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11 77w history of science, like the history ofall human ideas, is a history of 

irresponsible dreams, ofobstinacy, and oferror. But science is one of the 

ve? yfew human activities - perhaps the only one - in whidt errors are 

systematically criticised andfairly often, in time, corrected. This is why we 

can say that, in science, we often learn from our mistakes, and why zve can 

speak clearly and sensibly about making progress there. 11 

Sir Karl Raymund Popper, 1960. 
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SUMMARY 

The primary objectives of these experiments were to determine the effects 

of Creatine (Cr) supplementation on body composition and exercise performance 

in individuals of varying training and health status. 

The afin of the first experiment was to determine the effects of Cr 

supplementation on muscle strength endurance and maximal performance in a 

group of resistance-trained males. This was achieved by comparing the effects of 

20 g Cr-day-1 for 5 days against the equivalent dose of a glucose polymer 

(placebo) in a group of 32 resistance trained individuals. The results of 

Experiment 1 demonstrated that Cr supplementation did not result in a 

significant increase in peak force or total work during repeated isometric 

contractions in resistance-trained individuals. However, this was due to the 

"non-responders" in the Cr group masking the effects of the remaining group 

("responders"). When the Cr group was confined to only the "responders" to Cr, 

Cr supplementation resulted in significant increases in peak force and total force. 

This finding was further supported by the positive correlation between estimated 

muscle Cr uptake and increase in exercise performance, again suggesting that the 

efficacy of Cr supplementation is highly dependent on muscle Cr uptake. A 

negative correlation between training history and estimated muscle Cr uptake 
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was also found in Experiment 1, suggesting that training status may be a 

determinant of muscle Cr uptake potential. 

The second experiment was designed to use strategies previously shown to 

opfin-dse muscle Cr uptake and, hence, the potential to enhance exercise 

performance. The effects of 4 weeks of Cr supplementation allied with four 

weeks of resistance-training on isokinetic, isometric and isotonic strength were 

examined in previously non-resistance-trained humans. The results of 

Experiment 2 indicated that Cr supplementation in combination with strength 

training was effective in increasing isokinetic and isometric muscle strength but 

not 1 Repetition Maximum (1 RM) or training volume in subjects whose 

intramuscular [Cr] and body mass were significantly increased (i. e. responders). 

Furthermore, the greater the Cr uptake and associated increases in body mass, 

the greater were the exercise performance gains. Cr-stimulated increases in body 

mass and total body water compartments (TBW & ICW) were also observed. 

The aim of the third experiment was to examine the effects of Cr-induced 

hyperhydration on cardiovascular, metabolic, and thermoregulatory responses to 

exercise, and on the capacity to perform prolonged exercise in the heat. The 

results of Experiment 3 suggest that Cr supplementation was effective in 

increasing predominantly intracellular water (ICW) and reducing cardiovascular 
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and thermoregulatory responses during prolonged exercise in the heat. The 

attenuation of these responses with Cr resulted in a significant increase in time to 

exhaustion (pre to post); this effect was only seen in subjects whose estimated 

intramuscular Cr levels were significantly increased following Cr 

supplementation (i. e., "responders" to Cr supplementation). 

The aim of the fourth and final experiment was two-fold: firstly, to determine the 

effects of Cr loading on upper and lower body strength, upper and lower body 

strength endurance, and body composition; and secondly to examine the effects 

of Cr supplementation in conjunction with a standard pulmonary rehabilitation 

regimen on the above-mentioned variables in a group of patients with moderate 

to severe COPD. The results of Experiment 4 show positive results (lower body 

muscle strength, muscle endurance and upper body muscle endurance) with 

regard to the ergogenic potential for Cr in this patient group (both short-and 

long-term). However, it remains to be determined whether or not the 

performance benefits observed in the present study will have a positive impact 

on the patient's daily activities and, more importantly, their quality of life. 
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The results from all four experiments provide strong evidence that Cr 

supplementation is an effective strategy for: 

i) Increasing body mass in subjects ranging from highly trained 

athletes (Experiment 1& 3) to patients with moderate to severe 

COPD (Experiment 4). However the exact mechanism behind 

these Cr stimulated increases remains to be determined. 

ii) Experiments 1-3 show Cr supplementation to be an effective 

ergogenic aid, only in subjects whose estimated muscle Cr 

uptake was significantly elevated following supplementation. 

The failure of many studies to characterise the Cr group on this 

basis could help explain the reasons behind the conflicting results 

with regard to the ergogenic effect of Cr supplementation. 

iii) And finally, the results of Experiment 4 point towards a possible 

role for Cr supplementation in the rehabilitation process for 

patients with COPD, with this study being the first to show 

improvements in muscle strength and endurance following 

intervention in this patient group. 
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CHAPTER ONE 

General Introduction 



GENERAL INTRODUCTION 

Introduction 

Fatigue is an inevitable consequence of sustained physical activity, with 

fatigue commonly defined as an inability of muscle to maintain the required 

force or power output (Edwards, 1981). The physiological, psychological and 

biochemical processes that result in fatigue have been an area of extensive 

research for many years. Although still far from fully understood, the 

mechanisms behind exercise fatigue have become clearer in recent years. The 

underlying mechanisms vary according to the mode, duration and intensity of 

exercise, training, nutritional and motivational status of the subject, and also 

with environmental conditions in which the exercise is carried out. In recent 

years, researchers have attempted to characterise the fatigue process under all 

the above-mentioned conditions. A widely studied fatigue protocol is that of 

exercise performed to the limit of tolerance at an exercise intensity of 50-60% of 

maximum oxygen uptake (ýro, under thermo, neutral conditions. 

Mechanisms that have been associated with fatigue during this type of exercise 

include depletion of intramuscular glycogen stores and hypoglycaemia e. g. 

Coyle et al (1985). At this exercise intensity, muscle glycogen is the primary 

substrate utilized (Bergstrom & Hultman, 1967), and although exercise can 
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continue once glycogen stores become depleted, it can only be at a reduced 

intensity, and the criterion of fatigue is thus met. 

At the other end of the exercise spectrum is short-duration high intensity 

exercise. The causes of fatigue during this type of exercise have also been 

extensively investigated, yet are stiff not fully characterised. Fatigue during this 

type of exercise was initially attributed predominantly to factors such as 

intracellular accumulation of inorganic phosphate (Pi) and/or hydrogen ions 

(H+) (e. g. Maughan et al, 1997). However, Katz et al (1986) and, more recently, 

Hultman et al (1990) demonstrated that fatigue during short-term, high intensity 

exercise was associated with a low intramuscular phosphocreatine concentration 

([PCr]), rather than a high lactate concentration ([La-]). This led both groups of 

researchers to suggest that substrate availabifity (PCr), as opposed to product 

inhibition, might be the important determinant of fatigue during high-intensity 

short duration exercise. Furthermore Hultman et al (1990) demonstrated that PCr 

depletion coincided with the decline in isometric force during a single bout of 

intermittent electrical stimulation. As a result, the decline in ATP production 

during this type of exercise has been attributed to a reduced capacity to 

resynthesize ATP, due to the depletion of PCr stores (Soderlund et al, 1991). 

Exercise physiologists have examined strategies for delaying the fatigue process 

in order to further understand the mechanistic basis of fatigue. In recent years, 
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for example, researchers have attempted to delay fatigue through the use of 

nutritional ergogenic aids. It has been well established that carbohydrate 

supplementation prior to and during exercise can delay the onset of fatigue and 

thus increase performance during prolonged sub-maximal exercise (Coyle et al, 

1985; Coggan & Coyle, 1989) but, until recently, there has been little systematic 

investigation of the effects dietary supplementation may have on the 

performance of high-intensity exercise. However, over the last decade 

researchers have began to examine the potential effects of creatine (Cr) 

monohydrate supplementation on the fatigue process during high-intensity short 

duration exercise. 

Historical Background 

Creatine was first identified in 1835 by a French scientist caRed Chevreul 

(Dermant & Rhodes, 1999). However, it was not until 1847 that Lieberg 

confirmed its presence as a regular constituent of flesh extracted from mammals 

(Needham, 1971). Following this, Lieberg also reported that the flesh of wild 

foxes kiRed in the chase contained 10 times as much Cr as that of captive 

creatures, therefore concluding that Cr accumulation was associated with 

muscular exercise (Dermant & Rhodes, 1999). At around the same time, Heintz 

and Pettenkofer discovered a substance in the urine which Lieberg later 

confirmed as being creatinine (Crea), which is now known to be a by-product of 
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Cr degradation. However it was not until the early twentieth century that 

researchers started to examine the effects of Cr ingestion on muscle [CrI. Around 

this time, it was also discovered that not all the ingested Cr was retrieved in the 

urine, leading researchers to conclude that the body retained some of the 

ingested Cr (Dermant & Rhodes, 1999). The first documented studies to confirm 

this were by Denis (1912) and Folin (1914) on the muscle of cats. These 

researchers both reported that, following Cr ingestion, muscle [CrI increased by 

-70%. In 1927 and 1929, Fiske and Subbarow reported the presence of labile 

phosphorus in resting cat muscle, which they subsequently called creatine 

phosphate or phosphocreatine (PCr). The same researchers also showed that, 

during electrical stimulation of skeletal muscle, [PCr] decreased for a period of 

time, then returning to resting levels following a rest period. The results of these 

several studies, taken together, thus lead to the subsequent identification of free 

intramuscular Cr (Crfe,, ) and PCr, and also highlighted their potential role in 

skeletal muscle metabolism (for discussion see Balsom et A 1995). However, it is 

only within the last decade or so that systematic research into the effects of Cr 

supplementation on muscle metabolism and performance has been undertaken. 

Biochemistry of Creatine 

Creatine (Cr), or methylguanidine-acetic acid, is a naturally occurring 

compound synthesized from three amino acids: arginine, glycine, and 
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methionine. This process (transamidination) starts with the transfer of an 

amidine group from arginine to glycine, which leads to the formation of 

guanidinoacetate and ornithine, and is a reversible reaction catalysed by the 

enzyme glycine-amidine-transamidinase. Cr is then formed by the addition of a 

methyl group from (S)-adenosyhnethionine (transmethylation), which requires 

the enzyme methytransferase for the irreversible reaction (Figure 1.1) (Devlin, 

1992). The enzymes involved in the synthesis of Cr are located in the kidney, 

liver and pancreas. However, as the main site of Cr utilisation is skeletal muscle 

(95% of the body's total creatine concentration is found in skeletal muscle) 

(Walker et al, 1979), Cr must be transported from its site of synthesis to its site of 

utilisation (skeletal muscle) via the blood stream (Figure 1.2). Having arrived at 

its site of utilisation, uptake of Cr occurs against a concentration gradient. Cr 

enters muscle cells via Na+-dependent sarcolemmal transporters (Zorzano et al, 

2000). The endogenous production and dietary intake of Cr is matched by the 

degradation of PCr and Cr to creatinine (Crea) at a rate of 2.6 % and 1.1 % per day, 

respectively (Wyss and Kaddurah-Daouk, 2000). Once Crea is formed, it enters 

the circulation by diffusion and is eliminated from the body through glomerular 

filtration (Figure 1.2). 
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Figure 1.1: Synthesis of Creatine (Wyss and Kaddurah- 
Daouk, 2000) 
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Figure 1.2: Overview of Creatine Supplementation (Wyss 
and Kaddurah-Daouk, 2000) 
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Creatine Transporters 

Specific Cr transporters present in the sarcolemma facilitate Cr entry into 

muscle cells. Skeletal muscle takes up Cr by a mechanism that depends on Na+. 

Cr transport is catalysed in humans by two Cr transporters, named CRT-1 and 

CRT-2, which are encoded by different genes (Zorzano et al, 2000). Because the 

Michaelis constant of Cr uptake lies in the physiological range of plasma [Cr], 

oral Cr intake would be expected to stimulate Cr uptake by muscle cells via 

enhanced membrane Cr transport. Furthermore, increased Cr uptake appears to 

result in intracellular Cr accumulation, in its free as well as in its phosphorylated 

form. There are many unanswered questions with regard to the function of 

muscle Cr transporters, such as the precise mechanism of transport, structure/ 

function relationships, and control of the subcellular distribution and activity of 

the carrier. It has been reported that Cr supplementation in rats down-regulates 

the expression of CRT-1 in skeletal muscle, whidi is in agreement with the above 

mentioned observation that extracellular Cr down-regulates Cr uptake. 

Creatine Supplementation and High-intensity Short Duration Exercise Performance 

Despite early research into the possible effects of Cr supplementation on 

muscle metabolism, it was not until 1992 that researchers began to reinvestigate 

the possible effects of Cr loading on human skeletal muscle metabolism (Harris et 
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al, 1992). Harris et al (1992) were the first to investigate whether Cr 

supplementation could increase [TCrj of human skeletal muscle, and whether 

such an increase in plasma [Cr] might ultimately lead to an increase in total Cr 

content ([TCr]) of skeletal muscle, as had previously been suggested. Thus Harris 

et al (1992) supplemented a group of subjects with 5g Cr for 4-6 times a day for 3 

or more days. Muscle biopsies were taken from the vastus lateralis pre and post 

supplementation. Although the supplementation dosage and duration were not 

standardised, this study provided important information with regard to Cr 

supplementation and muscle Cr uptake (Harris et al, 1992). Firstly, muscle biopsy 

analysis showed that following Cr supplementation the [TCr] increased from 

126.8 to 148.6 mmol/kg dry mass, with the increases in PCr accounting for 20- 

40% of the total increase. Secondly, the increase in muscle [TCr] was reported to 

vary significantly among subjects. This was attributed to subject heterogeneity 

with regard to Cr uptake, i. e. some subjects being "responders" and others "non- 

responders". However, the difference in dosage regimens might also account for 

some of this variability. In addition, subjects with the lowest initial [TCr] showed 

the greatest Cr uptake following supplementation. Finally, the greatest 

intramuscular uptake of Cr was reported to occur over the initial days of 

supplementation (urinary analysis showed 40,61 and 68% of the supplemented 

dose was recovered on days one, two and three, respectively), with the authors 

suggesting there might be a limit to the amount of Cr that can be stored within 

muscle. 
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This seminal work by Harris et al (1992) was the catalyst for the subsequent 

plethora of studies that have examined the effects of Cr supplementation on 

muscle metabolism and performance. Many researchers have confirmed the 

increases in muscle [TCr] following Cr supplementation. For example, Greenhaff 

et al (1994) observed increases of 15 -32% (29±3 mmol/kg dry mass) in [TCr] 

following 5 days of Cr supplementation. Other studies that have also found 

similar increases in [TCr] and PCr following Cr supplementation using various 

techniques ranging from muscle biopsy analysis to 31phosphorus nuclear 

magnetic resonance imaging (31P-MRS) (Balsom et al, 1995; Casey et al, 1996; 

Green et al, 1996; Hultman et al, 1996; Smith et al, 1998; Vandenberghe et al, 1997). 

The effects of Cr supplementation on performance have also been examined. 

Greenhaff et al (1993) were the first to investigate the potential role of Cr 

supplementation as an ergogenic aid. They examined 12 physically active, but 

not highly trained young male subjects. Following familiarisation, knee extensor 

performance was measured on an isokinetic dynamometer before and after 5 

days of Cr supplementation (20 g d-1). Subjects performed 5 sets of 30 maximal 

voluntary contractions (unilateral knee extensions) with 1 minute between bouts. 

This study demonstrated that the 5 days of Cr supplementation increased total 

peak torque during the 2nd and 3rd bout of contractions, with a strong tendency in 

the 4th set. Peak torque generation was also significantly increased during the 

final 10 contractions in the lst bout and during contractions 11 - 20 in the 5thbout. 
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Consistent with these results, significantly lower plasma [ammonia] (an accepted 

marker of muscle adenine nucleotide loss) after the 4th and 5th bouts was 

reported. 

In the same year, Balsom et al (1993) confirmed the results of Greenhaff et al 

(1993). In this study, subjects performed an exercise protocol that consisted of ten 

6-s bouts of high-intensity cycle-ergometer exercise, with 30 s recovery between 

repetitions (subjects being instructed to attempt to maintain a pedaHing 

frequency of 140 rpm). This exercise protocol was carried out pre and post 6 days 

of Cr loading at a dosage of 20 g-d-1. Subjects where found to better maintain the 

target pedal frequency following Cr supplementation, compared to the placebo 

group (Figure 1.3). 

Many researchers have subsequently continued to examine the effectiveness of 

Cr supplementation as an ergogenic aid. For example other reported benefits 

resulting from Cr loading include increases in maximal voluntary contraction 

(MVC) and muscle endurance capacity (Maganaris & Maughan, 1998), improved 

anaerobic sprint performance during repeated bouts of exercise (Casey et al, 1996; 

Green et al, 1996, Balsom et al, 1993; Earnest et al, 1995), and increased 

performance during single exhausting bouts of high intensity exercise (Earnest et 

al, 1995; Rossiter et al, 1996). However, not A studies have reported Cr to have 
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Figure 1.3: Effect of Cr supplementation on muscle 
performance during high-intensity cycling 
(Balsom et al. 1993) 



I 
I 

1 

10. 

No. of exercise bout 

-it- Cr group 
-f3, - Placebo Group 

13 



an ergogenic effect. For example, several studies found no ergogenic benefit of Cr 

loading on either intermittent (Odland et al, 1997; Febbraio et al, 1995; Gilliam et 

al, 2000) or continuous (Redondo et al, 1996; Burke et al, 1996; Cooke et al, 1995; 

Deutekom et al, 2000) exercise tests. 

The mechanism of action by which Cr supplementation improves performance is 

still not fully understood. However, the two most commonly proposed to date 

are a higher pre-exercise intramuscular [PCr] and/or a higher rate of PCr 

resyntheis between bouts of exercise (Greenhaff et al, 1994). The energy required 

to perform brief explosive-type exercise is almost exclusively provided by the 

high-energy phosphate stores in skeletal muscle (Fitch et al, 1974). As the PCr 

stores become depleted, performance rapidly deteriorates which reflects the 

inability to rephosphorylate ADP to ATP at the required rate (Hultman et al, 

1990). The increased intramuscular PCr store post-supplementation is proposed 

to act as a temporal energy buffer which, in turn, would decrease reliance on 

anaerobic glycolysis. Increases in the resting [PCr] may allow subjects to 

complete more work during short-duration high intensity exercise (Casey et al, 

1996). Secondly, many authors (Harris et al, 1992; Greenhaff et al, 1993; Soderlund 

et al, 1994; Balsom et al, 1993; Balsom et al, 1995) have proposed that Cr 

supplementation would increase the rate of PCr resynthesis from mitochondrial 

ATP, during recovery, consequent to the elevated muscle Cr content (Harris et al, 
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1992) increasing the rate of flux through the creatine kinase reaction at the 

mitochondrial membrane. 

Greenhaff et al (1994) followed up their initial study (Greenhaff et al, 1993) to 

more directly investigate the effects of Cr supplementation on PCr resynthesis in 

skeletal muscle. In this study, the authors electrically stimulated the anterolateral 

portion of the thigh (vastus lateralis) in 8 male subjects. Following the electrical 

stimulation, a pressure cuff was inflated around the thigh (259 mmHg) to 

occlude blood flow and a muscle biopsy then obtained. The cuff was then 

deflated and further muscle biopsies were obtained at 20,60 and 120 s. Subjects 

were supplemented with 20 g-d-1 of Cr for 5 days, and then returned to the 

laboratory to repeat exercise protocol. The results of this study showed that Cr 

supplementation increased the rate of PCr resyntheis by 42% during the second 

minute of recovery (Figure 1.4). In addition, only those subjects who evidenced a 

substantial increase in resting muscle [TCr] following Cr supplementation 

showed an increased rate of PCr resynthesis during recovery; those whose 

muscle [TCr] increased only marginally (<10 mmol-kg-1-dry weight muscle) 

showed very little change in PCr resynthesis. 

Since this work by Greenhaff and co-workers (1994), several other groups of 

researchers have investigated the effects of Cr supplementation on PCr 

resynthesis but with conflicting results. For example, Yquel et al, (2002) 
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Figure 1.4: Phosphocreatine and free creatine 
concentrations obtained after 0,20,60 and 120 
s of recovery from intense contractions before 
(open symbols) and after (closed symbols) Cr 
ingestion (Greenhaff et al. 1994). * and ** 
indicates difference between pre and post- 
supplementation (P<0.05 and P<0.01, 
respectively). 
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examined the effects of 6 days of Cr supplementation on muscle power, muscle 

PCr resynthesis, Pi and pH during repeated bouts of maximal dynamic plantar 

flexion exercise. The authors used 31P-MRS to assess the changes in skeletal 

muscle high-energy phosphate status during five bouts of 8s interspersed with 

30 s recovery, followed by 6 bouts of 8s and 7 bouts of 16 s separated by 1 and 2 

min, respectively. Subjects were tested pre and post 6 days of Cr 

supplementation. Following supplementation, muscle power increased by 5% 

from bouts 3 to 7 and muscle PCr resynthesis increased during the 10 min 

recovery period. These results are in agreement with the earlier results obtained 

by Greenhaff et al (1994), with the authors concluding that the observed increases 

in muscle power were the result of a lower accumulation of inorganic phosphate 

and a less-acid intramuscular pH during exercise, and a higher rate of PCr 

resynthesis in recovery. Smith et al (1998) also verified the results obtained by 

Greenhaff et al (1994), using 31P-MRS. They showed muscle PCr resynthesis was 

increased following Cr supplementation in middle-aged and younger persons 

after subjects performed single-leg knee extension dynamic exercise. 

However, not all studies have reported a more rapid increase in PCr resynthesis 

in recovery from intense exercise following Cr supplementation (Vandenberghe 

et al, 1999; Francaux et al, 2000). Vandenberghe et al (1999), used 31P-MRS to 

examine the effects of Cr supplementation on muscle PCr breakdown and 

resynthesis and muscle performance during high-intensity intermittent knee 
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extensions. Interestingly, these authors found a significant increase in 

performance following Cr supplementation, despite Cr supplementation not 

affecting PCr breakdown or resynthesis during and after isometric muscle 

contractions, respectively. 

Creatine and Training 

In parallel with the investigations described above, several groups have 

explored the influence of Cr supplementation on the outcomes of exercise 

training programmes. The physiological basis underlying a possible ergogenic 

effect of Cr supplementation on strength training is primarily two-fold. Firstly, 

Cr supplementation has been shown to increase, for example, the numbers of 

repetitions that can be completed per set (Earnest et al, 1995; Volek et al, 1997). 

Secondly, Cr supplementation has been shown to increase the rate of PCr 

resynthesis during the second minute of recovery from intense intermittent type 

exercise (Greenhaff et al, 1994). Theoretically, both these physiological changes 

could allow an individual to train at a greater intensity compared to training 

without the use of Cr supplementation. 

Becque et al (2000) examined the effects of 6 wk of Cr supplementation combined 

with resistance training (elbow flexors training twice a week with training loads 

0.. that began at 6 Repetition maximum (RM), the maximum weight that can be 
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lifted 6 times and progressed to 2 RM). In this study, Cr supplementation during 

elbow flexor training lead to significantly greater increases in 1 RM elbow flexor 

strength, upper arm muscle area (7.9 cm2), and fat-free mass (FFM) compared to 

training alone. Vandenberghe et al (1997) (10 wk resistance training programme, 

where subjects trained their upper and lower body 3 hr. wk-1), also reported 

positive effects of Cr supplementation when combined with resistance training, 

compared to resistance training alone. In this study, maximal strength of the 

trained muscle groups, maximal intermittent exercise capacity of the elbow 

flexors, and FFM increased 20 - 25%, 10 - 15% and 60% more, respectively, than 

the group that trained without Cr supplementation. Cr supplementation 

combined with resistance training (varying duration 4-12 wk. ) has also been 

shown to increase bench press lifting volume (Kreider et al, 1998), total sum of 

bench press, squat and power clean lifting volume (Kreider et al, 1998), total 

work performed during five 6-s sprints (Kreider et al, 1998), 1 RM squat and 

bench press (Volek et al, 1999), average lifting volume in the bench press (Volek 

et al, 1999), muscle strength (Willoughby & Rosene, 2001). Additionally, all the 

above studies reported significantly greater gains in FFM following Cr 

supplementation when combined with resistance training compared to resistance 

training alone (Kreider et al, 1998; Volek et al, 1999; Willoughby & Rosene, 2001). 

However, not all studies have reported positive effects on muscle strength 

following combined Cr supplementation and resistance training. Francaux and 
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Poortmans (1999) examined the effects of 6 weeks of resistance training in 

conjunction with Cr supplementation on isokinetic squat force and found that Cr 

ingestion did not induce a greater increase in force compared to resistance 

training alone; isokinetic force increased by about 6% after training in both the 

placebo and Cr groups. However, there are several concerns with this study: 

there was no measure or estimate of Cr uptake; and questions must be asked 

about the training "stimulus" (i. e. only 30 % of MVC in session 1, increasing 

progressively to approximately 43 % of MVC in the final training session). 

Similarly, Bermon et al (1998) examined the effects of Cr supplementation in 

conjunction with 7 weeks of resistance training on strength and strength 

endurance in 32 elderly subjects. They also found that Cr supplementation did 

not provide any additional benefit to maximal dynamic strength compared to 

resistance training alone. 

Creatine and Endurance Exercise 

In contrast, there has been little systematic study of the effects of Cr 

supplementation on endurance performance. Although the majority of research 

to-date has examined the role of PCr as a temporal energy buffer and its effects 

on short-term high intensity exercise, it has recently been proposed that [PCrJ 

may play a pivotal role in the control of muscular oxygen consumption and 
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puhnonary oxygen uptake 
OrOA (Whipp & Mahler, 1980, Barstow et al, 1994; 

McCreary et al, 1996; Rossiter et al, 1999). 

