of auditory steady state entrainment. The behavioural
results presented below indicate that there was not the same effect as the
participant’s behavioural results presented above.

Figures 4.10 and 4.11 show the two equivalent graphs from the MEG
study to the behavioural study carried out in section 4.2.2. Both figures
demonsrate that there is no significant difference in the steady state response
phase probe angle, and no trend in the reaction times according to stimulus
frequency.

4.4.3 Discussion

The negative behavioural results and the absence of a recorded steady state
response to a stimulus level that was thought to be at the threshold of a
measurable effect support the hypothesis that induced cortical oscillation is
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Figure 4.10: The mean correct and incorrect response mean phase
and the normalized summery of results the blue plots show the nor-
malized correct responses by the phase at which they were applied. The red
plots show the normalized incorrect responses by the phase at which they were
applied. The black centre vector in each plot is the mean phase angle for the
given response. The text gives the percentage of perceived and unperceived
trials and whether or not the difference between the two mean angles are sig-
nificant. From top to bottom the 4 Hz, 9 Hz, 19 Hz and 39 Hz condition is
presented.
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Figure 4.11: The reaction time histogram for each stimulus condition
the red line shows the median reaction time and the green shows the mean.
From top to bottom the 4 Hz, 10 Hz, 20 Hz and 39 Hz condition is presented.
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required for the effect, rather than just a conflicting osculating stimulus in
the same modality.
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4.5 An MEG study of near threshold stimuli

and ongoing activity

In this study the results from a single participant to repeated presentations
of a 1 kHz tone at 50 % perception level are presented. The participant was
given 297 probe stimuli and responded with a right index finger button press
when the tone was perceived. The probes were presented every two seconds
with a randomized offset of between zero and one second.

In the analysis the MEG recordings were segmented according to stimulus
presentation time. The raw signal was dominated by a strong occipital alpha
signal. The signal was analysed using independent component analysis to
extract whole brain components that would be most likely to contain a rep-
resentation of the primary auditory cortices, rather than using a sensor based
analysis (Ramkumar, 2012). The signals underwent dimensional reduction
and were sorted into independent components using the fieldtrip ICA algo-
rithm (Oostenveld, 2011). The components were then ranked according to
variance. Here I present an analysis of the three strongest dipole components
from the occipital and both temporal regions. The signals were then further
sorted into positive and negative responses.

I hypothesise that there will be a prestimulus frequency power and phase
dependence upon perception.

First I present the components under investigation. Next I present the
mean power spectral distribution of the positive and negative responses.
Thirdly I look at the time frequency power response of the positive response.
Then I look at the positive response time frequency response relative to base-
line. This is followed by the time frequency power response of the positive
trials minus the negative trials. Finally I present the time frequency power
response of the positive trials minus the negative trials relative to baseline.

This is followed by an information theory analysis first into the mutual
information between time frequency power and correct or incorrect response.
And secondly to the mutual information in the time frequency phase.

4.5.1 Methods

The experiment was carried out concurrently with the experiment on audi-
tory steady state responses and the methods are described in that section.
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Figure 4.12: 3 independent components of the MEG response

4.5.2 Results

In all figures in the results section there are three figures from top to bottom
they are independent components representing from top to bottom the pri-
mary occipital component, the primary right temporal component and the
primary left temporal component.

4.5.2.1 Independent components

Figure 4.12 shows the three independent components that will be investigated
in this MEG study. Dimension reduction was performed using PCA and
sorted according to variance. Components were selected for their anatomical
location and whether or not they represented a dipole. The top plot is the
component ranked with highest variance. This shows a dipole in the occipital
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region. The middle plot is the component ranked 17th according to variance.
This shows a dipole in the right temporal region. The bottom plot is the
component ranked 20th according to variance. This shows a dipole in the
left temporal region.

