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Abstract

This dissertation describes a new method of computer performance of bowed string instruments (violin,

viola, cello) using physical simulations and intelligent feedback control. Computer synthesis of music

performed by bowed string instruments is a challenging problem. Unlike instruments whose notes

originate with a single discrete excitation (e.g., piano, guitar, drum), bowed string instruments are

controlled with a continuous stream of excitations (i.e. the bow scraping against the string). Most ex-

isting synthesis methods utilize recorded audio samples, which perform quite well for single-excitation

instruments but not continuous-excitation instruments.

This work improves the realism of synthesis of violin, viola, and cello sound by generating audio

through modelling the physical behaviour of the instruments. A string’s wave equation is decomposed

into 40 modes of vibration, which can be acted upon by three forms of external force: A bow scraping

against the string, a left-hand finger pressing down, and/or a right-hand finger plucking. The vibration

of each string exerts force against the instrument bridge; these forces are summed and convolved with

the instrument body impulse response to create the final audio output. In addition, right-hand haptic

output is created from the force of the bow against the string. Physical constants from ten real

instruments (five violins, two violas, and three cellos) were measured and used in these simulations.

The physical modelling was implemented in a high-performance library capable of simulating audio on

a desktop computer one hundred times faster than real-time. The program also generates animated

video of the instruments being performed.

To perform music with the physical models, a virtual musician interprets the musical score and

generates actions which are then fed into the physical model. The resulting audio and haptic signals

are examined with a support vector machine, which adjusts the bow force in order to establish and

maintain a good timbre. This intelligent feedback control is trained with human input, but after the

initial training is completed the virtual musician performs autonomously. A PID controller is used

to adjust the position of the left-hand finger to correct any flaws in the pitch. Some performance

parameters (initial bow force, force correction, and lifting factors) require an initial value for each

string and musical dynamic; these are calibrated automatically using the previously-trained support

vector machines. The timbre judgements are retained after each performance and are used to pre-

emptively adjust bowing parameters to avoid or mitigate problematic timbre for future performances

of the same music.

The system is capable of playing sheet music with approximately the same ability level as a

human music student after two years of training. Due to the number of instruments measured and

the generality of the machine learning, music can be performed with ensembles of up to ten stringed

instruments, each with a distinct timbre. This provides a baseline for future work in computer control

and expressive music performance of virtual bowed string instruments.

i



Dedication

This work is dedicated to human creativity everywhere, be it musicians writing documentation for

open-source software, programmers creating music videos to accompany computer-generated singing,

doctors playing in orchestras, or academics writing fanfiction. The desire to be creative outside of

professional committments is one of humanity’s greatest qualities.
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Preface

I have always been interested in tools to assist human creativity. In some fields of art, there are

virtually no technical barriers to creativity: Free-hand drawing can be done with pen and paper;

written fiction can be performed with a text editor on any computer and uploaded to any number of

free blogs or websites devoted to fiction. When it comes to sheet music, LilyPond allows composers

to create high-quality PDFs of their work; there is no barrier here. However, few people can look at a

musical score and fully imagine how the music will sound. Sheet music is typically synthesized from

MIDI with sampling synthesis, which is a poor imitation of the sound of real string instruments. The

alternative is to hire live musicians to perform and record the sheet music, but this is an expensive

undertaking. This work attempts to bridge this gap, at least for stringed instruments.

When reading academic papers about audio synthesis, certain papers stood out much more than

others. Papers with plots, diagrams, and most importantly audio examples were much easier to

understand than those lacking such media. This is particularly useful in the interdisciplinary field of

music technology, where practitioners have backgrounds ranging from music, electrical engineering,

psychology, or computer science. The addition of a few pictures can make a huge difference in the

accessibility of a piece of research.

In order to contribute and be part of the world of good, accessible scientific publications, I spent a

great deal of effort making this dissertation accessible. Whenever possible, the story is told through

plots, diagrams, mathematics, and audio, rather than long textual descriptions. In addition, all source

code and data is available under permissive copyright licenses, allowing anybody in the world to use,

examine, or extend this research.
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Chapter 1

Introduction

Western bowed string instruments (the violin, viola, and cello) produce a wonderful range of sounds.

However, those sounds are difficult to reproduce with automated systems such as computers. As a

result, these sounds are only created by highly-trained humans with thousands of hours of experience.

Anybody wishing to create violin sound must either hire an expert or become an expert themselves.

There are two main challenges faced by computer synthesis of violin family sounds, both stemming

from the instruments creating sound based on continuously varying parameters (e.g., the bow scraping

against the string, the air flow into a clarinet) rather than a single event (e.g., a guitar pluck, a drum

hit). First, the behaviour of mechanical systems with continuous excitations is harder to describe

mathematically than systems with a single excitation. Second, due to the amount of control values

required to describe the excitation, some sort of algorithm must be used to provide these values.

This dissertation presents significant advances to both problems by creating virtual musicians to

control virtual stringed instruments. My use of the term “virtual musician” is illustrated in Figure 1.1

and formalized as:

Given a machine-readable representation of sheet music, the computer autonomously produces

audio and video that sounds as if it was performed by a human.

I am using the term “autonomous” to mean that human input may be used to train the computer

program but will not be used directly in the process of generating audio from sheet music. By analogy,

consider a human musician: Although musicians benefit a great deal from teacher input, concerts are

given without teachers shouting commands in the middle of the performance.

� �� �ç = 96

�f
� �� �� � Virtual

musician

Training

database

Figure 1.1: Sheet music to video with no human interaction.
Video 1.1: Black box performance

http://percival-music.ca/dissertation/v.1.1.black-box.mpeg
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1.1 Motivation and applications

My interest in this problem arose from four distinct areas: Musical robotics; Vocaloid and UTAU

computer singing software; accessibility and assistive technologies; and finally my experiences as a

music student with composers, performers, and musicologists. I was also highly influenced by the

Free / open source software, copyleft art, and the open access movements. I shall examine each area,

discuss on how they relate to my work and list potential applications in their fields, then re-examine

the overall problem definition.

1.1.1 Musical robotics

The first topic in music technology which truly ensnared my imagination was musical robotics: Au-

tonomous machines which play unmodified musical instruments. Some musical robots were created

to enable serious scientific investigations in acoustics or musical performance, but many were created

for the obvious goal of “showing off” current technology.

I will begin by discussing a few robots which do not include any audio-based feedback control

or “intelligence” — they simply reproduce a series of pre-determined physical actions. This will be

followed by a survey of robots using audio feedback control — robots which adjust their physical

actions in response to the sound.

Musical robots without feedback control

An early violin-playing machine was created by the Nobel-prize-winning physicist C. V. Raman. In

addition to his research in optics, Raman was fascinated by sound, publishing works on theoretical

and experimental acoustics from 1909 to 1936. In particular, he constructed a machine from discarded

bicycle parts and old laboratory materials in order to test his theoretical predictions. Unlike normal

violin playing, this machine held the bow immobile and moved the violin along a track (Raman 1920).

A much more recent example is a robotic clarinet player (Almeida, Lemare, Sheahan, Judge,

Auvray, Dang, John, Geoffroy, Katupitiya, Santus, Skougarevsky, Smith & Wolfe 2010), a project

which began as an entry to the ARTEMIS Orchestra Competition of 2008. This competition is run by

an industry association for embedded electronics and is seen as a way to demonstrate the flexibility

of modern electronics. After winning the competition, the researchers used the robot to investigate

the behaviour of a clarinet given strictly-controlled air pressure and lip force.

Students are naturally interested in musical robots; in 2006 a team of fourth-year mechanical

engineering students created a “RoboFiddler”, a robotic violin player (Chia, Hong, Lee & Lim 2006).

The playing ability of RoboFiddler is comparable to a student with two or three weeks of experience,

but due to the difficulty of the task the students deservedly won their university’s “Best Mechatronics

Project 2006” award. Furthermore, they took the unusual step of putting their final report online,

containing detailed designs for hardware and software used.

The Toyota corporation is actively developing musical robots as promotions for their “partner

robot” initiative to sell household robots. They demonstrated a trumpet-playing robot in 2005 and

a violin-playing robot two years later (Kusuda 2008) which sounds like a student with three or four

years of experience. These projects by Toyota are impressive feats of mechanical engineering: Unlike

most musical robotics projects which fix the instrument in a frame to reduce complexity, they used

humanoid robots which hold the instruments in the normal fashion.
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Musical robots with feedback control

The theremin is an electronic instrument which operates with no physical contact. The theremin has

two metal antennae; one controls pitch while the other controls volume. The distance between the

performer’s hands and each antenna forms a capacitor, constituting part of a tuned circuit whose elec-

trical oscillation is amplified to produce the audio output. As such, the surrounding electromagnetic

field can alter the pitch produced by each distance. (Wu, Kuvinichkul, Cheung & Demiris 2010) used

a robot with 2 degrees of freedom (DOF) to play a theremin, with dynamic programming to select the

minimum energy required for pitches, and feed-forward control to adjust for environmental changes.

The Waseda Saxophonist Robot No. 2 (WAS-2) (Solis, Takanishi & Hashimoto 2010) is a much

more complicated robot, comprising 3 DOF for the artificial lips, 16 for the hand and fingers, 1 DOF

for the tongue, and 2 DOF for the lungs. A few proportional-integral-derivative (PID) controllers are

used for low-level mechanical control, while the higher-level control is implemented with an artificial

neural network (ANN) with feed-forward error learning and a dead-time factor to compensate for

delay in the air pumps.

The same team of researchers also developed a flute-playing robot. The Waseda Flutist Robot No.

4 Refined IV (WF-4RIV) (Solis, Taniguchi, Ninomiya, Petersen, Yamamoto & Takanishi 2009) has

even more complicated mechanics, with a total of 41 DOF compared to 22 DOF for the WAS-2. Their

control system is based on three separate ANNs. The first specifies the duration of each note, the

second specifies the vibrato duration, while the third specifies the vibrato frequency. Audio analysis of

pitch, the strength of even and odd harmonics, and overall sound intensity level is taken into account

in order to determine an overall “quality” for each note; if a note’s quality is too low, the robot

searches for improved parameters to use for the next performance.

Relation to my work

Musical robots are fascinating, yet at the moment their manufacture requires expensive and resource-

intensive work. In a few decades, robots may be sufficiently inexpensive that every household will have

a humanoid robot capable of reproducing the mechanical actions required to play musical instruments,

but for now they only exist in robotic research laboratories. I can side-step the problem of access to

actual robots by using physical models (simulations) of stringed instruments. If the physical models are

sufficiently accurate and my control algorithms are sufficiently general, my work on virtual musicians

can be applied to robots playing real stringed instruments.

1.1.2 Computer singing synthesis

The human voice is the hardest “instrument” to synthesize — not only are there many control pa-

rameters (e.g., lips, tongue, throat, vocal chords, air pressure leaving lungs) which affect the pitch

and timbre, but these change very rapidly to form different syllables. Fortunately, there has been a

great deal of research and commercial interest in computer synthesis of speech and singing.

It has been fascinating to watch progress in this area over the past decade. Ten years ago, computer

singing synthesis in research papers and commercial products were of rather questionable musical

value. Their quality has improved dramatically in recent years, and there are now thousands of

high-quality songs and videos created with computer singing synthesis.
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Vocaloid and UTAU

The most famous commercial singing synthesis is Vocaloid (Kenmochi & Ohshita 2007), popularized by

the “virtual pop idol” Hatsune Miku. The history of vocaloid’s popularity is given in (Kenmochi 2010).

Vocaloid uses Spectral Modelling Synthesis (Serra 1989), in which short portions of recorded audio

are “stitched together” using various digital signal processing techniques; more details are given in

Section 1.2.3. This program provides realistic singing for certain styles of music (notably Japanese

pop music). In addition to the commercial Vocaloid synthesizer, a shareware program called UTAU

(the Japanese word for “song”) allows users to record and share their own singing voice.

These two programs, as well as the commercial and non-commercial recordings of voices, have

allowed users to create a huge amount of music and videos. It should be noted that Vocaloid and

UTAU themselves do not sing in an “expressive” manner; to improve the audio, a human must

carefully alter note parameters (e.g., pitch, vibrato, onset, duration). Such projects often involve

collaboration over the internet: One person may write some lyrics, another will set the lyrics to

music, a third person will make micro-adjustments to the singing parameters, a fourth person will

create the guitar and drum tracks, a fifth person will draw images and create 3-D computer models,

and a sixth person may create a music video combining the audio with computer-animated dancing.

Since these collaborations generally take place on a specific website1, researchers have data-mined

meta-data from this resource to find interesting patterns in the collaborations (Hamasaki, Takeda,

Hope & Nishimura 2009).

Vocaloid has been used directly in several research projects. Vocalistener2 (Nakano & Goto 2011)

automatically extracts singing parameters from recorded audio; this allows users to reproduce a song

“the way they sang it” using completely different voices. Vocawatcher (Kajita, Nakano, Goto, Mat-

susaka, Nakaoka & Yokoi 2011) takes this one step further: In addition to reproducing the sung vowels

and musical expression, this software tracks head and facial movements (e.g., blinking or closing eye-

lids, position of upper and lower lips, neck angle) and reproduces them using the human robot HRP-4C

(a robot with the appearance of a young Japanese woman). In this case, the robot’s physical actions

are purely cosmetic: Audio is produced with the Vocaloid software, not with physical air pumps and

mechanical vocal chords.

Relation to my work

Computer singing synthesis is one of most successful fields of music technology in the past decade.

Even ignoring the number of academic citations and commercial fees from licensing the patents (two

traditional measures of research success), this technology has allowed a diverse range of art to flourish.

In particular, the UTAU software allows people to compose and produce songs without being limited

to their own voice or facing the financial burden of purchasing commercial software. Combined with

guitar, drum, and piano synthesis (already noted to be much easier to synthesize than voice or violin),

this allows them to create music in a wide range of popular styles. There is a large community of

Vocaloid enthusiasts online2, sharing music and videos they created. There is a clear appetite for

creating and enjoying music with computer music synthesis.

1Nico nico douga, a video-sharing site used primarily in Japan. http://www.nicovideo.jp
2Anecdotal (non-peer-reviewed) evidence from computer analysis of nico nico douga meta-data claims that at the

beginning of 2012, there were 27 videos with more than 250k views, 78 videos with between 100k and 250k views, and an
overall power-law distribution. Popular videos are often re-posted on other video-sharing websites, but those views are
not reflect in these figures. http://www.vocaloidism.com/2012/01/04/the-harsh-realities-of-vocaloid-on-nico/

http://www.nicovideo.jp
http://www.vocaloidism.com/2012/01/04/the-harsh-realities-of-vocaloid-on-nico/
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1.1.3 Accessibility and assistive technologies

Many able-bodied adults take physical actions for granted — we give no thought to walking up stairs,

reading text on a computer screen, or controlling a computer mouse. However, some people have

difficulty with such basic tasks. Fortunately, we can use technology to assist their lives. I will examine

a few ways in which technology can assist interaction with music.

Assistive music technology

In order to listen to music, many people select a song on their computer or music player. Clicking on

a song in a media-playing program does not require a great deal of physical force, but some people

lack the fine motor skills to control a digital pointing device. Even worse, if a song has little or no

meta-data, selecting the desired song can require multiple clicks. Work such as (Tzanetakis, Benning,

Ness, Minifie & Livingston 2009) uses audio feature extraction and machine learning to categorize a

music collection, then presents the results in a self-organizing map to make music browsing easier.

Music creation requires more interaction than merely selecting the type of song to listen to. One

project tackling this problem is the Eyeharp (Vamvakousis 2011), which used a very cheap device (less

than $100) to perform eye tracking for patients with limited mobility. Their eye movements control

specialized software to create audio, enabling even people paralyzed from the neck down to compose

and perform music. The notion of accessibility is taken one step further in (Miranda, Magee, Wilson,

Eaton & Palaniappan 2011), which used a brain-computer music interfacing system to create music

according to the electroencephalogram (EEG) activity of a patient. EEG hardware is quite affordable;

their entire setup (including laptop) was less than $3500.

This type of research has benefits beyond the small portion of the population with serious dis-

abilities. As humans age, our physical capabilities decrease. We lose lung capacity, arm strength,

and finger agility. We can prolong our music-making activities with regular exercise or by switching

instruments (i.e. saxophone to recorder) and playing simpler music (i.e. concertos to simple folk

tunes), but after playing an instrument for 50 or 60 years, playing one-octave melodies on a recorder

may seem sub-optimal. Musical creativity becomes hindered by physical constraints.

Some people may object that such systems would impinge upon the “purity” of music — that

music should only be performed by humans using the instruments for which the music was composed.

However, I reject this argument; it is tantamount to saying that only physically fit people “deserve”

to produce violin sounds. I argue that music is something that everybody should be able to enjoy,

and that allowing more people to create music should not be viewed as a bad thing.

Relation to my work

A virtual musician combined with input devices would allow us to “offload” many physical challenges.

For example, a bed-ridden patient could control aspects of the music with a computer mouse, such as

mapping the two dimensions to speed and overall loudness. More sophisticated input devices could

allow the user to specify bow force, velocity, and speed of left-hand vibrato. Users with less physical

agility could practice music at half speed but have their movements synthesized and performed at

normal speed. Alternately, the virtual musician could be trained or given overall “musical” direction

(even with only gaze tracking), then it would automatically fill in all finger and bow movements in

order to fulfil the high-level musical desires.
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1.1.4 Audio synthesis for composers, performers, and musicologists

While learning cello as a child and teenager, it never seemed to me that there was any use for computers

in music. My life revolved around string quartets and orchestras; even if a computer could produce a

decent violin sound, it would not be able to follow the natural shifts in tempo that occurs in classical

music. If I wanted to listen to a recording of music to help me learn it, I could buy a CD of some of

the world’s best musicians performing it. This view changed drastically when I began studying music

composition at university.

Aiding music composition

Students wishing to learn how to compose music for stringed instruments face a difficult task: Com-

puter synthesis of these instruments is poor, but skilled musicians are quite rare and thus expensive to

hire. Having a “reading session” where real musicians perform new compositions is a major event in a

young composer’s life; this may occur as often as once a month, but it is not uncommon to have only

two or three sessions each year. It is commonly accepted that composers must learn to “hear the music

in their mind”, but this is a significant challenge for most students. I played many new compositions

by my classmates, and they were often surprised at how their music sounded. It would be useful if

music composition students could hear decent audio performances — not perfect performances, but

credible performances — of their works more often.

This could also be useful for “casual” composers: People who are not expecting (or even desiring!)

a career in music composition, but who simply enjoy creating music. Having seen the impressive music

and artwork that Vocaloid has fostered, there is strong evidence that music synthesis does not need

to be perfect to enable good art.

Aiding performers

Such a tool could be useful for performers. As previously noted, musicians often use audio recordings

to help them to learn a piece of music. For classical music, many such recordings already exist. But

when learning a piece of new music, no recordings exist. A computer performance will not be as

“musical” as a recording from a professional musician, but it could still be a great aid for memorizing

newly-composed music. Such a performance could be desirable even when learning previously-recorded

pieces of music — a musician might prefer to learn from a “neutral” recording which does not contain

any individual interpretations which other performers added to their playing.

Computer simulations could also aid violin students who are beginning to plan a musical interpre-

tation. Very young students simply perform music with no attempt at personal musical expression (by

either following their teachers’ guidance exactly, or by simply “playing the notes” with no attempt at

expression), but more experienced students are expected to add musical expression themselves. This

often involves choosing different bowings, playing on different strings, and trying different fingerings.

It can be quite challenging to play a difficult piece of music while also trying novel bowings or finger-

ings; a computer simulation could allow students to hear the effects of various bowings or fingerings

without the burden of learning how to perform the experimental bowings themselves.

The ability to simulate different bowings and fingerings could also aid more experienced compo-

sitions students. In addition to allowing compositions students to experiment with various options

before hiring expensive musicians, an synthesized recording could improve communication between
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the composer and musician. Many parts of classical musician pedagogy are still “oral tradition” —

although there are written accounts of musical style, almost all musicians learn from hearing teach-

ers and more experienced musicians talking and demonstrating the style. When music performance

students plays new pieces of music from music composition students, there is often a communication

gap between the performers expecting audio examples and composers showing the sheet music. If

the composers could create an audio recording that demonstrates the style, such confusion would be

greatly reduced.

Music libraries

Music libraries could benefit from virtual musicians able to perform sheet music. Although many

users of such libraries will be able to “visualize” how a piece of music will sound by reading the

score, this ability diminishes as the number of parts increase. Some pianists are trained to perform a

“condensed” version of a full orchestral score with no preparation (“sight-reading”), but this skill is

rare and requires a piano and extra effort. It would be very useful if the web search of a music library

provided recordings of all music in the collection3. Hiring musicians to perform all the works would

cost a great deal of money and could pose copyright problems (i.e. the performers’ copyright may

restrict access to those music recordings). Both problems could be avoided with virtual musicians.

Virtual musicians could be a great aid to musicology as well. In addition to benefiting from a

“quick and dirty” performance of scores which exist only in manuscript form, if the virtual musicians

were sufficiently advanced, the musicologist could select different performance characteristics. What

would a particular 1730s Minuet sound like if it was performed on instruments with gut strings with

a string quartet which began every measure with a down bow? What if the cello part was performed

on a viola de gamba instead? What if the same work was performed by a dozen musicians, with a

conductor beating time with a staff on the floor? If a musicologist wanted to experiment with these

parameters at the moment, they would need to spend a great deal of money for each recording session,

but a virtual musician could allow them to simulate different parameters at no cost.

1.1.5 Free / open source software, copyleft art, and open access

We live in an age of incredible virtual wealth due to the free / open-source software movement (Stallman

2010). Thousands of programmers have written software released under copyright licenses which per-

mit copying and modification (sometimes known as “copyleft” licenses). With a cheap computer,

an internet connection, and the willingness to learn, anybody can legally download software enabling

them to write books, design software, compose sheet music, produce videos, and do thousands of other

artistic tasks. In some areas, free / open-source software is generally seen as superior or comparable

to commercial programs (e.g., web browsers, software compilers); in other areas, commercial software

still dominates (e.g., architecture drawing programs, games). However, if one is highly constrained by

financial resources but does not wish to infringe on copyright, there is almost always a way to perform

any desired digital activity using free / open-source software. I am very encouraged by the array

of tools available: In an ideal world, the only thing restricting human creativity should be human

creativity itself.

3For example, the International Music Score Library Project (Project Petrucci LLC 2012) currently has over 55,000
musical works freely available, yet only slightly over 17,000 recordings.
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The related “copyleft art” movement holds the same ideals: By freely sharing artwork (be it

literature, drawings, music, or movies), we can increase the “cultural wealth” of the world much more

than trying to charge money for every piece of art. Attempting to monetize everything covered by

copyright law results in additional burdens for artists who need to check that their new works do not

infringe on anybody’s copyright. A typical example is a film director needing lawyers to check every

object in a movie scene — every object covered by copyright (e.g., statues in the background, the

design of a particular type of chair, adverts on the side of a milk carton) needs to be licensed. This

is a boon to lawyers seeking work, but adds a huge burden to artists (Lessig 2001). The copyleft

movement seeks to reduce or eliminate this burden by providing artwork which allows redistribution

under permissive terms, often with one of the Creative Commons licenses (Fitzgerald, Coates &

Lewis 2007). This is not the default position in every country; for example, in Japan there is a general

acceptance that modest use of other people’s art is acceptable provided that credit is given. In fact,

it is even accepted practice that fan-created art (called dõjinshi) using characters from commercial

works can make a modest profit (Tushnet 2007).

My research has benefited immensely from free / open-source software and the copyleft art move-

ments. In terms of software, I have used compilers, profiling tools, signal processing libraries, audio

tools, and video rendering. In terms of art, I have used works from the vast collections of copyleft

sheet music, allowing me to test my virtual musicians on a wide range of music. There is nothing

special about the story so far — I could probably replicate all the above software and sheet music

by purchasing commercial software and sheet music at a cost of “merely” $5,000 - $10,000. However,

commercial software very rarely gives the user the ability to modify the software itself. In addition

to being available at low cost, my ability to modify free / open-source software has been invaluable.

For example, I added some additional digital signal processing features and machine-learning tools to

the Marsyas library (Tzanetakis 2007). Without the ability to modify the source code, I would have

needed to either completely rewrite the software myself (taking years of effort), or else make a feature

request to a commercial vendor (requiring years of waiting, if the vendor implemented my requests at

all). That would have rendered my project impossible to complete within any reasonable time frame.

Related ideas are changing academic publishing: The Open Access movement is encouraging re-

searchers to make their papers available to anybody free of charge. This takes two forms: “Gold

Open Access” means that the publishers themselves allow free access, while “Green Open Access”

means that the researcher has made a copy of their article (or possible an unofficial “pre-print”) freely

available (Laakso, Welling, Bukvova, Nyman, Björk & Hedlund 2011). There are two main arguments

in favour of open access. The first is a moral argument: The free spread of knowledge is a public

good; science flourishes when there is free debate. Universities in Western countries may complain

about the journal fees, but ultimately they can be paid — but there is little hope of universities in

developing nations paying for the same access. This is particularly relevant when we consider medical

research (Chan, Kirsop & Arunachalam 2011). In addition, most research is funded by tax-payers,

either directly through grants or indirectly through salary. It seems unfair to deny tax-payers the

ability to read papers from their funded research. The second is a practical argument: Open access

increases the impact factor and increases citation count. There has been some debate about whether

this advantage is causal or simply due to self-selection (some academics may choose to give open access

to only their best works). However, most studies suggest that the advantage is indeed real (Gargouri,

Hajjem, Larivière, Gingras, Carr, Brody & Harnad 2010).
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1.1.6 Research constraints to generalize applicability

Having discussed potential applications, I can clarify my project. I am creating a virtual string quartet

in order to perform music for inexperienced or casual music composers, musicologists, or musicians who

are no longer physically able to perform their normal instruments. Although the musical instruments

will be synthesized using computer software, the “virtual musicians” should be sufficiently general

such that they could be used to control musical robots performing unmodified musical instruments.

In the spirit of open scientific progress, I resolved to make this work as accessible as possible. This

led to the following (voluntary) constraints:

Free software: The entire system must be available at no cost, and furthermore, everybody must

be legally allowed to modify it (“free” as in “freedom”).

Easily extended: The system should be clearly designed with good documentation, such that a

moderately skilled programmer can add new features. Any data required for the system should

as easy to gather, without requiring any expensive equipment or special acoustic environment.

Human-like pedagogy: The system should be trained in a manner similar to training a human

student, since most musicians are experienced at teaching humans but are not programmers.

1.2 Literature review

This section covers publications relevant to methods and techniques I use in this dissertation. I shall

briefly summarize research on violin acoustics and violinist actions, computer synthesis techniques,

musical applications of feedback control, music information retrieval, and finally music education and

expressive performance.

1.2.1 Violin physics and mechanical control

The violin is a mechanical system: The violinist’s fingers and bow interact with the strings, which

eventually causes certain vibrations to reach our ears. How do vibrations from the strings reach our

ears? How do the finger and bow interact with each string? What physical actions must musicians

perform in order to achieve the desired sound?

Historical era (pre-1985)

Bowed stringed instruments have interested physicists for over two thousand years. The ancient Greeks

studied acoustics, but the first revolutionary step towards our current understanding of these musical

instruments came from d’Alembert’s solution to the wave equation in 1747. Over a century later,

Helmholtz discovered that when the violin produces a good tone, the string is moving in a “V-shape”

in which the corner of the “V” (now known as the “Helmholtz corner”) travels from end to end of the

string. Ideally, the bow should be sticking to the string most of the time, only slipping when the “V”

is between the bow and the bridge. This process (now known as “Helmholtz motion”) repeats once

per cycle of the resulting sound. For example, when the violin open A string (440 Hz) is played with a

good tone, the string undergoes a stick-slip-stick transition 440 times each second (Helmholtz 1895).

The next major step in our understanding of vibrating strings came from Raman, who investigated

the bow-string interaction. After making theoretical predictions (assuming a perfectly flexible string,
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excited at a single point), Raman built a mechanical device to play the violin with the bow at a

specific distance from the bridge and specified speeds (Raman 1920). Using his device, he investigated

various combinations of bowing position, pressure, and bow velocities.

Real-life strings are not perfectly elastic; string stiffness results in a “spreading” of the frequencies

of upper partials. A perfectly elastic string will have upper partials of frequencies fn = nf0, where n

is the partial number, fn is the frequency of that partial, and f0 is the frequency as predicted from

string length and tension alone. However, (Fletcher, Blackham & Stratton 1962) found that given the

string inharmonicity constant B,

fn = nf0

√
1 +Bn2 (1.1)

The violin body has a long history of research as well. In 1787, Chaldni observed patterns of

nodes and anti-nodes by sprinkling sand on plates from violin and guitar bodies and bowing the side.

Almost two centuries later, the plates were excited with signal generators attached to loudspeakers,

and then still later, hologram interferometry was used (Hutchins 1981).

Other physicists throughout the 20th century studied the interaction of string vibrations with string

terminations, fingers on the string, and of course friction with the bow. I mark a rough boundary

in the mid-1980s between the “historical era” of acoustics research and the “current era”. There are

two reasons for this boundary: First, the increasing power of computers simulations allowed a vast

shift in the type of research that was possible — scientists could simulate activities such as bowing a

string or blowing into a clarinet, then listen to the resulting (simulated) sound. Second, there were

two seminal publications which framed the next decades of research.

One of these publications was a book which covered the state of violin physics (Cremer 1984).

This provided a stable foundation for new researchers to become familiar with the previous work.

The other seminal publication was a journal article (McIntyre, Schumacher & Woodhouse 1983),

which introduced a general model for vibrations in musical instruments now known as the MSW

model. This model allows for various types of non-linearity, such as pitch flattening (where the bowed

string produces frequencies slightly lower than would be predicted by a simpler theoretical model),

subharmonics (where a bowed string produces energy at frequencies which are half of the expected

lowest frequency), and “wolf notes” (where the string alternates between Helmholtz motion and having

two “slips” per cycle, resulting in a highly unsteady tone; this occurs due to an unfortunate coupling

between string modes and instrument body modes). A great deal of later research, especially in the

area of computer simulations, relied on the MSW model.

Current era (1985 onwards)

A general introduction to the physics of stringed instruments is given in (Rossing 2010); this book is

also a good source of physical constants for strings and instrument bodies. An excellent review paper

for academics is (Woodhouse & Galluzzo 2004), covering both the history of bowed string physics

research and current research questions. Another good source of physical constants, this time aimed

at instrument makers, is (Jansson 2002); in addition to giving an overview of acoustics, this work

discusses the effects of different materials on string inharmonicity and tension. A standard reference

for physical properties of violin strings is (Pickering 1985), although Pickering does not examine the

inner construction of wound hetrogeneous strings. (Firth 1985) examined dissasembled wound strings
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with a scanning electron microscope to make detailed measurements of the core diameter and the

layers of fibres and solid wrapping.

The effects of string inharmonicity were studied in (Jarvelainen, Välimäki & Karjalainen 2001) by

performing listening tests with synthesized piano tones. They found that string inharmonicity was

important for lower-frequency notes, but that for high-frequency notes the inharmonicity found in

real instruments was very close to the threshold of perceptibility and thus it may be possible to omit

them during audio synthesis with no loss of perceptual quality.

In addition to transverse vibrations, strings vibrate in other directions. Torsional vibrations in cello

D strings were investigated in (Woodhouse & Loach 1999), finding that torsional vibrations appeared

to occur at harmonically-spaced frequencies. However, they were only able to measure the first 7–10

modes of torsional vibration on three tested strings, so any distinction between inharmonic peaks

and harmonic peaks would not necessarily be detectable in this range. Interestingly, the Q factors of

torsional decay were almost constant, decreasing only slightly throughout the measured modes.

The interaction between the bow and string is quite complicated. As the bow scrapes against

the string, the friction generates heat which partially melts the rosin on the bow; this reduces the

friction coefficient (Smith & Woodhouse 2000). This heat causes hysteresis in the tribology of rosin.

Although great progress has been made in our understanding of the bow-string interaction, some

mysteries remain. One such mystery is the noise component: instrumental sounds contain varying

degrees of white noise. A complete physical description of the instrument’s mechanics would explain

this noise, but until our understanding of the mechanics reaches this point, sound synthesis can be

improved by adding noise to the relevant part of the modelling. In particular, (Chafe 1990) found

that multiplying the force of friction by a scaled uniform noise term u(t) produced bursts of noise

when the bow direction changed, which matched experimental measurements. Simulations showed

that including uniform noise in this fashion aids the production of sub-harmonics.

Close examination of the spectrum of plucked and stuck strings reveals a curious phenomenon

of “phantom partials” (Conklin 1999) or “split peaks” (Penttinen, Pakarinen, Välimäki, Laurson,

Li & Leman 2006) wherein there appears to be energy at both the frequency predicted by string

inharmonicity and either the ideal frequency or a frequency predicted by a modified equation for

string inharmonicity.

The effect of vibrating modes in violin bodies have been studied (Fritz, Cross, Moore & Woodhouse

2007). A violin was played normally while they measured the vibrations in the bridge (thereby avoiding

the violin body). That signal was transformed with different filters corresponding to admittance

curves (impulse response measured at the bridge) of different violins, with various modifications to

the amplitudes and frequencies of body modes. Musicians noticed modifications to the modes as little

as 3 dB for amplitude changes and 1.5% for frequency changes.

Accurate measurement of the body impulses were improved by plucking the strings close to the

bridge with a thin loop of wire rather than hitting the side of the bridge with an impact hammer

(Türckheim, Smit, Hahne & Mores 2010). The effect of the instrument’s bridge (rather than the

instrument body) was studied in (Woodhouse 2005).

The violin strings and body are not the only factors involved in the production of sound. The violin

bow is a resonating structure whose behaviour can greatly alter the musician’s ability to produce a

good tone (Guettler & Askenfelt 1995). Even the choice of rosin placed on a bow can alter the resulting

sound and ease of controlling the instrument (Guettler 2011).
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Mechanically controlling a violin

The vast majority of violin playing is done with a bow, so violin research has focused mainly on the

bow-string interaction. There is a substantial body of research onto plucked guitar strings, which is

still applicable to the violin. As noted earlier, Helmholtz found that “good tone” occurs when the

string undergoes a stick-slip-stick cycle once per cycle in the final sound — i.e. when playing the open

violin A string (pitch 440 Hz), good tone is achieved when the string slips (relative to the bow) 440

times per second. The natural follow-up question is “under what conditions is this achieved?”.

The first major step in this direction was (Schelleng 1973), which found theoretical limits for the

minimum Fmin and maximum Fmax bow forces which could establish Helmholtz motion in sustained

bowing given the early 1970s understanding of violin string mechanics. If the bow is moving at velocity

vb at a relative bow-bridge distance β,

Fmin =
Z2

0vb
2R(µs − µd)β2

Fmax =
2Z0vb

(µs − µd)β
(1.2)

where the physical constants are the characteristic transverse impedance of the string Z0, static

coefficient of friction µs, dynamic coefficient of friction µd, and Raman bridge resistance R. The

Schelleng bow forces are almost always referred to, and visualized as, “the Schelleng diagram” showing

these lines in a plot of β vs. logF .

Although Schelleng presented plausible theoretical limits on bowing force, these were not measured

experimentally until (Schoonderwaldt 2009). Schoonderwaldt constructed a bowing machine to test

the steady-state bowing response of a violin in order to generate “empirical Schelleng diagrams”. He

found that the theoretical predictions for Fmax provided a good match to empirical evidence, but that

there were major deviations between the theoretical Fmin and empirical evidence. In particular, the

bow velocity was not significant in the tested range (0.05–0.20 m/s), the empirical Fmin was almost an

order of magnitude higher than the theoretical prediction, and the amount of damping in the string

was much more important than predicted. This discrepancy lies in Raman’s assumption (adopted by

Schelleng) that the string terminations are purely resistive.

Note attacks were studied in (Guettler 2002), who made theoretical predictions and performed

computer simulations to determine a “perfect” attack which establishes Helmholtz motion immediately

(i.e. no extraneous slips). These are often visualized as “Guettler diagrams”, showing triangular areas

of perfect attacks in a plot of bow acceleration vs. bow force for a fixed β. Helmholtz motion is the

ideal, but real musicians do not always achieve this motion, particularly in the initial note attacks.

Notes which established Helmholtz motion within 50 ms are perceived as being acceptable by advanced

string students. It is estimated that between 20%–50% of notes from professional violinists have a

perfect attack, although 80%–90% achieve Helmholtz motion within 50 ms.

Wolf notes have been studied by using modal simulations of strings and the instrument body to

find regions in the space of bowing parameters (i.e. bow-bridge distance, bow speed, and bow force)

which produce good or bad tone (Inácio, Antunes & Wright 2008). Such studies may be able to

help musicians avoid wolf notes, but the main application is to help instrument makers construct

instruments whose modes of vibration avoid the unfortunate coupling leading to such problems.

In order to track the physical actions which musicians actually perform — instead of investigating

the limits of violin playability — accurate, small, and lightweight sensors are needed. This has been

an active area of research in recent years. (Young 2007) installed a measurement system (weight 23 g)
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inside a carbon fibre violin bow, used its data to classify bow-strokes with machine learning (accuracy

over 90%), and stored that information in a web-accessible database. (Rasamimanana 2008) created a

measurement device (weight 17 g) which clips onto an unmodified bow and performed similar machine-

learning classification of bow-strokes. (Demoucron 2008) designed a lightweight (3.8 g) sensor for bow

force measurement which can be easily attached or detached from any bow, and generalized bowing

parameter contours for bow-strokes into mathematical formulae. (Schoonderwaldt 2009) added a

motion capture system to Demoucron’s sensor by adding reflective markers to the bow (attached

with a special adhesive which left no marks on the instrument varnish), providing a highly accurate

yet lightweight (10 g) system for detailed measurements. (Maestre 2009) and (Pérez 2009) used

a commercial tracking system based on electromagnetic field sensing with numerous sensors which

provide data about sensor translation and rotation (adding 12 g to the weight of the bow).

Research in acoustics and examinations of violinists’ actions are having an effect in performance

and education. Anomalous Low Frequencies (sometimes incorrectly called “subharmonics”), in which

the string vibrates at frequencies below the fundamental frequency, have been used by a professional

violinist (Kimura 1999). Special exercises for violin students, informed by knowledge of Helmholtz

motion and Schelleng’s predictions, were created in (Collins 2009).

1.2.2 Violin physical modelling

This section discusses using equations from acoustics research to simulate the behaviour (and thus the

sound) of musical instruments; this idea was mentioned briefly in the previous section. Two standard

reference books on physical modelling and audio signal processing are (Smith 2010) and (Cook 2002).

Digital waveguide synthesis

Most early physical simulations relied on calculating numerical solutions of the wave equation, which

is computationally expensive. In contrast, digital waveguide synthesis relies on d’Alembert’s solution

to the wave equation: The wave is modelled as two separate waves, one travelling “right” and the

other travelling “left”. Given the displacement y(x, t) at position x at time t, with c being the wave’s

speed,

y(x, t) = yright(x− ct) + yleft(x+ ct) (1.3)

Assuming that the wave’s behaviour in the system is linear time-invariant, each travelling wave

can be modelled with a delay line with any losses along the string or in the reflections at the ends

of the string combined into a single filter. To find the displacement at any particular point, the two

waves are summed together. To bow the string, the delay lines are “split” at the point of contact

between the bow and string. Two delay lines represent the travelling waves between the bow and the

bridge, while another two represent the travelling waves between the bow and the nut.

This provides a solution which is remarkably simple, both in terms of programming effort and

computation requirements. Even in the early 1990s, multiple instruments could be simulated on a

single inexpensive DSP chip (Smith 1992). Digital waveguide synthesis formed the basis of the popular

Synthesis Toolkit in C++ (Scavone & Cook 2005), which provided researchers and musicians with a

common baseline of physical modelling.

The changing friction characteristics from melting rosin were modelled, along with the finite width
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of the bow and a waveguide mesh for the instrument body, with waveguide synthesis in (Serafin

2004). Different friction equations were investigated by generating Schelleng diagrams to visualize the

“playability” (i.e. the size of regions where Helmholtz motion was possible). (Sterling 2010) measured

the bridge input admittance and the radiation transfer function of a violin and used these to improve

the output the digital waveguide synthesis.

Modal synthesis

Another popular, although more computationally expensive, method of simulating a vibrating string

is to use modal synthesis. Harmonic sounds can be represented as a superposition of vibrating modes.

There are theoretically infinitely many vibrating modes, but the effect of higher-order modes decreases

dramatically. In sound synthesis, the number of modes is typically limited to between 10 and 200.

As will be discussed in Section 1.3.2, modal synthesis is the type of physical modelling used for

my dissertation. In particular, I used the algorithm presented in (Demoucron & Rasamimanana

2009, Demoucron 2008). Demoucron used modal synthesis as a basis to re-create different types

of bow-strokes: He first measured the physical actions of real violinists, then devised mathematical

equations to express the progression of bow force, bow-bridge distance, and bow velocity over time,

then synthesized new bow-strokes using those functions. Demoucron made no claim that his synthesis

was unique nor cutting-edge; his focus was on controlling the system. The algorithm is largely based

on (Adrien 1991) and does not include various factors such as torsional waves, the width of the bow,

vibrations in the instrument body, or hysteresis in the bow-string friction.

An important factor in modal synthesis is the decay rates of individual modes. A great deal

of research on this subject comes from the study of room and concert hall acoustics, in which the

reverberation time and modal decay rates are crucial factors to be considered by architects. An

excellent review of previous methods of detecting modal decay, and a new technique based on nonlinear

optimization, is presented in (Karjalainen, Ansalo, Mäkivirta, Peltonen & Välimäki 2002). Some

strings exhibit “two-stage” decay, in which a steep initial decay rate is followed by a shallower long

decay; these were analyzed by finding best-fit lines to measured data and synthesizing the results in

(Lee, Smith & Välimäki 2010).

The modal behaviour of guitar strings was measured and synthesized to test acoustic theories in

(Woodhouse 2004). This work was later extended (Woodhouse, Manuel, Smith, Wheble & Fritz 2012)

to determine the just noticeable difference (JDN) in frequency and decay rates of the modes, finding

that the best listeners could detect a 1% shift in the frequency of body modes, a 20% shift in the

damping of body modes, and a factor of 3 for the damping of string modes.

1.2.3 Alternate violin synthesis methods

Although the sound synthesis in this dissertation is based on modal physical modelling, it is worth

briefly reviewing the two main alternatives which may be suitable for violin music. These are “data-

driven” synthesis methods: Instead of using a number of “rules” (i.e. mathematical equations from

physics) to generate the sound, the bulk of the synthesis is performed by using recorded audio data,

optionally transformed in some way.
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Sampling synthesis

Sampling synthesis consists of concatenating pre-recorded snippets of audio known as “samples”4.

These snippets could be as short as one cycle of the desired frequency, but as hard drives and memory

limits increased in the 1990s, longer “samples” were used. This is the simplest form of audio synthesis,

and is very widespread in both commercial and non-commercial hardware and software (Cook 2002).

Sampling synthesis now dominates the commercial music industry, with multi-gigabyte sample libraries

providing a reasonable facsimile of Western orchestral instruments and some non-Western instruments

(Garritan Libraries 2012, Vienna Symphonic Library GmbH 2012).

The strength and weakness of sampling synthesis is that the audio is played back exactly as it was

recorded. If this matches the desired sound — for example, pressing a particular piano key — then

sampling synthesis captures all non-linearities of the sound. However, if the desired sound is slightly

different — for example, pressing the same piano key but with the sustaining pedal pressed, or pressing

a different piano key — then sampling synthesis faces enormous difficulty to alter the previously-

recorded audio. This is particularly apparent when considering instruments with continuous excitation

(e.g., violin, clarinet, human voice). Sample libraries attempt to avoid this problem by including

many audio recordings. One example is recording each note of the piano, pressed with three different

velocities, with every combination of pedals; another example would be recording short notes on a

trumpet, both with and without a mute. However, creating such collections of recordings is enormously

time-consuming (and thus expensive).

Sampling synthesis works best for instruments with single excitation (e.g., piano, drums): Each

excitation is synthesized by playing a new audio recording, mixing recordings together to create

polyphony. When attempting to create a long sustained line, some form of “stitching” must be used

to combine the recordings from two distinct notes. The simplest such technique is cross-fading: The

ending of the first audio recording is gradually reduced down to 0, while the beginning of the second

audio recording is gradually amplified up to full volume. This is suitable for percussive instruments

and even distinct notes (ideally played staccato in music terminology) in string, wind, and brass

instruments, but the results are not believable when trying to create slurs (i.e. smoothly connecting

two or more notes).

Traditional sampling synthesis has a fixed rule for selecting which segments of recorded audio to

use. One alternative to this approach is corpus-based concatenation synthesis, which has no fixed rule.

Rather, when synthesizing new audio, the computer must select units from a database of recorded

audio with no manually annotated data. This requires automated signal analysis tools, a unit selection

algorithm (often based on minimizing a distance function), and optionally various types of transforms

to modify the selected units in order to mesh better with other selected units. An overview of this

process is given in (Schwarz 2007).

Spectral Modelling Synthesis

Spectral modelling synthesis (SMS) (Serra 1989) is an extremely powerful technique for sound synthe-

sis. Similar to a phase vocoder, it operates by splitting audio into a deterministic portion (sinusoids)

and a stochastic portion (filtered white noise). After the relevant number of sinusoids have been

4Note that unlike the typical engineering definition of the term “sample” to mean “one discrete data point in a
signal”, in the context of electro-acoustic music and sampling synthesis, a “sample” can refer to any amount of audio
(generally between 0.01–100 seconds, which would be 441–4,410,000 data points with the customary sampling rate for
audio). This confusion of terms is very regrettable, yet highly entrenched in the music industry.
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analyzed, they are re-synthesized and subtracted from the recorded audio, leaving a residual signal.

The residual is considered to be filtered white noise with time-varying filter parameters, which are

then estimated. Musical transformations (i.e. pitch-shifting or time-stretching) can be applied to the

sinusoids and time-varying white noise filter, then the results are synthesized. This technique is the

basis of the Vocaloid singing synthesis discussed in Section 1.1.2.

Similar to traditional sampling synthesis, the synthesis of a specific note with SMS always uses

the same sinusoids+residual data from the annotated data. Due to the stochastic filtered white

noise, synthesizing the same note multiple times will produce slightly different audio data, but this

amount of randomness is fairly limited. One extension to this idea is to automatically select portions

of recorded data (Schoner, Cooper, Douglas & Gershenfeld 1999). Given a database of recorded

audio data with additional signals for bow-bridge distance, bow pressure, bow velocity, and finger

position, the computer uses machine learning (cluster-weighted modelling, using Gaussian basis terms

for probability density estimation) to predict the spectral data (harmonic frequencies and amplitudes)

in the desired output audio.

Machine learning was also used to predict spectral data in (Lindemann 2007), although he used

a neutral network to predict the time-varying frequency and amplitudes of harmonics rather than

cluster-weighted modelling. With the exception of particularly noisy portions of the sound (i.e. breath

noises or the bow scraping against the string during note attacks), data is stored in a “residual pitch,

loudness, harmonics, and noise” form. The data is manually annotated to indicate the type of note

transitions (e.g., slurred, tongued) and phrase boundaries; when synthesizing new music, the computer

attempts to find phrase boundaries in the written music and then uses fuzzy matching to find the

most similar phrase from the database.

Rather than using neural networks to predict spectral data in music based on notation, (Pérez 2009)

used neural networks to predict spectral data based on physical data. Pérez constructed a detailed and

non-intrusive system for measuring violin performance data (e.g., bow velocity, bow-bridge distance,

bow force, bow tilt). Rather than predicting the energy of each harmonic independently, he predicted

the energy of each harmonic relative to the overall RMS energy, then used that as another input

element to predict the relative energy in each harmonic. Such a system requires a method of generating

physical gestures for a (virtual) violinist (Maestre 2009). In addition to non-intrusive measurements

of violinists, Maestre constructed Bézier curves which matched the time-varying violin performance

data, then performed statistical modelling of those curves to find a best-fit match to the musical

score. The resulting performance data was tested with digital waveguide synthesis from the Synthesis

Toolkit in C++ (Scavone & Cook 2005) and with Pérez’s SMS-based violin synthesis.

1.2.4 Control of musical synthesis and instruments

There is a great deal of research on controlling music synthesis using a general definition of “control”

(i.e. any human interaction with a machine or computer). However, I will limit my discussion to

research using the engineering definition of “control”: Adjusting the behaviour of systems with au-

tonomous means. The most common feedback mechanism is a PID (proportional-integral-derivative)

controller. There are various methods for tuning the constants in PID controllers; one such heuristic

is (Ziegler & Nichols 1942).

One of the earliest frameworks for physical modelling was MOSAIC (Morrison & Adrien 1993),

which allowed allowed programmers to combine virtual objects (e.g., strings, bells, acoustic tubes)
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with various connection types (e.g., a bow, reed, strike) and controllers (e.g., reading values from a

MIDI file, a sine generator, user-programmed functions via Scheme (a Lisp dialect)). The result is

synthesized using modal synthesis.

(Cook 1995) presents an overview of a system consisting of a series of modules for a virtual in-

strument and a virtual musician. The instrument is implemented in two stages: The physics for the

instrument family, and the physics of the specific instrument. The performer is separated into three

stages: The physics of the performer (e.g., limits on finger speed, maximum derivative of arm move-

ment), expert knowledge of the instrument, and audio perception. Cook’s example implementation

of a trombone is not impressive by modern standards (the system’s “expert knowledge” is merely a

lookup table), yet he anticipated that such systems could include neural networks.

Feedback control has been used to control acoustic instruments. (Berdahl, Niemeyer & Smith 2008)

investigates a wide range of controllers in terms of mathematical convergence, simulated sound, and

finally implementation on an electromagnetically-prepared piano, monochord, and one string guitar.

Custom actuators and sensors were designed to minimize non-linearity. (Boutin & Besnainou 2008)

added two actuators and an accelerometer to a violin bridge in order to alter the frequency behaviour

of the bridge using active control.

Haptic interfaces for computer music

Humans use a great deal of feedback from instruments in order to alter their physical actions to

improve the resulting sound. In addition to audio feedback, humans playing real instruments benefit

a great deal from haptic (vibrotactile) feedback.

This has been of interest to music technology researchers for decades. (Chafe 1993) noted the

importance of such feedback, gave an overview of tactile response (frequency response from 0 to

approximately 1000 Hz), and performed a qualitative experiment wherein musicians controlled the lip

tension of a physical model of brass instruments by depressing a metal bar. Subjects found it much

easier to perform music with the physical model when the metal bar vibrated according to the music.

The vBow (Nichols 2003) is a custom-built virtual violin bow controller. An acrylic bow attached

to servomotors provides 4 DOF (lateral, rotational, vertical, and longitudinal motion). A musician

may manipulate the bow, which feeds control data to digital waveguide synthesis, which creates audio

and force data, which is fed back to the bow through the servomotors.

Increasing processing power allows the haptic feedback to run at audio sample rates. (Sinclair,

Florens & Wanderley 2010) investigates haptic interaction via a joystick for two violin physical models:

Modal synthesis (running at 44.1 kHz) and a digital waveguide (running at 24 kHz).

Human touch in glabrous (non-hairy) skin is detected with four types of fibres with different fre-

quency sensitivities (Bolanowski, Gescheider, Verrillo & Checkosky 1988). The threshold of detection

for frequencies between 0.4 Hz to 500 Hz was measured. The traditional rule of thumb is that 1000 Hz

is the upper limit of tactile perception, but this is usually measured with sine waves at a single point of

contact with the skin. (Wyse, Nanayakkara, Seekings, Ong & Taylor 2012) tested higher frequencies

with the whole hand resting on a vibrating surface and found that sine waves could be detected at

2000 Hz while more complicated signals could even be detected at 4000 Hz. However, the threshold of

detection was much lower at high frequencies (100 dB between threshold of detection for FM synthesis

at 250 Hz and 2000 Hz).
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1.2.5 Music information retrieval

Music information retrieval (MIR) refers to extracting musical information from symbolic data (e.g.

sheet music) or signals (e.g., audio or tactile), generally through digital signal processing (DSP)

algorithms and machine learning.

Digital signal processing

One of the most useful algorithms in digital signal processing is the Fourier Transform, along with the

Fast Fourier Transform (FFT) and Discrete Fourier Transform (Cooley & Tukey 1965). Other than

the normal use of FFTs to analyze the frequency components of signals, I benefit from using FFTs

for convolution. Convolution is very useful for applying experimentally-measured FIR filters with

many coefficients, but a naive implementation of convolution is very slow. (Stockham 1966) showed

that convolution could be performed by splitting the input signal into distinct rectangular buffers,

multiplying the FFT of each buffer with the FFT of the kernel, taking the inverse FFT, then summing

the results (overlap-add).

Since FFTs are central to so many DSP algorithms, it makes sense to optimize their calculation

by using a high-quality library such as FFTW (Frigo & Johnson 2005). To use this library, the

programmer first calls a “planner”, where the library is notified about the “shape” (size, dimensions,

and memory layout) of the problem to solve. FFTW then performs a few tests with various different

implementations of FFT algorithms, and selects the fastest implementation. Since most uses of FFTs

involve many transforms performed on the same location of memory, adding an “up-front” cost in

exchange for faster subsequent calls is a good trade-off.

The field of control theory (Warwick 1989) concerns the behaviour behaviour of a system (digital or

analog). This is useful for this dissertation to investigate some problematic behaviour of the physical

model in Section 2.2.3.

There is growing concern in the field of DSP research about the reproducibility of research papers

(Vandewalle, Kovacevic & Vetterli 2009). The descriptions of algorithms in conference and journal

papers are often not sufficiently detailed to allow experts in the field to re-implement them; even if

the algorithm can be implemented, certain parameters may have been omitted from the paper, or the

dataset(s) of media may not be available. There are various factors which contribute to this state

of affairs, such as page limits for academic publications, a desire to avoid overwhelming readers with

details, and reproducibility not being perceived as being of importance to paper referees.

Audio analysis

Marsyas (Tzanetakis 2002, Tzanetakis 2007) is an open-source library which provides both DSP and

machine learning algorithms, and is widely used in the MIR research community. Marsyas is written

in C++, with bindings for python to enable rapid prototyping. The main use of Marsyas is to describe

a data-flow network: For example, a network may begin with a sound file, whose samples are sent to

various time-domain and spectral-domain feature extractors, whose outputs are fed into a machine

learning classifier which judges certain aspects of the audio or else simply saved to a file for use in other

machine learning software. An excellent list of widely-used features (most, but not all, supported by

Marsyas) is given in (Peeters 2004). A good overview of audio signal processing specifically focused

on music is presented in (Klapuri & Davy 2006).
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Pitch is a fundamental property of human perception of music, yet detecting it automatically

is a surprisingly challenging task. Pitch detection is not the same as fundamental frequency (f0)

detection: Human auditory perception will occasionally perceive a “pitch” which is not present in the

audio signal. Well-known examples of this phenomenon are tubular bells and low pitches transmitted

via mobile phones. Both cases involve a “missing fundamental”: Consider a tubular bell which we

perceive to produce a pitch of 100 Hz. The bell actually does not vibrate at 100 Hz, but instead

vibrates at 200 Hz, 300 Hz, 400 Hz, etc. Our auditory perception “fills in” the missing fundamental

of 100 Hz. Mimicking this, and other human auditory “tricks”, is much more complicated than f0

detection.

One of the most successful methods to date is the YIN pitch detection algorithm (de Cheveigné &

Kawahara 2002), which is a time-domain algorithm based loosely on autocorrelation. However, instead

of multiplying samples, YIN squares the difference between samples and tracks the cumulative mean

normalized difference. One drawback of YIN is that is relatively slow, but (Brossier 2006) extended

algorithm to use FFTs to perform the autocorrelation.