In recent years, a number of researchers have investigated the dynamic profiles 

of ý70 
2 and [PCr] in humans, in order to investigate the control of muscle02 

consumption. Barstow et al (1994) and McCreary et al (1996) were two of the first 

groups of investigators to examine this in humans, following on from the work 

by Mahler (1985) in frog muscle. However, as pointed out by Rossiter et al (1999), 

the above-mentioned studies were not without methodological constraints. For 

example, in the paper by Barstow et al (1994), despite reporting similar time 

constants for [PCr] depletion and increase in V02with square-wave exercise, the 

authors utifised different muscle groups operating over different metabolic 

ranges to examine the time constants for [PCr] and 
ý702. Therefore Rossiter et al 

(1999) furthered the initial work by Barstow et al (1994) by simultaneously 

measuring the kinetics of [PCr] and Vo, during moderate intensity exercise of 

the m. quadriceps muscle in a NMR magnet. The time constant for intramuscular 

[PCr] depletion (35 s, range, 20 - 64 s) was almost identical to the time constant 

for the V02 kinetics (phase 11, only) (36 s, range, 20 - 68 s). This study further 

supported the possible role of [PCr] in the control of'ý02. As previously 

mentioned, the ergogenic potential of Cr supplementation is based on the 

premise that, following Cr supplementation, resting levels of [PCr] are elevated. 
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Therefore, based on the work of Rossiter et al (1999), the observed increase in 

resting [PCr] following Cr supplementation might have the potential also to alter 

the kinetics of 
ý70 

2 and hence of muscle 02 consumption. To date, only one 

study has examined this possibility Gones et al, 2002). Jones et al (2002) examined 

the effects of 5 days of Cr loading (20 g d-1) onV02 during moderate and heavy 

exercise. Cr loading caused a significant reduction in 
ýr02 during heavy exercise 

but not moderate exercise; a finding that warrants further investigation. 

Other studies have also examined the effects of Cr supplementation on muscle 

bioenergetics during incremental and submaximal. exercise tests with negative 

results. For example, Stroud et al (1994) and Balsom, et al (1993) reported no 

significant effect on respiratory gas exchange 
OrOVýrC02, RER) variables 

following Cr supplementation, with Stroud et al (1994) also reporting no effect on 

blood Vactate]. 

Exercise in the Heat and Creatine Supplementation 

While the majority of the available research suggests that Cr 

supplementation has no ergogenic effect on endurance exercise, recently some 

researchers have began to investigate the potential role for Cr supplementation 

during exercise in the heat due to the already mentioned Cr stimulated changes 
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in body composition. To date, 3 studies have examined the effect of Cr 

supplementation on performance during exercise in the heat (Vogel et al, 2000; 

Volek et al, 2001; Kern et al, 2001). Volek et al (2001) examined the effect of Cr 

supplementation on acute cardiovascular, renal, temperature and 

fluid-regulatory hormonal responses during 35 min of exercise in the heat (37 OC, 

80 % relative humidity), which was immediately followed by three 10-s sprints. 

In this study, the authors found a significant increase in body mass (0.75 kg) 

following Cr supplementation, which led to a significantly greater peak power 

during all three 10 s sprints, compared to no change in the placebo group. No 

significant change in heart rate, blood pressure, and sweat rate responses was 

observed following Cr supplementation, indicating that it is unlikely that Cr 

significantly influenced temperature regulation during 35 min of exercise in a hot 

hun-dd environment. Furthermore, no abnormal responses in several measures of 

renal function were found during rest and exercise. 

More recently Kern et al (2001) examined the effects of 28 days of Cr 

supplementation on heart rate and core temperature during 60 min of exercise at 

an intensity equal to 60% ýF02 
max at 37 'C and 25 % relative humidity. They 

observed significantly greater gains in body mass and Total Body Water (TBW) 

compared to the placebo group, with a consequent attenuation of core 

temperature during post-supplementation. The increases in body mass and TBW 

observed in the above study and the attenuation in rectal temperature were of 
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similar magnitude as those observed in the present study. However, in the study 

by Kern et al (2001), subjects exercised for a fixed period of time (60 min) and 

therefore we are unable to evaluate if the decrements in core temperature had 

any effect on performance during exercise in heat. 

Enhancing Muscle Creatine Uptake 

As already mentioned, one of the preliminary findings from Harris et al. 

(1992) was that the ergogenic and metabolic effects of Cr supplementation seem 

to be dependent on the magnitude of the associated increase in muscle TCr. More 

specifically, Greenhaff et al (1994) and Casey et al (1996) suggested that an 

increase in muscle [TCr] in excess of 20 mmol-kgý-dry weight muscle is required 

to elicit an ergogenic effect on muscle power output and post-exercise PCr 

resynthesis. Casey et al (1996) also observed that changes in both maximum work 

production and total work production following Cr supplementation were 

correlated with muscle Cr uptake. As a result of this positive correlation between 

Cr uptake and increase in performance observed by Casey et al (1996) and 

Greenhaff et al (1994), researchers have explored strategies that might have the 

potential to facilitate muscle Cr uptake during Cr supplementation, thus leading 

to greater gains in performance. 
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To date, two main strategies for enhancing muscle Cr uptake during 

supplementation have emerged. Firstly, the early work of Harris et al (1992) was 

the first study to examine whether Cr uptake by skeletal muscle could be 

increased by exercise. Thus, Harris et al (1992) employed 1 hour of one-legged 

cycling exercise per day for 4-7 days and demonstrated enhanced Cr uptake in 

the exercising leg by 54 %, whilst little effect was observed in the non-exercising 

leg. The precise mechanism(s) for the exercise-induced increase in muscle Cr 

uptake is still unknown, although an increase in blood flow to the exercising 

muscle and/or changes in the sarcolemmal transport kinetics of Cr were 

suggested by the authors as the most plausible explanations. Subsequently, 

however, Robinson et al (1999) suggested that the results obtained by Harris et al 

(1992) should be treated with caution, citing: the relatively small number of 

subjects studies, the variation in the supplementation regimens, and the 

inclusion of vegetarians. Robinson et al (1999) therefore studies 14 subjects who 

performed one-legged cycling exercise to exhaustion with muscle biopsies 

(vastus lateralis) taken from the exercised and non-exercised leg immediately 

after exercise, 6 hr and 5 days post-recovery. They showed that a greater muscle 

[TCrj was achieved in the exercised limb, but disputed the hypothesis of Harris 

et al (1992) that increased muscle blood flow was a possible cause for the 

increased TCr in the exercised limb. This was made on the basis that no 

differences were observed at the 6 hr muscle biopsy between the exercised and 
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non-exercised limbs when differences in blood flow to the limbs would be at 

their greatest. 

An additional strategy shown to enhance muscle Cr uptake is the ingestion of 

carbohydrate in combination with Cr. Insulin, at supra-physiological 

concentrations, has previously been shown to increase muscle Cr uptake in rat 

skeletal muscle cells in vivo (Haughland and Chang, 1975). More recently, supra- 

physiological [insulin] has also been shown to stimulate Cr uptake in a mouse 

myoblast cell line (Odoom et al, 1996). Subsequently many researchers began to 

examine the effects carbohydrate supplementation may have on muscle Cr 

uptake in humans. In 1996, Green et al (1996) examined this in human subjects: 

group A, consumed Cr alone; group B consumed Cr combined with a 

carbohydrate-containing solution; group C consumed Cr combined with a 

carbohydrate-containing solution and also performed 1 hr of cycling exercise at 

70% of their 'ýO 
2 MaX on the morning of each day; and group D consumed a 

solution free from Cr and carbohydrate. Evidence for an enhanced muscle Cr 

uptake associated with carbohydrate came from a markedly reduced peak 

plasma [Cr] and area under the plasma Cr/time curve in subjects consuming 

carbohydrate-containing solution in combination with Cr supplementation 

(groups B& C), compared with subjects who consumed Cr alone (group A). 

Urinary Cr excretion was also shown to be lower in groups B and C, compared to 

that of group A. Green et al (1996) thus concluded that (a) whole-body Cr 
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retention was increased as a consequence of Cr being combined with 

carbohydrate (Figure 1.5) and (b) the response occurred as a consequence of an 

insulin-mediated increase in skeletal muscle Cr uptake. In addition, as insulin 

has also been shown to increase muscle blood flow (Baron et al, 1994), the 

carbohydrate-stimulated increase in muscle Cr uptake in humans could result in 

part from an insuhn-mediated increase in muscle blood flow and thereby muscle 

Cr availability. However, in the study by Green et al (1996), subjects had to 

ingested 94g of carbohydrate (in the form of simple sugars) to achieve 

physiologically high plasma [insulin] during the 1st hour after ingestion, which 

proved to be close to the limit of subject palatability and this study was also 

unable to identify the exact [insulin] necessary to stimulate muscle Cr uptake. It 

was for this reason, Steenge et al (1998) went on to try and identify the [insulin] 

necessary to stimulate muscle Cr uptake. Steenge et al (1998) infused insulin at 

rates of 5,30,55, or 105 MU. M-2. MM-1 M combination with 12.4 g-d-1 of Cr. This 

study confirmed the findings of Green et al (1996) showing that, during infusion 

rates of insulin at 55 and 105 mU. rrr2. lnin-1, muscle [Cr] increased by 4.5±1.4 and 

8.3±1.0 mmol-kg-1-dry weight muscle respectively, and plasma [Cr] was lower at 

specific time points compared with the lower infusion rates. This study 

demonstrated that insulin can enhance muscle [Cr] uptake in humans but only 

when at physiologically high or even supra-physiological concentrations. The 

authors also suggested that the mechanism behind this response was likely to be 
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Figure 1.5: Individual muscle total Creatine [TCr] after 
ingestion of 5g Cr alone or 5g Cr followed 30 
mins later with 93g simple carbohydrate 
(Green et al. 1996) 
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a result of an insuhn-mediated increase in muscle Cr transport rather than an 

increased rate of vascular Cr delivery. 

Creatine and health 

As with any relatively new ergogenic aid, especially one suggested to be 

as potent as Cr supplementation, questions concerning health effects have arisen. 

To date, the only documented side effect resulting from Cr supplementation has 

been a significant weight gain (Earnest et al, 1995; Green et al, 1996; Greenhaff et 

al, 1994; Maganaris & Maughan, 1998; Terrillion et al, 1997; Becque et al, 2000; 

Kreider et al, 1998; Harris et al, 1992; Poortmans and Francaux, 1999). However, 

there have been numerous anecdotal reports reporting gastrointestinal, 

cardiovascular and muscular problems following Cr supplementation. Therefore, 

researchers have examined the effects of Cr supplementation of various health 

markers over short -, medium-, and long-term supplementation. 

For example, Robinson et al (2000) examined the effects of Cr supplementation 

(20 g-d-1 of Cr for 5 days, followed by 3 g-d-1 of Cr for nine weeks) on various 

markers of muscle damage, and indices of haernatological, hepatic and renal 

function. No clinically significant changes were observed in any of these 

variables. Another study examining the effects of short to medium Cr 

supplementation on blood lipids was carried out by Volek et al (2000). These 
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authors examined the effects of Cr supplementation in combination with heavy 

resistance training on fasting serum creatinine, lipoproteins, triglycerides and 

reported changes in body function. Again, following Cr supplementation and 

training for 12 weeks, there were no adverse effects of training or 

supplementation on fasting serum creatinine, serum total cholesterol, 

HDL-cholesterol, LDL-cholesterol, triglycerides or reported changes in body 

function. 

In contrast, Earnest et al (1996) showed Cr supplementation to have a positive 

effect on blood lipid profile. This study showed that 8 weeks of Cr in conjunction 

with an exercise programme consisting of resistance training actuaRy increased 

HDL- cholesterol by 13%. 

Waldron et al (2002) also examined the effects of concurrent Cr supplementation 

and resistance training on markers of hepatic function. Subjects were loaded for 5 

days (0.3 g. kg-l-d-1 of Cr) foUowed by 5 weeks of maintenance (0.03 g. kg-l-d-1 of 

Cr) during which subjects weight-trained. Hepatic stress was assessed through 

measurement of serum concentrations of alanine amino transerase (ALT), 

aspartate amino transferase (AST), alkaline phosphatase (AP), blood urea 

nitrogen (BUN), albumin, creatinine, and direct and total bilirubin (DB and TB). 

This study concluded that, following Cr loading and maintenance, 
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concentrations of the measured variables did not change, with all variables 

remaining widtin normal clinical ranges. 

FinaRy, Mihic et al (2000) examined the short- to medium-term effects of Cr 

supplementation on health variables. In this study, the authors examined the 

effects of acute Cr loading (20 g-d-1 of Cr for 5 days) on blood pressure, plasma 

creatinine and plasma creatine kinase in a group of 30 men (n=15) and women 

(n=15). Cr supplementation was found to have no negative effects on blood 

pressure, plasma creatinine, estimated creatinine clearance or plasma creatine 

kinase activity. 

However, some studies have raised questions over the long term safety of Cr 

supplementation. For example, Pritchard and Kalra (1998) recently proposed that 

oral Cr supplementation may lead to renal dysfunction. Poortmans and Francaux 

(1999) and Schilling et al (2001) therefore subsequently examined the effects of 

long-term Cr supplementation on various health markers. For example, 

Poortmans and Francaux (1999) measured creatinine, urea and plasma albumin 

clearances in consumers of Cr supplementation of durations varying from 10 

months to 5 years against a control group. The results of this study showed there 

were no statistical differences between the control group and the Cr group for 

plasma contents and excretion rates of creatinine, urea and albumin. Clearance of 

these compounds also did not differ between the two groups, implying a lack of 
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effect on glomerular filtration rate, tubular reabsorption and glomerular 

membrane permeability. Subsequent to this, Schilling et al (2001) also examined 

the long-term safety of Cr supplementation. In this retrospective study, the 

authors examined markers of health, incidence of reported side effects and 

perceived training benefits in athletes supplementing with Cr for 0.8 to 4 years. 

The authors subjected the athletes to a standard clinical examination including 27 

blood chemistries; subjects also answered a questionnaire on dietary habits, Cr 

supplementation, medical history, training history and perceived benefits of 

supplementation. The data ftom this study again suggested that long-term Cr 

supplementation did not result in any adverse side effects. 

Creatine and body composition 

As already mentioned, the only consistently reported side effect with 

regard to Cr supplementation (short- and long-term) is an increase in body mass 

(Earnest et al, 1995; Green et al, 1996; Greenhaff et al. 1994; Maganaris & 

Maughan, 1998; Terrillion et al, 1997; Becque et al, 2000; Kreider et al, 1998). 

Although the exact mechanism behind this Cr-related increase in body mass is 

unknown, two possible mechanisms have been proposed. 

The first possible cause stems form the early work of Ingwall. et al (1972 & 1974). 

The first of these studies (IngwaH et al, 1972) presented evidence that Cr 
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supplementation was involved in the control of muscle protein synthesis. In 

1974, Ingwall. et al (1974) followed up their initial study and found that increasing 

the amount of Cr availability to differentiating skeletal muscle cells both in vitro 

(in monolayer culture) and in vivo (explants maintained in organ cultures) 

stimulated the rate of myosin heavy chain synthesis two-fold. 

Further support for this hypothesis came from the work by Sipila et al (1981). 

This experiment was designed to examine the effects of Cr supplementation as a 

treatment for gyrate atrophy of the choroid and retina. In this condition, marked 

progressive atrophy of the Type Il skeletal muscle fibres is consistently reported, 

with the authors stating that deficient formation of Cr may be a pathogenic 

component of this disease which may lead to a shortage of cellular PCr energy 

stores. Seven patients were supplemented with 1-5g creatine daily for one year. 

on completion of the study, Type II muscle fibres increased from 34.1±7.1 to 

49.9±7.0 I. LM, with the authors suggesting that these changes where a direct result 

of a Cr stimulated increase in protein synthesis. 

The other possible mechanism is that the increase in body mass following Cr 

supplementation is due to an increase in water retention (Hultman et al, 1996). 

This theory stems from the work of Hultman et al (1996). In this study, these 

authors observed a 0.6 L decline in urinary volume which occurred at the onset 

of Cr ingestion, and suggested that the increase in body mass during acute Cr 
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loading is likely to be attributed to body water retention. The authors also noted 

that the time course of the urinary volume changes paralleled the time course of 

muscle Cr uptake documented by Harris et al (1992). 

The exact mechanisms by which Cr supplementation increases total body water 

(TBW) and shifts fluid into the intracellular space still remain unclear. One 

possible cause is that osmotic flux of fluid into the intracellular compartment is 

caused by the increased [TCr] and [Cr] wifl-tin the muscle, thus increasing 

intracellular water (ICW) and hence TBW, ultimately increasing muscle volume. 

Ziegenfuss et al (1998) examined the effects of Cr supplementation on acute fluid 

volume changes following 3 days of Cr supplementation. In this study the 

researchers supplemented their subjects with Cr (0.35 g kg. FFM-1-d-1) for 3 days, 

and found Cr supplementation produced clear trends in fluid shifts, and by the 

end of day 3 increased TBW (2%) and ICW (3%), with no change in Extracellular 

water (ECW). 
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In view of all the above, the main objectives of fi-ds series of experiments were to 

investigate: 

i. In light of limitations in the pervious research (e. g. small sample size and 

inappropriate statistical analysis) the first experiment in this thesis was 

designed to examine the effects of Cr supplementation on strength 

endurance and maximal performance using an isometric bench-press test 

in a group of resistance-trained males. 

ii. Based on the results obtained from the first experiment, a second was 

designed to use strategies previously shown to optimise muscle Cr uptake 

and, hence, the potential to enhance exercise performance in previously 

non-resistance-trained humans on isokinetic, isometric and isotonic 

strength. 

iii. The results from Experiment 2 indicated a Cr-induced change in cellular 

hydration. Exercise in the heat has been shown to be criticafly dependent 

on hydration status and the aim of the third experiment was, therefore, to 

examine the effects of Cr-induced hyperhydration on cardiovascular, 

metabolic and thermoregulatory responses to exercise in the heat. 

Furthermore, the influence of Cr-induced hyperhydration on the subject's 

capacity to perform prolonged exercise in the heat was also examined. 
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iv. Skeletal muscle dysfunction is frequently observed in Chronic Obstructive 

Pulmonary Disease (COPD) patients. These patients suffer from 

significant loss of skeletal muscle mass and strength (reduced muscle 

mass is an important predictor of mortality). As Cr supplementation has 

the potential to increase muscle strength, muscle endurance and fat-free 

mass (FFM), the aim of the final study was to examine the effects of Cr 

supplementation in conjunction with a standard pulmonary rehabilitation 

on patients with moderate to severe COPD. The effects of Cr loading on 

upper and lower body strength, upper and lower body strength 

endurance and body composition were studied. 
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CHAPTER TWO 

General Methods 



GENERAL METHODS 

This chapter describes the general methodology used throughout this 

thesis. This thesis comprises of four main experimental chapters (chapters 3- 6). 

Methods specific to each of these chapters can be found in the relevant 

experimental chapters (chapters 3- 6). Only methods common to all experiments 

will be discussed here i. e., dietary analysis, urinary analysis, body composition. 

Subjects and Study Approval 

All experiments described in this thesis involved human volunteers. The 

subject groups used in this thesis were as follows: highly resistance-trained males 

(Experiment 1, chapter 3), non-resistance trained males (Experiment 2, chapter 4), 

endurance trained male cyclists (Experiment 3, chapter 5) and patients with 

moderate to severe chronic obstructive pulmonary disease (COPD) (Experiment 

4, chapter 6). Inclusion criteria for each subject group can be found in the 

individual experiment methods sections. 

Experiments 1-3 were approved by the University of Glasgow Ethics Committee; 

Experiment 4 was approved by the Glasgow Royal Infirmary Ethics board. The 

nature and purpose of each experiment was explained both verbally and in 

writing to each subject / patient prior to each experiment. Subjects were also 
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made aware that they could withdraw from the studies at any time without 

explanation. All subjects provided written informed consent prior to taking part 

in the experiment (Appendix 1). 

Experimental Design 

All four experiments followed a double-blind placebo controlled design. 

A significant limitation in this design is the lack of a crossover, i. e. subjects acting 

as their own controls. However, the use of a crossover design is problematic in 

the design of Cr supplementation studies. This is primarily due to the slow 

washout kinetics of Cr (4 -8 wks) from muscle, making it difficult to interpret 

results obtained from the placebo trial when administered as the second 

treatment, as can be seen from the study performed by Maganaris & Maughan 

(1998). Therefore for this reason a double-blind placebo controlled design was 

carried out with subjects in each group matched for body mass or performance 

(see individual experiment chapters for specific details). Much care was taken to 

ensure there was no order effect on performance by including a minimum of two 

familiarisations trials before subjects entered the experiment phase of each study, 

details of specific familiarisations are given in each Experimental chapter. 
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Familiarisation and Repeatability of Tests 

All subjects underwent at least two familiarisation tests except for 

Experiment 4 where due to the subject group (patients with moderate to severe 

COPD) used only one familiarisation trial was possible. During all familiarisation 

trials, subjects were taken through the exact experimental procedure and related 

protocols in order to fully familiarise the subjects with the experimental 

conditions and related exercise protocols (see individual Experimental chapters 

for spedfic criteria). 

Dietary Analysis 

Energy intake and diet composition were determined for each subject 

following completion of a weighed intake of varying duration, which was 

dependent on the specific study (see Experimental Chapters for details). During 

the weighed intake, subjects were asked to follow their normal diet (except for 

the extra carbohydrate contained in the experiment drinks) and weigh and 

record all food and drink consumed over the required period. Weighing scales 

accurate to ±1g were given to aH subjects. The weighed dietary intake was used 

to determine energy intake and dietary composition using a computerised 

version of McCance & Widdowson's food composition tables as revised by 

Holland et al (1991). These results were used to ensure any observed changes in 
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body composition and/or performance were not the result of changes in dietary 

intake. 

Urinary Analysis 

Urinary [Crea] and [Cr] in studies 1-3 were determined for each subject 

following 24 hour urinary collection of varying duration, which was dependent 

on the specific study (see Experimental Chapters for details). All urine was 

collected over a 24 hour period in a5L container provided by the investigators, 

subjects began urinary collection the day before supplementation in all 

experiments in order to obtain baseline results. The volume of urine collected for 

each 24 hour period was measured and mixed thoroughly, with two 

representative 20 ml samples being stored at -20' C for subsequent analysis of 

[CrI and [Crea] using a spectrophotometric enzymatic Crea Kit (Boehringer 

Mannheim MPR1 - Kit no. 839434) on a ABX Mira Plus Spectrophotometer (ABX 

Diagnostics, UK). The Crea content of the urine was measured by a sequence of 

four enzymatic steps as shown below: 

lst step: Creafinine + H20 creatinina Cr 

2nd step: Cr + H20 creating Sarcosine + Urea 

3rd step: Sarcosine + H20 + 02 sarcosine oxidase Glycine + HCHO + H202 

4th step: 
H202 + Phenol derivative + 4-aminophenazone INroxidase red 
benzoquinone imine dye 
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FoHowing the measurement of [Crea], the [CrI content of the urine was then 

measured which involved the removal of the first step of the above creatininase 

reaction, with the remaining three enzymatic reactions (2nd to 4th step) being 

completed as described by Oversteegen et al (1987). Total Cr excretion was 

corrected for any observed increase in Crea following supplementation. 

Estimated Cr uptake was calculated by subtracting the total Cr excreted, 

corrected for [Crea] excretion, from the total amount supplemented per day. 

Estimated intramuscular [Cr] (mmol-kg-1-dry weight muscle) was calculated 

based on an estimated muscle mass amounting to 40% of body mass and average 

muscle water content approximating 77% of wet weight (Bergstrom et al, 1971) as 

previously described by Maganaris & Maughan (1998). The method used to 

estimate Cr uptake in the present set of Experiments has previously been used as 

the sole method to estimate Cr uptake (e. g. Rossiter et al, 1996, Maganaris & 

Maughan, 1998) and in conjunction with the measurement of Cr uptake obtained 

from muscle biopsies (Harris et al, 1992, Hultman et al, 1996, Green et al, 1996). 

However this method is based on two major assumptions, firstly, 40% of body 

mass is muscle mass and secondly, average muscle water content is 

approximately 7% of wet weight. Utilising the 40% of body weight estimate of 

muscle mass is almost certainly an underestimation in some of our subject 

groups (Experiments 1-3). We therefore also analyzed the data using estimated 

muscle mass of ±5% (i. e. 35 and 40%) to estimate Cr uptake (for this we utilised 

the data obtained from Experiment 1). Utilising these two additional estimates of 
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muscle mass (35 and 45%) altered the absolute Cr uptake values; however, the 4 

subjects who were "non-responders" remained "non-responders" and the 17 

subjects remained "responders". In addition, we also recognise that the fixed 

muscle hydration level of 77% may also affect the results obtained especially due 

to the fact the Cr supplementation has been shown to increases cellular 

hydration levels. We therefore reanalyzed the data using estimated muscle 

hydration levels of ±- 30% (47 and 100%) to estimated Cr uptake, again for this 

we utifised the data obtained from Experiment 1. Utilising these two additional 

estimates of muscle hydration (47 and 100%) altered the Cr uptake values 

dramaticafly; however, the 4 subjects who were "non-responders" remained 

"non-responders" and the 17 subjects remained "responders". We have therefore 

opted to use the previously published and referenced 40% of body mass is 

muscle mass and average muscle water content is approximately 77% of wet 

weight. 

Body Composition 

Due to the reported changes in body composition following Cr 

supplementation, body composition analysis was completed in all four studies. 
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Body Mass 

Body mass was measured, wearing underwear/ swimsuit only, using a 

calibrated Seca electronic scale with precision of ± 0.01 kg (Seca, Isle of Man). The 

subjects/ patients stood on the platform, facing away from the scales, with their 

body weight evenly distributed between both feet. 

Body CoMRosition Measurements 

Body composition was measured using a bioelectrical impedance analyser 

(BIA) (Bodystat-1500, Bodystat Ltd, Douglas, UK in Experiments 1&4 and 

Bodystat-5000, Bodystat Ltd, Douglas, UK in Experiments 2& 3). This procedure 

allows measurement of fat mass (FM), fat-free mass (FFM), total body water 

(TBW) using the Bodystat-1500 irnpedance analyser and body water 

compartments (intracellular (ICW) and extracellular (ECW) water), using the 

Bodystat-5000 impedance analyser. 

Body composition measurement by bioelectrical impedance was performed on 

the right side, with subjects/ patients supine, and with their limbs slightly apart 

from the trunk. Two current-introducing electrodes were placed on the dorsal 

surfaces of the right hand and foot proximal to the metacarpal-phalangael and 

metatarsal-phalangael joints, respectively. Then two detector electrodes were 
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placed on the right pisiform pron-drience of the wrist, the proximal edge 

dissecting the u1nar tubercle, and between the medial and lateral maleoh, the 

proximal edge dissecting the medial malleolus. The impedance to current flow 

between the injector and detector electrodes was determined. These placements 

are standard placements for electrodes during measurement using BIA (van 

Loan, 1990). Preceding the electrode placement, the skin had been cleaned with 

70% alcohol to remove dead skin and dirt before electrode placement. BIA 

measures the opposition of body tissues to the flow of small (less than 1mA) 

alternating current. Impedance is a function of two components (vectors): the 

resistance of the tissues themselves, and the additional opposition (reactance) 

due to the capacitance of membranes, tissue interfaces, and non-ionic tissues. The 

measured resistance is approximately equivalent to that of muscle tissue. 

