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Abstract 

Foot-and-mouth disease virus (FMDV) causes the most contagious transboundary 

disease of animals, affecting both wild and domestic cloven-hoofed animals. 

Similarly to other RNA viruses, FMDV is highly variable as a result of the inherent 

low fidelity of the viral RNA-dependent RNA polymerase. The accumulation of this 

variability and relatedness between FMDV sequences was used to provide 

evidence for modes of transmission (fomite) as well as a constant clock rate 

across two FMDV topotypes (~8.70 x 10-3 substitutions/site/year), during the 1967 

UK FMD epidemic, using full genome consensus sequencing. However, during an 

epidemic, virus replicates within multiple animals, where it is also replicating and 

evolving within different tissues and cells. Each scale of evolution, from a single 

cell to multiple animals across the globe, involves evolutionary processes that 

shape the viral diversity generated below the level of the consensus. During this 

PhD project, next-generation sequencing (NGS) was used to dissect the fine scale 

viral population diversity of FMDV. Collaboration with the Institute of Biodiversity, 

Animal Health and Comparative Medicine at the University of Glasgow provided 

the specialist bioinformatic and statistical capabilities required for the analysis of 

NGS datasets. As part of this collaboration, a new systematic approach was 

developed to process NGS data and distinguish genuine mutations from artefacts. 

Additionally, evolutionary models were applied to this data to estimate parameters 

such as the genome-wide mutation rate of FMDV (upper limit of 7.8 x 10-4 per nt). 

Analysis of the mutation spectra generated from a clonal control study established 

a mutation frequency threshold of 0.5% above which there can be confidence that 

95% of mutations are real in the sense that they are present in the sampled virus 

population. This threshold, together with an optimized protocol, was used for the 

more extensive investigation of within and between host viral population dynamics 

during transmission. Analysis of mutation spectra and site-specific mutations 

revealed that intra-host bottlenecks are typically more pronounced than inter-host 

bottlenecks. NGS analysis has distinguished between the population structure of 

multiple samples taken from a single host, which may provide the means to 

reconstruct both intra- and inter-host transmission routes in the future. A more 

sophisticated understanding of viral diversity at its finest scales could hold the key 

to the better understanding of viral pathogenesis and, therefore development of 

effective and sustainable disease treatment and control strategies. 
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1.1 Summary 

This introductory chapter is broken down into four primary sections. The first 

section puts this research into its wider context by providing an introduction to the 

disease caused by the virus studied here, foot-and-mouth disease (FMD). The 

second section focuses in more detail on the virus itself, foot-and-mouth disease 

virus (FMDV), in terms of virion structure, the genome, replication, and mechanism 

of cell entry. FMDV evolves at a range of spatial and temporal scales, the 

dynamics of which, in terms of FMDV and other RNA viruses, are discussed within 

the third section. The fourth section discusses how virus evolution has been 

studied to date. Finally, the chapter culminates with the overall objectives of this 

PhD. 
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1.2 The disease 

 
1.2.1 Foot-and-mouth disease 

Foot-and-mouth disease (FMD) is the most contagious transboundary animal 

disease, affecting both wild and domestic cloven-hoofed animals, including cattle, 

pigs, sheep and goats. Significant economic loss results from its high morbidity 

and export trade restrictions imposed on affected countries. Mortality is typically 

low in adult animals but can be high in young animals due to acute myocarditis.  

The aetiological agent of this disease is foot-and-mouth disease virus (FMDV; 

family Picornaviridae; genus Aphthovirus). Seven serotypes of FMDV have been 

identified (A, O, C, Asia 1, and South African territories [SAT] 1-3) each of which 

include multiple subtypes. FMD serotypes differ in their global distribution. 

Serotypes A and O have the widest distribution, occurring in Africa, Asia and 

South America, where FMD is endemic. Types SAT 1, 2 and 3 are normally 

restricted to Africa only and Asia 1 to Asia. The capacity of the disease to invade 

free areas is common to all types, for example, FMDV SAT-2 serotype is currently 

causing outbreaks in the Middle East and Asia 1 periodically moves west and east 

from central Asia. Infection or vaccination against one serotype does not provide 

protection against other serotypes. 

 

1.2.2 Clinical signs 

The disease is characterised by a number of debilitating clinical signs, including 

fever, lameness and vesicular lesions of the feet, tongue, snout and teats. While 

clinical disease is often severe and obvious in pigs and cattle, signs, such as fluid 

filled vesicles in the mouth, can be especially subtle in sheep and goats, due to 

variations in lingual epithelium thickness. Clinical disease is indistinguishable 

between FMD serotypes and also other vesicular diseases in pigs, such as swine 

vesicular disease and vesicular stomatitis (affects cattle, horses and occasionally 

pigs). An experimental study of FMD transmission in cattle found that, on average, 

animals were infectious 0.5 days after the onset of clinical signs (Charleston, 

Bankowski et al. 2011). Therefore, timing of clinical disease and proximity of 

susceptible naïve animals plays a critical role in terms of disease transmission and 

spread. 
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1.3 The virus 

 
1.3.1 Foot-and-mouth disease virus 

A substantial step towards understanding FMD was Loeffler and Frosch’s 1897 

landmark demonstration that the disease was caused by a filterable agent, or 

virus. This virus has a single stranded positive sense RNA genome and is 

immediately infectious within a cell. The genome is approximately 8500 nt in 

length (Forss, Strebel et al. 1984) and contained within a non-enveloped 

icosahedral capsid approximately 25 nm in diameter (Bachrach 1968). Although 

the virus is sensitive to acidic conditions (pH < 6.0), high temperatures (> 50ºC) 

and UV, it has been shown to survive for a number of months outside a 

susceptible host, under favourable conditions, for example, on wool (McColl, 

Westbury et al. 1995) and in bovine faeces and slurry (Parker 1971; Haas, Ahl et 

al. 1995). A review of FMDV survival in animal excretions and on fomites has been 

provided by Bartley, Donnelly et al. 2002. 

  

1.3.2 Virion structure 

FMDV serotypes are determined serologically, based upon differences in the 

antigenic structure of the viral capsid, which is composed of 60 copies of each of 

four structural proteins VP1-4 (also termed 1D, 1B, 1C and 1A). The VP4 

structural protein is buried on the inside of the capsid and has a distinct extended 

conformation (Acharya, Fry et al. 1989). Conversely, structural proteins VP1, VP2 

and VP3 fold into eight-stranded ! barrels, which are connected by loops that form 

the outer surface of the viral particle. FMDV capsid structure has been determined 

for a number of strains, including O1BFS (discussed in this thesis), by use of X-ray 

crystallography. Five antigenic sites have been described involving all three 

surface exposed structural proteins for type O1 FMDV (Barnett, Ouldridge et al. 

1989; Kitson, McCahon et al. 1990; Crowther, Farias et al. 1993). Of particular 

interest regarding the cellular binding of FMDV is a prominent surface loop 

connecting the !G and !H strands (G-H loop) of VP1, which will be discussed 

further in the following section. 
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1.3.3 Viral cell attachment and entry 

The surface exposed G-H loop of FMDV VP1 contains a highly conserved 

arginine-glycine-aspartic acid (RGD) motif, which interacts directly with host cell 

receptors (integrin), resulting in virus binding to cells. Integrin are type I 

heterodimeric membrane proteins consisting of " and ! subunits. The major 

integrin receptors for FMDV in susceptible hosts are "v!1, "v!3, "v!6 and "v!8 

(Berinstein, Roivainen et al. 1995; Neff, Mason et al. 2000; Neff and Baxt 2001; 

Jackson, Mould et al. 2002; Jackson, Clark et al. 2004). However, "v!6 has been 

shown to be the predominant epithelial cell surface receptor within areas that are 

commonly targeted by FMDV, in cattle (Monaghan, Gold et al. 2005; O'Donnell, 

Pacheco et al. 2009). Additionally, "v!3 has been found in close association with 

blood vessels in various tissues. Interestingly, there are a variety of tissues that, 

while expressing "v!6, do not support FMDV replication, perhaps revealing the 

presence of alternative cell-specific or tissue-specific host factors as co-

determinants of tropism. A comprehensive review of host and virus determinants 

of Picornavirus pathogenesis and tropism has been provided by Whitton, Cornell 

et al. 2005. 

 

Multiple passages of type O FMDV in cell culture result in viral utilization of the 

glycosaminoglycan, heparan sulphate (HS), as an alternative cellular receptor; a 

change that is correlated to selection of viruses containing an extra positively 

charged amino acid (Jackson, Ellard et al. 1996a; Fry, Lea et al. 1999a). 

 

Once attached to cells, FMDV enters via receptor-mediated endocytosis (different 

in vitro and in vivo), where un-coating of the viral capsid occurs due to acidification 

within the early endosomal pathway (Johns, Berryman et al. 2009). Where 

infection by integrin binding viruses occurs via clathrin-mediated endocytosis, HS 

binding viruses enter cells via a caveola-mediated mechanism (O'Donnell, Larocco 

et al. 2008).  

 

1.3.4 The foot-and-mouth disease virus genome  

The FMDV genome contains a single open reading frame (ORF; approximately 

7000 nucleotides (nt) long), flanked either end by untranslated regions (UTR), as 

depicted in Figure 1.1. The 5’ UTR of the FMDV genome is relatively long at 
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approximately 1300 nt. The 5’ UTR consists of, from the 5’ end, a 350-380 nt 

‘Short’ (S) fragment, a 100 to 420 nt long poly ‘C’ tract and the approximately 700 

nt 5’ terminus of the genomic ‘Long’ (L) fragment, containing three or four 

tandemly repeated pseudoknots, a stem-loop cis-acting replication element (cre) 

and a type II internal ribosomal entry site (IRES), as reviewed by Carrillo, Tulman 

et al. 2005. This end of the genome is covalently linked to a small viral protein VPg 

(or 3B). Two stem-loops have been predicted within the 3’ UTR of the FMDV 

genome (Carrillo, Tulman et al. 2005), which is polyadenylated (poly ‘A’ tract) and 

relatively short at around 90 nt long. RNA is highly structured throughout the 

genome, as reviewed by Carrillo, Tulman et al. 2005.  

 

The function of the S fragment, which has been predicted to fold into a large 

hairpin structure (Clarke, Brown et al. 1987; Escarmis, Toja et al. 1992), is still 

unknown but it is thought to be required for replication of the RNA. The ‘cloverleaf’ 

structure at the 5’ end of poliovirus RNA is much better characterized and has 

been shown to be involved in the process of RNA replication (Andino, Rieckhof et 

al. 1990) and to have a major effect on RNA stability (Murray, Roberts et al. 2001). 

The role of the poly ‘C’ tract is also unclear, but it is interesting to note the slowing 

of growth in cell culture after the removal of only four C residues from this region of 

cloned FMDV cDNA (Rieder, Bunch et al. 1993). The role of the multiple 

pseudoknots predicted to occur at the 3’ end of the poly ‘C’ tract (Clarke, Brown et 

al. 1987; Escarmis, Dopazo et al. 1995) is also unknown.  

  

The FMDV cre is required for replication and has been shown to be able to 

function in trans (Tiley, King et al. 2003) and will be discussed further in section 

1.3.4. Serrano et al (2006) demonstrated that the S fragment and the IRES 

interact specifically with the 3’ UTR, therefore potentially playing a role in 

translation and/or replication of the genome (Serrano, Pulido et al. 2006). 
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Figure 1.1  

A schematic representation of FMDV genome organisation. The FMDV genome is 

covalently linked to the protein VPg at the 5’ end and is polyadenylated at the 3’ end. The 

coding and non-coding regions of FMDV RNA are indicated in the form of a single large 

open reading frame that encodes a poly-protein flanked either end by untranslated 

regions (UTR). P1 contains the capsid coding region for viral proteins (VP) 1-4. The 

remainder of the coding region encodes non-structural proteins. Precursors P1-2A, P2 

and P3, including three distinct copies of 3B (VPg), are indicated. Figure adapted from 

(Belsham 2005).   

 

1.3.5 Foot-and-mouth disease virus translation and replication 

The initial role of FMDV RNA upon infection of cells and release into the cytoplasm 

is as mRNA for the production of viral proteins, which are, in turn, required for 

RNA replication and packaging of the de novo-synthesised RNA into virions. 

Different functions of the RNA may occur in discrete compartments within cells. 

Cap independent translation of the polyprotein is driven by the IRES while a 

cellular enzyme cleaves the VPg protein. Various structural and non-structural 

proteins that assist in the replication of the viral genome result from subsequent 

cleavage of the poly-protein. However, the 5’ and 3’ UTRs also have significant 

roles in virus translation and replication (Mason, Grubman et al. 2003). The 

absence of a cap structure and the presence of an extensive secondary structure 

with multiple un-used AUG codons are features shared by all picornavirus RNA 5’ 

UTRs. 

 

 1.3.5a The proteins 

Viral encoded proteases process the viral polyprotein. The FMDV leader (L) 

protein is also a protease, which cleaves itself and the P1-2A precursor at its N-

terminus, which is also cleaved at its C-terminus by the 2A protein. Not all 

‘cleavage’ mechanisms follow a proteolytic reaction, as has been demonstrated 

during the processing of FMDV 2A/2B by 2A (Donnelly, Luke et al. 2001). 
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Subsequent processing of the P1-2A precursor by 3C protease yields VP0 

(subsequently cleaved into VP4 and VP2), VP3, and VP1 (Figure 1.1). Both P2 

and P3 precursors are also cleaved by 3C protease into additional non-structural 

(NS) proteins, which perform a number of functions that promote virus production 

(reviewed in Belsham 2005) and block or limit the host response. Replication of 

the viral genome is driven by the viral RNA-dependent RNA polymerase, 3D, a 

process that also requires NS protein 3B (VPg) to initiate RNA synthesis and 2C. 

Additionally, the viral protein 3AB is thought to be required for the initiation of RNA 

synthesis (reviewed in Grubman and Baxt 2004). The 3D polymerase and 3AB 

physically associate with each other and with viral RNA replication complexes 

found on virus induced membranes in infected cells (Hope, Diamond et al. 1997). 

Cleavage of the host translation initiation factor eIF4G by L results in marked 

down-regulation of host protein synthesis by shutting off cap dependent translation 

(Devaney, Vakharia et al. 1988; Medina, Domingo et al. 1993). This cleavage also 

leads to inhibited trafficking of proteins through the endoplasmic retriculum/Golgi 

secretory pathway by 2B and 2C and/or 2BC (Moffat, Howell et al. 2005; Moffat, 

Knox et al. 2007). The NS proteins 2B, 2C and 3A also play a role in the 

rearrangement of host cell membranes, which become the site of viral RNA 

replication and capsid assembly (O'Donnell, Pacheco et al. 2001; Pena, Moraes et 

al. 2008). 2B and 3C have the most conserved amino acid sequences between 

serotypes (Carrillo, Tulman et al. 2005).  

 

 1.3.5b Replication of the genome 

Initially, the positive-sense genome of FMDV acts as a template for the synthesis 

of an anti-sense RNA, which in turn is used for the production of new positive-

sense infectious genomes. A large excess of positive compared to negative 

strands exists within infected cells (Novak and Kirkegaard 1991). The cis-acting 

replication element (cre) serves as a template for 3D mediated uridylylation of 

VPg, forming VPgpUpU in infected cells (Crawford and Baltimore 1983), which 

acts as a primer for RNA polymerase (3D) driven genome replication. The 3’ poly 

‘A’ tract is the initiation site for the synthesis of negative sense RNA that, following 

elongation, results in the formation of a double-stranded RNA/RNA molecule, the 

replicative form (RF). Free minus strands are not detectable in vivo (Grubman and 

Baxt 2004). It is interesting to note that, although VPg is linked to both positive and 
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negative strands of FMDV, cre-dependent uridylylation of VPg is required for 

positive but not negative strand synthesis (Murray and Barton 2003).  

 

FMDV RNA polymerase has poor proofreading capability, the mechanism behind 

which has been analysed in vitro (Arias, Arnold et al. 2008). Therefore, almost 

every time a genome is replicated, a mutation occurs so that FMDV exists as a 

population of closely related genomes. This genetic variability within FMDV 

populations has been extensively demonstrated in cell culture (Sobrino, Davila et 

al. 1983; Arias, Lazaro et al. 2001; Ruiz-Jarabo, Pariente et al. 2004). The creation 

and consequences of this genetic variability will be discussed further in the current 

Chapter, section 1.4. 

  

 1.3.5c Virus assembly 

Picornavirus virion assembly can be broken down into four general steps, which 

include: (1) synthesis of the capsid protein precursor, (2) cleavage of precursor 

into VP0, VP3 and VP1 to form a non-covalent complex (protomer), (3) formation 

of pentamers from five protomers, (4) formation of icosahedral empty particles 

from 12 pentamers, linked to packaging of viral RNA (encapsidation) and cleavage 

of VP0 into VP4 and VP2 (‘maturation’), reviewed by Agol 2002. The specificity of 

positive strand encapsidation during virus assembly has been confirmed for 

poliovirus (Novak and Kirkegaard 1991). Although not specifically demonstrated 

for FMDV, it is assumed that any encapsidation of negative strands would be 

accidental as this would not be expected to be of advantage to the virus. 

Therefore, viral genome encapsidation forms an integral, potentially rate 

influencing, part of the intra-cellular replication process.    

      

1.4 RNA virus evolution 

There have been many cases of host cell tropism and host range modification 

associated with the genetic variability of RNA viruses, as reviewed by Baranowski, 

Ruiz-Jarabo et al. 2003. Domingo et al suggested over three decades ago that 

extensive genetic variability, across genome sites, was the basis for FMDV 

antigenic diversity (Domingo, Davila et al. 1980). High mutation rates, rapid 

replication kinetics and large population sizes all contribute to the heterogeneity of 

RNA virus populations. However, over evolutionary time, viral populations have 
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been subjected to positive selection, negative selection and random drift. When 

the effective population size of a virus is small, it is predicted that genetic drift is 

the critical determinant of mutation frequency (Rouzine, Rodrigo et al. 2001). This 

is typically the case during multiple host-to-host transmissions and has been 

demonstrated for FMDV (Cottam, Haydon et al. 2006). Evolutionary 

transformations are less predictable during such stochastic processes. 

 

1.4.1 The impact of replicative mode on mutation distribution 

As discussed in previous sections, when a virus replicates inside a host cell, it 

uses its own genome as a template. However, once produced, the progeny can, in 

turn, become template for further replication. The distribution of mutants produced 

during an infection can subsequently vary greatly, depending on whether, and how 

many of, the progeny genomes become templates. Therefore, replication strategy 

provides important information about the generation of mutation. A recent study 

looked at the relationship between mutation frequency and replication strategy in 

positive-sense single-stranded RNA viruses (Thebaud, Chadoeuf et al. 2010), 

discussed below. 

  

Numerous studies have been conducted to address the question of optimal 

replicative mode in positive sense RNA viruses (Chao, Rang et al. 2002; Krakauer 

and Komarova 2003; Regoes, Crotty et al. 2005; Sardanyes, Sole et al. 2009; 

Thebaud, Chadoeuf et al. 2010). Such studies are based on the assumption of 

either one of two basic modes of viral replication. One results in a Poisson 

distribution of mutations, whereby the parental virus is the only template used for 

production of progeny, the so called, ‘Stamping machine’ replication (SMR) model 

first proposed by Luria (Luria 1951). Conversely, if all genomic strand progeny are 

used as template for additional progeny the replication mode is effectively 

geometric (GR). An extension of this rationale is that, if a fraction of progeny acts 

as template for further replication, the replication mode will be a mixture of both 

SMR and GR. Thebaud et al. (2010) proposed that at high mutation rates, or when 

a high proportion of mutations are deleterious, the optimal replication strategy 

shifts towards the synthesis of more negative strands per positive strand, and “in 

extremis” towards the SMR mode. An equivalent model proposed by Sardanyes, 

Sole et al. (2009) also predicted that by employing the SMR mode, RNA viruses 
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may increase their robustness against the accumulation of deleterious mutations. 

The same study also predicted that this increase in robustness would depend on 

assumptions made about the fitness landscape topology, such as strength of 

antagonistic and synergistic epistasis (Sardanyes, Sole et al. 2009).  

 

1.4.2 Mutation rates and quasispecies 

Mutation drives the heterogeneity upon which selection, recombination and 

genetic drift operate. Therefore, in order to understand the course of evolution 

through the progression of viral population structure over time, a clear 

understanding of both mutation and substitution rate is critical. Duffy et al. 2008 

provides a review of current understanding of virus evolutionary rates, their 

determinants and how they are measured. Mutation rate is defined as the number 

of genetic mutations (point mutations, insertions and deletions) that accumulate 

per unit time or, for obligately lytic viruses per burst, per generation, or, per round 

of genomic replication. The low fidelity of the RNA-dependent RNA polymerase 

means RNA viruses often mutate at a higher rate than DNA viruses, which utilize 

higher fidelity DNA polymerases. However, similar mutation rates between some 

DNA and RNA viruses (an example of which is provided in Figure 1.2) suggest 

that polymerase fidelity may not be the only contributing factor and aspects of viral 

biology as genomic structure, size and replication speed may also play a role. 
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Figure 1.2 

Per-site mutation rate against genome size (adapted from Gago, Elena et al. 2009). RNA 

viruses (left to right) are tobacco mosaic virus, human rhinovirus, poliovirus, vesicular 

stomatitis virus, bacteriophage #6, and measles virus, Single-stranded DNA viruses are 

bacteriophage #X174 and bacteriophage m13. Double-stranded DNA viruses are 

bacteriophage $, herpes simplex virus, bacteriophage T2, and bacteriophage T4. 

Bacteria is Escherichia coli.  

 

The mutation rate of RNA viruses has been extensively reviewed (Holland, 

Spindler et al. 1982; Domingo and Holland 1997; Drake and Holland 1999; Duffy, 

Shackelton et al. 2008), and is commonly quoted to range between 1 x 10-3 to 1 x 

10-5 misincorporations per nt per genome replication, with transitions occurring 

much more frequently than transversions (Kuge, Kawamura et al. 1989). Mutation 

rate is commonly measured either by the Luria-Delbruck fluctuation tests or 

mutation accumulation studies, as reviewed by Duffy, Shackelton et al. 2008. 

Estimates have been made, as depicted in Figure 1.2; however, it becomes 

substantially more difficult to drill down within a mutation rate range to ascertain a 

consistent rate for any one specific virus, including FMDV. A number of in vitro 

studies have looked at the frequency of mutations within populations of FMDV 

(Sobrino, Davila et al. 1983; Sierra, Davila et al. 2000; Arias, Lazaro et al. 2001; 

Pariente, Sierra et al. 2001; Airaksinen, Pariente et al. 2003; Gu, Zheng et al. 

2006) but this frequency cannot be used to directly estimate mutation rate as it 
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results from the combined action of mutation and selection. Mutation generated by 

poliovirus RNA polymerase have been more extensively studied (Parvin, Moscona 

et al. 1986; Sedivy, Capone et al. 1987; Ward, Stokes et al. 1988; Ward and 

Flanegan 1992; Wells, Plotch et al. 2001; Freistadt, Vaccaro et al. 2007). 

However, due to questions raised about the validity of experimental determination 

and possible over estimations, poliovirus mutation rate also remains to be 

accurately measured.  

 

A possible reason for the uncertainty of mutation rate estimations lies with the 

difficulty in quantifying the number of generations of replication over which 

mutations are generated. Moreover, as discussed previously, the definition of 

genome replication requires care. The in silico study by Thebaud et al. 2010, 

which considers the replication strategy of RNA viruses, suggests combining such 

a model with measures of mutation frequency to achieve more accurate measures 

of mutation rate (Thebaud, Chadoeuf et al. 2010).  

  

Substitution rate, defined as the number of fixed mutations (by natural selection or 

genetic drift), per nt site, per unit time, has been described as a complex product 

of four component factors including, underlying mutation rate, generation time, 

effective population size and fitness (Duffy, Shackelton et al. 2008). The 

substitution rate observed in the field for different serotypes of FMDV has been 

measured and found to lie in the range of 0.0004 – 0.045 substitutions per nt per 

year (Sobrino, Palma et al. 1986; Haydon, Samuel et al. 2001; Bastos, Haydon et 

al. 2003). This leads to a substantial level of genetic diversity, seen particularly 

within the nt sequence of the capsid proteins (Carrillo, Tulman et al. 2005), which 

accumulates, predominantly as synonymous changes, in a continuous, linear 

fashion over broad temporal and spatial scales (Villaverde, Martinez et al. 1991a; 

Elena, Gonzalez-Candelas et al. 1992; Cottam, Haydon et al. 2006; Valdazo-

Gonzalez, Knowles et al. 2011). However, this rate is significantly lower than might 

have been expected, given the potential degree of genetic diversity generated 

within a single animal according to the mutation rate for RNA viruses quoted 

above. Potential explanations for this discrepancy are discussed in (Haydon, 

Samuel et al. 2001). It could be theorized, however, that the requirement to 

maintain an optimal balance between viral population stability and variability, for 
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reasons discussed in the preceding section, occurs throughout the different spatial 

and temporal scales of infection.  

