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SUMMARY 

To avold th, 
_- problems associated with specify. Ing the exact 

nature of the heat input from welding arcs, an analogue model is 

proposed which simulates the quasi-static thermal field produced 

around th-ý Isotherm. al contour of the molten weld pool boundary during 

the welding of thin plate. The design of an electrical analogue 

based directly on Rosenthal's equation (1) governing the quasi- 

static heat flow about a moving source is shown to be impractical 

ficance of the two although this approach identifies the physical signil 

V 
parameter rat os .1 and k 

To overcome the difficulties sociated with the-direct analogue, 

a sim. ple transformatLion of Rosenthal's equation is employed and the 

design of an indirect or 0. field analoguc-. of this transformed 
-j 

equation is developed. Me details of the construction and 

commissioning of such an analoSue are reported. 

The application of this analogue to studying the quasi-static 

thermal field is tested by comparing analogue predicted and 

experimentally measured temperature histories of points in the ljýZ for 

a range of autogenous TIG rpelt tuns on thin mild steel plate. The 

experimental results are obtained from a purpose built automatic'welding 

rig which incorporates a facility for determining the shape of the 

molten weld pool during welding. 

The results 'front these comparative tests show a good agrýeement 

between predictPI ani ! r,? asi)rpd temperature histories and the. 

appl1cation of the 0 field analogue to studying the thermal field 

civriný, r wel-ding is discusst-iA. 
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CHAPTER I 

INTRODUCTION 

In an attempt to gain a more fundamental understanding of the 

welding process and of its effect on the parent metal, a 

considerable effort has been devoted to studying the thermal field 

in the parent metal during welding. The temperature distribution 

in the welded material is one intensive property of the system 

which can be measured and hence studied. It is this change in 

temperature which is a primary cause of the micro-structural 

changes which can occur in the welded joint. Since the 

temperature effect is greatest in the region closest to the weld 

itself, i. e. the heat affected zone (HAZ), and. can give rise to 

severe problems of hardening and subsequent failure particularly in 

the welding of high strength steels, it is of considerable 

practical Importance to be able to predict temperature histories in 

the HAZ during welding. 

This study concerns itself particularly with the thermal field 

in the HAZ during welding and the techniques which are available 

for predicting and studying this field. 

1-1) Pundamental Considerations and Background 

To study the heat flow during welding, it is necessary to 

conýsider the transfer of energy from a highly localised moving 

source, e. g. an electric arc, to the parent material and the 

subsequent diffusion of this energy through the material. The 

first significant attempt to model this process was made by 



Rosenthal (1)* in a ýew classic paper. In this model, the energy 

source is considered to be concentrated in a point in three 

dimensional (, 3-D) cases or a line in two dimensional (2-D) cases. 

The resulting temperature distribution in the parent material is 

then given by the solution to Fourier's equation of heat conduction 

in an isotropic medium with constant properties. This has the 

form 

2T 

where o(is the thermal diffusivity of the parent material 

(assumed constant). 

-It is, however, an observable fact that, provided-the welding 

conditions and geometry remain constant, the temperature field 

relative to the moving source quickly becomes constant after the 

start of a weld. To account for this "quasi-stationary" effect, 

Rosenthal defined new co-ordinates with the origin at the source 

and then considered that, with respect to these co-ordinates, 
ZT 

- 0. If the welding speed is v in the x-direction (see Fig. 1.1), 
at 
Fourier's equation, with this co-ordinate transformation and 

setting 31T 
= o, becomes 

at 
2T+1. ý'T 

04 ax 
(1.2) 

In this work, this equation will be referred to as "Rosenthal's 

equation" and any potential field distribution governed by this 

equation will be termed a "Rosenthal field". 

Numbers in parenthesis refer to the list of references 

- 
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Using the point source model, Rosenthal produced analytical 

solutions of equation 1.2 for various geometries. A useful 

simplification for the 2-D case of a single pass butt weld on thin 

plate was made by Wells (2) who related the maximum width of any 

isotherm to the welding heat input. Such analysis based on 

Rosenthal's point source model was subsequently referred to in the 

literature as the "Rosenthal-Wells Theory". In a very useful 

paper, Myers et al (3) compared the experimental results of a 

number of researchers, notably Christensen et al (4), with the 

Rosenthal-Wells Theory. Briefly, their findings were that the 

theory gave reasonable agreement at points beyond the HAZ and at 

low to medium welding speeds. For points close to the molten zone 

and at high welding speeds the theory proved to be inadequate. The 

HAZ is, of course, the zone in which it is most necessary to have 

an accurate knowledge of the thermal field. The reasons for these 

discrepancies are to be found in the basic assumptions of the 

Rosenthal-Wells Theory. 

In his model of welding, Rosenthal made the following 

assumptions: 

1) the energy source is concentrated in a point (or line) and 

there are no other sources 

ii) the parent material experiences no change of phase and Its 

thermal properties (i. e. thermal conductivity, specific 

heat and density) remain constant with temperature. 

iii) quasi-static conditions exist i. e. the temperature 

distribution with respect to the source remains constant. 

iv) /over 
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iv) the conducting medium is infinitely larp; e. 

However, as has been suggested (3) the justification for these 

assumptions is not that they are representative of actual welding 

conditions but that they make it possible to find analytical 

solutions for the equations. In fact, the major deficiences in the 

model are contained In the first two assumptions. In practice, 

welding arcs are somewhat diffuse and although the physics of the 

are is not completely understood, experimental evidence (5,6) 

suggests that the heat input to the workpiece in many are processes 

passes through an area approximately the same as the surface area 

of the molten pool. While, as ýdells (21, correctly says, "the 

remote temperature distribution may be independent of the purely 

local distribution of the source", the temverature distribution In 

the HýZ will certainly depend on the diffuse nature of the source. 

Purthermore, since the energy transferred by the are to the 

workviece cannot be measured directly, nor is it simply related to 

the arc voltage and current, an estimate of "arc efficiency" has to 

be made. It has been the accepted practice to define this 

efficiency as the ratio of the heat input to the weld to the 

" available energy" at the electrode i. e. the volt-amps supplied 

to the electrode. To obtain estimates of the heat input to the 

weld; various calorimetric techniques have been used (4.5,7). 

Unfortunately, not only does the are efficienc. v thus defined vary 

for different welding processes as may be expected, it Is also a 

function of other welding variables e. g. arc height, welding 

speed, oroperties of the parent material, etc. which are determined 

for a particular -eld, not just the type of weld. 

- 



The behaviour of the are is also dertendent on the diffusion of 

parent metal ions from the molten pool into the are stream (6). 

This diffusion is obviously dependent upon the surface temperature 

of the molten nool. Me calorimetric technioues typically require 

the continuous cooling of the parent metal which inevitably reduces 

the molten pool temperature if, indeed, any melting takes place at 

all. Thus, are efficiencies estimated using such methods are not 

representative of arcs found in actual welding practice. 

Ry definition, the welding process also involves the melting 

and re-solidification of the parent material. The Rosenthal-Wells 

Theory takes no account of this and it is, therefore, not surprising 

that the shape of the melting point isotherm predicted by theory 

bears little relation to molten pool shapes experienced in practice 

(5,8,9). Indeed, there is some experimental evidence (10,11) that 

indicates that the factors affecting pool shape are equally as 

complex as those influencing are heat transfer. 

1.2) The Pool-Shape Model 
Recognising these complexities, Apps and Milner (9) suggested 

that a more successful approach to predicting the thermal field, 

particularly in the HAZ, may be made if the energy source were 

considered to be the molten pool itself. There are very 

significant advantages in adopting this approach. If it is 

assumed that all the energy transferred from the arc passes into the 

molten pool, then the thermal field in the surrounding material must 

be governed by the conduction of heat through the pool boundary into 

the surrounding solid, material. Therefore, the necessity for 

accounting_for both the heat transfer from the are and the inter- 

actions in the molten pool would be removed. Furthermore, as the 

-6- 



shape of molten pool can be determined experitfienItally (5-9) and as 

the molten/solid interface at the pool boundary is at the melting 

-fie ratcr-I point of 1. Lal, the pool bounlary provides a rnalthe=%tically 

definable boundary condition. 

This approach was not further pursued until Tanbctkuchi (12) 

fference solutions of Rosenthal's equation, produced finite diý 

modified to account for the variation in thermal properties with 

temperature, with the pool boundary as a defined boundary condition. 

Tanbakuchi achieved considerable success with this approach ih that 

he was able to predict temperature in the HAZ for thin plate much 

more accurately than had been previous)y possible using Rosenthal- 

Wells Theory. (This refernece also includes an_,. excelleht survey of 

the related literature up to 1967). 

Since the dependence of the pool shape on the welding parameters 

is not completely understood, it Is not possible to non-dimensionalise 

the pool shapes and the associated thermal fields for a broad spectrum- 

of welding conditions as was possible with Rosenthal's point source 

model. Using the pool shape as the basis for the heat flow analysis 

therefore requires that the analysis be repeated for each pool shape 

considered. This necessity to repeat the analysis for each pool 

shape doe ,s not, of course, invalidate the pool shape model or the 

numerical analysis but it does make any such heat flow investigation 

expensive especially as the numerical analysis requires a large 

ncmory storagc digital computc. r. 

To overcome this drawback and to enable the advantaýzes of the 

pool shape model. to be more readily exploited, it Was felt that there 

might be a significant advantage in adopting an analogue rather than 

- 



digital approach to the analysis. In atudying, for example, the 

thermal fields associated with a large number of welds, it was felt 

that any significant trends could be identified more readily and at 

less cost using an analogue approach and that specific cases could 

then be identified for a more detailed numerical analysis. In this 

way, the pool shape model could be more generally applied and its 

inherent advantages fully exploited. By its nature, an analogue 

approach might also be expected to promote a greater physical 

understanding of the processes involved in the heaý-flow during 

welding. I 

The first attempt to employ analogue techniques to the study of 

welding heat flow was made in 1973 by Boughton (1,3), working at the 

British Welding Institute. To study the relation between weld 

penetration and are heat input, Boughton constru,., ted a simpllý 

electrical network analogue of Fourier's equation. This was used to 

predict the transient thermal processes occurring at the fusion front 

of the weld pool, particularly at the start of a weld before quasi- 

static conditions were reached. In this way, Boughton was able to 

predict the heat input required-to ensure uniform penetration at the 

start of a weld. This was a remarkable result considering the 

simplicity of his model. Unfortunately, he was still unable to relate 

overall pool geometry. to the welding parameters and, consequently, it 

was not possible using his analogue to study, in any detail, the 

thermal field in the ITAZ, even assuming quasi-static conditions. 

However, employing the pool shape model does, as already stated, 

circumvent the problem of predicting pool geometry. Purthermore, for 

- quasi-static conditions only a steady state analogue of Rosenthal's equatioi 

would be required. Analogue techniques for studying heat flow- 
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problems are already well established (14,15). While these 

techniques generally relate to Laplacian fields i. e. fields 

whose governing equation is given by 

pT- (1.; ') 

it was felt intuitively that, as the quasi-static Rosenthal field 

is really only a particular case of Laplace's equation, it would be 

possible to modify one of these techniques of Laplacian fields to 

permit the analysis of Rosenthal fields and, 'hence, the analysis of 

thermal fields during welding. 

It wasS therefore, decided to initiate a project to study the 

viability of this alternative approach and, in particular, to 

a) investigate the fundamental characteristics of Rosenthal fields 

and how these relate to similar laplacian fields. 

b) design and construct a 2-D analogue on which the curvilinear 

shape of 2-D weld pools could be imposed as a boundary condition and 

which would predict the thermal field in the surrounding material. 

0 

C) design and construct a welding facility to provide experimental 

data on pool shapes and associated temperature histories in the FAZ 

in order that a comparison might be made with analogue predicted temperatur 

histories. 

These three objectives and th6 conclusions drawn as a result of 

their implementation comprise the subject matter of the following 

chapters. 

-9- 



CHA FIER 2 

PROPERTIES ()F ROSEN11HAT, Fjr!, JDIý 

It is of interest to study the nature of the solutions to 

similar problems governed respectively by the equations of 

Rosenthal and Fourier. 'The mathematics of Fourier's. equation is, 

of course, extremely well documentediand techniques for its 

solution readily available. Should it be vos3ible to rellate tile 

solutions of Rosenthal problems to those of' similar Poi). rier problems, - 

then it would certainly be possible to relate the solutions of 

auasi-s-tatic Rosenthal field problems to the solutions of 

corresponding Laplacian field problems (i. e. steady-state Fourier). 

The most appropriate technique available for the solution of 

Laplacian field problems could then be applied to the welding heat 

flow problem which is basically governed by the quasi-static 

'Rosenthal equation 1.2. 

However, since this discussion is intended to be general in 

nature, the ouasi-static condition will not be enforced i. e. although 

it does not relate specifically to the welding problem, the tib* 

dependent form of Rosenthal's eouation 

, V2T, 't 
v1 aT 

;i* Tt 

will be considered as more general comparisons can then be made with 

'Rourier's equation 

2T bT 
ý; t- at 

For simplicitY, the general solxtýons to linear boundary value pro'blejrs 

will be obtained for the I-T) forms of equations 2.1. and 2. P. 



P. 1) The 1-D Solutions 

The 1-D form of equation 2.1 is simply 

B2 Tv. Zý T1.2ýT (2.3) 
a2 

Tt 
x 

This is a linear Dartial differential eauation and nrovided any 

boundary conditions are also linear, a general solution of eauation 

2.3 may be sought by separatinv the variables. 

. Assume that IP(x, t) may be written as 

rr(,. t) = x(y, ).. n4t) (2.4) 

-lubstituting for Týx, t) in equation 2.3 and re-arranging gives 

2 
O(am a, 
-A2 

where ý is the separation constant. 

7his gives the-separated equations 

a2x .Y 
+0 

ýx 
+ Aýx (X) -0 (2-5) W2 0C TX 

and 

+0 (2.6) bt 

The solutions of equation 2-5 define the eigenvectors oftt. ie 

system and the values of A, definable when particular boundary 

conditions are known, are the corresponding eigenvalues. The 

solutions of equation 2.5 are of' the f*rm 

v 
X(X) e 

[AcosYx 
+ Rsinix] (2.7) 

w. here A and B are undetermined constants and is related to by 
2 

alk + 24K 



Since there are an infinite number of constants which car. be 

used in equation 2.7 and for it still to be a solution of 

equation 2.5, the stim of all such solutions is also a solution. 

The general solution may, therefore, be written as 

-V coo 
X(x) -e 

-PR 
(An Cos Ynx+Bn sin n X) (2.9) 

n=o 

The corresponding solution to equation P. 6 is gi-von by 

00 
-C( 

A2 t (t) JL en 
-n n=o 

r/ v)2 2] 
-441ba + 'n t 

-rL e (2.10) 
n=o 

where -fL are Constants determined by the initial conditions. n 

Combining equations 2.9 and 2.10 with equation 2.4 gives the 

general solution 

-V x2+-t 
T(x, t) =e (A Cos Yx+ %sin W -, x)j L. e nnn 

n=o 

ba 2 
IN 4Xt ( v)(. t+ "'t) ", Ar- I 

e (A Cosy x+B sin xe 
Ot n nnnn 

11-0 

It should be appreciated that the cons 
- 
tants. 

'ý.. ' 
and B, are 

dependent on both the initial and boundary conditions but the 

Coefficient 'fr. is dependent solely upon the boundary conditions. 

In a similar way, 'consider- the I-D forin of Fourier's equation 

12 



T ýT (2 12) 
Ck . 

Again, separating the variables by writing 

T(x, t) = X(x). Jl(t) (2.13) 

and substituting in equation 2.12 yields. the separated equations 

eX 
+X 

2X (X) 0 (2.14) 
ax 2 

and 

+ 0(ý 20 (2.15) 

where ý is the separation constant. The eigenvectors of this 

system are then given by the general-solution of equation 2.14. 

00 
i. e. X(x) (A cos Yx+B sin Y. x) (2.16) 

nnnn 
n=o 

where A and B are undetermined constants and the values of n n 

are eigenvalues. 

The solution of equation 2.15 is again given by 

2 

-(Ln e- 

where 
n 

are constants determined by the initial conditions. 

- 
Combining equations 2.16 and 2.17 and substituting In equation 

2.1.3 Yields the general solution of the Four ier system 

00 14 12 '', T(x, t), ý. I- -- -04yd-t": (A" coill X'' +B sirl't x) e , (2.18) 
nnnn 

13 



2.2) ADIscussion on Modal Characteristics 

A comparison can now be made with the solution for the 

corresponding Rosenthal system given by equation 2.11. Provided 

the same initial and boundary conditions apply to both systems, the 

following points can be noted. I 

I 
i) There is a simple relationshop between the eigenvectors of 

the two systems. If the eigenvector of the Fourier system is 

given by V (x), then the corresponding eigenvector of the Rosenthal 
n 

system Rn (x) is given by 

R (x) =7 
22x V (x) 

(c. f. equations 2.9 and 2.16). 

Mis relationship is generally true irrespective of the particular 

eigenvector (value of n) considered. 

ii) A corresponding relationship exists between the eigen- 

values of the two systems. If the eigenvalue of the Fourier 

system is given by It 
n, 

then the corresponding eigenvalue of-the 

Rosenthal system 
"Xn is given by 

I+ (2w 20) 
n 20L n 

This 'relktionthlp' Ili a1s'o-gýdnerally`ftlue Ii*ýdjýedtive Of' t14 psii4icular 

of ý'h) cbmfderýdd'. vigenvýllie: -(val-ue -6 

iii) Altýough the eigenvalues of the two systems'are related but 

differervtý, the trigonometric ooefficientB fn appearloaIn both 

ýsojutlons. are- identipal,: provided the asm boundary condttions -apply 

to, both, systems. It, must be ealphao-tap., d thats, Aw itse 1-f is an 

ftlgenvalbAe on4 of Abe,,, FourlLer system., 

14 



iv) Although it would appear that there is a simple 

relationship between the two solutions (equations 2.11 and 2.18), 

this will not, in general, be true. For the same boundary and 

initial conditions, the values of the constants An and Bn will be 

different'in the two solutions. Roth these solutions are 

mathematical expressions of the fact that, at any time, the 

potential distribution T(x, t) is a linear combination of the 

eigenvectors. Since the eigenvectors of the two systems are 

different, their combination (defined by A and B to describe one nn 

potential distribution (e. g. the initial condition) must also be 

different. It is worth noting, however, that a relationship 
II 

between the values of A and B for the two systems will exist but 
nn 

that it will be dependent upon the relationship between the 

eigenvalues (and hence on n). 

v) While the above discussion has been restricted to a 1-! ) 

analysis, these conclusions would apply equally to 2 and 3-D systems. 