Although pitch detection is generally more useful for music, detecting frequencies is more useful

for measuring raw physical phenomena. One popular method of this is the quadratically interpolated

FFT (Abe & Smith 2004). A buffer of audio data is windowed, transformed with the FFT, and peaks

are found. However, rather than taking the bin number of a specific peak directly, we instead examine

the magnitudes of the peak and the two bins on either side. These three points define a parabola,

which improves the accuracy of the estimate of the frequency and magnitude. (Smith 2011) further

suggests using a Gaussian window, since a Gaussian transform is a parabola on the log scale.

One additional consideration is how human will perceive the audio. Unless specifically programmed

to avoid doing so, computer analysis of digital signals will give equal weight to all frequencies in the

signal. However, human auditory sensitivity between 30 Hz and 15000 Hz varies by up to 80 dB (Suzuki

& Takeshima 2004). Some audio analysis attempts to mimic this sensitivity by applying a filter with

similar frequency response to the input signal.

Another aspect of human perception concerns the onset of a note. A note with an abrupt attack

(such as a drum or piano) can be localized in time fairly well (within 10-20 ms), but a note with a soft

attack (such as a clarinet or cello playing piano and espressivo) has a much wider range (50-100 ms)

of possible perceived onset times (Wright 2008).

Machine learning and artificial intelligence

Machine learning is the study of computers making judgements about data. A very typical example

in music information retrieval is genre classification: Given an unlabelled piece of music (such as an

audio CD), the computer judges the audio to be classical, jazz, rock, pop, or heavy metal. This is

done through supervised learning, wherein the computer is given some labelled training data (e.g.,

100 pieces of music in each musical genre). The computer “learns” how to associate each genre with

the underlying audio data (or objective features extracted from that data). When given a piece of

unlabelled data, the computer applies its “learning” to produce its best estimate of how a human

would label the new data.

One of the most widely-used machine learning algorithms for supervised learning is the support

vector machine (SVM) (Boser, Guyon & Vapnik 1992, Cortes & Vapnik 1995). Marsyas uses the

popular libSVM implementation (Chang & Lin 2011). A trained SVM is the hyperplane between
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two sets of data which maximizes the margin between the sets. This is explained in greater detail

in Section 5.2.2. The binary classifier can easily be extended to handle multiple independent classes.

However, sometimes the classes have a natural order, such as giving preferences on a 5-point scale

(e.g., very bad, bad, neutral, good, very good). Treating each rank as an independent class discards

potentially valuable information about the ranking, so it would be helpful to use that information

during training. This supervised learning problem is called “ordinal regression”. (Li & Lin 2007)

discovered a means of reducing ordinal regression to binary classification. This is quite useful, since

binary classification has received a great deal of research attention and there are a number of well-

optimized computer libraries available (including libSVM). One problem with machine learning is that

optimal results require preparing data (normalizing) and selecting certain learning parameters. The

authors of libSVM have prepared a very useful guide for practical SVM use, detailed these steps and

providing automated steps for finding reasonable learning parameters (Hsu, Chang & Lin 2003).

In addition to machine learning, I use other areas of artificial intelligence, namely optimization

and searching a problem space. In particular, I use the simple (yet effective) hill climbing algorithm

(Minsky 1961). Given a function f(x1, x2, x3, x4, . . . ), hill climbing attempts to find the maximum

value by evaluating the function multiple times with slightly altered inputs, then it “steps” to the set

of inputs which produced the highest gradient. This method is sensitive to local maxima, but it is

sufficient for my purposes.

Objective analysis of violin sound

Automated classification relies on objective analysis of the target data, yet our perception and judge-

ment of musical sounds are quite subjective. (Wrzeciono & Marasek 2010) attempts to bridge this gap

for quality of violins (not violinists). They extracted violin body modes from recorded audio and used

the Monte Carlo method to link the audio analysis with subjective judgements from expert musicians,

with an overall accuracy of 75%.

Analyzing the quality of violinists (not violins) has obvious pedagogical benefits. (Charles 2010)

used traditional machine information learning tools, first extracting audio features such as the spectral

centroid and mel-frequency cepstral coefficients, then classifying those features with k-nearest neigh-

bour classifiers. Charles achieved 97% accuracy in four-fold cross-validation when classifying long

legato bow-strokes as being performed by novice or experts, and between 70%–90% accuracy when

attempting to detect specific playing fault such as “crunching” or “skating” sounds.

Another project aimed to train computers to recognize the timbre of specific performers playing

the same instrument (Chudy & Dixon 2012). A set of recordings from five players was analyzed to

extract various spectral information, which was used to train K-Nearest Neighbour classifiers and

perform Linear Discriminant Analysis. Depending on the features and training used, this achieved

between 78% and 100% accuracy. However, the authors noted that this was using a small dataset

(five players), as it is difficult to gather recordings of cellists playing the same instrument.

Another goal of violin analysis is to extract control parameters from audio: Given only the recorded

audio, reproduce the violinist’s actions (i.e. string played, finger position, bow-bridge distance, force,

velocity, and tilt). (Pérez & Wanderley 2012) attempts to solve this task by training a statistical

model to map from sound to violinist actions while using multiple sensors such as those discussed in

Section 1.2.1. Once the model is trained, it is used to predict control parameters from only the audio.

This is a new field whose accuracy is not yet high enough for applications.
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Musicians use a wide range of terms to describe violin sound, of which very few are directly

applicable to objective measures. The relationship between these terms was investigated in (Fritz,

Blackwell, Cross, Woodhouse & Moore 2012), with an additional experiment performed in an attempt

to link the terms “brigher”, “clear”, “harsh”, “nasal”, and “good” with violin string output digitially

filtered to modify the effect of the body resonance. A consistent link was found between “brigher”,

“clear”, and “harsh” with energy in specific octave bands, but violinists differed in their interpretation

of “nasal” and “good”.

1.2.6 Music education and expressive performance

To train the virtual musician, I draw upon certain aspects of teaching humans to play bowed stringed

instruments. This training can be split into low-level physical control of the instrument, and matters

of musical style and interpretation of sheet music. The latter is a matter of great interest to music

researchers; a great deal of work has gone into attempting to create computer programs which can

perform music in a human-like manner.

Music education

In Section 1.1.6, I resolved that the system should be trained similarly to a human. This would allow

the virtual musician to benefit from the expertise of human musicians. However, if the virtual musician

is to learn like a human, it is important to have realistic expectations of such training. In particular,

professional violinists and pianists spend an estimated 10,000 hours practicing their instruments by the

time they are 20 years old (Ericsson, Krampe & Tesch-Römer 1993). This figure is the total estimated

time spent practicing alone since beginning to learn their instrument at age 4-6. Additionally, even

violinists studying to become music teachers (a position with much lower demands on musical skill)

had practiced for around 4,000 hours over the same period. This point is worth emphasizing: It takes

a great deal of effort for humans to become competent musicians, and our current research in artificial

intelligence is far from matching humans for general tasks.

One of the most widely-used methods for teaching music to young children is the Suzuki method.

A few elements of this method, and some common criticisms of those points, are worth pointing out:

� Students do not practice alone; a parent is expected to be involved in the daily practice.

� Students learn music from a set repertoire (Suzuki 1978a, Suzuki 1978b), which contains more

Baroque music than might be expected. Furthermore, some of the performance indications for

those Baroque pieces are not stylistically accurate for that period of history.

� The left-hand fingering is given in the sheet music; although Suzuki students do not read sheet

music in the beginning, parents ensure that the student follows the printed fingering.

� Students are not expected to give expressive music performances; a “robotic” performance is an

acceptable place to start.

It is not my intention to add to the educational debate concerning the Suzuki method. I merely

note that it, and particularly its repertoire books, is a very well-known method of teaching violin5.

5On a personal note, I learned cello with the Suzuki method, and although I was not an official Suzuki teacher, I
often used Suzuki cello books when teaching cello to beginners.
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One aspect of expressive performance will not be included in this dissertation: Vibrato is a tech-

nique which is not taught to string players until they have 3–4 years of experience. This technique is

a sinusoidal alteration of left-hand position, approximately 5.5 Hz for both violin and cello (Geringer

& Allen 2004).

Expressive performance

The difficulty of “human-like” performance is easily seen in the Musical Performance Rendering Con-

test for Computer Systems (Katayose, Hashida, De Poli & Hirata 2012). This contest presents re-

searchers with specific pieces of piano music (mostly classical or Romantic, e.g., Mozart, Beethoven,

Chopin). Researchers write computer programs which attempt to perform the works autonomously

on a disklavier (a computer-controlled acoustic piano with solenoids placed on the piano keys). This

contest is fascinating on a technical level, but on a musical level even the best contest entries sound

like piano students with only three or four years of experience. A survey of computer systems for

expressive music performance is given in (Kirke & Miranda 2009).

Programs at rencon generally fall into two categories: Rule-driven and data-driven. A good

example of rule-driven automated performance is Director Musices (Friberg, Colombo, Frydén &

Sundberg 2000), which uses performance rules such as “lengthen the last note of a phrase” and

“emphasize notes outside of the current key”. These rules can be altered in real-time (Friberg 2006),

making it easier to tweak the constants in the rules. A good example of data-driven automated

performance is (Widmer, Flossmann & Grachten 2009), which used recordings of Mozart and Chopin

piano pieces performed by famous pianists to train a Bayesian model to map between the scores

and expressive performances (timing and velocity deviations). This model is then used to predict an

expressive performance of other musical scores.

Some researchers view expressive music performance as an interesting addition to the Turing’s

imitation game (Turing 1950). Rather than a computer attempting to imitate a human via text

communication, the computer would attempt to perform a piece of music in a human-like manner. If

a human judge (or set of judges) was unable to distinguish between human-performed and computer-

performed music, then a certain milestone would be reached. Naturally, just as the imitation game (or

the “Turing test” as it is often called) has attracted a great deal of attention concerning whether it has

any meaning (a good survey of responses is given in (Saygin, Cicekli & Akman 2000)), a similar debate

has arisen over any potential implications of an expressive musical performance imitation game.

Many musical scores for computer analysis and performance are shared in the MusicXML (Good

2001) format. As the name implies, this is an encoding of score data in XML, which can be parsed

and written with normal XML tools. This format is available free of charge.

1.2.7 Programming and implementation

Many software tools and libraries which were used for this project, so I will restrict this section to only

the most vital tools. There are a number of guides for effective programming of scientific software; a

good summary is presented in (Aruliah, Brown, Hong, Davis, Guy, Haddock, Huff, Mitchell, Plumbley,

Waugh, White, Wilson & Wilson 2012).

SciPy (Jones, Oliphant, Peterson et al. 2001–) is a collection of open-source libraries for sci-

entific computing in python. Using python’s high-level language features, SciPy provides modules
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for scientific and engineering computing such as linear algebra, signal processing, non-linear solvers,

statistics, and optimization. Where applicable, SciPy uses existing C or FORTRAN code to do the

bulk of calculations. The combination of the “readability” of python code with the robust and fast

implementations of scientific computing algorithms is extremely powerful. One caution about python

concerns its multithreading: To simply various low-level implementation details, python has a Global

Interpreter Lock which only allows a single thread to operate at once (Beazley 2010).

Although python (with SciPy) is my language of choice for general computing, the final implemen-

tation of the physical model was written in C++. I made extensive use of the open-source C++ com-

pilers in the GNU Compiler Collection (Stallman et al. 2012) and LLVM / Clang++ (Lattner 2005).

Alternating between compilers gave my code additional testing, and Clang++ has very good warning

and error messages. In addition, the Valgrind tool suite (Nethercote & Seward 2007) contains an

extremely useful memory checker and extensive profiler. The highly-optimized C++ code, used for

the physical modelling and the CPU-limited portions of the intelligent feedback control, was combined

with python using the Simplified Wrapper and Interface Generator (SWIG) library (Beazley 2003).

Since a vibrating string’s motion follows an exponential decay, any attempt at simulating this

motion over a long period of time will result in very small numbers. The IEEE 754 (IEEE Com-

puter Society 2008) specification for floating-point numbers contains a special representation of tiny

floats: “denormalized” or “subnormal” numbers (Goldberg 1991). On modern desktop computers,

calculations involving denormalized numbers are often implemented in microcode instead of directly

in the silicon, which is much slower (Dooley & Kale 2006). Disabling the use of denormalized floats

is strongly recommended for this purpose. This is discussed further in Section 4.2.3.

Finally, Eigen (Guennebaud, Jacob et al. 2010) is a C++ template library for linear algebra. It

automatically vectorizes code for a range of CPU instruction sets, and provides a high-level way to

handle matrices in C++. This is discussed further in Section 4.3.1. These vectorized instructions mean

that multiple pieces of data can be processed at the same time with single instruction, multiple data

(SMD) instructions (Franchetti, Kral, Lorenz & Ueberhuber 2005, Intel 2007, Hassaballah, Omran &

Mahdy 2008).

1.3 Problem definition revisited

To summarize, my goal is:

Given a machine-readable representation of sheet music, the computer autonomously produces

audio and video that sounds as if it was performed by a human.

In order to maximize the potential applications of this work, and in the spirit of open scientific

progress, I adopt the following (voluntary) constraints:

Free software: The entire system must be available at no cost, and furthermore, everybody must

be legally allowed to modify it (“free” as in “freedom”).

Easily extended: The system should be clearly designed with good documentation, such that a

moderately skilled programmer can add new features. Any data required for the system should

as easy to gather, without requiring any expensive equipment or special acoustic environment.

Human-like pedagogy: The system should be trained in a manner similar to training a human

student, since most musicians are experienced at teaching humans but are not programmers.
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Figure 1.2: Overview of music performance with Vivi. We will re-use this diagram throughout this
dissertation to add context to each chapter.

1.3.1 Overview of Vivi, the Virtual Violinist

Having examined the relevant literature, we can see the overall plan: Given sheet music, translate

music notation into physical actions, create audio with a physical model (mathematical simulation) of a

stringed instrument, then use feedback control with machine learning to alter the physical parameters

if necessary. The sound quality judgements from the machine learning will be stored and used to

improve future performances by attempting to avoid making the same mistakes. This process is

shown in Figure 1.2.

Following the example of Vocaloid, I named my computer program Vivi, the Virtual Violinist , or

Vivi for short. Each recorded voice in Vocaloid has its own name and illustrated mascot character,

which helps software users and video viewers “identify” with the voice (Kenmochi 2010). Naming is

a difficult task (Ashworth 1997), but “Vivi” will hopefully help musicians feel more at ease with the

software. There is no official illustration yet, but the name “Vivi” suggests a female violinist, so will

be referred to with the feminine pronoun.

To imitate human music pedagogy, human input will happen after each piece of music has finished

playing, not in real-time. Music teachers occasionally shout commands or physically adjust music

students’ bodies while the student is performing, but this is much less common than giving feedback

after the performance is over.

I used the first two Suzuki violin books to train and evaluate Vivi , aiming to produce a sound

similar to a human violin student playing the same pieces. In the case of Suzuki violin book two, Vivi

should sound like a 6-year-old violin student. This goal may not seem very ambitious, but I adopt

the common idiom “we must learn to walk before we can run”. One of the great advantages of Free

software is that we can easily build on each other’s work without losing anything. This dissertation

brings the level of autonomous virtual violinists up to a 6-year old child; future work will improve the

violinist’s skill level.
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1.3.2 Choice of violin physical model

As discussed in Sections 1.2.2 and 1.2.3, there are many methods of computer synthesis of violin-

like sounds. However, sampling synthesis and spectral modelling synthesis require huge databases of

recorded samples. These can be licensed from expensive commercial software, or recorded from skilled

musicians in a sound recording studio — but these options are in conflict with the “Free software”

and “Easily extended” constraints. I do not want to rely on resource-heavy methods which would

impede other researchers or composers; if a synthesis method would require us to spend a few weeks

recording hours of audio data, I consider that a strong point against that method.

The main existing open-source library for physical modelling is the Synthesis Toolkit (STK) in

C++ (Scavone & Cook 2005), which uses digital waveguide synthesis. However, the waveguide im-

plementation in STK is based heavily on (McIntyre et al. 1983, Smith 1992) and lacks the recent

improvements found in later work6.

I therefore decided to write my own physical modelling code, and faced the choice of digital waveg-

uide or modal synthesis. (Demoucron 2008) presented a detailed description of modal synthesis with

many sound examples7 of the results. Unfortunately, sound examples of waveguide synthesis were dif-

ficult to find. There are a few examples from STK available8, but as previously noted these represent

old implementations and are not indicative of state-of-the-art research in waveguide synthesis. Fur-

thermore, Demoucron’s examples included convolution with the violin body impulse and synthesized

four strings separately, while the STK examples synthesized only a single string.

The comparison was not at all valid, but I had to make a choice. A very rough survey of research

papers suggested that digital waveguide was used more often than modal synthesis, and various

papers (including (Demoucron 2008)) noted that modal synthesis was slower than waveguide synthesis.

However, the modal synthesis described by (Demoucron 2008) represented a known quality: I was quite

impressed with his audio examples and his clear and thoughtful explanation of the algorithm.

In the end I chose to use Demoucron’s modal synthesis. He does not claim that his algorithm is

original or highly advanced, but instead notes that

“A main purpose of our work with the bowed-string model was to separate the properties of

the model that are sufficient for obtaining an acceptable violin synthesis, from the demands

necessary for obtaining a realistic modelling of the mechanics of the bowed string. It should

be emphasized that our model has not been developed to be a scientific simulation tool for

detailed studies of the bowed string, and in many cases it will not meet the demands of such a

tool. However, in the light of our objectives, it is considered to perform perfectly satisfactorily,

allowing perceptually convincing simulations of bowed-string sounds.” (Demoucron 2008, p. 74)

Like Demoucron’s work, my objective is not a scientifically-accurate reproduction of stringed in-

strument physics; rather, I wish to produce acceptable simulations of their sound. This model satisfies

my objectives, so I adopt it despite its simplification of certain physical processes. These simplifica-

tions are discussed in Section 2.4.1.

6In fact, when I began this research, the bowed-string modelling in STK did not even include control of the bow
velocity. Bow velocity was added to STK by Esteban Maestre in version 4.4.3, released on 2011 August 30.

7http://recherche.ircam.fr/equipes/instruments/demoucron/
8http://ccrma.stanford.edu/~jos/waveguide/Sound_Examples.html

http://recherche.ircam.fr/equipes/instruments/demoucron/
http://ccrma.stanford.edu/~jos/waveguide/Sound_Examples.html
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Figure 1.3: Sampling rates of various parts of Vivi .

1.4 Organization of this dissertation

In this chapter, I explained the problem and the constraints, motivated the constraints with examples

of potential applications, and examined related work. The remainder of the dissertation is designed

in layers, where I begin by discussing the smallest time interval (the violin string) and then gradually

expand, focusing on each step in turn. This is illustrated in Figure 1.3.

There are two main parts to the thesis, with an additional introduction, conclusion, and appendices.

Part I: Physical Modelling of the Violin Family

The first part simulates the sound of physical instruments.

Chapter 2, Physics of Physical Modelling: Gives the mathematical formulae which simu-

lates the violin string and instrument body, and discusses the design decisions and conse-

quences of using those equations.

Chapter 3, Constants for Physical Modelling: Discusses the physical experiments and sim-

ulations used to select constants to be used with the physical modelling equations.

Chapter 4, Implementation of Physical Modelling: Explains the video generation and

the implementation of the physical model as a high-performance C++ library.

Part II: Performing with the Virtual Violin Family

The second part simulates the behaviour of a beginning violinist, violist, and cellist.

Chapter 5, Control loops: Describes the pitch and bow control loops central to the virtual

musician with classical and intelligent feedback control.

Chapter 6, Calibration, Performance, and Self-Improvement: Discusses the human in-

volvement in training the virtual violinist, various automated processes to improve the

output, and the mapping from musical score to physical actions.

Chapter 7. Implementation of Vivi, the Virtual Violinist : Describes the extraction of

information from multi-instrument scores and the implementation.

Conclusion

Examines the project with reference to the applications discussed in the introduction, gives a few

philosophical remarks about the lack of philosophical implications of virtual musicians, and discusses

future directions of this research.
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Appendices

These include additional material which may be of interest.

Appendix A, Additional Mathematics for Physical Modelling: This supports a conjec-

ture concerning one bowing variable.

Appendix B, Performances of select sheet music: Audio and video generated automati-

cally from sheet music.

Appendix C, Source code, raw data, and copyleft licenses: All source code and data for

this research are available and published under permissive copyright licenses: GPLv3 for

source code, and Creative Commons BY-SA 2.5 Scotland for this dissertation.
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Figure 2.1: Physical modelling in context.

In order to teach a computer how to play musical instruments, I need a model (or “simulation”)

of the relevant instruments. In other words, I want to answer questions such as:

If I place a violin bow on the violin D string at 0.16 string-lengths away from the bridge, press

down with a force of 1.23 N, and accelerate the bow from rest at 8.0 m/s2 for 0.023 seconds;

what output will I get? Given the current state of the violin string, suppose I increase the bow

force to 1.34 N, accelerate at 4.0 m/s2, and simulate for another 0.023 seconds; what output will

I get?

These questions are answered in this chapter and the next two: Chapter 2 discusses the physical

modelling algorithm, Chapter 3 discusses experimental measurements of real-world instruments and

simulated experiments to determine constants which improve the model’s output, and Chapter 4

discusses the computer implementation of this algorithm and the video production.

In Section 1.2.2 and Section 1.3.2, I examined various physical models of a violin, and selected

(Demoucron 2008) as being the best fit for my goals. In this chapter, I extended Demoucron’s

algorithm to include plucking the string, improved the bowing friction model, and added haptic

output. Formally, the model takes five input parameters (i.e. the physical actions) and produces two

output signals (shown in Figure 2.2 and Table 2.1). To allow some computer optimizations, each set of

29
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Figure 2.2: Overview of the violin physical modelling. Solid lines indicate transfer of variables; wavy
lines indicate signals. Each set of input parameters are generally evaluated for 512 samples. Note
that each string continues to produce audio after the bow moves to a different string, whereas the
bow force comes from only the current string.

Symbol Explanation
xb Bow-bridge bowing distance [m]
xf Finger position [m]
vb Bow velocity [m/s]
Fb Bow force [N]
s String number [0, 1, 2, 3]

(a) Input variables

Symbol Explanation
an(t) Modal displacement
ȧn(t) Modal velocity
φn(x) Eigenvectors
Fi External forces
Di Coefficients for force calculations

(b) Main internal variables

Symbol Explanation
A[t] Audio output [16-bit signal at 22050, 44100, or 66150 Hz]
H[t] Haptic response at bow hand [16-bit signal at 22050, 44100, or 66150 Hz]

(c) Output variables

Table 2.1: Main variables used in bowed-string algorithm. Since the model will be used for violin,
viola, and cello, there is implicitly a sixth parameter: The instrument to model, and therefore which
constants to use. However, this parameter does not change during the simulation, so we omit it from
this list of variables. The sampling rates for A[t] and H[t] here refer to the sample rate within the
string simulation; the instrument simulation decimates those to 22050 Hz and 11025 Hz respectively.

input parameters are held constant for 512 samples, but if a musical note boundary requires a smaller

buffer, this is reduced. The instrument is simulated at a constant 22050 Hz, while the sampling rate

of individual strings vary.

This chapter can be divided into three sections:

1. In Section 2.1, I describe the equations used for the stringed instrument physical modelling

algorithm.

2. Additional discussion of the model’s behaviour and trade-offs of accuracy vs. speed are given in

Section 2.2 for finger actions and Section 2.3 for bowing actions.

3. Final remarks are given in Section 2.4, giving a summary of externals actions the model can

simulate. Possible improvements to the model are discussed.
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2.1 String and instrument body simulation

The central part of a stringed instrument model is of course the actual string simulation; an overview

is given in Figure 2.3 and Table 2.1.

The calculation of the wave equation in Section 2.1.1 and the first portion of the bow force calcu-

lations in Section 2.1.3 are unchanged from Demoucron’s algorithm; for longer explanations, proofs,

and analysis of this portion of the model’s behaviour, see (Demoucron 2008) and/or (Demoucron &

Rasamimanana 2009). To permit easy cross-referencing, I have used the same symbols and terminol-

ogy as Demoucron’s work. However, there are two warnings about these variables. First, he uses fn to

represent the magnitudes of modal forces, which conflicts with the customary usage in digital signal

processing of fn being the frequency of the nth mode. This notation is unfortunate as I need to discuss

both modal forces and frequencies of modes, so I use f̌n to refer to the magnitudes of modal forces.

Second, he uses a subscript n to indicate a vector, such as an = ahn +X3nf̌n(t1). Some scientists and

mathematicians may prefer to express this in the more compact form a = ah +X3 ◦ f̌(t1).

The overall sampling rate is fs = 22050 Hz, but the sampling rate of each string is set to be a

multiple of 1, 2, or 4 times the overall sampling rate, based on balancing output quality and processing

time for each string. The output of strings of the same frequency multiple are summed together,

convolved with the combined body response and low-pass filter, decimated, then summed with the

output of strings operating at a different frequency multiple. More details are given in Section 2.1.5.

Before discussing the physical modelling, I will discuss the expected the range of input parameters.

During normal playing by experts, (Schoonderwaldt 2009) found that the violin bow-bridge distance

xb ranged from 5 mm to 60 mm, the bow velocity vb ranged from 0.05 m/s to 1.0 m/s (with these

values being negative for upbows), while the bow force Fb was between 0.1 N to 2 N.

I made some rough estimates on beginner violin and cello playing. On the violin, xb was between

20 mm and 70 mm, while on cello xb was between 35 mm and 110 mm. The bow velocity on both

instruments went up to 0.5 m/s. Bow force is harder to observe, so I refrained from making any wild

estimates. Finally, the highest note in Suzuki violin books 1 and 2 is the 4th finger on the E string,

occurring at xf = 0.333L (xf = 110 mm) and having a fundamental frequency of 990 Hz.
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2.1.1 String physics

The synthesis begins with a stiff string with linear density ρL, tension T , Young’s modulus E, diameter

d, length L, and second moment of area for a circular cross-section of the string I = πd4

64 . We also

add a damping coefficient RL(ω) to cover all losses of energy: Losses along the string due to friction,

the wave reflection at both ends of the string, and energy transferred to the instrument body. With

external forces Fi(x, t) and transverse displacement y(x, t) of the string at position x and time t, the

wave equation is:

ρL
∂2y(x, t)

∂t2
− T ∂

2y(x, t)

∂x2
+ EI

∂4y(x, t)

∂x4
+RL(ω)

∂y(x, t)

∂t
=
∑
i

Fi(x, t) (2.1)

For a modal solution in terms of eigenvectors φn(x), the following substitutions are made. These

substitutions are only strictly valid as N tends to ∞; for finite N they result in approximations.

φn(x) =

√
2

L
sin
(nπx
L

)
(2.2)

an(t) =

∫ L

0

φn(x)y(x, t)dx y(x, t) =

N∑
n=1

φn(x)an(t) (2.3)

f̌n(t) =

∫ L

0

φn(x)F (x, t)dx F (x, t) =

N∑
n=1

φn(x)f̌n(t) (2.4)

The wave equation (2.1) can be rewritten in modal form,

än(t) + 2rnȧn(t) + w2
0nan(t) = ρ−1

L f̌n(t) (2.5)

rn =
RL(ω)

2ρL
ω0n =

√
T

ρL

(nπ
L

)2

+
EI

ρL

(nπ
L

)4

(2.6)

Experimental measurements (Section 3.2) will provide rn directly, giving the damped frequencies

ωn =
√
ω2

0n − r2
n (2.7)

For simplicity, external forces are assumed to be constant throughout our time interval dt and each

force acts on a single point. We can therefore represent each force with a Dirac delta function and

update the modal equation (2.5),

än(t) + 2rnȧn(t) + w2
0nan(t) = ρ−1

L

∑
i

Fi(t)φn(xi) (2.8)

The modal impulse response from (2.8) is

hn(t) = ω−1
n sin(ωnt)e

−rnt (2.9)

The modal displacements at time t1 = t0 + dt with modal forces f̌n(t) are:

an(t1) = X1nan(t0) +X2nȧn(t0) +
1

ρL

∫ t1

t0

f̌n(t′)hn(t1 − t′)dt′ (2.10)
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X1n =

(
cos(ωndt) +

rn
ωn

sin(ωndt)

)
e−rndt Y1n = −

(
ωn +

r2
n

ωn

)
sin(ωndt)e

−rndt

X2n =
1

ωn
sin(ωndt)e

−rndt Y2n =

(
cos(ωndt)−

rn
ωn

sin(ωndt)

)
e−rndt

X3n =
1−X1n

ρLω2
0n

Y3n =
−Y1n

ρLω2
0n

Table 2.2: Coefficients for modal displacement and velocity.

with coefficients for the modal displacements and velocities given in Table 2.2. The calculation of each

time step begins by calculating the new modal displacements and velocities which would occur if no

external forces were applied1. Intuitively, we are asking “How would the string behave if there was

no finger or bow on the string?” Concretely, we define

ahn(t1) = X1nan(t0) +X2nȧn(t0) (2.11)

ȧhn(t1) = Y1nan(t0) + Y2nȧn(t0) (2.12)

Since the model assumes that f̌n(t) has a constant value throughout our time interval dt, and∫ t1

t0

f̌n(t′)hn(t1 − t′)dt′ =
1

ω2
0n

(1−X1n)f̌n(t1) (2.13)

we can simplify (2.10) with (2.11), and apply a similar reasoning to the modal velocities,

an(t1) = ahn(t0) +X3nf̌n(t1) (2.14)

ȧn(t1) = ȧhn(t0) + Y3nf̌n(t1) (2.15)

Depending on the actions of the violinist, the model will include up to 3 external forces (F0, F1,

F2). Each force acts at a single distinct point on the string. The calculation for the forces are given

in Section 2.1.2 and Section 2.1.3. Once these forces are calculated, the modal forces are

f̌n(t1) =
∑
i

φn(xi)Fi(t1) (2.16)

Once an(t) has been calculated, the force of the bow on the bridge produces the audio signal. Gn

can be pre-computed to save time during simulation:

Fbridge(t) = T
∂y(x, t)

∂x
|x=0 − EI

∂3y(x, t)

∂x3
|x=0

=

N∑
n=1

an(t)Gn, where Gn =

√
2

L

(
T
(nπ
L

)
+ EI

(nπ
L

)3
)

(2.17)

1To maintain a consistent notation with (Demoucron 2008), we use the h superscript which he used to mean “his-
torical”. However, we suggest that h be understood as “human-free” or “hands-free”.
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External forces on the string

The forces applied from external actions will be modelled as damped springs and the bow-string

friction equation. These in turn will benefit from knowing the “hands-free” displacement and velocity

at certain points along the string. To shorten the equation, I define yi = y(xi, t) and vi = ẏ(xi, t).

yhi =

N∑
n=1

φn(xi)a
h
n vhi =

N∑
n=1

φn(xi)ȧ
h
n (2.18)

It will also be useful to calculate the actual displacement and velocity at certain points, given

external point forces Fj :

Apq =

N∑
n=1

φn(xp)φn(xq)X3n Bpq =

N∑
n=1

φn(xp)φn(xq)Y3n (2.19)

yi = yhi +
∑
j

AijFj vi = vhi +
∑
j

BijFj (2.20)

Given a damped spring of strength K and damping R, the restoring force F depends on its current

displacement yi, the desired displacement ydi , and its velocity vi:

Fdamped(t) = −K
(
yi − ydi

)
−Rvi (2.21)

2.1.2 Finger forces on the string

The most common use of a violin physical model is to simulate bowing actions, but I first consider the

two simpler cases of external actions on the violin: Plucking the string, and pressing a left-hand finger

on the string. To avoid certain problems discussed in Section 2.2, the finger actions are modelled as

two or three damped springs (forces F0, F1, F2). It should be clarified that these are transverse forces:

if the x-axis is along the string and the y-axis is along the direction of the bow, a violinists’ finger

presses down along the z-axis, but these forces are the effects of the finger along the y-axis.

As shown in Figure 2.4, the position x1 of force F1 always represents the edge of the left-hand

finger closest to the bridge. The positions of the other two forces vary based on the violinist’s action,

with xp and xf being the positions of the pluck and finger. Other constants are Wp,f being the widths,

Kp,f being the spring constants. and Rp,f being the damping constants, discussed in Section 3.5.3.

Plucking the string

F0 and F2 represents the two sides of the plucking finger, which will cause the string to be pulled to

one side for some time until the string is released. F1 represents the left-hand finger. The desired

displacement of the “plucking points” x0 and x2 is ydp , with (yd0 = yd2 = ydp). At the beginning of a

pluck, ydp = 0 and increases at speed vp until it reaches the desired displacement ydp . This position is

held for the desired duration tp, at which time the string is released.

x0 = xp x1 = xf x2 = xp +Wp

K0 = Kp K1 = Kf K2 = Kp

R0 = Rp R1 = Rf R2 = Rp

(2.22)
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Figure 2.4: String displacements at beginning and release of pluck on the violin G string,
xf = 0.891L = 0.29, xp = 0.2L = 0.066. Left: beginning of pluck. Right: releasing the string.
The “wiggles” in the left graph are unwanted artifacts due to the finite number of modes (N = 40).
Note that the y-axes show different ranges, since the string moves only slightly in the first time sam-
ple; although the “wiggles” are not desirable they are not a serious problem. The violin bridge is at
position x = 0, while the nut is at x = 0.329.

Consider the combination of forces and displacements at points x0, x1, and x2 by combining (2.21)

with (2.20). Note that since x1 always represents the finger, its equation does not include a ydp term.

(A00K0 +B00R0 + 1)F0 + (A01K0 +B01R0)F1 + (A02K0 +B02R0)F2 = −K0(yh0 − ydp)−R0v
h
0

(A10K1 +B10R1)F0 + (A11K1 +B11R1 + 1)F1 + (A12K1 +B12R1)F2 = −K1(yh1 )−R0v
h
1

(A20K2 +B20R2)F0 + (A21K2 +B21R2)F1 + (A22K2 +B22R2 + 1)F2 = −K2(yh2 − ydp)−R2v
h
2

(2.23)

These three linear equations can be expressed in matrix form:

Āz = b

Ā =


A00K0 +B00R0 + 1 A01K0 +B01R0 A02K0 +B02R0

A10K1 +B10R1 A11K1 +B11R1 + 1 A12K1 +B12R1

A20K2 +B20R2 A21K2 +B21R2 A22K2 +B22R2 + 1



z =


F0

F1

F2

 b =


−K0(yh0 − yd0)−R0v

h
0

−K1(yh1 )−R1v
h
1

−K2(yh2 − yd2)−R2v
h
2


(2.24)

The forces F0, F1, and F2 are calculated from (2.24), either by finding the inverse of Ā and solving

z = Ā−1b, or using a matrix decomposition. Solving (2.24) with either of these technique is particularly

useful for the string model: Although the vector b changes based on the current state of the string,

the matrix Ā only depends on the positions of external forces. Since the positions of external actions

change infrequently (usually once every 0.5–1.0 seconds), a matrix inverse or decomposition saves a

great deal of computation. Further implementation details are given in Section 4.3.1.
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D8 =
−1

KfA00 +RfB00 + 1
D9 = (KfA01 +RfB01)D8

D10 = −(RfB01 +KfA01)L3 D11 = (RfB00 +KfA00 + 1)L3

L3 =
−1

(A00Kf +B00Rf + 1)(A11Kf +B11Rf + 1)− (A01Kf +B01Rf )2

Table 2.3: Coefficients for pluck release.

String release

F0 and F1 represent points on the left-hand finger, and act against any movement (ydi = 0). F2 is

unused. If there is no left-hand finger on the string, then we set all Fi = 0.

x0 = xf +Wf x1 = xf x2 = 0

K0 = Kf K1 = Kf K2 = 0

R0 = Rf R1 = Rf R2 = 0

(2.25)

These values could be inserted into the the three-force equations in (2.24). However, since we only

use two forces during the string release, we can simplify Ā and b as

Ā =

[
A00Kf +B00Rf + 1 A01Kf +B01Rf

A01Kf +B01Rf A11Kf +B11Rf + 1

]
b =

[
−Kfy

h
0 −Rfvh0

−Kfy
h
1 −Rfvh1

]
(2.26)

We now define the augmented matrix M = [Ā|b],

M =

[
A00Kf +B00Rf + 1 A01Kf +B01Rf −Kfy

h
0 −Rfvh0

A01Kf +B01Rf A11Kf +B11Rf + 1 −Kfy
h
1 −Rfvh1

]
(2.27)

The canonical row-echelon form of a 2x3 augmented matrix is:[
1 M01

M00

M02

M00

0 1 M00M12−M02M10

M00M11−M01M10

]
(2.28)

Since only the Mi2 entries of M change at each time sample, the bulk of calculations in (2.28) can

be pre-computed as the coefficients defined in Table 2.3,[
1 −D9 (Kfy

h
0 +Rfv

h
0 )D8

0 1 (Kfy
h
0 +Rfv

h
0 )D10 + (Kfy

h
1 +Rfv

h
1 )D11

]
(2.29)

Solving for Fi with back-substitution gives

F1 = (Kfy
h
0 +Rfv

h
0 )D10 + (Kfy

h
1 +Rfv

h
1 )D11 (2.30)

F0 = (Kfy
h
0 +Rfv

h
0 )D8 + F1D9 (2.31)

The row-echelon form of the 3x4 augmented matrix form of (2.24) can be solved with a computer

algebra system, but the coefficients are considerably more complicated than the 2x3 case. Since the

pluck release is much longer than the initial pluck, there is little to gain by optimizing that step.
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Figure 2.5: Finger forces F0 and F1 causing desired pitch (x1 = 0.891L, 220 Hz) after a pluck release.
The time-domain plots only show the first few cycles, but the FFT was performed on 65536 samples
(≈ 1.5 seconds) after applying a Blackman-Harris window.
Audio 2.1: Plucking a fingered violin G string

http://percival-music.ca/dissertation/a.2.1.pluck-finger-forces-violin-g.wav

Pitches and energy transfer between modes

The external forces do not change the fundamental constants of the string: The modal frequencies

ωn do not change due to x0, x1, or x2. Different pitches are produced due to forces F0, F1, and F2

transferring energy between modes. Without this modal cross-coupling, the system would be a linear

system of decaying modes and would require altering the string length L in order to create different

pitches.

Figure 2.5 shows the output of the simulation after a fingered pluck. Forces F0 and F1 act to

suppress any movement at positions x0 and x1, while the remainder of the string vibrates freely

(recall that F2 is not used for the release portion of the pluck). Musically speaking, the plucking

position (xp = 0.891L) corresponds to the normal position of the first finger in violin playing, so on

the violin G string we expect to see a full set of harmonics beginning at 220 Hz.

The displacements along the entire string for one cycle is shown in Figure 2.6. That figure also

illustrates why F1 is considerably larger than F0, and why the two forces are almost exactly out of

phase: F1 must counter the behaviour of the long vibrating portion of the string, whereas F0 need

only cancel the smaller movements in the short portion of the string.

http://percival-music.ca/dissertation/a.2.1.pluck-finger-forces-violin-g.wav
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Figure 2.6: String displacements during one cycle of a pluck on the violin G string, downsampled
by a factor of 5. Times are measured after pluck release. Note that while the string has very small
displacements at points x0 and x1, the string vibrates freely between those points. This is an unwanted
artifact of modelling the finger as only two points on the string. Note the string has a sharp “corner”
at the plucking position (xp = 0.2L = 0.066) at time 0, and that this “corner” moves to the right until
it hits the finger, then returns in the opposite direction, forming a rough parallelogram. However,
over time this “corner” becomes more and more gradual (courtesy of the high decay rates of upper
modes), until it reaches the arc-like string segments shown on the right.
This simulation produced Audio 2.1.
Video 2.1: Displacements after plucking a fingered violin G string: 4.5 ms, full sample rate.

http://percival-music.ca/dissertation/v.2.1.pluck-finger-movie-violin-g.mpeg

Video 2.2: Displacements after plucking a fingered violin G string: 200 ms, reduced sample rate.
http://percival-music.ca/dissertation/v.2.2.pluck-finger-movie-long-violin-g.mpeg

Oddities of this model

Although the right-hand plucking finger is always modelled with two forces, the left-hand finger is

modelled with one or two forces. It may seem odd to alter the simulated left-hand finger width

— when plucking the string, the finger is infinitely thin (at point xf ), whereas when the string is

released, the finger acts on the string at two points (xf and xf + Wf ). Furthermore, the “finger”

allows free vibrations between those points. Using only three forces for the plucking portion and two

forces for the string release is a compromise between computational complexity and realism of the

model. Adding additional “finger points” to the model poses no mathematical difficulty — we simply

add more rows and columns to Ā, z, and b. Finding the inverse or decomposition of 10x10 or even

100x100 matrices will not seriously tax a modern computer using standard linear algebra libraries, at

least for non-realtime simulations. In this way we could produce a more realistic model of a finger.

Instead of using two springs of equal strength, we could use multiple springs. The spring constants K

and damping factors R of each point could be varied in order to better imitate the curved finger by

using stronger springs for points at the centre of the finger and weaker springs for points at the edges

of the finger. However, with the possible exception of the double bass playing jazz, plucking is not a

large factor in normal instrument playing, and the current system creates plausible audio to casual

listening. I therefore turn to the bowing algorithm.

http://percival-music.ca/dissertation/v.2.1.pluck-finger-movie-violin-g.mpeg
http://percival-music.ca/dissertation/v.2.2.pluck-finger-movie-long-violin-g.mpeg
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2.1.3 Bow force on the string

When bowing the string, I only use two forces: F0 represents the bow, while F1 is a single finger force.

F1 remains modelled as a damped spring, while there are two ways of thinking about F0:

Adjusting modal values: our modal equations require a variable F0 to update the string velocity

v0 in the desired manner. I represent this concept as Fmodal(∆v).

Force of friction: as the bow scrapes against the string, it creates a frictional force. I represent this

concept as Ffriction(∆v).

Although Fmodal(∆v) and Ffriction(∆v) are the same force, it is useful to consider them separately

for their derivation. This equality is crucial to avoiding a computationally expensive numerical solution

to our differential equations. A graphical interpretation of this is shown in Figure 2.7: The equality

is the intersection of the Ffriction(∆v) curve and the relevant Fmodal(∆v) diagonal line.

Both methods will benefit from defining the relative velocity between the bow and string,

∆v = v0 − vb (2.32)

Deriving Fmodal

Inserting y1 and v1 from (2.20) into (2.21) and solving for F1 gives

F1 = − (B10R1 +A10K1)F0 +R1v
h
1 +K1y

h
1

B11R1 +A11K1 + 1

= D5F0 +D6v
h
1 +D7y

h
1

(2.33)

Inserting (2.33) and (2.32) into v0 from (2.20) and solving for F0 gives

Fmodal = F0 =
(B11R1 +A11K1 + 1)(vb + ∆v − vh0 ) + (B01K1)yh1 + (B01R1)vh1

(B00B11 −B01B10)R1 + (A11B00 −A10B01)K1 +B00

= D1(vb + ∆v − vh0 ) +D2y
h
1 +D3v

h
1

(2.34)

In Appendix A, I conjecture that the denominator of (2.34) must be greater than zero.

Deriving Ffriction

The “traditional” bow-string friction model is the hyperbolic friction curve with hysteresis (McIntyre

et al. 1983), which expresses the frictional force in terms of Fb and ∆v. The curve relies on the

coefficients of static friction µs, dynamic friction µd, while µc indicates the slope2.

Ftraditional =


Fb

(
µd + (µs−µd)µc

µc−∆v

)
if ∆v < 0

−Fb µs ≤ Ftraditional ≤ Fb µs if ∆v = 0

−Fb

(
µd + (µs−µd)µc

µc+∆v

)
if ∆v > 0

(2.35)

2Notation: here there is another unfortunate clash of variable names. Some literature on bow friction uses v0 to
refer to the slope of the hyperbolic friction curve (µs in my notation). However, (Demoucron 2008) and (Demoucron &
Rasamimanana 2009) use vh0 to refer to the “hands-free” velocity of the string under the bow, which naturally suggests
using v0 for the string velocity at that point, as I have done. I find it much more natural to use µ to represent all
friction parameters
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D1 = (B11R1 +A11K1 + 1)L1 D2 = B01K1L1

D3 = B01R1L1 D4 =
1

2D1

D5 = (B10R1 +A10K1)L2 D6 = R1L2 D7 = K1L2

L1 =
1

(B00B11 −B01B10)R1 + (A11B00 −A10B01)K1 +B00
L2 =

−1

B11R1 +A11K1 + 1

Table 2.4: Coefficients for bow force on the string.

The friction curve is plotted in Figure 2.7; note that there is an “ambiguous” region where there is

more than one possible intersection. At time ta, the only intersection is at roughly ∆v = −1.25; at time

tc the only intersection is ∆v = 0. However, at time tb, there are three candidates: ∆v ∈ {−0.5,−0.1, 0}.
This “Friedlander-Keller ambiguity”, named after the two mathematicians who first studied it, is re-

solved by adding a hysteresis rule to (2.35): if the system is currently sticking (∆v = 0), then it will

continue to stick if possible; if the system is slipping (∆v 6= 0) then it will continue to slip if possible.

Furthermore, the system will never reach the “middle value” between ∆v = 0 and the farthest possible

solution. In the case of Figure 2.7, if we progress from time ta → tb then ∆v = −0.5; if we progress

from time tc → tb then ∆v = −0.1. Noise was added to the slipping state by multiplying the friction

curve µc by a uniform random value 0.95 ≤ u(t) ≤ 1.0 for every computation, defining µe = µcu(t).

This has the effect of adding pulsed noise at the slip/stick transitions, which can aid in establishing

Helmholtz motion (Chafe 1990, Demoucron 2008).

Ffriction =


Fb

(
µd + (µs−µd)µe

µe−∆v

)
if ∆v < 0

−Fb µs ≤ Ffriction ≤ Fb µs if ∆v = 0

−Fb

(
µd + (µs−µd)µe

µe+∆v

)
if ∆v > 0

(2.36)
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Figure 2.7: Hyperbolic friction curve using a common set of friction characteristics (µs = 0.8, µd = 0.3,
µe = 0.2) and bowing parameter Fb = 1.0. The randomness of µe alters the steepness of the curves
in Ffriction, but only by a small amount (the maximum and minimum µe curves are plotted but are
indistinguishable at this resolution). The modal force comes from an open violin G string with bowing
parameter x0 = 0.1L, vb = 0.4 and varying vh0 .
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Relative bow velocity

Calculating ∆v depends on the current bow slip-state; given the hysteresis rule, we will consider each

slipping state (∆v < 0, ∆v = 0, ∆v > 0) separately. If the current slip-state cannot be maintained,

other states are tested as shown in Figure 2.8. Once ∆v is derived, F0 is calculated from (2.34).

Sticking: If the string is currently in the sticking state (∆v = 0), the bow continues to stick if

−Fb µs ≤ Fmodal ≤ Fb µs (2.37)

Slipping (negative): If the string is currently moving slower than the bow (∆v < 0), then we

combine Fmodal (2.34) with the relevant case of Ffriction (2.36):

D1(∆v + vb − vh0 ) +D2y
h
1 +D3v

h
1 = Fmodal = Ffriction = Fb

(
µd +

(µs − µd)µe
µe −∆v

)
(2.38)

Solving for ∆v gives:

c2∆v2 + c1∆v + c0 = 0, with


c2 = −D1

c1 = −D1(vb − vh0 − µe)−D2y
h
1 −D3v

h
1 + Fbµd

c0 = µe
[
D1(vb − vh0 ) +D2y

h
1 +D3v

h
1 − Fbµs

] (2.39)

If the discriminant ∆ = c21 − 4c0c2 is below 0, then there is no real solution for ∆v so we reject

this slip condition and check for a stick condition. If ∆ = 0 then there is only one solution. If

∆ > 0 then there are two solutions, but we always take the solution which is farthest from zero.

Finally, recall that the formula for Ffriction in (2.38) is only valid for ∆v < 0, so we must reject

any other solutions.

∆v = min

(
−c1 +

√
c21 − 4c0c2

2c2
,
−c1 −

√
c21 − 4c0c2

2c2

)
,provided that ∆v < 0 (2.40)

Assuming that D1 > 0 (see Appendix A), we can simplify (2.40) to

∆v = D4

(
c1 −

√
c21 + 4c0D1

)
, provided that ∆v < 0 (2.41)

Slipping (positive): We repeat the same series of steps as with the negative slipping case.

D1(∆v + vb − vh0 ) +D2y
h
1 +D3v

h
1 = Fmodal = Ffriction = −Fb

(
µd +

(µs − µd)µe
µe + ∆v

)
(2.42)

Solving for ∆v gives:

c2∆v2 + c1∆v + c0 = 0, with


c2 = D1

c1 = D1(vb − vh0 + µe) +D2y
h
1 +D3v

h
1 + Fbµd

c0 = µe
[
D1(vb − vh0 ) +D2y

h
1 +D3v

h
1 + Fbµs

] (2.43)
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Figure 2.8: Bow slipping states.

If the discriminant ∆ = c21 − 4c0c2 is below 0, reject this slip condition, otherwise

∆v = max

(
−c1 +

√
c21 − 4c0c2

2c2
,
−c1 −

√
c21 − 4c0c2

2c2

)
,provided that ∆v > 0 (2.44)

With the assumption that D1 > 0, this produces

∆v = D4

(
−c1 +

√
c21 − 4c0D1

)
, provided that ∆v > 0 (2.45)

Transition between slip states

If the bow is sticking to the string but it fails the test in (2.37), the bow begins to slip. To determine

whether ∆v > 0 or ∆v < 0, we examine the relative velocity of the string under the bow if there were

no external forces. If the string would be moving slower than the bow if there were no external forces

(vh0 < vb), then the effect of the bow will cause the string to move faster (F0 > 0). This occurs when

∆v < 0, so we move to that state. A similar argument is made for vh0 > vb implying that ∆v > 0.

Most friction models (including (Demoucron 2008)) assume that the string will never be moving

faster than the bow. This is a fair assumption when bowing strings with relatively low fundamental

frequencies and the string always begins from rest. However, when bowing the violin A or E strings,

the string velocity at x0 can exceed the bow velocity. Ideally there would be at least one sample

of stick-state before reaching the higher velocity, but this does not always occur. If the slip-state is

not allowed to “jump” directly from negative slipping to positive slipping, the system can become

unstable. This is discussed in Section 2.3.3. For that reason, Figure 2.8 allows the system to begin in

the negative slipping state but end in the positive slipping state (and vice versa). Allowing the string

to jump from negative to positive slip-states is a useful “safety valve” which avoids the instability

without significantly increasing the amount of computations due to a higher sampling rate.

Final forces

After determining the slip-state and ∆v, F0 is calculated from (2.34) and F1 is calculated from (2.33).
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Figure 2.9: Movement of a bowed string, downsampled by a factor of 5. Finger position xf = 0.891L
(220 Hz, expected cycle 4.5 ms), bowing parameters xb = 0.1L, Fb = 1.0, vb = 0.5. The orange line
represents the bow, while the red spring represents the finger as usual.
Audio 2.2: Normal bowed fingered string.

http://percival-music.ca/dissertation/a.2.2.bow-finger-movie-middle-violin-g.wav

Video 2.3: Normal bowed fingered string, beginning.
http://percival-music.ca/dissertation/v.2.3.bow-finger-movie-begin-violin-g.mpeg

Video 2.4: Normal bowed fingered string, middle.
http://percival-music.ca/dissertation/v.2.4.bow-finger-movie-middle-violin-g.mpeg

In the videos, a solid line for the bow indicates a stick-state, while a light line indicates a slip-state.

Accelerating the bow

In order to facilitate the establishment of Helmholtz motion when bowing a string from rest, as noted

by (Guettler 2002), the model accepts an additional input parameter: bow acceleration ab. If this

parameter is set, then vb is updated at each time step,

vb(ti+1) = vb(ti) + abdt (2.46)

until vb reaches a target velocity vtb.

Bowed string movement

Figure 2.9 shows a typical fingered bow-stroke. An analysis of professional violinists’ bowing (Guettler

2002) showed that fewer than 50% of notes establish perfect Helmholtz motion from the outset; this

is true of the “beginning” plot in which the bow’s motion does not end at the same position in which

it began. By contrast, the “middle” plot shows that the string’s motion completes one full cycle in

4.5 ms. At the note beginning, the string’s movement is highly biased in the direction of the bow’s

movement, whereas after the string has “settled down” into normal Helmholtz motion, the string’s

movement is almost (but not quite) evenly split between positive and negative y directions. The

interplay of bow slip-states and string motion during Helmholtz motion is quite visible in Video 2.4.

http://percival-music.ca/dissertation/a.2.2.bow-finger-movie-middle-violin-g.wav
http://percival-music.ca/dissertation/v.2.3.bow-finger-movie-begin-violin-g.mpeg
http://percival-music.ca/dissertation/v.2.4.bow-finger-movie-middle-violin-g.mpeg
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Figure 2.10: Bow harmonics, downsampled by a factor of 3. Left: natural harmonic (very light left-
hand finger), right: normal bowing (normal left-hand finger). Both simulations used the same finger
position xf = 0.75L (expected frequency 261 Hz, cycle 3.8 ms) and bowing parameters of xb = 0.1L,
Fb = 0.5, vb = 0.3 on the violin G string. Both plots begin at 1.0 seconds. The large vibrations above
the finger position are expected in the harmonic note, but not desired for the normal note.
Audio 2.3: Natural harmonic.

http://percival-music.ca/dissertation/a.2.3.bow-harmonic-light-violin-g.wav

Video 2.5: Natural harmonic
http://percival-music.ca/dissertation/v.2.5.bow-harmonic-light-violin-g.mpeg

Audio 2.4: Normal Helmholtz vibrations.
http://percival-music.ca/dissertation/a.2.4.bow-harmonic-normal-violin-g.wav

Video 2.6: Normal Helmholtz vibrations.
http://percival-music.ca/dissertation/v.2.6.bow-harmonic-normal-violin-g.mpeg

Natural harmonics

Gently touching a vibrating string at nodes can produce a “flute-like” sound, known as “natural

harmonics” or often simply “harmonics”3. The physical model accommodates harmonics, as shown in

Figure 2.10. Plucked harmonics can also be created, but it is quite difficult to find the right balance

between left-hand finger strength and the string decay. Since the bow provides a constant input of

energy, bowed harmonics are much easier to produce in both real life and the model.

3“Artificial harmonics” also exist, but they are an advanced violin technique and are not supported in this model
due to requiring two left-hand fingers on the string

http://percival-music.ca/dissertation/a.2.3.bow-harmonic-light-violin-g.wav
http://percival-music.ca/dissertation/v.2.5.bow-harmonic-light-violin-g.mpeg
http://percival-music.ca/dissertation/a.2.4.bow-harmonic-normal-violin-g.wav
http://percival-music.ca/dissertation/v.2.6.bow-harmonic-normal-violin-g.mpeg
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2.1.4 String states

Depending on the type of external actions, the string simulation will vary between 5 states, as shown

in Figure 2.11.

Bow: If there is a bow on the string, then the equations in Section 2.1.3 are used. When the bow is

removed from the string, the state changes to a release-state.

Pluck: If a pluck has begun, the equations in the first part of Section 2.1.2 are used. After Tp seconds,

the string is automatically released and changes state.

Release (finger): If a left-hand finger is on a string, the equations in the second part of Section 2.1.2

are used. When the string’s vibrations are insignificant, the string calculations are turned off.

Release (no finger) : If there is no left-hand finger, then there are no external forces and the string

vibrates freely; only equations in Section 2.1.1 are used. In particular, an ← ahn and ȧn ← ȧhn.

When the string’s vibrations are insignificant, the string calculations are turned off.

Off : The string does not move at all; A[t]← 0 and H[t]← 0.

Turning off the string

If the string is not being bowed or plucked, the vibrations continually lessen and after some time they

will be too small to provide any output in the 16-bit-quantized signal. For each complete buffer of

each string, we check the sum of squares

Amag =
∑
i

A[i]2 (2.47)

against a threshold value Amin defined in Section 3.5.5. If the value is smaller, then we disable

computation for this string and set an = 0, ȧn = 0. This check is only performed on a full buffer of

samples; if a smaller buffer size was requested, the check is omitted to avoid premature silencing.

