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Abstract

This dissertation describes a new method of computer performance of bowed string instruments (violin,
viola, cello) using physical simulations and intelligent feedback control. Computer synthesis of music
performed by bowed string instruments is a challenging problem. Unlike instruments whose notes
originate with a single discrete excitation (e.g., piano, guitar, drum), bowed string instruments are
controlled with a continuous stream of excitations (i.e. the bow scraping against the string). Most ex-
isting synthesis methods utilize recorded audio samples, which perform quite well for single-excitation
instruments but not continuous-excitation instruments.

This work improves the realism of synthesis of violin, viola, and cello sound by generating audio
through modelling the physical behaviour of the instruments. A string’s wave equation is decomposed
into 40 modes of vibration, which can be acted upon by three forms of external force: A bow scraping
against the string, a left-hand finger pressing down, and/or a right-hand finger plucking. The vibration
of each string exerts force against the instrument bridge; these forces are summed and convolved with
the instrument body impulse response to create the final audio output. In addition, right-hand haptic
output is created from the force of the bow against the string. Physical constants from ten real
instruments (five violins, two violas, and three cellos) were measured and used in these simulations.
The physical modelling was implemented in a high-performance library capable of simulating audio on
a desktop computer one hundred times faster than real-time. The program also generates animated
video of the instruments being performed.

To perform music with the physical models, a virtual musician interprets the musical score and
generates actions which are then fed into the physical model. The resulting audio and haptic signals
are examined with a support vector machine, which adjusts the bow force in order to establish and
maintain a good timbre. This intelligent feedback control is trained with human input, but after the
initial training is completed the virtual musician performs autonomously. A PID controller is used
to adjust the position of the left-hand finger to correct any flaws in the pitch. Some performance
parameters (initial bow force, force correction, and lifting factors) require an initial value for each
string and musical dynamic; these are calibrated automatically using the previously-trained support
vector machines. The timbre judgements are retained after each performance and are used to pre-
emptively adjust bowing parameters to avoid or mitigate problematic timbre for future performances
of the same music.

The system is capable of playing sheet music with approximately the same ability level as a
human music student after two years of training. Due to the number of instruments measured and
the generality of the machine learning, music can be performed with ensembles of up to ten stringed
instruments, each with a distinct timbre. This provides a baseline for future work in computer control

and expressive music performance of virtual bowed string instruments.



Dedication

This work is dedicated to human creativity everywhere, be it musicians writing documentation for
open-source software, programmers creating music videos to accompany computer-generated singing,
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Preface

I have always been interested in tools to assist human creativity. In some fields of art, there are
virtually no technical barriers to creativity: Free-hand drawing can be done with pen and paper;
written fiction can be performed with a text editor on any computer and uploaded to any number of
free blogs or websites devoted to fiction. When it comes to sheet music, LilyPond allows composers
to create high-quality PDF's of their work; there is no barrier here. However, few people can look at a
musical score and fully imagine how the music will sound. Sheet music is typically synthesized from
MIDI with sampling synthesis, which is a poor imitation of the sound of real string instruments. The
alternative is to hire live musicians to perform and record the sheet music, but this is an expensive
undertaking. This work attempts to bridge this gap, at least for stringed instruments.

When reading academic papers about audio synthesis, certain papers stood out much more than
others. Papers with plots, diagrams, and most importantly audio examples were much easier to
understand than those lacking such media. This is particularly useful in the interdisciplinary field of
music technology, where practitioners have backgrounds ranging from music, electrical engineering,
psychology, or computer science. The addition of a few pictures can make a huge difference in the
accessibility of a piece of research.

In order to contribute and be part of the world of good, accessible scientific publications, I spent a
great deal of effort making this dissertation accessible. Whenever possible, the story is told through
plots, diagrams, mathematics, and audio, rather than long textual descriptions. In addition, all source
code and data is available under permissive copyright licenses, allowing anybody in the world to use,

examine, or extend this research.
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Chapter 1

Introduction

Western bowed string instruments (the violin, viola, and cello) produce a wonderful range of sounds.
However, those sounds are difficult to reproduce with automated systems such as computers. As a
result, these sounds are only created by highly-trained humans with thousands of hours of experience.
Anybody wishing to create violin sound must either hire an expert or become an expert themselves.
There are two main challenges faced by computer synthesis of violin family sounds, both stemming
from the instruments creating sound based on continuously varying parameters (e.g., the bow scraping
against the string, the air flow into a clarinet) rather than a single event (e.g., a guitar pluck, a drum
hit). First, the behaviour of mechanical systems with continuous excitations is harder to describe
mathematically than systems with a single excitation. Second, due to the amount of control values
required to describe the excitation, some sort of algorithm must be used to provide these values.
This dissertation presents significant advances to both problems by creating virtual musicians to
control virtual stringed instruments. My use of the term “virtual musician” is illustrated in Figure 1.1
and formalized as:
Given a machine-readable representation of sheet music, the computer autonomously produces
audio and video that sounds as if it was performed by a human.
I am using the term “autonomous” to mean that human input may be used to train the computer
program but will not be used directly in the process of generating audio from sheet music. By analogy,
consider a human musician: Although musicians benefit a great deal from teacher input, concerts are

given without teachers shouting commands in the middle of the performance.
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Figure 1.1: Sheet music to video with no human interaction.
Video 1.1: Black box performance
http://percival-music.ca/dissertation/v.1.1.black-box.mpeg
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CHAPTER 1. INTRODUCTION 2

1.1 Motivation and applications

My interest in this problem arose from four distinct areas: Musical robotics; Vocaloid and UTAU
computer singing software; accessibility and assistive technologies; and finally my experiences as a
music student with composers, performers, and musicologists. I was also highly influenced by the
Free / open source software, copyleft art, and the open access movements. I shall examine each area,
discuss on how they relate to my work and list potential applications in their fields, then re-examine

the overall problem definition.

1.1.1 Musical robotics

The first topic in music technology which truly ensnared my imagination was musical robotics: Au-
tonomous machines which play unmodified musical instruments. Some musical robots were created
to enable serious scientific investigations in acoustics or musical performance, but many were created
for the obvious goal of “showing off” current technology.

I will begin by discussing a few robots which do not include any audio-based feedback control
or “intelligence” — they simply reproduce a series of pre-determined physical actions. This will be
followed by a survey of robots using audio feedback control — robots which adjust their physical

actions in response to the sound.

Musical robots without feedback control

An early violin-playing machine was created by the Nobel-prize-winning physicist C. V. Raman. In
addition to his research in optics, Raman was fascinated by sound, publishing works on theoretical
and experimental acoustics from 1909 to 1936. In particular, he constructed a machine from discarded
bicycle parts and old laboratory materials in order to test his theoretical predictions. Unlike normal
violin playing, this machine held the bow immobile and moved the violin along a track (Raman 1920).

A much more recent example is a robotic clarinet player (Almeida, Lemare, Sheahan, Judge,
Auvray, Dang, John, Geoffroy, Katupitiya, Santus, Skougarevsky, Smith & Wolfe 2010), a project
which began as an entry to the ARTEMIS Orchestra Competition of 2008. This competition is run by
an industry association for embedded electronics and is seen as a way to demonstrate the flexibility
of modern electronics. After winning the competition, the researchers used the robot to investigate
the behaviour of a clarinet given strictly-controlled air pressure and lip force.

Students are naturally interested in musical robots; in 2006 a team of fourth-year mechanical
engineering students created a “RoboFiddler”, a robotic violin player (Chia, Hong, Lee & Lim 2006).
The playing ability of RoboFiddler is comparable to a student with two or three weeks of experience,
but due to the difficulty of the task the students deservedly won their university’s “Best Mechatronics
Project 2006” award. Furthermore, they took the unusual step of putting their final report online,
containing detailed designs for hardware and software used.

The Toyota corporation is actively developing musical robots as promotions for their “partner
robot” initiative to sell household robots. They demonstrated a trumpet-playing robot in 2005 and
a violin-playing robot two years later (Kusuda 2008) which sounds like a student with three or four
years of experience. These projects by Toyota are impressive feats of mechanical engineering: Unlike
most musical robotics projects which fix the instrument in a frame to reduce complexity, they used

humanoid robots which hold the instruments in the normal fashion.
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Musical robots with feedback control

The theremin is an electronic instrument which operates with no physical contact. The theremin has
two metal antennae; one controls pitch while the other controls volume. The distance between the
performer’s hands and each antenna forms a capacitor, constituting part of a tuned circuit whose elec-
trical oscillation is amplified to produce the audio output. As such, the surrounding electromagnetic
field can alter the pitch produced by each distance. (Wu, Kuvinichkul, Cheung & Demiris 2010) used
a robot with 2 degrees of freedom (DOF) to play a theremin, with dynamic programming to select the
minimum energy required for pitches, and feed-forward control to adjust for environmental changes.

The Waseda Saxophonist Robot No. 2 (WAS-2) (Solis, Takanishi & Hashimoto 2010) is a much
more complicated robot, comprising 3 DOF for the artificial lips, 16 for the hand and fingers, 1 DOF
for the tongue, and 2 DOF for the lungs. A few proportional-integral-derivative (PID) controllers are
used for low-level mechanical control, while the higher-level control is implemented with an artificial
neural network (ANN) with feed-forward error learning and a dead-time factor to compensate for
delay in the air pumps.

The same team of researchers also developed a flute-playing robot. The Waseda Flutist Robot No.
4 Refined IV (WF-4RIV) (Solis, Taniguchi, Ninomiya, Petersen, Yamamoto & Takanishi 2009) has
even more complicated mechanics, with a total of 41 DOF compared to 22 DOF for the WAS-2. Their
control system is based on three separate ANNs. The first specifies the duration of each note, the
second specifies the vibrato duration, while the third specifies the vibrato frequency. Audio analysis of
pitch, the strength of even and odd harmonics, and overall sound intensity level is taken into account
in order to determine an overall “quality” for each note; if a note’s quality is too low, the robot

searches for improved parameters to use for the next performance.

Relation to my work

Musical robots are fascinating, yet at the moment their manufacture requires expensive and resource-
intensive work. In a few decades, robots may be sufficiently inexpensive that every household will have
a humanoid robot capable of reproducing the mechanical actions required to play musical instruments,
but for now they only exist in robotic research laboratories. I can side-step the problem of access to
actual robots by using physical models (simulations) of stringed instruments. If the physical models are
sufficiently accurate and my control algorithms are sufficiently general, my work on virtual musicians

can be applied to robots playing real stringed instruments.

1.1.2 Computer singing synthesis

The human voice is the hardest “instrument” to synthesize — not only are there many control pa-
rameters (e.g., lips, tongue, throat, vocal chords, air pressure leaving lungs) which affect the pitch
and timbre, but these change very rapidly to form different syllables. Fortunately, there has been a
great deal of research and commercial interest in computer synthesis of speech and singing.

It has been fascinating to watch progress in this area over the past decade. Ten years ago, computer
singing synthesis in research papers and commercial products were of rather questionable musical
value. Their quality has improved dramatically in recent years, and there are now thousands of

high-quality songs and videos created with computer singing synthesis.



CHAPTER 1. INTRODUCTION 4

Vocaloid and UTAU

The most famous commercial singing synthesis is Vocaloid (Kenmochi & Ohshita 2007), popularized by
the “virtual pop idol” Hatsune Miku. The history of vocaloid’s popularity is given in (Kenmochi 2010).
Vocaloid uses Spectral Modelling Synthesis (Serra 1989), in which short portions of recorded audio
are “stitched together” using various digital signal processing techniques; more details are given in
Section 1.2.3. This program provides realistic singing for certain styles of music (notably Japanese
pop music). In addition to the commercial Vocaloid synthesizer, a shareware program called UTAU
(the Japanese word for “song”) allows users to record and share their own singing voice.

These two programs, as well as the commercial and non-commercial recordings of voices, have
allowed users to create a huge amount of music and videos. It should be noted that Vocaloid and
UTAU themselves do not sing in an “expressive” manner; to improve the audio, a human must
carefully alter note parameters (e.g., pitch, vibrato, onset, duration). Such projects often involve
collaboration over the internet: One person may write some lyrics, another will set the lyrics to
music, a third person will make micro-adjustments to the singing parameters, a fourth person will
create the guitar and drum tracks, a fifth person will draw images and create 3-D computer models,
and a sixth person may create a music video combining the audio with computer-animated dancing.
Since these collaborations generally take place on a specific website!, researchers have data-mined
meta-data from this resource to find interesting patterns in the collaborations (Hamasaki, Takeda,
Hope & Nishimura 2009).

Vocaloid has been used directly in several research projects. Vocalistener2 (Nakano & Goto 2011)
automatically extracts singing parameters from recorded audio; this allows users to reproduce a song
“the way they sang it” using completely different voices. Vocawatcher (Kajita, Nakano, Goto, Mat-
susaka, Nakaoka & Yokoi 2011) takes this one step further: In addition to reproducing the sung vowels
and musical expression, this software tracks head and facial movements (e.g., blinking or closing eye-
lids, position of upper and lower lips, neck angle) and reproduces them using the human robot HRP-4C
(a robot with the appearance of a young Japanese woman). In this case, the robot’s physical actions
are purely cosmetic: Audio is produced with the Vocaloid software, not with physical air pumps and

mechanical vocal chords.

Relation to my work

Computer singing synthesis is one of most successful fields of music technology in the past decade.
Even ignoring the number of academic citations and commercial fees from licensing the patents (two
traditional measures of research success), this technology has allowed a diverse range of art to flourish.
In particular, the UTAU software allows people to compose and produce songs without being limited
to their own voice or facing the financial burden of purchasing commercial software. Combined with
guitar, drum, and piano synthesis (already noted to be much easier to synthesize than voice or violin),
this allows them to create music in a wide range of popular styles. There is a large community of
Vocaloid enthusiasts online?, sharing music and videos they created. There is a clear appetite for

creating and enjoying music with computer music synthesis.

INico nico douga, a video-sharing site used primarily in Japan. http://www.nicovideo. jp

2 Anecdotal (non-peer-reviewed) evidence from computer analysis of nico nico douga meta-data claims that at the
beginning of 2012, there were 27 videos with more than 250k views, 78 videos with between 100k and 250k views, and an
overall power-law distribution. Popular videos are often re-posted on other video-sharing websites, but those views are
not reflect in these figures. http://www.vocaloidism.com/2012/01/04/the-harsh-realities-of-vocaloid-on-nico/


http://www.nicovideo.jp
http://www.vocaloidism.com/2012/01/04/the-harsh-realities-of-vocaloid-on-nico/
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1.1.3 Accessibility and assistive technologies

Many able-bodied adults take physical actions for granted — we give no thought to walking up stairs,
reading text on a computer screen, or controlling a computer mouse. However, some people have
difficulty with such basic tasks. Fortunately, we can use technology to assist their lives. I will examine

a few ways in which technology can assist interaction with music.

Assistive music technology

In order to listen to music, many people select a song on their computer or music player. Clicking on
a song in a media-playing program does not require a great deal of physical force, but some people
lack the fine motor skills to control a digital pointing device. Even worse, if a song has little or no
meta-data, selecting the desired song can require multiple clicks. Work such as (Tzanetakis, Benning,
Ness, Minifie & Livingston 2009) uses audio feature extraction and machine learning to categorize a
music collection, then presents the results in a self-organizing map to make music browsing easier.
Music creation requires more interaction than merely selecting the type of song to listen to. One
project tackling this problem is the Eyeharp (Vamvakousis 2011), which used a very cheap device (less
than $100) to perform eye tracking for patients with limited mobility. Their eye movements control
specialized software to create audio, enabling even people paralyzed from the neck down to compose
and perform music. The notion of accessibility is taken one step further in (Miranda, Magee, Wilson,
Eaton & Palaniappan 2011), which used a brain-computer music interfacing system to create music
according to the electroencephalogram (EEG) activity of a patient. EEG hardware is quite affordable;
their entire setup (including laptop) was less than $3500.

This type of research has benefits beyond the small portion of the population with serious dis-
abilities. As humans age, our physical capabilities decrease. We lose lung capacity, arm strength,
and finger agility. We can prolong our music-making activities with regular exercise or by switching
instruments (i.e. saxophone to recorder) and playing simpler music (i.e. concertos to simple folk
tunes), but after playing an instrument for 50 or 60 years, playing one-octave melodies on a recorder
may seem sub-optimal. Musical creativity becomes hindered by physical constraints.

Some people may object that such systems would impinge upon the “purity” of music — that
music should only be performed by humans using the instruments for which the music was composed.
However, I reject this argument; it is tantamount to saying that only physically fit people “deserve”
to produce violin sounds. I argue that music is something that everybody should be able to enjoy,

and that allowing more people to create music should not be viewed as a bad thing.

Relation to my work

A virtual musician combined with input devices would allow us to “offload” many physical challenges.
For example, a bed-ridden patient could control aspects of the music with a computer mouse, such as
mapping the two dimensions to speed and overall loudness. More sophisticated input devices could
allow the user to specify bow force, velocity, and speed of left-hand vibrato. Users with less physical
agility could practice music at half speed but have their movements synthesized and performed at
normal speed. Alternately, the virtual musician could be trained or given overall “musical” direction
(even with only gaze tracking), then it would automatically fill in all finger and bow movements in

order to fulfil the high-level musical desires.
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1.1.4 Awudio synthesis for composers, performers, and musicologists

While learning cello as a child and teenager, it never seemed to me that there was any use for computers
in music. My life revolved around string quartets and orchestras; even if a computer could produce a
decent violin sound, it would not be able to follow the natural shifts in tempo that occurs in classical
music. If I wanted to listen to a recording of music to help me learn it, I could buy a CD of some of
the world’s best musicians performing it. This view changed drastically when I began studying music

composition at university.

Aiding music composition

Students wishing to learn how to compose music for stringed instruments face a difficult task: Com-
puter synthesis of these instruments is poor, but skilled musicians are quite rare and thus expensive to
hire. Having a “reading session” where real musicians perform new compositions is a major event in a
young composer’s life; this may occur as often as once a month, but it is not uncommon to have only
two or three sessions each year. It is commonly accepted that composers must learn to “hear the music
in their mind”, but this is a significant challenge for most students. I played many new compositions
by my classmates, and they were often surprised at how their music sounded. It would be useful if
music composition students could hear decent audio performances — not perfect performances, but
credible performances — of their works more often.

This could also be useful for “casual” composers: People who are not expecting (or even desiring!)
a career in music composition, but who simply enjoy creating music. Having seen the impressive music
and artwork that Vocaloid has fostered, there is strong evidence that music synthesis does not need

to be perfect to enable good art.

Aiding performers

Such a tool could be useful for performers. As previously noted, musicians often use audio recordings
to help them to learn a piece of music. For classical music, many such recordings already exist. But
when learning a piece of new music, no recordings exist. A computer performance will not be as
“musical” as a recording from a professional musician, but it could still be a great aid for memorizing
newly-composed music. Such a performance could be desirable even when learning previously-recorded
pieces of music — a musician might prefer to learn from a “neutral” recording which does not contain
any individual interpretations which other performers added to their playing.

Computer simulations could also aid violin students who are beginning to plan a musical interpre-
tation. Very young students simply perform music with no attempt at personal musical expression (by
either following their teachers’ guidance exactly, or by simply “playing the notes” with no attempt at
expression), but more experienced students are expected to add musical expression themselves. This
often involves choosing different bowings, playing on different strings, and trying different fingerings.
It can be quite challenging to play a difficult piece of music while also trying novel bowings or finger-
ings; a computer simulation could allow students to hear the effects of various bowings or fingerings
without the burden of learning how to perform the experimental bowings themselves.

The ability to simulate different bowings and fingerings could also aid more experienced compo-
sitions students. In addition to allowing compositions students to experiment with various options

before hiring expensive musicians, an synthesized recording could improve communication between
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the composer and musician. Many parts of classical musician pedagogy are still “oral tradition” —
although there are written accounts of musical style, almost all musicians learn from hearing teach-
ers and more experienced musicians talking and demonstrating the style. When music performance
students plays new pieces of music from music composition students, there is often a communication
gap between the performers expecting audio examples and composers showing the sheet music. If
the composers could create an audio recording that demonstrates the style, such confusion would be

greatly reduced.

Music libraries

Music libraries could benefit from virtual musicians able to perform sheet music. Although many
users of such libraries will be able to “visualize” how a piece of music will sound by reading the
score, this ability diminishes as the number of parts increase. Some pianists are trained to perform a
“condensed” version of a full orchestral score with no preparation (“sight-reading”), but this skill is
rare and requires a piano and extra effort. It would be very useful if the web search of a music library
provided recordings of all music in the collection®. Hiring musicians to perform all the works would
cost a great deal of money and could pose copyright problems (i.e. the performers’ copyright may
restrict access to those music recordings). Both problems could be avoided with virtual musicians.
Virtual musicians could be a great aid to musicology as well. In addition to benefiting from a
“quick and dirty” performance of scores which exist only in manuscript form, if the virtual musicians
were sufficiently advanced, the musicologist could select different performance characteristics. What
would a particular 1730s Minuet sound like if it was performed on instruments with gut strings with
a string quartet which began every measure with a down bow? What if the cello part was performed
on a viola de gamba instead? What if the same work was performed by a dozen musicians, with a
conductor beating time with a staff on the floor? If a musicologist wanted to experiment with these
parameters at the moment, they would need to spend a great deal of money for each recording session,

but a virtual musician could allow them to simulate different parameters at no cost.

1.1.5 Free / open source software, copyleft art, and open access

We live in an age of incredible virtual wealth due to the free / open-source software movement (Stallman
2010). Thousands of programmers have written software released under copyright licenses which per-
mit copying and modification (sometimes known as “copyleft” licenses). With a cheap computer,
an internet connection, and the willingness to learn, anybody can legally download software enabling
them to write books, design software, compose sheet music, produce videos, and do thousands of other
artistic tasks. In some areas, free / open-source software is generally seen as superior or comparable
to commercial programs (e.g., web browsers, software compilers); in other areas, commercial software
still dominates (e.g., architecture drawing programs, games). However, if one is highly constrained by
financial resources but does not wish to infringe on copyright, there is almost always a way to perform
any desired digital activity using free / open-source software. I am very encouraged by the array
of tools available: In an ideal world, the only thing restricting human creativity should be human

creativity itself.

3For example, the International Music Score Library Project (Project Petrucci LLC 2012) currently has over 55,000
musical works freely available, yet only slightly over 17,000 recordings.
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The related “copyleft art” movement holds the same ideals: By freely sharing artwork (be it
literature, drawings, music, or movies), we can increase the “cultural wealth” of the world much more
than trying to charge money for every piece of art. Attempting to monetize everything covered by
copyright law results in additional burdens for artists who need to check that their new works do not
infringe on anybody’s copyright. A typical example is a film director needing lawyers to check every
object in a movie scene — every object covered by copyright (e.g., statues in the background, the
design of a particular type of chair, adverts on the side of a milk carton) needs to be licensed. This
is a boon to lawyers seeking work, but adds a huge burden to artists (Lessig 2001). The copyleft
movement seeks to reduce or eliminate this burden by providing artwork which allows redistribution
under permissive terms, often with one of the Creative Commons licenses (Fitzgerald, Coates &
Lewis 2007). This is not the default position in every country; for example, in Japan there is a general
acceptance that modest use of other people’s art is acceptable provided that credit is given. In fact,
it is even accepted practice that fan-created art (called dgjinshi) using characters from commercial
works can make a modest profit (Tushnet 2007).

My research has benefited immensely from free / open-source software and the copyleft art move-
ments. In terms of software, I have used compilers, profiling tools, signal processing libraries, audio
tools, and video rendering. In terms of art, I have used works from the vast collections of copyleft
sheet music, allowing me to test my virtual musicians on a wide range of music. There is nothing
special about the story so far — I could probably replicate all the above software and sheet music
by purchasing commercial software and sheet music at a cost of “merely” $5,000 - $10,000. However,
commercial software very rarely gives the user the ability to modify the software itself. In addition
to being available at low cost, my ability to modify free / open-source software has been invaluable.
For example, I added some additional digital signal processing features and machine-learning tools to
the Marsyas library (Tzanetakis 2007). Without the ability to modify the source code, I would have
needed to either completely rewrite the software myself (taking years of effort), or else make a feature
request to a commercial vendor (requiring years of waiting, if the vendor implemented my requests at
all). That would have rendered my project impossible to complete within any reasonable time frame.

Related ideas are changing academic publishing: The Open Access movement is encouraging re-
searchers to make their papers available to anybody free of charge. This takes two forms: “Gold
Open Access” means that the publishers themselves allow free access, while “Green Open Access”
means that the researcher has made a copy of their article (or possible an unofficial “pre-print”) freely
available (Laakso, Welling, Bukvova, Nyman, Bjork & Hedlund 2011). There are two main arguments
in favour of open access. The first is a moral argument: The free spread of knowledge is a public
good; science flourishes when there is free debate. Universities in Western countries may complain
about the journal fees, but ultimately they can be paid — but there is little hope of universities in
developing nations paying for the same access. This is particularly relevant when we consider medical
research (Chan, Kirsop & Arunachalam 2011). In addition, most research is funded by tax-payers,
either directly through grants or indirectly through salary. It seems unfair to deny tax-payers the
ability to read papers from their funded research. The second is a practical argument: Open access
increases the impact factor and increases citation count. There has been some debate about whether
this advantage is causal or simply due to self-selection (some academics may choose to give open access
to only their best works). However, most studies suggest that the advantage is indeed real (Gargouri,

Hajjem, Lariviere, Gingras, Carr, Brody & Harnad 2010).
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1.1.6 Research constraints to generalize applicability

Having discussed potential applications, I can clarify my project. I am creating a virtual string quartet
in order to perform music for inexperienced or casual music composers, musicologists, or musicians who
are no longer physically able to perform their normal instruments. Although the musical instruments
will be synthesized using computer software, the “virtual musicians” should be sufficiently general
such that they could be used to control musical robots performing unmodified musical instruments.
In the spirit of open scientific progress, I resolved to make this work as accessible as possible. This
led to the following (voluntary) constraints:
Free software: The entire system must be available at no cost, and furthermore, everybody must

be legally allowed to modify it (“free” as in “freedom”).