It wo! ild, therefore, seem that, while a relationship does exist. 

between potential distributions governed by Rosenthall's or F erS ouri 

equation$ this relationship is, not, r4mple,,, t4lPrfýý "ýnQt 

appear to be any single,., fa4zt, 4>r, orý, trariafprmtiop Whichcan be applied 

to a solutIon of Fburlor'4, equativp 1,331- ordýX' 

solution of Rosenthal's pauaýtim for the,, zqpp I onclitions. 

Powever, it is very significant that the eigenVectors and 

eigenvalues of the two systems are simple related. These modal 

characteristics are the fundamental units of which a complete 

solution is constructed, Although this discussion included, for 



generality, time denendence, the solutions to steady state problems 

are, in general, a combination of the same eigenvectors in a similar 

way, Now, it is obvious that the eigenvali). es of a particular 

system are dependent upon the basic governing equation and the 

boundary conditions. If, in some way, the basic governing equation 

was changed while keeping the boundary conditions constant, then the 

eigenvalues of the system would also be changed accordingly. For 

example, equation 2.12 defines Rourier's enuation in a 1-T), 

isotronic, homogeneous medium. Tf the conductivity were allowed to 

vary within the medium (i. e. nor-homozeneous), the governing 

eauation would become 

r) (x). LT ]m0. g 
-77 3x e ýt 

(2.21) 

where k(x) is the conductivity of the mediiun, e its density and 

c its specific heat, and the eigenvalues of this system would no 

longer be defined by equation 2.16. The precise nature of the. 

eigenvalues would, of course, depend upon k(x). 

Sinceý there is such a simple relationship between the 

eigenvalues of the Rosenthal and Fourier systems, It is possible that 

a particular k(x) exists. ýddoh, would give equation 2.21 the same 

form as Rosenthal's equation. The variable conduativity Fourier 

system would then be a direct. analogue, of the Rosenthal system. 

Such a k(x) does exist and the application of this analogue principle 

to the welding problem is discussed in the next chapter. 

Footnote 
Me preceding discussion raises another question of some interest in 

- 



that R. is not clearly understood how the eigenvectors of an 

originally uniform system are afi-ected when one of the properties 

(e. g. conductIvity) of that system is allowed to vary. This was 

also investigated by the author in relation to the longitudinal 

vibrations of some -variable cross-section beams and is reported in 

Appendix 1. 
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CfIAPIF, R 

,S D'F! 117, Cr., n ANAIDGUF 

3-1) Ilic Analogue Principle 

The equation governing the time dependent potential distribution in 

an isotropic but non-homogeneous conducting medium can more 

generally be written as 

div k. grad T C. aT 
, )t 

where and c are not necessarily constant. If the conductivity ?I 

k is a function of x alone, the above equation in Cartesian 

co-ordinates reduces to 

V2T+ -1 
ýk ýT 1T (3-2) 

k* Tx * Tx _IX t 

where o< __ 
k 

ec 

Comparing this equation with the general form of Rosenthal's 

eqjation (equation 2.1) shows that the two equations have the same 

form if ýnd only If 

3. . ZI k 
"ý ý -x w (3-3) 

and provided o( in equation 7,. 2 is constant. The solution to 

equation 3.3 is SiMPI-Y 
I V. X 

k0e 
rx (3.4) 

who-ro k0 Is an arbitrary conýAanlu. 

MuF;, Aht- ý, ff'cct ur moving &x(ýs in a. hwvoýý, cnvous 'Iicaium on the 

form of tlý -,, Oýx!, c rij ill,, - (i. c . Rms, -nthal. 's co-ordinate 



transformation of Fourier's equation) is exactly equivalerit to th(: ý 

effect of an exponential variation in conductivity defined by 

equation -3.4. 

It should be noted that this equIvalence is only complete if 0( 
v 

in equation 3.2 is constant i. e. cc " C., , X. For st eady state 

conditions, this further restriction is not required. 

It is precisely this equivalence which indicates the 

possibility of using a simple analogue to obtain solutions of 
I 

Rosenthal's equation. The analogue would have equation 3.2 as its 

governing equation (with stationary axes) with the analogue 

conductivity varying in the exponential manner defined by equation 

3.4. 

It must also be emphasised that although this analogue 

principle has been developed for thermal diffusion, any potential 

field governed by an equation similar to equation 3.2 could also 

ser-ve as an analogue provided the field property analogous to 

conductivity could be varied in the same exponential manner. 

3.2) Lnalogue Solutions of Rosenthal's Point Source Model of LeldipZ 

To illustrate how this principle may be employed, its 

application to tho heat flow in welding will be discussed with 

particular reforpnce to the point source inodel proposed by 

Roscnthal. Sinco the object oý f the project was to stuly ",? -I) fiel(is, 

only the 2-1) form of Ro! 3mitha-I's quasi-static equation will be 

considered. 
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I. e. \2 3ýT v aT 
h Lj ýý * 'ýx (3-5) 

Rosenthal defined the source of heat (in this case a line source) as 

q ---+ 2 I-k rk. 
ý'T 

as r --> o 
,)r 

22 
where r= (x +y 

Owing to the variety of materials which are welded, and the 

corresponding variety of welding parameters, it is uzeful to non- 

dimensionalise the independent variables- in equation 3.5. This 

can conveniently be achieved by introducing the non-dimensional 

variablesp 

v 
and y 

0( 

With these transformations equation 3.5 becomes 

32T62T bT 

') OL- + 57 + 5-7 0 (3.6) 

with the source re-defined as 

ZT 2 3R R --. ) 0 0-7) 

where R (02- + 

Considering now the principle developed above, it can readily 

be shown that equation : 5.6 is also, the governing equation for the 

steady state potential distribution In an isotropic but non- 

homogencýous medium where the variation in conductivity Is defined 

by 

k-k eo 

20 



Let it be accepted that a potential field having this variation 

in conductivity (or similar property) could be constructed. Such 

a field would then be an analogue of the welding heat flow problem 

defined above and could be used to provide solutions of this 

problem. Some aspects of the solutions obtainable from such an 

analogue will now be considered with specific reference to the 

point source model defined by Rosenthal. 

Firstly, no specification has been made as to the type of 

potential field (e. g. electric, magnetic, fluid, thermal, etc. ) or 

to the range and value of the analogue space variables. These 

are obviously determinable from practical considerations. For the 

purpose of this discussion, however, the analogue space variables will 

be considered identical to the variables 0 and V. It will also be 

assumed that the analogue potential V (whatever it is) at any 

point in the field can be readily measured and that the relation 

between V and the welding heat flow temperature T has been 

establIshed. This relationship would be defined when the design 

details of the analogue are determined but it would have the,,, simple 

f orn, 

V a. T (3.9) 

where a is a constant. 

It will also be noticed that although the variation in 

analogue conductivity must be defined by eauation 3.8, the actual 

value of k0 appears to be arbitrary. It does, however, become 

fixed once the location of the origin is decided. 



mow, the potential distribution on the analogue field V(O --P) 

Is governed by 

32v-, Ly ay 

602 3y2 -, 30 
(3-10) 

- and the corresponding source condition must have the form 

2 7[R. 
Z)V 

as R --+ 0 (3-11) 
ýR 

0 

where 0 is the strength of the analogue source. 'Por the analogue 

to represent exactlv the heat flow problem, it is necessary that 

the source conditions should also be made equivalent. Since 

V= aT, substitution in equation 3.11 gives 

Q0 2-xR 
'6T 

as R 
ak R 

0 

and comparison with the actual source condition fequation 3-7) 

demands that 

Q. 
ak (3.12) 

Since both q and k are known for particular welding conditions and 

since k is fixed for a particular location of the origin on the 
0 

analogue field and 'a' is defined as above, then the strength 

of the analogue source is determined from equation 3.12. 

A second boundary condition Is, of course, necessary to completely 

define the heat flow problem. Whatever its nature, however, it 

could be related to a corresponding condition on the analogue field 

by a procelure similar to th(-. - above. 

Tius, the probim can bQ roadily set up on such an analoguo. 



It now remains, to dis,. -ýuss how U. e potintial distribution on the 

analogue field could be interpreted in terms of the actual 

tctu' : tr1butor. 

Firstly, the analogue potential is directly proportional to 

temperature, being defined by equation _3.9. Secondly, since 

and the ratio acts as a scale factor 

between the rcal anA ana1o[,,, ue fiells. Furth-c-rmore, if a solution 
v is desired to a problem having different values of ýý and-2 k 

there is no necessity to re-determine the potential distribution 

(always provided the second boundary condition remains the same). 

A change in will only require a change in scaling. Re-writing 

equation -3.12 as 0 

(3-13) 

it can be seen that if 01 is kept constant, 'a' is inversely ko 

proportional to 0 and, hence, a change in .2 is simply kk 

reflectiedin a change in the relation between analogue potential 

and temperature given by equation 3.9. Thus, such an analogue has 

the interesting property that it will provide general solutions of 

point source models subject only to the practical limitations of the 

analogue. The interpretation of the general analogue solution for 

particular values of v, oe, q and k will, of coUrse, produce unique 

solutions as is required by potential theory. 

Another point of interest arises from the fact that the chcice 

of k0 on the analogue is arbitrary. Ibis implies that the origin 

on the analo6ue can be claosen with complete freedoin. Mat is, If 

the origin is c?: ý. s-n ,t0, Uhm the variables must 

- 2,3 - 



be changed to 0' =0-P, Y='j , yielding the same goveming 

enuation as before. However, in this case, since 

k eo 0 

the variation in conductivity must be re-defined as 

kle 
01 

0 

where 
kt =k eP 00 

Tt must be emphasised, however, that the same potential 

distribution would be obtained with the source situated at 0-0 
Q 

compared with 0-P nrovided the raT, 1o k was the same in each 

case. This merely emphasises the generality of the solutions 

based on the point source model which this analogue could provide. 

Tt is also interesting to note that the two parameters 1 and 04. 
q 
K can now be identified as having important significance to the heat 

flow in welding. Since the ratio -K arises from the governing Cx. 

equation 3.5, its importance remains fundamental whichever model of 

welding heat input is selected as a source boundary condition. 

Moraover,, -Y, has been shown to act as a scaling factor relating the 

analogue sDace variables to the "real world" variables x, y. 

Since, for example, PI V 
, X. x and hence 

bT äT ýO v )hT 
i; ý «2 32 *, ix- 1,12 Z*-ä-o 

jnoreasinjý the value of -ýý will increase the thermal wradients CO. 

around the source. Since the ratio -ýl arises from considerations k 

of the source boundary coxidition, It does not seem to have as 

fundamental Importance as tile ratio 
v It has already been shown, at 



ho-wever, that the ratio 
2 is related to the factor 'at by equation k 

Using this relation and substituting for 'a' in equation 3.9 

and re-arranging gives 

T (2). V k 

'This implies that increasing the value of q will have the effect of k 

increasing the peak temperatures around the source. 

It also seems to be important that these are the only 

independent ratios which can be identified. This implies that, to 

obtain the same temperature distribution in the welding of materials 

of the same geometry under different conditions, it is only necessary 

that the ratios and 
q 

remain the same. k 

It should be noted that these findings are in agreement with the 

expression developed by Wells (2) from Rosenthal's solution for a 

line source moving with constant veloc. ity in a wide plate of 

uniform thickness. This relates the maximum width W from tile 

weld centre line (ý) of an isotherm T to tLe wclding variables by the 

expression 

q= 8kT (I + V. (1) 
5 'N *ý 

It can be seen from this that if 2 is kept constant then for a k 

particular isotherm, 

vC 
.1 ;zd 

will reduce the isotherm width. Since this 
C-ý 

will be true of all the isotherms. an overall reduction In the 

widti, r. jjjsý jinply an increasc, in the themial gvadlent. 

It can also be soc. n that iP v is k(., pt cc. m. stant, tho effect of, 



increasing _q will be to raise the temperature T at any widtlh d. k 

Expressing T in terms of d, the expression becomes 

T -q), kV d)] 8 15 
+Q) - (ý 

and it becomes evident that the same T-d relation will occur 

provided the ratios (9) and are kept constant. k 



3-3) Application to the Pool Shap(-_LýLdpl 

In practicef however, the discussion in the preceding section 

is only true in as much as the assumptions made in developing the 

original model are true. As has been discussed in the introduction, 

the Rosenthal - Wells theory can only be applied with any accuracy 

to points sufficiently distant from the source where the temperature 

field is no longer dependent upon the exact nature of the source. It 

has been shown numerically by Pavelic and others (5,12) that, for 

points in the TIAZ close to the source, the pool shape model proposed 

by Apps and Milner predicts the temperature field with much greater 

accuracy. Since this model basically depends on specifying a fixed 

potential (i. e. the melting temperature) alone, a curvilinear boundary 

(i. e. the molten pool boundary)q it will be appreciated that such a 

constant potential boundary condition can readily be imposed on the 

type of analogue discussed above. Since the specification of this 

boundary condition does not involve the thermal conductivity k of the 

conducting medium or the heat input rate q, the equivalent equi- 

potential condition on the analogue must be independent of the 

ana-logue conductivity k. This must imply thatq on the analoguep any 

point can be chosen for the origin (i. e. any ýmlue*df'k can'beý'choaen 

for ko)p and. consequently, the equipotential boundary defined-bi the 

molten pool boundary can be'placed anywhere on'the analogiie fiel: d* 

loor boundary coladitions of this type, thereforeg the same potential 

field distribution would result wherever the''pooll was located on 

the analotqic and no further interpretation of the analo, ýUe results 

would be required kapart, of course, from the POtenýtial/temperature 

r lation and J.,,; e applicat Lo-,, of' the appropriate scale factor e 



A would, therefore, appear that such an analoMe, if constructed, 

would be useful for the determimation of, the themal. field during 

welding using the pool shape model. 

In principle, any potential field whose governing equation has 

the form 

div k grad T=0 

and where "conductivity" k could be varied in the prescribed 

exponential manner could be used as an analogue field. Electro- 

conductive analogues, however, would be the most suitable for this 

application. Not only can electrical conductivity be readily 

defined and measured but all essential measurements (e. g. potential) 

can be made easily and with high precision on electric fields. Of 

the various electric field analogues wbich have been developed (14, 

15), the conductive sheet, electrolyti c tank (both for 2-D 
I 

applications) and impedance network (for 2 and 3-D applications are 

the three which lend-themselves most readily to a variation in 

conductivity. 

Conductive sheet analo, -ues are usually homogeneous in 

co; nposition but the required variation in conductivity kor in this 

case, "acceptivity") could. be achieved by a similar variation in 

t'ne thickness of the sheet. If the local thickness of the sheet is 

t(x), tile Coverning equation for the steady state potential% 

distribution V(X, y) in such a sheet can be written as 

:22V1 -xt 3v 
ýix 

x to tho and if t toe this eqxiation reduces ýýuue furin, as equ. tion 



3.6 (i. e. non-dimensional form of Rosenthal's equation). While 

this type of analogue would be suitable for 2-D applications, It would 

be necessary to ensure the variation in thickness of the sheet did 

not result in a through thickness variation in potential. SubJect 

to this requirement, such an analogue could, for example, be 

constructed by appropriately machining a slab of graphite and it 

would have the advantage of providing a continuous analogue field. 

The electrolytic tank would in a similar way also provide a 

continuous analogue, with the depth of the electrolyte varying in 

the same exponential'manner. It would, however, suffer the same 

restrictions as the conductive sheet. 

Impedance networks are less direct analogues than either the 

conductive sheet or the electrolytic tank as they are based on 

finite difference approximations to the differential terms in the 

governing equation. They are, however, by far the most versatile 

and since the variation in conductivity can be achieved by simply 

varying the value of the resistive elements, they are the most 

suitable for this application. The design of such a network 

analogue for the quasi-static form of Rosenthal's equation is 

outlined in the following section. 

1ý 



3-4) 
. 
9. 'ho Pona. Loj:! ý(ý 

Cons, i. (ier t-, ic, non-d. -JI-mensional form of Rosenthal's quasi-static 

equation given by equation 3.6 

tý 
2T2T 

5-07 + Z7- . et 

If the field of interest governed by this equation is covered by a 

uniformly square finite difference wesh of side h, ther. at ý; x., -Y node 

i in the mesh, the differential terms in the above equation may be 

approximated by the central difference expressions 

C3 T '6 T1 
Wig + -1ý2 (TI +T2+T3+T4- 4Ti) 

and 

(T T 2h 31 

-where T,. is the temperature at the ith node and Tl, T2, T 3' T4 are 

the temperatures at each of the four surrounding nodes as shown 

in Fia. 3.1. Substituting for the differential terms in 
-Rosenthal's 

equý, Aion and re-arrangin., ]., gives the difference equation 

(1 h /2) + -T +T (I +h /2) +T0 (3-13, 
234 4T 

Tiow consider the corresponding element of a resistance network 

as shown in Pic,. 3.2. If the volta, ý7e at the ith node is V1 then 

Kin-. 1,1hoff's lot Law at the ith node givos 

vi v4 
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which on re-arrariEýing becomes 

v2v3+ V4 
V. 1+1l) 

T;, li 3R41R2 
Ti 

3 
111 

4 

Provided the voltage at any point in the network i2 simply 

proportional to the temperature in the corresponding finite difference 

mesh, then comly-trison of' equations, 3-13 arid ý-14 shou'sthat the 

resistance network element can only be a model of the finite difterence 

element if 

R2=R4=Ri say 

(i. e. no variation of resistance in the T direction) 

and 

R. 
= (1h/2) (i) 

1 

h (i + /2) 

Ri ( Tj + Tý 
32 

It -will be noticed-that the third of these conditions is satisfied 

by the other two and that by dividing (i) by (ii), 

R 
-3 

=( (3-15 RG+ 1112) 

is the value of epich (., I' the re SiStances If, as Shown ill Fit, 

at the first ni)de (i. o. 1 1) then, followint, the notation of Fie. 