External applications may with to add dither to the final output. In some cases, adding small

amounts of randomness (“dither”) to the output signal can improve the human perception of the

sound. I decided that dither should not be part of the physical simulation itself, since the amount

and shaping may depend on the specific use case of the simulation.

Bow

Pluck

Left-hand
finger on
string?

Release
(finger)

Release
(no finger)

Off

User
input

User
input

user lifts bow

User
input

samples

since pluck

> Tpdt

yes

no

Amag < Amin

Figure 2.11: String states. Solid lines indicate automatic progress; dotted lines indicate user input.
Whenever there is user input, the string state jumps back to the left-hand side.
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2.1.5 Instrument body simulation

The instrument body and bow are modelled as linear time-invariant systems. Each string is simulated

for n samples, then the results are combined according to the sample rates as shown in Figure 2.2.

Finally, the signals are quantized to 16-bit integers for convenient use with audio software.

The output of a linear time-invariant system is found by convolving the input signal with the

impulse response of the system. Convolution can be considered to be a finite impulse response (FIR)

filter, and FIR filters with a large number of coefficients are almost always most efficiently performed

with FFTs via the overlap-add method (Stockham 1966). Given a block of an input signal xb[n] and

a convolution kernel h[n], the convolution can be performed as

yb[n] = FFT−1(FFT(xb[n]) ◦ FFT(h[n]) (2.48)

However, since the FFT will be longer than the block size of the input signal, there is important

data “overlapping” into the next xb block. This “overlapping” data is retained and added to the next

xb. Given a kernel length of M and block size of L, the FFT length N must be chosen such that

N ≥ L+M − 1. Note that FFT(h[n]) does not change throughout the simulation, so it need only be

calculated once.

Multi-sample rate strings

All instruments in this simulation output an audio signal at a sample rate of 22050 Hz, but this is

below the Nyquist rate for some the upper modes of some strings. Furthermore, as is discussed in

Section 2.3, the sample rate can significantly change the results of bowing a string. To mitigate these

problems, many strings are computed at a frequency which is an integer multiple of 22050 Hz. Each

string is computed at a frequency multiplier Mf (ranging from 1x to 4x), with the exact multipliers

listed in Section 3.5.2.

When combining string signals, I first add signals of the same sample rate, then apply the filters

discussed below, then decimate the resulting signal by the relevant frequency multiplier. The resulting

signal(s) are summed, forming the final output. The entire process involves two filters: A low-pass

anti-alias filter to permit the downsampling, and the FIR body filter. Since both filters are linear

time-invariant, I combine them to form a single filter.

In Section 3.3.2 I recorded 4096 samples of violin, viola, and cello impulse responses at 22050 Hz.

That impulse response is upsampled to match the desired frequency multiplier. The overall instrument

calculates at most 512 samples at a time. After examining the spectrums of instrument body responses

with 511 and 1535 samples, I decided to use the longer impulses to retain spectral resolution. This

means that with a frequency multiplier Mf = 1, I must use an FFT of length N = 2048; for Mf = 4,

I must use an FFT of length N = 8192. For Mf > 1, the body response is upsampled accordingly.

The haptic signals use an FIR filter of order 512, resulting in FFTs of length N = 1024Mf .

After applying the FIR filter, the signals are decimated. A[t] is decimated by Mf , while H[t] is

decimated by 2Mf .
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Figure 2.12: Frequency response of violin instrument body filters. Left: An example of the combined
response of the violin impulse response with the low-pass filter. Right: An example of the tactile
sensitivity filter designed with the window method; a few extra points were added to make the designed
filter have a smoother shape in the region between 250 Hz and 2000 Hz. The overall gains of the two
filters were chosen such that there would be a clear signal after quantizing to 16-bit integers.

Kernels

The convolution kernel for audio output comes from the impulse responses measured in Section 3.3.2.

The impulse response is upsampled by the relevant frequency multiplier, then filtered with a low-

pass FIR filter with a cut-off of 10000 Hz designed with the window method using a Hamming

window of order 101 (Smith 2011). An example is shown in Figure 2.12. To avoid the upsampled

impulse responses resulting in louder strings than the non-upsampled strings, each impulse response

is normalized by its (post-upsampling) length.

The convolution kernel for the haptic output was generated from the literature on human tactile

finger sensitivity. Data points from two papers were combined and used to generate an FIR filter using

the window method with a Hamming window of order 512. The frequency response of the resulting

filter is shown in Figure 2.12. In particular, (Bolanowski et al. 1988) provided data from 0.4 Hz to

500 Hz, while (Wyse et al. 2012) provided data from 250 Hz to 2000 Hz. Since the sensitivity was

already lower than -100 dB at 6000 Hz, no additional anti-alias filter was applied.

It must be acknowledged that this is only a very rough estimate of tactile sensitivity and that

the two papers used different measurement methods; combining data points in this manner is not

scientifically valid. However, it provides a plausible “first estimate”, as the actual finger sensitivity

is unlikely to differ by an order of magnitude, and this filter can easily be changed later when more

data of tactile sensitivity emerges.
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2.2 Design decisions and consequences for finger actions

This section examines the physical model in greater detail, and discusses various design decisions.

Unless otherwise specified, all frequency plots were generated from an FFT with a Blackman-Harris

window on 216 = 65536 samples of audio (≈ 1.5 seconds at 44100 Hz).

I encountered three main issues when designing the left-hand finger and right-hand plucking mod-

els: The need for damped springs, the need for at least two forces for right-hand plucking, and the

need for at least two forces for the left-hand finger during string release.

These difficulties were most prominent when the finger or pluck positions were at “strongly ra-

tional” positions such as 1
2L, 2

3L, or 3
4L. The latter two correspond to the normal left-hand finger

positions of the 3rd and 4th fingers, while programmers testing the physical model are quite likely to

select values such as 0.5L or 0.25L for the plucking position, so it is important to ensure that the

model can handle such values.

2.2.1 Damped spring action

I chose to model the left-hand finger and right-hand plucking finger as damped springs, rather than

either undamped springs or viscous dampers alone. The effects of damping the string is shown in

Figure 2.13, while the exact value of the constants are selected in Section 3.5.3.

A viscous damper alone can function well for a single note (be it plucked or bowed). This method

is used in (Demoucron & Rasamimanana 2009), although that paper only included bowed notes and

not plucked notes. However, consider the case of plucking an open string and then placing a left-hand

finger on the string a short time after plucking (say, xf = 0.25L and t = 0.5 seconds). The open
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Figure 2.13: Two plucks with damped and undamped plucking springs. Violin G string, first finger
xf = 0.891L, two plucks xp = 0.2L. The undamped spring results in highly undesirable behaviour
when the second pluck begins at t = 0.5 seconds. Note that the damped pluck has a flatter frequency
response during the plucking portion (as is desired in this case).
Audio 2.5: Two plucks, undamped

http://percival-music.ca/dissertation/a.2.5.pluck-finger-two-plucks-undamped-violin-g.wav

Audio 2.6: Two plucks, damped
http://percival-music.ca/dissertation/a.2.6.pluck-finger-two-plucks-damped-violin-g.wav

http://percival-music.ca/dissertation/a.2.5.pluck-finger-two-plucks-undamped-violin-g.wav
http://percival-music.ca/dissertation/a.2.6.pluck-finger-two-plucks-damped-violin-g.wav
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string will be vibrating, so unless the string’s transverse displacement at x = 0.25L happens to be 0,

the effect of the finger will be to “fix” the string’s displacement at that point to be non-zero. This

is not desirable; a violinist’s left-hand finger usually fixes the string’s transverse displacement at the

point of contact to be close to zero.

An undamped spring alone can also function well for a single note; this method is used in

(Demoucron 2008). However, there are two situations where this is not suitable. First, a real string

decays faster when a finger is pressed against the string compared to plucking an open string, since

the rounded finger and flesh dampen the vibrations. This additional damping is shown experimen-

tally in Section 3.5.3. The decay could be imitated by changing the rn damping factors in the string

constants whenever a finger is pressed against the string, but it is much clearer to add the damping

via damped springs. Failing to include such additional damping results in all notes sounding like

open strings. This is not desirable, but it is a relatively minor problem compared to other problems

discussed in this section. Second, the damping is very useful to deaden vibrations when plucking an

already-moving string. When using an undamped spring to model the right-hand pluck, attempting

to pluck an already-moving spring causes a loud “wooden tick” sound. By contrast, modelling the

pluck with a damped spring produces an acceptable sound.

2.2.2 Two forces for right-hand plucking

In many cases, using a single force to model the right-hand plucking force is sufficient. However,

consider plucking an open string at xp = 0.5L, as shown in Figure 2.14. There are no left-hand finger

forces, so the only external actions on the string come from the pluck. If the pluck is modelled with

a single (infinitely thin) point, then none of the even modes will gain any energy as they all have a

node at x = 0.5L. For this reason, it useful to model the pluck with at least two forces. Even if xp is

a node for many modes of vibration, x2 = xp +Wp will only be a node if L
Wp

is an exact multiple of

the mode number. For example, if a string length is 0.33 m and we use N = 33 modes, Wp = 0.01 m,

and xp is a node of mode 33, then xp +Wp will also be a node. However, such concerns only apply to

relatively higher-order modes, which will only result in problems in the upper spectrum.
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Figure 2.14: Comparison of one and two plucking forces. Violin G string, open string xf = 0.0
(expected frequency 196 Hz), pluck xp = 0.5L. Left: one plucking force. Right: two plucking forces.
Note that with one plucking force, all the even partials above 196 Hz are missing; musically we desire
a full set of partials as shown in the right-hand plot.
Audio 2.7: Plucking an open string with one pluck force.

http://percival-music.ca/dissertation/a.2.7.pluck-open-one-pluck-force-violin-g.wav

Audio 2.8: Plucking an open string with two pluck force.
http://percival-music.ca/dissertation/a.2.8.pluck-open-two-pluck-force-violin-g.wav

http://percival-music.ca/dissertation/a.2.7.pluck-open-one-pluck-force-violin-g.wav
http://percival-music.ca/dissertation/a.2.8.pluck-open-two-pluck-force-violin-g.wav
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2.2.3 Two forces for the left-hand finger

A single finger force causes strong beating when the finger is placed at “strongly rational” positions,

as shown in Figure 2.15. I will examine why the single finger force is not sufficient in greater detail.

In order to eliminate as many variables as possible, I define an ideal unit string in Table 2.5, which

reduces the string model to the bare minimum by eliminating string stiffness and modal decay. The

modal frequencies are thus exact multiples with no variation due to stiffness or damping frequencies.

However, even this simplified model produces clearly visible beating as seen in Figure 2.16. This

unwanted frequency comes from F1, so we investigate the actions of the finger force in greater detail.
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Figure 2.15: Comparison of one and two finger forces during plucking. Violin G string, finger xf = 0.5L
(expected frequency 392 Hz), pluck xp = 0.2L. Left: modelling the finger with a single force during
string release. Right: modelling the finger with two forces during string release. Bottom: close-up
of the first and second partials. The “split peaks” audio from the single finger force version sounds
like two strings plucked simultaneously. The unwanted “extra” peak at 420 Hz in the two finger force
version is an oddity, but it is preferable to the full “split peaks” of the single-force version.
Audio 2.9: Pluck with one finger force.

http://percival-music.ca/dissertation/a.2.9.pluck-finger-force-one-violin-g.wav

Audio 2.10: Pluck with two finger forces.
http://percival-music.ca/dissertation/a.2.10.pluck-finger-force-two-violin-g.wav

T = 400 L = 2.0 ρL = 10−4 d = 0 E = 0 N = 3 rn = [0, 0, 0]

dt =
1

44100
wn = [500 · 2π, 1000 · 2π, 1500 · 2π]

One finger force modelled as an infinitely strong undamped spring (Kp =∞, Rp = 0).

Table 2.5: Unit string with simple physical constants: It is perfectly elastic with no modal decay.

http://percival-music.ca/dissertation/a.2.9.pluck-finger-force-one-violin-g.wav
http://percival-music.ca/dissertation/a.2.10.pluck-finger-force-two-violin-g.wav
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Since the unit string has only three modes and one finger force at x1 = 0.5L, the eigenvectors are

φn(x1) = [1, 0,−1]. Mode 2 thus has no effect on F1, and in turn F1 has no effect on mode 2. We

can therefore consider the “string release” modelling as two completely separate systems: Mode 2 by

itself, and the combination of modes 1 and 3. The “expected” lower peak in Figure 2.16 comes from

mode 2, so we omit that from future consideration.

To examine the behaviour of modes 1 and 3, I turn to modern control theory. Given the state-space

representation4 of a discrete time-invariant system where χ(t) is the state of the system, u(t) is the

control vector, Φ is the state transition matrix, Γ is the input matrix, and H is the output matrix,

χ[k + 1] = Φχ[k] + Γu[k]

y[k] = Hχ[k]
(2.49)

The general solution for the transfer function (Warwick 1989), after taking the Z-transform, is

G(z) =
H · adjoint(zI − Φ) · Γ

det(zI − Φ)
(2.50)

4Notation: The literature generally writes (2.49) as x[k+ 1] = Ax[t] +Bu[k]; y[t] = Cx[k] +Du[k]. However, I have
already used x, A, B, and D, so we turn to less commonly-used symbols for the state-space representation. In addition,
there is no feed-forward term Du[k] in the model so I omit it.
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Figure 2.16: Beating in the unit string. The finger is at xf (expected frequency 1000 Hz). The lower
peak matches this expectation, while the upper peak is an unexpected 1118 Hz. In addition, the
sidebands appear to come from this upper peak, with the lower peak appears to be “tacked on” to
the plot. As may be deduced from the time-domain plot for F1, there is a great deal of energy at the
Nyquist frequency (not shown in the “zoomed-in” frequency plot).
Audio 2.11: Beating in the plucked unit string.

http://percival-music.ca/dissertation/a.2.11.pluck-beating-unit.wav

http://percival-music.ca/dissertation/a.2.11.pluck-beating-unit.wav
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In order to derive Φ, I will rewrite the full set of equations for the physical model to apply only to

the unit string (i.e. only three modes and one infinitely strong finger force at x1 = 0.5L). To avoid

confusion between the real equations for the physical model and these highly-simplified equations, I

will shade the background with a faint gray colour and omit equation numbers.

For modes 1 and 3 of the unit string, the equations describing the physical model are

ah1 (t1) = X11a1(t0) +X21ȧ1(t0) ah3 (t1) = X13a3(t0) +X23ȧ3(t0)

ȧh1 (t1) = Y11a1(t0) + Y21ȧ1(t0) ȧh3 (t1) = Y13a3(t0) + Y23ȧ3(t0)

yh1 =
∑N
n=1 φn(x1)ahn = ah1 − ah3 A11 =

∑N
n=1 φn(x1)2X3n = X31 +X33

f̌1(t1) = φ1(x1)F1(t1) = F1(t1) f̌3(t1) = φ1(x1)F1(t1) = −F1(t1)

a1(t1) = ah1 +X31f̌1 a3(t3) = ah3 +X33f̌3

ȧ1(t1) = ȧh1 + Y31f̌1 ȧ3(t3) = ȧh3 + Y33f̌3

F1(t1) =
−yh1
A11

Combining all those equations allows us to describe the system as:

a1(t1) = X11X33

X33+X31
a1(t0) + X13X31

X33+X31
a3(t0)

+ X21X33

X33+X31
ȧ1(t0) + X23X31

X33+X31
ȧ3(t0)

a3(t1) = X11X33

X33+X31
a1(t0) + X13X31

X33+X31
a3(t0)

+ X21X33

X33+X31
ȧ1(t0) + X23X31

X33+X31
ȧ3(t0)

ȧ1(t1) = X11X33+X31Y11−X11Y31

X33+X31
a1(t0) + X13X31

X33+X31
a3(t0)

+X33Y21+X31Y21−X21Y31

X33+X31
ȧ1(t0) + X23X31

X33+X31
ȧ3(t0)

ȧ3(t1) = X11Y33

X33+X31
a1(t0) +X33Y13+X31Y13−X13Y33

X33+X31
a3(t0)

+ X21Y33

X33+X31
ȧ1(t0) +X33Y23+X31Y23−X23Y33

X33+X31
ȧ3(t0)

As a quick sanity check, note that a1(t1) = a3(t1), which matches the empirical modal

displacements seen in Figure 2.17.
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Figure 2.17: Modal displacements during beating in the unit string, x1 = 0.5. In the left plot, modes
1 and 3 have the same values.
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Intuitively, since φ1(x1) = 1 and φ3(x1) = −1, modes 1 and 3 must have equal displacement

in order for y(x1, t) = 0. With this intuition, we can simplify the system from 4 equations

to 3 equations by substituting a1(t1) = a3(t1). To describe the system as state equations,

we define the state variables as

χ =


a1(t)

ȧ1(t)

ȧ3(t)


The state transition matrix is then

Φ =


X11X33+X13X31

X33+X31

X21X33

X33+X31

X23X31

X33+X31

X13Y31−X11Y31+X33Y11+X31Y11

X33+X31

X33Y21+X31Y21−X21Y31

X33+X31

X23Y31

X33+X31

X11Y33−X13Y33+X33Y13+X31Y13

X33+X31

X21Y33

X33+X31

X33Y23+X31Y23−X23Y33

X33+X31


Substituting our constants, this gives

Φ =


0.98734 1.130911 E−5 1.12708 E−5

−1116.164 −0.0029584 0.99366

−1112.383 0.99366 −0.0097019


The poles (i.e. the eigenvalues of Φ) are

λ = 0.98734− 0.15862j, 0.98734 + 0.15862j, −1.0

The zeros depend on Γ and H. The output of the model (i.e. bridge force in (2.17)) is a

linear combination of modal displacements. Since a1 = a3 and I am only concerned with

the frequency and not the overall scaling, I define

H =
[
1 0 0

]
Γ is more difficult to determine, as it involves the plucking force F0 which we omitted in

the previous discussion as it plays no role in modelling the string release for the unit string.

For simplicity, I assume that external force will change the modal displacements a1 and a3

but will not alter their velocities. Therefore

Γ =


1

0

0


This gives the zeros as

z2 + 0.0166z − 0.9834 = (z − 0.98734)(z + 1)
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Combining the poles and zeros gives the transfer function

G[z] =
(z − 0.98734)(z + 1)

(z − 0.98734− 0.15862j)(z − 0.98734 + 0.15862j)(z + 1)

A set of typical signal processing plots of this system is shown in Figure 2.18. The important

thing to note is the pole at frequency arctan( 0.15862
0.98734 ) = 0.159293 rad/sec, or 1118 Hz in our

system at 44100 Hz — exactly where the unwanted frequency was found in the simulation.

This analysis of the behaviour of the simpler “unit string” is useful reassurance that the unwanted

1118 Hz peak seen in Figure 2.16 is not the result of programming error or floating-point rounding

errors. I have mathematically shown that in the unit string, F1 acts to produce a peak at 1118 Hz,

while the second mode (unaffected by F1) will vibrate at the desired 1000 Hz.

A full analysis of the normal (non-unit) string would be much more complicated. In order to

deal with an arbitrary finger position, it would not be possible to decompose the system into multiple

separate sub-systems as was done with the unit system (i.e. considering mode 2 separately from modes

1 and 3). In order to describe the normal system, we would need a dense matrix of 2N × 2N (i.e.

80× 80 for our N = 40 system). However, such a system would be of limited value, as it would only

be an accurate simulation of plucks. The bow-string friction force calculations involve a square root

and a random value, which would require non-linear robust stochastic control methods to analyze.
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Figure 2.18: System behaviour of modes 1 and 3 in the unit string.
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2.2.4 Three finger forces in total

Having seen the need for at least two forces for the pluck and at least two forces for the left-hand

finger during string release, the next questions are whether two forces for each is enough. As discussed

in Figure 2.1.2, the model uses a total of three forces: During plucking, there are three forces (two for

the pluck, one for the finger); during release, there are two active forces (for the finger).

The number of forces during the pluck is investigated in Figure 2.19 (left): I compare the model’s

usual three forces during the pluck against four forces (two for the pluck, two for the finger). The two

audio files are almost identical (judged by mixing the first file with the inverted second file), as can

be seen from the extremely close match of spectrums.

The final question is whether we need to use all three finger forces during string release, or whether

only need two (and can then leave one force as 0). This is tested in Figure 2.19 (right): I compare

the model’s usual three forces (but only two during pluck release) with three forces throughout (with

x2 = xf +
Wf

2 during release). More power is concentrated in lower spectral peaks, but this difference

is not audible with casual listening. Since there is no audible difference and three forces require

more calculations, I use two forces for the pluck release. As I discuss in Section 4.3.2, calculating

string releases represents a surprisingly large proportion of the total calculations when simulating

“real-world” music.

It is worth noting that Figure 2.19 contains unwanted peaks at ≈ 420 Hz and ≈ 840 Hz; using two

(or even three) forces is not sufficient to completely eliminate the frequency we investigated with the

“unit string”. However, those two peaks both have ≈ 75 dB less energy than the partial of slightly

lower frequency, so they are not a serious concern.
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Figure 2.19: Comparison of varying numbers of forces for plucks. Violin G string, finger xf = 0.5L,
pluck xp = 0.2L, Rf = 30 unless otherwise stated. Left: no significant difference between 3 and 4
forces during the plucking stage. Right: differences between 2 and 3 plucks during the release stage;
higher damping is expected due to having three damped springs instead of two, so Rp was reduced in
order to keep the magnitude of the first peak the same for the 2- and 3-force versions.
Audio 2.12: Pluck with three fources, release with two forces.

http://percival-music.ca/dissertation/a.2.12.pluck-release-force-two-violin-g.wav

Audio 2.13: Pluck with four forces, release with two forces.
http://percival-music.ca/dissertation/a.2.13.pluck-release-force-four-violin-g.wav

Audio 2.14: Pluck with three forces, release with three forces.
http://percival-music.ca/dissertation/a.2.14.pluck-release-force-three-violin-g.wav

http://percival-music.ca/dissertation/a.2.12.pluck-release-force-two-violin-g.wav
http://percival-music.ca/dissertation/a.2.13.pluck-release-force-four-violin-g.wav
http://percival-music.ca/dissertation/a.2.14.pluck-release-force-three-violin-g.wav


CHAPTER 2. PHYSICS OF PHYSICAL MODELLING 56

2.3 Design decisions and consequences for bowing actions

The main method of playing violin is by bowing the string, so it is important that it work well.

There are three issues to note with the bowing: Placing the bow at a “strongly rational” position, not

allowing the string to move faster than the bow with constant bowing parameters, and allowing the

bow slip-state to skip over the stick-state during changes of bow velocity. To investigate the effects of

certain bowing parameters, I turn to two widely-used (Tzanetakis 2002, Peeters 2004) audio features:

The spectral flatness measure and spectral centroid.

The Spectral Flatness Measure (SFM) is a measure of the “tonality” of a signal — that is, how

much energy is concentrated in narrow peaks. White noise has a SFM of 1.0, while values close to 0.0

indicate a mixture of sine waves. Formally, given the Discrete Fourier Transform (DFT) bins X[k] of

a signal x[n], the SFM is the geometric mean of the power spectrum divided by the arithmetic mean,

SFM(X) =
exp

(
1
N

∑N−1
n=0 ln(|X[n]|2)

)
1
N

∑N−1
n=0 |X[n]|2

(2.51)

The Spectral Centroid (SC) is the amplitude-weighted mean of frequencies, and is associated with

the perceived “brightness” of audio. Given the DFT bins X[k] and centre frequency of bins Xf [k],

SC(Xa, Xf ) =

∑N−1
n=0 |X[n]| ·Xf [n]∑N−1

n=0 |X[n]|
(2.52)

It is common to restrict X[k] to a particular band of frequencies in both the SFM and SC. I will

be restricting SFM to the frequency band of 20 Hz to 4.5w0, where ω0 is the fundamental frequency

of the string. I restrict the spectral centroid to the range 0.9ω0 to 1.9ω0 as shown in Figure 2.20.

Finally, I define the normalized spectral centroid difference (SCN),

SCN(Xa, Xf , ω) =
|ω − SC(Xa, Xf )|

ω
(2.53)
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Figure 2.20: Frequency bands of bowing position xb analysis, violin E string with fs = 88200 Hz.
Finger xf = 0, force Fb = 0.482 N, velocity vb = 0.1 m/s. The string was simulated for 1 second to
allow initial transients to settle, then simulated for a further 1 second to create the analysis data.
Audio 2.15: Bowing at xb = 0.160L, xb = 0.167L, and xb = 0.172L.

http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.160-f0.482-v0.100.wav

http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.167-f0.482-v0.100.wav

http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.172-f0.482-v0.100.wav

http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.160-f0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.167-f0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.172-f0.482-v0.100.wav
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2.3.1 “Strongly rational” positions in bowing

“Strongly rational” positions pose a problem for bowing, although not quite as much of a problem as

they posed for plucking. Although the left-hand finger xf can be at positions such as 1
2L or 2

3L, the

bow’s placement xb does not include any “very strongly rational” position in normal playing. Expert

violinists keep their bow between 0.015L and 0.18L (Schoonderwaldt 2009), while I estimate that

violin students’ bow position ranges from 0.06L to 0.21L and cello students’ bow position ranges from

0.05L to 0.16L. As such, the bow position will never be on a node of any of the first four modes.

However, “moderately strong” rational positions such as 1
6L, 1

7L, and 1
8L fall within the expected

range of bowing of beginners and experts alike.

Analyzing simulations in which the bowing parameters (xb, Fb, and vb) are varied shows a clear

pattern of “rational” bowing positions affecting the output. Figure 2.21 shows a few examples; similar

experiments on other strings reveals the same modal-position-dependent behaviour, albeit slightly less

prominent on strings with a lower fundamental frequency. All plots show “ridges” along bow positions

xb of 1
5L, 1

6L, 1
7L, etc. Surprisingly, there are also ridges at xb = 0.182L and xb = 0.154L; these

correspond to 2
11L and 2

13L respectively.
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Figure 2.21: Effect of rational bow positions xb on violin behaviour, violin E string at fs = 88200.
vb = 0.1 or 0.4 m/s, while Fb and xb are varied more gradually. The string was simulated for 1 second
to allow initial transients to settle, then simulated for a further 1 second to create the analysis data.
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It should be clarified that there is nothing wrong with the sound varying depending on bow

position; the effect of bow position on sound was examined by all studies of violin mechanics from

(Helmholtz 1895) onwards (see Section 1.2.1 for more information). However, real-life violins show a

gradual change of audio based on bowing position, without sharp ridges at strongly rational positions.

Real-life bows are approximately 1cm wide, and thus even if one edge of the bow is exactly at a node,

the rest of the bow width will still excite that mode.

The effects of modal positions could be reduced by simulating the bow width with two or more bow

positions, as I did for plucking the string. However, this would drastically increase the complexity of

the bowing algorithm. Plucking a string involves a set of linear equations; adding an extra equation

or two merely increases the size of the matrix to solve. However, bow friction is a non-linear equation;

if we added an extra bow position, the direct solution of the two-equation bow system described in

Section 2.1.3 would not be sufficient to solve the new three-equation system. Rather, I would need

to solve the equations using a non-linear numerical algorithm such as the iterative Newton-Raphson

method. The system of equations becomes even more complicated when one considered the changing

bow-state. Adjusting the algorithm to solve such a system is possible and should be done for any

scientific examination of the string, but it would significantly increase the computations required for

each time step and may result in the simulation being unable to simulate a string in realtime on

current consumer computers.

For this reason, I accept this unfortunate rational-position-dependent behaviour of the model.

There are some mitigating factors, however. First, violinists are accustomed to adjusting their bowing

to avoid odd problems; the space of bowing parameters which lead to “good sound” is quite irregular

(Serafin 2004, Guettler 2002, Schoonderwaldt 2009). I admit that this model is “more irregular” than

a real violin, but it is a question of degree, not kind. It is quite plausible that a violinist performing

music on a haptic bowing interface with audio from this simulation would not notice the particular

positions which produce sub-optimal audio; the violinist could simply adjust the bowing parameters

subconsciously until a good sound was reached5. Second, to anticipate later material on the virtual

musician in Section 5.1.3, my virtual musician will have the bow position xb set manually by the

teacher. By selecting bowing positions which do not correspond to strongly rational points, I can

avoid this problem.

2.3.2 String moving faster than the bow

The model makes two assumptions which are decent “first approximations”, but which can cause

problems in certain situations. These assumptions are that that bow friction can be expressed with

the hyperbolic friction curve with hysteresis, and that external forces are constant throughout the

time interval dt. One problem is that if the sampling rate is not high enough, the string can move

faster than the bow with constant bowing parameters. This is not a problem in general; if we change

bowing parameters (e.g., suddenly stopping the bow) then we should expect that the string will not

be instantly limited by the bow speed. But when a string is bowed from rest with constant bowing

parameters, we do not expect the string to move faster than the bow.

5Note that the problems (i.e. very high values of SFM and SCN) occurred when the bowing parameters were constant;
real musicians accelerate the bow from rest, which has a much wider range of bowing parameters leading to Helmholtz
motion (Guettler 2002). Any number of small changes to bowing parameters can lead to the string reaching steady-state
Helmholtz motion; Figure 2.21 shows that the strongly rational bowing positions xb have different behaviour from other
positions, not that it is impossible to maintain Helmholtz motion in a strongly rational position if it was reached with
a different set of bowing parameters.
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Figure 2.22: Low sampling rate causing the string to move faster than the bow. Violin E string, no
finger (xf = 0), bowing parameters xp = 0.12L, Fb = 0.25 N, vb = 0.1 m/s. The string was bowed for
1 second to allow it to settle, then 1 additional second to gather spectral data. The red line indicates
the bowing slip-state, ranging from negative slipping (-1), sticking (0), or positive slipping (+1). The
middle plot shows Helmholtz motion (one slip per cycle of 660 Hz or 1.5 ms); the left plot shows
chaotic behaviour; the right plot shows undesirable “multiple slipping” behaviour which results in
strong lower harmonics shown in the spectrum.
Audio 2.16: Positive bow slipping at fs = 55000 Hz.

http://percival-music.ca/dissertation/a.2.16.bow-slip-single-freq-low-violin-e.wav

Audio 2.17: No positive bow slipping at fs = 66150 Hz.
http://percival-music.ca/dissertation/a.2.17.bow-slip-single-freq-moderate-violin-e.wav

Audio 2.18: No positive bow slipping at fs = 110000 Hz.
http://percival-music.ca/dissertation/a.2.18.bow-slip-single-freq-high-violin-e.wav

This problem is shown in Figure 2.22 with the positive slips in fs = 55000 Hz. How do these arise?

The highest modal frequency is 26409.6 Hz, so the Nyquist limit is not a concern. The equations

used for the bowing simulation contain three variables which represent the bow’s internal state: vh0 ,

yh1 , and vh1 . In this case, there is no left-hand finger on the string, so yh1 and vh1 are both 0. With

constant bowing parameters, the bow’s slip-state depends entirely on vh0 and the current slip-state

(the hysteresis). A transition to a positive slip-state will occur when the intersection of Fmodal (2.34)

and Ffriction (2.36) falls at the very bottom of the vertical “sticking” line:

Fmodal = D1(vb + ∆v − vh0 ) +D2y
h
1 +D3v

h
1 = −Fbµs = Ffriction (2.54)

Considering only the case of an open string (xf = 0, therefore yh1 = vh1 = 0), this simplifies to

vh0 = FbµsB00 + vb (2.55)

http://percival-music.ca/dissertation/a.2.16.bow-slip-single-freq-low-violin-e.wav
http://percival-music.ca/dissertation/a.2.17.bow-slip-single-freq-moderate-violin-e.wav
http://percival-music.ca/dissertation/a.2.18.bow-slip-single-freq-high-violin-e.wav
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An example of friction behaviour and slip-states is shown in Figure 2.23 and Table 2.6. Recall that

we must find the intersection of a diagonal Fmodal line with the Ffriction curve. The slope of Fmodal is

D1, which in the case of having no left-hand fingers on the string is simply 1
B00

. For a given sampling

rate fs, the string’s vh0 will cause the diagonal Fmodal line to shift along the x axis, but the slope of

the line will remain constant.

Imagine sliding a pen horizontally along Figure 2.23, starting from the left-hand side of the graph

and keeping the pen parallel to the green diagonal lines corresponding to the fs = 55000 Hz. As long

as the pen remains to the left of the green area, the string will be in a negative slipping state; as soon

as the pen falls within the green area, it will stick. Now put the pen (still parallel to the green lines)

back on the left-hand side of the graph, but instead of sliding it gradually, move it along the x axis

in discrete non-uniform steps. Provided that the discrete steps are small enough, the pen will land

within the “sticking area” and the string equations will behave as expected. However, suppose that

the discrete steps were quite large. The pen could jump over the sticking region entirely, and land in

the positive slipping area. That is the problem which was shown Figure 2.22.

- slipping

+ slippingsticking

sticking
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Bow slip-states from negative slipping

fs = 55000 Hz
fs = 66150 Hz
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Ffriction(∆v)

Figure 2.23: Friction slip-states transitions from a negative slip-state. Violin E string, no finger
(xf = 0), bowing parameters xp = 0.12L, Fb = 0.25 N, vb = 0.1 m/s. The full “sticking” region
is shown for fs = 55000 Hz; for higher frequencies only the lower and upper boundaries are shown.
Note that the blue lines for fs = 66150 Hz have a slightly steeper slope than the green lines for
fs = 55000 Hz. Numerical data is given in Table 2.6.

fs B00 min vh0 max vh0 width vh0

55,000 3.13 −0.43 0.73 1.16
66,150 3.05 −0.42 0.71 1.13

111,000 2.31 −0.31 0.56 0.88

Table 2.6: Limits on vh0 for transition to a sticking slip-state when the string is in a negative slip-state.
Violin E string, no finger (xf = 0), bowing parameters xp = 0.12L, Fb = 0.25 N, vb = 0.1 m/s. The
min/max/width refers to the bounds of the sticking region. Graphical data is shown in Table 2.6.
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As previously mentioned, the maximum vh0 which leads to a stick-state is given in (2.55). The

minimum vh0 occurs when Fmodal is tangent to Ffriction. If the string is currently in the negative

slipping state, the slopes are

dFfriction

d∆v
=
Fbµe(µs − µd)

(µe −∆v)2
(2.56)

dFmodal

d∆v
= D1 (2.57)

We let (2.56) equal (2.57) and solve for ∆v, then take the minimum. Recall that D1 > 0 (see

Appendix A).

∆v = min

(
µe +

√
FbµeD1(µs − µd)

D1
, µe −

√
FbµeD1(µs − µd)

D1

)

= µe −
∣∣∣∣∣
√
FbµeD1(µs − µd)

D1

∣∣∣∣∣
= µe −

√
FbµeD1(µs − µd)

D1
(2.58)

By assumption the string is in a negative slipping state, and any sensible6 set of bowing parameters

will lead to ∆v < 0, which can be substituted into the result after solving Fmodal = Ffriction for vh0 ,

vh0 =
((µe −∆v)vh1D3 + yh1D2(µe −∆v) +D1((µe −∆v)(vb + ∆v)) + Fb(µd∆v − µsµe)

D1(µe −∆v)
(2.59)

Applying the simplification of no left-hand finger,

vh0 =
B00Fb(µsµe − µd∆v)− (µe −∆v)(vb + ∆v)

µe −∆v
(2.60)

Increasing the sampling rate decreases the width of the sticking region, but also decreases the

amount that vh0 changes between time steps. It should be noted that there is no linear relationship

between either of these factors. Given constant bowing parameters, the width of the sticking region

depends solely on B00 as seen in (2.55) and (2.60), which in turn depends entirely on Y3n from

Table 2.2. The amount of change between vh0 (t0) and vh0 (t1) depends on ȧn(t0), ȧn(t1), and Y3n. In

turn, ȧn(t1) depends on almost all parts of the physical model, so an analytic prediction about the

effects of increasing fs would be very challenging. Empirically, increasing the sample rate reduces the

number of positive slips; for example, simulating the violin E string at 88200 Hz produces no positive

slips. Avoiding positive slips (when bowed in a positive bow direction) will be the main consideration

behind choosing a sampling rate for each string in Section 3.5.2.

6With very odd bowing parameters (i.e. µe ≥
√
FbµeD1(µs−µd)

D1
), there may not be an acceptable solution, in which

case the minimum vh0 is calculated based on the upper “sticking” line and will be vh0 = −FbµsB00 + vb for a string
without a left-hand finger.



CHAPTER 2. PHYSICS OF PHYSICAL MODELLING 62

2.3.3 “Safety valve” changes of slip-state

The sampling rate of each string is chosen to avoid undesirable slip-states when starting from rest, but

there are two remaining concerns. First, that it is necessary to allow positive slip-states; and second,

that it is necessary to allow the string to skip over the sticking state. The neccesity of both elements

of the model arise from circumstances associated with changing bowing parameters.

Consider a string which establishes Helmholtz motion with a moderately large bow velocity vb and

force Fb, then suddenly the bow is lifted away from the string (Fb = 0). The string will vibrate freely;

vh0 will fluctuate between positive and negative values and will gradually decay according to the modal

decay rates. Now suppose that rather then removing the bow, we instead drastically decrease vb and

Fb but keep them non-zero. Recall that the lower and upper bounds of the vertical “sticking” portion

of Ffriction in (2.36) are −Fbµs and Fbµs; reducing Fb will reduce the region of vh0 which leads to a

sticking state. Such an example is shown in Figure 2.24.

What should be done if vh0 “skips over” the sticking region and lands in the positive-slipping region?

Although I have chosen sampling rates for each string which avoid this problem for constant bowing

parameters, when we allow changing bowing parameters then vb and Fb can be arbitrarily small,

leading to an arbitrarily narrow sticking region. As long as external forces are assumed to be constant

for the time interval dt, it is not possible to avoid the problem of vh0 being too large for the normal

sticking area. One solution is to forbid any positive slips: The string is only allowed to stick or slip in

the opposite direction of the current bow velocity vb. This method was used in (Demoucron 2008), but

examining Figure 2.24 suggests that this can lead to undesirable behaviour. If the string is vibrating

normally according to the friction states in the left-hand plot, then it is likely that the Fmodal diagonal

line will be oscillating with a x-intercept above 0. When the bowing parameters change, the string’s

vibrations will not instantly cease. When the bowing parameters change and we switch to the friction

states in the right-hand plot, any Fmodal line with a x-intercept above 0 will result in a very large

negative force being applied to the string. This can lead to “choking” the sound when vb and Fb are

suddenly reduced, as shown in Figure 2.25.
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Figure 2.24: Friction slip-states for a bowing change. Violin G string at fs = 44100 Hz, no finger
(xf = 0), bow position xb = 0.12L. The dotted orange line indicates the force which the bow exerts on
the string if positive slips are forbidden — instead of finding the intersection of Fmodal with Ffriction,
imagine that the Ffriction curve does not exist for ∆v > 0 and instead follows the dotted orange line.
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Figure 2.25: Effect of forbidding positive slips. Violin G string at fs = 44100 Hz, no finger (xf = 0,
bow position xb = 0.12L. String was bowed for 1 second with vb = 0.5 m/s, Fb = 1.0 N, then bowed
for 2 more seconds with vb = 0.1 m/s, Fb = 0.01 N. In order to ensure that both simulations began
from the same point at 1 second, the random portion of the hyperbolic curve was disabled (µe = µc).
When positive slips are allowed, the string decays gradually into the new bowing regime. When
positive slips are forbidden, the string’s vibrations are abruptly and unnaturally cut off.
Audio 2.19: Change of bowing parameters with positive slips allowed.

http://percival-music.ca/dissertation/a.2.19.bow-slip-change-both-violin-g.wav

Audio 2.20: Change of bowing parameters with positive slips forbidden.
http://percival-music.ca/dissertation/a.2.20.bow-slip-change-negative-only-violin-g.wav
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Figure 2.26: Effect of forbidding skipping over the stick-state. Violin E string at fs = 88200 Hz, no
finger (xf = 0, bow position xb = 0.12L. String was bowed for 1 second with vb = 0.5 m/s, Fb = 1.0 N,
then bowed for 0.15 (for no-skips) or 2.0 more seconds with vb = 0.1 m/s, Fb = 0.01 N. The random
portion of the hyperbolic curve was disabled (µe = µc).
Audio 2.21: Change of bowing parameters with skipping over stick-state.

http://percival-music.ca/dissertation/a.2.21.bow-slip-change-both-safety-violin-e.wav

Audio 2.22: Change of bowing parameters forbidding skipping over stick-state. Caution: very loud
audio at 1 second.

http://percival-music.ca/dissertation/a.2.22.bow-slip-change-no-skips-safety-violin-e.wav

For this reason, I allow positive slipping states. The second question is whether I should allow the

string to “skip” directly from negative slipping to positive slipping, or whether I should force the string

to have at least 1 time-interval of sticking between the two slip-states. Recall that the model assumes

that the external forces have a constant value throught the time interval dt, and that Ffriction changes

drastically depending on the slip-state. For most strings, there is no great difference between allowing

or forbidding skips, but for thin and high-frequency string such as the violin E string, forbidding the

string to skip directly from negative to positive slipping leads to unstable (exponentially increasing)

behaviour as shown in Figure 2.26.

http://percival-music.ca/dissertation/a.2.19.bow-slip-change-both-violin-g.wav
http://percival-music.ca/dissertation/a.2.20.bow-slip-change-negative-only-violin-g.wav
http://percival-music.ca/dissertation/a.2.21.bow-slip-change-both-safety-violin-e.wav
http://percival-music.ca/dissertation/a.2.22.bow-slip-change-no-skips-safety-violin-e.wav
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2.4 Final remarks on the physics

This chapter has described the equations comprising my physical model and examined the conse-

quences of using those equations. As discussed in Section 1.3.2, this model is far from the most

realistic description of violin mechanics known to scientists; however, it provides audio of sufficiently

high quality that it will suffice for my purpose. I will review the mechanics which are not covered by

my model, and then summarize the actions that the model can simulate.

The major research contributions of this chapter are:

� Added plucking actions to Demoucron’s model, and showed why at least two point forces for

each finger are necessary when using a modal simulation. This is discussed in Sections 2.1.2 and

2.2.

� Fixed Demoucron’s bowing model to avoid an unstable system when simulating the violin E

string with experimentally measured modal damping factors. Two problems with the bowing

model were demonstrated but not fully resolved: Odd behaviour can occur at insufficiently high

sampling rates, and at bow positions which are “strongly rational”. I mitigate these problems

by choosing the sampling rate multiplier Mf for each string (Section 3.5.2) to reduce such

oddities, and avoid “strongly rational” bow positions for the virtual violinist (Section 5.2). This

is discussed in Sections 2.1.3 and 2.3.

� Added haptic output to the model as dicussed in Section 2.1.4. This allows the model to be

used in a force-feedback system for human interaction, but my main goal is to provide additional

information for the machine learning of the virtual violinist (Section 5.2).

2.4.1 Model simplifications

I adopted Demoucron’s model based on my subjective judgement of the quality of audio I consid-

ered necessary for my virtual violinist. Other researchers may wish to work with a more accurate

model, either by modifying this model or by choosing a different method of synthesis entirely. The

choice of model depends on a combination of the intended use of the simulation, the amount of

processing time available, and the amount of researcher time available to spend on physics or pro-

gramming. An excellent review of bowed-string mechanics is given in (Woodhouse & Galluzzo 2004),

while (Demoucron 2008) contains a list of criticisms of his model which apply to this model as well.

In the model described in this chapter, the string is simulated as a set of 1-dimensional vibrating

transverse modes, each of which has a constant decay rate. However, real-world strings vibrate in

many more directions: Two transverse dimensions (parallel and normal to the bow), torsional motion,

and longitudinal motion. Most strings (other than the violin E string) are not uniform materials,

as they consist of a thin layer of metal wound around a nylon-like core; this introduces additional

internal friction.

Placing the string on an instrument body adds another set of known mechanics which are not

included in this model. The instrument body itself is a vibrating non-linear system. In a real instru-

ment, energy is transferred between the instrument body and the strings at the bridge and nut; in

the model, energy is only transferred from the string to the bridge in one direction. In addition, the

bridge (as distinct from the instrument body) is another vibrating system.
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In the model, the left-hand finger is assumed to be one point (during bowing) or two points (when

the bow is released) acting as damped springs. In real life, a finger has a wide force profile, exerting

force on the string at all points between the two edges. In addition, the left-hand finger on the

violin or viola is placed on the fingerboard in a different orientation than a left-hand finger on the

cello when the cellist is playing in the normal (low) playing range — but when the cellist plays in

“thumb position” (a relatively advanced technique), the cellist’s fingers act like violinist fingers, while

the cellist’s thumb has a completely different profile again. Finally, musicians often have up to four

fingers pressed against the string with varying forces, not a single finger as in the model.

The bow-string interaction in the model uses the old hyperbolic friction curve with hysteresis.

More accurate models of this interaction exist, such as a double-exponential model or a temperature-

sensitive model which accounts for the frictional force generating heat which partially melts the rosin

on the bow, thereby changing the friction characteristics. In addition, the model assumes that the

bow has constant friction characteristics, whereas a real bow’s friction varies based on the amount of

rosin which is at each point along the string: Musicians do not apply rosin to the bow in a perfectly

uniform manner, and even if they did, after playing the instrument for a few hours the amount

of rosin left on the bow would vary based on the parts of the bow which were used while playing

the instrument. Finally, the bow is assumed to be an infinitely narrow point which only excites

the string in one direction; a real bow has width, and would excite multiple directions of vibration.

Unfortunately, modelling the bow as two points is much more complicated than adding an extra finger

point force. Assuming the two bow point forces are independent, in the worst case a quartic equation

(x4 + Ax3 + Bx2 + Cx + D = 0) must be solved for each time step. This would require an iterative

solution, greatly reducing the speed of simulation. If the bow width is not modelled as independent

forces, then an entirely different bowing model will be needed. The bow’s effect on the string is in

turn affected by the bow’s tilt (angle around the length axis) and skew (angle between bow and the

bridge). The control of bow tilt is explicitly taught to students with a few years of experience, while

control of skew is taught to students with ten years of experience.

The bow itself is not modelled at all; a real bow is a vibrating system. Expert violinists consider

the bow to be extremely important for the production of good tone, and will pay up to half of the

price of an instrument body for the bow. Physically speaking, each bow will have a different centre of

gravity and mass, but the main difference which musicians seek is the behaviour of vibrations in the

bow, and how those vibrations aid (or foil) their attempts to achieve Helmholtz motion in the string.

In addition to the bow’s vibrations, the bow hair deforms and stretches when it is pressed against the

string. In terms of the model described in this chapter, the deformations in bow hair and vibrations in

the bow would cause Fb to vary enormously even if the user was exerting the same amount of pressure

with her right hand. Fb has a huge effect on the friction slip-states, and would therefore greatly alter

the range of bowing parameters which can lead to Helmholtz motion.

Finally, it would be interesting to model other elements which affect human performance. The

violin and viola are held on the musician’s left shoulder, requiring a different bow angle in order to

play each string; on most strings gravity will pull the bow directly towards the string (increasing Fb),

although the E string is at a slight angle. In contrast, the cello is held at an angle in a sitting position;

gravity pulls the bow closer to the bridge (decreasing x0, with perhaps a slight increase of Fb). The

musician must use alter her right hand behaviour to counter gravity depend on which instrument she

is playing. Human biomechanics plays a large role in how musicians perform.
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However, despite all these simplifications, the model produces sound which I consider acceptable

for my virtual musician. The physical model described by (Demoucron 2008) provided a strong

starting point, and after the alterations described in Section 2.2 and Section 2.3 it serves my purpose.

Future researchers interested in computer musical expression and control may opt to use the model

as described or extend it in certain areas; researchers interested in a scientific examination of musical

instruments are advised to use a different model. If widespread use of the model is desired (e.g.,

producing commercial music CDs, submitting synthesized performances of music to a composition

competition, using the model in high school physics classes), then more stringent listening tests should

be performed. A double-blind listening test should be performed with the target audience (be they

musicians, researchers, or the general public) to compare the perceived quality of the synthesized

audio and real string instruments.

2.4.2 Summary of available actions

The model provides these actions:

Left-hand finger: place a finger on the string, specifying the distance from the bridge xf and the

spring strength Kf . The spring strength will generally be the default value (105), but it may be

reduced in order to play a harmonic (required value depends on xf and the bowing parameters).

Bow: place a bow on the string with bow-bridge distance xb, force Fb, and velocity vb. Optionally,

the bow acceleration ab and target velocity vtb may be set.

Pluck: pluck a string at distance from the bridge xp by with the desired pulling distance ydp .

Wait: simulate m samples.

All musical performance with Vivi, the Virtual Violinist will be reduced to a combination of these

four actions, along with the model’s output of an audio A[t] and haptic H[t] signal.

If future researchers desire to use Vivi with a different synthesis engine (be it physical modelling

or sampling synthesis), this list defines a relatively small set of instructions which the engine would

be required to support.
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Figure 3.1: Physical modelling in context.

When scientists create physical models to investigate acoustic properties of musical instruments,

they generally measure and experiment with a single instrument. This is quite appropriate from a

scientific viewpoint; if the model behaves well with a string of length 0.39 m, then it will probably

behave similarly well with a string of length 0.52 m. However, from a musical standpoint it seems

a waste to imitate one single instrument. One of the great advantages of physical modelling com-

pared to sample-based synthesis (including spectral modelling synthesis) is that perceptually distinct

instruments can be created merely by changing a few constants. It would greatly increase the musical

usefulness of the program if it could simulate a string quartet or even octet.

This is particularly relevant to my research: the intention is that Vivi, the Virtual Violinist is able

to learn to play any bowed string instrument. Such a claim could be supported by demonstrating the

ability to perform on two different instruments (e.g., violin and cello), but the generality of Vivi would

be much better supported if I demonstrated the ability to perform on many instruments. With those

two goals in mind (musical use, and demonstrating the flexibility of my intelligent feedback control), I

have gathered physical constants allowing me to simulate multiple distinct instruments. In particular,

I have measured 10 instruments which were easily available to me: 5 violins, 2 violas, and 3 cellos.

Although many physical constants required for this model can be found in the scientific literature

67
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on acoustics (Rossing 2010, Jansson 2002, Pickering 1985), there are two areas which require physical

experiments: Modal decay values rn used in (2.5), and the instrument body responses. In addition,

the string length and diameter can be measured with non-intrusive, non-destructive methods. In

contrast, a string’s linear density and Young’s elastic modulus cannot be measured without damaging

or destroying the string. Instrument strings have additional windings at one end of the string, and a

ball at the other end. Measuring the linear density of the vibrating portion of the string would require

cutting those ends of the string, which would render the string unusable.

Acoustics measurements on modal decay values are often investigated for guitar or piano (Lee

et al. 2010, Woodhouse 2004), or discussed in general terms (Karjalainen et al. 2002). However, there

is no published collection of string modal decay values for violin, viola, and cello. One possible reason

for this could be the popularity of digital waveguide synthesis for bowed string instruments, which

relies on string end reflection filters rather than modal decay values.

Although there has been some excellent work on simulating the instrument body as a vibrating

system (Serafin 2004, Inácio et al. 2008), for simplicity I followed Demoucron’s physical modelling

algorithm which assumes that the body is a linear time-invariant system. The impulse response is

much easier to measure than the constants used in mathematical instrument body simulations, yet

the results are still quite credible. Although there is a great deal of literature on violin body impulse

responses (Fritz et al. 2007, Rossing 2010, Türckheim et al. 2010), there is again a lack of accessible

data (rather than mere plots) of those impulse responses.

This chapter can be divided into four sections:

1. Physical experiments: Section 3.1 describes the instruments and measures their lengths and

diameters. Section 3.2 discusses experiments and analysis of modal damping values. Section 3.3.2

gives measurements of instrument body impulse responses.

2. Estimating remaining constants: I combine known ranges of physical constants from acoustics

literature with my measured constants in Section 3.4.

3. Simulations: I perform simulations with the physical model to investigate the effects and trade-

offs for a few remaining constants in Section 3.5. In particular, these values either have no

real-world equivalent (e.g., the finite number of modes N , the sampling rate fs, threshold for

turning off the simulation Amin) or it would be meaningless to use real constants (e.g., the finger

constants damped spring constants Kf and Rf for a two-point finger).

4. Final remarks: I summarize this chapter, discuss possible improvements to the measurements,

and present the actual constants used for the physical modelling.

3.1 Overview of instruments and strings

A brief description of all ten instruments measured is given in Table 3.1. No information about strings

was accessible; all instruments had been owned by their present owners for at least one year and strings

were not changed regularly. This situation differs from that commonly quoted in the literature, in

which new strings were used.

The string lengths and diameters were measured and these values are given in Table 3.2. String

lengths were measured with a measuring tape and are believed to be accurate to 1%. An error
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in planning the experiments resulted in not having a calliper while in contact with eight of the

instruments. String diameters were therefore estimated by taking digital photographs of each string

next to a ruler, counting pixels between 2cm or 5cm in the ruler to find the scale, then counting

pixels in the string diameter. Later, when I had access to a Vernier calliper, the “counting pixels”

measurements were checked by comparing the measured diameters of the remaining two instruments

(violin-II and cello-I) with the calliper and the photographs. The string diameters are believed to be

accurate to 10%.

name estimated value (CDN $) country year notes
violin-I 5,000 Canada 1994
violin-II 2,000 Germany 1908
violin-III 8,000 USA 1875
violin-IV 500 China (1970) (b)
violin-V 1,000 Romania 2005
viola-I 2,000 China (1990) (b)
viola-II 500 Germany (1970) (a) (b)
cello-I 6,000 Canada 1997
cello-II 2,000 Czechoslovakia (1900) (b)
cello-III 1,500 Germany 1992

Table 3.1: Overview of instruments tested. The estimated values are a personal guess, not an official
appraisal; these are probably accurate to 50%. Values reflect the price of the instrument, without the
bow, case, or any extras.
(a) the D string was broken, so the A string was used (tuned down a fifth). This is the usual practice
of string musicians in need of a quick fix for a broken string with no replacement.
(b) very cheap instruments are not stamped with a maker’s mark and year. I have included an
estimated date based on the condition of the instrument.

string L (mm) d (mm) notes

violin-E-I 322 0.30
violin-E-II 319 0.28
violin-E-III 321 0.26
violin-E-IV 321 0.29
violin-E-V 324 0.27
violin-A-I 322 0.67
violin-A-II 320 0.58
violin-A-III 323 0.68
violin-A-IV 320 0.57
violin-A-V 324 0.59
violin-D-I 322 0.80
violin-D-II 321 0.71
violin-D-III 325 0.67
violin-D-IV 320 0.69
violin-D-V 324 0.71
violin-G-I 322 0.93
violin-G-II 321 0.71
violin-G-III 326 0.69
violin-G-IV 321 0.89
violin-G-V 323 0.69

string L (mm) d (mm) notes

viola-A-I 363 0.33
viola-A-II 369 0.32
viola-D-I 363 0.48
viola-D-II 369 0.32 (a)
viola-G-I 364 0.61
viola-G-II 369 0.62
viola-C-I 365 0.65
viola-C-II 371 0.82

cello-A-I 665 0.68
cello-A-II 685 0.70
cello-A-III 687 0.71
cello-D-I 666 0.80
cello-D-II 684 0.93
cello-D=III 687 0.83
cello-G-I 669 1.10
cello-G-II 684 1.00
cello-G-III 687 0.98
cello-C-I 669 1.40
cello-C-II 685 1.40
cello-C-III 687 1.50

Table 3.2: Measured string lengths and diameters.
(a) the viola-II D string was broken, so the viola-II A string was used instead.
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3.2 String modal decays

Before discussing the experiment, I will briefly describe what I am measuring. Figure 3.2 shows

examples of the spectral energy after plucking a violin E string, viola D string, and cello C string.

Those strings were chosen to include the highest and lowest-frequency strings, with the viola string

serving as a middle ground. The energy of certain frequencies (the modes) decreases down to the

noise floor. This decrease (i.e. the slope of the peak’s energy against time) is the modal decay. In

general, higher-frequency modes decay more quickly, but both examples contain deviations from this

general rule. As may be expected from casual listening of violins and cellos, the cello string decays

much slower than the violin string.