4.5.2.2 Independent components’ power spectra

Figure 4.13 shows the power spectral distributions for the independent com-
ponents sorted according to positive or negative response. The blue line
shows the correct response; the green line shows the incorrect response.

The top plot represents the normalised power spectral distribution in the
occipital component. There is an higher proportion of the normalised power
for the positive response in the lowest frequency band, the 5 Hz band and
the 10 Hz band. There is a reduced proportion of normalised power at 15
Hz.

The middle plot represents the normalised power spectral distribution in
the right temporal component. There is an higher proportion of the nor-
malised power for the positive response at 7 Hz, 10 Hz and 20 Hz. There is
a reduced proportion of normalised power at all frequencies less than 6 Hz.

The bottom plot represents the normalised power spectral distribution in
the left temporal component. There is an higher proportion of the normalised
power for the positive response at 13 - 17 Hz. There is a reduced proportion
of normalised power at all frequencies less than 12 Hz and at 20 Hz.

4.5.2.3 Independent components time frequency response for pos-
itive response

Figure 4.14 shows the mean time frequency response for positive response in
the independent components. The probe stimulus was applied at time equal
to zero. All three show a dominant power around 10 Hz.

The top plot represents the occipital component. The dominant frequency
is the 10 -12 Hz range. There is a peak in power preceding the stimulus to
-0.2 seconds with a reduction in power post stimulus.

The middle plot represents the right temporal component. The dominant
frequency range is the 6 - 11 Hz range. There is a prestimulus peak in power
to -0.4 seconds. There is a post stimulus reduction in power from 0.1 seconds.

The bottom plot represents the left temporal component. There are two
prominent frequency ranges, the 5 - 11 Hz range and the less than 3 Hz range.
In the 10 Hz range there is a stimulus related increase in power that extends
0.1 seconds either side of the stimulus. There is a post stimulus decrease in
this range from 0.2 seconds. There is a post stimulus increase in power in
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Figure 4.13: Independent components’ power spectral distribution
positive and negative response
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Figure 4.14: Time frequency response for positive response
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the 7-5 Hz range from around 0.1 Hz. There is a prestimulus reduction in
power in the 5 Hz range and in the less than three Hz range. There is a slight
increase in power in the 4 Hz range pre stimulus. There is a post stimulus
increase in power in the less than 3 Hz from about 0.1 Hz.

4.5.2.4 Independent components time frequency relative response
for positive response

Figure 4.15 shows the time frequency relative response for positive response
in the independent components. The probe stimulus was applied at time
equal to zero.

The top plot shows the occipital component. Prestimulus shows an in-
crease in the 10 Hz and the 22 Hz bands extending to -0.2 seconds. There
is a reduction in power in the 5 Hz, 7 Hz, 15 Hz and 25 Hz bands. Post
stimulus there is an increase in power in the 15 Hz, 20 Hz, 30 - 34 Hz and
36 Hz bands. There is a reduction in power in the less than 5 Hz, 13 Hz and
25 Hz range.

The middle plot shows the right temporal component. Pre stimulus there
is an increase in power in the 10 Hz and 30 Hz bands. There is reduced
power in all other bands. Post stimulus there is an increase in power 3 Hz,
10 Hz, 20 Hz and in particular the 30 Hz range.

The bottom plot shows the left temporal cortex. Pre stimulus there is an
increase in the 3 Hz, 9 Hz and 20 Hz range. There is a reduction in power
in the less than 3 Hz, 6 Hz and the 25 - 35 Hz range. At stimulus there is
an increase in power at the 9 Hz range. Post stimulus there is an increase in
power in the 6 Hz, 12 Hz and 19 Hz range.

4.5.2.5 Independent components time frequency response for pos-
itive response minus negative response

Figure 4.16 shows time frequency response for positive response minus neg-
ative response in the independent components. The probe stimulus was
applied at time equal to zero. This should increase the components that are
associated with positive responses.

