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SUMMARY

To avoid the problems asscclated with specifying the exact
nature of the heat input from welding arcs, an analogue model is
proposcd which simulates the quasi-static thermal field produced
around the 1isothcrmal contour of the molten weld pool boundary during
the welding of thin plate. The deslign of an electrical analogue
based directly on Rosenthal's ecquation (1) governing the quasi-
static heat flow about a moving source is shown to be impractical
althcugh this approach identifles the physical significance of the two

parameter ratios é and %.

To overcome the difficulties :sociated with the direct analogue,
a sinple transformation of Rosenthal's equation is émployed and the
design of an indirect or @ field analogue of this transformed

>

equation 1s developed. The detazils of the construction and

commissioning of such an analogue are reported.

The application of this analogue to studying the quasi-static
thermal‘field is tested by comparing analogue predicted an&
experimentally measured temperature histories of points in the HAZ for
a range of autogenous TIG melt ﬁuns‘on thin mild stcel plate, I}Ihe
experimental results are obtained from a purpose built automatic welding
rig which incorporates a facility for determining the shape of the

molten weld pool during welding.

The results from these comparative tests show a good agreement
between predicted and measured temperature histories and the
application of the g field analogue to studying tﬁe thermal field

during welding is discussed.



CONTENTS

CHAPTER I

CHAPTER 2

CHAPTER 3

CHAPTER &4

CHAPTER 5

CHAPTER 6

Conclusion /

1.1)

1.2)

AR S
QO ~1 O\ £\ 1) 4=
Nt Nt agiil st S st s “aget?

ara
N -
St Nt it i

over

Introduction

Fundamental Considerations and
Background

The Pool-Shape Model

Properties of Rosenthal Fields
1-D Solutions '
A Discussion on Modal Characteristics

Direct Analogues

The Analogue Principle

Analogue Solutions of Rosenthal's
Point Source Model of Welding

Application of the Pool Shape Model

The Resistance Network Analogue

The Indirect Analogue

The Rosenthal Transformation and the
% Field

The Equivalent Resistance Network

The Conductive Sheet Analogue of the
g Field

Analogue Construction

Mk I Analogue Evaluation

Mk II Analogue: Design, Construction
and Evaluation

The Welding Test Rig: Design and
Construction '

Introduction

General Description

The Torch Carriage Assembly

The Powered Traverse

Welding Equipment

The Blow Out Valve Assembly

Temperature Measurement

Weld Test Procedure,

Test Results

Consistency Tests
Comparative Test Procedure
Results

Discussion

Page No.

10
11
1k

18
18
19

27

ks
k5

46
50

55

85
85
91
9.
o7

10

108
109
114
121

125



CONCLUSION

APPENDIX 1 Longitudinal Vibrations of Some
Variable Cross-Section Beams

APPENDIX 2 a) Thin Plates with Heat Loss by
Convection

b) ‘Tin Plates with Variable Thermal
Properties

LIST OF REFERENCES
LIST OF FIGURES and TAELES
LIST OF PILATES

LIST OF ENGINEERING DRAWINGS

Page No.
146

148
157
159

| 162
165
167
168



1.1)

CHAPTER I

INTRODUCTION

In an attempt to galn a more fundamental understanding of the
welding process and of its effect on the parent metal, a
considerable effort has been devoted to studying the thermal field
in the parent metal during welding. The temperature distribution
in the welded material 1s one intensive property of the system
which can be measured and hence studied. It is this change in
temperature which is a primary cause of the micro-structural
changes which can occur in the welded Joint. Since the
temperature effect is greatest in the region closest to the weld
itself, 1i.e. the heat affected zone (HAZ), and can give rise to
sevé;e problems of hardening and subsequent failure particularly in
the welding of high strength steels, it is of considerable
practical importance to be able to predict temperature histories in

the HAZ during welding.

This study concerns itself particularly with the thermal field
in the HAZ during welding and the techniques which are available

for predicting and studying this field.

Fundamental Considerations and Background

To study the heat flow during welding, 1t is necessary to
consider the transfer of energy from a highly locallsed moving
source, e.g. an electric arc, to the parent materiai and the
subsequent diffusion of this energy through the material. The

first significant attempt to model this process was made by



Rosenthal (l)* in a new classic paper. In this.model, the energy
source 1s conslidered to be concentrated in a point in three
dimensional (3-D) cases or a line in two dimensional (2-D) cases.
The resulting temperature distribution in the parent material is
then given by the solution to Fourier's equation of heat conduction
in an isotropic medium with constant properties. This has the

form

.9 '
vr - 25t (1.1)

where « is the thermal diffusivity of the parent material

(assumed constant).

-It is, however, an observable fact that, provided the welding
conditions and geometry remain constant, the temperature field
relative to the moving source quickly becomes constant after the
start of a weld. To account for this "quasi-stationary" effect,
Rosenthal defined néw co-ordinates with the origin at the source
and then considered that, with respect to these co-ordinates,
g% = 0, If the welding speed is v 1in the x-direction (see Fig. 1.1),
Fourier's equation, with this co-ordinate transformétion and
setting g% = O, becomes

2T

2 v .. : .
VT+°—(.5;-O (1.2)

In this work, this equation will be referred to as "Rosenthal's

equation” and any potential field distribution governed by this

equation will be termed a "Rosenthal field".

* Numbers in parenthesis refer to the list of references
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Using the point source model, Rosenthal produced analytical
solutions of equation 1.2 for various geometfies. A useful
simplification for the 2-D.ease of a single pass butt weld on thin
plate was made by Wells (2) who related the maximum width of any
isotherm to the welding heat input. Such analysis based on
Rosenthal's point source model was subsequently referred to in the.
literature as the "Rosenthal-Wells Theory". In a very useful
paper, Myers et al (3) compared the experimental results of a
number of researchers, notably Christensen et al (4), with the
Rosenthal-Wells Theory. Briefly, their findings were that the
theory gave reaSonable agreement at points beyond the HAZ and at
low to medium welding speeds. For points close to the molten zone
and at high welding speeds the theory proved to be inadequate. The
HAZ is, of course, the zone in which it 1s most necessary to have
an accurate knowledge of the thermal field. The reasons for thesg
discrepancies are to be found in the basic assumptions of the

Rosenthal-Wells Theory.

In his model of welding, Rosenthal made the following

assumptions:

1) the energy source is concentrated in a point (or line) and
there are no other sources
i1) the parent material experiences no change of phase and its
thermal properties (i.e. thermal conductivity, specific
heat and density) remain constant with temperature.
111) quasi-static conditions exist i.e., the temperature
distribution with respect to the source remains constant.

iv) /over



iv)  the conducting medium is infinitely large,

However, as has been suggested (3) the Justification for these
assumptions is not that they are representative of actual welding
conditions but that they make it possible to find analytical
solutions for the equations. In fact, the major deficiences in the
model are contained in the first two assumptions. In practice,
welding arcs are somewhat diffuse and although the physics of the
arc is not completely understood, experimental evidence (5,6)
suggests that the heat input to the workpiece in many arc processes
passes through an area approximately the same as the surface area
of the molten pool. While, as Yells (2) correctly says, "the
remote temperature distribution may be independent of the purely
local distribution of the source", the temverature distribution in

the HAZ will certainly depend on the diffuse nature of the source.

Furthermore, since the energy transferred by the are to the
workpiece cannot be measured directly, nor is it simply related to
the are voltage and current, an estimate of "arc efficiency"™ has to
be made. It has been’the accepted practice to define this L |
efficiency as the ratio of the heat input to the weld to fhe _uﬁ
"available energy" at the electrode 1.e. the volt-amps supplied
to the electrode. To obtain estimates of the heat input to the
weld; various calorimetric techniques have been used (4,5,7).
Unfortunately, not only does the arc efficiency thus defined vary
for different welding vrocesses as may be expected, it is also a
function of other welding variables e.g. arc height, welding

speed, oroperties of the parent materlal etc. which are determined

for a particular weld, not Just the type of weld.



The behaviour of the arc is also demendent on the diffusion of
parent metal ions from the molten.pool into the arc stream (6).
This diffusion 1s obviously dependent upon the surface temperature
of the molten vool, The calorimetric techniaques typically require
the continuous cooling of the parent metal which inevitably reduces
the molten pool temperature if, indeed, any melting takes place at
all. Thus, arc efficiencies estimated using such methods are not

representative of arcs found in actual welding practice.

Ry definition, the wel&ing process also involves the melting
and re-solidification of the parent material, The Rosenthal-Wells
Theory takes no account of this and it 1is, therefore, not surprising
that the shape of the melting point 1sothérm predicted by theory
bears little relation to molten pool shapes experienced in practice
(5,8,9). 1Indeed, there is some experimental evidence (10,11) that
indicates that the factors affecting pool shape are equally as

complex as those influencing arc heat transfer.

1.2) The Pool-Shape Model
Recognising these complexities, Apps and Milner (9) suggested

that a more successful approach to predicting the thermal field.
particularly in the HAZ, may be made if the energy source were
considered to be the molten pool itself. There are very
significant advantages in adopting this approach, If it is

~ assumed that all the energy transferred from the arc passes into the
molten pool, then the thermal field in the surrounding material must
be governed by the conduction of heat through the pool boundary into
the surrounding solid material. Therefore, the necessity for
accounting for both the heat transfer from the arc and the inter-

actions in the molten pool would be removed. Furthermore, as the



shape of molten pool can be determined experlmentally (5.9} and as
the molten/solid interface at the pool boundary is at the melting
point of the material, the pool boundary provides a mathematically

definable boundary condition.

Thié approach was not further pursued until Tanbakuchi (12)
produced finite difference solutions of Rosenthal's equation,
modified tc account for the variation in thermal properties with
temperature, with the pool boundary as a defined boundary condition.
Tanbakuchi achﬁeved considerable success with this approach.iﬁ thét
he was able to predict temperature in the HAZ for thin plate much
more accurately than had been previous)y possible using Rosenthal- .
Wells Theory. (This refernece also includes aq“gxceilent survey of

.

the rclated literature up to 1967).

Since the dependence of the pool shape on the welding parameters
is not completely understood, if is not possible *to non—dimensionaiise
the pool shapes and the associated thermal.fieldg for a broad spectrum
of welding conditions as was possible with Rosenthal's point source
model., Using the pobl shape as the basis for the heat flow’ana1§§is
therefore’requires that the analysis be'repeétgg‘fdf eaéhrbbolvéhgbé
considered. This heéessity to repeat thé>éhéiysis‘fdr'éachrﬁool
shape d§és not, of coufse, invalidate théfbooigéhépe model or ihe
numericai analysis bﬁt it does make any sﬂéh héat flow investigation
expensive especially as the numerical anaiysis requires a large

memory steragc digital computer.

Tobovercome this drawback and to enable the advantaces of the
pool shape model to be more readily exploited, it was felt that there

might be a significant advantage in adopting an analogue rather than

-7 -



digital approach to the analysis. In studying, for example, the '
thermal fields assoclated with a large number of welds, it was felt

that any significant trends could be identified more readily and at

less cost using an analogue approach and that specific cases could

then be identified for a more detailed numerical analysis., In this

way, the pool shape model could be more generally apﬁlied and 1t§
inherent advantages fully exploited. By its nature, an analogue
approach might also be expected to promote a greater physical
understanding of the processes involved in the heat flow during /"6

.

welding.

The first attempt to employ analogue techniques to the stud& of
welding heat flow was made in 1973 by Boughton (13), working at the
British Welding Institute. To study the relation between weld
penetration and arc heat input, Boughton constru.ted a'simﬁlé
electrical network analogue of Fourier's equation. This was used to
predict the transient thermal processes occurring at the fusion front
of the weld pool, particularly at the start of a weld before quasi-
static conditions were reached. In this way, Boughton was able to
predict the heat input required to ensure uniform penetration at the
start of a weld. This was a remarkable result considering the
simplicity of his model. - Unfortunately, he was still unable to relate
overall pool geometry to the welding parameters and, consequently, it
was not possible using his analogue toc study, in any detall, the

thermal field in the HAZ, even assuming quasi-static conditicns,

'However, employing the pool shape model does, as already stated,
circumvent the problem of predicting pool geometry. Furthermore, for
quasi-static conditions, only a steady state analogue of Rosenthal's equatio

would be required. Analogue techniques for studying heat flow.



problems are already well established (14, 15), While these
techniques generally relate to laplacian fields 1i.e. fields
whose governing equation is given by

72T = 0 (103)

.

it was felt intuitively that, as the quasi-static Rosenthal field
is really only a particular case of Laplace's equation, it would be
possible to modify one of these techniques of Laplacian fields to
permit the analysis of Rosenthal fields and, hence, the analysis of

thermal fields during welding.

It was, therefore, decided to initiate a project to study the

viability of this alternative approach and, in particular, to

a) investigate the fundamental characteristics of Rosenthal fields

and how these relate to similar lLaplacian fields,

b) design and construct a 2-D analogue on which the curvilinear
shape of 2-D weld pools could be imposed as a boundary condition and

which would predict the thermal field in the surrounding material.

e) design and construct a welding facility to provide experimental
data on pool shapes and associated temperature histories in the HAZ
in order that a comparison might be made with analogue predicted temperatur

histories.,

These three obJectives and the conclusions drawn as a result of
their implementation comprise the subject matter of the following

‘chapters.



CHAPTER 2

PROPERTTES OF ROSENTHAT. FIELDS

It is of interest to study the nature of the solutions te
similar problems governed respectively by the equations of
Rosenthal and Fourier. The mathematics of Fourier's.equation is,
of course, extremely well documented and techniques for iis
solution readily available. Should 1t be possible to relate the
solutions of Rosenthal problems to those of similar Fourier problens,
then it would certainly be possible to relate the solutions of
auasi-static Rosenthal field problems to the solutions of
corresponding Laplacian fiéld problems (i.e. steady-state Fourier).
The most appropriate technique available for the solution of
Laplacian field problems could then be applied to the welding heat
flow problem which is basically governed by the guasi-statiec

Rosenthal equation 1.2,

However, since this discussion is intended to be general in
nature, the quasi-static condition will not be enforced 1.e. although
it does not rglate specifically to the welding problem, the tiﬁe- !

dependent form of Rosenthal's eapation

v' T _.1 ar -
v 'l' F e By gt B R ieuiar e £2.1)

will be considéred as more general cqmparisbns can then be made with

L3

Wourier's equation

.

o2 Y, C | .
v T = & ° ot \ (2.2)

For simplicity, the general solutiuns to linear bnundarv value p»oblena‘

will be obtained for the 1-“ forms of equatious .1 and 2.2.




2.1) The 1-D Sclutions

The 1-D form of equatlon 2.1 is simply

Pr o, y.aT _ 1.2 (2.3)
dx? « 90X ot 2t 3

This is a linear vartial differential eauation and vrovided any
boundary conditions are also linear, a general solution of equation

2.3 may be sought by separating the variables.
f*ssume that T(x,t) may be written as
T(x,t) = X(x}.nt) (2.4)
Substituting for T{x,t) in equation 2.3 and re-arranging gives

- | .
1 {9°x , v X 1 of
xﬁ[ | 'L] oanw) O

= -A°

where A is the separation constant.

This gives the separated equations

2 |
X v X 2
;;5 + o-(—, S; + A X(X) ]  0 ) (2-5)
and o g
£ . o%ar) - o (2.6)

‘

The solutions of equation 2.5 define the eigepyectprg};@@&?éﬁ
system and the values of A, '&éfinable when particular boundary
conditions are known,  are the corr-esponding'eigenvalﬁes. The

solutions of equation 2.5 are of the form

v
i L “‘x S . N I ST o
X(x) = e?‘ [ﬁcos)'x + %inb’x] | (2.7)

where A and B are undetermined constants and A is related to & by

A ’2 (=)

(2.8)




Since there are an infinite number of constants which can be
used 1n equation 2.7 and for it still to be a solution of
equation 2.5, the sum of all such solutions is also a solution.

The general solutlon may, therefore, be written as

5& x R
x(x} = e E (Ancos Ynx + B sin an) (2.9)
n=o

The corresponding solution to equation 2.6 is given by
Y 2
L(t) = _>_'Q'n e"“hnt
n=o
v\2 2
-d[éi(’) + xn] v

o
<“
=« (2.10)

n=0

where-th are constants determined by the initial conditions.