There are three main ways that the string’s decay can be measured, listed in descending order of

accuracy. The first method is to capture the string’s motion with an optical pickup (used in some

electric guitars), by shining a light source from one direction and placing a photodiode or phototran-

sistor on the other direction. This provides a very accurate and low-noise method of measuring the

string’s motion, but it requires additional hardware to perform the experiment. The second method

is to use magnetic induction, either with a magnet pickup (as used in most electric guitars) or by con-

necting the ends of the string to an analogue-digital converter (ADC). The magnetic field will slightly

dampen the string (thereby altering the string’s behaviour, unlike the optical sensor), but it requires

less specialized hardware than the optical sensor. The third method of estimating the modal decays is

to record the audio output of the instrument. An audio recording is subject to the non-linear effects

of the instrument body, as well as environmental noise unless the recording is made in an anechoic

chamber. I chose to use magnetic induction.
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Figure 3.2: Spectrogram of plucking a violin E, viola D, and cello C string, first four modes. The violin
E string modes decay much faster than the cello C string modes. All strings exhibit some beating,
although this is much more pronounced in the C string.
Audio 3.1: Signal of current induced from violin E, viola D, and cello C strings.

http://percival-music.ca/dissertation/a.3.1.violin-e-i-01.wav

http://percival-music.ca/dissertation/a.3.1.viola-d-i-01.wav

http://percival-music.ca/dissertation/a.3.1.cello-c-i-01.wav

http://percival-music.ca/dissertation/a.3.1.violin-e-i-01.wav
http://percival-music.ca/dissertation/a.3.1.viola-d-i-01.wav
http://percival-music.ca/dissertation/a.3.1.cello-c-i-01.wav
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Figure 3.3: Photos of experimental setup for measuring decay of string velocity. Left: A wooden stick
is used to “pluck” the string. Right: Plastic blocks hold the magnets in place with a frame.

3.2.1 Experimental procedure and analysis techniques

A strong and consistent magnetic field was created by placing two poles of 0.5 x 0.5x 0.125-inch

neodymium magnets, residual flux density 12 kGauss, approximately 10mm on either side of a violin

string. When the string moves through a uniform magnetic field, a voltage is induced. These voltages

could be read with an oscilloscope, but given our goal of accessibility (Section 1.3), I instead use a

semi-professional sound device1. Such devices are optimized (modulo the cost of the unit) to have a

good analog-digital converter (ADC) which produces 16-bit or 24-bit signals in the range of human

hearing (20 Hz - 20,000 Hz, although typical values for music fall between 50 Hz and 10,000 Hz).

A sophisticated oscilloscope is unlikely to produce better (lower-noise) signals. Informal experi-

mentation showed that the majority of noise arose from the string acting as an antenna and picking

up electrical harmonics from AC power. Interestingly, acoustic noise was also a factor — a human

speaking normally in the same room produced enough air pressure waves (amplified by the instrument

body and carried through the instrument body and bridge into the string) to cause noticeable sig-

nals in the induced current. A more stringent scientific study of string decays should take additional

measure to reduce radio frequencies and acoustic noise, but my intent here was merely to produce

estimates which are sufficiently accurate to produce acceptable audio in the simulation.

In the experimental setup2, the magnets were held in a frame constructed from Lego, which allowed

the height of the frame to be adjusted to suit specific musical instruments. Wires from each end of the

violin string were attached to the microphone input of a Tascam 122L sound device, which was then

attached to a desktop computer with a USB cable. Before recording any plucks, 10 seconds of silence

were recorded for each string in order to characterize the electrical noise from the Analog-Digital

Converter (ADC), wires, alligator clips, and the string itself. The string was plucked 7 times with a

wooden skewer approximately 1cm away from the nut, leaving at least 15 seconds for the pluck to

decay between each pluck. After the 15 seconds had passed, the string was damped with a finger

before beginning the next pluck. All data was recorded with 24-bit samples at 96 kHz.

1With professional and semi-professional sound hardware, the ADC and DAC are almost always placed inside an
external box connected via USB or firewire to reduce electrical noise. Occasionally the terms “sound interface” or
“sound device” are used for these devices, but the term “sound card” is still often used.

2Dr. Paul Percival from Simon Fraser University (Canada) provided practical advice on reducing electrical noise and
a few data analysis techniques.
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Figure 3.4: Pluck decay (first window) and noise of violin E and cello C strings. Note that these plots
show different frequency ranges in order to focus on the most important peaks.

Spectral peak estimation and noise floor

The fundamental step in many digital signal processing algorithms is the Short-Term Fourier Trans-

form (STFT). I used a hop size of 2048 and window size of 8192 (an overlap of 75%), with a Hamming

window and a zero-padding factor of 4. The window size is large for the violin, but the cello C string

has a fundamental frequency of ≈ 65 Hz. The sample rate was 96 kHz, giving the FFT a resolution3 of

11.7 Hz. Due to the width of the main window and side lobes resulting from the window function for

the power STFT, using windows of size of 4096 (resolution 23.4 Hz) was not sufficient to adequately

distinguish between modes on the C string. An example of the STFT for the first analysis window is

shown in Figure 3.4.

To improve the maximum likelihood estimate of spectral peaks, I use the Quadratically-Interpolated

FFTs (QIFFT) method (Abe & Smith 2004, Smith 2011). First, peaks in the log-magnitude array

Y ′ are extracted. Then, given a peak at bin n, we calculate an estimated offset p from bin n, and an

estimated magnitude yp:

α = Y ′[n− 1] β = Y ′[n] γ = Y ′[n+ 1] (3.1)

p =
γ − α

2(2β − α− γ)
yp = β − 0.25(α− γ)p (3.2)

The initial 10 seconds of silence was processed in the same manner as the spectral peak estimation

(i.e. split into windows of 8192 samples, Hamming windowed, STFT) to characterize the noise in the

system. For each frequency bin, I define the noise level Ntop(ω) as the 99th percentile of the magnitude

of that bin throughout all 465 windows of the silence.

Two examples of these noise profiles are shown in Figure 3.4. The noise mainly follows the expected

odd harmonics from 60 Hz AC power (in Canada), although a few odd “spikes” at 8 kHz (and its

harmonics) and 24.7 to 24.9 kHz are present. I theorized that the wires in the setup (or even the

string itself) acted as an antenna to pick up Very Low Frequency (VLF) signals4.

3Although zero-padding results in an FFT of size 32768 giving a resolution of 2.93 Hz, we must remember that zero-
padding does not add any information to the signal; the “extra” resolution simply comes from interpolation. However,
the “extra” resolution reduces the amplitude and frequency bias of the QIFFT method (Abe & Smith 2004).

4The origin of the 8 kHz signal is unknown; possibly due to the power supply breakthrough. The US Navy facility
at Jim Creek (Oso, Arlington, USA; approximately 150 km away from Vancouver) is known to broadcast at 24.8 kHz
for submarine communication with the Pacific fleet. http://www.vlf.it/trond2/20-25khz.html accessed 2012 Oct 08.

http://www.vlf.it/trond2/20-25khz.html
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Segmenting multiple plucks

To evaluate the variation in modal decays, each string was plucked 7 times. To avoid excessive

interaction with the computer, all plucks for each string were recorded in one audio file, then those

recordings were automatically segmented into individual plucks. The segmentation program loads all

samples in the recording. The median and standard deviation of the absolute value of all samples in

each recording was calculated. The “trigger” of each pluck was defined as the median plus 7 times the

standard deviation, provided that the onset occurs at least 6 seconds after the previous onset. The

beginning of the pluck data was set to be the first zero-crossing after the trigger, while the duration

of each pluck data is 10 seconds. After the automatic segmentation was performed, I listened to each

segmented audio file to ensure that the segmentation was correct.

3.2.2 String inharmonicity and non-linearity

There are three factors which complicate the detection of string decays: String inharmonicity, beating,

and non-linear mixing. String inharmonicity is clearly visible in Figure 3.5, comparing the predicted

frequency5 fn of mode n of an ideal flexible string with fundamental frequency f0,

fn = nf0 (3.3)

against the actual spectral data. This clearly is not an accurate prediction for the frequencies of

peaks shown in Figure 3.5, so I turn to the string inharmonicity B (Fletcher et al. 1962, Jarvelainen

et al. 2001). The frequency of partial fn can be predicted by

fn = nf0

√
1 +Bn2 (3.4)

In a circular beam of uniform material, the inharmonicity coefficient B can be predicted by

B =
Eπ3d4

64L2T
(3.5)

However, we cannot easily (and non-destructively) measure Young’s elastic modulus E. In addition,

only a few violin E strings are made from a solid material (i.e. steel). Many modern-day violin E

strings, and all other strings for bowed string instruments, are constructed from metal wound around

a synthetic core (usually nylon or a nylon-like material) (Pickering 1985). I therefore need to estimate

B from empirical measurements.

Unfortunately, peaks in the spectral domain do not only occur at the transverse modes of vibration,

so I cannot simply pick the highest X peaks in the spectrum. In addition to transverse vibration,

torsional vibrations (Woodhouse & Loach 1999) are present, and on some strings (notably viola D

in Figure 3.5) energy can be found at the “ideal” frequencies predicted by (3.3). The original of

this energy is unclear and has been noted in the literature over the past decade (Conklin 1999)

investigated “phantom partials” in piano tones occurring either at harmonic multiples, or at the sums

of lower-frequency peaks; this is thought to occur due to string tension varying during transverse

vibration and thereby causing longitudinal vibrations. (Woodhouse 2004) discussed similar behaviour

in guitars, advancing the explanation of longitudinal vibrations but also suggesting that boundary

5Notation reminder: In this chapter, fn and f0 refers to frequencies, rather than modal forces.
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conditions of the string against the bridge, nut, or fret could contribute to non-linear behaviour.

(Penttinen et al. 2006) examined the guqin (a Chinese fretless plucked string instrument), finding

peaks at both B and B/4. For low values of n and relatively low spectral resolution, a peak occurring

as predicted by the stiff-string (3.4) will be indistinguishable from either the stiff-string (3.4) with B

replaced by B/4 or a “phantom” peak at (3.3).

The focus of this dissertation is the synthesis and control of virtual string instruments, so I will

make some simplifying assumptions. All of the above possibilities suggest that additional energy may

be found at or above nf0. I will therefore assume that, in the first analysis window (8192 samples,

or 85 ms), there will be a single peak close to the frequency predicted by (3.4) arising due to the

transverse vibrations, and that any peak elsewhere is suspect and should be discarded. The lowest

frequency of these suspect peaks occurs at nf0. The main concern is that when the mode numbers are

high enough, the modal peak M will occur within the same frequency region as the non-linear peak
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Figure 3.5: Non-linearities in the violin E, viola D, and cello C string. For the violin E string, note
that the actual frequencies of the peaks almost matches the ideal frequencies at lower frequencies
(10 kHz), but deviate sharply as the frequency increase. The viola D string shows lower-frequency
peaks decaying in the expected manner, but the higher-frequency peaks appear to “split”. When
such a “split peak” occurs, the higher of the two split peaks decays quickly (e.g., the peak at 4.7 kHz
almost reaches the noise floor within 4 analysis windows), while the lower of the split peaks decays
slowly. The cello C string does not demonstrate a great deal of “split peaks”, but the highest peak
visible in the spectrum (the 14th node, at 0.96 kHz) almost touches the next “ideal” frequency (the
15th node, at 0.975 kHz).
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Figure 3.6: Detecting string inharmonicity. Solid lines indicate the signal or spectral information (only
sent once); dotted lines indicate other variables (sent multiple times). Not shown in the diagram: Peaks
whose magnitude is less than 20 dB above the noise Ntop(ω) are discarded.

M − 1. I therefore define Nc as the cutoff for the number of partials in order to avoid such confusion.

Specifically, I must find the lowest Nc ∈ Z+ such that

(Nc + 1)f0 − Sb > Ncf0

√
1 +BN2

c + Sa (3.6)

where Sb and Sa are the allowable spread of frequencies below and above the exact frequency value

predicted. The values Sb = 0.1f0 and Sa = 0.2f0 were found to work well with my data by manually

inspecting the peaks detected.

The overall process for estimating f0 and B is shown in Figure 3.6. The first analysis window is

extracted from all plucks. The first 5 partials are extracted from the STFTs with an initial estimate

that f0 is the expected frequency of the string and B = 10−4, then searching in the frequency region

of fn − Sb to fn + Sa based on fn calculated with string inharmonicity (3.4). Once the peaks were

found, a least-squares fit was made to fit (3.7) to the detected frequencies. That is, given N detected

frequencies where yn is the interpolated frequency of partial n, the computer found parameters f0 and

B such that the following summation was minimized:

N∑
n=4

(yn
n
− f0

√
1 +Bn2

)2

(3.7)

Partials 1, 2, and 3 were found to vary significantly, and were thus excluded from these fits. After

the initial estimate of f0 and B was made with partials 4 and 5, the STFT was re-examined in order

to find the first 6 partials close to the frequencies predicted by (3.4) and the previous estimate of f0

and B. This process is repeated, estimating a new f0 and B then increasing the number of partials

for which to search. Three examples of these fits are shown in Figure 3.7.

There are two conditions to determine the end of the process. First, all partials must be at least

20 dB higher than the noise Ntop(ω); if no sufficiently large peak can be found within the frequency

range, the process ends. Second, the process ends if the cutoff Nc (3.6) is reached.
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name f0 B (·10−5) R2

stiff-ideal
mode

cutoff Nc notes
violin-E-I 659.7 4.90 1.00 30
violin-E-II 658.8 5.13 0.99 30
violin-E-III 660.3 5.06 1.00 30
violin-E-IV 662.9 4.99 1.00 30
violin-E-V 657.0 4.46 1.00 31
violin-A-I 438.5 20.20 0.99 19
violin-A-II 437.1 21.71 1.00 18
violin-A-III 436.2 16.01 0.99 20
violin-A-IV 442.1 25.19 0.99 17
violin-A-V 439.5 22.59 1.00 18
violin-D-I 291.0 22.59 0.94 18 (a)
violin-D-II 290.8 36.34 0.99 15
violin-D-III 292.3 35.25 1.00 15
violin-D-IV 295.2 36.70 1.00 15
violin-D-V 292.2 45.96 0.99 14
violin-G-I 194.4 25.94 0.96 17
violin-G-II 194.6 19.48 0.97 19
violin-G-III 194.9 26.21 0.93 17 (a)
violin-G-IV 197.6 21.07 0.95 18
violin-G-V 195.5 37.25 0.99 15

viola-A-I 439.0 5.96 0.99 28
viola-A-II 444.8 9.66 1.00 24
viola-D-I 291.7 13.41 0.98 21
viola-D-II 292.8 6.20 0.98 28 (b)
viola-G-I 195.5 14.04 0.98 21
viola-G-II 196.9 16.27 0.99 20
viola-C-I 130.0 37.79 0.97 15
viola-C-II 130.6 17.23 0.82 20 (a)

cello-A-I 219.2 6.28 0.98 27
cello-A-II 220.0 5.69 0.99 28
cello-A-III 218.6 6.02 0.99 28
cello-D-I 146.1 16.75 0.99 20
cello-D-II 146.5 24.91 0.97 17
cello-D-III 145.9 12.79 0.98 21
cello-G-I 97.1 19.99 0.99 18
cello-G-II 97.2 23.40 0.98 17
cello-G-III 97.4 21.74 0.97 18
cello-C-I 64.7 62.64 0.98 12
cello-C-II 65.1 58.20 0.99 13
cello-C-III 64.5 53.52 0.97 13

Table 3.3: Fundamental frequencies f0 and inharmonicity B for measured strings. The variation of
f0 arises from instruments being tuned “by ear”.
(a) for these instruments, a few (< 10) “phantom” peaks were detected instead of the intended
inharmonic peaks. However, manual inspection of the spectrum showed that the estimated B still
produced adequate fn estimates to capture the intended peaks.
(b) this instrument was old and not in normal playing condition; the viola D string was broken and
had not been replaced. I replaced the D string with the A string (tuned down a fifth) as an “emergency
fix” following normal violinist practice. The data from this string is still sufficient to enable casual
synthesis, but should not be relied for any acoustics research on string behaviour.
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Figure 3.7: f0 and B fits for the violin E, viola D, and cello C strings. The y axis shows the relative
frequency of each partial divided by the number of that partial. An ideal, perfectly-flexible string
would produce relative frequencies in a flat horizontal line.

The final results of the string inharmonicity detection are shown in Table 3.3. The table includes

the coefficient of determination R2 as a quick check of how closely the fit of f0 and B matches the

data, given ȳi as the mean of observed data y.

R2 = 1−
∑
i (yi − fi)2∑
i (yi − ȳi)2 (3.8)

3.2.3 Detecting modal decays

There are two stages to the analysis of modal decays. First, the decay of each mode must be estimated

from the plucks. In an ideal experiment with perfectly-controlled inputs, these plucks would yield

exactly the same modal decays. In reality, some form of statistical analysis will be required to achieve

a credible estimate. Second, a general formula which describes modal decays must be found. The

stiff-ideal mode cutoff Nc in Table 3.3 varies from 12 to 31, yet my simulation will use 40 modes as

discussed in Section 3.5.1. Since we cannot trust any modal decay rates above the Nc limit, I must

extrapolate decay rates for the modes above Nc.

Tracking partials over time

In the previous section I estimated the fundamental frequency f0, inharmonicity constant B, and the

highest mode number cutoff which can be safely detected Nc. The next step in detecting modal decays

is to track these partials over time.

As with the estimation of f0 and B, the range of frequencies examined for each mode will be

fn − Sb to fn + Sb, although when tracking partials over time I used Sa = 0.05f0 and Sb = 0.05f0

rather than the values I used when detecting f0 and B. In order to reduce confusion from non-linear

behaviour of the string, the strength of each partial is estimated from the spectral peak closest to

the expected frequency fn, rather than calculating the overall energy within a wide frequency band.

Some examples are shown in Figure 3.8.

Before fitting those partials to exponential decays, I remove partials which are unlikely to have

enough information to achieve a good fit. This process begins by estimating a per-partial noise floor.

The final 10% of each partial is considered to be noise, and the top of the noise floor Npar is defined
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Figure 3.8: Selected partials of violin E, viola D, and cello D, one pluck. Legend indicates the number
of the partial. The violin E string shows very good exponential decay with the exception of beating
in the first partial. The viola D and cello C strings shows greater deviation from exponential decay,

as the 99th percentile of that data. Once Npar is calculated, the partial is rejected unless it satisfies

the following two conditions:

� The maximum magnitude must be at least 30 dB above Npar.

� At least 10 samples must be at least 10 dB above Npar.

After removing unsuitable partials, the observed magnitudes yt of remaining partials are least-

squares fitted to

yt = α2 + α1e
−α0t (3.9)

with the constraints that α0, α1, and α2 must all be greater than zero. The fit is performed to the

logarithm of the measured data. The only important parameter for the physical modelling is the

decay constant α0; this is the estimate for rn seen in (2.5).
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name
candidate
partials

maximum mag.
< Npar + 30 dB

< 10 mag.
> Npar + 10 dB

decays
used

highest
mode

violin-E-I 210 14 63 133 22
violin-E-II 210 41 60 109 17
violin-E-III 210 13 19 178 30
violin-E-IV 210 41 35 134 30
violin-E-V 217 29 66 122 22
violin-A-I 133 42 34 57 11
violin-A-II 126 35 35 56 9
violin-A-III 140 25 50 65 12
violin-A-IV 119 15 36 68 10
violin-A-V 126 24 51 51 9
violin-D-I 112 39 12 61 9
violin-D-II 105 25 28 52 10
violin-D-III 105 19 24 62 9
violin-D-IV 105 0 39 66 12
violin-D-V 98 26 15 57 13
violin-G-I 98 12 29 57 9
violin-G-II 112 7 32 73 11
violin-G-III 119 55 8 56 8
violin-G-IV 126 13 42 71 18
violin-G-V 105 5 36 64 12

viola-A-I 196 16 65 115 17
viola-A-II 168 14 70 84 12
viola-D-I 147 38 45 64 12
viola-D-II 147 12 48 87 17
viola-G-I 147 13 54 80 12
viola-G-II 140 7 37 96 14
viola-C-I 105 3 25 77 11
viola-C-II 126 2 30 94 18

cello-A-I 189 17 75 97 14
cello-A-II 196 10 58 128 22
cello-A-III 196 24 60 112 17
cello-D-I 140 14 39 87 15
cello-D-II 119 1 42 76 12
cello-D-III 147 1 49 97 19
cello-G-I 126 1 20 105 16
cello-G-II 119 0 0 119 17
cello-G-III 126 0 32 94 17
cello-C-I 84 3 7 74 12
cello-C-II 91 0 9 82 13
cello-C-III 91 0 6 85 13

Table 3.4: Removing suspicious partials from decay-fitting.
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Figure 3.9: Detected and fitted decays for violin E, viola D, and cello C strings.

Extrapolating higher modal decays

Once estimates from each partial were established, I turned to the question of determining rn for use

in the simulation. For low modes which have extensive measured data, I set rn to be the median

value of α0 for mode n. However, if less than half of the plucks yielded an estimate of α0 for that

mode (either due to partials being removed, or because n is above the cutoff Nc), I attempted to find

a general formula linking the decay constant rn to the mode number n for each string in order to

extrapolate values for higher modes.

Two such formulae exist in the literature. (Adrien 1991) and (Demoucron 2008) used

rn = B1 +B2(n− 1)2 (3.10)

while (Woodhouse 2004) used a much more complex formula involving loss factors η = 1
Q = 2α0

ω .

After the above substitution, his formula is

rn =
(nf0

√
1 +Bn2)

(
T (ηF + ηA/(nf0

√
1 +Bn2)) +BηB(nπ/L)2

)
2 (T +B(nπ/L)2)

(3.11)

where ηF, ηB, ηA are the fitted parameters representing the loss factors due to internal friction,

bending, and air. Woodhouse remarked that his formula “should be understood as a combination

of physically-based modelling and curve-fitting, since the physical mechanisms are not understood in

sufficient detail to provide a fully convincing predictive model.” (Woodhouse 2004, p. 956)

Further study would be an interesting project, but as my main interest is in the control of the

physical model rather than the physics itself, I instead made a choice between the existing two formulae

for rn. The chief difficulty with Woodhouse’s formula is that it relies on accurate estimates of tension

T . The other constants — the frequency f0, inharmonicity B, and length L — are easy to estimate

or measure directly. Tension can be estimated by pulling the string with a spring, but doing so will

change the tension slightly, decreasing the accuracy of the estimate. I therefore turned to the simpler

equation used by Demoucron, with the additional reassurance that his model produces audio which

is adequate for my purpose.

Some examples of these fits are shown in Figure 3.9, while the fitted data for all instruments is in

Table 3.3.
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name B1 B2 R2 notes r1 r2 r3 r4 r5 r10

violin-E-I 5.90 0.053 0.86 3.0 3.1 7.4 5.9 6.1 11.4
violin-E-II 7.62 0.080 0.84 2.9 3.9 7.8 6.1 8.6 15.3
violin-E-III 6.64 0.017 0.73 2.9 2.2 6.7 7.3 6.0 9.5
violin-E-IV 6.90 0.053 0.88 3.7 4.3 5.9 6.4 7.9 12.6
violin-E-V 5.30 0.063 0.88 2.8 2.6 6.6 4.1 7.7 11.7
violin-A-I 4.61 0.305 0.88 2.5 4.5 6.1 7.5 11.2 29.3
violin-A-II 3.80 0.324 0.85 1.7 4.8 5.5 8.6 11.0 30.0
violin-A-III 3.12 0.273 0.91 1.7 3.8 3.8 6.1 8.6 25.2
violin-A-IV 3.08 0.364 0.98 2.5 4.7 5.0 6.8 8.1 32.1
violin-A-V 3.24 0.435 0.96 2.1 4.8 4.8 8.0 10.5 38.5
violin-D-I 4.37 0.300 0.73 1.7 3.6 6.1 8.2 10.3 28.7
violin-D-II 3.44 0.290 0.75 1.2 4.1 3.5 8.5 8.8 26.9
violin-D-III 2.81 0.315 0.82 1.5 3.4 3.9 4.6 8.5 28.3
violin-D-IV 4.40 0.171 0.56 1.3 1.8 4.1 4.1 7.9 18.3
violin-D-V 0.78 0.554 0.92 1.0 2.1 3.6 4.5 9.1 45.6
violin-G-I 1.85 0.225 0.87 0.7 2.0 2.0 4.1 6.4 20.1
violin-G-II 1.04 0.211 0.86 0.6 1.0 2.8 3.6 4.3 20.0
violin-G-III 1.81 0.285 0.89 1.0 2.5 3.0 4.8 5.4 24.9
violin-G-IV 1.63 0.111 0.91 0.4 2.1 1.9 2.5 3.5 9.1
violin-G-V 1.39 0.256 0.76 0.6 1.5 1.6 3.8 5.8 22.1

viola-A-I 6.23 0.102 0.91 2.9 3.1 6.1 8.3 7.2 21.6
viola-A-II 4.04 0.141 0.93 2.3 2.3 5.3 4.7 5.4 15.7
viola-D-I 2.82 0.181 0.91 1.3 4.2 2.9 4.5 6.0 17.5
viola-D-II 4.02 0.090 0.84 0.9 2.9 5.1 4.5 6.7 12.1
viola-G-I 1.87 0.152 0.81 1.4 1.1 3.3 3.2 3.9 18.2
viola-G-II 0.16 0.157 0.94 (a) 0.9 0.7 1.4 1.7 3.2 10.4
viola-C-I 3.96 0.086 0.46 0.6 1.8 3.4 4.2 6.3 11.5
viola-C-II 1.84 0.081 0.85 0.6 2.1 1.3 3.1 3.5 8.1

cello-A-I 4.14 0.126 0.92 2.5 2.5 4.7 4.0 6.8 15.7
cello-A-II 2.38 0.061 0.95 1.6 3.3 2.8 2.9 3.1 6.7
cello-A-III 3.05 0.089 0.92 1.7 2.4 3.5 3.9 3.9 8.3
cello-D-I 1.84 0.196 0.98 0.8 1.8 3.8 4.1 4.9 17.8
cello-D-II 3.78 0.138 0.80 1.3 2.9 4.2 5.0 7.7 17.6
cello-D-III 1.75 0.093 0.88 1.8 1.5 3.4 2.4 2.9 10.2
cello-G-I 0.66 0.076 0.89 0.3 1.1 1.5 2.0 1.3 6.6
cello-G-II 1.05 0.090 0.93 0.6 2.4 1.2 1.8 2.6 7.6
cello-G-III 1.25 0.104 0.95 0.5 2.1 1.4 2.2 2.8 7.5
cello-C-I 2.33 0.125 0.80 0.4 2.2 2.8 2.7 4.0 15.3
cello-C-II 0.51 0.175 0.97 0.4 1.3 1.6 2.7 3.3 16.2
cello-C-III 1.64 0.090 0.91 0.4 1.4 1.3 2.1 3.1 11.3

Table 3.5: Fitted modal decays of measured strings. The fitted values B1 and B2 are used for
modes which have fewer than 4 measured decays. The values given for rn are drawn from direct
measurements, with the exception of a few of the r10 values which were estimated from (3.10).
(a) although B1 is suspiciously low, a manual examination of this fit looks plausible, especially given
that on this string, all modes up to (and including) 14 are set as the median of the measured decays
rather than estimated from B1 and B2.
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3.3 Instrument body impulse responses

Gathering data for the instrument body simulation is much easier than the string simulation, since

the input to the simulation is a direct time-domain recording.

3.3.1 Experimental procedure and analysis techniques

I used the standard method of tapping the bridge and recording the audio output (Demoucron 2008).

A newer method recommends exciting the instrument by damping the strings with a rubber mat, then

pulling a thin piece of wire against a string until it breaks (Türckheim et al. 2010). A TASCAM LD-74

diaphragm condenser microphone was placed approximately 30 cm away from the bridge, and a small

pendulum was held approximately 2 cm from the instrument bridge. The pendulum was held with

a wooden frame6, while the displacement of the pendulum was standardized by holding it against a

piece of cardboard serving as a guide. The pendulum was released and allowed to swing freely, hitting

the bridge of each instrument with an approximately constant impulse. The pendulum then bounced

off the bridge and hit the bridge again approximately 0.6 seconds later, but this second hit was not

problematic as I only require 0.1 seconds of audio. The experimental setup is shown in Figure 3.10.

Audio was recorded at 44100 Hz with 24-bit samples, and at least seven taps were recorded from

each instrument. In each recording, one good tap was manually chosen before proceeding to automatic

processing. Each tap was downsampled by a factor of 2, then a high-pass Butterworth filter with cutoff

20 Hz was applied. The maximum absolute value in the resulting signal was found, and the tap was

deemed to begin at the zero-crossing immediately before that maximum value, and last for 4096

samples. The length of the tap was further truncated to 1024 to match the required FFT length

stated in Section 2.1.5. Since each instrument has different bridge and body responses, the recorded

audio signals have different maximum and minimum amplitudes. These signals are deliberately not

normalized; if one real-life instrument sounds twice as loud as another one when given the same string

signal, then the physical model should reproduce that behaviour. If two musicians want to produce

music that is perceived to be the same volume, then they (or the feedback control) must alter their

bowing parameters.

6The wooden frame was constructed by Dr. Paul Percival from Simon Fraser University, Canada.

Figure 3.10: Photos of the pendulum for tapping the bridge. Left: instrument, pendulum, and
microphone. Right: close-up of the instrument, with the pendulum (black ball) held against the guide
with a wooden stick. When the wooden stick is removed, the pendulum falls to the left, travelling
≈ 2 cm before hitting the instrument bridge.
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3.3.2 Instrument body impulse responses

A time-domain comparison of a violin and a cello impulse response is shown in Figure 3.11, while a

comparison of the spectrums of all impulses responses is shown in Figure 3.12.
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Figure 3.11: Time-domain impulse response of a violin and a cello with a standard tap. Note that
the violin response decays faster than the cello response.
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Figure 3.12: Frequency impulse responses of all instrument bodies. Note that most instruments agree
quite well for the lower frequencies.
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3.4 Estimating remaining constants

Some physical constants are easy to measure, such as the string length L, but other constants are

difficult to measure non-destructively. For example, although the vibrating portion of a violin string

has nearly constant linear density, the ends of the string have additional material; measuring the mass

of the entire string would over-estimate the mass of the vibrating portion of the string.

In Section 3.1 I measured string length L and diameter d, while in Section 3.2 I measured string

modal decays rn. This leaves three string constants to estimate: tension T , linear density ρL, and

Young’s elastic modulus E. In addition, there are three bow-string friction constants needed: coeffi-

cients of static friction µs, dynamic friction µd, and the slope of the hyperbolic curve µc. The only

constants relating to the instrument are the impulse responses measured in Section 3.3.2.

3.4.1 Bounds of physical constants in the literature

Table 3.6 shows the range of physical constants for string T , ρL, and E. These ranges will be used to

estimate values to match the f0 and B of each string measured in Section 3.2.2. Table 3.7 shows the

range for bowing friction constants.

ρL E T
instrument min max min max min max

violin E 3.80E−4 4.80E−4 4.5E+9 2.2E+11 71.4 90.7
violin A 5.80E−4 7.50E−4 4.5E+9 2.2E+11 48.3 62.7
violin D 9.20E−4 1.63E−3 4.5E+9 2.2E+11 34.3 60.6
violin G 2.12E−3 3.09E−3 4.5E+9 2.2E+11 35.0 51.1
viola A 5.60E−4 9.20E−4 4.5E+9 2.2E+11 60.6 100.2
viola D 9.80E−4 1.25E−3 4.5E+9 2.2E+11 47.6 60.7
viola G 2.20E−3 2.81E−3 4.5E+9 2.2E+11 47.6 60.7
viola C 4.95E−3 6.31E−3 4.5E+9 2.2E+11 47.6 60.7
cello A 1.50E−3 1.92E−3 4.5E+9 2.2E+11 138.3 177.2
cello D 2.94E−3 3.57E−3 4.5E+9 2.2E+11 121.0 146.9
cello G 6.38E−3 7.56E−3 4.5E+9 2.2E+11 116.8 138.3
cello C 1.43E−2 1.70E−2 4.5E+9 2.2E+11 116.7 138.3

Table 3.6: Bounds of string constants used in the bowed-string algorithm. Tension T and linear density
ρL came directly from (Rossing 2010, p. 286). Young’s elastic modulus E came from (Jansson 2002,
table 4.7), allowing strings to be any material from nylon to solid steel.

µs µd µc
instrument min max min max min max

violin 0.60 0.90 0.20 0.40 0.05 0.30
viola 0.70 1.00 0.20 0.50 0.05 0.30
cello 0.80 1.20 0.30 0.50 0.05 0.30

Table 3.7: Bounds of bowing constants used in the bowed-string algorithm. These values come from
examining constants used in (McIntyre et al. 1983, Smith & Woodhouse 2000, Serafin 2004, Inácio
et al. 2008). Friction mainly arises due to rosin, a sticky substance scraped onto the bow hair by the
musician which gradually wears off. Rosin for violins is lighter in color, less sticky, and often described
as “harder”. Rosin for cellos and especially double basses is dark, stickier, and “softer”.
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3.4.2 Fitting unknown string constants to measured constants

Selecting the bow-string friction constants begins by uniformly randomly selecting a value from the

ranges in Table 3.7. This value represents the inherent friction of the bow and rosin. The actual

friction values are unlikely to be independent — a rosin which produces a high µs will likely have a

high µd as well — but this does not substantially change the simulation. Once a value is selected

for each instrument’s bow, the actual friction constants are multiplied by a further uniform random

value between 0.95 and 1.05. This represents the variation in friction between the bow and each

string; real-world violin strings have rosin residue from being bowed in the past. Although many

musicians attempt to remove this residue from the string by wiping them with a cloth after playing

the instrument, the residue cannot be removed entirely without using rubbing alcohol or a similar

cleaning agent.

Unfortunately the bounds on string and bow constants given in Section 3.4.1 are listed as indepen-

dent values (e.g., there is no published correlation between string diameter d and linear density ρL).

In real life, we should expect some dependence between the string constants. However, I made the

unrealistic (yet adequate for the resulting sound) assumption that physical constants are independent.

To estimate the unknown string constants T , ρL, and E, I found a least-squares fit to match those

with the measured f0 and B for each string. In addition, to accommodate measurement error in L

and d, I treated those two values as variables which fall within 1% and 10% of their measured values,

respectively. In order to keep the constants within the required bounds, I defined a W (a, bmin, bmax)

function which adds a penalty if a is outside of the bounds bmin ≤ a ≤ bmax. Concretely, the problem

is to find values for [ρL, T, E, L, d] which minimize
∑
y2
i in

W = max

(
bmin − a
bmin

, 0

)
+ max

(
a− bmax

bmax
, 0

)
y =

[
f0 −

√
T

ρL

(nπ
L

)2

+
EI

ρL

(nπ
L

)4

, B − Eπ3d4

64L2T
, W

(
ρL, ρ

min
L , ρmax

L

)
,

W
(
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)
, W

(
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)
, W

(
L,Lmin, Lmax

)
, W

(
d, dmin, dmax

) ]
(3.12)

The above equations assume that the string is a uniform beam, i.e. not a wound string. As previ-

ously discussed, this is a false assumption for almost all strings, but this assumption is fundamental

in the physical modelling equations in Chapter 2. The real-world measured values of string constants

produce estimates of B which are much too low. In order to achieve virtual strings whose inhar-

monicity factor B, and therefore modal frequencies wn matches the measurements, I have allowed the

Young’s modulus E to be considerably larger. The core of wound strings is nylon, so we should expect

E to be close to 4 or 5 GPa. However, I have allowed E to be as high as 220 GPa, the value for solid

steel strings found occasionally on the violin E string.

The string tension T falls somewhere between a physical constant and a musician-controlled value.

It generally does not change significantly7 during normal playing, however at the beginning of each

playing session the musician will adjust the string tension to ensure that the open strings produce the

desired pitches. The initial estimate of T comes from (3.12), but it will be automatically adjusted to

ensure that the string’s f0 matches the desired frequency as discussed in Section 3.5.4.

7If the ambient temperature changes, the string will expand or contract, producing audible variation in pitch. This is
unfortunately common when performing on a stage with high-power stage lighting; musicians will “re-tune” (i.e. adjust
the string tensions) several times during a concert to mitigate this problem.
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3.5 Constants selected from simulations

This section discusses simulations which were performed to choose addition constants. In particular,

in the first portion of this section describes the choice of the number of modes (N), string sampling

rates (fs), finger damping and plucking constants (Kf , Rf , Kp, Rp), tuning the string tension (T ),

and the cut-off for a barely vibrating string (Amin).

The simulation described in 2.1.1 contains two major simplifications: The model treats external

forces Fi as constant throughout the time interval dt = 1
fs

, and the model only represents the string

with a finite number of modes N . This introduces a trade-off of speed vs. accuracy. A higher sampling

rate will reduce the time interval dt, thereby improving the accuracy of the estimate of a constant

external forces. Similarly, increasing N would bring the model closer to an infinitely large N , which

is the mathematical assumption behind the modal decomposition. However, increasing fs or N will

require more calculations, which will slow down the simulation. For computational efficiency, N will

be truncated to a finite number. This introduces a trade-off between mathematical accuracy and

the number of calculations required. In terms of computation complexity, the algorithm has a time

complexity of O(N · dt).

3.5.1 Number of modes

Plucking an open string imparts a certain amount of energy to each mode in the plucking phase,

but during the release phase each mode decays independently. The importance of upper modes can

be estimated from the modal decays predicted in Section 3.2.3, so I will not include simulations of

open-string plucks in this analysis. A more interesting question is how the system behaves when a

fingered string is plucked. As discussed in Section 2.1.2, the finger forces create the desired pitch by

distributing energy between modes. This is a much better test of the effect of the limited number of

modes for plucking.

Due to the way that external forces distribute energy between modes, a “non-existent” mode (i.e.

mode numbers above N) can be considered to have an infinitely strong damping factor α. Therefore,

the higher the damping of upper modes of a string, the less inaccuracies are introduced due to a

finite N . Bowing a string results in a continual (although varied) addition of energy to the system.

This additional energy is very important for the upper modes; the upper modes play a much more

important role in bowing than they do in plucking.

I compared the two “extreme” strings: The cello C string (65 Hz), and violin E string (660 Hz).

Upper modes of the cello C string are heavily damped, so it is expected that low values of N will be

fairly accurate for plucked strings. By contrast, the upper modes of the violin E string are relatively

lightly damped, so low values of N will be inaccurate for plucked strings. I tested N = [32, 40, 48, 64],

and set fs = 96 kHz to avoid any problems of frequency aliasing. For computational efficiency the

number of modes should be a multiple of 4 or even 8, as discussed in Section 4.2.2. Figure 3.13 confirms

these intuitions. The bowed examples show a greater effect of changing N ; there is good agreement of

low-frequency spectral peaks, but after the maximum frequency ωN is reached the difference between

the numbers of modes is clearly visible (and audible).

After considering the cello C examples, I chose to use N = 40 as being sufficient for my purposes.

This retains the spectral peaks up to approximately 3 kHz; as we saw in the cello body impulse

responses in Figure 3.12, the cello bodies vibrate much less for frequencies above 3 kHz. The sensitivity
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of human hearing does not fall drastically until 5 kHz or 6 kHz (Suzuki & Takeshima 2004), so this

is not a perfect situation — however, it should be noted that the cello G string will have a maximum

modal frequency between 4 kHz and 4.5 kHz, while the cello D string will reach more than 6 kHz.
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Figure 3.13: Different modes N for the plucked and bowed violin E and cello C strings. For violin E,
the string was fingered at xf = 0.891L, plucked at xp = 0.2L, and bowed at xb = 0.12L, Fb = 0.15,
vb = 1.5. For cello C, the string was fingered at xf = 0.891L, plucked at xp = 0.2L, and bowed at
xb = 0.12L, Fb = 1.5, vb = 1.5.
Note that there is virtually no difference between modes 32 and 64 for the plucked cello example. By
contrast, there is a clear difference in both the bowed examples: The peaks for N = 32 decrease in
magnitude after 2.5 kHz.
Audio 3.2: Violin E plucks with varying number of modes N .

http://percival-music.ca/dissertation/a.3.2.ns-32-finger-violin-e.wav

http://percival-music.ca/dissertation/a.3.2.ns-40-finger-violin-e.wav

http://percival-music.ca/dissertation/a.3.2.ns-48-finger-violin-e.wav

http://percival-music.ca/dissertation/a.3.2.ns-64-finger-violin-e.wav

Audio 3.3: Violin E bowed notes with varying number of modes N .
http://percival-music.ca/dissertation/a.3.3.ns-32-bow-violin-e.wav

http://percival-music.ca/dissertation/a.3.3.ns-40-bow-violin-e.wav

http://percival-music.ca/dissertation/a.3.3.ns-48-bow-violin-e.wav

http://percival-music.ca/dissertation/a.3.3.ns-64-bow-violin-e.wav

Audio 3.4: Cello C plucks with varying number of modes N .
http://percival-music.ca/dissertation/a.3.4.ns-32-finger-cello-c.wav

http://percival-music.ca/dissertation/a.3.4.ns-40-finger-cello-c.wav

http://percival-music.ca/dissertation/a.3.4.ns-48-finger-cello-c.wav

http://percival-music.ca/dissertation/a.3.4.ns-64-finger-cello-c.wav

Audio 3.5: Cello C bowed notes with varying number of modes N .
http://percival-music.ca/dissertation/a.3.5.ns-32-bow-cello-c.wav

http://percival-music.ca/dissertation/a.3.5.ns-40-bow-cello-c.wav

http://percival-music.ca/dissertation/a.3.5.ns-48-bow-cello-c.wav

http://percival-music.ca/dissertation/a.3.5.ns-64-bow-cello-c.wav

http://percival-music.ca/dissertation/a.3.2.ns-32-finger-violin-e.wav
http://percival-music.ca/dissertation/a.3.2.ns-40-finger-violin-e.wav
http://percival-music.ca/dissertation/a.3.2.ns-48-finger-violin-e.wav
http://percival-music.ca/dissertation/a.3.2.ns-64-finger-violin-e.wav
http://percival-music.ca/dissertation/a.3.3.ns-32-bow-violin-e.wav
http://percival-music.ca/dissertation/a.3.3.ns-40-bow-violin-e.wav
http://percival-music.ca/dissertation/a.3.3.ns-48-bow-violin-e.wav
http://percival-music.ca/dissertation/a.3.3.ns-64-bow-violin-e.wav
http://percival-music.ca/dissertation/a.3.4.ns-32-finger-cello-c.wav
http://percival-music.ca/dissertation/a.3.4.ns-40-finger-cello-c.wav
http://percival-music.ca/dissertation/a.3.4.ns-48-finger-cello-c.wav
http://percival-music.ca/dissertation/a.3.4.ns-64-finger-cello-c.wav
http://percival-music.ca/dissertation/a.3.5.ns-32-bow-cello-c.wav
http://percival-music.ca/dissertation/a.3.5.ns-40-bow-cello-c.wav
http://percival-music.ca/dissertation/a.3.5.ns-48-bow-cello-c.wav
http://percival-music.ca/dissertation/a.3.5.ns-64-bow-cello-c.wav
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Still, researchers interested in “fuller” cello C string would be advised to increase N , at the cost of a

slower simulation.

A similar analysis was performed by (Demoucron 2008), who concluded that there was very little

difference for N above 30 for the violin D string. However, it should be noted that his modal decay

constants were much higher than the ones I measured in Section 3.2.3.

3.5.2 String sampling rates

Recall that the simulation of the instrument body happens at 22050 Hz and that the string sampling

rate is a (discrete) multiplier Mf of the instrument sampling rate, as discussed in Section 2.1.5. Having

selected the number of modes N , it would be simple to select a multiplier for each string which kept

the highest modal frequency ωn below the Nyquist frequency. However, as discussed in Section 2.3.2,

even sampling rates well above the Nyquist frequency can still result in the bow skipping over the

sticking-state with constant bowing parameters. To avoid those problems, the string sampling rate

may need to be higher than the Nyquist frequency.

The suitability of different frequency multiplies Mf is evaluated using the normalized spectral

centroid difference (SCN) as defined in Section 2.3.1. For each Mf , the string is bowed at two

different bow velocities (vb = 0.1 m/s, vb = 0.4 m/s), multiple bow forces (20 forces linearly spaced

from Fb = 0.01 N to Fb = 3.0 N), and multiple bow positions (73 values of xb from xb = 1
17L to
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Figure 3.14: Testing parameters for frequency multipliers Mf . Violin E string, evaluated at bow
velocity vb = 0.1 and vb = 0.4, at sample rates 66150 Hz and 132300 Hz. Lower values of SCN are
good, as they indicate that more energy is concentrated at the desired frequency, and thus the string
is vibrating at closer to Helmholtz motion.
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xb = 1
5L, distributed between modal positions). An example is shown in Figure 3.14.

Once all simulations are performed for a particular frequency multiplier Mf , the median and mean

SCN values for each of the two bow velocities are computed, giving four values which represent the

overall quality of audio. Four strings of all three instruments are evaluated, and shown in Figure 3.15.

Just as in the case of choosing the number of modes N , there is no firm rule for choosing between

the quality of audio (in this case, lower SCN) and the speed of simulation. In all cases, increasing the

frequency multiplier Mf produces better audio, but in most cases there are only modest gains after

an initial improvement. The values of Mf which I chose are shown in Table 3.8.
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Figure 3.15: Audio quality resulting from frequency multipliers Mf , all strings. The viola and cello
strings were only tested up to Mf = 6, and strings whose highest modal frequency ω40 was less than
the Nyquist rate were not tested. Note that the same range of forces were used for all strings, so the
lower values seen for the G and C strings is expected.

String fs multiplier String fs multiplier String fs multiplier
Violin E 4 Viola A 4 Cello A 2
Violin A 4 Viola D 2 Cello D 2
Violin D 2 Viola G 2 Cello G 2
Violin G 2 Viola C 2 Cello C 1

Table 3.8: String frequency multipliers.
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3.5.3 Finger damping and plucking constants

This section discusses the left-hand finger and right-hand plucking finger spring constants K and

damping constants R.

Finger and pluck spring constants Kf and Kp

The finger and pluck spring constants were chosen such that the string would move quickly when

being plucked (requiring a high Kp) yet the finger position would not change significantly (requiring

a high Kf ). After examining various graphs such as Figure 2.4 and listening to the resulting audio,

Kf = 105 and Kp = 104 was chosen.

Finger damping factor Rf

To get a rough estimate of the finger damping factor Rf , I measured plucks on a real violin G string

to compare the open G string (no finger) with first finger. The RMS of the decay portion of each

pluck is shown in Figure 3.16.

The recorded pluck decays for both the fingered and open-string plucks show non-linear decay.

For example, at 1.0 seconds, the recorded magnitudes of the open-string plucks were significantly less

than the simulated open-string pluck magnitudes. However, by 3.0 seconds the open-string plucks’

magnitudes were roughly equal to the simulated values. Although the open-string simulation roughly

matched the recorded values, the fingered string showed significant deviation from the simulated values

depending on Rf . I tested Rf = [0, 10, 20, 30, 100]; the simulation with Rf = 0 exhibited slower decay

than the open string. Of the values tested, Rf = 30 provided the closest match to the recorded plucks.
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Figure 3.16: RMS decay for violin G string with open plucks and fingered plucks (recorded and
simulated). Unlike previous simulations of the violin G string, this simulation includes the effects
of the violin body. Each type of recorded pluck (open string, fingered first position) was repeated 5
times. Simulations were performed with xf = 0.891L, xp = 0.2L; similar positions were used for the
recorded plucks. Decibels (dB) are normalized on a per-file basis to indicate the decay relative to that
file’s highest RMS.
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Figure 3.17: RMS and SFM during the “pull” portion of a pluck. Two plucks were performed at
xp = 0.2L on the violin G string, while xf and Rp were varied.
Audio 3.6: Examples of two plucks, Rp = [0.2, 1.0, 10.0]

http://percival-music.ca/dissertation/a.3.6.pluck-Rp-0.2.wav

http://percival-music.ca/dissertation/a.3.6.pluck-Rp-1.0.wav

http://percival-music.ca/dissertation/a.3.6.pluck-Rp-10.0.wav

Plucking damping factor Rp

As discussed in Section 2.2.1, plucking an already-vibrating string can result in unpleasant “clicking”

sounds during the “pull” portion of the pluck. These sounds occur to some degree with real-life

plucks, but this unwanted sound is much worse in the simulation with no plucking damping (Rp = 0).

I therefore searched for a value of Rp which would minimize the unwanted vibrations during the

plucking phase. To choose a value for the plucking damping factor Rp, I simulated two plucks with

varying finger position xf and damping factors as was done in Figure 2.13. The “pulling” portion of

the second pluck was filtered with a high-pass fifth-order Butterworth filter with pass-band 40 Hz and

stop-band 20 Hz, in order to remove the frequency of the finger pulling the string. The resulting signal

of the “pulling” portion was analyzed in two ways. First, the overall RMS energy was computed; this

provides a first approximation of how “loud” the sound will be perceived. Second, the spectral flatness

measure (SFM) between 50 Hz and 5000 Hz was computed; the SFM measures how “tone-like” the

sound will be, with a value of 1.0 representing white noise and lower values being pure tones.

These values are shown in Figure 3.17. After listening to numerous simulations, I decided that

maximizing the SFM and minimizing the energy produced the least noticeable “pulling noise”. Lacking

a reliable method of weighting these two factors, I chose Rp = 1 as a compromise. The actual RMS

and SFM varied quite a bit depending on the finger position xf , with “strongly rational” positions

producing lower RMS and higher SFM than other positions.

3.5.4 Tuning string tension

We have no guarantee our model is mechanically accurate, but for musical use it is important that

the open strings produce the desired pitches. To accommodate any potential inaccuracies, I do not

use the estimated tension directly. Rather, I adjust the string’s tension to produce the correct pitch,

just as is done by real musicians at the beginning of each playing session.

http://percival-music.ca/dissertation/a.3.6.pluck-Rp-0.2.wav
http://percival-music.ca/dissertation/a.3.6.pluck-Rp-1.0.wav
http://percival-music.ca/dissertation/a.3.6.pluck-Rp-10.0.wav
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Figure 3.18: Relationship of tension to pitch, violin A string. The string was bowed with a constant
x0 = 0.1, Fb = 1.0, vb = 0.4, with the initial string tension T drastically lowered. The string was
bowed for 1 second to let the pitch “settle”, then the tension was gradually increased with a step
function to show the lag between tension and pitch.
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Figure 3.19: Pitch-tuning tension control loop. For demonstration purposes, the audio examples were
generated after reducing the string tension T to 90% of the initial estimate found in Section 3.4.2.
Audio 3.7: Pitch-tuning tension control loop in action.

http://percival-music.ca/dissertation/a.3.7.tune-violin-g.wav

http://percival-music.ca/dissertation/a.3.7.tune-violin-d.wav

http://percival-music.ca/dissertation/a.3.7.tune-violin-a.wav

http://percival-music.ca/dissertation/a.3.7.tune-violin-e.wav

Although we can find the frequency of the lowest mode by combining (2.5) and (2.7),

ω1 =

√
T

ρL

(π
L

)2

+
EI

ρL

(π
L

)4

− r2
1 (3.13)

the actual frequency of the produced audio does not follow this precisely. As discussed in Section 2.1.2,

fingered notes achieve their pitch due to energy being distributed between modes at the finger positions

x0 and x1. Furthermore, even the pitch of an open string will vary based on bowing parameters

— a string has a “rounded corner”, and the degree of rounding produces a pitch flattening effect

which has been observed both theoretically and experimentally (McIntyre et al. 1983, Demoucron

2008, Schoonderwaldt 2009). Although ωn has no precise relationship with the perceptual pitch, it is

reasonable to assume that provided other parameters are held constant, the pitch will increase if ωn

increases as shown in (3.13).

To test the system as a whole, I performed pitch detection using an extension to the YIN algorithm

(Brossier 2006, de Cheveigné & Kawahara 2002). The relationship of tension to pitch is shown in

Figure 3.18. Note that the system behaves fairly simply when there are small variations in tension

and adequate time is given to allow the system to adjust.

http://percival-music.ca/dissertation/a.3.7.tune-violin-g.wav
http://percival-music.ca/dissertation/a.3.7.tune-violin-d.wav
http://percival-music.ca/dissertation/a.3.7.tune-violin-a.wav
http://percival-music.ca/dissertation/a.3.7.tune-violin-e.wav
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Given the simplicity of adjusting tension in the range we care about, and only needing to adjust the

tension once (after the other physical constants are set) with no time constraints, I used a proportional

controller Figure 3.19. The string was bowed at xb = 0.12L with an acceleration of va = 0.2 ms−2 up

to a maximum velocity of vb = 0.3 m/s, while the force was set to a portion of the maximum Schelleng

bow force discussed in Section 1.2.1,

Fb = Ksvb
2
√
TρL

xb

L (µs − µd)
(3.14)

The Ks factor reduces the bow force from the maximum; I experimentally found that Ks = 0.2

produced reasonable bow-strokes. The string was bowed from rest for 1.0 seconds, then the control

loop was activated. I set KT = 0.1 experimentally. The loop adjusted the tension until the relative

error fr−f
fr < 0.001, where f is the median of the detected frequencies from the past 5 analysis

windows, and fr is the reference pitch.

3.5.5 Calculating cut-off displacement and velocity

When a simulated string is freely oscillating (i.e. a pluck has been released or the bow is touching that

string), the decay is very close to exponential. The output of the instrument body will end abruptly

when the signal reaches reaches the smallest positive value of 16-bit integers (i.e. 1), but the internal

floating-point values for an and ȧn will continue calculating until they reach the smallest positive

value of 32-bit floating values (i.e. 2−126 not including denormalized numbers). These values are
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Figure 3.20: RMS output for instrument body and violin E string. The finger positions xf shown here
correspond to the musical values of open E, F, A, B, and E (an octave above the open string); the full
experiment used all semitones between E and high E. The dotted horizontal line in the instrument
output is the cutoff at 10 dB, while the dotted horizontal lines in the string output correspond to the
Amag at the time which that finger’s output meets the instrument decay cutoff.
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String Pluck force String Pluck force String Pluck force
Violin E 0.5 Viola A 0.5 Cello A 0.6
Violin A 1.0 Viola D 1.0 Cello D 0.8
Violin D 1.0 Viola G 1.0 Cello G 0.9
Violin G 1.5 Viola C 1.75 Cello C 2.0

Table 3.9: Equal-loudness plucking force. These values were empirically selected by ear.

slightly misleading, as the instrument body filter is scaled to ensure that the string output produces

reasonable values within the range of 16-bit integers. However, even with that scaling, 32-bit floats

can still represent much smaller values than 16-bit integers. If the simulation continued until an and

ȧn fell below the minimum positive values for floats, a great deal of computation would be wasted to

produce an instrument output of 0. To avoid this useless computation, I turn off the simulation when

Amag =
∑
iA[i]2 falls below Amin, as mentioned in Section 2.1.4.

Figure 3.20 shows the process of selecting Amin. I selected 10 dB as the threshold of significance

for instrument output. I then simulated 13 plucks for each string; one for each semitone between the

open string and its octave. The amount of plucking force used is shown in Table 3.9. The variation

in the string cutoffs arises due to the frequency response of the instrument body impulse response.

Amin for each string is set to the minimum string cutoff from the 13 simulated plucks.

3.6 Final remarks on the constants

This chapter described the physical experiments I performed to measure the strings and instrument

bodies. In total, 10 distinct instruments were measured: 5 violins, 2 violas, and 3 cellos. In order to

facilitate gathering constants from multiple instruments, I chose to restrict myself to non-intruisive

measurements (i.e. strings would not be removed from their instruments). Certain physical constants

were not possible to measure without removing the strings, and thus were estimated from the other

constants and recorded audio. In order to allow the simple homogeneous string algorithm to account

for the measured string inharmonicity B, I permitted the estimated values for Young’s elastic modulus

E to be larger than would be realistic. Finally, I performed various simulations to pick constants which

have no physical equivalent, such as the limited number of modes N or the sampling rate fs.