Easily extended: The system should be clearly designed with good documentation, such that a
moderately skilled programmer can add new features. Any data required for the system should

as easy to gather, without requiring any expensive equipment or special acoustic environment.

Human-like pedagogy: The system should be trained in a manner similar to training a human

student, since most musicians are experienced at teaching humans but are not programmers.

1.2 Literature review

This section covers publications relevant to methods and techniques I use in this dissertation. I shall
briefly summarize research on violin acoustics and violinist actions, computer synthesis techniques,
musical applications of feedback control, music information retrieval, and finally music education and

expressive performance.

1.2.1 Violin physics and mechanical control

The violin is a mechanical system: The violinist’s fingers and bow interact with the strings, which
eventually causes certain vibrations to reach our ears. How do vibrations from the strings reach our
ears? How do the finger and bow interact with each string? What physical actions must musicians

perform in order to achieve the desired sound?

Historical era (pre-1985)

Bowed stringed instruments have interested physicists for over two thousand years. The ancient Greeks
studied acoustics, but the first revolutionary step towards our current understanding of these musical
instruments came from d’Alembert’s solution to the wave equation in 1747. Over a century later,
Helmholtz discovered that when the violin produces a good tone, the string is moving in a “V-shape”
in which the corner of the “V” (now known as the “Helmholtz corner”) travels from end to end of the
string. Ideally, the bow should be sticking to the string most of the time, only slipping when the “V”
is between the bow and the bridge. This process (now known as “Helmholtz motion”) repeats once
per cycle of the resulting sound. For example, when the violin open A string (440 Hz) is played with a
good tone, the string undergoes a stick-slip-stick transition 440 times each second (Helmholtz 1895).

The next major step in our understanding of vibrating strings came from Raman, who investigated

the bow-string interaction. After making theoretical predictions (assuming a perfectly flexible string,
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excited at a single point), Raman built a mechanical device to play the violin with the bow at a
specific distance from the bridge and specified speeds (Raman 1920). Using his device, he investigated
various combinations of bowing position, pressure, and bow velocities.

Real-life strings are not perfectly elastic; string stiffness results in a “spreading” of the frequencies
of upper partials. A perfectly elastic string will have upper partials of frequencies f,, = nfy, where n
is the partial number, f, is the frequency of that partial, and f; is the frequency as predicted from
string length and tension alone. However, (Fletcher, Blackham & Stratton 1962) found that given the

string inharmonicity constant B,

fn=nfoV1+ Bn? (1.1)

The violin body has a long history of research as well. In 1787, Chaldni observed patterns of
nodes and anti-nodes by sprinkling sand on plates from violin and guitar bodies and bowing the side.
Almost two centuries later, the plates were excited with signal generators attached to loudspeakers,
and then still later, hologram interferometry was used (Hutchins 1981).

Other physicists throughout the 20 century studied the interaction of string vibrations with string
terminations, fingers on the string, and of course friction with the bow. I mark a rough boundary
in the mid-1980s between the “historical era” of acoustics research and the “current era”. There are
two reasons for this boundary: First, the increasing power of computers simulations allowed a vast
shift in the type of research that was possible — scientists could simulate activities such as bowing a
string or blowing into a clarinet, then listen to the resulting (simulated) sound. Second, there were
two seminal publications which framed the next decades of research.

One of these publications was a book which covered the state of violin physics (Cremer 1984).
This provided a stable foundation for new researchers to become familiar with the previous work.
The other seminal publication was a journal article (McIntyre, Schumacher & Woodhouse 1983),
which introduced a general model for vibrations in musical instruments now known as the MSW
model. This model allows for various types of non-linearity, such as pitch flattening (where the bowed
string produces frequencies slightly lower than would be predicted by a simpler theoretical model),
subharmonics (where a bowed string produces energy at frequencies which are half of the expected
lowest frequency), and “wolf notes” (where the string alternates between Helmholtz motion and having
two “slips” per cycle, resulting in a highly unsteady tone; this occurs due to an unfortunate coupling
between string modes and instrument body modes). A great deal of later research, especially in the

area of computer simulations, relied on the MSW model.

Current era (1985 onwards)

A general introduction to the physics of stringed instruments is given in (Rossing 2010); this book is
also a good source of physical constants for strings and instrument bodies. An excellent review paper
for academics is (Woodhouse & Galluzzo 2004), covering both the history of bowed string physics
research and current research questions. Another good source of physical constants, this time aimed
at instrument makers, is (Jansson 2002); in addition to giving an overview of acoustics, this work
discusses the effects of different materials on string inharmonicity and tension. A standard reference
for physical properties of violin strings is (Pickering 1985), although Pickering does not examine the

inner construction of wound hetrogeneous strings. (Firth 1985) examined dissasembled wound strings
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with a scanning electron microscope to make detailed measurements of the core diameter and the
layers of fibres and solid wrapping.

The effects of string inharmonicity were studied in (Jarvelainen, Valiméki & Karjalainen 2001) by
performing listening tests with synthesized piano tones. They found that string inharmonicity was
important for lower-frequency notes, but that for high-frequency notes the inharmonicity found in
real instruments was very close to the threshold of perceptibility and thus it may be possible to omit
them during audio synthesis with no loss of perceptual quality.

In addition to transverse vibrations, strings vibrate in other directions. Torsional vibrations in cello
D strings were investigated in (Woodhouse & Loach 1999), finding that torsional vibrations appeared
to occur at harmonically-spaced frequencies. However, they were only able to measure the first 7-10
modes of torsional vibration on three tested strings, so any distinction between inharmonic peaks
and harmonic peaks would not necessarily be detectable in this range. Interestingly, the Q factors of
torsional decay were almost constant, decreasing only slightly throughout the measured modes.

The interaction between the bow and string is quite complicated. As the bow scrapes against
the string, the friction generates heat which partially melts the rosin on the bow; this reduces the
friction coefficient (Smith & Woodhouse 2000). This heat causes hysteresis in the tribology of rosin.
Although great progress has been made in our understanding of the bow-string interaction, some
mysteries remain. One such mystery is the noise component: instrumental sounds contain varying
degrees of white noise. A complete physical description of the instrument’s mechanics would explain
this noise, but until our understanding of the mechanics reaches this point, sound synthesis can be
improved by adding noise to the relevant part of the modelling. In particular, (Chafe 1990) found
that multiplying the force of friction by a scaled uniform noise term w(t) produced bursts of noise
when the bow direction changed, which matched experimental measurements. Simulations showed
that including uniform noise in this fashion aids the production of sub-harmonics.

Close examination of the spectrum of plucked and stuck strings reveals a curious phenomenon
of “phantom partials” (Conklin 1999) or “split peaks” (Penttinen, Pakarinen, Véliméki, Laurson,
Li & Leman 2006) wherein there appears to be energy at both the frequency predicted by string
inharmonicity and either the ideal frequency or a frequency predicted by a modified equation for
string inharmonicity.

The effect of vibrating modes in violin bodies have been studied (Fritz, Cross, Moore & Woodhouse
2007). A violin was played normally while they measured the vibrations in the bridge (thereby avoiding
the violin body). That signal was transformed with different filters corresponding to admittance
curves (impulse response measured at the bridge) of different violins, with various modifications to
the amplitudes and frequencies of body modes. Musicians noticed modifications to the modes as little
as 3 dB for amplitude changes and 1.5% for frequency changes.

Accurate measurement of the body impulses were improved by plucking the strings close to the
bridge with a thin loop of wire rather than hitting the side of the bridge with an impact hammer
(Tiirckheim, Smit, Hahne & Mores 2010). The effect of the instrument’s bridge (rather than the
instrument body) was studied in (Woodhouse 2005).

The violin strings and body are not the only factors involved in the production of sound. The violin
bow is a resonating structure whose behaviour can greatly alter the musician’s ability to produce a
good tone (Guettler & Askenfelt 1995). Even the choice of rosin placed on a bow can alter the resulting

sound and ease of controlling the instrument (Guettler 2011).
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Mechanically controlling a violin

The vast majority of violin playing is done with a bow, so violin research has focused mainly on the
bow-string interaction. There is a substantial body of research onto plucked guitar strings, which is
still applicable to the violin. As noted earlier, Helmholtz found that “good tone” occurs when the
string undergoes a stick-slip-stick cycle once per cycle in the final sound — i.e. when playing the open
violin A string (pitch 440 Hz), good tone is achieved when the string slips (relative to the bow) 440
times per second. The natural follow-up question is “under what conditions is this achieved?”.

The first major step in this direction was (Schelleng 1973), which found theoretical limits for the
minimum F;, and maximum F,,.x bow forces which could establish Helmholtz motion in sustained
bowing given the early 1970s understanding of violin string mechanics. If the bow is moving at velocity

vp at a relative bow-bridge distance 3,

Zg Vp 2Z0’Ub

Fmin = — 5 Fmax i
2R(ps — pa)? (s — pa)B

(1.2)
where the physical constants are the characteristic transverse impedance of the string Z;, static
coefficient of friction us, dynamic coefficient of friction pg, and Raman bridge resistance R. The
Schelleng bow forces are almost always referred to, and visualized as, “the Schelleng diagram” showing
these lines in a plot of 8 vs. log F'.

Although Schelleng presented plausible theoretical limits on bowing force, these were not measured
experimentally until (Schoonderwaldt 2009). Schoonderwaldt constructed a bowing machine to test
the steady-state bowing response of a violin in order to generate “empirical Schelleng diagrams”. He
found that the theoretical predictions for F,.x provided a good match to empirical evidence, but that
there were major deviations between the theoretical F,;, and empirical evidence. In particular, the
bow velocity was not significant in the tested range (0.05-0.20 m/s), the empirical Fl,;, was almost an
order of magnitude higher than the theoretical prediction, and the amount of damping in the string
was much more important than predicted. This discrepancy lies in Raman’s assumption (adopted by
Schelleng) that the string terminations are purely resistive.

Note attacks were studied in (Guettler 2002), who made theoretical predictions and performed
computer simulations to determine a “perfect” attack which establishes Helmholtz motion immediately
(i.e. no extraneous slips). These are often visualized as “Guettler diagrams”, showing triangular areas
of perfect attacks in a plot of bow acceleration vs. bow force for a fixed 5. Helmholtz motion is the
ideal, but real musicians do not always achieve this motion, particularly in the initial note attacks.
Notes which established Helmholtz motion within 50 ms are perceived as being acceptable by advanced
string students. It is estimated that between 20%-50% of notes from professional violinists have a
perfect attack, although 80%-90% achieve Helmholtz motion within 50 ms.

Wolf notes have been studied by using modal simulations of strings and the instrument body to
find regions in the space of bowing parameters (i.e. bow-bridge distance, bow speed, and bow force)
which produce good or bad tone (Indcio, Antunes & Wright 2008). Such studies may be able to
help musicians avoid wolf notes, but the main application is to help instrument makers construct
instruments whose modes of vibration avoid the unfortunate coupling leading to such problems.

In order to track the physical actions which musicians actually perform — instead of investigating
the limits of violin playability — accurate, small, and lightweight sensors are needed. This has been

an active area of research in recent years. (Young 2007) installed a measurement system (weight 23 g)
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inside a carbon fibre violin bow, used its data to classify bow-strokes with machine learning (accuracy
over 90%), and stored that information in a web-accessible database. (Rasamimanana 2008) created a
measurement device (weight 17 g) which clips onto an unmodified bow and performed similar machine-
learning classification of bow-strokes. (Demoucron 2008) designed a lightweight (3.8 g) sensor for bow
force measurement which can be easily attached or detached from any bow, and generalized bowing
parameter contours for bow-strokes into mathematical formulae. (Schoonderwaldt 2009) added a
motion capture system to Demoucron’s sensor by adding reflective markers to the bow (attached
with a special adhesive which left no marks on the instrument varnish), providing a highly accurate
yet lightweight (10 g) system for detailed measurements. (Maestre 2009) and (Pérez 2009) used
a commercial tracking system based on electromagnetic field sensing with numerous sensors which
provide data about sensor translation and rotation (adding 12 g to the weight of the bow).

Research in acoustics and examinations of violinists’ actions are having an effect in performance
and education. Anomalous Low Frequencies (sometimes incorrectly called “subharmonics”), in which
the string vibrates at frequencies below the fundamental frequency, have been used by a professional
violinist (Kimura 1999). Special exercises for violin students, informed by knowledge of Helmholtz

motion and Schelleng’s predictions, were created in (Collins 2009).

1.2.2 Violin physical modelling

This section discusses using equations from acoustics research to simulate the behaviour (and thus the
sound) of musical instruments; this idea was mentioned briefly in the previous section. Two standard

reference books on physical modelling and audio signal processing are (Smith 2010) and (Cook 2002).

Digital waveguide synthesis

Most early physical simulations relied on calculating numerical solutions of the wave equation, which
is computationally expensive. In contrast, digital waveguide synthesis relies on d’Alembert’s solution
to the wave equation: The wave is modelled as two separate waves, one travelling “right” and the
other travelling “left”. Given the displacement y(z,t) at position z at time ¢, with ¢ being the wave’s

speed,

Y(x,t) = Yright (¢ — ct) + Yiese (@ + ct) (1.3)

Assuming that the wave’s behaviour in the system is linear time-invariant, each travelling wave
can be modelled with a delay line with any losses along the string or in the reflections at the ends
of the string combined into a single filter. To find the displacement at any particular point, the two
waves are summed together. To bow the string, the delay lines are “split” at the point of contact
between the bow and string. Two delay lines represent the travelling waves between the bow and the
bridge, while another two represent the travelling waves between the bow and the nut.

This provides a solution which is remarkably simple, both in terms of programming effort and
computation requirements. Even in the early 1990s, multiple instruments could be simulated on a
single inexpensive DSP chip (Smith 1992). Digital waveguide synthesis formed the basis of the popular
Synthesis Toolkit in C++ (Scavone & Cook 2005), which provided researchers and musicians with a
common baseline of physical modelling.

The changing friction characteristics from melting rosin were modelled, along with the finite width
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of the bow and a waveguide mesh for the instrument body, with waveguide synthesis in (Serafin
2004). Different friction equations were investigated by generating Schelleng diagrams to visualize the
“playability” (i.e. the size of regions where Helmholtz motion was possible). (Sterling 2010) measured
the bridge input admittance and the radiation transfer function of a violin and used these to improve

the output the digital waveguide synthesis.

Modal synthesis

Another popular, although more computationally expensive, method of simulating a vibrating string
is to use modal synthesis. Harmonic sounds can be represented as a superposition of vibrating modes.
There are theoretically infinitely many vibrating modes, but the effect of higher-order modes decreases
dramatically. In sound synthesis, the number of modes is typically limited to between 10 and 200.

As will be discussed in Section 1.3.2, modal synthesis is the type of physical modelling used for
my dissertation. In particular, I used the algorithm presented in (Demoucron & Rasamimanana
2009, Demoucron 2008). Demoucron used modal synthesis as a basis to re-create different types
of bow-strokes: He first measured the physical actions of real violinists, then devised mathematical
equations to express the progression of bow force, bow-bridge distance, and bow velocity over time,
then synthesized new bow-strokes using those functions. Demoucron made no claim that his synthesis
was unique nor cutting-edge; his focus was on controlling the system. The algorithm is largely based
on (Adrien 1991) and does not include various factors such as torsional waves, the width of the bow,
vibrations in the instrument body, or hysteresis in the bow-string friction.

An important factor in modal synthesis is the decay rates of individual modes. A great deal
of research on this subject comes from the study of room and concert hall acoustics, in which the
reverberation time and modal decay rates are crucial factors to be considered by architects. An
excellent review of previous methods of detecting modal decay, and a new technique based on nonlinear
optimization, is presented in (Karjalainen, Ansalo, Mékivirta, Peltonen & Viliméki 2002). Some
strings exhibit “two-stage” decay, in which a steep initial decay rate is followed by a shallower long
decay; these were analyzed by finding best-fit lines to measured data and synthesizing the results in
(Lee, Smith & Véiliméaki 2010).

The modal behaviour of guitar strings was measured and synthesized to test acoustic theories in
(Woodhouse 2004). This work was later extended (Woodhouse, Manuel, Smith, Wheble & Fritz 2012)
to determine the just noticeable difference (JDN) in frequency and decay rates of the modes, finding
that the best listeners could detect a 1% shift in the frequency of body modes, a 20% shift in the

damping of body modes, and a factor of 3 for the damping of string modes.

1.2.3 Alternate violin synthesis methods

Although the sound synthesis in this dissertation is based on modal physical modelling, it is worth
briefly reviewing the two main alternatives which may be suitable for violin music. These are “data-
driven” synthesis methods: Instead of using a number of “rules” (i.e. mathematical equations from
physics) to generate the sound, the bulk of the synthesis is performed by using recorded audio data,

optionally transformed in some way.
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Sampling synthesis

Sampling synthesis consists of concatenating pre-recorded snippets of audio known as “samples”?.
These snippets could be as short as one cycle of the desired frequency, but as hard drives and memory
limits increased in the 1990s, longer “samples” were used. This is the simplest form of audio synthesis,
and is very widespread in both commercial and non-commercial hardware and software (Cook 2002).
Sampling synthesis now dominates the commercial music industry, with multi-gigabyte sample libraries
providing a reasonable facsimile of Western orchestral instruments and some non-Western instruments
(Garritan Libraries 2012, Vienna Symphonic Library GmbH 2012).

The strength and weakness of sampling synthesis is that the audio is played back exactly as it was
recorded. If this matches the desired sound — for example, pressing a particular piano key — then
sampling synthesis captures all non-linearities of the sound. However, if the desired sound is slightly
different — for example, pressing the same piano key but with the sustaining pedal pressed, or pressing
a different piano key — then sampling synthesis faces enormous difficulty to alter the previously-
recorded audio. This is particularly apparent when considering instruments with continuous excitation
(e.g., violin, clarinet, human voice). Sample libraries attempt to avoid this problem by including
many audio recordings. One example is recording each note of the piano, pressed with three different
velocities, with every combination of pedals; another example would be recording short notes on a
trumpet, both with and without a mute. However, creating such collections of recordings is enormously
time-consuming (and thus expensive).

Sampling synthesis works best for instruments with single excitation (e.g., piano, drums): Each
excitation is synthesized by playing a new audio recording, mixing recordings together to create
polyphony. When attempting to create a long sustained line, some form of “stitching” must be used
to combine the recordings from two distinct notes. The simplest such technique is cross-fading: The
ending of the first audio recording is gradually reduced down to 0, while the beginning of the second
audio recording is gradually amplified up to full volume. This is suitable for percussive instruments
and even distinct notes (ideally played staccato in music terminology) in string, wind, and brass
instruments, but the results are not believable when trying to create slurs (i.e. smoothly connecting
two or more notes).

Traditional sampling synthesis has a fixed rule for selecting which segments of recorded audio to
use. One alternative to this approach is corpus-based concatenation synthesis, which has no fixed rule.
Rather, when synthesizing new audio, the computer must select units from a database of recorded
audio with no manually annotated data. This requires automated signal analysis tools, a unit selection
algorithm (often based on minimizing a distance function), and optionally various types of transforms
to modify the selected units in order to mesh better with other selected units. An overview of this

process is given in (Schwarz 2007).

Spectral Modelling Synthesis

Spectral modelling synthesis (SMS) (Serra 1989) is an extremely powerful technique for sound synthe-
sis. Similar to a phase vocoder, it operates by splitting audio into a deterministic portion (sinusoids)

and a stochastic portion (filtered white noise). After the relevant number of sinusoids have been

4Note that unlike the typical engineering definition of the term “sample” to mean “one discrete data point in a
signal”, in the context of electro-acoustic music and sampling synthesis, a “sample” can refer to any amount of audio
(generally between 0.01-100 seconds, which would be 441-4,410,000 data points with the customary sampling rate for
audio). This confusion of terms is very regrettable, yet highly entrenched in the music industry.
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analyzed, they are re-synthesized and subtracted from the recorded audio, leaving a residual signal.
The residual is considered to be filtered white noise with time-varying filter parameters, which are
then estimated. Musical transformations (i.e. pitch-shifting or time-stretching) can be applied to the
sinusoids and time-varying white noise filter, then the results are synthesized. This technique is the
basis of the Vocaloid singing synthesis discussed in Section 1.1.2.

Similar to traditional sampling synthesis, the synthesis of a specific note with SMS always uses
the same sinusoids+residual data from the annotated data. Due to the stochastic filtered white
noise, synthesizing the same note multiple times will produce slightly different audio data, but this
amount of randomness is fairly limited. One extension to this idea is to automatically select portions
of recorded data (Schoner, Cooper, Douglas & Gershenfeld 1999). Given a database of recorded
audio data with additional signals for bow-bridge distance, bow pressure, bow velocity, and finger
position, the computer uses machine learning (cluster-weighted modelling, using Gaussian basis terms
for probability density estimation) to predict the spectral data (harmonic frequencies and amplitudes)
in the desired output audio.

Machine learning was also used to predict spectral data in (Lindemann 2007), although he used
a neutral network to predict the time-varying frequency and amplitudes of harmonics rather than
cluster-weighted modelling. With the exception of particularly noisy portions of the sound (i.e. breath
noises or the bow scraping against the string during note attacks), data is stored in a “residual pitch,
loudness, harmonics, and noise” form. The data is manually annotated to indicate the type of note
transitions (e.g., slurred, tongued) and phrase boundaries; when synthesizing new music, the computer
attempts to find phrase boundaries in the written music and then uses fuzzy matching to find the
most similar phrase from the database.

Rather than using neural networks to predict spectral data in music based on notation, (Pérez 2009)
used neural networks to predict spectral data based on physical data. Pérez constructed a detailed and
non-intrusive system for measuring violin performance data (e.g., bow velocity, bow-bridge distance,
bow force, bow tilt). Rather than predicting the energy of each harmonic independently, he predicted
the energy of each harmonic relative to the overall RMS energy, then used that as another input
element to predict the relative energy in each harmonic. Such a system requires a method of generating
physical gestures for a (virtual) violinist (Maestre 2009). In addition to non-intrusive measurements
of violinists, Maestre constructed Bézier curves which matched the time-varying violin performance
data, then performed statistical modelling of those curves to find a best-fit match to the musical
score. The resulting performance data was tested with digital waveguide synthesis from the Synthesis
Toolkit in C++ (Scavone & Cook 2005) and with Pérez’s SMS-based violin synthesis.

1.2.4 Control of musical synthesis and instruments

There is a great deal of research on controlling music synthesis using a general definition of “control”
(i.e. any human interaction with a machine or computer). However, I will limit my discussion to
research using the engineering definition of “control”: Adjusting the behaviour of systems with au-
tonomous means. The most common feedback mechanism is a PID (proportional-integral-derivative)
controller. There are various methods for tuning the constants in PID controllers; one such heuristic
is (Ziegler & Nichols 1942).

One of the earliest frameworks for physical modelling was MOSAIC (Morrison & Adrien 1993),

which allowed allowed programmers to combine virtual objects (e.g., strings, bells, acoustic tubes)
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with various connection types (e.g., a bow, reed, strike) and controllers (e.g., reading values from a
MIDI file, a sine generator, user-programmed functions via Scheme (a Lisp dialect)). The result is
synthesized using modal synthesis.

(Cook 1995) presents an overview of a system consisting of a series of modules for a virtual in-
strument and a virtual musician. The instrument is implemented in two stages: The physics for the
instrument family, and the physics of the specific instrument. The performer is separated into three
stages: The physics of the performer (e.g., limits on finger speed, maximum derivative of arm move-
ment), expert knowledge of the instrument, and audio perception. Cook’s example implementation
of a trombone is not impressive by modern standards (the system’s “expert knowledge” is merely a
lookup table), yet he anticipated that such systems could include neural networks.

Feedback control has been used to control acoustic instruments. (Berdahl, Niemeyer & Smith 2008)
investigates a wide range of controllers in terms of mathematical convergence, simulated sound, and
finally implementation on an electromagnetically-prepared piano, monochord, and one string guitar.
Custom actuators and sensors were designed to minimize non-linearity. (Boutin & Besnainou 2008)
added two actuators and an accelerometer to a violin bridge in order to alter the frequency behaviour

of the bridge using active control.

Haptic interfaces for computer music

Humans use a great deal of feedback from instruments in order to alter their physical actions to
improve the resulting sound. In addition to audio feedback, humans playing real instruments benefit
a great deal from haptic (vibrotactile) feedback.

This has been of interest to music technology researchers for decades. (Chafe 1993) noted the
importance of such feedback, gave an overview of tactile response (frequency response from 0 to
approximately 1000 Hz), and performed a qualitative experiment wherein musicians controlled the lip
tension of a physical model of brass instruments by depressing a metal bar. Subjects found it much
easier to perform music with the physical model when the metal bar vibrated according to the music.

The vBow (Nichols 2003) is a custom-built virtual violin bow controller. An acrylic bow attached
to servomotors provides 4 DOF (lateral, rotational, vertical, and longitudinal motion). A musician
may manipulate the bow, which feeds control data to digital waveguide synthesis, which creates audio
and force data, which is fed back to the bow through the servomotors.

Increasing processing power allows the haptic feedback to run at audio sample rates. (Sinclair,
Florens & Wanderley 2010) investigates haptic interaction via a joystick for two violin physical models:
Modal synthesis (running at 44.1 kHz) and a digital waveguide (running at 24 kHz).