Combining equations 2.9 and 2.1C with equation 2.4 gives the

general solution

’ -:!.X / - X 2 “1.t
T(x,t) = e . Z(A cns)’ X + B s:lnX x)n-.e [2« +Y§]
n=o0 ' :
..(53) (x+ g.t) | gat
=e 2 (A cosY x+Bs:ln‘{ x). (2.11)

nuo

b
TR e

\ _
It should be appreciated that the constants A and Eh are

dependent on both the initial and boundary oonditions but the
coefficient V’ 1s dependent sole]v upon th; boundary conditions. )

L o
< 3

In a similar¢yay,(bonsiéér the 1-D fo}m’of Fourier's equation

- 12 -




Fro 1

5 2.5 ' (2.12)
X

Again, separating the variables by writing
T(x,t) = X(x).-(t) - (2.13)

and substituting in equation 2.12 yields, the separated equalions

2
EL% + ng(x) = 0 ! (2.14)
X
and
g2
%E" + o¥%n(t) = o (2.15)
where ¥ is the separation constant. The eigenvectors of this

system are then given by the general solution of equation 2.1k,

o0
f.e. X(x) = 2’ (AneosYnx + B sin )’nx) (2.16)

=0
where An and Bh are undetermined constants and the values of'f

are elgenvalues.

The solution of equation 2.15 is again glven by

AL 4
il

() Z-“- a” v (2.17)

SR S M >

where 0 are constants determined by the initial conditions.

J_gpmbin;ng quatipnsrg.l6”§n§ 2.17 and substituting in equgtidn
2:l3>yields‘the senergl solution of the Fourier system“ .

Tx,t) . Z (A cos¥ x4 B  8in ¥ x) e “Y S (2.18)"

Ao MR FEETI S PISIEEL S
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2.2) A Discussion on Modal Charéctepistics

A comparison can now be made with the solution for the
corresponding Rosenthal system given by equation 2.11. Provided
the same initial and boundary conditions apply to both systems, the

following points can be noted.

, i) There is a simple relationshop between the eigenvectors of

the two systems. If the eigenvector of the Fourier system is

given by Vh(x), then the corresponding eigenvector of the Rosenthal

system Rn(x) is given by
v : . 4
R(x) = &% . v (x) (2.19)

(c.f. equations 2.9 and 2.16).
This relationship is generally true irrespective of the particular

eigenvector (value of n) considered.

i1) A corresponding relationship exists between the eigen-
values of the two systems, If the eigenvalue of the Fourier
system is given by ‘{n, then the corresponding eigenvalue of the
Rosenthal system \n is given by
s @ O e

3 o

This relationship 1¥ also generally e’ 1m8€e€t1’ve of" tﬁi papticilar

elgenvalue (value of n) cerétdered, s R osdwngd L fate o

111) Althovgh the Beié'env;i&ls»“df the two systems are related but
different, the trigenometric coefficients 1, appearing in both
.solutions are identical provided the same bmmdary conditions apply
to both systems.  It.must be emphasised that, in itself, ¥ is an

‘elgenvalue only .of the: Fourder system., . i ..-:. -y




iv) Although it would appear that there ié a simple
relationship between the two solutions (equations 2,11 and 2.18),
this will not, in general, be true. For the same boundary and
initial conditions, the values of the constants A; and B; will be
different in the two solutions. Both these solutions are
mathematical expressions of the fact that, at any time, the
potential distribution T(x,t) is a linear combination of the
elgenvectors, Since the eigenvectors of the two systems are
different, their combination (defined byvA; and B;) to describe one
potential distribution (e.g. the initial condition) must also be
different. It is worth noting, however, that a relationship
between the values of A; and B; for the two systems will exist but
that it will be dependent upon the relationship between the

eigenvalues (and hence on n).

v) While the above discussion has been restricted to a 1-D»

analysis, these conclusions would apply equally to 2 and 3-D systems.

It would, therefore, seem thaf, while‘a‘relationship does exist
between potentlal distributions gov;rned by Rosenthal's qad,Fourien}s |
equation, this relationship is not simple _i.e,. there doeg.not. . . ..
appear to be any single factor or transformation whieh-.cap be applied
to a solution of Fourier's equation in.order to ehange it into
solution of Rosenthal's eauation fon,@hegSQgg kpumﬁzuw“cgpditions.

"bwever, 1t is very significant that the eigenvectors and
eigenvalues of the two systems are simple related. These modal

characteristics are the fundamental units of which a complete

solution is constructed. , Although this disoussion included, for

w7

N




generality, time dependence, the solutions to steady state problems
are, in meneral, a combination of the same eigenvectors in a similar
way. Now, it is obvious that the eigenvalues of a particular
system are dependent upon the basic governing equation and the
boundary conditions, If, in some way, the basic governing equation
was changed while keeping the boundary corditions constant, then the
eigenvalues of the system would also be changed accordingly. For
example, equation 2,12 defines Fcurier's eruation in a 1-D,
isotronic, homogencous medium, Tf the conductivity were allowed to
vary within the mediumv (i.e. noﬁ-homozeneous), the governing

eauation would become

K3 aT aT | '
3 [k(x). bx] e 5t _ (2.21)
where k(x) is the conductivity of the medium, e its density and
¢ 1ts specific heat, and the elgenvalues of this system would no
longer be defined by equation 2.16. The precise nature of the

eigenvalues would, of course, depend upon k(x).

Since: there is such a simple relationship between the
elgenvalues of the Rosenthal aﬂd Fourier systems, it is possiblevthat
a particular k(x) exists which would give equation 2.21 the same
form as Rosenthal's equation., The variable conduectivity Fouriei
system would thenrbe a direct,aﬁalogué,of the Rosenthal gyétém.

Such a k(x) does exist and the application of this analogue principle

to the welding problem is discussed in the next chapter,

Footnote , _ ‘
The preceding discussion raises another question of somé interest in




that it is not c¢learly understood how the eigenvectors of an
originally unlform system are affected when one of the properties
(e.g. conductivity) of that system is allowed to vary. This was
also investigated by the author in relation to the longitudinal

vibrations of some variable cross-section beams and is reported in

Appendix 1.




CHAPTFR 3

DIRECT ANALOGUES

3.1) The Analogue Principle

The equation governing the time dependent potential distribution in
an isotropic but non-homogeneous conducting medium can more

generally be written as
div k. grad T = Qec. aT (3.1)
ot

where 9 and ¢ are not necessarily constant. If the conductivity
k 1s a function of x alone, the above equation in Cartesian

co-ordinates reduces to

2 M3 1.7
VI+ g X x 2t (3.2)
where <><=-15c ‘ ‘ ' ’

Comparing this equation with the general form of Rosenthal's
‘equaticn (cquation 2.1) shows that the two equations have the same
form if end only if

. v
S;: = &- | (303)

ol i
2y

and provided « in equation 3.2 is ccenstant, The solution to

equation 3.3 is simply

. (3.1)

whare kO is an arbitrary constant.

Thus, the offect of moving axes in a homogeneous medium on the

form of the bucls povernine equatlon  (Ll.e. Rosenthal's co-ordinate



transformation of Fouricer's equation) is exactly equivalent to the
effect of an exponential variation in conductivity defined by

equation 3.4.

It should be noted that this equivalence is only complete if &
v
+=, X
in equation 3.2 1s constant 1i.e. pe = ¢ x o, For steady state

conditions, this further restriction is not required.

It 1s precisely this equivalence which indicates the
possibility of using a simple analogue to obtain solutions of
Rosenthal's eguation. The analogue would have equation 3.2 as its
governing equation (with stationary axes) with the analogue
conductivity varying in the exponential manner defined by equation

3.h,

It must also be emphasisced that although this analogue
principle has been developed for thermal diffusion, any potential
field governed by an equation similar to equation 3.2 could also
serve as an analogue provided the field property analogous to

conductivity could be varied in the same exponential manner.

3.2) ' Analogue Solutions of Rosenthal's Point Source Model of Welding

To illustrate how this principle may be émployed; 1ts
application to the heat flow in welding wili be discussed with
particular reference to the point source modei proposéd by
Rosenthal., Since the obJect of the prnject'was to étuﬁy 2-D fields,
only the 2-p form of Rosenthal's quasl-static equation will be

considered,

. 19 -




2

1.("3. c TI'I ) + a‘T v aT
St T3 gt = 0 (3.5)
A dy o dx

Rosenthal defined the source of hcat (in this case a line source) as
AT
qQ —> Enrk.s-r; as r—>o0
%
where r = (x2 + ya)“
Owing to the variety of materials which are welded, and the
corresponding variety of welding parameters, it is useful to non-

dimensionalise the independent variables in equation 3.5. This

can conveniently be achieved by introducing the non-dimensional

variables,

g = Si"x and Vo=

K<

.y

With these transformations equation 3.5 becomes

2 2
3T T T
SE R v 5 - O (3.6)

with the source re-defined as

T
$ — 2%R3E as R— 0 (3.7)
where R = (ﬁa + Vu2)§

Considering now»the principle developed above, it can readily
‘be shown that eqﬁation 3.6 is also the governing equatlicon for the
steady state potential distribution in an isotropic but non-
homogencous medium where the variation in conductivity is defiﬁed

by N
’ k = koe¢ ‘ (3.8)
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Iet it be accepted that a potentiél ficld having this variation
in conductivit& (or similar property) could be constructed.  Such
a fileld would then be an analogue of the welding heat flow problem
defined above and could be used to provide solutions of this
problem, Some aspects of the sclutions obtalnable from such an
analogue will now be considered with specific reference to‘the

point source model defined by Rosenthal.

Firstly, no specification has been made as to the type of
potential field (e.g. electric, magnetic, fluid, thermal, etec.) or
to the range and value of the analogue space variables.( These
are obviously determinable from practical considerations. For the
purpose of this discussion, however, the analogue space variables will
be considered identical to the variables # and V. It will also be
assumed that the analogue potential V (whatever it is) at any
point in the field can be readily measured and that the relation
between V and the welding heat flow temperature T has been
established. ‘ This relationship would be defined when the design
details of the analogue are determined but it would have the simple
form R

VvV = a.T (3.9

where a 1s a constant,

It will also be notlced that although the variation in
analogue conductivity must be defined by eauation 3.8, the actuél
value of ko appears to be arbitrary. It does, however, become

fixed once the location of the origin is declded,




Now, the potential distribution on the analogue field V(Z , )
is governed by

2 2
2V, v v _
gy}-é' + Wg + ad = 0 (3.10)

and the corresponding source condition must have the form
Q —> 27WR. 33 as R—»0 (3.11)
o
where @ is the strength of the analogue source., TFor the analogue
to represent exactly the heat flow problem, it is necessary that

the source conditions should also be made equivalent. Since

V = aT, substitution in equation 3.1l gives
Q np 2T o
ako ~——3 27TR aR as R—0

and comparison with the actual source condition fequation 3.7)

demands that

Q

ak
o

(3.12)

»lo

Since both g and k are known for particular welding conditions and
since k is fixed for a particular location of the origin on the
analogpue field and ‘'a' is defined as above, then the strength Q

of the analogue source is determined from equation 3 12.

A second boundary condition 1s, of course, necessary to completely
define the heat flow problem. Whatever its nature, however, it
could be related to a corresponding condition on thqjana;ogqe field

by a procedure similar to thc above.

Thus, the proplem can be readily set up on sﬁch*ﬁn‘unalbguo.



It now remalns to discuss how the potential distribution on the
analogue fleld could be interpreted in terms of the actual

+ . P PP I - - o~ P 4
Lempovralurs dlstribution,

Firstly, the analogue potential is directly proportional to

temperature, being defined by equation 3.9. Secondly, since

14

B = E.y_ and ’y/ = o—‘(’.y , the ratio ,;'(— acts as a scale factor

hetween the real and analogue flelds., Furthormore, if a solution
is desired to a problem having different values of %» and % ’

there is no necessity to re-determine the potential distribution
(always provided the second boundary condition remains the same).
A change in 5 .will only require a change in scaling. Re-writing

equation 3.12 as ° _ -

a = () (3.13)
R

it can be seen that if %Z is kept constant, 'a' is inversely
proportional to % and, hence, a change in % is simply
reflectedin a change in the relation between analogue potential

and temperature given by equation 3.9, Thus, such an analogue has
the interesting property that it will provide genera; solutions of
point source models subject only to the practical limitations of the
analogue, The interpretation of the general analogue solution for

particular values of v,x, q and k will, of course, produce unique

solutions as is required by potential theory.

Another point of interest arises from the fact that the chcice
of ko on the analogue is arbitrary. This implies that the origin
on the analogue can be chiosen with complete {reedom. That is, i

the origin is chosen 2t £ = P s y/ = 0, then the varlables must



be changed to @' = # - p, Y=Y, yvielding the samc governing

enuation as before, However, in this case, since

k%=ke¢
(o}

the variation in conductivity must be re-defined as
!
o 8
k = koe

where

k' = kep
(o] o

Tt must be emphasised, however, that the same potential
distribution would be obtained with the source situated at § = O
compared with # = p orovided the ratio '1%0 was the same in each
case, This merely emphasises the generality of the solutions

based on the point source model which this analogue could provide.

Tt is also interesting to note that the two parameters and

Yy
o
-E— can now be identified as having important significance to the heat
flow 1n welding. Since the ratio 5—‘: arises from the governing
equation 3;5, its importance remains fundamental whichever model of
welding heat input is selected as a source boundary condition.
Voraover, &Y has been shown to act as a scaling factor relating the

analogue space variables @, to the "real world" variables X, Y.

Since, for example, # = &!.x and hence

BT _ T ¥ v AT
ax | 38 "3x "'0('3?3 ’

will increase the thermal gradients

Ri<

increasing the value of

around the source, Since the ratio % arises from considerations

of the source boundary condition, it does not seem to have as

v
fundamental importance as the ratio Z. It has already been shown,



however, that the ratio % is related to the factor 'a'!' by equation
3.1%. Using this relation and substituting for ‘a' in equation 3.9

and re-arranging gilves

r o= @@

This implies that increasing the value of % will have the effect of

increasing the peak temperatures around the source.

It also seems to be important that these are the only
independent ratios which can be identified. This implies that, to
obtain the same temperature distribution in the welding of materials
of the same geometry under different conditions, it is only necessary

that the ratios é and % remain the same.

Tt should be noted that these findings are in agreement with the
expression developed by Wells (2) from Rosenthal's solution for a
1ine source moving with constant velocity in a wide plate of
uniform thickness. This relates the maximum width 'd' from the
weld centre line (g) of an isotherm T to the welding variables by the
expressiocn

@ = &rE + X§)
It can be scen from this that if % is kept constant,?hen for a
particular isotherm,

1
« 3

Ri<

1.0, 1ncreasing g will reduce the lsotherm width, Since this

will be truc of all the isotherms, an overall reduction in the

isotherm width must fmply an inerease in the thermal gradient.

It can also be sccn that if ‘% is kept constant, the effect of

~



increcasing % will be to ralse the temperaturc T at any width 4,

Expressing T in terms of d, the expression becomes

e (9ye — 1
T - ( k) 8 v a
el (§)
and it becomes evident that the same T-d relation will occur

provided the ratios (%) and Q%) are kept constant.



3,%3) Application to the Pool Shape lodel

In practice, however, the discussion in the preceding section
is only true in as much as the assumptiions made in developing the
original model are true. As has been discussed in the introduction,
the Rosenthal - Wells theory can only be applied with any écCuracy
to points sufficiently distant from the source where the temperature
field is no longer dependent upon the exact nature of the source. It
has been shown numerically by Pavelic and others (5, 12) that, for
points in the HAZ close to the source, the pool shape model proposed
by Apps and Milner predicts the temperature field with much greater
accuracy. Since this model basically depends on specifying a fixed
potential (i.e. the melting temperature) along a curvilinear boundary
(i.e. the molten pool boundary), it will be apﬁreciated that such a
constant potential boundary condition can readily be imposed on the
type of analogue discussed above, Since the.specification of this
boundary condition does not involve the thermal conductivity k of the
conducting medium or the heat input rate q, the equivalent equi-~
potential condition on the analogue must be independent of the
analogue conductivity k. This must imply that, on the analogue, any
point can be chosen for the origin (i.e. any*Valuewor‘kicanfbé‘chOSQh
tor ko), and consequently, the equipotential boundary defined by the
molten pool boundary can'be‘placed anywhere on the analogue field.
For boundary conditions of this type, therefore, the same potential
field distribution would result wherever the 'pool' was located 6n
the analogue and rno further interpretation of the analogue results
would be required (apart, of course, from the poteﬁtial/femperaturev

. . . . v,
reiation and the application of the appropriate scale factor ﬁx),
!