 

Under the Darwinian model of evolution, ‘Survival of the fittest’ stipulates the best-

adapted replicator is favoured by natural selection. However, under the 

quasispecies model of molecular evolution, first proposed by M. Eigen and his 

colleagues (Eigen 1971a; Eigen 1978), selection acts on ‘clouds’, of mutants, the 

quasispecies, not on individual sequences provided that mutation rate is high 

enough. At high mutation rates, the fittest organisms may not be the fastest 

replicators but rather those able to tolerate deleterious mutational effects, even at 

the cost of a low replication rate, dubbed ‘Survival of the flattest’. As discussed 

previously, RNA viruses have characteristically high mutation rates, consequently, 

the quasispecies model is often used to describe the evolutionary dynamics of 

RNA virus populations, including FMDV (Martinez, Carrillo et al. 1991; Villaverde, 

Martinez et al. 1991a; Domingo, Escarmis et al. 1992; Ibanez, Clotet et al. 2000; 

Ruiz-Jarabo, Arias et al. 2000; Mullan, Kenny-Walsh et al. 2001).  

 

The original model assumed infinite population sizes and predicted deterministic 

dynamics, whereas, although large, viral populations are finite and subject to 

stochastic dynamics and neutral drift. Consequently, use of the quasispecies 

model for RNA virus evolution has been criticised (Jenkins, Worobey et al. 2001; 

Holmes and Moya 2002a). However, although not infinite in size, the co-operative 

population structure of RNA viruses (see below), in the form of mutational 

robustness, induced by mutational coupling, does not disappear when populations 

are finite (Bornberg-Bauer and Chan 1999; van Nimwegen, Crutchfield et al. 1999; 

Wilke 2001; Wilke and Adami 2003). RNA secondary structure has also been used 

as a fitness determinant in order to demonstrate quasispecies dynamics in finite 

populations of self-replicating RNA sequences (Forster, Adami et al. 2006). 

 

The role played by selection in establishing the quasispecies dynamic has been 

elegantly investigated in poliovirus (Pfeiffer and Kirkegaard 2005; Vignuzzi, Stone 

et al. 2006). Vignuzzi et al, found that a poliovirus generating less genomic 

diversity, as a result of using a high fidelity polymerase, led to a loss of 

neurotropism and attenuated pathogenesis in mice. By observing co-operative 
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interactions between different variants in the ‘cloud’, the authors propose a 

rationale for the role of quasispecies diversity in infectivity. This rationale 

hypothesized that different sub-populations may serve different roles within the 

overall ‘cloud’ and facilitate colonization of different tissues and therefore, 

maintaining quasispecies complexity enables the systematic spread of viral 

populations at the intra-host scale (Vignuzzi, Stone et al. 2006). A similar study by 

(Pfeiffer and Kirkegaard 2005) had also found links between decreased viral 

diversity and reduced ability of the viral population as a whole to adapt within the 

host environment. 

 

Properties consistent with the quasispecies theory, such as an error threshold and 

differences in mutation spectra affecting fitness, have been demonstrated for 

FMDV populations in vitro. These so called, ‘quasispecies’ dynamics are reviewed 

in terms of antiviral strategies based on virus entry into error catastrophe in 

(Domingo, Escarmis et al. 2005). However, whether selection does indeed act on 

FMDV populations, as a single unit, in a natural setting is still be demonstrated. 

Therefore, I will use the term viral swarm in place of quasispecies to describe the 

heterogeneity of FMDV populations within this thesis. 

 

1.4.3 Approaches used to study viral sequence variability  

Prior to the advent of next-generation sequencing, which will be discussed in the 

current Chapter, section 1.5, there were a number of alternative methods used for 

the study of viral populations. Biological cloning has been extensively used to 

produce multiple plaque purified viral clones to investigate viral population 

heterogeneity and implications for fitness (Escarmis, Davila et al. 1999; Arias, 

Ruiz-Jarabo et al. 2004; Domingo, Pariente et al. 2005; Escarmis, Lazaro et al. 

2008). This technique only provides a partial picture of the original viral population 

as it is restricted to fit viral particles that initially create the plaques. Alternatively, 

molecular cloning techniques have also been used to investigate viral population 

diversity at the within host scale (Cottam, King et al. 2009b; Murcia, Baillie et al. 

2010; Bull, Luciani et al. 2011; Bull, Eden et al. 2012). Full length cDNA 

sequences can be cloned into plasmid vectors, as has been demonstrated for 

viruses such as hepatitis C virus (HCV) (Date, Kato et al. 2012) and FMDV (Ellard, 

Drew et al. 1999). It should be noted, however, that these techniques still incur 

artefactual mutations (artefacts) during RT-PCR. These artefacts can be avoided 
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by directly sequencing PCR products derived by the amplification of a single target 

molecule (Simmonds, Balfe et al. 1990). Even if an artefact occurred in the first 

PCR cycle, half of the templates will still have the original nucleotide at that 

position (Smith, McAllister et al. 1997). However, all these techniques are very 

time consuming and offer only relatively limited resolution of the viral population.  

  

1.4.4 Foot-and-mouth disease evolution 

It has been hypothesized that the population heterogeneity of RNA viruses affords 

them greater adaptability during infection of a host (Coffin 1995; Domingo, 

Escarmis et al. 1996; Garcia-Arriaza, Manrubia et al. 2004). FMDV viral 

populations have been shown to exhibit what is known as genomic ‘memory’ 

(Ruiz-Jarabo, Arias et al. 2000; Arias, Ruiz-Jarabo et al. 2004), which refers to the 

maintenance at low frequency of a previously dominant virus variant, potentially 

aiding such adaptability. Additionally, populations of FMDV have been shown to 

adapt to different multiplicities of infection (MOI) in vitro (Sevilla, Ruiz-Jarabo et al. 

1998) and co-evolve alongside different cell lines (Ruiz-Jarabo, Pariente et al. 

2004) as well as maintain defective RNAs (Charpentier, Davila et al. 1996). 

 

Processes and events that shape RNA virus populations during virus/ host 

interaction include those within diverse cellular environments as well as the host 

immune response itself, which exerts selective pressure upon specific regions of 

the FMDV genome. Such processes also occur during transmission across ‘host-

to-host’ and ‘tissue-to-tissue’ barriers. Processes that shape viral populations can 

either be driven by selection or random genetic drift, such as bottlenecking. 

Bottleneck events occur both within and between hosts, so will be discussed 

separately. The question remains whether conventional Sanger sequencing of the 

consensus can provide sufficient resolution to distinguish between within host 

FMDV populations and, subsequently, to characterise the transmission of diversity 

between hosts.  

 

 1.4.4a Inter-host viral transmission 

Transmission of FMDV is achieved either through direct or indirect contact with an 

infected animal, product or object (fomite). It is believed that fomite virus outside a 

susceptible host does not replicate and therefore remains evolutionary ‘dormant’; 
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which can impact on the predicted error rate at the epidemic scale. Genetic 

sequence data has been used to successfully trace the movement of FMDV at the 

global scale and within a single epidemic. However, both the heterogeneous 

nature of within host viral populations and the number of transmitted viruses 

between hosts may influence the rate of mutation fixation (Kinnunen, Poyry et al. 

1991; Villaverde, Martinez et al. 1991b).  

 

Although virus may enter a susceptible host through damaged integument, 

transfer of airborne droplets (from the breath of infected animals or after 

atmospheric re-suspension from contaminated materials) to the respiratory tract of 

recipient animals is the most probable form of transmission between animals in 

close proximity. However, the species of both donor and recipient animal 

influences the means of transmission; in turn, the means of transmission will 

influence the route and dose of infection, which in turn may influence the site/s of 

primary replication and pattern of viral dissemination.  

 1.4.4b Intra-host viral transmission  

The intra-host scale studies discussed in this thesis were conducted on bovine 

samples; therefore viral dissemination in cattle will be discussed in some detail. As 

discussed previously for poliovirus, population heterogeneity may influence site of 

viral replication, in the form of tissue tropism. Therefore, it is important to put 

observed viral population characteristics into context with both dissemination route 

and location of viral replication if intra-host scale microevolutionary dynamics are 

to be investigated. 

 

The most accepted route of FMDV intra-host dissemination, after inhalation of 

airborne virus, involves initial replication within the pharynx followed by virus 

spread through regional lymph nodes (Henderson 1948) and into the circulation 

(McVicar and Sutmoller 1976; Burrows, Mann et al. 1981; Alexandersen, Zhang et 

al. 2002a; Alexandersen, Zhang et al. 2003). Serum-associated viraemia, 

commonly lasting 4-5 days (Cottral and Bachrach 1968; Alexandersen, Zhang et 

al. 2002b; Alexandersen, Quan et al. 2003), seeds secondary sites and multiple 

cycles of viral replication mainly in the cornified epithelia of the skin, tongue and 

mouth (Burrows, Mann et al. 1981; Alexandersen, Oleksiewicz et al. 2001; 

Oleksiewicz, Donaldson et al. 2001). However, tissue specific sampling can offer 
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improved resolution and further dissection of the acute phase of disease, in 

addition to the analysis of oesophageal-pharyngeal fluid (OP, ‘probang’) or serum 

samples. 

 

Arzt et al. (2010) took up to 40 tissue samples per animal and demonstrated that 

the nasopharyngeal region was the probable site of primary replication in 

previraemic cattle aerosol inoculated with FMDV O1Manisa. The same study also 

demonstrated that progression towards viraemia coincided with a marked increase 

of viral load in pulmonary tissues and a substantial decrease in nasopharyngeal 

tissues (Arzt, Pacheco et al. 2010). A number of factors have been indicated or 

identified as potential causes for localized infection of the nasopharyngeal region. 

These include the concentration of virus in the air or initial infective dose (McVicar 

and Sutmoller 1976), other resident viruses (Graves, McVicar et al. 1971), the 

proportion of defective interfering particles or variants in the viral population 

(Sutmoller and McVicar 1972) and local antibody (McVicar and Sutmoller 1974). 

The size distribution of aerosol particles carrying FMDV will also affect whether 

viral challenge will be primarily at the upper or lower respiratory tract. Interestingly, 

as well as infection via direct exposure to aerosolized virus, the pharyngeal area 

can also be infected via the blood stream (Sutmoller and McVicar 1976), as was 

also demonstrated within hours after introduction of virus into the udder through 

the teat canal (Burrows, Mann et al. 1971). By isolating the upper and lower 

respiratory tract, the study by Sutmoller et al. (1976) was able to show that either 

were able to serve as potential portals of FMDV entry into the systemic circulation 

in cattle.  

 

It has been hypothesized that sustained FMDV viraemia is maintained by viral 

replication in lesional and/or nonlesional skin (Brown, Olander et al. 1995; 

Alexandersen and Mowat 2005), however, this has never been unambiguously 

established. Conversely, there are several factors that support the concept that the 

lungs may be important amplifiers of FMDV, maintaining high titer viraemia within 

an infected host. Arzt, Pacheco et al. (2010) demonstrated the relatively high titre 

of FMDV RNA per mg and large quantities of FMDV structural and non-structural 

antigens in the lungs of viraemic cattle. This study also highlighted the overall 
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mass and extensive vascularity of the lungs as additional supporting factors (Arzt, 

Pacheco et al. 2010). 

 

 1.4.4c Bottlenecks 

Bottleneck events can occur during transmission both within and between hosts. 

The impact of intra-host scale bottleneck events has been described for a range of 

pathogens, including poliovirus (Pfeiffer and Kirkegaard 2006) and FMDV (Carrillo, 

Lu et al. 2007a). It has been theorized that the fine balance between population 

stability and flexibility has been optimized during the evolution of the virus. Where 

too many mutations per genome can bring a viral population to extinction (Sierra, 

Davila et al. 2000), too few can also cause extinction by reducing the ability of the 

virus to adapt to different environments. However, it is interesting to note the 

advantageous impact of bottleneck events on RNA virus populations that are 

evolving at an increased error rate (Cases-Gonzalez, Arribas et al. 2008).  

 

 1.4.4d The immune response 

Much investigation has been conducted to characterize the host response to 

FMDV, and a review of this work has been provided by Golde, de Los Santos et al. 

2011. In vitro studies have provided invaluable insights that would not have been 

possible to conduct in vivo, some of which have been confirmed to be relevant in 

live animals. 

To ensure the effective spread of infection within and between susceptible hosts, 

FMDV has evolved multiple mechanisms to subvert the early immune response. 

Infection is initiated, disseminated throughout the body and infectious progeny 

produced in less than 7 days. Interactions between FMDV, antigen-presenting 

cells and their precursors results in suboptimal immune function, favouring viral 

replication and delayed specific adaptive T-cell responses (Golde, de Los Santos 

et al. 2011). Numerous studies have identified antigenic variants within FMDV 

populations in vivo and in vitro (Diez, Mateu et al. 1989; Borrego, Novella et al. 

1993; Holguin, Hernandez et al. 1997).  

 

A thorough understanding of virus/host interaction and response is required for 

effective control of disease in livestock populations through targeted vaccination 

strategies.    



 Chapter 1 
 

36 
 

1.4.5 Constraints on genetic variability 

While the advantage of population heterogeneity through mutation is the 

promotion of viral adaptability, there are obvious limitations to these in terms of 

virus viability. A number of studies have investigated the concept of an error 

threshold, above which there may be a decrease in infectivity and population 

extinction (Holmes 2003; Pariente, Airaksinen et al. 2003; Domingo, Pariente et al. 

2005; Cases-Gonzalez, Arribas et al. 2008). Epistasis offers another constraint on 

mutation, whereby in order for a particular mutation to be viable, it is necessary for 

a compensatory mutation to occur elsewhere in the genome to counteract any 

deleterious effect. The canalization effect of epistasis has been investigated in the 

RNA bacteriophage #6 (Burch and Chao 2004). Even synonymous changes may 

impact virus viability through RNA secondary structure alteration, which has been 

found to influence virus pathogenesis (Witwer, Rauscher et al. 2001; Hofacker, 

Stadler et al. 2004; Simmonds, Tuplin et al. 2004). 

 

1.4.6 Genome rearrangements 

As discussed above, the potential to generate mutation is part of the replicative 

mechanism of RNA viruses, including Picornaviruses. These mutations come in 

different forms, nt substitutions and rearrangements (deletions, duplications, 

insertions and recombinations). However, long-term evolution results in the 

consecutive fixation of only a minute proportion of these mutations, so that 

rearrangements may occur rarely. The biological significance of these 

rearrangements is not clear-cut; they may contribute to genome flexibility and/or 

stability. For example, recombination between altered genomes containing 

deleterious mutations may result in the regeneration of the parent-type genome. 

Such a ‘rescue’ mechanism may be particularly important during low dose inter-

host transmissions that can be accompanied by virus fitness decline (Agol, Belov 

et al. 2001). 

  

Naturally occurring recombination between virus genomes in an infected cell may 

occur via replicative mechanisms (synthesis of a nascent strand is started on one 

parental RNA molecule and is completed on another due to template switching) or 

non-replicative mechanisms (fragments of different parental RNA molecules may 

be covalently joined in a non-replicative reaction). Recombination has been 
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estimated to play an important role in the evolution of an increasing number of 

RNA viruses, including Coronaviruses (Liao and Lai 1992), a range of plant 

viruses (reviewed in Sztuba-Solinska, Urbanowicz et al. 2011), Human 

immunodeficiency virus (HIV) (Lole, Bollinger et al. 1999; Rhodes, Wargo et al. 

2003), and FMDV (Haydon, Bastos et al. 2004; Heath, van der Walt et al. 2006; 

Jackson, O'Neill et al. 2007; Li, Shang et al. 2007; Lewis-Rogers, McClellan et al. 

2008; Lee, Oem et al. 2009), to name but a few. However, a large proportion of 

these studies rely on bioinformatic methods and sequence data to reconstruct 

recombination events. Exceptions include HIV (Rhodes, Wargo et al. 2003), plant 

viruses (Froissart, Roze et al. 2005; Sztuba-Solinska, Dzianott et al. 2011) and 

animal virus (Liao and Lai 1992) studies, which have used the insertion of neutral 

genome markers to experimentally assess recombination rate within the viral 

populations. Such techniques are yet to be applied to FMDV. 

 

The impact of mechanistically induced recombination during RT-PCR will be 

discussed in the following section. 
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1.5 Sequencing approaches and technologies 

 
1.5.1 First-generation to second-generation sequencing  

Fundamental to any genetics investigation is the determination of genotypes 

through DNA sequencing. Dideoxynucleotide sequencing of DNA, first described 

by Sanger et al. in 1977 (Sanger, Nicklen et al. 1977), has undergone steady and 

substantial upgrades over the years. The scale at which sequence data is 

produced now requires a specialized and devoted infrastructure of bioinformatics, 

computer databases and instrumentation. These advances have been especially 

evident over the last ten years, largely due to the efforts necessary to sequence 

the human genome (the Human Genome Project [HGP], coordinated by the U.S. 

Department of Energy and National Institute of Health, was completed in 2003). 

Two pioneering papers reporting new sequencing developments in 2005 provided 

the first glimpse of things to come (Margulies, Egholm et al. 2005; Shendure, 

Porreca et al. 2005). These new DNA sequencing technologies are collectively 

referred to as ‘next-generation’ sequencing (NGS), ‘high-throughput’ sequencing, 

‘ultra-deep’ sequencing (UDS), or ‘massively parallel’ sequencing. The term ‘next-

generation’ sequencing (NGS) will be used throughout this thesis. Figure 1.3a and 

b provides a comparison of conventional Sanger and next-generation sequencing 

(a generalized view of NGS is given, as although some aspects of different 

platforms vary, the principles of DNA fragmentation, cluster generation and cyclic 

sequencing to image-based data collection, are common to these technologies). A 

synopsis of both Sanger and early NGS platforms is given by Shendure et al. 

(2008), a summary of which is given below, using RNA virus genetic analysis as 

an example. 

 

Using the Sanger method, once target RNA has been isolated, reverse transcribed 

and PCR amplified, DNA template, or ‘PCR product’ is subjected to a ‘cycle 

sequencing’ reaction. Within this reaction, cycles of template denaturation, primer 

annealing and primer extension are performed. Each round of primer extension is 

stochastically determined by the incorporation of deoxynucleotides (dNTPs) and 

fluorescently labelled dideoxynucleotides (ddNTPs). In the resulting mixture of 

end-labelled extension products, the label on the terminating ddNTP of any given 

fragment corresponds to the nucleotide identity of its terminal position. The 
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sequence is determined by high-resolution electrophoretic separation of the single-

stranded, end-labelled extension products in a capillary-based polymer gel. Laser 

excitation of fluorescent labels as fragments of discreet lengths exit the capillary, 

coupled to four-colour detection of emission spectra, provides the readout that is 

represented in a Sanger sequencing pherogram. Software translate these traces 

into DNA sequence, while also generating error probabilities for each base-call 

(Ewing and Green 1998; Ewing, Hillier et al. 1998).  
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Figure 1.3 

Schematic of a generalized workflow for A conventional Sanger versus B next-

generation sequencing. Adapted from (Shendure and Ji 2008)  

 

Library preparation for NGS typically starts with the fragmentation of viral template 

DNA (‘PCR product’), followed by the ligation of adapter sequences. Alternative 

protocols can be used with mate-paired or paired-end sequencing tags for 

additional distance information, which will be discussed in more detail for the 

Illumina platform in section 1.5.2a. The generation of clonally clustered amplicons 

to serve as sequencing templates can be achieved by several approaches, 

including emulsion PCR (Dressman, Yan et al. 2003) and bridge PCR (Adessi, 

DNA fragmentation

PCR product 

Cycle sequencing 
Template immobilization and 

clonal cluster generation

PCR product 

Adapter ligation
PCR amplification

Size selection

Cyclic cluster sequencing
(>106 reads per cluster)

Electrophoresis
(1 read per capillary)
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Matton et al. 2000). Common to the library preparation of many NGS platforms is 

that PCR amplicons, derived from any given molecule, are spatially clustered, 

either to a single location on a planar substrate (bridge PCR), or to the surface of 

micro-scale beads, which can be recovered and arrayed (emulsion PCR). The 

sequencing process itself is based on alternating cycles of enzyme-driven 

biochemistry and image-based data acquisition. Metzker (2010) provides a 

comprehensive review of the template preparation, sequencing and imaging 

methodologies used by the main NGS platforms (Metzker 2010). 

  

The majority of NGS platforms, excluding the most advanced single molecule 

platforms (Table 1.0), are still to achieve read lengths equivalent to those possible 

with Sanger sequencing (up to ~ 1,000 bp). However, the micro-scale, template 

immobilization (or ‘cluster’) based sequencing of the NGS platforms enables a 

much higher degree of parallelism compared to conventional capillary-based 

sequencing. Additionally, because clusters of sequencing template are 

immobilized on a planar surface at the micro-scale, they can be enzymatically 

manipulated by a single, picrolitre reagent volume, drastically reducing costs. 

Shendure et al. (2008) valued the cost of ‘high-throughput’ shotgun genomic 

Sanger sequencing at $0.05 per kilobase. The same study valued an average cost 

of five major NGS platforms at $13.00 per megabase (Shendure and Ji 2008). 

[Using current exchange rates, this equates to a cost differential of just over £300 

per kilobase].  

 

The consensus base given at each nucleotide position by the Sanger sequencing 

method only identifies the predominant or major viral sequence present in a 

sample. If background fluorescence is low and sequence peaks are relatively high, 

ambiguities present within 20% of the viral population may be distinguished using 

Sanger sequencing. Therefore, consensus sequencing remains uninformative 

about minority variants that are present. Conversely, the ultra-deep coverage 

provided by NGS may potentially reveal information about the viral swarm missed 

by consensus sequencing by identifying mutations present in only a small fraction 

of the population. This additional information provided by NGS may allow 

differentiation between closely related viral populations at the inter and intra-host 

scale.                 
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1.5.2 Next-generation sequencing 

The following section provides an overview of NGS as a method. A more detailed 

account of where this technology has been applied to further our knowledge of 

viral evolution is provided in Chapter 3 and 5. Numerous reviews of the different 

NGS platforms available, their respective strengths and weaknesses in terms of 

application and cost, have been compiled (Mardis 2008; Marguerat, Wilhelm et al. 

2008; Shendure and Ji 2008; Ansorge 2009; Metzker 2010; Glenn 2011); 

therefore, only a brief summary will be given here. 

 

The main commercially available NGS platforms are from Roche (454), Illumina 

(Solexa) and Life Technologies (Ion Torrent), however, new commercial providers 

and platforms continue to be established, each platform applying distinct 

principles, which result in differences in number and length of sequence reads, 

which may provide particular advantages and disadvantages for individual 

applications. A comparison of some of these platforms is provided in Table 1.0; 

however, as a rapidly developing field of technology, the statistics given here are 

likely to change and are therefore meant as demonstrative only. It should be 

noted, for a variety of reasons, a comparison of error rate between platforms is 

particularly problematic (Glenn 2011) and therefore these values should be taken 

as approximations. All the commercial providers discussed here maintain 

informative websites that detail the most up-to-date specifications for each of the 

individual platforms. 