Human touch in glabrous (non-hairy) skin is detected with four types of fibres with different fre-
quency sensitivities (Bolanowski, Gescheider, Verrillo & Checkosky 1988). The threshold of detection
for frequencies between 0.4 Hz to 500 Hz was measured. The traditional rule of thumb is that 1000 Hz
is the upper limit of tactile perception, but this is usually measured with sine waves at a single point of
contact with the skin. (Wyse, Nanayakkara, Seekings, Ong & Taylor 2012) tested higher frequencies
with the whole hand resting on a vibrating surface and found that sine waves could be detected at
2000 Hz while more complicated signals could even be detected at 4000 Hz. However, the threshold of
detection was much lower at high frequencies (100 dB between threshold of detection for FM synthesis
at 250 Hz and 2000 Hz).
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1.2.5 Music information retrieval

Music information retrieval (MIR) refers to extracting musical information from symbolic data (e.g.
sheet music) or signals (e.g., audio or tactile), generally through digital signal processing (DSP)

algorithms and machine learning.

Digital signal processing

One of the most useful algorithms in digital signal processing is the Fourier Transform, along with the
Fast Fourier Transform (FFT) and Discrete Fourier Transform (Cooley & Tukey 1965). Other than
the normal use of FFTs to analyze the frequency components of signals, I benefit from using FFT's
for convolution. Convolution is very useful for applying experimentally-measured FIR filters with
many coefficients, but a naive implementation of convolution is very slow. (Stockham 1966) showed
that convolution could be performed by splitting the input signal into distinct rectangular buffers,
multiplying the FFT of each buffer with the FFT of the kernel, taking the inverse FFT, then summing
the results (overlap-add).

Since FFTs are central to so many DSP algorithms, it makes sense to optimize their calculation
by using a high-quality library such as FFTW (Frigo & Johnson 2005). To use this library, the
programmer first calls a “planner”, where the library is notified about the “shape” (size, dimensions,
and memory layout) of the problem to solve. FFTW then performs a few tests with various different
implementations of FFT algorithms, and selects the fastest implementation. Since most uses of FFTs
involve many transforms performed on the same location of memory, adding an “up-front” cost in
exchange for faster subsequent calls is a good trade-off.

The field of control theory (Warwick 1989) concerns the behaviour behaviour of a system (digital or
analog). This is useful for this dissertation to investigate some problematic behaviour of the physical
model in Section 2.2.3.

There is growing concern in the field of DSP research about the reproducibility of research papers
(Vandewalle, Kovacevic & Vetterli 2009). The descriptions of algorithms in conference and journal
papers are often not sufficiently detailed to allow experts in the field to re-implement them; even if
the algorithm can be implemented, certain parameters may have been omitted from the paper, or the
dataset(s) of media may not be available. There are various factors which contribute to this state
of affairs, such as page limits for academic publications, a desire to avoid overwhelming readers with

details, and reproducibility not being perceived as being of importance to paper referees.

Audio analysis

Marsyas (Tzanetakis 2002, Tzanetakis 2007) is an open-source library which provides both DSP and
machine learning algorithms, and is widely used in the MIR research community. Marsyas is written
in C++, with bindings for python to enable rapid prototyping. The main use of Marsyas is to describe
a data-flow network: For example, a network may begin with a sound file, whose samples are sent to
various time-domain and spectral-domain feature extractors, whose outputs are fed into a machine
learning classifier which judges certain aspects of the audio or else simply saved to a file for use in other
machine learning software. An excellent list of widely-used features (most, but not all, supported by
Marsyas) is given in (Peeters 2004). A good overview of audio signal processing specifically focused

on music is presented in (Klapuri & Davy 2006).
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Pitch is a fundamental property of human perception of music, yet detecting it automatically
is a surprisingly challenging task. Pitch detection is not the same as fundamental frequency (fo)
detection: Human auditory perception will occasionally perceive a “pitch” which is not present in the
audio signal. Well-known examples of this phenomenon are tubular bells and low pitches transmitted
via mobile phones. Both cases involve a “missing fundamental”: Consider a tubular bell which we
perceive to produce a pitch of 100 Hz. The bell actually does not vibrate at 100 Hz, but instead
vibrates at 200 Hz, 300 Hz, 400 Hz, etc. Our auditory perception “fills in” the missing fundamental
of 100 Hz. Mimicking this, and other human auditory “tricks”, is much more complicated than fy
detection.

One of the most successful methods to date is the YIN pitch detection algorithm (de Cheveigné &
Kawahara 2002), which is a time-domain algorithm based loosely on autocorrelation. However, instead
of multiplying samples, YIN squares the difference between samples and tracks the cumulative mean
normalized difference. One drawback of YIN is that is relatively slow, but (Brossier 2006) extended
algorithm to use FFTs to perform the autocorrelation.

Although pitch detection is generally more useful for music, detecting frequencies is more useful
for measuring raw physical phenomena. One popular method of this is the quadratically interpolated
FFT (Abe & Smith 2004). A buffer of audio data is windowed, transformed with the FFT, and peaks
are found. However, rather than taking the bin number of a specific peak directly, we instead examine
the magnitudes of the peak and the two bins on either side. These three points define a parabola,
which improves the accuracy of the estimate of the frequency and magnitude. (Smith 2011) further
suggests using a Gaussian window, since a Gaussian transform is a parabola on the log scale.

One additional consideration is how human will perceive the audio. Unless specifically programmed
to avoid doing so, computer analysis of digital signals will give equal weight to all frequencies in the
signal. However, human auditory sensitivity between 30 Hz and 15000 Hz varies by up to 80 dB (Suzuki
& Takeshima 2004). Some audio analysis attempts to mimic this sensitivity by applying a filter with
similar frequency response to the input signal.

Another aspect of human perception concerns the onset of a note. A note with an abrupt attack
(such as a drum or piano) can be localized in time fairly well (within 10-20 ms), but a note with a soft
attack (such as a clarinet or cello playing piano and espressivo) has a much wider range (50-100 ms)

of possible perceived onset times (Wright 2008).

Machine learning and artificial intelligence

Machine learning is the study of computers making judgements about data. A very typical example
in music information retrieval is genre classification: Given an unlabelled piece of music (such as an
audio CD), the computer judges the audio to be classical, jazz, rock, pop, or heavy metal. This is
done through supervised learning, wherein the computer is given some labelled training data (e.g.,
100 pieces of music in each musical genre). The computer “learns” how to associate each genre with
the underlying audio data (or objective features extracted from that data). When given a piece of
unlabelled data, the computer applies its “learning” to produce its best estimate of how a human
would label the new data.

One of the most widely-used machine learning algorithms for supervised learning is the support
vector machine (SVM) (Boser, Guyon & Vapnik 1992, Cortes & Vapnik 1995). Marsyas uses the
popular 1ibSVM implementation (Chang & Lin 2011). A trained SVM is the hyperplane between
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two sets of data which maximizes the margin between the sets. This is explained in greater detail
in Section 5.2.2. The binary classifier can easily be extended to handle multiple independent classes.
However, sometimes the classes have a natural order, such as giving preferences on a 5-point scale
(e.g., very bad, bad, neutral, good, very good). Treating each rank as an independent class discards
potentially valuable information about the ranking, so it would be helpful to use that information
during training. This supervised learning problem is called “ordinal regression”. (Li & Lin 2007)
discovered a means of reducing ordinal regression to binary classification. This is quite useful, since
binary classification has received a great deal of research attention and there are a number of well-
optimized computer libraries available (including libSVM). One problem with machine learning is that
optimal results require preparing data (normalizing) and selecting certain learning parameters. The
authors of 1ibSVM have prepared a very useful guide for practical SVM use, detailed these steps and
providing automated steps for finding reasonable learning parameters (Hsu, Chang & Lin 2003).

In addition to machine learning, I use other areas of artificial intelligence, namely optimization
and searching a problem space. In particular, I use the simple (yet effective) hill climbing algorithm
(Minsky 1961). Given a function f(z1, 2,23, 24, ...), hill climbing attempts to find the maximum
value by evaluating the function multiple times with slightly altered inputs, then it “steps” to the set
of inputs which produced the highest gradient. This method is sensitive to local maxima, but it is

sufficient for my purposes.

Objective analysis of violin sound

Automated classification relies on objective analysis of the target data, yet our perception and judge-
ment of musical sounds are quite subjective. (Wrzeciono & Marasek 2010) attempts to bridge this gap
for quality of violins (not violinists). They extracted violin body modes from recorded audio and used
the Monte Carlo method to link the audio analysis with subjective judgements from expert musicians,
with an overall accuracy of 75%.

Analyzing the quality of violinists (not violins) has obvious pedagogical benefits. (Charles 2010)
used traditional machine information learning tools, first extracting audio features such as the spectral
centroid and mel-frequency cepstral coeflicients, then classifying those features with k-nearest neigh-
bour classifiers. Charles achieved 97% accuracy in four-fold cross-validation when classifying long
legato bow-strokes as being performed by novice or experts, and between 70%-90% accuracy when
attempting to detect specific playing fault such as “crunching” or “skating” sounds.

Another project aimed to train computers to recognize the timbre of specific performers playing
the same instrument (Chudy & Dixon 2012). A set of recordings from five players was analyzed to
extract various spectral information, which was used to train K-Nearest Neighbour classifiers and
perform Linear Discriminant Analysis. Depending on the features and training used, this achieved
between 78% and 100% accuracy. However, the authors noted that this was using a small dataset
(five players), as it is difficult to gather recordings of cellists playing the same instrument.

Another goal of violin analysis is to extract control parameters from audio: Given only the recorded
audio, reproduce the violinist’s actions (i.e. string played, finger position, bow-bridge distance, force,
velocity, and tilt). (Pérez & Wanderley 2012) attempts to solve this task by training a statistical
model to map from sound to violinist actions while using multiple sensors such as those discussed in
Section 1.2.1. Once the model is trained, it is used to predict control parameters from only the audio.

This is a new field whose accuracy is not yet high enough for applications.
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Musicians use a wide range of terms to describe violin sound, of which very few are directly
applicable to objective measures. The relationship between these terms was investigated in (Fritz,
Blackwell, Cross, Woodhouse & Moore 2012), with an additional experiment performed in an attempt
to link the terms “brigher”, “clear”, “harsh”, “nasal”, and “good” with violin string output digitially
filtered to modify the effect of the body resonance. A consistent link was found between “brigher”,
“clear”, and “harsh” with energy in specific octave bands, but violinists differed in their interpretation

of “nasal” and “good”.

1.2.6 Music education and expressive performance

To train the virtual musician, I draw upon certain aspects of teaching humans to play bowed stringed
instruments. This training can be split into low-level physical control of the instrument, and matters
of musical style and interpretation of sheet music. The latter is a matter of great interest to music
researchers; a great deal of work has gone into attempting to create computer programs which can

perform music in a human-like manner.

Music education

In Section 1.1.6, I resolved that the system should be trained similarly to a human. This would allow
the virtual musician to benefit from the expertise of human musicians. However, if the virtual musician
is to learn like a human, it is important to have realistic expectations of such training. In particular,
professional violinists and pianists spend an estimated 10,000 hours practicing their instruments by the
time they are 20 years old (Ericsson, Krampe & Tesch-Romer 1993). This figure is the total estimated
time spent practicing alone since beginning to learn their instrument at age 4-6. Additionally, even
violinists studying to become music teachers (a position with much lower demands on musical skill)
had practiced for around 4,000 hours over the same period. This point is worth emphasizing: It takes
a great deal of effort for humans to become competent musicians, and our current research in artificial
intelligence is far from matching humans for general tasks.

One of the most widely-used methods for teaching music to young children is the Suzuki method.

A few elements of this method, and some common criticisms of those points, are worth pointing out:

e Students do not practice alone; a parent is expected to be involved in the daily practice.

e Students learn music from a set repertoire (Suzuki 1978a, Suzuki 1978b), which contains more
Baroque music than might be expected. Furthermore, some of the performance indications for

those Baroque pieces are not stylistically accurate for that period of history.

e The left-hand fingering is given in the sheet music; although Suzuki students do not read sheet

music in the beginning, parents ensure that the student follows the printed fingering.

e Students are not expected to give expressive music performances; a “robotic” performance is an

acceptable place to start.

It is not my intention to add to the educational debate concerning the Suzuki method. I merely

note that it, and particularly its repertoire books, is a very well-known method of teaching violin®.

50n a personal note, I learned cello with the Suzuki method, and although I was not an official Suzuki teacher, I
often used Suzuki cello books when teaching cello to beginners.
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One aspect of expressive performance will not be included in this dissertation: Vibrato is a tech-
nique which is not taught to string players until they have 3—4 years of experience. This technique is
a sinusoidal alteration of left-hand position, approximately 5.5 Hz for both violin and cello (Geringer
& Allen 2004).

Expressive performance

The difficulty of “human-like” performance is easily seen in the Musical Performance Rendering Con-
test for Computer Systems (Katayose, Hashida, De Poli & Hirata 2012). This contest presents re-
searchers with specific pieces of piano music (mostly classical or Romantic, e.g., Mozart, Beethoven,
Chopin). Researchers write computer programs which attempt to perform the works autonomously
on a disklavier (a computer-controlled acoustic piano with solenoids placed on the piano keys). This
contest is fascinating on a technical level, but on a musical level even the best contest entries sound
like piano students with only three or four years of experience. A survey of computer systems for
expressive music performance is given in (Kirke & Miranda 2009).

Programs at rencon generally fall into two categories: Rule-driven and data-driven. A good
example of rule-driven automated performance is Director Musices (Friberg, Colombo, Frydén &
Sundberg 2000), which uses performance rules such as “lengthen the last note of a phrase” and
“emphasize notes outside of the current key”. These rules can be altered in real-time (Friberg 2006),
making it easier to tweak the constants in the rules. A good example of data-driven automated
performance is (Widmer, Flossmann & Grachten 2009), which used recordings of Mozart and Chopin
piano pieces performed by famous pianists to train a Bayesian model to map between the scores
and expressive performances (timing and velocity deviations). This model is then used to predict an
expressive performance of other musical scores.

Some researchers view expressive music performance as an interesting addition to the Turing’s
imitation game (Turing 1950). Rather than a computer attempting to imitate a human via text
communication, the computer would attempt to perform a piece of music in a human-like manner. If
a human judge (or set of judges) was unable to distinguish between human-performed and computer-
performed music, then a certain milestone would be reached. Naturally, just as the imitation game (or
the “Turing test” as it is often called) has attracted a great deal of attention concerning whether it has
any meaning (a good survey of responses is given in (Saygin, Cicekli & Akman 2000)), a similar debate
has arisen over any potential implications of an expressive musical performance imitation game.

Many musical scores for computer analysis and performance are shared in the MusicXML (Good
2001) format. As the name implies, this is an encoding of score data in XML, which can be parsed

and written with normal XML tools. This format is available free of charge.

1.2.7 Programming and implementation

Many software tools and libraries which were used for this project, so I will restrict this section to only
the most vital tools. There are a number of guides for effective programming of scientific software; a
good summary is presented in (Aruliah, Brown, Hong, Davis, Guy, Haddock, Huff, Mitchell, Plumbley,
Waugh, White, Wilson & Wilson 2012).

SciPy (Jones, Oliphant, Peterson et al. 2001-) is a collection of open-source libraries for sci-

entific computing in python. Using python’s high-level language features, SciPy provides modules
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for scientific and engineering computing such as linear algebra, signal processing, non-linear solvers,
statistics, and optimization. Where applicable, SciPy uses existing C or FORTRAN code to do the
bulk of calculations. The combination of the “readability” of python code with the robust and fast
implementations of scientific computing algorithms is extremely powerful. One caution about python
concerns its multithreading: To simply various low-level implementation details, python has a Global
Interpreter Lock which only allows a single thread to operate at once (Beazley 2010).

Although python (with SciPy) is my language of choice for general computing, the final implemen-
tation of the physical model was written in C++. I made extensive use of the open-source C++ com-
pilers in the GNU Compiler Collection (Stallman et al. 2012) and LLVM / Clang++ (Lattner 2005).
Alternating between compilers gave my code additional testing, and Clang++ has very good warning
and error messages. In addition, the Valgrind tool suite (Nethercote & Seward 2007) contains an
extremely useful memory checker and extensive profiler. The highly-optimized C++ code, used for
the physical modelling and the CPU-limited portions of the intelligent feedback control, was combined
with python using the Simplified Wrapper and Interface Generator (SWIG) library (Beazley 2003).

Since a vibrating string’s motion follows an exponential decay, any attempt at simulating this
motion over a long period of time will result in very small numbers. The IEEE 754 (IEEE Com-
puter Society 2008) specification for floating-point numbers contains a special representation of tiny
floats: “denormalized” or “subnormal” numbers (Goldberg 1991). On modern desktop computers,
calculations involving denormalized numbers are often implemented in microcode instead of directly
in the silicon, which is much slower (Dooley & Kale 2006). Disabling the use of denormalized floats
is strongly recommended for this purpose. This is discussed further in Section 4.2.3.

Finally, Eigen (Guennebaud, Jacob et al. 2010) is a C++ template library for linear algebra. It
automatically vectorizes code for a range of CPU instruction sets, and provides a high-level way to
handle matrices in C++4-. This is discussed further in Section 4.3.1. These vectorized instructions mean
that multiple pieces of data can be processed at the same time with single instruction, multiple data
(SMD) instructions (Franchetti, Kral, Lorenz & Ueberhuber 2005, Intel 2007, Hassaballah, Omran &
Mahdy 2008).

1.3 Problem definition revisited

To summarize, my goal is:
Given a machine-readable representation of sheet music, the computer autonomously produces
audio and video that sounds as if it was performed by a human.
In order to maximize the potential applications of this work, and in the spirit of open scientific
progress, I adopt the following (voluntary) constraints:

Free software: The entire system must be available at no cost, and furthermore, everybody must

be legally allowed to modify it (“free” as in “freedom”).

Easily extended: The system should be clearly designed with good documentation, such that a
moderately skilled programmer can add new features. Any data required for the system should

as easy to gather, without requiring any expensive equipment or special acoustic environment.

Human-like pedagogy: The system should be trained in a manner similar to training a human

student, since most musicians are experienced at teaching humans but are not programmers.
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Figure 1.2: Overview of music performance with Vivi. We will re-use this diagram throughout this
dissertation to add context to each chapter.

1.3.1 Overview of Vivi, the Virtual Violinist

Having examined the relevant literature, we can see the overall plan: Given sheet music, translate
music notation into physical actions, create audio with a physical model (mathematical simulation) of a
stringed instrument, then use feedback control with machine learning to alter the physical parameters
if necessary. The sound quality judgements from the machine learning will be stored and used to
improve future performances by attempting to avoid making the same mistakes. This process is
shown in Figure 1.2.

Following the example of Vocaloid, I named my computer program Vivi, the Virtual Violinist, or
Vivi for short. Each recorded voice in Vocaloid has its own name and illustrated mascot character,
which helps software users and video viewers “identify” with the voice (Kenmochi 2010). Naming is
a difficult task (Ashworth 1997), but “Vivi” will hopefully help musicians feel more at ease with the
software. There is no official illustration yet, but the name “Vivi” suggests a female violinist, so will
be referred to with the feminine pronoun.

To imitate human music pedagogy, human input will happen after each piece of music has finished
playing, not in real-time. Music teachers occasionally shout commands or physically adjust music
students’ bodies while the student is performing, but this is much less common than giving feedback
after the performance is over.

I used the first two Suzuki violin books to train and evaluate Vivi, aiming to produce a sound
similar to a human violin student playing the same pieces. In the case of Suzuki violin book two, Vivi
should sound like a 6-year-old violin student. This goal may not seem very ambitious, but I adopt
the common idiom “we must learn to walk before we can run”. One of the great advantages of Free
software is that we can easily build on each other’s work without losing anything. This dissertation
brings the level of autonomous virtual violinists up to a 6-year old child; future work will improve the

violinist’s skill level.
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1.3.2 Choice of violin physical model

As discussed in Sections 1.2.2 and 1.2.3, there are many methods of computer synthesis of violin-
like sounds. However, sampling synthesis and spectral modelling synthesis require huge databases of
recorded samples. These can be licensed from expensive commercial software, or recorded from skilled
musicians in a sound recording studio — but these options are in conflict with the “Free software”
and “Easily extended” constraints. I do not want to rely on resource-heavy methods which would
impede other researchers or composers; if a synthesis method would require us to spend a few weeks
recording hours of audio data, I consider that a strong point against that method.

The main existing open-source library for physical modelling is the Synthesis Toolkit (STK) in
C++ (Scavone & Cook 2005), which uses digital waveguide synthesis. However, the waveguide im-
plementation in STK is based heavily on (Mclntyre et al. 1983, Smith 1992) and lacks the recent
improvements found in later work®.

I therefore decided to write my own physical modelling code, and faced the choice of digital waveg-
uide or modal synthesis. (Demoucron 2008) presented a detailed description of modal synthesis with
many sound examples” of the results. Unfortunately, sound examples of waveguide synthesis were dif-
ficult to find. There are a few examples from STK available®, but as previously noted these represent
old implementations and are not indicative of state-of-the-art research in waveguide synthesis. Fur-
thermore, Demoucron’s examples included convolution with the violin body impulse and synthesized
four strings separately, while the STK examples synthesized only a single string.

The comparison was not at all valid, but I had to make a choice. A very rough survey of research
papers suggested that digital waveguide was used more often than modal synthesis, and various
papers (including (Demoucron 2008)) noted that modal synthesis was slower than waveguide synthesis.
However, the modal synthesis described by (Demoucron 2008) represented a known quality: I was quite
impressed with his audio examples and his clear and thoughtful explanation of the algorithm.

In the end I chose to use Demoucron’s modal synthesis. He does not claim that his algorithm is
original or highly advanced, but instead notes that

“A main purpose of our work with the bowed-string model was to separate the properties of
the model that are sufficient for obtaining an acceptable violin synthesis, from the demands
necessary for obtaining a realistic modelling of the mechanics of the bowed string. It should
be emphasized that our model has not been developed to be a scientific simulation tool for
detailed studies of the bowed string, and in many cases it will not meet the demands of such a
tool. However, in the light of our objectives, it is considered to perform perfectly satisfactorily,
allowing perceptually convincing simulations of bowed-string sounds.” (Demoucron 2008, p. 74)

Like Demoucron’s work, my objective is not a scientifically-accurate reproduction of stringed in-
strument physics; rather, I wish to produce acceptable simulations of their sound. This model satisfies
my objectives, so I adopt it despite its simplification of certain physical processes. These simplifica-

tions are discussed in Section 2.4.1.

SIn fact, when I began this research, the bowed-string modelling in STK did not even include control of the bow
velocity. Bow velocity was added to STK by Esteban Maestre in version 4.4.3, released on 2011 August 30.

"http://recherche.ircam.fr/equipes/instruments/demoucron/

8http://ccrma.stanford.edu/~jos/waveguide/Sound_Examples.html
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Figure 1.3: Sampling rates of various parts of Vivi.

1.4 Organization of this dissertation

In this chapter, I explained the problem and the constraints, motivated the constraints with examples
of potential applications, and examined related work. The remainder of the dissertation is designed
in layers, where I begin by discussing the smallest time interval (the violin string) and then gradually
expand, focusing on each step in turn. This is illustrated in Figure 1.3.

There are two main parts to the thesis, with an additional introduction, conclusion, and appendices.

Part I: Physical Modelling of the Violin Family

The first part simulates the sound of physical instruments.

Chapter 2, Physics of Physical Modelling: Gives the mathematical formulae which simu-
lates the violin string and instrument body, and discusses the design decisions and conse-
quences of using those equations.

Chapter 3, Constants for Physical Modelling: Discusses the physical experiments and sim-
ulations used to select constants to be used with the physical modelling equations.

Chapter 4, Implementation of Physical Modelling: Explains the video generation and
the implementation of the physical model as a high-performance C++ library.

Part II: Performing with the Virtual Violin Family

The second part simulates the behaviour of a beginning violinist, violist, and cellist.

Chapter 5, Control loops: Describes the pitch and bow control loops central to the virtual
musician with classical and intelligent feedback control.

Chapter 6, Calibration, Performance, and Self-Improvement: Discusses the human in-
volvement in training the virtual violinist, various automated processes to improve the
output, and the mapping from musical score to physical actions.

Chapter 7. Implementation of Vivi, the Virtual Violinist : Describes the extraction of

information from multi-instrument scores and the implementation.

Conclusion

Examines the project with reference to the applications discussed in the introduction, gives a few
philosophical remarks about the lack of philosophical implications of virtual musicians, and discusses

future directions of this research.
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Appendices

These include additional material which may be of interest.
Appendix A, Additional Mathematics for Physical Modelling: This supports a conjec-
ture concerning one bowing variable.
Appendix B, Performances of select sheet music: Audio and video generated automati-
cally from sheet music.
Appendix C, Source code, raw data, and copyleft licenses: All source code and data for
this research are available and published under permissive copyright licenses: GPLv3 for

source code, and Creative Commons BY-SA 2.5 Scotland for this dissertation.
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Figure 2.1: Physical modelling in context.

In order to teach a computer how to play musical instruments, I need a model (or “simulation”)

of the relevant instruments. In other words, I want to answer questions such as:

If T place a violin bow on the violin D string at 0.16 string-lengths away from the bridge, press
down with a force of 1.23 N, and accelerate the bow from rest at 8.0 m/s? for 0.023 seconds;
what output will I get? Given the current state of the violin string, suppose I increase the bow
force to 1.34 N, accelerate at 4.0 m/s?, and simulate for another 0.023 seconds; what output will
1 get?

These questions are answered in this chapter and the next two: Chapter 2 discusses the physical
modelling algorithm, Chapter 3 discusses experimental measurements of real-world instruments and
simulated experiments to determine constants which improve the model’s output, and Chapter 4
discusses the computer implementation of this algorithm and the video production.

In Section 1.2.2 and Section 1.3.2, I examined various physical models of a violin, and selected
(Demoucron 2008) as being the best fit for my goals. In this chapter, I extended Demoucron’s
algorithm to include plucking the string, improved the bowing friction model, and added haptic
output. Formally, the model takes five input parameters (i.e. the physical actions) and produces two

output signals (shown in Figure 2.2 and Table 2.1). To allow some computer optimizations, each set of

29
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Stringed instrument model
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Figure 2.2: Overview of the violin physical modelling. Solid lines indicate transfer of variables; wavy
lines indicate signals. Each set of input parameters are generally evaluated for 512 samples. Note
that each string continues to produce audio after the bow moves to a different string, whereas the
bow force comes from only the current string.

