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Abstract 

A seroepidemiological study was undertaken in a pedigree dairy herd that had a 

history of abortions due to neosporosis. The infection in this closed herd was thought 

to have arisen from a point-source infection, after which sporadic abortions have 

occurred. All cattle were bled twice, once in the winter and again the following 

summer and antibodies to N. caninum measured using an ELISA. The overall 

seroprevalence of Neospora was found to be 18 %. Three data sets; age-prevalence 
data, dam-daughter pair analysis and family tree data showed vertical transmission to 

be an important route of transmission of neosporosis in this herd. Analysis of anti- 

Neospora antibody titres with respect to the stage in the breeding cycle of cows 

appeared to show no association on a herd level. Data was collected on the number of 
Artificial Insemination (AI) services per successful pregnancy which showed a 

significantly greater number of Al services in Neospora-seropositive cattle compared 

with Neospora-seronegative cattle. This is the first study to assess the effect of 

neosporosis on cattle fertility in a quantitative manner and suggests that a wider study 
is justified. N. caninum shares many similarities with T gondii and has widely been 

assumed also to have a world-wide distribution. Two regions of Africa, Ghana in 

West Africa and Tanzania in East Africa, were studied in a cross-sectional survey of 

neosporosis in cattle indigenous to these areas. A prevalence of 8.1 % and 2% was 
found in two different areas in cattle native to Tanzania. Despite sampling a 

significant number of cattle in all three ecological zones of Ghana and of several 
different breeds, no Neospora-seropositive cattle were found. Possible reasons for the 

apparent absence of N. caninum in West Africa are discussed. To determine the 

overall genetic diversity in laboratory isolates of N. caninum, RAPD and AFLP 

methods were used. Genetic diversity was found to be low amongst Neospora 

laboratory isolates, relative to T. gondii, but demonstrated that genetic heterogeneity 

does exist within the species. Both RAPD and AFLP data were subjected to pair-wise 

similarity and cluster analysis and showed that there was no clustering with respect to 

host or geographical origin. The genetic similarity between cattle and dog isolates 

suggests that these hosts are epidemiologically related. In order to exploit the genetic 

heterogeneity in N. caninum to analyse a wider range of clinical field samples, several 

methods were attempted to devise PCR-based sequence-specific typing approaches 

that could be used on infected bovine tissue. Microsatellite markers were identified in 
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N. caninum DNA sequences, however none of the microsatellite regions gave rise to 

detectable size differences, although they remain to be tested on a wider range of field 

samples. Laboratory isolates of N. caninum were also analysed for polymorphisms 

with two conserved minisatellite probes, 33.6 and 33.15, but although hybridisation 

occurred to digested parasite DNA, identical fingerprints were obtained for each 
isolate. In a final attempt to identify sequence-specific polymorphic markers, intron 

regions from two genes, actin and tubulin, were amplified and sequenced in both 

laboratory and field isolates. This approach revealed a number of single nucleotide 

polymorphisms (SNPs) that were able to differentiate between some isolates of N. 

caninum and might serve as useful molecular markers. SNPs were found more 
frequently in the clinical field samples, suggesting that the diversity of N. caninum is 

greater than that represented by current laboratory isolates. Further genotyping of 
field samples will enable the genetic population structure of N. caninum to be 

determined to facilitate molecular epidemiological studies. 
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Chapter 1 

1.1 Introduction 

Neospora caninum (Dubey et al., 1988a) is an intracellular coccidian parasite that 

was first identified as a distinct organism in 1984 (Bjerkas et al., 1984) and isolated 

into tissue culture in 1988 (Dubey et al., 1988b). It is recognised as a major cause of 

abortion and congenital defects in cattle and dogs worldwide. Neosporosis is an 

important cause of abortion epidemics in cattle, but can also be responsible for 

endemic abortion problems. Vertical transplacental infection in cattle is an 

important transmission route for the parasite but it has also been shown that dogs can 

act as definitive hosts by the excretion of oocysts (McAllister et al., 1998) . The 

extent to which this occurs naturally and the existence of other sylvatic hosts is 

unknown and many aspects of this disease, including basic biology, epidemiology 

and transmission routes remain unclear. 

N. caninum was first reported as a cause of abortion in British cattle in 1994 (Trees et 

al., 1994). The parasite has a wide host range and can cause abortion and congenital 

defects in cattle (Thilsted and Dubey, 1989), goats (Dubey et al., 1992) horses 

(Dubey and Porterfield, 1990) and dogs (Dubey et al., 1988b). It has been 

implicated in 43 % of bovine abortions in California, USA (Thurmond et al., 1995), 

16 % in Scotland (Buxton et al., 1997a) and 12 % of bovine abortion in England and 

Wales (Trees et al., 1999). The parasite has a wide geographical distribution and has 

been reported to be associated with bovine abortions in many countries. 
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It is difficult to quantify the economic losses involved due to neosporosis, but they 

are thought to be considerable (Trees et al., 1999). Ellis et al. estimated that 

neosporosis infection cost the Australian dairy industry about Aus$85 million per 

year (reviewed in Trees et al., 1999). The main cost of natural infection with 

Neospora is loss of income to the farmer through abortion, lower milk yield, 

production of weak calves and the loss of highly valued genetic lines from pedigree 

herds. One of the difficulties with determining the impact of neosporosis is the lack 

of quantitative data on the reduction in cattle fertility caused by the infection. 

Currently there are no clinically proven vaccines or drugs to treat or prevent 

neosporosis. Many infected dams produce congenitally infected calves, which are 

often clinically normal and may provide a reservoir of infection within the herd, 

although Neospora can cause repeat abortion in some animals. Accurate diagnosis of 

infected individuals to be culled or treated is extremely important for control of this 

disease. Diagnosis of neosporosis is largely achieved using the indirect fluorescent 

antibody test (IFAT) and enzyme linked immunosorbent assay (ELISA), which 

detect Neospora specific antibody in sera from infected animals and by histological 

examination of the aborted foetus and placenta. 

1.2 Diagnosis of N. caninum infection 

It is important to be able to identify animals infected with Neospora and several 

diagnostic techniques are currently in use. As N. caninum tachyzoites, present in 

smears of cells taken from cerebro-spinal fluid (CSF), bronchial lavage and dermal 

sores, are not distinguishable morphologically from T gondii tachyzoites by light 
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microscopy, more specific tests are essential for accurate diagnosis. Positive 

serology results are only indicative of exposure to N. caninum. 

1.2.1 ELISA 

Enzyme linked immunosorbant assays (ELISA) can provide consistent, objective and 

rapid results (Crowther, 1998), often with increased sensitivity and specificity when 

compared to IFAT (Frossling et al., 2003). ELISA kits are currently commercially 

available for detection of Neospora-specific antibody in cattle (Williams et al., 

1997). The kit developed by Williams et al. (1997) used whole tachyzoites and very 

little cross reaction was observed with sera from cattle experimentally infected with 

other closely related coccidian parasites. Several ELISAs have been developed using 

sonicated tachyzoites of bovine and canine Neospora tachyzoites as antigen (Pare et 

al., 1995; Osawa et al., 1998). Incorporation of a range of antigens may overcome 

the potential problem of antigenic diversity of Neospora isolates giving greater 

sensitivity (Pare et al., 1995). 

More specific ELISAs using extracted tachyzoite proteins of N. caninum 

incorporated into immunostimulating complexes have been developed by Bjorkman 

et al. for diagnosis in dogs (1994) and cattle (1997). The major antigens 

incorporated into iscoms are amphipathic molecules such as membrane proteins 

(Lovgren et al., 1987). The immunodominant antigens of N. caninum identified by 

Western blot are located in rhoptries, dense granules, micronemes and the 

parasitophorous vacuole (Bjerkas et al., 1984; Barta and Dubey, 1992). 

Bjerkas et al. (1984) showed consistent recognition of several dominant antigens of 

Neospora NCI dog isolate with immune sera from domestic and wild animals, 

therefore a dog isolate can be used for diagnosis of natural infection in cattle. 
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An IgG avidity iscom ELISA has been developed that detects specific bovine 

antibodies (Bjorkman et al., 1999). This diagnostic method is able to distinguish 

between recent and chronic N. caninum infections and has provided further evidence 

that endemic N. caninum-associated abortion predominantly affects herds where N. 

caninum is transmitted vertically. Similarly, abortion storms, presenting as an 

epidemic outbreak of abortions in a herd, tend to be associated with a recent infection 

that could be more indicative of a point-source infection. 

In addition, the P-38 ELISA has been modified to examine bulk milk samples that 

can be used to assess regional prevalence of N. caninum (Schares et al., 2000). It 

was tested in the Rhineland-Palatinate state in Germany where the bulk milk 

sampling gave an overall prevalence of 10 %. 

1.2.2 IFAT 

The indirect fluorescent antibody test (IFAT) was the first diagnostic test developed 

for the detection of N. caninum infection and measures the Neospora-specific 

antibody titre in serum of infected animals (Conrad et al., 1993b). This test is not 

accurate enough for diagnosis of individual cases, as clinically normal animals have 

been found to have titres greater than 1: 800 (Cole et al., 1993), but it can be used to 

give an indication of herd status. Antibody titres in infected animals can also 

decrease significantly over a prolonged period of time (Conrad et al., 1993b). As 

whole Neospora tachyzoites are used in this test there is also some possibility of 

cross-reaction with antibody to closely related coccidian parasites. In all cases, care 

must be taken in the interpretation of serology results, as it is not possible to predict 

the relationship between a high antibody titre and the outcome of pregnancy. 

4 
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1.2.3 Latex agglutination Test 

A latex agglutination test (LAT) has been developed that can detect antibodies to N. 

caninum in serum from dogs, cattle and other species (Fitzpatrick et al., 2000). It has 

the advantage that cross-reactivity to other coccidians, for example T. gondii, that 

can sometimes be a problem with IFAT/ELISA, is minimised. 

1.2.4 Histology 

It is possible for cattle that have previously aborted due to neosporosis to become 

antibody negative. Therefore, diagnosis should not be based on IFAT or ELISA 

results alone, but also on detection of the parasite in the tissues of the animals and the 

pathology of the disease in the aborted foetus. Diagnosis is usually confirmed where 

possible using immunohistochemical techniques to examine paraffin embedded 

tissue sections taken from the aborted foetus for the presence of Neospora 

tachyzoites (Barr et al., 1994b). However, it should be noted that polyclonal 

Neospora serum from experimentally infected rabbits can occasionally cross react 

weakly with T. gondii antigen (Bjerkas et al., 1994), cross reactions have occurred at 

dilutions of less than 1: 50 (Cole et al., 1993), and the fact that each laboratory 

produces its own polyclonal serum which may also cause a variation in results. 

1.2.5 Polymerase chain reaction 

As previously discussed, serology based on diagnostic IFAT and ELISA tests is not 

accurate enough for diagnosis of neosporosis in individual animals. Definitive 

diagnosis depends on the identification of parasite antigen in aborted foetal tissues, 
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amniotic fluid or blood. One method used to identify parasite antigen is by 

amplification of parasite-specific DNA in host tissues using the polymerase chain 

reaction (PCR) (Ho et al., 1996; Holmdahl and Mattsson, 1996; Slapeta et al., 

2002b). PCR is a sensitive and specific method for the detection of Neospora 

parasites, but as N. caninum tachyzoites and tissue cysts are found infrequently in 

maternal and foetal tissues, the availability of suitable tissue could greatly affect 

diagnosis using this method. PCR should therefore be used as a supplementary 

method of diagnosis for confirming Neospora infection in a herd. 

1.3 Epidemiology of N. caninum 

1.3.1 Bovine neosporosis 

As early as 1985 it was becoming clear that some previously unknown Toxoplasma- 

like infectious agent was responsible for numerous abortions in Californian dairy 

cattle (Ho et al., 1996). A retrospective study begun in 1988 indicated the disease 

was the largest single identifiable cause of bovine abortion in Californian cattle 

(Anderson et al., 1995). Development of an immunohistochemical test to identify 

Neospora organisms in tissues associated with these lesions (Dubey et al., 1989a) led 

to the discovery of the parasite in aborted bovine foetuses. 

Bovine neosporosis has since been reported in Argentina (Campero et al., 1998), 

Australia (Boulton et al., 1995), Brazil (Corbellini et al., 2002), Canada 

(Duivenvoorden and Lusis, 1995), Costa Rica (Romero et al., 2002), Ireland 

(Collery, 1995), Japan (Yamane et al., 1997), Korea (Kim et al., 2002), Mexico 

(Morales et al., 2001), New Zealand (Thornton et al., 1991), Sweden (Stenlund et 
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al., 1997), Tanzania (unpublished pers. obs, 1999), Thailand (Chanlun et al., 2002), 

UK (Otter et al., 1993) and the USA (Thurmond et al., 1995). 

Surveys of bovine neosporosis using IFAT (Conrad et al., 1993b) and ELISA (Pare 

et al., 1995) for antibody to Neospora in sera linked the disease to high rates of 

bovine abortion in Scotland, 16 % (Buxton et al., 1997a), England and Wales, 4-10.5 

% (Otter et al., 1995) and California, 43 % (Thurmond et al., 1995). 

Vertical transmission was found to occur in naturally infected cattle with an 

efficiency of about 95 % (Conrad et a!., 1993b; Anderson et al., 1997). Abortion due 

to N. caninum infection can occur repeatedly in some animals which is in contrast to 

the closely related protozoan T. gondii, which stimulates life-long immunity in the 

host following primary infection (Buxton et al., 1997a). Transplacental transmission 

of N. caninum has been experimentally reproduced in cattle (Barr et al., 1994b) 

providing a model for the study of infection in the natural host. The rate of repeat 

abortion is not yet known but has been estimated at approximately 5% of cattle 

(Dubey et al., 1996a). This is a particular problem in pedigree herds where a family 

line may be severely affected, or indeed lost. A number of risk factors have been 

identified for bovine neosporosis. Bartels et al. (1999) showed that the presence of 

dogs on a farm was the most important risk factor for the occurrence of N. caninum- 

associated abortions. In a study on Dutch dairy farms with an endemic Neospora 

problem, it was found that introducing a naive dog was a risk factor for future point 

source infections (Dijkstra et al., 2002 ) 

7 
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1.3.2 Transmission in cattle 

Abortion is defined as the expulsion of the foetus between 42 days after conception 

and approximately 260 days after gestation. Before day 42, embryonic death 

generally leads to resorption, or expulsion with no clinical signs in the cow. 

Expulsion of the foetus after 260 days is regarded as early parturition. The definition 

of `stillborn' is used if the calf is dead at birth or dies within 24 hours. 

Neosporosis has been found in both beef and dairy cattle, but has been reported more 

frequently in dairy cattle (Woods et al., 1994). Harvested feeds stored on or around 

the farm, often open to faecal contamination by farm dogs may be a source of 

infection by the oocyst stage of the parasite. If infected feed is then fed to the entire 

herd, this may explain why neosporosis induces clusters of abortions or `abortion 

storms' (Anderson et al., 1991; Dannatt et al., 1995). Both of these factors would be 

conducive to the spread of disease among a large number of animals. Despite the 

efficiency of transplacental transmission of N. caninum in pregnant cows, it is 

apparent that post-natal routes of infection are essential to maintain parasite 

prevalence (French et al., 1999). Interestingly, Innes and colleagues (2001) have 

recently demonstrated that it is possible to protect against vertical transmission in an 

experimental infection. They found that cows which had been inoculated with 

tachyzoites six weeks before mating and then challenged with Neospora caninum 

mid-gestation, gave birth to normal calves with no antibodies to Neospora caninum. 

In contrast, cows that were only challenged at mid-gestation had calves with high 

levels of specific antibody to N. caninum (Innes et al., 2001). These results are 

encouraging and suggest it might be possible to develop a vaccine for cattle. 
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Basic epidemiological information on seasonal patterns of neosporosis may help 

studies identifying events that may contribute to transmission of disease or trigger 

abortion in infected cows. A study by Thurmond et al. (1995) of dairy cattle over a 

6-year period indicated that there does seem to be an increased risk of abortion due to 

Neospora in the months of November, December, January and February. But as 

there is only 16 % difference between expected and observed figures, a substantial 

number of abortions may not be influenced by seasonally related factors. 

Neospora was confirmed as a cause of abortion in cattle when Barr et al. (1994b) 

reproduced foetal infection and death by experimentally infecting pregnant cattle 

with a bovine isolate, BPA1, and re-isolating parasite from foetal tissues. Infection 

was found to be similar to that caused by natural infection as it did not cause clinical 

symptoms in the dams and immunohistochemical analysis of foetal neural tissue 

revealed clusters of tachyzoites, which reacted, positively to anti-Neospora sera. As 

with the closely related coccidian parasite T gondii, the time of infection and 

therefore the immune competence of the foetus may be important in determining the 

outcome of infection. A mummified foetus was expelled at 67 days post infection 

from a dam infected at 95 days gestation. A second animal infected at 115 days 

gestation, when some foetal immune competence would have been attained, carried a 

clinically normal calf to full-term. This calf had raised pre-colostral antibody titre to 

Neospora and mild encephalomyelitis, although no parasites were found in tissues. 

Neosporosis has also been reported to cause repeat infection of foetuses by the same 

dam. This was first reported in a study by Barr et al. (1993) in which four dairy cows 

were followed that had previously aborted due to neosporosis. All of the cows were 

9 
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kept on their respective dairies, successfully re-bred, were monitored throughout 

pregnancy and all produced full-term calves. Two of the calves had marked 

neurological defects including decreased patellar reflexes and ataxia. Both were 

found to have mild non-supparative encephalomyelitis and thick walled protozoal 

cysts were found randomly distributed in brain tissue and spinal cord. Tachyzoites 

and tissue cysts were found in the CNS of one other calf, although it was clinically 

normal. This contrasts with the closely related protozoan parasite T gondii which 

stimulates a strong immune response in the host that provides life-long protection 

against repeat abortion. It has not been determined whether repeat foetal infection is 

due to recrudescence of infection or re-infection in the dam, but as repeat congenital 

infection is not characterised by widespread infection in other previously uninfected 

animals on the farms, the former is likely to be true. 

A large scale study by Pare et al. (1996), which lasted over 2 years and monitored 

over 400 calves born on 2 dairies, showed that although a majority of seropositive 

cows (81 %) produced infected offspring, 5% of seronegative cows also produced 

congenitally infected calves. Therefore the serological status of the dam will not 

always predict infection in the calf. Congenital infection was not associated with 

dam age, lactation number, history of abortion calf gender or length of gestation. 

High dam Neospora antibody levels at calving were significantly associated with the 

probability of congenital infection in the calf. From this study it was concluded that 

congenital transmission was likely to be the major mode of transmission of N. 

caninum. Uggla and co-workers showed that calves may be infected orally by 

tachyzoites being added to milk (Uggla et al., 1998). Davison and colleagues also 

10 
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found that calves could be infected lactogenically (Davison et al., 2001). This would 

suggest that pooling of milk to feed a number of calves could be a method of 

transmitting the disease horizontally. 

Maley and co-workers investigated the early pathogenesis of neosporosis in 

experimentally infected cattle and found that foetal death or survival depended on a 

number of factors: timing of infection, host stress factors (immunosuppression) and 

intensive management stress factors (Maley et al., 2001). In addition, differences in 

the virulence of parasite isolates may also affect the outcome of infection supporting 

a strategy of identifying molecular markers for individual Neospora isolates. In 

addition, molecular markers should also help to elucidate the importance of 

particular transmission routes of the parasite. 

1.3.3 Canine neosporosis 

Neospora caninum was first described in dogs in 1984 by Bjerkas and colleagues 

who reported neurological disorders 2-6 months after birth in five of six boxer pups 

which were all offspring of the same bitch (Bjerkas et al., 1984). Postmortem 

examination of all six animals identified necrosis and lesions in the central nervous 

system and skeletal muscles associated with cysts containing a parasite. Under light 

microscopy the parasites present in these lesions resembled T gondii, but sera taken 

from the infected animals lacked specific antibodies to Toxoplasma. A further study 

by Dubey et al. (1988a) reviewed tissues from 23 cases of Toxoplasma-like illness in 

dogs and again found parasites associated with lesions in the CNS which did not 

cross react with anti-Tgondii antibody positive serum. 
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In 1988, the parasite associated with these lesions was isolated into tissue culture and 

mice for the first time by Dubey and co-workers who proposed the name, Neospora 

caninum, for the newly discovered parasite (Dubey et al., 1988b). 

Dubey et al. (1988b) isolated N. caninum from homogenates of canine tissues into 

tissue culture and experimental inoculation reproduced the disease in a dog. Dubey 

also suggested that N. caninum was congenitally transmitted in dogs after observing 

infection in two successive litters from the same bitch indicating reactivation of sub- 

clinical infection. Vertical transmission in dogs was observed in 1990 (Dubey et al., 

1990) by a case study in which successive litters of German shorthaired pointers 

from the same bitch developed limb paralysis. The other eight littermates of this 

bitch all had hind limb paralysis and died before six months of age. Four of her pups 

were found to have N. caninum tachyzoites, tissue cysts or both present in extra- 

ocular muscles. Transplacental transmission was later experimentally induced in 

dogs by Cole et al. (1995). Inoculation of tachyzoites on day 21 of gestation induced 

abortion in five pregnant bitches, and full-term pups from another bitch were born 

with clinical symptoms of neosporosis including proprioception deficits and 

spasticity in pelvic limbs. 

1.3.4 Seroprevalence in dogs 

There have been very few surveys on the incidence of neosporosis or Neospora 

antibody in the dog population and there is some debate over what level of antibody 

is considered positive for neosporosis in dogs. A study by Trees et al. (1993) 

showed 13 % of 163 randomly selected dogs tested at the Liverpool Small Animal 

Hospital had antibody titres of >1: 200, with no correlation between antibody titre and 

12 
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breed, sex, age, type of feeding or presence of other dogs in the household. Again 

there was no association between Toxoplasma and Neospora antibody in these 

samples, suggesting minimal serological cross reactivity between these parasites. 

None of the animals tested in the British study had clinical symptoms of neosporosis. 

A study in Kansas by Dubey and Lindsay (1990a) found only 2.2 % of dogs had 

titres > 1: 50, and a small-scale survey of feral coyotes in Texas found 10 % had low 

antibody titres to N. caninum. A retrospective analysis of histopathology cases has 

however shown that N. caninum infection in dogs has occurred since 1957 in the 

USA (Dubey and Lindsay, 1996). 

The dog has been identified as a definitive host of N. caninum (McAllister et al., 

1998). Oocysts morphologically similar to T gondii, Hammondia hammondi and 

Hammondia heydorni were found in the faeces of three beagles fed mouse tissue 

infected with N. caninum tissue cysts. Mice had been inoculated with the canine 

NC2 (Hay et al., 1990) and NC Liv (Barber et al., 1995) and bovine NC Beef 

(McAllister et al., 1998) strains of the parasite. Neospora tachyzoites were isolated 

from mice orally inoculated with infected faeces confirming that the oocysts were 

infective and caused clinical neosporosis. 

The first report of oocysts being shed by a naturally infected dog was reported in 

Argentina (Basso et al., 2001). Slapeta and co-workers also isolated and 

characterised oocysts from the faeces of a naturally infected 1-year old German 

Shepherd from Central Bohemia in Czech Republic (Slapeta et al. 2002b). PCR 

amplification of the NC-5 gene that is specific to N. caninum was successful and 

sequencing of the ITS 1 rDNA and the D2 domain of the large subunit rDNA (D2 

13 
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LSU) determined the isolate as N. caninum. This isolate from Czech Republic was 

named CZ-4. 

These findings clearly have implications for the development of disease control 

strategies and further studies on the survival of oocysts, levels of contamination on 

pasture and shedding of oocysts by infected dogs will be important in the 

development of these strategies. 

1.3.5 Transmission in dogs 

Congenital transmission of N caninum has been shown to occur in naturally infected 

puppies (Dubey et al., 1990; Barber and Trees, 1998; Dubey et al., 1998) and 

typically the first clinical signs appear 5-8 weeks after birth. Neosporosis is 

therefore often thought of as a disease of puppies although infection has been 

reported in dogs of all ages (Barber et al., 1996). The disease may affect several 

littermates but more often than not involves an isolated case (Barber et al., 1996). 

Transplacental transmission may also occur repeatedly in litters from the same bitch 

(Dubey et al., 1990; Barber and Trees 1998). A serological study by Barber and 

Trees (1998) reports that the transmission rate to pups is low, as 80 % of pups born 

to seropositive dams were not infected. The frequency of vertical transmission was 

also found to vary between litters and may be too low to sustain infection alone. 

These findings suggest that postnatal infection must occur to maintain infection at 

seroprevalence rates reported in dog populations. 

Vertical transmission of N. caninum has been reproduced in a canine model of 

infection by inoculation with NC 1 tachyzoites (5x 106) on day 21 of pregnancy (Cole 

14 
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et al., 1995). Of six bitches infected, five aborted and N. caninum tachyzoites were 

isolated from pups in two of the aborted litters and from four infected bitches. A 

previous study by Lindsay and Dubey (1989a) reported that experimental infection 

on day 35 of pregnancy caused only a mild illness, although this may have been due 

to a lower dose (1.5 x 106) of tachyzoites. Experimental infection with N. caninum 

during pregnancy can therefore lead to foetal death, but whether N. caninum causes 

foetal death, abortion and sterility in naturally infected dogs is as yet unknown. 

1.3.6 Neosporosis in horses 

Neospora infections have been reported from an aborted foal, a congenitally infected 

foal and a 10-year old horse (Dubey and Porterfield, 1990; Lindsay et a!., 1996b; 

Gray et al., 1996). Neospora hughesi was described and isolated for the first time 

from an 11-year old horse by Marsh and colleagues in 1998 (Marsh et al., 1998). It 

was distinguished from N. caninum based on seven nucleotide differences in the ITS- 

1 sequences. No differences were found between the small subunit ribosomal RNA 

gene from the canine, bovine and equine isolates of N. caninum. N. hughesi tissue 

cysts and bradyzoites were smaller than those of N. caninum and also had a thinner 

cyst wall. However, only a few examples are available for comparison so these 

observed differences need to be confirmed. It is still unknown whether both 

Neospora species infect horses or if N. hughesi infections have previously been 

misdiagnosed as N. caninum. A study by Dubey and co-workers found that 21 % of 

296 horses slaughtered in the United States were found to have antibodies to N. 

caninum (Dubey et al., 1999). Cheadle and colleagues found that 11.5 % of horses 

(n=536) in Alabama, USA had positive IFAT titres to Neospora (Cheadle et al., 

1999a). A study by Walsh et al., showed a marked difference in pathogenicity 

15 



Chapter I 

between N. caninum (NC-1 and NC-Liverpool) and N. hughesi (Nh-Al isolate) in 

gamma-IFNKO mice (Walsh et al., 2000). 

However, Mehlhorn and Heydorn (2000) suggested that these differences were too 

small to warrant a separate species. This is part of a much wider debate over the 

phylogeny of Neospora, Toxoplasma, Isospora and Hammondia and currently 

remains a matter of some controversy. 

1.3.7 Neosporosis in other domestic animals 

Natural infection with N. caninum has been reported in a wide range of animals and 

can cause abortion in goats (Barr et al., 1992; Dubey et al., 1992). Neospora has 

also been diagnosed in a full-term still-born deer, (Dubey et al., 1996b). 

Transplacental transmission has been experimentally induced in sheep (Dubey and 

Lindsay, 1990b; McAllister et al., 1996, Buxton et al., 1997c). However, a survey 

by Otter et al. (1997) did not find antibodies to Neospora in tissue samples from 281 

aborted ovine foetuses submitted to veterinary investigation centres around England 

and Wales suggesting Neospora is not a major cause of abortion in sheep. 

Transplacental transmission has been experimentally induced in cats (Dubey and 

Lindsay, 1989) but there have been no reports of the disease occurring naturally in 

this species. Further studies are needed, as the full host range for N. caninum is not 

yet known. 

16 



Chapter l 

1.3.8 Neosporosis in Humans 

Neosporosis has not been reported in humans, but no large-scale surveys have been 

undertaken. Experimentally infected primates (rhesus macaques) were susceptible to 

transplacental Neospora infection (Barr et al., 1994a) and foetal lesions induced were 

found to be similar to those caused by transplacental Toxoplasma infections in 

primates. Infection was confirmed by re-isolation of the parasite in vitro. 

1.4 Life-cycle of N. caninum 

The complete life cycle of N. caninum has been demonstrated experimentally 

(McAllister et al., 1998). This is shown in Figure 1.1. 

Figure 1.1 
Life-cycle of Definitive Host 
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Experimental infections, using tachyzoites, of other carnivorous potential hosts 

including coyotes (Lindsay et al., 1996a) and racoons (Dubey et al., 1993) have so 

far been unsuccessful in producing oocysts in the faeces of these species, but these 

studies have used only a maximum of 3 animals each. Infected coyotes and racoons 

did however sero-convert after infection. Another study to evaluate raptoral birds as 
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the definitive host for N. caninum (Baker et al., 1995) used 2-3, mostly adult, birds 

of 4 different species which had been living in the wild before being submitted to 

public or wildlife agencies. No oocysts were found in the faeces of these animals. 

1.5 Life-cycle stages of N. caninum 

Several Neospora isolates have been grown in tissue culture from naturally infected 

bovine and canine tissues. A study by Jardine (1996) looked at the ultrastructure of 

bradyzoites and tissue cysts of these isolates and concluded that there are no distinct 

morphological differences between bovine and canine derived parasites at each stage 

of the parasite life cycle. 

The following description of N. caninum tachyzoite, bradyzoite and tissue cyst 

morphology and ultrastructure are derived from studies of tissues taken from 

naturally infected dogs by Speer and Dubey (1989), Lindsay et al. (1993) and Dubey 

et al. (1988a). 

1.5.1 Tachyzoites 

The tachyzoite is the rapidly dividing stage of the parasite. It is crescent shaped, 6x 

2 µm in size with a single vesicular nucleus and has all the ultrastructural features 

that are characteristic of other closely related cyst forming coccidia. This stage in the 

life-cycle of the parasite replicates by endodyogeny and has a pellicle consisting of a 

plasmalemma and a single inner membrane. Twenty-two subpellicular microtubules 

were observed beneath the inner membrane complex and 2 elongated-branched 

tubular mitochondria were present, 1 anterior and I posterior to the nucleus. 