 



 
 

 

 Table 1.1 Comparison of next-generation sequencing platforms 

 

Platform Library/ 
template 
preparation  

NGS 
chemistry 

Read 
length 
(bases) 

Run time 
(days) 

GB per 
run 

Primary 
errors 

Error 
rate (%) 

Pros Cons Biological applications 

Roche/454’s 
GS FLX 
Titanium  

Sr, Pr/ 
emPCR 

PS 3301 0.35 0.45 Indel 15 Longer reads improve 
mapping in repetitive 
regions; fast run times 

High reagent cost; 
high error rates in 
homopolymer 
repeats  

Bacterial and insect genome de novo 
assemblies; medium scale (<3 Mb) 
exome capture; 16S in 
metagenomics 

Solexa/Illumi
na GA IIx 

Sr, Pr/ solid-
phase 
bridge 

RT 75 or 100 42, 93 182, 353 Substitution !0.15 Currently the most 
widely used platform 
in the field 

Relatively low 
multiplexing 
capability of 
samples 

Variant discovery by whole-genome 
resequencing or whole-exome 
capture; gene discovery in 
metagenomics 

Life’s/APG’s 
SOLiD 3 

Sr, Pr/ 
emPCR 

Cleavable 
probe SBL 

50 72, 143 302, 503 A-T bias >0.065 Two-base encoding 
provides inherent error 
correction 

Long run times Variant discovery by whole-genome 
resequencing or whole-exome 
capture; gene discovery in 
metagenomics 

Polonator 
G.007 

Pr only/ 
emPCR 

Non-
cleavable 
probe SBL 

26 53 123 N/A N/A Second cheapest 
platform; open source 
to adapt alternative 
NGS chemistries 

Users are required 
to maintain and 
quality control 
reagents; shortest 
NGS read lengths 

Bacterial genome resequencing for 
variant discovery 

Ion torrent 
by Life 
technologies
. Ion PGM-
318 chip 

Sr, Pr/ 
emPCR 

Semicon 200 0.192 12 Indel ~14 Shortest run time and 
cheapest machine 

High error rates in 
homopolymer 
repeats 

Bacterial whole-genome sequencing; 
whole-genome resequencing; de 
novo RNA expression studies 

Helicos 
BioSciences 
Heliscope 

Sr, Pr/ single 
molecule 

RT 321 83 373 Substitution 
Insertion 
Deletion 

0.24 
1.5 
3.0 

Non-bias 
representation of 
templates for genome 
and seq-based 
applications 

High error rates 
compared with other 
reversible terminator 
chemistries 

Seq-based methods 

Pacific 
Biosciences 
RS 

Sr 
only/single 
molecule 

Real-time ~30001 <0.42 0.12 CG 
deletions 

165 Has the greatest 
potential for reads 
exceeding 1 kb 

Highest error rates 
compared with other 
NGS chemistries 

Full-length transcriptome seq; 
complements other resequencing 
efforts in discovering large structural 
variants&haplotype blocks 

1 Average read-length 2 Single read run 3 Paired read run (either mate-paired or paired-end) 4 Information based on company sources alone 5 Information taken from (Glenn 2011). Sr, Single read; Pr, 
Paired read; GA, Genome Analyzer; GS, Genome Sequencer; N/A, not available; NGS, next-generation sequencing; PS, pyrosequencing; RT, reversible terminator; SBL, sequencing by ligation; Semicon, 
semiconductor sequencing; SOLid, support oligonucleotide ligation detection. Adapted from (Metzker 2010). 

43 
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The machines in Table 1.0 range in price from approximately £623,000 (Helicos 

Biosciences HeliScope) to £30,000 (Life Technologies, Ion Torrent, Ion PGM). 

Similarly to the Ion Torrent PGM sequencer (Life Technologies), other ‘desktop’ 

versions of the previously mentioned platforms are being made available, including 

the MiSeq (Illumina) and GS Junior (Roche), which predominantly boast improved 

run times. Currently under development at Oxford Nanopore Technologies, is an 

alternative single molecule sequencing technology based on nanopore sensing 

(reviewed by Branton, Deamer et al. 2008). The technology is based on the 

principle of molecule induced changes in ionic current across a pore containing 

membrane bilayer. When a target molecule, for example, a DNA or RNA base, 

passes through the pore or near its aperture, this event creates a characteristic 

disruption in current. It is subsequently possible to identify the molecule by 

measuring this change in current. This technology is very scalable and, similarly to 

the Pacific Biosciences (PacBio) RS platform, enables real-time analyses. Multiple 

desktop nanopore instruments (GridION nodes) can be networked into larger co-

operating units compared to the miniaturised, disposable version of the technology 

(MinION) which is the size of a USB stick that can be plugged directly into a laptop 

or desktop computer. Currently, the Oxford Nanopore and Helicos systems are the 

only systems capable of direct RNA sequencing; however, this is likely to change 

in the near future.  

 

The sheer volume of data that can be produced relatively cheaply has resulted in 

such genetic analysis tools as microarrays being replaced by sequence-based 

methods for certain applications, including gene expression studies. Here rare 

transcripts can be identified and quantified by NGS without prior knowledge of a 

particular gene where it can also provide information about alternative splicing and 

sequence variation in identified genes (Wang, Gerstein et al. 2009). However, 

microarrays used for enrichment in conjunction with NGS can also be powerful 

tools in terms of high-throughput targeting strategies (Chou, Liu et al. 2010; Milan, 

Coppe et al. 2011; Hong, Doddapaneni et al. 2012).  

 

The application of NGS to the estimation of within-host virus population diversity 

was recognised early on, where it was initially used for the detection of low-

frequency drug resistance mutations in HIV (Hoffmann, Minkah et al. 2007; Wang, 
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Mitsuya et al. 2007). The use of NGS to investigate human, animal and plant viral 

population dynamics is increasing rapidly (as reviewed by Beerenwinkel and 

Zagordi 2011). As discussed previously, the choice of platform will depend on its 

application and target organism. The 454 platform (Roche) is often utilized for viral 

population investigations, as the comparatively longer reads it produces may be 

advantageous for de novo sequencing and assembly, for example, novel 

Orthobunyavirus discovery (Schmallenberg virus) (Hoffmann, Scheuch et al. 

2012). Alternatively, this platform can be useful for re-sequencing of viral genomes 

with a high proportion of homopolymeric repeats. Conversely, NGS platforms, 

such as the Genome Analyzer (Illumina) and SOLiD (Life Technologies), produce 

a higher volume of short reads. The lower costs and increased number of reads 

associated with shorter read-lengths are better suited for re-sequencing and 

frequency (or counting) based applications. The low error rates of these platforms 

also increase their application for variant discovery. However, of the two ‘short 

read length to high volume’ platforms, the Illumina Genome Analyzer provided the 

longest read length and therefore, for a combination of these reasons, was 

selected as the NGS platform for this project. 

    

 1.5.2a The Illumina Genome Analyzer platform 

The process of sequencing on the Illumina GA system can be separated into three 

phases, ‘library preparation’, ‘cluster generation’ and ‘sequencing’. Developments 

within the platform from the GA II to GA IIx systems involved improvements in 

chemistry and read length (from 50 nt to 75 nt), however the workflow essentially 

remained the same. As mentioned previously, template preparation, or DNA 

‘library preparation’, for NGS typically starts with DNA fragmentation, which can be 

achieved via a range of techniques, including sonication, nebulization and 

enzymatic methods. The majority of imaging systems are not able to detect single 

fluorescent events, therefore template amplification is required. Although 

subsequent immobilization and amplification of template fragments to a solid 

surface is common amongst NGS platforms, the precise method by which this is 

achieved can vary. For the Illumina platform, randomly distributed, clonally 

amplified clusters are produced by solid-phase, or ‘Bridge’ amplification (Figure 

1.4a), whereby multiple samples can be combined, or ‘Multiplexed’ (Figure 1.4b), 

and amplified simultaneously on a glass slide, or ‘Flow cell’, containing eight 
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channels, during ‘cluster generation’. During the multiplexed sequencing method, 

DNA libraries are “tagged” with a unique six nt long identifier, or index. An 

automated two or three-read sequencing strategy (Figure 1.3b) identifies each 

uniquely tagged sample for individual downstream analysis. This approach is 

highly accurate and, due to the inherent redundancy in the index design, allows for 

indexes that differ by one base still to be used as sample identifiers. The option for 

either a two or three-read sequencing strategy, occurs according to whether the 

option to perform single (used during this project) or ‘paired’ read sequencing is 

taken. 

 

Using the Illumina platform, ‘paired’ read sequencing can be either ‘paired-end’ or 

‘mate-paired’, both of which provide information about physical distance between 

the two synthesised reads, in addition to the sequence information. This distance 

information is particularly useful to resolve larger structural rearrangements 

(insertions, deletions, inversions), or for de novo assembly and assemblies across 

repetitive regions (Van Nieuwerburgh, Thompson et al. 2012), none of which was 

necessary for this project. A summary of the Illumina GA library preparation 

workflow is included in Appendix 1.   
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Figure 1.4 

Schematic of Illumina GA cluster generation a) Bridge amplification: i template fragments 

ligated to index adapters randomly attach to a dense lawn of primers covalently bound to 

the inside surface of the flow cell channels, ii Unlabelled nucleotides and enzyme are 

added to initiate sold-phase bridge amplification, iii The enzyme incorporates nucleotides 

to build double-stranded bridges on the solid-phase substrate. Adapted from (Metzker 

2010). b) Multiplexed sequencing process: R1 (Read 1 dotted line), is generated using 

the R1 sequencing primer (Rd1 SP in orange); I (6 bp index read dotted line), is 

generated after the R1 product is removed and the Index sequencing primer (Index SP in 

blue) is annealed to the same strand. A single-read sequencing strategy consists of both 

R1 and I, as indicated by the grey box (used during this project). If a paired-end read is 

required, the original template strand is used to regenerate the complementary strand 

after which the original strand is removed and the complementary strand acts as a 

template for application of R2 (Read 2 dotted line) primed by the R2 sequencing primer 

(Rd2 SP in blue). Adapted from information provided at www.illumina.com. 

 

The final ‘sequencing’ phase of the Illumina GA platform is performed by the cyclic 

reversible termination (CRT) method, using CRT chemistry (Bentley, 

Balasubramanian et al. 2008). A brief summary of this process is provided in 

Figure 1.5, however, a more comprehensive review is given by Metzket (2010), 

which includes details of the modified nucleotides (reversible terminators) used 

(Metzker 2010).  
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Figure 1.5 

A schematic of the four-colour cyclic reversible termination (CRT) sequencing method 

used within the Illumina GA platform. i All four nucleotides labelled with a different dye 

(hence ‘four-colour’ CRT) are added simultaneously, ii A wash followed by four colour 

imaging is performed, iii Addition of the reducing agent tris(2-carboxyethyl)phosphate 

(TCEP), simultaneously removes the fluorescent dyes and regenerates the 3’-blocked 

reversible terminator, which is followed by another wash before the cycle is repeated iiii 

The four-colour images here highlight the sequencing data from two clonally amplified 

templates. Adapted from (Metzker 2010).    

 

 1.5.2b Challenges for viral population analysis  

The experimental, or in vitro, processing of viral RNA, including the production of 

cDNA via reverse transcription (RT), followed by PCR amplification, produce 

errors within viral genomes. True viral mutations incurred in vivo are problematic to 

separate from these methodologically introduced errors if they occur at a 
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frequency below or at the same level. This therefore becomes an increasing 

problem with the depth of detection possible using NGS.  

 

Recombination, or rearrangement, is an additional genetic phenomenon that 

occurs within viral populations both in vivo and during in vitro processing by RT-

PCR. As discussed for FMDV in the current chapter, section 1.4.4, many notable 

viruses that cause human disease, for example, HIV, Hepatitis B and C virus (HBV 

and HCV respectively) all recombine within their hosts. However, viral RNA 

sequence data will also include chimeric cDNA artefacts that are generated by 

template switching during RT and PCR amplification (Mathieu-Daude, Welsh et al. 

1996). The impact of such artefactual events on the estimation of true viral 

population diversity is a problem that will become clearer as improved NGS 

technologies appear, with longer reads and, as such, will be discussed further in 

the final chapter of this thesis.  

 

Potential artefacts and biases arise during and because of the actual process of 

sequencing itself. For example, upon imaging of a clonally amplified cluster 

(Illumina bridge amplification), the observed signal is a consensus of the 

nucleotides or probes added to the identical templates for a given cycle. A greater 

demand is therefore placed on the efficiency of the addition process, whereby 

incomplete extension of the template ensemble results in lagging and leading-

strand dephasing (Metzker 2010). Signal dephasing, during step-wise addition 

methods, increases fluorescence noise, which can cause base miss-calling and 

shorter reads (Erlich, Mitra et al. 2008) as referenced in (Metzker 2010). A study 

by Nakamura et al. (2011), speculated that certain sequence-specific errors (SSE) 

incurred within reads from the Illumina GA favour dephasing by inhibiting single-

base elongation, by i) folding single-stranded DNA and ii) alternating enzyme 

preference. The authors of this study highlight the substantial contribution this 

phenomenon has to variations in sequence coverage and its potential cause of 

false single-nucleotide polymorphism (SNP) calls (Nakamura, Oshima et al. 2011). 

It has been noted that an overrepresentation of amplicon ends, in particular the 

last 50 bp, can account for more than 50% of the sequenced bases (Harismendy 

and Frazer 2009). It has also been speculated that this overrepresentation and the 

per-base sequencing coverage variability, known to be an important issue for 
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NGS, regardless of input material type (Hillier, Marth et al. 2008; Ossowski, 

Schneeberger et al. 2008), could result from the sample preparation and 

fragmentation method (Harismendy and Frazer 2009).   

 

Substitutions are the most common error type incurred during Illumina sequencing 

itself, with a higher proportion of errors occurring when the previous nucleotide 

incorporated is a ‘G’ base (Dohm, Lottaz et al. 2008). Additionally, an 

underrepresentation of AT-rich (Dohm, Lottaz et al. 2008; Hillier, Marth et al. 2008; 

Harismendy, Ng et al. 2009) and GC-rich regions (Hillier, Marth et al. 2008; 

Harismendy, Ng et al. 2009) has been revealed on genome analysis of Illumina 

sequence data, most likely caused by amplification bias during template 

preparation (Hillier, Marth et al. 2008).  

 

Once NGS sequence reads have been generated, they can either be aligned to a 

known reference sequence or assembled de novo. Limitations of the alignment 

method become especially apparent when attempting to place short NGS reads 

within repetitive regions of the reference genome (Metzker 2010). Longer reads or 

reads generated by paired-end or mate-paired strategies can help to resolve such 

alignment issues. Consequently, the length of reads themselves forms a 

substantial limitation of current NGS platforms by providing incomplete information 

on the viral population structure. These constraints are compounded by the lack of 

linkage between mutations observed on different reads leading to difficulties in 

haplotype reconstruction and haplotype frequency estimations. While the lack of 

linkage between mutations does not directly impact upon the frequency based 

analysis in this thesis, it limits the extrapolation of functional impacts to mutations 

within single reads.     

 

 1.5.2c Data Analysis 

The common file format for NGS sequence data is FASTQ, as reviewed by Cock, 

Fields et al. 2010. Briefly, the FASTQ file format provides a simple extension to the 

FASTA format by storing a numeric quality score (PHRED qualities) associated 

with each nucleotide in a sequence. FASTQ was first widely used by the Sanger 

Institute, which is why the Sanger specification of the standard FASTQ format is 

commonly used. Although the Illumina output file looks almost identical to the 
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standard, Sanger FASTQ format (see Figure 1.6 for example FASTQ-Illumina file 

format), quality is scaled differently. The FASTQ variant used by the current 

Illumina pipeline encodes PHRED scores with an ASCII offset of 64, and so can 

hold PHRED scores from 0 to 62 (ASCII 64-126), although scores were only 

expected to range between 0-40 within raw Illumina data at the time of review by 

Cock et al. 2010. 

 

 
Figure 1.6 

Example of an Illumina FASTQ file (based on the Sanger FASTQ file format). @ indicates 

the title and optional description, followed by the sequence line(s), + indicates optional 

repeat of the title line, followed by the quality line(s).   

 

The quality scores that accompany NGS sequences within the FASTQ file format 

allow a certain level of data filtering. However, due to the degree of errors 

introduced throughout the experimental process, and the incomplete nature of the 

sequence information, several steps of filtering, alignment and error correction are 

required. Beerenwinkle et al. (2001) provide a good review of these three 

processes, which are also discussed further in Chapters 3 and 5.  

  

The production of millions of NGS reads, with the accompanying need for more 

substantial and complex quality control, alignment strategies and computational 

analysis, has challenged the infrastructure of existing information technology 

systems. Advances in bioinformatics continue to be made. In the last three years 

alone, the number of commercially and publically available software packages, 

available for the analysis of NGS data, has increased from those detailed within 

Table 1.2 to over a hundred programmes and web based services. Skew remains 

towards alignment, assembly and mapping software compared to single nucleotide 

polymorphism (SNP) calling/discovery, error correction and filtering.  However, 

Oxford Journals, ‘Bioinformatics’, maintains a virtual issue, ‘Bioinformatics for Next 

Generation Sequencing’, which is continually updated with the latest papers 

published on the tools and algorithms relevant to next-generation sequencing 

@HWI-B5-690_0092_FC:2:1:2420:1185#CTTGTA/1 
CAGTTTCCCGATTATGATTTTTATTGCCGTGGTAGTGTTCGGCTTTAAGGCTTTT
GTGATTGTGCCGCAGCAG 
+HWI-B5-690_0092_FC:2:1:2420:1185#CTTGTA/1 
g]gggfffffcggeggegggggfgecfdfefceeededeg_afcabeb]dggddff`ba`ad]ab\aaaaWTT 
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applications. The increasing number of publications relevant to general data-

handling ‘Pipeline’ and ‘Variant detection’ is testament to the sustained 

development in these areas. Nevertheless, further investment into the 

improvement of these analysis systems is necessary if they are to keep pace with 

the continuing expansion of NGS technologies. 

       

Table 1.2 Next-generation sequencing software available in the commercial and public 
domain in 2009 
Name Bioinformatics 

method 
Operating system Language 

CLCbio Genomics 
Workbench1 

Integrated solutions 

Windows, MacOSX, Linux  

Galaxy Job webportal  
Genomatix N/A  
JMP Genomics N/A  
NextGENe1 Windows, MacOSX  
Seqman Genome Analyser Windows, MacOSX  
Shore POSIX  
SlimSearch N/A  
BFAST 

Alignment 

N/A  
Bowtie N/A  
BWA  C++ 
ELAND N/A  
Exonerate POSIX  
GenomeMapper POSIX  
GMAP  C/Pearl 
gnumap  C 
MAQ  C++ 
MOSAIK Windows, Linux, MacOSX  
MrFAST and MrsFAST  C 
MUMmer POSIX  
Novocraft Linux, MacOSX  
PASS Windows, Linux  
RMAP POSIX  
SeqMap Most OS’s  
SHRiMP POSIX  
Slider N/A  
SOAP  C++ 
SSAHA  C++ 
SOCS N/A  
SWIFT N/A  
SXOligoSearch OS independent  
Vmatch POSIX  
Zoom N/A  
ssahaSNP 

SNP/Indel Discovery 
Linux, Solaris, MacOSX  

PolyBayesShort Linux  
PyroBayes N/A  
1 Includes SNP detection; SNP, single nucleotide polymorphism; N/A, not available; OS, operating 
system 

 

The NCBI Sequence Read Archive (SRA) provides an online repository for raw 

data from NGS platforms including Roche 454, Illumina GA, Life’s SOLid, Helicos 

Heliscope, Complete Genomics, and PacBio’s SMRT.  
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1.6 Objectives of PhD thesis 

The evolution of FMDV population diversity, a result of the inherent low fidelity of 

viral RNA-dependent RNA polymerase, can be observed at multiple spatial and 

temporal scales. Inherent to each of these scales are key processes that shape 

the dynamics of virus evolution. These processes are driven by selection or more 

random events such as transmission and bottlenecking. Understanding the 

impacts of such processes on the characteristics of viral population diversity, at 

the finer-scales (within host), may ultimately inform our knowledge of the 

acquisition and fixation of nucleotide changes within consensus sequences at 

broader scales (between hosts and above). Therefore, the key questions posed in 

this thesis are,  

i) Can we use ultra-deep sequence data provided by NGS to characterise 

viral diversity below the level of the consensus? 

ii) How are nucleotide changes fixed in the consensus sequence?  

iii) How related are viral populations at the intra and inter-host scale?  

The overall aim of this PhD project is to further dissect the genetic evolution of 

FMDV at different spatial and temporal scales, both in vivo and in vitro, using a 

novel sequencing technology. Figure 1.7 provides a basic schematic of these 

scales. The ultimate goal is to use such data towards constructing more 

representative and unified models of RNA virus mutation, evolution and 

transmission. 

 

Figure 1.7 

Schematic of the multiple scales of FMDV evolution. The clock face is indicative of time.   
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Chapter 2 describes the genetic evolution of FMDV at the epidemic scale, through 

the sequence analysis of samples taken during an outbreak of FMD in the United 

Kingdom (UK) in 1967. The objective was to use full genome consensus 

sequencing to clarify the relatedness of intra-epidemic samples and samples from 

additional contemporary FMD outbreaks. Chapter 3 describes a pilot study 

designed to test the appropriateness of NGS technology for the resequencing of 

FMDV and the analysis of viral population diversity at the within-host scale. This 

chapter also includes the development of a novel pipeline for the filtering, 

alignment and error correction of NGS data produced by the Illunima GA II 

platform. An assessment was made as to whether such a technique could be used 

to quantify genuine viral mutations taking into account the impact of artefactual 

mutations. Following the positive assessment of the Illumina GA II platform 

(Chapter 3), further optimization of the experimental protocol for producing FMDV 

samples for NGS analysis was performed and is described in Chapter 4. This 

chapter also includes details of a clonal control experiment designed to further 

quantify the contribution made by artefactual mutation to FMDV sequence 

variability. This study aimed to produce a more accurate mutation frequency 

threshold above which there can be relative confidence in the identification of 

genuine mutations.   

 

Using the aforementioned optimized protocol, Chapter 5 describes an investigation 

of FMDV population dynamics at the within-host scale during serial transmission in 

bovine hosts. This study hypothesized that both inter and intra-host bottleneck size 

may be inferred by variations in viral population diversity, characterised at the 

ultra-deep level using NGS. Chapter 6 describes a pilot in vitro study designed to 

further investigate the impact of bottleneck size on the acquisition and fixation of 

mutations within FMDV populations, characterised at the ultra-deep level using 

NGS. The findings of this thesis are concluded and discussed in Chapter 7. 
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2.1 Summary 

A large epidemic of foot-and-mouth disease (FMD) occurred in the United 

Kingdom (UK) over a seven-month period in Northwest England from late 1967 to 

the summer of 1968, following smaller outbreaks in 1967 in Hampshire and 

Warwickshire. The causative agent of all three events was identified as foot-and-

mouth disease virus (FMDV) serotype O and the source of the largest one was 

attributed to infected bone in lamb products imported from Argentina. However, 

available diagnostic tools were unable to entirely rule out connections with the 

earlier Warwickshire UK FMD outbreak and questions remained about other 

potential sources from Europe. The aim of this study was to apply molecular 

sequencing to answer these questions about a historic UK FMD outbreak and, by 

doing so, dissect this event at a previously unobtainable depth of resolution. VP1 

region and full genome (FG) sequences were recovered directly from clinical 

epithelium samples (n=13) or cell culture isolates (n=6), from contemporary UK, 

European and South American outbreaks. Analysis of the VP1 sequences 

provided evidence for at least three separate incursions of FMDV into the UK, one 

of which caused the main 1967/68 epidemic. Analysis of FG sequences from the 

main 1967/68 outbreak (n=10) revealed nucleotide substitutions at 94 genomic 

sites. Viral FG sequences have provided further evidence for a linear accumulation 

of nucleotide substitutions (rate = 8.7!10-3 substitutions per site per year whilst 

continually replicating inside a host). However, where this linear relationship was 

absent, evidence is provided for the virus having spent periods of time outside a 

host and therefore not replicating or incurring genomic mutations. Genetic scale 

clarification of past disease outbreak dynamics will further add to the knowledge 

and understanding from which to base future outbreak control strategies. 
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2.2 Introduction 

The severe productivity losses, associated with foot-and-mouth disease (FMD), 

are a result of its debilitating effects on cloven-hoofed animals, characterized by 

vesicular lesions of the feet, tongue, snout and teats as well as fever and 

lameness, rather than high mortality rates (Arzt, Juleff et al. 2011). The etiological 

agent, FMDV, is a member of the genus Aphthovirus in the family Picornaviridae. 

Of the seven serotypes of FMD (A, O, C, Asia 1, SAT 1-3) serotype O is the most 

prevalent and was classically divided into eleven antigenic subtypes (O1 – O11) 

(Davie, 1964). High mutation rates of FMDV RNA polymerase (10-3 – 10-5 per nt 

per transcription cycle), coupled with large population sizes and a rapid rate of 

replication, results in the fast evolution of this virus within infected hosts (Domingo, 

Escarmis et al. 2003). Although predominantly spread by direct or indirect contact 

with infected animals, their secretions or associated products, FMDV can travel 

over extensive distances by air- and windborne routes or via fomites, causing 

incursions in areas that were previously free from the disease (Arzt, Juleff et al. 

2011). 

   
FMD has not been endemic in the UK since 1884, but outbreaks occurred 

sporadically until the 1960’s, with virus introductions attributed to spread from 

Europe and South America.  A major epidemic, starting in October 1967 in 

Shropshire, caused outbreaks on 2,346 farms, 18 of which were infected twice. 