- 



3-3 it C, -Irl T'(-., adily be shown that at the ith node 

h 2) 1-2 

+ 2')'-l 

h /2) i-i 

(3-16) 

h i-1 
and R /2 

. i+l /2 +-h[2)1 

where RI is arbitary. Equations 3.4 can now be used as the design 

formulae for a resistance network analogue of Rosenthal's equation 

3.6 . 

in the developi-nent of* equations 3.16, rio use has been made of 

the fact, that the required variation in resistance ýconductivity) is 

known, ex, letly. The required design formulae can, however, be 

developed using this knowledge by a technique outlined by Vine 

and which is particularly applicable for the design of resistance 

networks wnere the mýesh size is rot uniform. IThis makes this,, 

technique applicable for problems with irregularly stiaped, boun4aries 

(e. g. t1he curvilinear shape of the weld pool boundary). 

As before, consider 'the field subdivided by a network of lines 

whose intcrsections define the fieldpoints which axe to be 

represented on the analot-Me. 3.4a). Vine further subdivides 

the field into s%iall arvas callcd cells (s. r. -, owr, by the dotted lines) 

such tl,., tt each cell contains one no(lv and ti. e field at that node is 

tntlk. cni t,.. ) lue roprvý, oxitative of th, ý ccil 
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Now comider one cell CI whose area is SI enclosing the ith 

nod-e. 111his cell is surrounded by four other cells as shown in 

Fig-, 3-4b. As has been shown, Rosenthal's equation 3.6 can. be 

written in the form 

div k grad T=0 

where k eo 0 

Integrating this equation over the area Si of the cell Ci gives 

div k grad T 

S. 
I 

'Using the Divergence theorem, this integral may be replaced by the 

line integral 

k dP 6n 

pi 

where n i., the outward pointing normal from C 
2. and P is the 

perimeter of the cell. Since the cell structure under coppideration 

is rectarwular, the line integral around the perimeter may be 

written as Hie sum of the integrals along each of the sides P 

i. e. 
T dP k"T dP )kn X-2 -I 

ýn 

p sp 
i 

An appcoxii;,. ation for the g-radient -LE can now be introduced by 
)n 

wt-iting for , idf- Sp., 

4 

Zý7- 



: ;i - I -- 1 zT ___ __ 

_j_ _L_ 
_ 

_ 
1i 3_I_ 

___ 
__ _� 

__. J_ _l__ ___ I 

I I I 
____ ____ 

PC 34 DOZ-CWT Nf S 110 IN Af FaL / INa 
AIVO CELL STPUCTURE 

-Cz j-ARFA Si 

R6 3-4. b Tllf Ub CFIL 



T. - P. 
=3:: 

h. 

where hj is the separation of the ith and jth nodes. 

Substituting for 
a T) in the above expression and integrating (in 

yields 

4 
; 

-ý 
ki (T 

j=l 

(3-17) 

where ki is the value of the conductivity at the intersection of the 

cell boundary and the grid line connecting thib ith and jth nodes. 

N. 11 This same result could have been obtained by considerin6, the 

heat flow into the element from each of its neighbours and rnaking 

the same approximation for the gradient. 

Comparison of equation 3.17 with equation 3.14 for the 

resistance network element shows that the values of the resistances 

connecting the ith node are given by 

h 

ki 6pj 

Since it is known that k= k- 
0 eo , then the valu es of ki at any 

node i in the fipld can be determined and substituted in equation 

3.31.6 to datermine the best estimate for R j, 

To illu! 3trate thýs, consider the case of a uniformly square 

me! Al Surh that h0"h for the whole field. The cell structure will 

then be similarly square atid Sp h. substitutinr, for hi and 6pj 



in the above equation yield-s 

EL=' 
j k. 

If the ith node corresponds to a point (Oi, yj)ýin the field, then 

ýk(oj-l 
=k0 eo -1 

Following the notation of Fig- 3.3 the following equations 

may be readily d. wived 

-hk i-3/2) R i-1/2 Rle 

RR 

R i+1/2 R1 ýh(i-1/2) 

where x. = h(i-1) and R =-! is arbitrary. These design formulae 
11k 

0 
are comparable with equations 3.16 which were derived without 

employing the known variation in conductivity. It is useful to 

compare the ratio R i+1/2 
/R 

i-1/2 for the two cases. 

From equations 3.16, 

R i+'/ý, h 

+--F-- i-1/2 

and from ocillatic, "s 3-19, 

i. 41/2 

-i-1/2 

, Ile Jýjttej_- vxt.,, roý, ý.., jun j, _-, ,, xtctly wbat is required by -tile expOnetitial 



variation in conductivity and for a grid spacing of h. It is 

evident, therefore, that there is an error in the resistance values 

calculated using the central difference approximations. The relative 

error E in the ratio R i+l /. calculated by central differences can 

be expressed as 

o. -h/2 eh ý 1+192 
ý 

A plot of E expressed as a percentageap 
,, ainst h is showil in Fig. 

3.5 and it should be noted that Z ----y 0 as h-40 as indeed it must. 

It is obvious therefore from the above that the "cell" approach 

is to be preferred in deriving the design fromulae for the resistance 

network analogue of Rosenthal's equation. Indeed, for the design of 

a resistance network as an analogue of any field whose governing 

equation can be written in the form 

div k grad T=0 

the cell approach is to be recommended. It can readily be shown 

that this includeq all equations of the type 

V2T+f (x) 21-T + g(y) 'OT 
=0'm (3.20) ýby 

in which case, the 'loonductivity" k(x, y) can be expressed as 

k(x, y) =k0 exp 
lif(x)dx 

+ 
J_-(y)dy] 

where 1,0 is an arbitrary cor, Stant and f'(x) and gýy) are arbitrary 

functions oi',, x and y respectively. The orly restriction on f(x) 

and tý(y) 1r, that t. ý, y must be iyite, ý-, rable at least in the required 
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range of x and y. 

It should a]--o be noted that the "cell" approach provides a 

usrýful alternativ(- difference approximation for this class of 

equations. Consider for example the difference equation 3.17. For 

a square mesh, this reduces to 

4 
1ki 

(T 

J=l 

If the ith node corresponds to the point (J6i, lfi) in the field then 

k(O k0 e+Oi 

Followin, 7 the notation of Fig. 3.1 and substitutin,: ý the apporpriate 

values for ki in the above difference equation gives 

k ý36j P-h/2 T- (T3 (T T+ (I 
p+ T, - 2T + e+h/p 4 

which on re-arranging becomes 

-h/2 T, + Tý, + e+h/2 (e-h/2 + e+h/2 + 2)T 0 T3 + T4 

Since this difference approximation embodies the exact variation in 

conductivity, it Is a better approximation for the Rosenthal equation 

than the difference equation _3.1,3 established using the standard 

central difference approximations. It should be noted that the 

numerical analysis of Tanbakuchi and Paiielic (12,5) involved the 

direct application of finite differences to Rosenthal's equation 

(mollfied, to allow for the non-linear variations in thermal properti--s with 

temperature) and their analysis Is, therefore, subject to the error 

- 41 - 



d. Lscuss(--., d above. While the r(! lative importance of this error 

dimlniE7, hes with f-rrid si: ýe (Fig. 3-5), it is, nevertheless, an error 

which may be corrected by adopting the above procedure to establish 

the difference equations. Since this will gcnerally be true of 

difference approximations for the set of equations characterised by 

equation 3.20, it is recommended that the cell approach be adopted to 

establish the difference approximations for such equations. 

For the particular application to the design of a resistance 

network analogue of Rosenthal's equation, it is similarly evident that 

the design formulae established-using the cell approach (equations 
-3.19) 

are -to be preferred. Due to 'the specific variation in resistance 

values which would be required, a practical analogue would be constructed 

of variable resistors (Dr potentiometers used as such) whose resistance 

could be set to the value specified by the design formulae. A network 

of commercially available standard resistors with preferred values 

could be designed but of necessity this would involve a variable grid 

spac I i-q-T. The overall range of resistance values required would depend 

upon the range of x in the "4al" field and upon the value of 

To illustrate this, consider the application of such an analogue to 

study the temperature field around a weld pool 2 cm. long, which is 

produced by the TIG welding of a thin steel platelat, a &pee4 of, 
2 

0.4 Cal/s. The thermal diffusivity c4 can be taken as O. G75-PmYs 

and the temperature field tias to be determined in a region not less 

U'ian tlw(. ýe tiwes tfie pool Icngth in the direction of weldin! y.,. 

4 

,c 
NO on I. o arvaoi is th(" (ailrod i. Lnv, i "ue Jven by two 



Now the variation In rcslstance on Lhe analogue is glvcm by 

-R= 
Roe-0 

and hence the required range in re. ý-, istance R ic, given by 

0 
16 

= 6. m6l x 10 
6 

Thus, if the initial resistance value is chosen as lfL, the 

minimum required value at the other end of the analog,, ue field 

would be 8.89 MA . It can be appreciated that this introduces a 

serious restriction to the application of such an analogue to 

welding probleMS. Assuming a practical limit of 10 M. IL on -the ran(! 'ýe 

of resistance, the range of 0 is fixed at 16.1. For certain welding 

conditions (e, g.. high speed welding of low diffusivity materials)p 

this may be insufficient to permit a study of the temperature field 

surrounding the weld pool. It should also be noted that in a 

similar way, this rules out completely the po2sibility of using a 

variable thickness analo(,, ue for the welding p-roblem. 

Another disadvantage of the resistance mesh is thatt since it 

is by design a, discrete approximation to a continuous system, there 

are truncation errors which are inherent in the analogue. Furthermotlep 

due to its discrete nature, it would be rather more difficult, although 

certainly not impossible, to set up the curvilinear shape-of, 'the 

pool boundary on a network analo6rue. 

Wiile these restrictions are not as signifi cant as the required 

variation in resistance, they do, nevertheless, detract from the 

appeal of using a resistance network analoCue for the welding 

problem. It was for this reason that such an analoeue was not 

constructed althouch it certainly emild hiavti application to certain 

welding problems (e. g. where 
vl', ýl). It 1.0wever, felt thAt CK 

ti-Ii. - stiikly of direct w la I ojuet', liltd 



identifil the resistance network analogue as a practical 

analogue for the study of welding heat flow under certain conditions 

and 
ii) promoted a greater physical understanding of the heat flow 

problem. 'Bie parameters . -ý and 
2 

were Identified and given a k 

physical signifleance. 

For these reasons it was decided to pursue the analogue approach 

and to consider whether there existed a transformed version of 

Rosenthal's equation for which a practical analogue could be 

constructed. This is considered in the following chapter. 



I. 

THE. INT)TRFICT ANAI., O(', UE 

It is evJ. dcnt from the preceding chapter that the very large 

variation in analogue "conductivity" required for the study of welding 

heat flow is the major drawback to the design of a practical direct 

analogue. Not even a change of seven orders of magnitude, as can 

be aclileved wiluh the resistance n(-Awork, is entirely sufficient for 

such a study. Tnis chapter discusses how a simple transformation 

of the dependent variable in Rosenthal's equation yields a 

transformod field equation with the exponential variation effectively 

removed. Both the design and the construction of practical 

analogues of this transformed equation are discussed. 

4.1) Itic Rosenthal Transfor. mition and the 0 Field 

Consider again the 2-D quasi-static form of Rosenthal's 

equation 3.5 

i. e. ') 
ý) 

T+T+v. 6T 
3x e. ', ýy 2 

*4 ýx 

As a first step 1n his analysis Rosenthal transformed the dependent 

variablu T(x,. y) by writing 

(x, (. 1) 

Making, this*Lrancformation in equation 2-1ý'5 gives 



,T 
;7 -2 ll)cý x 

or 0 (- v, (4., )) 2*; Z-)'O 0 

The above transformation (equation 4.1) will be termed the 

"Rosenthal transformation" and the resulting transformed 

Rosenthal equation 4.2 will be termed the "0 equation". The 

region of space govcrned by the 0 equation will be termed the 

"0 field". 

Returning to the conductivity analogy, it can be seen that the 

effect of the Rosenthal transformation on the Rosenthal field is to 

change its character from the non-homogeneous (exponential variation 

in conductivity) condition to the homogeneous (constant conductiviIy) 

0 field. A comparison of the 0 enuation with Laplace's equation 

indicates that the 0 field is essentially Laplacian in character 

but with "leakage" proportional to the 0 potential at every point 

in the field. 

Merefore, since the 0 field is essentially homogeneous, an 

analogue of the 0 field would not suffer from the same disadvantages 

as the direct analogues of the Rosenthal field. Such, an analogue 

would, however. have to account for the "leakage" term in the 36 

equation. 

4.2) Trýt Equivalent RosAstancc, Nlc-twork 

To discover how ý'U, ul('Ctl*icý13- of the 0 field Piny be 

constructed. a stryiplIt! rcslstance nAwork -rialogue of the 0 uquation 

4.2 wI] 1 bc dtV.. 1OL1. 



Following the procedure of the previous chapter, consider the 

region of' interest in the 0 field covered by a uniformly square 

finite difference mesh of side h. Applying the standard central 

difference approximation for VP0 to equation 4.2 and, following 

the notation of Fig. 4.1a yields for the ith node of the mesh the 

difference equation 

4 
OJ4 + (h-'Y)""] (4.3) 2K 

Now consider the corresponding element of a resistance network as 

shown in Fig. 4.1b. It will be noticed that unlike the resistance 

element for the direct analogue, the four resistors R radiating 

from the ith node are all equal in value and that there is a fifth 

resistor Ri connec'-'. 1ed between the ith node and earth. It is this 

resistor which provides the "leakage" discussed above. 

If the voltage at the ith node is Vi and at each of the four 

surrounding nodes V tkien applying Kirchhoff's lst 

law at the ith node gives 

vI -V iv2 -V iv -V i+ V4-Vi Vi 
0 - -- + -R +R RRR i 

which on re-arranging becomes 

Yj 
14 

+ (4.4) 
J 

Comparlson with onuation 4.3 shows that for the resistance network 

to b,.. ' an Finilojýue of the 0 fi,. -Id thrn it is necesrary that 
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R (hv)? (4-5) 
R 2(( 

This is the required design formula for the 0 field analogue. It 

will be noticed that in this case there is only one design formula 

(compared with three for the "direct" network analogue) since the 

0 field is homogeneous i. e. the value of R is constant throughout 

the field. The purDose of Ri is, of coursc, to allow tho necessary 

"leakage" current, characteristic of the 0 field. 

If a suitably small and "ideal" value for the grid spacing h 

is selected, then it can be seen from equation 4.5 that for each 

different value of there would be a corrcspondingly different 

value of In practice, however, only one analogue with a Ri' 

fixed value of would be used to study various problems with Ri 

different values of ; 
vý. Re-arranging equation 4.5 

R i. e. (20t) 
v 

it can be seen that the distance of real space represented by the grid 

:'. A spacing h will vary with Ibus, in a similar way to the diree 
0< 

analogues, the results from a0 field ixnalogue would reýuire 

"scaling" for different values of 
! ý. The choice of 

5 
would be OC Ri 

a compromise to give reasonable values, of the grid spacing. h for the 

v 
range of to be considered. 

TbIs. establishes the basic design concept for a SiMple 0 field 

analogue. -qInce the exponential term has been Offectivelv 

it removed" ! 'rom the 0 fiold by the Rosenthal trans formati on, such an 

analogue would noL suC! 'o-, from tho restrictions imposvd by t1j(., 

varlable condwALvIty of the direcO, analogues dtscussf. -d previously. 



4.3) The Condu(, t. l. v(-, - Sheet A-wilorrue of thý-, 0 Pield 

As has beýn indicated, the 0 field, because of its homogeneous 

nature. Is closely linked to the Laplacian field. A most useful 

electrical analogue of 2-D Laplacian fields is the plane conducting 

sheet ((-. g. "Teledeltos" paper). It is further shown in the 

previous section that the leakage characteristic of the 0 field can 

be modelled by making resistive connections from each node to earth. 

This sugcýests that a useful. alternative to the resistance network 

analogue of the 0 field would be a plane conducting sheet of 

uniform resistivity with a number of resistive connections between 

the cheet and earth. In this way, the sheet itself would model the 

Laplacian part of the 0 equation and the resistive connections would 

provide for the necessary leakage currents to complete the analogue. 

To establish the design formula for such an analogue, consider 

a plane conducting sheet of uniform thickness as shown in Fig. 4.2a. 

A potential V(X, y) exists in the sheet as a result of boundary 

conditions- imposed at its edges. A distributed leakage current of 

A/urit area is extracted from the sheet. For continuity across 

any infinitesimal element of the sheet, there must exist a c3arrent 

balance such that 

Sy +i Sx - (i I+ Ll SX)SY + (i + -ýIx JY)6x + isxsv 
xyx ýx ,y ýy * 

where i and I are the curront densities in the x and y directions 

respect I vely. (See Fl,, 7,. 

On re-urra? vjng this reduces to 

Iv 
++I0 
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Now, if PXl- Is the resistance per square of the sheet (I. e. the 

resistance between two opposite edges of' any squarc of the sheet) 

then 

ii 
av 

and iI 
ýr v 

ý-x yýI 5-Y 

Substituting for ix and iy in the continuity equation yields 

C) 1 C)v 1. ýv 
5x (Z . TX) + ý- (e TY) 

providing the resistance per square of the sheet is uniform 

(i. e. the sheet is homogeneous) this reduces to 

, ý2V 
+ (4.6) 5 -X2 ýy2 

If V(x, y) is measured with respect to some arbitrary 'earth' 

potential and the distributed leakage current density i(x, y) is 

approximated by making a resistive connection from each element 

of the sheet to earth then 

v 
RSxSv 

where RXL is the value of the resistance between each sheet 

element and earth as shown in Fig. 4.3. 

Substituting for I in the above equation 4.6 gives 

2v, Av v 
2 3 IY ý' RSxSy 

Now, iC the rosi. stors are arrangpd. in a square mvsh of side h with 

respi. -et to the sheiýt. then the equation may be written as 

Ay (4-7) 
ýT) lür' 
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Comparison of' this equation with the 0 oqi-, ation 4.2, shows that, 

for th(. ý conductive sheet with resistive connections to be an 

analogue of the 0 field, 

. -= (!! ) R 2o'. (4.8) 

rMis is the required design formula for the conductive sheet 

analogue and is comparable with equation 4.5 for the resistance 

network analogue. The discussion on the application of 

equation 4.5 applies in a similar way to equation 4.8. 