Tachyzoites have several unusual characteristics including 8-12 anterior rhoptries, 
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electron-dense posterior rhoptries, many anterior and few posterior micronemes and 

lack micropores. As many as 50-100 tachyzoites may occur free or within a 

parasitophorous vacuole within a range of host cells including macrophages, 

neutrophils, neural cells, hepatocytes, fibroblasts and blood vascular endothelial 

cells. Tachyzoites of N. caninum are virtually indistinguishable from those of T. 

gondii by light microscopy. 

1.5.2 Tissue cysts and bradyzoites 

Tissue cysts are up to 107 µm long and are found in the CNS including the retina of 

naturally infected cattle, dogs and other infected hosts. The cyst wall is 1-4 µm 

thick, slightly thicker than that of T gondii, and consists of a single primary wall 

which completely surrounds the cysts, and a thicker granular layer containing 

electron dense vesicles embedded in a matrix of fine granules. In contrast the 

primary wall of the T. gondii cyst is highly convoluted and does not have an electron 

dense matrix. 

N. caninum bradyzoites found inside tissue cysts are approximately 7.3 x 1.5 µm in 

size. In addition to organelles and inclusion bodies typical of other coccidian 

parasites they contain numerous micronemes and amylopectin granules, and 6-12 

anterior rhoptries. They are therefore similar in size and ultrastructure to those of T 

gondii. 

1.5.3 Oocysts 

Oocyst shedding has been observed in naturally infected dogs in Argentina (Basso et 

al., 2001) and the Czech Republic (Slapeta et al., 2002b). The oocysts were 

colourless, almost spherical, 11.5 (10-13) x 10.8 (10-11) µm, with a thin (<1 µm) 
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single-layered oocyst wall. They contained two broadly oval tetrazoic sporocysts, 

9.7 (9-10) x 6.6 (6-7) µm in size. A total of 106 oocysts were recovered using the 

sugar-concentration technique (Slapeta et al., 2002). N. caninum oocysts have been 

identified in faeces from dogs fed N. caninum tissue cysts present in neural tissue of 

mice experimentally infected with NC2 (Hay et al., 1990), NC Liv (Barber et al., 

1995) and NC Beef strains of the parasite (McAllister et al., 1998). Oocysts 

experimentally produced were reported as unsporulated, spherical to sub-spherical in 

shape, measured 10-11 µm in diameter and contained a central sporont. The oocysts 

sporulated within 3 days, contained 2 sporocysts, each with 4 sporozoites, and were 

morphologically similar to T. gondii, Hammondia hammondi in cat faeces and 

Hammondia heydorni in dog faeces. At present, nothing is known about the 

frequency of shedding, their survival and if other canids are capable of acting as 

definitive hosts. 

1.6 Isolation of N. caninum from infected tissues 

The first successful isolation of N. caninum from cattle into tissue culture was by 

Conrad et al. (1993a). After several attempts in Sweden, N. caninum was 

successfully isolated from a stillborn calf, born to a N. caninum seropositive dam and 

the isolate was named NC-SweB 1 (Stenlund et al., 1997). The stillborn calf was 

delivered within 72 h of delivery and kept continuously at 2 °C. Parasitic growth 

was detected in the cell culture flasks after 56 days after the inoculation. This was 

longer then the 15-34 days observed by Conrad et al. (1993a) and NC-SweBI has 

continued to exhibit slow growth compared to other isolates (Schock et al., 2001). 

One reason for the long time period is the low numbers of parasite present in the 
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brains of infected animals. Autolysis is likely to further diminish the number of 

viable parasites. 

1.7 Ribosomal DNA analysis of Neospora spp. and other Apicomplexa 

There are currently about fifteen bovine and canine isolates of N. caninum used in 

studies around the world. Marsh et al. (1995) compared the nuclear small subunit 

ribosomal (nss-r) RNA sequences of bovine and canine Neospora isolates to that of 

T gondii, Cryptosporidium parvum and Sarcocystis muris, three closely related 

coccidians. Although this sequence of approximately 400 nucleotides of the 5' 

region has been identified as being evolutionarily unstable, no differences were 

found between 4 different bovine isolates, BPA 1-4, isolated from aborted foetuses 

and congenitally infected calves. 

Holmdahl and Mattsson (1996) also compared the internal transcribed spacer 1 (ITS- 

1) sequence of a bovine Neospora strain isolated from a stillborn calf in Sweden, 

named NC-SweB1 (Stenlund et al. 1997), with N. caninum NC1 canine isolate. This 

sequence is considered to be conserved within species, but to be more variable than 

individual rRNA genes between species. No differences were recorded between NC- 

SweB1 and NCI isolates, in contrast to a large number of sequence differences 

between N. caninum and T. gondii. Comparison of the ITS-1 region of N. caninum 

NC1 and NC-Liverpool by Barber et al. (1995) also detected no differences in this 

region. 

Slapeta et al. (2002a) sequenced the ITS-I rDNA region and the D2 domain of the 

large subunit rDNA (D2 LSU) regions of N. caninum (isolate CZ-4) to distinguish 

between N. caninum and H. heydorni. Both regions have been used successfully to 
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distinguish between closely related coccidian genera, such as Hammondia, 

Toxoplasma and Neospora spp. (Ellis et al., 1998; Mugridge et al., 1999). The ITS-1 

region has higher variability so is the preferred sequence for detailed species or 

isolate detection as even N. caninum and N. hughesi differ in this region (Dubey et 

al., 2002). In contrast, D2 LSU rDNA is too conservative to distinguish between 

both Neospora species. 

1.8 Taxonomic and phylogeny of N. caninum 

The genus Neospora is positioned in the family Sarcocystidae as follows (Levine et 

al., 1980; Marsh et al., 1995; Holmdahl et al., 1996; Mugridge et al., 1999). 

Superkingdom: Eukaryota 

Phylum: Apicomplexa 

Class: Coccida 

Order: Eimeriida 

Family: Sarcocystidae 

Genus: Neospora 

Species: N. caninum 

N. hughesi 

This taxonomic classification of N. caninum is open to some debate and is discussed 

further. Sequence analysis of the ss-rRNA gene showed only a few nucleotide 

differences between N. caninum and T. gondii (Ellis et al., 1994; Luton et al., 1995). 

Twenty-two percent nucleotide diversity was found between the two phyla when the 

ITS-1 region was compared (Homan et al., 1997). Mugridge et al. (1999) used the 

full-length Large Subunit ribosomal DNA to show that H. heydorni is more closely 
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related to N. caninum than T gondii. Mehlhorn and Heydorn (2000) believe there 

are only two valid species: T gondii (including H. hammondi as a non-virulent 

strain) and the other being T heydorni (including N. caninum). These conclusions 

are based on microscopy studies looking at the morphology of the parasites. This is 

refuted by a number of workers (Frenkel and Dubey, 2000) and Ellis et al. (1998) 

found that two species-specific primers for N. caninum failed to amplify any 

products with H. heydorni. In addition, Slapeta and co-workers, (2002b) found that 

N. caninum species-specific primers based on the NC-5 region produced a positive 

result when used with isolate CZ-4, which was isolated from a naturally infected dog, 

while primers specific to H. heydorni rDNA ITS-I were negative. Three previously 

identified isolates, CZ-1, CZ-2 and CZ-3, also recovered from dog faeces in the 

Czech Republic, had been determined as H. heydorni, based on their ITS-1rDNA 

sequences (Slapeta et al., 2002b). This data, along with analyses by (Dubey et al., 

2002), suggest that three distinct clades exist, namely the N. caninum-clade (N. 

caninum and N. hughesi), the H. heydorni-clade (H. heydorni) and the T. gondii - 

Glade (T gondii and H. hammondi). 

There is some lively discussion in the literature regarding the phylogeny of N. 

caninum. Heydorn and Mehlhorn (2002) concluded that N. caninum represented a 

nomen nudum following a review of the available literature. In contrast Dubey et al. 

(2002) proposed that N. caninum and H. heydorni are separate species. Molecular 

diagnostic methods provide a rapid way of discriminating at a fine level and have 

been extremely useful in attempting to resolve this particular question since the 

oocysts from N. caninum and H. heydorni are morphologically indistinuguishable. 
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1.9 Control 

1.9.1 Chemotherapy 

Toltrazuril has been used successfully to prevent any clinical signs of infection in wt- 

C57BL/6 mice that were experimentally infected with N. caninum. It also lowered 

the antibody concentration in the serum of treated animals compared to the non- 

treated ones (Gottstein et al., 2001). Ponazuril chemotherapy of experimentally 

infected calves was found to reduce the symptoms (e. g. fever), decreased the 

humoral immune response and prevented lesion formation in the brain. These drugs 

appear to be acting against the tachyzoite stage of the parasite so it will be interesting 

to see if they have any efficacy against other parasite stages, particularly tissue cysts. 

1.9.2 Vaccination 

Several observations indicate that cattle may develop a certain level of protective 

immunity to N. caninum. Dijkstra et al. (2003) found that the proportion of 

congenital infections decreased with subsequent pregnancies from 80 % in heifers to 

66 % in older cows, possibly due to an increased immunity to transplacental 

infection with increasing age of the dam. A similar phenomenon was seen in cows 

that had previously had a N. caninum-associated abortion. The risk of abortion in N. 

caninum-infected cattle was found to decrease with age in subsequent pregnancies 

(Thurmond and Hietala, 1997). However, protective immunity against N. caninum is 

less effective than with T. gondii in sheep, which if infected in pregnancy are 

resistant to new infections in subsequent pregnancies (Innes et al., 2001). A 

polygenTM adjuvant-killed N. caninum tachyzoite preparation failed to prevent foetal 

infection in pregnant cattle following intravenous/intramuscular challenge with 

24 



Chapter I 

tachyzoites (Andrianarivo et al., 2000). In additon, the offspring of vertically 

infected dams were not protected after recrudescence of the infection in the dams. 

Also animals horizontally infected prior to mating gave birth to vertically infected 

offspring in field studies (Dijkstra et al., 2002). However, seronegative cows 

experimentally infected before artificial insemination gave birth to seronegative 

offspring (Williams et al., 2000; Innes et al., 2001). 

It is possible that intravenously or subcutaneously administered tachyzoites do not 

result in the development of bradyzoites in cattle, which are responsible for the 

recrudescence of infection in persistently infected animals (Williams et al., 2000). 

Identification and characterisation of stage-specific (tachyzoites and bradyzoites) 

antigens may provide the answer. In one study, heifers infected before insemination 

and challenged at 20 weeks of gestation gave birth to seronegative offspring (Innes et 

al., 2001). 

Bovilis neoguardTM (Intervet International B. V. ) has recently been licensed in the 

USA and claims to reduce abortion in cattle if administered in the first trimester of 

pregnancy. This vaccine consists of whole, killed N. caninum tachyzoite, however 

there is no published efficacy data to support these claims. 

1.9.3 Farm management 

Currently, the only methods of prevention and control that can be suggested to 

farmers and clinicians is to prevent domestic dogs (and any other animals) gaining 

access to feed stores in order to prevent potential oocyst contamination. In addition, 

placental material should be removed and destroyed after parturition and certainly 
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not fed to dogs as is the habit in some parts of the world. There has also been some 

speculation that horizontal transmission may occur by placentophagy by other cows 

but this is thought not to be a major transmission route (Schares and Conraths, 2001). 

Culling of infected individuals from herds has been recommended for some time, but 

this is obviously not possible if an abortion storm occurs when more than half the 

herd may be affected. If particularly valuable pedigree lines are in danger of being 

lost, or there is much difficulty in breeding from them, embryo transfer techniques 

can be used. It is also possible to breed high yielding cows, that have a history of 

Neospora-associated abortion, to beef breeds; thus maintaining milk production but 

stemming the introduction of infected individuals back into the herd. 

1.10 Genetic Structure of N. caninum 

The assumption is that, as with T. gondii and other Apicomplexa, there are three 

genomic components in N. caninum; the chromosomal genome as the major source 

of DNA, and two extrachromosomal DNA elements, the mitochondrial genome and 

the plastid genome (reviewed in Wilson and Williamson, 1997). 

1.10.1 Chromosomal genome 

No definitive account of the number of different chromosomes, genome size or 

number of genes that exist in N. caninum is available, but it is assumed that it closely 

resembles T gondii. The chromosomal genome of T. gondii consists of at least 9 

chromosomes and is estimated to be 80-90 Mb in size (Candolfi et al., 1988; Sibley 

and Boothroyd, 1992). Parmley et al. (1994b) estimated that about 20,000 genes 

exist in the genome of Toxoplasma. A few studies have been performed to 

characterise the chromosomes of T gondii. Candolfi et al. (1988) isolated four 
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chromosomes from T gondii using pulse field gel electrophoresis (PFGE). A major 

part of DNA was unresolved in this study, remaining at the top of the gel. In fact, 

PFGE has been performed on three different isolates of N. caninum during this study 

(results not shown) and a similar problem was encountered, despite five 

chromosomes being visualised; it is hoped to continue this work. Sibley and 

Boothroyd (1992) identified nine chromosomes sized between <2 Mb to 6 Mb 

(totalling about 40 Mb) during karyotype analysis using PFGE on T gondii. The 

Guanine + Cytosine (G+C) content of Toxoplasma DNA is about 52 % and analysis 

of the available Neospora sequence data shows a similar G+C content in N. 

caninum. 

1.10.2 Mitochondrial genome 

Little is known of the mitochondrial genome of N. caninum. However, 

mitochondrial DNA sequences have regions with a high degree of diversity and are 

useful in phylogenetic analysis (Simon et al., 1994) and thus could warrant future 

exploration. 

1.10.3 Plastid genome 

A large extrachromosomal DNA element of about 35 kb in size, was identified in the 

Apicomplexa and has been characterised during recent years. Gardner et al. (1991) 

found some sequence similarity of this genome and prokaryotic small subunit (SSU) 

rRNA genes. It was proposed to be a residual plastid genome of an ancient 

photosynthetic progenitor of this phylum (Wilson et al., 1992). This 

extrachromosomal DNA was surrounded by a four membrane cryptic organelle and 

has been named ̀ apicoplast' (Kohler et al., 1997). This apicoplast organelle seems to 
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have played a very important role in the biology of apicomplexan parasites including 

T. gondii and is considered to be a potential target for therapeutic agents (Soldati, 

1999; Roos, 1999). Gleeson and Johnson (1999) used pulsed-field gel 

electrophoresis and Transmission Electron Microscopy (TEM) to show that the NC- 

Liverpool isolate of N. caninum does possess a plastid DNA. Four different plastid 

genes were detected in N. caninum by Southern blotting and probing FIGE (field 

inversion gel electrophoresis) gels. 

1.11 Sequencing projects 

At the beginning of this project, there were few sequences available on Genbank for 

Neospora but this has risen to 4861 sequences today. Of these, 263 are gene 

sequences and 4598 are expressed sequence tags (ESTs). A specific sequencing 

project has been set up for T gondii, for which there is now 7x genome sequence 

coverage (www. toxodb. org) and over 23,000 ESTs available. Due to the similarity 

of N. caninum and T gondii, it is possible to exploit the resources available in the T. 

gondii sequencing project for studying N. caninum. 

1.12 Molecular epidemiology of N. caninum 

1.12.1 Molecular typing methods 

A large variety of molecular based techniques have recently been developed that 

have extended knowledge into different areas of microbiology, including 

epidemiology, diagnosis and vaccine development. Strain characterisation is one of 

the basic applications of molecular biology for microorganisms. 
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1.12.1.1 Multi-locus enzyme electrophoresis (MLEE) 

Differences in amino acid sequences can alter the net charge of amino acids, which 

in turn affects the electrophoretic mobility of enzymes. MLEE relies on this 

phenomenon to identify polymorphisms between samples (Selander et al., 1986). A 

combination of structural enzymes are used in this method and each enzymatic 

pattern of polymorphism generated amongst strains is referred to as a ̀ zymodeme'. 

There are some disadvantages with this method, for example, only amino acid 

changes which affect the net charge of the protein molecule are detected and 

synonymous nucleotide substitutions are not recognised. MLEE relies on the 

availability of pure protein, which is impossible to obtain for clinical isolates of N. 

caninum. However, MLEE has been used successfully for population typing of T 

gondii (Cristina et al., 1995) and other Apicomplexa. 

1.12.1.2 Pulse field gel electrophoresis (PFGE) 

Pulse field gel electrophoresis (PFGE) is capable of separating large DNA molecules 

(Schwartz and Cantor, 1984) and has been used for the identification of genotypes in 

many organisms following digestion of genomic DNA. PFGE was used for 

chromosome identification in T. gondii (Candolfi et al., 1988; Sibley and Boothroyd, 

1992). There are several disadvantages to this technique in that the method is time 

consuming, not easy technically and requires a large amount of DNA as primary 

material. This is especially difficult with a parasite such as N. caninum, for which 

large tachyzoite yields from tissue culture are difficult to obtain. 
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1.12.1.3 PCR-based restriction fragment length polymorphisms (PCR-RFLP) 

PCR-RFLP consists of amplification of a coding or non-coding DNA region being 

amplified and then the PCR products being digested using endonucleases and 

separation of the resulting restriction fragments by gel electrophoresis. This is a very 

simple technique that has been widely used for strain characterisation of organisms. 

Again there are difficulties as fragments with the same size co-migrate as one band 

in a gel, or some bands of a similar size may not be differentiated in agarose gels. 

Polyacrylamide gels can obtain better resolution but makes the method more difficult 

and time-consuming. Non-coding regions and non-transcribed spacers are more 

likely to be polymorphic but any polymorphisms generated by RFLPs which are 

chosen in regions of protein coding sequence are more likely to correlate with the 

phenotype of the strain (Parmley et al., 1994a). T gondii genotyping has been 

achieved by several researchers using the PCR-RFLP technique (Howe and Sibley, 

1995; Howe et al., 1997). 

1.12.1.4 Random Amplification of Polymorphic DNA (RAPD) 

Williams et al. (1990) introduced the Random Amplification of Polymorphic DNA 

(RAPD) technique and it has been used as a genetic analysis method on many 

organisms. The technique relies on the amplification of DNA regions annealed by 

single arbitrary primers of a short length at relatively low annealing temperatures. 

The reproducibility of this technique can be affected by several factors, for example, 

purity and concentration of DNA templates, different reagents and thermal cyclers 

(Ellsworth et al., 1993). However, despite some debate on the validity of RAPD, this 

method has frequently been used for genotyping studies and has resulted in excellent 

correlation with results obtained using other methods (Monis and Andrews, 1998). 
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A major advantage with this method, if other factors can be controlled for, is that it 

relies on PCR thereby only requiring a small amount of starting material. In 

addition, RAPD is a fast, simple and relatively cheap technique. 

1.12.1.5 Amplified Fragment Length Polymorphism (AFLP) 

Amplified restriction fragment length polymorphism (AFLP) is also a PCR-based 

technique (Vos et al., 1995). Selective amplification of digested genomic DNA is 

performed, so, as with RAPD analysis, pure DNA is required. It is technically 

difficult and more expensive than RAPD, but uses stringent reaction conditions that 

eliminate non-specific priming. The AFLP method has been used in the genetic 

analysis of plants and bacteria and is discussed further in Chapter 5. 

1.12.1.6 Mini-/microsatellites 

Mini- or microsatellites are arrays of repeat DNA sequence that vary in copy number 

between different genomes. Minisatellites, consisting of repeated units of - 6-20 

nucleotides were first used to fingerprint the human genome (Jeffreys et al., 1985). 

Microsatellites are short tandem repeats or multicopies of mono-, di-, tri- or tetra- 

nucleotides in genomic sequences and are even more highly variable than 

minisatellites. A CA repeat [(CA)8] with purine-pyrimidine anchor in the 3' end was 

used as a single primer for genotyping Trypanosoma cruzi, Leishmania braziliensis 

and Schistosoma mansoni (Oliveira et al., 1999). 

1.12.1.7 DNA sequence analysis 

DNA Sequencing methods have the advantage over other typing methods in that it 

can potentially investigate all alleles in the population of an organism. 

31 



Chapter l 

Unfortunately, it is relatively expensive and time-consuming. Therefore, it is 

unsuitable for the rapid typing and phylogenetic analysis of a large number of strains. 

However, the sequencing of DNA targets from a limited number of representative 

strains may give sufficient information to allow designation of markers for an 

alternative method, such as PCR-RFLP. 

1.13 Population biology 

With the increasing availability of genome sequences, a wide range of molecular 

markers can be developed to address some of the outstanding questions and provide 

the means to track the sources of disease outbreaks. Molecular markers are 

extremely useful as tools to unravel the epidemiology and risk factors for a particular 

infectious organism. Key considerations are the population structure of the parasite 

undergoing investigation and the role of genetic exchange in generating variation. In 

turn, this has major implications for the application of chemotherapeutic- or vaccine- 

based control strategies. 

Only one species of Toxoplasma has been identified despite an extremely large host 

range and geographical distribution. The lack of recombination and degree of 

clonality observed in T gondii populations imply that sexual reproduction occurs 

rarely (Howe and Sibley, 1995). The two clonal lineages proposed by Howe and 

Sibley (1995) have been further supported in studies by Ajzenberg et al. (2001) and 

Grigg et al. (2001). Ajzenberg et al. (2001) used eight microsatellite markers to 

type 84 independent T gondii isolates from humans and animals. The high 

discriminatory power of these markers showed that occasional genetic exchange did 

occur. 
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1.14 Aims 

The epidemiology of N. caninum has received considerable attention in recent years, 

yet some key issues, particularly concerning the relative importance of the dog in 

horizontal transmission still remain unresolved. Moreover, there are no molecular 

epidemiological studies on N. caninum and nothing is known about its genetic 

diversity and population genetic structure. Such molecular epidemiological methods 

could help resolve unanswered questions concerning the transmission routes of N. 

caninum and the relationship between genotype and pathogenicity of N. caninum. 

In chapter 2, a detailed case study of a N. caninum-infected Cheshire dairy herd is 

presented in which the sero-epidemiology of neosporosis is analysed and the role of 

vertical transmission in a closed herd examined. In this chapter the possibility of a 

link between cattle fertility and Neospora serostatus is also examined in a 

quantitative way for the first time. Such analysis is an essential component in 

determining the economic impact of the disease. It was also hoped that infected 

clinical material could be collected from this case study for subsequent genetic 

analysis. 

N. caninum has been studied almost entirely in intensive Western farming systems 

and it is possible that results from these studies may have biased the overall picture 

of the epidemiology of this parasite. It is possible that the serostatus and genetic 

diversity of N. caninum could be very different in a more extensive farming system 

and in different breeds of cattle. Chapter 3 therefore describes a cross-sectional 

study of N. caninum in cattle from two diverse regions of Africa to test the 

assumption that N. caninum, like, T gondii, has a worldwide distribution. 
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A major aim of this study was to assess the level of genetic diversity of N. caninum 

in both laboratory isolates and in clinical field samples. A variety of laboratory 

isolates were available for analysis. In addition, a small number of clinical field 

samples were also available from which it was hoped that Neospora DNA could be 

extracted and analysed. All previous studies have found the isolates of N. caninum 

to be identical at all loci, therefore there are no polymorphic markers available for 

molecular studies and consequently, nothing is known about the genetic diversity of 

N. caninum. For example, N. caninum could mimic the population structure of C. 

parvum, which is known to have very diverse lineages due to sexual recombination 

and has a variety of population structures. However, a population structure that 

follows T gondii more closely might be expected, due to the closer taxonomic 

position of N. caninum, in which there are two clonal lineages but some recombinant 

genotypes still occur (Howe and Sibley, 1995). Chapters four and five describe the 

detailed analysis of the genetic diversity of laboratory isolates of N. caninum. 

Tools for the analysis of genetic heterogeneity in clinical samples need to meet 

different criteria to those used for the analysis of laboratory stocks of parasites. Most 

importantly, clinical samples consist mainly of host DNA with very small amounts of 

parasite DNA. Thus the development of gene-specific typing methods using 

amplification of parasite DNA to maximise sensitivity are described in Chapter 6 and 

then are applied to a small number of clinical field samples that became available 

towards the end of this study. 
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Chapter 2 

Chapter 2: A case study of neosporosis in a Cheshire dairy herd 

2.1 INTRODUCTION 

During an 18-month period in 1990 and 1991, there was an outbreak of abortions 

in the Astonwich dairy herd located at Newton Hall farm, south Cheshire. 

Subsequent investigation showed that the likely cause of these abortions was 

neosporosis. Since the initial outbreak, there have been on-going abortion 

problems on the farm, many of which have been diagnosed as being caused by N. 

caninum. In most cases diagnosis was made by a combination of serological 

tests on the dam and aborted foetus, and also immunohistological tests on the 

foetus to show the presence of Neospora antigen. These diagnostic tests were 

carried out by the Shrewsbury Veterinary Investigation Centre at the instigation 

of the Wilson McWilliam Veterinary group, Nantwich. 

The Astonwich herd makes an excellent case study of neosporosis because it has 

been a closed herd for over 30 years and has well documented pedigree and 

production records. A closed herd is defined as a herd in which no cattle are 

bought in and all replacement stock are bred from the existing herd. In addition, 

the herd has been vaccinated for leptospirosis and brucellosis and until 

2001/2002 was negative for Bovine Viral Diarrhoea Virus (BVDV). Thus, the 

most common causes of bovine abortion, other than N. caninum, were therefore 

considered not to be a problem in the herd. There have been few case studies in 

pedigree herds and there is to date no published account concerning how 

Neospora infection might affect fertility in cattle. 
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An increased number of abortions were first noted at the study farm in 1990 and 

this continued over an 18-month period, giving rise to an `abortion storm' or 

epidemic outbreak. During this period nearly 50 % of adult cattle on the farm 

aborted. Fertility problems were also experienced and it was noticed that the 

calving index (the mean calving interval of all cows in a herd in a defined time) 

dramatically increased during this period. At the time there was very little 

knowledge of N. caninum amongst practising veterinary clinicians and therefore 

the infection went undiagnosed. 

N. caninum infection in cattle can be diagnosed by serological testing (Bjorkman 

and Uggla, 1999), although it is important to note that serological testing alone is 

not necessarily an indicator of the cause of abortion. To determine the 

serological status of individual animals and for example, to study the mode of 

transmission in a herd, the method of choice is to screen the entire herd at the 

same time for antibodies to N. caninum. To undertake this analysis on the 

Astonwich herd, all cattle were tested for the presence of antibodies to N. 

caninum by ELISA (Osawa et al., 1998). Samples were taken from each animal 

in both January and August to give a more accurate picture of the serostatus of 

the herd. Stenlund et al. (1999) and Maley et al. (2001) have found that 

fluctuations in antibody titres can lead to misinterpretation of the serostatus of 

some individual animals. By sampling twice, it was hoped it would also be 

possible to discern whether the time of year had any effect on the outcome of 

serological testing for individual animals. 
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Dijkstra et al. (2002) showed that in 8 dairy herds studied in Holland, a point 

source exposure to N. caninum of the infected age-groups was found during a 

limited period of common housing and feeding. In the Dutch study a new dog 

had been introduced in all farms that were tested within a period of 1.5 years, 

before the first indication of N. caninum infection. 

Three bitches were present at Newton Hall farm at the time of the N. caninum 

outbreak. Although none of these dogs were introduced less than 2 years prior to 

the abortion outbreak, several other dogs from surrounding farms often visited 

and it is possible that one or more of these other dogs may have been infected. It 

is possible that N. caninum may have been transmitted by the shedding of 

oocysts in dog faeces that contaminated feed (for example, in the haystack) that 

was subsequently fed to many cattle. In the summer, cows close to calving are 

kept in a paddock near to the farmhouse, where the dogs would have had access 

to placental material. It is conceivable that the farm dogs may then have become 

infected with N. caninum and subsequently transmitted the disease themselves 

(Dijkstra et al., 2001). Several studies have shown that the prevalence of 

antibodies to N. caninum is higher in farm dogs than in urban dogs, possibly 

because of ingestion of bovine placental material on the farm (Sawada et al., 

1998; Basso et al., 2001). A Brazilian study found that feral street dogs had a 

higher seroprevalence than owned dogs (Gennari et al., 2002), again possibly 

because these animals were more likely to feed on uncooked meat. 

Unfortunately, the farm dogs at Newton Hall were no longer alive at the time of 

sampling in 2002, therefore were unavailable for serological testing or faecal 

sampling. 
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In this study, it was hoped to test the hypothesis that animals were initially 

infected by a point source infection and subsequent vertical transmission 

maintained the disease in the herd. Since an aim of this project was also to 

assess the genetic diversity of N. caninum it was hoped that clinical samples 

could be obtained from aborted foetuses from this farm for genetic analysis. 

Cattle fertility is extremely important to the successful operation of a dairy farm 

and to date there is no published work on the potential effect of N. caninum 

infection on cattle fertility. This study also aimed to perform a preliminary 

analysis to determine whether a N. caninum seropositive status could adversely 

affect the fertility of a cow and whether a wider study could be justified. 

In summary, the specific aims of this chapter were 

" To determine the serostatus of individual cattle to N. caninum antibodies 

in the Astonwich herd and use these data to analyse probable 

transmission routes 

" To analyse the Astonwich herd records for evidence of vertical or 

horizontal transmission of N. caninum 

9 To examine how neosporosis may have affected the fertility of individual 

animals within the Astonwich herd 

9 To obtain clinical samples of N. caninum-infected tissue for genetic 

analysis 
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2.2 MATERIALS AND METHODS 

2.2.1 Farm and Animals 

Sampling was carried out at Newton Hall farm which is situated south of Malpas 

in south Cheshire (OS reference SJ44,468456) and home to the Astonwich herd 

(J. S. Latham and partners). All cattle on the farm are pedigree Holstein Friesian. 

Cows are split into two groups for management purposes - high and low 

yielders- depending on the time of lactation and are all housed separately from 

the heifers and calves. The cattle are kept on grass in the summer and inside in 

cubicles during the winter. They are fed on grass silage, brewer's grains and 

corn. There are about 125 cows, 30 heifers and a dozen calves at any one time. 