The epidemic was controlled after seven months by a stamping out policy, 

combined with movement restrictions and the last outbreak was reported on the 4th 

of June 1968. Although outbreaks occurred over the North-West Midlands and 

North Wales, Lancashire & Westmorland, Derbyshire, South-West Midlands and 

South Wales and the East Midlands, the vast majority of affected farms (2,228) 

were located in the North-West Midlands, which had the highest density of dairy 

cattle in the country at the time. Apart from two years (1963 and 1964), FMD had 

sporadically been present in the UK during the thirteen years preceding this 

epidemic, including three sets of outbreaks affecting Northumberland (32 

outbreaks over approximately three months, 1966), Hampshire  (29 outbreaks 

over approximately one month, January, 1967) (Sellers and Forman 1973) and 

Warwickshire (5 outbreaks over 3 days, September, 1967).  
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The UK Government commissioned the Northumberland report (Anon April 1969) 

that made four principal conclusions regarding the primary source and initial 

spread of the epidemic. Firstly, that it was not possible to categorically establish 

the origin of the 1967/68 epidemic. Secondly, that there was a basis for inference 

that the most probable source of the epidemic was infected meat from South 

America. Thirdly, that, as the Ministry of Agriculture had also attributed an earlier 

outbreak in 1967 in Warwickshire to South American meat, this event remained as 

a potential link to the main 1967/68 epidemic. Finally, that it was difficult to explain 

the epidemic’s rapid development and extension other than by accepting that a 

number of foci were established almost simultaneously. 

   

Since 1968, FMDV diagnostic tools have advanced from serologically based tests, 

such as the complement fixation and virus neutralization test, towards molecular 

sequencing. Determination of the genetic sequence for one of three surface 

exposed capsid proteins of FMDV (VP1) and the FG, has not only enabled the 

global tracing of FMD transmission but provided the resolution at which disease 

spread can be monitored at the single outbreak scale (Samuel and Knowles 2001; 

Knowles and Samuel 2003; Cottam, Wadsworth et al. 2008a; Abdul-Hamid, Firat-

Sarac et al. 2011; Kasambula, Belsham et al. 2011; Valdazo-Gonzalez, Knowles 

et al. 2011). As well as providing the genetic profile of an outbreak, FG sequencing 

of FMDV can yield insights into the processes shaping this profile, for example, by 

testing for the presence of a molecular clock in terms of nucleotide (nt) substitution 

rate. Previous studies, at the outbreak scale, have demonstrated that nt changes, 

from the earliest FMDV sample, accrue in a linear ‘clock-like’ way with time 

(Villaverde, Martinez et al. 1991b; Elena, Gonzalez-Candelas et al. 1992; Haydon, 

Samuel et al. 2001; Cottam, Haydon et al. 2006; Valdazo-Gonzalez, Knowles et al. 

2011), resulting from continuous viral replication within susceptible hosts. The aim 

of this study was to apply current molecular sequencing tools to further 

characterize the 1967/68 FMD outbreak, along with other contemporary events, 

and, by doing so, clarify some of the issues highlighted by the Northumberland 

Report, expanding the knowledge fed into future disease control programmes.  It 

was not the aim of this study to reconstruct the viral transmission pathways of this 

historic outbreak.   
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2.3 Methods 

 

2.3.1 Samples 

This study accessed archived vesicular epithelium samples (n=13) from the World 

Reference Laboratory for FMD (WRLFMD), Institute for Animal Health, Pirbright, 

collection which had been stored at -20!C in 0.04 phosphate buffer (M25; disodium 

hydrogen phosphate, potassium dihydrogen phosphate, pH 7.5) and 50% (vol/vol) 

glycerol. The 13 clinical samples were collected from early in the Northumberland 

outbreak (OB/North), the beginning of the Hampshire outbreak (OB/Hants), the 

beginning of the Warwickshire outbreak (OB/Warks), and a total of ten collected 

approximately every month from the beginning (isolate from the index case on 

Bryn Farm not available), to the end of the 1967/68 outbreak. As the index case 

for the 1967/68 outbreak occurred in Shropshire, for the sake of this study, this 

outbreak will be geographically known as the Shropshire outbreak (OB/Salop).  All 

13 samples had previously been found FMDV positive by the complement fixation 

test on original submission to the WRLFMD at the time of these outbreaks. All 

clinical samples from which FG sequences were determined (n=12) are detailed in 

Table 2.1
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Table 2.1 Details of epithelium samples from which FMDV full genome sequences were derived  

Within outbreak 
sample ID  

Outbreak 
(OB/)  

Outbreak 
duration 

Epi. sample 
type 

Sample 
collection date 
(day/mo/yr) 

County 
World Reference 
Laboratory 
no.(OBFS) 

Approxima
te lesion 
age (hrs) 

Sequence length 
(nt) 

Total no. 
of nts 
sequenced 

Average 
times 
coverage of 
each base 

GenBank 
accession  No. 

- Hants  
6.1.67 – 
3.2.67 

Bovine tongue 6.1.67 Hants. 1810A N/A 8177  26393  3.23 JX869177 

- Warks  
8.9.67 – 
11.9.67 

Bovine DP 8.9.67 Warks. 1836 6 8177 45434 5.48 JX869178 

A 

Salop  
21.10.67 – 
6.6.68 

Bovine foot 31.10.67 Salop. 1848 6 8176 35045 4.29 JX869179 

B Bovine foot 14.11.67  Salop. 1889 12 8176 30647 3.75 JX869180 

C Bovine tongue 8.12.67  Salop. 1950 6-8 8176 25659 3.14 JX869181 

D Bovine tongue 6.1.68  Heref. 11/68 12 8176 30485 3.73 JX869182 

E Bovine tongue 10.2.68  Staffs. 41/68 8 8173 50125 6.13 JX869183 

F Bovine toot 13.2.68  Ches. 45/68 288 8176 87275 10.68 JX869184 

G Bovine tongue 22.3.68  Ches. 63/68 8 8176 51187 6.26 JX869185 

H Bovine tongue 7.4.68  Ches. 69/68 18 8176 48464 5.84 JX869186 

I Bovine tongue 5.5.68  Salop. 86/68 24 8176 54360 6.61 JX869187 

J Ovine 4.6.68  Salop. 89/68 N/A 8176 44809 5.46 JX869188 

N/A not available 

DP Dental Pad 
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Additionally, FMDV VP1 sequences from contemporary outbreaks in the UK, 

Europe and South America were analysed (n=12), and comprised of those 

determined from the single epithelium sample from OB/North and cell culture 

isolates (n=6), as well as those available from GenBank (n=5), as detailed in Table 

2.2. Finally, VP1 sequences determined from isolates from the UK FMD outbreak 

in 1981 (n=3) were also included in VP1 sequence analysis for comparative 

purposes (Table 2.2). 

 

 

 

 

  

 

Table 2.2 Details of cell culture isolates and one epithelium sample from which 
FMDV VP1 sequences were derived 

Isolate name  
Original material 
collection date 
(dd/mm/yyyy)  

Location, Country  
GenBank 
accession 
No.  

O1/Lombardy/ITL/46 2  1946 Lombardy, Italy M58601 

O2/Flanders/BEL/47 1  1947 Flanders, Belgium JX869189 

O2/Brescia/ITL/47 2  1947 Brescia, Italy AY593826 

O/M11/MEX/52 1  1952 Mexico JX869190 

O1/Campos/BRA/58 2  1958 Campos, Brazil AY593819 

O/GRE/1/63 1  1963 Greece JX869191 

O1/Brugge/BEL/63 2  1963 Bruges, Belgium EU553836 

O1/Lausanne/SWI/65 2  1965 Lausanne, Switzerland M15974 

O1/Argentina/c.65 2  c. 1965 Argentina AY593814 

O/UKG/66 (1782) 1,3 22.7.66  Northumberland, UK  Submitted 

O1/Kaufbeuren/FRG/66 2  1966 Kaufbeuren, Germany X00871 

O1/BFS 1860/UK/67 (OBFS18) 2  01/11/1967 Wrexham, Cheshire, UK AY593815 

O/FRA/1/81 1  Mar-1981 Côtes-du-Nord, France JX869192 

O/UKG/15/81 1  19/03/1981 
Jersey, Channel Islands, 
UK JX869193  

O/UKG/16/81 1  21/03/1981 Isle of Wight, UK. JX869194 
1 VP1 sequence determined for the current analysis 
2 VP1 sequence obtained from GenBank 
3 VP1 sequence derived from a clinical epithelium sample  
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2.3.2 Sample preparation and RNA extraction 

The suspension preparation protocol for epithelium samples was as described by 

(Cottam, Haydon et al. 2006). Briefly, a 10% tissue suspension was prepared with 

a pestle and mortar in a class II safety cabinet using 0.04 M phosphate buffer and 

approximately 1.5 g of each the 13 vesicular epithelium samples. The suspension 

was then centrifuged for 10 min at 3500 x g at room temperature and the 

supernatant removed to be stored at – 80!C until tested. Total RNA was extracted 

(TRIzol, Invitrogen, Paisley, UK) from all epithelium samples before reverse 

transcription and amplification by PCR. Total RNA was extracted from 460 µL cell 

culture supernatant by using RNeasy kits (Qiagen Ltd., Crawley, West Sussex, 

UK), according to the manufacturer’s instructions, resuspended in 50 µL nuclease-

free water and stored at -20°C. 

  

2.3.3 RT-PCR 

The following reverse transcription method was modified from that used in 

(Cottam, Haydon et al. 2006). Briefly, extracted RNA (15 !l) was added to 3 !l 10 

mM oligo-dT primer UKFMD/Rev6, 3 !l 10 mM deoxynucleoside triphosphate mix 

and then incubated at 70oC for 3 min followed by 4oC for 3 min. Nineteen 

microlitres of freshly prepared RT mix (8 !l 5x RT buffer [Invitrogen], 2 !l 0.1 mM 

dithiothreitol, 2 !l RNase OUT [Invitrogen], 5 !l nuclease-free water) was added to 

the sample followed by 2 !l of an enzyme with high specificity (Superscript III 

reverse transcriptase, Invitrogen). The sample was then incubated at 45oC for 60 

min, after which the cDNA synthesis reaction was terminated by incubation at 

85oC for 5 min. The cDNA was then cleaned using QIAquick PCR purification kits 

(QIAGEN), eluted in 40 !l of nuclease-free water before storage at -20oC.  

VP1 region amplification was achieved as per the method previously described 

using two different primer sets (Knowles, Samuel et al. 2005; Abdul-Hamid, 

Hussein et al. 2011).  The protocol used for FG PCR amplification was modified 

from that previously described (Cottam, Wadsworth et al. 2008a). Briefly, twenty-

three overlapping PCR fragments covering the FMDV genome were amplified by 

adding 3 !l of each cDNA to 47 !l of master mix (5 !l 10x buffer, 2 !l MgSO4, 1 !l 

10 mM deoxynucleoside triphosphate mix, 1 !l 10 mM forward primer, 1 !l 10 mM 

reverse primer, 0,25 !l Platinum Taq DNA Polymerase Hi-Fidelity [Invitrogen], 37 

!l nuclease-free water). Details of the RT and PCR primers used are as previously 
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published (Cottam, Wadsworth et al. 2008a). Samples were run on a PCR 

program cycle of initial denaturation at 94oC for 5 min and then 39 cycles of 94oC 

for 30 s, 55oC for 30 s, and 72oC for 4 min, ending with incubation at 72oC for 7 

min. PCR products were cleaned up using QIAquick PCR purification kits 

(QIAGEN), eluting in 50 !l of nuclease-free water. In order to visualize amplified 

DNA to check quality and specificity of the product, 3 !l was run on a 1% agarose 

gel at 100 V for 35 min alongside a quantitative ladder (GeneRuler 100bp 

ladderPlus, MBI Fermentas). 

 

2.3.4 VP1 and full genome sequencing 

The protocols used for VP1 (Abdul-Hamid, Hussein et al. 2011) and FG 

sequencing (Cottam, Wadsworth et al. 2008a) have been described. However, 

sequencing reactions were performed using the Applied Biosystems BigDye 

Terminator V3.1 Cycle Sequencing Kit and an ABI 3730 genetic analyser.  

 

2.3.5 Sequence analysis 

The raw sequence data from all epithelium samples and cell culture isolates (n=7 

as detailed in Table 2) were assembled using SeqMan Pro™ 10.0.1  (DNASTAR, 

Madison, WI) followed by BioEdit v7.1.3.0 (Hall 1999) for all subsequent sequence 

manipulations and nt difference counts between sequences. The evolutionary 

history of all VP1 sequences was inferred using the Neighbor-joining method 

implemented in MEGA5 (Tamura, Peterson et al. 2011), where a bootstrap 

consensus tree was inferred from 1000 replicates. Evolutionary distances (branch 

length) were computed using the Tamura-Nei method and were in units of the 

number of base substitutions per site. Rate variations among sites were modelled 

with a gamma distribution (shape parameter = 4). All positions containing gaps 

and missing data were eliminated.    

     

 

The genealogical network underlying the relationship between all 12 FG 

sequences examined was computed based on statistical parsimony implemented 

in the software package TCS 1.21 (Clement, Posada et al. 2000). In order to 

include a candidate most likely common ancestor in the TCS analysis, a FASTA 

search of all publically available FG sequences was completed using the FG 
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sequences for OB/Salop and the top six hits included in the TCS analysis. In 

addition, by correlating the position of each node tip in the TCS analysis to a 

timeline according to when each sample was collected, branch length could be 

used to provide an indication of nt substitution rate for each sample.  

 

In order to compare the rate of nt substitution observed during OB/Salop and a 

more recent UK FMD outbreak of equivalent size and duration, a molecular clock 

was fitted to the first five sequences from OB/Salop (A – E) and 42 previously 

analysed sequences collected during the UK 2001 FMD outbreak (Cottam, 

Haydon et al. 2006; Cottam, Thebaud et al. 2008; Konig, Cottam et al. 2009). 

Before performing!the phylogenetic reconstruction, jModelTest 0.1.1 analysis was 

employed for determining the best-fitting nucleotide substitution model by the 

Bayesian information criterion (BIC). Markov chain Monte Carlo techniques were 

implemented in the software package BEAST 1.7.2 (Bayesian evolutionary 

analysis sampling trees) (Drummond and Rambaut 2007) where a strict molecular 

clock with constant rate, no prior assumption of population size (Bayesian Skyline 

plot), and the TN93+"4 (Tamura and Nei 1993) model of base substitution with 

empirical base frequencies were assumed. Once extracted from BEAST, the 

difference in clock rate observed during OB/Salop and the 2001 UK outbreak was 

tested using the Student’s t-test with Welch’s approximation (Welch 1947) in R 

2.15.1. A full timed phylogeny using BEAST was not appropriate for the number of 

sequences available.!
 

Recombination analysis was performed on all 12 FG sequences using Simplot 

3.5.1 software (Lole, Bollinger et al. 1999). Pairwise genetic similarity plots were 

generated using the Kimura 2-parameter model to calculate evolutionary distance. 

Bootstrap replicates were also performed to infer statistical significance. The 

genetic similarity plots between each query and reference sequence were plotted 

in a moving window along the alignment. 
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2.4 Results 

 

2.4.1 VP1 sequence analysis 

VP1 sequence analysis was used to define the genetic relationships between 

OB/Salop, previous FMD outbreaks in the UK, as well as contemporary outbreaks 

in Europe and South America. Figure 2.1 clearly shows that sequences 

determined from the four UK FMD outbreaks (OB/Salop, OB/Warks, OB/Hants and 

OB/North) were on three separate phylogenetic lineages (lineages were supported 

by bootstrap values >60%). OB/Hants and /Warks samples are shown to be more 

closely related to each other then to any other sample analysed here. 

  



 Chapter 2 
 

66 
 

 

Figure 2.1  

Un-rooted Neighbor-joining tree showing the relationships between 20 selected complete 

FMDV VP1 sequences. The percentage of replicate trees in which associated sequences 

clustered together in the bootstrap test (1000 replicates) is shown next to the branches 

(>60%). Sequences from the four UK FMD outbreaks analysed are highlighted within 

black boxes. White star, OB/North; black star, OB/Salop; white triangle OB/Warks; black 

triangle, OB/Hants. 

 

Most distant was the OB/North sample, which was more like the O2 than O1 

antigenic subtype and demonstrated relatedness to earlier outbreaks in Europe 

(Belgium and Greece). Furthermore, the selected samples from OB/Salop were 

shown to be more closely related to South American isolates compared to those 

collected from previous UK FMD outbreaks.  

 

Interestingly, no nt differences were observed within the VP1 sequence between 

samples taken at the beginning and the end of OB/Salop, although the samples 

were taken 217 days apart (a total of 7 nt differences were observed when VP1 
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sequences were compared from all ten OB/Salop samples [sequences not 

included in phylogentic analysis]). For example, taking the rate of fixation of nt 

substitutions within the VP1 region of 6#10-3 per nt per year, during a defined 

period of acute disease (Villaverde, Martinez et al. 1991a), this would equate to 

approximately 2 substitutions during a 217 day long period, assuming a VP1 

sequence length of 639 nt. The branch containing VP1 sequences from early and 

late samples of OB/Salop also contained the VP1 sequence of a previously 

determined isolate from this outbreak, GenBank sequence AY593815 (see section 

3.3 for further details and FG sequence analysis of this isolate).  

 

2.4.2 Full genome sequence analysis between outbreaks 

The assembled FG sequences of the 12 epithelium samples analysed were 

unique and ranged in length between 8183 nucleotides (nts) (isolate E, OB/Salop), 

8187 nts (single isolate for both OB/Hants and /Warks), and 8186 for the 

remaining nine samples. Primer derived sequences (<0.4% of the total genome 

length), were omitted at the 3’ and 5’ends of the genome (15 and 8-nts 

respectively), as well as at the 3’ and 5’ ends of the 10-nt long artificial poly(C) 

tract (5 and 4-nts respectively). A 10-nt long poly(A) tract was also included at the 

3’ end of the genome. No ambiguities were found.  

 

Although having only occurred one and nine months previously, the FG sequence 

from OB/Warks and /Hants demonstrated large genetic differences when 

compared to the FG sequences from OB/Salop (232-255 nts for OB/Warks and 

102-125 nts for OB/Hants). Of the samples analysed, OB/Warks and /Hants 

showed the closest genetic relationship (difference of 214 nts). In order to better 

understand the genetic relationship between these three UK FMD outbreaks, 

recombination analysis was performed on all FG sequences. Figure 2.2 (A) shows 

a similarity plot analysis where regions of similarity between the query 

(O1/Campos/BRA/58[AY593819]) and reference sequences (OB/Warks [black 

trace], OB/Hants and all ten from OB/Salop [grey trace]) increased or decreased, 

approximately identifying recombination breakpoints (clustering of the query to 

reference sequences was supported by 1000 bootstrap replicates). In this 

instance, within the second half of the genome, from the 5’ end of P2 (2C) to the 

P3 region (3D), there are three main areas where the OB/Warks curve drops (nt 
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positions 4600-4900; 5800-6200 and 6600-7000), indicating diverse regions of 

genome compared to all other reference sequences. Consequently, between a 

300 and 400 nt long section from the OB/Warks sequence, spanning each of these 

areas, was submitted to a FASTA similarity search returning the result of 

A26/Argentina/ARG/66 [AY593770] (97-98% similarity). Figure 2.2 (B) shows the 

subsequent similarity plot (specifications as described above) of the OB/Warks 

sequence queried against all other determined FG sequences (grey traces) plus 

A26/Argentina (black trace). Regions of highest similarity between OB/Warks and 

A26/Argentina are clearly correlated with regions of lowest similarity between all 

other reference sequences and the OB/Warks sequence. Clustering of the 

OB/Warks FG sequence and A26/Argentina was supported by bootscanning, with 

the parental threshold set to 70% (plot not shown). 
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Figure 2.2 

Recombination analysis using Simplot 3.5.1. A all FG sequences from OB/Salop (gray 

trace), OB/Hants (gray trace) and /Warks (black trace) queried against 

O1/Campos/BRA/58/(AY593819). B all previous FG sequences analysed (gray traces) 

plus that of A26/Argentina/(AY593770) (black trace) queried against the FG sequence of 

the OB/Warks sample. Analysis performed, Kimura (2-parameter) in a sliding window size 

of 200 bp moving in steps of 20 bps along the alignment. The pairwise similarity values 

were plotted at the midpoint of the 200 bp window. At the top of the figure, a fully 

annotated FMDV FG sequence is represented.    
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2.4.3 Full genome sequence analysis within an outbreak  

Using the earliest sequence determined from OB/Salop (sample A) as a reference, 

the remaining nine FG sequences of this outbreak were found to contain 94 point 

mutations across the genome. Within the coding region, these nt changes were 

mainly synonymous (n=65), the majority of which were transitions (n=62), 

compared to non-synonymous mutations (n= 17). Eleven mutations were found 

within the 5’ UTR and one was found within the 3’ UTR. In addition, a single 

deletion of three nts (ACC) was found within the 5’ UTR (sample E). The single 

stem-loop secondary structure previously predicted for the FMDV S-fragment RNA 

sequence (Newton, Carroll et al. 1985; Clarke, Brown et al. 1987), was tested 

using RNAStructure v5.3 (Mathews 2006), and found to be maintained, with small 

conformational adjustments, despite this deletion. While the loop apex of this 

stem-loop structure maintained an A-C-C-T-C conformation within the sequence 

for sample E, the adjacent stem was elongated by two base pairs and the 

following two loops were smaller by one and six nts respectively (data not shown). 

However, the nt composition of the loop apex was not conserved on examination 

of approximately 100 FMDV S-fragment sequences (representing all seven FMDV 

serotypes). 
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The maximum genetic difference seen between samples studied from OB/Salop 

was of 42 nts (E – G), with a minimum of two nts (I – J). Figure 2.3 provides a map 

of the geographical collection points of all OB/Salop samples.  

 

 

Figure 2.3  

Map of the geographical collection point for all ten samples from OB/Salop. Open circle 

represents the outbreak with the index case.  

 

The genealogy network of all ten samples from this outbreak, in relation to 

OB/Hants and /Warks samples plus the most likely common ancestor using 

O1/Campos/BRA/58[AY593819], implemented by the software package TCS 

(Clement, Posada et al. 2000) is shown in Figure 2.4. The most likely common 

ancestor, as estimated by TCS analysis, was maintained after addition of all 

publically available FG sequences for the 1967/68 outbreak (EU448370, 

EU448369, EU448368, AY593816, AY593815 [data not including in Figure 2.4]). 

All publically available FG sequences were from cell culture passaged viruses 

(passage numbers unknown), originally derived from a single epithelium sample 
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(collected on the 1st of November 1967 in Wrexham), which was designated 

serotype O1 British Field Strain 1860 (O1BFS1860) and used as the type virus for 

this outbreak. Although additional nt substitutions may have been introduced into 

the viral genome of cell culture passaged isolates, these would not change the 

genetic relationship of the in vivo samples analysed here, having been subject to 

very different selective pressures in vitro. 

 

Figure 2.4  

Statistical parsimony analysis by TCS.  Ten FG sequences (A – J) derived from clinical 

epithelium samples collected during OB/Salop are shown in relation to those from 

OB/Hants and /Warks (past UK outbreaks highlighted in gray box) as well as the most 

similar South American sequence (O1/Campos/BRA/58[AY593819]). The estimated most 

likely common ancestor is highlighted within a black box.  Unless otherwise stated, each 

connecting branch line represents a single nt substitution, with each dot representing a 

putative ancestor virus. Node tips for all OB/Salop sequences are correlated to an 

outbreak timeline so that branch length is proportional to time. (*) nt substitution occurred 

twice on independent branches    
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Longer branch lengths in Figure 2.4 indicate a relatively slow accumulation of nt 

substitutions (observed in samples F-J), whereas shorter branch lengths indicate a 

relatively fast accumulation of nt substitutions (observed in samples A-E). Figure 

2.5 shows the accumulation of nt substitutions from the most likely common 

ancestor (estimated by TCS analysis), for the ten OB/Salop samples against time. 