Symbol | Explanation Symbol | Explanation
Zp Bow-bridge bowing distance [m] an(t) | Modal displacement
x5 Finger position [m)] an(t) | Modal velocity
Up Bow velocity [m/s] ¢n(x) | Eigenvectors
Fy Bow force [N] F; External forces
s String number [0, 1, 2, 3] D; Coefficients for force calculations
(a) Input variables (b) Main internal variables

Symbol ‘ Explanation
Alt] Audio output [16-bit signal at 22050, 44100, or 66150 Hz]
HIt] Haptic response at bow hand [16-bit signal at 22050, 44100, or 66150 Hz]

(c) Output variables

Table 2.1: Main variables used in bowed-string algorithm. Since the model will be used for violin,
viola, and cello, there is implicitly a sixth parameter: The instrument to model, and therefore which
constants to use. However, this parameter does not change during the simulation, so we omit it from
this list of variables. The sampling rates for A[t] and H|[t] here refer to the sample rate within the
string simulation; the instrument simulation decimates those to 22050 Hz and 11025 Hz respectively.

input parameters are held constant for 512 samples, but if a musical note boundary requires a smaller
buffer, this is reduced. The instrument is simulated at a constant 22050 Hz, while the sampling rate
of individual strings vary.

This chapter can be divided into three sections:

1. In Section 2.1, T describe the equations used for the stringed instrument physical modelling

algorithm.

2. Additional discussion of the model’s behaviour and trade-offs of accuracy vs. speed are given in

Section 2.2 for finger actions and Section 2.3 for bowing actions.

3. Final remarks are given in Section 2.4, giving a summary of externals actions the model can

simulate. Possible improvements to the model are discussed.
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Figure 2.3: Overview of the violin string physical modelling. Variables with a subscript,, indicate an
N-element vector. Note that if x;, and x; have not changed, we can avoid recomputing ¢,

2.1 String and instrument body simulation

The central part of a stringed instrument model is of course the actual string simulation; an overview
is given in Figure 2.3 and Table 2.1.

The calculation of the wave equation in Section 2.1.1 and the first portion of the bow force calcu-
lations in Section 2.1.3 are unchanged from Demoucron’s algorithm; for longer explanations, proofs,
and analysis of this portion of the model’s behaviour, see (Demoucron 2008) and/or (Demoucron &
Rasamimanana 2009). To permit easy cross-referencing, I have used the same symbols and terminol-
ogy as Demoucron’s work. However, there are two warnings about these variables. First, he uses f, to
represent the magnitudes of modal forces, which conflicts with the customary usage in digital signal
processing of f,, being the frequency of the n'® mode. This notation is unfortunate as I need to discuss
both modal forces and frequencies of modes, so I use f,, to refer to the magnitudes of modal forces.
Second, he uses a subscript ,, to indicate a vector, such as a,, = afl' + Xgnfn(tl). Some scientists and
mathematicians may prefer to express this in the more compact form a = a" + Xgo f (t1).

The overall sampling rate is f; = 22050 Hz, but the sampling rate of each string is set to be a
multiple of 1, 2, or 4 times the overall sampling rate, based on balancing output quality and processing
time for each string. The output of strings of the same frequency multiple are summed together,
convolved with the combined body response and low-pass filter, decimated, then summed with the
output of strings operating at a different frequency multiple. More details are given in Section 2.1.5.

Before discussing the physical modelling, I will discuss the expected the range of input parameters.
During normal playing by experts, (Schoonderwaldt 2009) found that the violin bow-bridge distance
xp ranged from 5 mm to 60 mm, the bow velocity v, ranged from 0.05 m/s to 1.0 m/s (with these
values being negative for upbows), while the bow force F}, was between 0.1 N to 2 N.

I made some rough estimates on beginner violin and cello playing. On the violin, x;, was between
20 mm and 70 mm, while on cello x; was between 35 mm and 110 mm. The bow velocity on both
instruments went up to 0.5 m/s. Bow force is harder to observe, so I refrained from making any wild
estimates. Finally, the highest note in Suzuki violin books 1 and 2 is the 4! finger on the E string,
occurring at x5 = 0.333L (zy = 110 mm) and having a fundamental frequency of 990 Hz.
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2.1.1 String physics

The synthesis begins with a stiff string with linear density pr,, tension T', Young’s modulus F, diameter
d, length L, and second moment of area for a circular cross-section of the string I = %‘f. We also
add a damping coefficient Ry, (w) to cover all losses of energy: Losses along the string due to friction,
the wave reflection at both ends of the string, and energy transferred to the instrument body. With
external forces F;(x,t) and transverse displacement y(z,t) of the string at position z and time ¢, the

wave equation is:

0?y(x,t) _T82y(sc,t) +E184y(x,t)

PL 5 972 Dz

+ Ry(w) ay(a”i’ D _ > Filw.) (2.1)

For a modal solution in terms of eigenvectors ¢, (z), the following substitutions are made. These

substitutions are only strictly valid as N tends to co; for finite NV they result in approximations.

bn () = \/zsin (?) (2.2)

N

L
i) = [ oulalyla s yet) = 3 bu@)an(t) (23)
0 n=1
L N
Fult) = / Gn(x)F(z,t)dz Fz,t) =Y ¢n(x)fult) (2.4)
0
The wave equation (2.1) can be rewritten in modal form,
iin (1) + 2rnn (t) + wh,an(t) = Pilfn(t) (2.5)
Ry, (w) T /nm\2 EI /nm\4
- Y By (i L Ay s 2.6
T o o pL(L)+pL(L) (2:6)
Experimental measurements (Section 3.2) will provide r,, directly, giving the damped frequencies

wn = 1/ 877, — ’["?L (2.7)

For simplicity, external forces are assumed to be constant throughout our time interval dt and each

force acts on a single point. We can therefore represent each force with a Dirac delta function and

update the modal equation (2.5),
iin (t) + 2rnan (t) + wi,an(t) = pp' > Fi(t)n(z:) (2.8)
The modal impulse response from (2.8) is

B (t) = w;, tsin(wpt)e ™™t (2.9)
The modal displacements at time t; = to + dt with modal forces fn(t) are:
t1 .

1
an(t1) = Xinan(to) + Xonan(to) + o fa( ) (ty —t)at (2.10)
to
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2
Xin = <cos(wndt) + In sin(wndt)> gt Yi, = — (Wn 4 T"> sin(wndt)e*”dt

Wn n
L. —rypdt "n . —rpdt
Xop = — sin(w,dt)e™"™ Yo, = | cos(wpdt) — — sin(w,dt) | e™™
Wn Wn
1-X =Y
X3n = 72171 Y3, = 1271
PLWop, PLWonp

Table 2.2: Coefficients for modal displacement and velocity.

with coefficients for the modal displacements and velocities given in Table 2.2. The calculation of each
time step begins by calculating the new modal displacements and velocities which would occur if no
external forces were applied!. Intuitively, we are asking “How would the string behave if there was

no finger or bow on the string?” Concretely, we define

a?}(tl) = Xlna'n(tO) + XQndn(tO) (211)
an(t1) = Yinan(to) + Yanan (to) (2.12)

Since the model assumes that f,(t) has a constant value throughout our time interval dt, and

1 o) (ty —t)dt' = %(1 — X12) fn(t1) (2.13)

to wOn
we can simplify (2.10) with (2.11), and apply a similar reasoning to the modal velocities,

an(t1) = ap(to) + Xan fn(t1) (2.14)
int1) = @ (t0) + Yon () (215)

Depending on the actions of the violinist, the model will include up to 3 external forces (Fp, Fi,
F»). Each force acts at a single distinct point on the string. The calculation for the forces are given

in Section 2.1.2 and Section 2.1.3. Once these forces are calculated, the modal forces are
Fu(t) =D dn(i) Fi(th) (2.16)
i

Once a,(t) has been calculated, the force of the bow on the bridge produces the audio signal. G,

can be pre-computed to save time during simulation:

dy(x,1) Py(x,t)
Fbridge (t) =T B ‘m:O - EIW‘T:O
N 2 nmw nm\ 3
- ;an(t)Gn, where G, = \/ 7 (T (f) EI (f) ) (2.17)

ITo maintain a consistent notation with (Demoucron 2008), we use the h superscript which he used to mean “his-
torical”. However, we suggest that " be understood as “human-free” or “hands-free”.
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External forces on the string

The forces applied from external actions will be modelled as damped springs and the bow-string
friction equation. These in turn will benefit from knowing the “hands-free” displacement and velocity

at certain points along the string. To shorten the equation, I define y; = y(x;,t) and v; = y(=;, t).

N N
yl =" dnlwi)ar vl =) Gl (2.18)
n=1 n=1

It will also be useful to calculate the actual displacement and velocity at certain points, given

external point forces F:

N N
Apg = Z On(2p)Pn(2q) X3n Byg = Z On(p)Pn(Tq)Yan (2.19)
n=1 n=1
J J

Given a damped spring of strength K and damping R, the restoring force F' depends on its current

displacement y;, the desired displacement yf, and its velocity v;:
Faamped(t) = —K (yi — y) — Ru; (2.21)

2.1.2 Finger forces on the string

The most common use of a violin physical model is to simulate bowing actions, but I first consider the
two simpler cases of external actions on the violin: Plucking the string, and pressing a left-hand finger
on the string. To avoid certain problems discussed in Section 2.2, the finger actions are modelled as
two or three damped springs (forces Fy, Fy, F5). It should be clarified that these are transverse forces:
if the x-axis is along the string and the y-axis is along the direction of the bow, a violinists’ finger
presses down along the z-axis, but these forces are the effects of the finger along the y-axis.

As shown in Figure 2.4, the position z; of force F; always represents the edge of the left-hand
finger closest to the bridge. The positions of the other two forces vary based on the violinist’s action,
with 2, and z; being the positions of the pluck and finger. Other constants are W), y being the widths,

K, r being the spring constants. and R, s being the damping constants, discussed in Section 3.5.3.

Plucking the string

Fy and F3 represents the two sides of the plucking finger, which will cause the string to be pulled to
one side for some time until the string is released. Fj represents the left-hand finger. The desired
displacement of the “plucking points” zy and z is yg, with (yd = y§ = y;f) At the beginning of a
pluck, y;)l = 0 and increases at speed v, until it reaches the desired displacement y;l. This position is

held for the desired duration ¢,, at which time the string is released.

Ty = Tp T =2y To =1z, + W,
Ko=K, Ki=K;y Ky=K, (2.22)
Ry=R, Ri=R;y Ry=R,
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Figure 2.4: String displacements at beginning and release of pluck on the violin G string,
zy = 0.891L = 0.29, z, = 0.2L = 0.066. Left: beginning of pluck. Right: releasing the string.
The “wiggles” in the left graph are unwanted artifacts due to the finite number of modes (N = 40).
Note that the y-axes show different ranges, since the string moves only slightly in the first time sam-
ple; although the “wiggles” are not desirable they are not a serious problem. The violin bridge is at
position z = 0, while the nut is at x = 0.329.

Consider the combination of forces and displacements at points g, 21, and 22 by combining (2.21)

with (2.20). Note that since 1 always represents the finger, its equation does not include a yg term.

(Ao Ko + BooRo + 1) Fy + (Ao1 Ko + BoiRo) Fi + (Ag2Ko + Bo2Ro) Fo = —Ko(yh — y2) — Rovf;
(Al()Kl + BlORl) F() + (AuKl + BllRl + 1) F1 + (A12K1 + BlgRl) F2 = —Kl(y?> - Ro’l}{l
(AQ()KQ + BQ()RQ) Fy+ (A21K2 + BQlRQ) Fi + (A22K2 + Bas Ry + 1) Fy = —Kg(yg - yg) - Rg’l)g

(2.23)
These three linear equations can be expressed in matrix form:
Az=b
Ao Ko+ BooRo+1 Ao Ko+ Bo1Ro Ap2Ko + B2 Ro
A= |A10K1 + BioR: AnKi+BiiRi+1 ApKi + BiaRy
As0 K5 + BogRo As1 Ko + Ba1Rs Ay K5 + By Ry +1 (224)
Fy —Ko(yg — y§) — Rovl)
z=|F b= —Ki(y}') — Ryof
Fy —Ks(yy — y3) — Rovl

The forces Fyy, Fi, and F; are calculated from (2.24), either by finding the inverse of A and solving
z = A71b, or using a matrix decomposition. Solving (2.24) with either of these technique is particularly
useful for the string model: Although the vector b changes based on the current state of the string,
the matrix A only depends on the positions of external forces. Since the positions of external actions
change infrequently (usually once every 0.5-1.0 seconds), a matrix inverse or decomposition saves a

great deal of computation. Further implementation details are given in Section 4.3.1.



CHAPTER 2. PHYSICS OF PHYSICAL MODELLING 36

-1
Dg = Dg = (K¢Ag1 + Ry Bo1)D
8= K Ao + Ry Bog 1 o= (KyAo 7Bo1)Ds
D1y = —(RyBo1 + KA1 )Ls3 D1 = (RfBoo+ KfApo+1)L3
-1
Ly =

(AgoKs+ BooRy +1)(A11 Ky + Bi1Rs + 1) — (Ao K5 + Bo1 Ry)?

Table 2.3: Coefficients for pluck release.

String release

Fy and F) represent points on the left-hand finger, and act against any movement (y¢ = 0). Fy is

unused. If there is no left-hand finger on the string, then we set all F; = 0.

ro=x;+Wr x1=25 22=0
Koy =Ky Ki=K; Ky=0 (2.25)
Ry = Ry Ri=R;y Ry=0

These values could be inserted into the the three-force equations in (2.24). However, since we only

use two forces during the string release, we can simplify A and b as

_: AooKf+BooRf+1 Aole+301Rf b: —Kfyg—Rng (2 26)
A1 Ky + Bo1 Ry AnKy+BnRy+1 —Kpyl — Rpop
We now define the augmented matrix M = [A|b],
| AooKf + BooRg +1 Ao1Ky + Boi1Ry —Kyyl — Ryvg (2.27)
Aole +B()1Rf AHKf —|—Bl1Rf+1 —Kfy{l —Rfvf
The canonical row-echelon form of a 2x3 augmented matrix is:
L]
0 100 onofwlz—ooMonw (228)
Moo M11—Mo1Mio

Since only the Mo entries of M change at each time sample, the bulk of calculations in (2.28) can

be pre-computed as the coefficients defined in Table 2.3,

1 —Dg (K syl + Rpvl)Ds (2.29)
0 1 | (Ksyg + Ryvg)Dio + (Kgyp + Ryof) Du
Solving for F; with back-substitution gives
Fy = (Kgyg + Ryvg) Do + (Kgyl + Ryv}) Duy (2.30)
Fy = (Kyyg + Ryvg)Ds + Fy Dy (2.31)

The row-echelon form of the 3x4 augmented matrix form of (2.24) can be solved with a computer
algebra system, but the coefficients are considerably more complicated than the 2x3 case. Since the

pluck release is much longer than the initial pluck, there is little to gain by optimizing that step.
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Figure 2.5: Finger forces Fyy and F causing desired pitch (7 = 0.891L, 220 Hz) after a pluck release.
The time-domain plots only show the first few cycles, but the FFT was performed on 65536 samples
(= 1.5 seconds) after applying a Blackman-Harris window.

Audio 2.1: Plucking a fingered violin G string

http://percival-music.ca/dissertation/a.2.1.pluck-finger-forces-violin-g.wav

Pitches and energy transfer between modes

The external forces do not change the fundamental constants of the string: The modal frequencies
wy, do not change due to xg, x1, or x5. Different pitches are produced due to forces Fy, Fi, and Fj
transferring energy between modes. Without this modal cross-coupling, the system would be a linear
system of decaying modes and would require altering the string length L in order to create different
pitches.

Figure 2.5 shows the output of the simulation after a fingered pluck. Forces Fy and F; act to
suppress any movement at positions xy and z;, while the remainder of the string vibrates freely
(recall that Fy is not used for the release portion of the pluck). Musically speaking, the plucking
position (x, = 0.891L) corresponds to the normal position of the first finger in violin playing, so on
the violin G string we expect to see a full set of harmonics beginning at 220 Hz.

The displacements along the entire string for one cycle is shown in Figure 2.6. That figure also
illustrates why F} is considerably larger than Fj, and why the two forces are almost exactly out of
phase: F; must counter the behaviour of the long vibrating portion of the string, whereas Fy need

only cancel the smaller movements in the short portion of the string.


http://percival-music.ca/dissertation/a.2.1.pluck-finger-forces-violin-g.wav
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Figure 2.6: String displacements during one cycle of a pluck on the violin G string, downsampled

by a factor of 5. Times are measured after pluck release. Note that while the string has very small

displacements at points xy and x1, the string vibrates freely between those points. This is an unwanted

artifact of modelling the finger as only two points on the string. Note the string has a sharp “corner”

at the plucking position (z, = 0.2L = 0.066) at time 0, and that this “corner” moves to the right until

it hits the finger, then returns in the opposite direction, forming a rough parallelogram. However,

over time this “corner” becomes more and more gradual (courtesy of the high decay rates of upper

modes), until it reaches the arc-like string segments shown on the right.

This simulation produced Audio 2.1.

Video 2.1: Displacements after plucking a fingered violin G string: 4.5 ms, full sample rate.
http://percival-music.ca/dissertation/v.2.1.pluck-finger-movie-violin-g.mpeg

Video 2.2: Displacements after plucking a fingered violin G string: 200 ms, reduced sample rate.

http://percival-music.ca/dissertation/v.2.2.pluck-finger-movie-long-violin-g.mpeg

Oddities of this model

Although the right-hand plucking finger is always modelled with two forces, the left-hand finger is
modelled with one or two forces. It may seem odd to alter the simulated left-hand finger width
— when plucking the string, the finger is infinitely thin (at point x), whereas when the string is
released, the finger acts on the string at two points (z; and xzy + Wy). Furthermore, the “finger”
allows free vibrations between those points. Using only three forces for the plucking portion and two
forces for the string release is a compromise between computational complexity and realism of the
model. Adding additional “finger points” to the model poses no mathematical difficulty — we simply
add more rows and columns to A, z, and b. Finding the inverse or decomposition of 10x10 or even
100x100 matrices will not seriously tax a modern computer using standard linear algebra libraries, at
least for non-realtime simulations. In this way we could produce a more realistic model of a finger.
Instead of using two springs of equal strength, we could use multiple springs. The spring constants K
and damping factors R of each point could be varied in order to better imitate the curved finger by
using stronger springs for points at the centre of the finger and weaker springs for points at the edges
of the finger. However, with the possible exception of the double bass playing jazz, plucking is not a
large factor in normal instrument playing, and the current system creates plausible audio to casual

listening. I therefore turn to the bowing algorithm.


http://percival-music.ca/dissertation/v.2.1.pluck-finger-movie-violin-g.mpeg
http://percival-music.ca/dissertation/v.2.2.pluck-finger-movie-long-violin-g.mpeg
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2.1.3 Bow force on the string

When bowing the string, I only use two forces: Fj represents the bow, while F} is a single finger force.
F remains modelled as a damped spring, while there are two ways of thinking about Fp:
Adjusting modal values: our modal equations require a variable Fy to update the string velocity

vg in the desired manner. I represent this concept as Fiodal(Av).

Force of friction: as the bow scrapes against the string, it creates a frictional force. I represent this
concept as Fiction (AV).

Although Foda1(Av) and Fiction (Av) are the same force, it is useful to consider them separately
for their derivation. This equality is crucial to avoiding a computationally expensive numerical solution
to our differential equations. A graphical interpretation of this is shown in Figure 2.7: The equality
is the intersection of the Fiiction(Av) curve and the relevant Fioda1(Av) diagonal line.

Both methods will benefit from defining the relative velocity between the bow and string,
Av = vg — vy (2.32)

Deriving Finodal

Inserting y; and v; from (2.20) into (2.21) and solving for F; gives

(BioR1 + A10K1) Fo + Ryvl + Kyyp
BuRi+ Ak +1 (2.33)
= D5F() + DﬁU{L + D7yf

F=-

Inserting (2.33) and (2.32) into vy from (2.20) and solving for Fy gives

(B11R1 + A1 K+ 1)(1}5 + Av — Ug) + (BOlKl)yil + (BOlRl)U{L
(BooB11 — Bo1Bio)R1 + (A11Boo — A10Bo1) K1 + Boo (2.34)

= Dy (vp + Av — vg) + Dgy? + ng?

FmodaleOZ

In Appendix A, I conjecture that the denominator of (2.34) must be greater than zero.

Deriving Firiction

The “traditional” bow-string friction model is the hyperbolic friction curve with hysteresis (McIntyre
et al. 1983), which expresses the frictional force in terms of F}, and Av. The curve relies on the

coefficients of static friction p,, dynamic friction g, while p,. indicates the slope?.

B (jua + (emtiee ) it Av < 0
Flraditional = —F; ts < Firaditional < Fp Ms if Av=0 (235)
Py (pa + o) if Av > 0

2Notation: here there is another unfortunate clash of variable names. Some literature on bow friction uses vg to
refer to the slope of the hyperbolic friction curve (us in my notation). However, (Demoucron 2008) and (Demoucron &
Rasamimanana 2009) use vg to refer to the “hands-free” velocity of the string under the bow, which naturally suggests
using vo for the string velocity at that point, as I have done. I find it much more natural to use p to represent all
friction parameters
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Dy = (BniRi1+ A K1+ 1)L, Dy = By K114
1
Dy = By Ri L Dy —
3 011 Ly 1= 5p;
Ds = (B1oRy + A10K1) Lo D¢ = R1Lo Dy = K, Ly
1 -1
L=

Lo =
(BooB11 — Bo1B1o)R1 + (A11Boo — A10Bo1) K1 + Boo 7 BuBRi + An K, +1

Table 2.4: Coefficients for bow force on the string.

The friction curve is plotted in Figure 2.7; note that there is an “ambiguous” region where there is
more than one possible intersection. At time ¢,, the only intersection is at roughly Av = —1.25; at time
t. the only intersection is Av = 0. However, at time t;, there are three candidates: Av € {—0.5,—0.1,0}.
This “Friedlander-Keller ambiguity”, named after the two mathematicians who first studied it, is re-
solved by adding a hysteresis rule to (2.35): if the system is currently sticking (Av = 0), then it will
continue to stick if possible; if the system is slipping (Av # 0) then it will continue to slip if possible.
Furthermore, the system will never reach the “middle value” between Av = 0 and the farthest possible
solution. In the case of Figure 2.7, if we progress from time t, — t; then Av = —0.5; if we progress
from time t. — t, then Av = —0.1. Noise was added to the slipping state by multiplying the friction
curve p. by a uniform random value 0.95 < u(t) < 1.0 for every computation, defining p. = peu(t).
This has the effect of adding pulsed noise at the slip/stick transitions, which can aid in establishing
Helmholtz motion (Chafe 1990, Demoucron 2008).

B (pa+ B9 ) i Av <0
Firiction = —F ps < Fhiction < Fp s if Av=0 (236)
Py (pa+ B ) i Av>0

— Ffriction(AU)

— moda](Av) at time ta

e modal(AU) at time tb
Fmodal(AU) at time tc

Force [N]

Av [m/s]

Figure 2.7: Hyperbolic friction curve using a common set of friction characteristics (us = 0.8, ug = 0.3,
te = 0.2) and bowing parameter F}, = 1.0. The randomness of u. alters the steepness of the curves
in Fhiction, but only by a small amount (the maximum and minimum p. curves are plotted but are
indistinguishable at this resolution). The modal force comes from an open violin G string with bowing
parameter o = 0.1L, v, = 0.4 and varying v}.
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Relative bow velocity

Calculating Av depends on the current bow slip-state; given the hysteresis rule, we will consider each
slipping state (Av < 0, Av = 0, Av > 0) separately. If the current slip-state cannot be maintained,

other states are tested as shown in Figure 2.8. Once Av is derived, Fj is calculated from (2.34).

Sticking: If the string is currently in the sticking state (Av = 0), the bow continues to stick if

_Fb Hs < Fmodal S Fb Ms (237)

Slipping (negative): If the string is currently moving slower than the bow (Av < 0), then we
combine Fiodar (2.34) with the relevant case of Fiiction (2.36):

Dl(AU + vp — Ug) + DQy{l + DSU? = Fodal = Fliction = Ip (ﬂd + W) (238)

Solving for Av gives:

C2 = —D1
o AV? + 1 Av+ ¢y =0, with c1 = —Di(vy — vl — pe) — Doyl — D3l + Fyuq (2.39)

co = pe [D1(vp — v}) + Doyt + D3v}t — Fyps)

If the discriminant A = ¢ — 4cyez is below 0, then there is no real solution for Av so we reject
this slip condition and check for a stick condition. If A = 0 then there is only one solution. If
A > 0 then there are two solutions, but we always take the solution which is farthest from zero.
Finally, recall that the formula for Fiiction in (2.38) is only valid for Av < 0, so we must reject

any other solutions.

1+ /P —dcge; —c1— /3 —4
Av = min < atvey COCQ, a a cOCQ) ,provided that Av < 0 (2.40)

2¢cs 2¢9

Assuming that D; > 0 (see Appendix A), we can simplify (2.40) to

Av =D, (c1 —y/3+ 4c0D1) , provided that Av < 0 (2.41)

Slipping (positive): We repeat the same series of steps as with the negative slipping case.

s — Md)He
DI(AU + vy — ’Ug) + D2y? + DB’U{L = Fodal = Firiction = —Fp </’Ld + m) (242)

Solving for Av gives:

e =D
o AV? + 1 Av+ ¢y =0, with c1 = Di(vy — v + pe) + Doyl + Do} + Fypg (2.43)
co = fpie [D1(vy — vg) + Doyl + D3vi + Fyp,]
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yes
A'U(to) < 0 AU(tO) =0 A'U(t()) > 0 > negative
—> stick
> positive
no
Y)} ) N/ {(Y > negative
> stick
’. > positive
Test Test Test
Av(t1) <0 Av(ty) = Av(t1) > 0
L vl > v VL vh < vb’.". vl
A’U(tl) <0 Av(tl) =0 A’U('L’l) >0

Figure 2.8: Bow slipping states.