Year-round calving means that there are pregnant heifers and cows at all stages 

of gestation at any particular time of the year. Calves were defined as those less 

than 6 months of age. Heifers were 6 months or older that had not yet produced 

a calf. All animals were vaccinated against Leptospira hardjo and Brucella 

abortus. Cattle that had previously aborted were tested for Bovine Viral 

Diarrhoea virus (BVDV) and were found to be negative until serological testing 

in 2002. Milk from every lactating animal is tested monthly for quality, protein 

and fat content and the resulting National Milk Recording (NMR) programme 

records were available for analysis. In addition, the farm regularly takes part in a 

national pedigree scheme known as ̀ type classifying', in which cattle are scored 

for body conformation according to pedigree standards. Therefore, detailed 

pedigree records showing cow family relationships were also available for use in 

the analysis. 
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2.2.2 Sampling 

A cross-sectional serological study was conducted on the herd on 3 0`h January 

2002 ('winter bleed') and 16 ̀h August 2002 ('summer bleed') (Plate 2.1). Blood 

samples were taken from all animals on the farm on these two dates by Susan 

Damodaran (BVMS, Cert CHP, MRCVS). The samples were collected from 

cows and heifers via the tail vein into a 10 ml vacutainer tube and from calves 

from the jugular vein. All animals sampled in January were sampled again in 

August. New calves (under 7 months), which were not born at the time of the 

first bleed, were only sampled in August. 

All samples were centrifuged at approximately 1500 xg for 10 min and then the 

serum was removed and stored at -20 °C until it was used for serological testing. 

2.2.3 ELISA 

The ELISA to detect the presence of antibodies to N. caninum and BVDV were 

carried out at the Moredun Research Institute (MRI), Edinburgh. 

2.2.3.1 N. caninum ELISA 

Antibodies to N. caninum were measured using the ELISA of Osawa et al. 

(1998). To assess the validity of the ELISA, sensitivity, specificity and 

Spearman's correlation coefficient (rs) were calculated based on the IFAT results 

using the same serum samples. Sensitivity was defined as the percentage of sera 

positive in the Neospora ELISA that had also been positive by the IFAT (Trees 

et al., 1994) and specificity was defined as the percentage of IFAT-negative sera 

that were also negative in the ELISA. A cut-off value of 0.4 (OD value 
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otherwise referred to as 40 % OD) was selected resulting in the lowest number of 

diagnostic errors based on the IFAT results (Osawa et al., 1998). 

Briefly, polystyrene 96-well microtitre plates (F-Form of Immunolon, M-129A, 

Dynex Technologies, Billinghurst, UK) were coated with 150 µl/well of water- 

soluble N. caninum antigen diluted in 0.05 M carbonate- bicarbonate buffer (pH 

9.6) and incubated for 24 h at 4 T. Plates were given three washes in PBS 

containing 0.05 % Tween 20 (pH 7.4) and were shaken dry. A total of 150 p1 of 

sera, diluted in PBS (pH 7.4)/0.05 % Tween 20 with blocking agent was added to 

each well. Plates were placed in a humidified chamber and incubated for 2h at 

37 °C and then washed and shaken dry as described above. A total of 150 µl of 

peroxidase-conjugated rabbit-anti-bovine whole molecule IgG (Sigma, Poole, 

UK), diluted in PBS/1 % Chicken ovalbumin (grade V, Sigma, Poole, UK)/0.05 

% Tween 20 was added to each well, and incubated for 2h at 37 °C. The plates 

were washed again three times and shaken dry before addition of 150 µl of the 

enzyme substrate [o-phenylenediamine dihydrochloride (OPD tablets, Sigma, 

Poole, UK) in phosphate-citrate buffer (0.4 mg/ml) containing 0.04 % of 30 % 

(v/v) hydrogen peroxide, pH 5.0] to each well. After incubation for 30 min in the 

dark the enzyme hydrolysis of substrate was arrested by the addition of 50 µl of 

2.5 M sulphuric acid. The optical density (OD) at 492 nm was read in a 

microplate reader (Titertek® Multiskan, Type 312B, ICN Bio Medical, Thame, 

UK) and values over 40 % OD were considered to be positive (Osawa et al., 

1998). Positive and negative control sera and all test sera were tested in 

duplicate. 
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2.2.3.2 BVDV ELISA 

Antibodies to BVDV were measured using an ELISA (Fenton et al., 1991). 

Irradiated 96-well ELISA plates (Dynatech) had 100 pl/well antigen added. The 

plates were covered, placed in a humidified sandwich box and incubated at 4 °C 

overnight. Dilution tubes were filled with 490 µl of ELISA diluent [PBST 

(Phosphate buffered saline, Tween) 10 % HS (Horse serum)] and were also 

incubated at 4 °C overnight. The diagnostic serum samples were diluted 1: 50 

and then 10 µl of test sample was added to the dilution tubes containing 490 µl 

PBSTH. Dilutions were also made of the BVD positive control serum (1965J) 

and the negative control foetal bovine serum (FBS) in PBSTH. Diluted positive 

and negative control sera (500 µl) were added to the appropriate dilution tubes. 

The plates were then washed four times in ELISA wash fluid (PBST) using the 

ELISA plate washer (Dynatech Ultrawash ELISA washer). After washing, 100 

pl diluted diagnostic sera, positive and negative control dilutions were added to 

wells. The samples were thoroughly mixed by pipetting up and down. The 

plates were then put into a humid sandwich box and incubated at 37 °C for 1 h. 

Rabbit anti-bovine HRP (Sigma, UK) was diluted in ELISA Diluent (PBSTH). 

After washing the plates four times in ELISA wash fluid (PBSTH), 100 µl of 

conjugate was added to each well. The plates were again put inside the humid 

sandwich box and incubated at 37 °C for I h. The plates were again washed x4 

in PBSTH and 100 µl TMB substrate (Sureblue KPL) was added to every well. 

The plates were left at room temperature until the colour began to develop in the 

positive control wells. The reaction was stopped by adding 100 µl of 0.18 M 

sulphuric acid to each well. The OD value (absorbance) was read at 450 nm on 
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the ELISA reader (Dynex MRX ELISA reader). The cut-off point was defined 

as <0.1 OD is negative. 

2.2.4 Statistical Analysis 

Figures 2.1,2.2,2.3,2.4 and 2.5 were constructed in the graphics program 

GraphPad Prism (Version 3.0 for Windows, GraphPad software, San Diego, 

California, USA). Linear regression was performed on all scatter graphs and r2 

values are given where appropriate. 

Chi-squared analysis was performed on the pair-wise comparison of dams with 

their daughters with respect to N. caninum status. The following equation was 

used: 

x2 =I (0-E)2/E 
where 0 is the observed value and E is the expected value. 

An F-test was performed to determine whether there was a significant difference 

between the variance of the mean numbers of Artificial Insemination (AI) 

services per successful pregnancy for Neospora-infected and uninfected cattle. 

The F-test showed that there was no significant difference between the variance 

of the means. Therefore, a two-tailed t-Test assuming equal variances was 

performed on the number of Al services per pregnancy in Neospora seropositive 

versus seronegative cattle. 
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2.3 RESULTS 

2.3.1 N. caninum seroprevalence and age-prevalence 

In the winter bleed, 16 % (24 out of 147) of animals sampled were found to be 

seropositive for N. caninum. This compared with 20 % (33 out of 166) found to 

be seropositive for N. caninum at the time of the summer bleed, giving an 

average N. caninum seroprevalence of 18 % in the Astonwich herd based on a 40 

% cut-off in the ELISA. 

To investigate the possibility of a relationship between the age of an animal and 

serostatus, the anti-Neospora antibody titres were plotted against the age (in 

days) for each animal and analysed by linear regression (Figures 2.1 a& b). The 

winter bleed results showed no association between increasing age and 

increasing seropositivity (r2 = 0.03) and this was confirmed with the summer 

bleed results (r2 = 0.02). 

2.3.2 BVDV serology 

The results from the BVDV ELISA showed that about one third of the herd were 

positive for the virus. The positive animals generally had high titres, which 

indicates a relatively recent infection. The herd has always been negative when 

previously tested for BVDV up until 2001/2002. Dr. Peter Nettleton, a 

veterinary clinician and senior researcher at the Moredun Research Institute, 

kindly interpreted the BVDV ELISA results. It is extremely unlikely that 

BVDV would have caused any of the abortions that have occurred on this farm 

as the BVDV infection appears too recent. It may, however pose a future risk 

and vaccination will be considered. However these results allowed us to exclude 

BVDV as a causative agent of abortion in this study. 
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Figure 2.1a 

Anti-Neospora antibody titres of the Astonwich herd plotted against age of each 

animal at the winter bleed (30/01/02) (n=147). Linear regression showed no 

association between age and increasing seropositivity (r2= 0.03). 
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Figure 2.1b 

Anti-Neospora antibody titres of the Astonwich herd plotted against age of each 

animal at the summer bleed (16/08/02) (n=166). Linear regression showed that 

there was no association between age and increasing seropositivity (r2=0.02). 
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2.3.3 Seroconversion of cattle between winter and summer bleeds 

In order to establish whether a single serological test accurately defines the 

serostatus of an individual animal, Tables 2.1 a&b were constructed showing 

animals that changed serostatus between the first and second bleed. Nine animals 

that were seronegative to N. caninum at the winter bleed had positive antibody 

titres when they were re-tested in the summer (Table 2.1 a). However, two of 

these were only just over the cut-off titre of 40 % OD. Only one animal that had 

previously tested seropositive to N. caninum was found to be seronegative at the 

second bleed (Table 2.1b). It was interesting to note that the higher titre results, 

from animals that had a different serostatus at each bleed, tended to coincide with 

their being in the latter half of gestation (generally in the final trimester). 

However, this was not the case for animals that were not pregnant at either bleed 

but had been served 3 or 5 times (Table 2.1 a). Seroconversions only occurred in 

the cows, not the heifers or calves. 

2.3.4 Serostatus and breeding cycle 

To demonstrate whether there was a correlation between antibody titre and stage 

of the breeding cycle, anti-Neospora antibody titres of all animals were plotted 

against the stage in the breeding cycle at both bleeds (Figures 2.2a & b), but no 

correlation was noted. To test this further, anti-Neospora antibody titres of 

pregnant cows at the winter bleed (Figure 2.3a) were plotted against stage of 

gestation, but no association was found between increasing stage of gestation and 

antibody titre. The results from the summer bleed (Figure 2.4a) also showed no 

relationship between latter stages of gestation and increasing antibody titres. To 

ensure that the large number of seronegative cows had not skewed the results, the 
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Table 2.1 a 
Seroconversion of cows from Neospora negative status at the winter bleed 

(30/01/02) to Neospora positive status at the summer bleed (16/08/02) (cut-off at 
40% OD). 

Cow January 

titre (%OD) 

Notes August 

titre 

(%OD) 

Notes 

4 30.0 Served x3 57.5 8 months pregnant 
31 27.0 Not pregnant (served x 1) 40.5 served x3 
61 16.5 3 months pregnant 55.5 calved 6 weeks ago 
63 <10.0 Calved 6 weeks ago 40.5 6 months pregnant 

70 27.0 Not pregnant (served x 1) 44.5 Served x5 
76 30.0 Not pregnant (served x 3) 45.5 5 months pregnant 
81 36.0 Not pregnant (served x 3) 54.5 7 months pregnant 

100 23.5 2 months pregnant 59.5 8.5 months pregnant 

125 <10.0 3 months pregnant 60.5 calved 5 weeks ago 
(served x3) 

Table 2.1b 

Seroconversion of cows from Neospora positive status at the winter bleed 

(30/01/02) to Neospora negative status at the summer bleed (16/08/02) (cut-off at 

40% OD). 

Cow January Notes August Notes 

titre (%OD) titre 

(%OD) 

96 59.5 6 months pregnant 33.5 Barren 
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Figure 2.2a 

Anti-Neospora antibody titres of Astonwich herd at the winter bleed (30/01/02) 

plotted against stage of breeding cycle. (Day 0 represents day of insemination) 
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Figure 2.2b 

Anti-Neospora antibody titres of Astonwich herd at the summer bleed (16/08/02) 

plotted against stage of breeding cycle. (Day 0 represents day of insemination) 
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Figure 2.3a 

Anti-Neospora antibody titres of pregnant cows in the Astonwich herd at the 

winter bleed (30/01/02) plotted against stage of gestation. 
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Anti-Neospora antibody titres of Neospora seropositive pregnant cows in the 

Astonwich herd at the winter bleed (30/01/02) plotted against stage of gestation. 
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Figure 2.4a 

Anti-Neospora antibody titres of pregnant cows in the Astonwich herd, at the 

summer bleed (16/08/02) plotted against stage of gestation. 
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Figure 2.4b 

Anti-Neospora antibody titres of Neospora seropositive pregnant cows in the 

Astonwich herd, at the summer bleed (16/08/02) plotted against stage of 

gestation. 
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anti-Neospora antibody titres of seropositive pregnant cows only, were plotted 

against the stage of gestation for both the winter and summer bleed (figures 2.3b 

and 2.4b). Again, no correlation was found although the number of data points 

were small in this analysis. 

Tables 2.2a &b show the serostatus of pregnant and non-pregnant animals at the 

time of sampling. Sixty-nine percent of animals were pregnant at the winter 

bleed of which 14% were seropositive to N. caninum. Of the remaining 31 % of 

non-pregnant cattle at the winter bleed, 21 % were seropositive to N. caninum 

(Table 2.2a). In contrast, 50 % of the animals were pregnant at the summer bleed 

(Table 2.2b). Of the pregnant cattle, 26 % were seropositive to N. caninum 

compared to 18 % of the non-pregnant cattle. 

To investigate further a possible relationship between stage of gestation and 

serostatus, the pregnant animals were again divided into the three trimesters of 

pregnancy for the winter and summer bleeds (Tables 2.3a & b). There were no 

consistent trends apparent with respect to the proportion of cattle positive for N. 

caninum in each category. 

2.3.5 Pair-wise analysis of serostatus of dams and daughters 

Vertical transmission is known to be an important mode of perpetuating N. 

caninum infection in a herd (Schares et al., 1998, Wouda et al., 1998 and 

Davison et al., 1999c). To test the role of vertical transmission in the Astonwich 

herd, animals were paired as dams and daughters and pair-wise analysis of the 

serostatus of dams and daughters was performed (Table 2.4). In 
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Table 2.2a 
Serostatus of pregnant and non-pregnant adult cattle at the winter bleed 

Winter status Number % % Neospora +ve 
Pregnant 

Not pregnant 
85 
38 

69 
31 

14 
21 

Table 2.2b 
Serostatus of pregnant and non-pregnant adult cattle at the summer bleed 

Summer status Number % % Neospora +ve 
Pregnant 

Not pregnant 
61 
60 

50 
50 

26 
18 
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Table 2.3a 

Percentage of cattle in each trimester of pregnancy seropositive to N. caninum at 

the winter bleed 

Winter status Number % % Neospora +ve 

0-3 months 25 20 4 

3-6 months 28 23 11 

6-9 months 32 26 25 

Not pregnant 38 31 21 

Table 2.3b 

Percentage of cattle in each trimester of pregnancy seropositive to N. caninum at 

the summer bleed 

Summer status Number % % Neospora +ve 

0-3 months 21 17 33 

3-6 months 21 17 29 

6-9 months 19 16 16 

Not pregnant 60 50 18 
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Table 2.4 

Pair-wise analysis of serostatus of dams with the serostatus of their daughters 

with respect to N. caninum. (Results taken from both bleeds) 

Daughter +ve Daughter -ve 

Dam +ve 12 5 

Dam -ve 0 47 
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total, 64 pairs were found in the current herd. Animals were counted as being 

seropositive if they had been found to be seropositive to N. caninum antibodies at 

either bleed. Chi-squared analysis was performed where the expected value was 

calculated from the probability of any one animal in the Astonwich herd being 

positive (probability = 0.18) for N. caninum. The observed value was the actual 

number of positive animals in each group (Table 2.4). Chi-squared analysis 

showed that there was a significant increase in the likelihood of a seropositive 

daughter having a seropositive dam (accepted at the 5% level with 1 degree of 

freedom) and that a seronegative dam was more likely to have a seronegative 

daughter. 

2.3.6 Family trees 

The Astonwich herd has 27 different cow families for which all of the family 

trees were constructed for this study. Two examples, the Astonwich Angie 

(Figure 2.5) and the Astonwich Collona (Figure 2.6) families are shown. These 

two families were chosen because they are large and contain Neospora-positive 

and negative lines within the same family. The family trees for all 27 families 

strongly indicated vertical transmission of N. caninum within the herd. The 

numbers following each cow name refer to the order in which they entered the 

herd. The % OD values for the winter and summer bleeds are shown under the 

names (the first referring to the winter bleed). The positive/ negative (+/-) signs 

following the Neospora serology results refer to the BVDV status of that animal 

as tested at the winter bleed. Animals that had aborted and for whom a 
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subsequent positive diagnosis found N. caninum to be the causative infectious 

agent are denoted by [A]. 

Figure 2.5 shows two highlighted lines involving three generations of the A. 

Angie family. The first family line shows three generations (A. Angie 20,36 and 

46) that gave a negative response to N. caninum antibodies and the second (A. 

Angie 22,33 and 599) line that are all positive at one or both bleeds. It was 

interesting that A. Angie 22 aborted a five-month old foetus in 1998 due to 

neosporosis and her grand daughter, A. Angie 43 was culled from the herd due to 

fertility problems and had had several abortions due to N. caninum. A. Angie 34 

aborted a five-month old foetus in 1999 and in June 2001, A. Angie 42 also 

aborted a 7.5 month-old foetus, both due to neosporosis. 

Similarly, Figure 2.6 shows a positive antibody response to N. caninum in three 

generations of the Astonwich Collona family (A. Collona 18, A. Collona 26 and 

400016 [eartag number as has not yet entered the herd]). This shows how 

efficiently vertical transmission can occur down family lines. In addition, A. 

Collona 18 had an abortion due to N. caninum infection in 1999. Her daughter, 

A. Collona 31 aborted twice in January and June 2001. Unfortunately, this cow 

had left the herd by January 2002 and so was unavailable for testing, but an 

inability to get her in calf was a major reason for culling. However, A. Collona 

26, an older sister of A. Collona 31, was serologically tested twice and was found 

to be seropositive to Neospora antibodies both times. A. Collona 22 gave a 

positive response to Neospora antibodies and also aborted a five-month old 

foetus in 1998 where N. caninum was the designated abortifacient. 
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2.3.7 Fertility in the Astonwich herd 

In order to determine whether the fertility of Neospora-infected animals 

(seropositive) had been impaired in comparison to the fertility of non-infected 

(seronegative) cattle, the number of Artificial Insemination (Al) services per 

successful pregnancy was recorded in two families from the Astonwich herd. 

Tables 2.5 and 2.6 show the number of services per pregnancy in different 

lactations in the two study families, A. Angie and A. Collona. The number of 

lactations per animal differs due to age differences. In addition the number of 

services are not known in some cases (and so are omitted) at times when a bull 

was present on the farm and used to service maiden heifers. The mean number 

of Al services per pregnancy in seronegative cattle was 1.54 +/- 0.34 compared 

with 3.06 +/- 0.23 Al services per pregnancy in seropositive cattle. There was a 

significantly higher (p< 0.001) number of Al services per pregnancy in N. 

caninum seropositive cattle than in seronegative cattle in the two families 

analysed (Table 2.7). 

The increased number of Al services per pregnancy indicates that N. caninum 

infection is likely to increase the calving interval (number of days from the birth 

of one calf to the birth of the next - ideally 365 days) of cattle in these families. 

The calving index is the mean calving interval of all cows in a herd at a defined 

point in time calculated retrospectively from their most recent calving at that 

time. 
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Table 2.5 

Number of Artificial Insemination (AI) services per pregnancy in N. caninum 

seropositive cattle in families A. Angie and A. Collona. 

N. caninum serostatus Cow Lactation Al Average 
Services number services 

per lactation 
Positive A. Angie 22 10 1 2.90 

9 1 
8 3 
7 5 
6 2 
5 5 

Positive A. Angie 33 5 4 2.75 
4 1 
3 5 
2 1 

Positive A. Collona 22 5 3 3.00 
4 2 
3 4 

Positive A. Collona 18 7 1 2.50 
6 3 
5 3 
4 3 

Positive A. Collona 32 2 4 3.00 
1 2 

Positive A. Collona 26 3 5 3.33 
2 2 
1 3 

Positive A. Collona 31 2 4 4.00 
Mean 3.06+/- 0.23 
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Table 2.6 

Number of Artificial Insemination (AI) services per pregnancy in N. caninum 

seronegative cattle in families A. Angie and A. Collona. 

N. caninum Cow Lactation Al Average no. services 
serostatus Services per lactation 
Negative A. Angie 20 11 1 1.00 

10 1 
9 1 
8 1 
7 1 
6 1 

Negative A. Angie 30 7 2 2.00 
6 4 
5 1 
4 1 

Negative A. Angie 36 4 1 1.00 
3 1 
2 1 

Negative A. Angie 37 5 3 1.60 
4 1 
3 2 
2 
1 

1 
1 

Negative A. Angie 38 4 1 1.00 
3 1 
2 1 

Negative A. Angie 45 2 1 1.00 
Negative A. Angie 46 2 2 1.50 

1 1 
Negative A. Angie 47 2 1 1.00 
Negative A. Angie 48 1 2 2.00 
Negative A. Collona 20 6 4 2.50 

5 3 
4 2 
3 1 

Negative A. Collona 21 4 3 2.50 
3 3 
2 3 
1 1 

Negative A. Collona 23 6 1 2.50 
5 1 
4 5 
3 3 

Negative A. Collona 27 4 3 1.75 
3 1 
2 2 
1 1 

Negative A. Collona 28 4 1 1.00 
3 1 
2 1 
1 1 
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Negative A. Collona 29 3 2 1.30 
2 1 
1 1 

Negative A. Collona 30 4 1 1.00 
3 1 
2 1 
1 1 

Negative A. Collona 33 2 2 2.00 
1 2 

Negative A. Collona 34 1 1 1.00 
Mean 1.54 +/- 0.34 

Table 2.7 

Two-tailed t-Test comparing the mean number of services per pregnancy for 

seropositive and seronegative groups of cattle. 

Seropositive Seronegative 
Mean 3.064286 1.536111 
Variance 0.230595 0.343472 
Observations 7 18 
Pooled Variance 0.314026 
df 23 
P(T<=t) two-tail 3.03E-06 
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2.3.8 Collection of N. caninum-infected tissues 

Unfortunately it was not possible to obtain infected tissues during the course of 

the study. Foetuses were generally too autolysed when found. 
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2.4 DISCUSSION 

This case study has shown that serological data is far more valuable if it can be 

analysed in conjunction with pedigree, production and reproductive records. 

Newton Hall farm was an excellent case study because it has been a closed herd 

for more than 30 years and has detailed records for all cow family lines. It was 

known that N. caninum was endemic in the herd following an epidemic outbreak 

of abortions that began in 1990 and lasted for approximately 18 months. Cattle 

that aborted were always tested for antibodies to Bovine Viral Diarrhoea Virus 

(BVDV) but were consistently found to be negative. Two other common causes 

of bovine abortion, Leptospira hardjo and Brucella abortus were routinely 

vaccinated against and were therefore assumed not to be a problem in this herd. 

The entire herd was tested for BVDV serostatus during this study to ensure it was 

still not present in the Astonwich herd. Over 80 % of dairy herds in this area of 

Cheshire are known to be infected with BVDV (Dr. D. Barrett, University of 

Glasgow Veterinary school, UK, personal communication), so it was unusual 

that Newton Hall farm should have remained free for such a long time. This 

presumably reflects the benefit of having a closed herd because the cattle do not 

mix with other potentially infected animals. In fact, in 2002 at the time of 

sampling, the BVDV ELISA results showed that 31 % of the herd had a positive 

antibody titre. For those cattle infected, the titres were particularly high 

indicating a very recent infection in the herd. It has been postulated that a group 

of heifers from Newton Hall may have become infected in the summer of 2001 

when they were summer-grazed at a neighbouring farm. Due to the recency of 

this infection and because all cattle that abort are tested for all abortifacients and 

have been found to be negative for BVDV, it was assumed that all abortions 
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experienced on the farm have been due to N. caninum and not BVDV. 

Unfortunately BVDV may become a bigger problem in the future and a potential 

abortifacient on this farm, although its recent presence cannot account for the 

large numbers of abortions since 1990. 

Evidence that vertical transmission was an important means of N. caninum 

transmission in this herd is based on several data sets: (1) the age prevalence data 

(where no relationship was found between increasing age and increasing 

antibody titre); (2) the pair-wise analysis of dam-daughter pairs (showing an 

increased likelihood of a daughter being seropositive if her dam was also 

seropositive); (3) the family tree data showing the transmission of N. caninum 

down generations. 

The percentage of cattle in the Astonwich herd with a positive response to N. 

caninum of between 16 and 20 % is similar to the UK herd average of 17.1 % 

(Davison et al., 1999d). Davison et al. (1999a) found the herd-specific 

prevalences to range from 7.3 % to 44 % in different UK herds. There was no 

convincing evidence in this case study of increasing seroprevalence with age of 

the cattle. This concurs with previous studies on N. caninum but these results are 

in stark contrast to the infection pattern found in sheep infected with the closely 

related apicomplexan, T gondii. A positive age-prevalence correlation, as seen 

with T gondii infections, indicates that environmental exposure to oocysts or 

tissue cysts is a dominant mode of transmission. In contrast, the Neospora data 

in this study agrees with other studies (Davison et al., 1999c; Wouda et al., 1999; 
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Osawa et al., 2002) and implies that post-natally acquired neosporosis is not an 

important mode of transmission. 

It was interesting that consecutive tests for the presence of Neospora antibody 

gave different results. Clearly, the definition of serostatus of an individual animal 

is dependent on the designated cut-off value, which represents a compromise 

between sensitivity and specificity. Here the cut-off was set at 40 % OD (Osawa 

et al., 1998). In addition, 7 of the animals that changed to a positive serostatus 

had antibody titres that were much higher than the cut-off value. Maley et al. 

(2001) also found that antibody titres can fluctuate from one serological 

screening to another. Dijkstra et al. (2003) found that 95.3% of animals 

(n=1676) were assigned the same serostatus when tested three times and 

concluded that only a minor proportion of a herd would be incorrectly diagnosed 

if serological testing was used in conjunction with age distribution and pedigree 

data. However, it is very unusual to have information provided on the serostatus 

of an animal with respect to N. caninum at the time of a farm sale. For example, 

when re-stocking a herd, which has occurred in many parts of the UK since the 

outbreak of the Foot and Mouth epidemic in 2001, it is of great interest to the 

farmer to be able to identify accurately the serostatus of each animal with respect 

to N. caninum. This is especially important in dairy herds where the original 

cattle are heavily relied upon to produce replacement heifers and there is 

evidence that vertical transmission plays a strong role in disease transmission. It 

is possible that the immune status of cattle in the winter is different to their 

immune status in the summer due to different environmental stresses. 
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It might be expected that cattle antibody titres would increase during pregnancy 

due to the natural immunomodulation occurring in pregnancy, which causes 

down regulation of TH 1 -type responses and biases towards TH2-type responses 

(Innes et al., 2001). This downregulation of TH1-type responses, that are known 

to be protective against the parasite, may account for recrudescence of a 

persistent infection, resulting in higher Neospora antibody titres later in 

pregnancy. Certainly 6 of the seroconversions observed in this study gave high 

titres in the second half of pregnancy, most in the final trimester. However the 

herd data showed no association between increasing stage of gestation and 

increasing antibody titres. 

The antibody status of pregnant cattle was further explored by dividing them into 

trimesters, but no pattern between Neospora serostatus and stage of gestation 

could be found. It is possible that the chance distribution of Neospora-infected 

animals at different stages of gestation would preclude this and it highlights the 

need for a large number of cattle to be studied in order to identify trends. 

Pair-wise analysis of the serostatus of dams with the serostatus of their daughters 

(Table 2.4) gave strong evidence that vertical transmission has played a large 

role in transmission of N. caninum in this herd. This correlates with previous 

observations by Thurmond and Hietala (1997) and Wouda et al. (1998), which 

gave robust evidence for congenital transmission by the presence of N. caninum 

antibodies in a high proportion of pre-colostral sera from the first and second 

generation descendants of cows aborted during an epidemic. 
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The family tree analysis highlights the vital role of vertical transmission in 

Neospora transmission. Occasionally an animal was found with Neospora- 

positive serostatus with no history of disease in that particular line (e. g. A. 

Collona 22). There are several other examples of this in other Astonwich 

families. This is also consistent with the fact that vertical transmission alone, 

although being a highly efficient mode of transmission, is not sufficient to 

maintain infection over time in a herd. This points to the involvement of 

horizontal transmission and has been postulated by several researchers (Pare et 

al., 1997; Hietala and Thurmond, 1999). French et al. (1999) demonstrated by 

mathematical modelling that without horizontal transmission N. caninum would 

disappear from cattle herds. Horizontal infection may occur in a number of 

ways such as ingestion of tissue cysts in placenta (Dijkstra et al., 2001), pooling 

of infected milk and then being fed to calves (Uggla et al., 1998) or 

contamination of a food source with oocysts from a definitive host (McAllister et 

al., 1998). 

This case study demonstrates a statistically significant increased risk of abortion 

in seropositive dams compared to that of seronegative dams. However, a cross- 

sectional study by Wouda et al. (1998) found the risk to be unrelated to the 

serostatus of the dam, but this could be explained by the fact that N. caninum- 

infected dams may have been placed into the seronegative group, since 

antibodies to N. caninum may fluctuate below the threshold level (Conrad et al., 

1993b). A1 to 2% incidence of postnatal transmission versus 98 % by 

congenital transmission was estimated in dairy heifers before the first calving 

(Thurmond et al., 1995). Bjorkman et al. (1996) found no evidence in the herd 
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they studied for postnatal infection rather, all infections could be traced back to 

two purchased infected cows. This highlights the importance of a closed herd (as 

in this case study), or careful testing several times prior to purchase of cattle to 

ensure that infected animals are not brought into a herd. 