It can be appreciated that the conductive sheet analogue 

should at least be as good an approximation to the 0 field as the 

resistance network. AlthouCth the accuracy of the sheet analogue 

is still dependent upon the resistor spacing h, the Iaplacian 

component should, at least in theory, be modelled exactly. 

There is, however, a more obvious advantage to the conductive 

sheet analogue. The study of the welding problem involves setting 

the pool si-li, pe as a boundary condition on the analogue. Such a 

curvilinear boundary can more readily be imposed on the con ti ' nuous 

surface of the conductive sheet th3n on the discrete nodal constructi(>n 

of tho resistance network. 

Thus, an analogue of the 0 field Is not only free from the 

restrictions of' the direct analogue, but the advantages of a 

continuous field analorue can also be cmployed. 4Me required 

transformation Crom the Roý(., nthal fic-ld to the 0 field obtained 

from v(juatlon 4.1 at; 
vx 

-f, 71: k 
(X, Y) T(Y, y) 



can readily bc applied to the isothermal pool shape boundary and 

its transCorm applied to the conductive sheet analogue. Although 

the transform will, of course, no longer be an eQuipotcntial, a 

variable potential boundary can be easily handled on an electrical 

analogue. Having obtained the required 0 field distribution, the 

transform required to relate PI(x, y) to the temperature field 

T(x, y) is given directly by equation 4.1. Mis inevitably 

involves some computation, but this can be handled manually with 

the use of tables of the exponential function (15) and /or a small 

calculator. 

For these reasons, the conductive sheet analogue of the 

0 field is an attractive concept for the analysis of welding heat 

flow. The construction of such an analogue, employing equation 

4.8 as the design criterion, is reported in the following section. 

4.4) Analogue Construction 

As discussed in the previous section, the., co. neppt of a 

field analogue is based on a homogeneous, Qonduct"g. Aheet v4, t, 4, 

resistive connections. Various conducting. s-heet analogues have 

been developel 113,14) and used to provide solutions of 

Laplacian field problems. For the following reasons, the most 

commonly uscd Is graphItised paper or "T--ledcltos"; 

i. ts resistance pýv square is compatible with acciarate 

mcasurtmenLs of' potential u%i.! Ig stan(tard. iPstrum(-n, ts. 

ii) It Is 'i8totilopic altbaugh, ý-,. 

like all r. ipe-r-and -itfouL 



the resistance per square in the direction of the roll being somewhat 

greater than in the across roll direction (see Table 4.2) 

iii) it is easily qhAped . 
(i. e. cut with scissors) 

iv) connections and boundaries can easily be made on the paper 

using conducting paint (usually a suspension of silver in a 

volatile solvent). 

Since it is also reasily available commercially, it is the 

obvious choice of conductive sheet for this application. 

It has also been appreciated for some time that it is possible 

to adapt conducting sheet analogues to solve non-Laplacian field 

problems. In particular, Simmons (17) describes how Poissonian 

type field problems in heat conduction may be analysed if current is 

passed through an array of resistors to a Teledeltos sheet. In this 

way, uniform generation of heat within a conducting medium may be 

simulated. While Simmons apparently did not consider the possibility 

of extracting current from the sheet to simulate heat loss from the 

surface of a conducting medium (which, as is shown in Appendix 2a, may 

be simply a J6 field) there is little difference in principle and he did 

establish the method by which simple and reliable connections between 

an array of resistors and a Teledeltos sheet may be made. 

Th test whether the principle of extracting current from a Teledeltos 

sheet would be suitable for the $ field application, a tri al model was 

constructed. The design of the Mk I analogue allowed for a rectangular 

field of dimensions 175 x 250 mm. A typical section through the analogue 

Is shown In Fig. 4.4 The resistors, with wires trimmed to suit were 

located in a square pattern In holes drilled Into the Tufnol block, 

7he resistor spacing was 12.5 ± 0.5 mm and they were held securely by 

the clamping plate screwed to the bottom surface of the. block. 7he lower 

ends of the resistors were soldered to copper wires Interconnected to form 

56 
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a coi, irrion fýrid conncotion. to all the resistors. ', "his is shown in 

Plate 4.1. Thr- upper of tho rc. slstors, projc-cting 2rnm above thle 

'Lop sur-racc oj', ' the block w(, re connoeted to the pliper by small spots 

of' silver conducting painL as shown in Plate )1.2. These connections 

were made by passing a small loop of fine wire, holding a drop of 

silver paint, over the top of the projecting resistor wire and 

depositing the drop on the paper. (This technique, similar to that 

used by Sirumon-, 3, has proved to be quite successfol in practlee). 

The details of the electrical components are given in Table 4.1. 

The resist. or value of P. 2 k-rL was selected as it is compatible 

With -L Lhe resistance/square of Anaplot paper. This was estimated 

by moasuring, the lengthwise resistance of 250 x 25mm strips of the 

pa])c! r cut in the "in roll" and "acro--s roll" directions. The 

measured value was then divided by 1-0 to got the resistance/square. 

An Avo Universal Bridge (type B 150 ; Panufactured by Avo Ltd. ) %as 

uscýd to measure the resistance. The results are given in Table 4.2. 

Each quoted vnJoe is the average of four tests. The results show a 

considerable rai, ige between roll's although it was found that the 

sistent within e. M-10tcId vI. -Au, -s wc: r,,, quite con. ch roll. 

T 

To tcst thr, aCcuracy of the Rk I analogue, i"G was used to 

prc%. 'IcýL '. ýw : ý, )Iutlon to a simple I-D TIAS wa. - -Lhiell 

co:,, iparcd wiý. h Lhe analyt tcal soluti. on for thc p rohlom. 

Ir'cn 'q . tic. ri 7, thc' 1. -L); u; ri] &ue eqatJ or is given b' 

V= (. 10) 



C(j, ', '. PONENT DESCRIPTION 

RESISTORS 2.2 1 21 kQ, O. 5W, THICK FILM R. S. COMPONENTS LIMITED 

GRID WIRE 18 GAUGE TINNED COPPER WIRE R. S. COMPONENTS LIMITED 

CONDUCTING 
PAPER 

"ANAPLOT" PAPER (TELEDELTOS TYPE 
SPECIFICALLY FOR ANALOGUE WORK) 

SENSITlSED COATINGS LIMITED 

SILVER PAINT ELECTRICALLY CONDUCTING SENSITISED COATINGS LIMITED 

TABLE 4.1 MAIN ELECTRICAL COMPONENTS 

ROLL NO. RESISTANCE/SQUARE kP 

"IN ROLL" "ACROSS ROLL" 

1 1.138 1.018 

2 2.365 2.615 

3 2.365 2.740 

TABLE 4.2 RESISTANCE/SQUARE OF ANAPLOT PAPER 

Sý 
TIT", 

4ý, 
4 

11A Trl 4.1 7AI? L 
ETA 1 W' M&I 

1.4 
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PLATE 4.1 MKI ANALOGUE GRID CONNECTION 
PLATE 4.2 DETAIL OF MKI ANALOGUE FIELD 
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ý ý. 
the boýýi)(, lýir-y ic-- and 

at x = 0, V =V 0 
x ýZ V =0 

To set iAp this problem on thr, analogiie, two parallel strips 

of' silver paint were applind to thc Anar)lot paner. To provide a 

Of ýX. jp 
the full width of the field, was used. Since 

""Vere ri. Lteerl resistor. -i across ,- Wjd+ýj Oý -Lj- - I thC fi cid, 

-ý = 14h 

where h is th(- analogue cpacinF,. 

To ensure that thc field between the strips wa5 1-T", the strips 

w,, re applied along the ful-I length of the waalopue. The 

arran. g-ci! -, c,, )t is --hourn in Fig. 14 
-5. 

We two strips were ccnnectcd (with wires rtapled to the naper 

and ! oated with silver nairt) across the terminals of a regulate, ý 

r& QuAlrep -131. mAnufautured by Weir Electronics Ttd.;. 

c(, rnuý2toC, to t. ý.: o analcaýuc reststuro mas also cornecte(I 

to tiýc -ve tern-linal, of vpow-. "' slýpl)ly t1c. the T'reQ. Ssar), 

Icakage nor. -cnts froriý 1111C PO-WkýY' WaS '; E, t tO ! 1'! V(ý! 

ýIn uuývuL 1-0.00V D", V Lf U; J V01tp, 

Qypa TK AQ, vanuQMap ni by "olart won W. ) wau "bcd to MaK.? 

poUntin! r ý-v-mcnvq toh npn a probp hold in conta ct with Ul, 
-, 

aimlogue MY and nuro. Fvisu rem-ut s were made vt vauh ruslotor, 

! )ull-IJI. I 

1, t 
p::, r 

1(2 J jlýl 
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experim(mUil arrangeuii-nt is. ý, huvrci In Plate 4-3. 

For this test, paper from roll I was used with th, "in roll" 

diroction corlespondin; 7 'to the x direction. Thus from Table 4.2. 

IQ 1.1. -ý8 1 
2.2 0.517 

It can readily be sho-vm that the analytic solution of equation 

4.10 -v. Uh the above boundar-,,, conditions is given by 

10. sinh 
fjp.. 

14-x)] 
V= Tj 

Sirlh 1ý 
5 .: 1-4 1 

Q For the value of R quolted above, this theoretical distribution is 

In 4.0 comp-ired with the experimentally derived ciirv(-,, 

The experimental value used at each 'x' is the average value of thc 

measurements made at each of thcý five sections along th(.:! 'llengffi of 

fi C- I. d.. While the two curves sý-, ow a good agreement in form, there is, 

in facc., a, cur)sictc-tit. diverqcnce v1ith increasing x. Duc to the 

=T. 1.11 VO.. 'IAIC"S O'C potE ritial involvý-,: f : ýt x>7, this is not c1carly 

, hown in F. *,, c,, '. 4.5 but is cvldý,, nt if the same cu, -ves are plottcd 

Io-, i. rit! );. ýAccdly as ýýhoi, ý, n in Fir-,. )ý. 7. It is evident from this 

ard fro; ii th(ý similarity in nature of the two 

nUrVeS thýL the VORW Of in thi- theorctical calculation Is 

too large. In using the quatod value of P, it is sssumcd that At! 

or Lhc resistors to th" papep haz no effect on the 

scluat, o r1lis is : 3orrv-! what unroallstic 

vln",. o ar, ýa of' cach 

IcL 'uc lnz tn r; I ;t aric' f mc' p; pe r L. Ln 



PLATE 4.3 MKI ANALOGUE: EXPERIMENTAL ARRANGEMENT 
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connoction and hence of reducing the effective resJstance per 

square. To obtain arl estimate of the effective value of 
ý' 
R 

thýý fol. jovijrjtý procudure was a(:, oypLc, (I. 

e- V Consider the ceni. ral- diCfermcc, approximation for 3 77 
x 

applied to equation 4.10. If the node spacing is also h and V 

and V2 are the potentJals at the noles "above" and "below" th, - ith 

node respectively, then equation 4.10 becomes 

P(v 1+V2- 2V i)-ZP, v0 
Rh 

On re-arranging this gives 

V1+V? 
- 

V. 
1 

(I. i2) 

By substituting the experiiflenlal values for V 1. and V2 at each node 

i in equation 4., L?, va: Lvý, -- for throuj, ý-, ouýt the fl-cli were 

obtained. distribultion of these valur! s about the arithmetle 

me-an value of 0.4033 Is sho-vm in Fig. 4.8. 'D)(-, theoretical curve 

11sing, Value of, -1.,,; ýý 1 -1 os own i i, ý F47. 

Tic, resvltý; sýiowcd an (. xccj.. I. cnt aFrr-, c..,!: c, nt betwecii the 

(., Xper imcni-i -1 polnLs and the t. hecrctical curvýý plotted f*or the, estim-Acd 

-nost of the results ploLted 'the, dcvlation of the Of For i 

experim, unt! il values %,., as less Lhan 5'ý,, only one value dcvl,, ý-ýtlnp, by mont 

than IM f'rlonii the thoor(-.. ýtical Indicated Ortt the al)(.,. ve 
Q 

technique for estimaLing the nualo3up Fuzom RQ extremely 

useful dosplLe Its approrimate naLurE, TL n1sn showpi that the 

I II 15 aJ.: 1: '"0( 

'q: tI on) 

C()"npa! ' I..; on oC the .. ý -.,; Ll I tfl f'or oo ('11 st-cý t, l' c, ý,; 1ý I iý)wf,,, I L. ', -ho 'iwl [k)1, ý, 
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was substantially 1-D. the largest deviation from the m(. -an value 

at any value of x being less than 12%. The largest deviations were 

invariably found at either sectlon. s 1 and 5 (see- Fig. 4.5), these 

being subject to edge effects. Mis is shown in the equipotential 

plot In Fig. 4.9. 'The equipotential lines were plotted using an 

Alpha PR Fl(ý-ld Plotter manufactured by qensitised Coatings Ltd. 

This device detected the null-point when the probe potential balanced 

a pre-set potential and caused a spark to pass between the probe 

tip and the paper leaving a small mark on the paper. By varying 

the pre-set potential, equipotential lines were plotted on the 

paper. 'The analogue field connected to the plotter is shom in 

plate 4.4. 

It was not, however, possible to use the plotter 'or actual 

measuremejAs as it had inssufficicnt resolution at potc. ntials lecs 

than 14b of the maximum potential. While this is normally sufficient 

for rios'U applications, in the case just described, approximat. ely 

half the field lay within thIs raiige. 

_, 
Ue. This hilc-, hl-i,,, -ttod one disadvantage of the Ytk I analog vinile 

vorw coocl agr-ýý(-verj,,, with theory was obtilined for readl nt-, s dovm to 

of' the maximum potential and reasonable agreement (i. e. within 

down to o. 05i,, it was felt that this was exceeding the 

reSO! "tiOli Which could be reazonably expected of thr, analogue (iesign. 

U'3ýTuro considt-ing tho ajýj)uo-stfori ol, - the analoiwc to the 

weldLn, - prcblem, it e; cjs. thct, (ýt'oj-cý, to construct.. a r7ccorld 

(, n a slaillar pl-Irlelple but wIth a rclille('d vall. ýi: of 

an to OV. ',, h I. -, i' (ITI ou-, t-v. 
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PLATE 4.4 MK1 ANALOGUE CONNECTED TO ALPHA PR PLOTTER 
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4.6) Vik II Analogue 
_: 

Design, Constru, ýtlon and Evaluation 

D(. ý ,, 2',:, n 

The application of the conductive sheet, 0 field analogue to 

the welding problem was discussed in general terms in section 4.3. 

'There are, howover, cert,,. i. in specifications which are required In the 

design of a fie! (, analogue for this application. 

For th(; welding, problem, the shape of the weld pool fx)undary 

would be painted onto the analogue with silver paint. Account would 

have to be taken of the required variation in potential along the 

length of the "pool" on the analogue (see section 4-3). 

Measurements of analogue potential would then be made in the 

immediate vicinity of the "pool" to correspond with the NAZ of the 

actual weld. 

It is, th. crefor'c' lleoe. soary thatt the analoi-, ue spacing Fj as 

! )\, r the design formula (equation 4.8) should be such that 

the weld po%)Is can be suitably accommodaýed on the analogue field. 

&at is, for a fixed value of the distance oC real space 

rermsented by the resintor spacinq will vary with Mus, the 

value of be selected to correspond with the wolding R 

par-ameters ',, 
-i 

))(. oonooi-&. ýrul. 

DA I. -, P-OdiOtlOOS Of the 1-i. d II el- in 

tho IIA" rho Lýn 

I 1ý, I,, C, z. hould as zaccnirai i, ýas ,! 1 . 1. ýv 

pu 

l. 1: nItt tor o hi ::. ' rct Lic I 



uc, fýjcjd meýasurrirwl instrument, but the resolution or tli(-- arialop 

itself. From the discussion or, the resolution of the Ylk I 

analogue Jri the previous section, this would indicate that the 

selocted Value of' 
Q 

should be as small as possible. R 

As discussed in the next chapter, it was decided to restrict 

the stu(3, y to the single pass, full. penetration welding of thin mild 

steel plate using the Tungsten Inert Gas (TIC) process. For this 

purpose, a special welding rig was constructed to provide the 

necessary data for analo3ue analysis. For the purposes of this 

discussicn, however, the relevant data is the range of available 

welding speeds v. The rig design allowed for 

However, for the welding of (3.2 mm) thick, -6 

used in the tests, speeds of less than 0.1 cm/s 

Using, Ithe value of Gý= 0.075 cm 
2 /s, for mild st 

0.04 4v-, 0.4 cri/s. 

mild steel plate 

were not encount(? --,:: d. 

eel quoted by previous 

investigatcurs. (4,9) and substituting in the design formula 

(equation h. 8) gave the range of analogue spacing h in terms of' R* 

cm 0.1-13) 

It shcull Lv- --)ted that the smull. e. it value of h occurs at the 

hlv, hf,; -, t wolding spoed and convero-oly. 

To hcýt,. p Lh, ý, valu- ol' as low as possible, it wa! 7ý dccj(jkýd to 

usc P! Ip"r -: ")ri Rl'. '21 I Ti, hk. - 4. ") which hPd the Iow, 
-, st Va,, Uf., ()f- 

r c? si stri /. ,i, ýý--, t, ,iL (-, -- Ii-cttý: f-riý, - I ý-, t- ,-v, 11 -. ý--C. " 

on the rosistoll spioJrij,, of mr, as the Mk T 

thi- actual. '1111c, of' 

,. I"-"' 10'11'ý .. I : 111A , c'01)", 1,14- p, pcr- 



-, 
U(' pa, ing carl of' U-ic, analog 

be ess ti rqa Led by aý,. s umlng 1.0 ki)- per square. SubstItuting for 

thesc values of Q and R in )4.13 g ives 

0.14 ý. 11 < 0.55 cm 

This range of h was found to be compatible with thýýi poo. -L siz(, s 

obtaincd from experiment (see Chapter 6). 

Con. struc t ion 

This provided the necessary da. ta for the construction of the 

Mk II analogue. lbe same overall field size of' 175 x 2rO mm was 

used but, to increase the analogue resolution in the region 

sur-ounding the pool boundary, it was decided to reduce the resistor 

spacing over this reLý, Jon by a factor of 2 i. e. from 12.5 mm to 

6. P5-, 
-'1m- 

The location of resistors over the analogue field is 

shown by crosses In Fig. 4.10. Since the pool shapes encountered 

in the tests pt, oved to be es-sentially symmetric about the weld 

the beat flow was also assumed tc be sym"metric about the g_ 

For this reason, only- ha2f of the actual f'j. eld was mod( Lled by the 

analo, ý,, ue arýd th, ý resistor layout shown in Fig. ý. 10 was dcsigred for 

AB to corrcqpond with ý., 'ie *weld 0. 