The top plot shows the occipital component. There is a strong 10 Hz
component preceding the stimulus followed by a reduction in this component
post stimulus.

The middle plot shows the right temporal component. There is a strong
9- 10 Hz component peaking at -0.2 prestimulus. There is a reduction in
5 - 6 Hz prestimulus that extends to the post stimulus time. There is a
prestimulus increase in the less than 3 Hz range.
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Figure 4.15:
Time frequency relative response for positive response
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Figure 4.16: Time frequency response for positive response minus
negative response
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The bottom plot is the left temporal component. There is a prestimlus
increase in power in the 28 Hz range. There is a pre stimulus reduction in
power in the less than 3 Hz range and in the 6 Hz range. There is an increase
in 10 Hz around the stimulus. There is a post stimulus increase in power in
the less than 3 Hz and 15 Hz range.

4.5.2.6 Time frequency relative response for positive response mi-
nus negative response

Figure 4.17 shows relative time frequency response for positive response mi-
nus negative response in the independent components. The probe stimulus
was applied at time equal to zero. This should increase the components that
are associated with positive responses.

The top plot shows the occipital component. There is a pre stimulus
increase in power in the 10 Hz and 28 Hz range. There is a post stimulus
increase in power in the 15 Hz, 30 Hz and 40 Hz range. There is a post
stimulus reduction in power in the less than 5 Hz range.

The middle plot shows the right temporal component. There is a pre
stimulus increase in power in the 10 Hz range around -0.2 seconds. There is
a prestimulus decrease in power in the 5Hz, 20 Hz and 30 Hz range. There
is a post stimulus increase in power in the 3 Hz, 10 Hz, 25 and 40 Hz ranges.
There is a post stimulus decrease in power in the 5 Hz and 30 Hz range.

The bottom plot shows the left temporal component. There is a strong
prestimulus increase in power in the 20 Hz range. There is a prestimulus
decrease in power in the less than 3 Hz, 5-7 Hz and 15 Hz range. There is a
stimulus linked increase in power in the 9 Hz range. There is a post stimulus
increase in power in the 15 and 20 Hz ranges. There is a post stimulus
decrease in power in the 30 -35 Hz range.

4.5.2.7 Mutual information between time frequency power and
response

Figure 4.18 shows the mutual information between time frequency power and
response in three independent components. The probe stimulus was applied
at time equal to zero.

The top plot shows the occipital component. There is a significant mutual
information value in the pre stimulus 10 Hz range There is a significant
mutual information value post stimulus in the 22 Hz range extending for 0.4
seconds. after this there is an high information value in the 38 Hz range.
There is a post stimulus increase in information in the less than 3 Hz range
from 0.2 seconds.
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Figure 4.17: Time frequency relative response for positive response
minus negative response
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Figure 4.18: The mutual information between time frequency power
and response
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The middle plot shows the right temporal component. There is a high
information value around -0.2 seconds at 10 Hz. There is a post stimulus
increase in information in the 40 Hz range. There is an increase in information
in the 5 Hz range from 0.2 seconds post stimulus.

The bottom plot shows the left temporal component. There is a 10 Hz
increase in information between -0.4 and -0.2 seconds prestimulus. There
is an increase in information in the less than 3 Hz and the 17 Hz range
immediately prestimulus. There is a stimulus increase in information in the
15 Hz range. There is a post stimulus increase in information in the 25 Hz
range. At around 0.2 seconds post stimulus there is an increase in information
in the 7 Hz and 13 Hz range.

4.5.2.8 Mutual information between time frequency phase and
response

Figure 4.19 shows the mutual information between time frequency phase and
response in three independent components. The probe stimulus was applied
at time equal to zero.

The top plot shows the occipital component. There is an increase in
information around -0.4 seconds prestimulus in the 10 Hz and 40 Hz range.
There is an increase in information in the less than 3 Hz range around -0.2
seconds prestimulus. There is a prestimulus increase in information around
10 Hz. There is a post stimulus increase in information in the 20 Hz 27 Hz
and 38 Hz ranges. After 0.2 seconds there is an increase in information in
the less than 3 Hz, 10 Hz, 15 Hz and 35 Hz range.