If the discriminant A = ¢? — 4cgcp is below 0, reject this slip condition, otherwise

1+ /F —degey —c1—+JE—4
Av = max < atva ocz 4 a COCQ) ,provided that Av >0 (2.44)

2co 2¢o

With the assumption that D; > 0, this produces
Av =Dy, (—cl +1/c3 — 4coD1> ,  provided that Av > 0 (2.45)

Transition between slip states

If the bow is sticking to the string but it fails the test in (2.37), the bow begins to slip. To determine
whether Av > 0 or Av < 0, we examine the relative velocity of the string under the bow if there were
no external forces. If the string would be moving slower than the bow if there were no external forces
(vl < vp), then the effect of the bow will cause the string to move faster (Fy > 0). This occurs when
Av < 0, so we move to that state. A similar argument is made for v > v}, implying that Av > 0.
Most friction models (including (Demoucron 2008)) assume that the string will never be moving
faster than the bow. This is a fair assumption when bowing strings with relatively low fundamental
frequencies and the string always begins from rest. However, when bowing the violin A or E strings,
the string velocity at zy can exceed the bow velocity. Ideally there would be at least one sample
of stick-state before reaching the higher velocity, but this does not always occur. If the slip-state is
not allowed to “jump” directly from negative slipping to positive slipping, the system can become
unstable. This is discussed in Section 2.3.3. For that reason, Figure 2.8 allows the system to begin in
the negative slipping state but end in the positive slipping state (and vice versa). Allowing the string
to jump from negative to positive slip-states is a useful “safety valve” which avoids the instability

without significantly increasing the amount of computations due to a higher sampling rate.

Final forces

After determining the slip-state and Av, Fp is calculated from (2.34) and F} is calculated from (2.33).
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Beginning (0.0 seconds) Middle (0.9 seconds)
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Figure 2.9: Movement of a bowed string, downsampled by a factor of 5. Finger position z; = 0.891L

(220 Hz, expected cycle 4.5 ms), bowing parameters z, = 0.1L, F, = 1.0, v, = 0.5. The orange line

represents the bow, while the red spring represents the finger as usual.

Audio 2.2: Normal bowed fingered string.
http://percival-music.ca/dissertation/a.2.2.bow-finger-movie-middle-violin-g.wav

Video 2.3: Normal bowed fingered string, beginning.
http://percival-music.ca/dissertation/v.2.3.bow-finger-movie-begin-violin-g.mpeg

Video 2.4: Normal bowed fingered string, middle.
http://percival-music.ca/dissertation/v.2.4.bow-finger-movie-middle-violin-g.mpeg

In the videos, a solid line for the bow indicates a stick-state, while a light line indicates a slip-state.

Accelerating the bow

In order to facilitate the establishment of Helmholtz motion when bowing a string from rest, as noted
by (Guettler 2002), the model accepts an additional input parameter: bow acceleration a,. If this

parameter is set, then v, is updated at each time step,

Ub(ti+1) = ’Ub(ti) + apdt (246)
until v, reaches a target velocity vf.

Bowed string movement

Figure 2.9 shows a typical fingered bow-stroke. An analysis of professional violinists’ bowing (Guettler
2002) showed that fewer than 50% of notes establish perfect Helmholtz motion from the outset; this
is true of the “beginning” plot in which the bow’s motion does not end at the same position in which
it began. By contrast, the “middle” plot shows that the string’s motion completes one full cycle in
4.5 ms. At the note beginning, the string’s movement is highly biased in the direction of the bow’s
movement, whereas after the string has “settled down” into normal Helmholtz motion, the string’s
movement is almost (but not quite) evenly split between positive and negative y directions. The

interplay of bow slip-states and string motion during Helmholtz motion is quite visible in Video 2.4.


http://percival-music.ca/dissertation/a.2.2.bow-finger-movie-middle-violin-g.wav
http://percival-music.ca/dissertation/v.2.3.bow-finger-movie-begin-violin-g.mpeg
http://percival-music.ca/dissertation/v.2.4.bow-finger-movie-middle-violin-g.mpeg
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Figure 2.10: Bow harmonics, downsampled by a factor of 3. Left: natural harmonic (very light left-

hand finger), right: normal bowing (normal left-hand finger). Both simulations used the same finger

position z; = 0.75L (expected frequency 261 Hz, cycle 3.8 ms) and bowing parameters of =, = 0.1L,

Fy, = 0.5, v, = 0.3 on the violin G string. Both plots begin at 1.0 seconds. The large vibrations above

the finger position are expected in the harmonic note, but not desired for the normal note.

Audio 2.3: Natural harmonic.
http://percival-music.ca/dissertation/a.2.3.bow-harmonic-light-violin-g.wav

Video 2.5: Natural harmonic
http://percival-music.ca/dissertation/v.2.5.bow-harmonic-light-violin-g.mpeg

Audio 2.4: Normal Helmholtz vibrations.
http://percival-music.ca/dissertation/a.2.4.bow-harmonic-normal-violin-g.wav

Video 2.6: Normal Helmholtz vibrations.

http://percival-music.ca/dissertation/v.2.6.bow-harmonic-normal-violin-g.mpeg

Natural harmonics

Gently touching a vibrating string at nodes can produce a “flute-like” sound, known as “natural
harmonics” or often simply “harmonics”3. The physical model accommodates harmonics, as shown in
Figure 2.10. Plucked harmonics can also be created, but it is quite difficult to find the right balance
between left-hand finger strength and the string decay. Since the bow provides a constant input of

energy, bowed harmonics are much easier to produce in both real life and the model.

3«Artificial harmonics” also exist, but they are an advanced violin technique and are not supported in this model
due to requiring two left-hand fingers on the string


http://percival-music.ca/dissertation/a.2.3.bow-harmonic-light-violin-g.wav
http://percival-music.ca/dissertation/v.2.5.bow-harmonic-light-violin-g.mpeg
http://percival-music.ca/dissertation/a.2.4.bow-harmonic-normal-violin-g.wav
http://percival-music.ca/dissertation/v.2.6.bow-harmonic-normal-violin-g.mpeg
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2.1.4 String states

Depending on the type of external actions, the string simulation will vary between 5 states, as shown
in Figure 2.11.
Bow: If there is a bow on the string, then the equations in Section 2.1.3 are used. When the bow is

removed from the string, the state changes to a release-state.

Pluck: If a pluck has begun, the equations in the first part of Section 2.1.2 are used. After T}, seconds,

the string is automatically released and changes state.

Release (finger): If a left-hand finger is on a string, the equations in the second part of Section 2.1.2

are used. When the string’s vibrations are insignificant, the string calculations are turned off.

Release (no finger) : If there is no left-hand finger, then there are no external forces and the string
vibrates freely; only equations in Section 2.1.1 are used. In particular, a,, <+ a® and a, + a”.

When the string’s vibrations are insignificant, the string calculations are turned off.

OfT : The string does not move at all; A[t] < 0 and HJt] < 0.

Turning off the string

If the string is not being bowed or plucked, the vibrations continually lessen and after some time they
will be too small to provide any output in the 16-bit-quantized signal. For each complete buffer of

each string, we check the sum of squares
Amag = > Ali]? (2.47)

against a threshold value Ay, defined in Section 3.5.5. If the value is smaller, then we disable
computation for this string and set a,, = 0,a,, = 0. This check is only performed on a full buffer of
samples; if a smaller buffer size was requested, the check is omitted to avoid premature silencing.
External applications may with to add dither to the final output. In some cases, adding small
amounts of randomness (“dither”) to the output signal can improve the human perception of the
sound. I decided that dither should not be part of the physical simulation itself, since the amount

and shaping may depend on the specific use case of the simulation.

e e > B Release
input oW ves (s
User user lifts bow Left-hand
o e finger on A < ALY -
put :
string?
- no Release
mput Pluck samples P

since pluck
> Tpdt

Figure 2.11: String states. Solid lines indicate automatic progress; dotted lines indicate user input.
Whenever there is user input, the string state jumps back to the left-hand side.
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2.1.5 Instrument body simulation

The instrument body and bow are modelled as linear time-invariant systems. Each string is simulated
for n samples, then the results are combined according to the sample rates as shown in Figure 2.2.
Finally, the signals are quantized to 16-bit integers for convenient use with audio software.

The output of a linear time-invariant system is found by convolving the input signal with the
impulse response of the system. Convolution can be considered to be a finite impulse response (FIR)
filter, and FIR filters with a large number of coefficients are almost always most efficiently performed
with FFTs via the overlap-add method (Stockham 1966). Given a block of an input signal x[n] and

a convolution kernel h[n], the convolution can be performed as

yp[n] = FFT Y(FFT(xy[n]) o FET(h[n)) (2.48)

However, since the FFT will be longer than the block size of the input signal, there is important
data “overlapping” into the next x; block. This “overlapping” data is retained and added to the next
xp. Given a kernel length of M and block size of L, the FFT length N must be chosen such that
N > L+ M — 1. Note that FFT(h[n]) does not change throughout the simulation, so it need only be

calculated once.

Multi-sample rate strings

All instruments in this simulation output an audio signal at a sample rate of 22050 Hz, but this is
below the Nyquist rate for some the upper modes of some strings. Furthermore, as is discussed in
Section 2.3, the sample rate can significantly change the results of bowing a string. To mitigate these
problems, many strings are computed at a frequency which is an integer multiple of 22050 Hz. Each
string is computed at a frequency multiplier M (ranging from 1x to 4x), with the exact multipliers
listed in Section 3.5.2.

When combining string signals, I first add signals of the same sample rate, then apply the filters
discussed below, then decimate the resulting signal by the relevant frequency multiplier. The resulting
signal(s) are summed, forming the final output. The entire process involves two filters: A low-pass
anti-alias filter to permit the downsampling, and the FIR body filter. Since both filters are linear
time-invariant, I combine them to form a single filter.

In Section 3.3.2 I recorded 4096 samples of violin, viola, and cello impulse responses at 22050 Hz.
That impulse response is upsampled to match the desired frequency multiplier. The overall instrument
calculates at most 512 samples at a time. After examining the spectrums of instrument body responses
with 511 and 1535 samples, I decided to use the longer impulses to retain spectral resolution. This
means that with a frequency multiplier My = 1, I must use an FFT of length N = 2048; for My = 4,
I must use an FFT of length N = 8192. For M; > 1, the body response is upsampled accordingly.
The haptic signals use an FIR filter of order 512, resulting in FFTs of length N = 10240 .

After applying the FIR filter, the signals are decimated. Alt] is decimated by M, while H[t] is
decimated by 2Mj.
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Figure 2.12: Frequency response of violin instrument body filters. Left: An example of the combined
response of the violin impulse response with the low-pass filter. Right: An example of the tactile
sensitivity filter designed with the window method; a few extra points were added to make the designed
filter have a smoother shape in the region between 250 Hz and 2000 Hz. The overall gains of the two
filters were chosen such that there would be a clear signal after quantizing to 16-bit integers.

Kernels

The convolution kernel for audio output comes from the impulse responses measured in Section 3.3.2.
The impulse response is upsampled by the relevant frequency multiplier, then filtered with a low-
pass FIR filter with a cut-off of 10000 Hz designed with the window method using a Hamming
window of order 101 (Smith 2011). An example is shown in Figure 2.12. To avoid the upsampled
impulse responses resulting in louder strings than the non-upsampled strings, each impulse response
is normalized by its (post-upsampling) length.

The convolution kernel for the haptic output was generated from the literature on human tactile
finger sensitivity. Data points from two papers were combined and used to generate an FIR filter using
the window method with a Hamming window of order 512. The frequency response of the resulting
filter is shown in Figure 2.12. In particular, (Bolanowski et al. 1988) provided data from 0.4 Hz to
500 Hz, while (Wyse et al. 2012) provided data from 250 Hz to 2000 Hz. Since the sensitivity was
already lower than -100 dB at 6000 Hz, no additional anti-alias filter was applied.

It must be acknowledged that this is only a very rough estimate of tactile sensitivity and that
the two papers used different measurement methods; combining data points in this manner is not
scientifically valid. However, it provides a plausible “first estimate”, as the actual finger sensitivity
is unlikely to differ by an order of magnitude, and this filter can easily be changed later when more

data of tactile sensitivity emerges.
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2.2 Design decisions and consequences for finger actions

This section examines the physical model in greater detail, and discusses various design decisions.
Unless otherwise specified, all frequency plots were generated from an FFT with a Blackman-Harris
window on 216 = 65536 samples of audio (= 1.5 seconds at 44100 Hz).

I encountered three main issues when designing the left-hand finger and right-hand plucking mod-
els: The need for damped springs, the need for at least two forces for right-hand plucking, and the
need for at least two forces for the left-hand finger during string release.

These difficulties were most prominent when the finger or pluck positions were at “strongly ra-
ir, %L, or %L. The latter two correspond to the normal left-hand finger

2
positions of the 3" and 4*" fingers, while programmers testing the physical model are quite likely to

tional” positions such as

select values such as 0.5L or 0.25L for the plucking position, so it is important to ensure that the

model can handle such values.

2.2.1 Damped spring action

I chose to model the left-hand finger and right-hand plucking finger as damped springs, rather than
either undamped springs or viscous dampers alone. The effects of damping the string is shown in
Figure 2.13, while the exact value of the constants are selected in Section 3.5.3.

A viscous damper alone can function well for a single note (be it plucked or bowed). This method
is used in (Demoucron & Rasamimanana 2009), although that paper only included bowed notes and
not plucked notes. However, consider the case of plucking an open string and then placing a left-hand

finger on the string a short time after plucking (say, 2y = 0.25L and t = 0.5 seconds). The open

undamped (R, = 0) damped (R, = 1.0)
$ o $ o
= 0 = 0 .
= 05 ' = 05
«© -1 | | | | < -1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
time / seconds time / seconds

FFT during second pluck (0.5 — 0.6 seconds)

Oy
% — undamped
~ —20 7\\\* h damped
o —40f | v X
E _60 / | | |
0 1,000 2,000 3,000 4,000 5,000

frequency / Hz

Figure 2.13: Two plucks with damped and undamped plucking springs. Violin G string, first finger

xy = 0.891L, two plucks z, = 0.2L. The undamped spring results in highly undesirable behaviour

when the second pluck begins at t = 0.5 seconds. Note that the damped pluck has a flatter frequency

response during the plucking portion (as is desired in this case).

Audio 2.5: Two plucks, undamped
http://percival-music.ca/dissertation/a.2.5.pluck-finger-two-plucks-undamped-violin-g.wav

Audio 2.6: Two plucks, damped

http://percival-music.ca/dissertation/a.2.6.pluck-finger-two-plucks-damped-violin-g.wav


http://percival-music.ca/dissertation/a.2.5.pluck-finger-two-plucks-undamped-violin-g.wav
http://percival-music.ca/dissertation/a.2.6.pluck-finger-two-plucks-damped-violin-g.wav
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string will be vibrating, so unless the string’s transverse displacement at z = 0.25L happens to be 0,
the effect of the finger will be to “fix” the string’s displacement at that point to be non-zero. This
is not desirable; a violinist’s left-hand finger usually fixes the string’s transverse displacement at the
point of contact to be close to zero.

An undamped spring alone can also function well for a single note; this method is used in
(Demoucron 2008). However, there are two situations where this is not suitable. First, a real string
decays faster when a finger is pressed against the string compared to plucking an open string, since
the rounded finger and flesh dampen the vibrations. This additional damping is shown experimen-
tally in Section 3.5.3. The decay could be imitated by changing the r,, damping factors in the string
constants whenever a finger is pressed against the string, but it is much clearer to add the damping
via damped springs. Failing to include such additional damping results in all notes sounding like
open strings. This is not desirable, but it is a relatively minor problem compared to other problems
discussed in this section. Second, the damping is very useful to deaden vibrations when plucking an
already-moving string. When using an undamped spring to model the right-hand pluck, attempting
to pluck an already-moving spring causes a loud “wooden tick” sound. By contrast, modelling the

pluck with a damped spring produces an acceptable sound.

2.2.2 Two forces for right-hand plucking

In many cases, using a single force to model the right-hand plucking force is sufficient. However,
consider plucking an open string at x, = 0.5L, as shown in Figure 2.14. There are no left-hand finger
forces, so the only external actions on the string come from the pluck. If the pluck is modelled with
a single (infinitely thin) point, then none of the even modes will gain any energy as they all have a
node at = 0.5L. For this reason, it useful to model the pluck with at least two forces. Even if z, is
a node for many modes of vibration, xo = x, + W, will only be a node if WL,, is an exact multiple of
the mode number. For example, if a string length is 0.33 m and we use N = 33 modes, W, = 0.01 m,
and z, is a node of mode 33, then z, + W, will also be a node. However, such concerns only apply to

relatively higher-order modes, which will only result in problems in the upper spectrum.

Fy only Fy and Fy
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Figure 2.14: Comparison of one and two plucking forces. Violin G string, open string xy = 0.0

(expected frequency 196 Hz), pluck x, = 0.5L. Left: one plucking force. Right: two plucking forces.

Note that with one plucking force, all the even partials above 196 Hz are missing; musically we desire

a full set of partials as shown in the right-hand plot.

Audio 2.7: Plucking an open string with one pluck force.
http://percival-music.ca/dissertation/a.2.7.pluck-open-one-pluck-force-violin-g.wav

Audio 2.8: Plucking an open string with two pluck force.

http://percival-music.ca/dissertation/a.2.8.pluck-open-two-pluck-force-violin-g.wav
1Y P P P P g


http://percival-music.ca/dissertation/a.2.7.pluck-open-one-pluck-force-violin-g.wav
http://percival-music.ca/dissertation/a.2.8.pluck-open-two-pluck-force-violin-g.wav
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2.2.3 Two forces for the left-hand finger

A single finger force causes strong beating when the finger is placed at “strongly rational” positions,
as shown in Figure 2.15. I will examine why the single finger force is not sufficient in greater detail.
In order to eliminate as many variables as possible, I define an ideal unit string in Table 2.5, which
reduces the string model to the bare minimum by eliminating string stiffness and modal decay. The
modal frequencies are thus exact multiples with no variation due to stiffness or damping frequencies.
However, even this simplified model produces clearly visible beating as seen in Figure 2.16. This

unwanted frequency comes from F}, so we investigate the actions of the finger force in greater detail.

One finger force Two finger forces
04| N
< < 02) i
b= b=
2 2 of ’
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0.2 0.4 0.6 0.2 0.4 0.6
time / seconds time / seconds
1t partial 274 partial
0 0
3 ! 3
- 50} : - 50} :
< <
.| <
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Figure 2.15: Comparison of one and two finger forces during plucking. Violin G string, finger 5 = 0.5L

(expected frequency 392 Hz), pluck x, = 0.2L. Left: modelling the finger with a single force during

string release. Right: modelling the finger with two forces during string release. Bottom: close-up

of the first and second partials. The “split peaks” audio from the single finger force version sounds

like two strings plucked simultaneously. The unwanted “extra” peak at 420 Hz in the two finger force

version is an oddity, but it is preferable to the full “split peaks” of the single-force version.

Audio 2.9: Pluck with one finger force.
http://percival-music.ca/dissertation/a.2.9.pluck-finger-force-one-violin-g.wav

Audio 2.10: Pluck with two finger forces.

http://percival-music.ca/dissertation/a.2.10.pluck-finger-force-two-violin-g.wav

T=400 L=20 p,=10"% d=0 E=0 N=3 7,=10,0,0]
1
= 100
One finger force modelled as an infinitely strong undamped spring (K, = co, R, = 0).

wy, = [500 - 27, 1000 - 2w, 1500 - 27]

Table 2.5: Unit string with simple physical constants: It is perfectly elastic with no modal decay.


http://percival-music.ca/dissertation/a.2.9.pluck-finger-force-one-violin-g.wav
http://percival-music.ca/dissertation/a.2.10.pluck-finger-force-two-violin-g.wav
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Since the unit string has only three modes and one finger force at x; = 0.5L, the eigenvectors are
on(x1) = [1,0,—1]. Mode 2 thus has no effect on Fj, and in turn F; has no effect on mode 2. We
can therefore consider the “string release” modelling as two completely separate systems: Mode 2 by
itself, and the combination of modes 1 and 3. The “expected” lower peak in Figure 2.16 comes from
mode 2, so we omit that from future consideration.

To examine the behaviour of modes 1 and 3, I turn to modern control theory. Given the state-space
representation? of a discrete time-invariant system where x(t) is the state of the system, w(t) is the

control vector, ® is the state transition matrix, I" is the input matrix, and H is the output matrix,

X[k + 1] = @x[k] + Tulk]
y[k] = Hx[F]

(2.49)

The general solution for the transfer function (Warwick 1989), after taking the Z-transform, is

_ H -adjoint(z] — ®)-T'

Gz) = det(z1 — @) (2.50)

4Notation: The literature generally writes (2.49) as z[k + 1] = Az[t] + Bulk|; y[t] = Cz[k] + Dulk]. However, I have
already used z, A, B, and D, so we turn to less commonly-used symbols for the state-space representation. In addition,
there is no feed-forward term Dulk] in the model so I omit it.

Audio output Alt] Finger force Fy

Amplitude
o

_5 ]
L L L L L L
0 ) 10 15 20 0 ) 10 15 20
Time after release [ms] Time after release [ms]
I I I I I I
0
an) /M 0
bS] o
~ _50 ™~ =50
[} [}
E E
= -100 £ —100
A 5
= —150 g —150
L L L L L L
0 500 1,000 1500 2,000 0 500 1,000 1,500 2,000
frequency / Hz frequency / Hz

Figure 2.16: Beating in the unit string. The finger is at z; (expected frequency 1000 Hz). The lower
peak matches this expectation, while the upper peak is an unexpected 1118 Hz. In addition, the
sidebands appear to come from this upper peak, with the lower peak appears to be “tacked on” to
the plot. As may be deduced from the time-domain plot for F}, there is a great deal of energy at the
Nyquist frequency (not shown in the “zoomed-in” frequency plot).

Audio 2.11: Beating in the plucked unit string.

http://percival-music.ca/dissertation/a.2.11.pluck-beating-unit.wav


http://percival-music.ca/dissertation/a.2.11.pluck-beating-unit.wav
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In order to derive ®, I will rewrite the full set of equations for the physical model to apply only to
the unit string (i.e. only three modes and one infinitely strong finger force at 21 = 0.5L). To avoid
confusion between the real equations for the physical model and these highly-simplified equations, I

will shade the background with a faint gray colour and omit equation numbers.

For modes 1 and 3 of the unit string, the equations describing the physical model are

at(t1) = X11a1(to) + Xa1d (o) aj(t1) = Xusas(to) + Xasas(to)
al(t1) = Yi1ai1(to) + Ya1d1(to) a(t1) = Yizas(to) + Yasas(to)
yy = Zn—l On(x1)al = af —al A = anl bn(21)? X3n = X31 + X33
fi(t) = ¢1(x1)Fi(tr) = Fa(t) fa(t) = ¢1(a1) Fi(tr) = —Fi(t)
ar(tr) = af + Xa1 fo az(ts) = af + X33 f3
ar(ty) = af + Yai fi as(ts) = ab + Yazfa
h
Fi(t:) = A—Zﬁ

Combining all those equations allows us to describe the system as:

X1X1

il (tl) = %ﬁ%al(to) X33+X31 (to)
2 ) #2010

ag(t) = xEEra(t) +xarras(to)
+E§%§Tal(to) +)§(33+)g(;1 (to)

al(tl) _ X11X33-§()3(33_1i_§;1—X11Y31 al(tO) _‘_% (tO)
+X33Y21JS()§§#);2(;:X21Y31dl(to) +% ( )

as(ty) =  L¥ay(t) o ot P e = RaTis ay fo)
) B )

As a quick sanity check, note that ai(t1) = as(t1), which matches the empirical modal

displacements seen in Figure 2.17.

Modal displacements Eigenvectors

L
0 1 2 3 4 0 0.5 1 1.5 2

Time after release [ms] Position along string = [m]

| Mode 1 —— Mode 2 Mode 3 |

Figure 2.17: Modal displacements during beating in the unit string, 1 = 0.5. In the left plot, modes
1 and 3 have the same values.
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Intuitively, since ¢1(x1) = 1 and ¢3(z1) = —1, modes 1 and 3 must have equal displacement
in order for y(z1,t) = 0. With this intuition, we can simplify the system from 4 equations
to 3 equations by substituting aq(t1) = as(t1). To describe the system as state equations,

we define the state variables as

a1 (t)

X = | ai(t)

as(t)

The state transition matrix is then
X11 X33+ X33X31 Xo21 X33 Xo23X31
X33+X31 X33+X31 X33+X31
P = | X1aVe1 = X1 Y31+ X33 V114 X3, V11 X33¥o1+X31 Y01 = X015 X23Y3
X33+X31 X33+X31 X33+X31
X11Y33—X13Y33+X33Y13+X31Y13 X21Y33 X33Y23+X31Y23—X03Y33

X33+X31 X33+X31 X33+X31

Substituting our constants, this gives

0.98734  1.130911 E-5 1.12708 E—5
®=1-1116.164 —0.0029584 0.99366
—1112.383 0.99366 —0.0097019

The poles (i.e. the eigenvalues of ®) are
A= 0.98734 — 0.15862j, 0.98734 + 0.158625, —1.0

The zeros depend on I and H. The output of the model (i.e. bridge force in (2.17)) is a
linear combination of modal displacements. Since a; = ag and I am only concerned with

the frequency and not the overall scaling, I define

H=[1 0 o
T" is more difficult to determine, as it involves the plucking force Fy which we omitted in
the previous discussion as it plays no role in modelling the string release for the unit string.