Throughout all experiments the National Institute of Health (NIH) 

standardisation procedures were followed (NIH, 1994) which were as follows: 

AH measurements were performed on a non-conductive surface in an 

environmental chamber (-23C) with the arms and legs slightly abducted (-301) 

from the trunk. Subjects were also required to abstain from alcohol, caffeine, and 

heavy exercise for 24 hrs prior to testing. Finally, subjects were given a 10 min 

supine equilibration period before each measurement. 
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BIA has recently become a popular method of estimating body composition due 

to it being a safe, convenient, portable method and its ability to perform frequent, 

rapid and non-invasive measurements (Koulmann et al. 2000). In recent years, 

many researchers have attempted to assess the validity and reliability of this 

method of estimating body composition. While there is still much debate with 

regard to the vahdity (hmits of agreement) of BIA estimation of body 

composition, the majority of researchers have concluded that BIA is a repeatable 

method (Kushner & Schoellor, 1986; Baumgartner et al, 1990; Koulmann et al, 

2000; Fornetti et al, 1999). Koulmann. et al (2000) reported the mean 

reproducibility for trial to trial intra-individual impedance measurements at 5 

kHz was 4.4% (coefficient of variation (CV)) and 2.2 % (CV) at 100 kHz, with 

these variations being slightly greater than those reported by Kushner & 

Schoeller (1986) (2.2 % week to week CV). 

In a separate investigation we assessed the short-term reliability (7 days) of BIA 

on 25 healthy male subjects for the measurement of FFM, TBW and ICW using 

Bland & Altman (1986) limits of agreement. In this study we found the mean bias 

and 95% confidence intervals to be -0.1 ± 0.9 kg, -0.2 ± 0.9 L and -0.1 ± 0.6 L for 

FFM, TBW and ICW, respectively. Further support for the short-term reliability 

of BIA can be seen in all four Experimental chapters when comparing the pre- 

post values obtained from the placebo groups. The non-significant change in any 
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of the BIA determined body composition variables obtained from the placebo 

group in Experiments 1-4 is further support for the reliability of BIA. 

Experimental Controls 

Subjects were also requested to eliminate caffeine and caffeine-containing 

foods from their diet over the loading period in all 4 experiments to minimize the 

possible inhibitory effects of caffeine on the ergogenic effect of Cr (Vandenberghe 

et al, 1996). In Experiments 1 and 3, subjects were required to maintain their 

normal training habits for the duration of the study. Experiments 2 and 4, 

subjects underwent supervised training and it was stressed that all other activity 

was to be kept within their normal habits. At the end of the all experiments, 

subjects gave verbal and written assurance that they had complied with these 

instructions. 

Cr Dosage and Carbohydrate 

All four experiments involved Cr and placebo supplementation. Due to 

variations in the experimental design and experimental needs, Cr dosages varied 

between experiments. Also due to the proposed stimulatory effect of 

carbohydrate on muscular Cr uptake (Green et al, 1996), subjects also consumed 

extra carbohydrate with their Cr dosages. In Experiment 1, subjects consumed 
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90g of glucose polymer in combination with Cr (as recommended by Green et al, 

1996); however this proved to be at the subject's limit of tolerance. Therefore, in 

subsequent experiments (2 - 4), subject's consumed a moderate amount of 

carbohydrate with their Cr dosage (35g per 5g Cr), and were also instructed to 

consume the Cr following meal times (additional carbohydrate). The exact Cr 

dosages and supplementation periods are stated in the methods section of each 

Experimental chapter. 

Data Analysis 

Due to the similar experimental design of all studies (placebo controlled) 

data analysis was similar for all experiments. 

Data was expressed as the mean ± s. d. or median (range), following a test for the 

normality of distribution. Statistical analysis was carried out using two-factor 

ANOVA for repeated measures, followed by Student' s paired Mest (within 

treatment effect, i. e., pre- vs. post-supplementation) and two-sample t-test 

(between treatment effect, i. e., magnitude of change in the Cr group or 

"responders" vs. the placebo group) if a main treatment or interaction effect was 

observed. An ANCOVA was used where necessary to normalise for differences 

in pre-supplementation results using the baseline value as the covariate. 
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Pearson's correlation analysis was used to assess the relationship between 

selected variables. Statistical significance was declared at P<0.05. 
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CHAPTER THREE 

(Experiment 1) 

Effects of Creatine Supplementation on Isometric Bench- 
Press Performance in a Group of resistance-trained 

Humans 



INTRODUCTION 

The energy required to perform brief explosive-type exercise is almost 

exclusively provided by the high-energy phosphate stores in skeletal muscle. As 

the phosphocreatine (PCr) stores become depleted, performance rapidly 

deteriorates, reflecting the inability to rephosphorylate adenosine diphosphate 

(ADP) to adenosine triphosphate (ATP) at the required rate (Hultman et al, 1990). 

Increasing resting levels of intramuscular creatine (Cr) by oral Cr 

supplementation (Harris et al, 1992) has been shown to increase intramuscular 

PCr levels and to accelerate the resynthesis of ATP during and following high- 

intensity, short-duration exercise (Balsom et al, 1995; Greenhaff et A 1994). 

In recent years, numerous studies have investigated the effects of Cr 

supplementation on exercise performance and body composition, but with 

conflicting results. A significant limitation in the design of Cr supplementation 

studies is that the use of a crossover design is problematic. That is, the slow 

washout kinetics of Cr from muscle makes it difficult to interpret results 

obtained from placebo trials when administered as the second treatment. This 

methodological problem has forced many investigators to use matched subject 

groups. Many such studies have aIso used too few subjects (i. e. < 20), thus 

increasing the chance of producing a Type II error (Tarnopolsky & MacLennan, 

2000). The risk of producing a Type II error is also increased if subjects 
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supplemented with Cr are not differentiated into "responders" and "non- 

responders" on the basis of measured or estimated Cr uptake (Casey et al, 1996; 

Greenhaff et al, 1994). Another problem inherent in using matched subject groups 

is the choice of appropriate statistical methods. For example, some of the positive 

findings in the literature (e. g. Birch et al, 1994 and Harris et al, 1992) have been 

questioned because of the use of multiple Mests instead of analysis of variance 

(ANOVA), therefore increasing the probability of committing a Type I error 

(Gilham et al, 2000). 

With the above concerns in mind, the balance of available evidence from Cr 

supplementation studies would suggest that oral Cr loading can increase muscle 

Cr content (Balsom et al, 1995; Harris et al, 1992; Hultman et al, 1996), increase fat- 

free mass (Becque et al, 2000; Kreider et al, 1998), improve anaerobic sprint 

performance (Casey et al, 1996; Green et A 1996) and promote greater gains in 

strength (Kreider et al, 1998; Maganaris & Maughan, 1998; Volek et al, 1997). 

Although the effects of Cr supplementation on exercise performance have been 

investigated in a number of different subject groups using a variety of different 

intervention strategies and exercise modes, little systematic investigation has 

been given to the effects of Cr supplementation on performance of isometric 

exercise. The aim of the present Experiment was therefore to determine the 

effects of Cr supplementation on strength endurance and maximal performance 

using an isometric bench-press test in a group of resistance-trained males. 
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Although the isometric bench-press test is unable to replicate the typical bench- 

press manoeuvre (i. e. the test is isometric, while the training or competitive 

manoeuvre is isotonic), it partly simulates the training adopted by resistance- 

trained subjects, and also allows force to be measured with a high degree of 

accuracy. 
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METHODS 

Subjects 

Thirty-two healthy resistance-trained males (Table 3.1), from whom 

written informed consent had been obtained, volunteered to take part in this 

Experiment which was approved by the local ethics committee. Subject eligibility 

was initially assessed by interview. No subject had a history of cardiovascular or 

respiratory disease and/or evidence of musculoskeletal injury. Subjects were 

recruited on the basis that they were engaged in a structured weight-training 

program at the time of recruitment. All subjects had at least 2 years training 

experience and were demonstrated not to have supplemented with Cr for at least 

8 weeks prior to the Experiment. Investigators did not reveal prior to interview 

that subjects would be excluded if they had supplemented with Cr in the last 8 

weeks. Eight subjects (four in each group) had previously supplemented with Cr. 

No Cr was detected in the baseline urine samples of any subject. Subjects 

typically undertook 3-4 resistive-training sessions per week, with an emphasis 

on major muscle groups. All subjects completed at least one heavy dynamic 

bench-press session per week (e. g. two warm-up sets at -50% of the subject's one 

repetition maximum (1 RM), pyramiding up to 1 RM within 4 sets). 
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Table 1: Physical characteristics of the two groups of subjects 

Placebo Group Creatine Group 
(n=11) (n=21) 

Pre Post Pre Post 

Age (yr) 24 ±5 24 ±5 

Height (m) 1.79 ± 0.08 - 1.79 ± 0.07 

Weight (kg) 80.1 ± 7.3 80.2 ± 7.1 84.1 ± 8.2 85.1 ±8.0 

Total Body Water (1) 48.4 ± 3.7 48.5 ± 3.9 49.9 ±4.1 50.4 ±4.2 

Total Body Water 60.0 ± 3.6 60.6 ± 2.8 59.5 ± 3.0 59.4 ±3.0 

Fat-free mass (kg) 69.3 ± 5.6 69.4 ± 5.8 71.9 ± 5.7 72.6 ± 5.7 

Fat-free mass 6.7 ±4.1 86.7 ±4.1 85.7 ± 3.5 85.5 ± 3.4 

Body Fat (kg) 10.9 ±3.8 10.8 ±3.7 12.2 ±3.9 12.6 ±3.8 

Body Fat (%) 13.4 ±4.1 13.3 ±4.1 14.3 ±3-5 14.5 ±3.4 

Peak power (N) 815 ± 255 - 812 ± 207 - 
Training history (yr) 5±2 5±2 

Values are presented as the mean ± s. d. 
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Experimental Design 

Prior to entering the experimental phase of the Experiment, subjects 

visited the laboratory on at least two occasions in order to become familiar with 

the isometric bench-press and related protocols. Familiarisation trials were 

carried out until the variability of two consecutive performances was within 

100 N for peak force. The test-retest reliability of the isometric bench-press 

revealed a high intra-class correlation (ICC) for both performance outcomes 

(Peak force ICC = 0.95, Total force ICC = 0.95; these test-retest reliability values 

are based on subjects having each undergone three familiarization tests). On the 

basis of the final familiarization results (peak force), subjects were assigned in a 

double-blind fashion to either a Cr group or a placebo group on a two to one 

ratio; this asymmetry was designed to accommodate for both "responders" and 

"non-responders" to Cr supplementation (Greenhaff et al, 1994). Following the 

familiarization period, all subjects performed two isometric bench-press tests at 

least five days apart. The first isometric bench-press test was conducted 48 hours 

after the subject's final familiarization trial. The supplementation period for both 

groups started on the day after the first isometric bench-press test and finished 

the day before the second isometric bench-press test. The experimental design is 

shown in Fig. 3.1. 
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Figure 3.1 The experimental design for Experiment 1 
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The Cr group ingested 22.8 g. d-1 Cr-H20 (equivalent to 10 g Cr x2 daily) for 5 

days before and after each daily trairting session. Each pre- and post-work out 

supplement dose consisted of 11.4 g of Cr-H20(equivalent to 10 g Cr) and 90 g of 

glucose polymer made up in 500 mls of warm to hot water. This regimen was 

adopted in fight of the work by Harris et al (1992) who found that this protocol 

increased resting muscle PCr levels within 5 days. Rossiter et al (1996) also used a 

5 day Cr supplementation period in trained individuals and found ergogenic 

effects. Dissolving Cr in warm to hot water prevented any detectable formation 

of creatinine (Crea), with no parts of the supplement remaining undissolved. The 

addition of dextrose to the Cr has been shown to significantly enhance the 

uptake of Cr (Green et A 1996; Steenge et al, 1998). On training days, subjects 

consumed the first Cr dose 1h prior to exercise and the second Cr dose 

immediately post-exercise. On non-training days subjects took the supplement ad 

libitum. The placebo group consumed 202.8 g-d-1 of glucose polymer (101.4 gx2 

daffy) for 5 days prepared and administered in an identical fashion to the Cr 

supplement. Both supplements had similar taste, texture and appearance and 

were placed in generic packets to ensure double-blind administration. 

Subjects were instructed to follow their normal diet (apart from the extra 

carbohydrate (CHO) contained in the experiment drinks) and to weigh and 

record all food and drink consumed. Subjects were also requested to eliminate 
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caffeine and caffeine-contaft-ting foods from their diet to minimize the possible 

inhibitory effects of caffeine on the ergogenic effect of Cr (Vandenberghe et al, 

1996). Throughout the duration of the experiment, subjects were encouraged to 

maintain their normal training habits. At the end of the experiment, all subjects 

gave verbal assurance that they had complied with these instructions. Subjects 

completed 7 separate 24-hour urine collections. The first was started on the day 

proceeding supplementation (baseline), then continued through the 5 days of 

supplementation and finished on the day following supplementation. 

Procedures 

Subjects reported to the laboratory on the morning of testing after a 

standardized meal and having refrained from alcohol intake, caffeine intake and 

strenuous exercise the day before. Following the measurement of height and 

body mass, percentage body fat, fat free mass and total body water (TBW) were 

measured (Bodystat-1500 Bioimpedance analyzer, Bodystat Ltd., Isle of Man) 

using a standard bioimpedance technique (Lukaski et al, 1985; Van Loan, 1990). 

The measurements were taken while the subjects lay comfortably in a supine 

position on a non-conductive surface, with their arms and legs slightly abducted. 

Before the start of the isometric bench-press test, aH subjects underwent a 

standardized warm-up consisting of 5 min of arm cranking at 25 Watts, followed 

by a series of stretches with an emphasis on stretching the musculature 
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associated with the bench-press manoeuvre. 

Each subject then performed five consecutive maximal isometric bench-presses. 

A padded bench was positioned over a calibrated force platform (Kistler type 

9281B, Kistler Instruments Corporation, Switzerland) so that the force platform 

was directly under the subject's shoulders. A weight stand of adjustable height 

was positioned on either side of the bench, and a1m bar was laid across the 

stands and permanently fixed in this position. Subjects were required to position 

themselves on the bench with their elbows at 900 flexion and with their hands 

positioned no more than 81 cm apart. Each subject was asked to assume a 

comfortable pressing position on the bench. The subject's hand, head and the 

stand height positions were noted and the subject was required to reproduce the 

same position on each testing occasion. For each isometric bench-press, subjects 

were given a5s count-down and told to press against the bar as hard as possible 

for 20 s, a duration that has been shown to depIete PCr stores by - 98 % (Tesch et 

al, 1989). The force exerted against the bar was transmitted by the bench to the 

force platform in the vertical plane, and the peak, total force (area under the 

curve) and fatigue index (the percent decline in force production within each 20 s 

period) for each bench-press was calculated using the Kistler software provided 

(Kistler BioWare, Version 2.22, Kistler Instruments Corporation, Switzerland). 

This manoeuvre was repeated a further four times, with 2 min recovery periods. 

This recovery period was adopted in light of the findings by Greenhaff et al 
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(1994) of increased rate of PCr rephosphorylation during the second n-tinute of 

recovery from intense muscular contractions following Cr supplementation. 

Subjects adopted the "ready" position in the last minute of each recovery period. 

All post-supplementation testing was carried out at the same time of day and in 

the same manner. Consumption of water (500 ml) was permitted during each 

bench-press test. Room temperature was maintained between 20-241 C. 

Data Analysis 

Data were expressed as the mean ± s. d. or median (range), following a test 

for the normality of distribution. Statistical analysis was carried out using two 

factor ANOVA for repeated measures, followed by paired t-test or two-sample 

t-test, as appropriate. Statistical significance was declared at P<0.05. 
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RESULTS 

Dietary Analysis 

During the experimental period, the daily diet of the Cr group comprised 

13.4 ± 2.5 Mj-d-1, of which 59 ± 6%, 27 ±6%, 14 ± 4% and 0 ±0 % of energy intake 

was in the form of CHO, fat, protein and alcohol, respectively. The daily diet of 

the placebo group comprised 13.3 ± 1.7 Mj-d-1, of which 59 ± 5%, 25 ± 6%, 14 ± 

4% and 2± 3% of energy intake was in the form of CHO, fat, protein and alcohol, 

respectively. 

Urinary Analyses 

In the placebo group, Crea excretion over the six days was not different 

from baseline. In the Cr group, Crea excretion increased from 1.6 ± 0.4 g-d-1 on 

the first day to 4.0 ± 1.1 g-d-1 on the final day of supplementation. Daily Cr 

excretion was therefore corrected for Crea excretion. Urinary Cr excretion also 

increased during the supplementation period in the Cr group. Estimated Cr 

uptake was greatest on the first day of supplementation (15 (7-20) g) and was 

lowest on the final day of supplementation (7 (-4-15) g) (median (range)). The 

estimated Cr uptake was calculated by subtracting the total Cr excreted 
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(corrected for Crea excretion) from the total amount supplemented per day. Of 

the 20 g of Cr administered each day, 75 (33-100) % was retained on the first day 

of supplementation and 34 (-18-77) % on the last day of supplementation. The 

total amount of Cr retained over the supplementation period was 45 ± 18 g of the 

total supplemented dose (i. e. 100 g), with an estimated increase in intramuscular 

Cr concentration of 43 (13-61) mmol-kg-1-dry weight muscle (based on an 

estimated muscle mass of 40% of body mass and an average muscle water of 77% 

of wet weight; Bergstrom et al (1971)). In the placebo group, no Cr was detected 

in the urine during the experiment. Out of the 21 subjects in the Cr group, 4 

subjects were classified as "non-responders" (5 21 mmol. kg-l-dry muscle weight 

increase following Cr supplementation) and the remaining 17 subjects were 

classed as "responders" (> 32 mmol-kg-1-dry weight muscle). The estimated Cr 

uptake for the "responders" group was 51 (32 - 61) mmol-kg-1-dry weight muscle 

compared to an estimated Cr uptake of 14 (13 - 21) mmol-kg-1-dry weight muscle 

for the "non-responders". These two distinct groups are evidence of an 

"ergogenic threshold". These estimated Cr uptakes are very similar to those 

measured by Greenhaff et al (1994). In that study, the "non-responders" had a Cr 

uptake of about 10 mmol. kg-1 dry weight muscle and all but one of the 

"responders" had a Cr uptake greater than 25 mmol-kg-1 dry weight muscle. 

Similarly, in the present experiment, A but one "non-responder" had a Cr uptake 

of about 13 mmol. kg-1 dry weight muscle and all "responders" had a Cr uptake 
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above 30 mmol-kg-1 dry weight muscle. 

Physical Characteristics 

The physical characteristics of the two groups of subjects were similar 

before supplementation (Table 3.1). In the Cr group, body mass increased 

significantly from 84.1 ± 8.2 kg to 85.1 ± 8.0 kg following supplementation 

(P<0.001), with no change in the placebo group (80.1 ± 7.3 kg to 80.2 ± 7.1 kg, 

P=0.76). The magnitude of change in body mass was significantly greater in the 

Cr group compared to the placebo group (P=0.003). Absolute and percentage 

body fat and TBW were not different between groups; however there was a 

significant increase in TBW in the "responders" over time (49.9 ± 4.3 L to 50.6 ± 

4.9 L, P=0.019). 

As with the Cr group as a whole, there was a significant increase in body mass in 

the "responders" to Cr following supplementation (84.1 ± 8.6 kg to 85.3 ± 8.3 kg, 

P<0.01). The gain in body mass over the supplementation period was also 

significantly greater (P<0.01) in the "responders" compared to the placebo group 

(Fig. 3.2). The change in FFM over the supplementation period was significantly 

greater (P=0.038) in the "responders" compared to the placebo group (Fig. 3.2). 
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Figure 3.2 Changes in body weight (BW), lean body mass 
(LBM), fat mass (BF) and total body water 
(TBW) (mean ± s. d. ) in the "responders" and 
placebo supplemented groups. * indicates a 
significantly greater increase in the 
"responders" group compared to the placebo 
group 
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Body mass for the "non-responders" did not increase following Cr 

supplementation (84.2 ± 7.9 kg to 84.2 ± 7.4 kg, P=0.94). The gain in body mass 

was thus significantly greater (P=0.017) in the "responders" compared to the 

"non-responders". There was no significant increase in average body fat for the 

"responders" or placebo group post supplementation (i. e. 12.2 ± 3.9 kg to 12.6 ± 

3.8 kg, P=0.237 and 10.9 ± 3.8 kg to 10.8 ± 3.7 kg, P=0.788, respectively). Figure 3.2 

shows less than 0.3 kg non-significant increase in body fat for the "responder" 

group and a non-significant decrease in body fat of 0.3 kg in the placebo group, 

both are within day to day measurement variation. 

Isometric Bench-press Performance 

Peak force and total force were not significantly different between the Cr 

and placebo groups prior to supplementation. In both groups, there was a 

significant decrease in peak force over the 5 repetitions during both the pre- 

supplementation and post-supplementation bench-press tests. There was a non- 

significant tendency for the magnitude of change (i. e. post-supplementation 

minus pre-supplementation) in peak force and total force to be significantly 

greater in the Cr group compared to the placebo group (P=0.054 and P=0.078 

respectively). However, when this analysis was repeated after removing the 

"non-responders" from the Cr group, the magnitude of change in peak force and 

total force was significantly greater in the "responders" compared to the placebo 
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group (P=0.003 and P<0.01) (Fig. 3.3). The percent decline in force production 

within each 20 s period (fatigue index) for each bench-press was not significantly 

different when comparing the pre- to the post-supplementation values in either 

group, or after excluding the "non-responders" from the Cr group. 

Correlations 

A significant negative correlation was found between estimated Cr uptake 

and training experience in the Cr group (r=-0.68, n=21, P=0.001) (Fig. 3.4a). 

Subjects in both the Cr group and the placebo group had, on average, 5±2 years 

heavy resistance training experience (P=0.22). Estimated Cr uptake was also 

positively correlated with the change (A) in body mass over the supplementation 

period (r=0.55, n=21, P<0.01) (Fig. 3.4b). Estimated Cr uptake was significantly 

correlated with the increase (pre to post) in total force for the first 4 repetitions 

(Repetition 1: r=0.53, P=0.013; Repetition 2: r=0.47, P=0.033; Repetition 3: r=0.44, 

P=0.044; Repetition 4: r=0.49, P=0.026). There was also a significant positive 

correlation between the magnitude of increase in total force over the 5 repetitions 

(total change in force for each repetition added together) and estimated Cr 

uptake (r=0.508, n=21, P=0.019) (Fig. 3.4c). No significant association was found 

when protein intake was correlated against estimated Cr uptake (P=0.79). 

67 



Figure 3.3 Change in peak force (top panel) and total 
force (bottom panel) in the Cr ("responders" 
and "non-responders") and placebo 
supplemented groups. * indicates a 
significantly greater increase in the 
"responders" group compared to the placebo 
group 
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Figure 3.4 Correlations between estimated Cr uptake and 
training experience (A), change in body weight 
(B) and change in total force (C) in the Cr 
group 
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Side Effects 

In general, subjects tolerated the supplementation protocol well, with no 

reports of gastrointestinal distress or muscle cramping. Three subjects (i. e. 2 

subjects in the Cr group and 1 subject in the placebo group) reported 

experiencing mild headaches, possibly due to the high glucose concentration of 

the ingested supplements. 
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DISCUSSION 

In the present experiment, 5 days of Cr supplementation significantly 

increased peak isometric force and total force during repeated 20 s isometric 

bench press exercise in a group of 17 "responders" compared to the placebo 

group (Figure 3.3). As muscle biopsies were not obtained in this Experiment, one 

can only speculate on the potential mechanisms for this improvement in 

performance following Cr supplementation. Nevertheless, increased PCr 

availability and PCr resynthesis during recovery from maximal exercise of this 

type are the most plausible as muscle fatigue has previously been associated with 

a depletion of muscle PCr stores (Hultman et al, 1990; Tesch et A 1989). Cr 

supplementation has the potential to increase the basal levels of PCr and, by 

doing so, to delay the onset of muscle fatigue. A number of previous studies 

support this view (Balsom et al, 1995; Greenhaff et al, 1994). 

Since the seminal work of Harris et al (1992) and Greenhaff et al (1994), many 

investigators have tested the hypothesis that strength, power and/or work 

performed during repeated sets of maximal dynamic contractions can be 

improved by increasing total muscle Cr concentration by Cr ingestion. However, 

not all studies have reported an ergogenic effect. Of the 55 pertinent papers 

published to date (to our knowledge and not including abstracts), 40 have 

demonstrated an ergogenic effect. It is interesting to note that Greenhaff et al 
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(1994) found a substantial increase in total muscle Cr concentration only in 

subjects with a pre-supplementation total muscle Cr concentration of the order of 

120 mmol-kg-1-dry muscle weight or less, and that these same individuals 

demonstrated an accelerated rate of PCr resynthesis during the second minute of 

recovery from intense electricafly-evoked contractions of the vastus lateralis. 

Greenhaff et al (1994) and Casey et al (1996) subsequently showed an ergogenic 

effect of Cr supplementation when the post-supplementation increase in 

intramuscular [CrI exceeded 20 mmol-ke-dry muscle weight. For example, 

Casey et al (1996) reported that Cr supplementation produced a 23.1 ± 4.7 

mmol-kg-1-dry muscle weight increase in [Cr] and an increase in peak and total 

work produced during two bouts of 30 s maximal isokinetic cycling. Similarly, 

Maganaris & Maughan (1998) showed that Cr supplementation (10 g Cr-d-1 for 5 

days) increased the estimated muscle [Cr] by about 30 mmol-kg-1-dry muscle 

weight and increased isometric force generating capacity and isometric 

endurance. In contrast, however, Snow et al (1998) found only a small increase in 

muscle [Cr] following 30 g of Cr-d-1 for 5 days (i. e., 11.7 ± 2.4 mmol-kg-1-dry 

muscle weight) and no significant improvement in sprint-exercise performance. 