The main research contributions of this chapter are:

� A method of estimating tension, linear density, and Young’s elastic modulus of a string given

its length, diameter, and recorded open-string plucks. The string tension was further calibrated

using PID control to ensure that the simulated note had the desired pitch.

� An examination of the consequences of using different numbers of modes and sampling rates

in the physical model, allowing researchers to choose the desired trade-off of audio quality and

processing speed for these parameters.

3.6.1 More accurate measurements

As the focus of this dissertation is the virtual violinist, the measurements of physical constants was

relatively crude. The resulting sound was acceptable, but the constants are likely not sufficiently

accurate for any scientific simulations. In particular, the restriction on not removing strings from
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their instruments meant that I could not measure the linear density ρL, which is an essential part of

the frequency of a wave in a string (f = 1
2L

√
T
ρL

).

Measuring the string length L and diameter d could be performed with tools such as a digital

calliper, but this is not a major source of uncertainty in the physical constants. Measuring other

constants directly, rather than estimating them, is much more important. The linear density ρL is

easily (albeit destructively) measured by cutting the string at the ends of the vibrating portion (i.e. at

the bridge and nut) and weighing the result; alternatively, the entire string could be measured without

any cutting, as the additional winding at the ends of the string will not alter the overall density by

a great amount. Young’s elastic modulus E can be tested with specialized equipment which applies

forces to the material and compares the deformation.

As previously mentioned, string tension T falls somewhere between a physical constant (i.e. un-

changing) and a musician-controlled variable. When strings are bought from a store, they are not

under tension; musicians must choose the relevant tension themselves after placing the string on their

instrument. This can be measured by clamping the string with a set of known weights on one end,

and adjusting the weights until the desired frequency is reached.

Measuring string decays in the manner described in this chapter is slightly problematic. First,

inducing a current via magnetic induction will dampen the string vibrations slightly; using an optical

sensor would avoid this problem. Second, the string and electrical wires pick up EMF radiation from

AC power and VLF transmissions. Third, plucking strings attached to the instrument body results

in acoustical noise in the room being transferred to the string, in addition to the instrument body

vibrating from the string vibrations and carrying those vibrations to and from the other three strings

(sympathetic vibrations). Much more accurate measurements could be gathered by removing each

string from the instrument body, clamping it heavily, and placing the apparatus inside an anechoic

room to avoid stray acoustical noise.

This raises the question of the purpose of these measurements. For a scientific investigation of

instrument acoustics, it is of course desirable to investigate each aspect separately (e.g., each string,

the instrument body, the bridge, how energy is transferred between each element). However, that

would necessitate major modifications to the physical modelling algorithm. Rather than treating the

body as an LTI filter, the body would be a vibrating system; the string-body coupling would need

to be modelled. Even the string algorithm would need changing; instead of treating the strings as

homogeneous beams, the wound strings would be treated as a core plus one or more additional layers,

each with its own set of vibrating modes.

Since the focus of this dissertation is the musical control of a virtual instrument, I opted to avoid

that deeper layer of experimental physics and acoustics modelling. Instead, I deliberately measured

the modal decays of the violin strings in place on the violin body in order to capture a small amount

of the behaviour of a vibrating body via its effect on the string vibrations. This also made it practical

to measure a wide range of instruments; with a bit of practice, I could “process” each instrument

within half an hour. However, researchers interested in more accurate physical simulations should

definitely perform more careful measurements. Borrowing instruments from friends and family is an

inexpensive method of gathering constants, but this can add time pressure to return the instruments

to their owners as soon as possible. Instead, I recommend entering into an agreement with a local

instrument store, wherein researchers rent one instrument each day, thus giving ample time to perform

the measurements and return the instrument to the store.
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3.6.2 Final constants used

Table 3.10 lists the constants for each string which are used in the virtual instruments. As an aide

memoire, the variables are: tension T , length L, diameter d, linear density ρL, Young’s elastic modulus

E. coefficients of static friction µs, dynamic friction µd, the slope of the hyperbolic curve µc, and the

minimum vibration cutoff Amin.

name T (N) L (m) d (mm) ρL (g/m) E (GPa) µs µd µc Amin(·103)
violin-e-I 73.8 0.319 0.33 0.41 62.50 0.89 0.26 0.20 0.25
violin-e-II 89.9 0.319 0.29 0.50 134.00 0.80 0.26 0.08 0.27
violin-e-III 104.4 0.321 0.28 0.57 186.00 0.66 0.27 0.09 0.19
violin-e-IV 75.1 0.319 0.32 0.41 75.10 0.71 0.31 0.12 0.22
violin-e-V 68.1 0.327 0.24 0.36 186.00 0.72 0.32 0.11 0.22
violin-a-I 59.2 0.325 0.60 0.72 19.50 0.90 0.25 0.19 0.98
violin-a-II 70.7 0.320 0.61 0.88 22.20 0.86 0.28 0.08 1.16
violin-a-III 46.7 0.320 0.75 0.58 4.92 0.65 0.28 0.09 1.06
violin-a-IV 67.9 0.318 0.63 0.86 23.10 0.69 0.33 0.12 1.19
violin-a-V 68.9 0.321 0.65 0.86 18.40 0.74 0.35 0.10 0.74
violin-d-I 57.5 0.322 0.88 1.61 4.56 0.91 0.24 0.20 1.10
violin-d-II 34.5 0.318 0.78 0.99 6.87 0.87 0.26 0.08 1.17
violin-d-III 51.0 0.323 0.74 1.42 12.90 0.69 0.26 0.09 0.73
violin-d-IV 34.6 0.321 0.62 0.97 18.30 0.70 0.34 0.12 1.10
violin-d-V 62.8 0.321 0.78 1.77 16.30 0.75 0.34 0.10 0.71
violin-g-I 45.1 0.325 0.85 2.79 4.79 0.88 0.26 0.20 15.40
violin-g-II 50.3 0.320 0.78 3.20 5.51 0.83 0.26 0.08 15.00
violin-g-III 59.3 0.326 0.65 3.65 19.00 0.68 0.27 0.09 15.90
violin-g-IV 56.9 0.322 0.98 3.58 2.84 0.74 0.33 0.12 16.30
violin-g-V 30.9 0.326 0.73 1.90 8.91 0.74 0.34 0.11 15.70

viola-a-I 87.0 0.367 0.36 0.82 81.30 0.81 0.23 0.25 0.40
viola-a-II 62.7 0.373 0.35 0.58 114.00 0.83 0.23 0.28 0.38
viola-d-I 57.2 0.363 0.44 1.26 55.30 0.74 0.22 0.25 5.40
viola-d-II 57.7 0.369 0.32 1.22 95.00 0.86 0.25 0.27 6.06
viola-g-I 43.2 0.361 0.67 2.17 8.01 0.79 0.23 0.25 5.71
viola-g-II 69.8 0.369 0.65 3.35 18.20 0.84 0.24 0.28 6.67
viola-c-I 45.0 0.369 0.72 4.87 18.10 0.77 0.22 0.24 9.20
viola-c-II 42.2 0.375 0.75 4.42 6.54 0.83 0.24 0.27 9.52

cello-a-I 139.6 0.658 0.75 1.66 25.00 1.16 0.36 0.17 2.01
cello-a-II 138.8 0.678 0.77 1.55 21.20 1.04 0.32 0.06 2.18
cello-a-III 138.1 0.687 0.77 1.51 22.50 0.96 0.44 0.09 2.26
cello-d-I 96.9 0.672 0.88 2.50 25.00 1.19 0.37 0.18 1.30
cello-d-II 99.1 0.677 1.02 2.51 21.30 1.10 0.33 0.06 1.35
cello-d-III 143.5 0.680 0.91 3.60 25.00 0.98 0.47 0.09 1.33
cello-g-I 102.7 0.662 1.21 6.16 8.60 1.20 0.37 0.18 1.38
cello-g-II 108.2 0.677 1.10 6.17 16.20 1.08 0.32 0.06 1.27
cello-g-III 142.2 0.688 1.08 7.85 22.20 0.95 0.44 0.10 1.32
cello-c-I 163.4 0.676 1.44 21.20 22.40 1.17 0.38 0.17 63.30
cello-c-II 134.9 0.678 1.54 17.50 13.40 1.05 0.34 0.06 63.80
cello-c-III 153.8 0.688 1.35 19.20 23.80 0.95 0.46 0.09 61.70

Table 3.10: Final constants used. Recall that the values of E are set artificially to ensure that the
predicted string inharmonicity B matches the measured value of B.
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Figure 4.1: Context of this chapter.

In the past two chapters, I discussed the physical modelling equations and constants. This chapter

discusses all remaining issues concerning the virtual instruments: Video output, issues arising in

high-performance scientific software, and the Artifastring (“Artificial Fast String”) software project.

In order to visualize the interpretation performances of Vivi , the physical actions were animated

to produce video output. The animations are created from the input physical actions, without using

any of the simulations from the model.

The majority of physical modelling algorithms in acoustics research are written in high-level pro-

gramming languages. Although this is appropriate for scientific investigations, it is not suitable for

Vivi . Some aspects of my virtual musician training require thousands of seconds of simulated music

and human input after every 10-30 seconds of simulated music. The time it takes to generate those

simulations will greatly increase the burden of training Vivi . I therefore implemented the algorithm

in a high-performance C++ library capable of generating audio 100 times faster than realtime.

97



CHAPTER 4. IMPLEMENTATION OF PHYSICAL MODELLING 98

### commands

#w wait seconds

#b bow seconds s x_b F_b v_b distance along bow hair

#f finger seconds s 1.0-x_f K_f

#p pluck seconds s x_p y_p^d

w 0

### open strings arco

b 0.5 1 0 0 0 0

b 0.5 2 0.12 1.2 1 0.1

...

### scale pizz

f 3.5 1 0 1

p 3.5 1 0.25 1

w 3.5

...

### gliss pizz

f 18.18 1 0.1091 1

p 18.18 1 0.25 1

w 18.18

f 18.2 1 0.1097 1

w 18.2

f 18.22 1 0.1103 1

w 18.22

...

(a) Excerpt of benchmark.actions
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(b) Transcription of benchmark.actions

Figure 4.2: Benchmark test for physical actions. The actual benchmark.actions file is created by a
python script and the exact durations of notes varies slightly from the sheet music transcription. The
test is exactly 30 seconds long.
Audio 4.1: Audio generated from benchmark.actions

http://percival-music.ca/dissertation/a.4.1.benchmark.wav

There are two main ways that Artifastring is used. The first is the actions2wav executable, which

interprets an .actions text file and produces an audio .wav and haptic .forces.wav file. The second

is as a C++ or python library, which provides an ArtifastringInstrument object which may be

manipulated.

Throughout this chapter, various tests and benchmarks are performed using the music shown in

Figure 4.2, which also introduces the .actions format. This format is not intended to be written

manually, but rather it is expected that other tools will output instructions in this format. The format

is very easy to generate and parse; each action is a single line, # marks are comments, and the times

of each action in seconds are in ascending order. Unless otherwise specified, all benchmarks in this

chapter were performed on an Intel Core i5 running Ubuntu 12.04.1, compiling software with g++.

http://percival-music.ca/dissertation/a.4.1.benchmark.wav
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4.1 Video generation

In order to allow users to easily visualize the musical performance of Vivi, the Virtual Violinist , I

added computer animation using Blender1. Blender is an open-source computer graphics suite which

provides python bindings for animation, allowing me to automatically convert any set of physical

actions into computer animations.

4.1.1 Blender models

So far I have discussed a “model” in terms of physical modelling, i.e. a set of equations. In computer

animation, the word “model” refers to a set of vertices and faces which defines one or more objects.

These vertices can be manipulated with linear algebra to alter aspects of the scene (e.g., moving or

rotating an object), and to render an image of the scene from any angle.

I created an extremely simple model of a violin, Figure 4.3a. The violin body (more accurately,

the fingerboard) is represented by a thin rectangular prism; each string is represented by a cylinder;

the bow is represented by three cylinders (a thick one for the frog, a thin one for the bow stick, and a

thin one for the bow hair). Each finger is represented by an orange cone, while the plucking finger is

a purple cone. In March 2011, I introduced my research to the lilypond-user@gnu.org mailing list,

since Vivi uses LilyPond as discussed in Section 7.1. One reader of the mailing list, Marcos Press,

was impressed with the sound synthesis and offered2 to create a better model of a violin. I eagerly

accepted his gracious offer, and he created Figure 4.3b.

Both models were integrated into Vivi . My animation system offers three levels of quality, which

trade image quality against computation time. As an informal benchmark, I tested each quality level

with the first 10 seconds of benchmark.actions. Level 0 uses the simple model and took 17 seconds,

level 1 uses the full model and took 266 seconds, while level 2 uses the full model with additional

tweaks (e.g., higher resolution, anti-aliasing, shadows) and took 3288 seconds. Level 2 uses HDTV

resolution (1280x720), while levels 0 and 1 use 640x360.

1http://www.blender.org
2http://lists.gnu.org/archive/html/lilypond-user/2011-03/msg00670.html

Subsequent private emails clarified that he placed his Blender model under the GNU Public License version 3.

(a) Simple model (b) Full model by Marcos Press

Figure 4.3: Blender models of a violin. I created 4.3a, containing 532 vertices and 769 faces. Marcos
Press created 4.3b, containing 132,265 vertices and 132,560 faces. Finger cones not shown.
Video 4.1: Three quality levels of animation

http://percival-music.ca/dissertation/v.4.1.animation-quality-0.avi

http://percival-music.ca/dissertation/v.4.1.animation-quality-1.avi

http://percival-music.ca/dissertation/v.4.1.animation-quality-2.avi

http://www.blender.org
http://lists.gnu.org/archive/html/lilypond-user/2011-03/msg00670.html
http://percival-music.ca/dissertation/v.4.1.animation-quality-0.avi
http://percival-music.ca/dissertation/v.4.1.animation-quality-1.avi
http://percival-music.ca/dissertation/v.4.1.animation-quality-2.avi
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Communication between artist and programming

The models must contain specially named objects and vertices (or vertex groups). There must be

a violin object, with 4 objects parented on the violin named e-string, a-string, d-string,

g-string. Each string object must contain two vertex groups named bridge-mark and nut-mark

to indicate the ends of the vibrating portion of the string. In addition, there must be a bow object

parented on the violin. The bow must contain three vertex groups: hair-frog and hair-point to

indicate the ends of the bow hair, and wrapping to indicate the bow stick. The orientation of the

bow relative to the violin does not matter; the three named points on the bow are used to determine

the orientation and the bow is rotated as necessary.

At the present time, I do not use different models to distinguish violin from viola or cello. Instead,

I use different camera positions: The viola is slightly zoomed in (causing the model to appear bigger),

while the cello is oriented in an upright position. In order to accommodate this, the models must

contain at least three named cameras: Camera.000 for violin, Camera.001 for viola, and Camera.002

for cello. Provided that these guidelines are followed, a 3D computer artist may create and use any

model without needing to modify the animation scripts. The instrument may even be placed inside a

larger scene in conjunction with other Blender animations.

4.1.2 Blender animation

As summarized in Section 2.4.2, there are three types of physical actions which are inputs to the

model: moving the left-hand fingers, moving the bow, and plucking the string. The final “action”

listed is to wait for m samples; for the animation, this simply specifies at which animation frame the

action should occur. To simplify the rendering, when the bow is moving, the cone representing the

plucking finger is removed; conversely, when a pluck is occurring, the bow is removed.

Finger actions

The physical model requires that the user specify the string and the relative distance from the bridge

xf . To find the desired placement of the cone representing the left-hand finger, the bridge-mark and

nut-mark of the relevant string is retrieved. The apex of the cone is placed at the linear interpolation

of those two vectors.

Pluck actions

A pluck begins in the same manner as finger actions; the user specifies the location xp and the relevant

point within the animation is found. However, after 100 ms have passed, the cone representing the

pluck is gradually moved away from the string for the next 10 frames.

Bow actions

The bowing action places the bow on the string at position xb, again finding the precise location

by linearly interpolating between the two ends of the relevant string; this point is Cs. In addition,

the contact point along the bow hair Ch is found by linearly interpolating between hair-frog and

hair-tip according to the position along the bow hair given by the bow velocity. If no starting

position along the bow hair is given, it is assumed that the simulation begins with the bow resting on
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the string 10% away from the frog (roughly corresponding to the far edge of the winding around the

bow stick). The starting position may also be specified directly.

The bow’s orientation is found as follows. First, the intersection of hair-tip, hair-frog, and

winding is found; this is point BI . The normalized difference between winding and BI gives the

orientation of the bow hair to bow stick; this is ~BA. Second, I define ~BH as the difference between

hair-tip and hair-bow. Third, the side of the bow which should be facing the left-hand fingers is

found by taking the cross product of ~BA and ~BH .

The four strings are not oriented on a single plane; the two inner strings are farther away from

the instrument body than the two outer strings. This displacement is necessary to allow the bow

to play each string without touching the other strings. The bow hair must therefore be placed at a

different angle for each string. For each inner strings, the angle is set to be parallel to the adjacent

strings (e.g., when the bow is on the A string, the bow hair is parallel to a vector from the E to D

string). These angles are AD for the D string and AA for the A string. I define ∆a = AA −AD, then

set AG = AD −∆a and AE = AA + ∆a. The actual bow angle of the currently-played string is Ab.

Finally, the bow is translated and rotated to accommodate the point of contact along the string Cs,

the point of contact along the bow hair Ch, and the bow angle Ab.

4.2 Implementation notes for physical modelling

There are a few issues to consider for efficient physical modelling algorithms: The effect of using

discrete-time signals, the benefits of vectorized optimizations, and problems arising from subnormal

numbers.

4.2.1 Discrete-time signals and music

To reduce the amount of overhead in function calls, the string simulation is generally calculated in

buffers of M samples. For the specific case of the virtual string quartet, I usually process with buffers

of M = 512 samples. This sets the usual control rate at fs
512 ≈ 43 Hz, which gives durations of

≈ 23 ms. However, while a fixed control rate works well for interactive applications, I want to be

able to simulate music whose note durations are not exact multiples of 512 samples. In such cases,

I process the remaining samples with a partial buffer. Since the haptic output is downsampled by a

factor of two, the number of samples must be a multiple of 2, and the amount of time represented by

any function call to the physical model must be quantized to 11025 Hz, or ≈ 0.09 ms.

C C CC C C C
� 44

� 44

C = 76

C C C
�

C C C CC C
Figure 4.4: Music excerpt for buffer timing problems. When each note is quantized naively a sampling
rate of 11025 Hz, the top whole note is 34815 samples, while the bottom sixteenth notes are 2175
each, or 34800 samples for one bar. The discrepancy of 15 samples results in the bottom part lagging
behind the top part by 1.36 ms per bar.
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Consider the music example in Figure 4.4; such a measure could easily be found in a Mozart piano

sonata. Suppose there were 100 bars in that sonata; the two parts would become 136 ms out of phase.

The Just Noticeable Difference (JND) for musical attacks is notoriously variable, but 136 ms is well

beyond acceptable ranges for perceiving two events as occurring simultaneously (Wright 2008).

If this discrepancy is to be resolved, the software must keep track of the total simulated time as

well as the sum of the durations of the desired notes. If the simulated elapsed time is less than the

desired elapsed time, the next simulated note will be a few samples longer than it would otherwise be.

The instrument body simulation code fills a buffer of memory provided by external code, rather than

allocating user-oriented buffers itself. Communicating the size of the buffer back to user code is quite

possible, but it adds an extra layer of complexity to both the physical modelling code and the user

code. I therefore make no attempt to address the problem in the instrument body code. However, it

is still appropriate to solve this problem for application programmers who do not wish to keep track

of time themselves. I decided to implement the following: Any functions which contain a number of

samples as an argument will create precisely that number of samples. The programmer is expected to

keep track of elapsed time and make any desired adjustments to the number of samples. By contrast,

if a user specifies a number of seconds using less direct method as discussed in Section 4.3.3, then the

simulation software will adjust the number of samples.

4.2.2 Vectorized optimizations

In the past decade, CPU designers for desktop machines have stabilized the clock speed in the range

of 1.5 GHz to 3 GHz. Faced with physical limits on the speed of signals from one portion of the silicon

to another, recent efforts have focused on parallelism, both in terms of increasing the number of cores

in a chip and Single Instruction, Multiple Data (SIMD). As the name implies, SIMD instructions load

a number of variables into (a) large register(s), then apply the same calculation to all values.

Intel’s Streaming SIMD Extensions (SSE) (Intel 2007) are the most widely used SIMD instruction

set for desktop CPUs; AMD also supports SSE instructions. SSE provides eight 128-bit XMM reg-

isters, capable of performing calculations on 4 single-precision floats at once. Intel’s new Advanced

Vector Extensions (AVX), introduced in 2011, contains 256-bit registers, allowing 8 single-precision

floats to be processed with one instruction. This does not mean that calculations will complete 4

times as quickly. Not all algorithms can be vectorized, and a vectorized algorithm will include ele-

ments which cannot be performed with SIMD instructions. However, a great deal of scientific and

engineering computations can benefit from SIMD (Hassaballah et al. 2008).

One disadvantage of SIMD is that it can require writing code specifically tuned for the particular

instruction set, both in terms of manually specifying the assembly instructions and also ensuring that

data is aligned in memory in the expected manner. However, compilers have improved such that they

can automatically detect some common instances of vectorizable code (Franchetti et al. 2005), and

additional libraries have been written to simplify writing SIMD code. One such example is the Eigen

library (Guennebaud et al. 2010), discussed in Section 4.3.1.

Informal testing with benchmark.actions showed that disabling explicit vectorization in Eigen

resulted in the simulation running 2.4 times slower (0.96 seconds vs. 0.40 seconds). However, the

FFTW library still used vectorized instructions as it was compiled with SSE support. With the 128-

bit registers and using single-precision floats, the maximum speed-up would be a factor of 4; it is

surprising that the vectorization helps as much as it does.
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4.2.3 Subnormal numbers

The standard for floating-point computations in desktop computers is IEEE 754, first established in

1985 but revised in 2008 (IEEE Computer Society 2008). In order to maximize the benefit of SIMD

instructions, I used 32-bit single-precision floats (referred to binary32 in the 2008 standard). A value

x is encoded in the form

x =

(−1)s · (1 + c) · 2q−127 if q > 0 “normal numbers”

(−1)s · (0 + c) · 2−126 if q = 0 “subnormal numbers”
(4.1)

where x is the final value, s is a 1-bit value representing the sign, c is a 23-bit fraction between 0

and 1, and q is an 8-bit unsigned integer. If q = 0 the exponent is set to be -126, and the floating-

point numbers are said to be “subnormal” or “denormalized”. The range of subnormal numbers is

1.401 E−45 to 1.175 E−38. Due to the design of modern floating-point units, operations involving

denormal numbers are significantly slower than normal calculations. The exact time penalty of denor-

mal operations depends on the CPU, but it ranges from 1.4 to 520 times slower (Dooley & Kale 2006).

On CPUs found in typical consumer use in 2012, the penalty is 5.5 to 92.2 times slower.

In most computations, values are never as small as 10−38. However, these can easily appear in

both DSP and physical modelling algorithms. In the DSP domain, non-stationary Infinite Impulse

Response (IIR) filter with no input will gradually produce numbers which are smaller and smaller,

eventually reaching denormals. In physical modelling, any damped vibrating structure — including

vibrating strings — will decay into denormal numbers. For higher modes (i.e. N > 35), denormal

numbers appear within 5 seconds of a pluck or lifting a bow off the string.

This performance penalty can be avoided by setting the processor mode to treat any denormal

values as 0. In particular, setting the “flush to zero” (FTZ) and “denormals as zero” (DAZ) bits in

the MXCSR control/status register of the SSE instruction set:

// C source code

_mm_setcsr( _mm_getcsr() | (1<<15) | (1<<6));

Informal testing with benchmark.actions showed that disabling denormal values results in the

simulation running 6.6 times faster (2.64 seconds vs. 0.40 seconds). This is less than expected given

the performance penalties shown in (Dooley & Kale 2006). There are two factors for this: First, even

when an and ȧn for the higher modes are denormals, the lower modes will still have normal numbers

which will pull the average time lower. Second, when the string vibrations are sufficiently low, the

computations are disabled, as discussed in Section 2.1.4. This limits the amount of computations

which would take place with small numbers.
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4.3 Artifastring: Artificial Fast String

I created a software project to encompass all of my physical modelling work, called Artifastring

(“artificial fast string”). Artifastring is freely available under the GPLv3, with all source code and

data available as discussed in Appendix C. This project contains:

� SciPy/python scripts to analyze the data from physical experiments in Section 3.

� SciPy/python scripts to implement the physical modelling equations in Section 2, and to perform

the simulations in Section 3.

� Blender models and python scripts to implement the video generation from Section 4.1.

� C++ library for a high-performance implementation of the virtual violin family.

� Stand-alone programs to perform the simulation and animation.

� A test suite of .actions files and documentation.

This section discussed issues arising in the C++ implementation, descriptions of the executable

programs in Artifastring, performance benchmarks of the C++ code on common CPUs, and the use

of Artifastring outwith of this dissertation.

4.3.1 C++ implementation

The C++ implementation was compiled with both gcc 4.6.3 (Stallman et al. 2012) and clang++

3.0 (Lattner 2005) to benefit from two sets of error and warning checks. It was also tested with

the valgrind (Nethercote & Seward 2007) suite of debugging and profiling tools to ensure memory

correctness.

In addition to the standard C++ libraries libstdc++ and libm, this implementation requires

libfftw (Frigo & Johnson 2005) and Eigen (Guennebaud et al. 2010). FFTW (the “Fastest Fourier

Transform in the West”) provides highly optimized FFTs, used to compute the convolution with the

body impulse response and haptic response. Eigen is a C++ header library, which requires the .h

files to be present during compilation but does not require the library to be installed on the system

during run-time.

Object-oriented programming

This implementation uses the object-oriented programming paradigm. There is an obvious metaphor

between a real-world violin string and an ArtifastringString3 class. A violin string can have actions

performed upon it — a left-hand finger can be placed upon it, it can be plucked, or bowed — and

these actions are immediately added as class methods. Similarly, the internal state of the string —

the modal values an and ȧn — are class variables. The instrument body receives a similarly simple

translation from real-world physics to object-oriented design. The only class which has no obvious

real-world equivalent is the FFT convolution. An UML class diagram is shown in Figure 4.5, while

class variables of ArtifastringString are shown in Table 4.1.

3Notation: unfortunately in computer programming, the word “string” refers to a piece of text (“a string of charac-
ters”). To distinguish the virtual violin strings from the data structure representing text, I use the somewhat-clumsy
word ArtifastringString
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ArtifastringInstrument

finger(s : Int, xf , Kf )

pluck(s : Int, xp, ydp)
bow(s : Int, xb, Fb, vb)
bow accel(s : Int, xb, Fb, vt, ab)
wait(m : Int, A : Short16[], H : Short16[])

ArtifastringString

finger(xf , Kf )

pluck(xp, ydp)
bow(xb, Fb, vb)
bow accel(xb, Fb, vt, ab)
wait(m : Int, A : Float[], H : Float[])

MonoWav

request fill(m : Int) : Short16[]

ArtifastringConvolution

load kernel(K : Float[], m : Int)
get input buffer() : Float[]
process(B : Float[], m : Int)

owns

1..4

owns
1..2

Figure 4.5: Class diagram for the Artifastring library (class variables are not shown). Unless otherwise
specified, all variables are Floats. MonoWav is not directly connected to ArtifastringInstrument; it
is merely made available in the library to allow client code to easily save data.

struct explanation variables in physical modelling
sc string cached

coefficients
X1n, X2n, X3n, Y1n, Y2n, Y3n, Gn

va violinist actions xb (also used for xp), xf , Fb, vb, vt, ab, Kf

vc violinist cached
coefficients

x0, x1, x2, φ(x0), φ(x1), φ(x2), D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, K0, K1, K2, R0, R1, R2, yp, y

d
p , tp

ss string state an, ȧn, slipstate

Table 4.1: Class variables of ArtifastringString. Variables are organized into structures. sc are
cached values arising from the string’s physical constants and never change. va are the input physical
actions, while vc are cached constants which only change a few times each second. Finally, ss contains
variables which can change at every sample.

High-level C++ code with Eigen

One of the traditional disadvantages of C++ is that it is a low-level language. It grants the programmer

a great deal of power with close interaction with the hardware at the expense of requiring extra care

to avoid mistakes.

The Eigen template library for C++ (Guennebaud et al. 2010) mitigates some of the disadvantages

of C++. Matrix arithmetic can be written easily without needing loops due to operator overloading.

Template meta-programming in the library provides additional compile-time error checking and auto-

matically determining the dimensions of variable-sized matrices. This ease of programming is nothing

unusual in higher-level languages such as Matlab or SciPy/python, but Eigen brings this simplicity to

high-performance C++. The Eigen library overloads operators + * when calculations involve vectors

and matrices. In addition to making the code easier to read by avoiding loops, these operators include

explicit vectorization. Part of the implementation of physical modelling is shown in Figure 4.6.

In addition, unlike some linear algebra packages, the additional “functions” which Eigen provides

— overloaded operations, reductions such as .sum() — are not separate function calls, but are rather

template expansions. This means that the memory cost of an Eigen array is simply the data stored

(i.e. float ah[40] for ah with 40 modes), with no run-time cost due to the arithmetic operations

being expanded at compile-time. When Eigen vectors or matrices are created, the library ensures that

data is stored in memory aligned: SSE instructions receive a significant performance penalty if the

data is not 128-bit aligned.
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inl ine f loat A r t i f a s t r i n g S t r i n g : : t i c k p l u c k ( )
{

// ”hands−f r e e ” modes
const AA ah = sc . X1 * s s . a + sc . X2 * s s . ad ;
const AA adh = sc . Y1 * s s . a + sc . Y2 * s s . ad ;

// ”hands−f r e e ” s t r i n g disp lacement under f o r ce l o c a t i on s
const f loat y0h = ( vc . phix0 * ah ) . sum ( ) ;
const f loat y1h = ( vc . phix1 * ah ) . sum ( ) ;
const f loat y2h = ( vc . phix2 * ah ) . sum ( ) ;
const f loat v0h = ( vc . phix0 * adh ) . sum ( ) ;
const f loat v1h = ( vc . phix1 * adh ) . sum ( ) ;
const f loat v2h = ( vc . phix2 * adh ) . sum ( ) ;

// f o r c e s at those l o c a t i on s
const Eigen : : Vector3 f matr ix b = ( Eigen : : Vector3 f ( ) <<

−v0h * vc . R0 − ( y0h − vc . y p luck ) * vc . K0,
−v1h * vc . R1 − ( y1h ) * vc . K1,
−v2h * vc . R2 − ( y2h − vc . y p luck ) * vc .K2

) . f i n i s h e d ( ) ;
const Eigen : : Vector3 f Fs = inv A * matrix b ;

// app ly f o r c e s
const AA fn = vc . phix0 * Fs (0 ) + vc . phix1 * Fs (1 ) + vc . phix2 * Fs ( 2 ) ;
s s . a = ah + sc . X3 * fn ;
s s . ad = adh + sc . Y3 * fn ;
return compute br idge fo r c e ( ) ;

}

Figure 4.6: C++ code to process a pluck. AA is a typedef for a vector of size N (the number of modes),
while the variables are explained in Table 4.1.

Parallelism and thread safety

Since the four ArtifastringString objects operate independently, there is an obvious potential for

multithreading in order to take advantage of modern CPU design. Each string simulation could run

as a separate thread, with a fifth thread acting as the instrument which combines the results of the

four independent threads. Unfortunately, the synchronization cost caused such multithreading to be

much slower than a single-threaded simulation. The ArtifastringInstrument only simulates a buffer

of up to 512 samples at once, so more time was spent on mutex handling than on the actual string

simulation. In addition, since strings are “turned off” when Amin is reached, there are usually only

one or two strings which require calculations to fill the buffer.

Fortunately, a great deal of the computation for training Vivi falls under the heading of “em-

barrassingly parallel problem”. Dozens of short simulations are performed, varying the parame-

ters slightly, with no simulation depending on the results of another one during the same itera-

tion. In this manner, Vivi can benefit from CPUs with multiple cores and hyperthreading, even

though a single ArtifastringInstrument only uses one thread. However, in order to utilize multiple

ArtifastringInstrument objects, the library must be thread-safe. This is not a problem for the

Eigen library or my C++ code, but only small portions of libfftw are thread-safe. In particular,

all memory allocation and FFT plan generation are not thread-safe. To resolve this, all portions of

ArtifastringConvolution using such functions are protected with a mutex. Furthermore, plan gen-

eration produces some persistent data, which cannot be deallocated until all plans have been destroyed.

A shared reference counter is used to determine how many instances of ArtifastringConvolution

are in use; when this number falls to 0 the general FFTW cleanup function is called.
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#include ” a r t i f a s t r i n g / v i o l i n i n s t r u m e n t . h”
#include ” a r t i f a s t r i n g /monowav . h”
int main ( )
{

// make o b j e c t s
MonoWav *w a v f i l e = new MonoWav( ” output . wav” ) ;
Vio l in Inst rument * v i o l i n = new Vio l in Inst rument ( ) ;

// ge t output b u f f e r
short *output = wavf i l e−>r e q u e s t f i l l ( 22050 ) ;

// p luck the A s t r i n g near the middle o f the s t r i n g with moderate ly s t rong fo r ce
v i o l i n−>pluck (2 , 0 . 45 , 0 . 8 ) ;

// generate 1 second o f audio
v i o l i n−>wait samples ( output , 22050) ;

// au tomat i ca l l y wr i t e s output f i l e
delete w a v f i l e ;
delete v i o l i n ;

}

(a) C++

#!/ usr / bin /env python
import a r t i f a s t r i n g i n s t r u m e n t
import numpy
import pylab

# make o b j e c t s
v i o l i n = a r t i f a s t r i n g i n s t r u m e n t . A r t i f a s t r i n g I n s t r u m e n t ( )

# ge t output b u f f e r
output = numpy . z e r o s (22050 , dtype=numpy . in t16 )

# pluck the A s t r i n g near the middle o f the s t r i n g with moderate ly s t rong fo r ce
v i o l i n . pluck (2 , 0 . 45 , 0 . 8 )

# generate 1 second of audio
v i o l i n . wai t samples ( output )

# d i s p l a y time−domain output
pylab . p l o t ( output )
pylab . show ( )

(b) Python. A direct translation of the C++ version (wherein the data is saved to a file) is possible, but
it is more interesting to save the data to a numpy array for further processing or analysis.

Figure 4.7: Using Artifastring in C++ and python

Library usage and SWIG bindings for other languages

To support widespread usage, Simplified Wrapper and Interface Generator (SWIG) bindings (Beazley

2003) are also available. SWIG facilitates the use of C and C++ libraries in other programming

languages such as python, lisp, R, and octave. Figure 4.7 shows typical usage in C++ and python.

To facilitate easy integration of Artifastring with scientific python packages, I set the SWIG bindings

to automatically replace any arguments of the form (short *buffer, int num samples) or (float

*buffer, int num samples) with a numpy array.
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time (seconds)
Violin Cello

CPU Year Clock OS g++ clang++ g++ clang++

Intel(R) Core(TM) i5-2415M 2011 2.30 GHz 64-bit 0.40 0.44 0.28 0.31
Intel(R) Core(TM)2 Quad Q9550 2009 2.83 GHz 32-bit 0.66 0.66 0.48 0.48
Intel(R) Atom(TM) N570 2011 1.66 GHz 64-bit 2.60 3.39 1.73 2.36

Table 4.2: Benchmarks on common CPUs. The usual 30-second test .actions file was used. All
computers ran Ubuntu 12.04.1. CPU frequency scaling was set to maximum performance. Each test
test was performed twice to ensure that the executable was cached, then the mean of the next three
times was recorded. The compiler versions were the default for Ubuntu 12.04.1, namely g++ 4.6.3 and
clang++ 3.0.

4.3.2 Benchmarks, profiling, and future improvements

Benchmarks were performed by running actions2wav on benchmark.actions. Artifastring was com-

piled with

${CXX} -fPIC -O3 -march=native -DNDEBUG

Results are shown in Table 4.2. A few of these results are worth examining in closer detail.

Simulating a cello is considerably faster than simulating a violin due to the string sampling rates

selected in Section 3.5.2: The violin uses Mf multiples of 4,4,2,2, whereas the cello uses Mf multiples

of 2,2,2,1.

The effect of different compilers is interesting to note. clang++ is part of the Low Level Virtual

Machine (LLVM) compiler suite which arose from a 2004 research project at the University of Illinois.

By contrast, the first release of g++ was in 1987; the software architecture has grown “organically”

over the past 25 years. This maturity can act as a two-edged sword: g++ is very well-known and

has received many optimizations over the years, but the design of clang++ allows more experimental

optimizations and provides much more informative error messages. The Atom processor is a low-power

CPU designed for battery life in netbooks, so its relatively poor performance is expected. In addition,

a significant amount of development for clang++ and its related libraries comes from Apple. Apple

does not use the Intel Atom processor in any products, opting to use ARM processors for their mobile

devices and Intel Core CPUs in their desktops and laptops. It is reasonable to suppose that clang++

has not received many optimizations for the Intel Atom processor. By contrast, the speed of clang++

and g++-compiled code are identical for the Core 2. This processor has been used in many Apple

computers, so it is plausible that clang++ would have received more optimizations for this processor.

The benchmarks show that clock speed between different processors is decoupled from performance.

In terms of SIMD instruction sets, the Atom and Core2 Quad support SSE 3, while the i5 supports

SSE 4.2 and the newer AVX. However, the true benefit of AVX is not realized in Artifastring because

Eigen does not yet support AVX.

Table 4.3 shows detailed profiling of time spent with valgrind --tool=callgrind. There are

three aspects worth discussing: The overall efficiency of the implementation, directions of future

optimization work, and implications for algorithm design.

To examine the efficiency of the implementation, I draw attention to two numbers in Table 4.3:

The time to compute the FFTs involved in the body filters (30% in libfftw) and the time spent on

low-level SIMD instructions (40% on addps and mulps). These present a rough estimate of the “fastest
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Method or library Time spent Called Rel. time (·10−6) addps mulps

libfftwf 30.77% 5684 5414 N/A N/A
AS::tick release() 27.38% 1654100 17 9.03% 12.74%
AC::process() 12.50% 2840 4401 0% 0%
AS::tick bow() 10.45% 647540 16 3.11% 3.98%
AS::tick free() 9.42% 1478428 6 2.31% 5.56%
AS::tick pluck() 4.45% 206200 22 1.41% 2.24%
AS::fill buffer() 1.90% 5680 335 0% 0%
AI::handle buffer() 1.35% 1420 950 0% 0%
total 98.22% - - 15.96% 24.52%

Table 4.3: Profiling Artifastring to show the bottlenecks. Only the slowest 8 functions are shown.
Benchmarking performed on the i5-2415M CPU with the additional compiler option -g to display
detailed information about the time spent on each line of code. Abbreviations used for objects: AS is
ArtifastringString, AC is ArtifastringConvolution, AI is ArtifastringInstrument. The addps
and mulps columns show the overall time spent on the two SSE assembly instructions (“Add Parallel
Scalars” and “Multiply Parallel Scalars”), each of which operates on 4 single-precision floats.
The “main” function of AS is AS::fill buffer(), which calls the appropriate AS::tick *() function
to calculate one time unit (dt) of output; this process is repeated as many times as is needed to fill the
buffer (generally 512 ·Mf samples). The tick * functions are as follows: bow is called when the bow
is touching the string, pluck is called when there is a right-hand finger plucking the strnig, release

is called when there is only a left-hand finger touching the string, and free is called when there are
no external forces on the string.
The “main” function of AI is AI::handle buffer(), which calls AS::fill buffer() for each string,
then sends the results to AC::process() (which in turn calls libfftwf.

possible implementation”: libfftw is renowned for its speed, and with one possible exception4 single

assembly instructions are the fastest way to perform arithmetic on CPUs. This means that 30% of

the processing time is set by the size of FFTs I chose in Section 2.1.5, and 40% of the processing time

is set by the number of external forces (both finger and bow) chosen in in Section 2.1 with the number

of modes and sampling rates chosen in Section 3.5.1 and Section 3.5.2. Even if all other operations

could be performed infinitely fast, it would only save 30% of the running time.

That is not to say that future improvements to the implementation are impossible. In particular,

AC:process() currently does not use SIMD instructions for computing the overlap-add. Adding large

arrays of floating-point values are a perfect use-case for SIMD instructions, so it is reasonable to expect

that the 12.5% of time spent in this function could be reduced by a factor of 2 or more. Similarly,

AS::fill buffer() and AI::handle buffer() might benefit from using SIMD for the A[t] and H[t]

signals, in particular when combining signals of the same sample rate before passing the signal into

the FIR filters, but these functions only take 1.9% and 1.35% of the processing time respectively.

They are therefore not good targets for optimization.

The AS::tick *() functions such as AS::tick pluck() in Figure 4.6 cannot be optimized further

without getting into very low-level SIMD design. It is appropriate to leave such optimizations to

new developments in compilers and the Eigen library. The only worthwhile improvement would be to

rewrite the calculation of “hands-free” string displacement and velocities to be a matrix multiplication

rather than six distinct dot products. Matrix multiplication is a fundamental step in a large number

of scientific and game/media computation, so implementing the physical modelling algorithm in such

terms would allow me to benefit from future developments in compilers and CPU design.

4The exception comes in the form of the dot product command dpps added in SSE 4.1. Since a great deal of my
addps and mulps commands are used to perform dot products, a dedicated dpps may improve the speed.
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Many applications of such physical modelling will only be concerned with the audio output A[t]

and not the haptic output H[t]. The calculation of H[t] inside ArtifastringString comes “for free”

as part of the normal simulations, but handling the H[t] signals in AI::handle buffer(), and most

importantly the additional FIR filters in libfftwf, comprise roughly 20% of the computation time.

If simulation time was a concern5, a command-line option (or even a compile-time #ifdef) could be

added to disable the haptic output.

However, Artifastring is already very fast; on the laptop and desktop CPUs tested in Table 4.2,

it ranges from 12 to 107 times realtime. Rather than increasing the speed of the implementation, it

is likely that improvements to audio quality would be more useful. There are two easy ways of doing

this: vary N based on the string rather than using a fixed N = 40 for all strings, and increase the

sampling rate to fs = 44100. Based on the values for B measured in Table 3.3, 40 modes results

in a maximum modal frequency of 27 kHz for the violin E string but only 3.5 kHz for the cello C.

Increasing N to 64 would give a C string with a maximum modal frequency of 7.4 kHz, while 80

modes would results in 10.9 kHz. However, the higher modes have much faster decays and thus have

less effect on the simulation. Recall that due to string inharmonicity, doubling the number of modes

will more than double the range of frequencies. If this is to be done, N would need to vary based

on string: For the cello A string with 80 modes, the maximum modal frequency would be 20.8 kHz,

which is well above the Nyquist frequency of 11.025 kHz. These concerns are even more relevant for

the viola and violin.

This raises the question of sampling rate; maybe the instrument sampling rate should be 44100 Hz

rather than 22050 Hz? In Section 3.5.2, only the cello C string has an fs multiplier of 1; all other

strings are simulated at fs = 44100 Hz or fs = 88200 Hz. The choice of 22050 Hz was partly motivated

by a desire to reduce computation burden of analyzing the signals in the feedback control loop, but

down-sampling could be performed during the analysis.

A few elements of the profiling suggest areas of the algorithm which could be improved. It was

surprising to see that tick pluck() and even tick release() were slower than tick bow(). This

shows the effectiveness of Demoucron’s direct solution for the bow-string interaction, but also raises

the question of whether a more elaborate bow-string interaction could be used. One option would

be to improve the friction model such as using the double exponential friction proposed in (Smith &

Woodhouse 2000). However, given the flaws due to “strongly rational” positions in bowing discussed in

Section 2.3.1, a more important modification would be to extend the algorithm to take the bow width

into account. Just as adding an extra finger position improved the simulation quality in Section 2.2.2

and Section 2.2.3, adding one or more bowing positions should mitigate the problems of “strongly

rational” bowing positions. In addition, it would be desirable to simulate the finger with two positions

during bowing as well as pizzicato, instead of switching from one finger force during bowing to two

finger forces during string release and pizzicato.

5This is not likely to be a concern with desktop machines, but if the physical modelling were to be performed on a
mobile device or embedded system, it is possible that removing haptic output could be the difference between realtime
and non-realtime performance. Low-power CPUs designed for mobile phones or embedded systems may or may not
include floating-point SIMD instructions, and are unlikely to have highly optimized FFT libraries. For example, the
Raspberry Pi is a US$ 35 general-purpose computer which uses an ARM11 CPU; this includes 32-bit integer SIMD, but
no floating-point SIMD support. Floating-point SIMD was only introduced in the ARM NEON instruction set, which
provides 128-bit registers just like SSE.
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# bar pitch dur

1.0 62 16

1.0625 62 16

1.125 62 16

1.1875 62 16

1.25 62 8

1.375 62 8

1.5 69 16

1.5625 69 16

1.625 69 16

1.6875 69 16

1.75 69 8

1.875 69 8

# bar pitch dur

2.0 71 16

2.0625 71 16

2.125 71 16

2.1875 71 16

2.25 71 8

2.375 71 8

2.5 69 16

2.5625 69 16

2.625 69 16

2.6875 69 16

2.75 69 8

2.875 69 8

(a) Excerpt of twinkle.notes

C C CC C C C� 44
C = 96 C C CC C CC C C C CC C CC C C

(b) Excerpt of sheet music for “Twinkle, twinkle, little star”

Figure 4.8: Beginning of twinkle.notes used with note2actions.py. No feedback control was used
to determine the bowing parameters; each note is hard-coded to begin with Fb = 0.15 N and decrease
to Fb = 0.1 N, while the bow velocity accelerates at ± 30 m/s−2 to vtb = ±0.4 m/s. These numbers
were found empirically to produce a passable rendition of a young student playing “Twinkle, twinkle,
little star”.
Audio 4.2: Audio generated from twinkle.notes

http://percival-music.ca/dissertation/a.4.2.twinkle-no-feedback.wav

4.3.3 Artifastring programs

Artifastring includes a few executable programs in addition to the C++ library.

actions2wav: This C++ programs reads an input .actions file and produces an audio .wav files

and haptic output .forces.wav file. It is the main program in the suite. The user may specify

the instrument type (violin, viola, cello) and instrument number. A simpler version which only

produces audio output is written in python play-file.py.

actions2images.py, artifastring-movie.py: These python script reads an input .actions file

and produces a series of images using the blender animation program. These are then combined

with an audio .wav file to produce a movie with the mencoder movie encoder6. The overall

quality, frames-per-second, and start/end frames can be specified. The latter option is used in

Vivi, the Virtual Violinist to divide the video creation between multiple processes as a means

of parallelizing the work. Recall that even the lowest-quality video generation is almost twice

as slow as realtime when using a single thread.

notes2actions.py: This python script reads music in a MIDI-like .notes format and produces an

.actions file for further processing. An example is shown in Figure 4.8.

research/: This directory and its sub-directories contains all the python scripts used in Chapter 2

and Chapter 3. One sub-directory of particular interest will be numpy-string/, an implemen-

tation of the physical modelling in numpy and scipy, allowing me to test and experiment with

various aspects of model with the ease high-level Python code. Scripts devoted to analyzing

6mencoder is part of the mplayer movie player suite: http://www.mplayerhq.hu/

http://percival-music.ca/dissertation/a.4.2.twinkle-no-feedback.wav
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modal decays are in mode-detect/, analyzing impulse responses are in impulses/, and the

least-squares fits to estimate unmeasured physical constants are in make-constants/.

artifastring interactive.py, artifastring osc.py: These python scripts allow interactive real-

time control of the physical model, with the computer’s keyboard or any networked input device

via the Open Sound Control protocol. This functionality is discussed further in Section 4.3.4.

Use outwith this dissertation

Although this library was written for my research, it was designed and documented for general use for

other projects. I hope that it can be of use to other researchers without detailed knowledge of acoustics

or digital signal processing, so that more people can work on virtual bowed string performance. In the

Spring of 2010, it was used as part of a second-year team design project between Electrical Engineering

and Computer Science students at the University of Glasgow. The project created an artificial “hurdy

gurdy” (a folk instrument from Eastern Europe) for use in contemporary music performances.

4.3.4 Realtime interactive use of Artifastring

The artifastring interactive.py and artifastring osc.py scripts present an ncurses7 text-

based user interface which allows the user to modify violin performance parameters (e.g., string,

finger position, bow force) and hear the resulting audio in realtime. The artifastring osc.py script

is also capable of receiving open Sound Control (OSC) messages (either locally or over a network),

allowing the user to “perform” with the physical model using alternate input devices. Figure 4.9

shows artifastring osc.py being controlled by an Android tablet.

7ncurses is a library for creating text cursor graphical interfaces, and was officially released in 1993 as a clone of
curses library in the original BSD operating system.

Figure 4.9: Interactive control of Artifastring with a tablet. The tablet sends OSC messages to
a desktop computer or laptop which is running artifastring osc.py. The four bars on the left
control the string and finger position, while the large rectangle on the right controls the Fb and vb
bowing parameters. “Fb” and “vb” indicate the axes of bow force and bow velocity. The same
interface controls all instruments; the text shows the behaviour for violin. When controlling a cello,
the strings are ADGC, and the maximum Fb is 6 N. When controlling a viola, the strings are ADGC,
while the bowing parameters are the same as for violin.
Video 4.2: Interactive control of Artifastring with a tablet

http://percival-music.ca/dissertation/v.4.2.artifastring-interactive.avi

http://percival-music.ca/dissertation/v.4.2.artifastring-interactive.avi
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There are three advantages to sending OSC messages from a tablet to a laptop for synthesis.

First, having a “thin client” allows the interface to be ported and implemented on new systems much

faster than a “fat client” which performs all computations. Second, laptops have a great deal more

processing power than a tablet or cell phone. Third, the licensing requirements for some operating

systems (notably Apple’s iOS) are incompatible with GPL software; splitting the functionality between

the thin interface and the backend processing mitigates this legal burden. However, there is one large

disadvantage of this method: It requires both a tablet and a laptop, making the system less portable

than a laptop-only or tablet-only system.

In addition to being useful for demonstrations, the interactive scripts are useful for initial ex-

plorations of the parameter space. Although it is often more appropriate to use the numpy python

implementation to evaluate bowing parameters and audio in controlled experiments, being able to

quickly manipulate bowing and fingering parameters was an integral part of creating the virtual vio-

linist discussed in Part II.

4.4 Final remarks on the virtual violin family

This chapter described Artifastring (“artificial fast string”), my implementation of the physical model

in C++ along with the video generation using Blender. Artifastring is capable of producing audio

and haptic output up to 100 times faster than realtime on common desktop computers.

The main research contributions of this chapter are:

� Applying the programming techniques of vectorized computing (SIMD) and avoiding subnormal

numbers. These techniques are well-known to programmers, but it is useful to quantify their

advantages for audio synthesis.

� Implementing the physical model in a fast, easy-to-use, open source library, suitable for ei-

ther interactive use with humans or as a platform for virtual musicians. The efficiency of the

implementation is shown with detailed benchmarks.

Unlike the previous two chapters, there were relatively few design choices in this chapter. The

simulation could be represented using 64-bit floats instead of 32-bit floats, but I could hear no difference

when evaluating this change; this is not surprising given that the final output is quantized to 16 bits

and the bowing contains a stochastic term which likely overrides any randomness arising due to

quantizing values to 32-bit floats. The simulation could be implemented in a different language, but

the algorithm is simple enough that the ease of programming in a higher-level language gives no huge

boost to programmer productivity, as the Eigen library already brings many advantages of high-level

code to C++.

4.4.1 The model in general

Over the past three chapters I have described a physical model for violin, viola, and cello. I make

no claim to complete mechanical accuracy; there are many known acoustic properties which are not

included in this model as discussed in Section 2.4.1, and there are known inaccuracies my measure-

ments/estimations of physical constants which are examined in Section 3.6.1. However, for all its

flaws, the physical model is far from useless: “All models are wrong but some are useful” (Box 1979,
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p. 202). The intended use of this model is not scientific accuracy, but rather to produce audio which

is sufficiently violin-like to serve as a platform for investigation of musical control.

Although the audio quality is sufficient for my needs, the musical abilities shown so far (benchmark

from Figure 4.2, twinkle from Figure 4.8, and the interactive performance in Figure 4.9) has been

rather poor. This is not any cause for concern: A violin has no musical ability. Musical performances

arise due to the musician, not the instrument. The audio examples in this chapter were created without

any control system, and thus do not indicate any flaw of the physical model. In fact, consider the most

accurate physical model of all: A real violin. If we gave a violin to an untrained musician and asked

them to perform some music, the resulting audio would sound much worse than the musical examples

found in this chapter! This problem of musical control is precisely the problem my dissertation seeks

to solve, so I consider these lack-luster musical examples as motivation for work on Vivi, the Virtual

Violinist .
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4.4.2 Public interface for ArtifastringInstrument

For the remainder of this dissertation, all interaction with the physical modelling takes place via

the Application Programming Interface (API) for the ArtifastringInstrument C++ object. The

interface is detailed in Table 4.4.

Function name

Type Name Input parameter notes
General setup

ArtifastringInstrument(...)

InstrumentType instrument type The member of the violin family to simulate:
Violin, Viola, Cello

int instrument number The number within each instrument family.
Violin: 0,1,2,3; Viola: 0,1; Cello: 0,1,2

reset()

get physical constants(...)

int which string Instrument string number
set physical constants(...)

int which string Instrument string number
String Physical pc String physical constants

Violinist actions
finger(...)

int which string Instrument string number
float ratio from nut Measured as a fraction of string length.
float Kf How firmly the finger is pressed against the string.

Normal finger strength is 1.0, while a light finger
suitable for harmonics is 0.0001.

pluck(...)

int which string Instrument string number
float ratio from bridge Measured as a fraction of string length.
float pull distance Measured in units of 5mm. This number was cho-

sen so that a normal pluck on the violin uses a pull
distance of 1.0. 0.0 produces no pluck at all.

bow(...)

int which string Instrument string number
float bow ratio from bridge Measured as a fraction of string length
float bow force Measured in Newtons
float bow velocity Measured in meters / second

bow accel(...)

int which string Instrument string number
float bow ratio from bridge Measured as a fraction of string length
float bow force Measured in Newtons
float bow velocity target Measured in meters / second
float bow accel Measured in meters / second2

Advance time
wait samples(...)

short* audio buffer Pre-allocated memory to hold requested number
of audio samples

short* haptic buffer Pre-allocated memory to hold requested number
of haptic samples

int num samples How many samples of 22050 Hz to advance. Must
be a multiple of two, and the number of haptic
samples is automatically halved.

Table 4.4: API for ArtifastringInstrument
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Figure 5.1: Intelligent feedback control in context.

In Part I of this dissertation, I described a physical model for instruments in the violin family.

In Part II, I use that physical model to perform music with Vivi, the Virtual Violinist . The overall

process is to use human input to calibrate various parameters of the virtual musician, then use those

parameters to perform music.

While enabling Vivi to perform music, I attempted to keep the algorithm sufficiently general such

that it could play any bowed instrument, be it a violin, viola, or cello. Each string has different physical

characteristics; for example, as seen in Table 3.10, the violin-D-I string has a diameter of 0.88 mm

and linear density of 1.61 g/m, while the violin-D-IV string has a diameter of 0.62 mm and linear

density of 0.97 g/m. Those two strings will respond quite differently to the same external forces; if we

desire to produce the same type of forte sound from both strings, then the bowing parameters must

be adjusted accordingly. In order to accommodate all instruments without undue “hand-tweaking” of

constants, Vivi must be able to automatically determine the appropriate values for each instrument.