Cattle fertility is affected by many factors such as host immune status, nutrition, 

body scoring as well as possible presence of potential infectious agents. Due to 

the multifactorial basis of fertility, it is difficult to isolate one particular cause if 

problems are encountered in getting an animal pregnant. Therefore, this study 

analysed the service history for the cows in the two families, A. Angie and A. 

Collona and found a statistically significant increase in the number of Al services 

per successful pregnancy in seropositive cattle compared with seronegative 

cattle. This is the first study that has investigated and quantified the potential 

relationship between Neospora infection and fertility problems. However, care 

should be taken in extrapolating the data from this single case study. 

There are many potential reasons for the increase in the average number of 

Artificial Insemination (AI) services per successful pregnancy, but it is possible 

that a recent N. caninum infection could cause animals to abort very early in their 

pregnancy before the presence of the foetus had actually been detected. This 

would result in a return to `heat' three weeks later, in the same way that an 

unsuccessful Al service would. Williams et al. (2000) found that experimental 

intravenous challenge infection of cattle at day 70 caused resorption of the 

foetus. 
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Fertility in cattle can be measured in many ways, for example, by the number of 

services per successful pregnancy or the calving to first service index. Fertile 

cattle that are easy to get in calf are crucial to the success of dairy businesses 

because successful pregnancies are intrinsically linked to continual high milk 

yields. The calving index is used as one measure of the efficiency of the 

management and productivity of a farm. Poor fertility results in higher 

replacement rates, fewer calves per year, increased maintenance costs and higher 

insemination fees. 

The milk yield of most cows increases up to the fifth lactation so any reduction 

in fertility, that reduces the number of calves the cow has in a given time span, 

will result in reduced milk yields (MAFF, 1984). A lower replacement rate 

would also enable the size of the heifer rearing enterprise to be reduced hence 

saving costs. Currently, over one-third of culls from dairy herds are due to poor 

fertility compared with 17 % due to low milk yields. This severely restricts the 

opportunity to select for production, a particular problem in a pedigree herd. A 

study by Royal et al. (2000) found that there has been an average decline in the 

fertility of British Holstein-Friesian cattle approaching I% per year since 1975. 

This decline in fertility was also reflected in traditional measures of fertility such 

as the calving interval, which has lengthened from 370 to 390 days. One factor 

that may have contributed to the decline in fertility may be the breed substitution 

of North American Holstein for the British Friesian, the proportion of which has 

increased from 0% to 80 % over the last 20 years (Royal et al., 2000). Although 

the Holstein may have superior genetic merit in terms of milk yield compared 

with the Friesian, it may also carry undesirable genes, one of which may be 
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associated with subfertility. However, many other studies have suggested that 

the Holstein may inherently have high fertility but that in many cows 

reproductive performance is compromised by high milk production leading to 

negative energy balance during early lactation (Butler and Smith, 1989; Lucy et 

al., 1992; Mcmillan et al., 1996). Holmes et al. (1987) suggested that the high 

genetic merit cow produces more milk by having a greater propensity for losing 

body condition to support milk production. It would follow that the loss of body 

condition would probably lead to a reduction of immunity in the cow. The 

genetic gain in milk yield in the USA (Foote, 1996) has also been accompanied 

by a decline in pregnancy rates to first service. 

Cattle fertility plays such a key role in determining the productivity of a farm that 

any factor that might reduce fertility, for example neosporosis, needs thorough 

investigation. This case study shows that N. caninum can reduce cattle fertility 

in a measurable way and suggests that a wider study is justified. 
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Chapter 3: Neosporosis in Ghana and Tanzania 

3.1 INTRODUCTION 

Neospora caninum has been reported in many countries and as with T. gondii, 

frequently referred to as having a worldwide distribution. However, there is in fact 

very little data concerning neosporosis in many parts of the world including Africa, 

and no studies to determine its seroprevalence or host range have been conducted in 

West Africa. African cattle breeds tend to be very different from European cattle. 

They belong to two species, Bos taurus and Bos indicus. Zebu cattle (B. indicus) 

can be visually differentiated from taurine cattle by a hump. African cattle are 

especially interesting to study since they are thought to be almost exclusively 

composed of a separate haplogroup, which is encountered only rarely elsewhere 

(Troy et al., 2001). 

During the course of this study, an opportunity arose to undertake sero- 

epidemiological studies in two contrasting sub-Saharan countries, Ghana in West 

Africa and Tanzania in East Africa. An existing British Council link between the 

University of Glasgow and the Noguchi Memorial Institute for Medical Research 

(NMIMR), University of Ghana in Accra, gave the opportunity for collection of 

samples in Ghana for a two-week period in April 2002. The Tanzania study was 

designed as a pilot programme to obtain preliminary epidemiological data on both N. 

caninum and Echinococcus granulosus in north-western Tanzania. The investigation 

was conducted in two districts that differed in land-use characteristics, with 
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comparative data collected from hospital records of human cases, meat inspection 

records from government veterinary offices, coproantigen prevalence surveys in 

domestic dogs and wild carnivores (for studies on E. granulosus) and seroprevalence 

surveys in domestic dog, cattle and lion populations (for studies on E. granulosus 

and N. caninum). 

There have been a very limited number of accounts of neosporosis in Africa. Barber 

et al. (1997) found that 22 % of dogs (n = 49) in Tanzania were seropositive to N. 

caninum using the IFAT test. In South Africa, 5.9 % of serum samples from non- 

domestic felids (n=68) were found to have antibodies against N. caninum although 

these animals were also seropositive to T. gondii so it is possible that some cross- 

reactivity may have occurred (Cheadle et al., 1999b) 

Any factor that limits productivity in cattle is particularly significant in African 

pastoral communities, which rely heavily upon livestock-derived foods and which 

currently suffer from high levels of poverty and malnutrition (McCabe et al., 1997). 

There is a long history of cattle husbandry with the Masai people who live in Kenya 

and Tanzania. Indeed, the Masai tribe are a cattle people who believe all the cattle 

on earth belong to them and still occasionally go on raids to retrieve herds from 

other tribes (Saitoti, 1993). The entire way of life of the tribe is dictated by cattle 

and they therefore live a semi-nomadic way of life in order to follow the seasonal 

changes of grass and water for the herds. 
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Su et al. (2003) found that exotic isolates of T gondii e. g. `COUGAR' were 

particularly informative in molecular epidemiological and evolutionary studies of 

this parasite. It was hoped that if it were possible to obtain clinical material in either 

Ghana or Tanzania, exotic isolates of N. caninum could be cultured in the laboratory 

that would be similarly useful for genetic studies of N. caninum. 

The aims of this chapter were 

9 To perform a cross-sectional serological study of cattle in Ghana and 

Tanzania to determine the prevalence of N. caninum in these regions. 

" To collect clinical material to obtain exotic isolates of N. caninum. 
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3.2 MATERIALS AND METHODS 

3.2.1 Study areas and animals 

Ghana 

The study was based at the Noguchi Memorial Institute for Medical Research 

(NMIMR) at the University of Ghana in Accra. Sampling was carried out in all 

three ecological zones in Ghana - coastal Savannah (Greater Accra region), forest 

belt (Ashanti region) and Northern Savannah (Northern, Upper East and Upper West 

regions). Three farms and one abbatoir were used for sample collection. Fifty-three 

cattle at the University of Ghana farm at Kpong were sampled. This farm lies in the 

coastal savannah region and the cattle are pure N'Dama (Bos taurus). N'Dama 

cattle are a beef breed that are resistant to trypanosomiasis and Dermatophilus 

congolensis infections. Twenty-one cattle were sampled at a government-owned 

dairy farm at Amrahia also located in the coastal savannah zone, north of Accra. 

The cattle are West African Shorthorn x Friesian/Jersey (Bos taurus) and have been 

crossed for two generations, as part of a dairy improvement programme. The third 

farm situated at Somanya, 150 Km north of Accra and within the coastal savannah 

was a private farm where 30 cattle of the White Fulani breed (Bos indicus) were 

sampled. 

The Kumasi abbatoir is located in the forest zone of Ghana. This abbatoir draws 

cattle from a wide area, particularly the northern savannah regions (Northen, Upper 

East and Upper West regions) of Ghana and cattle are even brought from as far as 

the Sahelian regions of Burkina Faso, Togo and Niger. Blood samples were taken 
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from ninety-two cattle, of the White Fulani and N'Dama breeds, presented for 

slaughter in the Kumasi abbatoir. Therefore sampling was comprehensive in that 

both the three ecological zones and three main breeds of cattle in Ghana were 

sampled in this study. In addition a number of cattle originated from other West 

African countries. Figure 3.1 shows the areas sampled highlighted with a red circle 

(map of Ghana from www. MapZones. com). 

Tanzania 

The study area was the Serengeti ecological region of North-western Tanzania (350 

to 36° E, 1° 30' to 3° 7' S) with study villages located within Ngorongoro District and 

Serengeti District, adjacent to the Serengeti National Park. 

The Ngorongoro District, comprising the Loliondo Game Controlled Area and the 

Ngorongoro Conservation Area, is a multiple-use controlled wildlife area, inhabited 

predominantly by Maasai people who practice traditional pastoralism, and recently, 

limited cultivation. The estimated total human population in 1999 was 31,500 with a 

density of 4.4 people/km2, based on 1988 human census data and projected 

population growth rate of 3.4 % per annum (Bureau of Statistics, 1991). Estimates 

of domestic dog densities, determined from the number of dogs per Maasai boma or 

household varied between 0.38 and 0.46 dogs/km2 from 1992 to 1994 (Cleaveland, 

1996). Figure 3.2 shows the area in Tanzania that was sampled highlighted with a 

red box (map also taken from www. Maplones. com). 
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Figure 3.1 Map of Ghana showing the origin of cattle sampled. 

Kou ela MALI.. =" Koudougou 
p0= 

®Fada-Ngour ý" 
Y; " Tenkodogýý, ID 

�i 

oSiý'asso. BKINA4`J ö adjo ' 
Kandi 

S" Bobo- Dioutasso -- 
-0e.. -,. r; -o 

'atia o 

__o 
Banfora ýý Bolgatangs 

ý$titilpgou Dunkassa0 
4, Niart oloko rmwf S 11 F 1, BENIN :f 
Fekkesýe8öugouý go 

aDjougou 5 
0Korhog 6,8"n /1®-fa 

m oBasýar aPardkou 
Sokode 

COT E D' E GHANA I°is o oBantE 
ý1 

oKatiola n ukou 
Salaga w 

o- ; C> ! 
oSavaiou 

lU 
OBouake Techimano 

ýE ur 
' 

oAtakpame Dormaa Ahenkroo r 101 

Kuma 

I. Z 

DYamoussoukra' 
na 

oAgogo 

tit 

Aborn y 
p 'Lokossä Ikdrodu, 

i .0 El 
Departement Begorg., 

d' Abengourou o (" 
'° Cotonou 

D 13 
iassale 

I 
obuasi 

OdaEi 
ö sawam Lome 

Divo a b9isso 
Cape fl 

, D Coast a cre Bi o 
Abidjan 

o 
EI Saftpond Benzin 

Cape T e& Takoradi 
Points Gwf of Guinea 

ATLANTIC OCEi4N F, c -iI 'JLiýüi 

denotes the areas from which samples were collected 

78 



Chapter 3 

Figure 3.2 Map of Tanzania showing the origin of cattle sampled 
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3.2.2 Collection of sera samples 

Blood samples were usually taken from the middle coccygeal vein of cattle at the 

farms but from the carotid artery at the time of slaughter in the abbatoir. 

All blood samples were collected into 5 ml, plain vacutainer tubes (Becton 

Dickinson, Plymouth, UK) and transported to the Immunology Unit of the Noguchi 

Memorial Institute for Medical Research. The samples were centrifuged at 800 xg 

for 10 min and then the sera (supernatant) were removed from the top of the tubes 

and put into three separate 1 ml eppendorf tubes for storage at - 80 °C. Samples 

were heat-treated by being placed in a water bath at 55 °C for Ih and the tubes 

thoroughly disinfected prior to transportation of samples to the UK. 

Samples were transported back under licence to the UK still frozen in dry ice in cool 

boxes. They were placed at - 20 °C storage on arrival until required for testing. 

3.2.3 ELISA 

An ELISA (Osawa et al., 1998) was used to test bovine (cattle and buffalo) sera for 

the presence of antibodies to N. caninum and was performed exactly as described in 

Section 2.2.3 at the Moredun Research Institute, Edinburgh. 
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3.3 RESULTS 

3.3.1 Collection of sera samples 

Ghana 

Serum samples were collected from cattle over a two-week period in April 2002 

(Table 3.1). Several farms in the Greater Accra region were sampled including a 

commercial farm at Somanya; the University farm at Kpong; a Government farm at 

Amrahia. Prof. B. D. Akanmori, Mr. J. Otchere (Noguchi Memorial Institute for 

Medical Research, University of Ghana) and Dr. F. B. Awumbilla (Department of 

Animal Science, University of Ghana) collected blood samples. Samples were also 

taken from cattle at the time of slaughter in the Kumasi abbatoir. This abbatoir is 

the most modern in Ghana and has a high-throughput of animals. Cattle are brought 

from many different areas in the northern regions of Ghana (Northern, Upper East 

and Upper West regions) as well as from Burkina Faso, Niger and Togo. The 

collection of samples is shown in Plate 3.1. 

Tanzania 

Samples were collected from two intermediate host species (cattle and buffalo) and 

two potential definitive host species (domestic dog and lion). Collection of domestic 

animal samples was conducted in seven villages in the Serengeti district: Mugumu, 

Bwitengi, Bonchugu, Kisangura, Ngarawani, Nyamoko and Burunga between June 

and August 1999. Individual households were selected following discussions with 

community leaders. 
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Table 3.1 

Origin of cattle sampled for antibodies to N. caninum in Ghana and surrounding 
West African countries. 

Sample location Date Origin of Ecological Number 
cattle zone 

Somanya 24/04/02 Somanya Coastal 30 
savannah 

University of Ghana Farm, 25/04/02 Kpong Costal 53 
Kpong savannah 

Government dairy farm, 26/04/02 Amrahia Coastal 21 
Amrahia savannah 

Kumasi abbatoir 29/04/02 Upper Northern 4 
East savannah 

Kumasi abbatoir 29/04/02 Upper Northern 15 
West savannah 

Kumasi abbatoir 29/04/02 Northern Northern 8 
Region savannah 

Kumasi abbatoir 29/04/02 Kumasi Middle 2 
Forest 

Kumasi abbatoir 29/04/02 Paga Northern 14 
savannah 

Kumasi abbatoir 29/04/02 Tamale Northern 3 
savannah 

Kumasi abbatoir 29/04/02 Bawku Northern 40 
savannah 

Kumasi abbatoir 29/04/02 Sandema Northern 4 
savannah 

Kumasi abbatoir 29/04/02 Burkina Sahel 2 
Faso 

Total 196 
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Due to the remoteness of many villages in Ngorongoro District, sample collection 

was combined with on-going rabies and Contagious Bovine Pleuropneumonia 

(CBPP) vaccination programmes. Between June and August 1999, six villages were 

visited: Wasso, Sakala, Loliondo, Mgongo, Ng'arwa and Olemishiri. 

Cattle and buffalo serum samples collected as part of other on-going disease surveys 

were also analysed in this study. Buffalo sera, collected opportunistically (Plate 3.2) 

also for rinderpest surveillance as part of the Programme for Pan-African Control of 

Epizootics, were obtained from the Veterinary Department, Tanzania National Parks 

(Dr. T. Mlengeya). Cattle samples that were collected in Ngorongoro District in 

1998, as part of a disease prevalence survey, were provided by Prof. R. Kazwala 

(Sokoine University of Agriculture). 

3.3.2 Serological survey for N. caninum 

Ghana 

None of the 196 serum samples collected from cattle gave a positive antibody 

response to N. caninum. The cut-off value for this ELISA is set at 40 % OD at or 

above which an individual animal would be designated as being seropositive to N. 

caninum. Seventy four percent of the samples gave a <10 % OD value. The highest 

OD value recorded was 24 % with 98 % of cattle giving a value of less than 19 %. 
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Tanzania 

Sera from 246 cattle were collected from the Serengeti region during this study. Of 

these, 8.1 % of cattle were found to be seropositive to N. caninum. Fourteen of these 

positive samples gave very high OD values of >80 %. Table 3.2 shows the 

percentage of seropositive cattle in the seven villages tested in Serengeti District and 

the six villages sampled in Ngorongoro District of north-western Tanzania. Each 

area had approximately the same percentage of cattle seropositive to N. caninum. 

Serological analyses of 130 cattle from Ngorongoro (collected by Prof. R. Kazwala) 

and 39 buffalo from the Serengeti National Park previously found the 

seroprevalence to N. caninum to be 0.8 % in Ngorongoro cattle and 2% in Serengeti 

buffalo. 

Unfortunately it was not possible to collect clinical material from any of the 

Tanzanian animals that were found to be positive for N. caninum. 
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Table 3.2 

Prevalence of N. caninum infection in cattle in seven areas of Serengeti district 

and six areas of Ngorongoro District, Tanzania. 

Village Number of 
cattle sampled 

Number of 
cattle 
seropositive 

% cattle 
seropositive to N. 
caninum 

Mu umu 8 0 0 
Bwitengi 39 5 12.8 
Bonchugu 20 2 10.0 
Kisangura 20 3 15.0 
Ngarawani 33 2 6.0 
N amoko 20 2 10.0 
Burunga 10 0 0 
Wasso 0 - - 
Sakala 24 1 4.2 
Loliondo 0 - - 
Ng'arwa 10 1 10.0 
Mono 51 4 7.8 
Olemishiri 11 0 0 
Total 246 20 8.1 
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3.4 DISCUSSION 

This study represents the first comprehensive epidemiological survey of N. caninum 

in cattle in West Africa. There was no evidence of the presence of N. caninum in the 

196 cattle sampled. Moreover, cattle sampled at the Kumasi abbatoir are drawn 

from a wide geographical area extending to Burkina Faso, Togo and Niger 

suggesting that the absence of N. caninum infection may extend to at least part of the 

wider West African region. 

A large number of samples were also collected in East Africa (n=284). In contrast to 

the data from West Africa, there was a significant level of Neospora infection in 

Tanzania, although the prevalence in the two areas of East Africa was markedly 

different. The presence of N. caninum in domestic cattle and Serengeti buffalo 

represents the first reporting of this parasite in Tanzanian cattle. It is important to 

note that although the number of animals sampled in Ghana was lower than in 

Tanzania, the numbers would still have been sufficient to detect a prevalence as low 

as 0.8 % (based on 196 samples at the 95 % confidence level). 

It is difficult to draw firm conclusions as to why the prevalence at the two sampling 

areas in East Africa was different. The prevalence of 8.1 % infection in Serengeti 

District is comparable with many other serological surveys in the UK at 12 % (Trees 

et al., 1999), Paraguay at 29.8 % (Osawa et al., 2002). Interestingly, the cattle in 

East Africa are of the N'Dama breed (Bos taurus), showing that this breed is also 
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susceptible to N. caninum infection. Most other studies have focused predominantly 

on European breeds. 

The surprising aspect of this study is the apparent complete absence of N. caninum 

in the West African survey. Sampling covered both old animals (breeders) and 

animals presented for slaughter, as well as young ones. One possible explanation for 

this is that West African cattle are genetically diverse from those of East Africa and 

European breeds, rendering them resistant to Neospora. For example, substantial 

differences were found at 20 microsatellite loci tested between zebu and taurine 

cattle in a study of 20 different cattle populations in Africa (MacHugh et al., 1997). 

The results from this study suggested that some West African populations of taurine 

cattle that are disease-tolerant are under threat of genetic absorption by migrating 

zebu herds. However, Troy et al. (2001) suggest that African cattle diversity is 

almost exclusively composed of a separate haplogroup which is encountered only 

rarely elsewhere. However, the N'Dama breed of cattle in Tanzania were found to 

be infected with N. caninum showing that the absence of the disease in Ghana is 

unlikely to be accounted for simply by host incompatibility due to breed differences. 

The N'Dama breed belongs to the Bos taurus species to which European cattle e. g. 

Holstein-Friesian also belong. The other cattle species tested in West Africa was 

Bos indicus, in which no evidence of N. caninum infection was found either. 

If breed differences cannot account for the absence of N. caninum in West Africa, 

then a second possible explanation could be the hostility of the environment to 
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coccidian oocysts, due to desiccating conditions in some regions. It is known that 

oocysts of T gondii, for example, survive optimally in cool moist conditions 

(Frenkel et al., 1975). However, it would then follow that other coccidians such as T. 

gondii, which is spread by oocyst shedding, would also be absent from this region. 

Several studies have shown that this is not the case and that T gondii prevalence in 

West Africa is similar in sheep and goats as it is in the UK. Van der Puije et al. 

(2000) found that 33.2 % of sheep tested (n = 732) in Ghana had anti-T gondii 

antibodies. In addition, this study found 26.8 % of goats (out of n=526) to be 

seropositive for T. gondii. Moreover, dry desiccating conditions also persist in East 

Africa where N. caninum was found. 

Another possibility for the absence of Neospora in Ghana could be that neosporosis 

is a facet of intensive cattle farming systems in which relentless genetic selection for 

productivity may increase susceptibility to infection. There is certainly a complete 

absence of intensive cattle farming in West Africa, where genetic selection for high 

milk production has been severely hampered by the increased susceptibility to 

disease in cattle improvement programmes. However, this theory is not supported by 

data from the Tanzanian survey where the farming systems are also extensive, 

although the volume of cattle rearing in East Africa is considerably greater than that 

in Ghana. 

A final possible explanation for the absence of N. caninum in the West African 

region may be that the parasite has simply not been introduced to this area because 

90 



Chapter 3 

historically, there has been very little importation of European cattle into West 

Africa and therefore limited opportunity for importing the parasite also. There are 

several accounts of attempts to introduce European cattle to Ghana, the first 

recorded was in 1908 (Annual Report on the Northern Territories, 1908, cited in 

Oppong, 1998) when four Aberdeen Angus bulls were sent from Britain but died 

very quickly on arrival in Ghana. A similar outcome befell three young Hereford 

bulls that were delivered by train to Kumasi in 1911 (Oppong, 1998). All three bulls 

died on the walk north to Tamale thus tragically ending one of the first attempts to 

introduce temperate cattle from the UK to Ghana. In the early 1930s it became 

obvious that European breeds and even their crosses were unsuitable to the 

environment owing to their susceptibility to tick-bone disease in particular. A six- 

month tour of the north of Ghana (then Gold Coast) in 1911 by a Captain Beal, the 

first British veterinarian to visit the country, had already concluded that the increase 

in cattle production, in order to meet the requirements of the country, was fraught 

with difficulties such as disease, the small size of local cattle breeds, acute water 

shortage in the dry season, and except in the Fulani herdsmen, a lack of knowledge 

on livestock breeding and improvement (Beal, 1973). 

Therefore it seems that the most likely explanation is that N. caninum was never 

introduced into West Africa via infected cattle. Despite the presence of cross-bred 

cattle arising from the importation of a small number of Holstein-Friesian cattle 

from the UK, the probability of the exported animals being infected with Neospora 

would be quite low. Even if the parasite did reach West Africa perhaps it was not 
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sustained in the extensive farming systems of the region. It is possible that vertical 

transmission may occur more efficiently in intensive Western farming systems due 

to regular calvings that may annually lower immunity in cattle, allowing 

recrudescence of infection. 

Historically, West Africa was not colonised in the same manner as East Africa 

where by 1920,10,000 Europeans had arrived in Kenya (Lawrence, 1998) and this 

number increased to 80,000 by the 1950's. It is possible that European dogs, which 

commonly accompanied their owners to East Africa, carried N. caninum with them 

and subsequently established the Neospora life-cycle. By contrast, Ghana was 

colonised by a relatively small number of Europeans and principally acted as a 

coastal trading route. 

Cattle in sub-Saharan Africa have to cope with a hostile environment ranging from 

extreme climatic conditions to a multitude of exotic diseases, such as 

trypanosomiasis, rinderpest and tick-borne fever. Therefore, N. caninum would rank 

as a relatively benign infection and would be unlikely to be the first priority for 

veterinary research in Africa. This may account for the lack of data on N. caninum 

prevalence from this region, but it is also a facet of samples being difficult to obtain. 

The infra-structure in these countries in terms of management of cattle, condition of 

roads and ability to access remote areas obviously makes sample collection much 

more difficult than in many other parts of the world. Nevertheless, it would be 

extremely interesting to collect further samples from these regions - perhaps 
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including samples from a wider host range and more countries. Whereas neosporosis 

may not be the most important cattle disease in Africa, further study of the disease 

on this continent, particularly for molecular analysis would be especially important 

for the study of the evolution of N. caninum. For example, if N. caninum in East 

Africa arrived via importation of European cattle or dogs, then we would expect 

close genetic similarities with isolates found in Europe. 
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Chapter 4: Analysis of genetic diversity in Neospora caninum using Random 

Amplification of Polymorphic DNA (RAPD) 

4.1 INTRODUCTION 

A key question underlying an understanding of both the epidemiology and 

pathogenicity of N. caninum is the extent to which both biological and genetic diversity 

might exist within the species. Some isolates of Neospora have been reported to differ 

in their pathogenicity in murine models (Lindsay et al., 1995; Atkinson et al., 1999) 

although it is not known how these data might relate to the disease in cattle. Serology 

data is extremely informative in many areas of epidemiology, for example in terms of 

prevalence of infection and defining host range (chapters 2 and 3) but it has little use in 

determining the extent of genetic variation amongst different isolates of a species. 

Schock et al. (2001) found that the antigenic profiles of six Neospora isolates 

recognised by polyclonal sera were all identical, indicating that there is no substantial 

variation in the immunodominant proteins. This re-enforces the results of Marsh et al. 

(1998) and Atkinson et al. (1999) who also failed to detect antigenic variation between 

two isolates of N. caninum. Genetic methods are therefore much more appropriate tools 

for the study of intra-specific variation and the broader field of molecular epidemiology 

and the majority of this study now focuses on the application of molecular techniques. 

N. caninum has a wide host range and antibodies to the parasite have been found in 

sheep (Ovis aries) (Dubey and Lindsay, 1990b), goats (Capra hircus) (Dubey et al., 

1992), deer (Cervis eldi, Odocoileus hemionus) (Woods et al., 1994), foxes (Vulpes 

vulpes) (Buxton et al., 1997b) and other carnivores (Barber et al., 1997). Due to its 
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wide host range, wide geographical distribution and potential for sexual recombination, 

N. caninum might be expected to produce significant variation within the species. Such 

diversity may have an impact on the range of pathology associated with infection in 

both cattle and dogs and would be an important consideration in the design of vaccines 

to protect against neosporosis. Moreover, an understanding of the molecular 

epidemiology of N. caninum could be exploited to help determine the importance of 

various transmission routes and the relative roles of intermediate and definitive hosts in 

the spread of infection. 

The phylogenetic position of N. caninum has been defined by ribosomal DNA 

sequencing and places it as a separate species within the Sarcocystidae, closely related 

to T. gondii (Franzen et al., 2000). However, no differences have been reported between 

ribosomal DNA sequences of N. caninum isolates (Marsh et al., 1995; Stenlund et al., 

1997; Ellis et al., 1998), although the conservation of ribosomal RNA genes means that 

these markers are unlikely to give a good indication of intra-species diversity. Atkinson 

et al. (1999) analysed two isolates, NC-Liverpool and NC-SweB1, using three RAPD- 

PCR primers and demonstrated variant banding patterns. However, the small number of 

primers and isolates used precludes wider interpretation of these data. 

Genetic diversity can be analysed by comparing genes between different isolates of a 

species. The more genes that are analysed, the more powerful the measure of diversity. 

Selection of genes has an important influence on the outcome of this measure so need to 

be carefully chosen. Thus, studies which seek to measure diversity based on a few loci 

are open to the criticism that the results are biased by the genes selected for study. 

Techniques have therefore been developed that enable heterogeneity over a large 
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number of genes to be analysed simultaneously. One example of such a technique is 

Random Amplification of Polymorphic DNA (RAPD). 

The RAPD technique allows the rapid detection of genomic polymorphism using a 

single short oligonucleotide primer of arbitrary sequence in a PCR reaction. It was first 

described by Williams et al. (1990) and has since been used to analyse genetic diversity 

in many organisms. The PCR reaction is carried out under low stringency conditions 

producing strain-specific fragments that are subsequently analysed by agarose gel 

electrophoresis. This method allows detection of polymorphisms at different loci 

simultaneously, using very small quantities of genomic DNA. In addition it is a very 

useful technique for organisms for which there is little genome information, such as N. 

caninum. The only requirement to perform this method successfully is that relatively 

pure genomic DNA can be isolated (section 4.2.3) because any contaminants (DNA or 

inhibitors) could cause spurious banding patterns. Thus, it is especially important that 

any heterogeneity found can be attributed to the different isolates rather than 

contaminant DNA. Several steps were taken in the study to ensure that the DNA used 

was very pure and these are described later (section 4.3.2). 

The aims of this chapter were: 

" To measure the extent of genetic diversity that exists amongst the available 

laboratory isolates of Neospora caninum. 

9 To analyse any specific genetic clustering of isolates, for example, to determine 

whether canine isolates cluster separately from those originating from cattle 
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4.2 MATERIALS AND METHODS 

4.2.1 Parasite material 

Six Neospora caninum isolates were used for RAPD analysis and are listed in Table 4.1 

along with details of their isolation and maintenance. All isolates were maintained 

routinely by tissue culture and none of these isolates had previously been cloned. The 

highest number of tissue culture passages for each isolate before analysis by RAPD 

ranged from 33 and 56 passages, except for NC-1, which had been maintained in tissue 

culture for considerably longer (212 passages). The following colleagues generously 

supplied the isolates of N. caninum. Dr. Camilla Bjorkman (National Veterinary 

Institute, Uppsala, Sweden) isolate NC-SweB1; Prof. Pat Conrad (School of Veterinary 

Medicine, University of California) isolate BPA- 1; Prof. AJ Trees (Liverpool School of 

Tropical Medicine, United Kingdom) isolates NC-Liverpool and NC-LivB 1. The M3 

strain of T. gondii was kindly supplied by Dr. Lee Innes (Moredun Research Institute, 

UK). 