A similar outcome was reported more recently by Finn et al (2001) for 4x2O s all- 

out sprint performance in 8 endurance trained cyclists following 5 days of Cr 

supplementation. They too found only a small increase in muscle [Cr] (16.2 
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mmol-kg-1-dry muscle weight), with 3 out of the 8 subjects increasing [CrI by less 

than 10 mmol-kg-1-dry muscle weight. It should be pointed out that these authors 

could be making a Type II error (Tarnopolsky & MacLennan, 2000) consequent 

both to the small sample size and the low Cr retention that was particularly 

marked in 3 of their 8 subjects. 

These several observations emphasize the importance of recognizing that 

substantial individual differences can occur in intramuscular Cr uptake 

following Cr supplementation. The classification of subjects into "responders" 

and "non-responders" (Greenhaff et al, 1994; Casey et al, 1996) is suggestive of 

what might be termed an "ergogenic threshold" for Cr uptake of about 20 

mmol-kg-1-dry muscle weight, as proposed by Greenhaff et al (1994) and Casey et 

al (1996). Greenhaff et al (1994) showed an increased rate of PCr resynthesis 

during recovery following Cr ingestion in subjects those muscle Cr concentration 

increased by on average 20 mmol-kg-1-dry muscle weight, but conversely subjects 

whose muscle Cr concentration increased by < 10 mmol. kg-l-dry muscle weight 

following Cr supplementation showed very little or even a slower rate of PCr 

resynthesis during recovery. Our findings provide support for this contention. 

Only when the 4 "non-responders" (in whom the increase in intramuscular [CrI 

was estimated to be: 5 21 mmol-kg-1-dry muscle weight) were excluded from the 

Cr group did the improved isometric bench-press performance clearly emerge, 
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both in terms of peak force and total force. Furthermore, the finding of a 

significant correlation between estimated Cr uptake and delta total force in 

repetitions 1-4 would suggest that subjects with the greatest Cr uptake had the 

greatest performance benefit, and this is in agreement with previous published 

work (Casey et al, 1996). While these findings provide evidence consistent with 

an ergogenic threshold, assigning a specific threshold value is not possible as Cr 

uptake was only estimated in the present experiment. Nevertheless, these 

estimated Cr uptake values are very similar to those measured by Greenhaff et al 

(1994). 

One explanation for the two distinct groups (i. e. "responders" and "non- 

responders") with regard to Cr uptake may be the varying amount of 

intramuscular Cr prior to supplementation. This might reflect, for example, a low 

habitual dietary intake of Cr in the "responders" and/or conversely, a high 

dietary intake of Cr in the "non-responders". Whether this was the case in these 

particular subjects cannot be established. While our subjects carried out a 

weighed intake of food, it was not possible to meaningfully estimate the dietary 

Cr content as the amount of Cr in each item of food is dependent on many factors 

including food preparation. Even so, one might reasonably expect that subjects 

with a high protein intake might also have a high Cr intake. However, we found 

no significant correlation between protein intake and estimated Cr uptake 
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(P=0.79). Also, protein intake was not different in the "responders" and "non- 

responders". 

Another possible explanation could be the strength-training status of our 

subjects. MacDougall et al (1977) have reported that only 5 months of heavy 

resistance-training can increase resting muscle [Cr] by 39% and [PCr] by 22%. 

Our subjects had 5±2 years of heavy resistance training experience which could 

predispose them to high resting levels of intramuscular Cr and PCr. Variability 

in training status may therefore be another factor responsible for the conflicting 

results reported in the literature. Interestingly, a significant negative correlation 

was found between training experience and estimated Cr uptake (Fig. 3.4a). This 

is an area that we feel needs further investigation. 

Although other studies have found no significant difference in body mass 

following short-term Cr supplementation (20 - 30 g-d-1 for 5-7 days) (Grindstaff 

et A 1997; Steenge et al, 1998; Terrillion et al, 1997), the majority of studies have 

produced increases ranging from 0.6 - 1.8 kg following short-term Cr 

supplementation (Earnest et al, 1995; Green et al, 1996; Greenhaff et al, 1994; 

Maganaris & Maughan, 1998; TerriRion et al, 1997). Considering the short time 

course of this increase in body mass, some investigators have attributed these 

increases to increases in TBW. For example, Hultman et al (1996) found a 0.6 L 

decline in urinary volume following acute Cr supplementation (20 Cr g-d-1 for 6 
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days) and therefore attributed the increase in body mass to Cr-stimulated water 

retention. These authors also noted that the time course of urinary volume 

changes paralleled that of muscle Cr uptake. Furthermore, an increase in both 

total body and intracellular water was demonstrated by Ziegenfuss et al (1998) 

with acute Cr ingestion (0.35 g. kg fat free mass-d-1 for 3 days), with the increase 

in TBW accounting for approximately 90% of the acute gain in body mass. It 

remains to be determined whether this increase in water is associated with an 

increase in protein synthesis. The balance of available evidence from human 

performance studies using Cr supplementation and More direct evidence from 

animal in vivo and in vitro experiments would support the notion that increasing 

Cr availability may indeed increase protein synthesis (Francaux & Poortmans, 

1999; Ingwall et al, 1974; Kreider et al, 1998). In the present Experiment, 

supplementation with Cr increased body mass (84.1 ± 8.6 kg pre- 

supplementation to 85.3 ± 8.3 kg post-supplementation), with the mean increase 

in the "responder" group (1.2 ± 0.9 kg) being significantly greater (P<0.01) than 

that of the placebo group (0.1 ± 0.6 kg) (Fig. 3.2). The increase in body mass 

cannot be explained by the increases in TBW alone as a result of Cr stimulated 

water retention, as there was no significant increase in TBW as expressed as 

percentage of body mass. Despite a significant increase in TBW in absolute terms 

in the "responders" group (49.9 ± 4.3 L to 50.6 ± 4.9 L, P=0.019), if the relative 

volume of TBW remains constant (as in the present Experiment), the gain in 

body mass may not be attributed to water retention. The increase in absolute 
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TBW seen in this study following Cr supplementation may be indicative of 

intracellular water that normaRy accompanies dry matter growth. Francaux and 

Poortmans (1999) found similar results and interpreted their findings in a same 

manner. Cr supplementation also promoted significantly greater gains in FFM in 

the "responder" group compared to the placebo group (P=0.038). Resolution of 

this issue requires additional research using more precise and invasive methods. 
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CONCLUSION 

The results of this Experiment suggest that 20 g Cr-d-I for 5 days did not 

result in a significant increase in peak force or total work during repeated 

isometric contractions in resistance-trained individuals. However, this was due 

to the "non-responders" in the Cr group masking the effects of the remaining 

group. When the Cr group was considered with only "responders" to Cr in the 

group, Cr supplementation resulted in significant increases in peak force and 

totalforce. 
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CHAPTER FOUR 

(Experiment 2) 

Effects of Creatine on Body Composition and Strength 
Gains after Four Weeks of Resistance-training in 

previously Non-resistance-trained Humans 



INTRODUCTION 

The seminal work of Harris et al (1992) and Greenhaff et al (1994) 

instigated a number of studies that tested the hypothesis that strength, power 

and/or work, performed during repeated sets of maximal dynamic contractions, 

may be improved following an increase in total muscle [Cr] ([TCr]) by Cr 

ingestion. Not A studies, however, have reported an ergogenic effect. Of the 55 

pertinent papers published to date (to our knowledge and not including 

abstracts), 40 have demonstrated an ergogenic effect. The majority of the 

conflicting findings may be attributed in part to the failure Of many researchers 

to acknowledge the considerable inter-individual variation in muscle Cr uptake 

following Cr supplementation. Subjects were not, therefore, differentiated into 

"responders" and "non-responders" (< 21 mmol-kg-l-dry muscle weight increase 

following Cr supplementation; Greenhaff et al (1994)) on the basis of measured or 

estimated Cr uptake. In order to examine whether Cr supplementation can 

enhance performance, it is essential that experiments are designed to optimise Cr 

uptake and therefore potential to improve performance. 

Over the years, numerous strategies have emerged aimed at enhancing Cr 

uptake with Cr supplementation. The early work of Harris et al (1992) is one of 

only a few studies to examine whether Cr uptake by skeletal muscle can be 

increased by exercise. Harris et al (1992) employed 1 hour of one-legged cycling 
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exercise per day for 4-7 days and demonstrated enhanced Cr uptake in the 

exercising leg by 54% whilst little effect was observed in the non-exercising leg. 

The precise mechanism(s) for the exercise-induced increase in muscle Cr uptake 

is still unknown, although an increase in blood flow to the exercising muscle 

and/or changes in the transport kinetics of Cr across the sarcolemma were 

suggested by the authors as the most plausible explanations. 

An additional strategy to show enhanced Cr uptake is the ingestion of 

carbohydrate in combination with Cr. Ingestion of Cr, in combination with a 

carbohydrate-containing solution, resulted in a 60% greater increase in muscle 

[Cr] than when ingesting Cr on its own (Green et al, 1996). While the explanation 

for this carbohydrate-induced increase in muscle Cr uptake remains unclear, this 

response is most likely to be the result of an insulin-mediated increase in muscle 

Cr transport, rather than an effect on Cr delivery (Green et al, 1996; Steenge et al, 

1998). 

Training status is another factor with the potential to influence Cr uptake. 

Experiment 1 revealed a significant negative correlation between resistance 

training experience/ history and estimated muscle Cr uptake (Fig. 3.4a), 

suggesting the greater the resistance-training experience of the subjects, the 

lower the Cr uptake with Cr supplementation. This notion is also supported by 

the early work of MacDougall et al (1977), showing that only 5 months of heavy 
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resistance-training increased resting muscle [Cr] by 39% and [PCr] by 22%. 

Heavy resistance training experience could therefore predispose subjects to high 

baseline levels of intramuscular Cr and PCr and, therefore, to a reduced potential 

for Cr uptake. If correct, the likelihood of obtaining a large Cr uptake and, hence, 

greater performance gains wifl be increased in non-resistance-trained subjects. 

In light of the above, Experiment 2 was designed with these strategies in mind to 

order to help optimise muscle Cr uptake and, hence, the potential to enhance 

strength. The purpose of this experiment, therefore, was to investigate the effects 

of 4 weeks of Cr supplementation after four weeks of resistance-training in 

previously non-resistance-trained humans on isokinetic, isometric and isotonic 

strength. 
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METHODS 

Subjects 

Twenty healthy non-resistance trained males (Table 4.1) from whom 

written informed consent had been obtained, volunteered to take part in the 

present Experiment which was approved by the local ethics committee; one 

subject was unable to comply with all experimental procedures and was 

therefore excluded. No subject had a record of cardiovascular or respiratory 

disease and none had subjective evidence of musculoskeletal injury. Subjects 

were recruited on the basis that they were physically active but not engaged in a 

structured weight-training programme for at least 6 months prior to the start of 

the experiment and had not supplemented with Cr for at least 8 weeks before the 

experiment. The subject's eligibility was assessed by interview prior to their 

informed consent for participation in the experiment. 

Experimental Design 

Prior to the commencement of the experimental trials, subjects visited the 

laboratory on at least two occasions in order to become familiar with the 

isokinetic dynamometer, leg press and related protocols. Familiarization trials 

were carried out until the variability of two consecutive Performances was 
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within 5% for peak isokinetic force at a speed of 60'-s-1. The test-retest reliability 

of both the isokinetic and isometric assessments revealed a high intra-class 

correlation (ICC) for all strength measures (Isokinetic force ICC = 0.92 (60". s-1) 

and 0.89 (180'-s-1), Isometric force ICC = 0.93; these test-retest reliability values 

are based on subjects having each undergone two familiarization tests). Subjects 

were assigned in a double blind fashion to either a Cr group or a placebo group, 

based on the final familiarisation results: subjects were matched into pairs on the 

average of their peak force obtained during the 600-s-1,1800-s-1 isokinetic and 

isometric leg extension and randomly assigned so that one member of each pair 

was in the Cr group and the other in the placebo group. Following the 

familiarisation period, all subjects performed two tests carried out at least 28 

days apart. The first test was conducted 48 hours after the final familiarisation 

trial, and the final test was conducted 48 hours after the final training session. 

The 4-week supplementation and training period for both groups started on the 

day after the first test and finished the day before the second test. The 

experimental design is shown in Figure 4.1. 

The Cr group ingested 22.8 g-d-1 Cr-H20 (equivalent to 5g Cr x4 times daily) for 

the first 7 days. This loading phase has been shown to increase resting muscle 

PCr levels (Harris et al, 1992, Greenhaff et al, 1994, Hultman et al, 1996). From day 

8, subjects consumed 5.7 g-d-1 Cr-H20 (equivalent to 5g Cr daily) for the 
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Figure 4.1 The experimental design for Experiment 2 
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remaining 21 days. This maintenance dose was selected on the basis of published 

work by Hultman et al (1996) showing 2 g-d-1 Cr-H20 was adequate in 

maintaining elevated muscle PCr stores in subjects not involved in strenuous 

exercise. As the subjects in the present Experiment were training three times a 

week at high intensities, it was decided to increase the maintenance dose to 

5 g-d-1 Cr-H20 in an attempt to maintain muscle PCr stores. Each supplement 

consisted of 5.7 g of Cr-H20 and 35 g of glucose polymer made up in 500 ml of 

warm to hot water. Dissolving Cr in warm to hot water prevented any detectable 

formation of creatinine (Crea) and no parts of the supplement remained 

undissolved. The addition of glucose to the Cr has been shown to significantly 

enhance the uptake of Cr (Green et al, 1996; Steenge et al, 1998). Subjects were 

instructed to ingest the supplements at equal intervals throughout the day. On 

training days, subjects ingested one Cr supplement 1 hour prior to exercise and 

another Cr supplement immediately after exercise. The pre and post-training 

supplements were prepared and administered by the supervising investigator. 

The placebo group consumed 160 g-d-1 of glucose polymer (40 gx4 times daily) 

for the first 7 days, followed by 40 ga day for the subsequent 21 days. The 

placebo group followed the same procedure as the Cr group with regard to the 

preparation of the supplements. Both supplements had similar taste, texture and 

appearance and were placed in generic packets to ensure double-blind 

adn-dnistration. 
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Subjects completed 24 hour urine collections for the day preceding the start of 

supplementation (baseline), the first day of supplementation (start of loading), 

the final day of loading and once a week for the following 3 weeks. Subjects were 

also required to carry out a weighed intake of food at set intervals throughout 

the experimental period (i. e. 3 days prior to the start of the experiment followed 

by 1 day a week for the 4 weeks of the experiment). Subjects were instructed to 

follow their normal diet (apart from the extra carbohydrate contained in the 

experimental drinks) and to weigh and record all food and drink consumed. 

Digital weighing scales readable to 1g were used. Subjects were also requested 

to eliminate caffeine and caffeine containing foods from their diet over the 

loading phase to n-tinimize the possible inhibitory effects of caffeine on the 

ergogenic effect of Cr (Vanderberghe et al, 1996). At the end of the experiment, aH 

subjects gave verbal assurance that they had complied with all instructions. 

Procedures 

Subjects reported to the laboratory on the morning of testing after having 

refrained from alcohol, caffeine and strenuous exercise the day before. Following 

the measurement of each subject's stature and body mass, body water 

compartments were measured using a Bodystat Multiscan 5000 Bioimpedance 

analyzer (Bodystat Ltd., Isle of Man). This method allows total body water 
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(TBW) and extra-cellular water (ECW) to be estimated; from these measurements 

intra-ceffular water (ICW) can also be deduced. The bioirnpedance 

measurements were taken while the subjects lay comfortably in a supine position 

on a non-conductive surface with their arms and legs slightly abducted. 

FoRowing the bioimpedance measurement, subjects underwent a standardized 

warm-up which comprised of 5 min fight intensity cycling, followed by a series 

of stretches with an emphasis on stretching the musculature associated with the 

leg press and leg extension movements. 

FoRowing the standardized warm-up, isokinetic (60*-s-1 and 180'-s-1) and 

isometric strength was measured during 3 repetitions using a Kin-Com 11 

isokinetic dynamometer (Chattecx Corporation, Chattanooga, USA). Both the 

right and left knee extensors were tested in random order; with the order being 

replicated during the post-supplementation tests. The position of the subject on 

the isokinetic dynamometer was standardized; the anatomical axis of the knee 

joint was aligned with the rotational axis of the dynamometer by adjusting the 

seat position and the lever head of the dynamometer. Individual seat length and 

height were recorded for each subject and used in subsequent tests. Subjects 

were held in the seat position with Velcro belts around the waist, thigh and 

lower leg proximal to the ankle, this also allowed for complete isolation of the 

testing leg. During the measurement, subjects had their arms crossed over their 

chest while their non-involved leg and upper body was kept stationary. Subjects 
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were instructed to exert maximal effort throughout the full range of motion 

during each repetition. Verbal encouragement was given to maximise 

performance. The same investigator conducted aH tests. Subjects performed three 

maxhmal isokinetic concentric contractions at two speeds (6011-s-1 and 180'-s-1) 

with a 15 s rest period between repetitions (Cress et al, 1992). The two testing 

speeds were separated by a2 min resting period. Having completed the 

isokinetic testing and following an additional 2 min recovery period, subjects 

went on to complete three maximal 5s isometric contractions with a1 min rest 

period between repetitions. Keus et al (1994) reported that a 5s maximal 

voluntary isometric contraction provided the subject with ample time for the 

development of maximal contractile force while minimising the possibilities of 

any significant fatigue effects. All subjects will be given verbal encouragement 

throughout the tests and special care was taken in order that all subjects were 

offered the same instructions and the same degree of encouragement on all visits. 

The isokinetic dynamometer was then set up for testing the opposite leg and the 

same testing order and procedure was repeated (subjects dominant leg was 

always tested first). Knee extensor strength was evaluated using an isokinetic 

dynamometer due to the high reliability and reproducibility of this strength 

assessment (Pincivero et al, 1997). 
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Following a 10 min recovery period, subjects completed a1 RM on the isotonic 

leg press to measure the subject's maximal isotonic strength. Subjects began with 

a warm-up set of ten repetitions at 50% of their 1 RM (determined during their 

second familiarisation trial); this was followed by a 2-min recovery period. The 

position of the subject on the leg press machine was standardised; the subject's 

hip, knee and ankle were set at angles of 801,90* and 800 respectively using a 

goniometer and the foot position on the lifting plate was noted. Following the 

warm-up set, subjects attempted a1 RM. Subjects were required to raise and 

lower the weight in a controlled manner. The lifting weight was increased after 

each successful lift, until the subject could not lift the weight through the full 

range of motion. The 1 RM was determined after 3-5 attempts in all subjects. All 

post-supplementation testing was carried out at the same time of day and in the 

same manner. Consumption of water (500 ml) was permitted during each test. 

Room temperature was maintained between 20 - 240 C. 

Strength Training 

Prior to the start of each training session, A subjects underwent a 

standardised warm-up which comprised light intensity cycling for 5 min, 

followed by a series of stretches with an emphasis on stretching the musculature 

associated with the leg press. Subjects then performed one warm-up set of 8 
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repetitions at 50% of their predetermined 1 RM. FoRowing the warm-up set, 

subjects attempted to completed 3 sets of 8 repetitions at 80% of their 

predetermined 1 RM (Baechle et al, 2000) with 2 minutes rest between sets 

(Greenhaff et al, 1994). The training weight was progressively increased (- 5kg) 

as subjects successfully completed the required number of sets and repetitions. 

Subjects kept training logs throughout the duration of the Experiment detailing 

weight, sets and repetitions lifted during each training session. Subjects trained 

three times a week on non-consecutive days for 4 weeks (i. e. 12 sessions in total). 

AH training sessions were conducted at the same time of day for each subject and 

were supervised by at least two investigators. Subjects trained in pairs, with 

subjects matched for strength in order to add a competitive nature to the 

training. Training sessions lasted on average 50 min (including the 15 min warm- 

up and 10 min cool-down). 

Data analysis 

Data were expressed as the mean ± s. d. following a test for the normality 

of distribution. Statistical analysis was carried out using two factors ANOVA for 

repeated measures, followed by Student's t-test for paired data and two sample 

Mests for unpaired data, as appropriate. Total lifting volume was analyzed by 

ANCOVA to normalize differences between groups in pre-supplementation 

results using session 1 as the covariate. Pearson correlation analysis was used to 
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assess the relationship between variables. Statistical significance was declared 

when P<0.05. 
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RESULTS 

Physical Characteristics 

The physical characteristics of the two groups of subjects are presented in 

Table 4.1. There were no significant differences between groups in body mass or 

any of the body composition measurements pre-supplementation. in the Cr 

group, mean body mass increased 1.4 ± 0.9 kg after week 1 (loading phase) and 

2.0 ± 1.8 kg after 4 weeks of supplementation and training (maintenance phase). 

In the placebo group, mean body mass increased 0.8 ± 0.8 kg only after loading. 

The magnitude of change in body mass was greater in the Cr group over the 4 

weeks when compared to the placebo group (Figure 4.2); however, there was no 

difference following the loading period. Out of the 9 subjects in the Cr group, 2 

subjects were classified as "non-responders" based on their urinary and body 

mass data (i. e. :50.2 kg increase in body mass) and low Cr retention following Cr 

supplementation (see Urinary Analysis section in results) and the remaining 7 

subjects were classed as "responders". This is based on the results from 

Experiment 1 showing a positive correlation between estimated Cr uptake and 

change in body mass (r=0.55, n=21, P<0.001) (Figure 3.4b). As with the Cr group 

as a whole, there was a significant increase in body mass in the "responders" to 

Cr following loading and maintenance (Table 4.1). The gain in body mass over 
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Figure 4.2 Changes in body mass (A), TBW (B), ICW (C) 
and ECW (D) (Mean ± s. d. ) post-loading and 
post-maintenance. * indicates a significantly 
greater increase in the "responders" and/or Cr 
group compared to the placebo group 
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The loading and maintenance period was also significantly greater in the 

"responders" compared to the placebo group (Figure 4.2). 

In the Cr group, TBW and ICW increased after loading and maintenance (Table 

4.1). In the placebo group, increases in TBW and ICW were observed only after 

maintenance. There was no change in ECW in either group after loading; 

however ECW increased significanfly in both groups after maintenance. The 

magnitude of change in TBW and ICW was greater in the Cr group compared to 

the placebo group over the 4 weeks of the experiment (Figure 4.2). When the 

change in TBW and ICW was compared between the "responders" and placebo 

group, the magnitude of change was significantly greater over the loading period 

in the "responders" group with regard to ICW and over the maintenance phase in 

both TBW and ICW. 

Dietary Analysis 

During the experimental period, the normal daily diet of the Cr group 

comprised 10.9 ± 2.9 Nff-d-1, of which 55.8 ± 3%, 29.4 ± 3.8% and 14.8 ± 1.9% of 

energy intake was in the form of CHO, fat, and protein, respectively. The normal 

daily diet of the placebo group comprised 11.0 ± 1.4 Mj-d-1, of which 58.5 ± 4.9%, 

27.3 ± 4.4%, and 14.2 ± 1.9% of energy intake was in the form of CHO, fat, and 
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protein, respectively. There was no difference between groups in energy intake 

or diet composition over the duration of the Experiment. 

Muscle Strength 

Muscle strength was reported by averaging peak torque (i. e. three 

attempts with the dominant leg and three attempts with the non-dominant leg). 

Muscle strength was not different between groups prior to supplementation. In 

the Cr group, average peak torque during isokinetic (both 60 and 180'-s-1) and 

average peak force isometric concentric knee extensions increased post- 

supplementation and training compared to baseline; no increase in muscle 

strength was found in the placebo group (Figure 4.3). The magnitude of change 

in muscle strength (average peak torque during 60 and 1801-s-1 isokinetic and 

isometric concentric knee extensions) was not significantly different between 

groups (P=0.28, P=0.067 and P=0.21, respectively) (Figure 4.4). However, when 

the analysis was repeated excluding the two subjects classed as "non- 

responders", the magnitude of change in 180'-s-1 isokinetic force (P=0.029) and 

isometric force (P=0.036) in the "responders" was greater compared to the 

placebo group; no difference in 60'-s-1 isokinetic force (P=0.13) (Figure 4.4). 
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Figure 4.3 Isokinetic (600-s-1 and 1801-s-1) and 
isometric force in the Cr group, "responders" 
and placebo group (mean ± s. d. ) pre- and 
post-supplementation. * indicates a 
significantly increase from pre to post 
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Figure 4.4 Change in isokinetic (60'-s-1 and 180'-s-1) 
and isometric force in the Cr group, 
"responders" and placebo group (mean ± s. d. ). 
* indicates a significantly greater increase in 
the "responders" and/or Cr group compared to 
the placebo group 
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Training volume 

Total lifting volume (calculated for every training session: weight lifted x 

repetitions x sets) increased significantly over the duration of the experiment in 

both groups, with no difference in the magnitude of the increase between groups 

(2149 ± 773 kg vs. 2578 ± 445 kg, P=0.27). Total lifting volume increased 

significantly over the duration of the experiment group in the "responders" 

group with a non-significant tendency (P=0.09) for there to be a significantly 

greater increase compared to the placebo group. 

1 RM for the leg press increased following 4 weeks of supplementation and 

training in both the Cr (252 ± 48 kg to 322 ± 56 kg) and placebo group (199 ± 57 

kg to 266 ± 45 kg); the magnitude of change between the two groups was similar. 

1 RM increased significantly in the "responders" group following 4 weeks of 

supplementation and traftiing (260 ± 42 kg to 327 ± 53 kg), with the magnitude of 

change not significantly different when compared to the placebo group (P=0.94). 