It would, therefore, appear that such an analogue, if constructed,
would be useful for the determination of the thermal field during

welding using the pool shape model.

In principle, any potential field whose governing equation has

the form
divk grad T = 0

and where "conductivity" k could be varied in the prescribed
exponential manner could be used as an analogue field. Electro-
conductive analogues, however, would be the most suitable for this
application, Not only can electrical conductivity be readily
defined and measured but all essential measurements (e.g. potential)
can be made easily and with high precision on electric fields. Of
the various electric field analogues which have been developed (1&,
15), the conductive sheet, electrolyti}c tank (both for 2-D
applications) and impedance network (fpr 2 and 3-b applications are
the three which lend- themselves most readily to a variztion in

conductivity.

Conductive sheet analogues are %sually homogeneous in
composition but the required variation in conducti#ity (6r.in;thié
case, "acceptivity™) could be achieved by a similar variation in
the thickness of the sheet. If the local thickneSS of the sheet is

t(x)} the governing eguation for the steady state potential

distribufion V{x, y) in such a sheet can be written as

MV s?V

R Latav |
axe v oaye toox EYIN) = 0

o

and if t = ¢ ex , this equation reduccs to the same form as equation
[v] .
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3.6 (i.e. non-dimensional form of Rosenthal's equation). While
this type of analogue would be suitable for 2-D applications, it would
be necessary to ensure the variation in thickness of the sheet dig
not result in a through thickness variation in potential. Subject

to this requirement, such an analogue could, for example, be
constructed by appropriately machining a slab of graphite and it

would have the advantage of providing a continuous analogue field,

The electrolytic tank would in a similar way also provide a
continuous analogue, with the depth of the electrolyte varying in
the same exponential manner, It would, however, suffer the same

restrictions as the conductive sheet.

Impedance networks are less direct analogues than either the
conductive sheet or the electrolytic tank as they are based on
finite difference approximations to the differential terms in the
" governing equation. They are, however, by far the most versatile
and since the variation in conductivity can be achieved by simp;y
varying the value of the resistive elements, they are the most
suitable for this application. The design of such a network
analogue for the quasi-static form of Rosenthal's equgtion is

outlined in the follewing section.



304) The Resistance Networx Analogue

Consider the non-dimensional form of Rogenthal's quasi-static

equation given by equation 3.6

ice. T 32 S S
Y A

If the field of interest governed by this equation is covered by a
uniformly square finite difference mesh of side h, then at anv node
i in the mesh, the differential terms in the above equation may be

approximated by the central difference expressions

2 2
3T 2°T 1 ,
g2t &—?\F = P ('1‘1 + Ty + 'l'3 + ’1‘4 - 4Ti)

and

AT 1
3y o (T3 = 1y)
where Tj is the temperature at the ith node and Tl, T2, T3' T4 are

the temperatures at each of the four surrounding nodes as shown
in Fig. 3.1, Substituting for the differential terms in . Rosenthal's

equation and re-arranging gives the difference equation

h h : _ . . \
T - - = .
T (1 -7/2) +m, 4 T5(?.>*’ /2) + 7, -4 = 0 (3.13)
Now econsider the corresponding e}ement of a résistance network

as shown in Fig. 3.2, If the voltage at the ith node is Vi, then

applying Kircnhoff's 1st lLaw at the ith node gives

"N
=



¥ -
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which on re-arranging becomes

Vv
b =2 4 4 V.(i + -% + 0 (3.14)

+
=l
p—

ti

Provided the voltage at any point in the network is simply
proportional to the temperature in the corresponding finite difference
mesh, then comparison of equations 3..13% and %.l14 showsthat the
resistance nelwork element can only be a model of the finitq difterence

element if

(i.e. no variation of resistance in the ¥ direction)

and

R. ,

o (1 - P/2) (1)
R,

ﬁ = 1+ B/2) (ii)
P

It willi be noticed. that the third of these condltlons 13 satlsfled

by the other two and that by dividing (1) by (11),

R ‘ . o : o .
2 - = - -G

If, as shown in Fig, 5.3,Hl is the value of cach ¢f the resistances

at the first node (i.e. 1 = 1) then, following the notation of Fig.



%.%3 it can readily be shown that at the ith node

)i—2

h
R. - R, (1L~ "/2
i1y = T

h i-1
R, _ R -"/2)
1 1[&1‘“.;“5%) (3.16)

l

)i—l

h
and R, _ R(L-y2)
l+1/2 1(1 + h§2)l

where Rl is arbitary.Equations 3.4 can now be used as the design

formulae for a resistance network analogue of Rosenthal's equation

3.6 .

In the development of equations 3.16,no0 use has been made of
the fact that the required variation in resistance \conductivity) is
known exactly. The required design formulae can, however, be
developed using this knowledge by a technique outlined by Vine (13)
and which is particularly‘applicable for the design of resis?anCe
networks where the mesh size is not uniform, This makes thﬁii
technique applicable for problems with irregularly shapea bdu;éaries

(e.g. the curvilinear shape of the weld pool bouqdary).

Y

As before, considefmfhéﬁfield subdivided by a network of lines
whose intersections define the fie13~poin£s which are to be
represented on the annlogue: (Fig. 3.4&). Vine further subdivides
the field into emall areas called cells (shown by the dotted lines)

auch that each cell contains one node and the field at that node is

taken to be repreuentative of the cell enclosing it,
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Now consider one cell Ci vhose area is Si enclosing the ith
node. This cell is surrounded by four other cells as shown in
Fig.3.4b, As has been shown, Rosenthal's equation 3,6 can be

written in the form
divk grad T = O
where k = k:oe¢

Integrating this equation over the area Si of the cell Ci gives

&\div kgrad T = 0

S,
i

Using the Divergence theorem this integral may be replaced by the

line integral

where n iu the outward pointing normal from Ci and Pi is the
periméter of the cell. Since the cell structure undervconsideration
is rectansular, the line integral around the perimeter may be

written as thevsum of fﬁe iﬁﬁegralsLalongréach of the sides &

Pj
(J = l’“ 14)

.
AT b o walap -
i.e. k &= P —f kiap = 0
BT § J
Py =1 =7

. . _ . AT - . . 4
An approximation for the gradient £~ can now be introduced by

weiting for side &p,
' o
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where hj is the separation of the ith and jth nodes.

Substituting for Qgg) in the ahove expression and integrating

yields
4
2 k(25 - 15) bpy = O (3.17)
J=1

where kj is the value of the conductivity at the intersection of the

cell boundary and the grid line connecting thée ith and jth nodes,

N.B  This same result could have been obtained by considering the
heat flow into the element from each of its neighbours and making

the same approximation for the gradient.

Comparison of equation 3.17 with equation 3.14 for the
resigtance network element shows that the values of the resistances

connecting the ith node are given by

R, = —-—J-— N 4 (3.18)

Since it is known that k = koe¢, then the values of kj at any
node i in the field can be determined and substituted in equation

3,18 to determine the best estimate for Rj'

To illustrate this, consider the case of a uniformly square

mesh such ihat hi = h for the whole field., The cell structure will

v

then be similarly squave and 5pj = n., Substituting for hj and Bpj



in the above equation yiclds

If the ith node corresponds to a point (¢i,yi)_in the field, then
-1 g -1
R, = (k(féi )] = ke

Following the notation of Fig. 3.3 the following equations

may be readily derived

Ri—1/2 - ngh\i-3/2)
R, = Rléh(i‘l) (3.19)
Risl/, = Rlzh(i—l/2)
where x; = h(i—l) and Rl = %; is arbiirary., These design formulae

are comparable with equations 3.16 which were derived without
employing the known variation in conductivity, It is useful to

compare the ratio R, R. for the two cases.
141/p /Ric1/

From equations 3,16,
Risly, (1-*22%

and from equations 3.19,

Hi+]{° -h

Hi-l/:_)

The latter expression is exactly what is required by the exponential



variation in conductivity and for a grid spacing of h, It is
evident, therefore, that there is an error in the resistance values
calculated using the central ditference approximations, The relative
error £ in the ratio Ri+1/é calculated by central differences can

be expressed as
) (1-h2§ h
t= TRy e -}

A plot of ¢ expressed as a percentage,against h is shown in fig.

3,5 and it should be noted that & - O as h-»0 as indeed it must.

It ig obvious trherefore from the above that the "cell™ approach
is to be preferred in deriving the design fromulae for the resistance
network analogue of Rosenthal's equation, Indeed, for the design of
a resistance network as an analogue of any field whose governing

equation can be written in the form
divk grad T = 0

the cell approach is to be recommended., It can readily be shown

that this includes all equations of the type

Y e f(x)vgg + gly) %% =0 ?; k (3.20)

in which case, the "conductivity" k(i;y) can be expressed as

k(x,y) = k _exp [ff(x)di + Jé(Y)d%}

where Ro is an arbitrary constant and f(x) and g(y) are arbitrary
functions of x and y respectively, The only restriction on f(x)

and #(y) is that they must be integrable at least in the required

Sy
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ranze of x and y.

It should also be noted that the "cell" approach provides a
useful alternative differcence approximation for this class of
equations, Consider for example the difference equation 3,17, Tor

a square mesh, this reduces to

L

Z kj(TJ - Ti) = 0

J=1
If the ith node corresponds to the point (ﬁi,ﬁf;) in the field then
+¢i
k<¢i) = koe

Fellowing the notation of Fig, 3.1 and substitu{ihﬂ the azpporpriate

<«

values for kj in the above difference equation gives

gi| e, — /2 '
koe \e (T)-T3) + (T4 Ty- 2T)) + e T9(7, Ti)} =0

which on re-arranging becomes

-h +h -h +h
e /2T1 +T, +e /ETB + T, - (e /2 +e /2 + 2)’1‘i = 0

Since this difference approximation embodies the exact variation in
conductivity, it ié a better approximation for the Rosenthal equation 3.6
than the difference equation.j.lj e;tablished using the standard

central difference approximations. It should be noted that the

numerical analysis of Tanbakuchi and Pavelic (12, 5) involved the

direct épplication of finite differences to Rosenthal's equation

(rodified to aliow for the non-linear variations in thermal propertizs with

temperature) and their analysis is, therefore, subject to the error

- k1 -



discussed above, While the relative importance of this error
diminishes with grid size (Fig. 3.5), it is, nevertheless, an error
which may be corrected by adopting thé above procedure to establish
the difference equations; Since this will generally be true of
difference approximations for the set of equations characterised by
equation 3.20, it is recommended that the cell approach be adopted to

establish the difference approximations for such equations,

For the particular application to the design of a resistance
network analogue of Rosenthal's equation, it is similarly evident that
the design formulae established~usihg the cell approach (equations 3.19)
are to be preferred. Due to the specific variation in resistance
values which would be required, a practical analogue would bLe constructed
of variable resistors (or potentiometers used as such) whose resistance
could be set to the value specified by the design formulae, A network
of commercially avaiiable standard resistors with preferred values
could be qesigned but of necessity this would involve a variable grid
spacling. The overall rangce of resistance values required would:depeﬁd'
upon the range of x in the."réal" field and upon the value of x.

To iilustrate this, considcf the application of sucﬁ ah ahang&é&to
study the temperature fleld arouﬂd a weld pool 2 cm. long, which is .
produced by the TIG welding of a thin steel plate.al.a speed oﬁ_‘ ,Q,'
0.4 em/s. The thermal diffusivity of can be,taken«as;0.675,pm?/s

and the temperature fleld has to be determined in a reglon not less

than three times the pool length in the direction ofywelding.

v o ” . . " g '
Since B =gx, Llhe recuired rance B on tie analogue is glven by

P o= o, A

K

S »2x3

0,073



Now the variation in resistance on the analogue is gilven by

-¢
R = Rye

and hence the required range in resistance R is given by

R = o - s.8861 x 10°

Thus, if the initial resistance value is chosen as ln., the

minimum required value at the other ehd of the analogue field

would be 8,89 M, It can be appreciated that this introduces a
serious restriction to the application of such an analogue to
welding problems, Assuming a practical limit of 10 Maon the range
of resistance, the range of ¢ is fixed at 16.1. For certain welding
conditicns (e.g.. high speed welding of low diffusivity materials),
this may be insufficient to permit a study of the temperature field
surrounding the weld pool., It should also be noted that in a
similar way, this rvles out completely the possibility of using a

variable thickness analogue for the welding problem,

Another disadvantage of the resistance mesh is that, since it
is by design a discrete approximation to a continuous system, there
are truncatién errors which are inherent in the analogue. Furthermore,
due to its discrete nature, it would be rather more ditficult, although

certainly not impossible, to set up the curvilinear shape o ;

pool boundary on a network analogue,

Wnile these restrictions are not-as signiv ‘apﬁﬁéé the required
variation in resistance, they do, nevertheless, detract from the
appeal of using a resistance network analogue for the welding

problem. It was for this reason that such an analogue was not

constructed although it certainly cculd have application to éert@@h;

v . i
welding problems (e,g. where ;-Sl). It was, however, felt that:

this study of direct analogues had



i) identified the resistance network analogue as a practical

analogue for the study of welding heat flow under certain conditions

and
ii) promoted a greater physical understanding of the heat flow
problem, The parameters ; and % were identified and given a

physical significance.

For these reasons it was decided to pursue the analogue approach
and to consider whether there existed a transformed version of
Rosenthal's equation for which a practicél analogue could be

constructed. This is considered in the following chapter.



CHAPTER &
TE_TNDTRRCT. ANALOGUE

It is evident {rom the preceding chapter that the very large
variation in analogue "conductivity" required for the study of welding
heat flow is the major drawback to the design of a practical direct
analogue. Not even a change of seven orders of magnitude, as can
be achiieved wlith the resilstance network, is entirely suffieient for
such a study. Thais chapter discusses how a simple transfeormation
of the dependent variable in Rosenthal's cquation yields a
transformed field equation with the exponential variation effectively
removed, Both the design and the construction éf practical

analogues of this transformed equation are discussed.

4.1) The Rosenthal Transformation and the ¢ Field

Conslder again the 2-D quasi-static form of Rosenthal}s
equation 3.5

2 >

il.e. -ﬁég + ﬁ;g + 2 2T = 0
Ax” dy < dx

As & first step In his analysis Rosenthal transformed the dependent

variable T(x,y) by writing

\Y
—-;'5-5‘-. X

T(x,y) = e #(x,y) o (4.1)

Making this transformation in cquation 2.7°5 glves



or ‘79¢ _ ("X,)pﬁ = 0 (4.2)

2%

The above transformation (cquation 4,1) will be termed the
"Rosenthal transformation" and the resulting transformed
Rosenthal cquation 4,2 will be termed the "¢ equation". The
reglon of space governed by the @ equation will be termed the

"g field".

Returning to the conductivity analogy, it can be seen that the
effect of the Rosenthal transformation on'the Rosenthal field 1s to
change its character from the non-homogencous (exponential variation
in conductivity) condition to the homogeneous (constant conductivity)
@ field. A comparison of the @ eauation with Laplace's equation
indicates that the @ field is essentially Laplacian in character
but with "leakage" proportional to the @ potential at every point

in the ficld.

Therefore, since the @ fileld is essentially homogeneous, an
analogue of the @ field would not suffer from the same disadvantages
as the direct analogues of the Rosenthal field. Such..an analogue
would, however, have to account for the "lcakage" term in the @

equation,

4,2) 'The Equivalent Resistance Network
To discover how an electrical aralopue of the ¥ field may be
constructed, a simple resistance network analogue of the ¢ cquation

h,?” will be dovelomsd.



Following thc procedure of the previous chapter, consider the
reglon of interest in the @ field covered by a uniformly square
finite difference mesh of side h. Applying the standard central
difference approximation for V2¢ to equation 4.2 and, following
the notation of Fig. 4.la yields for the ith node of the mesh the

difference equation

L
S - glie @0 - o (4.3)

J=1

Now consider the corresponding element of a resistance network as
shown in Fig. 4.1b. It will be noticed that unlike the resistance
clement, for the direcct analogue, the four resistors R radiating
from the ith node are all equal in value and that there is a fifth
resistor Ri connected between the ith node and earth. It is this

resistor which provides the "leakage" discussed above.