The middle plot shows the right temporal component. There is a pre
stimulus increase in information in the 10 Hz range leading up to -0.3 sec-
onds prestimulus. From -0.3 to -0.1 Hz there is increased information in the
15 Hz and 40 Hz ranges. Crossing stimulus time there is increased infor-
mation in the 38 Hz range. post stimulus there is an increase in power in
the 10 Hz range. at around 0.1 seconds post stimulus there is an increase in
information in the less than 3 Hz and the 25 Hz range followed by an increase
in information in the 20 Hz range.

The bottom plot shows the left occipital component. There is a strong
prestimulus increase in information in the 32 Hz range until -0.4 seconds. At
-0.3 seconds there is a strong increase in information in the less than 3 Hz
range. Immediately pre stimulus there is a strong increase in information in
the 13 Hx and 25 Hz range, these extend beyond the stimulus time. After
0.2 seconds post stimulus there is an increase in information in the 15 Hz
and 28 Hz ranges.
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Figure 4.19: Mutual information between time frequency phase and
response
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4.5.3 Discussion

The information analysis of the pre and post stimulus time frequency power
and phase suggest interaction between the auditory and early visual cortices.
Immediately preceding the stimulus in the occipital component the power
in the alpha band, 10 Hz, to - 0.2 seconds contains the most information
about the perception of the stimulus. Increased alpha in this region has
been associated with decreased visual attention, this suggests that visual
suppression facilitates the perception of near threshold auditory stimuli. The
right temporal component shows increased information in the same band
and time scale. However the power shows that there is a reduction in alpha
preceding the positive stimuli. This suggests that attention is also associated
with the perception of auditory stimuli. In the left temporal component there
is most information in the less than three Hz range. Immediately before this
increase in power there is a peak in information in the phase in this band.
Preceding the occipital pre stimulus alpha there is a prolonged period of
increased information in the phase of alpha in the right temporal region. This
may be a candidate for future investigation of connectivity and causation.

Post stimulus there is increased information in the 15 - 20 Hz range phase
and power in the left temporal component. This is reminiscent in frequency
and duration of the stimulus response of the near network activation thresh-
old simulation in the static mean condition.

The right temporal shows information in 4 Hz power and phase that
would place the stimulus time at the point around which there is maximum
receptivity to an input in the 5 Hz oscillatory model. The response frequen-
cies in both the model and the right temporal component are alpha and
gamma.

4.6 Chapter summary

In this chapter I have investigated three experimental paradigms developed
from hypotheses derived from my mechanistic cortical model. One of the
behavioural experiment’s results was predicted by the model. And the others
produced data that could be interpreted in terms of the model.
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Conclusions and further work

In this work I have presented a novel mechanistic model based upon the best
obtainable cortical laminar connectivity statistics. I characterized the model
according to rough expectations using a simple white noise stimulus and
found an area in parameter space where complex oscillatory activity occurred.
Using these parameters I was able to explore the model’s response properties
to a simulated bottom up input. At this point an injected oscillatory current
was found to illicit a strong variability of the transmission of information
through the network, in particular at lower frequency values, and a variability
in the information available from the experimentally available simulated field
potential. This reduction occurred at around 180 degrees phase angle, and
at around 330 degrees there was an increase in information in the both the
projection neurons and the simulated field potential.

I used these results to design a behavioural experiment within which I
obtained the result that a near threshold auditory stimulus delivered at the
same time as an oscillatory steady state will be more, or less likely to be per-
ceived according to the phase of the auditory steady state stimulus. Upon
comparison the same phase value, 330 degrees for increased information rep-
resentation in the model projection neurons and that found in the behavioural
experiment matched. Subsequent MEG experimentation did not yield clear
results, however as the behavioural results were unable to be replicated in
the MEG experimental setup it would be worth pursuing further experiments
where the behavioural results could be replicated.