Urinary Analysis 

In the Cr group, Crea excretion increased from 1.5 ± 0.4 g-d-1 at baseline to 

3.3 ± 0.8 g-d-1 on the final day of loading, while in placebo group, Crea excretion 

over the 4 weeks was not different from baseline (1.5 ± 0.4 g-d-lon baseline to 1.6 
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± 0.3 g-d-1 on final day of loading). Daily Cr excretion was therefore corrected for 

this increase in Crea excretion in the Cr group, and Cr excretion increased 

compared to baseline at A time points; no urinary Cr was detected in the 

placebo group. The amount of Cr retained each day (i. e. only for days with 

urinary data) was calculated by subtracting the total Cr excreted (corrected for 

Crea excretion) from the total amount supplemented per day. The amount of Cr 

retained was 65 ± 11% (13.0 ± 2.1 g) of the supplemented dose (i. e. 20 g) on the 

first day of loading and decreased to 23 ± 27% (4.6 ± 5.4 g) on the final day of 

loading. Cr retention was 46 ± 41% (2.3 ± 2.0 g), 17 ± 34% (0-9 ± 1.7 g) and 58 ± 

32% (2.9 ± 1.6 g) of the supplemented dose (i. e. 5 g) on days 14,21 and 28, 

respectively. Estimated Cr uptake was calculated based on an estimated muscle 

mass of 40% of body mass and an average muscle water content of 77% of wet 

weight (Bergstrom et al, 1971). Estimated Cr uptake in the Cr group was 28.3 ± 

8.5 mmol-ke-dry muscle weight. In the "responders" (n=7), estimated Cr uptake 

was 31.5 ± 6.3 or 28.8 (25.6-43.9) (median (range)) mmol-kg-1-dry muscle weight 

compared to 18.7 and 14.8 mmol-kg-1-dry muscle weight in the two subjects 

classed as "non-responders". Over the duration of the experiment, urine volume 

was not dffferent between groups. 
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Correlations 

A significant positive correlation was found between change in body mass 

(loading phase) and change in 180'-s-1 isokinetic force (r=0.68, n=9, P=0.04) and 

isometric force (r=0.82, n=9, P<0.01), with a tendency for there to be a positive 

correlation with 60'-s-1 isokinetic force (r=0.61, n=9, P=0.079). The change in body 

mass over the maintenance phase was also correlated with 18(r. s-1 isokinetic 

force (r=0.70, n=9, P=0.037). Estimated Cr uptake was positively correlated with 

the change in body mass (loading phase) (r=0.75, n=9, P=0.02) (Figure 4.5a), 

600-s-1 isokinetic force (r=0.90, n=9, P=0.001) (Figure 4.5b), 1800-s-1 isokinetic force 

(r=0.68, n=9, P=0.043) (Figure 4.5c) and isometric force (r=0.71, n=9, P=0.033) 

(Figure 4.5d). No significant correlations were found in the placebo group. 

Side EffectslFreatment Identification 

Subjects tolerated the supplementation protocol well, with no reports of 

gastrointestinal distress, muscle cramping or any other side effects. Subjects were 

asked at the end of the experiment whether they were aware of the treatment 

they had received and all but two subjects reported that they were unsure about 

the treatment they received (one subjects from each group identified correctly the 

treatment they were on). 
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Figure 4.5 Significant correlations between estimated Cr 
uptake and changes in body mass (A), 
isokinetic 60'-s-1 force (B), isokinetic 180'-s-1 
force (C), and isometric force (D) in the Cr 
group. * indicates a significantly increase from 
pre to post 
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DISCUSSION 

The results of this experiment demonstrate that Cr supplementation is 

effective in increasing muscle strength in non-resistance trained subjects with 

significant Cr uptake during the supplementation period in conjunction with 4 

weeks of resistance training compared to resistance training alone. Four weeks of 

Cr supplementation significantly increased isokinetic torque (1801-s-1) and 

isometric force in a group of 7 "responders" compared with the placebo group 

(Figures 4.3 and 4.4). Without direct measurement of muscle [PCr], one can only 

speculate on the potential mechanisms for this improvement in muscle strength 

following Cr supplementation. Nevertheless, a number of previous studies 

suggest increased PCr availability and PCr resynthesis during recovery from 

maximal exercise as the most plausible (Balsom et al, 1995; Greenhaff et al, 1994). 

The results of the present Experiment are in agreement with a study by 

Maganaris & Maughan (1998); these authors found increases in MVC in subjects 

engaged in a weight-training program. These authors suggested that these 

increases could be a result of a Cr-stimulated increase in protein synthesis which, 

in turn, could lead to an increase in strength through muscle hypertrophy. 

However, the significance of such a mechanism during studies of this time scale 

(i. e. 5 days) remains unclear. Cr stimulated increase in protein synthesis could be 

a possible explanation for the increases in muscle strength observed in the 

present experiment due to the longer study duration (Kreider et al, 1998). 
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Despite many Cr supplementation studies showing an ergogenic effect on 

exercise performance, there are a significant number of studies which report no 

ergogenic effect (e. g. Cooke et al, 1995; Finn et al, 2001; McKenna et al, 1999; Snow 

et al, 1998). This is not surprising, however, as none of these studies differentiate 

subjects into "responders" and "non-responders" on the basis of measured or 

estimated muscle Cr uptake, or of changes in body mass. Had the subjects in the 

present experiment and in a previous experiment (Experiment 1) not been 

differentiated into "responders" and "non-responders", no ergogenic effect would 

have been detected (i. e. Type II error). However, classification of subjects into 

"responders" and "non-responders" should not simply be made on the basis of 

strength gains (as this would ahnost certainly increase the risk of producing a 

Type I error), but with good physiological justification. For example, there would 

be no obvious rationale for gains in strength if there was not a substantial 

increase in intramuscular [Cr] and, therefore the potential to increase PCr 

resynthesis following Cr supplementation. In the present experiment, subjects 

were differentiated into "responders" and "non-responders" on the basis of 

changes in body mass and not estimated muscle Cr uptake, as Cr uptake was 

calculated from urine samples collected only on days 1,7,14,21 and 28 rather 

than from the entire 28 days. Nevertheless, estimated Cr uptake in the 

"responders" was 28.8 (25.6 - 43.9) mmol-kg-1-dry muscle weight (median (range)) 

compared to 18.7 and 14.8 mmol-kg-1-dry muscle weight in the two subjects 

classed as "non-responders" showing two distinct groups as previously reported 
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(Greenhaff et A 1994; Experiment 1). This and the finding of a significant positive 

correlation between estimated Cr uptake and the change in body mass (Fig. 4.5a) 

is also in agreement with the results from Experiment 1 (Fig. 3.4c) and is further 

evidence supporting its use. Furthermore, a significant positive correlation was 

found between estimated Cr uptake and strength gains during 600-s-1 isokinetic 

force (r=0.90, n=9, P=0.001) (Figure 4.5b), 180'-s-1 isokinetic force (r= 0.68, n=9, 

P=0.043) (Figure 4.5c) and isometric force (r=0.71, n=9, P=0.033) (Figure 4.5d), 

indicating that subjects with the greatest Cr uptake had the greatest strength 

gains as previously found by Casey et al (1996), and also found in Experiment 1 

(Figure 3.4c). 

As training status has the potential to influence Cr uptake, non resistance-trained 

subjects were used in the present Experiment. Despite this, two out of the nine 

subjects supplemented with Cr were clearly "non-responders" based on changes 

in body mass and urinary data. However, the ratio of "non-responders" to 

"responders" in the present subjects (2: 9) was sin-dlar to the ratio previously 

reported in resistance-trained subjects (4: 21) (Experiment 1). This finding would 

suggest that other factors, in addition to training status/ experience, determine 

whether subjects will respond to Cr supplementation. One possible explanation 

for the two distinct groups (i. e. "responders" and "non-responders") may be the 

varying amount of intramuscular Cr prior to supplementation. For example, this 

may reflect a low habitual dietary intake of Cr in the "responders" and/or 
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conversely, a high dietary intake of Cr in the "non-responders". While subjects 

carried out a weighed intake of food, it was not possible to estimate accurately 

the dietary Cr content, as the amount of Cr in each food item is dependent on 

many factors including food preparation. Nevertheless, it would be reasonable to 

expect subjects with a high protein intake to also have a high Cr intake. 

However, no significant correlation between protein intake and estimated Cr 

uptake was found (P = 0.51). 

A consistent finding throughout the Cr literature (e. g. Cooke et al, 1995; Finn et al, 

2001; Ingwall et al, 1974) and in the present Experiment is a significant increase in 

body mass following both short and long term Cr supplementation. It has been 

suggested that the increase in body mass following Cr supplementation was due 

to an increase in water retention (Hultman et al, 1996), which could result in cell 

swelling, followed by an increase in protein synthesis (Haussinger et al, 1993). 

Others, however, have attributed the increase in body mass following Cr 

supplementation to an increase in protein synthesis and associated increase in 

water content (Kreider et al, 1998). Some of the justification for the increase in 

protein synthesis with Cr supplementation stems from the early work by Walker 

(1979), demonstrating that the amino acids glycine and arginine could stimulate 

protein synthesis. As dietary Cr consumption increases, endogenous production 

of Cr decreases, therefore allowing these amino acids to be conserved and 

therefore to be more freely available for protein synthesis (Walker, 1979). The 
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balance of available evidence from human performance studies using Cr 

supplementation and more direct evidence from animal in vivo and in vitro 

experiments would support the notion that increasing Cr availability may indeed 

increase protein synthesis (IngwaH et al, 1974; Kreider et al, 1998; Volek et al, 

1999). Supplementation with Cr in the present Experiment increased body mass, 

with the mean increase in the responder group being greater than that of the 

placebo group after loading and maintenance (Figure 4.2a). This increase in body 

mass cannot be explained by the increase in TBW, reflecting Cr stimulated water 

retention, as there was no significant increase in TBW expressed as percentage of 

body mass. Despite a significant increase in TBW in absolute terms in the Cr 

group (Figure 4.2b), if the relative volume of TBW remains constant (as in the 

present experiment), the gain in body mass need not be attributed to water 

retention. Instead, the increase in absolute TBW seen after Cr suPplementation 

may be indicative of intracellular water that normally accompanies dry matter 

growth. Similar results have previously been found and interpreted in the same 

manner (Francaux & Poortmans, 1999). 

An additional component of the present Experiment was to evaluate the effects 

of Cr supplementation in conjunction with resistance-training on 1 RM and 

training volume performed on an isotonic leg press as compared to strength 

training alone. The physiological basis for a possible ergogenic effect of Cr 

supplementation on strength training was primarily two-fold. Firstly, Cr 
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supplementation has been shown to increase the number of repetitions 

performed per set (Earnest et al, 1995; Volek et al, 1997). Secondly, Cr 

supplementation has been shown to increase the rate of PCr rephosphorylation 

during the second minute of recovery from intense intermittent-type exercise 

(Greenhaff et al, 1994). Theoretically, both these physiological changes would 

allow an individual to train at a greater intensity compared to training without 

the use of this putative ergogenic aid. In the present experiment, however, Cr 

supplementation (Cr group and "responders" group) in conjunction with 4 weeks 

of resistance-training did not induce greater gains in 1 RM or total lifting volume 

when compared to the placebo group; subjects in the Cr, "responders" and 

placebo group increased their 1 RM on the leg press by 27 %, 27% and 34 

respectively. There was however a tendency for the "responders" to have a 

greater total lifting volume compared to the placebo group (P=0.09); statistical 

significance may not have been reached due to the relatively small sample size 

("responders"=7). This is in agreement with previous studies by Francaux and 

Poortmans (1999) and Bermon et al (1998). Francaux and Poortmans (1999) 

examined the effects of 6 weeks of resistance-training in conjunction with Cr 

supplementation on isokinetic force and found that Cr ingestion did not induce a 

greater increase in force, compared to resistance training alone; isokinetic force 

increased by about 6% after training in both the placebo and Cr groups. 

However, there was no measure or estimate of Cr uptake, and questions must be 

asked about their training stimulus (i. e. only 30% of MVC in session 1, increasing 
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progressively to approximately 43% of MVC in the final training session). 

Similarly, Bermon et al (1998) examined the effects of Cr supplementation in 

conjunction with 7 weeks of resistance training on strength and strength 

endurance in 32 elderly subjects. They also found that Cr supplementation did 

not provide any additional benefit to body composition and maximal dynamical 

strength, compared to resistance-training alone. The majority of other studies 

have, however, found Cr supplementation in conjunction with resistance 

training (of varying duration from 4 weeks to 12 weeks) to have an ergogenic 

effect on performance (Becque et al, 2000; Kelly et al, 1998; Kreider et al, 1998; 

Vandenberghe et al, 1997; Volek et al, 1999). However the majority of these 

studies using short-duration training (4 -6 weeks) have used previously 

resistance-trained individuals (Becque et al, 2000; Kelly et al, 1998; Kreider et al, 

1998). A likely explanation for the findings of the present experiment (i. e. no 

effect of Cr supplementation and 4 weeks of resistance training on 1 RM and 

training volume) is the experimental duration (4 weeks) and subject group used 

(non resistance trained individuals). 

It is well established that the initial relatively large gains in muscle strength seen 

in individuals early on during resistance-training (as in the present Experiment) 

are mainly due to neural factors (Sale, 1988) such as increases in synchronisation 

of motor unit firing patterns, increased neural drive to the muscle, and inhibition 

of the protective mechanisms of the muscle (e. g. Golgi tendon organs). These 
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neural adaptations dominate early training gains, whereas, after approximately 8 

weeks, most of the changes that occur are associated with muscle hypertrophy 

(Sale, 1988). Future studies should therefore differentiate subjects into 

"responders" and "non-responders" and use training durations of greater than 8 

weeks in order to examine if Cr supplementation has any additive effect on 

training gains especially in non resistance-trained subjects. However, the present 

Experiment shows Cr supplementation is effective in increasing muscle strength 

in this subject group during this time scale. 
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CONCLUSION 

The results of this Experiment indicate that Cr supplementation in 

combination with strength training is effective in increasing muscle strength (as 

measured by isokinetic and isometric tests) but not 1 RM or training volumes in 

subjects whose intramuscular [Cr] and body mass are significantly increased; the 

greater the Cr uptake and associated body mass changes, the greater the 

performance gains. Cr supplementation studies should therefore differentiate 

subjects into "responders" and "non-responders" on the basis of measured or 

estimated Cr uptake and/or changes in body mass when assessing the effects on 

performance. 
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CHAPTER FIVE 

(Experiment 3) 

Effects of Creatine Supplementation on Thermoregulation 
and Exercise Performance in the Heat in Endurance- 

trained Humans 



INTRODUCTION 

The process of fatigue varies considerably with the mode, intensity and 

duration of exercise, as well as with environmental conditions. Fatigue in 

conditions ranging from short-duration, high intensity exercise to more 

prolonged endurance-type exercise performed in normal ambient temperatures, 

has been extensively studied and is well characterised. However, the 

mechanisms underlying fatigue during prolonged exercise in the heat remains 

uncertain, with theories ranging from the attainment of a critical core 

temperature (Nielsen et A 1993) to evidence of serotoninergic system 

involvement in the fatigue process (e. g. Pitsiladis et al, 2002). Others have 

suggested that fatigue during exercise in the heat is unlikely to be the result of 

glycogen depletion, and have attributed fatigue to factors such as 

hypohydration and/or some failure of the thermoregulatory system (e. g. 

Pitsiladis & Maughan, 1999). 

Irrespective of the cause of fatigue, temperature regulation and performance 

during exercise in the heat are critically dependent on hydration status (Sawka 

& Pandolf, 1990). Numerous strategies have been designed to improve exercise 

performance by minimising the detrimental effects of dehydration on 

metabolism and thermoregulation during exercise in the heat. Such strategies 

include pre-cooling (01schewski & Bruck, 1988; Lee & Haymes, 1995), fluid 

ingestion (Galloway & Maughan, 2000), and plasma volume expansion (Watt et 
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al, 2000). The effectiveness of some of these strategies during exercise in the heat 

remains to be determined. 

Creatine supplementation has been widely used to improve performance 

during high-intensity, short duration exercise. Increasing intramuscular [TCr] 

by oral Cr supplementation (Harris et al, 1992) has been shown to increase 

intramuscular phosphocreatine levels and accelerates the PCr resynthesis rate 

following high-intensity, short-duration exercise (Greenhaff et A 1994). There is 

evidence from Cr supplementation studies that oral Cr loading can increase 

muscle Cr content (Harris et al, 1992), improve anaerobic exercise performance 

(Casey et al, 1996; Green et al, 1996) and promote greater gains in strength 

(Kreider et al, 1998; Maganaris & Maughan, 1998). A Cr-stimulated increase in 

body mass has been consistently reported following Cr supplementation, but 

the precise mechanism of this remains unclear. The increase in body mass 

following Cr supplementation may be due to water retention (Hultman et al, 

1996), cell swelling and a consequent increase in protein synthesis (Haussinger 

et al, 1993). Others have, however, suggested the reverse, i. e., an increase in 

protein synthesis and associated increase in water content (Kreider et al, 1998). 

Despite the uncertainty of the primary and secondary effects, Cr 

supplementation has consistently been shown to increase total body water 

(TBW), and more specifically, intracellular water (ICW) (e. g. Francaux & 

Poortmans, 1999; Experiment 2). Thus, it seems logical that Cr supplementation 

and the resulting cellular hydration may be beneficial in prolonging exercise in 

the heat. 
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Based, on the potential of Cr to increase TBW and ICW, the aim of this study 

was therefore to examine the effects of a Cr-induced hyperhydration on 

cardiovascular, metabolic, and thermoregulatory responses, and on the capacity 

to perform prolonged exercise in the heat. 
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METHODS 

Subjects 

Twenty one endurance-trained male volunteers had written informed 

consent obtained (Table 5.1). The study was approved by the local ethics 

conm-iittee. Subjects were recruited from local athletics and cycling clubs, and 

none were acclimatised to exercise in the heat. Subject eligibility was initially 

assessed by interview. No subject had a history of cardiovascular or respiratory 

disease and/or evidence of musculoskeletal injury. All subjects were Cr-free for 

at least 8 weeks prior to the study. The investigators did not reveal prior to 

interview that subjects would be excluded if they had supplemented with Cr in 

the 8 weeks preceding the study. One subject from the placebo group had 

previously supplemented with Cr. No Cr was detected in the baseline urine 

samples of any subject. 

Experimental Design 

Subjects initially underwent a continuous incremental test to volitional 

exhaustion in order to determine the lactate threshold (LT), ýIo 
2max and WR 

max. LT was estimated non-invasively as the 
ý70 

2 at which: (a) the break-point in 

the relationship between C02 output (ýIco, ) and Vo, ("V-slope" technique, 

Beaver et al, 1986) occurred and (b) the ventilatory equivalent for 02 ('ýE / ý702) 
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Table 5.1: Physical characteristics of the two groups of subjects 

Placebo Group Creatine Group 
(n=10) (n=11) 

Pre Post 13- 
K-fr Post 

Age (yr) 27 ±4 27±5 

Height (m) 1.81±0.04 1.78 ± 0.07 

Body mass (kg) 71.0±6.0 71.2±6.0 72.7± 6.6 73.4 ± 6.6* 
Total body water P 40.4 ± 3.3 40.5 ± 3.2 41.0 ± 3.1 41.6 ± 3.2* 

Intracellular water (L) 21.9±1.8 21.9±1.8 22.2 ±1.8 22.7 ±1.9* 

Extracellular water (L) 18.5 ±1-5 18.5 ±1.4 18.8 ±1.4 18.9 ±1.5 
ýFo2max (L/min) 4.3 ± 0.4 - 4.5 ± 0.4 - 
ýro, max (ml -kg min-') 60.5 ±4.7 - 61.4 ±4.6 - 
Work rabemx (W) 350 ±34 373 ±31 

Values are presented as the mean ± s. d. 

* Indicates a significant difference from pre-supplementation values 
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started to increase systematically without a concomitant increase in the 

ventilatory equivalent for C02 (ýE / ý7CO 
2) (Whipp et al, 1986). 

An electrically-braked cycle ergometer (Bosch Erg-551 Forckenbecksti, Berlin, 

Germany), was set at an incrementation rate of 20 W min-' (starting at 20 W). 

Expired gases were collected for one minute during each incremental stage 

using Douglas bags and analysed within 5 min of collection for mixed expired 

[02] (Servomex 570A, East Sussex, UK), mixed expired [C021 (Servomex 1400 

B4, East Sussex, UK), gas volume (dry gas meter, Harvard Apparatus Ltd., 

Hertfordshire, UK), and expired gas temperature (C6600 10-channel 

microprocessor, Comark, Hertfordshire, UK). The gas analysis system was 

calibrated before each test, with theC02 and 02analyzers calibrated using a 

two-point measure: a calibration gas (CO27.5%, 0216%, N2balance, certified 

standard gas) and a reference gas (room air). Barometric pressure was 

measured using a standard mercury barometer. 

Following the maximal incremental exercise test, subjects visited the laboratory 

on at least two occasions in order to become familiar with the exercise protocol 

and experimental procedures, in addition to establishing a suitable work rate 

that would elicit fatigue in 40 - 60 minutes. This was achieved by setting the 

work rate at 20% A (i. e. 20% of the difference between the ý10, at the LT and 

ýFo 

2max which is subsequently added back on to the 
ý102 

at the LT) during the 

initial familiarisation session and, where necessary, adjusting the work rate for 
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subsequent trials to achieve the desired duration. This intensity of exercise was 

chosen to avoid fatigue occurring as a result of muscle glycogen depletion. 

Following the fan-ffliarisation period, all subjects performed two constant-load 

exercise tests to volitional exhaustion pre- and post-supplementation. The first 

test was conducted not less than 48 hrs after the subject's final fan-dliarisation 

trial. The supplementation period for both groups started on the day after the 

first test and finished the day before the second test. 

Cr supplementation consisted of 22.8 g-d-1 Cr-H20 (equivalent to 5g Cr x4 

daily) and 35 g of glucose polymer made up in 500 mls of warm to hot water for 

7 days taken at equal intervals throughout the day. This protocol has been 

shown to increase resting muscle PCr levels within 5 days (Harris et al, 1992). 

The addition of dextrose to Cr significantly enhances the uptake of Cr (Green et 

al, 1996). The placebo group consumed 160 g-d-1 of glucose polymer (40 gx4 

daily) for 7 days, prepared and administered in an identical fashion to the Cr 

supplement. Both supplements had similar taste, texture and appearance and 

were placed in generic packets to ensure double-blind administration. 

Subjects otherwise followed their normal diet and weighed all food and drink 

consumed during the supplementation period using digital weighing scales 

readable to 1 g. The diet was analysed for energy intake and macronutrient 

content (Holland et A 1991). Subjects elin-dnated caffeine and caffeine- 

containing foods from their diet to minin-dse the possible inhibitory effects of 

caffeine on the ergogenic effect of Cr (Vandenberghe et al, 1996). Subjects 
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maintained their normal training habits for the duration of the study. At the 

end of the study all subjects gave verbal assurance that they had complied with 

these instructions. Subjects completed 8 separate 24 hr urine collections. The 

collection began on the day preceding supplementation (baseline), then 

continued through the 7 days of supplementation. The urine volume for each 24 

hr period was measured and mixed thoroughly, with a representative 20 mL 

sample being stored at -20 IC for subsequent analysis (ABX Mira Plus 

Spectrophotometer, ABX Diagnostics, UK) of [Cr] and [creatininel ([Creal) 

using a spectrophotometric enzymatic Crea Kit (MPR1 - Kit no. 839434, Roche 

Diagnostics Ltd., East Sussex, UK). Estimated Cr uptake was calculated by 

subtracting the total Cr excreted, corrected for Crea excretion, from the total 

amount supplemented per day. Estimated intramuscular [Cr] (mmol-kg-1-dry 

weight muscle) was calculated based on an estimated muscle mass amounting 

to 40% of body mass and average muscle water approximating 77% of wet 

weight (Bergstrom et al, 1971). 

Procedures 

All exercise tests were carried out between 16: 00 and 20: 00 hr. Subjects 

reported to the laboratory on the day of testing after a standardised meal and 

having refrained from alcohol, caffeine and strenuous exercise the day before. 

Height and nude body mass were measured, and TBW, ICW and ECW 

estimated using a standard bioimpedance technique (Bodystat-5000 

Bioirnpedance analyser, Bodystat Ltd., Isle of Man) (Van Loan et al, 1990). A 
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flexible rectal thermistor was inserted 10 cm past the anal sphincter to measure 

rectal temperature (Trec), an index of core temperature. A heart rate (HR) 

monitor (Polar Sports Tester, Polar Electro Oy, Kempele, Finland) was 

positioned, and thermistors (C6600 10-channel n-dcroprocessor, Comark, 

Hertfordshire, UK) attached to the chest, upper arm, thigh and calf for the 

determination of weighted mean skin temperature (Týkj,, ) (Ramanthan, 1964). A 

5 ml arterialised-venous (Forster et al, 1972) resting blood sample (heating lamp) 

was obtained from a superficial vein on the dorsal surface of the hand. The 

subject was transferred to the climatic chamber (ambient temperature of 30.3 ± 

0.5 IC with a relative humidity of 70 ± 2% and air velocity of approximately 3.6 

m-s-1) and remained seated on the cycle ergometer for a further 5 min while 

resting HR, Lec, T,, kin and gas collections were obtained. Subjects were then 

instructed to begin 5 min of unloaded cycling before further measurements and 

another blood sample were obtained. After 5 min of unloaded cycling, the work 

rate was increased in a "single step" to the predetermined power output and 

subjects maintained a pedal cadence of 60 - 90 rpm throughout the test. Subjects 

exercised at 16 ± 11% A or 63 ± 5% ý7o 
2max. Exhaustion was defined as the 

point at which the subject could no longer maintain the pedal cadence above 60 

rpm. Blood samples and measurements of HR, Trec and Týkjn were obtained at 5 

min intervals throughout exercise and at exhaustion. One minute expired gas 

collections were made every 5 min and analysed within 5 min for the 

determination of VO 
, 

ýTo 
, and respiratory exchange ratio (RER). Subjective 

ratings of perceived leg tiredness and breathlessness were recorded every 5 min 
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until exhaustion using the Borg category scale (Borg, 1982). After exercise, nude 

body mass was measured. The difference in body mass before and after exercise 

was calculated and subsequently used to estimate sweat rate and sweat loss 

after correcting for respiratory water loss and substrate oxidation (Mitchell et al, 

1972). Time to exhaustion was recorded but withheld from the subject until all 

exercise tests had been completed. 