Note, for the sake of this analysis, the estimated most likely common ancestor was 

dated the 21st of October 1967, according to the date on which FMD symptoms 

were first reported on Bryn Farm (Anon April 1969). Plotting the linear regression 

analysis for samples A-E with corresponding 95% confidence intervals, clearly 

demonstrated samples F-J do not follow the same linear accumulation of nt 

substitutions (Figure 2.5). A subsequent plot of nt substitution number for samples 

A-E from OB/Salop against equivalent numbers from the UK 2001 samples, 

against time, demonstrated that the two regression line slopes were almost 

identical (0.24 and 0.21 respectively) (data not shown). No statistical difference 

was observed between the BEAST estimated molecular clock rate for samples A-

E from OB/Salop (8.74 x 10-3, 95% CI: 8.73 x 10-3 to 8.75 x 10-3) and that 

estimated for the 42 samples from the UK 2001 outbreak (8.89 x 10-3, 95% CI: 

8.88 x 10-3 to 8.91 x 10-3), when computed for the Student t-test (t=15.142, 

p=0.000). It should be noted that although sample (F) from OB/Salop came from a 

lesion estimated at 12 days old at collection, this does not significantly impact the 

calculated nt substitution rate (9#10-2 according to date of collection and 1#10-1 if 

calculated with a date 12 days earlier). 
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Figure 2.5 

Accumulation of nt substitutions over time during OB/Salop. FG sequences derived from 

samples A-E (open diamonds) and those derived from samples F-J (closed diamonds) are 

included. A 95% confidence interval either side of the regression line for samples A-E, 

calculated using the R statistical package, is indicated. 
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2.5 Discussion 

Contemporary molecular based examination of FMDV VP1 and FG sequences 

has allowed the first fine-scale inter and intra-event analysis of FMD outbreaks 

that occurred from 1966 to 1968 in the UK. Unlike previous within outbreak FMD 

studies (Cottam, Haydon et al. 2006; Cottam, Wadsworth et al. 2008a), this 

analysis did not attempt to reconstruct viral transmission pathways. As a 

consequence of the temporally broad but outbreak shallow sample set (10 

samples over 8 months), a high degree of missing farms negated the possibility of 

transmission pathway reconstruction. However, this retrospective study has 

granted the means to further solidify viral evolutionary characteristics at the overall 

outbreak scale. 

 

Phylogenetic analysis of the VP1 sequence of two samples from OB/Salop, one 

from OB/North, OB/Hants and OB/Warks, along with contemporary isolates from 

Europe and South America, has shown that there were potentially at least three 

separate incursions of FMD into the UK. These findings finally confirm that earlier 

UK outbreaks, including those in Northumberland, Hampshire and Warwickshire 

were not responsible for the large 1967/68 epidemic. In accordance with the 

findings of the Northumberland report, samples from OB/Salop showed more 

genetic relatedness to contemporary South American isolates compared to all 

other field samples or cell culture isolates analysed. However, identification of both 

the source and route of virus introduction into the UK is limited by the size and 

temporal distribution of the samples and isolates tested. As speculated in the 

Northumberland report, it remains possible that the route of virus introduction that 

caused the 1967/68 outbreak was via an as yet uncharacterized source in Europe. 

Although the genetic relationship between the sequences analysed indicates that 

these UK outbreaks were not linked to each other, it would be interesting to 

establish whether this holds true for other outbreaks that occurred during the 10 

years preceding 1967. Determining whether past outbreaks where due to multiple 

individual incursions of virus, or potentially undetected persistent infections, could 

provide valuable insights with regards to future disease prevention measures.  

 

Beyond the resolution provided by VP1 sequences, the FG sequence can yield 

further insights into the genetic relatedness of outbreaks. For example, the 
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common ancestor estimated for OB/Hants and /Warks is called into question by 

the large genetic difference observed between the FG sequence of these two 

outbreaks. However, in order to clarify the relationship between OB/Hants and 

/Warks, additional FG sequences would need to be determined and analysed 

(additional outbreak samples and contemporary international samples). The large 

genetic difference (214-255 nts) observed between the FG sequence from 

OB/Warks and all other sequences was partially clarified by recombination 

analysis. Where samples collected from OB/Salop and OB/Hants showed greatest 

sequence similarity (between 96 and 100% across the genome) with the South 

American strain O1/Campos/BRA/58[AY593819], the single FG sequence from 

OB/Warks showed three distinct regions of divergence from this serotype O strain. 

Subsequent re-analysis indicated that these regions of divergence shared greatest 

sequence similarity to a serotype A strain (A26/Argentina/[AY593770]), providing 

evidence of multi-region recombination events between this A serotype strain and 

the OB/Warks sequence. This finding is supported by those made by Jackson et 

al. (2007) who conducted a pairwise scanning analysis on genome sequence data 

from 156 interserotypic FMDV isolates. This previous study concluded that 

recombination is most likely widespread throughout the non-structural genes of 

FMDV genomes (Jackson, O’Neil et al. 2007). Evidence has also been found of 

interserotypic recombination within non-structural regions of FMDV field samples 

(Li, Shang et al. 2007). Unless there is an awareness of such potential events 

when reconstructing the dynamics of any epidemic caused by a virus capable of 

recombination, there is a risk of misleading phylogenetic relationships being 

presented, especially when considering timed phylogenies.  However, further 

samples from OB/Warks would need to be analysed to confirm the high genetic 

diversity, and hence low relatedness, observed.   

 

The improved resolution of FG sequences has enabled the investigation of 

evolutionary dynamics, across the viral genome, over the timescale of a single 

outbreak, including nt substitution rate. Although it would have been useful to have 

included the FG sequence for the actual index case from Bryn Farm (isolate not 

available), extrapolations from the estimated most likely common ancestor have 

provided a number of interesting observations. For example, late Salop samples 

(I&J) were more closely related (5 nt difference each) to the earliest sample 
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sequenced from this epidemic (A), although they were collected 187 and 217 days 

later respectively. Genomic sequences from the remaining three late Salop 

samples (F-H), also demonstrated characteristics of having been outside a 

susceptible host for a period of time (all lying significantly outside the linear 

accumulation of nt substitution demonstrated by the early Salop samples). Virus 

outside a host would not be replicating or incurring nt substitutions, and would 

therefore appear more like the ancestral virus than would be expected given the 

time that had elapsed. The suggestion was made by the Ministry of Agriculture 

(Anon April 1969) that 12/18 farms where FMD occurred twice were due to a 

recrudescence of the disease, possibly as a result of infected hay remaining on 

the farm after the original outbreak. However, none of the 5 late samples from 

Salop occurred on farms from which infected samples had previously been 

collected. Fomite transmission of infected material to previously FMD-free 

premises, including hay, could also result in this apparent ‘slowing’ of virus 

evolution during an epidemic. Evidence for potential fomite spread was therefore 

provided by the observed reduction in the rate at which nt substitutions were 

accumulated within the 5 late Salop samples. The equivalent clock rates observed 

for sequences determined from early Salop samples (8.73#10-3 substitutions per 

site per year) and the 2001 UK FMD epidemic (8.66#10-3 substitutions per site per 

year), provide evidence for a constant clock rate across two FMDV topotypes, 

Europe-South America (EURO-SA) and Middle East- South Asia (ME-SA), 

respectively.  

 

Although FG sequencing enabled a more detailed analysis of a single epidemic 

compared to VP1 sequencing, the consensus sequence did not provide evidence 

of mixed viral populations within the samples studied here. Mixed viral populations, 

in the form of ambiguous sites within the consensus Sanger sequence, were found 

to be rare during a study by Cottam et al. (2006), at an equivalent epidemiological 

scale. In this study, only three out 21 isolates contained a total of six ambiguous 

sites. Identification of the major or predominant nucleotide at each genomic 

position during consensus sequencing leads to a ‘masking’ effect of minority 

variants present within individual viral samples and will be discussed further in the 

following chapters. Future work may include the characterisation of FMDV within 
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sample population structures, during a national scale epidemic, using next-

generation sequencing (NGS).                    

 

This study confirms the rate of evolution in FMDV determined from 2001 data for 

serial transmission within and between herds comprised of fully susceptible cattle. 

In piecing together events, this study shows the utility of this method for 

establishing links between outbreaks separated by time and distance but shows 

an important caveat when utilizing FG sequencing to infer outbreak timescales - 

namely the potential for the virus to lie dormant in the environment. Although these 

data do not provide direct evidence of recrudescence in these cases, they do 

highlight the need for vigilance regarding site/material disinfection before re-

introduction of susceptible hosts or transport from a previously infected site to a 

site containing susceptible hosts.
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3.1 Summary 

The sequence diversity of viral populations within individual hosts is the starting 

material for selection and subsequent evolution of RNA viruses such as foot-and-

mouth disease virus (FMDV). Using next-generation sequencing (NGS) performed 

on a Genome Analyzer platform (Illumina), this study compared the viral 

populations within two bovine epithelial samples (foot lesions) from a single animal 

with the Inoculum used to initiate experimental infection. Genomic sequences 

were determined in duplicate sequencing runs, and the consensus sequence 

determined by NGS, for the Inoculum, was identical to that previously determined 

using the Sanger method. However, NGS reveals the fine polymorphic sub-

structure of the viral population, from nucleotide variants present at just below 50% 

frequency to those present at fractions of 1%. Some of the higher frequency 

polymorphisms identified encoded changes within codons associated with heparan 

sulphate binding and were present in both feet lesions revealing intermediate 

stages in the evolution of a tissue-culture adapted virus replicating within a 

mammalian host. We identified 2,622, 1,434 and 1,703 polymorphisms in the 

Inoculum, and in the two foot lesions respectively: most of the substitutions 

occurred only in a small fraction of the population and represent the progeny from 

recent cellular replication prior to onset of any selective pressures. We estimated 

an upper limit for the genome-wide mutation rate of the virus within a cell to be 7.8 

x 10-4 per nt.  The greater depth of detection, achieved by NGS, demonstrates that 

this method is a powerful and valuable tool for the dissection of FMDV populations 

within-hosts. 
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3.2 Introduction 

RNA viruses evolve rapidly due to their large population size, high replication rate 

and poor proof-reading ability of their RNA-dependent RNA polymerase. These 

viruses exist as heterogeneous and complex populations comprising similar but 

non-identical genomes, but the evolutionary importance of this phenomenon 

remains unclear (Eigen 1971b; Eigen and Schuster 1978; Holmes and Moya 

2002b). Consensus sequencing identifies the predominant or major viral sequence 

present in a sample, but is uninformative about minority variants that are present. 

Evidence for population heterogeneity, where individual sequences differ from the 

consensus sequence, has been routinely obtained using cloning approaches 

(Airaksinen, Pariente et al. 2003; Cottam, King et al. 2009a), providing insights into 

the evolutionary processes that shape viral populations. Unfortunately, these 

cloning processes are laborious and usually provide only a limited resolution of the 

mutant spectrum within a sample. 

 

Next-Generation Sequencing (NGS) techniques offer an unprecedented ‘step-

change’ increase in the amount of sequence data that can be generated from a 

sample. Albeit mostly used for de-novo sequencing of large genomes, NGS can 

be applied to re-sequence short viral genomes to obtain an ultra-deep coverage. 

Therefore, NGS has the potential to provide information beyond the consensus for 

a viral sample by revealing nucleotide substitutions present in only a small fraction 

of the population. Several studies have previously used the 454 pyrosequencing 

platform (Roche Applied Science) to detect minority sequence variants for human 

viruses such as HIV-1 (Hoffmann, Minkah et al. 2007; Wang, Mitsuya et al. 2007; 

Eriksson, Pachter et al. ; Le, Chiarella et al. 2009; Rozera, Abbate et al. 2009; 

Simen, Simons et al. 2009; Tsibris, Korber et al.), hepatitis B (Margeridon-

Thermet, Shulman et al. 2009; Solmone, Vincenti et al. 2009), hepatitis C (Wang, 

Sherrill-Mix et al. 2010a) and attenuated virus (Victoria, Wang et al. 2010). A 

promising alternative to 454, is reversible terminator-based sequencing chemistry 

utilized by the Illumina sequencing platform (Genome Analyzer II). The lower costs 

of the runs and the higher throughput of this NGS approach are likely to make it 

widely used for deep-sequencing genomic investigations in the future (Shendure 

and Ji 2008). Illumina sequencing was recently used to obtain sequences of West 

Nile Virus, through virus-derived siRNA (Brackney, Beane et al. 2009), mutant 
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viruses of severe acute respiratory syndrome (Eckerle, Becker et al. 2010), and 

human rhinovirus (Cordey, Junier et al. 2010). 

 

The aim of this study was to explore the extent to which the Illumina sequencing 

platform can be used to characterize and monitor changes in viral sequence 

diversity that occurs during replication of a positive-stranded RNA virus within a 

host. This study uses NGS to dissect foot-and-mouth disease virus (FMDV) within-

host population structure, at a depth unobtainable by previous cloning techniques. 

Belonging to the Picornaviridae family, FMDV is highly infectious causing vesicular 

lesions in the mouth and on the feet of cloven-hoofed animals. The samples 

analysed here were collected during an infection experiment, in which a bovine 

host was inoculated with FMDV. We developed a protocol that enabled 

identification of artefacts introduced during amplification and sequencing which 

was used to validate and quantify the minority sequence variants that were 

detected. In particular, we expected to see evidence for the reversion of capsid 

amino acid residues responsible for heparan sulphate (HS) binding associated 

with replication of a cell culture adapted strain of FMDV in a mammalian host (Sa-

Carvalho, Rieder et al. 1997b; Fry, Lea et al. 1999). Although this study was 

conducted using FMDV, we anticipate that the features we observe may be 

broadly representative of populations found in samples obtained from other 

positive-stranded RNA viruses.  
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3.3 Methods 

 
3.3.1 Sample preparation and genome amplification 

The samples analysed were collected during an infection experiment, in which a 

single bovine host was inoculated intradermolingually with a dose of 105.7 50% 

tissue culture infective doses (TCID50) of FMDV (O1BFS 1860). The full-length 

FMDV genome sequence of this sample had been previously determined using 

Sanger sequencing (EU448369) and was used as a reference genome in this 

study. The Inoculum was derived from a bovine tongue vesicle specimen that had 

been passaged extensively in cell culture (Cottam, Wadsworth et al. 2008).  

 

Total RNA (TRIzol, Invitrogen, Paisley, UK) was extracted from a sample of the 

Inoculum as well as two 10% tissue suspensions prepared from epithelial lesions 

(front left foot [FLF] and back right foot [BRF]) collected from the animal at 2 days 

post inoculation. Reverse transcription was performed using an enzyme with high 

specificity (Superscript III reverse transcriptase, Invitrogen), and an oligo-dT 

primer (see Table 3.1).  
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Table 3.1 Oligonucleotide primers used for the amplification of the two large, 

overlapping FMDV genome fragments studied (omitting the S fragment up to and 
including the poly(c) tract), for both the first and second run 

PCR 

Set  

Primer 1 Primer Sequence (5' to 3') Location on 

Genome 2 

Amplicon 

Size (bp) 

Overlap 

(bp) 

1 

BFS-

370F 

CCCCCCCCCCCCCTAAG 351-366 

4557 

1051 

BFS-

4926R 

AAGTCCTTGCCGTCAGGGT 4891-4909 

2 

BFS-

3876F 

AAATTGTGGCACCGGTGA 3859-3876 

4317 
BFS-

8193R 

TTTTTTTTTTTTTTGATTAAGG 8155-8176 

- UKFMD/

Rev6 

GGCGGCCGCTTTTTTTTTTTTTTT poly(A)      

1 Last letter indicates a forward or reverse primer 

2 Numbering according to GenBank sequence EU448369 

 

For each sample, two PCR reactions generating long overlapping fragments (4557 

bp and 4317 bp respectively) were carried out using a proof-reading enzyme 

mixture (Platinum Taq Hi-Fidelity, Invitrogen). For biosecurity reasons these 

individual fragments together comprised <80% of the complete FMDV genome, 

and corresponded to nts 351-4909 and 3859-8176 of EU448369. This enabled the 

amplified DNA to be transported outside of the high containment FMD laboratory 

for sequencing at The Sir Henry Wellcome Functional Genomics Facility 

(University of Glasgow). The samples were amplified using the following cycling 

programme: 94 ˚C for 5 min, followed by 94 ˚C for 30 s, 55 ˚C for 30 s and 70 ˚C 

for 4 min, with a final step of 72 ˚C for 7 min. For each RNA sample, the number of 

PCR cycles used was optimized (using parallel reactions undertaken using 

Picogreen) such that products were collected from the exponential part of the 

amplification curve prior to the plateau phase. Once established for each sample, 

the same optimized cycle number was used for both runs. Individual PCR products 
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were visualized using agarose-gel electrophoresis and quantified (Nanodrop, 

Labtech), after which the concentrations of each PCR fragment were adjusted to 

equimolar ratios for each of the three samples prior to sequence analysis. We 

repeated the PCR of the original reverse-transcribed sample in order to obtain an 

independent replica of the amplified sample. The number of viral RNA copies put 

into the initial PCR reaction was established by quantitative PCR for each of the 

samples (Callahan, Brown et al. 2002).  

 

3.3.2 Next-generation sequencing 

Sequencing was carried out on the Genome Analyzer II platform (Illumina). Briefly, 

DNA was fragmented using sonication and the resultant fragment distribution 

assessed by an Agilent BioAnalyzer 2100. After size selection of fragments 

between 300 and 400 bp, a library of purified genomic DNA was prepared by 

ligating adapters onto the fragment ends to generate flow-cell suitable templates. 

A unique 6-nt sequence index, or ‘tag’ for identification during analysis, was added 

to each sample by PCR. Once the adapter/index modified fragments were pooled 

and attached to the flow-cell by complimentary surface-bound primers, isothermal 

‘bridging’ amplification formed multiple DNA ‘clusters’ for reversible-terminator 

sequencing, yielding reads of 50 nucleotides. We conducted two sequencing runs: 

in the first, we sequenced on a single lane the three amplified viral populations 

(Inoculum, FLF and BRF) after tagging. The second run was performed on a 

different flow cell: again, we sequenced the same populations on a single lane, 

using a second, independent amplification of the three original cDNAs. Ideally this 

second, independent sequencing run would have been conducted on template 

RNA that had additionally been through two, independent RT reactions in order to 

account for potential errors introduced during this process and not just PCR 

amplification (see following section 3.3.4). The second run was performed after the 

Illumina Genome Analyzer went through an upgrade and was able to deliver 

longer reads of 70 nucleotides.  

 
3.3.3 Data filtering 

In order to make direct comparisons between the two runs, we trimmed reads from 

the second run to 50nt. Typically, quality scores decreased along a read, as the 

reliability of the sequencing process decreased with the number of cycles of the 
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Sequencing Platform. The second run yielded much better qualities thanks to an 

upgrade of the Illumina platform. For both runs, reads with average error per nt 

below a fixed threshold (! = 0.2%) were discarded to generate a flatter error profile 

along the read (see Appendix 2, Figure 1). The first and last 5 nts of each aligned 

read were removed from the analysis as they showed a higher number of 

mismatches to the reference sequence due to insertions or deletions close to the 

edges of the reads. More details can be found in Appendix 2, Figure 2. 

 

3.3.4 Validation and analysis of sequence diversity in the samples 

The frequency of site-specific polymorphisms was estimated from the frequency of 

mismatches of the aligned reads to the reference genome. A proportion of these 

mismatches were expected to be artefactual, arising from a base mis-calling in the 

sequencing process, or from a PCR error in the amplification of the sample.  In 

order to identify polymorphisms arising from possible base mis-calls in the 

sequencing reaction, we used the quality score of each nucleotide read to 

compute the average probability of a sequencing error, pi, at each site i. Typical 

values of pi are around 0.1%. Assuming sequencing errors to be independent, we 

computed the expected number of such errors as the mean of the binomial 

distribution B(x; pi, ni), where ni is the coverage of site i. If the observed number of 

mismatches exceeded this expected number of errors in both runs then we 

excluded the possibility of a sequencing error. On the other hand, we hypothesize 

that the probability that PCR errors in both runs independently generated identical 

base changes at the same site is very low. Based on values quoted for the 

enzymes used, we estimate that the error rate for the combined RT-PCR 

amplification process to be 7.7x10-6 per base pair copied. We therefore defined 

polymorphic sites that could not be attributed to sequencing errors and at which 

both the most common and second most common nucleotides were the same 

between the two runs to be ‘qualitatively validated sites’. For each site in the set of 

qualitatively validated polymorphisms, we computed the 95% confidence intervals 

for the polymorphism frequency using the binomial distribution above. If the 95% 

confidence intervals from each run overlapped, we defined the polymorphism 

frequency estimates from the two runs to be in quantitative agreement. 
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We assessed the quantitative repeatability of site-specific polymorphism frequency 

estimates by calculating Spearman Rank correlation coefficients between 

polymorphism frequencies in the samples within each run and between 

polymorphism frequencies from runs 1 and 2.  
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We counted the number of transitions (Ts) and transversions (Tv) observed at 

qualitatively validated sites across the genome, we computed "=2Ts/Tv, and the 

relative distribution of mutations across the 1st, 2nd, and 3rd codon positions across 

the open reading frame (ORF). We obtained an estimate for dN/dS as follows: for 

each codon of the reference ORF, we computed the expected number of 

synonymous (si) and non-synonymous site (ni) and, for each read j spanning that 

codon, the number of observed synonymous (sr
ij) and non-synonymous 

substitutions (nr
ij). Using all the codons where si>0, we the obtained the proportion 

of synonymous (pS) and non-synonymous (pN) observations:  

! 

pS =
1
ncod

1
mii=1

ncod

"
sij
r

sij=1

ni

"   

(and analogously for pN) ,where mi is the number of reads covering codon i and 

ncod is the total number of codons in  the ORF. From pN and pS we have obtained 

dN/dS according to (Nei and Gojobori 1986).  

 

We calculated the number of validated sites at which STOP-codons are observed 

within the reading frame, and used these counts to estimate an upper limit on the 

mutation rate. Let ni be the coverage at the ith nucleotide position, and let xi,obs be 

the number of reads indicating a STOP codon at the ith position. Assuming 

independence, the probability density function describing the number of mutations, 

xi, that might be observed at site i is the binomial B(xi;#,ni) where # is the mutation 

frequency, corresponding to the number of mutations accumulated by a site during 

a cellular passage. The maximum likelihood estimate of # is

! 

xi,obsi
" / nii

"  (Evans, 

Hastings et al. 2000). Using a flat conjugate prior distribution (beta function with 

shape parameters set to 1), we obtained confidence intervals for # from the 

corresponding posterior distribution (beta function with parameters 

! 

1+ xi,obsi
"  and 

! 

1+ (ni " xi,obs)i
#  (Gelman 2004)). Assuming an equal probability for each mutation, 

# is related to the mutation rate µ (per nucleotide, per single copying event) via the 

relation 

! 

" = 2gaµ (Thebaud, Chadoeuf et al. 2010), where g is the number of 

transcription generations (positive -> negative -> positive) the virus underwent in 

the cell. Here, we assume g=1, which corresponds to a stamping machine 

replication strategy and therefore to the minimum number of copying events in a 
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cell. a is a factor weighting the fraction of mutations generating a STOP codon 

among all the possible changes that could arise at a single nucleotide position: we 

only consider sites whose mutations can lead to a STOP codon. Among the 18 

codons that are one mutation away from a STOP, 5 of them (UCA, UUA, UAC, 

UAU, UGG) can reach a STOP codon through either two different mutations to the 

same position, or a single mutation to one of two different positions. Assuming the 

same probability for each of the 3 nucleotide mutations, we obtain then a = 

(4*2+15*1)/(3*19) = 0.4035. 

 

Randomizations were conducted whereby we assembled putative ‘clones’ from the 

read data by sampling nucleotides randomly from (qualitatively validated) 

nucleotide frequencies observed at each site along the genome.  We computed 

the median number of observed nucleotide substitutions (those differing from the 

consensus of the resampled clones) in sets of 26 independently such assembled 

clones and these numbers were compared with equivalent numbers from real 

clones obtained from an individual cow naturally infected with FMDV (Cottam, King 

et al. 2009a). 

The complexity of the viral populations was characterized by computing the 

entropy of the viral populations:  

! 

S = "
1
N

pij ln pij
j#{A ,C ,G,T}
$

1=1

N

$
 
  

where N is the number of sites and piX is the fraction of reads bearing nt X at site i. 

The entropy measures the amount of “disorder” in the population, and it is 

maximum at a site when all four bases are equally represented.  
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3.4 Results 

In this section, we discuss the results of the Illumina sequencing of three FMDV 

populations: the Inoculum (a field sample used to artificially infect a bovine host), 

and two lesions developed on two different feet of the host, 2 days after 

inoculation. Sequence read data from this study have been deposited in the NVBI 

Sequence Read Archive (SRA) under accession numbers ERA015837 and 

ERA015838.  

 

3.4.1 Description and filtering of Illumina data 

Sequences from the Illumina Genome Analyzer platform consist of a collection of 

several million short reads. Sequencing was repeated following independent 

amplification of cDNA generated through PCR. In the first run ~8% of the reads 

were discarded because of unresolved nucleotides or corrupted tags. In the 

second run, ~3% of the reads were discarded. Each nucleotide (nt) of each read is 

characterized by a quality score, which quantifies the reliability of the base-calling 

process during the sequencing. Only reads whose average error per nt was below 

0.2% (66% for the first run and 95% for the second run) were considered for this 

analysis. Further details about the reads and the filtering process can be found in 

the Appendix 2.  