If the voltage at the ith node is Vi and at each of the four
surrounding nodes VJ (J =1, ...4) then applying Kirchhoff's 1lst

law at the ith node gives

Xl:Yi . V2-Vi_+ V",)--V1 +»vh'vi _ Xl - o
R R " R R Ri
which on re-arranging becomes
L
S v - v [h+ 5] - 0 (4.4)
| J i Ri . . .
J=1

Comparlison with cauation 4,3 shows that for the resistance network

to bz an analogue of the A ricld then it 1s necessary that
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= hv,2

% Gz (k.5)

i
This is the required design formula for the @ ficld analogue. It
will be noticed that in thils case there is only one design formula
(compared with three for the "direct" network analogue) since the
¢ field is homogeneous i.e. the value of R is constant throughout
the fileld. The purpose of Ri is, of coursc, to allow thc necessary

"leakage" current, characteristic of the @ field.

If a suitably small and "ideal" value for the grid spacing h
is selected, then 1t can be seen from equation 4.5 that for each
different value of é%, there would be a corrcspondingly different
value of %1. In practice, however, only one analogue with a
fixed value of %i would be used to study various problems with

different values of -, Re-arranging equation 4.5

i.e. h = (g%),/g;

it can be seen that the distance of real space represented by the'grid

Ri<

spacing h will vary with ;%. Thus, in a similar way to the di?éé%
analogues, the results from a @ field analogue would fé&uirev
"scaling" for different values of ‘5. The choice of ‘gi would be
a compromise to give recasonable values of the grid spacing h for the

range ofti to be considered.

This establishes the basic design concept for a simple @ field
analogue, Since the exponential term has been effectivelv
"removed”" ‘rom the @ fiold‘by the Rosenthal tronsformation, such an
analogue would not suffer from the restrictions imposed by the

variable conductivity of the dircet analogpuces discussed previously,



4,%)  The Conducllve Sheet Analosue of the @ Field

As has been indicated, the @ field, because of its homogeneous
nature, is closely linked to the lLaplaclan field. A most useful
electrlcal analoguc of 2-D Laplacian ficlds is the plane conducting
sheet (c.g. "Teledeltos" paper). It is further shown in the
previous section that the lcakage characteristic of the @ field can
be modclled by making resistive connections from each node to earth.
This sugeests that a useful alternative to the resistance network
analogue of the @ field would be a plane conducting sheet of
uniform resistivity with a number of resistive connections between
t he sheet and earth. In this way, the sheet itself would model the
Laplacian part of the @ equation and the resistive connections would

provide for the necessary leakage currents to complete the analogue.

To establish the design formula for such an analogue, consider
a plane conducting sheet of uniform thickness as shown in Fig. h.2a.‘
A potential V(x,y) exists in the sheet as a result of boundary
conditions imposed at its edges. A distributed leakage current of
i A/unit avea is extracted from the sheet, For continuity across
any infinitcsimal element of the sheet, there must exist a current

A
o %,

balance such that

1x§y + inx = (ix+ %;3. 5$)§y + (1y+ §;I.Qy)dx + 18xdy

where ix and iy are the current densities in the x and y directions

respectively. (See Fig. h.2b),

On re-arrangcing this reduces to

31.! aiv

Sx‘““' + W‘ + 1 = 0} N B | \ ..







Now, if pti. {5 the resistance per square of the sheet (i.e. the
resistance between two opposite edges of any squarc of the sheet)

then

A P\
X

. .1
X e.é and i = Q.3Y

Substituting for ix and iy in the continuity equation yields

S ,1 oV o (1 3V
3% (Q. 3__—)() + 3} (e. -g;) - 1 = 0

Providing the resistance per square of the sheet is uniform

(i.e. the sheet is homogeneous) this reduces to

2
Ix

Vv
<
4\)

éye - (’1

|

+

"
(@

(.6)

n
Q/

If V(x,y) 1s measured with respeet to some arbitrary 'earth'
potential and the distributed leakage current density 1(x,y) is
approximated by making a resistive connection from each element

of the sheet to earth then

where RJL 1is the value of the resistance between each sheet

element and carth as shown in Fig. 4.3,
Substituting for 1 in the above equation 4.6 gives
¥ v '

5+ -
dx d },"’Q R(SXSy

<

|

Now, if the resistors are arranged in a square mesh of side h with
respiet to the shest, then the equation may be written as '

A

3 vV bﬁ‘v" QV : .
S S (.7)
dx dy-’ Rh
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Comparison of this equation with the # cquation 4.2, shows that,
for the conductive shcet with resistive connections to be an

analoguc of the @ field,

e

= =

hV)p
R

o (4.8)

This is the required design formula for the conductive sheet
analogue and i1s comparable with equation 4.5 for the resistance
network analogue. The discussion on the application of

equation 4,5 applies in a similar way to equation 4.8.

It can be appreciated that the conductive sheet analogue
should at least be as good an approximation to the @ field as the
resistance network. Although the accuracy of the sheet analogue
is still dependent upon the resistor spacing h, the Laplacian

component should, at least in theory, be modelled exactly.

There 1s, however, a more obvious advantage to the conductive
sheet analogue, The study of the welding problem involves setting
the pool shape a3 a boundary condition on the analogue, Such a
curvillinear boundary can more readily be imposed on the conﬁinuous
surface of the conductive sheet thsn on the discrete no§al cqp§truction

of the resistance network.

Thus. an analogue of the @ field is not only free from the
restrictions of the direct analogue, but iie advantages of a
contlinuous fleld analopue can also be cmployed. The required
transformation "rom the Rosenthal field to the @ field obtained

from cquation 4.l as

Blx.y) = ¢ Tr,y) )



can recadily be appllcd to the isothermal pool shape boundary and
its transform applied to the conductive sheet analogue. Although
the transform will, of course, no longer be an equipotcntial, a
variable potential boundary can be easily handled on an electrical
analogue. Having obtained the required @ field distribution, the
transform required to relate #(x,y) to the temperature field
T(x,y) is given directly by equation k.1, This inevitably
involves some computation, but this can be handled manually with
the use of tables of the exponential function (15) and /or a small

calculator.

For these reasons, the conductive sheet analogue of the
@ field is an attractive concept for the analysis of welding heat
flow. The construction of such an analogue, employing equation

4.8 as the design criterion, is reported in the following section.

4

4.4)  Analogpue Construction

R
T

As discussed in the previous section, the. concept of a =

@ field analogue is based on a homogeneous conducting sheet with

resistive connections, Various conduct;pg,sbeet,ggg;ogues have
. ot T B AL Libe SN DI

been developed (13%,14) and used to provide solutions of

Saevee, e g el

Laplacian ficld problems, For the following reasons, the most
comnonly uscd is graphitised paper or "Teledeltos";
1) 1ts resistance per square is‘compatibla w1§h accupapg

measurements of potenilal using standavd instruments,

11) .1t 18 ossentindly homopeneoud and isotropic althoughy .

1ike all prper and mosl rdlledmateriaie, it ¥a - slightl yanisotyopic



the resistance per square in the direction of the roll being somewhat

greater than in the across roll direction (see Table 4.2)

-
o

Yo, R L
111) it 1s easily shaped (i.e. cut with scissors)
iv) connections and boundaries can easily be made on the paper
using conducting paint (usually a suspension of silver in a

volatile solvent).

Since it is also reasily available commercially, it is the

obvious choice of conductive sheet for this application.

It has also been appreciated for some time that it is possible
to adapt conducting sheet analogues to solve non-laplacian field
problems, In particular, Simmons (17) describes how P&issonian
type field problems in heat conductionhmay be analysed if current is
passed through an array of resistors to a Teledeltos sheet, In this
way, uniform generation of heat within a conducting medium may be '
simulated. While éimhons apparently did not consider the possibility
of-extracting current from the sheet to simulate heat loss from the
surface of a condﬁcting medium (which, as is shown in Appendix 2a, may
se simbly a f fleld) there is little difference in principle and he did
establish the method by which simple and reliable connections between

an array of resistors and a Teledeltos sheet may be made,

To test whether the principle of extracting current from a Teledeltos
sheet would be suitable for the § field application, a triﬁl model was
constructed, The design of the Mk I analogue allowed for a rectangular
| field of dimensions 175 x 250 mm., A typical section through the analogue
. {s shown in Fig. 4.4 The resistors, with wirgs trimmed to suit were
located in a square pattern in holes drilled into the Tufnol block.
The resistor spacing was 12.5 + 0.5 mm and they were held securely ﬁy

the clamping plate screwed to the bottom surface of the block. The lower

ends of the resistors were soldered to copper wires interconnected to form
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a common grid conneetion to all the resistors, ™his is shown in
Plate k,1. The upper ends of the reslstors, projecting 2mm above the
top surface of’ the block were connected to the paper by small spots
of silver conducting paint as shown in Plate L.2. These connections
were made by passing a small loop of fine wire, holding a drop of
silver paint, over the top of the projecting resistor wire and
depositing the drop on the paper. (This technigue, similar to that
used by Simmors, has proved to be qulte successful in practice).

The details of the electrical components are given in Table L.1.

The resistor value of 2.2 kn was selected as it is compatible

with the resistance/square of Anaplot paper. This was estimated

by measuring the lengthwise resistance of 250 x 25mm strips of the
paper cut in the "in roll" and "across roll" directions. The
measured value was then divided by 10 to get the resistance/square.
An Avo Universal Bridge (type B 150 manufactured by Avo Ltd.) was
used to measure the resistance, The results are given in Table 4.2,
Fach quoted value is the average of four tests. The results show a
considerable range between rolls although it was found that the

quoted values were quite consistent within each roll.

. 5) Mic T Analopue BEvaluation

To test the accuracy of the Mk I analeogue, it was used to
predict the solution to a simple 1-D problem, This was then

compared with the analytical solutlion for the same problem,

From equation 4.7, the 1-D analozue equation is glven by

LR Sl ot (4.10)




COMPONENT

DESCRIPTION

MANUFACTURER/SUPPLIER

RESISTORS

2.2 £ 2% k&, 0.,5W, THICK FILM

R.S. COMPONENTS LIMITED

GRID WIRE

18 GAUGE TINNED COPPER WIRE

R.S. COMPONENTS LIMITED

CONDUCTING
PAPER

"ANAPLOT'" PAPER (TELEDELTOS TYPE
SPECIFICALLY FOR ANALOGUE WORK)

SENSITISED COATINGS LIMITED |

SILVER PAINT

ELECTRICALLY CONDUCTING

SENSITISED COATINGS LIMITED

TABLE 4.1 MAIN ELECTRICAL COMPONENTS

ROLL NO.




PLATE 4.1 MKI ANALOGUE GRID CONNECTION /
PLATE 4.2 DETAIL OF MKI ANALOGUE FIELD
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and the boundary conditions sclected were

at

To set up this problem on the analogue, two parallel strips
of silver paint were applied to the Anaplot paper. To provide a
suitable range of x, the full width of the field was used. Since

there were fifteen resistors across the width of the field,

4 = 1kh

where h 1is the analogue spacing.

To ensure that the field between the strips was 1-, the strips
were applied along the full length of the analogue. The

experimental arrangement is shown in Fig. 4.5.

The two strips were connected (with wires stapled to the paper

1

and coated with silver naint) across the terminals of a regulated

™C supply (Multiree 731, manufactured by'Weir Electronics de.).

leakage currents from the paper.' Ihe power aupply ua et to g Ve

an outout of 10,00V DC (i.e, Y~ = 10 OO\'r

(type TM 1450, manufactured by °olartron‘Ltd ) was uaed to make

potential mcasurements between a pnobe he]d 1n contacb with th;

analogue fileld and zero. Measuraments were nmde at Odch e

point Iying in a p:rpendicular between thc two beuﬁdaries

0

This: was
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experimental arrangement 1s shown in Plate 4.3,

For this test, paper from roll 1 was used with the "in roll"

direction corresponding to the x direction. Thus from Table 4.2,

It can readily be shown that the analytic solution of equation'

4,10 with the above boundary conditions is given by

o é— = |
o el omh[ R(1h-x) ] (b.11)

sinh [ /%. 1]

For the value of % quoted above, this theoretical distribution is

shown in Fig. 4.6 compared with the experimentally derived curve,
The experimental value used at each 'x' is the average value of the
measurements made at each of the five sections along the length of
field. While the two curves show a good agreement in form, there 18,
in fact, a consistent divergence with increasing x. Due to the
small values of potential involved at x> 7, this is not clearly
shown in Fig. 4.6 but is evident if the same curves are plotted
logarithmically as shown in Fig. 4.7. It is evident from this
divergence and from the general similarity in nature of the two
curves that the value of %ilmwd in the theoretical calculation is
too large. In using the quoted value of € it is assumed that the
conneetion of the resistors to the paper haé no effect on the
resictance per square of the paper. Tis is somewhat unrealistic

as the finite area of each spot of silver paint, although smally

kas the effect of reducing the resistance of the paper betwern each










.30

0oy

90

&0

40

’.0»

X MEAN EXPERIMENTAL VALUVES

THEORETICAL CURVE FOKR
/ MEASURED VALUE OF $/p

S o
G Yy N a0

\/

SR W g
bsoys'é‘"ﬁﬁéﬂyh
iR

ANALOGUE DISTANCE X

FiG L6 MET ANALOGLE EVALUATION




05

00" X MEAN EXPERIMENTRL YALUES

.054
301 THEORETICAL CURVE
S0 o — [0 FSTIMATED VALUE
Q oF C/p
R
Bl .
~dl-7-51
THEORETICAL CURVE—"_
FOR MEASURED VALVE
a0 o
-25

-

- ‘s 2 i 4
7 3 s g 0 11 17 1; —pwa.

&
ANALOGUE_DISTANCE x

© i 2 ]

FI6LF MET ANALQGUE ENMLUATION



connection and hence of reducing the effective resistance per

square. To obtain an estimate of the effective value of % A
the following procedure was adopted.
Xy

Consider the central difference approximation for <T-x

ox
applied to equation 4,10, If the node spacing is also h and V1
and V,, are the potentials at the nodes "above" and "below" the ith

node respectively, then equation 4.10 becomes

1 Q
hg(Vl ¥ Vo = 2] im S 0
On re-arranging this gives
Q Vo e A
R = 5 (4.12)
i

By substituting the experimental values for Vl and Vé alt each node
1 in equation 4.12, values for % throughout the field were

obtained. The distribution of these values about the arithmetic
mean value of 0.403%3 is shown in Fig. 4.8. The theorctical curve

using this value of Q}-i is also shown in Fig. 4.7.

The results showed an excellent agreement between the

experimental points and the theoretical curve plotted for the estimated

{ro

value of = For most of the results plotted the deviation of the

=

experimental values ﬁas less than 5%, only one value deviating by more
than 10% from the theoretical value. This indicated that the above
technique for estimating the analogue faclor ﬁ is extremely

vseful despite its approximate nature. It also ahowed‘that the

analogue fleld was a good model of equation &,10 (i.0. a @ equation).

Comparison of the results for cach section showed thal the analogue o
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was substantially 1-D, the largest deviation from the mean value

at any value of X being less than 1?_%.~ The largest deviations were
invariably found at either sections 1 and 5 (see Fig. 4.5), these
being subject to edge effects. This is shown in the equipotential
lplot in Fig. 4.9. The equipotential 1ines were plotted using an
Alpha PR Field Plotter manufactured by Qensitised Coatings Ltd.

This device detected the null-point when the probe potential balanced
a pre-sel potential and caused a spark to pass belween the probe
tip and the paper leaving a small mark on the paper. By varying
the pre-set potential, equipotential lines were plotted on the
paper. The analogue field connected to the plotter is shovn in

Plate 4.4,

It was not, however, possible to use the plotter for actual
measurements as it had insufficient resolution at potentials less
than 1% of the maximum potential. while this is normally sufficient
for most applications, in the case just described, approximately

half the field lay within this range.

This highlighted one disadvantage of the Mk I analogue. While
very good agreement with theory was obtained for readfngs down to
0.1% of the maximum potential and reasonable agreement (i.e. within
12%) down to 0.05%, it was felt that this was exceeding the

resolution which could be reascnably expected of the analogue design.

Before considering the application of the analogue to the
welding problem, it was, therefore, decided to construct a sceond
analogue on a simllar principle but with a reduced value of %} in

an attempt to ovércome L fo gifficulty.
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PLATE 4.4 MK1 ANALOGUE CONNECTED TO ALPHA PR PLOTTER
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4,6) Mk II Analogue : Design, Construction and Evaluation

Design

—————ie

The application of the conductive sheet, @ field analogue to
the welding problem was discussed in general terms in section 4.3,
There are, however, certain specifications which are required in the

design of a @ field analogue for this application.

For the welding problem, the shape of the weld pool goundary
would be painted onto the analogue with silver paint. Account would
have to be taken of the required variation in potential along the
length of the "pool" on the analogue (see section 4.3).