This chapter begins by discussing the general approach to training Vivi, the Virtual Violinist with

particular reference to human pedagogy, then discusses the two control loops: The right-hand bow

control, and the left-hand pitch control. Chapter 6 will discuss calibrating initial parameters and

interpretation of musical notation. Chapter 7 will discuss implementation details.
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5.1 General approach to the virtual violinist

Violinist actions can be split into three categories: The left-hand fingering, the bowed arco, and the

plucked pizzicato. The latter consists of discrete actions: Once the pluck-bridge distance xp and string

displacement ydp is chosen, the violinist has no further interaction with the instrument. By contrast,

violinists often adjust the left-hand finger positions, and constantly adjust the bowing parameters.

The majority of my attention therefore focuses on the bowing.

This section discusses four issues which guide the design of Vivi : The stochastic nature of the

physical model; whether to draw upon detailed knowledge of the physical constants; scientific research

about real-world violin control; and knowledge of pedagogical exercises.

5.1.1 Non-deterministic system

The bowing calculation from Section 2.1.3 includes a random term u(t) which slightly alters the slope

of the curve between static and dynamic friction in (2.36). This introduces an element of randomness

which improves the simulation by adding noise at the slip-stick transitions (Chafe 1990, Demoucron

2008). However, this stochastic behaviour can cause large differences in the audio even with exactly

the same bowing parameters being simulated. Figure 5.2 shows one such example where the model

can randomly produce an acceptable or unacceptable bow-stroke. This randomness is mainly felt in

the establishment (or not) of Helmholtz motion. Informal experiments showed that once a steady

state is reached, u(t) does not greatly alter the final result. For example, using the same parameters

as Figure 5.2 but setting Fb = 0.70 N produced 10/10 notes with good timbre.

1.9 1.91 1.92

−0.5

0

0.5

Time / s

A
m

p
li

tu
d

e

Time domain

0 500 1,000 1,500

−200

−150

−100

−50

frequency / Hz

am
p

li
tu

d
e

/
d

B

Frequency domain

acceptable timbre bad timbre

Figure 5.2: Different output with identical bowing parameters. Violin G string, bowed for 2 seconds
with xb = 0.092, Fb = 0.25 N, vb beginning at rest (0.0 m/s) and accelerating to 0.4 m/s by 5.0 m/s2.
In the “acceptable” attempt, a good tone is established before the simulation ends; in the “bad”
attempt, the string perceptually only vibrates as a “harmonic” (in the musical sense of the word).
This perceptual judgement is supported by the frequency analysis, where energy is clearly focused in
the even partials — the “bad” attempt has 50 dB less energy in the fundamental 196 Hz. Out of 10
simulations, an acceptable timbre was reached in 7 attempts.
Audio 5.1: Two bowing simulations with identical parameters

http://percival-music.ca/dissertation/a.5.1.accel-0_0_0.000_0.092_0.250_0.400_good.wav

http://percival-music.ca/dissertation/a.5.1.accel-0_0_0.000_0.092_0.250_0.400_bad.wav

http://percival-music.ca/dissertation/a.5.1.accel-0_0_0.000_0.092_0.250_0.400_good.wav
http://percival-music.ca/dissertation/a.5.1.accel-0_0_0.000_0.092_0.250_0.400_bad.wav
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A non-deterministic system adds an additional challenge to the control. This is not a problem

with the model or the implementation; rather, this aspect of the model improves the realism of the

challenge. Real-world instances of controlling a violin face even greater randomness: Mechanical

actuators used for musical robotics do not deliver precisely the force or speed desired, while human

violin students have far from perfect control over their muscles. With this in mind, any experiments to

determine parameters for Vivi must be carried out multiple times to estimate the variance; parameters

producing highly variable output should be penalized even if they occasionally produce good timbre.

5.1.2 Control theory and human control of violins

Having created and implemented a physical modelling algorithm, I will now treat the model (or “the

system” in control terminology) mostly as a black box. Leaving aside pizzicato and finger position,

there are three input signals (the bow-bridge distance xb, the bow force Fb, and the bow velocity

vb) and two output signals (audio A[t] and haptic H[t]). There are three reasons to discard any

“privileged” knowledge of the physical modelling algorithm and physical constants.

First, as mentioned in Section 1.1.1, one of the potential applications of Vivi is to control musical

robots. If my control system is designed explicitly for the equations in the physical modelling, then

the control would not function properly when applied to real instruments. By only interacting with

the system via the three input and two output signals, I hope to keep the control system more general,

such that it may be applied to different physical modelling or even real-world instruments.

Second, human music teachers and students treat their instruments as black boxes. In the vast

majority of cases, music students do not learn about Helmholtz motion, and certainly are not taught

how to measure the linear density ρL of their instruments’ strings. That is not to say that music

students are ignorant of how to manipulate their instrument — rather, they learn with metaphors

and develop unconscious habits to improve their performance. I draw inspiration from these lessons

in Section 5.1.3, as suggested by the goal of “human-like pedagogy” specified in Section 1.3.

Third, the system cannot be guided with control theory. This is not due to the particular equations

used; the non-linear and stochastic bowing equation would be challenging but not impossible to handle.

The insurmountable problem is the reference signal: We have no mathematical representation of a

“good violin sound”. Simple classical control problems are concerned with a single value (e.g., room

temperature, car speed). Complex modern control theory problems involve multiple values, but there

is still a fixed goal to reach (e.g., maintaining a steady flying trajectory for an unmanned aerial vehicle,

or the incredible descent of the NASA Curiosity rover without exceeding its allowable deceleration).

By contrast, we know relatively little about which time-domain A[t] signals could be considered to

represent a “good violin sound”. We can specify very few guidelines on what A[t] should contain. The

signal should have a great deal of energy at the fundamental frequency f0 of the desired sound (e.g.,

440 Hz for the open violin A string)1, and it should contain energy at near-multiples of f0 (subject

to string inharmonicity) — but should the first mode at 440 Hz contain more energy than the second

mode at 880 Hz? In general, what should be the relative energies of the peaks? How much energy

can be in subharmonics and non-harmonic peaks? As discussed in Section 1.2.5, objective analysis of

violin sound is an active research area (Wrzeciono & Marasek 2010, Charles 2010), but it is a relatively

new field. Furthermore, those efforts to characterize violin sound rely on machine learning rather than

developing fixed rules which may describe A[t].

1Some instruments (e.g., timpani, bells) have a “missing fundamental” with little or no energy at f0.
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Although I am not using knowledge of the physical modelling equations, the system will not be

treated as a complete black box. I allow myself three pieces of knowledge about the system. First,

the particular physical modelling I am using performs poorly at “strongly rational” xb positions as

discussed in Section 2.3.1. Deliberately avoiding those positions is an unfortunate deviation from the

intended “black box” usage of the model, but this should not harm the generality of Vivi . Second,

I also use the knowledge that my physical modelling algorithm performs much faster when xb is

constant, since modifying xb requires recomputing φn(xb). Third, with the exception of the above two

points, I assume that the virtual violin behaves similar to real-world violins. Research on this topic

was discussed in depth in Section 1.2.1, but I summarize the relevant facts here.

The main findings come from (Schoonderwaldt 2009): The bow-bridge distance and velocity set

the overall amplitude, while the bow force sets the timbre. The three variables together determine

whether Helmholtz motion can be achieved, but this is usually expressed in terms of limits on the bow

force (Schelleng 1973). In particular, the allowable range of bow forces increases as the bow-bridge

distance or velocity are increased. Detailed simulations (Guettler 2002) have shown that during the

beginning of a note, the bow force and bow acceleration (instead of velocity) are the governing factors

which affect whether Helmholtz motion is achieved. In musical terms, an extreme case of this would

be an “on-the-string” attack contrasted with an “off-the-string” attack; the latter of which is much

harder to perform with a good sound.

In more detail, the overall loudness (measured in dB) of the signal is very well correlated (R2 = 0.9)

with vb
xb

. The spectral centroid of the sound increases with bow force and has no fixed relation with

bow-bridge distance. This is contrary to “common wisdom” amongst violinists, who claim that moving

the bow closer to the bridge will increase the “brightness” (spectral centroid) of the sound. The

apparent increase in “brightness” arises from the violinist subconsciously adjusting the bow force in

order to maintain Helmholtz motion while bowing close to the bridge.

One potentially surprising aspect of violin playing is that the bowing parameters can affect the

pitch. (Schoonderwaldt 2009) notes that larger amplitudes of string vibrations results in a larger

average tension in the string, causing an increase in pitch proportional to vb
xb

. Another cause of higher

pitches is string inharmonicity and bow force: As the bow force is increased, more energy resides in

the higher modes of vibration, which are more affected by inharmonicity and thus give rise to a higher

perceptual pitch. Finally, the physics of the stick-slip of the rounded corner of Helmholtz motion

causes the pitch to fall; this is known in the literature as the “flattening effect” (McIntyre et al. 1983),

and is seen with high bow forces, thick strings, and large bow-bridge distances. In total, these pitch

effects have been observed to alter the pitch by -77 cents to +10 cents2. (Demoucron 2008) showed

that his model also produces pitch variation ranging from -30 cents to +20 cents for normal bowing,

with the pitch dropping up to -70 cents when the maximum Schelleng bow force is exceeded.

2Cents are a logarithmic measurement system for musical pitch; given two pitches a and b, the cent x = 1200·log2

(
b
a

)
.
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5.1.3 Pedagogical inspiration

Since control theory cannot be applied to generate optimal bowing parameters, I turned to human

pedagogy for inspiration. Beginning at age four, I learned cello with the Suzuki method (discussed in

Section 1.2.6), and when I was in my early twenties I taught a dozen cello students. Some aspects of

my experience as a student and teacher will inform the design of Vivi :

� Students do not practise alone; a parent should be involved in the daily practice.

� Students learn music from Suzuki violin book 1 and 2 (Suzuki 1978a, Suzuki 1978b), with a

corresponding emphasis on Baroque music. Students are expected to spend approximately one

year on each book. This provided me with a set of well-known music on which to train Vivi .

� The left-hand fingering is given in the sheet music; although beginning Suzuki students do not

read sheet music, parents ensure that the student follows the printed fingering. Often coloured

tape is placed on the fingerboard to indicate the proper placement of left-hand fingers. Many

students do not adjust their finger placement if it is incorrect; this is a skill which is introduced

slowly over the course of several years.

� The bow-bridge distances are set according to the dynamic. These are sometimes referred to as

“bow lanes”, or the “Kreisler highway” (Collins 2009).

� The amount of bow for each note is often specified by the teacher (such as “half” or “quarter

bow”), and the tempo is given by the piano accompaniment. Teachers sometimes direct students

to imitate the teacher by playing music with the student (sometimes called the “mirror game”),

in order to emphasize the amount of bow length to use.

� Students are taught to begin bowstrokes by pressing firmly into the string and moving the bow

with a constant velocity.

� Students do not know physical values such as the friction coefficients (µd, µs) or the modal decay

rates rn of the strings.

� Students are not expected to give expressive music performances; a “robotic” performance3 is

an acceptable place to start.

Left-hand finger xg

For convenience, I define xg = 1−xf . This allows us to discuss the finger position in terms of distance

from the nut, measure the finger position as a distance away from the nut, rather than distance from

the bridge, to match real-world pedagogy where finger positions are numbered from the nut. Since the

sheet music specifies the finger position, we know xg directly. To increase the “human-like” variability,

I set Vivi to randomize the actual xg with a normal curve. The standard deviation of this distribution

can be altered to simulate the skill level of the student. Although beginning music students do not

adjust their finger positions, Vivi will do so if the simulated skill level of the student is high enough.

In this case, we can use a classical feedback loop as we have a reference signal (namely, the expected

frequency of the note in the musical score).

3I do not encourage inexpressive music, but a virtual violinist can be useful even without expressive performances.
Recall the example of Vocaloid from Section 1.1.2 and assistive technologies from Section 1.1.3: musicality can be added
by the user while the software itself strictly follows the given instructions.
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Bow-bridge distance xb

Given the notion of “bow lanes” in pedagogy and the acoustics research of the effect of xb, I will

hard-code xb based on the printed dynamic of the music. This imitates a student following the

instructions of her music teacher with respect to bow lanes. In reality, maintaining a constant distance

between bow and bridge is a difficult task even for students with 10 years of practice. However, for

simplicity and speed of simulation I will allow Vivi to have such precise mastery over xb. One set of

pedagogical exercises for beginning violinists characterizes five different contact points (CPs) between

bow and string. The sound arising from CP 1 (closest to the bridge) is characterized by “raucousness,

grittiness”; CP 2 gives rise to a “resolute, vigorous” sound; CP 3 suggests “warm, sonorous”; CP 4

produces “dulcet, honeyed”; CP 5 gives rise to “ghostly, airy” sound (Collins 2009, p. 133).

Bow velocity vb and acceleration ab

If the amount of bow to use for a note and the tempo are set, then the average bow velocity is known.

Average bow velocity is also the easiest bowing parameter to imitate — humans vision is quite good at

spotting movement of 20–70 cm over a period of 0.2–2.0 seconds at a distance of 1–2 m. By contrast,

viewing the bow-bridge distance (5–20 cm at a distance of 50–100 cm) is more challenging.

To imitate the teacher demonstrating the average bow velocity for the student, I will set the bow

velocity vb based on the dynamic of the music. In reality, a violinist will make tiny adjustments to

vb in order to maintain a good sound. However, for simplicity I will assume that such modifications

do not occur. To increase the “human-like” variability of sound and mimic the untrained muscle

manipulation of a beginning violinist, the actual bow velocity will vary slightly from the intended bow

velocity. To mimic the “stop–go” bowing of students, the bow acceleration ab will be relatively high.

For simplicity, the acceleration will be constant until the target velocity is reached.

Bow force Fb

Other than the general direction of “press the bow firmly into the string before beginning a bow-

stroke”, the general guidelines listed above do not include anything about bow force. Bow force is

very difficult for students to observe; experienced violinists can estimate vague amounts of force by

looking at the amount of curvature in the flexible wood of the bow stick, but such judgements are no

more detailed than “light”, “medium”, or “hard”. Bow force is essentially taught as a free variable

which violinists must manipulate in order to produce the desired timbre.

I take the same approach to Vivi . Since I am setting xb and vb based on the dynamic, it falls to

Fb to vary in order to establish and maintain a good timbre. This raises the problem of judging the

sound’s timbre: As previously discussed, there is no ad hoc objective rule for determining the quality

of violin sound. I therefore turn to the first guideline of Suzuki lessons: “Students should not practice

alone; a parent should be involved in the daily practice”. In reference to Vivi , I consider the computer

to be the “student”, while the human user is the “parent”. Concretely, the user will judge the quality

of simulated sounds. These judgements will be used to train a machine learning system, which will

then be used to evaluate future simulated sounds and attempt to establish and maintain the desired

timbre. After Vivi has produced more audio, the human user will listen to the resulting sound, and

identify any problems. This cycle will repeat until the user is satisfied with the sound resulting from

Vivi ’s control of bow force.
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5.2 Right hand: Sound quality and bow force Fb

As discussed in Section 5.1, we have no a priori mathematical description of violin sound quality. I

therefore turn to machine learning as is usual in research on timbre, both violin-specific (Wrzeciono &

Marasek 2010, Charles 2010) and for general audio analysis (Peeters 2004, Tzanetakis 2007). I cannot

rely on machine learning trained on audio recorded from real violins, since there is no guarantee that

the physical model will produce exactly the same output as a real violin given the same input.

Parameters xb and vb are specified from the dynamic as shown in Table 5.1. These values were

determined by experimentation with the artifastring-interactive.py script; as stated in Sec-

tion 5.1.3, the pedagogical inspiration is that the student simply follows the teacher’s instruction in

setting these values. The remaining variable is the bow forces Fb. I again draw inspiration from

human pedagogy for its control: A human “teacher” will give judgements about simulated audio from

the physical model. Those judgements (or “classification labels” c) will be used to train the machine

learning. There are 5 possible judgements about the sound, presented in Table 5.2.

The machine learning operates as follows. First, the human user provides judgements c about

certain audio files. Second, the audio files (and related haptic signal files) are summarized with

various metrics (“feature extraction”). Third, the machine learning is trained to recognize patterns

linking the features to the judgements c; when some new un-annotated data is presented to the system,

that data is given a category based on the previously-trained pattern recognition. An example of the

pattern recognition is given in Figure 5.4. I used one Support Vector Machine (SVM) per string per

instrument type, for a total of 12 SVMs to process all violins, violas, and cellos. Each SVM is trained

on 24 features (or “attributes”) with approximately 2000 instances.

Dynamic Bow position xb Bow velocity vb

(fraction of L) (m/s)
f 0.092 0.40
mf 0.134 0.33
mp 0.154 0.26
p 0.186 0.20

Table 5.1: Physical parameters determined by dynamic.

Class c Human judgement of sound Fb in audio examples
1 not audible 0.010 N
2 “wispy” or “whistling” 0.052 N
3 acceptable 0.386 N
4 “harsh” or “detuned” 1.611 N
5 not recognizable as coming from a violin 5.560 N

Table 5.2: Human judgements of bowing. Informal experiments suggested that using 7 classes instead
of 5 causes the human teacher to spend more time trying to decide between class x and y, without
any noticeable improvement in the resulting controller audio output.
Audio 5.2: Examples of bow force classifications

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.010_0.400_1.wav

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.052_0.400_1.wav

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.386_0.400_1.wav

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_1.611_0.400_1.wav

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_5.560_0.400_1.wav

http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.010_0.400_1.wav
http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.052_0.400_1.wav
http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_0.386_0.400_1.wav
http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_1.611_0.400_1.wav
http://percival-music.ca/dissertation/a.5.2.violin-0_0_0.000_0.092_5.560_0.400_1.wav
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Figure 5.3: “Basic fingers” evaluated for training and calibration. Only one string for each instrument
is shown; other strings used the same positions (i.e. 0, 1, and 6 semitones above the open string).

5.2.1 Human input: Classifying sound quality

The bulk of human input comes through an iterative process: Vivi plays some music (generally a

scale or similar exercise), then the human teacher indicates problematic areas of poor sound. The

machine learning is re-trained to take into account those problems, and the music is performed again,

hopefully without making the same mistake.

Before this iterative process can begin, a certain amount of “basic” training must take place.

The only firm requirements for this training are that there is at least one piece of audio labelled

with each class c, that there are at least two different dynamics, and that there are at least two

different fingers for each string. However, it is useful to include a few more examples in the “up-front”

training. Notably, it is useful to focus attention on three different finger positions: Open string, low

first position (the lowest non-open xg, and extended third position (the second-highest xg found in

book 1 and 2 Suzuki). I avoided the highest position (fourth finger) due to the risk of confusion for

human teachers between fourth position on one string and the open string above it. These notes are

shown in Figure 5.3.

Unlike the iterative training where Vivi produces music to evaluate, the basic training occurs

in an interactive script where the teacher can freely alter the bow force in order to produce the

desired sound. Note that this “desired sound” does not only refer to a “good” sound (class 3, as per

Table 5.2). In order to train the computer to recognize “horrible” sounds (such as class 5), the teacher

must deliberately choose value(s) of Fb which produce that sound in order to correctly label it.

I define the “basic training” as at least 42 audio examples for each string.

� f and p: All five classes for all “basic” finger positions. There must be at least 2 examples of

“acceptable” sound, ideally denoting the highest and lowest Fb which produces an acceptable

sound.

� mf and mp: At least 1 example of “acceptable” sound for all “basic” finger positions, again

indicating the highest and lowest Fb.

To reduce the amount of time spent training, I use one dataset per string of each instrument type,

but share that dataset between instruments of the same type. For example, I use a single dataset to

train Vivi for the D string of all 5 violins. The audio output of each violin will vary somewhat due to

the instrument body responses, but the haptic output will be quite similar. In order to prepare the

datasets, I require a few additional training examples:

� f and p: At least 1 example of “acceptable” sound for each “basic” finger position.

These additional audio examples brings the total to 66 files for violin, 48 for viola, and 54 for cello.

Each audio example is 9216 samples (≈ 0.42 seconds) long, and it takes approximately ten minutes

to label all files for each string.
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It should be emphasized that the audio in this “basic training” comes from a “constant” or “stabi-

lized” state of the model. Here I use “stabilized” in a musical rather than control theory sense, in that

the sound should have ceased to evolve. For category 3, the system will almost certainly be in stable

oscillations (in the control theory sense); for category 5, the system should be “stable” in a state of

noise. If the sound is evolving (i.e. the bow force has been increased and the timbre is changing) then

the human teacher should wait a few seconds for the sound to settle.

Finally, it should be noted that the bow forces required to maintain a steady tone will not nec-

essarily produce that same tone if the string is bowed from rest with those forces. For that reason,

the bow forces of examples in this training set cannot be used directly to set the initial forces of

bow-strokes.

5.2.2 Feature extraction and Support Vector Machine classification

The features are split into three categories: Time-domain analysis, spectral-domain analysis, and

violinist actions. With two exceptions detailed below, the same features are calculated on both

the audio and haptic signals. All features are implemented in the Marsyas library (Tzanetakis 2007).

Feature extraction is performed on windows of 1024 samples with a hop size of 512 samples (≈ 23 ms),

or an overlap of 50%. I require 1024 samples in order to generate reliable pitch estimates on the cello

C string (lowest pitch 65 Hz, with the rule of thumb that it is desirable to include at least two periods

of the lowest expected frequency).

The time-domain features are:

RMS: This feature is not normally used for audio and music machine learning, because of its

sensitivity to the absolute amplitude of the signal, which can easily vary due to microphone

placement. However, in my case, I am only interested in classifying artificial signals with

no microphone involved in the processing chain, so this is a useful feature.

PeakToAverageRatio (PAR): This is also known as the Crest factor.

ZeroCrossing: Not used in haptic signal due to the DC offset rendering this meaningless.

The spectral-domain features are computed on only the first half of the spectrum (i.e. up to

5512 Hz for audio and 2756 Hz for haptic). This range contains most of the information, and avoids

some features being influenced by the mostly-random information in the upper spectrum.

Centroid: The spectral centroid is the weighted mean of the spectrum, and is a good predictor

of human perception of a sound’s “brightness”. It is used in the analysis of audio from real

violins (Schoonderwaldt 2009).

Rolloff: The spectral rolloff is the slope of a linear regression line through the spectrum.

SCN: This is the normalized spectral centroid difference as defined in Section 2.3; it measures

the distribution of energy between the first and second expected partials of the audio. This

is a custom feature I added to Marsyas.

HarmonicStrength: The amplitude (in dB) of a few potential peaks in the spectrum. The

amplitude is found by quadratic interpolation around the bin with the maximum energy

within 1% of the expected frequency. In particular, I test 0.5f0, f0, and 2f0. This is a

custom feature I added to Marsyas.

SpectralFlatness: The spectral flatness measure (SFM) indicates the “tonality” of a signal,

as defined by the amount of energy which is concentrated in peaks. It is calculated by
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dividing the geometric mean of the spectrum by its arithmetic mean.

RMS: Although the time-domain RMS is equal to the spectral-domain RMS by Parseval’s

theorem, recall that I am only considering the first half of the spectrum, so this limited-

spectrum RMS differs from the time-domain RMS.

PeakToAverageRatio (PAR): When applied to the spectrum, the PAR gives more informa-

tion about the concentration of energy.

The violinist actions are:

Finger: Left-hand finger position, in MIDI pitch values (semitones) above the open string.

Bow-bridge distance: Normal xb value.

Bow velocity: Normal vb value.

Although Vivi hard-codes xb and vb based on the dynamic while playing sheet music, these

two parameters can be decoupled when using the control loop for other applications (e.g.,

interactive use with a tablet or other control device).

After extracting all features for each string, we have a set of 24-dimensional feature vectors (or

instances) paired with their labels. For the specific case of the basic training of violin, each of the 66

files contains 9216 samples, for a total of 1056 instances from analyzing windows of 1024 samples.

More instances will be labelled during interactive training discussed in Section 6.1.

Machine learning

I used Support Vector Machine (SVM) classifiers. Intuitively, in two dimensions this training algorithm

finds a line separating two regions. The line is chosen to maximize the margin between the line and

the closest instances (known as the “support vectors”). The binary classifier SVM can be extended to

cover multiple classes. With only two dimensions, as shown in Figure 5.4, a division line can be found

“by eye”. However, the true power of SVMs is almost always realized by analyzing datasets with

many features. The same mathematics which are used to calculate a maximum-margin separation

line in two dimensions also applies to calculating a maximum-margin hyperplane in more dimensions.

Formally, an SVM is as a mapping between feature vectors xi ∈ Rn, i = 1, . . . , l, with labels

yi ∈ {−1, 1}. This mapping is achieved by optimizing (Boser et al. 1992, Cortes & Vapnik 1995):

minw,b,ξ
1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0

(5.1)

where C > 0 is the penalty for the error term and φ is a function which can map x onto a higher-

dimension space. x is normalized such that the training data fits the range [0, 1]. The simplest SVM

uses a linear kernel, K(xi,xj) ≡ φ(xi)
Tφ(xj), but other kernels are also used, such as the radial basis

function (RBF): K(xi,xj) = exp(−γ||xi − xj ||2), γ > 0. I achieve good accuracy (> 93% in 10-fold

cross-validation) with simple linear kernels, but I decided to use RBF kernels for additional accuracy

(> 98%) at the expense of one minute of additional computations whenever the SVMs are re-trained.

I make use of two extensions to the basic SVM algorithm which are implemented in libSVM.

First, multiclass output between k classes (in my case, k = 5) is performed by training k(k−1)
2 binary
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Figure 5.4: Bow force judgements with only two features, violin D string basic training. The two
features are shown here before normalization. With only the 3 “extreme” judgements (left), it is easy
to divide the two-dimensional plane into regions separated by lines with 100% accuracy. However,
when all 5 judgements are considered (right), this two-dimensional plane is not sufficient to determine
regions with acceptable accuracy. Training a SVM classifier on the right-hand data achieves 85.4%
accuracy on 10-fold cross-validation, and omits any predictions of category 2 entirely. Differentiating
between category 2 and 3 requires more than two features.
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Figure 5.5: Comparison of direct SVM output and weighted probabilities, violin D string basic training.
There is good agreement between the SVM output and the weighted c′. Since the initial labelling is
not exact (it is not true that all c = 3 timbres are identical and could not benefit from any alterations
to the bow forces) the slight spread of c′ relative to c is not troubling.

classifiers, where the output of each binary classifier is treated as a vote in favour of that partic-

ular class and the class with the maximum number of votes is taken as the output of the entire

classifier. Second, in addition to predicting a single class, libSVM also outputs probability estimates

pi = P (y = i|x), i = i, . . . , k. Additional details of both extensions are given in (Chang & Lin 2011).

During the training phase of the SVM, each class indicates a discrete value. However, when using

the SVM to predict bow-force judgements, it is useful to receive continuous values to avoid an abrupt

change from categories such as “needs more force” to “acceptable sound”. For this reason, I define c′

as the weighted mean of class probabilities. Furthermore, I map the SVM judgements c′ from 1 · · · 5
to −2 · · · 2 to make it easy to recognize whether the bow force should be increased or decreased. This

mapping is purely a convenience of notation in order to reduce the chance of errors when programming;

it has no effect on the algorithm. Figure 5.5 shows good agreement between c′ and c.

c′ = 3− 1

5

5∑
i=1

ipi (5.2)
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Figure 5.6: Bow force Fb control loop.

5.2.3 Bow control loop

Once the SVM for each string is trained, Vivi is ready to play musical notes. A set of physical

parameters is generated by the controller, and the physical model simulates 512 samples at 22050 Hz

(i.e. a control rate of 43 Hz). Features are extracted from the 512 samples of A[t] and 256 samples of

H[t] and are fed into the SVM classifier, which produces a judgement c′(t). I refer to each unit of 512

samples as a tick of the control loop.

The bow-bridge distance xb and target velocity vtb are set by the dynamic as shown in Table 5.1

and discussed further in Section 7.1, or by the user in the case of interactive control via a tablet as

discussed in Section 7.3.4. To account for the varying weight of instrument bows, the bow acceleration

ab is set to 10 m/s2 for violin, 7.5 m/s2 for viola, and 5 m/s2 for cello. Unless specified otherwise,

each note begins and ends with the bow at rest (vb = 0); the controller automatically decelerates the

bow before the end of the note.

The bow force is adjusted during performance with the control loop shown in Figure 5.6. The

standard technique for control is the Proportional-Integral-Derivative (PID) controller, where the

input to the system is modified by some amount depending on the error between the desired output

and the actual output. There are various techniques for tuning PID controllers such as the Ziegler-

Nichols method (Ziegler & Nichols 1942). However, the weighted SVM output c′(t) does not represent

a firm error term as would be used in a classical control problem with a reference signal. I created

my own method, taking inspiration from standard PID control. Examination of the effects of bow

force (Schelleng 1973, Guettler 2002, Schoonderwaldt 2009), as well as casual experimentation of the

physical modelling with the interactive script, suggest that timbre alterations occur with the log of

bow force. I therefore modify Fb on the logarithmic scale. My control loop requires two parameters

specific to the bow force which are both calculated in Section 6.1: The rate of change K and the initial

bow force F ib . Other bowing parameters (xb, v
t
b, ab) are set directly based on the musical notation.

The bow force is controlled by

Fb(0) = F ib

Fb(t+ 1) =

eln(Fb(t))−K if t < W

eln(Fb(t))−c′(t)K else

(5.3)

where W is an initial delay to allow the string to begin vibrating. In particular, W = Wa +We where

Wa is the number of ticks it takes for the bow to accelerate to the target velocity vtb and We is an

extra delay.
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Figure 5.7: Two examples of bow control, violin D string f . Each example contains two notes, bowed
at vtb = {0.4,−0.4} m/s, with xb = 0.092, ab = 10.0,K = 1.1. The timbre judgements c′ are withheld
for the first W ticks of each note. The only difference between these two examples is F ib being 0.5 or
2.0 N. Note that the initial reduction of Fb is problematic when beginning with a low bow force; this
is an accepted outcome of anticipating a relatively high F ib .
Audio 5.3: Two examples of bow control

http://percival-music.ca/dissertation/a.5.3.force-correction-d-0.5.wav

http://percival-music.ca/dissertation/a.5.3.force-correction-d-2.0.wav

I set We to 0 for violin, 2 for viola, and 4 for cello. These values reflects the time it takes for

the lowest string of the instrument to respond to bow actions. Due to a combination of raw physical

constants (chiefly the linear density ρL and friction coefficients µs, µd, µc) and the resulting frequency

of vibrations (196 Hz for the lowest violin note, 65 Hz for the lowest cello note), the low cello strings

are considerably slower to “speak”. It is not unusual for a low cello note to consist of 50-100 ms of

shaped noise before the string “settles” into regular vibrations. This noise poses a problem for the

machine learning, since the bow force judgements were given based on the sustained sound rather than

the sound during the initial attack. For some portions of this initial “attack” sound, the SVM appears

to fluctuate randomly between cases 2 and 4 (Fb being too low vs. Fb being too high). However, this

is not a problem specific to the machine learning: Even a human musician with more than twenty

years of musical training (me) was not able to reliably distinguish between all such cases during the

“attack” portions. For this reason, I assume that during the note’s attack (i.e. t < W ), Fb should

be decreased slightly. This means that F ib will be slightly higher than would be necessary if we could

categorize the required modifications to Fb during the initial attack, but this assumption is sufficient

to realize student-level control of the bow. This assumption also plays nicely with real-world pedagogy

discussed in Section 5.1.3. The assumed decrease in Fb lasts between W = 2 (43 ms) for violin p and

W = 8 (186 ms) for cello f . These times refer strictly to (5.3); the time required to produce a musical

“attack” (or for the note to “settle”) can be longer or shorter than W .

By default, Fb is only modified by (5.3) with no special provisions for the end of the note. However,

when changing strings (i.e. suddenly removing the bow from one string) this can lead to a “pluck-like”

sound. To avoid this problem, the note parameters can specify to lighten the bow force at the end of

the note. The bow force begins to lighten at least 2 full ticks (46 ms) before the end of the note, and

sets Fb(t+ 1) = DbFb(t) with Db being determined in Section 6.1.5.

http://percival-music.ca/dissertation/a.5.3.force-correction-d-0.5.wav
http://percival-music.ca/dissertation/a.5.3.force-correction-d-2.0.wav
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5.3 Left hand: Pitch and finger position xg

As mentioned in Section 5.1.2, the bowing parameters can alter the pitch. For that reason, if |c′| > 1.0,

no adjustment is made to the left-hand finger position xg since Fb is too volatile to make meaningful

corrections to the pitch. Provided that Fb does not change a great deal, the pitch is primarily

determined by the left-hand finger position xg. Increasing xg increases the pitch. There is a lag of a

few milliseconds between the finger position and pitch, but we can essentially treat this as a purely

linear system. This process is very similar to tuning the string tension described in Section 3.5.4.

The reference pitch Pr comes from the musical score. Depending on the desired musical interpre-

tation, this pitch could be determined with equal temperament, Pythagorean tuning, or any other

tuning system. This is discussed further in Section 6.2.1. Once Pr has been determined, it is con-

verted into a MIDI pitch value from which is subtracted the base MIDI pitch of the relevant string

Ms, producing Mr. This value is then converted into the initial finger position xg.

Mr = 69 + 12 log2

(
Pr

440

)
xg = 1− 12

√
2

(Ms−Mr)
(5.4)

MIDI pitch values are used for their logarithmic nature, which is required during the conversion

between a frequency in Hz and a finger position in relative string lengths. Although (5.4) makes use

of an “equal temperament” interpretation of MIDI pitches, this does not presuppose the intonation

temperament used to determine Pr. This xg value is a credible estimate, but does not guarantee a

note with perfect intonation. Although Fb does not vary enough to disrupt the feedback control of

pitch, it does still present a bow-determined pitch offset between -30 to +20 cents which must be

accounted for.

To accommodate this, I use classical feedback control, similar to the tension tuning performed in

Section 3.5.4. A block diagram of the xg control shown in Figure 5.8. Pitch detection was performed

with the YINFFT algorithm, an extension (Brossier 2006) of the YIN algorithm (de Cheveigné &

Kawahara 2002). The difference between the reference pitch and the output of YINFFT was taken

modulo 12 to avoid octave errors; this value was further low-pass filtered with a median filter of length

3. This value becomes the error term e(t), which is used in

xg(t+ 1) =

xg(t) +KMe(t) if |e(t)| ≥ 0.01

xg(t) else
(5.5)

KM = 0.01 and the cutoff of 0.01 MIDI pitch units were set experimentally. An example of the

∑Reference
pitch (MIDI) +

KM
Violin physical

modele(t) xg

YIN pitch
detection

Audio
signal

Pitch
(MIDI)

-

Audio
signal

Input P controller Output

Figure 5.8: Tuning finger position control loop.
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the correct value to emphasize the adjustment. The pitch correction does not begin until the bow force
judgements have stabilized and there are 4 ticks YINFFT output. The discontinuity at 0.3 seconds
arises due to c′ rising above 0.25.
Audio 5.4: Pitch correction

http://percival-music.ca/dissertation/a.5.4.pitch-correction.wav
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Figure 5.10: Examples of pitch glissando control. Bottom left: The musical score showing the notes
and glissando.
Audio 5.5: Glissando control

http://percival-music.ca/dissertation/a.5.5.violin-glissando.wav

pitch corrections is shown in Figure 5.9.

The same feedback loop can be used to perform glissando notes (a gradual change of pitch between

two notes). An example is shown in Figure 5.10. To play a glissando between two notes, the beginning

and ending reference pitches are given. The reference pitch Pr used throughout the note is linearly

interpolated between those values.

Musicians will alter the beginning and ending times of a glissando: Sometimes they will begin to

shift the left-hand finger as soon as the glissando note begins; other times they will wait short period

before beginning to move. Similar concerns apply to the ending of the finger movement. I arbitrarily

set Vivi to begin moving the finger after 8 ticks, and to reach the final pitch 8 ticks before the ending

of the note, but these figures could be increased or decreased if a different playing style was desired.

http://percival-music.ca/dissertation/a.5.4.pitch-correction.wav
http://percival-music.ca/dissertation/a.5.5.violin-glissando.wav
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5.4 Final remarks on the control loops

This chapter described the general approach to the physical actions performed by Vivi, the Virtual

Violinist , the intelligent feedback control used to establish and maintain the tone quality, and the

classical feedback control for the pitch.

The main research contributions of this chapter are:

� Applying knowledge of human control of violins and violin mechanics to the physical model of

a violin, bridging the gap between music, acoustics, and control theory.

� Creating a method for non-technical musicians to train the computer to recognize good timbre,

then using the trained system to control the virtual instrument.

� Generating a mid-level note representation which supports all notation found in easy violin

music (Suzuki books 1–2). This allows the score to be decomposed into individual notes with no

loss of musical information, and allows the low-level control loops to operate on discrete notes.

Many design choices were made in this chapter; most of these were fairly arbitrary and could

benefit from an in-depth examination of the alternatives. In particular, the choice of features to use

and the type of machine learning was motivated by the features and SVM already being implemented

in Marsyas; the system appeared to work correctly so I did not investigate other machine learning

algorithms. If the accuracy of the machine learning was not as high as it was (above 98% with 10-fold

cross-validation), I would have investigated using other features and/or algorithms, such as those used

in (Charles 2010, Chudy & Dixon 2012).

The choice of many parameters was informed by a mixture of acoustics research and casual lis-

tening. For example, the bow-bridge distances and velocities were guided by the knowledge that

loudness is correlated with vb
xb

, but the precise values were chosen through informal experiments with

the artifastring interactive.py script. Other researchers may wish to choose different values,

or better yet, conduct formal listening experiments to evaluate the entire range of parameters and

audience perception.

The remainder of this section discusses plucked notes, a few limitations of the machine learning

and bow control, prospects for future improvements of the bow control, and finally outlines the API

which allows the higher-level parts of Vivi (namely, the interpretation of musical notation) to interact

with the low-level control loop.

5.4.1 Plucked notes

Plucked notes (known as pizzicato) in Vivi make no use of either control loop. The string excitation

involves a single impulse, so there are no parameters which can be adjusted to alter the sound quality.

Real musicians will occasionally alter the left-hand position to fix intonation mistakes in plucks, or

alter the strength of the right-hand plucking action, but these are relatively advanced techniques

which are left for future research.

In terms of the low-level C++ interface, the pluck position is arbitrarily set to xp = 0.37. The pull

distance is set to 0.2F ib for plucks of an open string, and 0.3F ib for plucks of a fingered string (xg > 0).

Open-string plucks are less damped than fingered-string plucks, so reducing the pull distance in this

manner produces notes of perceptually equal loudness.
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Figure 5.11: Problematic control of the cello C string. There are two examples, each containing four
notes with the same parameters: xb = 0.092, F ib = 22.658 N, K=1.13, vtb = ±0.4 m/s (alternating
downbow and upbow). The internal string state is not reset after each note. In the first example, the
first and last notes do not sound good, while the inner two notes sound good. In the second example,
the first note is acceptable while the remaining three notes sound good.
Audio 5.6: Problematic control of the cello C string

http://percival-music.ca/dissertation/a.5.6.cello-0-1.13_0_0.000_0.092_22.658_0.400_1.wav

http://percival-music.ca/dissertation/a.5.6.cello-0-1.13_0_0.000_0.092_22.658_0.400_2.wav

5.4.2 Limitations of the bow control

As was noted in Section 5.1.1, the physical model includes a stochastic element which can cause the

difference between reaching a steady state of acceptable sound or not. One of the goals of the bowing

feedback control is to bring this stochastic element under control: Fb should be modified to cause the

string to produce the desired sound. The bow control works well for the violin, but has difficulties with

the cello C string. Out of the eight attempts to bow the open C string in Figure 5.11, only six examples

produced a good sound, while one more example produced an acceptable sound. The difficulties with

the C string are unfortunate but not unexpected: In the Suzuki repertoire, cello students do not play

the C string until book 3 (where each book is expected to take one year of study). The cello C string

is the thickest and heaviest string, and is difficult for humans to play as well as virtual musicians.

There are three avenues of future research which could improve the performance of the cello C

string: Modifying the physical model to include an extra dimension for the string vibrations, changing

the machine learning, and extending the bow control to include bow velocity.

The physical model only allows transverse vibrations (and thus displacement) in the string. This

is at odds with the actions of real cellists: When playing f on the cello C string, a cellist presses the

bow very firmly into the string (displacing it 1–2mm downwards of its rest position), then begins to

draw the bow sideways (displacing the string 1mm before the bow begins to slip). Once so displaced,

the string has a great deal of restorative force when it begins to slip, and the resulting motion is closer

to the intended Helmholtz motion.

The bow control might benefit from more advanced digital signal processing, such as human

perceptual processing (e.g., mid-ear filtering, mel frequency scale) and harmonic processing (e.g.,

harmonic spectral deviation, total harmonic distortion). In addition, the machine learning could be

improved with ordinal regression (Li & Lin 2007), wherein the discrete classes (5 in my case) are not

treated as independent labels, but rather as a ranking (i.e. label 4 is higher than label 2). This adds

additional information about the problem which can improve the predictions. Although the machine

http://percival-music.ca/dissertation/a.5.6.cello-0-1.13_0_0.000_0.092_22.658_0.400_1.wav
http://percival-music.ca/dissertation/a.5.6.cello-0-1.13_0_0.000_0.092_22.658_0.400_2.wav
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learning has good accuracy (98%), there are two risks which are not accounted for in that figure: First,

the training/test data may not adequately represent the range of signals produced by the model while

performing music, and second, this accuracy could represent overfitting. Although I am confident that

the steady-state behaviour is well-represented by the human-labelled examples, I will not make that

claim about the transient behaviour during the note attacks. One of the chief difficulties concerning

note attacks is that the human judgements could vary. In particular, I gathered a few examples of

“scratchy sound” produced from the string not quite reaching steady Helmholtz motion. One such

example is the first note in Audio 5.6. I tried to label such examples once a day for four days to

specify whether Fb should be higher or lower, but found that my judgements about that example were

not consistent4.

In fact, if I as a cellist heard Audio 5.6 from my C string, my first reaction would probably5 be

to alter the bow speed. Due to the elasticity and vibrations of the bow hair, musicians have more

direct control of the bow speed rather than the bow force. Although the discussion of pedagogy in

Section 5.1.3 noted that the average bow speed is specified by the teacher, a live musician could still

alter the local bow speed during the note attack, then adjust the bow speed during the sustained

portion of the note to compensate. Controlling both bow velocity and force would be a good step,

but this poses a problem for human labelling. Judging audio on a two-dimensional scale would be

too complicated. It would be easier for the human teacher to rank audio as “good”, “bad”, or “very

bad”. However, the next step of the process is not obvious. If the machine learning correctly judges

a particular tick of audio to be “bad”, should the controller increase or reduce bow force, increase or

reduce bow velocity, or both?

One solution would be to give up on the principle of “human-like pedagogy” specified in Section 1.3

and use privileged information about the model. Once a particular piece of audio was ranked as “bad”,

the computer could save the internal string state an and ȧn. A brute force approach could then decide

what modifications were appropriate. The computer could then try all possible modifications to the

bowing parameters from that string state, simulate for 20ms, then evaluate whether the audio quality

improved. If there are 9 possible modifications (bow velocity higher, neutral, or lower; bow force

higher, neutral, or lower), this additional layer of training would not take too long (although it may

be desirable to repeat these simulations additional times to account for the randomness). Once the

appropriate behaviour was determined, the computer would label that audio, then train a second

layer of machine learning to recognize the audio as one of those 9 categories. This could be though

of as approaching the “subconscious” nature of real musicians bowing: The human teacher specifies

whether the sound is good or bad, then the underlying layer figures out what bowing modifications

are needed to reach that sound.

However, it would be unfortunate if the virtual musician used the trick of setting the string state

directly. To retain the generality of applying to musical robotics, the computer could randomly choose

one possibility, instead of simulating all possibilities by artificially setting the internal string state.

This would require hundreds or even thousands of repetitions of notes in order to establish a sufficiently

large database to make acceptable judgements about the best way to alter the bowing parameters.

4I hold a Bachelor of Music in cello and viola; if I cannot give consistent judgements for a specific set of examples
then I cannot expect the computer to reach better answers through machine learning. Machine learning depends on
good input; if the initial labelled data is flawed, then we should not be surprised if the output is imperfect.

5Bow control is largely subconscious, so I cannot state for certainty what I would do. A proper investigation
would require additional hardware to monitor bowing actions, such as one of the systems developed in (Young 2007,
Rasamimanana 2008, Demoucron 2008, Schoonderwaldt 2009, Maestre 2009, Pérez 2009).
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The number of simulations required in either case is large, but there are two factors to bear in

mind: First, this is a massively parallel problem with minimal information exchange required, so it

could easily be run on multiple CPUs or even multiple computers. A single computer could generate

over three thousands of hours of simulated music overnight. Second, real-life musicians develop their

subconscious bowing ability over the course of thousands of hours of playing their instrument; if seems

appropriate if high-quality control of a virtual violin requires the same amount of “practicing”.

5.4.3 Extending the control loops

There are a number of violin techniques which are not included in the control loops. These techniques

were omitted because they are not taught to beginning students, and are not part of Suzuki books

1–2. I will give an overview of how they could be implemented.

Double stops: The physical model supports bowing two strings at once. The difficulty is in adjusting

the bow force. There are two methods for this. The first method is to perform sound-source

separation: Split the audio and haptic output into signals coming from each string. This is a

non-trivial problem in DSP and machine learning, but given the limited range of signals which

would arise from each string it could likely be performed with acceptable accuracy. The second

method is to “cheat” by altering the physical model: Instead of generating combined signals A[t]

and H[t], the model could output one pair of signals for each string A0[t], H0[t], A1[t], H1[t],

A2[t], H2[t], A3[t], and H3[t]. Once separate signals for each string have been gathered (however

it is done), the bow control loop can operate as usual. Rolled chords can already be performed

with the control loops; simply split the chord into distinct (short) notes, in order from lowest to

highest string (or vice versa), holding the final note for most of the duration of the chord.

Pizzicato double stops appear in Suzuki book 2, but bowed double stops are not in the repertoire

until the end of book 3. Bowed rolled chords are introduced in the same piece of music.

Harmonics: The physical model supports natural harmonics, as shown in Figure 2.10. These are

performed by pressing lightly with both the left-hand finger and bow. To perform harmonics

with the control loop, a second set of SVMs would need to be trained to recognize the timbre of

harmonics. These would then adjust the bow force in order to achieve and maintain harmonics.

The physical model does not support artificial harmonics, as this technique requires two fingers

to be placed on the string.

Natural harmonics are not introduced until Suzuki book 4, while artificial harmonics are an

advanced technique which is not expected from violinists with less than 10 years of experience.

Vibrato: This technique is a sinusoidal modification of finger position of approximately 5.5 Hz for

both violin and cello (Geringer & Allen 2004). Modifying xg is of course supported by the

physical model, but the left-hand control loop will need alterations. In particular, rather than

adjusting xg according to the last 3 ticks of output, the average pitch over the past 10-20 ticks

(since one cycle of vibrato takes 9 ticks) must be taken in order to smooth out the deliberate

alterations in pitch due to vibrato. After determining and adjusting the “average” xg, the

sinusoidal movement is added to form the actual xg used.

The physical model is faster when finger and bow positions do not change, as any modification

to xf or xb requires a recalculation of the eigenvectors φn(xf ) or φn(xb). Such recalculations

could be avoided by discretizing finger and bow positions (say, 1000 values for xf between 1.0
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and 0.667 and xb between 0.05 and 0.2) and pre-computing all eigenvectors for those values.

This would produce a table of 312 kb, which will not stress the memory allocation of a modern

desktop computer.

Vibrato is usually taught to students with 3–4 years of experience.

Sul tasto: This is bowing over the fingerboard, i.e. xb ≥ 0.2. Following the design of existing

dynamics in Table 5.1, pp would occur in this range. Alternatively, a mark of “sul tasto” could

be considered to be a “dynamic modifier”; i.e. f sul tasto could mean “vb = 0.4 m/s, xb = 0.25”.

Once the new “dynamic” was defined, it would be trained in the same manner as other dynamics.

This notation is normally introduced after 4–5 years of experience.

Ricochet, jeté, and sautillé: Bow-strokes controlling a bouncing bow are moderately advanced

violin techniques wherein gravity and the elasticity of the bow hair aid the violinist in producing

a large repeated variation in bow force. There is no support for such bow-strokes in the present

system. The physical modelling would need to be extended to include at least one more axis

of bow vibration. If the bow string’s length is the x axis and the bow primarily moves in the

y direction, the simulated string currently only vibrates in the y direction but motion in the

z direction would need to be added. In addition, the bow must be simulated as an elastic,

vibrating system.

These “bouncing” bowing styles are learned over many years, but a violinist with 5 years of

experience would be expected to demonstrate rudimentary control over them.

Left-hand pizzicato, thumb pizzicato: These notations indicate a change of style for the plucked

strings. Left-hand pizzicato occurs with very large pluck-bridge distances, such as xp = 0.8 or

xf = 0.9 rather than the usual xp = 0.25 to xp = 0.5. Thumb pizzicato has a wider plucking

width Wp and altered spring and decay constants Kp and Rp. The difference between thumb

and finger pizzicato will likely not be captured well with only two plucking finger forces; if a

greater variation in pizzicato style is desired, then extending the physical modelling to use 3 or

more forces for the plucking force would likely be required.

Pizzicato is not a priority for most violin students, but it plays a greater role in cello ensemble

music, particularly when playing in a jazz style. Such variation in plucking technique may be

encountered between 5 and 10 years of experience.

Scordatura: This technique consists of altering the pitches of strings, for example changing a cello’s

strings from ADGC to GDGC as is sometimes done for the performance of Bach’s unaccompanied

suite for cello no. 5 in C minor, BWV 1011. At the present time, the pitches of instrument

strings are implemented as constants, but the string tensions could be varied and the calculation

of finger position could be altered to accommodate scordatura.

Scordatura is not introduced in the first 5 years of experience, and some students may not

encounter it until 10 years or later.

Col legno: This is a pair of techniques involving the wooden stick of the bow. Depending on the

circumstance, it can either mean to hit the string with wooden part of the bow, or to scrape

the string with the wood. Some musicians do not perform col legno with their bow for fear of

damaging the bow (which can cost thousands of dollars); they use a pencil instead. Neither

technique is currently supported by the physical model. Bowed col legno could be added by
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allowing the friction coefficients µs and µd to be significantly reduced. Struck col legno could

be modelled as a very short, very fast-moving pluck.

Col legno is not introduced in any Suzuki books. It is not unusual for a string player to first

encounter this technique in orchestral music.

Ponticello: The same considerations as harmonics apply here. The physical model supports low

bow-bridge distances (which is the defining characteristic of ponticello), but a new set of SVMs

would need to be trained to recognize the desired timbre.

Ponticello is generally not used in solo work; like col legno, it is normally only encountered in

orchestral music.
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5.4.4 Mid-level note modifiers

The physical actions required to perform bowed notes varies based on the musical score. The main

examination of translating between musical notation and physical actions takes place in Section 7.1,

but this section will describe the low-level modifiers which effect the control loop. The public API for

notes is given in Figure 5.12. Each note is specified with a NoteBeginning, NoteEnding, and duration

in seconds.

Two parameters apply to both the note beginning and ending, while the rest apply to either the

beginning or ending.

physical [both]: For most notes, the physical actions are only specified for the beginning of

the note. If a note’s physical actions other than Fb should change throughout the note (e.g.,

crescendo, glissando), the ending physical actions must be specified. The physical actions will

be linearly interpolated between the beginning and ending actions.

midi target [both]: This sets the reference pitch for the left-hand control loop. If specified for

the note ending, the pitch target will be linearly interpolated throughout the note.

ignore finger [begin]: Normally xg is set to an initial estimate based on the note in the score,

but in the case of a tied note we do not wish to modify xg.

keep bow force [begin]: Do not set Fb(t) to F ib . This is used for slurred notes on the same string.

keep ears [begin]: Do not reset past history of pitches. This is useful for tied notes.

bow position along [begin]: Explicitly set the bow-string contact point at a specific distance

along the bow hair. This has no effect on the audio and haptic simulation; it only affects the

video output. It is triggered by explicit annotations in the score such as “frog” or “tip”.

lighten bow force [end]: Reduce bow force at the end of the note. This is intended to dampen

string vibrations immediately prior to changing strings.

keep bow velocity [end]: Normally the bow decelerates at the end of the note; this option main-

tains the bow speed. Useful for tied or slurred notes.

struct Phys i ca lAct ions {
int str ing number ;
f loat dynamic ;
f loat f i n g e r p o s i t i o n ;
f loat bow br idge d i s tance ;
f loat bow force ;
f loat bow ve loc i ty ;

} ;

struct NoteBeginning {
Phys i ca lAct ions p h y s i c a l ;
bool i g n o r e f i n g e r ;
bool keep bow force ;
bool keep ea r s ;
f loat bow pos i t i on a long ;
f loat m i d i t a r g e t ;

} ;

struct NoteEndings {
Phys i ca lAct ions p h y s i c a l ;
bool l i g h t e n b o w f o r c e ;
bool keep bow ve loc i ty ;
f loat m i d i t a r g e t ;

} ;

Figure 5.12: Low-level note modifiers. By default, all values are disabled (for floats, negative values
are interpreted as disabled).
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Figure 6.1: Calibration, performance, and self-improvement in context.

The previous chapter discussed the control loops at the center of Vivi, the Virtual Violinist . The

bowing control loop depends on certain parameters, most notably the initial bow force F ib. This

chapter discusses the automatic calibration of such parameters, the interpretation and translation of

musical scores into mid-level note modifiers, and a method of autonomously “practicing” a piece of

music to improve the audio output.

Before the control loops can be used to perform music, the SVM for each string must be checked

by the human teacher to ensure that they have adequate coverage for the strings. If any errors are

found, the teacher identifies the specific weaknesses and the process begins again. Once this interactive

process is completed, the SVMs are used to calibrate the constants needed for the bowing control loop.

Music is performed by extracting musical events from scores, then converting the events into a

series of notes as per Section 5.4.4. Vivi can autonomously improve the audio output by varying F ib

for each note over multiple simulations, then selecting the F ib which results in the best timbre.

139
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6.1 Training and calibration

Once the basic training (Section 5.2.1) has been completed, a few tests performed by asking the

human teacher to listen to a few simulated notes to identify any missing areas in the coverage of the

SVMs. After the teacher is satisfied by the performance of the sound timbre judgements on simple

notes, three bowing parameters are calibrated. These parameters are then tested by performing a few

musical exercises, again with human listening and making interactive corrections if necessary.

6.1.1 Interactive training

All of the output performed by Vivi can be presented to the human teacher for closer examination

and optional retraining. Figures 6.2 and 6.3 show this process: Part of the audio is selected. If the

teacher indicates a timbre class judgement (from 1 to 5, as per Table 5.2), that portion of the audio

will be extracted, along with the corresponding portion of the haptic forces and the violinist actions.

These signals are added to the dataset in preparation for retraining the relevant SVM.
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Figure 6.2: Interactive training with a calibration exercise, two notes shown. The size and colour of
arrows indicate the magnitude of SVM output c′, while the direction of arrows (up or down) indicates
whether c′ > 0 or c′ < 0. The teacher can listen to the entire file, or select a portion of the note. The
graph and arrows are a screenshot from Vivi . In this example, the teacher has selected the region from
0.2 to 0.55 seconds with the computer mouse. The violin sound is “wispy”, so the SVM judgements
c′ in this region should be -1, not close to 0. The beginning of the second note contains similar errors:
The audio sounds wispy but the SVM output c′ is close to 0. After the teacher labels these regions,
the SVM will be retrained and the exercise will be performed again.
Audio 6.1: Interactive training of a violin calibration exercise

http://percival-music.ca/dissertation/a.6.1.training-violin-g-f-6.wav
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Figure 6.3: Interactive training with cello sheet music, single note shown. Music notation and graph
are screenshots from Vivi . The teacher can listen to the entire score, or select an individual note
as was done in this example. Once a note is chosen, a region within that note can be selected and
labelled if corrections are necessary.
Audio 6.2: Interactive training with cello sheet music

http://percival-music.ca/dissertation/a.6.2.training-cello-c-f.wav

http://percival-music.ca/dissertation/a.6.1.training-violin-g-f-6.wav
http://percival-music.ca/dissertation/a.6.2.training-cello-c-f.wav
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6.1.2 Accuracy of the SVMs

After training the SVMs, two quick checks of their accuracy is computed:

10-fold cross-validation: This is the typical measure of accuracy used in Music Information Re-

trieval. The training dataset is randomly split into 10 subsets of equal size. The SVM is trained

on 9 of those subsets, then tested on the remaining subset. This process is repeated 10 times,

using a different subset as the testing set each time.