For continuity over the analoFue field, Jt can bc, secn from 

c-quati on 11 .7i hat 

CC) I IS trult 

!!, tkill-,; c, tso, h 1;,, Lhý, rt, slstor speýcing. 

the ! "Le'et, oon-11, int thon 

1 
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it cam be seen From Fliý. 4.1.1 that 

1)2 
E 

where R 
't 

is the resistance 

R Is the resistance value 
s 

the rcquirt. -d value of RI 

gJvc-3 tho resistance valuo 

value over the coarse spacing and 

over the fine spacing. For Rtý7.5 k-LL, 

s therefore, 30 kj-j-. A similar argument 

of 1-5 kiL in the transition zone betieeri 

the coarse anJ fine, regions. 

Using these resistance values and following the layout and 

spacinr-', 's given In Figs. 4.10 and 4.11, the Mk II analogue was 

con., ýztructcd in a similar way to the Mk 1. Due to availability of 

the required values, + P%, 0.5, q metal oxide resistors (supplied by 

RS ComponQnts Ltd. ) were used. These were slightly larger tl)F, -r) thý? 

thick film type used previously but they were located in the J. c! n 

thicl,. TUC1101 block in a similar way as s1hown in Fig. 4.121. Instead 

of securing Lhe resistors with a. clawipir,! 7 plate, how-ver, they were 

simply Tý, lucd to the bloc-, R "Araldite" cpoxy rps: Ln. The bottom 

ends of the to t1-: n commor grid as before. 

The qkifnol block . -ias mounted on a wooden frame wbich served not o! ily 

pro-l', pet the Uut, alsso to. provldc. a suitable b-ickl. nr 
., 

bmird to wYii( 

the pliper could llrLcal bý sc.,. curcd. '11-io el,. -ýc, connections to the 

bourri%rlcrý pinni. rr., wires to the palnt. tý(! LIGII-Ig 

lrýLo the board, Jr, drawitrý, ptn., i A r: cncral view (, f' 

Mk 11' wlt. ý, an J, r: q)o: -,,! d poo-I bou nd, iry is show-a In 

Plate 

;7- 
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Ev, -: L lul -it i on 

The solution to thc 1-D problem discussed in section 4.5 was 

again wcd to evaluate the Mk IT analogue and to estJmit(., thu 

vabie of R* 

With reference to Fig. 4.1.0, a boun(3ary was painted alonF edge 

AB and s(A at + 10V with respect to the boundary painted along CD. 

electrical was Identical with LI-, at u3cd previously and 

shown. schematically in Fig. 4.1i. Mcasurc; rients- Of pot, ýýntk; ial were 

made at cýach OC 15 cqually spaced resis'Llors lying on a perpendicular 

between each boundary. This was repeated along each of six 

sections along the length of the -L"ield. 

The value of the field paramoter was estimated in k', he same way 

as before and. found to be 0.? 
-", -'7. Using this value, the Viooret-ical 

curve (eqx-ttkion 4.1-1) was plottcd as shown in Fig. 4. *'3. The 

ý;: -, ýnrzýrlwcntj-. J poin' t 1, s shown for comparlson are the avcragc. . -, 
f the 

readings from thc six ý, t (ýac'h value of x. For each point 

consici. (ýi, ý-J the ',, 'wc ncviation 
-ýt-om 

the mean value for each Of the 

sections considered wao los-, than 10%. Invariably, the maximum 

dc, viat'Lon from tý, e rean; occurrý!,, ', at eitlior of the exLreni- scctions 

Which subject tc' edge effects. Wil.. 'i the exception of the two 

c can 1, )wcst va. liiý-, s Y= IP ti-ic. deviation of' th--- Ti-, 

-a, 1 c! ur,, -c. - war, 1,1ýss tliýxn cxperim-, nf. al valucý i7rom the L; ),: orot1c 

1-ý; Ci, I r] Y tri Oi(. - CP ! ot, PJ Jý. h. IJ;, and 

/ 

t, wec-n thý, oxTwrl nit, nt-i I po I rits a rid 

the tht-or-t-i'mi Curve. 

Al 
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'. rh(- re. sulL.,; also 1r)(licated that th(, re was no mrýasurable effect, 

introduced by the transition region separating the coarse and fine 

resio, tor spacing. The transition region occurs at 5 4' x<6 on 

Fig. 4J3 and 4. )_4 and the smooth behaviour of the experimental 

points, on either side of -this region is evidence of' the negligible 

ef'-I'Yot introduced by the transition repion. This is also 

demonstrate-11 by 4,; he linearity of the ('. -quipotentials- shown in 

F. -! Lr,,,,. 4.15. 'Iliis plot was again made using the Alpha 'ý. R. Tlotter. 

7",, iese resii1ts demonstratted the accuracy of t1he Mt II analogue 

in solving a simple 1-D 0 field problem. It remained to test its 

value in predicting the thermal field during welding. Ibis is 

discussed in Chapter 6. 



cfiýýPTER 5 

ý. Ii, IDIIIG lf,:, ý! )T RIG 
_: 

AND CON'iTRIJ(, 'TTON 

5-1) Introduction 

Having constructed and successfully tested a0 field analoTue, 

it remained to test itS application to prcdictinýr; the thermal field 

in the HAZ duxing welding. To perform this test, a comparative 

series of experiments was proposed as outlined in the block diagram 

shown in ]Pie- 5.1 

The sý! ape of the weld Pool- from each test would be uFed, wIth 

the appropriate transform. --tion, as the boundary condition on the ! -'Ik 

II an-alogue. The resulting 0 field would be plotted and, using 

-hermal field Jn the the inverse transforma. -tion, the corresponding t 

HAZ predicted. This result would then be compared with Ihe tempe-ý-atiaýp 

measurements i-, ) UP IIAZ made directi'mr durl-rig the welding test. Th v 

welding te--ts were, therefore, recuired to provide data cn 

i) w"'Id pnol and associý.,, ted welding conditions 

tu%, 
jrpr%turer, 

in tYiu, I-LkZ durin, -; welding. 

For ý-vci! tc,, A-ýý, to be it waý; f-vide-It that tle weldirwl' 

'; I- "ý" ' pr ns ims: iblu, A so cumpl. y with the corstraints 

and assunnijans wadc in ke desion and construction or the Mk IT 

1 ', however, Cult that such constraints rhould not. 

mvulve a yelnik ý jamevou-I wat wan t oo far rcmved Am nvi nal 

weldinj yovOce . To Teel Qe=, SojeW rat COnAlLtin,: ikkaln, it mIs 

71c;;: ty :.: '-; 
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i) the test wclds be made at a concLant speed along a straight 

line so týjat Rosenthal's equation ýequation 1.2) would govern the 

quasi-., L, -tatic temperature distribution around the weld pool. (It was, 

of course, not possible to enforce the further condition that the 

thermal properties of the parent metnl be independent of temper. ature 

ii) the weld pool (and hence the welding parameters) be 

maintained ccn2tant during the weld. Any fluctuations in the pool 

shape would introduce short term thermal trmsients in the parent 

metal and would, therefore, invalidate the quasi-static assumption. 

iii) single pass, full penetration weldin. g, of thin flat plate be 

used to etisure that, as far as possible, the weld pool and, hence, 

the surrminding thermal field was 2-D. 

To fulfill condition i), it was decided that a semi-automatic 

weldii)g process should be used with the welding head mounted or a 

motorised. carriage designed to travel in a strraight line at a 

controlled speed. 

To meet the conOwIlability rQquirement A condition ii), a 

contin=2 electric ait procear was felt to be most suitanle. In 

fant, tho nvn-corswýmable Tunrsten Inert Gas (TIG) process was 

selected, usA7 arron no the Nielding gas. Since feed control 

equipnent was not readily available, it was further decided that 

filler wire wonld not be ured. Tkis did not present n serious 

limitation since cr%ditinn iii) restricted the WAR to ON plate. 

Pild NO was Vooen for Ao ;, rent MA as QW7 Kvap n! "! !0 Iil,,, 

available aNa a plite t; jckjmoj of 1/8" (3,2 nrl) ! '! CtP(j ay; tnjo 

"Ould IrOvIde n reaonnable zore of upla lool whilo 



P-D requirounnt. Vollowinq the nuggestion of Roberts and Wells 

(18), the nnmpletp width of the Plate was specified to be not Jess 

than 20d, where d is theimimm width of the molten pool. The 

length of the test plate was fixed by the traverse lenGth of the 

welding ria (see section 5-4). 

The deta. -i-led of the acdd. ing, rig, ba-sed ori this 

s-, er. i. fication; J. s dr- (.. 1,4 

; -bcid 
in tho fo)'Iowin.. 

-ý, 

5.2) -Dlescription 

The weldi.. -I, - rie., consisi-ed b,, -?., qically of an a-rcfln-arc torch 

, riourited on a controlled sppeI travcr. -ýýe a, -scmbly. The weldiin. g 

poviiiýr waýi supl-. lied. to the torch from, a staraard 3omiriercially 

available power soi)rce. 1.11n travcr,,,, ý Ills- , ei; jl-, Iy was powered. cy a 

motor and, gear box asse,, AIy , -, -, id wris mounted on a base pla-to supported 

on a I'Dexion" fririe trolley. A plaý-l view showing the arranc, -ern. ent. 

on the ba-e pLate is shown in 1)-i: awint, " 5-1* 

Th,. -;; test piate w, -i--. onto a set of' ra. i. sed stud-s screwod 

into the t'aý.. 'P pla-le as' shovin in Drawing, 5. ý/, V-iew on A. -A. The 0.1amps 

and studs were arran"ca rymmetrically about the wela axis, The 

distance hatween op7woirig clamps was 1.0cm, so that my chilAng effect 

which thoy had an the test plate did not sigailicantLy affect tho 

thurmu AvId in the HAZ. 

Drawin', --- 5.1. a-il '-). 5 arv onc-m: cci at L Vie ond of 
t..: t:; 



To record the temperature history o-f, points in the I'LAZ during 

tlýe-rm. ocouplep, were lo(-a. ted in the tost pl-, te. The 

ther--ý)ocouplf- wiveýý -were pass. e(J, from 'hottom surface of the. test 

platc,, betwc(,, n the , -, upl)orti. n,,, ; studs and con. rected to a terminal block 

nic, iintod on the front panel of the trol](, y. The voltaý7e output of the 

thermocouples was recorded on a y-t chart recorder. 

Týie weldin- arc war, siruck be tween the electrode of the torch 

(cathode) and the test plate (anode). The torc', i was then passed 

alon, g the lergth of the plate at constant speed. The progress of the 

weld- could be viewed throu,,,, di a window (r,,, ade from high density, ultra 

violet filter Elass) mounted on a scre(-n hinged to the front of the 

trollcy. 

A high velocity jet of argon from a rozzle moanted behind the 

torch was used to eJect the molten netal from the weld pool at a 

predetermined point during a test weld. The shape of the resultant 

lholo I specified the TMOltOM pool bwi-ridary. 

A on Uýo fror-t o, trolley housod all the equipment 

necct-. sary to ccn. trol the pro&,., ress of a weld. With a little practice, 

the operator couIC, jnaintaiy) F,,. visival iric, ýpcetion of a test wold 

throuý,, h thc vd. r)dow, him to makc adljustmentý3 to the controls 

as necessary, 

A Corieral. view of tho Towcr suy! dy, argon Pupply and control 

vnIves, Wrt vocarder and wel dinj trolley (with the surumi Sri 

position) in s hown in P OV t. 1, twe CNý, ý, entl Vi ew ., iA the 

screen reumm 1 abow the Arr ww&vt of Me wuidian equiprmit on 

thv tialloi ic ! won in Cin in 9,2, 

Zilý 



PLATE 5.1 WELDING TEST RIG WITH SCREEN IN POSITION/ 
PLATE 5.2 WELDING TEST RIG WITH SCREEN REMOVED 
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Tne To. rcl, ý OarEj , ýsr, ý. rnlbly 

A detail of this assemb-Ly is fýhoiqn in Drawinu 5-ý', View ota B-B. 

As shown, the hand. lP of tho wel(ling torch was securea to the carriage 

assembly by a rouncL clamp. This was desit; oed to allow the torch to 

be rotated in a vertical plane about the clamp and, thus, to be 

swung clear of the test plate. 

Adjustment of are height was achieved by the vertict. U mover. -ient 

of a crosshead to which the torch clai-. ip was attached. The cros.. ', head, 

restrained by two parellel 6uide rods, was raised or lowered between 

two fixed crossheads by a lead screw of 2 mm pitch which was rotated 

manually by a calibrated knob at the top of the assembly. The 

circumference of the knob was marked off into forty divisions, each 

division corresponding to a vertical movement of the crosshead of 

0.05 mm. 

To set the arc heiglit, the torch was clamped to the crosshead, 

as described above, such that the axis of the electrode was 

perpendicular to the surface of the test plate. By rotating the 

calibrated knob, tý)e torch wa, -, lowered until the týp of the electrode 

was seen to ji. ist toii, -Iý the surface of the test platc. NAI-in,; -, a, swiall 

a 12 o,.,, Lý rce for bnckLtsh, the tor, ch was then raised- to the i-equired are 

hc, 1. s1-jt by tiarninU the knob throkil; h the approprinte inunber of division,,. 

The croý-. 'P,, eai was C-en locke(i in position b. v tit,, hteriliq, a look. iiut on 

the scrow. An are heiiýrht 'If 3.5rim was used thro,, z4, -hout the tests. 
.1 

A, ý- an a(Mitic, YA facility to mcan"re arc heilAt, a lineal, 

tr"am'. 1'acer wa.. mountod on the aq-oembly as shown. iýowovt'v' 

ror sw [urpone oC tho weldin, tests, the arravjoment dvacribod above 

way round to ba aduouate. 

-. 'J. - 



5.4 The rowere(t qra. vorsp 

The torch carriage asse, nbly 1.7as mounted with linear ball 

bushings onto two i7aide roos lying parallel to the axis of welding. 

The carriag-e was propelled along -these guide rods by a power ,, crew 

attached to the lower fixed crosshead of the carriaf,,, e. The power 

screw passed throueh the gear box which comprised a worm and worm 

wheel Eear asý; embly. The centre of the worm wheel was threaded to 

accommodate the power screw so that as the worm wheel turned, tl-. ýe 

power screw was drawn, without rotating, through the centre of the 

worin wheel. Thc worm was connected, via a flexible coupling, to a 

The worm and worm wheel c-, ear had - 114 H. P., i). C., shunt motor. an 

overall redtiction ratio of 50.1. The motor and Uear box assombly is 

shown in Drawin, '7, ' 5-ý', View on C-C. 

- switch ýwlhich Power to the motor was supplied, via a reversin,. 

reversed the direction of the rinotor and hence of the torch carriage 

assei., ibly) from a mains opereted control unit mounted on the front 

_panel 
of the trolley. This unit se. rve. '! -tr I-loth a rectifier and F. -, 

speed control for the MO'LO-C. Both the . lotor and tile control ujit 

wore manufactireci Ly 1.1arvallix 'riotors Ltd. IIA-th tl,. Lb 

arrat, '-cnient, tý-, carriagc. . -pece could be var, ed from 0-04 to 0.4 C-. M/-, 

over a tr. -tvr,. r-, e ler,,; 0i of 40 c; i!. 

In or: lcr to of Vic cari-i;:, L; f2 speed in(jependent 

of the control unit, a sepArate timing system was devised. Wis 

conniski of a tlm"r Wanufactured by Racal InstrumntnUd. ) activated 

on a "once on-onve off" Wir by a rollvr type micro-owitch located 

on tn- lower Mud cron., -, ý o, td of the carria, arrembly. Ile Wero- 

NO or 
I-MI18 



switch was activated by the roller passing over four pinn set in two 

slides fixed to the base plate as shown in Drawings 5.1 and ý. & View 

on B-B. The two pins on each slide were set at 5 cm apart so that, 

as the micro-switch pnssed over them, the time for the carriage to 

traverse 5 cm was recorded on the timer. The actual welding speed 

(i. e. the carriare speed) could then be easily calculated. 

5.5 woldir': 7 i"ol)-inment 

. vower to the are was supplied from an "Ideal Arc TIG 300/300 

(rrianufactýired by the Lincoln Electric Co. ), power source. Operating 

in its medium range, this scua.. -ce was capable of delivering 165A, D. C. 

ouite adeqtiate f. or the welding of the thin mild steel plate which wps 

used in the tests. The welding torch ýTyps 1,1450, manui, actured by 

BOC I. Ad. ) wa. -ý connected directly to the power source which also 

suppliea coolinl-1, ;; ater and ar. s7,, cn to the torch. Thoriated tungroten 

0 point were used electrodes, 3/32 iris. in dia., -,, rounri to a 45 

t'hrouiýhout the te-As. The "eartn" connection was ij, iade 1'roin a brass 

y (Ri. ty cable to the power stud sct-ev, ý-M into the base plate, via a hevr 

s "I I Ir n -11: ý . 

tl. e po-, 4er soucce on and selectea the aosired 

current an(. 1 poiarity (for all tests, D. C., electrodc -ze was 

Unni the wolaing operation wss con trolled by a smill unit vau"ted 

on the Mont panel of the Wiley. T: is consist ed of it nnviq; loadccl 

Q ido ca"nac i cd V IN rack o, % r: A and vi nion i-e. -i 1,. '11" initIal 

WIVMP'nt 01 the A GO aCtiVA10i A LI UM-MOA! W AKI W bin! Wippo(i 

it the PuWar rwl-m M trv:. yyrtA t1 w IIWI FINnummy 

we MAmer unit. Unev ne arc son tnt"Uhah-d, tKv hl ,t 1'requency 



unit wa2 aitoniaticaLly cut OUL. ýIurther movement of the slide caused 

the rotation of the pinion Coar which was attached to the spindle of 

a potentiometer. Uris was connected to the control unit in the power 

supply and Ly varyin,,, - the poteri. tiometert the arc current could be 

varied up to the pre-set maximum. The positioning of the slide, 

therefore, also controlled the a-cc current. 