Measurements of analogue potential would then be made in the
immediate vicinity of the "pool" to correspond with the HAZ of the

actual weld.

It is, therefore, necessary that the analogue spacing h as
determined by the design formula (equation 4.8) should be such that
the weld pools can be suitably accommodated on the analogue field,

That is, for a fixed value of the distance of real space

¢
R!
represented by the resistor spacing will vary with 5. Thus, the

value of

ol &4

rust be selected to correspond with the welding

parameters Lo be considered.,

In order to make meaningful predictions of the thermal field in

the HAZ, 1t is also nocessary thab the resulred polentlial measurements

in the corrzsponding analogue region should be as accurate as
possibie. Since this would be a region of large putential grad
"

(being in the viginity off the high potentlial paoi" boundary),

Jimiting factor on this accuracy is not thic accuracy of the |




measuring instrument, but the resolution of the analogue field
itself. From the discussion on the resolution of the Mk I
analogue in the previous section, this would indicate that the

selected value of % should be as small as possible.

As discussed in the next chapter, it was decided to restrict
the study to the single pass, full penetration welding of thin mild
steel plate using the Tungsten Inert Gas (TIC) process. For this
purpose, a special welding rig was constructed to provide the
necessary data for analogue analysis, For the purposes of this
discussion, however, the relevant data is the range of available
welding speeds v. The rig design allowed for 0.0k <v< 0.k cm/s.
However, for the welding of %" (3.2 mm) thick, mild steel plate
used in the tests, speeds of less than 0.1 cm/s were not encountered.
Using the value of X = 0.075 cme/s for mild steel quoted by previous
investigators (4,9) and substituting in the design formula
(equation 4.8) gave the range of analogue spacing h 1in terms of

‘ﬁ-

1.e. 0.375@ Lo 41.5/% em (4.13)

t

It sheuld be noted that the smallest value of h occurs at the

highest welding speed and conversely.

To keep the value of as low as possible, it was decided to

R
use paper from Roll 1 (see Table 4.2) which had the lowest value of
resistance/square and to select the resistance value of R = 7.5 kdb.
on the same resistor spacing of 12,5 mm as the Mk I analogue.

Althoushi, as shown in the previous section, the actual value of e,,

{s dependont upon the sllver paint connections between the papcpwﬁmi




the resistors, the resulting range of the analogue spacing h can
be estimated by assuming f’: 1.0 k£ per square. Substituting for

these values of @ and R in 4.13 gives
0.1k < h <0.55 ecm

This range of h was found to be compatible with the pool sizes

obtained from experiment (see Chapter 6).

Construction

This provided the necessary data for the construction of the
Mk II analogue. The same overall field size of 175 x 250 mm was
used but, to increase the analogue resolution in the region
sur~ounding the pool boundary, it was decided to reduce the resistor
spacing over this region by a factor of 2 i.e. from 12.5 mm to
6.25mm. The location of resistors over the analogue field is
shown by crosses in Fig. 4.10. Since the pool shapes encountered
16 the tests proved to be essentially symmetric about the weld £ ,
the heat flow was also assumed tc be symmetric about the g_ .
For this reason, only half of the actual field was modelled by the
analogue and the resistor layout shown in Fig. 4,1C was designed for

_AB to correspond with the weld £.

For continuity over the analogue field, it can be seen from

equation 4.7 that

1
T g- = constant
he R
whero, In this case, h 1s the resistor spacing.

4

Assuming that for the zame sheet: of paper Q = constant then



b—sz9—]

LN0AYT JOLSISTY
J750TUNY I9W 30 F3in N GL7 J14

W@ NI SNOISNFWIG TIV

0 = = —— 051 ol o7 b

- —

o . 980608 entsesgl o gestielgs o @
® ®% e a0 e va Cceacses o®sr e g0t 2
® © 9 o e Se Psv e et el g *o a¢gw e Se g0 e 6. 8
oo-ootoo-oon.ooooao‘ooooone >
o o o * @ .-.cccoc-oo-.-.oooococo. [ ] e .o
-OO,OOOOODOOOCOQ'a.ac....o..
° ® Y . L oo-oo.onoootoooo.covu.-.o L] . L]
co‘ooc.vacoooctoooooooo-oo.
L] L L ] Y L] oo.oon000tov-cooocoo.‘.-‘ ® ' @
o...o-.aooo.-uancooovoooooo
e ° ? ® . .oo.o...oc.O.oooocooooooo L 3 K
. & % S e gl e » o s o
e o & 6 ¥ 9 o . 4 © & & @ e & ¢ =& e e .
e o ©® © o ® - B 8 W TR Tees SR RERY e PSS £
& & o % 8 e 0wl W e i e P BT ke e
& o ® s ¢ @ % @ 8 ¥ ¢ $0€ BT LN TR 2 e
& & B8 go@ By k& T 8 e ¥ F- 4 B @ b
L . ° ° . - ° - 3 5 ) . < e * ° [ - (] s L4 .
e = 3 ® ° ° ° « ° . ® . L ® - ® ° L] ° ® °
® o o ® e & & © & & L) s ® e ¢ & ® ¢ o )
) |
® Y ° ® ® ° ® Y Y ® ° e ™ ® ° ¢ ® é ? .L"‘lu

057 -+

T °



P — v

\W\ /'& ‘

"o S0

)\/\) | R ‘
PRSI

- h —|
1
|

— by b

ke b = h = bl
h =12-5 mm. ! o

FIG 111 RESISTOR SPACING SHOWING
TRANSITION REGION




it can be seen from Fig. 4,11 that

TR Y SC T

R 2 h
S

where RA is the resistance value over the coarse spacing and
Rs is the resistance value over the fine spacing. For R’£ = 7.5 kN,
the required value of R‘5 is therefore, 30 kn. A similar argument

gives the resistance value of 15 k.n in the transillon zone between

the coarse and fine regions.

Using these resistance values and following the layout and
spacings glven in Figs. 4.10 and L.11, the Mk II analogue was
constructed in a similar way to the Mk I. Due to availability of
the reguired values, + 2%, 0.5W metal oxide resistors (supplied by
RS Components Ltd.) were used. These were slightly larger than the
thick Tilm type used previously but they were located in the 1 cm
thick Tufnol block in a similar way as shown in Fig. 4.12. Instead
of securing the resistors with a clamping plate, however, they were
simply glued to the block using "Araldite" epoxy resin. The bottom
ends of the resistors were soldered to the commen grid as before.

The Tufnol block was mounﬁed on a wooden frame which served not only

to protect the analogue but also to provide a suitable backing board to whid
the paper could be secured. The electrical connections to the

boundaries were made by pinning wires to the palnted boundarics using
drawing pins pressed irmly into the board. A general view of the

Mk IT analogue field with an imposed pool boundary is sho&n in

Plate 4.5.

L
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Evaluation

The solution to the 1-D problem discussed in section 4.5 was

again used to evaluate the Mk II analogue and to estimate the
5 .

value of R

With reference to Fig. 4.10, a boundary was painted along edge
AB and set at + 10V with respect to the boundary painted along CD.
The electrical apparatus was identical with that used previously and
shown schematically in Fig. 4.5. Measurements of potential were
made at each of 15 equally spaced resistors 1lying on a perpendicular
between each boundary. This was repeated along each of six

sections along the length of the field.

The value of the field paramefer was estimated in the same way
as before and found to be 0.1327. Using this value, the theoretical
curve (equation 4,11) was plotted as shown in Pig. 8.13.. e
experimental points shown for comparison are the average of the
readings from the six sections at each value of x. For each point
consldered the % age deviation from the mean value for each of the
seotions considered was less than 108.  Invariably, the maximum
deviation from the mean occurred at elither of the extreme sectlons
which werc subject to edge eflects. With the exception of the two
lowest values (i.e. x = 12,13) the deviat;on of the mean
experimental values from ﬁhe theoretical curve was less than 6%,
This is chown more clearly in Lhc_logarithmic plot, Fig. 4,1k, and
demonstrates the good agreemont hetween the experimental polnts and

the theoretical curve.
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The results also indicated that there was no measurable effect

introduced by the transition region separating the coarse and fine
resistor spacing. The transition region occurs at 5 é X & 6 on
Fig. 4.3 and 4.14 and the smooth behaviour of the experimental
points on elther side of this region is evidence of the negligible
effect introduced by the transition region. This is also
demonstrated by the linearity of the equipotentials‘shown in

Pig. 4.15. This plot was again made usling the Alpha P.Rs Plotter

These results demonstrated the accuracy of the Mk II analogue
in solving a simple 1-D # field problem. It remained to test its
value in predicting the thermal field during welding. This is

discussed in Chapter 6.




CHAPTER 5

THE WRLDING TEST RIG 3 DESIGN AND CONSTRUCTION

5.1) Introduction

Having constructed and successfully tested a ¢ field analogue,
it remained to test its application to predicting the thermal field
in the HAZ during welding. To perform this test, a comparative
geries of experiments wes proposed as outlined in the block diagram

shown in Fige. 5.1

The shape of the weld pool from each test woulé be used, with
the appropriate transformation; as the boundary condition on the Mk
1I analogue. The resulting ¢ field would be plotted and, using
the inverse transformation, the corresponding thermal field in the
HAZ predicted. This result would then be compared with the temperature
measurements in the HAZ made directly during the welding test., The

welding tests were, therefore, reguired to provide data on
i) weld pool shape and associated welding conditions
ii) temperatures in the HAZ during welding.

For such tests to be realistic, it was evident that the welding
process should, asAFnr as possible, also comply with the constraints
and assumptiona made in the design and conatruction of the Mk 11
analogue. It was, however, felt tnat such constraints should not
involve a welding procedure that was too far removed from normal
welding practice. 192 meet these gsomewhat conflicting ideals, it was

necessary (hat
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i) the test welds be made at a constant speed along a straight
line so that Rosenthal's equation (equation 1.2) would govern the
quasi-static temperature distribution around the weld pool. (It was,
of course, not possible to enforce the further condition that the

thermal properties of the parent metal be independent of temperature)

ii) the weld pool (and hence the welding parameters) be
maintained constant during the weld. Any fluctuations in the pool
shape would introduce short term thermal transients in the parent

metal and would, therefore, invalidate the quasi-static assumption,

iii) single pass, full penetration welding of thin flat plate be
used to ensure that, as far as possible, the weld pool and, hence,

the surrounding thermal field was 2-D,

To fulfill condition i), it was decided that a semi-automatic
welding process should be used with the welding head mounted on a
motorised carriage designed to travel in a straight line at a

controlled speed.

To meet the controllability requirement of condition ii), a
continuous electric arc process was felt to be most suitable. In
fact, the non-consummable Tungsten Inert Gas (TIG) process was
sélected, using argon as the shielding gas. Since feed control
equipment was not readily available, it was further decided that
filler wire would riot be used. This did not present a serious
limitation since condition iii) restricted the teste to thin plate.

- Mild stcél was chosen for the parent metal as being cheap and readily
a&&ilable and a plate thickness of 1/8" (3.2 mm) selected as tuia

would provide ‘a reascnable gizeof weld pool while naintaining the



2D requirenent. Following the suggestion of Roberts and Wells
(18), the complete width of the plate was specified to be not less
than 20d, where d is themaximum width of the molten pool. The
length of the test plate was fixed by the traverse length of the

welding rig (see section 5.4).

The detailed desien of the welding rig, based on this

specification; is described in the following sections.,

5.2) General Description

The welding rig consisted basically of an argon-arc torch
mounted on a controlled speed linear traverse assembly. The welding
pover was supplied to the torch from a standard commercially
available power source. The traverse assembly was powéred by a
motor and gear box assembly and was mounted on a base plate supported
on a "Dexion" frame trolley. A plan view showing the arrangement

on the base piate is shown in Drawing 5.1% :

The test plate was clamped onto a set of raised studs sc?ewed
into the base plate as shown in Drawing S.z, View on A-A. The clamps
and studs were arranged symmetrically about the weld axis. The
distance hetween opposing clamps was 10em, so that any chilling effebt
which they had on the test plate did not signiticantly affect the

thermal field in the HAZ.

¥Engineering Drawings 5.1, H4¢ and 9.5 are enciosed at ‘the end of

s g




Mo record the temperature history of points in the HAZ during
welding, thermocouples were located in the test plate. The
thermocouple wires were passed, from the bottom surface of the test
plate, between the supporting studs and connected to a terminal block
mounted on the front panel of the trolley. The voltage output of the

thermocouples was recorded on a y-t chart recorder.

The welding arc was struck between the electrode of the torch
(cathode) and the test plate (anode)., The torch was then passed
along the length of the plate at constant speed. The progress of the
weld could be viewed through a window (made from high density, ultra
.violet filter glass) mounted on a screen hinged to the front of the

trolley.

A high velocity jet of argon from a nozzle mounted behind the
torch was used to eject the molten metal from the weld pool at a
predetermined point during a test weld. The shape of the resultant

hole' specified the molten pook boundary.

& panel on the front of the trolley housed all the equipment
necessary to control the progress of a weld, With a little practice,
the operator could maintain a visual inspection of a test weld
through the window, allowing him to make adjustments to the controls

as Necessary.

A general view of the power supply, érgon suéply and control
valves, chart recorder and welding trolley (with the screen in
position) ia shown in Plate 5.1, 'The same general view with the
gereen removed to show the arrangement of the welding equipment on

the trolley is wiven in Plate 5.2,
J \




PLATE 5.1 WELDING TEST RIG WITH SCREEN IN POSITION/
PLATE 5.2 WELDING TEST RIG WITH SCREEN REMOVED
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5¢3 The Torch Carriage assembly

A detail of this assembly is shown in Drawing 5.¢, View on B-B,
As shown, the handle of the welding torch was secured to the carriage
assembly by a round clamp, This was designed to allow the torch to
be rotated in a vertical plane about the clamp and, thus, to be

swung clear of the test plate.

Ad justment of arc height was achieved by the vertical movement
of a crosshead to which the torch clamp was attached. The crosshead,
restrained by two parellel guide rods, was raised or lowered between
two fixed crossheads by a lead screw of 2 mm pitch which was rotated
manually by a calibrated knob at the top of the assembly, The
circumference of the knob was marked off into forty divisions, each
division corresponding to a vertical movement of the crosshead of

0.05 nm,

To set the arc height, the torch was clamped to the crosshead,
as described above, such that the axis of the electrode was
perpendicular to the surface of the test plate. By rotating the
calibrated knob, the torch was lowered until the tip of the electrode
was seen to just touch the surface of the test plate. Making a small
allowance for backlash, the torch was then raised to the required arc
height by turning the knob through the appropriate number of divisions,
The crosshead was>then locked in position by tightening a locknut on

the lead screw. An arc height of 3.5mm was used throughout the tests.

As an additional faecility to measure arc height, a linear
displacement transducer was mounted on the assembly as shown. However,

for the purpose of the welding tests, the arranzement described above

was found to be adeauate.
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.5e4 The Powered Traverse

The torch carriage assembly was mounted with linear ball
bushings onto two guide rods lying parallel to the axis of welding.
The carriage was propelled along these guide rods by a power screw
attached to the lower fixed crosshead of the carriage. The power
screw passed through the gear box which comprised a worm and worm
wheel gear assembly. The centre of the worm wheel was threaded to
accommodate the power screw so that as the worm wheel turned, the
power screw was drawn, without rotating, through the centre of the
worm wheel, The worm was connected, via a flexible coupling, to a
1/4 H.P., D.C., shunt motor., The worm and worm wheel gear had an
overall reduction ratio of 50:1., The motor and gear box assembly is

shown in Drawing 5.2, View on C-C.

Power to the motor was supplied, via a reversing switch (which
reversed the direction of the motor and hence of the torch carriage
assembly) from a mains operated control unit mounted on the front
panel of the trolley. This unit served as both a rectifier and a
speed control for the motor. Both the motor and the control unit
were manufactured by rarvalux klectric Motors Ltd. With this
arrangement, the carriage specd could be varied froﬁ Q.04 f0‘0.4 cm/ s

over a traverse length of 40 cm.

In order to make'measuremcnts of the carriage speed independent
of the conirol unit, a separate timing system was devised. This
consisted of a timer {manufactured by Racal InstrumentsLtd.) activated
on a “once on-once off" basis by a roller type micro-switch located

on tne lower fixed crosshead of the carriage assembly. The micro-

St gntyl




switch was activated by the roller passing over four pins set in two
slides fixed to the base plate as shown in Drawings 5.1 and 9.2 View
on B~B. The two pins on each slide were set at 5 cm apart so that,
as the micro-switch passed over them, the time for the carriage to
traverse 5 cm was recorded on the timer, The actual welding speed

(i.e. the carriare speed) could then be easily calculated.