Blood Treatment and Analysi's 

Blood was drawn into dry syringes and 5 ml, dispensed into a tube 

containing K3EDTA. Duplicate aliquots (400 pL) of whole blood from the 

K3EDTA tube were rapidly deproteinised in 800 gL of ice cold 0.3 mol-L-1 

perchloric acid, centrifuged and the supernatant was used for the measurement 

of glucose and lactate (Maughan, 1982). Blood from the K3EDTA tube was 

analysed for haemoglobin (Hb) (cyarunethaemoglobin method, Sigma Chemical 

Company Ltd., Dorset, UK) and packed cell volume (PCV) (conventional 

microhernatocrit (Hct) method). All blood analyses were carried out in 

duplicate with the exception of PCV, which was analysed in triplicate. Plasma 

volume changes were calculated from changes in Hb and PCV relative to initial 

baseline values (Dill & CostiII, 1974). 
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Calculations 

Weighted mean skin temperature [Tskjn=0.3(Tchest+T. ) +0.2(Tthigh+Tcalf)] 

(Ramanathan, 1964) and mean body temperature (Tb) [0.87Trec+0.13Tskin] 

(01schewski & Bruck, 1988) were calculated for each time point. Metabolic rate 

was calculated for each time point using the following equation: metabolic rate 

=[4.686+(RQ-0.707/0.293)0.3611 ý102 (Ravussin et al, 1985). Mechanical efficiency 

(ME=(WR/69.67)/[ý702 ((1.1891RQ)+3.851)1100), and net mechanical efficiency 

(NME=(WR/69.67)/[( ý10 
2-(BMO. 004))((1.1891RQ)+3.851)]100) were also 

calculated. 

Data Analysis 

Data were expressed as the mean ± s. d. or median (range), following a 

test for the normality of distribution. Subjects in the Cr group were classified as 

"responders" and "non-responders" based on estimated Cr uptake (Greenhaff et 

al, 1994; Casey et al, 1996; Experiment 1; Experiment 2), and both Cr group as a 

whole and "responders" were compared to the placebo group. Statistical 

analysis was carried out using two factor ANOVA for repeated measures, 

followed by students paired Mest (within treatment effect, i. e. pre- vs. post- 

supplementation) and two-sample t-test (between treatment effect, i. e. 

magnitude of change (A) in the Cr group or "responders" vs. A in the placebo 

group) if a main treatment or interaction effect was observed. An ANCOVA 
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was used where necessary to normalise for differences in pre-supplementation 

results using the baseline value as the covariate. Pearson's correlation analysis 

was used to assess the relationship between selected variables. Statistical 

significance was declared at P: 50.05. 
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RESULTS 

Estimated Cr Uptake 

In the Cr group, Crea. excretion increased from 1.4 ± 0.4 g-d-1 pre- 

supplementation to 2.4 ± 1.0 g-d-1 on the final day of supplementation. There 

was no increase in Crea excretion in the placebo group (1-5 ± 0.4 g-d-1 to 1.4 ± 0.4 

g-d-1). Cr excretion increased from 8.7 ± 3.7 g-d-1 pre-supplementation to 17.4 ± 

1.9 g-d-1; no Cr was detected in the urine of the placebo group. Estimated Cr 

uptake was maximal on the first day of Cr supplementation (12 (6 - 15) g, 61 (32 

- 77) % being retained) and was lowest on the final day (3 (-2 - 4) g, 16 (-8 - 21) % 

being retained). The total amount of Cr retained over the supplementation 

period was 39 ± 14 g, with an estimated increase in intramuscular [CrI of 51 (21 

- 61) mmol-kg-1-dry weight muscle. Based on these estimates, 3 subjects were 

classified as "non-responders" (21 (21 - 25) mmol-kg-l-dry weight muscle) and 

the remaining 8 subjects were classified as "responders" (53 ±5 mmol. kg-l-dry 

weight muscle). 

Time to Exhaustion 

Time to exhaustion (TTE) was not significantly different between the 

groups prior to supplementation (P=0.27). Pre- compared to post- 

supplementation, TTE were not significantly different in either the placebo (50.4 

± 8.4 min to 51.2 ± 8.0 min, P=0.119,95 % C. I. 1.8 to -0.3) nor Cr (47.0 ± 4.7 min 
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to 49.7 ± 7.5 min, P=0.095,95% C. I. 6.0 to -0.6) group; A exercise performance 

was also not different between groups (P=0.24). TTE was significantly increased 

following supplementation in the "responders" (47.3 ± 4.9 min to 51.7 ± 7.4 n-dn, 

P=0.031,95% C. I. 8.3 to 0.5), with a tendency (P=0.066) for A exercise 

performance to be greater in the "responders" (Figure 5.1). 

Diet, Body Mass and Body Water Compartments 

The physical characteristics of the two groups of subjects were similar 

before supplementation (Table 5.1). In the Cr group, body mass increased 

significantly following supplementation, with no change in the placebo group 

(A body mass was greater in the Cr group, Figure 5.2). There was no difference 

pre-supplementation in TBW, ICW and ECW between groups (Table 5.1). In the 

Cr group, TBW and ICW increased significantly following supplementation. 

TBW and ICW were unaltered by supplementation in the placebo group (A 

TBW and ICW were greater in the Cr group, Figure 5.2). There was no 

significant increase in ECW in either group following supplementation (Figure 

5.2). Following supplementation in the "responders", there was a significant 

increase in body mass (72.7 ± 7.8 kg to 73.5 ± 7.8 kg) (A body mass was greater 

in the "responders" compared to the placebo group). In the "responders", TBW 

and ICW increased significantly from 40.9 ± 3.5 L to 41.7 ± 3.7 L and 22.1 ± 2.0 L 

to 22.7 ± 2.1 L, respectively following supplementation (A TBW and ICW were 

greater in the "responders"). There were no significant differences in the daily 
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Figure 5.1 Time to exhaustion (mean ± s. d. ) in the Cr, 
"responders" and placebo supplemented 
groups. * indicates a significant difference 
between pre- and post-supplementation 
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Figure 5.2 Changes in body weight (BW), total body 
water (TBW), intracellular water (ICW) and 
extracellular water (ECW) (mean ± s. d. ). t 
indicates a significant greater change in the Cr 
group compared to the placebo group 
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diet between the two groups (Cr: 14.0 ± 1.6 Mj-d-1,66 ± 5% carbohydrate, 21 ± 

6% fat, 13 ± 2% protein; Placebo: 12.7 ± 2.3 Mj-d-1,63 ± 3% carbohydrate, 23 ± 3% 

fat, 14 ± 2% protein). 

Work Efficiency during Exercise. 

Mechanical and net mechanical efficiency increased in all groups during 

exercise and no difference was found between groups or following 

supplementation. Mechanical efficiency increased from approximately 9% at 

unloaded exercise to 20% at the end of exercise, and net mechanical efficiency 

increased from approximately 13% at unloaded exercise to approximately 22% 

at the end of exercise on all trials. 

Heart Rate and Rating of Perceived Exertion during Exercise. 

There was no difference in resting heart rate between the two groups of 

subjects before or after supplementation (Figure 5.3). During exercise, there was 

a uniform increase in HR in both placebo trials (Figure 5.3). In the Cr group, HR 

during exercise following supplementation was significantly lower from 35 min 

of exercise until exhaustion compared to pre-supplementation (Figure 5.3) (A 

HR was greater in the Cr group at 40 n-dn of exercise and at exhaustion). There 

was no significant difference in exercising heart rate between "responders" and 

the placebo group. A progressive increase in RPE both for breathlessness and 

perceived leg fatigue was found during exercise 
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Figure 5.3 Heart rate (top panel), RPE (breathing) (middle 
panel) and RPE (legs) (bottom panel) in the Cr 
(left side) and placebo (right side) 
supplemented groups during exercise. 
indicates a significant difference between pre 
to Post supplementation. t indicates a 
significant greater change in the Cr group 
compared to the placebo group. 
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reaching near maximum ratings at exhaustion (Figure 5.3). Both in the Cr group 

as a whole and in the "responders", significantly lower ratings of perceived leg 

fatigue were found after 25 min of exercise (P=0.01 and P=0.008, respectively), 

with tendencies at the 10 min (Cr group, P=0.068) and 15 min (Cr group, 

P=0.076; "responders", P=0.097); no such effect was found in the placebo group. 

There was also a tendency for less breathlessness in the Cr group (P-0.067). Five 

out of the eleven subjects in the Cr group reported that they found the post- 

supplementation trial easier, while two out of the ten subjects in the placebo 

group rated the post-supplementation trial to be easier. All other subjects rated 

both trials similarly (including the 3 "non-responders" to Cr supplementation). 

Metabolic Rate and Body Temperature Response 

Metabolic rate did not differ in the placebo group pre. and post. 

supplementation (Table 5.2). In the Cr group a significantly lower metabolic 

rate was found post-supplementation at 20 min, 25 min, 30 min and 40 min 

(Table 5.2) (A metabolic rate tended (P=0.096) to be greater in the Cr group), In 

the "responders", metabolic rate was significantly lower post-supplementation 

from 20 min to 40 min inclusive (A metabolic rate tended (P=0.094) to be greater 

in the "responders"). Rectal (T,,! c), mean skin (Tskin) and mean body (Tb) 

temperature responses are shown in Figure 5.4. In the placebo group, all three 

body temperature measurements increased during exercise with no significant 

differences between trials. In contrast, in the Cr group, T,.,, was lower at 35 min, 
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Figure 5.4 Rectal temperature (top panel), mean skin 
temperature (middle panel) and mean body 
temperature (bottom panel) in the Cr (left side) 
and placebo (right side) supplemented groups. 
* indicates a significant difference between pre 
to post supplementation. t indicates a 
significant greater change in the Cr group 
compared to the placebo group 



40.0 40.0 

39h 39.0 

39.0 39.0 

7,0 

36- 16.0 

R UL W 15 20 30 35 40 EX R UL 10 B 211 25 . 10 33 40 

Tim (min) Time (min) 

40.9 - 
40.0 

u 

: 16.0 36.0 

. 
14.0 14.0 

A 

32-0 12.0 

wo 

R UL 10 15 20 25 30 35 40 Ex R Ul. In 13 20 1.5 In ii 4o Ex 

Timc (inin) 

* Pro-supplonentation 
* Post-stA*ernentation 

40.0 40.0 - 

39.0 - 

is. o 38.0 

17,0 37.0 

R Ul 10 15 110 25 30 35 40 EY. R LJL 10 13 20 25 14) 
. 
13 40 Fix 

Tirne (min) Tinte (min) 

134 



40 min and at exhaustion following supplementation compared to pre- 

supplementation (AT,, was greater in the Cr group from 35 min of exercise 

until exhaustion). Similarly, in the "responders", Trec was lower at 40 min of 

exercise and at exhaustion following supplementation compared to pre- 

supplementation (AT,,,. c was greater in the "responders" at 40 min of exercise and 

at exhaustion). 

In the Cr group, a significantly lower Tb was found following supplementation 

at 35 min of exercise and at exhaustion, with tendencies for lower Tb at 30 min 

(P=0.065) and 40 min (P=0.056) (ATb was greater in the Cr group at 20 min, 25 

min, 30 min, 35 n-dn and at exhaustion). In the "responders", a significantly 

lower Tb was found following supplementation at exhaustion (P=0.014) (ATb 

tended (P=0.083) to be greater in the "responders"). There was a significant 

increase in mean Tskin with no significant differences between groups or 

following supplementation. 

Sweat Rates and Total Sweat Loss during Exercise 

There was a significant reduction in sweat rate following Cr 

supplementation (32.3 ± 7.0 n-d min-1 vs. 28.2 ± 3.9 ml min-'; P=0.02) (Figure 5.6), 

no such reduction was observed in the placebo group (27.1 ± 9.8 ml min-' vs. 

26.2 ± 8.4 ml min7l; P=0.42) (A sweat rate tended (P=0.09) to be greater in the Cr 

group). Total sweat loss was not significantly different between trials in either 

the Cr (1.5 ± 0.4 L vs. 1.4 ± 0.2 L; P=0.17) or placebo (1.4 ± 0.5 L vs. 1.3 ± 
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Figure 5.5 Changes in plasma volume during pre and 
post supplementation in the Cr (top panel 
left) and placebo (top panel right) group. 
Changes in plasma volume (re-calculated for 
all groups using their respective [Hb] and [Hctl 
measured during the pre-supplementation 
tests as baseline) during pre and post 
supplementation in the Cr (bottom panel left) 
and placebo (bottom panel right) group. 
* Indicates a significant difference post- 
supplementation compared to baseline 
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0.5 L; P=0.81) groups. Both sweat rate and sweat loss were similar pre- 

compared to post-supplementation in the "responders". 

Blood Metabolite Concentrations at rest and during Exercise 

Resting blood metabolite concentrations were not different between 

groups or following supplementation (Table 5.3). During exercise (all time 

points), blood [glucose] and [lactate] increased compared to rest and there were 

no differences between groups or following supplementation (Table 5.3). Blood 

[glucose] and [lactate] also increased in both trials in the "responders" with no 

difference between the trials. 

Plasma Volumes Changes 

Plasma volume fell by 11 - 14% within the first 10 min of exercise and 

thereafter remained largely unchanged; there were no differences between 

conditions or following supplementation (Figure 5.5). However, there was a 

near-statistically significant increase in [Hb] post Cr-supplementation compared 

to pre-supplementation (P=0.055) (A [Hb] was not different). No such effect was 

observed in the "responders" or placebo groups. Plasma volume changes during 

exercise following supplementation were also calculated for all groups using 

their respective [Hb] and [Hct] measured during the pre-supplementation tests 

as baseline, assuming no change in red cell mass during the 7 day 

supplementation regimen (Fortney et al, 1981). Using this method of analysis, 
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plasma volume decreased to a greater extent at almost all measured time points 

post-supplementation compared to pre-supplementation in the Cr group, with 

no such finding in the placebo group (Figure 5.5). 

Correlation analysis 

In the Cr group, estimated Cr uptake was positively correlated with A 

body mass (r=0.68, n=ll; P=0.021) and A TTE (r=0.75, n=ll; P=0.008). A 

significant positive correlation was found between A body mass and A TTE 

(r=0.73, n=ll; P=0.011). 

Side effects 

In general, subjects tolerated the supplementation protocol well, with no 

reports of gastrointestinal distress or muscle cramping. Two subjects from each 

group correctly identified the treatment they were receiving, while all other 

subjects were unsure of the treatment they received. 
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Figure 5.6 Sweat rate responses pre and post 
supplementation in the Cr and placebo group. 
* Indicates a significant difference post- 
supplementation compared to baseline 
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DISCUSSION 

This study has demonstrated that a standard Cr supplementation 

regimen (Harris et al, 1992) increased TBW and ICW, reduced cardiovascular 

and some thermoregulatory (Tre, ) responses during exercise, and increased 

exercise performance in a group of "responders" to Cr supplementation (pre to 

post). Cr supplementation resulted in a significant increase in TIE, but only in 

subjects whose intramuscular Cr uptake was significantly increased following 

the supplementation. A highly significant positive correlation was found 

between estimated Cr uptake and A TTE (r=0.75, n=ll; P=0.008), indicating that 

subjects with the largest Cr uptake had the greatest performance gains. This 

finding is in agreement with other previously published studies (e. g. Casey et 

1996; Experiment 1). 

It is well established that there are "responders" and "non-responders" to Cr 

supplementation, with a proposed ergogenic threshold for intramuscular Cr 

uptake of 20 mmol kg7l dry muscle weight following Cr supplementation 

(Casey et al, 1996; Greenhaff et al, 1994). In Experiment 1, subdividing the Cr 

group into "responders" and "non-responders" on the basis of a physiological 

measurement (e. g., estimated muscle Cr uptake) confirmed the ergogenic 

potential of Cr supplementation. Failure to discriminate between those who 

respond and those who do not would therefore diminish any effect due to Cr 

supplementation. This may account for the confounding reports in the literature 

on the ergogenic potential of Cr supplementation. In the present study, 8 
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subjects were classed as "responders" based on estimated muscle Cr uptake. The 

average muscle Cr uptake for the "responders" was 53 ±5 mmol kg-1 dry muscle 

weight compared to Cr uptake ranging from 21-25 mmol kg-1 dry muscle 

weight in the "non-responders". While these findings provide evidence 

consistent with an ergogenic threshold, assigning a specific threshold value is 

not possible as Cr uptake was only estimated and not directly measured in the 

present study. Nevertheless, estimated Cr uptake in the present study was very 

similar to other studies (Greenhaff et al, 1994). 

Cr supplementation in the present study was successful in attenuating 

cardiovascular and some thermoregulatory responses during exercise (i. e. 

decreased HR, Trec, Tb, sweat rate). Metabolic rate during exercise was also 

reduced post-supplementation in the Cr group despite no differences in ýIo, 

mechanical efficiency, and RER. This difference in metabolic rate may reflect the 

non-significant reduction in RER during exercise after Cr supplementation, 

possibly as a result of the significantly lower ýIC02 
post-Cr supplementation. 

Differences in substrate utilisation are unlikely to be the cause as there was no 

difference in blood metabolites. Although some of the differences in 

cardiovascular and thermoregulatory responses between the Cr and placebo 

groups were not detected in the "responders" (i. e., HR and sweat rate), possibly 

due to the smaller subject number, the increase in exercise performance found 

in the "responders" is most likely to be due to the Cr-induced attenuated 

physiological responses. Subjects who had supplemented with Cr reported, on 
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average, significantly lower ratings of perceived leg fatigue after 25 min of 

exercise, suggesting they were able to discern the benefit of this putative 

hyperhydration strategy. Five out of the eight "responders" reported that they 

found the post-supplementation trial to be easier; these same five subjects also 

showed the greatest estimated Cr uptake and performance gains. 

From the measurements obtained and/or derived in the present study, one can 

only speculate on the potential mechanisms for the improvement in exercise 

performance in the heat following Cr supplementation. Many hyperhydration 

methods (e. g. plasma volume expansion, glycerol hyperhydration, fluid 

consumption) have been tested during conditions of heat stress in an attempt to 

enhance cardiovascular/ thermoregulatory responses, and consequently, 

improve exercise performance. Despite considerable potential and some 

positive results (e. g., Galloway & Maughan, 2000; Anderson et al, 2001), these 

strategies have frequently failed to improve exercise performance (Latzka et A 

1997; Latzka et al, 1998; Watt et al, 2000). For example, Watt et al, (2000) 

demonstrated that a 13% acute plasma volume expansion, a level similar to that 

observed after heat acclimatisation, had no effect on core temperature, skin 

blood flow, heart rate or exercise performance. These authors concluded that 

plasma volume expansion might not be critical for changes in thermoregulation 

and exercise performance in the heat. 

We have demonstrated that Cr supplementation is an effective hyperhydration 

strategy. Cr supplementation has previously been shown to increase body mass 
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(Balsom. et al, 1993; Greenhaff et al, 1994; Green et al, 1996; Experiment 1; 

Experiment 2), although whether this is due to an increase in water content 

associated with an increase in protein synthesis (Ingwall et al, 1974), or a result 

of water retention causing an increase in protein synthesis through cell swelling 

(Haussinger et A 1993) is unclear. Recently, Saab et al, (2002), using magnetic 

resonance imaging, attempted to resolve this by examining the impact of Cr 

supplementation on water compartments within skeletal muscle using the 

transverse relaxation distribution of skeletal muscle to model water 

compartments within the cell and/or tissue. An increase in ICW was found to 

be the primary cause of the initial changes in body mass during Cr 

supplementation, but these authors were unable to identify the exact 

mechanism behind this increase. In the present study, supplementation with Cr 

was successful in increasing TBW by an estimated 800 ml on average, of which 

600 rrd could be accounted for by the increase in ICW. The increase in plasma 

volume was approximately 60 n-d assuming 7.5% of this is plasma (Latzka & 

Sawka, 2000). This increase in plasma volume is unlikely to be of physiological 

significance. The overall level of dehydration attained by the end of exercise 

was not affected as indicated by a similar sweat loss and reduction in plasma 

volume between trials. This may be due to the attenuated physiological 

responses, or reflect the longer exercise time in the "responders" post-Cr 

supplementation. 

Two other studies have assessed the effect of Cr supplementation on 

performance during exercise in the heat (Volek et al, 2001; Kern et al, 2001). 
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Volek et al (2001) examined the effects of Cr supplementation on acute 

cardiovascular, renal, temperature and fluid-regulatory hormonal responses 

during 35 min of exercise followed immediately by three 10 s maximal sprints 

on a cycle ergometer in the heat. Significant increases in body mass and peak 

power during all three 10 s sprints were found following Cr supplementation, 

compared to no change in the placebo group. No differences, however, were 

found in HR, blood pressure, and sweat rate following Cr supplementation. 

More recently, Kern et al (2001) exan-dned the effects of 28 days of Cr 

supplementation on HR and Trec during 60 min of cycling exercise at 60% V02 

max in the heat. Significantly greater gains in body mass and TBW were found 

compared to the placebo group, with a consequent attenuation of T, ec post- 

supplementation. The increases in body mass and TBW, and the attenuation in 

T, e, observed were of a similar magnitude as observed in the present study. 

However, subjects in the study by Kern et al (2001) exercised for a fixed period 

of time (i. e. 60 min) and the effects of Cr supplementation on exercise 

performance could, therefore, not be evaluated. 

Previous studies investigating the effects of Cr supplementation on muscle 

bioenergetics during submaximal exercise have produced conflicting results, 

with two reports of no effect of Cr loading on whole-body ý10, during exercise 

of varying intensity (Balsom et al, 1993; Stroud et al, 1994), but also reduced ý70 

and blood lactate accumulation during steady-state exercise at 50% A Gones et 

al, 2002). Jones et al (2002) attributed the lower V02 and blood lactate 
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accumulation following Cr supplementation to a change in the pattern of fibre- 

type recruitment and/or a reduction in the number of muscle fibres recruited. 

Within the present investigation, however, the absence of any differences in 

metabolic variables such as blood [lactate], RER and, importantly, V02 Iwould 

suggest that altered muscle bioenergetics is unlikely to be the primary 

determinant of the enhanced exercise performance in the heat following Cr 

loading. 

A significant finding of the present study was the lower T,,,, c at exhaustion post- 

supplementation in the Cr group, and in the "responders" despite the longer 

exercise time to exhaustion. In contrast, subjects in the placebo group fatigued 

at a similar Lec on the two trials which is in agreement with the results of many 

previous studies which have proposed the attairunent of a critical high 

temperature, typically 39.6 'C, as the main factor limiting exercise performance 

in the heat (e. g. Nielsen et al, 1990; Nielsen et al, 1993). Other studies have 

shown fatigue to occur over a range of core temperatures (Le. 38 - 401C), 

implying that fatigue in the heat is multifactorial in aetiology (Latzka et al, 

1998). A clear attenuation in the rise in Trec was observed in the present study. 

Although the exact cause of this cannot be explained, specific heat of the 

individual may provide some insight. For example, 0.83 Kcal of heat production 

per kg of body mass is required to increase Trec by 11C, therefore an expansion 

of TBW resulting in an increase in body mass could lead to an increased 

distribution of heat within the body. Thus the overall temperature increase 

would be attenuated by water expansion. 
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The finding of a lower Trec at exhaustion post-Cr supplementation in the present 

study, combined with the failure to characterise the fatigue process in terms of 

peripheral factors (e. g. similar blood metabolite levels), may suggest that a 

major central fatigue component may be involved. 

Recently, the role of central neural mechanisms in the fatigue process during 

exercise in the heat has been studied (Nielsen et al, 2001; Pitsiladis et al, 2002). 

Nielsen et al (2001) suggested that fatigue may occur at a critical brain 

temperature. Nielsen et al (2001) observed changes in EEG activity in the frontal 

area of the brain, possibly indicating hyperthern-tia-associated fatigue. Whether 

hyperthermia induces fatigue directly via an increase in brain temperature or 

indirectly, via afferent signals originating from skeletal muscle, cardiac muscle 

or internal organs in response to a rise in local temperature is unclear. Further 

support for a central fatigue component is the observation that peripheral 

markers of central 5-HT activity, such as prolactin and cortisol, are elevated 

during exercise in the heat (Frewin et al, 1976; Pitsiladis et al, 2002). Pitsiladis et 

al (2002), showed that serum [prolactin] was significantly higher at exhaustion 

during exercise in the heat compared to exercise in the cold, and correlated with 

only during exercise in the heat. These findings provide evidence, although 

indirect, that the serotoninergic system and/or another closely related 

neurotransn-dtter systems (e. g. the doparninergic system) may be involved in 

fatigue during exercise in the heat. At present, it is unknown what effect Cr 

supplementation has on the CNS, and in particular, on thermoregulatory 

control. Cr supplementation has been shown to gradually increase brain [Cr], 
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indicating that the blood-brain barrier is partly permeable to Cr (Schulze et al, 

1997). It remains to be determined what effect, if any, increased CNS [Cr] has on 

the central fatigue process. 
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CONCLUSIONS 

In the present study, 22.8 g-d-1 Cr-H20 for 7 days was effective in 

increasing predominantly ICW and reducing cardiovascular and 

thermoregulatory responses during prolonged exercise in the heat. The 

attenuation of these responses resulted in a significant increase in time to 

exhaustion, but this effect was only seen in subjects whose intramuscular Cr 

levels were significantly increased following Cr supplementation (i. e. 

"responders" to Cr supplementation). 
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CHAPTER SIX 

(Experiment 4) 

Effects of Short and Long Term Creatine Supplementation 
on Body Composition and Muscle Strength in Patients 

with Moderate to Severe COPD 



INTRODUCTION 

Chronic obstructive puhnonary disease (COPD) is a disabling condition, 

which is predicted to become the 4th most common cause of death world-wide by 

2020 (Lopez & Murrey, 1998). Skeletal muscle dysfunction, which adversely 

affects skeletal muscle strength (Hamilton et A 1995; Gosselink et al, 1996) and 

mass (Arora& Rochester, 1982), is frequently observed in patients with COPD. 

These changes are recognised as important factors in COPD, as they directly 

contribute to the handicap and disability seen within this group. Other 

alterations in skeletal muscle metabolism have also been observed within this 

patient population, such as significantly longer half-time recovery of 

phosphocreatine following intense exercise as compared to a control group 

(Payen et al, 1993; Sala et al, 1999), and also studies showing lower resting levels 

of PCr (Gertz et A 1977; Jakobsson et al, 1990), with these abnormalities possibly 

contributing to the overall exercise intolerance observed in patients with COPD. 

Cachexia, another consequence of this disease, has also been shown to be an 

independent predictor of mortality in this patient population (Schols et al, 1998). 

In recent years, researchers have attempted to reverse abnormalities in muscle 

mass, muscle strength and muscle metabolism using numerous strategies 

ranging from appetite stimulators (Weisberg et al, 2002), anabolic steroids 

(Ferreira et al, 1998), to more recently recombinant human growth hormone 
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(rhGH) (Burdet et al, 1997). However, despite the majority of these strategies 

leading to an increase in muscle mass, there have been no observed increases in 

muscle strength (Burdet et al, 1997; Ferreira et al, 1998; Weisberg et al, 2002). For 

example, Burdet et al (1997) examined the effects of 0.15 IU-kg-1 rhGH per day for 

3 weeks on lean body mass, muscle strength and exercise tolerance in 

underweight patients with COPD. In this study, despite a significant increase in 

lean body mass (2-3 ± 1.6 kg), daily administration of rhGH did not increase 

maximal respiratory pressures, handgrip strength, maximal exercise capacity or 

subjective well being. 