In order -to measure the are current. a 25CA cuxrent shunt was 

installed in the I'live" line (i. e. the line ocnnected to the electrode) 

inside the power supply. This was connected through an isolating 

switch to a calibrated meter movement mounted on the frcntpanel of 

the trolley. 

A suitably calibrated voltmeter wass connected. through an 

isolatir, ý, - switch across the "live" and "earth" lines to measure arc 

Voltage. To prevent damaý, ýe to the meters from the hi, ýh frequency 

starter, readings ci' ar, c curi-crit ruad volta,,,. ýe were only made once the 

arc was fully established. 

5.6 'J. 'hL, 15)low-Out Valve Asse,: Týbly. 

To ý-Ietc. rminc the shape of a weld pool, the roolten iuetal 

ejeciA from the test plate at a pre-determined instant by directiný,,, 

a hi: 0 velocity jet of araon onto the molten pool from a nozzle 

mounted on the weldina torch. The ejected metal pacred throul the 

Rvocic out for this purpose in the base plate and was collected in a 

splash tray suspended below the hase plate. 

-. -' -'Pc -j 

-V _V: 5 

V V' 
- 

V. 



The argon flc: ýi w-as controlled by the valve shown in 

Draw. in,,,, 5.5 ancl Plate 5.5. Tids. arran, -, -oment also scrved to supply 

tho rormal flovi of argon to the weldin, '; torch. The argon supply 

a bol. tlc at 2500 Psi, and reduc(-, d with a standard Pressure 

re[T-olating, valve to 100 1)ý-i) was conrectr-d to the inlet of a 2ol(:. noid 

oT, erated poppet valve (martii'actured by Scýirader Ltd. ). In the 

riorm. al position, this valve connected the supply to the flow control 

valve set to deliver 8 ft. 5, /hr. to the weld. inc; torch (via the power 

Supply). 

The solenoid valve was activated by a switch mountcd on the front 

'Iley. This s), ut the normally open outlet port cand panel of the trol J, 

opened the normally closed outlet port to the supply line. Argon at 

100 pl-i was, thus, deiivered directiýi to the blow out nozzle mounted 

or, t1he torch. Non-return valves prevented "blow back" throi. 1, -. -, h the 

normally open line. Part of -the high pressure flow was, however, 

Pllowed to paos th(ý power supply to the torch so that the 

elc(, tro-ie was uroiected from sudden exposure to oxygen durin7 tbe 
.1C, U 

blow out. Due, however, to the pressi)re losses through tile non- 

return valve, ýoower supply --ind toren aE3s(-, -, )bly, prnctically all of the 

hit, h ]'low passed 'h., cugh Vie blow out ro-zzle. 

This nozzle was made from' a length of 1/6 ins. dia. bo,. -e, copper 

tube sliGhtly Clattened at its end. ! he nozzle was mounted on a 

bracket fixed to the weldinC torch nnd ddracted 2uch that Se jot 

impinoed onto the test platv below the electrode i. f,. dur4, n - weldlinj 

onto the mniten pool. A close-up or this arrwn, -,,, -t. iJ, ý, 1)(-, Ql 

L, ii! vi, try aCtcr n blow out iv thown in Ilate 5.4 and Drawing Y. 2, Firt 

View on X. 



PLATE 5.3 ARGON VALVE ASSEMBLY/ 
PLATE 5.4 WELDING TORCH AND BLOW-OUT NOZZLE/ 
FIGURE 5.2 THERMOCOUPLE JUNCTION IN POSITION 
& PLATE 5.5 MACRO-SECTION THROUGH THERMOCOUPLE JUNCTION (XIO) 
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, -,. Y tur- romen i. 

As t'le COMParative tests required the 

MCIý-ISLJII(11-1'. elýit and coljL. ýriuoiis- recor(lin,,; of tumper,,,, tures in the 1: 1 11 A ; lZ 

during welding. For this pur-pc)., --, (--. 

thermocouples (type T. 
1 

/T 
2 manufactimed by i). L'. itish ý)r'ivt-r - -11arri-; ) 

were localted in the liAZ ot the test plalLe and connected to a chart 

reco-rder. 

These themocouples had a substantially linear response (0.04157 

mVOC) up to approximately 12000C and while this was somelat below 

the melting point of the mild steel test plate (14200C), it was felt 

that this provided a eoveraCn of the PAZ towperature ranZe sufficient 

for the purpose of the tests. To give a fast reBponre while still 

maintainin6 reasonabic mechanical streneth, a wire diameter of 

O. ClO ins. (0.20 W) was seiectQ. 

A junction was forEad by tijtiy twisting the WS of the two 

wireA toCythpr to give a twisted length of about I cm. The junction 

was Her located in a 0.020 ir"Q0.50 Q oia. hole in the test 

plate by pýYnA6 the twisted section Aroua the hole from the bottcm 

suVace of the plate. The wires were then drawn throv; h frow the top 

surfacc of the ýlatc until the end of the twi3ted Pection was tightly 

fixed ingide tha hole at the bottom surface of the plato, 1ho portion 

of the twisted KnaQ protrudina abovo the top surface of the pInte 

was tvinTei KV until the junction w, -L.. -. i'Lii: -h with Clio i; LIrf'aCe. A 

section lhrou, h such a junction in shown on0maticnIly in Pit. 5. '' 

ann a micros-ction tnrouýL an actual ju"Wifni Nown A VNIP WO. 

The ýun! 
A& lwtwýn winunni witv ond pLavo avWov,, (,,, thifý 



Jr-, ovi(; (ýnt in this micrograph. N(--w junctiol-is were niadle for each teA. 

From the junction, ' the wires were passed tbrough a twin bore 

ceanmic sleeve approxinately 10 cm long and then individually throuCh 

high temperature flexible sleeving. Thus insulated, the wires were 

passed from the junction underneath the test plate, between the studs 

wipporting the plate to a terminal block nounted on the front panel of 

the trollcy. By Wine the wires underneath the test plate, they were 

protected fron any damage from the arc. In ihis way up to four 

were mounted on any one test plalo. 
0 

From the terminal block, co-axial cable was used to carry the 

siMal from the thermoccupleo to a twir Mnp wafer switch ant hence 

to the chart recorder. Since this was a single channel recorder, it 

wns necessary to switch from one thermocouple to another as the test 

proceeded. A wiring diajram of this arrangement is shown in Fig. 5-3- 

Me chart recorder used was of the sin6le pen, y-t type (26000 

series, marufactured by hi-yans Southorn Instruments Ltd. ). - On the 

y-axis oý ine recorder, the consillvity wns set at 2 i-nV/(n; over tho, 

20 cm width of the paper and a paper SPeed of 5 SAM selected. These 

settings wene maintained Uvoughout ihe tests. 

In a lypicai lost, Py Aermocopplon w1uld be equalIN spaved 

alo ng toe le"; w of the weld and at a known Jistance from the w0d, 

n7i n, Thn ruvovdar wou lJ then be switched from one tArmoccuple 

to avoLbn- aq "ne Mnt: 01 the vM6 -, 001 

suý Avd an Go NO pla te at a Mod jirt, sce (u nuallY G-A nu) 

NO M PC (ýCh thermocou ple. Ginco, Or tho duya lion of eaoh LUM, 

Ke Mdinj: j, A wig Y AMQuined va"n tarl ,t Pch MMOVOUPle Wa"; 
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moriitored on tlie- recorder for the same length of' time. 

This arrani-en-o-nt proved to be a satisfactory alternative to 

simultaneous multi-channel recording as the results reported in the 

next chapter in, licate. Due to the available width of paper on the 

recorder used, the full calibrated range of 12000C could be easily 

0 
acconimodated on the paper at a sensitivit., of better than 50 C/cm. 

For this reason, e--timates of temperature could be made to within 

10 0C over the entire 1200 0C ranee. 

I 
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13) 
llf-ld Yol-, t i, rocerill-re 

As stated carlier, the weld tcsts were required to provide 

ori pool- sh, -tpos ana ac-, sociated temperature histories for linear, full. 

penetration ý-,, oldirir of thin, mild st(, (, l plateg. It w,,, is decideci that 

tlýesc con(iitionr, woLild be satisfactorily met, if instead of butt 

ý,; ciding two piate-, t1hp test welds were inade by simply runninC a weid 

alori,,, the ceri-, re of a sin. -Ie plate. This proceaure made it somewhat 

ca.,; ier to maintain stable arc conditions and, to some extent, also 

reduced the need to use filler wirEý which would normally have beer 

required for TTG butt weldin, ýý of 1/8 in. thick plate. 

Preliminary tests indicated that full penetration welds could 

bc. achieved in this way for weldinj currents in the range 90 140 A. 

'li-io corrcý-;,, ýoridir. 6 weldiný-, speeds ranged from 0.12 - 0.26 cm/s. While 

it wac not possible to achieve complete two dimeiisionality over the 

e'litire vo. IJ T)ool for these conditiors (the penetration ancle at the 

Front of the weld 1ýorol on the weld axis being as great as . 40 0 at the 

hiýjiect speeds), it was fcIt that COMP)C'tP T>-nC. tT'at-10n i*: r'01. 'l the 

maximum width to Itho tail enci of w---id pool irao a satinfactory 

criterion. 1n this way, only the iriii-i-il rapid ri-se in tvm-ý; -., rature 

rI'i of points in. the HAZ couild be pocsibly affectf-, a tp et-, -c 

frnllt 0" tile veid pcol. Peak teý', iperatcxes and cooling i%tes would 

be E-, -ut,! vct to 1.1-1) iieat ilow conditic! Ls. 

To eri2ýir- ti-ýat the fiehl on t1w wi. s indejýefldent of 

V-0 Of I l. C f, (. ', t I) I.: : iiiiimum pl. at width of' C, 71ý 

t Thds ret with ti. e specif'ication 

18) 

P-)Ol Wi(Itil for. the alýove 01, conditio. 14; c:: 1. 

all 5.4 



For tl& location oi u2ermocouplp! ý etc., a tust lelli7th of 35 cm was 

fn;. )nd to be adequate (see Fiý!,. 

All tl. e test piate! ý were cL., t to these aimensions fro-, 1/8 in. 

fýheet mil. i s-, teel from stock and, prior to welcii-g, were cleaned and 

de.,, reased. Thermocouples were located in the plate as describea in 

section 5.7. . 4ý t,,, rpical thermocouple arran- ment is shown in Fig. 

For eac'n test, tne plate was ciamped to the test rig with it-, 

--lii-, ned with tne weldin,, rý ax-Jr, of the rig and the test completect 

-he ýy r-unn ng a wei, -', at a controilea, arc cuýrent and speed, aione -I 

len,;. Ah of the plate. "'he chart recorder was switchea from one thprmo- 

couple to another as tno f i. ont of the weld pool cro,,, sed tl-, e scribe 

marks. ýsee 5.4 and section ý. B) 7. 'easure-aentt, of arc current 

and voltage were made cluring the te.,,. t ýsee section 5-5) and readinjs 

of times, noted (se6 section In each teE-. t, Ulr-le weid .jk 
pool was biown out kpee section 1-. 6 1, cm before the veiý r. col reacý. ed 

the end of* trc plate. 

Three typical welds (taken from test welds) are shovrn in Plates 

5.6a ana 5.6b. These indicate t*ne uniformit-y in w; dath of weld aicn6, 

t',. -- of eacn cc, ecil--n as well as the, complete penetration 

a ch 1 e, 1 . of blown out pools are slýown in Plate 5.7. 

The very clean edc,, es of the weid pool boundaries should be particular-ly 

noten. Plate 5.8 shows a r-ziicro-section of one ed, -, e ct' suci; a '-,,, )w 

how tr. --- L7rain ctruc-,, ý; rc arý, ;. t out. 'i"he sention beten etcht-, j to ý 

is eviucat tl, ýA on. Ly traces oi molten metal (to a Thickness oi 

have reer, le. 16 -%dheriiný-, to the parent plate a,, *ter thc- blow out. 

1C: - 
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PLATE 5.6 THREE TYPICAL TEST WELDS 

(a) TOP SIDE 
(b) REAR SIDE 
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PLATE 5.7 THREE TYPICAL "BLOWN-OUT" WELDS 
& PLATE 5.8 MICRO SECTION SHOWING ONE EDGE OF A "BLOWN-OUT" WELD (X34) 
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1, -t, c , 11 1--55 
;T 

iijjcýjijoro-ople ncording' is sb ), n Fig .. 'hc- 

wa,, located O., 10m in- (0.51 CDI) from t1he Z, (-, f a 158A, 

0.2ý cui/s, weld. -, 'ron ojjbscqvýýnt me,, m; urciý,, ent of the, weld pool width, 

this corresponded to a distance of 0.055 ins (1-4 W from the edge 

of the weld Inol. We temperature axis gives the recorded temperatures 

above anbAnt QGO C approx). The zero in the time scale corresponds 

to the inslan. 1 when the front of the weld pool was in line with tile 

theraocouple location. no extremely rupid rise in tomporature 

(2150 () C/s anprox) up to the peak tempenature of 10400 C and the qom, --- 

what slower initip L, 
C/s approx) shc),. -ild be noted. 

,1 coolinr, rate (450 

Th(:,, cooling rate gradually decreases with time until, 40 sees. after 

reachinj; poalk tc-, mperature, it J- reduced to 6.50 C/S. 

The value of the 0 field analogue in predicti-iý, ý Leiripf-ratu. re 

historiec of this nature is di-cp, ý, -, sEd. in the 

11.13. It is also interesting to note the "hump" in the coolin, 7, curve 

(hib, hliLý, hted by tlne dotted, smooth continuation of the coolinýr curve) 

corresp -P From the -rap`l, orcI2-n-, to the exothe mic eutectoid transition. 

it thý start of the transition (6900 C) huý; been 

transition point of 723 0 C. 
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TEST Pr, al-LTS 

As discussed in Chapter 5, the main purpose of this study was 

to determine to what extent the ther-nal field in the HAZ during 

weldin.,; could be predicted using analogue techniques. To 

evaluate the ý field analogue for this purpose, it was decided to 

perform a series of tests in which experimentally determined 

temperature histories would be compared with analoi7ae predicted 

histories for points in the FIAZ (see Fig. 5-1). 

However, before commencement of these comparative teets, it 

was essential to determine to what extent the thermal lield with 

respect to the electrode (or the weld pool) remained constant for 

nominally constant veldiny conditions. Any serious flu. ct, jation in 

the thermal field would invalidate the quasi-sTatio assiaption and 

make my analo" predictions mcaningless. If the thermal field 

with respect to the pool shape did not remain constant along the 

length of a test weld, it would also be meaningless to associate 

temperature histories measured at different points along the weld 

(i. e. usin: the sinjle channel recorder with switchins between 

thermocouples as descrited in sections 
4.7 

and 5-8) with the pool 

shape determined by the bl"-out at the end of the weld. 

For these x-easons, it was decided to urderta'--e the i!: itial 

tests discussed below. 

- 10P - 



Consistency Tests 

If the thermal field with respect to the electrode for the 

welding test procedure described in section 5.8 were quasi-static, 

then it Is evident that all points lying on a line parallel to the 

welding axis would experience the same temperature history 

(appropriately stepped in time). To test for consistency of the 

thermal field, it was, therefore, sufficient to test the 

repeatability of the temperature history of points lying at the 

same distance from the welding axis during a particular test weld. 

The repeatability of such temperature histories and hence consistency 

of the thermal field was investigated by the following procedure. 

Three thermocouples were located 5.0 ± 0.005 in. (12-70 + 0.01 CM) 

apart on a line a fixed distance from the g of the'test plate as 

shown in Fig. 6.1. A test weld was then passed along the g of 

the plate with the arc current and speed being kept as constant as 

possible. By switching from one thermocouple to another (see 

sections 5.7,5.8), the output from eanh thermocouple was recorded 

in turn for tl,. e saric length of time (i. e. the time takcn for the 

weld to traverse 5.0 in. ). These recordings were then compared 

for repeatability. 

A typical result fmm such a test with the three recordings 

superimpqvied is shovrn in Fig. 6.2. Again the tempcraturc, s showm 

are aly)vcý ambient and zero on the time axis correspond:; to the 

whon canh thermocouple was in l1ne with the front of the 

weld poot. 

- -s": 
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Me tests were repeated for two different sets of welding 

conditions (nominally 100A at 0.15 cm/s and 138A at 0.25 cm/s). 

For each set of conditions, three separate tests were made with 

the thermocouple line located 0.175,0.200 and 0.250 in. from the 

weld 0 respectively. The results from these tests are given in 

Table 6.1. 'Rie four temperatures in each group refer, in 

descending o-ý-der, to the peak temperature and the temperatures 5s, 

15s and 30s after peak respectively. 

All the tests showed excellent repeatability in the heating 

curve up to the peak temperature. Indeed, as typified by 

Fig. 6.2, the three superimposed heating curves were almost 

indistinguishable in each test. From Table 6.1, the maximum 

% age difference (referred to the minimum) in peak temperatures was 

less than 5105' in all cases tested. Considering the large thermal 

gradients involved and the accuracy of the thermocouple recordin g 

and interpretation, this difference is comparable with the 

experimental errors (e. g. an error of + 0.005 in. in the location 

of a thermocouple from the nominal distance from the weld Z could, 

itself, give rise to an error of + 300C in the peak temperature). 

A maximum difference of less than 59 was also found for the 

cooling curves as indicated by the temperatures at 5,15 and 30s 

after peak temperature. 

Ihese results indicated the validity of the quasi-static 

ascumption for the welding procedure and conditions dc'scribed above. 

Yliey also indicated that Lhe test technique of switching between therinc- 

couples was adequate for the purpose of the tests. 

- ill' )- 



THEF, MOCOUPLE WELDING CURRENT (A) RECORDED TEMPERATLRE AT PEAK, 5,15 & 
DISTANCE FROM AND SPEED (cm/s) 30 s AFTER PEAK A ABOVE AMBIENT) 

(in) 

TC1 TC2 TC3 

102 1102 1097 1068 
952 923 923 
682 667 682 0.17 479 469 469 

0 175 . 
1209 1197 1150 138 957 962 962 

686 682 672 0.25 479 483 456 

1097 1083 1054 98 
, 
957 957 948 
720 725 720 0.14 527 546 541 

0 200 . 
1059 1039 1035 138 885 856 880 

638 641 631 0.25 450 450 430 

933 894 923 98 817 798 821 
648 633 657 0.15 488 483 469 

0 250 . 
841 880 880 139 789 822 783 
630 599 624 

0.26 440 440 430 

TABLE 6.1 CONSISTENCY TEST RESULTS 
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6.2) Comparative Test Procedure 

Having gained the required confidence in the test procedure 

from the consistency tests, it finally remained to complete the 

comparative tests between analogue predicted and experimentally 

measured temperature histories. The test procedure followed is 

outlined below. 