5.5 Welding Bouipment

rower to the arc was supplied from an "Ideal Arc TIG 300/300
(manufactured by the Lincoln Electric Co.), power source. Operating
in its medium range, this source was capable of delivering 1654, D.C,
wvhich wes quite adequate for the welding of the thin mild steellplate
used in the tests. The welding torch (Type V450, manuractured by
BOC Ltd.) was connected directly to the power source which also.
suppliea cooling water and argen to the torch. Thoriated tungsten
electrodes, 3/32 ins. in dia., ground to a 450 point were used
throughout the tests, The "earth" connection was made trom a brass
stud screwed into the base plate, via a heavy duty cable to the power

source.

Having switched the power source on and selected the aegired

current range and polarity (for all tests, D.C., electrode -ve was
used ), the welding operation was controlled by a small unit mounted
on the front panel of the trolley. This consisted of a spring loaded
slide connected to the rack of a rack and pinion gear, 'The initial
movement ot the slide activated & micro-switch wvhich in turn tripped

the main contactor in the power source and lriggered the high frequency

arc starter units  Once the arc wag established, the high frequency

& L.
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unit was automatically cut out. Further movement of the slide caused
the rotgtion of the pinion gear which was attached to the spindle of
a potentiometer., This was connected to the control unit in the power
supply and by varying the potentiometer, the arc current could be
varied up to the pre-set maximum. The positioning of the slide,

therefore, also controlled the arc current.

In order to measure the arc current a 250A current shunt was
installed in the "live" line (i.e. the line connected to the electrode)
inside the power supply. This was connected through an isolating
switch to a calibrated meter movement mounted on the front panel of

the trolley.

A suitably calibrated voltmeter was connected through an
isolating switch across the "live" and "egarth" lines to measure arc
voltage. To prevent damage to the meters from the high frequency
starter, readings of arc current and voltage were only made once th@

arc was fully established.

5.6 The Blow-Out Valve Assembly.

To determine the shape of a weld pool, the molten metal was
ejected from the test plate at a pre-determined instant by directing
a hich velocity jet of argon onto the molten pool from a nozzle
mounted on the welding torch. The ejected metal passed through the
grooﬁo cut for this purpose in the base plate and was collected in a

splash tray suspended below the base plate.



The argon [low was controlled by the valve assembly shown in
Drawing 5.% and Plate 5.%. This arrangement also served to supply
the normal flow of argon to the welding torch. The argon supply
(from a bottle at 2500 psi and reduced with a standard pressure
regulating valve to 100 psi) was connected to the inlet of a solenoid
operated poppet valve (maﬁufactured by Schrader Ltd.)s In the
normal position, this valve connected the supply to the flow control
valve set to deliver 8 ft.j/hr. to the welding torch (via the power

supply).

The solenoid valve was activated by a switch mounted on the front
panel of the trolley, This shut the normally open outlet port and
opened the normally closed outlet port to the supply line. Argon at
100 psi was, thus, delivered directly tc the blow out nozzle mounted
on the torch. Non-return valves prevented "blow back" through the
normally open line. Part of the high pressure flow was, however,
allowed to pass through the power supply to the torch so that the
electrode was protected from sudden exposure to oxygen during the
blow out. Due, however, to the pressure losses through the non-
return valve, power supply and torch assembly, practically all of the

high pressure flow passed ithrough the blow out nozzle.

This nozzle was made from a length of 1/8 ins, dia. bore, copper
tube slightly flattened at its end. The nozzle was mounted on a
bracket fixed to the welding torch and directed such that the jet
impinged onto the test plate below the electrode i.e, during welding
onto the molten pool. A close-up of this arrangement, shpwing a pool

boundary after a blow out is shown in Plate 5.4 and Drawing 5.2, Part
Loy

)4

View on X.



PLATE 5.3 ARGON VALVE ASSEMBLY/

PLATE 5.4 WELDING TORCH AND BLOW-OUT NOZZLE/

FIGURE 5.2 THERMOCOUPLE JUNCTION IN POSITION

% PLATE 5.5 MACRO-SECTION THROUGH THERMOCOUPLE JUNCTION (X10)
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5.( Temperature Measurement,

As previously indicated, the comparative tests required the
measurement and continuous recording of temperatures in the HAZ
during welding, For this purpose, nickel-chromium/nickel—aluminium

thermocouples (type Ti/T manufactured by British Driver - Harris)

2
were located in the HAZ ot the test plale and connected to a chart

recorder,

These thermocouples had a substantially linear response (0.04157
mV/OC) up to approximately 1200°C and while this was somewhat below
the melting point of the mild steel test plate (142000), it was felt
that this provided a coverage of the HAZ temperature range suf'ficient
for the purpose of the tests. To give a fast response while still
maintaining reasonabie mechanical strength, a wire diameter of

0.010 ins. (0.25 um) was selected.

A Jjunction was formed by tightly twisting the ends of the two
wires together to give a twisted length of about 1 cm., The Jjunction
was then located ina 0,020 ing(0.50 mm) dia. hole in the test
piate by passing the twisted section through the hole from the bottem
surtace of the plate. The wires were then drawn through from the top
surface of the »late until the end of the twisted section was tightly
fixed inside the hole at the bottom surface of the plate. The portion
of the twisted length protruding above the top surtface of the plate
was trimmed oft until the junction was [lush with the surface. A
gection through such a.junction is shown schematically in ¥ig., 5.2
and a microsection through an actual junction shown in Plate $.5.

The contact between wiresana wire and vlate achieved by this teclinique



ig evident in this micrograph. New junctions were made for each test.

From the junction, the wires were passed through a twin bore
ceramic slecve approximately 10 cm long and then individually through
high temperature flexible sleeving. Thus insulated, the wires were
passed from the junction underneath the test plate, between the studs
supporting the plate to a terminal block mounted on the front panel of
the trolley., By taking the wires underneath the test plate, they were
protected from any damage from the arc. In this way up to four

thermocouples were mounted on any one test plate.

From the terminal block, co-axial cable was used to carry the
signal from the thermocouples to az twin gang wafer switch and hence
to the chart recorder. Since this was a single channel recorder, it
was necessary to switch from one thermocouple to another as the test

proceeded. A wiring diagram of this arrangement‘is shown in Tig. 5.3.

The chart recorder used was of the single pen, y-t type (26000
series, manufactured by Bryans Southern Instruments Ltd.). ' On the
y-axis of the recorder, the sensitivity was set at 2 mV/cm over the

28 cm width of the paper and a paper speed of 5 s/cm selected. These

settings were maintained threughout the tesgts,

In a typical test, the thermocouples would be equally spaced
along the length of the weld and at a known distance from the weld
axis, The recorder would then be switched from one thermocouﬁle
to another as the front ot the weld pool crossed a mark previously
scribed on the test pfalc at a fixea distance (nsualiy 6.25 ma) in
front of cach thermoceuple. Sinee, for the duration of each test,

the welding speed was maintoined conetant, cach therhocouple wag
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monitored on the recorder for the same length of time,

This arransement proved to be a satisfactory alternative to
gimultaneous multi~channel recording as the results reported in the
next chapter indicate. Due to the available width of paper on the
recorder used, the full calibrated range of 1200°C could be easily
acconmodated on the paper at a sensitivity of better than SOOC/cm.
Por this reason, estimates of temperature could be made to within

10°C over the entire 1200°C range.



B 8) Weld Test FProcedure
e

As stated earlier, the weld tests were required to provide data
on pool shapes ana associated temperature histories for linear, full
penetration welding of thin, mild steel plates. It was decided that
these conditions would be satisfactorily met, if instead of butt
welding two plates, the test welds were made by simply running a weld
along the centre of a single plate. This procedure made it somewhat
easier to maintain stable arc conditions and, to some extent, also
reduced the need to use tiller wire which would normally have beern

required for TIG butt welding of 1/8 in. thick plate.

Preliminary fests indicated that full penetration welds could
be achieved in this way for welding currents in the range 90 - 140 A.
The corresponding welding speeds ranged from 0.12 - 0,26 cm/s. While
it was not possible to achieve complete two dimensionality over the
entire weld pool for these conditions (the penetration angle at the
front of the weld pool on the weld axis being as great as 400 at the
kighest speeds), it was felt that complete penetration trom the
maximum width to the tail end of the weld pool was a satisfactory
criterion, In this way, only the initial rapid rise in temperature
of points in the HAZ couid be possibly affected by the penetrationA
front of the weid pool. Peak temperatures aﬁd cooling rates would

be subject to 2-1) heat rlow conditions.

To ensure that the thermal field on the HAZ was independent of
the size of the test plale, a minimum plate width of 15 c¢m was used
for all the tests, 'This met with the specification sugpenton by

X}

A ¢ o ¥ y 5 *
loberts and Wells{l8) tor test platedimensions, since {he maximum

pool width encountered for the above range of conditions was QT ene

’



For the location ot thermocouples etc., & test length of 35 cm was

\

found to be adequate (see iig. 9.4).

All the test plates were cut to these dimensions from 1/8 in,
sheet mild steel from stock and, prior to welding, were cleaned and
degreased. Thermocouples were located in the plate as describea in

section 5.7, A typical thermocouple arrangement is shown in Fig. 5.4.

For each test, the plate was clamped to the test rig with its
E aligned with the welding axis of the rig and the test completea
by running a weld, at a controlled arc cuirent and speed, along the
length of the plate. The chart recorder was switched from one thermo-
couple to another as the frontof the weld pool crossed the scribe

marks. (see Kig. 5.4 and section 9.8) Measurements of arc current
and voltage were made during the test (see section 5.5) and readings
of traverse times noted (see section 5.4). In each test, the weld

e L

pool was blown out (see section 5.6) 3 cm before the weld pool reached

the end ot the plate.

Three typical welds (taken from test welds) are shown in Plates
S.6a ana 5.6b, These indicate the uniformity in wiath of weld along
thie length of each specimen as well as the complete penetration
achieved, Three examples of blown out pools are shown in Plate 5.7.
The very clean edges of the weid pool boundaries shouid be particulariy
notea. Plate 5.8 shows a micro-section of one edge cf suen a blow
out. The section has been etched to show the grain structurc and it
is eviadent that oniy traces or molten metal (to a thickness ot 0.5mm)

have peen le:t adhering to the parent plate at'ter the blow out,
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PLATE 5.7 THREE TYPICAL "BLOWN-OUT" WELDS
& PLATE 5.8 MICRO SECTION SHOWING ONE EDGE OF A "BLOWN-OUT'" WELD (X34)
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A typical themocouple recording is shown in Fig. 5.5. The
thermocouple was located 0,200 ins (0.51 cm) from the § of a 1384,
0.25 cm/s weld. From subsequent measurement of the weld pool width,
this corresponded to a distance of 0.055 ins (1.4 mm) from the edge
of the weld pool. The temperature axis gives the recorded temperatures
above ambient (20o C approx). The zero in the time scale corresponds
to the instant when the front of the weld pool was in line with the
thermocouple location., The extremely rapid rise in temperature
(250° ¢/s approx) up to the peak temperature of 1040° C and the some-
what slower initial cooling rate (45o ¢/s approx) should be noted.
The cooling rate gradually decreases with time until, 40 secs. after

. x s O ;
reaching peak temperature, it is reduced to 6.5 05

The value of the ¢ field analogue in predicting temperature

histories of this nature is discussed in the following chapter.

N.B. It is also interesting to note the "hump" in the cooling curve
(highlighted by the dotted, smooth continuation of the cooling curve)
corresponding to the exothermié eutectoid transition. From the graph,
it can te seen that the start of the transition (6900 ¢) has been v

suppressed below the equilibrium transition point of 7230 e

il
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CEAPTIR 6

TEST RrSULTS

As discussed in Chapter 5, the main purpose of this study was
to determine to what extent the thermal field in the HAZ during
welding could be predicted using analogue techniques, To
evaluate tne ¢ field analogue for this purpose, it was decided to
perform a series of tests in wnich experimentally determined
temperature histories would be compared with analogue predicted

histories for points in the HAZ (see Fig. 5.1)

However, before comﬁencément of these comparative tesfs, it‘
was essential to determine to what extent the thermal field with
respect to the electrode (or the weld pool) remained conztant for
nominally constant welding conditions. Any serious fluctuvation in
the thermal field would invalidate the quasi-static assumption and
make any analogue predictions meaningless, If the thermal field
with respect to the pool shape did not remain constant along the
length of a test weld, it would also be meaningless to associate
temperature nistories measured at different points along the weld
(i.e. wusing the single channel recorder with switching between
thermocouples as descrited in sections 5.7 and 5.8) with the pool

shape deternmined by the blow-out at the end of the weld,

For these reasons, it was decided to underta-e the initial

tests discussed below,
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6.1) Consistency Tests

If the thermal field with respect to the electrode for the
welding test procedure described in section 5.8 were quasi-static,
then it is evident that all points lying on a line parallel to the
welding axis would experience the same temperature history
(appropriately stepped in time). To test for consistency of the
thermal field, it was, therefore, sufficient to test the
repeatabllity of the temperaturé history of points lying at the
same distance from the welding axis during a partiéular test weld.
The repeatability of such temperature histories and hence consistency

of the thermal field was investigated by the following procedure.

‘Three thermocouples were located 5.0 * 0.00S in. (12.70 + 0.0l cm)
apart on a line a fixed distance from the g of the test plate as
shown in Fig. G.1. A test weld was then passed along the g of
the plate with the arc current and speed being kept as constant as
possirle. By switching from one thermocouple to another (see
sections 5.7, 5.8), the output from each thermocouple was recorded
s burs ‘fou e aate TRt oF 116k (1.e. the time taken for the
weld to traverse 5.0 1n.). These recordings were then compared

for repeatability.

A typical result from such a test with the three recordings
superimposed is shown in Fig. 6.2. Again the temperatures shown
are above ambient and zero on the time axis corresponds to the
snstant when each thermocouple was in line with the front of the

weld pool.
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The tests were repeated for two different sets of welding
conditions (nominally 100A at 0.15 cm/s and 138A at 0.25 em/s).
For each set of conditions, three separate tests were made with
the thermocouple line located 0.175, 0.200 and 0.250 in. from the
weld g respectively. The results from these tests are given in
Table 6.1. The four temperatures in each group refer, in
descending order, to the peak temperature and the temperatures 5s,

15s and 30s after peak respectively.

All the tests showed excellent repeatability in the heating
curve up to the peak temperature. Indeed, as typified by
Fig. 6.2, the three superimposed heating curves were almost
indistinguishable in each test. From Table 6.1, the maximum
% age difference (referred to the minimum) in peak f{emperatures was
less than 5% in all cases tested. Considering the large thermal
gradients involved and the accuracy of the thermocouple recordihg
and interpretation, this difference is comparable with the
experimental errors (e.g. .an error of + 0.005 in. in the location
of a thermocouple from the nominal distance from the weld £ could,
itself, give rise to an error of + 30°C in the peak temperature).
A maximum difference of less than 5% was also found for the
cooling curves as indicated by the temperatures at 5, 15 and 30s

after peak temperature.

These results indicated the validity of the quasi-static
assumption for the welding procedure and conditions described above,
They also indicated that the test technique of switching obctween therme-

couples was adequate for the purpose of the tests.



THERMOCOUPLE WELDING CURRENT (A) RECORDED TEMPERATURE AT PEAK, 5, 15 &
DISTANCE FROM AND SPEED (ecm/s) 30 s AFTER PEAK (°C ABOVE AMBIENT)
(in)
TC1 TC2 TC3
1102 1097 1068
102 952 923 923
682 667 682
0.17 479 469 469
0.175
1209 1197 1150
138 957 962 962
686 682 672
0.25 479 483 456
1097 1083 1054
98 957 957 9u8
720 725 720
0.1t 527 546 541
0.200
1059 1039 1035
138 885 856 880
638 U1 631
‘ 25 450 450 430
933 894 923
o8 817 798 821
648 633 657
0.15 488 483 469
0.250
841 880 880
139 789 822 783
630 599 62U
0,26 440 440 430

TABLE 6.1 CONSISTENCY TEST RESULTS

bl %




6.2) Comparative Test Procedure

Having gained the required confidence in the test procedure
from the consistency tests, it finally remained to complete the
comparative tests between analogue predicted and experimentally
measured temperature histories. The test procedure followed is

outlined below.