The T. gondii strains (RH, S48 and M3) were also maintained in tissue culture in the 

same way as described below for N. caninum. Cryptosporidium parvum sporozoites 

were obtained from Type 11 strain (Iowa) oocysts kindly provided by Prof. H. W. Smith 

(Scottish Parasite Diagnostic Laboratory, UK) and were excysted from oocysts using 

1.5 % taurocholic acid (Sigma, UK) in PBS (pH 7.2) for 1.5 h at 37 T. Sarcocystis sp. 

DNA was obtained from parasites purified from a sheep heart and was a gift from Mr. 

S. Wright (Moredun Research Institute, UK). 
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4.2.2 Parasite maintenance and tissue culture 

4.2.2.1 Culture medium and Solutions 

(i) Iscove's Modified Dulbecco's Medium (Life Technologies, Paisley, U. K. ) was 

used for cell culture and was supplemented with 5% (v/v) foetal calf serum (FCS) and 

100 U/ml penicillin and 100 µg/ml streptomycin sulphate. Culture medium was filter 

sterilised using a 0.2 µm membrane pore-size Sartolab® V500 filter (Sartorius, Surrey, 

U. K. ) connected to a diaphragm vacuum pump. 

(ii) HEPES buffered balanced salt solution was used for washing cell monolayers 

prior to trypsinisation and was made as follows: 140 mM sodium chloride, 5 mM 

potassium chloride, 5 mM D-glucose, 10 mM HEPES and 0.001 % phenol red. The 

buffer was adjusted to pH 7.5 using 5M sodium hydroxide and filter sterilised as 

described above. 

(iii) Suspension medium for the cryopreservation of N. caninum tachyzoites and host 

cells consisted of Iscove's Modified Dulbecco's Medium supplemented with 10 % (v/v) 

FCS, 100 U/ml penicillin and 100 µg/ml streptomycin sulphate and 12.5 % (v/v) 

DMSO. Suspension medium was filter sterilised using syringe filters. All solutions 

were stored at 4 °C. 

4.2.2.2 Culture of host cells (Vero) and N. caninum 

Parasite tachyzoites were maintained by twice-weekly serial passage using African 

Green Monkey kidney fibroblasts (Vero cells) as host cells. Cells and parasites were 

grown in filter sterilised IMDM in 25 cm3 (T25) or 75 cm3 (T75) tissue culture flasks 
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(Greiner, Germany) at 37 °C in a5% CO2 humidified incubator. Confluent uninfected 

host cells were detached from the surface of culture flasks by washing the cell 

monolayer twice in HEPES saline for 1 min (5 ml for a T25,10 ml for a T75) and 

incubating the cells in versine : trypsin (4: 1) for approximately 5 min at 37 T. Gentle 

tapping of the flask aided the removal of cells from the flask surface. Cells were 

centrifuged at 1500 xg for 5 min at 4°C and resuspended at a density of 2x 106 cells/ml 

IMDM. Cells were re-seeded at 1x 105 in 5 ml IMDM for a T25 flask and 4x 105 in 15 

ml medium for a T75 flask. Vero cells were infected 24 h later at a parasite-to-cell ratio 

of 3: 1 and 4: 1 for a T25 and T75, respectively. Tachyzoites were harvested 3 or 4 days 

later using a sterile cell scraper (Greiner Ltd., UK). Cells and parasites were counted 

using a Neubauer hemacytometer (Weber Scientific Ltd, U. K. ). 

4.2.2.3 Cryopreservation 

Parasite tachyzoites and Vero cells were cryopreserved in liquid nitrogen using 

dimethylsulphoxide (DMSO) as a cryoprotectant. Following the same protocol as 

above (section 4.2.3.2), tachyzoites were harvested from flasks using a sterile cell 

scraper and counted with a haemocytometer. After washing in IMDM containing 10 % 

(v/v) FCS, the tachyzoites and host cells were centrifuged at 1500 xg for 10 min at 4 °C 

and resuspended in 1 ml suspension medium (Iscove's Modified Dulbecco's Medium 

supplemented with 10 % (v/v) FCS, 100 U/ml penicillin and 100 µg/ml streptomycin 

sulphate and 12.5 % (v/v) DMSO). Aliquots (1 ml) were pipetted into cryotubes, which 

were placed in a polystyrene box insulated with cotton wool and cooled slowly to -80 

T. Vials were catalogued and immersed in liquid nitrogen for long-term storage. All 
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isolates were held at both the Division of Infection & Immunity, University of Glasgow 

and at the Moredun Research Institute, Edinburgh. 

4.2.2.4 Preparation of parasite tachyzoites for DNA extraction 

N. caninum and T. gondii tachyzoites were separated from host cells by filtration 

through 47 mm diameter 3 µm pore-size Nuclepore® polycarbonate filters (Whatman, 

U. K. ). Filtered tachyzoites were washed twice in PBS (pH 7.4) by centrifugation at 

1500 xg for 20 min at 4 °C. Tachyzoites were given a final wash in PBS (pH 7.4) and 

pelleted by centrifugation at 13000 xg for 3 min at 4 T. 

4.2.3 DNA extraction 

The GenomicPrepTM Cells and Tissue DNA Isolation kit (Amersham Pharmacia 

Biotech, UK) was used to extract DNA from N. caninum and T. gondii cultured 

parasites, C. parvum sporozoites and Vero cells. By using the same kit, all DNA 

preparations were standardised. The following method was calibrated for use with 3-5 x 

106 cells but could be adjusted depending on the number of cells harvested. Cells were 

resuspended in a final volume of 40 µl PBS by vigorous vortexing. Cell Lysis Solution 

(600 µl) was added and the solution mixed by pipetting to lyse the cells. RNase A 

solution (3 µl) was then added to the cell lysate and mixed by inverting 25 times 

followed by incubation at 37 °C for 60 min. The samples were cooled on ice for 2-3 

min to bring them down to room temperature, before adding 200 µl of Protein 

Precipitation Solution and vortexing vigorously to mix uniformly with the cell lysate. 

After centifugation at 13000 xg for 3 min, the supernatant (containing the DNA) was 

decanted into a clean 1.5 ml tube containing 600 µl of 100 % isopropanol and the 

original tube containing the precipitated protein pellet was discarded. The isopropanol 
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tube was inverted 50 times followed by centrifugation at 13000 xg for 1 min, leaving 

the DNA visible as a small white pellet. The DNA was washed with 70 % ethanol 

followed again by centrifugation at 13000 xg for 1 min. The tube was then drained 

onto absorbent paper and left to air dry for 15 min. The DNA was rehydrated by adding 

100 µl water to the pellet and was left overnight at room temperature. The DNA was 

subsequently stored at 4 °C. 

4.2.4 DNA integrity and concentration 

All DNA that was extracted and purified was run on an ethidium bromide stained gel to 

check that the DNA was intact. Five µl of DNA was mixed with 1 µl of loading buffer 

(0.25 % Bromophenol blue, 0.25 % xylene cyanol FF, 40 % w/v sucrose in water) and 

loaded onto a1% agarose gel in 0.5 x TBE buffer (pH 8.3). A spectrophotometer was 

also used to quantify DNA so that equivalent amounts of each isolate could be used in 

RAPD reactions. 

4.2.5 Random Amplification of Polymorphic DNA (RAPD) 

4.2.5.1 RAPD method 

RAPD analysis on DNA samples was performed using Ready-to-GoTM RAPD analysis 

beads (Amersham Pharmacia Biotech, UK). The beads were stable at room 

temperature and contained AmpliTaq and Stoffel fragment, 0.4 mM dNTPs (each), 2.5 

µg bovine serum albumin, 10 mM Tris (pH 8.3), 30 mM KCL and 3 mM MgCl2 [pH 

8.3] buffer. DNA was amplified with 25 pmol of primer and water to a final volume of 

25 d with the addition of one RAPD analysis bead to approximately 10 ng of template 

DNA. The mixtures were subjected to 45 cycles of amplification (95 °C for 60 s, 36 °C 

for 60 s, and 72 °C for 120 s for each cycle) with an initial incubation step at 95 °C for 5 
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min, in a GeneAmp PCR System 9600 thermocycler (Perkin-Elmer). Twenty-six 

primers were used in the RAPD analysis obtained from either Amersham Pharmacia 

Biotech, UK or from Operon (Operon Technologies Inc, CA, USA) (Table 4.2). To 

ensure that amplifications were reliable, lyophilised DNA from the BL21 and C1a 

strains of E. coli (included in the kit) was also tested. 

4.2.5.2 Gel electrophoresis of PCR products 

Five µl of each PCR amplicon was mixed with 1 µ1 of loading buffer (0.25 % 

Bromophenol blue, 0.25 % xylene cyanol FF, 40 % w/v sucrose in water) and loaded 

into 2% agarose gel in 0.5 x TBE buffer (pH 8.3). The gel electrophoresis was run at 

120 V for 1 h. A 100-base pair DNA molecular weight marker (Gibco BRL, UK) was 

used for size determination of amplicon fragments. The gels were stained in ethidium 

bromide (10µg/ml) in TBE buffer for 30 min and visualised under UV illumination. The 

gel images were photographed using a gel imager (Appligene Oncor, France). 

4.2.6 Cluster Analysis 

Each DNA band on the gel was defined as a marker and for each sample these were 

scored as present/absent in a binary matrix. Data were then analysed using a publicly 

available clustering calculator programme (http: //www. biology. ualberta. ca/jbrzusto/ 

cluster. html). The matrix was subjected to pair-wise similarity analysis. 
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Table 4.2 

Primer sequences used in RAPD analysis 

Name Sequence (5' to 3') 
OPBC-01 CCTTCGGCTC 
OPBC-02 ACAGTAGCGG 
OPBC-03 GGCTTGACCT 
OPBC-04 CCACGTGCCA 
OPBC-05 GAGGCGATTG 
OPBC-06 GAAGGCGAGA 
OPBC-07 TGTGCCTGAC 
OPBC-08 GGTCTTCCCT 
OPBC-09 GTCATGCGAC 
OPBC-10 AACGTCGAGG 
OPBC-11 TTTTGCCCCC 
OPBC-12 CCTCCACCAG 
OPBC-13 CCTGGCACAG 
OPBC-14 GGTCCGACGA 
OPBC- 15 CCAGACTCCA 
OPBC-16 CTGGTGCTCA 
OPBC-17 CCGTTAGTCC 
OPBC-18 GTGAAGGAGG 
OPBC-19 ACAAGCGCGA 
OPBC-20 AGCACTGGGG 
APB I GGTGCGGGAA 
APB2 GTTTCGCTCC 
APB 3 GTAGACCCGT 
APB 4 AAGAGCCCGT 
APB 5 AACGCGCAAC 
APB 6 CCCGTCAGCA 

OPBC primers obtained from Operon Technologies Inc, CA, USA 

APB primers from Amersham Pharmacia Biotech, UK 
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The index of similarity (S) of samples i and j was estimated using Jaccard's co-efficient, 

denoted by: 

S=a/(a+b+c) 

where a= bands present in both samples; b= bands present in sample i, absent in 

sample j; c= bands present in sample j, absent in sample i. 

The un-weighted pair group arithmetic average (UPGMA) algorithm was used for 

clustering analysis and the output was used to construct a phenogram. 
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RESULTS 

4.3.1 Analysis of genomic DNA 

The integrity of extracted and purified DNA was checked by running a small quantity 

on an ethidium bromide-stained gel. This was performed for each isolate prior to the 

RAPD study to check that the DNA was not sheared. Figure 4.1 is an example showing 

NC-LivB 1, JPA-2, S48 and Vero cell DNA. The bands are distinct showing intact 

genomic DNA with no smearing present that would indicate shearing of the DNA has 

occurred. 

4.3.2 Control experiments 

E. coli DNA was used as a control to ensure the amplifications were working correctly. 

Figure 4.2 demonstrates the different banding pattern of the E. coli (BL21 or Cl a) 

compared with Neospora and Sarcocystis sp. isolates. The banding pattern for the 

control DNA corresponded exactly to that published by the manufacturers and so 

ensured the method was working correctly. 

Since RAPD analysis entails amplification of the total genomic DNA in each sample, 

contamination of parasite material with host cell DNA would give potentially 

misleading results. To establish whether our procedures for removal of host cell DNA 

were adequate and that there was no carry-over of host DNA into the parasite DNA 

samples, RAPD analysis was performed using primers on samples of both host cell and 

parasite DNA respectively. Samples of Neospora DNA were seeded with increasing 

concentrations of host cell DNA and RAPD analysis performed on both the mixtures 

and on the pure samples. Figure 4.3 shows the typical outcome of such an experiment 

using primer OPBC2 and demonstrates that parasite RAPD profiles differed markedly 
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Figure 4.1 
Genomic DNA of four N. caninum isolates run on a1% agarose gel 

0.5 kb 

Figure 4.2 
RAPD gel showing amplification with Primer 1 on aI% agarose gel 
(1=1 kb ladder; 2=BPA; 3=JPA-2; 4=NC-LivB 1; 5=NC-1; 6=NC-LivC; 7= NC- 
Sweb 1; 8=Sarcocystis sp.; 9= E. coli BL2 1; 1 0=E. coli C1 a) 
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Figure 4.3 
RAPD analysis of titrated samples of parasite and host cell DNA 
using primer OPBC2. Lane 1=N. caninum (LivBl isolate); Lane 6= Vero cell; 
Lanes 2-5 = titration of parasite DNA with host cell DNA. 

23456 

1.0 kb 

0.5 kh 

Parasite : Host DNA ratio 
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Chapter 4 

from those given by host cell DNA alone. Moreover, where occasional band sizes given 

by host and parasite DNA were similar (one out of 6 bands for primer OPBC2), no 

titration effect was seen, confirming that these bands were unlikely to result from DNA 

cross contamination. 

4.3.3 Analysis of parasite DNA 

RAPD analysis was performed using the primers in Table 4.2 on total genomic DNA 

from six laboratory isolates of N. caninum, three strains of T gondii, one isolate of C. 

parvum and one isolate of Sarcocystis sp. All the primers gave clear and reproducible 

banding patterns. Representative gels for 6 of the primers are shown in Figures 4.4 and 

4.5,4.6 and 4.7. The majority of primers gave rise to banding patterns such as those 

seen in Figures 4.4 and 4.5, with relatively little variation in banding pattern between 

Neospora isolates. Figure 4.6 also shows almost identical fingerprint patterns with all 

six Neospora isolates (primer OPBC 04, samples A-F). However, in most cases primers 

gave rise to variant profiles indicating that RAPD analysis was able to detect DNA 

polymorphisms between isolates of N. caninum. For example, primer APB04 gave an 

identical banding pattern for isolates BPA-1, JPA-2, NC-1, NC-LivB 1 and NC-SweB 1, 

but the profile for isolate NC-Liverpool showed clear polymorphic bands at 

approximately 360,480 and 630 bp (Figure 4.6, primer APB04, sample E). Similarly, 

primer OPBC16 gave a consistent profile for isolates BPA-1, JPA-2 and NC-1, but 

showed a clear polymorphic band at approximately 470 bp in isolates NC-LivB 1 and 

NC-SweB 1 (Figure 4.7, primer OPBC 16). Some primers gave particularly polymorphic 

banding profiles. For example, primer OPBCI8 gave identical patterns only with 

isolates JPA-2, NC-Liverpool and NC-1, whereas isolates BPA-1, NC-LivB2 and NC- 

SweB 1 showed quite variant patterns (Figure 4.7, primer OPBC 18). 
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Figure 4.4 

RAPD analysis of 5 N. caninum isolates (BPA, JPA-2, NC-LivB 1, NC-1 and 
NC-SweB 1) and Sarcocystis sp. RAPD profile produced using Primer OPBC 2. 

I kb BPA JPA-2 NC-LivBl NC-1 NC-SweBI Sarcocystissp. 

Figure 4.5 

RAPD analysis of 5 N. caninum isolates (BPA, JPA-2, NC-LivBl, NC-1 and 
NC-SweB 1) and C. parvum. RAPD profile produced using Primer OPBC 17. 

lkb BPA JPA-2 NC-LivBl NC-1 NC-SweBI C. parvum 
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Chapter 4 

All primers gave banding patterns for the N. caninum isolates that were markedly 

different from the three strains of T gondii, and from C. parvum and Sarcocystis sp. 

4.3.4 Cluster analysis 

To quantify the data from the RAPD analysis, the total number of bands produced by 

each primer were scored as present or absent and recorded in a binary matrix. An 

example of a binary matrix and subsequent cluster analysis is shown in Table 4.3. Each 

band on a gel was defined as a marker and only clear and unambiguous bands were 

included in the analysis. RAPD analysis with the 26 primers gave rise to 434 markers 

of which 222 were conserved between all the Neospora isolates and distinguished them 

from the other Apicomplexa. An additional 54 markers were also unique for Neospora 

but were polymorphic within the species and able to differentiate between the individual 

isolates. The RAPD data was subjected to pair-wise similarity analysis using Jaccard's 

co-efficient and used the UPGMA method for clustering. The resulting phenogram is 

shown in Figure 4.8 and shows clearly that genetic diversity exists amongst the N. 

caninum isolates in this study. However, the N. caninum isolates clustered together and 

were clearly distinct from T gondii, Sarcocystis sp. and C. parvum. T gondii strains 

S48, RH and M3 clustered together and were the closest to the N. caninum cluster, 

followed by Sarcocystis sp. and then C. parvum. The phenogram indicates that N. 

caninum isolates originating from bovines (BPA-1, JPA-2, NC-Swebl, NC-LivBl) did 

not cluster separately from those originally derived from dogs (NC-l, NC-Liverpool). 

Furthermore, isolates that had been adapted for tissue culture the longest, for example 

isolate NC-l, remained genetically close to isolates that had been adapted to tissue 

culture for less time, such as isolate BPA-1. 
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COMBINED PRIMERS 2,3 &4 
65 

123456789 
A111111000 
B111111100 
0000000010 
D000000001 
E000000010 
F000010000 
G000000010 
H000000001 
I000000100 
J111111000 
K000000001 
L111111000 
M000000100 
N011011000 
0111111000 
P000000100 
Q000010000 
R000000100 
A000000001 
B111101100 
0000000001 
D000000010 
E000000001 
F101000000 
G101111000 
H000000001 
I000000011 
J000000001 
K111111000 
L000000100 
M000000010 
N111111000 
0000000010 
P000000100 
Q111111000 
R000000100 
5000000010 
T000000001 
U111111110 
A000000001 
B000000100 
C110100000 
D000000010 
E000000100 
F111111000 
G000000001 
H111111010 
I000000011 
J111111000 
K000000010 
L000000001 
M000010000 
N000000010 
0111111000 
P000000001 
Q111111100 
R111111100 
S000000011 
T000000010 
U111111001 
V000000100 

Table 4.3 

Binary table constructed for three 

primers showing typical cluster 

analysis output 

Numbers refer to parasite isolates 

as follows: 

1 =BPA 
2= JPA-2 

3= Nc-LIVB 1 

4= NC-1 

5= Nc-LIVC 

6= NC-SWEB1 

7=C. parvum 

8= Sarcocystis sp. 
9= Vero cells 

1 designates the presence of a band 

0 designates the absence of a band 

Letters denote bands on the gel 
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w111111000 
x000000010 
Y000000100 
2111111000 

Cluster VO. 1 

Using Unweighted Arithmetic Average 
The Distance/Similarity measure is Jaccard Similarity. 
There are 9 samples. 
Clustering procedure: 
Step AB Distance 

1 NC1 BPA 0.045454545454545456 
2 SWEB LIVB1 0.045454545454545456 
3 2' 1' 0.10968379446640317 
4 3' JPA 0.11067193675889328 
5 4' LIVC 0.22317948717948716 
6 C. P 5' 0.8523223304473305 
7 VERO S. C 0.9032258064516129 
8 7' 6' 0.9629992829005987 

Tree Topology (edge lengths ignored) 

+----BPA 
+----1' 

+----NC1 

II +----LIVB1 

+----SWEB 
+----4' 

+----JPA 

+----LIVC 
+----6' 

+----C. P 
8' 

+----S. C 

+----VERO 

From To Length 

8' 6' 0.05533847622663407 
6' 5' 0.3145714216339217 
5' 4' 0.05625377521029694 
4' 3' 4.940711462450564E-4 
3' 1' 0.032114624505928856 
1' BPA 0.022727272727272728 
1' NC1 0.022727272727272728 
3' 2' 0.032114624505928856 
2' LIVB1 0.022727272727272728 
2' SWEB 0.022727272727272728 
4' JPA 0.05533596837944664 
5' LIVC 0.11158974358974358 
6' C. P 0.42616116522366526 
8' 7' 0.029886738224492893 
7' S. C 0.45161290322580644 
7' VERO 0.45161290322580644 

About to do stability analysis... 
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Results of stability analysis: 
Runs: 65. New data generated by Jacknife 
Node Count 
1' 63 
2' 62 
3' 61 
4' 61 
5' 65 
6' 65 
7' 65 
8' 65 

For each (interior) node in the original tree, the table 
says how many of the generated trees had an equivalent interior 
node. 
Two interior nodes (in different trees) are equivalent if they 
contain 
the same samples AND they split those samples into the same two 
groups. 

Cluster VO. 1 

Using Unweighted Arithmetic Average 
The Distance/Similarity measure is Jaccard Similarity. 
There are 9 samples. 
Clustering procedure: 
Step AB Distance 

------------------------------- ------------------------------- 
1 NC1 BPA 0.045454545454545456 
2 SWEB LIVB1 0.045454545454545456 
3 2' 1' 0.10968379446640317 
4 3' JPA 0.11067193675889328 
5 4' LIVC 0.22317948717948716 
6 C. P 5' 0.8523223304473305 
7 VERO S. C 0.9032258064516129 
8 7' 6' 0.9629992829005987 

Tree Topology (edge lengths ignored) 

+----BPA 
+----1' 

+----NC1 

I +- --LIVB1 

+----SWEB 

-JPA 

I +----LIVC 

---C. P 
8' 

I +----s. c 

+----VERO 

From To Length 

8' 6' 0.05533847622663407 
6' 5' 0.3145714216339217 
5' 4' 0.05625377521029694 
4' 3' 4.940711462450564E-4 
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3' 1' 0.032114624505928856 
1' BPA 0.022727272727272728 
1' NC1 0.022727272727272728 
3' 2' 0.032114624505928856 
2' LIVB1 0.022727272727272728 
2' SWEB 0.022727272727272728 
4' JPA 0.05533596837944664 
5' LIVC 0.11158974358974358 
6' C. P 0.42616116522366526 
8' 7' 0.029886738224492893 
7' S. C 0.45161290322580644 
7' VERO 0.45161290322580644 

About to do stability analysis... 

Results of stability analysis: 
Runs: 100. New data generated by Bootstrap 
Node Count 
1' 53 
2' 50 
3' 6 
4' 8 
5' 74 
6' 92 
7' 72 
8' 70 

For each (interior) node in the original tree, the table 
says how many of the generated trees had an equivalent interior 

node. 
Two interior nodes (in different trees) are equivalent if they 
contain 
the same samples AND they split those samples into the same two 
groups. 
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4.4 DISCUSSION 

In this chapter the genetic diversity in six isolates of N. caninum of both bovine and 

canine origin was analysed using genetic markers derived from RAPD-PCR analysis. 

These data demonstrate that genetic heterogeneity exists within the species and may 

have important implications for our understanding of the pathology and epidemiology 

of neosporosis. 

Genetic analysis of the Neospora isolates by RAPD-PCR produced a large number of 

polymorphic markers that revealed genetic variation in N. caninum. The decision to use 

RAPD-PCR to examine genetic variation was based on the fact that it is a quick and 

reliable method for the analysis of DNA samples obtained from cultured parasites. 

However, data from RAPD-PCR must be interpreted with caution. First, DNA samples 

contaminated with host material could give rise to misleading results. Substantial care 

was necessary to ensure that no cross-contamination occurred, as demonstrated by the 

titration experiments using parasite and host cell DNA. Second, co-migration of RAPD 

fragments may result from non-homologous genomic sequences that by chance have the 

same electrophoretic mobility. For this reason the data from the RAPD analysis were 

used to draw a phenogram based on a similarity index since these data cannot strictly be 

used to measure genetic distance (van de Zande and Bijlsma, 1995). Nevertheless, 

RAPD analysis has been used both as a measure of genetic diversity and for 

determining phylogenetic lineages in other protozoa, most notably in trypanosomes 

(Muller et al., 1997; Brisse et al., 2000) and Leishmania (Banuls et al., 1999). An 

excellent correlation has also been shown between data obtained by RAPD analysis and 

that derived from other typing methods such as multilocus enzyme electrophoresis 

(MLEE) or pulsed-field gel electrophoresis in bacteria (Barbier et al., 1996). 
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In this study the RAPD data and subsequent cluster analysis showed that all the 

Neospora isolates clustered together independently from the other apicomplexan 

parasites and placed them closest to the T gondii strains. Sarcocystis sp. was the next 

closest neighbour followed by C. parvum, which appeared most distant from N. 

caninum. This pattern is consistent with the phylogenetic placing of N. caninum by 

analysis of both the small-subunit ribosomal RNA (Franzen et al., 2000) and the large 

sub-unit ribosomal RNA gene sequences (Mugridge et al., 1999). 

Cluster analysis of the individual Neospora isolates indicated that there was no 

segregation of markers with respect to either host origin or geographical location. Thus 

isolates derived from dogs and cattle, such as NC-1 and BPA-1, appeared more similar 

than two isolates derived from dogs (NC- I and NC-Liverpool). Although the number of 

isolates was limited, the lack of genetic clustering between dog and bovine isolates does 

suggest that there is likely to be an epidemiological link between these hosts. This does 

not imply that cattle necessarily become infected from oocysts passed in dogs faeces; 

but simply that there is likely to be an exchange of parasite material between the two so 

that parasites of a similar genotype are found in both hosts. Indeed, dogs could also 

become infected by ingestion of bovine material for example, cattle placenta. 

Schock et al. (2001) compared the growth rates of the six N. caninum isolates analysed 

in this chapter and showed that some isolates grew significantly faster than others under 

identical tissue culture conditions. However, no correlation was seen between growth 

rate and the number of previous tissue culture passages undergone by each isolate. For 

example, based on its high number of tissue culture passages, isolate NC-1 might be 
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expected to be the most "tissue culture-adapted" and hence likely to multiply at the 

fastest rate. However, isolate NC-1 grew at only half the rate of isolate NC-Liverpool, 

which had undergone only one fifth the number of passages. This effect was 

reproducible at all three initial parasite to cell ratios. Similarly, the isolate that had 

undergone the second highest number of passages (NC-LivBI) showed the second 

slowest growth rate. The fact that the number of previous tissue culture passages did 

not appear to influence growth rate in vitro suggests that the variation seen in growth 

rate between the isolates may reflect genuine biological diversity. These biological 

observations are supported by the RAPD analysis in this study, which shows that there 

is no genetic clustering of isolates with respect to passage number and support data of 

Atkinson et al. (1999) that suggest that virulence in mice also occurrs independently of 

passage number. 

Atkinson et al. (1999) compared the pathogenicity of isolate NC-Liverpool and NC- 

SweB 1 in mice inoculated subcutaneously with tachyzoites and found that brain lesions 

resulting from infection with NC-Liverpool were associated with more necrosis and a 

greater inflammatory response than those from NC-SweB 1. Mice infected with NC- 

Liverpool also showed a greater and more rapid weight loss compared with NC-SweB 1. 

Schock et al. (2001) showed that isolate NC-Liverpool grew at over ten times the rate in 

tissue culture compared to NC-SweBI. Although these data demonstrate that different 

isolates of N. caninum grow at different rates in vitro, this does not imply a direct 

correlation with virulence in other hosts. Pathogenicity in cattle will be a combination of 

host (Williams et al., 2000) and parasite factors, as well as external factors such as the 

timing of infection and the immune status of the animal. Further studies to examine the 
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interaction of host and parasite in determining pathogenicity are essential to our 

understanding of neosporosis. 

The RAPD data in this study show genetic diversity between the three strains of T. 

gondii and reflects that found in other studies (Guo and Johnson, 1995). However, 

although there are obvious similarities shown in this RAPD study, the extent to which 

the population structure of N. caninum mirrors that of T. gondii is not known and awaits 

more detailed analysis. In T. gondii a population structure exists in which there are 

three clonal lineages (Type I, Type II and Type III strains) (Howe and Sibley, 1995). 

These lineages are still able to undergo meiotic recombination (albeit rarely) thus 

demonstrating that they are not separate species (Sibley and Howe, 1996). The 

predominantly clonal population of Toxoplasma appears to result in a correlation 

between the development of disease and parasite genotype. Sibley and Howe (1996) 

analysed animal and human cases of toxoplasmosis and found a strong link between 

biological phenotype and specific parasite lineages. It is tempting to speculate that a 

similar clonal population structure may exist in N. caninum, particularly since the 

opportunity for sexual recombination might be even more limited due to the 

predominance of vertical transmission in cattle (French et al., 1999) and the still 

ambiguous role of the definitive host in the natural life-cycle of the parasite. 

The RAPD technique has proved to be an extremely useful and quick method of 

obtaining a preliminary measure of the extent of genetic heterogeneity within a species. 

Nevertheless, the number of genetic markers obtained by RAPD analysis was relatively 

low for this parasite. It would be very useful to be able to utilise a method that is even 

more discriminatory and can obtain a larger number of genetic markers that could be 
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adapted for use on clinical samples. Analysis of field isolates from defined outbreaks is 

essential since laboratory isolates are unlikely to be fully representative. Amplified 

fragment length polymorphism (AFLP) is an extremely sensitive and specific whole 

genome-typing technique and is ideal for this type of study. 