Testing individual files: The SVM is trained on the entire dataset, then is used to predict the

sound quality judgements for each file. This is not an accepted method of testing the accuracy

of a dataset, since the training set is equal to the testing set. However, the purpose of this

check is not to find the overall accuracy, but rather to catch any major errors in the labelling.

There are two types of errors which can be discovered at this stage. First, an audio file may be

mislabelled in its entirety. This usually occurs due to human error (e.g., pressing the wrong key

by accident), but occasionally occurs from the user’s opinion of a particular file being revised

(e.g., a “wispy” sound may be judged as category 1 on one day and category 2 on another day).

Second, the audio file may contain changing timbre. This occurs most often when attempting to

label audio during a note attack; the first half of the audio may be category 2 or 4 (poor timbre)

while the second half of the audio may be category 3 (good timbre). In these cases, the user

should label sub-portions of the audio file accordingly, then delete the combined (mislabelled)

file.

On a practical note, it is rare to find an error in the data labelling, but the tests are worth

performing since they only require a few seconds to compute. The 10-fold cross-validation accuracy

of each string was between 98.8% and 99.9%.

6.1.3 Verifying the SVMs

Checking for mislabelled data is no guarantee that the basic training in Section 5.2.1 will have en-

compassed the entire range of sounds which arise while performing music with that instrument. An

SVM can be 100% accurate (with cross-validation) while failing to adequately control sounds during

simulation which are quite dissimilar to the sounds encountered during the steady-state basic training.

There is a trade-off between the number of audio files to label and the amount of coverage.

Figure 6.4: Checking the output of the SVMs, screenshot from Vivi . Each cell is a plot like Figure 6.2
without the axes, and the vertical axis (Fb) is unique for each cell. In addition to displaying the force
profile and SVM judgements, each cell shows the mean c′ over the two notes. Rows indicate “basic”
finger positions (open string, one semitone, and six semitones). Columns are sorted from lowest to
highest force.
The extreme judgements (red) are expected in the outer left and right columns; the touch of green in
the upper-left cell is suspicious and probably contain misjudged audio. The teacher would then select
that cell, listen to the audio, and label the incorrect material.
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To check that the SVMs are useful, Vivi generates a small number of examples, arbitrarily chosen

to be 9 per basic finger. Each example consists of two notes: a downbow and upbow. One set is shown

in Figure 6.4. All examples use K = 1.01 (i.e. very gradual adjustment) as this slows the variation of

string timbre, making it easier to select and retrain any questionable judgements. While the primary

goal of this exercise is to verify the SVMs, the secondary goal is to explore the range of F ib which may

produce good output.

The “verifying SVM” exercise is conducted as follows. For each file, the mean of the judgements

c′m = 1
n

∑n
i=1 c

′[n] of the two notes is considered to be the overall judgement for that note. This is a

fairly crude measure since the judgements often change over time, but it is sufficient for this purpose.

1. Exercises are generated by setting F ib to the minimum and maximum bow forces found in the

dataset. The mean of bow force judgements c′m is computed, and should be close to -2 and 2

(the two extreme values). If this is not the case, a warning is displayed. The initial bow force

F ib of each file is saved in a set of Vl (low) and Vh (high), respectively.

2. The next exercise is generated with F ib being the mean of the maximum Vl force and the minimum

Vh force. If the mean c′m of judgements of this file is lower than -0.25, it is appended to Vl; if it

is higher than 1.0, it is appended to Vh. If the mean is between -0.25 and 1.0, it is saved to a

new Vm (middle) set. The upper and lower bounds on the means differ because the bow control

loop assumes that F ib will be higher than the steady-state Fb (Section 5.2.3).

This step is repeated until Vm is non-empty.

3. The final task is to reduce the distance in F ib from Vl to Vm, and Vm to Vh. To pick which region

to examine, two ratios are computed: min(Vm)
max(Vl)

and min(Vh)
max(Vm) , indicating the range between the

low, middle, and high sets. The next exercise is computed with F ib being in the middle of the

largest ratio. Just as with step 2, this new exercise is saved to Vl, Vm, or Vh depending on the

mean of bow force judgements c′m.

This step is repeated until there are a total of 9 files.

Once these steps are completed, the minimum and maximum F ib in Vm are stored for future use. I

will refer to these as V −m and V +
m . When training a new string, I perform this exercise approximately

five times, adding another 15–20 labelled audio files to the 48–66 files labelled during the basic training.

6.1.4 Initial bow force F i
b and correction factor K

Although I employed a search algorithm for an initial exploration of F ib in the previous section, it

was not a very robust method since the sound produced by a particular F ib can vary by a factor of 2

depending on the value of K. If I could be guaranteed a good value of either F ib or K, then I could do

a one-dimensional search for the other variable. However, lacking a reliable estimate of either variable,

I treated this as a two-dimensional optimization problem and solved it with a grid search.

The bow force estimates V −m and V +
m offer a very narrow range of initial bow forces due to the small

value of K used. To test a larger range, I examine nine forces spaced linearly between V −m and 2V +
m .

The upper bound V +
m was increased because the bow control loop automatically reduces the bow force

and the verifying stage only used a small value of K. The factor of 2 was found experimentally to

cover a good range on all strings from cello C to violin E. 9 values of K are also evaluated, spaced
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Figure 6.5: Simulated notes for bow force calibration. The light double bar lines indicate that the
physical model is reset. This evaluates the suitability of F ib when starting from a stationary string
and already-vibrating stirng.
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Figure 6.6: Calibrating F ib and K, violin open D string. Top: screenshot from Vivi , each cell contains
four notes. Users may click on each cell for additional information.
Bottom: the costs of each cell, with the original values (bottom-left) being the costs shown in the
top screenshot. This display format is recommended for non-interactive media (i.e. this dissertation
rather than the Vivi software).

linearly between 0.01 and 0.25. For each pair of variables, four pairs of two notes were generated in

order to account for randomness in the string behaviour in the pattern shown in Figure 6.5.

Since this is a more thorough examination of F ib and K, the cost metric for each note is more

sophisticated than the mean c′m utilized in the previous section. The list of judgements C for each

file is split into separate notes C1, C2, C3, C4, and the total cost is

cost of F ib ,K =
K

|C|
4∑

n=1

|Cn|∑
i=1

t · |Cn(t)| (6.1)
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Figure 6.7: Calibrated F ib , five experiments performed for each instrument. K factors not shown in
this plot. Note that the y-axis differs between plots.
As expected, F ib decreases for higher-pitched strings and for quieter dynamics. The calibrated F ib for
most strings are fairly close, with a few notable exceptions: Viola-II D mf and mp, and all Cellos A
f . The spread of F ib between different instruments (such as Violin-I vs. Violin-V) is not a problem;
we should expect strings with different physical constants to require different amounts of force.

In other words, the penalty of each tick is the absolute value of the bow force correction c′, linearly

weighted by its position within the note. The intent is to penalize corrections which occur later within

a note. Furthermore, the overall cost is penalized by multiplying it by K: If all else is equal, then a

gradual change of bow force will produce more reliable bowing than large changes.

An example of these files and their costs is shown in Figure 6.6. Close examination of that figure

shows that the cost of individual notes varies somewhat; in order to avoid a random local minimum,

the costs are smoothed by applying a low-pass filter in a cross pattern. In particular, the filtered cost

C ′[i][j] of each cell C[i][j] is given by

C ′[i][j] =
C[i][j]

2
+
C[i][j − 1] + C[i][j + 1] + C[i− 1][j] + C[i+ 1][j]

8
(6.2)

For cells on the edges, the cells outside the boundaries are removed from the sum, and the denominator

is reduced by two for each missing cell.

The minimum filtered cost C ′ indicates the values of F ib and K which are selected. This process is

repeated once for each “basic” finger position. A set of calibrated bow forces is shown in Figure 6.7.
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Figure 6.8: Calibrating bow lifting factor Db, violin open D string, screenshot from Vivi .

6.1.5 Bow lifting factor Db

When the bow changes from one string to the next, the first string will still be vibrating while the

second string is played. This is physically accurate, but is generally not musically desirable unless it

is specially notated (“l.v.”, for laissez vibrer). I therefore calibrate a bow lifting factor, Db.

The goal of damping the string is to reduce the audio output as much as possible. Due to the lack

of finger damping, open strings vibrate much longer than fingered notes, so only the open strings are

evaluated. Nine values of Db are tested, spaced linearly between 0 and 1. For each file, the string is

bowed for 1 second of simulated time using the F ib and K chosen in the previous section, with the

bow force being reduced with a candidate Db as described in Section 5.2.3. Following that, the string

is left to vibrate for 1 second of simulated time. The cost is simply the RMS of the audio output for

the time after the bow is removed from the string.

cost of Db =

√√√√ 1

|A|

|A|∑
t=1

A[t]2 (6.3)

An example of this is shown in Figure 6.8.

6.1.6 Musical exercises

Once the previous steps are completed, Vivi is almost ready to perform real music. So far all sim-

ulations have occurred using the “basic” finger positions, with almost all audio being labelled using

the first instrument of each type (i.e. violin-I, viola-I, cello-I). The SVMs generally require another

5–10 labelled examples with other finger positions, and a further 2–5 exercises for each instrument

to avoid being confused by the different instrument body impulse responses. Once that training is

completed, there is the additional problem of crescendo and decrescendo: The SVMs must be able to

produce good judgements when the bow position and velocity are linearly interpolated between the

pre-set dynamics. The final number of labelled files in each dataset is shown in Figure 6.1, and the

full datasets are available as discussed in Appendix C.

This additional interactive training could be performed using any sheet music, but I prefer to use

musical scales and exercises shown in Figure 6.9. The use of scales arises partly from music pedagogy,

where they are traditionally a fundamental step in instrumental practice; as a violin teacher, it “feels

String Files String Files String Files
Violin G 138 Viola C 64 Cello C 102
Violin D 115 Viola G 74 Cello G 76
Violin A 122 Viola D 68 Cello D 79
Violin E 110 Viola A 77 Cello A 80

Table 6.1: Number of files labelled in the datasets. The number of examples in the dataset varies
based on the amount of audio which was labelled while verifying the SVMs and performing these
musical exercises.
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Figure 6.9: Musical exercises for Vivi . The two scales are also performed with mf , mp, and p but
are not shown here. The scale with separate notes tests a new F ib for each note. The scale with slurred
notes only uses a new F ib for the first note on each string; as such, errors in the SVM output causing
improper Fb will tend to accumulate, which is useful for identifying such problems. The exercise with
crescendo and decrescendo practices varying the dynamic within each note.
Audio 6.3: Violin musical exercises

http://percival-music.ca/dissertation/a.6.3.violin-scale-separate.wav

http://percival-music.ca/dissertation/a.6.3.violin-scale-slur.wav

http://percival-music.ca/dissertation/a.6.3.violin-cresc-decresc.wav

Audio 6.4: Viola musical exercises
http://percival-music.ca/dissertation/a.6.4.viola-scale-separate.wav

http://percival-music.ca/dissertation/a.6.4.viola-scale-slur.wav

http://percival-music.ca/dissertation/a.6.4.viola-cresc-decresc.wav

Audio 6.5: Cello musical exercises
http://percival-music.ca/dissertation/a.6.5.cello-scale-separate.wav

http://percival-music.ca/dissertation/a.6.5.cello-scale-slur.wav

http://percival-music.ca/dissertation/a.6.5.cello-cresc-decresc.wav

natural” to hear (and correct) mistakes in timbre in scales. However, there are also solid technical

reasons to practice scales before attempting more complicated music: It allows us to pinpoint and fix

problems in isolation. Correcting mistakes in musical exercises involves a certain amount of repetition

— identify a few mistakes, label them, retrain the SVM, then perform the exercise again. Retraining

the SVM takes approximately five seconds, and simulating any of the exercises shown in Figure 6.9

takes less than one second. Longer music (naturally) takes more time to simulate, and longer to listen

to. The musical exercises cover most of the potential problems which would be found in real music,

so it is appropriate to ensure that the performance of these exercises is satisfactory before attempting

more complicated sheet music.

http://percival-music.ca/dissertation/a.6.3.violin-scale-separate.wav
http://percival-music.ca/dissertation/a.6.3.violin-scale-slur.wav
http://percival-music.ca/dissertation/a.6.3.violin-cresc-decresc.wav
http://percival-music.ca/dissertation/a.6.4.viola-scale-separate.wav
http://percival-music.ca/dissertation/a.6.4.viola-scale-slur.wav
http://percival-music.ca/dissertation/a.6.4.viola-cresc-decresc.wav
http://percival-music.ca/dissertation/a.6.5.cello-scale-separate.wav
http://percival-music.ca/dissertation/a.6.5.cello-scale-slur.wav
http://percival-music.ca/dissertation/a.6.5.cello-cresc-decresc.wav
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6.2 Interpretation of musical notation

Vivi reads music scores in the LilyPond format, a text-based system for engraving sheet music. An

example is shown in Figure 6.10. Technical details of extracting musical events from LilyPond scores

are given in Section 7.1. The term “music events” includes notes, rests, dynamics, articulations, slurs,

fingerings, etc.

Once a list of music events has been obtained, they must be mapped onto the mid-level note

modifiers described in Section 5.4.4. I begin by discussing the handling of notes without any special

modifiers. The remaining musical notation is split into two categories: Notation for which there is no

uncertainty in terms of how the note(s) should be modified, and notation which has no fixed meaning.

The latter category is known amongst musicians as “interpretation”, and is a matter of research

and debate about historical performance practices, the composer’s intentions, and/or the performer’s

desires. It would be very interesting to examine the subject of teaching an artificial intelligence to

produce musical interpretations, but that is beyond the scope of this research. For the purpose of this

dissertation, I will hard-code a particular interpretation for all “ambiguous” notation, choosing values

which mimic the behaviour of beginning Suzuki students.

6.2.1 Default note handling and pitch

Each note must have at least five parameters specified: The string number s, finger position xg, bow-

bridge distance xb, bow velocity vb, and initial bow force F ib . The reference pitch Pr is useful but not

strictly necessary; if it is omitted then the left-hand pitch feedback loop will be disabled.

Unless otherwise specified, Vivi assumes that each note is played on the highest string s which

can produce the desired pitch; in more musical terms, Vivi assumes that all notes are in first position,

other than higher-position notes on the E string. If the musical score indicates that notes should

be played on a particular string such as shown in Figure 6.12, that notation overrides the default

behaviour.

\relative c’ {

\key d \major

\tempo 4 = 96

a4\f d fis8-. a-. r4 |

d16(\ downbow cis b a) g4

\breathe e8\p( g) fis4 |

}

CC C �
Cp C� �� �C = 96 C� �

Cf
C C� C CC�

Figure 6.10: Sample of LilyPond input format with generated output.

C
IV

IV

C
4

C44� CC
CCC

fC
CCC

Figure 6.11: String and finger positions. The first bar contains all open strings, G D A E from bottom
to top. The second bar is all on the G string since all the notes are lower than the open D string. The
third bar is also played on the G string, but only due to the additional notation: The 4th finger, the
IV marking on the individual note, and the IV with the extender line indicating that all notes under
it should be played on the G string.



CHAPTER 6. CALIBRATION, PERFORMANCE, AND SELF-IMPROVEMENT 148

The finger position xg and reference pitch Pr are set according to equal temperament. Given a

note with a MIDI pitch value of m,

Pr = 440 · 2m−69
12 (6.4)

If a different tuning system was desired (e.g., Pythagorean, Just intonation, 19-tone equal temper-

ament), (6.4) could easily be modified so that Vivi would play in that style. It would even be possible

to allow Vivi to select different tuning systems automatically depending on the instrumentation of

the work — violinists playing by themselves or in groups often use Just intonation, whereas violin-

ists playing with a piano will use equal temperament. However, at the moment Vivi only supports

twelve-tone equal temperament.

The bow-bridge distance xb and bow velocity vb are set according to the values in Table 5.1. Unless

there is a slur notated in the music (discussed later), the bow velocity vb alternates every note by

multiplying it by -1. If there is no bow direction or dynamic specified, Vivi assumes that the score

begins with a downbow (vb > 0) and f .

If the pitch is one of the “basic finger” positions, then F ib and K are set according to the values

determined in Section 6.1.4. If the pitch is between 1 and 6 semitones above an open string, the values

of F ib and K are linearly interpolated between the calibrated values for 1 and 6. Finger positions higher

than 6 semitones will have F ib and K set as the value calibrated for 6 semitones.

6.2.2 Notation with fixed meaning

Notation with an unambiguous interpretation is shown in Figure 6.12.

Slurs, ties, and bow direction

When two or more notes are connected with a slur, the bow direction does not change between notes.

In particular, vb does not alternate, and the interior notes have noteBeginning.keep bow force and

noteEnding.keep bow velocity set to true. For the two ends of the slur, the beginning note of the

slur only enables noteEnding.keep bow velocity, while the ending note of the slur only enables

noteBeginning.keep bow force. Two notes connected with a tie receive the same treatment as

notes connected with a slur, with two additional modifications: The final note of the tie enables

noteEnding.ignore finger and noteEnding.keep ears.

The bow direction can be specified with downbow and upbow signs. These set vb as indicated, but

do not enable keep bow force or keep bow velocity. In other words, the bow velocity returns to 0

at the end of each note, and each note begins with a new F ib .

Pizzicato and arco

An indication of pizz. (short for pizzicato) indicates that all following notes should be plucked as per

Section 5.4.1. An indication of arco indicates that normal bowing should resume.

Æ �
pizz.� � Æ� 44 � Æ �

arco� ���� � �
� Æ�� ��

Figure 6.12: Slurs, ties, pizzicato, and arco.
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6.2.3 Notation with ambiguous meaning

Notation open to interpretation is shown in Figure 6.13.

Dynamics

As discussed in Section 5.2, dynamics set xb and vb to the somewhat-arbitrary values specified in

Table 5.1. Hard-coding the effects of dynamics in this manner is not ideal, but it suffices for beginning-

violinist audio. Gradual changes of dynamics (i.e. a crescendo and decrescendo) are assumed to be a

linear interpolation of xb and vb between the starting and ending dynamic. Again, this does not reflect

the actual behaviour of skilled violinists, but this ad hoc behaviour is adequate for Vivi ’s current skill

level.

Articulation

Staccato and portato articulations indicate that the note should be shorter, but their exact musical

meaning varies based on historical period, composer, and even the musician’s personal style. I arbi-

trarily set a staccato note’s duration to be 0.7 times the original duration (followed by a rest which is

0.3 times the original duration); a portato note is 0.9 times the original duration (again followed by

a rest). When these articulations occur within a slur, they behave similar to two downbows in a row

— the bow direction does not change but the bow velocity decelerates to 0 at the end of each note.

A breath mark sets the previous note to 0.5 times the original duration (followed by a rest). In

addition, the note has the additional modifier noteEnding.keep bow velocity. An accent indicates

that the note should be “stronger”. In Vivi , this is interpreted as doubling that note’s F ib .

Lighten bow and position along bow hair

If the bow pressure is released suddenly (as a result of changing strings or moving to a rest), it creates

an undesirable pluck-like sound. To lessen this effect, noteEnding.lighten bow force is enabled

in these cases, which then uses the bow lifting factor Db calibrated in Section 6.1.5. There is one

exception: If the final note has a breath mark, then noteEnding.lighten bow force is not enabled,

as it is desirable for the string to ring for a longer time.

On a real violin, playing closer to the frog results in a heavier bow (increased Fb), while playing

closer to the tip results in a lighter bow. However, this aspect of violin mechanics is not included in

the physical model, so these indications are purely cosmetic for the video generation. The notation

“frog” sets the bow-contact point along the bow hair to 0.0; “lh” (lower half) is arbitrarily 0.2, “mid”

is 0.5, “uh” (upper half) is 0.8, and “tip” is 1.0.

C�C� C � C�� 44
Dynamics

C� C� C��p ��f �mf �mp Cp
C�

Articulations

�f �

�
mid

��
lh

�
uh �C C C 	 �

tip

C 	 �
frog

Bow positions

C
Lighten bow

C
Figure 6.13: Musical notation with no fixed meaning.
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6.3 Practicing a piece of music

As mentioned in Section 6.1.1, all output produced by Vivi can be examined and problems can

be identified for retraining. This section discusses autonomous improvements (i.e. without human

listening or interaction) to the music performed by Vivi .

The values of F ib selected in Section 6.1.4 are an imperfect prediction of the appropriate bow force.

There are two problems with these estimates: First, the grid of tested bow forces is fairly coarse;

second, those estimates do not take into account the previous note(s) played on the string. The

actions required to produce a good tone on a string at rest differ from the actions required to produce

a good tone on a string which is already vibrating. Even if we increased the resolution of the F ib

candidates and calibrated F ib for every finger position (rather than only evaluating the “basic” finger

positions), the final F ib figures would not be suitable for all string states.

To resolve this, I again take inspiration from another aspect of violin pedagogy: Solo practice.

Music students play a piece of music dozens or even hundreds of times before performing the music

in public. While playing the music alone, the student listens to the sound and adjusts the bowing

parameters. If a particular mistake is made in the same place multiple times, the student should

remember to adjust bowing parameters in advance to avoid those mistakes. The student may even

add an annotation to the musical score as a reminder.

To imitate “solo practice”, Vivi will use a simple (yet effective) algorithm: Hill climbing (Minsky

1961). Imagine standing at one point in a three-dimensional surface, then look at the elevation one

step away in all directions. Take one step in the direction which results in the highest elevation.

Repeat until you cannot find a higher elevation within one step. This is an iterative local search

anytime algorithm: The longer it runs, the better the outcome will be, but if it is interrupted after

a short time it will still return a valid result. It is subject to converging on a local maxima rather

than a global maxima, but it produces adequate results for my problem space. In the case of Vivi ,

the “steps” are variations in F ib for each note. There are two steps to this process: Generating the

candidates to examine, then choosing a new set of F ib .

6.3.1 Generating hill-climbing candidates

I test different values of F ib for each note of the score. To reduce the chance of getting stuck at a local

minima, I generate five different candidates, setting F ib ← hF ib with

h =

{
1.0, U(1.05, 1.15),

1

U(1.05, 1.15)
, U(1.2, 1.4),

1

U(1.2, 1.4)

}
(6.5)

where U(a, b) is the uniform random distribution between a and b. Each candidate h is applied to

all notes. The self-improvement could be more effective if all combinations of h were tested for each

note, but this would result in 5N combinations, where N is the number of notes in the score. Even

a simple one-octave scale (even simpler than the exercises in Figure 6.9) contains 8 notes, meaning

390625 combinations, well beyond the bounds of practicality. This could be reduced to 2N if the set

of choices was reduced to “reduce bow force, or keep it the same”, but the 8-note scale would still

require 256 combinations. I therefore apply each h to all notes in the score. As noted previously, the

stochastic string behaviour requires that multiple experiments be performed. I therefore simulate the

entire piece of music 20 times for each candidate h, for a total of 100 performances.
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C

C = 96

44� CCfC
CCC Original 4 iterations 8 iterations

Figure 6.14: Practice with hill climbing. Note that the improvement varies quite a bit for each note:
The first note shows no change throughout the iterations, while the second note shows dramatic
improvement. The second-last note — the D played on the G string — does not show any real
improvement.
Audio 6.6: Examples of solo practice

http://percival-music.ca/dissertation/a.6.6.violin-hill-0.wav

http://percival-music.ca/dissertation/a.6.6.violin-hill-4.wav

http://percival-music.ca/dissertation/a.6.6.violin-hill-8.wav

6.3.2 Choosing the steps

After the sheet music has been performed with the variations in F ib , I evaluate each note. The cost of

each note o is the sum of squares1 of bow judgements Coh,

cost of note o, adjustment h =

N∑
t=1

Coh[t]2 (6.6)

This results in a list of 20 costs for each h for each note. To pick which h to use for each note, I use

the Kruskal-Wallis one-way analysis of variance test (Kruskal & Wallis 1952) to compare each pair of

lists. This is the non-parametric version of ANOVA (analysis of variance); Kruskal-Wallis does not

assume that the underlying distributions are Gaussian. Provided that the sample size is greater than

5, the test results approximately follow a chi-squared distribution; this is used to generate a p-value.

For any pair of h values for a particular note, I accept the new value of h if p < 0.01. That

value is saved to a list of alterations ao for each notes in the score; future performances of that sheet

music automatically multiply that note’s F ib by ao. If the hill climbing is performed again, then the

candidates h are multiplied by ao for each note.

It may be noted that a new value of ao for a note at the beginning of the score may cause later

notes to adjust to this new ao. This cascade is an unfortunate but acceptable consequence of this

method of practicing a piece of music.

I found diminishing returns after about 5 iterations, and virtually no benefit to repeating this

algorithm more than 10 times. One example of this practicing is shown in Figure 6.14.

1Since these costs are evaluated relative to each other, the rankings will be the same whether sum of square or RMS
is used.

http://percival-music.ca/dissertation/a.6.6.violin-hill-0.wav
http://percival-music.ca/dissertation/a.6.6.violin-hill-4.wav
http://percival-music.ca/dissertation/a.6.6.violin-hill-8.wav
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6.4 Final remarks on calibration, music, and self-improvement

This chapter discussed the interactive training and automatic calibration of Vivi , the performance

of musical scores, and a method of improving those performances without human interaction. I end

with remarks about potential improvements to Vivi ’s autonomous functions and to the musicality of

performance.

The major research contributions of this chapter are:

� A method of automatically calibrating parameters of a virtual musician based on a human-

trained model of evaluating timbre.

� A set of rules to decompose a musical score into a list of discrete notes with no loss of musical

information.

� Applying the artificial intelligence technique of hill climbing to the choice of initial bow forces,

resulting in “smoother”, more accomplished performances of sheet music after practicing.

There are many alternative approaches to the material in chapter which other researchers could

investigate. For example, the cost function for a particular pair of (F ib,K) gives greater weight to later

ticks within the note. This weighting was chosen as it seemed to produce better audio in informal

experiments, but there is no concrete evidence to suggest that it is better than other weightings.

On a more general note, the calibration of parameters could be generated in a completely different

manner — for example, by measuring the actions of human musicians, estimating their actions through

analysis of audio recordings, or by asking musicians to select parameters manually. I chose to limit

human involvement to the single action of providing judgements about timbre in order to lessen the

amount of skill needed by the human trainers, but it is not hard to hire competent musicians so this

may seem unduly restrictive to other researchers.

As noted in Section 6.2, the interpretation of notation with “fixed meaning” is clear, but the

interpertation of notation with “ambiguous meaning” was fairly ad-hoc. I manually chose values

which produced decent performances of the mostly-Baroque music in the corpus of sheet music. One

alternative approach would be to survey musicians in an attempt to find some “common ground”

interpretations, but I think that an improved method would be to leave such decisions up to each

user herself — these elements of notation are ambiguous precisely because there are multiple valid

interpretations. The ideal case would be to allow the composer and/or performer (in this case, the

human user) to make such subjective decisions on a case-by-case basis.

6.4.1 Improvements to the calibration and practicing

Given the importance of F ib and K to the sound quality, it would seem desirable to improve the

resolution of these estimates. However, experiments with a two-stage grid search yielded no perceptual

improvement to the music. The first stage of the search functioned as the existing grid search, but the

best F ib and K are identified, a second search was performed in the surrounding area. For example,

for the violin open D string shown in Figure 6.6, the first stage identified F ib = 2.2,K = 1.19 as the

best sound. The second stage then tested ranges related to the initial estimate, namely F ib from 1.1 to

4.4 and K from 1.09 to 1.29. The problem is the variation in string behaviour. For any particular F ib ,

there is a probability pg of having a good bow-stroke, probability pa of having an almost-acceptable



CHAPTER 6. CALIBRATION, PERFORMANCE, AND SELF-IMPROVEMENT 153

bow-stroke, and a probability pb of having a bad bow-stroke. If there is only a small difference between

(pg and pb) or (pb and pc), then many notes must be performed in order to establish good estimates

of pg, pa, and pb.

A different strategy would be to differentiate between an F isb for use when starting a bow-stroke

from rest and an F icb for use when continuing a bow-stroke on an already-vibrating string. When

examining simulations of repeated notes, there is a clear difference in the force required in these two

cases. This would slightly complicate the bow control loop — when should F isb be used, and when

should F icb be used? A first approximation would be to use F icb when the previous note was on the

same string; otherwise use F isb . This would result in F isb mistakenly being used when alternating

quickly between strings (such as the music Figure 6.14), but it is a serviceable first approximation.

Alternatively, a more advanced search technique could examine the beginning of each note and

adjust F ib and K accordingly. For example, if the first few sound quality judgements c′ are positive,

then F ib would be decreased and/or K would be increased. There are two difficulties with this approach

which prompted me to refrain from investigating them in great detail: First, there is no ad hoc reason

to prefer modifying F ib instead of K (or both at the same time); and second, this relies on accurate

sound quality judgements during the note attack. The first problem could be resolved by simply

hard-coding a particular value of K. Informal experiments suggest that fixing K does not cause any

obvious degradation of sound quality after choosing new values of F ib to account for the fixed K.

Reducing this problem to a single dimension would greatly simplify the search. The second problem

is harder to solve; as discussed in Section 5.4.2, the judgements during the note attack are not as

reliable as judgements during the steady portion of the note, particularly for the cello C string.

A similar argument can be applied to Vivi ’s autonomous practicing of a piece of music: Rather

than a brute force evaluation of all pre-determined modifications, a limited set of candidates based

on analysis of previous performances could be tested. In particular, rather than blindly modifying all

notes, Vivi could pick a few bad notes, perform the music many times while only modifying parameters

of those specific notes, then evaluate which parameter(s) resulted in improvement(s). This would be

a much closer match to the actions of real music students.

Another useful step would be to use the practicing of a single piece of music to improve the

overall behaviour of Vivi . In the current implementation, the only “long-term” memory of Vivi is

the annotated datasets used to train the SVMs. Vivi uses “short-term” memory to improve the

performance of a single piece of music, but no knowledge of note alterations ao for one piece of music

are applied to other pieces. An improvement would be to add a second layer of machine learning which

is trained on the musical score and note alterations ao that arose from of practicing. This second layer

of machine learning would then predict a set of ao for any new scores. For example, suppose that Vivi

must always increase the bow force of the third finger on the D string. At present, Vivi must relearn

that by practicing each piece of music. If this feature was added, then after practicing a few pieces of

music, Vivi could learn that the bow force must always be increased for notes of that pitch.
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6.4.2 Improvements to the musical interpretation

The naive hard-coded approach to musical interpretation is sufficient for beginner violin music. Slightly

more advanced music would benefit from interpreting a few more symbols.

Trill: This splits a long note into quickly alternating notes; one which is the notated pitch, and

another which is one or two semitones above the lower pitch. There are a few stylistic decisions

to make: whether the trill should start on the upper note or the lower note, whether the first or

last note should be held longer than the other notes, and the exact pitch of the upper note. The

latter is not directly a stylistic question — unless specifically noted otherwise, the upper pitch

should be the next note in the scale. However, algorithmically determining the scale (and key)

of a musical score is still an open problem in music information retrieval.

An acceptable initial approximation would be always start from the initial note, perform the

trill with 32nd notes (or “demisemiquavers”), and have the upper pitch be two semitones above

the lower pitch. However, there must be a way for the user to override this decision; if a trill

occurred on the leading tone of a major scale (a relatively common occurance), a two-semitone

trill would be extremely bad (e.g., trill B–C# in C major).

Mordent: This ornament indicates one alternation of a trill at the beginning of a note, and can thus

be implemented in much the same manner as a trill.

Turn: This ornament indicates one alternation of a trill at the ending of a note.

Fermata: When placed over a note, this indicates a longer duration; when placed on a barline, this

indicates an added rest. The exact lengthening is a stylistic choice; for the initial hard-coding,

multiplying the existing duration by 50% or adding a half note rest is sufficient.

The musical interpretation would clearly benefit from allowing the user to tweak the hard-coded

values. At the moment this can only be done by modifying constants in the python code, but two much

improved systems can be envisioned. First, the user could add annotations to the LilyPond input file

to override the default behaviour of Vivi , such as \vivi #(’staccato ’duration 0.6). This would

require a certain amount of familiarity with LilyPond, but no more than is required to typeset any

sheet music. Second, after creating and displaying the PDF file, the user could select note(s), bring up

a GUI of note properties, then alter note parameters (e.g., duration, upper trill pitch). The resulting

modifications would be saved to a separate file, thereby preserving the distinction between composition

and performance annotations. It could be very interesting to compare performance annotations from

different musicians.

Allowing users to manually tweak the interpretation of musical notation is better than nothing,

but this is still a stop-gap measure. The final and most challenging step in the quest to autonomously

produce good violin music is to produce a good interpretation automatically. How should we map a

particular set of symbols in the musical score into low-level physical actions, without requiring any

human input?

A complete answer to this problem is decades away. The main thrust of research in this field takes

place at the Rencon (musical performance rendering contest) workshop, an international competition

where computers attempt to perform piano music in a human-like manner (Katayose et al. 2012).

The workshop has a tongue-in-cheek goal of winning the Tchaikovsky and Chopin piano contests2 in

2This is likely inspired by the RoboCup robotics competition, whose stated goal is for a team of autonomous humanoid
robots to win a football match against the most recent (human) World Cup football winners.
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2052. At the present time, the top entries to Rencon perform piano similarly to a piano student with

2–4 years of experience. However, the range of actions is much more limited on a piano: Each note

has a fixed pitch, the note can be played at different velocities (usually discretized into 127 values),

at various points in time (1ms being sufficient accuracy). The state-space of piano performances of a

musical score is much smaller than the state-space of violin performances.

There are two “traditional” methods of performing expressive music with a computer. The first

is to hard-code musical performance rules such as “decrease the duration of notes whose pitches are

increasing” or “play long notes louder than short notes”. The exact effect these modifications must

be specified, either manually (Friberg et al. 2000) or interactively tuned with a real-time sequencer

(Friberg 2006). However, fixed rules such as these do not match the range of expressive alterations

which musicians perform; systems using fixed rules receive low score in the Rencon contest. The second

method is to train a computer to determine performance rules itself, by extracting “expressive” events

(e.g., note velocities, timing deviations) from a corpus of recorded performances by real musicians.

These recorded performances may involve only audio files (in which case audio analysis tools are

required), or they may begin from a MIDI recording of music (using existing hardware tools for

recording keyboard MIDI events). These recorded performances and the original score form the

training dataset for machine learning; once trained, the model predicts note alterations for new musical

scores. One example of this method was used to perform Chopin music (Widmer et al. 2009).

The extraction of violinist control data from raw audio is a difficult task (Pérez & Wanderley 2012).

Rather than relying on such uncertain data, I propose to again take inspiration from real-world

pedagogy: Vivi could be trained interactively with a human teacher. In this case, the teacher would

specify alterations for each note (e.g., “play these notes shorter, play this note louder, speed up over

this range of notes”). Machine learning would then be used to link the musical score with the teacher’s

stylistic instructions. Ideally, the machine learning would then learn performance rules (e.g., length of

staccato notes, when to alter the tempo) from the teacher’s instructions. Such a system may require

a few hours of human training to learn how to perform each piece of music, but this is still less work

than a beginning human student. Provided that there was an easy-to-use GUI, this training could

be performed by a music teacher. As the corpus of teacher-trained music grows, Vivi should become

better at “anticipating” the teacher’s instructions (due to the machine learning). If the metadata for

each piece of music was included (e.g., composer, date of composition), then Vivi may even be able

to “learn” idiom-specific performance styles (e.g., Baroque style, Romantic style).
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Figure 7.1: Context of this chapter.

The past two chapters described the control loop and musical interpretation. This chapter discusses

all remaining issues concerning the virtual musician: Technical details of extracting information from

musical scores, additional features to make Vivi more useful outside of a research project, and the

overall design and implementation details of Vivi .

The Vivi software has two main goals: Training & calibrating the virtual violinist (as discussed

in Section 6.1), and performing music (as discussed in Section 6.2). The two main graphical displays

of Vivi are shown in Figure 7.2. These graphical displays are intended to allow users with average

technical skills (i.e. an interested musician with no programming experience) to train Vivi . The

performance of individual notes can be examined in greater detail by clicking on them in the score,

and corrections to the computer’s bow force judgements can be made. The software was designed to

make full use of modern multi-core desktop and laptop computers. Large computations are split into

multiple execution units for parallel execution.

156
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(a) Main window. The tabs can select each instrument for training or the sheet music for performance. To the
right of each string letter: The number of labelled audio files and the SVM cross-correlation accuracy. Below
of each dynamic: Whether the dynamic passes the “verify SVMs” (Yes/No), F ib for the three basic finger
positions, K for the three basic finger positions, and Db.

(b) Examining sheet music. Middle: Entire score with one note selected. Below: Closer examination of the
bow force and sound quality judgements for that note.

Figure 7.2: Screenshots of Vivi .
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7.1 Extracting events from notation

As discussed in Section 6.2, Vivi uses sheet music written in the LilyPond format. This section details

how information is extracted from LilyPond scores, how some of that information is used to create

“clickable” PDF sheet music, and examines how music from other sheet music software can be used.

7.1.1 Extracting notation events from LilyPond

Since LilyPond input files are text, a parser could be written to directly process simple files. However,

the input format allows users to write music using macros and functions as shown in Figure 7.3. In that

example, the function is already built into LilyPond, but user-defined functions are also supported.

Processing such files would require a much more complicated parser than a parser for files containing

merely notes and rhythms.

Fortunately, LilyPond was designed to be easily extended with the Scheme programming language

(a dialect of lisp). This allowed me to attach custom functions to LilyPond’s internal processing

rather than attempting to parse files. LilyPond creates output (typically graphical, but also MIDI)

via Engraver objects. These occur relatively late in the processing of a file, after any macro expansion

theme = \relative c’’ { c4\f\> d-.( e-.) f\p }

\new Staff {

\tempo 4 = 72

\theme

\inversion c’’ c’’ \theme

}

Æ� ����
C = 72��

p
�����

f
�

f
�

p
�Æ �

(a) Text input and graphical output. The theme macro is defined, used in the score, then passed into the
\inversion function which inverts the pitches in the music.

0.000 tempo 288.0

0.000 note 72 4 0.250 point -and -click 24 16

0.000 dynamic f

0.000 decresc -1

0.250 note 74 8 0.125 point -and -click 31 16

0.250 script staccato

0.250 slur -1

0.375 note 76 8 0.125 point -and -click 37 16

0.375 script staccato

0.375 slur 1

0.500 rest 4 0.250

0.750 note 77 4 0.250 point -and -click 45 16

0.750 dynamic p

1.000 note 72 4 0.250 point -and -click 24 16

1.000 dynamic f

1.000 decresc -1

1.250 note 70 8 0.125 point -and -click 31 16

1.250 script staccato

1.250 slur -1

1.375 note 68 8 0.125 point -and -click 37 16

1.375 script staccato

1.375 slur 1

1.500 rest 4 0.250

1.750 note 67 4 0.250 point -and -click 45 16

1.750 dynamic p

(b) Extracted .notes output. The first column is the time (in quarter notes) of the event. The second column
is the type of event, while the remaining columns are additional information. For notes, the third column is the
MIDI pitch value, the fourth and fifth columns are the duration, while the sixth column is point-and-click

data for clickable PDFs.

Figure 7.3: LilyPond input, graphical output, and extracted music events.
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or music function calls. To extract the information needed by Vivi , I created a new Engraver in

LilyPond which includes listeners for the relevant types of music events. Whenever a particular

musical event (e.g., a note, a tie, an articulation marking) is processed, one of my functions is called,

which outputs information about that event to a text file. The most important excerpts of this process

are shown in Figure 7.4.

#( define (format -moment moment)

(exact ->inexact

(/ (ly:moment -main -numerator moment) (ly:moment -main -denominator moment ))))

#( define (make -output -string -line context values)

"Constructs a tab -separated string beginning with the score time (derived from

the context) and then adding all the values. The string ends with a newline ."

(let* (( moment (ly:context -current -moment context )))

(string -append

(string -join

(append

(list (moment -grace ->string moment ))

(map (lambda (x) (ly:format "~a" x)) values )) "\t") "\n")))

#( define (print -line context . values)

"Prints the list of values (plus the score time) to a file , and optionally outputs

to the console as well. context may be specified as an engraver for convenience ."

(if (ly:translator? context)

(set! context (ly:translator -context context )))

(let* ((p (open -file (filename -from -staffname context) "a")))

;; for regtest comparison

(if (defined? ’EVENT_LISTENER_CONSOLE_OUTPUT)

(ly:progress (make -output -string -line context values )))

(display (make -output -string -line context values) p)

(close p)))

#( define (format -rest engraver event)

(print -line engraver

"rest"

(ly:duration ->string (ly:event -property event ’duration ))

(format -moment (ly:duration -length

(ly:event -property event ’duration )))))

#( define (format -note engraver event)

(let* (( origin (ly:input -file -line -char -column

(ly:event -property event ’origin ))))

(print -line engraver

"note"

;; get a MIDI pitch value.

(+ 60 (ly:pitch -semitones (ly:event -property event ’pitch )))

(ly:duration ->string (ly:event -property event ’duration ))

(format -moment (ly:duration -length

(ly:event -property event ’duration )))

;; point and click info

(ly:format "point -and -click ~a ~a" (caddr origin) (cadr origin )))))

\layout { \context { \Voice

\consists #(make -engraver

(listeners

(rest -event . format -rest)

(note -event . format -note)

...

)

Figure 7.4: Excerpts of event-listener.ly. To allow other researchers to extract musical events, I
added this code to the main LilyPond source code in version 2.15.0.
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7.1.2 Clickable scores

As shown in Figure 7.2, the human teacher can click on any note in a score to view the bow force and

sound quality judgements. This is achieved through the “point and click” functionality of LilyPond:

Every graphical element in the PDF output file has a link to the position (line and column) in the

input file which created that output, such as

textedit:///home/gperciva/tmp/example.ly:1:23:23

This functionality is intended to facilitate correcting errors in the text files — if there is an error

in the sheet music, the user can click on that note to load the input file in her text editor, which

automatically positions the cursor at the relevant text. However, I found this feature to be very useful

for Vivi . When Vivi performs a piece of sheet music, an .actions file (as discussed in Figure 4.2)

and a .cats file (containing a list of the sound quality judgements) are created. In addition to the

physical actions or judgements, these files contain a commented-out header at the beginning of each

note; this header contains the relevant point-and-click information. When my custom PDF browser

registers such a link, it processes the textedit:// link by searching for that string in the headers of

the .actions and .cats files, then displays the results for the user to allow interactive training as

described in Section 6.1.1.

7.1.3 Extracting notation from other software

MusicXML (Good 2001) has become the de facto standard for interchange of Western sheet music

between score editing programs. The format is available free of charge, and can be parsed with normal

XML tools. However, direct support for MusicXML is not ideal for Vivi .

Translating from MusicXML to Vivi ’s .notes format would not be challenging, but a PDF gen-

erated with a different music engraving program would likely lack the textedit:// point-and-click

data — I am not aware of any non-LilyPond sheet music PDF generator which adds links to note-

heads. Such links could be added manually in various PDF editors, but that would be an awkward

and time-consuming process. Sheet music PDFs without point-and-click data would mean that Vivi ’s

human teacher would not be able to select notes by clicking on them; an alternate method would be

necessary, such as using the arrow keys to move between notes or manually typing in a note’s bar

number and position within that bar. Such methods are more cumbersome than directly selecting a

note.

I therefore suggest translating MusicXML files with the musicxml2ly conversion script included

in LilyPond. Once the music is in the form of a LilyPond input file, the sheet music can be processed

as usual with Vivi . This method relies on musicxml2ly being able to convert the relevant music. It

is possible that some MusicXML files may not be converted flawlessly, but there is an extensive test

suite1 showing support for a wide range of notation.

Most other formats can be converted to MusicXML and then to LilyPond input. Music in MIDI

format can be converted directly to LilyPond with midi2ly.

1http://lilypond.org/doc/v2.16/input/regression/musicxml/collated-files.html

http://lilypond.org/doc/v2.16/input/regression/musicxml/collated-files.html
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7.2 Additional features for practical use

Although Vivi is primarily a research project, I added two features which were relatively small exten-

sions yet resulted in a significantly more useful program: Vivi can perform sheet music with multiple

instruments, and can randomize performance aspects to play at a reduced skill level. These two factors

can be combined to produce a very effective chorusing effect.

7.2.1 Scores with multiple instruments

Although there is a significant amount solo music written for violin, viola, or cello, there is a great

deal more music written for combinations of those instruments. Bowed string instruments are often

found in duets, quartets, and even octets with four violins, two violas, and two cellos. As a result of

the number of instruments measured in Chapter 3, Vivi can perform music for all such ensembles.

Creating audio for a piece of music with multiple instruments could be performed by manually running

Vivi multiple times, with each part of the music being written in a separate input file and mixing the

audio together. However, that is a cumbersome process, so I added the functionality to allow Vivi

to performed music directly from the combined score instead of requiring the user to create separate

parts. Internally, each part is rendered separately and mixed together, but this process is performed

automatically without user input. The most famous ensemble piece found in the Suzuki books is the

Bach Double concerto for two violins, shown in Figure 7.5.
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Figure 7.5: Bach double violin concerto with continuo.
Audio 7.1: Bach double violin concerto introduction

http://percival-music.ca/dissertation/a.7.1.bach-double-intro.wav

Video 7.1: Bach double violin concerto introduction, video quality 0 and 1
http://percival-music.ca/dissertation/v.7.1.bach-double-intro-preview.avi

http://percival-music.ca/dissertation/v.7.1.bach-double-intro-movie.avi

http://percival-music.ca/dissertation/a.7.1.bach-double-intro.wav
http://percival-music.ca/dissertation/v.7.1.bach-double-intro-preview.avi
http://percival-music.ca/dissertation/v.7.1.bach-double-intro-movie.avi
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Ensemble Panning (from -1 to 1)
Violin 1, Violin 2 -0.5, 0.5
Violin 1, Violin 2, Cello 1 -0.5, 0.5, 0
Violin 1, Violin 2, Viola 1, Cello 1 -0.6, -0.2, 0.2, 0.6
Violin 1, Violin 2, Violin 3, Violin 4, Viola 1, Cello 1 -0.6, 0.6, -0.4, 0.4, -0.2, 0.2

Table 7.1: Default panning for multi-instrument ensembles

When Vivi is given a musical score, the appropriate instrument is selected based on the staff

name. This applies to scores with a single instrument (e.g., solo cello) in addition to group music.

The .notes for each instrument are separated and processed independently. Once all parts have been

generated, they are mixed together, with the mono audio parts being panned as shown in Table 7.1.

For combinations of instruments not shown in Table 7.1, the panning of each part is determined by

linearly interpolating from -1 to 1 by the number of parts. If the ensemble is not listed in that table,

then the panning of each instrument is linearly interpolated from left to right, in order of violins,

violas, and cellos, with instrument part numbers increasing from left to right.

If the score contains cellos and any other instruments, the cello parts are amplified by -4.4 dB to

prevent the cello sound from dominating the violin and viola sound. This matches real musicians;

beginning cellists are often told that they cannot play “solo volume” in ensembles and must develop

a “quartet volume” or “orchestra volume”.

Video is produced in a similar manner to audio: Individual images are generated for each instru-

ment, then the separate images are concatenated. For two instruments, the images are concatenated

left and right; three instruments are concatenated with the top half of the screen being instruments

one and two, with the third instrument centred on the bottom; four instruments are concatenated in

a square pattern. Video is not generated for more than four instruments, as such attempts showed

that the resulting mixture of images was too confusing.

7.2.2 Reducing skill level

Vivi sounds like a beginning student, not a professional musician. However, the intonation is much

better than a normal student, and the timing is completely metronomic. I sometimes found the

discrepancy between rhythmic perfection and average tone quality to be troubling. Improving the tone
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Figure 7.6: Scale in thirds with two violins. This is a traditional exercise for a violin student and
teacher.
Audio 7.2: Three different skill levels of Vivi

http://percival-music.ca/dissertation/a.7.2.scale-double-skill-0.wav

http://percival-music.ca/dissertation/a.7.2.scale-double-skill-2.wav

http://percival-music.ca/dissertation/a.7.2.scale-double-skill-4.wav

http://percival-music.ca/dissertation/a.7.2.scale-double-skill-0.wav
http://percival-music.ca/dissertation/a.7.2.scale-double-skill-2.wav
http://percival-music.ca/dissertation/a.7.2.scale-double-skill-4.wav
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quality is a challenging task, so it may therefore be desirable to deliberately degrade the intonation and

timing accuracy so that the final audio sounds more consistently like a beginning student. Examples

are given in Figure 7.6.

The user may select a skill level from 0 to 4; 0 being a perfect student and 4 being an extremely

poor student. Selecting a skill level above 0 disables the pitch feedback loop. The reference midi Mr

used to calculate the initial finger position and onset time ot (in seconds) of each note is set to:

Mr = N̄ (Mr, 0.05 · sk) (7.1)

ot = N̄ (ot, 0.01 · sk) (7.2)

where N̄ (µ, σ) is a “bounded” Normal distribution with mean µ and standard deviation σ, in which

any result which is more than 3σ away from the mean is rejected and a new random value is chosen.

The constants 0.05 and 0.1 were chosen experimentally as producing beginning violin music of the

expected (lack of) skill.

7.2.3 Chorusing effect

In addition to imitating beginning music students, the deviations in pitch and timing can be used to

produce a chorus effect. This phenomenon arises when listening to a number of sound sources with

similar timbre, pitches, and timing — most notably in a vocal choir or a string section of an orchestra.

The sounds are perceived to “blend together”, giving the impression of listening to a single musical

line. The timbre of the “blended” sound is noticeably different from the solo sounds. For example,

many people find the music produced by an amateur choir is often more pleasing than the music

produced by a single amateur singer.

Vivi can take advantage of this technique by performing sheet music with multiple parts and

slightly reducing the skill of each part. Due to the physical modelling and measurements of physi-

cal constants from multiple instruments, each part has a distinct timbre. An example is shown in

Figure 7.7.
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Figure 7.7: Scale arranged for chorus of all instruments. The dynamics are set to counter-balance
the number of instruments (five violins vs. two violas vs. three cellos). There is a slight deviation
between this figure and the actual sheet music used to generate the “chorus” audio: The score given
to Vivi contains ten instrument staves, not three as shown here.
Audio 7.3: Scale arranged as a trio; performed by solo instruments vs a chorus of ten instruments.

http://percival-music.ca/dissertation/a.7.3.scale-trio-skill-0.wav

http://percival-music.ca/dissertation/a.7.3.scale-chorus-skill-0.wav

http://percival-music.ca/dissertation/a.7.3.scale-chorus-skill-1.wav

http://percival-music.ca/dissertation/a.7.3.scale-trio-skill-0.wav
http://percival-music.ca/dissertation/a.7.3.scale-chorus-skill-0.wav
http://percival-music.ca/dissertation/a.7.3.scale-chorus-skill-1.wav
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7.3 Design of Vivi

This section discusses the software design and implementation of Vivi . Design considerations include

the choice of programming languages, software libraries, and effective use of modern multi-core com-

puters. Benchmarks were performed to check the speed of the implementation. Finally, the use of

Vivi to control realtime input is discussed.

7.3.1 Languages and libraries used

I used a clear division of programming languages for Vivi : The control loops were implemented in

C++, while the training and musical interpretations were written in python and scheme. In terms of

Figure 7.1, the “music notation” activities are performed in scheme, the “interpret musical notation”

and “stored judgements” are performed in Python, and all the rest is performed in C++. The choice

of each language was clear. The control loops comprise the bulk of the calculation, so they benefitted

most from the speed of C++. LilyPond allows scheme extensions, so there was no alternative choice

short of writing a complete input file parser. The training and musical style interpretation do not

require critical speed or have any external constraints, so the ease of writing high-level code in python

won out. As with the C++ implementation of Artifastring, I compiled the C++ control loop with

both g++ and clang++ for additional warning checks, and tested all memory use with valgrind.

Following the suggested best practices for scientific software of “Don’t repeat yourself (or others)”

(Aruliah et al. 2012, p. 3), I used open-source software libraries where possible.

Marsyas: http://marsyas.info

An audio feature extraction and machine learning library; used for the bowing control loop.

aubio: http://aubio.org

Audio feature extraction; used for the YINFFT pitch extraction in the finger control loop.

LilyPond: http://lilypond.org

A music engraving system; used to generate sheet music and extract musical events.

Qt4, PyQt: http://qt-project.org http://www.riverbankcomputing.com/software/pyqt

A cross-platform framework for applications; used for the GUI and easy python integration.

Poppler Qt4, python-poppler-qt4: http://people.freedesktop.org/~aacid/docs/qt4/

https://code.google.com/p/python-poppler-qt4/

PDF render for Qt4 with python bindings; used to display the sheet music.

SciPy: http://scipy.org

Scientific tools for python; used for various statistical tools in the calibration and hill climbing.

7.3.2 Parallel processing: Queue, dispatcher, workers, and multi-stage jobs

The Artifastring library made use of parallelism in terms of CPU registers: SIMD instructions perform

operations on four single-precision floats in parallel (details in Section 4.2.2). However, there is

another form of parallelism: Splitting computations over multiple CPUs or possibly even over multiple

computers. Theoretically, if no information needs to be shared between tasks, splitting the work

between N cores can result in a factor of N reduction in time. In practice, there is always some

overhead, but this is still a useful tool.

http://marsyas.info
http://aubio.org
http://lilypond.org
http://qt-project.org
http://www.riverbankcomputing.com/software/pyqt
http://people.freedesktop.org/~aacid/docs/qt4/
https://code.google.com/p/python-poppler-qt4/
http://scipy.org
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Main window
String instrument

(Violin, Viola, Cello)
String (4) Dynamic (4)

Sheet music Parallel-processing queue Worker (4)

Examine
output

Examine
judgements

Interactive
play & train

jobs
jobs

tasksjobs

view

view view

Figure 7.8: Design diagram of Vivi . Pink boxes represent the main objects which store data. Green
boxes represent the parallel processing objects which involve significant calculations. Blue boxes
represent visual output or interactive activities which depend on human input.

In the case of the training and calibration discussed in Section 6.1 and performing music with

multiple instruments discussed in Section 7.2.1, the bulk of the processing does not require any infor-

mation from other tasks. When simulating hundreds of audio files to perform a grid search, no audio

file depends on other audio files. Such tasks are described as “embarrassingly parallel”.

The overall design of Vivi is shown in Figure 7.8. Activities which depend on human input are

in blue, and activities which depend on significant CPU computations are in green. I refer to the

latter activities as “jobs”. Any number of jobs may be triggered in the GUI; the jobs are sent to

a FIFO queue and distributed between the workers. The number of workers is set to the number

of processing units available to the user. On most current desktop and laptop computers, there are

four processing units available (two CPU cores, each with hyper-threading). The number of workers

in Vivi can be changed to accommodate systems with more or fewer processing units, or otherwise

reduced to avoid Vivi using system resources desired for other purposes. Once a worker has finished

one task, a dispatcher gives it another task from the queue.

There are three types of jobs which are fed to the parallel processing:

String jobs: Train SVM, compute SVM accuracy.

Dynamic jobs: Verify SVM output, calibrate F ib and K, calibrate Db.

Score jobs: Generate score, render audio part x, mix audio parts, play audio, render video part x,

mix video, play video, practice audio.