The Mk II analogue was prepared by connecting a fresh sheet of
Anaplot paper (from Roll 1) to the field resistors with silver
paint as described previously (section 4.6). Priof to fitting the
paper on the analogue, a pattern of 0.5 mm dia. holes, corresponding
to the resistor layout on the analogue (see Fig. 4,10), was punched
through the paper so that it could be fitted accurately and without

»
tearing onto the field resistors.

The analogue parameter V/g. was then estimated by the
precedure detailed in section 4.6. Adopting the same 1-D test

procedure, the accuracy of the analogue was also evaluated.

From a test weld, the pool shape and welding speed V were
determined as described in section 5.8. A Baty 600 Reflex ProJjector
with a magnification of x 10 was used to give an accurate profile

of the pool shape.

Before painting the bool shape onto the analogue field, the
appropriate "scaling factor" had to be determined. The scaling
factor was defined as the distance on the analogue fleld which
represented unit distance on the test plate, This was determined by
first calculating the distance of real'spaco which was represented

by the analogue resistor spacing h. Re-arranging the analogue



design formula (equation 4.8) gives

h = '%3‘:‘-, -j% (6.1)

Substituting for the welding speed v and the estimated value of~j§§,
(¢ always being taken as 0.075 chg/s), in the above equation gave

the required value of h. The corresponding scale factor was then
calculated by dividing the actual resistor separation on the analogue

by h.

The contour of the pool shape, appropriately scaled, was then painted
onto the surface of the analogue using silver paint. Only one
symmetrical half of the pool shape was considered and it was located
on the analogue so that the. entire pool 1éy in the finely divided
region with its major axis (i.e. the welding axisy coincident
with edge AB shown in Fig. 4.10. A typical pool shape on the
analogue is shown in Plate P The straight cut edge along the
remainder of the axis of symmetry (i.e. edge AB) simulated the

adisbatic heat flow conditions across the real welding axis.

From the Rosenthal transformation (equation L.1), it is evident
that the isothermal molten/solid interface defining the pool

boundary is not an equipotential on the # field. From equation 4.9,

v
o %

Blx,y) = e o Tx,¥)

and substituting for T(x,y) = T where T 1is the melting point

of the parent material gives

gl wmie T (6.2)

wppa g < SEER S s o i < g




PLATE 6.1 WELD POOL SIMULATION ON THE MKII ANALOGUE
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for the required variation in @ potential along the length of the

pool.

Using the value of Th = lSOOOC above ambient for mild steel
(4,18), the variation in @ potential was calculated by assuming that
the origin of x was directly beneath the electrode of the welding
torch (i.e. the Rosenthal co-ordinates shown in Fig. 1.1). The
continuous nature of this variation was approximated by dividing the
length of the pool into four regions and assuming the potential within
each region to be constant. The potential assigned to each region
was the value calculated from equation 6.2 for the mid-point of the
region, As shown in Plate 6.1, each region was effectively separated
from the others by removing a segment of the pool shape along the
dividing line between adjacent regions. In this way, the only
electrical contact between different regions of the pool was through

the analogue field itself.

The required potential was applied to each region using the
circuit shown schematically in Fig. 6.3. The power source
(MultiregVTDI, manufactured by Weir Electronics Imd.) was connected
across a cascade of 4 x 5 kn potentiometers connected in parallel.
Each region was connected to a single potentiometer which w;s

ad Justed until the required potential for that region was obtained.

The common grid was connected to the -ve (i.e. zero) terminal
of the power source as before. As shown in Fig. 6.3, connection to
the -ve terminal was also generally made to the edge opposite the
axls of symmetry on the analogue although tests showed that its

removal had no measurable effect on the @ field in the viecinity of the

pool shape.
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Measurements of @ potential were made using a probe connected
to a digital voltmeter (Type IM 1450, manufactured by Solartron Ltd.)
as for the evaluation tests (section 4.6) and as shown in Fig. 6.3.

A general view of this arrangement is shown in Plate 6.2.

Measurements of @ potential were made at known distances
(i.e. fixed values of x) along lines drawn parallel to the axis of
symmetry. The separation of these lines from the axis was made to
correspond to the distances at which thermocouples were located from

the welding axis on the test plate.

These readings of potential were then converted to

temperatures by the Rosenthal transformation
V_.x
2%
- Mx,y) = ‘e . B(x,y) !
(care being taken that the analogue distances were first reduced
to "real" distances i.e. values of x by dividing by the scale

factor).

This enabled plots of temperature T(x) for various values of y
to be drawn, To facilitate comparison with the temperature-time
plots obtained from the thermocouple recordings, the x values of the
analogue were converted to t (time) values by dividing by the
welding speed v. The origin for the temperature-time piots was
arbitrarily taken as the leading edge of the weld pool. 1i.e. the
origin on the analogue was shifted to the front of the pool and
distances referfcd to that origin were converted to times by
dividing by the welding Speeq. Direct comparison of the analogue
predicted and experimentally measured temperature histories could then

be made,

N e Y



PLATE 6.2 MKII ANALOGUE: EXPERIMENTAL ARRANGEMENT FOR COMPARATIVE
TESTS
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For completeness, the @ field surrounding each pool shape
studied was plgtted using the Alpha PR Plotter in a similar way to
the equipotential plots made during the evaluation tests (section 4.6).
Allowance was, of course, made for the variation in potential along

the pool boundary.

6.3) Results

Three experimental temperature histories, determined from one
such test (Test A) are shown in Fig. 6.4. The thermocouples were
located 0.250, 0.225 and 0.200 in, from the axis of a 106A, 0.14 cm/s
weld: The resultant pool shape is shown marked A in Plate 6.3.

For the above welding speed and for the particular sheet of
Anaplot paper used g/g = 0.%65), the scaling factg; was 3,224,
Using this value, the half profile marked A in Fig. 6.5 (drawn using
the Baty Reflex Projector as described in the previous section) was
transeribed onto the analogue field. From equation 6.2, the
required potentials at each of the four regions of the pool shape
were, starting from the front, 17.24, 13.06. 9.93 and 7.76V.

These were applied to the analogue using the electrical circuit

shown in Fig, 6.3,

The perpendicular distances from the axls of symmetry on the
analogue to the lines corresponding to the thermocouple locations
on the test plate were calculated by multiplying the distance of
each thermocouple from the weld axis by the scaling factor e.g. for
the thermocouple located at 0.250 in. from the welding axis, the

corresponding line on the analogue was located at a distance of
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PLATE 6.3 "BLOWN-OUT" WELDS FOR TESTS A & B
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0.250 x 3.224 in., from the axis of symmetry. The potential
distribution along each of these lines was measured using the

digital voltmeter.

These ¥ potential distributions ( i.e. @(x)) were then
transformed to temperature histories (i.e. T(t)) as described in
the previous section. These analogue predicted temperature
histories are shown compared with the corresponding experimental
histories in Figs. 6.6, 6.7 and 6.8. The @ field distribution
about the pool shape is shown by the equipotential plot in Fig. 6.9.
This was copied directly from the analogue field on a 1l:1 scale.
Fig. 6.9 also shows the lines, corresponding to the thermocouple
locations, along which the @ potential distributions were measured.

.
For comparison Figs. 6.10 - 6.14 show a similar set of results

(Test B) relating to a 138A, 0.25 ecm/s weld. The change in time

scale in Figs. 6.10 - 6.13 should be noted. For this test, the
thermocouples were located 0.175, 0.200 and 0.250 in. from the

welding axis. The pool shape for this tesi is shown marked B in

Plate 6.3 and the corresponding profile marked B in Fig. 6.5. The
required potentials at the four regions of the pool shape were

24,30, 15.00, 8.45 and 4.57V respectively. The scaling factor for

the above welding speed was calculated as 6,017 (the estimated value of

‘/% being 0.358 in this case).
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6.4) Discussion

As can be Judged from the graphs (Figs. 6.6 - 6.8 and 6.11 - 6.13),
the results of the comparative tests showed good agreement between
the analogue predicted and experimentally measured temperature
histories. From the summary of these results given in Table 6.2,
it can be seen that the agreement between peak temperatures was
better than 3%. This was well within the error range expected of
either the analogue or the experimental technique. However, this
excellent agreement was not maintained throughout the temperature-time
range considered. As the graphs show, the analogue results
consistently predicted a slower cooling rate than that observed
experimentally. The extent of this divergence for the time ranges
considered can be judged from the figures quoted inasTable 6.2 which
compare the results 25s after zero for Test A and 10s after zero

for Test B.

The peak temperature comparisons are considerably better than
those reported by Tanbakuchi (12) and are comparable with those
reported by Pavelic (5) using finite difference analysis. Pavelic's
numerical approach accounted for the spread of arc plasma onto the
parént metal beyond the pool boundary. The excellent agreement for
the peak temperatures achieved with the analogue, therefqre,
sugrested that, for the test conditions considered, there was little

or no arc spread beyond the pool boundary.

Tnis hypothesis was tested by photographing stationary arcs and
measuring the arc spread at the surface of the test plate. Cne

such photograph is shown in Plate 6.4, This shows a negative print



DISTANCE FROM £ (in)

TEST A
0.200 0.225 0.250
PEAK PREDICTED 1267 1178 1024
EXPERIMENTAL 1255 1180 1024
25s AFTER PEAK PREDICTED 712 704 690
685 695 700
DISTANCE FROM § (in)
TEST B
0.175 0.200 0.250
PEAK PREDICTED 1220 1055 922
EXPERIMENTAL 1212 1049 902
10s AFTER PEAK PREDICTED 902 840 772
EXPERIMENTAL 891 840 765

TABLE 6.2 COMPARATIVE TEST RESULTS
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of a 100A are (arc height 3.5 mm., gas flow 8.0 ft3/hr) with the

ceramic nozzle and electrode superimposed to show their position

relative to the arc. Using this technique, measurements of the

arc spread at the plate surface indicated that at 100A, the arc

spread was less than 1 mm. beyond the maximum width of the weld pool

recorded for Test A for a 106A arc (see Fig. 6.5, Test A). While

this weld pool relates to a moving arc, the actual welding speed is

very slow and experience suggests that the effect of movement on

the arc shape is to make it longer and somewhat narrower (5).

The estimates of arc spread obtained from stationary arcs are

therefore somewhat greater than the actual spread for a moving arc.

Although the arc spread increases with arc current, a similar result

was obtained for a 140A arc, the arc spread in this case being only
B

slightly more than 1 mm. greater than the maximum pool width.

(see Fig. 6.5, Test B). The agreement in peak temperatures, there-

fore, suggests that provided the arc spread does not extend significantly

beyond the pool boundary, the peak temperatures experienced by

points close to the molten zone are primarily dependent upon the

conduction of heat across the molten pool boundary into the parent

metal,

In applying the Mk II analogue to the welding problem, no
account was made of elther the heat loss from the surface of the
test plate by radiﬁtion and convection or of the variation with
temperature of the plate's thermal properties (i.e. conductivity,
specific heat and density). While it is not too unreasonable to
assume that for the range of temperatures considered the variation

in the thermal properties had only a second order effect on the



temperature histories, the divergence of the analogue and
experimental coollng curves could be attributed to the failure of
the analogue to account for the heat loss from the surface of the
plate, Since the analogue is essentially a linear model of the
linear Rosenthal system, it is not possible to account for the non-
linear heat loss by radiation. However, as shown in Appendix 2a,
it is possible to account for the linear heat loss by convection
(i.e. heat loss proportional to temperature) on the @ field
analogue simply by altering the scaling factor, If certain
assumptions are made about the variation of the thermal properties
with temperature, it is also possible to account for this
variation in a somewhat similar manner, This is discussed in
Appendix 2b, Accounting for these two effects wil} certainly be
important if the analogue predictions were extended beyond the

temperature ranges considered in the above tests,

However, the major disadvantage of the Mk II analogue for this
application arises from its fixed leakage resistor construction.
Having constructed an analogue with fixed resistance values, it can
be appreciated from section 6.2 that the scale factor will be
directly proportional to the welding speed. This has a somewhat
unfortunate "double-edged" effect. Increasing the welding speed
and thus the scale factor results in a larger analogue representation
of the pool shape. While this may be advantageous for accurate
determinations of potential close to the pool boundary, 1t also has
the effect of reducing the area of real space (or space-time)
represented by the finite area of the analogue. This effect 1is

clearly demonstrated by comparing the ﬁ ficld plots for Tests A and B

s D Y



(Figs. 6.9 and 6.14), These are both 1:1 representations of the
actual plots obtained on the Mk II analogue, Comparison of the
sizes of the pool shapes in these'plots with the actual pool
profiles shown in Fig. 6.5, demonstrates the effect of the difference in
scale factor (3.224 for Test A and 6.017 for Test B). The greater
resolution obtained for the Test B plot (Fig. 6.14) 1is gained at
the expense of a reduction in the area of real space represented

by the analogue. It is for this reason that the Test B comparative
results (Figs. 6.11 - 6,13) stop 12s after zero (c.f. 30s after
zero for the Test A results) this being the limit allowed by the
finite size of the Mk IT analogue. Since the value of the

analogue parameter’Jfg was essentially the same for both tests
(0.265 for Test A and 0.3%58 for Test B), the diffegsnce in scale
factor is due to the difference in welding speed (0.1% em/s for

Test A and 0.25 cm/s for Test B).

There are two obvious design changes which could be made to
overcome this problem. The first is to simply increase the size of
the analogue field, particularly in the x direction, The second
is to devise a construction with variable leakage resistances (or
interchangeable resistance values) so that the value of the analogue
parameter ~/§; can be changed to compensate for different welding

speeds (see the design formula, equation 6.1).

It is also recommended that closer tolerance resistors be used
to improve the accuracy of the @ field distribution, It was found
that although the evaluation tests (section 4,6) showed .excellent
agreerent with theory and the '} aistributions around the weld pools

appeared perfectly smooth, there were, In fact, small random errors

- 140 .




in the measured @ values due to the small variations in the
leakage resistance values (+ 2% of nominal value). From the
nature of the Rosenthal transformation, these errors were
magnified when the @(x) distributions were transformed to the T(t)
distributions with the result that the T(t) plots were not perfectly
smooth, the calculated points being scattered in a random fashion
about the mean curve. While only the mean curves have been shown
compared with the experimental histories (Figs. 6.6 - 6.8 and
6.11 - 6.13), Fig. 6.15 shows one such mean curve with the actual
calculated values shown by the crosses., The calculated values,
however, were never more than o o 20°C from the mean curve. This
variation can be completely accounted for by a * 2% error in
resistance value and could, therefore, be removed b{ using better
quality resistors in the analogue construction. This is
particularly recommended'if a larger analogue field is to be
constructed since better resolution in @ values will be required

for these points more remote from the pool boundary,

Despite these shortcomings, the Mk IT analogue has been shown
to predict the thermal field during welding extremely well for the
range of test condilions considered. While it is not possible for
the analogue technique to provide as detailed an analysis as is possible
using a numerical approach, it is felt that the analogue approach
could be usefully employed for the welding application, Since the
whole of the f# field (and, hence, the corresponding temperature
field) for any number of welds (provided the heat flow remains 2-D)
can be readily determined, hypothéses can be quickly tested and

trends observed experimentallly investigated, Particular zones of
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interest could then be identified for more detailed examination

using a numerical approach,

As a demonstration of the way in which the analogue may be
employed, consider the three experimental recordings for Test A
shown in Fig. 6.4, It will be observed that the three temperature
curves are decaying at substantially the same rate despite the
obvious difference in the peak temperatures. Indeed, it would seem

that the three cooling curves tend to converge to a single curve.

This trend can be explained by studying the nature of the ]
field distribution at increasing distances from the pool shape as
shown in Fig. 6.9. It can be seen that the equipotentials
rapidly become circular in nature with increasing distance from the
pool shape. It can therefore be appreciated that the #(x) distribution:
along each of the lines shown (corresponding to the thermocouple

locations) tend to become identical with increasing distance from

the pool shape.

Consider the three values of # at |x| = a, Y =Yy Yy Vs
as shown in Fig. 6.9. Due to the almost vertical nature of the
equipotentials in the neighbourhood of | x| = a, it can be
appreciated that the three @ potentials will be almost identical and

that this will become increasingly true with increasing le
i.e. Blxyv)) = Blxy,) = Blxyy)
with increasing |x|.

Since the Rosenthal transformation operates only on the x-axis,

1t 1s independent of y, being given by equation 4.1,



T(x,y) = e B(x,y)

it follows that

T(x.yl) e T(x.ye) == T(X.y3)
with increasing |x|.