For simplicity, I assume that external force will change the modal displacements a; and ag

but will not alter their velocities. Therefore
1
I'=10
0
This gives the zeros as

22 4+ 0.0166z — 0.9834 = (z — 0.98734)(z + 1)
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Combining the poles and zeros gives the transfer function

(2 —0.98734)(z + 1)
(2 — 0.98734 — 0.15862;)(z — 0.98734 + 0.15862;)(z + 1)

Glz] =

A set of typical signal processing plots of this system is shown in Figure 2.18. The important

thing to note is the pole at frequency arctan(g:ég;;gi) = 0.159293 rad/sec, or 1118 Hz in our

system at 44100 Hz — exactly where the unwanted frequency was found in the simulation.

54

This analysis of the behaviour of the simpler “unit string” is useful reassurance that the unwanted

1118 Hz peak seen in Figure 2.16 is not the result of programming error or floating-point rounding

errors. | have mathematically shown that in the unit string, F} acts to produce a peak at 1118 Hz,

while the second mode (unaffected by Fy) will vibrate at the desired 1000 Hz.

A full analysis of the normal (non-unit) string would be much more complicated. In order to

deal with an arbitrary finger position, it would not be possible to decompose the system into multiple

separate sub-systems as was done with the unit system (i.e. considering mode 2 separately from modes

1 and 3). In order to describe the normal system, we would need a dense matrix of 2N x 2N (i.e.

80 x 80 for our N = 40 system). However, such a system would be of limited value, as it would only

be an accurate simulation of plucks. The bow-string friction force calculations involve a square root

and a random value, which would require non-linear robust stochastic control methods to analyze.

Frequency response
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= = 50| |
2 —100| 1 &
<
o
0 - ]
200 b, ! ! ! !
102 103 104 —200 -—100 0 100
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Figure 2.18: System behaviour of modes 1 and 3 in the unit string.
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2.2.4 Three finger forces in total

Having seen the need for at least two forces for the pluck and at least two forces for the left-hand
finger during string release, the next questions are whether two forces for each is enough. As discussed
in Figure 2.1.2, the model uses a total of three forces: During plucking, there are three forces (two for
the pluck, one for the finger); during release, there are two active forces (for the finger).

The number of forces during the pluck is investigated in Figure 2.19 (left): I compare the model’s
usual three forces during the pluck against four forces (two for the pluck, two for the finger). The two
audio files are almost identical (judged by mixing the first file with the inverted second file), as can
be seen from the extremely close match of spectrums.

The final question is whether we need to use all three finger forces during string release, or whether
only need two (and can then leave one force as 0). This is tested in Figure 2.19 (right): I compare
the model’s usual three forces (but only two during pluck release) with three forces throughout (with
Ty =xp+ % during release). More power is concentrated in lower spectral peaks, but this difference
is not audible with casual listening. Since there is no audible difference and three forces require
more calculations, I use two forces for the pluck release. As I discuss in Section 4.3.2, calculating
string releases represents a surprisingly large proportion of the total calculations when simulating
“real-world” music.

It is worth noting that Figure 2.19 contains unwanted peaks at ~ 420 Hz and ~ 840 Hz; using two
(or even three) forces is not sufficient to completely eliminate the frequency we investigated with the
“unit string”. However, those two peaks both have ~ 75 dB less energy than the partial of slightly

lower frequency, so they are not a serious concern.

Varying pluck forces Varying release forces
0 | | O 1
2 50 1 28 -s0
~ ~
< =
E: —100 | i 1 = —100
= 150 ! | | £ —150
s 3
—200 . ‘ ‘ —200 L | !
0 500 1,000 1,500 0 500 1,000 1,500
frequency / Hz frequency / Hz

—— pluck 3, release 2 pluck 4, release 2 pluck 3, release 3, Ry = 14 |

Figure 2.19: Comparison of varying numbers of forces for plucks. Violin G string, finger zy = 0.5L,

pluck z, = 0.2L, Ry = 30 unless otherwise stated. Left: no significant difference between 3 and 4

forces during the plucking stage. Right: differences between 2 and 3 plucks during the release stage;

higher damping is expected due to having three damped springs instead of two, so R, was reduced in

order to keep the magnitude of the first peak the same for the 2- and 3-force versions.

Audio 2.12: Pluck with three fources, release with two forces.
http://percival-music.ca/dissertation/a.2.12.pluck-release-force-two-violin-g.wav

Audio 2.13: Pluck with four forces, release with two forces.
http://percival-music.ca/dissertation/a.2.13.pluck-release-force-four-violin-g.wav

Audio 2.14: Pluck with three forces, release with three forces.

http://percival-music.ca/dissertation/a.2.14.pluck-release-force-three-violin-g.wav


http://percival-music.ca/dissertation/a.2.12.pluck-release-force-two-violin-g.wav
http://percival-music.ca/dissertation/a.2.13.pluck-release-force-four-violin-g.wav
http://percival-music.ca/dissertation/a.2.14.pluck-release-force-three-violin-g.wav
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2.3 Design decisions and consequences for bowing actions

The main method of playing violin is by bowing the string, so it is important that it work well.
There are three issues to note with the bowing: Placing the bow at a “strongly rational” position, not
allowing the string to move faster than the bow with constant bowing parameters, and allowing the
bow slip-state to skip over the stick-state during changes of bow velocity. To investigate the effects of
certain bowing parameters, I turn to two widely-used (Tzanetakis 2002, Peeters 2004) audio features:
The spectral flatness measure and spectral centroid.

The Spectral Flatness Measure (SFM) is a measure of the “tonality” of a signal — that is, how
much energy is concentrated in narrow peaks. White noise has a SFM of 1.0, while values close to 0.0
indicate a mixture of sine waves. Formally, given the Discrete Fourier Transform (DFT) bins X [k] of

a signal z[n], the SFM is the geometric mean of the power spectrum divided by the arithmetic mean,
N-1
exp (% S0 (X n]?))

N—1
¥ 2n—o [X[]?

The Spectral Centroid (SC) is the amplitude-weighted mean of frequencies, and is associated with

SFM(X) = (2.51)

the perceived “brightness” of audio. Given the DFT bins X [k] and centre frequency of bins X ¢[k],

Ny 1X[n]| - X¢ln]
S | X

It is common to restrict X [k] to a particular band of frequencies in both the SFM and SC. I will

SC(Xa, X;) = 2= (2.52)

be restricting SFM to the frequency band of 20 Hz to 4.5wq, where wg is the fundamental frequency
of the string. I restrict the spectral centroid to the range 0.9wy to 1.9wy as shown in Figure 2.20.
Finally, I define the normalized spectral centroid difference (SCN),

~ SO(Xa, X
SON(Xa, X/, w) = 10 =50 EKe, Xy)| (2.53)

w

—100 SCN area
xp = 0.167L
M — SFM = 0.26
= —150 SCN = 0.23
~ zp = 0.172L
D — SFM =15 FE-5
g —200 SCN = 0.12
xp = 0.160L
—250 — SFM =4.1 E-8
{ WV SCN = 0.015

| | | |
500 1,000 1,500 2,000 2,500

frequency / Hz

Figure 2.20: Frequency bands of bowing position z; analysis, violin E string with f; = 88200 Hz.
Finger 2y = 0, force F, = 0.482 N, velocity vy = 0.1 m/s. The string was simulated for 1 second to
allow initial transients to settle, then simulated for a further 1 second to create the analysis data.
Audio 2.15: Bowing at x, = 0.160L, x; = 0.167L, and x, = 0.172L.
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.160-£0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.167-£0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.172-£0.482-v0.100.wav


http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.160-f0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.167-f0.482-v0.100.wav
http://percival-music.ca/dissertation/a.2.15.bow-s3-p0.172-f0.482-v0.100.wav
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2.3.1 “Strongly rational” positions in bowing

“Strongly rational” positions pose a problem for bowing, although not quite as much of a problem as
they posed for plucking. Although the left-hand finger s can be at positions such as %L or %L, the
bow’s placement z; does not include any “very strongly rational” position in normal playing. Expert
violinists keep their bow between 0.015L and 0.18L (Schoonderwaldt 2009), while I estimate that
violin students’ bow position ranges from 0.06L to 0.21L and cello students’ bow position ranges from
0.05L to 0.16L. As such, the bow position will never be on a node of any of the first four modes.
However, “moderately strong” rational positions such as %L, %L, and %L fall within the expected
range of bowing of beginners and experts alike.

Analyzing simulations in which the bowing parameters (z, Fp, and v,) are varied shows a clear
pattern of “rational” bowing positions affecting the output. Figure 2.21 shows a few examples; similar
experiments on other strings reveals the same modal-position-dependent behaviour, albeit slightly less
prominent on strings with a lower fundamental frequency. All plots show “ridges” along bow positions
xp of %L, %L, %L, etc. Surprisingly, there are also ridges at xp = 0.182L and z, = 0.154L; these

correspond to 1—21L and %L respectively.

SFM, v, = 0.1 m/s SFM, v, = 0.4 m/s

0.1 0.15 0.2 0.1 0.15 0.2
xyp [relative distance] xp [relative distance]
SCN, vp = 0.1 m/s SCN, v, = 0.4 m/s

0.1 0.15 0.2 0.1 0.15 0.2
xp, [relative distance] xp [relative distance]
0 0.1 0.2 0.3 0.4
SFM or SCN

Figure 2.21: Effect of rational bow positions x; on violin behaviour, violin E string at f; = 88200.
vp = 0.1 or 0.4 m/s, while F, and x; are varied more gradually. The string was simulated for 1 second
to allow initial transients to settle, then simulated for a further 1 second to create the analysis data.
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It should be clarified that there is nothing wrong with the sound varying depending on bow
position; the effect of bow position on sound was examined by all studies of violin mechanics from
(Helmholtz 1895) onwards (see Section 1.2.1 for more information). However, real-life violins show a
gradual change of audio based on bowing position, without sharp ridges at strongly rational positions.
Real-life bows are approximately 1cm wide, and thus even if one edge of the bow is exactly at a node,
the rest of the bow width will still excite that mode.

The effects of modal positions could be reduced by simulating the bow width with two or more bow
positions, as I did for plucking the string. However, this would drastically increase the complexity of
the bowing algorithm. Plucking a string involves a set of linear equations; adding an extra equation
or two merely increases the size of the matrix to solve. However, bow friction is a non-linear equation;
if we added an extra bow position, the direct solution of the two-equation bow system described in
Section 2.1.3 would not be sufficient to solve the new three-equation system. Rather, I would need
to solve the equations using a non-linear numerical algorithm such as the iterative Newton-Raphson
method. The system of equations becomes even more complicated when one considered the changing
bow-state. Adjusting the algorithm to solve such a system is possible and should be done for any
scientific examination of the string, but it would significantly increase the computations required for
each time step and may result in the simulation being unable to simulate a string in realtime on
current consumer computers.

For this reason, I accept this unfortunate rational-position-dependent behaviour of the model.
There are some mitigating factors, however. First, violinists are accustomed to adjusting their bowing
to avoid odd problems; the space of bowing parameters which lead to “good sound” is quite irregular
(Serafin 2004, Guettler 2002, Schoonderwaldt 2009). I admit that this model is “more irregular” than
a real violin, but it is a question of degree, not kind. It is quite plausible that a violinist performing
music on a haptic bowing interface with audio from this simulation would not notice the particular
positions which produce sub-optimal audio; the violinist could simply adjust the bowing parameters
subconsciously until a good sound was reached®. Second, to anticipate later material on the virtual
musician in Section 5.1.3, my virtual musician will have the bow position x; set manually by the
teacher. By selecting bowing positions which do not correspond to strongly rational points, I can

avoid this problem.

2.3.2 String moving faster than the bow

The model makes two assumptions which are decent “first approximations”, but which can cause
problems in certain situations. These assumptions are that that bow friction can be expressed with
the hyperbolic friction curve with hysteresis, and that external forces are constant throughout the
time interval dt. One problem is that if the sampling rate is not high enough, the string can move
faster than the bow with constant bowing parameters. This is not a problem in general; if we change
bowing parameters (e.g., suddenly stopping the bow) then we should expect that the string will not
be instantly limited by the bow speed. But when a string is bowed from rest with constant bowing

parameters, we do not expect the string to move faster than the bow.

5Note that the problems (i-e. very high values of SFM and SCN) occurred when the bowing parameters were constant;
real musicians accelerate the bow from rest, which has a much wider range of bowing parameters leading to Helmholtz
motion (Guettler 2002). Any number of small changes to bowing parameters can lead to the string reaching steady-state
Helmholtz motion; Figure 2.21 shows that the strongly rational bowing positions x; have different behaviour from other
positions, not that it is impossible to maintain Helmholtz motion in a strongly rational position if it was reached with
a different set of bowing parameters.
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Figure 2.22: Low sampling rate causing the string to move faster than the bow. Violin E string, no
finger (zy = 0), bowing parameters z, = 0.12L, F;, = 0.25 N, v, = 0.1 m/s. The string was bowed for
1 second to allow it to settle, then 1 additional second to gather spectral data. The red line indicates
the bowing slip-state, ranging from negative slipping (-1), sticking (0), or positive slipping (+1). The
middle plot shows Helmholtz motion (one slip per cycle of 660 Hz or 1.5 ms); the left plot shows
chaotic behaviour; the right plot shows undesirable “multiple slipping” behaviour which results in
strong lower harmonics shown in the spectrum.

Audio 2.16: Positive bow slipping at fs; = 55000 Hz.

http://percival-music.ca/dissertation/a.2.16.bow-slip-single-freq-low-violin-e.wav

Audio 2.17: No positive bow slipping at fs; = 66150 Hz.

http://percival-music.ca/dissertation/a.2.17.bow-slip-single-freq-moderate-violin-e.wav

Audio 2.18: No positive bow slipping at f; = 110000 Hz.

http://percival-music.ca/dissertation/a.2.18.bow-slip-single-freq-high-violin-e.wav

This problem is shown in Figure 2.22 with the positive slips in f; = 55000 Hz. How do these arise?
The highest modal frequency is 26409.6 Hz, so the Nyquist limit is not a concern. The equations
used for the bowing simulation contain three variables which represent the bow’s internal state: v{,
y%, and v}. In this case, there is no left-hand finger on the string, so y? and v} are both 0. With
constant bowing parameters, the bow’s slip-state depends entirely on v{ and the current slip-state
(the hysteresis). A transition to a positive slip-state will occur when the intersection of Foqa1 (2.34)

and Fhiction (2.36) falls at the very bottom of the vertical “sticking” line:
Finodal = D1(vp + Av — v§) + Doyt + D3vi' = —Fyps = Firiction (2.54)
Considering only the case of an open string (z; = 0, therefore yh = vl = 0), this simplifies to

vy = FypsBoo + vy (2.55)


http://percival-music.ca/dissertation/a.2.16.bow-slip-single-freq-low-violin-e.wav
http://percival-music.ca/dissertation/a.2.17.bow-slip-single-freq-moderate-violin-e.wav
http://percival-music.ca/dissertation/a.2.18.bow-slip-single-freq-high-violin-e.wav
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An example of friction behaviour and slip-states is shown in Figure 2.23 and Table 2.6. Recall that
we must find the intersection of a diagonal Fi,oqa1 line with the Fiction curve. The slope of Fioda is
Dy, which in the case of having no left-hand fingers on the string is simply B%m' For a given sampling
rate fs, the string’s v will cause the diagonal Fyoda1 line to shift along the x axis, but the slope of
the line will remain constant.

Imagine sliding a pen horizontally along Figure 2.23, starting from the left-hand side of the graph
and keeping the pen parallel to the green diagonal lines corresponding to the f; = 55000 Hz. As long
as the pen remains to the left of the green area, the string will be in a negative slipping state; as soon
as the pen falls within the green area, it will stick. Now put the pen (still parallel to the green lines)
back on the left-hand side of the graph, but instead of sliding it gradually, move it along the x axis
in discrete non-uniform steps. Provided that the discrete steps are small enough, the pen will land
within the “sticking area” and the string equations will behave as expected. However, suppose that
the discrete steps were quite large. The pen could jump over the sticking region entirely, and land in

the positive slipping area. That is the problem which was shown Figure 2.22.

Bow slip-states from negative slipping

T T T T ‘ ‘ ‘ ‘
ool - slipping / sticking d I ;:: z 22228 EZ

£, = 110000 Hz
— Ffriction(Av)

Force [N]
S
1
L

-2y sticking / —+ slipping
L L L £ L L L L L

-1 -08 -06 —-04 -0.2 O 02 04 06 038 1
Av [m/s]

Figure 2.23: Friction slip-states transitions from a negative slip-state. Violin E string, no finger
(zy = 0), bowing parameters z, = 0.12L, F;, = 0.25 N, v, = 0.1 m/s. The full “sticking” region
is shown for f; = 55000 Hz; for higher frequencies only the lower and upper boundaries are shown.
Note that the blue lines for f; = 66150 Hz have a slightly steeper slope than the green lines for
fs = 55000 Hz. Numerical data is given in Table 2.6.

fs Bop min v max vl width vl
55,000 | 3.13 —0.43  0.73 1.16
66,150 | 3.05 —0.42 0.71 1.13

111,000 | 2.31 —0.31  0.56 0.88

Table 2.6: Limits on v for transition to a sticking slip-state when the string is in a negative slip-state.
Violin E string, no finger (xy = 0), bowing parameters x, = 0.12L, F;, = 0.25 N, v, = 0.1 m/s. The
min/max/width refers to the bounds of the sticking region. Graphical data is shown in Table 2.6.
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As previously mentioned, the maximum v(’} which leads to a stick-state is given in (2.55). The
minimum vg occurs when Fioga1 is tangent to Fiiction. If the string is currently in the negative

slipping state, the slopes are

deriction Fb,u/e (,U/s - lffd)

= 2.
dAv (pe — Av)? (2.56)
dFmodal _

We let (2.56) equal (2.57) and solve for Av, then take the minimum. Recall that D; > 0 (see
Appendix A).

F eD s F eD s —
Av = min [ o, 1 VEobeDrlis = pra) - FopreDa(ps — pra)
D D,
- — V/ Fotte D1 (ps — pa)
He D,
Fopio Dy (o —
:Me_\/bﬂ 5(# fid) (2.58)
1

By assumption the string is in a negative slipping state, and any sensible® set of bowing parameters

will lead to Av < 0, which can be substituted into the result after solving Finodal = Firiction for v('},

n (e = DAY D3 + yl Da(pe — Av) + Dy (e — Av) (v + Av)) + Fy(praAv — pispie)

0 D1 (/4Le 7 A’U) ( )
Applying the simplification of no left-hand finger,
BooFp(pispre — paAv) — (pe — A A
ot = Boo b(#spte — paAv) — (pe — Av)(vy + Av) (2.60)

pe — Av

Increasing the sampling rate decreases the width of the sticking region, but also decreases the
amount that v} changes between time steps. It should be noted that there is no linear relationship
between either of these factors. Given constant bowing parameters, the width of the sticking region
depends solely on Bgg as seen in (2.55) and (2.60), which in turn depends entirely on Y3, from
Table 2.2. The amount of change between v (ty) and v{(¢;) depends on @y (to), @, (t1), and Yz,. In
turn, a,(t1) depends on almost all parts of the physical model, so an analytic prediction about the
effects of increasing fs would be very challenging. Empirically, increasing the sample rate reduces the
number of positive slips; for example, simulating the violin E string at 88200 Hz produces no positive
slips. Avoiding positive slips (when bowed in a positive bow direction) will be the main consideration

behind choosing a sampling rate for each string in Section 3.5.2.

6With very odd bowing parameters (i.e. e >

VForeD1(ps—pd)
D,
h

case the minimum v is calculated based on the upper “sticking” line and will be vg = —F,usBoo + vp for a string
without a left-hand finger.

), there may not be an acceptable solution, in which
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2.3.3 “Safety valve” changes of slip-state

The sampling rate of each string is chosen to avoid undesirable slip-states when starting from rest, but
there are two remaining concerns. First, that it is necessary to allow positive slip-states; and second,
that it is necessary to allow the string to skip over the sticking state. The neccesity of both elements
of the model arise from circumstances associated with changing bowing parameters.

Consider a string which establishes Helmholtz motion with a moderately large bow velocity v, and
force Fy, then suddenly the bow is lifted away from the string (F}, = 0). The string will vibrate freely;
vl will fluctuate between positive and negative values and will gradually decay according to the modal
decay rates. Now suppose that rather then removing the bow, we instead drastically decrease v, and
F}, but keep them non-zero. Recall that the lower and upper bounds of the vertical “sticking” portion
of Firiction in (2.36) are —Fyus and Fypug; reducing F, will reduce the region of v{ which leads to a
sticking state. Such an example is shown in Figure 2.24.

What should be done if vf} “skips over” the sticking region and lands in the positive-slipping region?
Although I have chosen sampling rates for each string which avoid this problem for constant bowing
parameters, when we allow changing bowing parameters then v, and Fj can be arbitrarily small,
leading to an arbitrarily narrow sticking region. As long as external forces are assumed to be constant
for the time interval dt, it is not possible to avoid the problem of vg being too large for the normal
sticking area. One solution is to forbid any positive slips: The string is only allowed to stick or slip in
the opposite direction of the current bow velocity v,. This method was used in (Demoucron 2008), but
examining Figure 2.24 suggests that this can lead to undesirable behaviour. If the string is vibrating
normally according to the friction states in the left-hand plot, then it is likely that the F,oqa diagonal
line will be oscillating with a z-intercept above 0. When the bowing parameters change, the string’s
vibrations will not instantly cease. When the bowing parameters change and we switch to the friction
states in the right-hand plot, any Fi,oqa1 line with a z-intercept above 0 will result in a very large
negative force being applied to the string. This can lead to “choking” the sound when v, and F;, are

suddenly reduced, as shown in Figure 2.25.
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Figure 2.24: Friction slip-states for a bowing change. Violin G string at fs = 44100 Hz, no finger
(zy = 0), bow position z;, = 0.12L. The dotted orange line indicates the force which the bow exerts on
the string if positive slips are forbidden — instead of finding the intersection of Fi,oda1 With Firiction,
imagine that the Fpiction curve does not exist for Av > 0 and instead follows the dotted orange line.
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Figure 2.25: Effect of forbidding positive slips. Violin G string at f, = 44100 Hz, no finger (x5 = 0,

bow position x, = 0.12L. String was bowed for 1 second with v, = 0.5 m/s, F, = 1.0 N, then bowed

for 2 more seconds with v, = 0.1 m/s, F, = 0.01 N. In order to ensure that both simulations began

from the same point at 1 second, the random portion of the hyperbolic curve was disabled (pe = fic)-

When positive slips are allowed, the string decays gradually into the new bowing regime. When

positive slips are forbidden, the string’s vibrations are abruptly and unnaturally cut off.

Audio 2.19: Change of bowing parameters with positive slips allowed.
http://percival-music.ca/dissertation/a.2.19.bow-slip-change-both-violin-g.wav

Audio 2.20: Change of bowing parameters with positive slips forbidden.

http://percival-music.ca/dissertation/a.2.20.bow-slip-change-negative-only-violin-g.wav
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Figure 2.26: Effect of forbidding skipping over the stick-state. Violin E string at f; = 88200 Hz, no
finger (zy = 0, bow position z, = 0.12L. String was bowed for 1 second with v, = 0.5 m/s, F;, = 1.0 N,
then bowed for 0.15 (for no-skips) or 2.0 more seconds with v, = 0.1 m/s, F, = 0.01 N. The random
portion of the hyperbolic curve was disabled (ue = f.).
Audio 2.21: Change of bowing parameters with skipping over stick-state.
http://percival-music.ca/dissertation/a.2.21.bow-slip-change-both-safety-violin-e.wav
Audio 2.22: Change of bowing parameters forbidding skipping over stick-state. Caution: very loud
audio at 1 second.

http://percival-music.ca/dissertation/a.2.22.bow-slip-change-no-skips-safety-violin-e.wav

For this reason, I allow positive slipping states. The second question is whether I should allow the
string to “skip” directly from negative slipping to positive slipping, or whether I should force the string
to have at least 1 time-interval of sticking between the two slip-states. Recall that the model assumes
that the external forces have a constant value throught the time interval dt, and that Fiction changes
drastically depending on the slip-state. For most strings, there is no great difference between allowing
or forbidding skips, but for thin and high-frequency string such as the violin E string, forbidding the
string to skip directly from negative to positive slipping leads to unstable (exponentially increasing)

behaviour as shown in Figure 2.26.


http://percival-music.ca/dissertation/a.2.19.bow-slip-change-both-violin-g.wav
http://percival-music.ca/dissertation/a.2.20.bow-slip-change-negative-only-violin-g.wav
http://percival-music.ca/dissertation/a.2.21.bow-slip-change-both-safety-violin-e.wav
http://percival-music.ca/dissertation/a.2.22.bow-slip-change-no-skips-safety-violin-e.wav
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2.4 Final remarks on the physics

This chapter has described the equations comprising my physical model and examined the conse-
quences of using those equations. As discussed in Section 1.3.2, this model is far from the most
realistic description of violin mechanics known to scientists; however, it provides audio of sufficiently
high quality that it will suffice for my purpose. I will review the mechanics which are not covered by
my model, and then summarize the actions that the model can simulate.

The major research contributions of this chapter are:

e Added plucking actions to Demoucron’s model, and showed why at least two point forces for
each finger are necessary when using a modal simulation. This is discussed in Sections 2.1.2 and
2.2.

e Fixed Demoucron’s bowing model to avoid an unstable system when simulating the violin E
string with experimentally measured modal damping factors. Two problems with the bowing
model were demonstrated but not fully resolved: Odd behaviour can occur at insufficiently high
sampling rates, and at bow positions which are “strongly rational”. I mitigate these problems
by choosing the sampling rate multiplier My for each string (Section 3.5.2) to reduce such
oddities, and avoid “strongly rational” bow positions for the virtual violinist (Section 5.2). This

is discussed in Sections 2.1.3 and 2.3.

e Added haptic output to the model as dicussed in Section 2.1.4. This allows the model to be
used in a force-feedback system for human interaction, but my main goal is to provide additional

information for the machine learning of the virtual violinist (Section 5.2).