Most jobs are sent to a single worker, but a few jobs are split between multiple workers. I refer to

one unit of such processing as a “task”. The jobs which are split into multiple tasks are: Calibrating

F ib and K (three tasks, one for each “basic” finger position), rendering audio for scores with multiple

instruments (one task per part), rendering video for each part (four tasks per part, splitting the number

of frames equally between each task), and hill climbing (one hundred tasks). The video generation

and hill climbing are split into many more tasks than other jobs because they require a great deal

more computation. Rendering a single part of audio takes a few seconds; if a processing unit lies idle

for this time due to coarse granularity of task division, there is no great loss. However, generating

high-quality video can take hours; failing to utilize a processing unit will greatly increase the time

required.



CHAPTER 7. IMPLEMENTATION OF VIVI, THE VIRTUAL VIOLINIST 166

A few jobs require two stages: Mixing audio parts, mixing video parts, and performing the hill

climbing. Using the MapReduce technique, the main task of all these jobs generates the bulk of the

data, then a second task automatically combines the results of the first task.

There is one final technical detail of the parallel processing: Python includes a Global Interpreter

Lock (GIL), meaning that only one python thread can execute at the same time (Beazley 2010).

This decision greatly simplified many low-level implementation details while adding multi-threaded

capability to the python interpreter in 1992, but it poses a problem for parallel computation. The

GIL can be avoided by using separate processes, rather than separate threads. The use of distinct

processes means that information cannot be shared as easily as between distinct threads, but as my

design relies on queues, it poses no problem for Vivi .

7.3.3 Benchmarks and profiling

Benchmarks were performed using the music in Figure 7.9 for violin and the same piece transposed

down a twelfth for cello. There was no measurable difference in speed between the g++ or clang++

compilers, since the vast majority of the processing time for running Vivi occurs in externally-compiled

code (i.e. Artifastring, FFTW, Marsyas, and the Python interpreter). Recompiling the external code

with different compilers would probably produce a difference in speed, but such testing lies outside of

the scope of this dissertation, with the exception of Artifastring which was discussed in Section 4.3.2.

Results are shown in Table 7.2. The relative speed between CPUs match the earlier benchmark

of Artifastring-only testing in Table 4.2. While the Artifastring test exceeded 100 times realtime for

the cello simulation, Vivi ’s fastest processing is 50 times realtime. The overall speed will depend a

great deal on the number of pizzicato notes, rests, and most importantly, string crossings. The first

half of Suzuki book 1 music only uses two strings; simulating that music will remove half of the string

simulation calculations as would be required for music using all four strings due to the “turning off

the string” explained in Section 2.1.4. The amount of processing required for the instrument body

does not change based on the number of vibrating strings.
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Figure 7.9: Black-box file for testing, benchmarks, and profiling. The simulated audio is 28.2 seconds.
Audio 7.4: Black-box testing file, violin and cello.

http://percival-music.ca/dissertation/a.7.4.black-box-violin.wav

http://percival-music.ca/dissertation/a.7.4.black-box-cello.wav

http://percival-music.ca/dissertation/a.7.4.black-box-violin.wav
http://percival-music.ca/dissertation/a.7.4.black-box-cello.wav
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time (seconds)
Vivi Modelling only

CPU Year Clock OS Violin Cello Violin Cello
Intel(R) Core(TM) i5-2415M 2011 2.30 GHz 64-bit 0.67 0.53 0.39 0.28
Intel(R) Core(TM)2 Quad Q9550 2009 2.83 GHz 32-bit 1.0 0.85 0.61 0.47
Intel(R) Atom(TM) N570 2011 1.66 GHz 64-bit 4.2 3.2 2.5 1.7

Table 7.2: Benchmarks of Vivi on common CPUs. All computers ran Ubuntu 12.04.1. CPU frequency
scaling was set to maximum performance. Each test was performed twice to ensure that the executable
was cached, then the mean of the next three times was recorded. The compiler version was the default
for Ubuntu 12.04.1, namely g++ 4.6.3. The columns labelled “modelling only” were timed by running
Artifastring’s actions2wav on the .actions file written as a by-product of Vivi . This allows us to
estimate the amount of time spent on the feedback control rather than the physical modelling.

Method or library Time spent
AS::tick bow() 41.74%
libfftw3f 16.89%
libmarsyas 12.42%
libm 7.55%
AC::process() 7.31%
libc 5.91%
total 91.71%

Method or library Time spent
libstdc++ 3.56%
libaubio 2.05%
AS::fill buffer() 0.99%
AI::handle buffer() 0.64%
AS::update bow accel() 0.47%
Ears::listen() 0.37%
total 8.08%

Table 7.3: Profiling Vivi to show the bottlenecks. The slowest 12 functions and libraries are shown,
comprising 99.79% of the processing time. Benchmarking performed on the i5-2415M CPU with the
additional compiler option -g to display detailed information about the time spent on each line of
code. Abbreviations used for objects: AS is ArtifastringString, AC is ArtifastringConvolution,
Ears is the “glue” code between Artifastring and Marsyas. Artifastring is not the only library using
libfftw3f; the Aubio pitch estimation library also relies on this library. A more detailed breakdown
of the time spent on each function (not included here) showed that 67.55% of the total time was spent
on Artifastring (including the relevant part of libfftw3f processing).

Due to the mixture of programming languages and the desire to profile the “musical performance”

rather than the program start-up time, it was not feasible to measure the black-box test directly.

Instead, the profiling was performed on a simpler, hard-coded C++ test consisting of 120 notes of

duration 0.5 seconds each, with 30 notes on each string. Table 7.3 shows detailed profiling of time

spent with valgrind --tool=callgrind.

As discussed in Section 4.3, the Artifastring library is extremely fast and cannot easily be further

optimized. This suggests that Vivi could afford to use a more computationally intensive form of

machine learning. There is no a priori guideline on how much computation should be spent on the

virtual instrument rather than the virtual musician, but I would not query a system where the musician

required ten times as much computation as the physical model.

7.3.4 Realtime interactive use of Vivi

Although the main use of Vivi is to perform musical scores, it can be instructive to experiment with

aspects of the machine learning with an interactive program. Vivi can be controlled in realtime with

an interactive python script or a tablet computer like Artifastring (as discussed in Section 4.3.4).

The vivi interactive.py script allows the user to alter the string, finger position, bow position,

velocity, or force. The control loops continually adjust the finger position and force. When the user

specifies a finger position or force, the new value takes effect immediately, but is subject to automatic
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Figure 7.10: Interactive use of force correction with a tablet, violin and cello. The interface is the
same as the realtime control of Artifastring in Figure 4.9, but the yellow text in this case refers to the
controls for a cello. The two control loops automatically adjust the finger position xg and bow force
Fb.
Video 7.2: Interactive control of Vivi with a tablet

http://percival-music.ca/dissertation/v.7.2.vivi-interactive.avi

adjustment by the control loops in subsequent ticks. The reference pitch for the finger is assumed to

be the nearest MIDI pitch value; this can be disabled if so desired.

An example of interactive use with a tablet is shown in Figure 7.10. When the user sets Fb too

high, there is a “crunchy” sound for 50-100 ms, but usually the control loop quickly reduces Fb,

producing a note with acceptable tone. This results in the listener musically perceiving an accented

note (albeit a rather ugly accent), rather than the constant crackling noise which is produced when

controlling Artifastring without the bow control loop. Similar adjustment occur if Fb is too low; there

is a “wispy” beginning to a note but usually Fb is quickly increased as appropriate.

The bow control in Video 7.2 is not perfect due to the combination of dynamic, bow velocity, and

timbre. The dynamic is set to f , but in Figure 7.10 the bow velocity is under the control of the user.

Recall that the normal preset velocity for f is ± 0.4 m/s, and that vb is part of the feature vectors

used in the machine learning. The y axis of the bow control area varies from −0.5 m/s to 0.5 m/s;

if the bow control focus is not near the edges of the area, vb is likely too small for the expected f

dynamic. One improvement would be to map the y axis to dynamic (which then implicitly sets xb

and vb) rather than retaining the direct control over vb as was done in the control of Artifastring in

Figure 4.9.

The finger control also has some problems: When suddenly changing from one string to another, the

previous string is still vibrating and the pitch detection sometimes registers that pitch. For example,

15 seconds into Video 7.2, the string is changed from G to E. The pitch detector still recognizes the

much louder G string, and rapidly increases the finger position on the E string causing a squeaking

sound. This is not a significant problem during performance of sheet music due to the Db bow lifting

factor. At 30 seconds, the pitch control is working well: Repeated notes with small adjustments of xg

produce either the same pitch or the upper (or lower) MIDI pitch, depending on the rounding.

There are two methods of fixing the pitch-correction problem: First, as suggested in Section 5.4.3,

the physical model could provide individual As[t] and Hs[t] signals for each string s. This would break

the “realism” idea of having a single audio output for the instrument, but it would completely solve

http://percival-music.ca/dissertation/v.7.2.vivi-interactive.avi
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this problem. Second, a source seperation algorithm could be used to estimate the audio output of

each string given the combined output. Source separation is an active area of research and is not

likely to produce completely accurate output, but this would maintain the “realism” of a single audio

output from the physical model.

7.4 Final remarks on Vivi, the Virtual Violinist

This chapter described the extraction of information from the LilyPond sheet music engraver, detailed

the performance of scores with multiple instruments, and examined the implementation of Vivi in C++

and python.

The main research contributions of this chapter are:

� Software infrastructure to present musicians with a “clickable” score which facilitates easy re-

training of incorrect timbres.

� A method of reducing the apparent skill level of performances by adding random offsets to pitch

and note onsets, thereby making the audio seem more “human”.

The decision to use of LilyPond rather than MusicXML directly was based in large part on my

familiarity with LilyPond. It would be possible to implement such functionality in other open-source

sheet music programs, such as Rosegarden or MuseScore. Alternatively, it may be possible to create

“clickable” scores with commercial programs in some manner of which I am not yet aware.

The constants used for the “skill level” randomness were ad-hoc and could benefit from a great

deal of research. Do student pitches and timing follow a normal distribution, and if so, what are the

standard deviations for different levels of skill? Are student errors randomly distributed throughout

the entire sheet music (unlikely), or are certain errors more common? A detailed study of performances

by music students of various skill levels could reveal a very useful set of “human-like performance”

rules which could be applied to Vivi ’s output.

There were a number of design decisions in the implementation of Vivi , but these are fairly

straightword programming decisions, rather than research questions. The features are not complex,

and the computation requirements for Vivi (as opposed to Artifastring) are insignificant. I chose to

use python / scipy due to my familiarity with the language, but there was no compelling advantage

of python which would outweigh another programmer’s own language of choice.

This section compares the final system with alternate methods of generating audio from sheet

music and discusses potential future work.

7.4.1 Comparison of Vivi with alternate performance methods

Having created the virtual instruments and virtual musician, I compare the system with the obvious

alternatives: Computer MIDI synthesis and human musicians. I also examine the sound quality of

the physical modelling.
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Figure 7.11: Comparison of Vivi and MIDI. Mozart’s Eine kleine Nachtmusik is shown here; chords
and double stops were removed in this arrangement. The MIDI was rendered with articulate.ly

from LilyPond 2.16.0 and the default MIDI-handling packages from Ubuntu 12.04.1: TiMidity++
2.13.2 and the fluidr3 gm 3.1 soundfont. Reverb was disabled by calling timidity -Ow2 -EFreverb=0

filename.midi. Other musical exerpts are the Bach Double Violin concerto from Figure 7.5 and the
scale arranged for string chorus from Figure 7.7.
Audio 7.5: Scale arranged as a chorus, MIDI and Vivi performances

http://percival-music.ca/dissertation/a.7.5.scale-chorus-midi.wav

http://percival-music.ca/dissertation/a.7.5.scale-chorus-skill-0.wav

Audio 7.6: Bach’s Double Violin concerto, MIDI and Vivi performances
http://percival-music.ca/dissertation/a.7.6.bach-double-intro-midi.wav

http://percival-music.ca/dissertation/a.7.6.bach-double-intro.wav

Audio 7.7: Mozart’s Eine kleine Nachtmusik, MIDI and Vivi performances
http://percival-music.ca/dissertation/a.7.7.eine-kleine-nachtmusik-intro-midi.wav

http://percival-music.ca/dissertation/a.7.7.eine-kleine-nachtmusik-intro-vivi.wav

MIDI

Sheet music engraving programs use MIDI with sampling synthesis as the default audio output. As

mentioned in Section 1.2.3, this method works well for discrete-excitation instruments (e.g., piano,

drums, guitar), but is poor for continuous-excitation instruments such as the violin. Comparisons of

MIDI and Vivi are given in Figure 7.11.

Audio 7.5 contrasts the two performance methods with a scale arranged for chorus. The samples

used for the MIDI rendering include vibrato, which is appropriate for many cases of string performance

but not often used in scales as vibrato can mask intonation mistakes. In addition, all of the notes in

http://percival-music.ca/dissertation/a.7.5.scale-chorus-midi.wav
http://percival-music.ca/dissertation/a.7.5.scale-chorus-skill-0.wav
http://percival-music.ca/dissertation/a.7.6.bach-double-intro-midi.wav
http://percival-music.ca/dissertation/a.7.6.bach-double-intro.wav
http://percival-music.ca/dissertation/a.7.7.eine-kleine-nachtmusik-intro-midi.wav
http://percival-music.ca/dissertation/a.7.7.eine-kleine-nachtmusik-intro-vivi.wav
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the MIDI rendition have the same timbre. Each note has the same timbre throughout the sustained

portion of the note, and for each instrument, all notes sound the same with the exception of their

pitches. By contrast, each note of Vivi ’s performance is different. Some of these differences are not

desirable (for example, when a note is accented more than another, or when a note fails to “speak”),

but even the mistakes serve to make the performance more human-like. These variations in timbre

are not appropriate for all applications — for example, the musical genre of electronica deliberately

embraces artificial sounds. But since classical music was composed with variable-timbre instruments

in mind, the small variations in timbre of Vivi are quite appropriate.

Audio 7.6 reveals another problem with MIDI rendering: Perceptual onset time. In the default

sample library in Ubuntu, each note has a gradual attack over 50–70 ms, with vibrato widening over

the course of this attack. With slow notes, this slow attack is not a problem, but fast notes can

appear to be played late. This is the case in the second half of the first bar of the Bach Double Violin

concerto: The cello’s 16th notes appear to lag behind the second violin’s 8th notes. A different sample

library may or may not exhibit the same problem. Professional audio producers rendering audio with

sampling synthesis will spend thousands of pounds (GBP ) on sample libraries, and manually choose

different sound fonts for different parts of the musical score. However, my goal is to compare the

automatic rendering of sheet music, so I did not manually tweak the MIDI rendering. On the other

hand, Vivi ’s rendition has a noticeably smaller frequency range. Compared to the MIDI, Vivi sounds

as though the instruments are muted. A more thorough examination of faults with the audio from the

physical modelling is performed later in this section, during the comparison between Vivi and human

musicians.

The opening chords of Audio 7.7 sounds much better in MIDI than in Vivi ; again revealing the

reduced frequency range of the physical modelling. In addition, the first violin can be heard clearly

throughout the music. However, the 16th notes seem to merge together in the MIDI and it is difficult

to hear the interesting material in the lower three voices (emphasized with crescendo, decrescendo).

By contrast, Vivi ’s 16th notes have a realistic “bouncing” sound to them, and the melodic portions

of the lower three voice can be heard. The first violin in Vivi ’s performance is not always clear and

is overpowered by lower instruments playing mp despite being marked f .

In summary, Vivi is not ready to completely replace MIDI in the composer’s toolkit, but in some

cases it demonstrates a clear advantage.

Beginning viola student

By fortunate coincidence, I began teaching a new viola student as I was finishing my research. Student

S was in her early 60s and had never previously played a string instrument, although she had played

piano and sung in amateur choirs since early childhood. I recorded her playing after three weeks of

practice; at that point, she had received 2 hours of lessons and had practiced by herself for 4 hours2.

I also spent 2 hours training Vivi to play viola. I compare Vivi , student S, and the human teacher

(myself) in Figure 7.12.

Vivi ’s performance of “Twinkle” on viola suffers from the same problems as noted earlier. The

note attacks are very strong; it sounds as though every note is accented. Despite the overly high

2The duration of solo practice may seem a bit low, but I asked her to practice for no more than 10 minute at
a time. Playing a stringed instrument requires a surprising amount of physical strength and agility in the left-hand
fingers. Children’s bodies adapt and heal very quickly, but older adult students sometimes have difficulty developing
these abilities, particularly if they already suffer from occasional arthritis.
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Figure 7.12: Comparison of Vivi and human musicians playing “Twinkle, twinkle, little star”. The
humans and Vivi are both playing viola-II, although the instrument received a new D string after the
physical measurements were taken.
Audio 7.8: Comparison of Vivi , a human student, and a human teacher

http://percival-music.ca/dissertation/a.7.8.twinkle-vivi-skill-0.wav

http://percival-music.ca/dissertation/a.7.8.twinkle-student-week-03.wav

http://percival-music.ca/dissertation/a.7.8.twinkle-teacher.wav

initial bow forces, certain notes do not “speak” clearly, such as the first B in bar 2, the first G in bar

7, the A in bar 10, and (most unfortunately) all the notes in the last bar.

Student S adds a few pauses to the music, particularly when changing strings. In addition, she has

some problems coordinating her two hands; occasionally she will begin bowing a note before adjusting

her left-hand fingers (e.g., bar 3, bar 10) or even changing to the correct string (e.g., bar 6–7). There

were numerous intonation mistakes, but she corrected them quickly by sliding her finger to the correct

position.

The teacher’s performance has good bow tone, and any intonation mistakes are quickly fixed.

Physical modelling sound quality

There is a clear difference in audio quality between humans and Vivi , despite the simulation being

performed with the physical constants measured from the instrument played by the humans. This

difference is examined in greater detail in Figure 7.13, contrasting the first note of the teacher’s

recorded audio with Vivi ’s audio output.

In particular, the strength of modal peaks drops tremendously after about 4 kHz. In the range of

5 kHz to 8 kHz, most simulated peaks are at least 50 dB less than the modal peaks in the recorded

audio. Some of this difference may arise due to faults in the measurement of the instrument body

impulse responses. If the audio recording of instrument taps from Section 3.3.2 does not have a

flat frequency response, those imperfections will be reflected in the simulated sound. Such problems

could arise due to electrical or acoustic noise, effects of the room’s acoustics, microphone construction,

or if the taps themselves were not sufficiently short (and, equivalently, spectrally board) to contain

sufficient high-frequency energy. Examining the frequency response of the silence before the impulse

shows the effect of room, electrical and acoustic noise, and microphone; this is shown in Figure 7.14.

There will clearly be some bias due to imperfect recording conditions, but this does not explain the

difference between frequency ranges 2–4 kHz and 5–8 kHz. To further investigate the weakness of upper

frequencies in the simulated audio, I disabled the instrument body filter entirely and re-synthesized

the violist’s actions; this is included in Figure 7.13. In this simulation, a few modes (approximately

6.7 kHz, 7.3 kHz, and 7.6 kHz) have equal or even higher magnitude than the recorded audio, while

other modes are still less than the audio. I theorize that this discrepancy in the distribution of energy

amongst modes is due to the limited number of forces. Recall that while bowing the string in the

http://percival-music.ca/dissertation/a.7.8.twinkle-vivi-skill-0.wav
http://percival-music.ca/dissertation/a.7.8.twinkle-student-week-03.wav
http://percival-music.ca/dissertation/a.7.8.twinkle-teacher.wav
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Figure 7.13: Examination of first note of “Twinkle, twinkle, little star”. The frequency difference
in modes likely arises due to different in string tuning; Vivi ’s pitch (measured with YINFFT) is
293.2 ± 0.14 Hz, while the human teacher’s pitch is 292.5 ± 0.23 Hz. To investigate the difference
in upper frequencies between the real and simulated instruments, the note was resynthesized in Ar-
tifastring without applying the instrument body filter. Since the Viola-D-II string is simulated at
44100 Hz, this produces some aliasing after decimating to 22050 Hz for the overall instrument output.
Audio 7.9: Comparison of one note of “twinkle” between teacher and Vivi

http://percival-music.ca/dissertation/a.7.9.twinkle-teacher-note1.wav

http://percival-music.ca/dissertation/a.7.9.twinkle-vivi-note1.wav

http://percival-music.ca/dissertation/a.7.9.twinkle-artifastring-no-body-note1.wav
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Figure 7.14: Frequency response of viola-II silence before impulse.

model, there is only one finger force and one bow force. Limiting the external forces in this manner

permitted a direct solution of the bow-string friction interaction, but if the position of either point

force is close to a node, the external force will have little effect on that mode. This was a compromise

between physical realism and computational efficiency.

In retrospect, I suspect that I erred too much on the side of fast simulation. The extensive

examination of finger forces in Section 2.2.2 and Section 2.2.3 showed that the model required at least

two forces for each finger (left- and right-hand) to avoid undesirable behaviour. Some problems with

the single-force bow modeling were noted in Section 2.3.1, but at the time I made the design decision

to accept those problems.

http://percival-music.ca/dissertation/a.7.9.twinkle-teacher-note1.wav
http://percival-music.ca/dissertation/a.7.9.twinkle-vivi-note1.wav
http://percival-music.ca/dissertation/a.7.9.twinkle-artifastring-no-body-note1.wav
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7.4.2 Future work on Vivi

Given the previous comparisons between human performance and the Vivi , the ideas for improving

the model in Section 2.4.1, Section 3.6.1, and Section 4.3.2 should be given more weight. However,

this section will focus on the virtual musician rather than the virtual instrument.

I discussed future work on the control loops in Section 5.4.3 and improvements to the calibration

and musical interpretation in Sections 6.4.1 and Section 6.4.2, so here I will restrict myself to comments

about the implementation. These fall into four categories: The software design, support for multiple

instruments, applying Vivi to large collections of sheet music, and more stringent comparisons between

Vivi and alternate methods of generating sound.

Software design

The profile in Table 7.3 showed that there are no bottlenecks in the python code, so there is no

performance reason to alter the overall design. However, it may still be desirable to shift the division

between C++ and python slightly. In particular, once a musical interpretation has been created (i.e.

a list of notes with their mid-level modifications has been finalized), this list could be saved to a

file, which would then be processed with C++. At the moment, the musical interpretation is saved

in python, and python then calls vivi controller::note(...), vivi controller::pizz(...), or

vivi controller::rest(...) accordingly.

Splitting the musical performance in this manner will not offer a noticeable improvement in speed,

but it would result in a cleaner separation of layers. This would in turn allow easier testing, optimiza-

tion, and make it simpler for other research projects to interact with Vivi . This interaction could take

two forms: either generate their own musical interpretation and use Vivi for the mid- and low-level

rendering, or else take the Vivi ’s musical interpretation and render it with other means (any of the

synthesis methods discussed in Section 1.2.3).

Multiple instruments

The audio performance of multi-instrument scores would be improved by simulating room acoustics

instead of merely setting a left/right panning value for each part. The simulation of room acoustics

is an open research problem, but a good approximation is to use first-order reflections. Given the

dimensions of a room, the location of each sound source (instrument in the score), and the listener

(assumed to have ears 22 cm apart), we can calculate the distance between each sound source and

each listener’s ear. After calculating the length of the direct path, the paths with a single reflection

is calculated from the length from the sound source to a wall (or floor or ceiling) and thence to each

listener’s ear, assuming that the sound waves’ reflection is non-diffuse.

Once the distance travelled is computed for each path from sound source to destination (direct

path, plus one path including one reflection from each surface), we can calculate the time delay

and amplification for each path. In particular, given the speed of sound at room temperature as

c = 340 m/s, the path length Li, and sampling rate fs, the delay di (in samples) and amplification ai

are

di =
Li · fs
c

ai =
1

L2
i

(7.3)
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The paths are summed to produce the final output. Given the sound source x[t], the signal at the

destination is

y[t] =

N∑
i=1

ai · x[t− di] (7.4)

In the case of first-order reflections, N = 5 (for two-dimensional rooms) or N = 7 (for three-

dimensional rooms). Non-integer delays can be accommodated using fractional delay lines with linear

interpolation.

The animation of multi-instrument music could be improved by having multiple instrument objects

in Blender, then rendering the whole scene at once instead of rendering each instrument independently.

These instruments could also be placed within a larger scene, for example a virtual concert hall. For

added realism, the instrument placement and dimensions of the virtual room in Blender would be

used in the acoustic room simulation.

Large collections of sheet music

There are several websites with large collections of copyleft sheet music in digital format, such as

MutopiaProject3 and Kern scores4. Vivi could be use to automatically produce audio performances

of these works. The results would not be professional quality, but for many pieces of music it would

give a better indication of the sound than a MIDI rendering would. Such an effort would benefit

library users browsing for audio, as well as benefiting Vivi for the additional real-world testing of the

music interpretation.

3http://www.mutopiaproject.org/
4http://kern.ccarh.org/

http://www.mutopiaproject.org/
http://kern.ccarh.org/


Chapter 8

Conclusion

I have developed a new method of synthesizing audio from sheet music. Part I of this dissertation

described the creation of the virtual violin family (violin, viola, cello), while Part II discussed training

a virtual musician to perform sheet music with these instruments. This conclusion will evaluate the

project’s goal, discuss the academic contributions of this dissertation, examine the lack of philosophical

implications of virtual musicians, and end with an overview of anticipated future work.

8.1 Evaluating the initial goal

The initial goal set out in Section 1.3 was:

Given a machine-readable representation of sheet music, the computer autonomously produces

audio and video that sounds as if it was performed by a human.

Sheet music can be read directly from the LilyPond format or converted from MusicXML to

LilyPond, satisfying the first clause. The quality of Vivi ’s performance is roughly on par with a music

student with two years of experience. The problem definition included three constraints, which were

satisfied in the following manner:

Free software: The physical modelling and virtual musician software was written by me and licensed

under the GPLv3+ as discussed in Appendix C. This enshrines everybody’s right to use, modify,

and redistribute the code. All libraries used by Artifastring and Vivi are also available under

copyleft licenses.

Easily extended: The different layers of the performance process — musical interpretation, mid-

level note modifiers, feedback control, and physical modelling — are clearly separated with only

a small amount of information travelling between layers. In addition, each step of the process

is discussed in detailed in this dissertation, with many graphs, diagrams, and audio examples.

Interested developers can modify or replace one layer of the process without possessing any

expertise or knowledge of other layers. Physical constants can be easily modified or added if

more instruments are measured.

Human-like pedagogy: The only human input required is to judge the timbre in terms of bow

force, as discussed in Section 5.2.1. No knowledge of programming or physics is required for

training Vivi .
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An informal comparison of simple music performed by Vivi and a human student was given in

in Section 7.4.1. Examples of entire pieces of music performed with Vivi are given in Appendix B.

It would be interesting to conduct a formal comparison of Vivi and human students of varying skill

levels (e.g., 3 months, 6 months, 1 year, 2 years).

Such a comparison could be designed similar to Turing’s “imitation game” (Turing 1950), often

referred to as the “Turing test”. In the imitation game, a human judge converses with two unknown

entities A and B via text. One of these entities is a human, while the other is a computer running

a program which attempts to respond in a human-like manner. After conversing for a number of

minutes, the judge must decide whether A or B is the computer. Over the years there have been

many variations proposed for this game (Saygin et al. 2000).

This test could be adapted for testing Vivi against human performances; instead of conversing

via text, the human judge would listen to an audio recording produced either via recording a human

musician, or synthesized with Vivi . However, while envisioning such a test, there are a few different

questions we could ask the judge:

� Of the audio recordings A and B, which sounds as if it was performed by a human?

� Of the audio recordings A and B, which did you enjoy listening to the most?

� Rank the musical quality of each recording from 1 to 10.

Ideally this experiment would be performed multiple times. To measure statistical significance, I

suggest the Friedman test (Friedman 1937), which is a non-parametric evaluation of different treat-

ments over multiple tests. For example, we could ask n = 10 human judges to listen to k = 4 different

performances of the same piece of music; one of these performances would be from Vivi , while the

remaining three would be from musicians of varying skill levels.

I will not delve further into the consequences of the experimental design, but will rather note

that there is a fundamental difference between attempting to imitate a human musician and trying to

automatically create useful audio from sheet music. With no pun intended, I suggest that the latter

goal is more useful to pursue. There is certainly value in attempting to imitate human performance;

to quote Nobel laureate Richard Feynman, “What I cannot create, I do not understand”1. Writing a

computer program to perform music in a particular style would be a very useful test for many theories

in musicology; if the program fails to generate the expected performance, then the musical theory

should be re-evaluated.

Although the advancement of musicology is a worthwhile goal, the majority of applications I

envisioned in Section 1.1 are more practical. There are three main applications of virtual musicians:

Automatic performance of sheet music for composers (be they professionals, students, or amateurs);

automating certain aspects of instrumental control to allow non-musicians to “perform” a virtual

instrument with assistive technologies; and generating audio to help users of sheet music libraries

select piece(s) of music. In all these cases, the overall quality of the music is the most important

factor in its applicability, not whether the musical performance are realistic or not. Realism will likely

play a role in users’ opinions about the generated sound, but this can be captured by asking users to

rank the quality of the recordings, rather than their human-ness.

1Written on Feynman’s blackboard at the time of his death in 1988,
http://archives.caltech.edu/search_catalog.cfm?search_field=%2B1.10-29 accessed 2013 Jan 27.

http://archives.caltech.edu/search_catalog.cfm?search_field=%2B1.10-29
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8.2 Philosophical implications (or the lack thereof)

Regardless of whether we shift Vivi ’s goal from “imitating a human” to “producing music that sounds

better than a beginner with X weeks of experience”, Vivi should not be subjected to the same philo-

sophical quagmire which Turing attempted to avoid by suggesting the imitation game as a replacement

for the question “can computers think”. I have made no claim that Vivi can “feel” music, “express”

music, or anything of the sort. The formal problem statement given in Section 1.3 states that the

computer should produce “audio that sounds as if it was performed by a human”. I am not suggesting

that, if Vivi is capable of fulfilling that goal, we describe Vivi as a “musician” or “artist”. Such terms

are highly loaded and not at all helpful.

Rather, I claim that if Vivi is capable of producing audio which sounds as though it was performed

by a human, then Vivi is capable of producing audio which sounds as though it was performed by a

human. No more, no less. If there is an application scenario that would benefit from such audio (e.g.,

inexpensive performances of works by composition students, allowing people paralyzed from their neck

down to exert some level of control over string music), then Vivi would be able to fulfil that need.

If the application scenario requires other facets (e.g., sounding like a concert soloist, following a live

human conductor), then Vivi would require modifications.

Debates over the definitions of words are rarely helpful, and I cannot imagine a scenario2 in which

Vivi ’s output would be improved by such a debate. There are concrete flaws in certain aspects of

Vivi , which require a combination of physics, digital signal processing, machine learning, and/or basic

violin pedagogy to solve.

Leaving aside any semantic debate about terms such as “music”, “musician”, or “aesthetics”, some

people may raise an ethical question. Their argument may be something along these lines: Virtual

musicians which sound as good as human musicians with 15 years of experience could replace real

musicians, especially if the virtual musicians were available for free. Vivi is currently far from being

sufficiently skilled to replace any human musicians, but this may be a concern in a decade. Is it

ethically acceptable to put skilled workers out of work?

Concerns over the effect of automation are not new; the Luddite movement famously espoused

these views in the early 1800s. Automation certainly reduces the amount of work required to create a

product or perform a task. If the demand for the product does not increase, then fewer workers will

be required.

I have two replies to these concerns. First, worries about automation in music are not new. The

player piano, phonograph, and wireless radio all raised concerns about putting musicians out of work.

In the present day, sampling synthesis is often used for “background” instruments in commercial music

recordings. This point in itself does not mean that the concerns are meaningless, but rather this is a

century-old debate to which Vivi does not add anything new. Second, I will note that the long-term

effect of automation is overwhelmingly positive; the present quality of life in the Western world is

much higher than it was two hundred years ago. We live longer, have more leisure time, have greater

opportunities for travel or enjoying the arts, etc.

In summary, Vivi raises no new philosophical issues, and the debate about existing issues will not

help Vivi to produce better output. My focus is creating good music, not talking about music.

2I received a first-class Honours in Philosophy, so I do not believe that I suffer from a lack of familiarity with
philosophical debate.
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8.3 Contributions of this dissertation

This dissertation is primarily composed of applying well-known techniques to the performance of

stringed music. Although this research did not result in any fundamental discoveries in physics or

machine learning, there is considerable value in dissecting an overall goal into specific problems which

can then solved with known techniques. The choice of which techniques to use, the considerations

which led to those decisions, and the consequences of those decisions are all useful contributions which

can shape future research on this problem.

The single largest contribution of this dissertation is the presentation of a complete system for

performance of stringed music published under a permissive copyright license. This enables future

researchers to test individual aspects of the process without requiring them to be experts in other areas.

For example, a mechanical engineer could improve the bow-friction model, recompile Artifastring, hire

a violin student to spend two hours training the new system, then listen to the Bach Double Violin

concerto being performed with the new friction model. Alternatively, a computer scientist with no

knowledge of physics or music could change the type of the machine learning used for the feedback

control, and hear entire pieces of music being performed with that alteration within an hour. Finally,

a musician with a few hours of experience learning the Python programming language — a language

noted for being “readable” and easy to learn — could test different theories of instrument performance,

applying the results to real string music within minutes of his modifications.

The original form of the physical modelling equations for Artifastring in Chapter 2 came from

(Demoucron 2008). Those equations were extended to include damping for the left-hand finger, the

addition of right-hand pizzicato, and a few problems in the bow-friction model were fixed, most notably

avoiding an unstable system with high-Q strings. In Chapter 3, physical constants were measured

from five violins, two violas, and three cellos, forming the largest collection of such constants which

include modal decay values. Great care was taken to create a very efficient C++ implementation in

Chapter 4, applying techniques for high-performance software such as SIMD instructions and extensive

profiling. Animated videos are created automatically to enable immediate visualization of the bow

and finger actions, allowing the system to serve as an example for beginner students. The final system

of physical modelling can simulate ten distinct instruments, and simulating a single instrument can

be performed one hundred times faster than real-time.

The work on Vivi began with an examination of the application of human violin pedagogy to the

computer in Chapter 5. The problem of bow control was decomposed into signal feature extraction and

SVM classification, while restricting the human training to that which could be reasonably performed

by a musician with no physics or computer programming background. The control of the left-hand

finger was achieved by PID control with a few modifications to avoid false corrections due to poor bow

control. The calibration of initial parameters in Chapter 6 was solved by applying grid search using

the performance metric of the previously-trained SVM classifiers. Solo practicing was implemented

with the artificial technique of hill climbing, again using the SVM classifiers as the performance metric.

Musical notation used in beginner string music was translated into physical actions by considering

how that notation would be performed. Finally, Chapter 7 used multi-threaded design (a FIFO queue

and worker threads) to minimize the running time of large operations in Vivi on multi-core computers.

A test suite of sheet music was constructed, consisting of solo violin music from Suzuki books 1

and 2, the first movements of the Bach Double Violin concerto and Mozart’s Eine kleine Nachtmusik

for string quartet, and Pachelbel’s Canon in D.
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8.4 Future work

Detailed suggestions for improvement were given at the end of each chapter. This section will not

re-iterate those points, but rather will provide some thoughts about the relative benefits from working

on each area.

As was discussed in the comparison of Vivi with a human student in Section 7.4.1, in retrospect

it seems that the balance between physical realism and computation efficiency was too far on the side

of efficiency. There would be two main benefits to improving the quality of the physical model: First,

the audio quality would improve, but second, it is possible that certain problems with feedback control

could be mitigated. Increasing the sample rate and number of modes could aid in the establishment

of Helmholtz motion, and taking the bow width into account would certainly change the model’s

behaviour.

Similar benefits (improved audio, improved control) could arise by a “virtual luthier” tweaking

the physical constants. Real-life luthiers select materials, shapes, and modify instrument construction

techniques in order to improve the sound quality. It is reasonable to assume that similar skills could

also benefit virtual instruments, especially since there are no physical constraints on the materials.

A virtual luthier could begin with a cello string and subject it to hundreds of Newtons of tension in

order to tune it as a violin E string. Conversely, the slow modal decays of the violin E string could be

applied to the cello C string without altering any other constants. Directly altering constants like this

is impossible in real life, but it could result in a fascinating set of sounds from the model. Optionally, a

virtual luthier could create entirely new instruments, such as an 8-stringed “octo-cello” whose strings

spanned the entire range of cello and violin strings, but whose body filter was the impulse response

from a double bass.

The automatic control of note attacks is the weakest part of Vivi ; this is the main problem which

brings the practical use of Vivi into question. Improving the control is a question of control theory,

digital signal processing, and machine learning. As discussed in Section 5.4.2, we cannot expect more

detailed information from the human trainers without relaxing the “human-like pedagogy” constraint,

but it may be possible to use the existing machine learning to train a second layer of machine learning.

This second layer would be used for the direct control of the string.

Improving the musical interpretation is a longer-term research question in artificial intelligence

and musical aesthetics, and is not necessary for all applications of Vivi . For example, the Vocaloid

computer singing software does not interpret notation; users specify the notes’ pitches, durations, and

lyrics. Expressive alterations are performed manually by the “tuner” (who is occasionally a different

person than the composer and producer). Similarly, in some cases of using Vivi as part of a virtual

instrument for assistive technologies, it may be expected that the musical expression will be controlled

directly by the user.

Regardless of which aspect(s) are chosen to receive future work, Vivi remains a platform allowing

experts to focus on their specialities. Due to the permissive copyright license and available raw data in

Appendix C, future researchers may directly work on their expertise without needing to re-implement

areas outwith their interests.

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

(Turing 1950, p. 460)



Appendix A

Additional Mathematics for

Physical Modelling

This appendix discusses a conjecture concerning the bowing coefficient D1 in Chapter 2, which was

removed from the main text for brevity. D1 occurs in a few bowing equations which could be simplified

if D1 > 0. For example, the “negative slipping” bowing case (2.41),

∆v = min

(
c1 +

√
c21 + 4c0D1

2D1
,
c1 −

√
c21 + 4c0D1

2D1

)
provided that ∆v < 0

=
c1 −

√
c21 + 4c0D1

2D1
provided that ∆v < 0 and D1 > 0

(A.1)

While I cannot present a formal proof that D1 > 0, I give strong analytic evidence and note that

it is true for all of the physical constants I have measured for violin, viola, and cello strings.

Lemma 1: String coefficients X3n > 0 and Y3n > 0

Recall the definitions from Table 2.2, for n ∈ {1, 2, . . . , 40}.

X3n =
1−

(
cos(ωndt) + rn

ωn
sin(ωndt)

)
e−rndt

ρLω2
0n

Y3n =

(
ωn +

r2n
ωn

)
sin(ωndt)e

−rndt

ρLω2
0n

(A.2)

The number of modes and sampling rates were chosen such that ωndt < π (to stay below the

Nyquist sampling limit). In addition, ωn > 0, ρL > 0, and rn ≥ 0, and so −1 < cos(ωndt) < 1,

0 < sin(ωndt) < 1, and 0 < e−rndt ≤ 1. Given those constraints, Y3n > 0.

X3n > 0 when (
cos(ωndt) +

rn
ωn

sin(ωndt)

)
e−rndt < 1 (A.3)

If there were no modal decay, rn = 0 and (A.3) reduces to cos(ωndt) < 1 which was previously

noted as true. When modal decay is added with rn > 0, the sine term becomes relevant, but e−rndt

will decrease. I simplify (A.3) with the following substitutions
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x = ωndt y = rndt (A.4)

which reduces the left-hand side of (A.3) and the range of x and y as

(
cos(x) +

y

x
sin(x)

)
e−y for 0 < x < π, 0 ≤ y (A.5)

Within that range, the trigonometric functions are bounded by

cos(x) < 1 sin(x) < x for 0 < x < π (A.6)

Substituting sin(x) = x and cos(x) = 1 − ε, where ε is an arbitrarily small value which is greater

than zero, (A.5) can be rewritten as

(1− ε+ y) e−y (A.7)

Differentiating the result to find its maximum value,

d(1− ε+ y)e−y

dy
= e−y − (1− ε+ y)e−y = 0 ∴ y = 0 (A.8)

This clearly gives us a maximum value of 1 − ε, satisfying the condition in (A.3) that this value

be < 1. Therefore X3n > 0.

Lemma 2: Violinist position coefficients A00, B00 > 0;A11, B11 ≥ 0

The positions x0 and x1 of the forces on the string are set by the actions of the violinist. These positions

are used to calculate the A and B coefficients, defined in (2.20) and included here for reference:

Apq =

N∑
n=1

φn(xp)φn(xq)X3n Bpq =

N∑
n=1

φn(xp)φn(xq)Y3n for p, q ∈ {0, 1} (A.9)

φn(x) =

√
2

L
sin
(
nπ

x

L

)
(A.10)

If the finger is not on the string, x1 = 0, φn(x1) = 0 and thus A11 and B11 = 0. If the finger

is on the string, then x1 > 0 and φn(x) will vary between −
√

2
L and

√
2
L . However, if p = q, then

φn(xp)φn(xq) = (φn(xp))
2, and since X3n and Y3n are greater than zero by lemma 1, A00, A11, B00,

and B11 will also be greater than zero provided that xp > 0. We are only interested in D1 when the

bow is on the string, so x0 > 0 and thus A00 and B00 will be greater than zero.

Lemma 3: Violinist position coefficients A01 = A10, B01 = B10

Since multiplication is commutative, φn(xp)φn(xq) = φn(xq)φn(xp).
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Lemma 4: B00B11 −B01B10 ≥ 0

From lemma 3, we can rewrite this lemma and expand with the definition of Bpq,

B00 B11 − (B01)2 ≥ 0(∑N
n=1 φn(x0)φn(x0)Y3n

) (∑N
n=1 φn(x1)φn(x1)Y3n

)
−

(∑N
n=1 φn(x0)φn(x1)Y3n

)2

≥ 0

(A.11)

I define

an = φn(x0)
√
Y3n bn = φn(x1)

√
Y3n (A.12)

Substituting an and bn into the left-hand side of (A.11) gives

(∑N
n=1 a

2
n

) (∑N
n=1 b

2
n

)
−

(∑N
n=1 anbn

)2

≥ 0 (A.13)

which is a restatement of the the Cauchy-Schwarz inequality and is thus true.

Conjecture 1: A11B00 − A10B01 ≥ 0

A similar analysis to lemma 4 cannot be performed for this conjecture. In the trivial case of bowing

a string without any finger, A11, A10, and B01 are all 0 and the conjecture is true. For the case of a

finger on the string, I cannot present a proof but can give evidence for this conjecture.

To investigate the case of a finger on the string, we first consider a simple (unrealistic) model in

which X3n and Y3n do not vary based on the mode but the φn values remain as stated (i.e. mode-

dependent). Specifically, I replace Apq and Bpq with Âpq and B̂pq which use the means of X3n and

Y3n, i.e.

X̄3 =
1

N

N∑
n=1

X3n Ȳ3 =
1

N

N∑
n=1

Y3n (A.14)

Âpq =

N∑
n=1

φn(xp)φn(xq)X̄3 B̂pq =

N∑
n=1

φn(xp)φn(xq)Ȳ3 (A.15)

ci = φn(x0) di = φn(x1) (A.16)

We can then expand

Â11B̂00 − Â10B̂01 =

(
N∑
n=1

didiX̄3

)
·
(

N∑
n=1

ciciȲ3

)
−
(

N∑
n=1

diciX̄3)

)
·
(

N∑
n=1

cidiȲ3

)

= X̄3Ȳ3

[(
N∑
n=1

didi

)
·
(

N∑
n=1

cici

)
−
(

N∑
n=1

dici

)
·
(

N∑
n=1

cidi

)]

= X̄3Ȳ3

 N∑
n=1

d2
i

N∑
n=1

c2i −
(

N∑
n=1

cidi

)2


(A.17)

Since X̄3 and Ȳ3 are both greater than 0, the Cauchy-Schwarz inequality shows that (A.17) is

greater or equal to 0.
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Figure A.1: X3n and Y3n for violin-E-I and cello-C-I. For these two instruments,
5.9 E−8 < X3n < 1.5 E−7 and 2.4 E−3 < Y3n < 2.7 E−2.
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Figure A.2: A11B00 −A10B01 for violin-E-I and cello-C-I. When x0 = 0 or x1 = 0, the expression has
a value of 0; otherwise there is very little variation in its value.

In the real model, X3n and Y3n vary based on the mode, so (A.17) does not prove this conjecture.

Figure A.1 suggests that X3n and Y3n decrease monotonically, but this depends on the precise modal

decays rn used. If rn decreases abruptly as n increases, X3n or Y3n may increase.

Empirical plots of A11B00 − A10B01 for 0 ≤ x0 < x1 ≤ 1 are given in Figure A.2. Assuming that

all other strings have similar Apq and Bpq to these particular strings, these plots suggest that this

conjecture is true for my physical constants.

Conjecture 2: D1 > 0

As defined in Table 2.4,

D1 =
(B11R1 +A11K1 + 1)

(B00B11 −B01B10)R1 + (A11B00 −A10B01)K1 +B00
(A.18)

The numerator is positive since R1 and K1 are positive physical constants, and B11 and A11 have

been shown shown to be positive (Lemma 2). The first term of the denominator has been shown to

be positive (Lemma 4), the second term is assumed positive (Conjecture 1), and the third term has

been shown to be positive (Lemma 2). Therefore, D1 > 0 as required.
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Performances of select sheet music

This appendix provides performances of four pieces of famous music for string ensembles.

W. A. Mozart: Eine kleine Nachtmusik

This is a string quartet for two violins, viola, and cello. The original version of this score came from

the Mutopia1 sheet music archive:

http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=900

The quartet was arranged by me to remove all double stops, as they are not yet supported by

Vivi . I also added a few additional editorial dynamics and articulations. The resulting sheet music

was processed with Vivi with no modifications to the audio output.
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Allegro

Eine kleine Nachtmusik
Movement 1

Wolfgang Amadeus Mozart (1756 - 1791)
arr. Graham Percival

Audio B.1: Eine kleine Nachtmusik

http://percival-music.ca/dissertation/a.B.1.eine-kleine-nachtmusik.wav

Music: http://percival-music.ca/dissertation/eine-kleine-nachtmusik.pdf

LilyPond: http://percival-music.ca/dissertation/eine-kleine-nachtmusik.ly

1The Mutopia Project hosts music typeset with LilyPond which has been placed under the public domain or under
the Creative Commons Attribution or Attribution-ShareAlike copyleft licenses.
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J. S. Bach: Concerto in D minor for two violins and strings

This is a concerto for two violins accompanied by a small string orchestra. This version has a total of

four violins, one viola, and one cello. The original version of this score came from the Mutopia sheet

music archive:

http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=3

I added some editorial dynamics and articulations. The resulting sheet music was processed with

Vivi with no modifications to the audio output.
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BWV 1043

Concerto in D minor
for two violins and strings

Johann Sebastian Bach (1685-1750)

Audio B.2: Bach double

http://percival-music.ca/dissertation/a.B.2.bach-double.wav

Music: http://percival-music.ca/dissertation/bach-double.pdf

LilyPond: http://percival-music.ca/dissertation/bach-double.ly

J. Pachelbel: Canon in D

This is a work for three violins and cello. The original version was from the Lyco2 sheet music archive:

http://sheetmusic.lyco.org.au/Pachelbel%20-%20Canon%20in%20D/

The only modifications made by me were to add an initial dynamic for each part (mp for violins

and mp - p for cello), and set the instrument names according to the format expected by Vivi . The

resulting sheet music was processed with Vivi with no modifications to the audio output.

2Lyco is the Launceston Youth and Community Orchestra from Tasmania, Australia. After typesetting works for
their own use, the members make their work available under the Creative Commons Attribution-ShareAlike 3.0 license.

http://www.mutopiaproject.org/cgibin/piece-info.cgi?id=3
http://percival-music.ca/dissertation/a.B.2.bach-double.wav
http://percival-music.ca/dissertation/bach-double.pdf
http://percival-music.ca/dissertation/bach-double.ly
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Canon in D
Johann Pachelbel (1653-1706)

Audio B.3: Pachelbel

http://percival-music.ca/dissertation/a.B.3.pachelbel-canon.wav

Music: http://percival-music.ca/dissertation/pachelbel-canon.pdf

LilyPond: http://percival-music.ca/dissertation/eine-kleine-nachtmusik.ly

F. J. Gossec: Gavotte

This is the final piece of Suzuki Violin Book 1 (Suzuki 1978a). The typesetting was performed by me,

with minor modifications to dynamics. The violin part was extracted and processed with Vivi . The

piano part was extracted, a MIDI track was generated with LilyPond, and then audio was created

with timidity++ using the fluidr3 gm 3.1 soundfont. The two audio files were mixed after applying an

amplification of +6 dB to the violin part. Since Vivi is only intended to perform stringed instrumental

music, I feel the manual processing of the piano part was justified.
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François-Joseph Gossec (1734 - 1829)

Audio B.4: Gavotte

http://percival-music.ca/dissertation/a.B.4.suzuki-1-17-gavotte.wav

Music: http://percival-music.ca/dissertation/suzuki-1-17-gavotte.pdf

LilyPond: http://percival-music.ca/dissertation/eine-kleine-nachtmusik.ly
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Appendix C

Source code, raw data, and copyleft

licenses

To encourage further modifications by other researchers, all source code and raw data is available

under permissive copyleft licenses. The source code for Artifastring and Vivi is published under the

GNU General Public License version 3 or higher. The full license is available at:

http://www.gnu.org/licenses/

This dissertation is published under the Creative Commons Attribution-ShareAlike 2.5 UK: Scot-

land. The full license is available at:

http://creativecommons.org/licenses/by-sa/2.5/scotland/

Physical modelling The source code for analysis of the experimental data, a python implementation

of the physical model for easy experimentation, and the full C++ implementation of Artifastring:

https://github.com/gperciva/artifastring

An archival version of this repository at the time of this dissertation’s publication:

http://percival-music.ca/dissertation/artifastring-phd.tar.bz2

The raw data for the modal decays and instrument body impulse responses are at:

http://percival-music.ca/dissertation/physical-raw.html

Vivi source code The source code for the virtual musician and selected sheet music:

https://github.com/gperciva/vivi

An archival version of this repository at the time of this dissertation’s publication:

http://percival-music.ca/dissertation/vivi-phd.tar.bz2

The raw data for the training datasets for Vivi are:

http://percival-music.ca/dissertation/vivi-training-data.tar.bz2

This dissertation The full source code for this LATEX document, including all graphs and figures:

http://percival-music.ca/dissertation/dissertation.tar.bz2
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Ericsson, K. A., Krampe, R. T. & Tesch-Römer, C. (1993), ‘The role of deliberate practice in the

acquisition of expert performance’, Psychological Review 100(3), 363–406.

Firth, I. (1985), ‘Construction and performance of quality commercial violin strings’, Journal of the

Catgut Acoustical Society 44, 17–20.

Fitzgerald, B., Coates, J. & Lewis, S. (2007), Open content licensing: cultivating the creative commons,

Sydney University Press.

URL: http://creativecommons.org

Fletcher, H., Blackham, E. D. & Stratton, R. (1962), ‘Quality of Piano Tones’, The Journal of the

Acoustical Society of America 34(6), 749–761.

Franchetti, F., Kral, S., Lorenz, J. & Ueberhuber, C. W. (2005), ‘Efficient utilization of SIMD exten-

sions’, Proceedings of the IEEE 93(2), 409–425.

Friberg, A. (2006), ‘pDM: An Expressive Sequencer with Real-Time Control of the KTH Music-

Performance Rules’, Computer Music Journal 30(1), 37–48.

Friberg, A., Colombo, V., Frydén, L. & Sundberg, J. (2000), ‘Generating Musical Performances with

Director Musices’, Computer Music Journal 24(3), 23–29.

Friedman, M. (1937), ‘The use of ranks to avoid the assumption of normality implicit in the analysis

of variance’, Journal of the American Statistical Association 32(200), 675–701.

Frigo, M. & Johnson, S. G. (2005), ‘The Design and Implementation of FFTW3’, Proceedings of

the IEEE 93(2), 216–231. Special issue on “Program Generation, Optimization, and Platform

Adaptation”.

URL: http://libfftw.org

Fritz, C., Blackwell, A. F., Cross, I., Woodhouse, J. & Moore, B. C. J. (2012), ‘Exploring violin

sound quality: Investigating English timbre descriptors and correlating resynthesized acousti-

cal modifications with perceptual properties’, The Journal of the Acoustical Society of America

131(1), 783–794.

Fritz, C., Cross, I., Moore, B. C. & Woodhouse, J. (2007), ‘Perceptual thresholds for detecting modi-

fications applied to the acoustical properties of a violin’, J. Acoust. Soc. Am. 122, 3640–3650.

Gargouri, Y., Hajjem, C., Larivière, V., Gingras, Y., Carr, L., Brody, T. & Harnad, S. (2010), ‘Self-

Selected or Mandated, Open Access Increases Citation Impact for Higher Quality Research’,

PLoS ONE 5(10), –13636.

Garritan Libraries (2012), ‘Garritan personal orchestra 4’, company website. Accessed 2012-Jan.

URL: http://www.garritan.com/

Geringer, J. M. & Allen, M. L. (2004), ‘An analysis of vibrato among high school and university violin

and cello students’, Journal of Research in Music Education 52(2), 167–178.

http://creativecommons.org
http://libfftw.org
http://www.garritan.com/


BIBLIOGRAPHY 192

Goldberg, D. (1991), ‘What every computer scientist should know about floating-point arithmetic’,

ACM Comput. Surv. 23(1), 5–48.

Good, M. (2001), ‘MusicXML: An internet-friendly format for sheet music’, XML Conference and

Expo pp. 3–4.

Guennebaud, G., Jacob, B. et al. (2010), ‘Eigen v3’.

URL: http://eigen.tuxfamily.org

Guettler, K. (2002), The Bowed String. On the Development of Helmholtz Motion and On the Creation

of Anomalous Low Frequencies, PhD thesis, KTH, Sweeden.

Guettler, K. (2011), ‘How does rosin affect sound?’, ASTA String Research Journal II, 37–47.

Guettler, K. & Askenfelt, A. (1995), Relation between bow resonances and the spectrum of a bowed

string, in ‘International Symposium of Musical Acoustics’, Dourdan, France, pp. 232–237.

Hamasaki, M., Takeda, H., Hope, T. & Nishimura, T. (2009), Network Analysis of an Emergent

Massively Collaborative Creation Community: How Can People Create Videos Collaboratively

without Collaboration?, in ‘International Conference on Weblogs and Social Media’, The AAAI

Press.

Hassaballah, M., Omran, S. & Mahdy, Y. B. (2008), ‘A review of SIMD multimedia extensions and

their usage in scientific and engineering applications’, The Computer Journal 51(6), 630–649.

Helmholtz, H. L. F. (1895), On the sensations of tone as a physiological basis for the theory of music,

3rd edn, Longmans, Green, London. Alexander J. Ellis (translator).

Hsu, C. W., Chang, C. C. & Lin, C. J. (2003), A practical guide to support vector classification, Tech-

nical report, Department of Computer Science and Information Engineering, National Taiwan

University, Taipei, Taiwan. Last updated 2010.

Hutchins, C. M. (1981), ‘The Acoustics of Violin Plates’, Scientific American 245(4), 170.

IEEE Computer Society (2008), IEEE Standard for Floating-Point Arithmetic, Technical Report 754-

2008, 3 Park Avenue, New York, NY 10016-5997, USA.

Inácio, O., Antunes, J. & Wright, M. C. M. (2008), ‘Computational modelling of string–body in-

teraction for the violin family and simulation of wolf notes’, Journal of Sound and Vibration

310(1-2), 260–286.

Intel (2007), Intel SSE4 Programming Reference.

Jansson, E. (2002), Acoustics for violin and guitar makers, Technical report, KTH Department of

Speech, Music, and Hearing, Sweeden.

URL: http://www.speech.kth.se/music/acviguit4/
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