123 



Chapter 5 

Chapter 5: Analysis of genetic diversity in Neospora caninum using 

Amplified Fragment Length Polymorphism (AFLP) techniques 

5.1 INTRODUCTION 

Amplified Fragment Length Polymorphism techniques provide a sophisticated 

method of fingerprinting genomic DNA (Vos et al., 1995) that has the distinct 

advantage of not requiring any prior genome sequence information. Like RAPD, 

AFLP surveys the entire genome of the species being studied but is considered to 

be far more reproducible because it uses high annealing temperatures at all PCR 

steps to ensure specific primer binding. AFLP is based on the selective 

amplification of a subset of genomic restriction fragments produced by 

restriction enzyme digestion followed by PCR. Initially genomic DNA is 

digested with restriction endonucleases and double-stranded DNA adapters are 

ligated to the ends of the DNA fragments to produce templates for subsequent 

amplification. Selective nucleotides are then added to the 3' ends of PCR 

primers so that only a subset of the fragments are amplified i. e. only those 

restriction fragments in which the nucleotides flanking the restriction site match 

the selective nucleotides being amplified. The amplified fragments are then 

analysed using denaturing polyacrylamide gel electrophoresis. 

AFLP was initially used exclusively in the plant science field specifically to 

generate polymorphic markers for genetic linkage mapping (Simons et al., 1997). 

Subsequently it has proved a valuable tool for the analysis of both prokaryote 

and eukaryote genomes in a range of species. Janssen et al. (1996) found the 

technique suitable for typing bacteria where it enabled the differentiation of 
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highly related Xanthomonas strains and even biovars. The technique has also 

been employed in studying the genetic diversity in cattle (Ajmone-Marsan et al., 

2002) 

Masiga et al. (2000) describe the application of AFLP in the field of parasite 

genetics and Grech et al. (2002) showed the technique to be ideal in identifying 

distinct genetic markers between clones of Plasmodium c. chabaudi. A genetic 

linkage map for Eimeria tenella has also been constructed using AFLP (Prof. 

Martin Shirley, pers. comm. ). 

AFLP is an extremely powerful technique for detecting genetic polymorphisms 

because a typical single reaction gives rise to between fifty and one hundred 

markers that are detected by gel electrophoresis. Eventhough RAPD analysis 

showed that there was genetic heterogeneity amongst Neospora isolates (Chapter 

4) it was felt that a technique such as AFLP would be more sensitive, more 

reproducible and reveal more polymorphisms between isolates. The greater 

discriminatory power of AFLP was considered important because polymorphic 

diversity in N. caninum was shown to be relatively low by RAPD analysis. For 

example, many RAPD primers showed few or no polymorphisms suggesting 

potentially low genetic diversity in the N. caninum isolates. Moreover, it was not 

known whether our laboratory stocks of N. caninum consisted of effectively 

"cloned lines" or whether heterogeneity existed within these stocks. This would 

have important implications for the future development of genetic markers for 

these stocks of parasites. The highly discriminatory nature of AFLP made it the 

method of choice for this analysis. 

125 



Chapter 5 

Both AFLP and RAPD are techniques that are poor at analysing mixtures of 

DNA, hence the initial requirement for highly purified DNA. This also explains 

the suitability of both methods for use with laboratory isolates. Parasite tissue 

culture allows us to grow large quantities of the organism for study. AFLP 

would not be suitable for clinical samples collected directly from the field since 

these samples contain both host and parasite DNA. Therefore it would be 

necessary to identify specific markers from which direct PCR amplification from 

mixed DNA samples is possible. Moreover, analysis is made easier since 

tachyzoites are haploid and there is therefore only one allele per gene. In 

principle, it is possible to use AFLP to isolate genes, or gene fragments. These 

could then be used to develop PCR-based typing methods such as PCR-RFLP 

and it was hoped that it would be possible to extract genetic markers from AFLP 

gels that could later be used to ascertain the degree of genetic diversity between 

clinical samples. 

The aims of this chapter were 

9 To define the extent of genetic variation that exists amongst different 

isolates of N. caninum using AFLP and to compare results with RAPD 

analysis. 

" To determine whether genetic heterogeneity existed within individual 

stocks of laboratory isolates by comparing the genotype of cloned lines of 

N. caninum. 
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" To identify genetic markers that could be developed as PCR-based 

markers for clinical isolates. 
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5.2 MATERIALS AND METHODS 

5.2.1 Parasite isolates and DNA 

Eight laboratory isolates of N. caninum were used in this study and are shown in 

Table 5.1. Two isolates, NC-1 and NC-Liverpool were isolated from dogs and 

the others were isolated from cattle. The geographical origin of the isolates are 

also given. Table 5.2 shows other apicomplexan parasites -T gondii, C. parvum 

and Sarcocytis sp. that were used in the study for comparison purposes. Seven 

isolates of T. gondii originating from different locations around the world were 

used, as this parasite is considered most closely related to N. caninum. The C. 

parvum and Sarcocystis sp. samples were kindly donated as detailed in section 

4.2.1. DNA from the T gondii strains was generously given by Dr. Ashgar 

Fazaeli (Department of Medical Microbiology, University of Aberdeen). 

Tachyzoites and genomic DNA were prepared from tissue culture lysates as 

detailed in section 4.2.4. Since the outcome of each AFLP reaction is very much 

dependent on complete restriction digestion it was important that the DNA that 

was isolated was free of nucleases or inhibitors that might lead to incomplete 

DNA digestion. 

5.2.2 Cloning N. caninum isolates 

5.2.2.1 Culture of HFFF cells 

Human Foetal Foreskin Fibroblast (HFFF-2) cells were used for cloning the 

parasites. They are more suitable for cloning than Vero cells because HFFF cells 

grow at a slower rate and can be maintained as a monolayer until required for 

use. HFFF cells were generally passaged once a week as required, as soon as a 

confluent monolayer had formed. HFFF cells also have a finite life-span as they 
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do not grow beyond twenty passages, unlike Vero cells that can grow 

indefinitely. Therefore, HFFF cells were not used for routine production of 

parasite stocks. 

HFFF cells were detached from the bottom of culture flasks in the same way as 

described for Vero cells (section 4.2.3.2). The cells were resuspended in 10 ml 

of IMDM growth medium supplemented with penicillin, streptomycin and 10 

FBS. One ml of this resuspension was added to 4 ml (25 cm2 flask) or 14 ml (75 

cm2 flask) of IMDM growth medium. The cells were incubated at 37 °C in a 

humidified 5% CO2 incubator. 

5.2.2.2 Cloning by limiting dilution 

Individual parasite clones of N. caninum isolates NC-Beef, NC-l, NC-SweB 1 

and NC-Liverpool were isolated by limiting dilution in microtitre 96-well plates 

containing a confluent monolayer of HFFF cells. It was assumed that 20-40 % of 

extracellular tachyzoites would be viable, so inoculation of a 96-well plate with 

an average of 0.25 tachyzoites per well should yield a predicted frequency of 5-9 

wells containing a single parasite clone, and <0.5 wells containing more than one 

parasite. An inverted microscope (Zeiss Axiovert 25) was used to identify single 

parasite plaques, which were then removed to T25 flasks for normal growth. 

Single parasite plaques were observed between 7 and 10 days after initial 

inoculation of the plates. Flasks were ready for harvest after 2-3 weeks. 
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5.2.3 AFLP technique 

The main steps involved in the AFLP technique are summarised in Figure 5.1. 

These are: 

9 Restriction endonuclease digestion of the DNA using two enzymes 

9 Ligation of the adapters to generate template DNA for amplification 

9 Amplification of the restriction fragments in two consecutive reactions 

9 Gel analysis of the amplified fragments on a denaturing polyacrylamide gel 

AFLP Analysis System II (GibcoBRL, Life Technologies, Paisley, UK) was 

suitable for the estimated size of the Neospora genome (80 MB, based on that of 

the T. gondii genome) and was used throughout this study. The reagents were 

from the AFLP Core Reagent Kit (Gibco BRL) and the AFLP Small Genome 

Primer Kit (Gibco BRL) and are shown in Table 5.3 and Table 5.4. 

5.2.3.1 Restriction Endonuclease Digestion of genomic DNA 

Genomic DNA was isolated and digested with two restriction endonuclease 

enzymes simultaneously. The enzymes used in this study were EcoR I and Mse 

I. EcoR I had a six base pair recognition site and Mse I had a four base pair 

recognition site. This generated DNA fragments that were smaller than one 

kilobase in size and were therefore ideal for separation on a denaturing 

polyacrylamide gel. Three types of fragments were produced (Figure 5.1) but 

primer design ensured that the EcoR I -Mse I fragments were preferentially 

amplified. Fragments that resulted from digestion only with EcoR I were likely 

to be too big to be resolved on a standard sequencing gel since there is a 

restriction site approximately every 4096 (46) bp (assuming random distribution 

132 



U 

öz 
IQ 

a 
04 w 

2 
w 

C 
.O 

Q 

C 
O 

Zz Zz Zz 

UJ 
F- Qz 

zz 

a 
0 U 

w 
b 
Q) 

M 

Cý 

.O +, a eý 

s, aý 

zz 

zz z Üý 

H<H 

C. J 

Q E-. 

U C, 0 

to 

0 

C.. 
E 

ä 

M 
.. 

ii' i 
ý uý i 

! ºi 
lý 

j. 

a 
04 

Wd 
L7 

0 Qo 
ßý off, 
bU 

ýI ö 
ßö 

h. 
on 
w 

133 

N 
.... -. 
J 



Chapter 5 

Table 5.3 

AFLP Core Reagent Kit 

Component Volume 
EcoRI/ Msel [1.25 units/µl each in 10mM Tris-HCI (pH 7.5), 100 . tl 
50mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1 mg/ml BSA, 50% (v/v) 
glycerol, 0.1% Triton® X-100] 

5X reaction buffer [50 mM Tris-HC1(pH 7.5), 50rnM Mg-acetate, 250 
250 µl mM K-acetate] 

Distilled water 1.25 ml 

Adapter-ligation solution [EcoRl/ MseI adapters, 0.4 mM ATP, 10 mM 
1.2 ml 

Trisa-HC1(pH 7.5), 10 mM Mg-acetate, 50 mM K-acetate 

T4 DNA ligase [1 unit/ t1 in 10 mM Tris- HCl (pH 7.5), 1 mM DTT, 50 50 µl 
mM KC1,50 % glycerol (v/v)] 

TE buffer [10 mM Tris-HC1(pH 8.0), 0.1 mM EDTA] 4.5 ml 

Arabidopsis DNA (100ng/. tl) 10 µl 

Tomato DNA (100ng/pl) 10 µl 
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Table 5.4 

AFLP Small Genome Primer Kit 

component Volume 
Pre-amp primer mix 2 ml 

T4 kinase [10 units/µl in 50 mM Tris-HCI (pH 7.6), 25mM 32 gl 
KCI, 1 mM 2-mercaptoethanol, 0.1 pl ATP, 50% (v/v) glycerol] 

5X kinase buffer [350 mM Tris-HC1(pH 7.6), 50 mM MgC12,1160 µl 
500 mM KC1,5 mM 2-mercaptoethanol] 

EcoRI primers (27.8 ng/µl): 
Primer E-AA 46 µl 
Primer E-AC 46 µl 
Primer E-AG 46 µl Primer E-AT 46 µl Primer E-TA 46 µl Primer E-TC 46 µl Primer E-TG 
Primer E-TT 46 µl 

Mse I primers (6.7 ng/pl, dNTPs): 
900 µl 1 Primer M-CAA 

Primer M-CAC 900 l 
Primer M-CAG 900 µ1 
Primer M-CAT 900 µl 
Primer M-CTA 90041 
Primer M-CTC 900 µl 
Primer M-CTG 900 µl 
Primer M-CTT 900 µ1 

I OX PCR buffer plus Mg [200 mM Tris-HCO (pH 8.4), 15 mM 13.5 ml 
MgC12,500 mM KCl] 

TE buffer [10 mM Tris-HCI (pH 8.0), 0.1 mM EDTA] 18 ml 

Distilled water 1 1.25 ml 

Preamplified Arabidopsis DNA (control for selective 110 µl 
amplification) 
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of the four bases in DNA. If these fragments were small enough to enter the gel 

they would still be detected. Restriction fragments flanked only with Mse I sites 

only will occur more frequently, every 256 (44) bp, on average but as they are 

unlabelled will not be detected. The vast majority of bands recognised on a gel 

are fragments flanked by an Eco RI and an Mse I restriction site. 

For restriction endonuclease digestion, the following components were added to 

a 1.5 ml microcentrifuge tube: 5 µ15X reaction buffer, 2 µl EcoR I /Mse I mix, 

250 ng sample DNA in < 18 pl and distilled water to a volume of 25 µl. The 

reagents were gently mixed by pipetting and then collected at the bottom of the 

tube by brief centrifugation. The mixture was incubated at 37 °C on a heated 

block for 2 h. This DNA digestion was followed by incubation at 70 °C for 15 

min to inactivate the restriction endonucleases. The tube was subsequently 

placed on ice and the contents were then collected by brief centrifugation. 

5.2.3.2 Ligation of Adapters 

To halt activity of the endonucleases the samples were heat inactivated and the 

DNA fragments were ligated to EcoR I and Mse I adapters to generate template 

DNA for amplification. The variable genomic DNA sequences were therefore 

flanked by common adapter sequences, which served as primary binding sites. 

This step allows the amplification of genomic DNA fragments for which there 

was no prior sequence knowledge. 

To perform the ligation, the following mixture was added to the digested DNA: 

24 µl adapter ligation solution and 1 µl T4 ligase solution. The resulting solution 
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was gently mixed at room temperature, briefly centrifuged and incubated at 20 

°C for 2 h. Following ligation, a 1: 10 dilution was performed by removing 10 µl 

of the reaction mixture to a clean 1.5 ml microcentrifuge tube and adding 90 . tl 

TE buffer. After mixing well, 5 41 of the solution was used in the pre- 

amplification stage and the unused portion was stored at -20 °C. 

5.2.3.3 Preamplification reaction 

In the primary amplification reaction, genomic DNAs were amplified with an 

Mse I primer containing one selective nucleotide (N+1) and an EcoR I primer 

containing no selective nucleotides (N+0). The resulting PCR products were 

then diluted and used as a template for the selective amplification. 

The preamplification reaction was set up to a volume of 51 µd by adding the 

following to a 0.5 ml microcentrifuge tube: 5 pl diluted template DNA (from 

ligation step, section 5.2.2.2), 40 pl pre-amp primer mix, l OX PCR buffer mix 

plus Mg, 1 µl Taq DNA polymerase (1 unit/µl). The reagents were gently mixed 

by pipetting up and down and briefly centrifuged to collect the reaction. Twenty 

cycles of the following PCR reaction were performed in an MJ Dyad DNA 

engine (Cambridge, UK): 94 °C for 30 s, 56 °C for 60 s, 72 °C for 60 s followed 

by 4 °C resting temperature. (Note that the samples were not denatured prior to 

PCR because this would reduce the annealing efficiency of the primer). 

A 1: 50 dilution was performed on the resulting reaction by transferring 3 µl to a 

1.5 ml microcentrifuge tube containing 147 µl TE buffer. Up to 30 selective 
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AFLP amplification reactions could be performed on this diluted. The unused 

diluted and undiluted preamplification reactions were stored at -20 T. 

5.2.3.4 Primer Labelling 

The EcoR I primer in the selective amplification was labelled by phosphorylating 

the 5' end of the primer with [y-33P]ATP and T4 kinase. The EcoR I primer was 

labelled by adding the following to a 1.5 ml microcentrifuge tube: 18 µl EcoR I 

primer, 10 µl 5X kinase buffer, 10 µl distilled water, 10 µl [y-33P]ATP (2,000 

Ci/mmol) and 2 µl T4 kinase to a total volume of 50 µl. After gentle mixing by 

pipetting and brief centrifugation to collect the contents, the reaction was 

incubated at 37 °C for 1h on a heated block. The T4 kinase was inactivated by 

incubating the tube at 70 °C for 10 min followed by brief centrifugation. 

5.2.3.5 Selective AFLP amplification 

The second amplification employed an Mse I primer containing three selective 

nucleotides (N+3) and an EcoR I primer containing two selective nucleotides 

(N+2) that extend into the restriction fragments (Table 5.5). Therefore only 

restriction fragments in which the nucleotides flanking the restriction site match 

the selective nucleotides would be amplified. This subset was then analysed by 

denaturing polyacrylamide gel electrophoresis. The complexity of AFLP patterns 

would be reduced four-fold with each additional selective nucleotide. 

The two-stage amplification process results in clean results and reproducible 

fingerprints. 
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Selective amplification was performed as follows: two 1.5-m1 microcentrifuge 

tubes were labelled `Mix 1' and `Mix 2' and were made up in the following way. 

Mix 1 consisted of 5 µl of labelled EcoR I primer (from section 5.2.2.4) being 

added to 45 µl Mse I primer (contained dNTPs) to a volume of 50 µl which was 

sufficient for ten reactions. Mix 2 was made up by adding 79 µl distilled water 

to 20 µl PCR buffer plus Mgz+ and 1 µl Taq DNA polymerase (5 units/µl) to a 

final volume of 100 µl (sufficient for ten reactions). The amplification reaction 

was then set-up by adding 5 µl Mix 1 (primers/dNTPs) and 10 µl Mix 2 (Taq 

DNA polymerase/buffer) to 5 µl diluted template DNA (from section 5.2.2.3) in 

a 0.5-m1 thin-walled microcentrifuge tube to a total volume of 20 µl. The 

reagents were gently mixed and centrifuged. Mineral oil (20 µl) was overlaid 

onto the PCR reaction to prevent evaporation of the sample. The PCR was started 

at a very high annealing temperature to obtain optimal primer selectivity. This 

annealing temperature was then gradually lowered to a temperature at which 

efficient primer binding occurred and then maintained at this throughout the 

remainder of the cycles. 

The PCR reaction was run as described below. 

One cycle at 94 °C for 30 s followed by 65 °C for 30 s and then 72 °C for 60 s. 

The annealing temperature was then lowered by 0.7 °C each cycle over twelve 

cycles giving a touch down phase of thirteen cycles. This was followed by 23 

cycles at: 94 °C for 30 s, 56 °C for 30 s and 72 °C for 60 s. PCRs were performed 

on a Perkin Elmer 2500 PCR machine (Perkin Elmer, UK). 
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5.2.3.6 Denaturing polyacrylamide gel analysis 

The PCR products from the selective amplification were separated on a 6% 

denaturing polyacrylamide (sequencing) gel. Following the PCR reaction, an 

equal volume (20 µl) of formamide dye (98 % formamide, 10 mM EDTA, 

bromophenol blue, xylene cyanol) was added to each reaction. The samples 

were denatured by being heated for 3 min at 90 °C on a heated block and then 

immediately placed on ice. 

A6% polyacrylamide gel (80 ml SequaGel® XR monomer solution [National 

Diagnostics, Hull, UK], 20 ml SequaGel buffer [5X TBE and TEMED] with 800 

µl 10 % Ammonium Persulphate [1 g Ammonium Persulphate in 10 ml water]) 

was poured using 0.4 mm spacers and sharkstooth combs. Gels were poured at 

an angle of 20 ° using a 50 ml syringe to prevent the formation of bubbles. The 

gel was left flat to set for at least 1h at room temperature. Once set, the sharks- 

tooth comb was carefully removed from the gel, washed and then replaced into 

the gel with the teeth pointing into the gel, thus forming the wells. The tank was 

then filled at the bottom and top using 1X TBE. 

Gels were pre-electrophoresed at constant power (-55 W) for about 20 min. 

Samples (3 µl) were then loaded into the gel and the gel was electrophoresed at 

constant power until the xylene cyanol was two-thirds of the way down the 

length of the gel (approximately 2 h). 

After electrophoresis, gels were removed from the plates and placed onto filter 

paper, covered in cling film and dried using a Biorad vacuum drier for 2 h. 
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Dried gels were then placed in a cassette and exposed to x-ray film (Kodak 

BiomaxTM MR) in a dark room. The cassette was placed in a -70 °C freezer for 

several days. The autoradiograph was processed using an X-Ograph Compact 

X4 Imaging system. 

5.2.4 Cluster Analysis 

Each band on individual gels was scored as present or absent in a binary table 

and cluster analysis was performed exactly as described in Section 4.2.7. 

5.2.5 Dendrograms 

The dendrograms were drawn using results obtained from the cluster analysis 

UPGMA algorithm as in section 4.2.8. 

5.2.5 Cloning polyacrylamide gel products 

In order to obtain genetic markers for each isolate, an attempt was made to clone 

unique gel products from the polyacrlamide gels. Briefly, the autoradiograph was 

lined up exactly over the polyacrylamide gel by aligning the Stratagene markers 

(Stratagene, UK) stuck on the original gel. The polymorphic bands were then cut 

from the autoradiograph and the underlying polyacylamide gel. The acrylamide 

gel fragment was then rehydrated overnight in distilled water and PCR was 

performed on the rehydrated gel fragment using the selective primers. PCR 

products were then analysed on 1% agarose gels. 
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5.3 RESULTS 

The AFLP technique was carried out on 8 Neospora laboratory isolates, 7 

Toxoplasma isolates, 2 Cryptosporidium isolates and a Sarcocystis cruzi isolate 

(Tables 5.1 and 5.2). All possible combinations of the selective EcoR I and Mse 

I primer pairs (Table 5.5) supplied in the AFLP Small Genome Primer Kit were 

tested (64 in total). The number of bands seen on each gel varied depending on 

the primer combination used. The average number was about 50 bands per 

sample per primer set. Figures 5.2,5.3,5.4 and 5.5 are examples of AFLP gels 

generated using the above primer combinations. 

Figure 5.2 shows a gel resulting from the selective amplification of 8 Neospora 

isolates using primer pair E-AT and M-CAG. The fingerprint profiles obtained 

from the isolates are very similar but also reveal polymorphisms. Samples 5 and 

6 show two different cloned lines of NC-Beef, which appear identical. 

Figure 5.3 shows the AFLP profile of 6 Neospora isolates, a Toxoplasma isolate 

and a Cryptosporidium isolate obtained using primer pair E-AC and 

M-CAC. Although the 6 Neospora isolates had similar AFLP profiles, there 

were clear examples of additional bands present in some Neospora isolates but 

absent in others. The profiles for the RH strain of Toxoplasma and the Iowa 

strain of Cryptosporidium are completely different to all other samples tested. 

The primer pair, E-AA and M-CAT, gave the gel seen in Figure 5.4. The 

similarity of the results for a particular genera, for example Neospora (samples I 

to 9) is clear. Toxoplasma isolates also gave very conserved banding patterns 
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(samples 10 to 16), but these were markedly different from those for Neospora. 

The enlarged area demonstrates the resolution and clarity of the AFLP images 

obtained. 

Figure 5.5 shows the amplification from Primers E-AG and M-CAT. Two 

separate selective amplifications were performed using these primers on different 

dates. This was carried out with a further 10 combinations of primers to check 

that the method was reproducible. Identical banding patterns were obtained for 

each analysis confirming the reproducibility of the AFLP technique. 

Preparations of pure DNA from Vero cells were also amplified as a control to 

ensure that Vero DNA was not contaminating the parasite AFLP banding 

patterns. 

It was immediately apparent that very few bands were shared between the genera 

tested i. e. Neospora isolates shared almost no bands with the Cryptosporidium 

isolates. Likewise, Toxoplasma isolates shared very few bands with Sarcocystis 

sp. There were some shared bands between Neospora isolates and Toxoplasma 

isolates. 

To determine whether the Neospora laboratory isolates consisted of 

homogeneous or heterogeneous stocks, parasites were cloned by limiting dilution 

and individual cloned lines were analysed by AFLP. Different cloned isolate 

samples of N. caninum, such as NC-Beef, gave the same AFLP fingerprints 

(Figure 5.2) showing that these particular stocks were likely to be homogeneous. 

Five cloned lines were grown and tested for each isolate. 
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Dendrograms were drawn to show the similarity of isolates as determined by the 

AFLP analysis. The term dendrogram is commonly used in the literature 

interchangeably with phenogram, but it was decided to use the term dendrogram 

with the AFLP analysis here, because the results refer to fragments that have 

been amplified specifically i. e. size differences on the gel reflect unique 

sequence differences. The term phenogram was used in the RAPD analysis, 

since bands of the same size could also have resulted by chance via co-migrating 

fragments of different sequence composition. 

The dendrograms resulting from UPGMA cluster analysis are shown in Figure 

5.6. There are three dendrograms, one for each genera tested (only one sample 

of Sarcosystis spp. was tested so no dendrogram could be drawn). It was not 

possible to combine all the species and isolates tested on a single dendrogram 

because so few bands were conserved across the genera. The Neospore isolates 

tested showed an overall genetic diversity of 3 %. The diversity seen amongst 

the Toxoplasma isolates tested was slightly greater at 4.2 %. There was a much 

greater difference (11.5 %) seen between the two types of Crvptosporrdium 

isolates tested. 

The dendrograms formed for Toxoplasma spp. and Cryptosporidium spp. showed 

the isolates clustering into groups according to types that have been previously 

described by Sibley & Howe (1996). The Neospora isolates tested also clustered 

into three main groups. The cloned isolates (NC-Beef, NC-1 and NC-Sweb I) are 

shown in red and show that individual clones of each isolate were identical 
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(denoted by straight line). The canine isolates did not cluster together and there 

was no clustering with respect to geographic origin. 

Despite several attempts, it proved extremely difficult to extract bands from the 

polyacrylamide gels. Consequently it was not possible to amplify any sequences 

from the rehydrated gel fragments and so attempts to obtain markers, for 

subsequent PCR-RFLP analysis, from AFLP gels were abandoned. 
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5.3 DISCUSSION 

AFLP has been found to be an excellent whole genome scanning method because 

genome information on the species, N. caninum, is sparse. The highly 

reproducible results obtained in this analysis are due to the use of high stringency 

PCR conditions that allowed specific primer binding. 

The dendrogram obtained from the analysis of AFLP profiles of Toxoplasma 

isolates gave similar results (in terms of genetic distance or relatedness) to those 

obtained using other techniques such as MLEE and MLST by Howe and Sibley 

(1995). It has also been shown by Mallon et al. (2003) that the two strain types 

(Type I and Type II) of C. parvum are quite different as shown in Figure 5.5. 

AFLP has previously been used to differentiate between the two C. parvum 

genotypes (Type I and Type II) by Blears et al. (2000). This study showed that 

by using more selective nucleotides, it should be possible to discriminate 

successfully between C. parvum sub-genotypes even of the same type. This 

could have potential importance in tracking the source of a Cryptosporidium 

outbreak in water supplies. 

The congruence of the T gondii dendrogram obtained by AFLP with other 

studies employing different approaches gave extra confidence in the output for 

the Neospora isolates obtained in this chapter. Overall, there was slightly more 

genetic diversity amongst the Toxoplasma isolates tested than the Neospora 

isolates tested. However, as the Neospora isolates consisted entirely of 
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laboratory stocks, this may well not reflect the actual diversity that exists in the 

field. 

There was a slight difference in the phenogram obtained for RAPD compared 

with the dendrogram obtained using AFLP for Neospora. The results from both 

techniques are dependent on the number of primers (for RAPD) or primer pairs 

(AFLP) used and the results obtained are likely to be more reliable the greater the 

number of primers used. It is difficult to define a gold standard in terms of 

methods, but AFLP is an intrinsically more discriminatory and reproducible 

technique because of high stringency and the large number of primers used in 

AFLP. 

The cloned lines of Neospora isolates gave identical fingerprint profiles showing 

that the tissue culture stocks of these isolates were homogeneous. Unfortunately, 

it was only possible to look at about 5 cloned lines for each of the three isolates 

cloned out due to time constraints. The identical fingerprints obtained suggested 

that the stocks are homogeneous. This could result from two situations. The 

clones could be identical in the host, or it is possible that pre-selection occurs in 

tissue culture where some lines out-compete others. 

The role of the definitive host (i. e. dog) in the transmission of N. caninum has 

been shown experimentally but it is not known if sexual recombination can occur 

in the host. A study attempting to show sexual recombination had occurred 

between a cross of different isolate clones could use AFLP to type the progeny. 

Cloned lines of two different isolates would firstly be typed by AFLP, so the 
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isolates could be distinguished, prior to infection of the dog. Oocysts from the 

dog would then be fed to gerbils to propagate the parasite, and cloned lines of the 

parasite typed again by AFLP. If sexual recombination occurred between the 

two different isolates it would be possible to see this in the banding patterns for 

each isolate. This parallels the formal demonstration of recombination in T. 

gondii by Sibley, although AFLP was not used to genotype T. gondii. 

It is important to recognise the limitations of AFLP analysis. For the optimum 

interpretation of relationships between genera it may be best to use AFLP in 

conjunction with other methods. Attempts to draw dendrograms linking all 4 

genera were unsuccessful because of insufficient shared markers. From these 

data, AFLP has been shown to be a very good method for inferring relationships 

between strains, but is too discriminative for wider phylogenetic relationships, 

for example, within a phylum. The use of less selective nucleotides may help, 

but the aim here was to distinguish at an intra-species level in an organism 

suspected to have low genetic diversity. Some studies have used fluoresecent 

labelled primers in AFLP studies, which then provide automated readouts of 

results. This type of analysis would ensure objectivity and would be less time 

consuming. 

AFLP is a complex technique, which is highly reliant on the quality and purity of 

the DNA used, so the technique has limited use in mixed DNA samples (host and 

parasite) from clinical samples. Thus the extraction of polymorphic bands from 

the gels, which could subsequently be used as genetic markers, was an important 

step. Unfortunately this proved to be very difficult and it was not possible to 
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reamplify and sequence the gel fragments. These difficulties probably arose due 

to the labelled bands co-migrating with unlabelled fragments. This has also been 

the experience of other colleagues (Masiga et al., 2000) and Prof. M. Shirley, 

Institute of Animal Health, Compton (personal communication). 