Creatine (Cr) supplementation has been shown in the majority of studies carried 

out in healthy subjects to have the ability to alter skeletal muscle metabolism 

(Greenhaff et al, 1994; Balsorn et al, 1995), and to increase body mass (Greenhaff et 

al, 1994; Balsom et al, 1995; Experiment 1-3), fat-free mass (Kreider et al, 1998; 

Becque et al, 2002; Experiment 1), muscle strength (Kreider et al, 1998; Maganaris 

& Maughan, 1998; Experiment 1; Experiment 2) and muscle endurance 

(Experiment 1). Researchers have also examined the effects of Cr 

supplementation on body composition and muscle strength in older subjects (i. e. 

with age-related alterations in their skeletal muscle metabolism), with the 

majority of studies indicating an ergogenic effect of Cr loading on body 

composition (jakobi et A 2001; Gotshalk et al, 2002), muscle endurance (Rawson 

et al, 1999; Gotshalk et al, 2002), muscle strength (Gotshalk et al, 2002) and also 
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when used in conjunction with a resistance training programme (Chrusch et al, 

2001). For example, Gotshalk et al (2002) examined the effects of 7 days of Cr 

supplementation (0.3 g-kg-I-d-1) on body mass, FFM (estimated using hydrostatic 

weighting), maximal dynamical strength (upper and lower body), maximal 

isometric strength and lower extremity functional capacity in normally active 

older men (59 - 72 yr). The results of this study (Gotshalk et al, 2002) indicated 

that 7d of Cr supplementation was effective at increasing several of the indices 

of muscle performance, including functional tests, with no adverse side effects. 

However, two studies have indicated that Cr supplementation does not have a 

beneficial effect on performance in older subjects (Bermon et al, 1998; Jakobi et al, 

2001). For example, Bermon and co-workers (1998) indicated that Cr 

supplementation had no effect on body composition, maximal dynamical 

strength, dynamical and isometric endurance in healthy elderly subjects, whether 

or not it was associated with an effective strength training programme. 

Based on this work in relation to both healthy young and older populations and 

also on the proposed benefits of Cr supplementation on body composition, 

muscle function and muscle metabolism, some researchers have examined the 

role of Cr supplementation in patient populations. Previously, researchers have 

examined the effects of this putative ergogenic aid in patients with chronic heart 

failure (CHF) (Gordan et al, 1995; Andrews et al, 1998), myasthenia gravis (Stout 

et al, 2001), rheumatoid arthritis (WiHer et al, 2002) and patients with 
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mitochondrial cytopathies (Tamopolsky et al, 1997), for all of which positive 

benefits of Cr supplementation on body composition and/or skeletal muscle 

function have been reported. 

The aim of the present study was therefore two-fold: firstly, to determine the 

effects of Cr loading on upper and lower body strength, upper and lower body 

strength endurance and body composition; and, secondly, to examine the effects 

of Cr supplementation in conjunction with standard pulmonary rehabilitation on 

the above-mentioned variables in a group of patients with moderate to severe 

COPD. 
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METHODS 

Patients 

Twenty-nine patients (11 females and 18 males) with established clinical 

and functional diagnosis of moderate-to-severe COPD (FEV, < 60% predicted 

and FEVl/FVC ratio < 70%) (American Thoracic Society, 1987) comprised the 

study group (Table 6.1). Inclusion criteria were absence of locomotor or 

neurological diseases, and no change in medication dosage or exacerbation of 

symptoms in the preceding four weeks. AH patients were optimised in terms of 

standard medical therapy: maintenance medications included short and long 

acting P2-agonists, anticholinergics, theophylline, and inhaled steroids. Patients 

were excluded if they had taken oral prednisolone within the proceeding four 

weeks. The patients' eligibility was assessed by interview prior to their informed 

consent for participation in the study. Before the tests, the procedures, including 

the known risks, were described in detail and written informed consent (as 

approved by the North Glasgow Hospital Ethics Committee) was obtained from 

all patients. 
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Table 6.1: Baseline Characteristics of the two groups of patients 

Placebo Group Creatine Group 
(n=15) (n=14) 

Baseline 

Age (yr) 

Height (m) 

FVC (L) 

FEV1 (L) 

FEV, (% pred) 

FEV1 /FVC (% 

TLC (% pred) 

65 ±10 

1.64 ± 10 

2.7 ± 0.8 

1.1 ± 0.4 

42.5 ± 14.6 

38.9 ± 8.4 

128.0 ±17.4 

Baseline 

61 ±8 

1.62 ±6 

3.0 ± 0.6 

1.1 ± 0.3 

44.4 ±14.4 

36.4 ± 11.2 

124.6 ±18.7 

Values are presented as the mean ± s. d. 

Definition of abbreviations: FVC: forced vital capacity; FEV1: forced expiratory 

volume in one second; TLC: total lung capacity: pred: predicted values. 
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Experimental Design 

Prior to the commencement of the experimental trials, patients visited the 

laboratory in order to become familiar with the isokinetic and handgrip 

dynamometer. Familiarisation trials were carried out until the variability of three 

consecutive performances was within 5% for peak isokinetic force at a speed of 

700-s-1. The test-retest reliability of isokinetic assessments performed in our 

laboratory has revealed a high intra-class correlation (ICC) for strength measures 

(Isokinetic force ICC = 0.92 (700-s-1)), these test-retest reliability values are based 

on subjects having each undergone two familiarisation tests). Patients were 

assigned in a double blind fashion to either a Cr group or a placebo group, 

stratified according to their body composition: body mass index (BMI) and/or 

fat-free mass index (FFMI) with random assignment so that one member of each 

pair was in the Cr group and the other in the placebo group. This was done by 

dividing the patients into depleted and non-depleted patients, with patients 

considered as nutritionally depleted if they had a BMI of < 21 or an FFMI of < 15 

(females) or < 16 (males) (Van Itallie et al, 1990). Following the familiarisation 

period, all patients performed three tests (baseline, post-loading and post- 

rehabilitation). The first test was conducted at least 48 hours after the 

familiarisation. trial, and the final test was conducted at least 48 hours after the 

final rehabilitation session. 
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The Cr group ingested 17.1 g-d-1 Cr-H20 (equivalent to 5g Cr x3 times daily) for 

the first 14 days (loading). From day 15, patients consumed 5.7 g-d-1 Cr-H20 

(equivalent to 5g Cr daily) for the remainder of the study (maintenance). This 

maintenance dose was selected on the basis of published work by Hultman et al 

(1992) showing 2 g-d-1 Cr-H20 was adequate in maintaining elevated muscle PCr 

stores in patients not involved in strenuous exercise. As the patients in the 

present study were training twice a week at high intensities, it was decided to 

increase the maintenance dose to 5 g-d-1 Cr-H20 in an attempt to maintain muscle 

PCr stores. The addition of glucose to the Cr has been shown to significantly 

enhance the uptake of Cr (Green et al, 1996; Steenge et al, 1998). Patients were 

instructed to ingest the supplements at equal intervals throughout the day. The 

placebo group consumed 120 g-d-1 of glucose polymer (40 gx3 times daily) for 

the first 14 days, followed by 40 ga day for the subsequent duration of the study. 

The placebo group followed the same procedure as the Cr group with regard to 

the preparation of the supplements. Both supplements had similar taste, texture 

and appearance and were placed in generic containers to ensure double-blind 

administration. Patients were also requested to eliminate caffeine and caffeine 

containing foods from their diet over the loading phase to minimize the possible 

inhibitory effects of caffeine on the ergogenic effect of Cr (Vandenberghe et al, 

1996). At the end of the study, all patients gave verbal assurance that they had 

complied with aR instructions. 
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Procedures 

Patients reported to the laboratory on the day of testing, after having 

refrained from strenuous activity the day before. Following the measurement of 

stature and body mass, body composition was measured using bioelectrical 

impedance. 

FoRowing the measurements of body composition, patients underwent a 

standardised warm-up on the isokinetic dynamometer. Patient's isokinetic peak 

torque (700-s-1) was then measured during 5 repetitions using a Kin-Com II 

isokinetic dynamometer (Chattecx Corporation, Chattanooga, USA). The 

dominant leg was tested. The position of the patients on the isokinetic 

dynamometer was standardised; the anatomical axis of the knee joint was 

aligned with the rotational axis of the dynamometer by adjusting the seat 

position and the lever head of the dynamometer. Individual seat length and 

height were recorded for each patient and used in subsequent tests. Patients 

were held in the seat position with Velcro belts around the waist, thigh and 

lower leg proximal to the ankle, this also allowed for complete isolation of the 

testing leg. During the measurement, patients had their arms crossed over their 

chest while their non-involved leg and upper body was kept stationary. Patients 

were instructed to exert maximal effort throughout the full range of motion 

during each repetition. Verbal encouragement was given to maximise 
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performance. The same investigator conducted all tests. Having completed the 

peak torque isokinetic testing and following a5 min recovery period, patients 

went on to complete five sets of 15 repetitions at a speed of 150'-s-1 as a measure 

of strength endurance of the quadriceps. Patients were given 2 min rest between 

sets (Greenhaff et al, 1994). FoRowing a further 10 min rest, handgrip strength 

and strength endurance was tested on there dominant and non-dominant hand. 

Following a handgrip specific warm-up, patients completed 5 maximal voluntary 

isometric contractions with 30 s rest between each contraction, patients dominant 

hand was always tested first followed by there non-dominant hand, with the 

order kept the same for all subsequent tests. Having completed this measure of 

grip strength, patients went on to perform 3 sets of contractions to exhaustion 

with the intensity set at 70% of their pre-determined 1 repetition maximum 

(1RM). Again the dominant hand was tested first, with patients receiving 2 min 

rest between each set of contractions (Greenhaff et al. 1994). Fatigue was defined 

as the failure to exert the required intensity in 3 contractions in a row. Patients 

received verbal encouragement throughout all testing. Following two weeks of 

loading, patients returned to the laboratory and completed the same tests as on 

there baseline measurement day. Patients then entered a standard pulmonary 

rehabilitation programme for 8 wk, and following this 8 wk of training returned 

to the laboratory to complete the battery of tests identical to those at baseline and 

post-loading. 
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Body Composition Estimation 

Body composition was performed on the same day as the strength 

measures by the same investigator. Height was measured (to the nearest . 01 m) 

using a stadiometer, with patients standing barefoot. Body mass was assessed (to 

the nearest 0.1 kg) with patients wearing only a swimsuit. 

Bioelectrical ImRedance (BW 

Measurement of FFM by bioelectrical impedance (FFMBIA) (Bodystat-5000, 

Bodystat Ltd, Isle of Man, UK) was performed on the right side, with patient's 

supine, and with their limbs slightly apart from the trunk. After the skin had 

been cleaned with 70% alcohol, two injector electrodes were placed on the dorsal 

surface of the right hand and foot, and two detector electrodes were placed 

between the radius and ulna and on the ankle between the medial and lateral 

maHeoh. The impedance to current flow (50 kHz) between the injector and 

detector electrodes was determined. A patient-specific prediction equation based 

on resistance (R), body mass (BM), height (H) and sex (S, males =1 and females = 

0) was used to determine FFM (Kyle et al, 1998): 

FFM (kg)= -6.06 + (H x 0.283) + (BM x 0.207) - (R x 0.024) + (S x 4.036). 
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Pulmonary Rehabilitation Programme 

The programme consisted of 2 weekly sessions of 1 hr for 8 wks (i. e. 16 

sessions in total). The exercise was conducted by a physiotherapist and consisted 

of a warm-up, multimodality upper and lower limb exercises such as walking, 

stair climbing, cycle ergometry, upper and lower body strength exercises, and 

breathing exercises with appropriate rest intervals between activities. The 

intensity and load of all exercises were individualised, with training targeted so 

that patients exercised at, or just below, the Borg breathlessness rating 

corresponding to their symptom-limited maximal rating; based on these ratings, 

subjects trained at the highest attainable work level during each session (e. g. 

progression and overload principle). Patients were also given a copy of 

alternative exercises, so they could train at home. 

Prior to the start of each exercise session, aH patients underwent a standardised 

warm-up which comprised light intensity exercise for 5- 10 min, followed by a 

series of stretches with an emphasis on stretching the musculature associated 

with the exercises that were to follow. The training intensity was progressively 

increased as patients successfully completed the required number of sets and 

repetitions. Patients kept training logs throughout the duration of the study 

detailing rating of dyspnoea during exercise sessions and the weight, sets and 
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repetitions lifted during strength training of the upper and lower extremities. 

Exercise sessions lasted on average 60 min (including the 10 min warm-up and 

10 min cool-down). The compliance of the subjects was good, with only 4 

withdrawals during the training period due to non-compliance, however five 

other patients dropped out during the pulmonary rehabilitation period due to an 

increased number of exacerbation's. The pulmonary rehabilitation programme 

carried out at Glasgow Royal Infirmary is in line with the general guidelines set 

out by British Thoracic Society position statement on Pulmonary rehabilitation in 

2001 (BTS, 2001). 

Data Analysis 

Data were expressed as the mean ± s. d. following a test for the normality 

of distribution. Statistical analysis was carried out using two factor ANOVA for 

repeated measures, followed by Student's t-test for paired data and two sample 

t-test for unpaired data, as appropriate. Pearson correlation analysis was used to 

assess the relationship between variables. Statistical significance was declared 

when P<0.05. 
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RESULTS 

1. Cr Loading (14 days) 

Physical Characteristics 

The physical characteristics of the two groups of patients were not 

significantly different before supplementation (Table 6.2). In the Cr group, body 

mass increased significantly from 60.9 ± 11.5 kg to 61.9 ± 11.2 kg following Cr 

loading (P<0.001), with no change in the placebo group (66.7 ± 22.2 kg to 66.8 ± 

22.0 kg, P=0.73). The magnitude of change in body mass was significantly greater 

in the Cr group compared to the placebo group (P=0.002) (Table 6.2). In the Cr 

group, FFM increased significantly post-loading (Table 6.2), with no increase 

observed in the placebo group (Table 6.2). The change in FFM over the 

supplementation period was significantly greater in the Cr group compared to 

the placebo group (Table 6.2). 

There was no significant increase in body fat as estimated by BIA in the placebo 

group following loading (Table 6.2), in the Cr group there was an observed 

increase in body fat as estimated by BIA (P=0.015). However, the magnitude of 

this increase was not significantly greater when compared to the placebo group 

(P=0.18). 
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Lower Body Strength and Endurance 

Average peak torque (average of the 5 repetitions) increased significantly 

following Cr loading in the Cr group (86.7 ± 27.8 Nm to 90.1 ± 26.6 Nm, P=0.001), 

with no increase in the placebo group (79.0 ± 32.3 Nm to 78.0 ± 32.1 Nm, 

P=0.376). The magnitude of the increase was significantly greater than that 

observed in the placebo group (P=0.0032) (Table 6.3). 

Peak torque (highest score obtained during the 5 repetitions) also significantly 

increased following supplementation in the Cr group (90.6 ± 27.8 Nm to 93.6 ± 

26.6 Nm, P<0.001), with no increase observed in the placebo group (83.5 ± 32.9 

Nm to 82.0 ± 33.8 Nm, P=0.246). The magnitude of the increase observed regard 

to peak torque was significantly greater in the Cr group compared to the placebo 

group (P=0.0036) (Figure 6.1a). 

The Cr group produced significantly greater total work (TW) during all 5 sets of 

15 contractions (P=0.032, P=0.006, P=0.012, P=0.022 and P=0.016, respectively) 

following loading. In the placebo group patients produced similar amounts of 

work pre and post-loading (P=0.202, P=0.788, P=0.774, P=0.134 and P=0.091, 

respectively). When the magnitude of change was compared between both 

groups, the Cr group improved to a greater extent than the placebo group in 4 
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out of the 5 sets (set 2: P=0.0059, set3: P=0.012, set 4: P=0.014 and set 5: P=0.0099) 

(Figure 6.2a). 

Combined TW (A 5 sets added together) increased from 1996 ± 746 j to 2471 ± 

764 j (P=0.014) in the Cr group, compared to no significant increase in the 

placebo group (1670 ± 855 j to 1675 ± 835 J, P=0.516). The magnitude of the 

increase was significantly greater in the Cr group, compared to the placebo 

group (475 ± 626 j vs. -13.1 ± 76.4 J, P=0.012) (Figure 6.3a). 

Upper Body Strength and Endurance 

There was no significant increase in average or peak hand grip strength in 

either the Cr or placebo group following supplementation (as measured on both 

right and left hand) (Table 6.3). There was no significant increase in the number 

of repetitions performed post-loading, compared to pre-loading, in the placebo 

group in any of the 3 sets on the right or left hand. In the Cr group, patients 

produced a significantly greater number of repetitions in sets 2 (14.9 ± 5.8 to 17.4 

± 7.1, P=0.006) and 3 (11.8 ± 4.3 to 13.6 ± 4.7, P=0.009) following supplementation 

on their right hand. Similar findings were observed with regard to patients left 

hand also (sets 2: 14.4 ± 5.0 to 16.5 ± 4.4, P=O. 008 and set 3: 11.5 ± 4.0 to 13.6 ± 4.0, 

P=0.005). The magnitude of the increase was significantly greater in the Cr 

group, compared to the placebo group, in set 2 only (Pý0-044), with a strong 
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tendency observed in set 3 (P=0.051) with regard to the right hand. While on the 

left hand the magnitude of the increase was significantly greater during set 2 

(P=0.008) and set 3 (P=0.007) (Figure 6.4). Total repetitions (sum of all 3 sets) was 

significantly greater in the Cr post-loading compared to the placebo group in 

both the left and right hand (Table 6.3). 
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2. Cr Supplementation Combined with Pulmonary Rehabilitation 

FoRowing the two weeks of Cr, patients entered a standard 8-week 

pulmonary rehabilitation programme. However, due to an increase in the 

number of exacerbations and non-compliance to the pulmonary rehabilitation 

programme, only 21 patients completed this phase of the study (11 patients in 

the Cr group and 10 in the placebo group). 

Physical Characteristics 

In the Cr group, there was no significant change in body mass following 

supplementation and rehabilitation (Table 6.4) or when confined to the change 

from post-loading to the end of rehabilitation (rehab-load) (62.8 ± 12.6 kg to 61.8 

± 13.9 kg, P=0.079). In the placebo group, again, there was no significant change 

in body mass following supplementation and rehabilitation (P=0.447) or as 

measured from rehab-load (P=0.486). 

In the Cr group, FFM increased significantly over the 

supplementation/ rehabilitation period, with no change in the placebo group 

(Table 6.4). In the placebo group, no changes in FFM were observed over this 

period (Table 6.4). 
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There was a significant reduction in FM over both the 

supplementation/ rehabilitation and rehab-load periods in the Cr group, with 

this reduction only seen over the supplementation/ rehabilitation period in the 

placebo group (Table 6.4). As a result, the magnitude of the reduction was 

significantly greater in the Cr group over both periods, when compared to the 

placebo group (Table 6.4). 

Upper Body Strength Endurance 

Average hand grip strength (right and left hand) increased following 

supplementation/ rehabilitation in the Cr group and also when measured from 

rehab-load. In the placebo group, there was no significant increase over the 

supplementation/ rehabilitation period (P=0.227) for either hand, but there was a 

significant increase over the rehab-load period (P<0.001) with regards to the right 

hand. The magnitude of the increases were significantly greater over both 

periods (P=0.034 and P=0.024, respectively) in the Cr group, compared to the 

placebo group, but only in the right hand (dominant hand). 

Peak hand grip strength (right and left) also increased significantly over both the 

supplementation/ rehabilitation and rehab-load periods in the Cr group. In 

contrast, for the placebo group, an increase was observed only over the rehab- 

load period (P=0.002) on the right hand. The magnitude of the increase was 
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significantly greater only over the supplementation/ rehabilitation period 

(P=0.040) in the Cr group, compared to the placebo group, but only with regard 

to the right hand (Table 6.5). 

Total repetitions (sum of all 3 sets) (right and left hands) was significantly greater 

in the Cr and placebo groups following supplementation/ rehabilitation and 

rehab-load, with the magnitude of the increase being significantly greater in the 

Cr group, compared to the placebo group over both periods (Table 6.5). 

Lower Body Strength and Endurance 

Peak torque increased significantly in both the Cr and placebo groups 

following supplementation/ rehabilitation (P<0.001 and P<0.001) and from 

rehab-load (P<0.001 and P<0.001). The magnitude of the change was significantly 

greater during both periods in the Cr group, compared to the placebo group 

(P=0.020 and P=0.050) (Figure 6.1b). 

Average peak torque also increased significantly in both the Cr and placebo 

groups following supplementation/rehabilitation (P<0.001 and P<0.001) and 

from rehab-load (P<0.001 and P<0.001), with the magnitude of the change being 

significantly greater during both periods in the Cr group compared to the 

placebo group (P=0.009 and P=0.030, respectively). 
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The Cr group produced significantly greater total work (TW) during all 5 sets of 

15 contractions following supplementation/ rehabilitation. In the placebo group 

patients produced significantly greater TW during sets 2 and 3, with strong 

tendencies during the final two sets also (sets 3 and 5). When the magnitude of 

change was compared between both groups, the Cr group improved to a greater 

extent than the placebo group in all 5 sets (Figure 6.2b). 

Combined TW (all 5 sets added together) significantly increased in the Cr 

following supplementation/ rehabilitation (P=0.002) and during the rehab-load 

period (P=0.001), a strong tendency was observed in the placebo group to have 

increased TW over the supplementation/rehabilitation period (P=0.054) and 

there was a significant increase over the rehab-load period (P=0.034). The 

magnitude of the increase was significantly greater in the Cr group compared to 

the placebo group over both periods (P=0.014 and P=0.042, respectively) (Figure 

6.3b). 
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Figure 6.1 Peak Isokinetic Force in the Cr and Placebo 
supplemented groups post-loading (top 
panel) and post-rehabilitation (bottom 
panel) * indicates a significant difference from 

pre to post supplementation. t indicates a 
significant greater change in the Cr group 
compared to the placebo group 
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Figure 6.2 Change in Total in the Cr and Placebo 
supplemented groups post-loading (top 
panel) and post-rehabilitation (bottom 
panel). t indicates a significant greater 
change in the Cr group compared to the 
placebo group. 
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Figure 6.3 Combined Total Work (sets 1 to 5) in the Cr 
and Placebo supplemented groups post- 
loading (top panel) and post-rehabilitation 
(bottom panel). * indicates a significant 
difference from pre to post supplementation. t 
indicates a significant greater change in 
the Cr group compared to the placebo group 



4000 

w 6 

3000 

E-4 

.0 2000 

1000 

t 

Cr group (n=15) Placebo group (n=14) 

0 Pre-supplementation 

5000 -1 
0 Post-supplementation 

'o 4000 

3000 

ra 2000 
0 u 

1000 

t 

Cr group (n=11) Placebo group (n=10) 

177 



Figure 6.4 Handgrip Endurance for right (top panels) and 
left hands (bottom panels) in the Cr (left side) 
and Placebo (right side) supplemented 
groups post-loading (top panel) and post- 
rehabilitation (bottom panel). * indicates a 
significant difference from pre to post 
supplementation. t indicates a significant 
greater change in the Cr group compared 
to the placebo group 
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DISCUSSION 

The results of the present study demonstrate that 14 days of oral Cr 

supplementation (15 g-d-1) was effective in increasing body mass, FFM, lower 

body muscle strength, upper and lower body muscle endurance in patients with 

moderate to severe COPD during 14 days of supplementation. Additionally, this 

study also highlights a potential role for Cr supplementation when combined 

with a standard pulmonary rehabilitation programme. With respect to this aspect 

of the study, Cr supplementation combined with a pulmonary rehabilitation 

programme was more effective in increasing muscle strength (lower and upper 

body), muscle endurance (lower and upper body), FFM and FM (significant 

decrease) than pulmonary rehabilitation alone. 

The present study demonstrated a significantly greater increase in body mass 

and, more importantly, FFM following short-term Cr supplementation (loading) 

compared to the placebo group. While there was no significant increase in body 

mass over the whole duration of the study (supplementation/ rehabilitation), this 

was probably due to the observed decrease in FM, while the significant increase 

in FFM remained. The importance of this finding can be seen from a recent study 

by Schols et al (1998). In that study the authors demonstrated that patients whose 

body weight increased significantly following intervention (> 2kg/8 wks) had a 

decreased mortality risk as compared to patients whose body weight did not 
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increase following this intervention. In this study, the researchers retrospectively 

analysed 400 patients with COPD, and they found weight gain (> 2kg/8 wk) in 

both depleted and non-depleted patients were significant predictors of survival, 

and also as part of the same study they also reported that low BMI was a 

significant independent predictor of increased mortality. For these reasons, 

many researchers have examined numerous intervention strategies in an attempt 

to increase body mass and, more importantly, FFM in patients with COPD. These 

strategies ranged from nutritional intervention and appetite stimulators to, more 

recently, rhGH and anabolic steroids. For example, Bumet et al (1997) and Yeh et 

al (2002) used rhGH and an anabolic agent (Oxandrolone), respectively, to 

increase FFM in fl-tis patient group. However while both of these interventions 

were successful in increasing FFM, not all patients could tolerate these 

interventions, with many reporting a range of side-effects. In the present study, 

we have shown short-term and long-term Cr supplementation to be an effective 

strategy in increasing FFM in this patient population with patients reporting no 

treatment associated side-effects. The findings of the present study are in 

agreement with previously published work in healthy young subjects 

(Experiment 1; Experiment 2) and healthy older subjects (Gotshalk et al, 2002; 

Chrusch et al, 2001; Jacobi et al, 2001). 

Another significant finding in the present study was a significant greater increase 

in lower body strength following Cr loading (14 days), with no such increase 
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observed in upper body strength during this period. While this might seem 

contradictory at first, it has been shown in the past that lower limbs are affected 

to a greater extent than the upper limb muscles with regard to muscle strength 

(Hamilton et al, 1995; Gosselink et al, 1996), with this difference attributed to the 

greater reduction in activity of the lower limbs compared to the upper limbs in 

this patient population. 