The Mk II analogue was prepared by connecting a fresh sheet of 

Anaplot paper (from Roll 1) to the field resistors with silver 

paint as described previously (section 4.6). Prior to fitting the 

paper on the analogue, a pattern of 0.5 mm dia. holes, corresponding 

to the resistor layout on the analogue (see Fig. 4.10), was punched 

through the paper so that it could be fitted accurately and without 

tearing onto the field resistors. 

The analogue parameter was then estimated by the 
v/fR 

procedure detailed in section 4.6. Adopting the same 1-D test 

procedure, the accuracy of the analogue was also evaluated. 

From a test weld, the pool shape and welding speed v were 

determined as described in section 5-8- A Baty 600 Reflex Projector 

with a magn. 11fication of x 10 was used to give an accurate profile 

of the pool shape. 

Bcfore painting the pool shape onto the analogue field, the 

appropriate "scaling factor" had to be determined. 7lie scaling 

factor was defined as the distance on the analogue field which 

unit distance on the test plate.. Ibis was determined by 

flvziL calculn Ling the dizit-ance of real spact, whIch war; vvprosented 

by the analc, ýýuc vesistor spacing h. Ro-arrarigIng the analogue 

I11 



design formula(equation 4.8) gives 

h 2% 
v 

AF 

Substituting for the welding speed v and the estimated value of 
"? 

, 
SR 

(0( always being taken as 0.075 cm 
2 /s), in the above equation gave 

the required value of h. The corresponding scale factor was then 

calculated by dividing the actual resistor separation on the analogue 

by h. 

The contour of the pool shape, appropriately scaled, was then painted 

onto the surface of the analogue using silver paint. Only one 

symmetrical half of the pool shape was considered and it was located 

on the analogue so that the. entire pool lay In the finely divided 

region with its major axis (i. e. the welding axisý coincident 

with edge AB shown in Fig. 4.10. A typical pool shape on the 

analogue is shown in Plate 6.1. The straight cut edge along the 

remainder of the axis of symmetry (i. e. edge AB) simulated the 

adiabatic heat flow conditions across the real welding axis. 

From the Rosenthal transformation (equation 4.1), it is evident 

that the isothermal molten/solid interface defining the pool 

boundary is not an equipotential on the 0 field. From equation 4.9, 

v. 
O(XSY) Me 

2ýc 
. T(x, y) 

and substituting for T(x, y) -Tm where Tm is the melting point 

of the parent material gives 
v 

OM(x) Tme 2-( (6.2) 

A" Wý 

f- 
flc - 



PLATE 6.1 WELD POOL SIMULATION ON THE MKII ANALOGUE 

sw4ak ,,, --, - ,,., -ýý, --,, --, -! AmvA 
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for the required variation in 0 potential along the length of the 

pool. 

Using the value of Tm = 1500 0C above ambient for mild steel 

(4,18), the variation in 0 potential was calculated by assuming that 

the origin of x was directly beneath the electrode of the welding 

torch (i. e. the Rosenthal co-ordinates shown in Fig. 1.1). The 

continuous nature of this variation was approximated by dividing the 

length of the pool into four regions and assuming the potential within 

each region to be constant. The potential assigned to each region 

was tiie value calculated from equation 6.2 -LI "'or the mid-point of the 

region. As shown in Plate 6.1, each region was effectively separated 

from the others by removing a segment of the pool shape along the 

dividing line between adjacent regions. In this way, the only 

electrical contact between different regions of the pool was through 

the analogue field itself. 

The required potential was applied to each region using the 

circuit shown schematically in Fig. 6.3. The power source 

(Multireg 731, manufactured by Weir Electronics Ltd. ) was connected 

across a cascade of 4x5 k-n. potentiometers connected in parallel.. 

Each region was connected to a single potentiometer which was 

adjusted until the required potential for that region was obtained. 

The common g , rid was connected to the -ve (i. e. zero) terminal 

of the powcr source as before. As shown in FIg. 6.3, connection to 

the -ve terminal was also generally made to the edge opposite the 

axis of symmetry on the analofý-uv although tests showed that its 

removal ha(I no ineaSUVIbttý Cffect on the 0 field in U-ie vicinity of the 

P001 Sh, -APC. 

-i 17 .- 
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Measurements of 0 potential were made using a probe connected 

to a digital voltmeter (Type TM 1450, manufactured by Solartron Ltd. ) 

as for the evaluation tests (section 4.6) and as shown in Fig. 6., 3. 

A general view of this arrangement is shown in Plate 6.2. 

Measurements of 0 potential were made at known distances 

(i. e. fixed values of x) along lines drawn parallel to the axis of 

symmetry. The separation of these lines from the axis was made to 

correspond to the distances at which thermocouples were located from 

the welding axis on the test plate. 

These readings of potential were then converted to 

temperatures by the Rosenthal transformation 

-VX 2R 
i. e. T(x, y) e O(X, Y) 

(care being taken that the analogue distances were first, reduced 

to "real" distances i. e. values of x by dividing by the scale 

factor). 

This enabled plots of temperature T(x) for various values of 

to be drawn. To facilitate comparison with the temperature-time 

plots obtained from the thermocouple recordings, the x values of the 

analogue were converted to t (time) values by dividing by the 

welding speed v. The origin for the temperature-time plots was 

arbitrarily taken as the leading edge of the weld pool. i. e. the 

origin on the analogue was shifted to the front of the pool and 

distances referred to that origin were converted to times by 

dividing by the welding speed. Direct comparison of the analogue 

predictet! and f-xpt! rimentally mensur(A temperature histories could then 

v, made. 

LL 



PLATE 6.2 MKII ANALOGUE: EXPERIMENTAL ARRANGEMENT FOR COMPAF--. TIVE 
TESTS 
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Fo. - completeness, the 0 field surrounding each pool shape 

studied was plotted using the Alpha PR Plotter in a similar way to 

the equipotential plots made during the evaluation tests (section 4.6). 

Allowance was, of course, made for the variation in potential along 

the pool boundary. 

6.3) Results 

Three experimental temperature histories, determined from one 

such test (Test A) are shown in Fig. 6.4. The thermocouples were 

located 0.250,0.225 and 0.200 in. from the axis of a 106A, 0.14 cm/s 

weld. Me resultant pool shape is shown marked A in Plate 6-3. 

For the above welding speed and for the particular sheet of 

Anaplot paper used 0.365), the scaling factor was 3.224. 

Using this value, the half profile marked A in Fig. 6.5 (drawn using 

the Baty Reflex Projector as described in the previous section) was 

transcribed onto the analogue field. From equation 6.2, the 

required potentials at each of the four . -egions of the pool shape 

were, starting from the front, 17-2-24,13.06.9.93 and 7-76V. 

These were applied to the analogue using the electrical circuit 

shown in Fig. 6-3. 

The perpendicular distances from the axis of symmetry on the 

analogue to the lines corresponding to the thermocouple locations 

on the test plate were calculated by multiplying the distance of 

each thermocouple from the weld axis by the scaling factor e. g. for 

the thermocouple locatcd nt 0.250 In. from the welding axis, the 

corresponding line on tho analovue was locatQd at a distance of 
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PLATE 6.3 "BLOWN-OUT" WELDS FOR TESTS A&B 
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0.250 X 3.224 in. from the axis of symmetry. The potential 

distribution along each of these lines was measured using the 

digital voltmeter. 

r1bese 0 potential distributions ( i. e. O(x)) were then 

transformed to temperature histories (i. e. T(t)) as described in 

the previous section. These analogue predicted temperature 

histories are shown compared with the corresponding experimental 

histories in Figs. 6.6,6.7 and 6.8. The 0 field distribution 

about the pool shape is shown by the equipotential plot in Fig. 6.9. 

Ibis was copied directly from the analogue field on a 1: 1 scale. 

Fig. 6.9 also shows the lines, corresponding to the thermocouple 

locations, along which the 0 potential distributions were measured. 

S 
For comparison Figs. 6.10 - 6.14 show a similar set of results 

(Test B) relating to a 1_38A, 0.25 cm/s weld. The change in time 

scale in Figs. 6.10 - 6.1,3 should be noted. For this test, the 

thermocouples were located 0.175,0.200 and 0.250 in. from the 

welding axis. The pool shape for thi.,.; test is shown marked B in 

Plate 6.3 and the corresponding profile marked B in Fig. 6-5. The 

required potentials at the four regions of the pool shape were 

24-30,15-00,8.45 and 4-57V respectively. Me scaling factor for 

the above welding speed was calculated as 6.017 (the estimated value of 
T91, 

being 0-35,58 in this case). 
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6.4) Discussion 

As can be judged from the graphs (Figs. 6.6 - 6.8 and 6.11 - 

the results of the comparative tests showed good agreement between 

the analogue predicted and experimentally measured temperature 

histories. From the summary of these results given in Table 6.2, 

it can be seen that the agreement between peak temperatures was 

better than 3%. Ibis was well within the error range expected of 

either the analogue or the experimental technique. However, this 

excellent agreement was not maintained throughout the temperature-time 

range considered. As the graphs show, the analogue results 

consistently predicted a slower cooling rate than that observed 

experimentally. The extent of this divergence for the time ranges 

considered can be judged from the figures quoted insTable 6.2 which 

compare the results 25s after zero for Test A and 10s after zero 

for Test B. 

The peak temperature comparisons are considerably better than 

those reported by Tanbakuchi (12) and are comparable with those 

reported by Pavelic (5) using finite difference analysis. Pavelic's 

numerical approach accounted for the spread of arc plasma onto the 

parent metal beyond the pool boundary. The excellent agreement for 

the peak temperatures achieved with the analogue, therefore, 

sug-ested that, for the test conditions considered, there was little 

or no are spread beyond the pool boundary. 

ted by photographing stationary arcs and This hypothosir, was test 

measuring the arc spread at the surface of the test plate. We 

such photwiaph Is shown in Plate Tbis shows a negative prInt 



TEST A 
DISTANCE FROM (in) 

0.200 0.225 0.250 

PEAK PREDICTED 
EXPERIMENTAL 

1267 
1255 

1178 
1180 

1024 
1024 

25s AFTER PEAK PREDICTED 712 
685 

704 
695 

690 
700 

TEST B 
DISTANCE FROM j (in) 

0.175 0.200 0.250 

PEAK PREDICTED 
EXPERIMENTAL 

1220 
1212 

1055 
1049 

922 
902 

10s AFTER PEAK PREDICTED 
EXPERIMENTAL 

902 
891 

840 
840 

772 
765_ 

TABLE 6.2 COMPARATIVE TEST RESULTS 
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PLATE 6.4 NEGATIVE PRINT SHOWING A 100A ARC 
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7. 

of a 100A arc (arc height -"' 
. -5 mm., gas flow 8.0 ft; )/hr) with the 

ceramic nozzle and electrode superimposed to show their position 

relative to the are. Using this technique, measurements of the 

arc spread at the plate surface indicated that at 100A, the are 

spread was less than 1 mm. beyond the maximum width of the weld pool 

recorded for Test A for a 106A are (see Fig. 6.5, Test A). While 

this weld pool relates to a moving arc, tlie actual welding speed is 

very slow and experience suggests that the effect of movement on 

the are shape is to make it longer and somewhat narrower (5). 

The estimates of are spread obtained from stationary arcs are 

therefore somewhat greater than the actual spread for a moving are. 

Although the are spread increases with are currenta similar result 

was obtained for a 140A arc, the are spread in this case being only 
0 

slightly more than 1 mm. greater than the maximum pool width. 

(see Fig. 6.5, Test B). The agreement in peak temperatures, there- 

fore, suggests that provided the are spread does not extend significantly 

beyond the pool boundary, the peak temperatures experienced by 

points close to the rt,, olten zone are primarily dependent upon the 

conduction of heat across the molten pool boundary into the parent 

metal. 

In applying the Kk 1I analogue to the welding problem, no 

account was made of either the heat loss from the surface of the 

test plate by radiation and co,, 'Ivc., ction or of thr- variation with 

temperature of' the plate's thermal properties (i. e. conductivity, 

specific heat and density). While it Is not too unreasonable to 

assume that for the range of temperatures considered the variation 

in the therv'ýO j)T, oj)f-rt, ',. os had onLy a zecond order efrect on the 

- 



temperature histories, the divergence of the analogue and 

experimental cooling curves could be attributed to the failure of 

the analogue to account for the heat loss from the surface of the 

plate. Since the analogue is essentially a linear model of the 

linear Rosenthal system, it is not possible to account for the non- 

linear heat loss by radiation. However, as shown in Appendix 2a, 

it is possible to account for the linear heat loss by convection 

(i. e. heat loss proportional to temperature) on the 0 field 

analogue simply by altering the scaling factor. If certain 

assumptions are made about the variation of the thermal properties 

with temperature, it is also possible to account for this 

variation in a somewhat similar manner. This is discussed in 

Appendix 2b. Accounting for these two effects will certainly be 

important if the analogue predictions were extended beyond the 

temperature ranges considered in the above tests. 

However, the major disadvantage of the Mk II analogue for this 

application arises from its fixed leakage resistor construction. 

Having constructed an analogue with fixed resistance values, it can 

be appreciated from section 6.2 that the scale factor will be 

directly proportional to the welding speed. Mis has a somewhat 

unfortunate "double-edged" effect. Increasing the welding speed 

and thus the scale factor results in a larger analogue representation 

of the pool shape. While this may be advantageous for accurate 

determinations of potential close to the pool boundary, it also has 

the effect of reducing the area of real space (or space-time) 

representod by the finite area of the analogue. This effect is 

clearly dt, monstrated by cornpariiw- the 0 flold pl,, )Ls for Tests A and B 

-I "ý") - 



(Fj, -s. 0.9 and 6.14). These are both 1: 1 representations of the 

actual plots obtained on the Mk II analogue. Comparison of the 

sizes of the pool shapes in these plots with the actual pool 

p 'iles shown In Fig. 6 roý . 5, demonstrates the effect of the difference in 

scale factor (3.224 for Test A and 6.017 for Test B). The greater 

resolution obtained for the Test B plot (Fig. 6.14) is gained at 

the expense of a reduction in the area of real space represented 

by the analogite. It is for this reason that the Test B comparative 

results (Figs. 6.11 - 6.13) stop 12s after zero (c. f. 30s after 

zero for the Test A results), this being the limit allowed by the 

finite size of the Vk II analogue. Since the value of the 

analogue parameter 
J-ýR 

was essentially the same for both tests 

(0.365 for Test A and 0-358 for Test B), the difference in scale 
0 

factor is due to the difference in welding speed (o. 14 cm/s for 

Test A and 0.25 cm/s for Test B). 

There are two obvious design changes which could be made to 

overcome this problem. The first is to simply increase the size of 

the analogue field, particularly in the x direction. '11he second 

is to devise a construction with variable leakage resistances (or 

interchangeable resistance values) so that the value of the analogue 

parameter can be changed to compensate for different welding J 
ýR 

speeds Isee the design formula, equation 6.1). 

It is also recommended that closer tolerance resistors be used 

to improve the accuracy or the 0 field distribution. It was found 

that, altho-ogh the f-valuatlon tests (. -(, ction 4.6) showed excellent 

n(rr----rent with theory and t. he 0 distributions avc)Lin(l the well't pools 

npl: 'ý, ared perfectly rmooth, th(-r, e we-rv. In fact, srvall random errors 
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in the measured 0 values due to the small variations in the 

leakage resistance values (± 2,19 of nominal value). From the 

nature of the Rosenthal transformation, these errors were 

magnified when the O(x) distributions were transformed to the T(t) 

distributions with the result that the TM plots were not perfectly 

smooth, the calculated points being scattered in a random fashion 

about the mean curve. While only the mean curves have been shown 

compared with the experimental histories (Figs. 6.6 - 6.8 and 

6.11 - 6.13), Fig. 6.15 shows one such mean curve with the actual 

calculated values shown by the crosses. The calculated values, 

however, were never more than + 200C from the mean curve. Mis 

variation can be completely accounted for by a+ 2% error in 

resistance value and could, therefore, be removed by using better 

quality resistors in the analogue construction. This is 

particularly recommended if a larger analogue field is to be 

constructed since better resolution in 0 values will be required 

for these points more remote from the pool boundary. 

Despite these shortcomings, the Mk II analogue has been shown 

to predict the thermal field during welding extremely well for the 

range of test condi-Lions considered. While it is not possible for 

the analogue technique to provide as detailed an analysis as is possible 

using a numerical approach, it is felt that the analogue approach 

could be usenilly employed for the welding application. Since the 

whole of the 0 field (and, hence, the corresponding temperature 

field) P for any number of welds (provided the heat flow reirains 2-D) 

can be readily determined, hypotheses can be quickly tested and 

trends observell PxperimentaIlly investigated. Particu'Lar zones of 
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interest could then be identified for more detailed examination 

using a numerical approach. 

As a demonstration of the way in which the analogue may be 

employed, consider the three experimental recordings for Test A 

shown in Fig. 66.4. It will be observed that the three temperature 

curves are decaying at substantially the same rate despite the 

obvious difference in the peak temperatures. Indeed, it would seem' 

that the three cooling curves tend to converge to a single curve. 

This trend can be explained by studying the nature of the J6 

field distribution at increasing distances from the pool shape as 

shown in Fig. 6.9. It can be seen that the equipotentials 

rapidly become circular in nature with increasing distance from the 

pool shape. It can therefore be appreciated that the O(x) distribution. 

along each of the lines shown (corresponding to the thermocouple 

locations) tend to become identical with increasing distance from 

the pool shape. 

Consider the three values of 0 at jxj 
= a. y- yls Y2' Y3 

as shown in Fig. 6.9. Due to the almost vertical nature of ihe 

equipotentials in the neighbourhood of I XI = a, it can be 

appreciated that the three 0 potentials will be almost identical and 

that this will become increasingly true with increasing jxj 

i. e. O(X. y ) =ý O(X, Y, ) =, - 
O(X, Y-) 

with increasing Ix 

Sfi)ce the Roscmthal transformation operates only on the x-axiss 

it is inde'pendent of y, being given by equation 4.1, 



VX 

(x, y) e 
'2 

0(X$Y) 

it follows that 

T(x, y 1) -ä T(x, y2) -3 T(x, y 3) 

with increasing jxl. 