Polymorphisms detected by AFLP are thought to result from single nucleotide 

changes in the restriction sites, or adjacent to these sites in the bases 

complementary to the selective nucleotides, or from insertion/deletion events 

between the cut sites. Polymorphisms created by single base changes appear to 

be the most frequent (Vos et al., 1995). This suggested that searching for single 

nucleotide polymorphisms (SNPs) may be successful for N. caninum, having 

demonstrated that polymorphisms do exist between isolates. This led directly to 

work with SNP identification in polymorphic genes in chapter 6. 
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Chapter 6: Multi-locus genotyping of Neospora caninum 

6.1 INTRODUCTION 

The RAPD and AFLP approaches used in chapters 4 and 5 were successful in 

determining the extent to which genetic heterogeneity exists among laboratory 

isolates of N. caninum. However, the question arises as to whether the laboratory 

isolates that are currently available for N. caninum are a true reflection of the 

diversity of N. caninum in the field. The answer is probably not; they are 

unlikely to represent the full genetic diversity that exists for several reasons. 

First there are a relatively small number of laboratory isolates, reflecting the fact 

that isolation from infected tissues is difficult. Second, the process of isolation 

by tissue culture is in itself selective and may be more successful with some 

isolates rather than others. Thus to obtain a fuller picture of the level of Neospora 

diversity in the field, it is necessary and much more informative to analyse 

clinical samples. 

RAPD and AFLP are methods that measure genetic diversity using a ̀ whole- 

genome' approach, in which the nature of the polymorphic loci are unknown. 

Since it proved impossible to extract and clone PCR fragments from AFLP gels 

to obtain genetic markers, these methods were not amenable to further 

exploitation with field samples. Unfortunately a primary requirement of the 

RAPD and AFLP techniques is that the DNA sample is not contaminated with 

other DNA, a condition that is impossible to meet with field tissue samples, 

which will consist mainly of contaminant host DNA. The sequence specificity of 

PCR-based methods of genotyping overcomes this constraint and are therefore 
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the preferred systems to genotype N. caninum tissue samples, providing of 

course that polymorphic genes can be identified. 

A common genotyping approach is the use of DNA mini or microsatellites. 

These are 2-6 bp (microsatellites) or - 6-20 bp (minisatellites) repeats 

respectively that appear in DNA sequence and evolve due to strand slippage 

during replication. The number of times strand slippage occurs can vary between 

strains of a species and can lead to a variable number of DNA repeats. 

Mini/microsatellites can be very useful in differentiating isolates or strains of a 

species because the differing number of repeats can be visualised on agarose or 

polyacrylamide gels by different band sizes without the time and expense of full 

gene sequencing. This is a potentially rapid method of differentiating isolates 

and has been very successful for other protozoan parasites such as C. parvum 

(Mallon et al., 2003); T brucei (Barrett et al., 1997; MacLeod et al., 2000; 

MacLeod et al., 2001) and T gondii (Ajzenberg et al., 2002). 

A study by Anderson et al. (2000) using 12 microsatellite loci revealed a variety 

of population structures in Plasmodiumfalciparum. A total of 465 samples were 

collected from 9 locations worldwide and analysed to show that in areas of 

intense transmission, such as Africa and Papua New Guinea, there was a high 

degree of genetic diversity in the parasite, whereas in regions of low transmission 

for example, Colombia, low genetic diversity amongst parasite isolates was 

observed. This is an example of the intrinsic links between patterns of 

transmission or the epidemiology and the genetic structure of an organism. 
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Before the availability of extensive genome sequence information, mini- and 

microsatellites were found by the use of relatively long molecular techniques, for 

example in the case of T. brucei (Barrett et al., 1997). The increasing amount of 

sequence data has made it possible to screen molecular databases using computer 

programs such as Tandem Repeats Finder (TRF) (Benson, 1999) to find mini- 

and microsatellite sequences. Primers can subsequently be designed to amplify 

these repeated regions and the PCR products from different isolates run on gels 

to see if there are any size differences. The development of a suitable panel of 

mini/microsatellite markers is a two-stage process. Initially it is necessary to 

identify the location of these repeated regions and ensure that it is possible to 

amplify them through careful primer design. Second, it is necessary to establish 

whether the regions are polymorphic between different isolates of the species to 

be studied. This approach was used successfully by Mallon et al. (2003) for the 

identification of a large number of polymorphic mini and microsatellites for C. 

parvum, which were subsequently used to study the population biology of this 

parasite. Mallon and co-authors (2003) used 3 minisatellite and 4 microsatellite 

markers to genotype 180 C. parvum isolates from both humans and cattle 

collected within a set time period from one area in Northeast Scotland. Four 

different population structures were defined by the 38 multi-locus genotypes 

identified, which helped establish the role of genetic exchange in these parasites. 

It was hoped in this chapter that by using the available sequence data for N. 

caninum, it would be possible to identify sufficient mini- and microsatellites. 

These would then be assessed for polymorphisms, which would give rise to size 

differences on agarose gels and could be used as a rapid multi-locus genotyping 
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method for N. caninum. Importantly, this method could also be readily used with 

clinical field samples. 

In addition to searching for microsatellites, it was hoped that isolates could also 

be differentiated by minisatellite DNA regions. Probes based on a tandem repeat 

of a ̀ core' minisatellite sequence have been used to produce DNA fingerprints in 

human genetic analysis (Gill et al., 1985; Jeffreys et al., 1990). If genetic 

heterogeneity exists in this conserved minisatellite sequence in N. caninum then 

this could be exploited to obtain DNA fingerprints of the parasites, or more 

carefully, devise PCR-based minisatellite typing methods adaptable to clinical 

field samples. 

When working with clinical samples, it is essential to know that N. caninum 

DNA is actually present in the sample, especially when the amount of host DNA 

present will far outweigh that of the parasite. Moreover, cattle could potentially 

be infected with a wide-range of other tissue dwelling coccidian such as T 

gondii, Sarcocystis spp. and Hammondia spp. It would be important to ensure 

that DNA from these parasites or bovine DNA were not being preferentially 

amplified. To check that was not the case, a region of the ITS-I gene of N. 

caninum was amplified and sequenced from all isolates and clinical samples used 

in the analysis. 
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A second example of a PCR-based genotyping approach is multi-locus sequence 

typing (MLST) which has been used very successfully to genotype bacterial 

pathogens. For example, Maiden et al. (1998) determined the sequences of 

470bp fragments from 6 housekeeping genes in a reference set of 107 isolates of 

Neisseria meningitidis from invasive disease and healthy carriers. Housekeeping 

genes are thought not to be subject to unusual selective forces, and diversify 

slowly by the random accumulation of neutral or nearly-neutral variation. The 

MLST approach allowed the reliable identification of the major meningococcal 

lineages associated with invasive disease to be identified. The advantage with 

MLST is that it can be applied to any haploid organism, since there is only one 

allele present and is therefore an ideal method for typing N. caninum, which 

exists in a haploid state in all but its definitive host. In addition, sequence data is 

generally unambiguous and can be readily compared with other laboratories 

across the world. 

In this chapter, sequence diversity of the introns of two genes, actin and tubulin, 

was examined across a panel of laboratory isolates of N. caninum as well as a 

small number of clinical tissue samples obtained from the field. To maximise the 

likelihood of detecting polymorphisms, regions of these genes spanning introns 

were selected for PCR amplification and sequence analysis. Since introns are 

non-coding regions of DNA, the frequency of polymorphisms was expected to be 

higher than in the exons of these genes. 
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The aims of this chapter were 

" To identify mini/microsatellite regions of DNA in N. caninum and 

determine whether these were polymorphic using a panel of laboratory 

isolates and field samples. 

9 To determine the sequence diversity of intron regions of the actin and 

tubulin genes in N. caninum and assess the suitability of these loci as 

genetic markers for the parasite. 
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6.2 MATERIALS AND METHODS 

6.2.1 Mini/Microsatellite search 

6.2.1.1 Expressed Sequence Tag (EST) searches 

Genbank (www. ncbi. nlm. nih. gov) was searched on a regular basis for Neospora 

spp. gene sequences and ESTs. At the start of the project, no EST sequences 

were available, but this has increased to about 4000 by January 2003. 

6.2.1.2 Tandem Repeat Finder 

To identify microsatellite sequences in the Neospora genome, all N. caninum full 

or partial length genes (- 250) and EST sequences (- 3750) were analysed using 

the computer programme Tandem Repeats Finder (TRF) (Version 2.02) found at 

htlp: //c3. biomath. mssi-n. edu/trf, and by Benson (1999). 

6.2.1.3 Southern blotting 

Southern analysis was carried out with the assistance of Ms. Janice Brock. 

6.2.1.3.1 Restriction endonuclease digestion 

Approximately 1-2 pg of N. caninum DNA was digested overnight at 37 °C with 

2 Units of restriction enzyme Hinf I. A further 1 Unit of enzyme was added the 

following day for 1h to ensure complete digestion. Digested DNA was then run 

on a1% agarose gel (Seakem) in 0.5 x TBE buffer at 120 V for 2.5 h. The gel 

was visualised under UV to establish whether DNA digestion was complete and 

to assess the amount of DNA present. The gel was then blotted using the 

following method. 
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6.2.1.3.2 Southern blotting 

DNA gels were submerged in Denaturation Solution (0.5 M NaOH, 1.5 M NaCI) 

for 45 min. After rinsing in double distilled water, the gel was transferred to 

Neutralisation Solution (1 M Tris-HC1(pH 7.4), 1.5 M NaCI) for 30 min at room 

temperature. The gel was then placed on top of a3M filter paper wick 

(Whatman, UK) soaked in 20 x SSC transfer buffer (3 M NaCl, 300 mM 

Na3C6H5O7.2H20). Hybond nylon membrane was placed on the gel with a sheet 

of 3M filter paper on top. A weighted pile of paper was added to the stack, to 

enable the buffer to rise through the gel, membrane and filter paper by capillary 

action and facilitate the transfer of DNA. The apparatus was left overnight to 

ensure complete transfer of the DNA. 

The DNA was cross-linked onto the nylon membrane by UV before being 

incubated at 50°C in Rapid-hyb Prehybridisation Solution (Amersham Life 

Science, UK) for at least 2 h. 

6.2.1.3.3 Probe 

Minisatellite probes 33.6 and 33.15 (Gill et al., 1985) were kindly provided by 

Dr. Annette McLeod, Wellcome Centre for Molecular Parasitology, University 

of Glasgow. Probes were labelled by adding 25 ng DNA (12.5 µl) to 9 µl H2O 

and 10 Al random oligonucleotide primers. This mix was placed in boiling water 

for 5 min. Following this, 10 pi 5X primer buffer was added along with 5µl of 

labelled nucleotide (3000 Ci/mmol) and the solution gently mixed by pipetting. 

Exo 1-1 Klenow enzyme (1 µl) (5 U/µl) was mixed into the solution and then 

incubated at 37 °C for 10 min. The reaction was halted by adding 2 µ1 of stop 
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mix. The probe was boiled for 5 min before hybridisation and then put on ice to 

maintain denaturation. 

Unincorporated radio-nucleotide was removed from the probe mix using G25 

Spin Columns (Amersham, UK). 

6.2.1.3.4 Hybridisation 

The radio-labelled probe was added to the Prehybridisation Solution and 

incubated with the membrane overnight at 42 T. After this, the membranes 

were removed from the probe and incubated with Wash Buffer A (4 x SSC, 0.1 

% SDS) at 50 °C for 30 min, with one buffer change, then for 30 min at room 

temperature with Wash Buffer B (0.1 x SSC, 0.1 % SDS), again with one buffer 

change. These washes removed any probe that had not been hybridised to the 

DNA on the membrane. The membranes were exposed to X-ray film for 1-2 

days and developed using an X-Ograph Compact X4 Imaging system. 

The blot was subsequently stripped in boiling 10 % SDS and re-probed as 

necessary. 

6.2.2 DNA extraction from tissue samples 

6.2.2.1 Reagents and stock solutions 

The following stock solutions and reagents were prepared for the extraction of 

tissue samples. 
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(i) Stock solutions 

(a) Tris buffer (1 M) 

121.1 g of Tris base (Sigma, UK) was dissolved in 800m1 of reagent grade water. 

The pH was adjusted to the desired value by adding concentrated HCI. The 

volume was then adjusted to 1000 ml with H2O followed by dispensing into 

aliquots and sterilisation by autoclaving. 

(b) Magnesium chloride (MgCl2,1 M) 

203.3 g of MgC12 was dissolved in 800 ml of reagent grade H2O. The volume 

was adjusted to 1000 ml with H2O and dispensed into aliquots and sterilised by 

autoclaving. 

(c) Potassium chloride (KCI, 1 M) 

74.55 g KCl was dissolved in 800 ml of reagent grade H2O and the volume 

subsequently adjusted to 1000 ml using H20. The stock solution was then 

dispensed into aliquots and sterilised by autoclaving. 

(d) Proteinase K (20 mg/ml) 

250 µd of reagent grade H2O was added to a 25 mg vial of Proteinase K. After 

dissolving it was dispensed into 25 pl volumes and stored at -20 °C. 

(e) Ammonium chloride (NH4CI, 0.16 M) 

8.568 g NH4Cl was dissolved in 1000 ml of reagent grade H2O and was sterilised 

by autoclaving. 

(f) Tris Buffer (0.17 M) 

20.587 g Tris buffer was dissolved in 800 ml H20. The pH was then adjusted to 

7.65 with HC1 and made up to 1000 ml with H20. 

(g) Phosphate buffered saline (PBS, 0.01 M) 

165 



Chapter 6 

The following were dissolved in 800 ml of reagent grade H20: 8g of NaCl 

(Sodium Chloride, 0.137 M); 0.2 g KCl (Potassium Chloride, 0.0027 M); 1.44 g 

Na2HPO4 (Di-Sodium Hydrogen Orthophosphate; 0.0101M); 0.24 g KH2PO4 

(Potassium di-Hydrogen Orthophosphate, 0.0017 M). The pH was then adjusted 

to 7.4 with HCl and made up to 1000 ml with H20. As usual this was then 

dispensed into aliquots and sterilised by autoclaving. 

(h) TE buffer 

TE buffer was made up using sterile stocks of 10 mM Tris buffer (pH 8.0) and 1 

mM EDTA (pH 8.0). In preparation of 100 ml TE buffer, 1 ml of 1M Tris was 

added to 200 µl of 0.5 M EDTA and 98.8 ml of reagent grade H2O. This was 

dispensed into aliquots and sterilised by autoclaving. 

(ii) Reagents 

(a) DNA extraction buffer 

DNA extraction buffer was prepared in 100 ml volumes and then stored as I or 5 

ml aliquots at -20 °C until required. Proteinase K was added at a final 

concentration of 200 Ug/ml immediately before use (i. e. 50 Al stock solution to 5 

ml buffer). 

10 ml oft M Tris (pH 8.0) is added to 2 ml IM MgCI2 and 40 ml of 1M KCI 

followed by 500 Al of Tween 20 and then made up to 100 ml with 47.5 ul reagent 

grade H2O. 

(b) Red Blood Cell lysis buffer 

200 ml of RBC lysis buffer was prepared by adding 20 ml Tris (0.17 M, pH 7.6) 

to 180 ml Ammonium chloride (0.16 M). 
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6.2.2.2 Extraction protocol 

Approximately 1g samples of tissue were sliced from frozen tissues using a 

scalpel and transferred to a sterile petri dish. Samples were finely chopped using 

a criss-cross action using the scalpel. The tissue was then transferred to a 1.5 ml 

screw-cap micro-centrifuge tube and washed with 1 ml of PBS. Following 

vortexing, the sample was centrifuged at 6000 xg for at least 2 min and the 

supernatant was then discarded. 

If red blood cells (RBCs) were present at this stage, the following protocol was 

followed: 1 ml RBC lysis buffer was added to the tissue pellet and resuspended 

by vortexing. It was then mixed on the rotary mixer for 15 min. Following 

centrifugation at 6000 xg for 2 min the supernatant was discarded. If RBCs still 

remained in the sample at this stage, RBC lysis buffer was again added, mixed 

and centrifuged and the supernatant removed. This process was repeated until no 

RBCs were present. 

DNA extraction buffer (500-1000 µl) was then added to the tissue pellet, mixed 

and then left to digest overnight at 37 °C or for 2-3 h at 55 °C, with occasional 

vortexing. The proteinase K was then inactivated by boiling for 5 min. 

6.2.2.3 Phenol/ Chloroform extraction of DNA from digested tissue sample 

The supernate from tissue extraction was transferred to a fresh micro-centrifuge 

tube and an equal volume of phenollchloroform/isoamyl alcohol (25/24/1) added, 

vortexed and then centrifuged at 12000 xg for 2 min. The aqueous layer (usually 

top) was removed to a fresh tube and 2 volumes of cold (-20 °C) absolute ethanol 
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was added. The DNA was then precipitated at -20 °C overnight or at -70 °C for 

1-2 h. Centrifugation at 12000 xg at 4 °C for 15 min was performed to pellet the 

DNA. After the supernatant had been removed carefully (so the pellet was not 

disturbed), the tube was left 10 min to air dry and then dissolved in 50 pl of TE 

buffer or reagent grade H2O. 5-10 µl of DNA solution was used in PCR 

reactions. 

6.2.3 PCR amplification 

6.2.3.1 PCR reaction and conditions 

PCR reactions were set up in 50 pl reactions as follows: 2 µl template DNA was 

added to 5 µl dNTPs (2 nM), 5 µl buffer, 391 MgC12,2 gl primers (1 µl of 

forward and 1 µl of reverse at 10 pmol/µl), 0.5 pi Taq polymerase and 32.5 pl 

H2O. All PCR reactions were performed using the Dyad DNA engine (MJ 

Research, UK). The conditions for each PCR were normally as follows, unless 

otherwise stated: 94 °C for 5 min, 94 °C for 30 s, 55 °C for 30 s, 72 °C for 45 s 

followed by 72 °C for 5 min. 

Agarose gels (1 %) were run to visualise the PCR products as follows. Seakem 

LE agarose (1 g) was placed in a conical flask and diluted in 100ml 0.5 x TBE 

buffer by heating in a microwave for 1 min and then being poured into a gel 

cassette and being left to set for 40 min. 0.5 x TBE (200 ml) was used as running 

buffer and the gel placed inside the cassette. PCR product (5 µl) was mixed with 

1 µ1 bromophenol blue dye and loaded into each lane. 100 bp ladder (5 µl) was 

also loaded into the end lane. The gel was then run at 100 V for 2 h. 
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6.2.4 Cloning PCR products 

Cloning of PCR products was carried out with the assistance of Ms. Janice 

Brock. The pGEM®-T Easy Vector system (Promega, UK) was used to clone 

PCR products. 

6.2.4.1 Ligation using the pGEM®-T Easy Vectors 

Ligation reactions were set up as follows: PCR product (1 µl) was added to 5 µl 

of 2X Rapid Ligation Buffer, 1 pl of pGEM®-T Easy Vector (50 ng), 1 µl T4 

DNA Ligase and 2 µl ddd H2O in a 0.5 ml tube. The reaction was mixed by 

pipetting and was then incubated for 1h at room temperature. 

6.2.4.2 Transformation using the pGEM®-T Easy Ligation reactions 

Two LB/ampicillin /IPTG/X-Gal plates were prepared for each ligation reaction 

as well as one plate to determine transformation efficiency. The 0.5 ml tubes 

containing the ligation reactions were centrifuged to collect the contents at the 

bottom of the tube. Two µl of each ligation reaction was added to a sterile 1.5 ml 

microcentrifuge tube on ice. An extra microcentrifuge tube was set up on ice 

with 0.1 ng of uncut plasmid to determine the efficiency of the transformation. 

Frozen tubes containing JM109 High Efficiency Competent cells were removed 

from -70 °C storage and were thawed in an ice bath for approximately 5 min. 

The cells were mixed by gently flicking the tubes. Competent cells (50 µl) were 

transferred into each ligation tube (100 µl cells for determination of 

transformation efficiency) and subsequent to gently flicking in order to mix the 

tubes, were left on ice for 20 min. The tubes were then placed in a water bath at 

42 °C for 45 s to heat-shock the cells and immediately returned to ice for 2 min. 
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LB broth (950 µ1) (room temperature) was added to the tubes containing 

transformed ligation reactions and 900 µl to the tube containing cells transformed 

with uncut plasmid. The tubes were then incubated for 1.5 h at 37 °C with 

shaking (-150 rpm). Each transformation culture (100 µl) was plated onto 

duplicate LB/ampicillin /IPTG/X-Gal plates. A 1: 10 dilution with LB broth was 

used for plating the transformation control. The plates were then incubated 

overnight at 37 °C. White colonies were picked and grown overnight in 10 ml 

cultures for preparation of plasmid DNA. 

6.2.4.3 Purification of plasmid DNA 

The QlAprep® Miniprep kit was used to purify plasmid DNA. This method is 

based on an alkaline lysis of bacterial cells followed by adsorption of DNA onto 

silica in the presence of high salt. The procedure is briefly described. 

Pelleted bacterial cells were resuspended in 250 µl of Buffer P1 and were then 

transferred to a microcentrifuge tube. Buffer P2 (250 µl) was then added and the 

tube was gently (to avoid DNA shearing) inverted 5 times to mix the contents. 

350 µl Buffer N3 was then added to the tube and it was immediately gently 

inverted 5 times. The tube was then centrifuged at 13000 xg for 10 min when a 

compact white pellet will form. The supernatant from each tube was then 

decanted to QlAprep columns. After 60 s centrifugation at 13000 xg the flow- 

through was discarded. The QlAprep spin column was washed by adding 0.5 ml 

Buffer PB and centrifuging at 13000 xg for 60 s to remove trace nuclease 

activity. Again the flow-through was discarded. The spin column was washed 

by adding 0.75 ml of Buffer PE and centrifuging at 13000 xg for 60 s. The 

flow-through was discarded and the column then centrifuged for another 1 min in 
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order to remove residual wash buffer. The QlAprep column was then placed in a 

clean 1.5 ml microcentrifuge tube. To elute DNA, 50 µl of Buffer EB (10 mM 

Tris-HCI, pH 8.5) was added to the centre of each column. The tube was left to 

stand for 1 min and then centrifuged for 1 min. 

6.2.5 Sequencing 

PCR products were sequenced either after cloning into PGEMT vector using 

M 13 primers, or directly from PCR products. All sequencing was performed by 

the Molecular Biology Sequencing Unit (MBSU), IBLS, University of Glasgow. 

6.2.6 Phylogenetic analysis 

The phylogenetic analysis was performed in AlignX, a component of the 

VectorNTl suite, v5.5, InforMax Inc. (1999). The Neighbour Joining method 

was used in which a matrix of distances between all the pairs of sequences is 

analysed. These distances are related to the degree of divergence between the 

sequences. The phylogenetic trees were constructed following the analysis of 

genetic distances, using the ClustaiX programme and drawn using the 

TREEVIEW program. 
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6.3 RESULTS 

6.3.1 Microsatellites 

All N. caninum sequences including -250 genes and 3750 expressed sequence 

tags (ESTs) were searched for micro- and minisatellites using the TRF program. 

Table 6.1 shows the microsatellite consensus sequences and the percent 

nucleotide matches for each one. Some of the microsatellites unfortunately had a 

relatively low nucleotide match e. g. Trap. Primers were designed around the 

microsatellite sequences found. These primers were intended to find length 

polymorphisms between isolates of N. caninum that could be visualised on gels 

(either agarose or polyacylamide). Table 6.2 shows the primers used to amplify 

the microsatellites found using the Tandem Repeats Finder computer program. 

Primers were designed for these and they were tested using 7 laboratory isolates 

of N. caninum, NC-1, BPA, NC-Livc, NC-Beef, NC-Ger, NC-SweB 1 and NC- 

LivBl. Figure 6.1 is an example of an agarose gel showing the amplification of 

the `Trap' microsatellite with 4 isolates, BPA, Nc-Beef, Nc-Liverpool and Nc- 

SweB1. All isolates tested with this microsatellite gave the expected band size of 

560 bp indicating that no size polymorphisms were detectable with this region of 

DNA even when gels were run-out for several hours. Figure 6.2 shows the 

amplification of another microsatellite, MS-1, with 4 isolates of N. caninum. As 

in the previous example all isolates gave the expected band size of 196 bp. 

Analysis of all 6 of the N. caninum microsatellites (Table 6.1) revealed no 

detectable size polymorphisms for each laboratory isolate tested and were run out 

on both agarose and 6% polyacrylamide gels. 
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Table 6.1 

Microsatellite consensus sequences obtained from the Tandem Repeat Finder 

(TRF) program. 

Microsatellite 

primer name 

Copy 

Number 

Consensus sequence % Match 

Trap 6 TGTTG 52 

AA274 12.5 TA 82 

BF824 8.2 TCGCTC 62 

BF249 7.1 TCTCTTC 77 

MS-1 10.8 TTCTC 75 

MS-2 15.5 TA 93 

MS-3 10.2 TACA 95 

Table 6.2 

Primers used to amplify microsatellites found by TRF analysis of N. caninum 

DNA sequences. 

Primer name Region Length 
(bp) 

Sequence 5' f 3' 

Tra F Trap gene 560 GCTTGTGGTCAGAGTGGAGCTCG 
TrapR Trap gene 560 CATTCTTCCCAATCCCCTGGCTC 
AA274F microsatellite 340 GCGAACAAACAGAAATGAGTC 
AA274R microsatellite 340 GAAGATGCCAGGATGGAGGGA 
BF824F microsatellite 326 CACGGACAGACCGAGTGGGTA 
BF824R microsatellite 326 AAAACAAACAAATTAGCCAAG 
BF249 microsatellite 294 ATTCGTTGTTTGAAGAACCAA 
BF249 microsatellite 294 AGGCGCACTGCCAGAACGATG 
MS-1F microsatellite 196 CACGAAGGGGATGTGTCAGAA 
MS-IR microsatellite 196 GTACCTTCACTAAATGAGAAC 
MS-2F microsatellite 441 CTCAAAACACTGAAGATCGGAA 
MS-2R microsatellite 441 ATGCGTGTGTGAACATACATGC 
MS-3F microsatellite 326 CTCCTGGATGGTGAGACGCTTGA 
MS-3R microsatellite 326 GCCTAATCGACAGCAGATGAAGG 
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Figure 6.1 

Example of `Trap' micro satellite amplification of 4 isolates of N. caninum. 

Identical results were obtained for all samples analysed. 

500 bp 

Figure 6.2 

Example of `MS-1' microsatellite amplification of 4 isolates ofN.. caninum. 

Identical results were obtained for all samples analysed. 

500 bp 

200 bp 
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6.3.2 Southern blotting 

In an attempt to determine whether polymorphisms might be present in 

minisatellite regions of N. caninum DNA, digested DNA from different 

laboratory isolates were hybridised with two conserved minisatellite probes. 

Four N. caninum and two T gondii laboratory isolates were digested using the 

Hinft restriction enzyme and probed probe 33.6 and probe 33.15. Figure 6.3 

shows the southern blot of probe 33.6 following exposure to X-ray film for 2 

days. Probe 33.6 hybridised to a single strong band at >3 Kb revealing the 

presence of the 33.6 minisatellite region in N. caninum. However, careful 

examination of the blot revealed an identical banding pattern for each isolate. 

The blot was stripped and re-probed with probe 33.15. Figure 6.4 shows the 

autoradiograph following a 2-day exposure. Probe 33.15 hybridised to 3 bands. 

Again, the banding pattern obtained was again the same for each isolate, 

indicating that there were no detectable polymorphisms using this minisatellite 

probe. 

6.3.3 Extraction of DNA from clinical samples 

Clinical samples collected in Scotland, England, Switzerland and Sweden were 

extracted as described in Section 6.2.5. Unfortunately, of the 46 originally 

collected only a small proportion of these samples were suitable for PCR 

amplification. Although DNA was successfully extracted many of the Neospora 

-specific PCR amplifications failed suggesting there was insufficient amplifiable 

Neospora DNA in the sample. The following bovine clinical isolates were used: 

C-560, C919,61 and 62 (Scotland); CH-2 (Switzerland) and SR-3 (Sweden). 
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Figure 6.3 

Hybridisation of minisatellite probe 33.6 with N. caninum genomic DNA from 7 
laboratory isolates. Approximately 1-2 gg DNA was digested with Hinf I 

overnight. 
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Figure 6.4 

Hybridisation of minisatellite probe 33.15 with N. caninum genomic DNA from 

7 laboratory isolates. Approximately 1-2 µg DNA was digested with H inf I 

overnight. 
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6.3.4 PCR amplification of the actin and tubulin genes 

The actin and tubulin intron regions were amplified using primers shown in 

Table 6.3 for all 7 laboratory isolates, the clinical isolates and DNA from 

Hammondia heydorni. Primer sequences were kindly suggested by Prof. David 

Sibley (Washington State University) based on intron 1 of the actin and tubulin 

genes of N. caninum (AY143096 and AY143097). Intron region primers in the 

N. caninum genes were designed by homology to the introns of the 

corresponding genes in T. gondii. All samples gave the expected 407 bp 

fragment when amplified with the actin intron primers and the 510 bp product 

when amplified with the tubulin intron primers. 

6.3.4.1 Sequence analysis of actin, tubulin and ITS-1 genes of N. caninum 

In order to identify any differences in the sequences of the introns of the actin 

and tubulin genes and the ITS-I region, each gene was amplified by PCR, 

sequenced and the resulting data lined-up in Genedoc for sequence analysis. 

6.3.4.1.1 Sequence analysis of actin intron 1 

Eight laboratory isolates of N. caninum (BPA, NC-1, NC-Livc, NC-Beef, NC- 

Ger, NC-SweB1, NC-LivB1, NC-Drachten), H. heydorni and a clinical sample 

from Thurso in Scotland, C-560 were successfully amplified using intron I actin 

gene primers and then cloned and sequenced. Direct PCR sequencing was also 

performed on laboratory isolate BPA (denoted R2 and F2). The lined-up 

sequence is shown in Figure 6.5. The 407 bp intron sequence, published in 

Genbank (AY 143096) is shown at the top denoted by ACT 1-1, although 

extended sequence was obtained for all the isolates tested (up to 500 bp). 
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Table 6.3 

Primers used to amplify actin and tubulin-1 intron-1 gene sequences from N. 

caninum and H. heydorni. 