To date, this is the first intervention study in COPD to show a positive outcome 

with regard to muscle strength (lower body). Previously, researchers have used 

such strategies as anabolic steroids and rhGH in an attempt to increase muscle 

strength in this patient group but with no significant effect For example, in the 

study by Burdet et al (1997), rhGH was used in an attempt to increase muscle 

mass and muscle strength. While these interventions were successful at 

increasing muscle mass, there was no change in muscle strength. 

It has also been reported that there is reduced muscle endurance in this patient 

group (Serres et al, 1998). Serres et al (1998) reported that COPD patients achieved 

fewer dynamic contractions of the quadriceps when matched for maximal 

strength than controls. In addition to the observed changes in muscle strength 

following Cr loading, a significantly greater increase in muscle endurance was 

also observed (as measured by total work and total repetitions) in the Cr group 

compared to the placebo group. This finding is in agreement with previously 
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published data with respect to observed increases in muscle endurance in 

healthy resistance-trained humans (Experiment 1), healthy older subjects 

(Rawson et A 1999; Gotshalk et al, 2002) and heart failure patients (Gordan et al, 

1995; Andrews et al, 1998). 

The exact mechanisms behind these observed increases are still not clear. As 

muscle biopsies were not obtained in this study, one can only speculate on the 

potential mechanisms for this improvement in muscle strength and muscle 

endurance following Cr supplementation. However it has also been shown that 

patients with COPD have peripheral muscle abnormalities. For example studies 

by Gertz et al (1977) and Jakobsson et al (1990) have demonstrated lower 

concentrations of ATP and PCr at rest using muscle biopsies, and other studies 

have also shown lower intracellular pH and slower PCr resynthesis during 

recovery from exercise (Payen et al, 1993; Sala et A 1999). Two of the possible 

mechanisms behind the ergogenic effect of Cr supplementation are its ability to 

increase resting levels of PCr and also increase the rate of PCr resynthesis 

following intense exercise. Therefore, theoretically Cr supplementation should be 

able to rectify these abnormalities in skeletal muscle, and hence increase muscle 

endurance and muscle strength. In addition, because fatigue during the types of 

tests (maximal and strength endurance) utilized in the present study have 

previously been attributed to depletion of muscle PCr stores (Hultman et al, 1990; 

Tesch et al, 1989), Cr supplementation has a greater potential to increase muscle 
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performance. A number of previous studies support this view (Balsom et al, 1995; 

Greenhaff et al, 1994; Experiment 1). 

A second and very important component of the present study was to evaluate 

the effectiveness of Cr supplementation when combined with a standard 

pulmonary rehabilitation programme, compared to pulmonary rehabilitation 

alone. With respect to this aspect of the study, the Cr group had significantly 

greater increases in hand grip strength (dominant hand only) over the 

supplementation/ rehabilitation and rehab-load periods compared to the placebo 

group. Upper and lower body endurance as measured by total repetitions and 

total work respectively was also significantly increased in both groups over the 

supplementation/ rehabilitation and rehab-load periods, with the magnitude of 

the increase being significantly greater in the Cr group compared to the placebo 

group. These results may indicate that Cr acted as an extra stimulus during 

training aHowing patients in the Cr group to train at a greater intensity and thus 

improve their muscle strength a greater degree. Unfortunately, in the present 

study there was no measure of work completed per training session, however the 

significantly greater loss of FM observed in the Cr group would suggest this. 

The physiological basis for a possible ergogenic effect of Cr supplementation on 

strength training is primarily two fold. Firstly, Cr supplementation has been 

shown to increase the number of repetitions performed per set (Earnest et al, 
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1995; Volek et al, 1999). Secondly, Cr supplementation has been shown to 

increase the rate of Cr rephosphorylation during the second minute of recovery 

from intense internuttent-type exercise (Greenhaff et al, 1994). Theoretically, both 

these physiological changes would allow an individual to train at a greater 

intensity compared to training without the use of this putative ergogenic aid. The 

enhanced muscle performance seen in the present study when combined to 

training (pulmonary rehabilitation) has also been observed in both healthy 

young subjects (Vandenberghe et al, 1996; Kreider et al, 1998; Volek et al, 1999) 

and healthy older subjects (Chrusch et al, 2001). The present study is the first to 

examine the effectiveness of Cr supplementation combined with a training 

stimulus in a patient population. 

As already mentioned, following Cr loadin& patients entered into a standard 

pulmonary rehabilitation programme. However during this programme a 

number of patients dropped out due to an increase in exacerbations or inability 

to cope with the training sessions. It is worth noting that the majority of the 

patients who dropped out were in the placebo group, with only one dropout 

during the programme in the Cr group (two others dropped out at the very end, 

but had completed the training). The reason for this is not clear however it could 

be linked to the already mentioned increase in body mass and/or an increased 

ability to cope with the training demands. 
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CONCLUSION 

in conclusion, although this present study demonstrates some very 

positive outcomes with regard to the ergogenic effects of Cr in COPD patients 

(both short- and long-term), it still remains to be determined whether or not the 

observed benefits in the present study will have a positive impact on the daily 

activities and, more importantly, the quality of fife of this patient population. 
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CHAMR SEVEN 

General Discussion 



GENERAL DISCUSSION 

The primary objectives of all four Experiments were to determine the 

effects of Cr supplementation on body composition and exercise performance in 

subjects of varying training and health status. 

The aim of Experiment 1 was to determine the effects of Cr supplementation on 

body composition, muscle strength and muscle endurance in a group of highly 

resistance-trained male subjects. The results of this study suggested that 20 g 

Cr-d-I for 5d resulted in an increase in peak force and total work during repeated 

isometric bench-press contractions but only when "non-responders" were 

removed. A negative correlation between estimated muscle Cr uptake and 

training status (Figure 3.4a) and also a positive correlation between estimated 

muscle Cr uptake and increase in exercise performance (Figure 3.4c) were also 

observed in Experiment 1. An explanation for the demonstration of "responders" 

and "non-responders" to creatine supplementation was therefore sought in 

Experiment 2. This second study was designed to optin'tise muscle Cr uptake 

during Cr supplementation using strategies previously shown in the literature 

(e. g. exercise, carbohydrate ingestion) to enhance muscle Cr uptake, using a 

group of non-resistance trained subjects. As was the case for Experiment 1, 

Experiment 2 also showed large inter-individual response to Cr 

supplementation, with a performance benefit being only seen once the Cr group 
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was subdivided into "responders" and "non-responders" (as in Experiment 1). 

These two studies argue strongly for the issue of "responders" and "non- 

responders" being multifactorial in nature. 

A further outcome of Experiments 1 and 2 was that Cr supplementation 

stimulated an increase in body mass. Experiment 2, further, was able to ascribe 

this (in part, at least) to increases in total body water (TBW) and intracellular 

water (ICW). Experiment 3 was therefore designed to determine the effects of 

these Cr-stimulated increases in body water compartments on the ability of 

trained endurance cyclists to perform cycling exercise to exhaustion during heat 

exposure. The results from this study argue for a possible role for Cr 

supplementation for prolonging time to exhaustion (TTE) during exercise in the 

heat. Again, however, these results only became clear once the Cr group was 

divided into "responders" and "non-responders". 

FinaRy, Experiment 4 examined whether the increases observed in Experiments 1 

and 2 with regard to body composition, muscle strength and muscle endurance 

in healthy subjects could lead to similar increases in patients with moderate to 

severe Chronic Obstructive Pulmonary Disease (COPD). The outcome of the 

study was that Cr loading lead to significantly greater increases in body mass, 

fat-free mass, lower body muscle strength, upper and lower body muscle 

endurance compared to the placebo group. Following Cr and rehabilitation the 
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increases observed with regard to muscle strength and muscle endurance was 

significantly greater than those observed in the placebo group. 

The major findings from these several studies are discussed collectively in this 

chapter and, as appropriate, conclusions made regarding the factors that may 

limit exercise performance in health and disease. 

Cr Supplementation and Muscle Cr Uptake (responders" and "non-responders") 

As previously mentioned, the results of the first three experiments 

demonstrated that Cr supplementation was effective at increasing exercise 

performance in healthy young subjects, but only for those in whom muscle tow 

[Cr] ([TCr]) was significantly increased following supplementation 

("responders"). The concept of "responders" and "non-responders" was first 

proposed by Greenhaff et al (1994) and subsequently by Casey et al (1996). 

implicit in the classification of subjects into "responders" and "non-responders" 

(Greenhaff et A 1994; Casey et al, 1996) is the e)dstence of what has been termed 

an "ergogenic threshold" for Cr uptake, which has been demonstrated to occur at 

about 20 mmol-kg-1-dry muscle weight (Greenhaff et al, 1994 and Casey et 

1999). The rationale for this assertion was the demonstration by Greenhaff et al 

(1994) that an increased rate of PCr resynthesis during recovery from exercise 

following Cr ingestion was evident in subjects those muscle Cr concentration 
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was increased by on average 20 mmol-kg-1-dry muscle weight, but not in those 

whose muscle Cr concentration increased by < 10 mmol-kg-1-dry muscle weight 

Our findings provide support for this contention. However, we were not able to 

assign a specific threshold value as intramuscular Cr uptake was only estimated. 

Two very distinct groups were evident in aH three Experiments (1 - 3), giving 

support to the proposed "ergogenic threshold". The estimated Cr uptakes in all 

three Experiments were simflar to those measured by Greenhaff et al (1994). 

However although Greenhaff et al (1994) and Casey et al (1996) proposed the 

existence of subpopulations of "responders" and "non-responders", the present 

set of Experiments (1 - 3) were the first to further subdivide the Cr group into 

"responders" and "non-responders" based on estimated or measured muscle Cr 

uptake following Cr supplementation and to reanalyse the data based only on 

the "responders" data only. Therefore it is perhaps not surprising that, despite 

many Cr supplementation studies showing an ergogenic effect on exercise 

performance (Harris et A 1992; Greenhaff et al, 1993; Soderlund et al, 1994; 

Balsom et al, 1993; Balsom et al, 1995; Greenhaff et al, 1994; Casey et al, 1996; 

Green et al, 1996; Earnest et al, 1995), there are still a significant number of studies 

which have not reported an ergogenic effect (e. g. Cooke et al, 1995; Odland et al, 

1997; Snow et al., 1998; McKenna et al., 1999; Gilliam et al., 2000; Deutekom et al., 

2000; Finn et al, 2001). It is tempting to speculate that this lack of effect (Cooke et 

al, 1995; Odland et al, 1997; Snow et al, 1998; McKenna et al, 1999; Gfiliam et al, 
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2000; Deutekom et al, 2000; Finn et al, 2001) may reflect, in part at least, there 

having been no differentiation of subjects into "responders" and "non- 

responders" on the basis of measured or estimated muscle Cr uptake. That is, 

many studies failed to sample skeletal muscle changes in [TCr], either directly or 

indirectly (Cooke et al, 1995; Odland et al, 1997; Gilliam et al, 2000; Deutekom et 

al, 2000), and thus verify the efficacy of their supplementation protocols. This 

represents an important omission, as the potential ergogenicity of Cr 

supplementation has been shown to be dependent on the magnitude of the [TCr] 

increase following Cr supplementation (Casey et al, 1996, Snow et al, 1998). This 

point is supported by the demonstration in Experiments 1 and 2 (Figure 3.4c, 

Figure 4.5b-d) of positive correlations between estimated muscle Cr uptake and 

improvement in exercise performance. 

Two recent studies further highlight this point. Snow et al (1998) and McKenna et 

al (1999) both examined the effects of short-term Cr supplementation (30g Cr d-1 

for 5 days) on 20 s maximal sprint and five 10 s maximal sprints, respectively. 

Neither study could demonstrate any additional effects of Cr loading on any of 

the variables measured, including body mass. However, closer inspection of the 

results of these studies do reveal that Cr supplementation did induce modest 

increases in [TCr]: 11.7 ± 2.4 mmol-kg-l-dry muscle weight in the case of Snow et 

al (1998), and 23 mmol-kg-1-dry muscle weight for McKenna et al (1998). 

Furthermore, the inter-individual responses showed a wide variability: a range 
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of 2.9 - 19.9 mmol-kg-1-dry muscle weight for Snow et al (1998), and 7- 40 

mmol-kg-l-dry muscle weight for McKenna et al (1999). One wonders what the 

outcomes of these two studies might have been if the researchers had subdivided 

their Cr group into "responders" and "non-responders". A further limitation of 

these studies is the small sample size (n= 8, Snow et al, 1998 and n=7, McKenna et 

al, 1999) which, coupled with lack of consideration of "responders" and "non- 

responders", could have increased the chance of both studies producing a Type 11 

error. 

Cr Loading and Muscle Strength and Muscle Endurance 

As previously mentioned, not all studies in the literature have 

reported an ergogenic effect following Cr supplementation, with many of these 

negative results potentially explicable by relatively small increases in muscle Cr 

uptake foHowing supplementation. However, 40 out of the 55 pertinent 

published studies on this topic have reported an ergogenic effect following Cr 

supplementation. Experiments 1,2 and 4 examined the effects of Cr loading on 

muscle strength and endurance. In Experiments 1 and 2 Cr supplementation led 

to a significant increase in muscle strength and endurance (Figure 3.3 and Figure 

4.4). However, the results of these studies only became clear when subjects were 

divided into "responders" and "non-responders" based on their estimated muscle 

Cr uptake. This finding was further supported by the positive correlations 
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observed in both Experiments 1 and 2 between estimated muscle Cr uptake and 

i. inprovement in exercise performance (Figure 3.4c & Figure 4.5b-d, respectively), 

and Experiment 3 between estimated muscle Cr uptake and delta TTE (r=0.75, 

n=11, P=0.008), showing again that performance benefits are highly dependent 

on muscle Cr uptake. The results from Experiinents 1 and 2 thus support the 

work of previous researchers with regard to the ergogenic effect of Cr 

supplementation on muscle strength and muscle endurance (Casey et al, 19%; 

Green et al, 1996, Kreider et al, 1998; Maganaris & Maughan, 1998; Volek et al, 

1997). 

In Experiment 4, the effects of Cr supplementation on body composition, 

muscle strength and endurance were examined in patients with moderate to 

severe COPD. Previously researchers have used controlled trials using such 

strategies as anabolic steroids (Yeh et al, 2002) and rhGH (Burnet et al, 1997) in an 

attempt to increase muscle mass and strength, while both these strategies have 

demonstrated improvements in muscle mass, no discernible effect on muscle 

function were demonstrated. Although researchers have previously examined 

the effect of Cr supplementation on muscle strength and muscle endurance in 

healthy older subjects (Rawson et al, 1999; Gotshalk et al, 2002) and in heart 

failure patients (Gordan et al, 1995; Andrews et al, 1998), Experiment 4 is the first 

study to examine the role of Cr supplementation in this patient population 

(COPD). Furthermore, the positive results obtained from Experiment 4 with 
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regard to muscle strength and endurance is, to our knowledge, the first showing 

positive effects on muscle strength and endurance of this patient group. 

However, the extent to which patients varied in their capacity to take up Cr is 

unclear at present, as we were not in a position to estimate Cr uptake in our 

patients. The important issue raised by this is that the potential for rehabilitation 

and reduced mortality in COPD may be influenced by intramuscular Cr uptake 

characteristics. 

As muscle biopsies were not obtained in any of the present studies, one 

can only speculate on the potential mechanisms for the demonstrated 

unprovement in exercise performance following Cr supplementation. We 

speculate that increased intramuscular PCr availability and PCr resynthesis 

during recovery from maximal exercise of the type employed in Experiments 1,2 

and 4 is perhaps the most plausible explanation, given that muscle fatigue has 

previously been associated with a depletion of muscle PCr stores (Hultman et al, 

1990; Tesch et al, 1989). Cr supplementation has the potential to increase the basal 

levels of PCr and, would therefore be expected tc) better maintain the required 

ATP resynthesis rates during exercise (Harris et al, 1992) which, in tum, could 

lead to delayed onset of muscle fatigue. Also, the accelerated rate of PCr 

resynthesis during recovery from intense muscle contractions (Greenhaff et al, 

1994) could consequently lead to an increased ability to rephosphorylate ADP. 

This suggestion by Greenhaff et al (1994) was further supported by their finding 
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of Icrwer plasma ammonia accumulation during the repeated bouts of exercise 

following Cr ingestion, despite the Cr group producing higher work output. 

Effects of Cr suppk-mentation on body composition 

Ihe results of all 4 experiments demonstrate that short-term (5 - 14 d) Cr 

supplementation (15 - 20 g Cr d-1) can lead to significant increases in body mass 

(Figure 3. Z Figure 4.2a, Figure 5.2 and Table 6.2). This finding has also been 

consistently observed throughout the Cr fiterature (Greenhaff et al, 1994; Eamest 

et al, 1995; Cooke et al, 1995, Green et al, 1996; Terrilhon et al, 1997; Maganaris & 

Maughan, 1998; Krieder et al, 1998; Becque et al, 2000; Finn et al, 2001). Although 

the results of all 4 of the present studies support the theory that Cr 

supplementation is effective at increasing body mass under the conditions of the 

present studies, the exact mechanism behind this increase still remains unclear. 

To date, there have been two mechanisms proposed for this Cr-stimulated. 

increase in body mass. It has been suggested that the increase in body mass 

following Cr supplementation was due to an increase in water retention 

(Hultman et al, 1996) which could, in turn, result in cell swelling and an increase 

in protein synthesis (Haussinger et al, 1993). Others, however, have attributed the 

increase in body mass following Cr supplementation tc) an increase in protein 

synthesis and the associated increase in water content (Kreider et al, 1998). The 

balance of available evidence from human performance studies using Cr 

195 



supplementation and more-direct evidence from animal in vivo and in vitro 

experiments supports the notion that increasing Cr availability may indeed 

increase protein synthesis (Ingwall et al, 1974, Kreider et al, 1998, Volek et al, 

1999). However, not all studies have found significant differences in body mass 

following short-term Cr supplementation (Grindstaff et al, 1997, Steenge et al, 

1998, Terrillion et al, 1997, McKenna et al, 1999; Snow et al, 1998). These negative 

findings could reflect negligible increases in [TCr] following Cr supplementation, 

with increases in body mass therefore not being expected. Taken together, the 

results of Experiments 1-3 demonstrated a positive correlation between 

estimated muscle Cr uptake and increase in body mass (r=0.499, n-41, P-0.001) 

(Figure 3.4b, Figure 4.5a) provides further support for the proposal that increases 

in body mass may provide an indirect measure of muscle Cr uptake. 

As already mentioned, Cr loading increased body mass in all four of the present 

Experiments with subjects varying in training status and background, ranging 

from highly resistance trained individuals (Experiment 1), non-resistance trained 

individuals (Experiment 2), endurance trained subjects (Experiment 3) to patients 

with moderate to severe COPD (Experiment 4). The observed increases in body 

mass were similar between all three groups studied in Experiments 1-3, 

showing Cr to be effective at increasing body mass these particular populations, 

and were of similar magnitude to those previously reported (Greenhaff et al, 

1994; Earnest et al, 1995; Cooke et al, 1995, Green et al, 1996, Terrillion et al, 1997; 
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Maganaris & Maughan, 1998; Krieder et al, 1998; Volek et al, 1999; Becque et al, 

2000; Finn et al, 2001). 

In Experiment 4, there was also a significant increase of body mass following 

short-term Cr supplementation in the group of patients with moderate to severe 

COPD. The importance of this finding can be seen from a recent study by Schols 

et al (1998). These authors demonstrated that COPD patients whose body weight 

increased significantly following administration of anabolic steroids (> 2kg/8 

wks) had a decreased mortality risk compared to patients whose body weight 

did not increase following the intervention. For this reason, the observed 

increases in body mass following Cr supplementation during Experiment 4 are of 

particular clinical importance. 

Cr supplementation combined with resistance training 

Experiments 2 and 4 examined the effects of Cr supplementation 

combined with resistance training (Experiment 2) and a standard pulmonary 

rehabilitation programme (Experiment 4) compared to subjects training 

combined with placebo. While no additional increase in exercise performance 

was observed during Experiment 2 (possibly due to training status of the subjects 

and study duration), Cr supplementation led to significantly greater increase in 

muscle strength and endurance in patients with moderate to severe COPD. As 
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previously mentioned, many researchers have examined strategies for improving 

muscle function during pulmonary rehabilitation in patients with COPD. 

However, this present study is the first study to best of our knowledge to show a 

positive effect on muscle function in addition to the increases observed following 

pulmonary rehabilitation alone. The physiological basis for this ergogenic effect 

of Cr supplementation when combined with pulmonary rehabilitation is 

primarily two-fold. Firstly, Cr supplementation has been shown to increase the 

number of repetitions performed per set (Earnest et al, 1995; Volek et A 1997). 

Secondly, Cr supplementation has been shown to increase the rate of PCr 

rephosphorylation during the second minute of recovery from intense 

intermittent exercise (Greenhaff et al, 1994). Theoretically, both of these 

physiological changes could allow patients to train at a greater intensity than 

without this putative ergogenic aid. During the pulmonary rehabilitation 

programme in Experiment 4, a number of patients dropped out due to an 

increase in exacerbations or an inability to cope with the training sessions. 

Interestingly, the majority of the patients who dropped out were in the placebo 

group, with only one dropout from the Cr group. The reason behind this is 

unclear, but could be linked to the already-mentioned increase in body mass 

and/or an increased ability to cope with the training demands. If it can be shown 

convincingly that Cr supplementation increases the compliance of patients to 

rehabilitation programmes, this would represent a very important effect of Cr 

supplementation in the patient population. 
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Statistical Limitations of Previous Studies 

As previously mentioned, one possible explanation for the conflicting 

results in the literature with regard to the ergogenic potential of Cr 

supplementation has been the failure of many researchers to identify "non- 

responders" within their Cr group. 

Recently, another possible explanation has been offered for these conflicting 

findings. Thus, Gilliam et al (1999) questioned the statistical techniques employed 

by many researchers in the "Creatine supplementation" field. They suggested 

that the multiple Mests; used by researchers such as Greenhaff et al (1993), Birch 

et al (1994) and Harris et al (1992) inflated the chance of producing a Type I error, 

and they therefore suggested that researchers in the future should use ANOVA 

(Gilliam et A 1999). They also suggested this as a possible reason behind many of 

the conflicting findings with regard to the ergogenic potential of Cr 

supplementation. Studies that have previously used ANOVA's and found 

negative effects include these of Burke et al (1996), Odland et al (1997) and 

Redondo et al (1996). In all four experiments completed in this thesis, pre- 

planned statistical analysis was carried out (ANOVA). Furthermore, sensitivity 

was improved by expressing the responses not simply as absolute values but also 

as "post-pre" (delta). The use of delta takes into consideration any "placebo" effect 

that might be observed in the placebo group, therefore reducing the chance of a 
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Type I error. Another analytical consideration that may contribute to the 

contradictory findings of many previous studies is the small sub*t number 

used by many studies in the Cr literature. A small sample size, combined with 

the possibility of the Cr group comprising of "non-responders" could increase the 

chance of many studies producing a Type 11 error. These shortcomings were 

taken account of in the design of the present studies: the relatively large sample 

sizes and the identification of the "non-responders" within the Cr group help 

prevent the present Experiments for making a Type Il error (Tamopolsky & 

MacLennan, 2000). 

Directions for Future Research 

The results from Experiments 1-3 only became apparent when the Cr 

group was subdivided into "responders" and "non-responders" based on their 

estimated muscle Cr uptake and, as already mentioned, this is one of the possible 

factors behind the conflicting results obtained wiffiin the literature with regard to 

the ergogenic potential of Cr supplementation. Therefore researchers should try 

and further identify factors contributing to the "responders" and "non- 

responders" issue, such as the mechanisms behind intramuscular Cr uptake, and 

the adaptive potential of these mechanisms to different forms of training and 

exercise-related dietary regimens. It is important to point out, also, that there is 

uncertainty as to whether an intramuscular [Cr] in the region of 20 mmol-kg-1 -dry 
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muscle weight represents the actual threshold value (Greenhaff et al., 1994) or 

whether more detailed investigations might show this to be somewhat lower. 

Furthermore, the evidence for there being an actual threshold characteristic 

rather than a simple proportional graded relationship between intramuscular 

[Cr] and PCr resynthesis capacity has not convincingly been presented to date. In 

addition, future studies could attempt to eliminate the "responders" issue a 

priori. For example, researchers could supplement their subjects for 2-3 days 

with Cr supplementation and based on their individual responses separate their 

subjects into "responders" and "non-responders". Then after the 4-6 wk washout 

period include only the "responders" to Cr supplementation in their study. 

Experiment 4 was the first intervention study to show positive effects on muscle 

strength and muscle endurance in patients with COPD. However, additional 

more comprehensive experiments are needed to resolve the extent to which Cr 

supplementation may facilitate the rehabilitation and mortality of this patient 

group. Although the overall effect on body mass, muscle strength and muscle 

endurance were positive, we were not in a position to assess how quality of life 

was affected. A further, important observation that requires more attention is 

whether Cr supplementation in this patient group does indeed influence 

compliance with pulmonary rehabilitation and, if so, the extent to which this is a 

consequence of an increase in body mass or an increased ability to cope with the 
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training demands. Finally, the extent to which the disease process in COPD may 

influence Cr transport capacity also requires attention. 
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GENERAL CONCLUSIONS 

From this series of experiments a number of conclusions can be made. These 

conclusions apply specifically to the protocols applied in the present set of 

experiments. 

* From the results of all 4 experiments it can be concluded that short-term 

Cr supplementation significantly affects body mass and body 

composition, although the exact mechanism behind these observed 

increases are still under debate. 

* From the results of experiments 1 and 4 it can be concluded that short- 

term Cr supplementation is effective at increasing muscle strength and 

endurance probably due to increased resting [PCr] and/or increased rates 

of PCr resynthesis. 

9 From the results of experiment 4 it can be concluded that Cr 

supplementation was an effective strategy for increasing muscle strength 

and endurance to a significantly greater extent when combined with a 

pulmonary rehabilitation program than pulmonary rehabilitation alone. 
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* From the positive correlations found in experiments 1 -3 between 

estimated muscle Cr uptake and performance it can be concluded that the 

performance benefit obtained from Cr supplementation is very dependant 

on initial [PCr] and the level to which these are increased following Cr 

supplementation. 

e From the results on experiment 3 it can be concluded that exercise in the 

heat is not adversely affected by Cr supplementation and that the 

preliminary results on this experiment suggest a potential role for Cr 

supplementation during exercise in the heat, although much research is 

stiH required. 
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