2.4.1 Model simplifications

I adopted Demoucron’s model based on my subjective judgement of the quality of audio I consid-
ered necessary for my virtual violinist. Other researchers may wish to work with a more accurate
model, either by modifying this model or by choosing a different method of synthesis entirely. The
choice of model depends on a combination of the intended use of the simulation, the amount of
processing time available, and the amount of researcher time available to spend on physics or pro-
gramming. An excellent review of bowed-string mechanics is given in (Woodhouse & Galluzzo 2004),
while (Demoucron 2008) contains a list of criticisms of his model which apply to this model as well.

In the model described in this chapter, the string is simulated as a set of 1-dimensional vibrating
transverse modes, each of which has a constant decay rate. However, real-world strings vibrate in
many more directions: Two transverse dimensions (parallel and normal to the bow), torsional motion,
and longitudinal motion. Most strings (other than the violin E string) are not uniform materials,
as they consist of a thin layer of metal wound around a nylon-like core; this introduces additional
internal friction.

Placing the string on an instrument body adds another set of known mechanics which are not
included in this model. The instrument body itself is a vibrating non-linear system. In a real instru-
ment, energy is transferred between the instrument body and the strings at the bridge and nut; in
the model, energy is only transferred from the string to the bridge in one direction. In addition, the

bridge (as distinct from the instrument body) is another vibrating system.
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In the model, the left-hand finger is assumed to be one point (during bowing) or two points (when
the bow is released) acting as damped springs. In real life, a finger has a wide force profile, exerting
force on the string at all points between the two edges. In addition, the left-hand finger on the
violin or viola is placed on the fingerboard in a different orientation than a left-hand finger on the
cello when the cellist is playing in the normal (low) playing range — but when the cellist plays in
“thumb position” (a relatively advanced technique), the cellist’s fingers act like violinist fingers, while
the cellist’s thumb has a completely different profile again. Finally, musicians often have up to four
fingers pressed against the string with varying forces, not a single finger as in the model.

The bow-string interaction in the model uses the old hyperbolic friction curve with hysteresis.
More accurate models of this interaction exist, such as a double-exponential model or a temperature-
sensitive model which accounts for the frictional force generating heat which partially melts the rosin
on the bow, thereby changing the friction characteristics. In addition, the model assumes that the
bow has constant friction characteristics, whereas a real bow’s friction varies based on the amount of
rosin which is at each point along the string: Musicians do not apply rosin to the bow in a perfectly
uniform manner, and even if they did, after playing the instrument for a few hours the amount
of rosin left on the bow would vary based on the parts of the bow which were used while playing
the instrument. Finally, the bow is assumed to be an infinitely narrow point which only excites
the string in one direction; a real bow has width, and would excite multiple directions of vibration.
Unfortunately, modelling the bow as two points is much more complicated than adding an extra finger
point force. Assuming the two bow point forces are independent, in the worst case a quartic equation
(z* + Ax3 4+ Bx? + Cz + D = 0) must be solved for each time step. This would require an iterative
solution, greatly reducing the speed of simulation. If the bow width is not modelled as independent
forces, then an entirely different bowing model will be needed. The bow’s effect on the string is in
turn affected by the bow’s tilt (angle around the length axis) and skew (angle between bow and the
bridge). The control of bow tilt is explicitly taught to students with a few years of experience, while
control of skew is taught to students with ten years of experience.

The bow itself is not modelled at all; a real bow is a vibrating system. Expert violinists consider
the bow to be extremely important for the production of good tone, and will pay up to half of the
price of an instrument body for the bow. Physically speaking, each bow will have a different centre of
gravity and mass, but the main difference which musicians seek is the behaviour of vibrations in the
bow, and how those vibrations aid (or foil) their attempts to achieve Helmholtz motion in the string.
In addition to the bow’s vibrations, the bow hair deforms and stretches when it is pressed against the
string. In terms of the model described in this chapter, the deformations in bow hair and vibrations in
the bow would cause Fj, to vary enormously even if the user was exerting the same amount of pressure
with her right hand. F} has a huge effect on the friction slip-states, and would therefore greatly alter
the range of bowing parameters which can lead to Helmholtz motion.

Finally, it would be interesting to model other elements which affect human performance. The
violin and viola are held on the musician’s left shoulder, requiring a different bow angle in order to
play each string; on most strings gravity will pull the bow directly towards the string (increasing Fj),
although the E string is at a slight angle. In contrast, the cello is held at an angle in a sitting position;
gravity pulls the bow closer to the bridge (decreasing zq, with perhaps a slight increase of Fy). The
musician must use alter her right hand behaviour to counter gravity depend on which instrument she

is playing. Human biomechanics plays a large role in how musicians perform.
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However, despite all these simplifications, the model produces sound which I consider acceptable
for my virtual musician. The physical model described by (Demoucron 2008) provided a strong
starting point, and after the alterations described in Section 2.2 and Section 2.3 it serves my purpose.
Future researchers interested in computer musical expression and control may opt to use the model
as described or extend it in certain areas; researchers interested in a scientific examination of musical
instruments are advised to use a different model. If widespread use of the model is desired (e.g.,
producing commercial music CDs, submitting synthesized performances of music to a composition
competition, using the model in high school physics classes), then more stringent listening tests should
be performed. A double-blind listening test should be performed with the target audience (be they
musicians, researchers, or the general public) to compare the perceived quality of the synthesized

audio and real string instruments.

2.4.2 Summary of available actions

The model provides these actions:

Left-hand finger: place a finger on the string, specifying the distance from the bridge z; and the
spring strength K. The spring strength will generally be the default value (10°), but it may be

reduced in order to play a harmonic (required value depends on x ¢ and the bowing parameters).

Bow: place a bow on the string with bow-bridge distance xy, force Fy, and velocity vp. Optionally,

the bow acceleration a;, and target velocity v} may be set.
Pluck: pluck a string at distance from the bridge z, by with the desired pulling distance yg.

Wait: simulate m samples.

All musical performance with Vivi, the Virtual Violinist will be reduced to a combination of these
four actions, along with the model’s output of an audio A[t] and haptic H[t] signal.

If future researchers desire to use Vivi with a different synthesis engine (be it physical modelling
or sampling synthesis), this list defines a relatively small set of instructions which the engine would

be required to support.
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Figure 3.1: Physical modelling in context.

When scientists create physical models to investigate acoustic properties of musical instruments,
they generally measure and experiment with a single instrument. This is quite appropriate from a
scientific viewpoint; if the model behaves well with a string of length 0.39 m, then it will probably
behave similarly well with a string of length 0.52 m. However, from a musical standpoint it seems
a waste to imitate one single instrument. One of the great advantages of physical modelling com-
pared to sample-based synthesis (including spectral modelling synthesis) is that perceptually distinct
instruments can be created merely by changing a few constants. It would greatly increase the musical
usefulness of the program if it could simulate a string quartet or even octet.

This is particularly relevant to my research: the intention is that Vivi, the Virtual Violinist is able
to learn to play any bowed string instrument. Such a claim could be supported by demonstrating the
ability to perform on two different instruments (e.g., violin and cello), but the generality of Vivi would
be much better supported if I demonstrated the ability to perform on many instruments. With those
two goals in mind (musical use, and demonstrating the flexibility of my intelligent feedback control), T
have gathered physical constants allowing me to simulate multiple distinct instruments. In particular,
I have measured 10 instruments which were easily available to me: 5 violins, 2 violas, and 3 cellos.

Although many physical constants required for this model can be found in the scientific literature

67
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on acoustics (Rossing 2010, Jansson 2002, Pickering 1985), there are two areas which require physical
experiments: Modal decay values r, used in (2.5), and the instrument body responses. In addition,
the string length and diameter can be measured with non-intrusive, non-destructive methods. In
contrast, a string’s linear density and Young’s elastic modulus cannot be measured without damaging
or destroying the string. Instrument strings have additional windings at one end of the string, and a
ball at the other end. Measuring the linear density of the vibrating portion of the string would require
cutting those ends of the string, which would render the string unusable.

Acoustics measurements on modal decay values are often investigated for guitar or piano (Lee
et al. 2010, Woodhouse 2004), or discussed in general terms (Karjalainen et al. 2002). However, there
is no published collection of string modal decay values for violin, viola, and cello. One possible reason
for this could be the popularity of digital waveguide synthesis for bowed string instruments, which
relies on string end reflection filters rather than modal decay values.

Although there has been some excellent work on simulating the instrument body as a vibrating
system (Serafin 2004, Indcio et al. 2008), for simplicity I followed Demoucron’s physical modelling
algorithm which assumes that the body is a linear time-invariant system. The impulse response is
much easier to measure than the constants used in mathematical instrument body simulations, yet
the results are still quite credible. Although there is a great deal of literature on violin body impulse
responses (Fritz et al. 2007, Rossing 2010, Tirckheim et al. 2010), there is again a lack of accessible
data (rather than mere plots) of those impulse responses.

This chapter can be divided into four sections:

1. Physical experiments: Section 3.1 describes the instruments and measures their lengths and
diameters. Section 3.2 discusses experiments and analysis of modal damping values. Section 3.3.2

gives measurements of instrument body impulse responses.

2. Estimating remaining constants: I combine known ranges of physical constants from acoustics

literature with my measured constants in Section 3.4.

3. Simulations: I perform simulations with the physical model to investigate the effects and trade-
offs for a few remaining constants in Section 3.5. In particular, these values either have no
real-world equivalent (e.g., the finite number of modes N, the sampling rate f,, threshold for
turning off the simulation A,,;,) or it would be meaningless to use real constants (e.g., the finger

constants damped spring constants Ky and Ry for a two-point finger).

4. Final remarks: I summarize this chapter, discuss possible improvements to the measurements,

and present the actual constants used for the physical modelling.

3.1 Overview of instruments and strings

A brief description of all ten instruments measured is given in Table 3.1. No information about strings
was accessible; all instruments had been owned by their present owners for at least one year and strings
were not changed regularly. This situation differs from that commonly quoted in the literature, in
which new strings were used.

The string lengths and diameters were measured and these values are given in Table 3.2. String

lengths were measured with a measuring tape and are believed to be accurate to 1%. An error
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in planning the experiments resulted in not having a calliper while in contact with eight of the
instruments. String diameters were therefore estimated by taking digital photographs of each string
next to a ruler, counting pixels between 2cm or 5cm in the ruler to find the scale, then counting
pixels in the string diameter. Later, when I had access to a Vernier calliper, the “counting pixels”
measurements were checked by comparing the measured diameters of the remaining two instruments
(violin-IT and cello-I) with the calliper and the photographs. The string diameters are believed to be

accurate to 10%.

name estimated value (CDN §) country year notes
violin-I 5,000 Canada 1994

violin-II 2,000 Germany 1908
violin-ITI 8,000 USA 1875
violin-IV 500 China (1970) (b)
violin-V 1,000 Romania 2005

viola-I 2,000 China (1990) (b)
viola-IT 500 Germany (1970) (a) (b)
cello-I 6,000 Canada 1997

cello-1I 2,000 Czechoslovakia  (1900) (b)
cello-II1T 1,500 Germany 1992

Table 3.1: Overview of instruments tested. The estimated values are a personal guess, not an official
appraisal; these are probably accurate to 50%. Values reflect the price of the instrument, without the
bow, case, or any extras.

(a) the D string was broken, so the A string was used (tuned down a fifth). This is the usual practice
of string musicians in need of a quick fix for a broken string with no replacement.

(b) very cheap instruments are not stamped with a maker’s mark and year. I have included an
estimated date based on the condition of the instrument.

string ‘ L (mm) d (mm) notes ‘ ‘ string ‘ L (mm) d (mm) notes
violin-E-T 322 0.30 viola-A-1 363 0.33
violin-E-II 319 0.28 viola-A-I1 369 0.32
violin-E-I1I 321 0.26 viola-D-T 363 0.48
violin-E-TV 321 0.29 viola-D-II 369 0.32 (a)
violin-E-V 324 0.27 viola-G-I 364 0.61
violhn-A-I 3922 0.67 viola-G-II 369 0.62
violin-A-II 320 0.58 viola-C-1 365 0.65
violin-A-TIT 323 0.68 viola-C-1I 371 0.82
violin-A-IV 320 0.57 cello-A-I 665 0.68
violin-A-V 324 0.59 cello-A-TT 685 0.70
violin-D-I 322 0.80 cello-A-TIT 687 0.71
violin-D-11 321 0.71 cello-D-I 666 0.80
violin-D-TIT 325 0.67 cello-D-TI 684 0.93
violin-D-IV 320 0.69 cello-D=III 687 0.83
violin-D-V 324 0.71 cello-G-T 669 1.10
violin-G-1 322 0.93 cello-G-II 684 1.00
violin-G-IT 321 0.71 cello-G-I11 687 0.98
violin-G-III 326 0.69 collo-C-T 669 1.40
violin-G-IV 321 0.89 cello-C-T1 685 1.40
violin-G-V 323 0.69 cello-C-I11 687 1.50

Table 3.2: Measured string lengths and diameters.
(a) the viola-II D string was broken, so the viola-IT A string was used instead.



CHAPTER 3. CONSTANTS FOR PHYSICAL MODELLING 70

3.2 String modal decays

Before discussing the experiment, I will briefly describe what I am measuring. Figure 3.2 shows
examples of the spectral energy after plucking a violin E string, viola D string, and cello C string.
Those strings were chosen to include the highest and lowest-frequency strings, with the viola string
serving as a middle ground. The energy of certain frequencies (the modes) decreases down to the
noise floor. This decrease (i.e. the slope of the peak’s energy against time) is the modal decay. In
general, higher-frequency modes decay more quickly, but both examples contain deviations from this
general rule. As may be expected from casual listening of violins and cellos, the cello string decays
much slower than the violin string.

There are three main ways that the string’s decay can be measured, listed in descending order of
accuracy. The first method is to capture the string’s motion with an optical pickup (used in some
electric guitars), by shining a light source from one direction and placing a photodiode or phototran-
sistor on the other direction. This provides a very accurate and low-noise method of measuring the
string’s motion, but it requires additional hardware to perform the experiment. The second method
is to use magnetic induction, either with a magnet pickup (as used in most electric guitars) or by con-
necting the ends of the string to an analogue-digital converter (ADC). The magnetic field will slightly
dampen the string (thereby altering the string’s behaviour, unlike the optical sensor), but it requires
less specialized hardware than the optical sensor. The third method of estimating the modal decays is
to record the audio output of the instrument. An audio recording is subject to the non-linear effects
of the instrument body, as well as environmental noise unless the recording is made in an anechoic

chamber. I chose to use magnetic induction.
violin-I E string viola-I D string cello-1 C string
300
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Figure 3.2: Spectrogram of plucking a violin E, viola D, and cello C string, first four modes. The violin

E string modes decay much faster than the cello C string modes. All strings exhibit some beating,

although this is much more pronounced in the C string.

Audio 3.1: Signal of current induced from violin E, viola D, and cello C strings.
http://percival-music.ca/dissertation/a.3.1.violin-e-i-01.wav
http://percival-music.ca/dissertation/a.3.1.viola-d-i-01.wav

http://percival-music.ca/dissertation/a.3.1.cello-c-i-01.wav


http://percival-music.ca/dissertation/a.3.1.violin-e-i-01.wav
http://percival-music.ca/dissertation/a.3.1.viola-d-i-01.wav
http://percival-music.ca/dissertation/a.3.1.cello-c-i-01.wav
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Figure 3.3: Photos of experimental setup for measuring decay of string velocity. Left: A wooden stick
is used to “pluck” the string. Right: Plastic blocks hold the magnets in place with a frame.

3.2.1 Experimental procedure and analysis techniques

A strong and consistent magnetic field was created by placing two poles of 0.5 x 0.5x 0.125-inch
neodymium magnets, residual flux density 12 kGauss, approximately 10mm on either side of a violin
string. When the string moves through a uniform magnetic field, a voltage is induced. These voltages
could be read with an oscilloscope, but given our goal of accessibility (Section 1.3), I instead use a
semi-professional sound device!. Such devices are optimized (modulo the cost of the unit) to have a
good analog-digital converter (ADC) which produces 16-bit or 24-bit signals in the range of human
hearing (20 Hz - 20,000 Hz, although typical values for music fall between 50 Hz and 10,000 Hz).

A sophisticated oscilloscope is unlikely to produce better (lower-noise) signals. Informal experi-
mentation showed that the majority of noise arose from the string acting as an antenna and picking
up electrical harmonics from AC power. Interestingly, acoustic noise was also a factor — a human
speaking normally in the same room produced enough air pressure waves (amplified by the instrument
body and carried through the instrument body and bridge into the string) to cause noticeable sig-
nals in the induced current. A more stringent scientific study of string decays should take additional
measure to reduce radio frequencies and acoustic noise, but my intent here was merely to produce
estimates which are sufficiently accurate to produce acceptable audio in the simulation.

In the experimental setup?, the magnets were held in a frame constructed from Lego, which allowed
the height of the frame to be adjusted to suit specific musical instruments. Wires from each end of the
violin string were attached to the microphone input of a Tascam 122L sound device, which was then
attached to a desktop computer with a USB cable. Before recording any plucks, 10 seconds of silence
were recorded for each string in order to characterize the electrical noise from the Analog-Digital
Converter (ADC), wires, alligator clips, and the string itself. The string was plucked 7 times with a
wooden skewer approximately lcm away from the nut, leaving at least 15 seconds for the pluck to
decay between each pluck. After the 15 seconds had passed, the string was damped with a finger
before beginning the next pluck. All data was recorded with 24-bit samples at 96 kHz.

IWith professional and semi-professional sound hardware, the ADC and DAC are almost always placed inside an
external box connected via USB or firewire to reduce electrical noise. Occasionally the terms “sound interface” or
“sound device” are used for these devices, but the term “sound card” is still often used.

2Dr. Paul Percival from Simon Fraser University (Canada) provided practical advice on reducing electrical noise and
a few data analysis techniques.
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Figure 3.4: Pluck decay (first window) and noise of violin E and cello C strings. Note that these plots
show different frequency ranges in order to focus on the most important peaks.

Spectral peak estimation and noise floor

The fundamental step in many digital signal processing algorithms is the Short-Term Fourier Trans-
form (STFT). I used a hop size of 2048 and window size of 8192 (an overlap of 75%), with a Hamming
window and a zero-padding factor of 4. The window size is large for the violin, but the cello C string
has a fundamental frequency of ~ 65 Hz. The sample rate was 96 kHz, giving the FFT a resolution® of
11.7 Hz. Due to the width of the main window and side lobes resulting from the window function for
the power STFT, using windows of size of 4096 (resolution 23.4 Hz) was not sufficient to adequately
distinguish between modes on the C string. An example of the STFT for the first analysis window is
shown in Figure 3.4.

To improve the maximum likelihood estimate of spectral peaks, I use the Quadratically-Interpolated
FFTs (QIFFT) method (Abe & Smith 2004, Smith 2011). First, peaks in the log-magnitude array
Y’ are extracted. Then, given a peak at bin n, we calculate an estimated offset p from bin n, and an

estimated magnitude y,,:

a=Y'[n-1] B=Y'[n] y=Y'[n+1] (3.1)
-«

P=5o7 Yp =B —0.25(a —7)p 3.2

228 —a—7) P (32)
The initial 10 seconds of silence was processed in the same manner as the spectral peak estimation
(i.e. split into windows of 8192 samples, Hamming windowed, STFT) to characterize the noise in the
system. For each frequency bin, I define the noise level Ny, (w) as the 99" percentile of the magnitude

of that bin throughout all 465 windows of the silence.

Two examples of these noise profiles are shown in Figure 3.4. The noise mainly follows the expected
odd harmonics from 60 Hz AC power (in Canada), although a few odd “spikes” at 8 kHz (and its
harmonics) and 24.7 to 24.9 kHz are present. I theorized that the wires in the setup (or even the

string itself) acted as an antenna to pick up Very Low Frequency (VLF) signals?.

3 Although zero-padding results in an FFT of size 32768 giving a resolution of 2.93 Hz, we must remember that zero-
padding does not add any information to the signal; the “extra” resolution simply comes from interpolation. However,
the “extra” resolution reduces the amplitude and frequency bias of the QIFFT method (Abe & Smith 2004).

4The origin of the 8 kHz signal is unknown; possibly due to the power supply breakthrough. The US Navy facility
at Jim Creek (Oso, Arlington, USA; approximately 150 km away from Vancouver) is known to broadcast at 24.8 kHz
for submarine communication with the Pacific fleet. http://www.v1f.it/trond2/20-25khz.html accessed 2012 Oct 08.
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Segmenting multiple plucks

To evaluate the variation in modal decays, each string was plucked 7 times. To avoid excessive
interaction with the computer, all plucks for each string were recorded in one audio file, then those
recordings were automatically segmented into individual plucks. The segmentation program loads all
samples in the recording. The median and standard deviation of the absolute value of all samples in
each recording was calculated. The “trigger” of each pluck was defined as the median plus 7 times the
standard deviation, provided that the onset occurs at least 6 seconds after the previous onset. The
beginning of the pluck data was set to be the first zero-crossing after the trigger, while the duration
of each pluck data is 10 seconds. After the automatic segmentation was performed, I listened to each

segmented audio file to ensure that the segmentation was correct.

3.2.2 String inharmonicity and non-linearity

There are three factors which complicate the detection of string decays: String inharmonicity, beating,
and non-linear mixing. String inharmonicity is clearly visible in Figure 3.5, comparing the predicted

frequency® f,, of mode n of an ideal flexible string with fundamental frequency fo,

fn=nfo (3.3)

against the actual spectral data. This clearly is not an accurate prediction for the frequencies of
peaks shown in Figure 3.5, so I turn to the string inharmonicity B (Fletcher et al. 1962, Jarvelainen

et al. 2001). The frequency of partial f,, can be predicted by

fn=nfov1+ Bn? (3.4)

In a circular beam of uniform material, the inharmonicity coefficient B can be predicted by

3 74
- (3.5)
However, we cannot easily (and non-destructively) measure Young’s elastic modulus E. In addition,
only a few violin E strings are made from a solid material (i.e. steel). Many modern-day violin E
strings, and all other strings for bowed string instruments, are constructed from metal wound around
a synthetic core (usually nylon or a nylon-like material) (Pickering 1985). I therefore need to estimate
B from empirical measurements.

Unfortunately, peaks in the spectral domain do not only occur at the transverse modes of vibration,
so I cannot simply pick the highest X peaks in the spectrum. In addition to transverse vibration,
torsional vibrations (Woodhouse & Loach 1999) are present, and on some strings (notably viola D
in Figure 3.5) energy can be found at the “ideal” frequencies predicted by (3.3). The original of
this energy is unclear and has been noted in the literature over the past decade (Conklin 1999)
investigated “phantom partials” in piano tones occurring either at harmonic multiples, or at the sums
of lower-frequency peaks; this is thought to occur due to string tension varying during transverse
vibration and thereby causing longitudinal vibrations. (Woodhouse 2004) discussed similar behaviour

in guitars, advancing the explanation of longitudinal vibrations but also suggesting that boundary

5Notation reminder: In this chapter, f, and fy refers to frequencies, rather than modal forces.



CHAPTER 3. CONSTANTS FOR PHYSICAL MODELLING 74

conditions of the string against the bridge, nut, or fret could contribute to non-linear behaviour.
(Penttinen et al. 2006) examined the gugin (a Chinese fretless plucked string instrument), finding
peaks at both B and B/4. For low values of n and relatively low spectral resolution, a peak occurring
as predicted by the stiff-string (3.4) will be indistinguishable from either the stiff-string (3.4) with B
replaced by B/4 or a “phantom” peak at (3.3).

The focus of this dissertation is the synthesis and control of virtual string instruments, so I will
make some simplifying assumptions. All of the above possibilities suggest that additional energy may
be found at or above nfy. I will therefore assume that, in the first analysis window (8192 samples,
or 85 ms), there will be a single peak close to the frequency predicted by (3.4) arising due to the
transverse vibrations, and that any peak elsewhere is suspect and should be discarded. The lowest
frequency of these suspect peaks occurs at nfy. The main concern is that when the mode numbers are

high enough, the modal peak M will occur within the same frequency region as the non-linear peak
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Figure 3.5: Non-linearities in the violin E, viola D, and cello C string. For the violin E string, note
that the actual frequencies of the peaks almost matches the ideal frequencies at lower frequencies
(10 kHz), but deviate sharply as the frequency increase. The viola D string shows lower-frequency
peaks decaying in the expected manner, but the higher-frequency peaks appear to “split”. When
such a “split peak” occurs, the higher of the two split peaks decays quickly (e.g., the peak at 4.7 kHz
almost reaches the noise floor within 4 analysis windows), while the lower of the split peaks decays
slowly. The cello C string does not demonstrate a great deal of “split peaks”, but the highest peak
visible in the spectrum (the 14*" node, at 0.96 kHz) almost touches the next “ideal” frequency (the
15" node, at 0.975 kHz).
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Figure 3.6: Detecting string inharmonicity. Solid lines indicate the signal or spectral information (only
sent once); dotted lines indicate other variables (sent multiple times). Not shown in the diagram: Peaks
whose magnitude is less than 20 dB above the noise Ny, (w) are discarded.

M — 1. T therefore define N, as the cutoff for the number of partials in order to avoid such confusion.
Specifically, I must find the lowest N, € Z* such that

(Nc+1)f0_sb>ch0\/1+BN3+Sa (36)

where S, and S, are the allowable spread of frequencies below and above the exact frequency value
predicted. The values S, = 0.1fy and S, = 0.2f; were found to work well with my data by manually
inspecting the peaks detected.