Primer name Region Length 
(bp) 

Sequence 5' f 3' 

Act-IF Actin 407 GCTACATCGCCCTCGACTT 
Act-1 R Actin 407 CATCGGGCAATTCATAGGAC 
Tub-IF Tubulin 510 CCGGTATCCAAATCGGTAAC 
Tub-1R Tubulin 510 ACCATGTTCCAGGCAGAAGA 
ITS-IF ITS-1 region 480 CCGCTGCAGAGGTGAACCTGCGG 

AAGGATC 
ITS-1R ITS-1 region 480 CACTGAAACAGACGTACC 
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Figure 6.5 

Sequence alignment of intron-1 of the actin gene of N. caninum. 

Eight laboratory isolates of N. caninum (BPA, NC-1, NC-Livc, NC-Beef, NC- 

Ger, NC-SweB1, NC-LivBl, NC-Drachten), H. heydorni and a clinical sample 

from Thurso in Scotland, C-560. Forward and reverse sequences are denoted by 

T' and ̀ R' respectively. ACT-1 represents the sequence from Genbank entry 

AY143096. The bottom sequence is the consensus sequence. Single nucleotide 

polymorphisms confirmed by both forward and reverse sequencing are 

highlighted. Dashed lines (---) represent areas where good sequence information 

was not obtained and do not infer deletions in the sequence. 
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Forward and reverse sequence was obtained for the majority of the isolates 

tested. There was good consensus for the majority of the sequence, but some 

polymorphisms were found between the isolates and these are summarised in 

Table 6.4. However, the discrepancy between the cloned BPA-1 sequence 

(BPA-F and BPA-R) and the consensus sequence at nucleotide 122 appears to 

have been due to a Taq polymerase error as the direct sequence for BPA-1 (R2 

and F2) agrees with the consensus sequence. 

6.3.4.1.2 Sequence analysis of tubulin intron 1 

Eight laboratory isolates of N. caninum (BPA, NC-l, NC-Livc, NC-Beef, NC- 

Ger, NC-SweBl, NC-LivBl, NC-Drachten), H. heydorni and three clinical 

samples from Scotland, 61,62 and C919 were successfully amplified using the 

tubulin intron-1 primers. Following amplification, some isolates, NC-Ger and If. 

heydorni, were sequenced by direct PCR sequencing, but the others were cloned 

and then sequenced. Figure 6.6 shows the alignment of the tubulin intron-1 

region with polymorphisms highlighted. Differences between sequences and the 

consensus sequence are shown in Table 6.4. There were 23 single nucleotide 

polymorphisms found in the intron of the tubulin gene in total. There were 5 

SNPs from clinical isolates 61 and 62. Interestingly, some of the SNPs were 

conserved between these two samples, which were obtained from a similar 

geographical area. There were 6 SNPs in the sequence of sample C919, I in NC- 

Beef, 2 in BPA (although only the reverse sequence was successfully amplified), 

1 in NC-1 and 3 in NC-LivC. 
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Table 6.4 

Single Nucleotide Polymorphisms (SNPs) in the actin intron-1 of N. caninum and 
H. heydorni. 

Isolate bp Base Consensus 
C560 103 T G 
BPA 122 G A 
C560 257 C T 
NC-Beef 287 C A 
C560 437 A G 
NC-Sweb 463 T A 
NC-Ger 520 C T 
H. He dorni 560 A C 
Nc-Beef 560 A C 
NC-Ger 560 A C 

Table 6.5 

Single Nucleotide Polymorphisms (SNPs) in the tubulin intron-1 of N. caninum 

Isolate bp Base Consensus 
61 83 A C 
C919 121 C A 
62 148 A G 
61 186 G A 
62 186 G A 
NC-Beef 201 G A 
C919 219 G A 
C919 226 A G 
BPA-F* 234 A T 
61 262 C T 
62 262 C T 
C919 284 T A 
C919 292 C T 
61 321 T C 
62 321 T C 
61 330 T A 
62 330 T A 
NC-1 397 T A 
NC-LivC 397 T A 
C919 397 T A 
BPA-F* 431 C T 
NC-LivC 437 T A 
NC-LiVC 593 G A 

* Only 1 sequence for BPA 
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Figure 6.6 

Sequence alignment of intron-1 of the tubulin gene of N. caninum. 

Eight laboratory isolates of N. caninum (BPA, NC-1, NC-Livc, NC-Beef, NC- 

Ger, NC-Swebl, NC-LivBI, NC-Drachten), H. heydorni and three clinical 

samples from Scotland, 61,62 and C919. Forward and reverse sequences are 

denoted by `F' and `R' respectively. TUB 1-1 represents the sequence from 

Genbank entry AY 143097. The bottom sequence is the consensus sequence. 

Single nucleotide polymorphisms confirmed by both forward and reverse 

sequencing are highlighted. Dashed lines (---) represent areas where good 

sequence information was not obtained and do not infer deletions in the 

sequence. 
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6.3.4.1.3 Sequence analysis of N. caninum ITS-1 

Five laboratory isolates of N. caninum (BPA, LIVC, NC-Ger, NC-LivB 1, NC- 

Drachten), H. heydorni and two clinical samples, CH-2 and SR-3 from 

Switzerland and Sweden respectively were amplified with primers for the ITS-1 

region of N. caninum. Unfortunately, the ITS-I region was not amplified 

successfully from all clinical isolates due to the lack of material available. 

Figure 6.7 shows the sequence comparison of the ITS-1 region for these isolates 

and includes the published sequence for 9 other isolates of N. caninum and also 

those for N. hughesi and NC-Oregon. Three different sequences are published on 

Genbank for laboratory isolate NC-Liverpool, NC-LIV, NC-lb and NC-Liv. All 

N. caninum isolates and the clinical samples gave identical sequences for the 

ITS-I gene. The sequencing results for isolate NC-Liverpool found in this study 

agreed with the consensus sequence. 

6.3.4.2 Phylogenetic trees 

Phylogenetic analysis was performed using neighbour joining trees drawn from 

the sequence data results for the introns of the actin and the, tubulin genes of N. 

caninum and H. heydorni and the ITS-I sequence. The scales refer to the 

number of substitutions per nucleotide site. 

The phylogenetic tree for the intron of the actin gene sequence of N. caninum is 

shown in Figure 6.8. The sequence diversity was greatest with the clinical 

sample, C-560. It was interesting that H. heydorni clustered amongst N. caninum 

isolates 

Figure 6.9 shows the phylogenetic tree for the tubulin gene sequence. The 
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Figure 6.7 

Sequence alignment of the Internal Transcribed Spacer (ITS-1) region. 

Five laboratory isolates ofN.. caninum (BPA, LIVC, NC-Ger, NC-LivBI, NC- 

Drachten), H. heydorni and two clinical samples, CH-2 and SR-3 from 

Switzerland and Sweden respectively were amplified with primers for the ITS-I 

region of N. caninum. Forward and reverse sequences are denoted by `F' and `R' 

respectively. In addition, 9 other published sequences for isolates of N. caninuni 

[NC-BPA-1 (AF038860), NC-1 (U16160), NC-5 (AF249970), NC-Beef 

(AF249968), NC-2 (AF249969), NC-CNI (AF038861), NC-Sweb-1 

(AF029702), CZ-4 (AF432123), NC-Nowra (AF33841 1), NC-Liv (NCU16159), 

NC-lb (U 16160) and NC-LIV (L49389)] and also the published sequences for N. 

hughesi (AF038859) and NC-Oregon (AF249967) were included in the 

alignment. 
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Chapter 6 

Figure 6.8 

Phylogenetic tree constructed using sequences of intron-1 of the actin gene of N. 

caninum. 

Eight laboratory isolates of N. caninum (BPA, NC-1, NC-LIV-C, NC-Beef, NC- 

Ger, NC-Sweb1, NC-LivB1, NC-Drachten), H. heydorni and a clinical sample 

from Thurso in Scotland, C-560, were included in the analysis along with the 

published sequence, ACT1-1 (AY143096). BPA-R2 refers to a direct sequence. 

Scale refers to rate of substitution per base. 
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Figure 6.9 

Phylogenetic tree constructed using intron-1 of the tubulin gene of N. caninum. 

Eight laboratory isolates of N. caninum (BPA, NC-I, NC-Livc, NC-Beef, NC- 

Ger, NC-Swebl, NC-LivBl, NC-Drachten), H. heydorni and three clinical 

samples from Scotland, 61,62 and C919 were included in the analysis along with 

the published sequence, TUB 1-1 gene, intron 1 (AY 143097). 

Scale refers to rate of substitution per base. 
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Chapter 6 

clinical samples, C919 and 61 and 62 seem to be most diverse from the other 

laboratory isolates tested. There were no SNPs with many of the laboratory 

isolates. Interestingly, the H. heydorni isolate clustered with the N. caninum 

consensus sequence for the tubulin intron. 

The phylogenetic tree constructed (using the Neighbour-Joining method) from 

the ITS-I sequences is shown in Figure 6.10. It was interesting that the 

sequencing results from the laboratory isolate NC-Liverpool (LIVC) gave 

identical sequence to all others including most published results. There are three 

different published sequences for NC-Liverpool, shown on the tree as NC-LIV, 

NC-lb and NC-Liv. From these results, it seems that these published sequences 

for NC-Liverpool may contain errors. As expected, N. hughesi and N. caninum 

Oregon isolates were quite different to the other published results for N. 

caninum. It was surprising that H. heydorni clustered amongst N. caninum 

isolates at the actin and tubulin intron loci (Figures 6.8 & 6.9) and was identical 

with respect to the ITS-1 loci (Figure 6.10). In addition, two clinical isolates, 

SR-3 and CH-2 were found to have identical ITS-1 sequences to all the other 

laboratory isolates. 
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Figure 6.10 

Phylogenetic tree constructed using the Internal Transcribed Spacer (ITS-1) 

region of N. caninum. 

Five laboratory isolates of N. caninum (BPA, LIVC, NC-Ger, NC-LivBl, NC- 

Drachten), H. heydorni and two clinical samples, CH-2 and SR-3 from 

Switzerland and Sweden respectively were amplified with primers for the ITS- I 

region of N. caninum. Forward and reverse sequences are denoted by `F' and `R' 

respectively but only one sequence is shown on the tree. In addition, 9 other 

published sequences for isolates of N. caninum [NC-BPA-1 (AF038860), NC- I 

(U16160), NC-5 (AF249970), NC-Beef (AF249968), NC-2 (AF249969), NC- 

CN1 (AF038861), NC-Sweb-1 (AF029702), CZ-4 (AF432123), NC-Nowra 

(AF33841 1), NC-Liv (NCU16159), NC-lb (U16160) and NC-LIV (L49389)] 

and also the published sequences for N. hughesi (AF038859) and NC-Oregon 

(AF249967) were included in the line-up. 

Scale refers to rate of substitution per base. 
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6.4 DISCUSSION 

The development of molecular epidemiological tools is dependent on two 

factors: (1) the quality and scope of the panel of isolates that are available to 

develop them (2) the ability to identify polymorphic DNA sequences. This latter 

requirement can be aided greatly by the availability of genome sequence data that 

exists for the organism in question. 

In this chapter, micro/minisatellite primers were designed using Neospora ESTs, 

but unfortunately no detectable length polymorphisms were found between the 

Neospora laboratory isolates tested. By their very definition, ESTs are expressed 

sequences, so it is perhaps less likely that they will produce polymorphisms since 

these may alter the expression or function of a gene. Within these 

microsatellites, it is possible that differences still exist between samples, as a 

single, di- or trinucleotide repeat for example, may not be detectable on an 

agarose or even polyacrylamide gel. However, even if sequence differences do 

exist, these microsatellites would be less useful for rapid genotyping as 

differentiation could only be made by sequencing, rather than size variation on a 

gel 

To determine the overall level of minisatellite diversity in laboratory isolates of 

N. caninum, a number of isolates were probed with minisatellite probes. All 

isolates were found to have very similar patterns, suggesting that minisatellite 

diversity is also low amongst these isolates. Clinical samples could not be 

screened for minisatellites in this way because it is not possible to obtain 

Neospora DNA independently from host DNA within field samples. The results 
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from this experiment show that the level of genetic diversity in the laboratory 

isolates of N. caninum currently available is not high enough for polymorphisms 

to be detected using hybridisation with these microsatellite probes under the 

conditions used. Jeffreys et al. (1990) showed that the use of lower stringency 

conditions with probes 33.6. and 33.15 increases the complexity of the banding 

pattern so this approach could be adopted for N. caninum. However, even at 

high stringency, Jeffreys and colleagues were able to detect minisatellite 

heterogeneity between different human placental samples. 

Single nucleotide polymorphisms (SNPs) are unlikely to be detected by 

techniques such as AFLP, unless the SNP occurs in a restriction site. To detect 

possible SNPs a gene sequencing approach was therefore adopted. Sequencing 

approaches to genotyping such as MLST methods have been very successful in 

typing bacterial pathogens. However, the rate of recombination in bacterial 

species such as N. meningitidis is high, meaning that clones are unstable and 

diversify over a few decades (Enright and Spratt 1999). From the RAPD and 

AFLP results and the identity of ITS-I sequences between Neospora isolates, it 

appears that the genetic diversity of N. caninum is much lower than in some 

bacterial species. Therefore, it may not be appropriate to devise a typing system 

for N. caninum using entirely conserved DNA regions such as housekeeping 

genes. Primers were previously designed to amplify coding regions of the 

tubulin gene in N. caninum, but these regions revealed no polymorphisms 

between isolates (this study, data not shown). Fortunately the intron sequences 

to the tubulin and actin genes became available at the end of this project and 

enabled the unambiguous identification of SNPs between both laboratory isolates 

and clinical field samples of N. caninum. This demonstration of heterogeneity 
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supports that shown using RAPD and AFLP analysis, but had hitherto eluded 

detection. To devise a full MLST analysis for N. caninum, the introns of other 

genes, that may also have polymorphic regions, should be investigated in the 

future. The increased number of N. caninum sequences becoming available will 

greatly aid the design of primers for potentially polymorphic genes. As direct 

sequencing was only successful for a small number of isolates, cloning prior to 

sequencing was necessary with many samples. Saiki et al. (1988) estimated that 

Taq polymerase errors occur every 1x 104 nucleotide bases in PCR 

amplifications. Errors are more likely to occur in sequences obtained via cloning 

compared to direct sequencing of PCR products and an example of this was seen 

at nucleotide 122 in Figure 6.5. In future, care should be taken to sequence more 

than one clone and to use a high fidelity Tay polymerase such as Pfu to eliminate 

Taq polymerase-induced sequence errors such as these. The majority of the 

SNPs found should be correct and strong evidence for this is seen when two 

isolates vary at the same nucleotide, for example at nucleotide 262 in the tubulin 

intron when both clinical sample 61 and 62 have a cytosine base instead of a 

thymine base that is present in the consensus sequence. The probability of a 

Taq-induced error occurring at the same position in two independent samples is 

extremely low. 

Of the 23 single nucleotide polymorphisms observed in the tubulin intron 

sequence comparison (Figure 6.8), 16 of them were from the three clinical 

samples, 61,62 and C919 which were all from Scotland. Some of these SNPs 

were conserved between isolates from a similar geographical region, but the 

number of isolates was far too small for any analysis. However, it was 

interesting that the N. caninum sequences analysed did not fall immediately into 

220 



Chapter 6 

two clusters as might be expected with T. gondii whose population structure 

consists of two main clonal lineages. It was unfortunate that clinical samples 

from different geographic locations became available only at the end of the 

project. It is hoped that future studies will incorporate many more clinical 

samples from a wide geographic area. 

Unfortunately it was only possible to amplify successfully from a small number 

of the clinical samples originally obtained. Failure to amplify efficiently from 

clinical isolates could jeopardise a full analysis of the population structure of N. 

caninum by reducing the number of DNA samples for analysis. Further 

development on the more efficient processing of DNA clinical samples and 

increasing the sensitivity of PCR detection, for example through the use of 

nested primers, is essential. 

The phylogenetic trees shown (Figures 6.8,6.9 & 6.10) reveal some interesting 

associations but only when further clinical samples are analysed and SNPs 

confirmed by either re-sequencing or the use of high fidelity Taq polymerase, 

can more robust trees be constructed. 

Ajzenberg and colleagues (2002) used 8 microsatellite markers to type 84 

independent isolates of T gondii, taken from humans and animals, which 

subsequently identified 72 different multi-locus genotypes. This study 

represented a significant advancement in the ability to detect mixed infections 

and advance an understanding of the population structure of T, gondii. Very few 

other genetic studies of T. gondii have used large numbers of clinical samples, 

with the exception of Howe & Sibley (1995), thereby precluding any substantial 
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conclusions on the population structure of this parasite. This shows the 

importance of building a clinical isolate bank for N. caninum to enable a similar 

level of analysis. 

To discriminate successfully between isolates of Neospora, it has been necessary 

to adopt a gene sequencing approach. Single Nucleotide Polymorphisms (SNPs) 

can only be identified by sequencing and in the majority of cases it was 

necessary firstly to clone the PCR amplicons, since direct PCR sequencing had a 

high failure rate due to the difficulty of obtaining sufficient clean amplicons from 

clinical samples. This will always be essential for clinical material and means 

that differentiating field samples will initially be expensive. Cloning PCR 

products before sequencing however makes the task of detecting mixed 

infections in a single sample difficult. If two different alleles are present in a 

sample, then several clones must be sequenced to detect each allele (since N. 

caninum is haploid, the discovery of two different alleles must arise from a 

mixed infection). It will be necessary to amplify many more sequences from a 

diverse range of N. caninum clinical samples until a more defined population 

structure begins to emerge. 

Sequencing of the ITS-I gene confirmed that no sequence differences exist 

between isolates of N. caninum. This might be expected since analysis of the 

ITS-1 region from all three clonal lineages of T. gondii found it to be identical 

(Su et al., 2003). The NC-Oregon isolate of N. hughesi clusters with the other N. 

hughesi isolate, but separately from N. caninum. Apparent sequence 

discrepancies between published sequences of NC-Liverpool entered in Genbank 

were resolved by re-sequencing the ITS-1 gene of NC-Liverpool. Discrepancies 
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remain with the NC-Ger isolate based on our sequencing, but this may have 

arisen from a sequencing error since a good sequence read was only obtained in 

one direction. The NC-Nowra isolate (Miller et al., 2002) however appears 

somewhat divergent in the ITS-I gene, which seems surprising. Such a 

discrepancy may be an error in the published sequence, but if not the 

phylogenetic position of NC-Nowra might have to be re-assessed. DNA from 

the NC-Nowra isolate was not available for analysis in this study. The ITS-1 

sequencing results for H. heydorni were identical to the consensus N. caninum 

ITS-1 sequence as shown by its position in Figure 6.10. In addition, the intron 

regions of actin and tubulin also showed that H. heydorni clustered very closely 

amongst N. caninum isolates. These results are extremely interesting given the 

current controversy (discussed in section 1.8) over the phylogenetic placing of 

this organism and if this isolate proves to be representative of H. heydorni then it 

would suggest that N. caninun: and H. heydorni are too similar to warrant 

separate genus and species status. 
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Chapter 7: General Discussion 

The outbreak of neosporosis in the Astonwich dairy herd, Cheshire, provided a 

unique opportunity to study the seroepidemiology of N. caninum in a pedigree 

closed herd. Key results from this case study were the cattle age prevalence data, 

the dam-daughter pair analysis and the family tree data. All confirm the crucial 

role of vertical transmission in N. caninum infection. However, the question 

remains as to the route of entry of N. caninum into the herd in the first instance. 

The data are consistent with a point source infection with oocysts, most likely 

from an infected dog, but for this there is only circumstantial evidence. 

Although most transmission appeared to be vertical, there is some suggestion that 

horizontal transmission may have continued in the herd to a small extent, but this 

appeared to be very low. 

The confirmation of the importance of vertical transmission in this and other 

studies, raises the question as to whether N. caninum could be controlled, or even 

eliminated, by selective breeding within a closed herd or, by screening for N. 

caninum if replacement stock are bought-in. At first this might appear a 

straightforward solution for managing the disease, but there are some difficulties 

with this approach. If a closed herd is heavily infected, this strategy may 

severely restrict options for breeding. In addition, screening by antibody is not 

always guaranteed to find all infected animals due to fluctuations in antibody 

titres. Moreover, it would be very important to ensure that no horizontal 

transmission occurred subsequently on the farm. Dogs must therefore be 

managed and bovine placentas should be removed immediately to prevent 
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ingestion by other cows or dogs. One possible means of retaining family lines of 

high genetic merit, but which have become infected, is to use embryo transfer 

whereby an embryo of the infected cow is placed in a cow of lower genetic merit 

but is free of neosporosis. This approach has been adopted occasionally for cows 

within the Astonwich herd but it is an expensive option. 

No study has yet addressed in a quantitative manner the impact of N. caninum 

infection on the fertility of cattle. Although it may appear obvious that 

neosporosis reduces fertility in cattle since it causes abortion, the relationship 

between herd serostatus and overall herd fertility has not been measured before. 

Fertility in cattle is an incredibly complex and multifactorial issue. Nevertheless, 

when all other factors are controlled for, as in this closed herd, there was a 

measurable and statistically significant increase in the number of Al services per 

successful pregnancy in cattle seropositive for N. caninum compared with 

seronegative cattle. This finding strongly justifies future work. If translated to a 

wider context, these data would have important implications for cattle 

management. However, the results from this case study need to be verified in a 

much larger survey. The economic impact of neosporosis is still not known, but 

is a very complex question with factors such as reduction in bovine fertility, yet 

to be quantified. An accurate assessment of the economic impact of neosporosis 

is essential for assigning future research priorities in animal health and also in 

attracting future funding to develop methods of control. A large cross-sectional 

study specifically to investigate the effect of N. caninum infection on fertility in 

cattle will be a considerable challenge; farm-to-farm variation will be large and 

multiple factors that affect fertility will need to be subtracted from the analysis. 
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For example, major variables affecting the success of Al include accurate heat 

detection and competent Al technique. Both of these factors can vary hugely 

between farms regardless of the infection status of the herd. 

Chapter 3 described a cross-sectional study in two regions of Africa, Ghana in 

West Africa and Tanzania in East Africa. This work identified a region of West 

Africa in which N. caninum appears to be completely absent in cattle. This is in 

contrast to the closely-related parasite T. gondii, which has been found to have a 

truly world-wide distribution with remarkably similar seroprevalences in 

domestic animals regardless of geographic location or farming system. 

Why has T gondii been such a successful parasite and become so ubiquitous in 

comparison with N. caninum? The main transmission route for the spread of T 

gondii to domestic animals such as sheep and goats, is thought to be via oocyst 

shedding by the cat. However, N. caninum seems to rely principally on vertical 

transmission in cattle. Perhaps the retention of efficient oocyst shedding in T. 

gondii has ensured its high overall prevalence and more cosmopolitan 

distribution compared to N. caninum. The apparent absence of N. caninum in 

West Africa raises the question as to whether the distribution of N. caninum 

reflects an association with intensive western-style farming systems and cattle 

breeds. Perhaps one of the most interesting questions is, did N. caninum evolve 

in this context? i. e. did the evolution of efficient vertical transmission go hand- 

in-hand with intensification of cattle farming? Perhaps N. caninun: has been able 

to evolve through intensive farming systems by exploiting dairy cattle which are 

genetically selected specifically for high milk yields and may have reduced 
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tolerance to infection. Answers to these questions might be obtained from 

phylogenetic analysis to estimate the time-scale of evolution of N. caninum. The 

acquisition of exotic isolates of N. caninum might be necessary to gain an 

accurate measure of this. Unfortunately, none were obtained from West or East 

Africa, but collection of a larger number and wider range of isolates would be 

essential to study further the evolution of N. caninum. Rates of mutational 

change in the DNA of the three main lineages of T. gondii suggest that they may 

have diverged around 10,000 years ago, coincident with the time of agricultural 

expansion and domestication of the cat as a companion animal (Su et al., 2003). 

A similar analysis could be undertaken with N. caninum by analysing SNPs 

within introns and antigen coding DNA regions and by comparison with rates for 

neutral mutations in closely related Apicomplexa such as T. gondii and 

Plasmodium. From this analysis the time to the most recent ancestor could be 

estimated for N. caninum. 

RAPD and AFLP analysis showed that the genetic diversity of N. caninum 

appears to be even lower than that of T gondii, although these analyses were 

limited to laboratory isolates. The apparently low genetic diversity in N. 

caninum is consistent with a highly clonal population structure, similar to that in 

T. gondii. It is important to note however, that this study has not formally 

demonstrated a clonal population structure for N. caninum, only that genetic 

diversity is low, which is usually consistent with a clonal structure. Clonality 

would have to be tested by a multi-locus genotyping approach to demonstrate 

linkage disequilibrium between populations (Mallon er al., 2003). Unfortunately 

it proved difficult to extract markers from AFLP analysis that could be used for 
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such studies, but the markers developed in Chapter 6 could be used for future 

population genetic analysis. 

A clonal population structure indicates little or no opportunity for sexual 

recombination. If indeed N. caninum is shown to have a clonal population 

structure, this may at first seem to indicate that the dog plays little role in 

transmission since it acts as a definitive host in which the sexual cycle takes 

place. However, for recombination to occur the dog must be infected 

simultaneously with two different genotypes, otherwise selling occurs which will 

lead to genetically identical or `clonal' progeny. Thus the dog may contribute 

significantly to the spread of disease (as does the cat in T gondii), whilst still 

maintaining a clonal population structure. In contrast, the demonstration of a 

recombinant population for N. caninum would implicate the dog in transmission 

since sexual recombination can take place only in the dog. 

Clonal population structures are also consistent with vertical transmission. Su et 

al. (2003) argued that clonal structures in T. gondii occurred after rapid 

expansion of successful recombinant genotypes following the evolution of oral 

infectivity of tissue cysts. However, vertical transmission also bypasses the 

definitive host and thus the opportunity for sexual recombination could also lead 

to a clonal population of low genetic diversity in N. caninum. 

To begin to understand the population genetic structure of N. caninum and the 

relative importance of different transmission routes, a major aim of this study 

was to identify polymorphic molecular markers. Genetic diversity between 
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laboratory isolates was found to be relatively low. One concern is that this could 

reflect a genetic bottleneck caused by the processes of selection in tissue culture. 

As mentioned previously, the true diversity of N. caninum can only be 

determined directly from field samples and for this sequence-specific PCR typing 

methods were developed. Interestingly, eventhough only a small number of 

clinical samples were available, analysis of these clinical field samples revealed a 

marked increase in the number of SNPs found compared with the relative 

homogeneity of laboratory isolates. This suggests that until a wider range of 

clinical field samples are analysed it would be premature to draw any 

conclusions as to the true genetic diversity of this parasite. 

RAPD and AFLP analyses were useful in measuring genetic diversity in 

laboratory isolates of N. caninum, but also confirmed previously reported genetic 

relationships in T gondii. T gondii has a population genetic structure that 

divides into three types: two clonal lineages and one recombinant lineage (Howe 

and Sibley, 1995). The population genetic structures of T gondii may still be 

very skewed by the analysis of mainly laboratory stocks, some of which have 

been in culture for decades. This would specifically under-represent 

recombinant genotypes. As with N. caninum, there are still only a relatively 

small number of clinical samples available for T gondii. 

If N. caninum is a relatively recently evolved coccidian, it would be expected 

that the total genetic diversity observed, even in terms of SNPs and 

microsatellites, would be low. Regions of DNA most likely to be polymorphic 

include non-coding introns and it was in the introns of the actin and tubulin genes 

229 



Chapter 7 

that SNPs were observed in this study. What then is the next stage in molecular 

epidemiological studies? Clearly a larger number of clinical samples are 

required to be analysed to give a clearer picture of overall diversity. From this 

study, introns have been shown as useful polymorphic regions, so it would be 

worth sequencing introns in a wider range of genes. A proposal for the 

sequencing of the N. caninum genome is currently under consideration. The 

success of this application would have a significant impact on the approach to 

molecular epidemiological studies. It would allow the rapid identification of new 

markers, especially as intron sequences and microsatellite markers would be 

readily detectable. Microsatellites have been shown to be much more prevalent 

in the intron sequences of Eimeria for example (Al Ivens, pers. comm. ). 

Knowledge of the Neospora genome would give huge potential for better 

understanding the biology of the protozoan through proteomics and comparative 

genomics, especially with the Toxoplasma (7 x coverage), Eimeria (8 x 

coverage) and Cryptosporidium (7 x coverage) genome sequencing projects 

almost complete. This approach will help address questions such as the basis of 

host specificity and virulence factors associated with N. caninum. 

The development of sequence-specific PCR will be essential for widening the 

scope of genetic analysis to clinical field samples. Only then will comprehensive 

population genetic analysis be possible. The difficulty of extracting DNA from 

infected tissues must be overcome as currently the failure rate for PCR from field 

samples is too high. For all these approaches to be successful, it will be 

necessary to resolve the problem of clinical sample extraction. Currently, the 

failure to amplify by PCR from some field samples is disappointing. Perhaps 
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better collection methods would limit autolysis and more sensitive extraction 

methods combined with a nested PCR approach could increase the sensitivity of 

detection and the success of genotyping. 

The evolution of vertical transmission in N. caninum and presumed avoidance of 

frequent sexual recombination raises the historical argument of the role of sex in 

the success of a species. The genetic diversity of T. gondii (in which 

recombination may be more frequent than in N. caninum) appeared to be slightly 

greater than that of Neospora. A population of sexually reproducing organisms 

can, under some conditions, evolve faster than a similar number of asexual 

organisms (Fisher, 1930). Sexual reproduction can greatly increase the rate at 

which beneficial mutations, at separate loci, can be combined in a single 

individual. This may partly explain the greater success in terms of host range 

and geographical range seen in T. gondii compared with N. caninum. Asexual 

lineages have a higher extinction rate than sexual ones by looking at taxonomic 

distributions and asexual lineages do not last long enough to diversify into a 

genus or higher taxonomic level (Ridley, 1996). 

Perhaps the evolution of an efficient form of vertical transmission in cattle may 

provide a niche for the success of N. caninum in the short-term. However, the 

avoidance of sexual recombination may eventually limit its genetic diversity such 

that evolutionary extinction might become inevitable. 
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Animals are such agreeable friends - they ask no questions, they pass no criticisms. 
George Eliot 