 

3.4.2 Coverage and consensus genomes 

Reads that passed the quality test were aligned to the consensus genome 

sequence of the starting material from which the Inoculum was prepared (see 

Appendix 2). The mean coverage of the reference genome in the first run was 

4863x for the Inoculum, 8665x for the Front Left Foot (FLF) sample and 6594x for 

the Back Right Foot (BRF) respectively, while for the second run it was 16827x for 

the Inoculum, 11924x for FLF and 15945x for BRF (Figure 3.1A and B). For some 

samples (Inoculum and BRF, first run and FLF, second run), the coverage for the 

two PCR fragments composing the viral genome was not equal. More details on 

the statistics of the Illumina yield can be found in Appendix 2. 
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Figure 3.1 

Coverage of the reference genome. Obtained with the filtered, trimmed reads. Panel A: 

first dataset, panel B: second dataset. The three samples (Inoculum, Front Left Foot and 

Back Right Foot) receive a generous coverage from both runs, while fluctuations are 

higher on the first dataset. Average coverage is 4873x (Inoculum), 8665x (FLF) and 6594x 

(BRF) for the first dataset, and 16827x (Inoculum), 11924x (FLF) and 15945x (BRF) for 

the second dataset. On top of the figure, the sequenced fraction of the genome (nt 368-

8176) is represented, together with the position of the polyprotein.  

 

We obtained consensus genomes for each sample, by identifying, site by site, the 

most abundant nucleotide in the aligned reads. As expected, the consensus for 

the Inoculum exactly matched the reference genome at all sites. For FLF, both 

runs indicated two substitutions (nt 2767, G$>A, and nt 8140, G$>T). For BRF 

sample, the two runs suggested slightly different consensus sequences: the first 

run revealed five substitutions (nt 2767, G$>A, nt 3138, G$>A, nt 5138, T$>C, nt 

7354, C$>T, nt 8134, C$>T), whereas the second run had none. However, at 

position 8134 about 30% of the reads in the second run showed a T in place of a 

C, and at position 2767 5% of the reads had an A in place of a T. At the remaining 

3 sites, the second run had a small number of reads confirming the polymorphism 

found in the first run. This result indicates that the same pattern of variation is 



 Chapter 3 
 

92 
 

present in both runs, although the frequency of the mutations is not in quantitative 

agreement across the two runs for BRF. Finally, the second run showed an 

almost-consensus substitution in 49.9% of the reads (nt 2754 C->T), which was 

present at a 10% frequency in the first run. 

 

3.4.3 Validation of polymorphic sites 

Mismatch frequencies, obtained by showing site by site the fraction of reads 

differing from the consensus genome, are shown in Figure 3.2 (first run) and 

Figure 3.3 (second run). An evident correlation is present between the regions of 

the sample genomes receiving low coverage and those with the largest fraction of 

sites showing no variation (Figure 3.2A, second half, 3.2C, first half and 3.3B, first 

half). Using these raw data, and considering only sites receiving coverage of 100x 

or more, we found polymorphisms at 7,755 sites in the Inoculum, 7,730 in FLF and 

7,710 in BRF, out of the 7,825 nt sequenced.  While a few sites exhibited higher 

levels of polymorphism, the vast majority of sites displayed a mismatch frequency 

around 0.1%. 
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Figure 3.2  

Frequency of mismatches (first dataset). Obtained by aligning the reads to the reference 

genome. Panel A: Inoculum, panel B: FLF, panel C: BRF. The average mismatch 

frequency lies around 0.1% for all the three samples. At few sites, the mismatch frequency 

is higher; as expected, the number of these peaks is larger in the FLF and BRF than in the 

Inoculum. A small fraction of sites show perfect agreement of all the reads with the 

reference genome (mismatch frequency = 0). 
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 Figure 3.3 

Frequency of mismatches (second dataset). Obtained by aligning the reads to the 

reference genome. Panel A: Inoculum, panel B: FLF, panel C: BRF. This second dataset 

has higher coverage than the first one, and a lower fraction of sites with no mismatches. 

The average mismatch frequency is very similar to that of the first dataset. 

 

After screening for possible PCR and sequencing artefacts, we found that 

qualitatively validated polymorphisms were present at 2,622 sites for the Inoculum, 

1,434 in FLF and 1,703 for BRF. The different consensus genomes obtained for 

BRF in the two runs can be in part reconciled by noting that all six substitutions 

observed (nt 2754, 2767, 3138, 5138, 7354, 8134) are qualitatively validated in 

each run. We observed 2,469 quantitatively validated sites in the Inoculum (94% 

of qualitatively validated sites), 1,303 sites from the FLF (91% of qualitatively 

validated sites) and 1,528 sites (90% of qualitatively validated sites) from the BRF  

Site-specific polymorphism (SSP) frequency at qualitatively validated sites was 

correlated between the two runs for each of the three samples (Figure 3.4).  
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Figure 3.4  

Correlations of polymorphism frequencies in the viral populations. Correlations were 

computed between the two runs (first row) and within each run (second and third row). 

The Spearman rank correlation % is indicated for each pair of datasets. Only qualitatively 

validated SSPs receiving coverage above 100x in both runs are shown. The correlation 

coefficients between the two runs in the Inoculum and FLF are similar, while they are 

lower for BRF. The remaining panels show that the first run is more correlated than the 

second. 
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The intra-run correlation for run 1 (Spearman Rank correlation: 0.64 [Inoc-FLF], 

0.55 [Inoc-BRF] and 0.60 [FLF-BRF]) was higher than run 2 (Spearman Rank 

correlation: 0.40 [Inoc-FLF], 0.43 [Inoc-BRF] and 0.42 [FLF-BRF]). The reason for 

the poor intra-run correlation for run 2 is unclear. The number of viral RNA copies 

put into the initial PCR reactions was found to be large (3.2x109 for the Inoculum, 

6.4x108 for FLF and 2.4x108 for BRF): assuming that the PCR process amplifies 

all genomes with the same probability, the probability of resequencing the same 

genome is exceedingly low (<10-5), thus excluding the possibility of biases due to 

low viral load in the RNA. However, the second run in comparison to run 1 yielded 

lower amounts DNA library concentrations per sample prior to sequencing (3.4 vs 

4.9 ng/!l, 3.7 vs 10.6 and 3.4 vs 9.5 ng/!l ng/!l for the inoculum, FLF and BRF 

respectively): factors that may have introduced bias into the representative nature 

of the reads. The intra-run correlation, together with the high fraction of 

quantitative validation among the qualitatively validates SSPs provides sound 

evidence that nt changes are linked between the different samples. Inter-run 

correlation between the samples (Spearman Rank correlation: 0.34 vs 0.44 and 

0.50) indicates that validated polymorphisms are unlikely to be artefacts.  

 

3.4.4 Distribution of polymorphisms across the genome 

There were 12 SSPs, whose average frequency between the two runs is above 

1% in the Inoculum, 19 in FLF, and 25 in BRF (see Supplementary Table). Some 

of these were clustered in the capsid protein region (beginning of protein VP3) (1 

in the Inoculum, 4 in FLF and 5 in BRF) and in the 3’ untranslated region (UTR) (6 

in the Inoculum, 5 in FLF and 6 in BRF). Where single reads spanning these sites 

within the VP3 or 3’UTR were available, there was no evidence that that these 

mutations were linked together on individual FMDV genomes. In particular, the first 

cluster was shared between the two foot samples and corresponded to changes 

encoding amino acid residues associated with heparan sulphate (HS) binding. The 

Inoculum used in this experiment had undergone extensive cell culture passage 

and, in common with other in-vitro adapted viruses, utilizes HS as a cellular 

receptor (Jackson, Ellard et al. 1996b). Subsequent replication in mammalian 

hosts drives the reversion of positively charged amino acid residues at specific 

sites in the viral capsid (Sa-Carvalho, Rieder et al. 1997b; Fry, Lea et al. 1999b). A 

consensus level substitution (>50%) exists within both feet samples of run 1 
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compared to the reference sequence (see above and the Supplementary Table). 

This polymorphism corresponded to a change within the 60th codon of protein VP3 

(VP360). Although below the level of the consensus sequence, additional 

qualitatively validated SSPs that were present in both feet samples were detected 

at four further sites (one codon position in VP2134, two codon positions within 

VP356 and one codon position in VP359) that impact on the ability of FMDV to bind 

HS. All but one of the mutations that clustered within the 3’ UTR of the three 

samples were located within the first four RNA-RNA pairings either side of the 

apex of a conserved stem-loop. This structure, one of two stem-loops previously 

predicted for FMDV and other picornaviruses (Carrillo, Tulman et al. 2005) 

(Melchers, Bakkers et al. 2000) is thought to generate long-distance RNA-RNA 

interactions that may impact upon viral replication (Serrano, Pulido et al. 2006). 

The presence of shared mutations between the two foot samples suggests a 

common history for the viruses arising as a result of the shared route of intra-host 

transmission from initial replication sites in the tongue to epithelial sites in the feet 

via the blood.  However an alternative explanation – that the virus is subject to a 

common selection pressure in both sites cannot be ruled out. 

 

3.4.5 Frequency of site-specific polymorphisms 

Some variability was present almost everywhere on the genome. Above minimum 

coverage of 100x, only 61 sites exhibited no polymorphism (0.79%) in the 

Inoculum, 59 (0.76%) in FLF and 49 (0.64%) in BRF. These sites received 

relatively low coverage, suggesting that the absence of observed genetic 

variability may be due to lack of power to detect it. By grouping the site-specific 

polymorphism frequencies into discrete bins, we can examine the proportion of 

sites experiencing different polymorphic frequencies and thereby obtain a 

comprehensive picture of the heterogeneity in the viral populations (Figure 3.5). 

Across the three samples, most sites exhibit a range of low-frequency SSPs 

between 0.01% - 1%. 
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Figure 3.5 

Variability in the viral populations. Frequency distribution of the weighted averaged 

mismatch frequencies between the two runs, for the three samples (the ordinate 

represents the frequencies of sites showing that fraction of mismatches). Solid lines: all 

sites receiving minimum coverage of 100 in both runs (7,755 sites for Inoculum, 7,730 for 

FLF and 7,710 sites for BRF). Dashed lines: sites receiving coverage of 100 or more in 

both runs, and classified as validated site specific polymorphisms (SSPs) (2,622 sites for 

Inoculum, 1,434 for FLF and 1,703 for BRF). All lines show a similar trend: a small fraction 

of the sites (<1%) display no variability in both runs, most of the sites show a very mild 

amount polymorphism in the viral population (between 0.01% and 1%), while a very small 

fraction of the sites (0.14% for Inoculum, 0.22% for FLF and 0.39% for BRF) present 

variation at a level above 1%. 

  

Only a few sites showed higher frequency polymorphism, and these sites were 

more numerous for the samples from the feet than from the Inoculum, indicating 

the generation of new high-frequency substitutions during the host passage. The 

dashed lines (Figure 3.5) correspond to the same analysis restricted to 

qualitatively validated sites and reveal a similar pattern.  
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3.4.6 Statistics of polymorphic sites 

NGS provided sufficient resolution to detect polymorphisms where two alternative 

substitutions are simultaneously present. The secondary substitutions (the third 

most abundant nucleotides in the reads at any particular site) that would have 

been qualitatively valid even in the absence of the second most abundant 

nucleotide substitution were present in 67 sites in the Inoculum, 15 in FLF and 41 

in BRF. Secondary substitutions typically appear at frequencies below 0.5%, 

confirming the large amount of low-frequency variability in the samples.  

 

Table 3.2 Statistics of polymorphic sites. General statistics of qualitatively and 

quantitatively validated SSPs receiving coverage larger than 100x. Ts: 

transitions in SSPs, Tv: transversions in SSPs, !=2Ts/Tv, dN: non-synonymous 

mutations in the ORF, dS: synonymous mutations in the ORF, 1st, 2nd and 3rd: 

mutations in codon positions in the ORF 

 Sites SSPs Ts Tv " dN/dS 1st 2nd 3rd 

Inoc 7755 2622 2562 60 85.40 0.651 0.288 0.286 0.427 

FLF 7730 1434 1400 34 82.36 1.065 0.326 0.333 0.341 

BRF 7710 1703 1649 54 61.08 0.680 0.334 0.307 0.359 

 

Table 3.2 shows that transversions are rare among the validated mutations, and 

thus " (defined as 2Ts/Tv) is high (however, similar values were reported in 

(Cottam, King et al. 2009a)). The ratio of non-synonymous to synonymous 

substitutions in the open reading frame, dN/dS, is higher for FLF than for the other 

two samples because of the presence of the non-synonymous mutations in a large 

number of reads at positions 2754 and 2767, associated with heparan sulphate 

binding amino acid reversions within VP356 and VP360 respectively . The mutation 

frequency at the third codon position is only marginally higher than in the first and 

second positions. Taken together, these observations suggest that the observed 

polymorphisms are dominated by mutations arising during the last round of intra-

cellular replication and that have not been subject to extensive purifying selection. 

Further evidence of this lack of selective pressure is provided by the presence of 

validated polymorphisms generating STOP codons within the ORF. If it were 

assumed these mutations are lethal for the virus and therefore subject to purifying 
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selection during infection of another cell, it follows they would have arisen during 

the most recent rounds of viral replication. STOP codons were found at 24 sites in 

the Inoculum, 9 sites in FLF and 21 sites in BRF, mostly at frequencies around 

0.1% (with a single exception in BRF where a mutation generating a STOP codon 

is present in 0.7% of the reads).  

 

The presence of STOP codons can be used to obtain an upper limit on the 

mutation rate (per nucleotide per transcription event) of this virus. We make the 

hypothesis that these mutations are lethal and are therefore generated in the last 

round of cellular replication. Moreover, we assume the replication strategy 

involving the minimum number of copying events in the cell (the “stamping 

machine” strategy, see Thebaud, Chadoeuf et al. 2010), and obtained an upper 

bound for the mutation rate (µ) of 7.8 x 10-4 per nucleotide per transcription event 

(95% CI: 7.4 x 10-4  – 8.3 x 10-4), in line with previous estimates (Drake 1993; 

Drake and Holland 1999; Schrag, Rota et al. 1999). 

 

Finally, we can ask whether these results are broadly consistent with those 

acquired from cloning studies. In ref. (Cottam, King et al. 2009a), Cottam et al. 

generated 26 viral capsid clones from an FMDV sample taken from a single lesion 

of a bovine host. We simulated 10,000 sets of 26 viral capsid ‘clones’, essentially 

bootstrapping from the nucleotide frequencies revealed by the NGS alignments to 

be present at each site within the capsid genes.  Of these 26 clones, the median 

number of sequences in each of the 10,000 simulated data sets that were identical 

to the consensus was 12 (95% CI: 5-17), compared to 15 observed in ref. (Cottam, 

King et al. 2009a). The median number of simulated clones containing 1, 2, 3, and 

4 differences compared to the consensus were 9 (95% CI: 4-14), 3 (95% CI 1-7), 

1, (95% CI: 0-3), and 0 (95% CI: 0-1) respectively.  These numbers correspond 

well with those obtained by Cottam et al., (Cottam, King et al. 2009a) which were 

6, 3, 2, and 0 respectively. 
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3.4.7 Complexity of the viral populaiton 

In the host, the viral population evolves via extensive replication, mutation, and, at 

the same time, selection. The result of these combined processes can be 

quantified by computing how much ‘diversity’ is present within the three samples, 

using an entropy-like measure S that, site by site, takes a maximum value when all 

nts are present in the same proportion. The entropy of the three populations, 

computed over the qualitatively validated sites, shows higher values for the feet 

than for the Inoculum (S=0.01138 for FLF, S=0.01198 for BRF and S=0.00841 for 

Inoculum), suggesting that repeated cycles of cellular replication during passage in 

the host does result in greater viral population diversity relative to the Inoculum. 
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3.5 Discussion 

This study describes a novel use of Illumina NGS to investigate the population 

genetic structure of a positive-stranded RNA virus causing an acute-acting disease 

in hosts. These experiments generated an unprecedented amount of sequence 

data and required a new systematic approach to confidently distinguish between 

sequences that were actually present in the samples from artefacts introduced 

during the amplification and sequencing steps of the sample processing. Results 

obtained here were consistent with the findings of previous investigations, 

providing validation on the use of NGS in the study of FMDV evolution within a 

host: Carrillo et al. (Carrillo, Lu et al. 2007b) reports an average of 1-5 

substitutions per animal passage during an infection experiment in pigs, in line 

with the 2 substitutions we found in FLF. However, the case of the BRF points out 

a more complex scenario that could not have been observed with consensus 

sequences only: the drift of mutations above and below the threshold needed to 

appear in the consensus. Apparent loss and subsequent regain of mutations 

during the transmission of the infection across hosts (Carrillo, Lu et al. 2007b) can 

be explained with this mechanism, which is made more accessible to study by 

NGS. Moreover, the statistical characteristics of the SSPs we identified (", dN/dS) 

are very similar to those found previously (Cottam, King et al. 2009a), further 

corroborating the validity of our results. Finally, randomizations of the diversity 

measured in the capsid region allowed us to obtain simulated clones whose 

characteristics in terms of mutation were analogous to those found in (Cottam, 

King et al. 2009a). We conclude that NGS data can be used to examine the 

nucleotide diversity of each genome position at unprecedented resolution.  

Observing the mutant spectrum of the viral population at a fine resolution will 

provide a more sophisticated understanding of evolutionary processes shaping its 

variability. 

 

Comparisons between the sequences recovered from the Inoculum and clinical 

lesions provide new insights into the impact of early replication events on viral 

evolution within a host. This study reveals that only a few sites displayed 

mutations present in a large fraction of the population, i.e. high frequency 

polymorphisms (>1%), while the vast majority of the polymorphisms were present 

at lower frequencies.  We hypothesize that the high frequency polymorphisms 
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have been selected over multiple rounds of replication within cells, and that the 

lower frequency polymorphisms most likely directly reflect the high rate of mutation 

experienced by these viruses, as our estimate of an upper limit of the genome-

wide mutation rate suggests. In this study we used a cell culture adapted virus (as 

the Inoculum) which gave us the opportunity to monitor changes at specific loci 

associated with the HS binding site that were under selection pressure during 

initial replication in a mammalian host. Examination of these sites (collated in the 

Supplementary Table) reveals for the first time the presence of intermediate 

stages in the evolution of the viral population between a tissue culture adapted 

genome and a host-adapted genome. 

 

Cordey et al. (2010) investigated the dynamics of Human Rhinovirus (HRV) during 

an infection experiment and in HeLa cells, and find results similar to ours in terms 

of number of mutations fixed at the consensus level (Cordey, Junier et al. 2010). 

However, while their approach identifies hot and cold spots in the HRV ORF, and 

some minority variants, the resolution is not sufficient to observe the micro-

evolutionary processes whose signature lays in small fractions of the viral 

population (<2%). Moreover, their estimation of the substitution rate during the 

infection is based solely on the count of the nucleotides changed among those 

analyzed: although the value is compatible to our genome-wide, mutation rate, we 

believe that considering the cellular process of viral replication (and specifically 

assuming the minimum number or copying events in a cell) allows us to gain a 

better insight of the process generating variation in the viral population and obtain 

a more stringent upper bound.  

 

Figure 3.5 reveals that the viral population sequences are highly heterogeneous 

supporting the findings of previous studies that have used cloning approaches 

(Domingo, Martin et al. 2006; Jridi, Martin et al. 2006). However, the massively 

increased coverage enabled by NGS enables the nature of this heterogeneity to 

be established at much greater resolution. This is important for understanding viral 

evolutionary processes because heterogeneity is a necessary but not sufficient 

condition (Holmes 2010a; Holmes 2010b) for the dominance of quasi-species 

dynamics (see Eigen 1971b; Domingo, Martin et al. 2006 and references therein). 

For quasi-species dynamics to dominate the micro-evolutionary process, the 
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frequency of a dominant sequence must be maintained primarily by the back-

mutation or recombination of closely related genetic variants, rather than the 

faithful replication of any single genome. This requires a balance of two qualities: 

genetic variants closely related to the master sequence must be maintained at 

sufficiently high prevalence; and that mutation and recombination rates must be 

sufficiently high to generate the observed prevalence of the dominant sequence 

from these variants.  Previous studies have examined this question empirically and 

concluded that these conditions are indeed met in many RNA viruses, mostly 

through studies of mutational robustness as a selectable trait (“survival of the 

flattest” effect in which selection acts not on the dominant sequence, but on the 

swarm of viruses immediately mutationally adjacent to the dominant sequence) 

(Domingo, Sabo et al. 1978; Pfeiffer and Kirkegaard 2005), which has been 

reviewed by Fishman and Branch 2009 with particular focus on Hepatitis C virus.  

However, taking FMDV as an example, given that there are ~25,000 one-step 

mutant variants to any one sequence (3 alternative nucleotides at each position of 

the ~8,300 nucleotide genome), NGS approaches are clearly a powerful tool for 

examining directly whether viral populations are structured in a way that is 

consistent with a quasi-species dynamic. 

 

NGS data can be coupled to evolutionary models to estimate parameters, such as 

the genome-wide mutation rate of FMDV. Here, we computed this number 

hypothesizing that the viral replication strategy followed the so-called “stamping 

machine” mode of replication, where all viral genomes leaving the cells are 

obtained as copies of “first generation” negative stranded genomes, which are in 

turn direct copies of the genomic RNA originally infecting the cells.  For this 

reason, the estimate of 7.8x10-4 per genome per duplication round should be 

considered an upper bound on the mutation rate which is a tighter estimate than 

previous figures obtained for other RNA viruses (Drake 1993; Drake and Holland 

1999) as a result of the deep coverage that NGS generates. Were the replication 

strategy “geometric” (i.e. including the possibility of several rounds of 

positive/negative strand copying before exiting the cell), the mutation rate would 

be several-fold (perhaps 3-6 times) lower (Thebaud, Chadoeuf et al. 2010). The 

assumptions that all nucleotide mutations at a site are equally likely, and that all 
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STOP codons are generated by a de novo mutation are also likely to lead to an 

overestimation of the mutation rate.  

 

To present date, the analysis of the amount of complexity carried by a genome 

has mostly coincided with information-theoretical measures, aimed to quantify at 

the entropy and the frequency distributions of short oligomers (Holste, Grosse et 

al. 2001; Liu, Venkatesh et al. 2008). This approach looks at the “horizontal” 

complexity along a genome; with NGS we are now able to obtain the closely-

related sequences for a whole viral population in a single experiment, thus 

enabling us to look at the “vertical” complexity of the viral variants, i.e. at the 

amount of variability present in the population at each site. 

  

A viral population within a host undergoes complex processes, including the onset 

of infection, cellular replication, selection, and migration to different tissues. In 

particular, it is not clear how the diversity generated within a cell propagates 

through a host to give rise to the amount of diversity we observe. The data 

collected in studies like this can be used for building models aimed at 

understanding the link between the micro-evolution of FMDV at the cellular scale 

with the population heterogeneity at the host scale. We anticipate that a model of 

viral replication across several cell generations within a host will produce a more 

stringent upper bound to the genome-wide mutation rate.  

 

Although further work is required, these findings strongly suggest that data 

generated through the use of this methodology can provide novel insights into viral 

evolutionary dynamics at a greater resolution than previously achieved for a 

positive-stranded virus such as FMDV. In particular, the genome wide assessment 

of polymorphic frequencies is likely to be an important asset in the 

parameterization of models that can evaluate the role of quasi-species dynamics 

in RNA virus evolution. 



 

 
 

Chapter 4 
 

Optimisation of the protocol for 

NGS template production with 

clonal control study 
 

NGS data generated during the clonal control study will form part of a wider 

analysis to be submitted to the Journal of General Virology.  

 

The analytical and statistical pipeline used within this chapter was as 
described in Chapter 3 (constructed by Dr Marco Morelli). Initial statistical 
analysis was performed by Dr Morelli and completed by Dr Richard Orton 
(University of Glasgow). 
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4.1 Summary 
This chapter describes the development and optimisation of a practical method for 

the preparation of FMDV genetic material suitable for Next-Generation 

Sequencing (NGS) analysis on the Genome Analyser II platform (Illumina). This 

method used reverse-transcription (RT) PCR to produce products spanning almost 

the entire length of the viral genome and could be applied to a range of biological 

samples, including epithelium, serum and oesophageal-pharyngeal scrapings. 