In the visual domain Busch (Busch, 2009) found that the phase of ongoing
EEG oscillations predicts perception of a near threshold stimulus. There is
not a clear indication that the phase values are equivalent to those found my
model or behavioural study, but the effects may be related. A problem with
comparison does arrive however regarding whether or not you can get a clear
estimate of the time a stimulus related signal is available at the cortical level

239
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using only a recorded EEG signal locked to stimulus delivery. An additional
problem with my study is that although the ASSR signal is locked with the
probe, I was unable to obtain the MEG signal to determine the lag of the
phase. So for a full comparison further experimentation is necessary.

In the introduction I identified three challenges in experimental neuro-
science associated with experimental design and data interpretation, namely
: the inverse problem and source localization; the integration of experimen-
tal results across scales and paradigms; and the variability associated with
ongoing activity. I will now summarize my results in relation to these issues.

Firstly the integration of experimental results across scales and paradigms.
In this thesis I have developed and presented a novel cellular level mechanistic
cortical model derived from the most up to date anatomical and physiological
statistics. I have applied abstract inputs to the model representing the three
main classes of input to a given cortical area, namely: subcortical input; local
cortical input; and long range cortico-cortical input. I have characterized the
model’s response properties across a range of combinations of these inputs.
I have analysed these response properties at the cellular level and at a field
potential level, which may be considered to represent a local field potential
or a cortical source in MEG/EEG experiments. I have used this cellular
level model to simulate a psychophysical paradigm and analysed it using in-
formation theory. From this I derived a testable hypothesis relating to the
transfer of sensory information through subpopulations of cortical neurons. I
have shown only the subpopulations of neurons responsible for long distance
communications use network activity in association with ongoing activity to
maximise and package the transfer of information. From this model I have
derived an experimental paradigm, carried out the experiment and found the
results of a behavioural experiment are predicted by the model. I am able to
offer a cellular level mechanism to explain a psychophysical result. Although
I was not able to complete the MEG study, the paradigm is available to be
investigated in terms of non-invasive recording of field potentials.

Secondly, experimental variability and ongoing activity. I have demon-
strated that applying white noise, synaptic and oscillatory input at the cellu-
lar level to the model is able to produce field potential power spectral distri-
butions comparable to biologically recorded ongoing activity. I have shown
that the response properties of the model produce stimulus related frequency
events in separable frequency bands and power and phase properties similar
to recorded field potentials. I have shown in the model properties of sensory
integration in relation to ongoing activity similar to reported experimental
results. I have shown that the model predicts perception variability in the
same relationship to phase as in my behavioural results. I am able to offer a
mechanistic interpretation of this relationship. This interpretation suggests
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analysis approaches not fully explored in the literature.
Thirdly, the inverse problem and source localization. I have demonstrated

that there are stereotypical responses to input in relation to ongoing activ-
ity. Using independent component analysis I have localised potential cortical
sources. The experimental MEG data I have presented has demonstrated po-
tential comparison with the simulated network stereotypical responses over
time. Should there be a strong correspondence between the biological and
simulated responses, the model is suited as a test bed to suggest further
paradigms for experimental exploration.

Each of the assertions made in this thesis must of course be taken in the
context of the limitations of the study and, of course, suggest further work.
The model utilises the best mean properties of the cortical microcircuit,
layer 6 is not represented, and as such makes a wide number of assumptions.
The input used in this study is also generalised to the point where some
interpretations are somewhat stretched. For example that increasing the
standard deviation is equivalent to synchronised local input, that long range
excitatory input is either a DC or a sinusoidal AC current, or that bottom up
input is suitably represented by a population of rate coding Poisson spiking
neurons. The field potential output is a first approximation taken from a
model with no spatial extension. The complexities in the field potential’s
multiple subcellular sources can not be encompassed in the LIF model.