The overall process for estimating fy and B is shown in Figure 3.6. The first analysis window is
extracted from all plucks. The first 5 partials are extracted from the STFTs with an initial estimate
that fy is the expected frequency of the string and B = 10™%, then searching in the frequency region
of f, — Sp to fn + S, based on f, calculated with string inharmonicity (3.4). Once the peaks were
found, a least-squares fit was made to fit (3.7) to the detected frequencies. That is, given N detected
frequencies where vy, is the interpolated frequency of partial n, the computer found parameters f; and

B such that the following summation was minimized:

ZN: (% o1+ Bn2>2 (3.7)

n=4

Partials 1, 2, and 3 were found to vary significantly, and were thus excluded from these fits. After
the initial estimate of fy and B was made with partials 4 and 5, the STFT was re-examined in order
to find the first 6 partials close to the frequencies predicted by (3.4) and the previous estimate of fy
and B. This process is repeated, estimating a new fy and B then increasing the number of partials
for which to search. Three examples of these fits are shown in Figure 3.7.

There are two conditions to determine the end of the process. First, all partials must be at least
20 dB higher than the noise N;qp(w); if no sufficiently large peak can be found within the frequency

range, the process ends. Second, the process ends if the cutoff N, (3.6) is reached.
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stiff-ideal
mode

name fo B (-1075%) R? cutoff N. notes
violin-E-I 659.7  4.90 1.00 30
violin-E-IT | 658.8  5.13 0.99 30
violin-E-IIT | 660.3  5.06 1.00 30
violin-E-IV | 662.9  4.99 1.00 30
violin-E-V 657.0  4.46 1.00 31
violin-A-I 438.5 20.20 0.99 19
violin-A-IT | 437.1 21.71 1.00 18
violin-A-IIT | 436.2 16.01 0.99 20
violin-A-IV | 442.1 25.19 0.99 17
violin-A-V | 439.5 22.59 1.00 18
violin-D-I 291.0 22.59 0.94 18 (a)
violin-D-IT | 290.8 36.34 0.99 15
violin-D-IIT | 292.3 35.25 1.00 15
violin-D-IV | 295.2  36.70 1.00 15
violin-D-V | 292.2  45.96 0.99 14
violin-G-1 194.4 2594 0.96 17
violin-G-IT | 194.6 19.48 0.97 19
violin-G-IIT | 194.9 26.21 0.93 17 (a)
violin-G-IV | 197.6 21.07 0.95 18
violin-G-V | 195.5 37.25 0.99 15

viola-A-I 439.0  5.96 0.99 28
viola-A-I1 444.8  9.66 1.00 24

viola-D-I 291.7 1341 0.98 21
viola-D-II | 292.8  6.20 0.98 28 (b)
viola-G-1 195.5 14.04 0.98 21
viola-G-I1 196.9 16.27 0.99 20

viola-C-1 130.0 37.79 0.97 15
viola-C-II | 130.6 17.23 0.82 20 (a)
cello-A-T 219.2  6.28 0.98 27
cello-A-II 220.0  5.69 0.99 28
cello-A-IIT | 218.6  6.02 0.99 28

cello-D-1 146.1 16.75 0.99 20
cello-D-IT | 146.5 24.91 0.97 17
cello-D-IIT | 145.9 12.79 0.98 21

cello-G-1 971 19.99 0.99 18
cello-G-1I 97.2 23.40 0.98 17
cello-G-III 97.4 21.74 0.97 18

cello-C-1 64.7 62.64 0.98 12
cello-C-TI 65.1 58.20 0.99 13
cello-C-I11 64.5 53.52 0.97 13

Table 3.3: Fundamental frequencies fy and inharmonicity B for measured strings. The variation of
fo arises from instruments being tuned “by ear”.

(a) for these instruments, a few (< 10) “phantom” peaks were detected instead of the intended
inharmonic peaks. However, manual inspection of the spectrum showed that the estimated B still
produced adequate f, estimates to capture the intended peaks.

(b) this instrument was old and not in normal playing condition; the viola D string was broken and
had not been replaced. Ireplaced the D string with the A string (tuned down a fifth) as an “emergency
fix” following normal violinist practice. The data from this string is still sufficient to enable casual
synthesis, but should not be relied for any acoustics research on string behaviour.
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Figure 3.7: fo and B fits for the violin E, viola D, and cello C strings. The y axis shows the relative
frequency of each partial divided by the number of that partial. An ideal, perfectly-flexible string
would produce relative frequencies in a flat horizontal line.

The final results of the string inharmonicity detection are shown in Table 3.3. The table includes
the coefficient of determination R? as a quick check of how closely the fit of f; and B matches the

data, given y; as the mean of observed data y.

RP=1-=22 0

=g )2 (3.8)

Zi (yz - f1)2

3.2.3 Detecting modal decays

There are two stages to the analysis of modal decays. First, the decay of each mode must be estimated
from the plucks. In an ideal experiment with perfectly-controlled inputs, these plucks would yield
exactly the same modal decays. In reality, some form of statistical analysis will be required to achieve
a credible estimate. Second, a general formula which describes modal decays must be found. The
stiff-ideal mode cutoff V. in Table 3.3 varies from 12 to 31, yet my simulation will use 40 modes as
discussed in Section 3.5.1. Since we cannot trust any modal decay rates above the N, limit, I must

extrapolate decay rates for the modes above N..

Tracking partials over time

In the previous section I estimated the fundamental frequency fjy, inharmonicity constant B, and the
highest mode number cutoff which can be safely detected N.. The next step in detecting modal decays
is to track these partials over time.

As with the estimation of fy and B, the range of frequencies examined for each mode will be
fn — Sy to fr, + Sp, although when tracking partials over time I used S, = 0.05fy and S, = 0.05f,
rather than the values I used when detecting f; and B. In order to reduce confusion from non-linear
behaviour of the string, the strength of each partial is estimated from the spectral peak closest to
the expected frequency f,,, rather than calculating the overall energy within a wide frequency band.
Some examples are shown in Figure 3.8.

Before fitting those partials to exponential decays, I remove partials which are unlikely to have
enough information to achieve a good fit. This process begins by estimating a per-partial noise floor.

The final 10% of each partial is considered to be noise, and the top of the noise floor Np,, is defined
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Figure 3.8: Selected partials of violin E, viola D, and cello D, one pluck. Legend indicates the number
of the partial. The violin E string shows very good exponential decay with the exception of beating
in the first partial. The viola D and cello C strings shows greater deviation from exponential decay,

as the 99" percentile of that data. Once Npqr is calculated, the partial is rejected unless it satisfies
the following two conditions:
e The maximum magnitude must be at least 30 dB above N,

o At least 10 samples must be at least 10 dB above Npq;.

After removing unsuitable partials, the observed magnitudes y; of remaining partials are least-

squares fitted to
Y = ag + age” 0 (3.9)

with the constraints that g, o1, and as must all be greater than zero. The fit is performed to the
logarithm of the measured data. The only important parameter for the physical modelling is the

decay constant ap; this is the estimate for r,, seen in (2.5).
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candidate maximum mag. < 10 mag. decays highest

name partials < Npgr +30dB > Npo +10dB | used mode
violin-E-I 210 14 63 133 22
violin-E-II 210 41 60 109 17
violin-E-TIT 210 13 19 178 30
violin-E-1V 210 41 35 134 30
violin-E-V 217 29 66 122 22
violin-A-I 133 42 34 57 11
violin-A-II 126 35 35 56 9
violin-A-IIT 140 25 50 65 12
violin-A-IV 119 15 36 68 10
violin-A-V 126 24 51 51 9
violin-D-I 112 39 12 61 9
violin-D-IT 105 25 28 52 10
violin-D-IIT 105 19 24 62 9
violin-D-IV 105 0 39 66 12
violin-D-V 98 26 15 57 13
violin-G-I 98 12 29 57 9
violin-G-II 112 7 32 73 11
violin-G-III 119 55 8 56 8
violin-G-1V 126 13 42 71 18
violin-G-V 105 5 36 64 12
viola-A-I 196 16 65 115 17
viola-A-II 168 14 70 84 12
viola-D-I 147 38 45 64 12
viola-D-II 147 12 48 87 17
viola-G-I 147 13 54 80 12
viola-G-I1 140 7 37 96 14
viola-C-1I 105 3 25 77 11
viola-C-I1 126 2 30 94 18
cello-A-I 189 17 75 97 14
cello-A-IT 196 10 58 128 22
cello-A-T11 196 24 60 112 17
cello-D-1 140 14 39 87 15
cello-D-IT 119 1 42 76 12
cello-D-IT1 147 1 49 97 19
cello-G-1 126 1 20 105 16
cello-G-11 119 0 0 119 17
cello-G-III 126 0 32 94 17
cello-C-1 84 3 7 74 12
cello-C-I1 91 0 9 82 13
cello-C-IIT 91 0 6 85 13

Table 3.4: Removing suspicious partials from decay-fitting.
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Figure 3.9: Detected and fitted decays for violin E, viola D, and cello C strings.

Extrapolating higher modal decays

Once estimates from each partial were established, I turned to the question of determining r,, for use
in the simulation. For low modes which have extensive measured data, I set r,, to be the median
value of g for mode n. However, if less than half of the plucks yielded an estimate of aq for that
mode (either due to partials being removed, or because n is above the cutoff N.), I attempted to find
a general formula linking the decay constant r, to the mode number n for each string in order to
extrapolate values for higher modes.

Two such formulae exist in the literature. (Adrien 1991) and (Demoucron 2008) used

Ty = By + Ba(n — 1)? (3.10)

while (Woodhouse 2004) used a much more complex formula involving loss factors n = % = 2%
After the above substitution, his formula is

oV B?) (T(e + na/(nov'TT Bi?)) + Bug(n/L)?) )

2(T + B(nm/L)?)
where ng, ng, na are the fitted parameters representing the loss factors due to internal friction,
bending, and air. Woodhouse remarked that his formula “should be understood as a combination
of physically-based modelling and curve-fitting, since the physical mechanisms are not understood in
sufficient detail to provide a fully convincing predictive model.” (Woodhouse 2004, p. 956)

Further study would be an interesting project, but as my main interest is in the control of the
physical model rather than the physics itself, I instead made a choice between the existing two formulae
for r,,. The chief difficulty with Woodhouse’s formula is that it relies on accurate estimates of tension
T. The other constants — the frequency fy, inharmonicity B, and length L — are easy to estimate
or measure directly. Tension can be estimated by pulling the string with a spring, but doing so will
change the tension slightly, decreasing the accuracy of the estimate. I therefore turned to the simpler
equation used by Demoucron, with the additional reassurance that his model produces audio which
is adequate for my purpose.

Some examples of these fits are shown in Figure 3.9, while the fitted data for all instruments is in
Table 3.3.
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name B By R?> notes | r1 ry T3 T4 rs 10
violin-E-I 5.90 0.053 0.86 30 31 74 59 6.1 11.4
violin-E-IT 7.62 0.080 0.84 29 39 78 6.1 8.6 15.3
violin-E-IIT | 6.64 0.017 0.73 29 22 67 73 6.0 9.5
violin-E-IV | 6.90 0.053 0.88 3.7 43 59 64 7.9 12.6
violin-E-V 5.30 0.063 0.88 2.8 26 66 4.1 7.7 11.7
violin-A-I 4.61 0.305 0.88 25 45 6.1 75 11.2 29.3
violin-A-II 3.80 0.324 0.85 1.7 48 5.5 86 11.0 30.0
violin-A-IIT | 3.12 0.273 0.91 1.7 38 3.8 6.1 8.6 25.2
violin-A-IV | 3.08 0.364 0.98 25 47 50 6.8 81 32.1
violin-A-V 3.24 0.435 0.96 21 48 48 &80 10.5 385
violin-D-I 4.37 0.300 0.73 1.7 36 6.1 82 10.3 28.7
violin-D-II 3.44 0.290 0.75 1.2 41 3.5 8.5 8.8 26.9
violin-D-IIT | 2.81 0.315 0.82 1.5 34 39 4.6 85 28.3
violin-D-IV | 4.40 0.171 0.56 1.3 1.8 4.1 4.1 7.9 183
violin-D-V 0.78 0.554 0.92 1.0 21 3.6 4.5 9.1 45.6
violin-G-I 1.85 0.225 0.87 0.7 20 20 4.1 6.4 20.1
violin-G-II 1.04 0.211 0.86 0.6 1.0 28 3.6 4.3 20.0
violin-G-IIT | 1.81 0.285 0.89 1.0 25 3.0 4.8 5.4 24.9
violin-G-IV | 1.63 0.111 0.91 04 2.1 19 25 3.5 9.1
violin-G-V 1.39 0.256 0.76 0.6 15 16 3.8 5.8 22.1
viola-A-I 6.23 0.102 0.91 29 3.1 6.1 8.3 7.2 21.6
viola-A-II 4.04 0.141 0.93 2.3 23 53 4.7 54 15.7
viola-D-I 2.82 0.181 091 1.3 42 29 4.5 6.0 17.5
viola-D-I1 4.02 0.090 0.84 09 29 51 4.5 6.7 12.1
viola-G-I 1.87 0.152 0.81 1.4 11 3.3 3.2 3.9 18.2
viola-G-II 0.16 0.157 0.94 (a) 09 07 14 1.7 3.2 10.4
viola-C-1 3.96 0.086 0.46 0.6 1.8 34 4.2 6.3 11.5
viola-C-I1 1.84 0.081 0.85 0.6 21 1.3 3.1 3.5 8.1
cello-A-I 4.14 0.126 0.92 25 2.5 4.7 4.0 6.8 15.7
cello-A-I1 2.38 0.061 0.95 1.6 33 28 29 3.1 6.7
cello-A-III 3.05 0.089 0.92 1.7 24 35 39 3.9 8.3
cello-D-1 1.84 0.196 0.98 0.8 1.8 38 4.1 4.9 17.8
cello-D-II 3.78 0.138 0.80 1.3 29 4.2 5.0 7.7 17.6
cello-D-IIT 1.75 0.093 0.88 1.8 15 34 24 2.9 10.2
cello-G-1 0.66 0.076 0.89 03 1.1 15 20 1.3 6.6
cello-G-I1 1.05 0.090 0.93 06 24 12 1.8 2.6 7.6
cello-G-II1 1.25 0.104 0.95 05 21 14 22 2.8 7.5
cello-C-I 2.33 0.125 0.80 04 22 28 2.7 4.0 15.3
cello-C-II 0.51 0.175 0.97 04 13 16 2.7 3.3 16.2
cello-C-I11 1.64 0.090 0.91 04 14 13 21 3.1 11.3

Table 3.5: Fitted modal decays of measured strings. The fitted values By and Bs are used for
modes which have fewer than 4 measured decays. The values given for r, are drawn from direct
measurements, with the exception of a few of the r1y values which were estimated from (3.10).

(a) although Bj is suspiciously low, a manual examination of this fit looks plausible, especially given
that on this string, all modes up to (and including) 14 are set as the median of the measured decays
rather than estimated from B; and Bs.
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3.3 Instrument body impulse responses

Gathering data for the instrument body simulation is much easier than the string simulation, since

the input to the simulation is a direct time-domain recording.

3.3.1 Experimental procedure and analysis techniques

I used the standard method of tapping the bridge and recording the audio output (Demoucron 2008).
A newer method recommends exciting the instrument by damping the strings with a rubber mat, then
pulling a thin piece of wire against a string until it breaks (Tlrckheim et al. 2010). A TASCAM LD-74
diaphragm condenser microphone was placed approximately 30 cm away from the bridge, and a small
pendulum was held approximately 2 cm from the instrument bridge. The pendulum was held with
a wooden frame®, while the displacement of the pendulum was standardized by holding it against a
piece of cardboard serving as a guide. The pendulum was released and allowed to swing freely, hitting
the bridge of each instrument with an approximately constant impulse. The pendulum then bounced
off the bridge and hit the bridge again approximately 0.6 seconds later, but this second hit was not
problematic as I only require 0.1 seconds of audio. The experimental setup is shown in Figure 3.10.
Audio was recorded at 44100 Hz with 24-bit samples, and at least seven taps were recorded from
each instrument. In each recording, one good tap was manually chosen before proceeding to automatic
processing. Each tap was downsampled by a factor of 2, then a high-pass Butterworth filter with cutoff
20 Hz was applied. The maximum absolute value in the resulting signal was found, and the tap was
deemed to begin at the zero-crossing immediately before that maximum value, and last for 4096
samples. The length of the tap was further truncated to 1024 to match the required FFT length
stated in Section 2.1.5. Since each instrument has different bridge and body responses, the recorded
audio signals have different maximum and minimum amplitudes. These signals are deliberately not
normalized; if one real-life instrument sounds twice as loud as another one when given the same string
signal, then the physical model should reproduce that behaviour. If two musicians want to produce
music that is perceived to be the same volume, then they (or the feedback control) must alter their

bowing parameters.

6The wooden frame was constructed by Dr. Paul Percival from Simon Fraser University, Canada.

Figure 3.10: Photos of the pendulum for tapping the bridge. Left: instrument, pendulum, and
microphone. Right: close-up of the instrument, with the pendulum (black ball) held against the guide
with a wooden stick. When the wooden stick is removed, the pendulum falls to the left, travelling
~ 2 cm before hitting the instrument bridge.
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3.3.2 Instrument body impulse responses

A time-domain comparison of a violin and a cello impulse response is shown in Figure 3.11, while a

comparison of the spectrums of all impulses responses is shown in Figure 3.12.
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Figure 3.11: Time-domain impulse response of a violin and a cello with a standard tap. Note that
the violin response decays faster than the cello response.
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Figure 3.12: Frequency impulse responses of all instrument bodies. Note that most instruments agree
quite well for the lower frequencies.
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3.4 Estimating remaining constants

Some physical constants are easy to measure, such as the string length L, but other constants are
difficult to measure non-destructively. For example, although the vibrating portion of a violin string
has nearly constant linear density, the ends of the string have additional material; measuring the mass
of the entire string would over-estimate the mass of the vibrating portion of the string.

In Section 3.1 I measured string length L and diameter d, while in Section 3.2 I measured string
modal decays r,. This leaves three string constants to estimate: tension T, linear density pr,, and
Young’s elastic modulus E. In addition, there are three bow-string friction constants needed: coeffi-
cients of static friction us, dynamic friction pg4, and the slope of the hyperbolic curve p.. The only

constants relating to the instrument are the impulse responses measured in Section 3.3.2.

3.4.1 Bounds of physical constants in the literature

Table 3.6 shows the range of physical constants for string 7', pr,, and E. These ranges will be used to
estimate values to match the fy and B of each string measured in Section 3.2.2. Table 3.7 shows the

range for bowing friction constants.

PL E T
instrument min max min max min max

violin E 3.80E—-4 4.80E—-4 | 45E+9 22FE+11 | 714  90.7
violin A 5.80E—-4 7.50E—-4 | 45E+9 22FE+11 | 483  62.7
violin D 9.20E—-4 163E-3 | 45E+9 22E+11 | 343 60.6
violin G 212E-3 3.09E-3 | 4.5E+9 22E+11 | 350 51.1

viola A 5.60E—-4 9.20E—-4 | 45E+9 22FE+11 | 60.6 100.2
viola D 9.80FE—-4 1.25E-3 | 45E+9 22FE+11 | 476  60.7
viola G 220E-3 281E-3 | 45E+9 22E+11 | 476  60.7
viola C 4.95E-3 6.31E-3 | 45E+9 22E411 | 476  60.7
cello A 1.50E-3 192FE-3 | 45E+9 22FE+11 | 138.3 177.2
cello D 294E-3 3.57E-3 | 45E+9 22FE+11 | 121.0 146.9
cello G 6.38E—-3 T7.56E-3 | 4.5E+9 22FE+11 | 116.8 138.3
cello C 143E-2 1.70E-2 | 45E4+9 2.2E+411 | 116.7 138.3

Table 3.6: Bounds of string constants used in the bowed-string algorithm. Tension 7" and linear density
p1, came directly from (Rossing 2010, p. 286). Young’s elastic modulus E came from (Jansson 2002,
table 4.7), allowing strings to be any material from nylon to solid steel.

s Hd e
instrument | min max | min max | min max
violin 0.60 0.90 | 0.20 0.40 | 0.05 0.30
viola 0.70 1.00 | 0.20 0.50 | 0.05 0.30
cello 0.80 1.20 | 0.30 0.50 | 0.05 0.30

Table 3.7: Bounds of bowing constants used in the bowed-string algorithm. These values come from
examining constants used in (McIntyre et al. 1983, Smith & Woodhouse 2000, Serafin 2004, Indcio
et al. 2008). Friction mainly arises due to rosin, a sticky substance scraped onto the bow hair by the
musician which gradually wears off. Rosin for violins is lighter in color, less sticky, and often described
as “harder”. Rosin for cellos and especially double basses is dark, stickier, and “softer”.
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3.4.2 Fitting unknown string constants to measured constants

Selecting the bow-string friction constants begins by uniformly randomly selecting a value from the
ranges in Table 3.7. This value represents the inherent friction of the bow and rosin. The actual
friction values are unlikely to be independent — a rosin which produces a high us will likely have a
high g as well — but this does not substantially change the simulation. Once a value is selected
for each instrument’s bow, the actual friction constants are multiplied by a further uniform random
value between 0.95 and 1.05. This represents the variation in friction between the bow and each
string; real-world violin strings have rosin residue from being bowed in the past. Although many
musicians attempt to remove this residue from the string by wiping them with a cloth after playing
the instrument, the residue cannot be removed entirely without using rubbing alcohol or a similar
cleaning agent.

Unfortunately the bounds on string and bow constants given in Section 3.4.1 are listed as indepen-
dent values (e.g., there is no published correlation between string diameter d and linear density pr,).
In real life, we should expect some dependence between the string constants. However, I made the
unrealistic (yet adequate for the resulting sound) assumption that physical constants are independent.

To estimate the unknown string constants 7', pr,, and E, I found a least-squares fit to match those
with the measured fy and B for each string. In addition, to accommodate measurement error in L
and d, I treated those two values as variables which fall within 1% and 10% of their measured values,
respectively. In order to keep the constants within the required bounds, I defined a W (a, o™, p™ax)
function which adds a penalty if a is outside of the bounds b™ < a < b™2%. Concretely, the problem

is to find values for [pr,, T, E, L, d] which minimize Y 4? in

W =max (bbmi:a,O) + max <a;mzx,0)

T /nm\2 FEI /nm\4 Endd* . (3.12)
— _ I B B — %% min _max .
Yy |:f0 \/pL ( L ) =+ oL ( L ) ) 64127’ (PLNOL y PL, )a

%% (T, Tmianmax) , %% (E’Emin’ Emax) , %% (L, Lmin7 Lmax) , %% (d, dmin, dmax)]

The above equations assume that the string is a uniform beam, i.e. not a wound string. As previ-
ously discussed, this is a false assumption for almost all strings, but this assumption is fundamental
in the physical modelling equations in Chapter 2. The real-world measured values of string constants
produce estimates of B which are much too low. In order to achieve virtual strings whose inhar-
monicity factor B, and therefore modal frequencies w, matches the measurements, I have allowed the
Young’s modulus E to be considerably larger. The core of wound strings is nylon, so we should expect
FE to be close to 4 or 5 GPa. However, I have allowed E to be as high as 220 GPa, the value for solid
steel strings found occasionally on the violin E string.

The string tension 7" falls somewhere between a physical constant and a musician-controlled value.
It generally does not change significantly” during normal playing, however at the beginning of each
playing session the musician will adjust the string tension to ensure that the open strings produce the
desired pitches. The initial estimate of T' comes from (3.12), but it will be automatically adjusted to

ensure that the string’s fyo matches the desired frequency as discussed in Section 3.5.4.

7If the ambient temperature changes, the string will expand or contract, producing audible variation in pitch. This is
unfortunately common when performing on a stage with high-power stage lighting; musicians will “re-tune” (i.e. adjust
the string tensions) several times during a concert to mitigate this problem.
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3.5 Constants selected from simulations

This section discusses simulations which were performed to choose addition constants. In particular,
in the first portion of this section describes the choice of the number of modes (N), string sampling
rates (fs), finger damping and plucking constants (Ky, Ry, K,, R,), tuning the string tension (T'),
and the cut-off for a barely vibrating string (Amin)-

The simulation described in 2.1.1 contains two major simplifications: The model treats external
forces F; as constant throughout the time interval dt = i, and the model only represents the string
with a finite number of modes N. This introduces a trade-off of speed vs. accuracy. A higher sampling
rate will reduce the time interval dt, thereby improving the accuracy of the estimate of a constant
external forces. Similarly, increasing N would bring the model closer to an infinitely large N, which
is the mathematical assumption behind the modal decomposition. However, increasing f; or N will
require more calculations, which will slow down the simulation. For computational efficiency, N will
be truncated to a finite number. This introduces a trade-off between mathematical accuracy and
the number of calculations required. In terms of computation complexity, the algorithm has a time

complexity of O(N - dt).

3.5.1 Number of modes

Plucking an open string imparts a certain amount of energy to each mode in the plucking phase,
but during the release phase each mode decays independently. The importance of upper modes can
be estimated from the modal decays predicted in Section 3.2.3, so I will not include simulations of
open-string plucks in this analysis. A more interesting question is how the system behaves when a
fingered string is plucked. As discussed in Section 2.1.2, the finger forces create the desired pitch by
distributing energy between modes. This is a much better test of the effect of the limited number of
modes for plucking.

Due to the way that external forces distribute energy between modes, a “non-existent” mode (i.e.
mode numbers above N) can be considered to have an infinitely strong damping factor .. Therefore,
the higher the damping of upper modes of a string, the less inaccuracies are introduced due to a
finite N. Bowing a string results in a continual (although varied) addition of energy to the system.
This additional energy is very important for the upper modes; the upper modes play a much more
important role in bowing than they do in plucking.

I compared the two “extreme” strings: The cello C string (65 Hz), and violin E string (660 Hz).
Upper modes of the cello C string are heavily damped, so it is expected that low values of N will be
fairly accurate for plucked strings. By contrast, the upper modes of the violin E string are relatively
lightly damped, so low values of N will be inaccurate for plucked strings. I tested N = [32,40, 48, 64],
and set fs = 96 kHz to avoid any problems of frequency aliasing. For computational efficiency the
number of modes should be a multiple of 4 or even 8, as discussed in Section 4.