Measures were taken to reduce the introduction of artefactual mutation 

(abbreviated to ‘artefacts’) and bias that can occur during RT and PCR 

amplification so that the final sequence diversity measured was as representative 

of initial viral diversity in a particular sample as possible. A ‘Clonal control’ study 

was also conducted to better understand the introduction of artefacts into viral 

genomic sequences during the experimental process, at the ultra-deep level by 

NGS. By more accurately quantifying total artefacts incurred during the production, 

and subsequent sequencing, of template DNA, a more precise measure of 

background sequence noise was established. Consequently, a mutation frequency 

threshold was set, above which there can be relative confidence that the 

polymorphisms observed are genuine viral mutations. Together, this improved 

protocol for NGS template production and quantification of background sequence 

noise contribute to overcoming analytical challenges created by the application of 

a novel technology. 
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4.2 Introduction 
RNA viruses exist as complex, heterogeneous populations, otherwise known as 

viral swarms, in which almost every genome sequence contains a natural 

mutation. However, before these complex populations can be examined, viral 

genetic material must first be isolated and amplified.  This is necessary, firstly, 

because in any given infected sample, the ratio of virus to host DNA is heavily 

weighted towards host genetic material. Assuming the following: 

! The bovine genome is 2.87 Gb long (Elsik, Tellam et al. 2009) (totalling 

1.14810 base pairs for double stranded DNA and considering two copies of 

each chromosome) 

! There are 109 cells per gram of tissue (Alexandersen, Bloom et al. 1988)  

! The FMDV genome is approximately 8.5 kb long 

! There are between approximately 107 and 109 FMDV genomes per gram of 

tissue (Murphy, Bashiruddin et al. 2010)  

We deduce that, on average, there are at least seven logs more host nucleotides 

than viral in a gram of infected tissue. Consequently, considering a total 

sequencing output of 20 GB (Illumina Genome Analyzer IIx specifications for read 

lengths of 100 bp), this would equate to only x1 coverage of the FMDV genome, if 

template, containing both host and viral material, was sequenced directly. To solve 

this problem, viral material can be targeted during PCR amplification, which is 

commonly achieved using sequence specific primers, but it can similarly be 

targeted during the preceding step of RNA reverse transcription (RT) in the same 

way. Alternative measures can be used for total mRNA enrichment, for example, 

by removing host DNA (by DNase digestion) or by rRNA depletion (using 

commercial kits such as Invitrogen’s RiboMinus kit). Transcribed RNA (cDNA) can 

also be enriched by microarray-based methods, a technique increasingly used in 

conjunction with NGS (Chou, Liu et al. 2010; Hong, Doddapaneni et al. 2012). 

Secondly, the quantity of FMDV RNA that can be directly extracted from clinical 

tissues remains too low for direct RNA sequencing on any of the NGS platforms 

currently available. Moreover, the processes required to amplify nucleic acid prior 

to NGS analysis can introduce artefectual mutations (artefacts), and bias.  
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4.2.1 Experimental impacts on the viral swarm 
The following sections will discuss the potential impacts of each of three 

fundamental features of RT-PCR on the viral swarm in regards to bias and artefact 

introduction (see Chapter 1, section 1.5.2b for a more detailed description of the 

current challenges of RNA sequencing). These features include i) Starting 

template copy number, ii) Primers and iii) RT-PCR enzymes. While discussed 

separately, the impacts of each of these factors are linked through the common 

influence of final sequence coverage.  

 

 4.2.1a Starting template copy number 
Although what is commonly examined through the molecular sequencing of 

viruses is a sub-set of the total population that exists within, for example, a single 

lesion, measures should to taken to ensure this sub-set is a faithful representation 

of that population. Figure 4.1 demonstrates the importance of starting template 

concentration in terms of ensuring this faithful representation of the original 

population post PCR amplification. It was calculated that, for a coverage in the 

range of 10,000-20,000x, and a viral template copy number of >500,000, the 

probability of genome re-sampling during PCR was very low (<10-5), as discussed 

in Chapter 3, section 3.4.3. In this instance, the PCR product provides a 

representative sample of the original population (scenario ‘A’ in Figure 4.1). 

Conversely, using the same number of PCR cycles, but with a template input of ~ 

5 viral copies for the same sequencing coverage output, the probability of re-

sampling during PCR is high (scenario ‘B’ in Figure 4.1). Scenario ‘B’ offers a 

misleading representation of the target viral population post PCR amplification with 

the over-representation of some variants and potentially the complete loss of 

others. Consequently, in order to conduct a more controlled comparison between 

viral populations from different samples, template input was standardised at > 

500,000 viral copies. 
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Figure 4.1 
Schematic depicting the impact of starting template concentration. Coloured dots depict 

individual viral variants within a sample of A: High viral template concentration, or B: Low 

viral template concentration. In scenario ‘A’ the PCR product provides a representative 

sample of the original population whereas scenario ‘B’ does not.  

 

 4.2.1b Primers 
Before PCR amplification, RNA must first be reverse transcribed using one, or a 

combination, of three common RT priming strategies plus an RT enzyme. There 

are oligo (dT) primers, which bind to the endogenous poly ‘A’ tail at the 3’ end of 

mRNA, often producing full-length cDNA. Alternatively, random hexamers (random 

primers) can be used, which bind to mRNA at a variety of complementary sites 

and lead to the generation of partial, short length cDNAs. Finally, specific 

oligonucleotide primers that selectively prime the mRNA of interest can be used. 

Different RT priming strategies can result in different biases in cDNA and 

subsequently PCR products. For example, random hexamers are less likely to 

give a 3’ end bias as compared to an oligo (dT) primer (Stangegaard, Dufva et al. 

2006). Random hexamers can also be used to reduce the bias towards positive 

strand compared to negative stand RT and may overcome difficulties presented by 

extensive secondary structure in the template leading to bias. 

 

Following RT, template cDNA is amplified by PCR. Primer specificity (ability to 

anneal to the correct template region) and sensitivity (ability to amplify all genomes 

in the population), influences the proportion of individual sequences amplified 

during this process. Variations in primer specificity and sensitivity may lead to 

some genomic regions being preferentially amplified over others, potentially 

impacting on estimates of mutation frequency within a viral population (as depicted 

in Figure 4.2). These primer features are controlled by many parameters, including 

buffer type, polymerase type/concentration, primer concentration as well as extent 

!"#

A B

!"#
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and stability of the primer/template match (Mathieu-Daude, Welsh et al. 1996), 

which is in turn strongly influenced by temperature (Reysenbach, Giver et al. 1992; 

Ishii and Fukui 2001; Li, Pei et al. 2006). 

 

The melting temperature (Tm) of a primer, defined as the temperature above which 

the primer will dissociate from the DNA template, depends on the length of the 

primer designed. If the primers are designed too short, the probability of them 

annealing at different regions on the DNA template increases; whereas if primers 

are too long, their Tm would also increase, which may lead to insufficient primer-

template hybridization resulting in low PCR product yield.  

 

However, a balance needs to be struck in terms of primer specificity and sensitivity 

as natural mutations within a viral population that result in primer mismatches can 

lead to preferential amplification and bias. Molecular studies of bacterial 

communities have shown that the use of relatively low annealing temperatures can 

reduce preferential amplification (due to primer mismatches) while maintaining 

PCR specificity (Ishii and Fukui 2001; Sipos, Szekely et al. 2007). Such biases 

may also be reduced by the employment of different PCR priming strategies, for 

example, single poly ’A’ to poly ‘C’ priming or random primers, which can also be 

used on trace amounts of DNA (Peng, Isaacson et al. 1994; Wong, Stillwell et al. 

1996; Zou, Ditty et al. 2003).  
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Figure 4.2 
Schematic depicting the impact of unequal coverage of the FMDV genome amplified in 

two long overlapping fragments. On a sliding scale of mutation frequency, blue dots 

indicate higher frequency mutations (least impacted by fluctuations in coverage), yellow 

dots indicate intermediate frequency mutations (can be impacted by extreme 

fluctuations in coverage) and white dots indicate lower frequency mutations (most 

impacted my fluctuations in coverage), which can either be undetected due to the low 

depth of coverage achieved for fragment 1 (white dots with red border) or detected due 

to the higher depth of coverage achieved for fragment 2 (white dots with green 

borders). 

 

 4.2.1c RT-PCR enzymes 
Introduction of errors into the target template sequence is predominantly due to 

the enzymes used during RT-PCR (Mullan, Kenny-Walsh et al. 2001; Malet, 

Belnard et al. 2003; Arezi and Hogrefe 2007; Domingo-Calap, Sentandreu et al. 

2009). 

  

As a non-expansive step, the conversion efficiency of the reverse transcriptase 

enzyme is an important intermediary in terms of how representative a PCR 

product is of an original viral population. The conversion efficiency of the Moloney 

murine leukemia virus (MMLV) reverse transcriptase has been calculated to be 
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S fragment 
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5’ UTR 
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approximately only 20% (Curry, McHale et al. 2002). However, the same study 

showed that a low starting template concentration can negatively impact the RNA-

to-cDNA conversion efficiency irrespective of the reverse transcriptase used. 

Therefore, in order to obtain high yields of quality cDNA, with full and accurate 

template representation, not only should a reverse transcriptase with high fidelity 

be used (Arezi and Hogrefe 2007) but, again, we see the importance of having a 

high starting template concentration. Bias can also be introduced if a reverse 

transcriptase without high temperature performance is used, especially when 

transcribing RNA with secondary structure or when working with specific 

oligonucleotide primers. 

  

Conversely, PCR sees the exponential amplification of the template nucleic acids 

(cDNA), where errors can be introduced with every cycle. However, when 

considering first strand cDNA synthesis using a 3’ – 5’ exonuclease proofreading 

MMLV RT enzyme, followed by second-strand synthesis and DNA amplification 

with a proofreading DNA polymerase, RT error rate is higher than polymerase 

error rate (Arezi and Hogrefe 2007) (details of different RT and PCR enzyme error 

rates are given in Table 4.4 in the current Chapter, section 4.3.4). The combined 

masking effect of RT and PCR artefacts on the underlying heterogeneity of the 

original viral population is demonstrated in Figure 4.3. Here, if naturally occurring 

mutations occur at a frequency similar to or lower than that of the combined 

artefacts introduced by RT and PCR, this level of population heterogeneity will be 

lost to genetic analysis (as indicated by gaps and faint dots within the viral swarm 

depicted in Figure 4.3). 
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Figure 4.3 

Schematic depicting the masking of authentic viral diversity (coloured dots indicate 

individual variants) by both RT (pink layer) and PCR (orange layer) introduced artefacts. 

Dot (variant) colour intensity indicative of variant frequency within the viral population: 

faintest dots equal lower frequency variants; brightest dots equal higher frequency 

variants. The fainter the variant, the more likely it is to be masked by RT-PCR artefacts.        
 

4.2.2 Objectives 
 4.2.2a Protocol optimization objectives 
The aim of this study was to therefore optimise the protocol used to generate 

sufficient FMDV genetic material for NGS on the Genome Analyser II platform 

(Illumina) by two long RT-PCR assays (PCR 1 and 2). The aim of this optimization 

was not only to improve protocol robustness but also to also minimise bias and 

experiment introduced artefacts. Unfortunately, it was neither financially nor 

practically possible to measure the impact of each element of protocol optimization 

by NGS. However, the alternative output of PCR product yield (‘NGS template’ 

yield) was used as an achievable measure of the success of each optimization 

step with the final goal of achieving an improved, robust assay detection limit. In 

terms of the minimization of artefact and bias introduction, this measure was 

based on the hypotheses that optimized production and standardization of NGS 

template (PCR product) would minimise both, for the reasons discussed in section 

4.2.1. 

 

 4.2.2b Clonal control study objectives 
The aim of this study was to better understand and quantify the cumulative 

introduction of artefacts into viral genomic sequences of FMDV during the 

experimental process, at the ultra-deep level, by NGS. Additionally, by more 
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accurately quantifying the total artefacts incurred during the production, and 

subsequent sequencing, of template DNA, a more precise measure of background 

sequence noise could be obtained. Above this frequency threshold, there can be 

relative confidence that the polymorphisms observed are genuine viral mutations. 

The experimental process included the optimised protocol described in the current 

Chapter; section 4.3, as well as library preparation for sequencing on the Genome 

Analyzer II platform (Illumina), as detailed in Appendix 1. 
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4.3 Protocol optimization 
The following section details an improved protocol for generating FMDV genetic 

material for NGS, taking into consideration the experimental features and impacts 

discussed in section 4.2.1. Protocol elements were optimized within the confines 

of the following three practical constraints:  

 

i) <80% of intact FMDV genome can be transported outside the restricted 

area in any one container at any one time (IAH Biosecurity regulations)  

ii) Sufficient length of product required for efficient fragmentation (as part 

of the Illumina platform library preparation) 

iii) Sufficient quantity of total DNA product required for sequencing 

(minimum of 700 ng as requested by the Glasgow Polyomics Facility at 

the time of protocol optimization) 

    

It should be noted that PCR priming strategies, such as random and single poly ‘A’ 

to poly ‘C’ priming, discussed in the current Chapter, section 4.2.1b, would not be 

possible within the confines of the above three practical constraints. 

 

The measures previously taken to achieve the aims set out in section 4.2.2a (as 

described in Chapter 3; section 3.3.1) had limitations as, without standardization, 

the potential for variations in the amplification dynamic between samples still 

existed. Additionally, further consideration and improvement was required in order 

to achieve these aims using a protocol that was both robust and able to effectively 

process multiple samples in a realistic timeframe. 

 

Elements of the protocol to be tested and optimized are broken down into four 

categories:  

! Primers  

! DNA purification 

! Total RNA extraction  

! RT and PCR enzymes  

! Quantification  

Each protocol element incorporates the previously optimized step. The 

‘Quantification’ step was not optimized itself but was used to standardise starting 
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template concentration. Figure 4.4 provides a basic schematic of the original 

protocol workflow.  

 

 

Figure 4.4 
Schematic of the protocol workflow for NGS template production. ‘PCR’ corresponds to 

the two long PCR assays (PCR1 and 2 that equates to genome fragment 1 and 2 

respectively. ‘NGS’, figures adapted from (Ansorge 2009), does not form part of the 

current optimization but is included as a reference to the entire process (NGS includes, I 

Library preparation II Cluster generation III Sequencing-by-synthesis).  

 

Although the ‘NGS’ process itself (see Figure 4.4) did not form part of the current 

optimization, impacts of this process, including read coverage, error and bias 

introduction, on mutation detection, are discussed in Chapter 1, section 1.5.2b.  

 

FMDV epithelium samples from the UK 2007 outbreak, held within the World 

Reference Laboratory (WRL) library at IAH, Pirbright, were used for protocol 

optimization. FMDV samples from this outbreak that had tested positive by ELISA 

(Ferris and Dawson 1988) were selected, as this virus was of the same strain as 

Total RNA Extraction

Quantification

RT

Product purification

PCR

Product purification

NGS
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that studied within Chapter 3 and 5 of this thesis. As discussed previously, the 

amount of viral RNA in biological samples is often relatively low, therefore, in order 

to test the sensitivity of the RT-PCR assays, a decimal titration series was made of 

test samples (10-1 to 10-4) using negative bovine epithelium suspension (provided 

by the WRL at Pirbright; also used as negative control during optimization) as a 

diluent. Therefore, unless otherwise stated, all optimisation steps following the first 

round of optimised PCR primer testing where carried out on diluted test samples, 

either at a single or multiple dilutions as stated above. The impact of each 

optimisation step on PCR product yield was assessed quantitatively by 

spectrophotometric analysis (Nanodrop, Labtech) and/or visually by gel 

electrophoresis. Although not a quantitative measurement, visualisation in this way 

provided a crude but cost effective way of demonstrating differences in yield as 

well as a means of assessing product size and integrity.  

 
4.3.1 Primers 
 4.3.1a PCR primers 
PCR primers used to amplify the two, long genome fragments (fragment 1 and 2) 

for the pilot study described in Chapter 3; section 3.3.1, were taken from those 

used by (Cottam, Wadsworth et al. 2008a). These two, long PCR assays (PCR1 

and 2 for the amplification of genome fragment 1 and 2 respectively), individually 

produced single products of the correct size. However, primer pair specifications 

within the pilot study protocol, such as coordination of primer pair melting 

temperature (Tm), had not been optimised. Using quantitative RT-PCR (Callahan, 

Brown et al. 2002), the limit of detection for the original two assays was estimated 

at approximately 108 copies of FMDV RNA per !l. Therefore, in order to improve 

the analytical sensitivity of the protocol, whilst limiting potential bias between 

genome fragments, the decision was made to develop new and improved primers 

within the same assay conditions. Consequently, except for the individual PCR 

primers used, PCR1 and 2 shared a single thermal cycle and master mix. 

  

Taking into account the practical constraints mentioned previously, suitable primer 

pairs needed to be designed so that as much of the FMDV genome was included, 

whilst continuing to omit the S fragment (as decribed in Chapter 3, section 3.3.1). 

The published genetic sequence of the inoculum used in the pilot study (GenBank 

sequence EU448369) was used to design new primers. OligoAnalyzer 3.1, a free 
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online sequence analysis tool provided by Integrated DNA Technologies 

(http://eu.idtdna.com/analyzer/Applications/OligoAnalyzer/) was used to estimate 

the Tm of all candidate primers, which were designed such that the Tm was within 

3oC of each other (within primer pairs).  

 

In summary, factors taken into account during primer design included: 

 

- Primer length 

- Primer Tm (range: 52 – 58oC)  

- Primer annealing temperature [Ta] (generally ~ 5 oC less than primer Tm) 

- GC content (range: 40-60%) 

- Presence of GC clamp 

- Avoidance of primer secondary structure 

- Avoidance of repeats (ATATAT) and runs (ACGGGGGG) 

- Avoidance of template secondary structure 

 

Deep sequence data, generated within Chapter 3, provided an opportunity to 

check mutation frequency at genomic sites within proposed annealing positions of 

all new primers. No mutations were found at frequencies >1% within any of the 

proposed annealing positions within this data set. However, this does not entirely 

preclude the possibility of mutations >1% ever occurring within these primer 

annealing regions or account for mutations <1% and therefore the introduction of 

bias via the selection of populations due to primer mismatches. However, in terms 

of what was practical and achievable, once the first round of candidate primer 

pairs had been designed, these were then tested as part of the PCR amplification 

process described in Chapter 3; section 3.3.1. Briefly, 3 !l of cDNA, was added to 

47 !l of master mix (5 !l 10x buffer, 2 !l 50mM MgSO4, 1 !l 10 mM 

deoxynucleotide triphosphate mix, 1 !l 10 mM forward primer, 1 !l 10 mM reverse 

primer, 0,25 !l Platinum Taq DNA Polymerase Hi-Fidelity [Invitrogen], 37 !l 

nuclease-free water). This master mix plus test cDNA were run on a PCR program 

cycle of initial denaturation at 94oC for 5 min and then 39 cycles of 94oC for 30 s, 

55oC for 30 s, and 72oC for 4 min, ending with incubation at 72oC for 7 min. 

Results of PCR reactions were visualized using a UV camera after running 2-10 !l 

of PCR product on a 0.7% Agarose gel (Severn Biotech) with 0.002% Ethidium 
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bromide (Invitrogen) at 90v for approximately 40 minutes. The quantitative DNA 

ladder BenchTop 1 Kb DNA ladder (Promega) was run alongside the products for 

comparative quantification of product size. 

  

Table 4.1 contains the details for the original primers used for PCR1 and 2 during 

the pilot study (Un-optimised) and those designed and chosen to be used for 

subsequent PCR assays (Optimised primers: PCR1i and PCR2i).  
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Table 4.1 Oligonucleotide primers used for the amplification of the 

FMDV genomes studied (Un-optimised and Optimised-1) 
 

PCR 
Primer1 

(OBFS) 

Location on 

genome 

(region) 

Amplicon 

size (nt) 
Primer Sequence (5' to 3') Tm

oC GC(%) 
U

n-
op

tim
is

ed
 

1 

370 F 

370-3862 

(5’UTR) 

4557 

CCCCCCCCCCCCCTAAG 63 82 

4926 R 

4908-49262 

(2C) 

AAGTCCTTGCCGTCAGGGT 59 58 

2 

3876 F 

3876-38932 

(VP1) 

4317 

AAATTGTGGCACCGGTGA 55 50 

8193 R 

8172-81932 

(3’UTR) 
TTTTTTTTTTTTTTGATTAAGG 43 14 

O
pt

im
is

ed
 

1i 

516+F 
499-5202 

(5’UTR) 

4065 

CCTTCGCTCGGAAGTAAAACGA 57 50 

4563 R 
4545-45632 

(2C) 
CCCGCTGCTTTTCAAGGAT 56 52 

2i 

4094 F 
4094-41112 

(2B) 

4033 

TCTCGACGAGGCCAAACC 58 66 

8126 R 
8109-81262 

(3’UTR) 
CTCCTAAGGTGTCGCGCG 58 57 

1 The last letter indicates a Forward (F) or Reverse (R) primer 
2 Numbering according to GenBank sequence EU448369 

 

After multiple primer pairs were tested (alternative primer details are included in 

Appendix 3), it became apparent that the success of the long PCR assays were 

dependent on template quality, since repeat freeze/thawing of test RNA resulted in 

a reduction in assay sensitivity. This consideration was therefore noted for all 

subsequent handling of biological samples.  

 

The optimal Ta for the new primers was determined empirically by gradient PCR 

(data not shown). Taking into account the empirically tested Ta results, as well as 

the need to standardise the amplification process across assays and limit non-
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specific priming, a single annealing temperature of 60oC was chosen. In order to 

test detection limit equivalency between PCR assays, using the ‘optimized’ 

primers and annealing temperature, in isolation, PCR amplification was conducted 

on a titration series of linearized pT7S3 plasmid (as discussed in the current 

Chapter, section 4.4). The detection limit of both assays was found to be 

equivalent (Figure 4.5). All bands were at the correct size (4065 and 4033 nts for 

PCR 1i and PCR 2i, respectively).  

 

 
Figure 4.5 
Agarose gel depicting PCR products on amplification of titrated, linearized 

O1Kaufbeuren plasmid. PCR1i and PCR2i primers (as Table 4.2).     

 

 4.3.1b RT primers 
Previous studies (Stangegaard, Dufva et al. 2006; Domingo-Calap, Sentandreu et 

al. 2009) have shown that bias may be introduced during RT using the oligo (dT) 

priming strategy employed during the pilot study, as described in Chapter 3. 

Therefore, alternative strategies were tested. A combination of random hexamers 

(Promega) and the oligo (dT) primer (UKFMD/Rev6), used in Chapter 3, was not 

found to improve the overall detection limit or equivalency of the subsequent two 

PCR assays after testing in triplicate (data not shown). 

   

Whereas random hexamers lead to the production of partial, short length cDNAs, it 

was hypothesized that two strategically placed FMDV specific RT primers may 
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lead to the production of more ‘fragment 1 and 2’ length cDNAs. It was therefore 

also hypothesised that two FMDV specific RT primers may minimise the 3’ bias 

associated with oligo (dT) RT priming. Table 4.2 provides genome position and 

details of the two RT primers tested for this ‘Dual’ priming strategy, which was 

compared to the oligo (dT) primer (UKFMD/Rev6) for the ‘Singular’ priming 

strategy. 

 

Table 4.2 Oligonucleotide primers used for reverse transcription 

RT 

Assay 
Primer name1 Primer sequence (5’ to 3’) Location on genome2 

‘Singular’ UKFMD/Rev6 GGCGGCCGCTTTTTTTTTTTTTTT Poly ‘A’ 

 
‘Dual’ 

OBFS-8193R TTTTTTTTTTTTTTGATTAAGG 8155-8176 
OBFS-4926R AAGTCCTTGCCGTCAGGGT 4908-4926 

1 The last letter indicates a Reverse (R) primer 
2 Numbering according to GenBank sequence EU448369 

Italicized nucleotides are FMDV specific  
 

The ‘Dual’ RT priming strategy was not found to improve the overall detection limit 

or equivalency of the subsequent PCR1 and 2 assay after testing in triplicate (data 

not shown). However, the use of the two FMDV specific primers, detailed in Table 

4.2, during RT was incorporated into the optimized protocol for the reasons stated 

above. 

 

After multiple testing of titrated test samples, using the RT and PCR priming 

strategies discussed above, the consistent detection limit of the optimized protocol 

was measured as 106 copies of FMDV RNA/!l. The detection limit was assessed 

by simultaneously conducting the RT-PCR assay and qRT-PCR on the same 

titrated test sample. The resulting PCR product was then visualized on an agarose 

gel, whilst yield was measured on a Nanodrop Spectrophotometer and equated to 

starting RNA template concentration, measured by qRT-PCR (as detailed in 

Figure 4.6 and Table 4.3 respectively). 
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Figure 4.6 
Agarose gel depicting PCR products following the final optimized RT-PCR strategy, 

using 2x RT primers, OBFS-8193R and – 4926R, followed by PCR amplification of 

FMDV genomic fragments 1 and 2 using PCR1i and PCR2i primer pairs. 
 