Whilst the behavioural results do strongly support the model, I have
been unable to successfully verify it using field potential recordings, nor have
I been able to strongly identify a stereotypical stimulus response between my
MEG data and the model. I have also not yet attempted to verify the model
at a cellular level.

That being said, these limitations do not reduce the level of verification I
have achieved with the model, or its central role in the successful experimen-
tal design, prediction of results and derivation of a hypothesised underlying
mechanism. All these limitations suggest further work. The model may
also be able to be compared with simpler cortical models used to explain
large scale dynamics, such as that used in dynamic causal modelling and the
dynamical systems model presented by Curto(David 2006a; David, 2006b;
Curto, 2009)

Further work could take three courses : Deeper analysis of the existing
data; further behavioural and MEG experimentation; and development of
the model.

Further analysis of the behavioural data could include an investigation
into the apparent response time dependence upon ASSR frequency. It has
been shown that there is a resonance response to the auditory steady state
stimulus at 40 Hz that may suggest a stronger network effect upon infor-
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mation transfer in the cortical network(Azzena et al., 1995; Santarelli et al.,
1995; John and Picton, 2000; Ross et al., 2000). There are variations in
the latency of maximal information in the simulation data that may sup-
port this. An analysis of the independent information in spike train and
field potential responses could go further towards verification of the model at
the local level. As could an investigation into correlations between individual
cells. The MEG data could be explored further to investigate communication
and causality between the areas represented by the independent components.
This could also be extended to the other independent components not inves-
tigated here.

Further behavioural and MEG experimentation could include finding a
solution to the delivery of the auditory steady state stimulus. This could
involve an ambient presentation of the stimulus. Should a solution be found
a study of the second behavioural experiment could suggest the source of
the inverse phase relationship when the ASSR stimulus is absent. Pilot data
also suggested that the response probability phase dependence extended into
the second post stimulus wavelength. This would demonstrate a persistent
induced cortical osculation. There effect shown here was only investigated
for a 10 Hz condition, it would be worth pursuing an investigation into other
frequencies to determine whether the response was frequency independent.
If this was the case it may suggest that the same mechanism is involved for
both effects.

Further development of the model could in the first instance be an im-
provement in the realism of the input. Recorded thalamic stimulus responses
could be used rather than the Poisson spike generators. For long range inputs
two models could be coupled together to investigate intracortical interactions.
The simulation environment is able to communicate with other simulation
environments, so it would be possible to couple the model with neuronal mass
models with parameters derived using dynamic causal modelling to attempt
to fit simulations with experimental data. Alternatively multiscale modelling
could be employed to obtain a more biophysically realistic spatially extended
field potential signal.



Appendix A

Additional components from
the MEG study

A.0.0.1 Independent components

A.0.0.2 Independent components power spectra

A.0.0.3 Independent components time frequency response for pos-
itive response

A.0.0.4 Independent components time frequency relative response
for positive response

A.0.0.5 Independent components time frequency response for pos-
itive response minus negative response

A.0.0.6 Independent components time frequency relative response
for positive response minus negative response

A.0.0.7 Independent components Mutual information between time
frequency power and response

A.0.0.8 Independent components Mutual information between time
frequency phase and response
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Figure A.1: Independent components
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Figure A.2: Independent components power spectra
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Figure A.3: Independent components time frequency response for positive
response
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Figure A.4: Independent components time frequency relative response for
positive response
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Figure A.5: Independent components time frequency response for positive
response minus negative response



APPENDIX A. ADDITIONAL COMPONENTS FROMTHEMEG STUDY249

Figure A.6: Independent components time frequency relative response for
positive response minus negative response
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Figure A.7: Independent components Mutual information between time fre-
quency power and response
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Figure A.8: Independent components Mutual information between time fre-
quency phase and response
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