Since x is simply proportional to t, it can be concluded that

— —
T(t,yl) SR T(t:y2) e T(t’yB)
with increasing t.

This is in agreemen£ with the experimental osservation that
the cooling curves shown in Fig. 6.4 tend to converge, For
points located at greater distances from the welding axis, it is
evident that the same effect would be observed but only after a
longer time and at a lower temperature, Incidentally, it is also
the eircular nature of the @ field distribution which indicates how

quickly the @ field becomes independent of the actual pool shape,

To summarise, the comparative tests showed the good agreement
between the analogue predictéd and experimentally measured
temperature histories, .While this, of course, can only be said to be
true for the welding conditions adopted in the tests, it is felt
that these conditions were not too far removed from standard
procedure (19) and that the analogue technique could be equally
applied to a wide range of welding conditions found in practice,
Although 1t is not possible for the analogue approach to provide as
detalled an analysis as has been shown to be possible using a

nhumerical approach (5), its simplieity and flexibility make it

R, B [ Y



an extremely useful tool for at least an initial investigation of

quasi-static 2-D thermal fields during welding.
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CONCLUSIONS

1) A study of the modal characteristics of Rosenthal fields
indicates the possibility of using a simple analogue for the analysis
of heat flow during welding. From this initial study, it is
demonstrated that the modal characteristics of non-uniform systems
can be related to the characteristics of the corresponding uniform
system, In particular, it is shown in Appendix 1 that the
longitudinal vibration charabteristics of a uniform cross-section
beam are only a special case of a more generalised set of characteristics
relating to a variable cross-section, It is also shown that, in
general, the eigenvectors for such variable cross-section systems
are orthogonal with respect to a weighting function identical to the

function defining the variation in cross-section.,

2) It is shown that a potential field having an exponential
variation in conductivity can be identified as a Rosenthal field and
that a direct electrical analogue based on this principle could be
designed. However, owing to the very large variation in resistance
required, this approach is impractical for most welding heat flow
studies, The feasibility study for the direct analogue does reveal
that to obtain the same temperature distribution in the welding of
materials of the same geometry under different welding conditions, it
is only necessary that the ratios 5 and % remain the same,
While this conclusion 1s subject to the basic assumptiqns of
Rosenthal's analysis and, consequently, that control of these two
ratios alone may be insufficient to completely control the thermal
field, particularly 1n.the HAZ,'they are, nevertheless, important

parameters, Since~% is independent of the exact nature of q, it is
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expected that it has a particular significance in the determination of

temperature gradients,

3) By employing a transformation of Rosenthal's equation a simple
electrical analogue can be constructed which is not restricted by the
variation in resistance required by direct analogues, This analogue
has the advantage of having a continuous surface/which makes it
particularly suitable for 2-D heat flow studies based on the pool

shape model proposed by Apps and Milner (7). Comparative tests
between analogue predicted and experimentally measured temperature
histories in the HAZ for continuous DC TIG welding show that the
thermal field in the HAZ can be successfully simulated using this type
of analogue. Peak temperatures are particularly well predicted and whil
consistent divergence in cooling curves is shown, this can be attributed
to heat losses from the plate.which were not accounted for., A

simple procedure for making allowance for such losses is, however,
demonstrated in Appendix 2a, Although the application of the analogue
is restricted to 2-D quasi-static analysis, it is especially valuable in
that the thermal field in the HAZ can be simulated on a continuous
analogue field. Provided single pass, full penetration wélding is
considered, there is no apparent reason why this analogue approach may
not be applied to other welding processes. Until thé'mechanisms by
which heat is transported through the arc and weld pool are completely
understood, it is anticipated that the ¥ field analogue will prove to be

a useful experimental tool in analysing welding heat flow.
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Appendix 1

Lonrmitudinal vibrations of some variable cross-section beams

As noted in Chapter 2, it was of some interest to explore the
way in which the eigenvectors of a uniform system change when one
of the properties of the system is allowed to vary. For example,
it is shown in Chapter 3, that an exponential variation in
conductivity can result in the same governing equation (and hence
the same eigenvectors) as Fourier's equation of conduction in a
homogeneous medium but referred to a Rosenthal co-ordinate system,
To develop this idea further, consider the longitudinal vikrations
u(x,t) of a beam whose cross-sectional area A(x) varies along the
length of the beam. It is readily established that u(x,t) obeys

the governing equation

2 2
a u -];.. a——é » é_ll. == g o u
e AIEN 5% 5 éi?t (A1.1)

where Q is the density and E the Young's Modulus of the material

of the beam (both assumed constant) In establishing this

equation, the usual assumptions that during its motion, plane

sections of the beam remain plane and that Poisson's ratio effects are
negligible, have been made. The only conditions.to be imposed upon

A(x) are that it be continuous, differentiable at least once and have

no zeros in the range of x.

Provided the boundary conditions imposed on the beam are linear,
solutions to equation Al1.1 may be sought by separating the varioblcs

i.e. consider a solution of the form
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u(x:t) = ﬂ(x)o.ﬂ_(t)

Substituting for u(x,t) in equation Al.l1 and re-arranging gives the

two separated equavions

2
P 1 A , 09 2
and
2 2 :
i ; T v
e A o i ¢ PR (A1.3)

where \ is the separation constant.

The solutions @(x) to equation Al.2 will define the eigenvectors
of the system while the solutions N(t) to equation Al.3 will
define the behaviour of the system with time. However, since the
solutions (i.e. the eigenvectors) of equation Al.2 are obviously

dependent upon A(x), it is this equation which is of particular

interest,

Consider, for example, the case where A(x) is a linear function

of the form

Alx) 'w .. & % Bx
where a and b are non zero constants.

Substituting in equation Al.2 yields

¥y b "gg 2
3x2 +(a+bx). Sx t N & O

It is convenient to transform the independent variable to

W= a + bx in the above equation, reducing it to
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This equation is readily recognised as a zero order Bessel equation

whose solution is given by
ﬁ(w) = CJ(Low) + CY(AW)
lo" b 270" b°*

where ¢, and ¢, are constants and J and Y are zero order Bessel

functions of the first and second kind respectively.

This solution defines the eigenvectors (or normal modes) of this

system, The eigenvectors A would be determined by the particular

boundary conditions imposed on the beam.

The corresponding solution to equation Al.3 is simply
: d
N(t) = o sin A e Rk ooy cos A -t

and it can be seen that the natural frequencies would be given by

e ,
N3

It is interesting to note that the simple linear variation in
cross-section has produced eigenvectors in the form of Bessel
functions. This should be compared with the pure sinusoidal

eigenvectors for uniform cross-sections.
Consider now the case of a circular rod whose radius of cross
section r is varying such that
o = a + bx

The cross-sectional area A(x) is, therefore, given by

A(x) = x(a + bx)?
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Substituting for A(x) in equation Al.2 gives

b=
3°d 2b . 2 2
P * (a+bx) 3x N mAE

Again, transforming the independent variable to

W = a4+ bx

reduces this equation to the form

2
2 g0 Ay2
2B+ 2.¥ ., (a2

duw

This is another Bessel equation whose solutions are of the form

Blo) = E [clJ%( dew) RAE: 'w)jl.

where cl and c2 are constants.

Again the eigenvectors appear as Bessel functions but from the

theory of such functions, it can be shown that

Y%(x) = -J-’i’(x) s

J%(x) = (i%x)% sin x
2 3
and J__)é,_(x) - (*-x)‘- cos x

Using these relations in the above expression for #(w), it can

readily be shown that
1 ] A ]
(W) = 5 [cl Sin(g. w) + e, cos(%-w)]

From the boundary conditions, the eigenvalues A and hence the natural

frequencies can be determined in the usual way.

It is interesting to note that in this last case, the sinusoidal
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functions have re-appeared, qualified by" the factor ér It can
In fact be shown from the solutions to generalised Bessel

equations (20) that, if A(x) has the form

A(x) = ax*,

the eigenvectors can be expressed as
g(x) = x%(l-“) e d (M) + e ¥ (\x)
i ki 2

where n2 = %(1-«)2 and cl and 02 are constants, IfX is zero
i.e. a uniform beam, then using the Bessel funetion relations for
J+%(x) and Y;;(x) already stated, this "general" eigenvector will

reduce to the simple trigonometric funections sinAx and cosAx as

indeed it must.

It would, therefore, seem that in considering the response of
non-uniform systems similar to those described above, the
eigenvectors are likely to be Bessel functions and that where
sinusoidal eigenvectors are observed, they are, in fact degenerate

Bessel functions.

The variation in area A(x) can, however, be shown to have a

completely general relationship with the eigenvectors,

Consider the nth eigenvector ﬁn(x) whose governing equation’

(or characteristic equation) has the form

8 : " .
1 A O 2
éxg » K'S?'S;' A B(x) = o0

(1.e. equation A1,2),

-153 -



Multiplying this equation by A(x) and re-arranging yields
d ofn 2
2 |a, . = 2
o~ [ ¥ + An A(x) y}n(x) 0 Al.3

Similarly, if ﬂn(x) is the eigenvector corresponding to the mth

eigenvalue Am' then

Y
_3);; [A,a_x.m] + Xax).p(x) = o . AL.4

Multiplying equation Al.3 by ﬂm and equation Al.4 by ﬁn and

subtracting ylelds

m

dx n® yx

532 [A.(ﬁm--bﬁ‘- OB A8 B Aﬁ “XE =0

Integrating this equation with respect to x over the range of x

(say a:b) ylelds,

Y] by b 0
A8 ﬁ-'—’ gih A :)Tm' ) o = )\i - Xi . 3 A8 .8 dx
a

Whatever the exact nature of ¢m and ﬁn, they must satisfy the
boundary conditions at x = a,b. Boundary conditions for a wide

range of systems will have the general form
' "
a, #(a) + ay8(a) = o
' .
and b, Z(b) + bzﬂ (b) = e, .

where al, s bl, b2, c1 5
under these conditions, the left hand side of equation Al.5 must

always vanish,

n

2 2
i.eo [Am - k A.ﬁmoﬁndx = o
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> ]
Provided m £ n 1i.e. X; A Xs, then

b
Jn.ﬂm.ﬂndx = 0 Al.6

a

This result indicates that the eigenvectors ¢m(x) and g (x) are
n
orthogonal on the interval a:b with respect to the weighting

function A(x).

N.B. The approach outlined above 1s generally attributed to

Sturm and Liouville and may be found in standard texts describing

orthogonal functions. e.g. (22).

The variation of cross-section A(x) will, therefore, always
appear as the weighting function to which the eigenvectors of the
system will be orthogonal. It should, however, be noted that the
eigenvectors will not necessarily be one of the fundamental

orthogonal functions.

From the previous discussion, it has been shown that if A(x) has
the form

A(x) = a;x“,

the eignevectors ﬂn(x) can be written as
(1-w) : 161-
ﬂn(x) = x° Jn()‘nx> or[xE(l q)Yn(x)]

Substituting for A(x), #, (x) and § (x) in the orthogonality
condition (equation Al.6) gives

b
-S X, Jm(hhx).Jn(Ahx)dx = 0

a
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This 1s, of course, the orthogonality condition for Bessel functions
which are all orthogonal with respect to a weighting function of X

Thus, although the eigenvectors

g (x) = x5 ()

are orthogonal to the weighting factor

R

the basic orthogonal function involved Jn(lnx) has a weighting

factor of x.

Although this discussion has been restricted to a simple
vibration system, the above results apply to a large number of
problems in a diverse number of fields. Consider, for example, the
variable conductivity form of Fourier's equation (equation 3.2)
used in'Chapter 3 to establish the direct analogue principle.
Although this 1s a 2-D equation, its form is not dissimilar to
equation Al.l. Indeed, the eigenvector equation in the x direction
would be identical in form to equation Al.2 and the above discussion

would apply equally to that heat conduction system.
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Appendix 2

a) Thin plates with heat loss by convection,

The well established (22) form of Fourier's equation for the
=D conduction of heat in a thin plate losing heat by convection from

its major surfaces, is given in Cartesian co-ordinates by

vir-@Ehr = 2282 ' (A2.1)

where the temperature T of the plate is measured relative to the
ambient temperature of the surroundings, H is the coefficient of
convective heat transfer from the surfaces of the plate to the
surroundings and d is the thickness of the plate (other symbols having

their usual meaning).

Transforming equation A2.1 to Rosenthal co-ordinates (see Chapter
1) and making the quasi-static assumption that, with respect to these

co-ordinates, %% = 0 gives,

vir+ 38 - &) nx, y) =0 (42.2)

If the dependent variable T(x, y) is now transformed by the

Rosenthal transformation
i.e, T(xo y) = e g.' ¢(X, y);
equation A2,2 becomes

V2¢'[(TL_)2 & )]¢ (42.3)
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Comparing this equation with the governing equation for the

¢ field analojue (equation 4.7)
Rh

shows that, for the @-field to be an analogue of equation A2,3,
n y=1/2
v 2 2H

This is the required analogue design formula and it is comparable

with equation 6,1,

It can be seen that the effect of the convective loss is to
reduce the value of h i.e. the distance of real space représented by
the analogue resistor spacing. Since the analogue scale tactor is
inversely proportional to h (see section 6.2), the effect of the
convective loss is to increase the scale factor, In fact, the efféct
is similar to increasing'g which as discussed in section 3,2, has the
effect of increasing the thermal gradients (both with respect to

space and time) around the weld.pool.

- 158 -



b) Thin plates with variable thermal properties

Fourier's equation governing the conduction of heat in a 2-D
medium whose thermal properties (i.e. conductivity, density and

specific heat) are functions of temperature, takes the form (22),
- Al
7 (xVT) =Qe 55 (A2.5)

Again transforming to Kosenthal co-ordinates and assuming quasi-

static conditions yields
oT _
V(kVT)+chéx-0 (A2,6)

Solutions to equation A2.6 have been investigated (by Grosh et al
(23) and Kazimrov et al (24)) tor Rosenthal's line source model of the
welding heat imput., The particular relevance to this work, however,
lies in the transformation of the dependent variable which was used

by both the authors cited above.

If it is assumed that both the thermal conductivity k(T) and the
volumetric heat capacity Qc(T) are the same functions of temperature

then it is convenient to write

k(T)

k £'(T) ‘ (a2.7)

and ec(T) (gc)of'(t) (a2.8)

where f'(t) is the temperature derivative ot some tunction of
temperature f(T), It is assumed that both t(T) and £'(T) are

differentiable (and are non-zero in the range ot T).



From equation A2,7, it can be seen that

Qfst - (']‘) é__
Ax

ana equation A2,6 may, theretore, be re-written as

FSETCTRRP N B £ 14¢0 SR (42.9)
dx dy“4

X dx
kO
*= Re),

where

This equation can be seen to have the same form as a Rosenthal
equation (equation 1.2). Again employing the Rosenthal transformation

which in this case takes the form

L
5 24
() = e Y (x,y)
transforms equation A2.9 to the standara @ equation
i.e. v - G )‘ #(x,y) = 0

This, of course, may be solved directly on the @ field analogue.

The nature of the relationship between B(x,y) and T(x,y) does,
however, depend upon the nature or £(T). If for example, f(T) is such

that
e L Ay

then it can be readily shown that

1 - 34 % 3
T(x,y) = ,—n-{[?m e . $(x,5) ¢ = (A2.10)
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white this retaticnship 1s not as simple as the standard

Hosenithal transformation
L x
. A
l.€, T(XQY) - e . ¢(x’y)’

there would be no real dirficulty in applying equation A2,10 for a
particular problem, The required variation in ¢ along the pool length

would, for example, be given by
T X :
g(x) = g (1 + me)d
where Tm is the melting point of the material under consideration.

Whether or nof tne assumption that tne thermal cunductivity and
tne voiumetric heat capacity have tne same temperature dependence
(i.e. a constant thermal diifusivity) would depenu on the particular
material but it would seem not to be too unreasonable for most metals

(24).

It is interesting to note from the above analysis that the
variation in thermal properties is handled b& a transformation of the
dependent variable T(x,y). This is somewhat in keeping with the
discussion of section-3;, where it is shown thaf a change in the ratio

% results directly in a change in T(x,y).

This discussion has showm howvboth convective heat loss from
and variable thermal properties of the welded plate may be incorporated
into the ¢ field analogge approach, Unfortunately, it does nét seem
possible to incorporaté;both effects simultaneously to form a single
¢ equation, This is due to the non-linear nature of £(T). However,
it is felt that both these techniques may be used with the @ field

analogue to some advantage to determine, for example, what significance

each has on the thermal field in particular cases.
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