Since x is simply proportional to t, it can be concluded that 

T(t, y T(t, y2 T(t, y3) 

with increasing t. 

Ibis is in agreement with the experimental observation that 

the cooling curves shown in Fig. 6.4 tend to converge. For 

points located at greater distances from the weldinj axis, it is 

evident that the same effect would be observed but only after a 

longer time and at a lower temperature. Incidentally, it is also 

the circular nature of the 0 field distribution which indicates how 

quickly the 0 field becomes independent of the actual pool shape. 

To summarise, the comparative tests showed the good agreement 

between the analogue predicted and. experimentally measured 

temperature histories. While this, of course, can only be said to be 

true for the welding conditions adopted in the tests, it is felt 

that these conditions were not too far removed from standard 

procedure (19) and that the analogue technique could be equally 

applied to a wide rang-c- oC welding conditions found in practice. 

Althouýýh it - is not possible for the analogue approach to provide as 

detailed an analysis as has been shown to be possible using a 

nkmior, lcal appi, oach (1)), Its simplicity and flexibility inake it 

I ), 1, 



an extremely useful tool for at least an initial investigation of 

quasi-static 2-D thermal fields during welding. 
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CONCUISIONS 

1) A study of the modal characteristics of Rosenthal fields 

indicates the possibility of using a simple analogue for the analysis 

of heat flow during welding. From this initial study, it is 

demonstrated that the modal characteristics of non-uniform systems 

can be related to the characteristics of the corresponding uniform 

system. In particular, it is shown in Appendix 1 that the 

longitudinal vibration chara cteristics of a uniform cross-section 

beam are only a special case of a more generalised set of characteristics 

relating to a Variable cross-section. It is also shown that, in 

general, the eigenvectors for such variable cross-section systems 

are orthogonal with respect to a weighting function identical to the 

function defining the variation in cross-section. 

2) It is shown that a potential field having an exponential 

variation in conductivity can be identified as a Rosenthal field and 

that a direct electrical analogue based on this principle could be 

designed. However, owing to the very large variation in resistance 

required, this approach is impractical for most welding heat flow 

studies. The feasibility study for the direct analogue does reveal 

that to obtain the same temperature distribution in the welding of 

materials of the same geometry under different welding conditions, it 

is only necessary that the ratios a and 
q 

remain the same. k 

While this conclusion is subject to the basic assumptions of 

Rosenthal's analysis and, consequently, that control of these two 

ratios alone may be insufficient to completely control the thermal 

field, particularly in the HAZ, they are, nevertheless, important 

parameters. Since-Y is independent of the exact nature of q, it is 
a 
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expected that it has a particular significance in the determination of 

temperature gradients. 

3) By employing a transformation of Rosenthal's equation a simple 

electrical analogue can be constructed which Is not restricted by the 

variation in resistance required by direct analogues. This analogue 

has the advantage of having a continuous surface/which makes it 

particularly suitable for 2-D heat flow studies based on the pool 

shape model proposed by Apps and Milner (7). Comparative tests 

between analogue predicted and experimentally measured temperature 

histories in the HAZ for continuous DC TIG welding show that the 

thermal field in the HAZ can be successfully simulated using this type 

of analogue. Peak temperatures are particularly well predicted and whilf 

consistent divergence in cooling curves is shown, this can be attributed 

to heat losses from the plate. which were not accounted for. A 

simple procedure for making allowance for such losses is, however, 

demonstrated in Appendix 2a. Although the application of the analogue 

is restricted to 2-D quasi-static analysis, it is especially valuable in 

that the thermal field in the HAZ can be simulated on a continuous 

analogue field. Provided single pass, full penetration welding is 

considered, there is no apparent reason why this analogue approach may 

not be applied to other welding processes. Until thý-mechanisms by 

which heat is transported through the are and weld pool are completely 

understood, it is anticipated that the 0 field analogue will prove to be 

a useful experimental tool in analysing welding heat flow. 
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App(-n, lix 1 

Lonritudinal vibrations of some variable cross-section bearns 

As noted in Chapter 2, it was of some interest to explore the 

way in which the Cigenvectors of a uniform system change when one 

of the properties of the system is allowed to vary. For example, 

it is shown in Chapter 3, that an exponential variation in 

conductivity can result in the same governing equation (and hence 

the same eigenvectors) as Fourier's equation of cinduction in a 

homogeneous medium but referred to a Rosenthal co-ordinate system. 

To develop this idea further, consider the longitudinal vibrations 

u(x, t) of a beam whose cross-sectional area A(x) varies along the 

length of the beam. It is readily established that u(x, t) obeys 

the governing equation 

2 
(Al. 1) A )x ýx 

where 9 is the density and E the Young's Modulus of the material 

of the beam (both assumed constant). In establishing this 

equation, the usual assumptions that during its motion, plane 

sections of the beam remain plane and that Poisson's ratio effects are 

negligible, have been made. The only conditions to be imposed upon 

A(x) are that it be continuous, differentiable at least once and have 

no zeros in the range of x. 

Provided the boundary conditions imposed on the beam are linear, 

solutions to equation A1.1 may be sought by separating the variables 

consider a solution of the form 
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u (x, t) 0 (x) - xL(t) 
Substitutimg for u(x, t) In equation AS and re-arranging gives the 

two seorated equations 

Dp01. äA. ä0 
äxý +W 

li-x 
ä77 + NO =0 (A 1.2) 

and 
3' 

-ri- + >ý. E. 
_/L . 

,) t2 

where A is the separation constant. 

The solutions O(x) to equation A1.2 will define the eigenvectors 

of the system while the solutions A(t) to equation A1.3 will 

define the behaviour of the system with time. However, since the 

solutions (i. e. -the eigenvectors) of equation A1.2 are obviously 

dependent upon A(x), it is this equation which is of particular 

interest. 

Consider, for example, the case where A(x) is a linear function 

of the form 

A (x) a+ bx 

where a and b are non zero constants. 

Substituting in equation A1.2 yields 

; ýýo 
++ X20 

ýx2 (a+bx) ýx 

It Is convenient to transform the independent variable to 

-a+ bx in the above equation, reducing it to. 
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C) 
ý 

w ') w 

Mis equation Is readily recognised as a zero order Bessel equation 

whose solution is given by 

cy( . 1. ') 20b 

where c and c are WnStar2tS and J and Y a-re zero arder Bessel 1200 

functions of the first and second kind respectively. 

Mis solution defines the eigenvectors (or normal modes) of this 

system. The eigenvectors A would be determined by the particular 

boundary conditions imposed on the beam. 

Me corresponding solution to equation Al., 3 is simply 

E c3 Sin ý' 
Tý 

*t+ 04 cos 

and it can be seen that the natural frequencies would be given by 

It is interesting to note that the simple linear variation in 

cross-section has produced eigenvectars in the form of Bessel 

functions. 'This should be compared with the pure sinusoidal 

eigenvectors for uniform cross-sections. 

Consider now the case of a circular rod whose radius of cross 

section r is varying -s. Lich that 

a bx 

The cross-sectional area A(x) is, -therefore, given by 

A(X) =W (a + bx) 2 

- Iýb 
- 



Substituting for A(x) in equation Al. 2 Eives 

+2 f6 
äxp (a4-bX) j-x x 

Again, transforming the independent variable to 

W-a+ bx 

reduces this equation to the form 

ä LO 2-, 0 . 4 xý ww 

=0 

Ibis is another Bessel equation whose solutions are of the form 

I- 
O(Gj) = W- 

2. C, Jý, ( 
-ý -0)+C, Yý, (A* W) 
bb 

where c1 and c2 are constants. 

Again the eigenvectors appear as Bessel functions but from the 

theory of such functions, it can be shown that 

J, W sin x 
x 

and J- (X) Cos x wx 

Using these relations in the above expression for O(w ), it can 

readily be shown that 

1C 
sin(ý'. w) +cI cos(ý. w) O(W) 

W121 

From the boundary conditions, the eigenvalues A and hence the natural 

frequencies can be determined in the usual way. 

It 13 interesting to note that in this last case, the 31nusoidal 
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funntlons have re-appeared, qualifird by ; the factor It can 

In fact be shown from the solutions to g(, ncr. aliscd B, -sst--l 

equations (T ) that, if A(x) has the form 

A (x) - ax«, 

the elgenvectors can be expressed as 

OW - X- 
10 

11n 
(>, x) +c2Yn (Xx) 

where n2.1(1_0()2 and c and c are constants. If(X is zero 1; 12 

i. e. a uniform beam, then using the Bessel function relations for 

J (x) and Y+I(x) already stated, this "general" eigenvector will 

reduce to the simple trigonometric functions sinAx and cosAx as 

Indeed it must. 

It would, therefore, seem that in considering the response of 

non-uniform systems similar to those described above, the 

eA. genvectors are likely to be Bessel functions and that where 

sinusoidal eigenvectors are observed, they are, in fact degenerate 

Bessel functions. 

The variation In area A(x) can, however, be shown to have a 

completely general relationship with the eigenvectors. 

Consider the nth eigenvector 0,, (x) whose governing equation 

(or characteristic equation) has the form 

;p On 
+ 

1. ýA Zý10n +X2 
X2 A S-x ýx n 

On(x) 

(i. e. equation A1.2). 
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MuIttplying this equation by A(x) and re-arranging yields 

ý [A. 3011 ]+ 
A") A(x). o (x) 0 Al. 3 S-x jxnn 

Similarly, if On (x) is the eigenvector corresponding to the mth 

eigenvalue Am, then 

A. + \2 A(x). o (x) 0 A1.4 m 5'X x-Im 

Multiplying equation Al-3 by Om and equation A1.4 by On and 

subtracting yields 

A. (0m. 
Vn 

+ Aon Om 
[2_ 

A2] =0 A 
S-x 

I 

ýx 
On* 

3x nm 

Integrating this equation with respect to x over the range of x 

(say a: b) yields, 

! on ]b b 

A. On' 
ýxm a 

A2 
- 

x2 
.5 

1 

<) xm nj ' 

)a 
A. 0n. Omdx Al 

Whatever the exact nature of 0m and J6 
n, 

they must satisfy the 

boundary conditions at x=a, b. Boundary conditions for a wide 

range of systems will have the general form 

a1 O(a) +a2 (a) =c1 

and b1 O(b) +b2 (b) =c2 

where a,., a,. ). bl, b 
2' c1 and c2 are constants. It can be seen that, 

under these conditions, the left hand side of equation Al-5 must 

always vanish. 

i. e. 
22A. 

0 dx mn m*On 
0 

a 
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Provided m ti n i. C. 'n 
, then 

b 
s 

A. 0m. j6ndx -0 A1.6 

a 

7his result indicates that the eig-onvectors Om(x) and On (x) are 

orthogonal on the interval a: b with respect to the weighting 

function A(x). 

N. B. The approach outlined above is generally attributed to 

Sturm and Liouville drAd may be found in standard texts describing 

orthogonal functions. e. g. (22). 

The variation of cross-section A(x) will, therefore, always 

appear as the weighting function to which the eigenvectors of the 

system will be orthogonal. It should, however, be noted that the 

eigenvectors will not necessarily be one of the fundamental 

orthogonal functions. 

From the previous discussion, it has been shown that if A(x) has 

the form 

axcK » 

the cignevectors 0n (x) can be written as 

1-( 1 -CK > -CK) 
1(, 

Jgn (x )=xin(xnx) or 
1 

XP Y (x)] 

Substituting for A(x), 0n (x) and Om(x) in the orthogonality 

condition (equation A1.6) gives 

b 

x. jm (ÄMX). i 
n 

(Ax)dx 

a 

- 155 - 



'Phis is, of course, the orthogonality condition for Bessel functions 

which are all orthogonal with respect to a weighting function of x. 

Thus, although the eigenvectors 

On(x) =x 
1(l-rA) 

i 
n(Nnx) 

are orthogonal to the weighting factor 

, 2t 
(x) = ax , 

the basic orthogonal function involved Jn (A 
n x) has a weighting 

factor of x. 

Although this discussion has been restricted to a simple 

vibration system, the above results anply to a large number of 

problems in a diverse number of fields. Consider, for example, the 

variable conductivity form of Fourier's equation (equation 3.2) 

used in Chapter 3 to establish the direct analogue principle. 

Although this is a 2-D equation, its form is not dissimilar to 

equation Al. l. Indeed, the elgenvector equation in the x direction 

would be identical in form to equation A1.2 and the above discussion 

would apply equally to that heat conduction system. 
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Appondix 

a) TI-An plator, with heat loss by convection. 

Ilie well established (22) form of Fourier's equation for the 

2-D conduction of lieat in a thin plate losing heat by convection from 

its major surfaces, is f; iven in Cartesian co-ordinates by 

2T- (211) T= -1 -11-T kd IK 'a t 
(A2.1) 

where the temperature T of the plate is measured relative to the 

ambient temperature of the surroundings, 1.1 is the coefficient of 

convective heat transfer from the surfaces of the plate to the 

surroundings and d is the thickness of the plate (other symbols having 

their usual meaning). 

Transforming equation A2.1 to Rosenthal co-ordinates (see Chapter 

1) and making the quasi-static assumption that, with respect to these 

co-ordinates, 
ct=0 

gives, 

,2T V-ýL-T 
-( 

2H) T(x, y) =0 (A2.2) ,v+ zz äx kd 

If the deNndent variable T(x, y) is now transformed by the 

Rosenthal transformation 

T(x, y) O(x, y); 

equation A2.2 becomes 

20_[(. y )2 + (211 0=0 
2x k(l)] 

(A2. 
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Comparinr this equation with the k7oveming equation for the 

V field analo,. -ue (elu-atioli 
. 1-7) 

2V--LV 
:-0 

Rh2 

shows, tiiat, for the 0-field to be an analogue of equation A2.3, 

)2 + 
-1/2 

kd 
(A2.4) 

This is the requ4. red analogize design formula and it is comparable 

with equation 6.1. 

It can be seen that the effect of the convective loss is to 

reduce the value of h i. e. the distance of real space represented by 

the analogue resistor spacing. bince the analogue scale tactor is 

inversely proportional to h (see section 6.2), the effect of the 

convective loss is to increase the scale factor. In fact, the effect 

is similar to increasing Z which as discussed in section 3.2, has the Ck 

effect of increasing the thermal gradients (both with respect to 

space and time) around the weld pool. 
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b) Thin platoo with variiable tner: i-tl properties 

Fourier's equation governinr the conduction of heat in a 2-D 

medium wl-. ose properties, (i. e. conductivity, density and 

specific beat) are functions of temperature, takes the form (22), 

(kVT) c 
ýk-T 
3t 

(A2.5) 

Again transforming to Rosenthal co-ordinates and assuming quasi- 

static conditions yields 

(k S7 T) +q ev 
ý-T 
6x 

(A2.6) 

Solutions to equation A2. b have been investigated (by Grosh et al 

(23) ancL Eazimtmv et al (24)) for Rosenthal Is line source model of the 

welding heat imput. The particular relevance to this wor'k, however, 0 
lies in the transformation of the dependent variable which was used 

by both the authors cited above. 

If it is assumed that both the therrial conductivity k(T) and the 

volumetric heat capacity ýc(T) are the same functions of temperature 

then it is convenient to write 

kýT) =k0 fl(T) 

and ýC(T) = 

where fl(t) is the temperature derivative ol' some lunction of 

temperature f(T). It is assumed that both f(T) and fl(T) are 

diff'prentiable (arid are non-zero in the range of T). 

(A2.7) 

(A2.8) 
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From equition A2.7t it can L-e seen that 

i'(T) (T) IN T 
NX C) x 

ana cqirttion A2.6 thereiore, be ro-written as 

2f (T) 
++v 

Nf (T) 

') xid lb Y'd -Jý. ') x 

k 
where d, ýC) 

(A2.9) 

This equation can be seen to have the same forra as a Rosenthal 

equation (equation 1.? ). Again employing the Rosenthal transformation 

which in this case takes the form 

v 

i'(T) = 
;eý; 4x O(XVY) 

transforms ec]uation A2.9 to the standara 0 equation 

V20 - (I ), P(X, Y) 20( 

Tnis, of course, may be solved directly on the 0 field analogue. 

The nature of' the reiationship between Oýx, y) and T(x, y) does, 

however, depend upon the nature of f(T). If for example, f(T) is such 

that 

fl(T) = (1 + mT), 

then it can be readily shown that 

V 
.x 2ol, 

Tkx, y) 
[2m 

e- O(XPY (A2.. LO) mJ 

r- 
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whi-Le thl- rclaticnýý, hip if-, not as simpie as tile standard 

ýýosent. hal trinsformatior, 

v 
i. e. T(x, y) =e O(XVY)t 

there would be no real difficulty in applying equation A2.10 for a 

particular problem. Qe requirea variation in 0 along the pool length 

woula, for e =m pie, be given by 

V x 
0 (x) =eA (1 + mT ) ;e 

Vnere Tm is the meiting point of the material under consiaeration. 

Whether or not tne ass-umption that tne thermal cunductivity and 

trie voiumetric heab capacity have tne same temperatu-? -e dependence 

(i. e. a constant thermaj. di. L*fusivity) would depenu on the particular 

material but it would seem not to be too unreasonable fov mo; st metals 

ý24). 

It is interesting to note from the above analysis Qat the 

variation in thermal properties is handled by a transforiTLartion of the 

dependent variable T(x, y). This is somewhat in keeping with the 

discussion of section-3; where it is show that a change in the ratio 

2 
results directly in a chanee in T(x, y). k 

This discussion has shou-n how both convective heat loss from 

and variable thermal properties of the welded plate may be incorporated 

into the ý- field analoc. -Iie approach. Unfortunately, it does not seem 

possible to incorporate. both offects simultaneously to form a sing-1.0 

0 equation. This is due to tho non-l-*Ln.:! z,,. r nature of f(T). However, 

it is fOlt th. %t 'Ootr! these. tcchiniqu(ý., -, ii,, ay be 113ed with the 0 field 

analogue to I-Ome advantaje to (Ir; tormiiiro, for e,, 'arn, -)Ic-, wh. - -]. '(, e sigmificý 

each has on the thormal fi(, I, d jr 
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