Table 4.3 qRT-PCR and Nanodrop measurements for test sample titration series 

(Rsq: 0.97, Efficiency: 86%) 
Dilution FMDV RNA copies/"l PCR product yield (ng/"l) 
  PCR1 (fragment 1) PCR2 (fragment 2) 

10-1 3.5 x 107 12.0 13.4 
10-2 3.4 x 106 9.7 8.2 
10-3 3.9 x 105 7.4 8.4 
10-4 6.3 x 104 Not measured Not measured 

 

Above this threshold, a biological sample could be processed and consistently 

produce sufficient PCR product for sequencing, i.e. combined fragment 1 and 2 

totalling at least 700 ng. However, the robustness of this limit of detection was very 

much dependent on the quality of template RNA; samples that were freeze/thawed 

more than twice resulted in decreased assay sensitivity. Therefore caution should 

be exercised when using this assay to process RNA of questionable quality, for 

example, partially degraded or old RNA. As well as standardization of template 

starting concentration, which will be discussed in the current Chapter, section 
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4.3.5, all template RNA was freeze/thawed once, in order to standardise template 

quality as much as possible between samples.   

Optimized primer pairs, PCR1i and PCR2i, were used in all subsequent 

experimental work and are referred to as PCR1 and PCR2 (replacing the original 

PCR1 and PCR2 primers). 

 

4.3.2 DNA purification  
The DNA purification step is required to remove unincorporated primers after RT 

and PCR; however it is not a totally efficient process. The recovery of DNA is 

dependent on product size. The DNA recovery capacity of the illustra GFX PCR 

DNA Gel Band Purification Kit, by GE Healthcare, for template fragment sizes 

between 6,000 and 10,000 bp is quoted by the manufacturers as 68.1% and 

42.6% respectively. Alternatively, the QIAquick PCR Purification Kit, for the 

purification of PCR products, 100 bp to 10 kb, by QIAGEN, quotes a DNA recovery 

capacity of between 90 and 95% for template fragments sizes between 100 and 

10,000 bp. This element of the protocol presented a quick and easy step to test 

and could also increase protocol robustness in terms of achieving sufficient 

sequencing template. Therefore the two purification kits discussed above were 

tested to see which resulted in the greatest recovery of DNA. Figure 4.7 shows an 

improved assay detection limit, after both RT and PCR purification steps, using the 

QIAquick (QIAGEN) kit compared to the GFX kit (GE Healthcare). The 10-3 dilution 

of test sample was equivalent to an average of 8.1 and 5.7 ng/!l for PCR 1 and 2 

respectively for the QIAGEN kit and 7.4 and 3.2 ng/!l respectively for the GFX kit, 

as measured using the nanodrop spectrophotometer. The gel images in Figure 4.7 

are representative of a test performed in triplicate. 
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Figure 4.7 
Representative agarose gel depicting alternative DNA purification kits; the illustra GFX 

PCR DNA Gel Band Purification Kit, by GE Healthcare (‘GFX’) and the QIAquick PCR 

Purification Kit by QIAGEN (‘QIA’) for a) PCR1 and b) PCR2.   

 

4.3.3 Total RNA extraction      
The limits of detection for two commonly employed RNA extraction techniques 

were compared. Total RNA extraction using TRIzol (Invitrogen, Paisley, UK), takes 

approximately 1.5 hours (operator dependent). In comparison, the equivalent 

extraction using the RNeasy Mini kit (Qiagen, Crawley, West Sussex), takes 

approximately 30 minutes (operator dependent). Combining greater sensitivity with 

a more rapid processing time would reduce the time taken to process multiple 

samples and potentially improve subsequent product yield from low viral load 

biological samples by the current assay. Therefore, the above RNA extraction 

methods were used on titrated test samples, in duplicate. Products of subsequent 

RT and PCR amplification were then compared, where the TRIzol extraction 

method lead to a higher limit of detection, for both fragments compared to the 

RNeasy kit method (Figure 4.8 a and b gel images are representative of duplicate 

test). The slightly brighter band at the 10-4 dilution for PCR1 compared to PCR2 

(Figure 4.8a) was not a consistent observation and could have been cause by 

inherent tube-to-tube variation in PCR product yield or a pipetting error in this 

instance. The Future use of additional RNA controls to account for such variation 

is discussed in Chapter 7.    
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Figure 4.8 
Comparison of total RNA extraction methods using either a) the TRIzol method or b) the 

RNeasy kit method. Representative of duplicate tests. 

  

Therefore, although longer in processing time, the higher limit of detection 

provided by TRIzol extraction, meant this method was selected for use.  

 

Automation by use of robotic extraction was disregarded due to decreased yield as 

compared to manual extractions (S Reid and A Shaw personal communication). 

Limiting contamination was also a priority and therefore samples were processed 

individually.     

 

4.3.4 RT-PCR enzymes 
A literature search of peer reviewed published literature and enzyme 

manufacturer’s documentation, revealed RT and PCR enzymes with reportedly 

improved fidelity, compared to those enzymes used in the original pilot study (see 

Table 4.4 for details). 
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Table 4.4 Details of two of the highest fidelity RT and PCR enzymes 

(commercially available at time of protocol optimization) plus their non-

proofreading counterparts  
RT/PCR Manufacturer Enzyme name Error rate 

RT 
Stratagene AccuscriptTM 1 in 62,200 bases2 
Invitrogen Superscript III®1 1 in 35,000 bases2 
- MMLV 1 in 30,000 bases3 

PCR 

Stratagene PfuUltraTM II Fusion 1 in 2,500,000 bases2 
Invitrogen Platinum® High Fidelity Taq1 1 in 550,000 bases2 
- Non-proofreading Taq 1 in 37,000 to 125,000 

bases3 
1 Used in the original pilot study 
2 Quoted by manufacturer

 

3 Quoted in reference (Arezi and Hogrefe 2007) 
 

The higher fidelity of both enzymes, combined with the reportedly improved 

processivity of PfuUltra II Fusion DNA polymerase, would satisfy the requirements 

necessary for the fulfilment of the study aims, within the constraints stated 

previously. The following section therefore details the testing of these alternative 

RT and PCR enzymes. 

 

 4.3.4a RT enzyme  
Multiple attempts, using different RNA samples, were made to amplify both FMDV 

genome fragments, using the optimized protocol, but following RT with 

Stratagene’s Accuscript enzyme (as per the manufacturer’s instructions for both 

master mix components and thermal cycle). However, the subsequent detection 

limit of the PCR1i assay, following RT using the Accuscript enzyme, was 10 fold 

less compared to the same assay following RT using the Superscript III enzyme 

(Figure 4.9 a). This discrepancy was even more pronounced for the PCR2i assay, 

where the Accuscript enzyme was found to be 1000 fold less sensitive (Figure 4.9 

a). All bands were at the correct size (4065 and 4033 nts for PCR1 and PCR2, 

respectively). 
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Figure 4.9 
Agarose gel depicting a) PCR1 and 2 product following RT using either Stratagene’s 

Accuscript or Invitrogen’s Supperscript III RT enzymes or b) PCR set 4 and 20 (Cottam, 

Wadsworth et al. 2008a) product following RT using Stratagene’s Accuscript RT enzyme 

only. 

 

Interestingly, the detection limit was improved by using a  PCR assay targeting a 

shorter fragment (700 bp), using primer set 20 (primer details in the supplementary 

material of (Cottam, Wadsworth et al. 2008a)), which sits near the 3’ end of the 

PCR2 fragment, after using the Accuscript RT enzyme (Figure 4.9 b). The short 

PCR assay (700 bp) using primer set 4 (Cottam, Wadsworth et al. 2008a), which 

sits near the 5’ end of the PCR1 fragment, also demonstrated an improved 

detection limit after using the Accuscript RT enzyme. These results indicated that 

successful RT using the Accuscript enzyme may have been more dependent on 

high quality RNA compared to the Superscript III enzyme. As no significant 

difference between mutations incurred by either RT enzymes tested here was 

found when studied previously (Cottam, King et al. 2009b), the Superscript III RT 

enzyme was selected for use.  

 

 4.3.4b PCR enzyme 
Multiple attempts were also made to amplify both FMDV genome fragments, using 

the same optimized protocol as described above, but using Stratagene’s PFU 

Ultra II Fusion polymerase during PCR assays (as per the manufacturer’s 

instructions for both master mix components and thermal cycle). However, this 

polymerase enzyme consistently resulted in a high molecular weight smear across 

all three dilutions of initial virus tested (Figure 4.10). These results indicated that a 
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substantial degree of non-specific amplification occurred using Stratagene’s 

PFUUltra II Fusion polymerase. Conversely, Platinum High Fidelity Taq produced 

bands at the correct size (4065 and 4033 nts for PCR 1i and PCR 2i, respectively). 

It should be noted, the reduced limit of detection for both PCR assays (faint bands 

only visible down to 10-2 dilution) was due to a decrease in RNA template quality 

caused by repeat freeze/thawing. 

 

PFUUltra II Fusion polymerase is reported as having a 4 fold higher fidelity, 

compared to Platinum High Fidelity Taq. However, once a PCR enzyme with 3’ – 

5’ exonuclease proofreading capacity is being used, it is the proofreading RT 

enzyme that more significantly contributes to experimental error introduction (Arezi 

and Hogrefe 2007). Therefore, no more attempts were made to incorporate 

PFUUltra II Fusion polymerase into the protocol and Platinum High Fidelity Taq 

was selected for use. 

 

 
Figure 4.10 
Agarose gel depicting PCR1 and 2 products following amplification using either 

Invitrogen’s Platinum High Fidelity Taq or Stratagene’s PFUUltra II Fusion polymerase. 

 

4.3.5 Quantification by qRT-PCR 
In order to standardise starting template concentration across all samples (as 

discussed in section 4.2.1), initial FMDV RNA copy number was quantified using 

! "#$" "#$% "#$& '$(

)*+" )*+% )*+" )*+%

),-./01234/35/ )566,.7- 883519/:0

"#$" "#$% "#$& '$( "#$" "#$% "#$& '$( "#$" "#$% "#$& '$(



 Chapter 4 
 

131 
 

external standards. The FMDV RNA standard was synthesized in vitro as 

previously described (Quan, Murphy et al. 2004). Briefly, linearization of a 

pGEM®-T Easy plasmid vector (Promega), containing a 950 base pair insert from 

the 3D region of FMDV O/KUW/4/97, was achieved by Nde I digestion (Promega), 

as per the enzyme manufacturer’s instructions. In vitro transcription to generate 

FMDV RNA was then performed using a MEGAScript T7 kit by Ambion, UK 

(protocol including in Appendix 3). Finally, plasmid DNA was removed by adding 1 

!l of TURBO DNase (supplied with the MEGAScript T7 kit) and incubating the 

mixture for 30 min at 37oC. qRT-PCR, with and without RT enzyme, demonstrated 

that this product was 99.999% RNA. The quality and size of synthesised RNA was 

measured in duplicate using the RNA 6000 Nano Kit on the Agilent 2100 

Bioanalyzer, where an RNA template pulsing time of 31.10 seconds was 

measured, equating to a fragment size of approximately 950 nt (see Figure 4.11 a 

and b). 

 

  

Figure 4.11 

RNA quality analysis performed on the Agilent 2100 Bioanalyzer: a) Electropherogram, 

b) Reconstructed gel image. 

 

Transcribed RNA was quantified using a Nanodrop spectrophotometer, giving an 

average (between the duplicates) of 774 ng/!l (260/280 ratio: 2.15). The following 

equation was used to calculate the number of template RNA copies per ml of 

standard: 

Copies = (6.023 x 1023 x weight g/ml of RNA) / molecular weight (ssRNA) 

Note, this equation was adapted from (Yin, Shackel et al. 2001).  
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Aliquots of undiluted RNA standard were made and stored at -80oC and a fresh 

decimal titration series made for each qRT-PCR quantification assay in order to 

minimise loss of template through repeat freeze/thawing. A 10 fold titration series 

from 10-5 to 10-11 was made for each qRT-PCR quantification by adding 5!l RNA 

to 45!l of sterile nuclease free water, which, using the above equation, equated to 

1.3 x 107 to 1.3 x 101 FMDV RNA copies/!l of standard. 

 

qRT-PCR was performed using the above synthesized RNA standard and an 

assay which can detect all serotypes of FMDV, as described previously (Callahan, 

Brown et al. 2002). Briefly, the SuperScript III and Platinum One-step qRT-PCR 

System from Invitrogen was used, where 5 !l of RNA was added to 20 !l of 

master mix (12.5 !l 2x Reaction Mix [a buffer containing 0.4 mM of each dNTP 

and 6 mM MgSO4], 1.5 !l nuclease free water, 2 !l 10mM Callahan 3DForward 

primer [5’ ACT GGG TTT TAC AAA CCT GTG A 3’], 2 !l 10 mM Callahan 

3DReverse primer [GCG AGT CCT GCC ACG GA 3’], 1.5 !l 5 mM Callahan 3DP 

Taqman probe [5’ TCC TTT GCA CGC CGT GGG AC 3’], and 0.5 !l 

SuperScriptTM III / Platinum® Taq enzyme mix). The above master mix plus test 

RNA were run on a thermal program of a single cycle of 60oC for 30 s, followed by 

a single cycle of 95oC for 10 min, and then 95oC for 15 s followed by 60oC for 1 

min for 50 cycles. The one-step qRT-PCR protocol is included in Appendix 3. qRT-

PCR assays were performed on a Stratagene Mx3005P machine (Agilent 

Technologies, UK). 
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4.3.6 Optimization summary 
A method to amplify the near complete genome of O1 BFS1860 FMDV through 

two overlapping PCR products, each ~ 4kb in length, was established (see Figure 

4.12 for optimized PCR fragment positions and lengths). This optimized protocol 

was 2 logs more sensitive than that used during the pilot study and was 

standardized between FMDV genome fragments and across samples in order to 

minimise the introduction of sequence bias. Failure to incorporate new RT-PCR 

enzymes of increased fidelity meant the error rate during both of these processes 

would have remained the same between the pilot and ‘Optimized’ protocol. 

 

 
Figure 4.12 
Schematic of fragment 1 and 2 positions relative to the FMDV complete genome, as 

amplified by optimised PCR1 and 2 assays respectively.  

 

Figure 4.13 outlines the overall protocol for this optimized method. 
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Figure 4.13 

Schematic of the optimized protocol workflow for NGS template production. Optimized 

protocol elements shown in bold. ‘PCR’ corresponds to the two long PCR assays (PCR1 

and 2 that equates to genome fragment 1 and 2 respectively. ‘NGS’, figures adapted 

from (Ansorge 2009), does not form part of the current optimization but is included as a 

reference to the entire process (NGS includes, I Library preparation II Cluster generation 

III Sequencing-by-synthesis). 

 

Figure 4.14 shows the resulting product yield from all PCR1 and 2 assays, using 

this optimized protocol, for calf 2 (A2) in the transmission chain discussed in 

Chapter 5. The total range of PCR product concentration, between genome 

fragments and samples, was 20 – 60 ng/!l, with an average PCR1 concentration 

of 39.8 ng/!l and an average PCR2 concentration of 36.9 ng/!l. No statistical 

difference was found between PCR1 and 2 product yields at the 95% CI using the 

non-parametric Mann-Whitney test implemented within Minitab 15. It is 

hypothesized that the variation in PCR product yield, between samples, was a 

Total RNA Extraction by the TRIzol method

Quantification using an FMDV RNA standard curve

RT using two FMDV specific primers

Product purification using the QIAquick kit (QIAGEN)

PCR using optimized primers

Product purification as above

NGS
! !! !!!

Standardization of sample concentration to 106 RNA 
copies
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result of variations in original RNA template quality. PCR product was also 

standardized across all samples before ‘Library preparation’ (step I of ‘NGS’ in 

Figure 4.13). 

 

 
Figure 4.14 
Distribution of PCR product concentrations for the final optimised PCR1 (grey bars) and 

PCR2 (black bars) for all nine samples from calf 2 (A2) described in Chapter 5. 
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4.4 Clonal control study 
The following section describes the assessment of artefact introduction during 

sequencing template production. By more accurately quantifying the total artefacts 

incurred during production, and subsequent sequencing, of template DNA, a more 

authentic measure of background sequence noise could be obtained. This process 

can be broken down into three main steps, each of which involves the use of 

commercial enzymes, each having an inherent error rate, as detailed in Table 4.5. 

 

Table 4.5 Details of enzymes and amplification cycle number used during 

sequencing template production 

Step Enzyme Error rate Manufacturer 

Number of 

amplification cycles 

RT 

Superscript III®1 1 in 35,000 

bases2 Invitrogen 
- 

PCR 

Platinum® High 

Fidelity Taq1 

1 in 550,000 

bases2 Invitrogen 
39 

Library 

preparation 

PCR (Lp PCR) 

Phusion® DNA 

Polymerase 

1 in 

2,500,000 

bases2 Finnymes Oy 

10 

1 Used in the original pilot study 
2 Quoted by manufacturer 

- Non amplification step 
 

In order to better understand the artefacts generated within NGS reads by this 

process, the cumulative effect of these three steps needed to be measured. To 

this end, the pT7S3 plasmid (Ellard, Drew et al. 1999) (as described in (Botner, 

Kakker et al. 2011) and also discussed in Chapter 6, was kindly provided by 

Veronica Fowler (IAH, Pirbright). From this plasmid, four ‘clone’ controls, spanning 

the three main areas of artefact introduction during sequencing template 

production (detailed in Table 4.5), were produced. Figure 4.15 depicts the controls 

used over this cumulative process. 
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Figure 4.15 
Schematic showing the controls used to measure the cumulative effect of the three 

main experimental steps in sequencing template production: RT, PCR and Library 

preparation (Lp) PCR. The ‘RT-PCR control’ contained T7 transcription (Tran.) as an 

additional point of error introduction  

 

A standard protocol for the transformation, growth and purification of plasmid DNA 

was followed. Plasmid DNA that had been purified using a QIAprep Miniprep kit 

(QIAGEN) was pooled to account for any variation between different bacterial 

colonies. All controls therefore contained artefacts from the bacterial growth 

system used (E.coli), before the processing steps depicted in Figure 4.15. Studies 

of Escherichia coli replication, in the absence of DNA mismatch repair and 

external environmental stress, suggest an in vivo nt error rate in the range of 1 

every 107 to 108 nt copied (Schaaper 1993). However, in comparison to a 

biological sample of FMDV, the starting template for each control represented a 

relatively clonal population. The ‘RT PCR control’ would have incurred additional 

artefacts during in vitro transcription of RNA by T7 polymerase, as part of the 

MEGAscript kit (Ambion), which has a reported error rate of 1 in 500,000 bases. 
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In addition, all controls would have incurred artefacts during cluster generation by 

bridge amplification and because of base miscalls during Illumina sequencing, 

post the processing steps depicted in Figure 4.15. However, the artefacts incurred 

during these final sequencing steps are addressed in the read filtering and 

trimming as part of the NGS analysis pipeline (detailed in Supplementary Table S2 

in Appendix 4).  

 

It should be noted that the number of amplification cycles quoted for the ‘PCR 

High control’ (39 cycles), was the number of cycles used throughout this study, 

unless otherwise stated. The total quantity of input DNA for the library preparation 

step was also standardized across all controls.  

 

4.4.1 RT-PCR control  
In vitro transcription of O1K B64 RNA was achieved using the same protocol as 

described in section 4.3.5, albeit following plasmid linearization with a template 

specific restriction enzyme (Hpa I from New England Biolabs). Again, any 

remaining plasmid DNA was digested using TURBO DNase, as per the 

MEGAScript T7 kit instructions (Ambion).Transcribed O1K B64 RNA (8322 nt in 

length) was quantified by qRT-PCR (as described in the current chapter, section 

4.3.5), in order to ensure > 500,000 RNA copies were processed, limiting the 

probability of genome re-sampling. Following quantification, RT-PCR, according to 

the optimized protocol described in the current chapter, section 4.3, was 

performed on the transcribed RNA. However, a small number of changes were 

made within the PCR2 fragment primers (PT7S3 4094 F 5’ 

TCTCGACGAAGCCAAACC 3’ and PT7S3 8126 R 5’ CTCCTACGGTGTCGCACG 
3’, changed nt highlighted in bold) and within the RT2 primer (PT7S3 8193 R 5’ 

GGAATTGGTTTTTTTTTTTTTT 3’, changed nt highlighted in bold). These changes 

were made to accommodate unique nt substitutions present in the clone. Primer 

Tm and amplicon size remained the same. Subsequent PCR1 and 2 amplification 

resulted in single products of the correct sizes (4065 and 4033 nts for PCR 1 and 

PCR 2, respectively), which were combined in equimolar amounts before 

sequencing, as described in Chapter 3.  
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4.4.2 PCR High and Low control 
Both PCR controls came from the same pool of linearized pT7S3-O1K B64 

plasmid as used for the production of the ‘RT-PCR control’. Linearized plasmid 

was quantified using a Nanodrop spectrophotometer, giving an average of 44.8 

ng/!l (260/280 ratio: 1.96). The number of template DNA copies per ml was then 

calculated using the same equation as that given in the current Chapter, section 

4.3.5 but according to the molecular weight for double stranded DNA (dsDNA). 

 

Two 10 fold titration series were made by adding 5!l linearized plasmid to 45!l of 

sterile nuclease free water, one from 10-1 to 10-4 (Titration series 1) and one from 

neat to 10-4 (Titration series 2), which, using the above equation, equated to a total 

range of 109 to 105 plasmid DNA copies/!l. Linearized plasmid was also quantified 

by qRT-PCR, as described in the current chapter, section 4.3.5, which measured 2 

logs more DNA per dilution. However, RNA standards were used and therefore 

over-estimation would be expected due to there being no equivalent RT of the 

template DNA.  

 

PCR1 and 2, as part of the optimized protocol described in the current chapter, 

section 4.3, was then used to amplify Titration series 1 for 39 cycles and Titration 

series 2 for 19 cycles. Within Titration series 1, the 10-3 dilution resulted in single 

products of the correct size (4065 and 4033 nts for PCR 1 and PCR 2, 

respectively), after 39 cycles (‘PCR High’). Within Titration series 2, neat linearized 

plasmid resulted in single products of the correct size (as above), after 19 cycles 

(‘PCR Low’). Any remaining plasmid DNA was digested using the DPN1 restriction 

enzyme, as per the manufacturer’s instructions (New England Biolabs). The two 

fragments of each PCR control were combined in equimolar amounts before 

sequencing, as described in Chapter 3. 

   

4.4.3 Library preparation PCR control  
The Library preparation PCR or ‘Lp PCR control’ came from the same pool of 

pT7S3-O1K B64 plasmid used to produce all three preceding controls. Biosecurity 

regulations held at the IAH stipulate that no more than 80% of the intact FMDV 

genome can be transported outside the restricted area of the Pirbright Laboratory 

in any one container at any one time. Therefore, NEBcutter V2.0 (available via the 

link: http://tools.neb.com/NEBcutter2/) was used to find an appropriate restriction 
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enzyme to produce such a fragment from the circular pT7S3-O1K B64 plasmid. 

Two fragments were created following Pst I digestion. The target plasmid 

fragment, containing 80% of the FMDV genome (minus part of 3C through to poly 

‘A’ tail), was separated from the second fragment using the QIAquick Gel 

Extraction Kit, as per the manufacturer’s instructions (QIAGEN). In order to 

produce sufficient product for NGS, five gel extractions were performed and then 

pooled. 

 

4.4.4 Biological samples 
Two biological FMDV samples that had been through the same experimental 
process for sequencing template production were included in subsequent analysis. 
 

4.4.5 Results  
Four ‘clone’ controls, spanning the three main areas of error introduction during 

sequencing template production, were sequenced by NGS on the Illumina 

Genome Analyzer II platform. All validation and analysis of sequence diversity was 

as described in Chapter 3, section 3.3, albeit using the nucleotide sequence of the 

linearized pT7S3-O1K B64 plasmid (kindly provided by Veronica Fowler, IAH, 

Pirbright) as the reference sequence to which all reads were aligned.   

Briefly, site-specific mismatch frequencies were grouped into discrete bins so that 

proportions of sites experiencing different mismatch frequencies could be 

examined, thereby obtaining a comprehensive picture of the mutation spectrum in 

each control population (Figure 4.16). This analysis clearly showed the 

accumulation of low frequency nucleotide artefacts incurred during the 

experimental process. The ‘Lp PCR’ control indicates the lowest mutation 

spectrum with a peak at around 0.05%. The mutation spectrums for the PCR Low 

and PCR high controls then shift towards higher error frequencies as more PCR 

cycles are added. The RT-PCR control shifts further towards higher error 

frequency with addition of the RT step (peak height between 0.05 and 1%).  
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Figure 4.16 
Graph showing the proportion and frequency of mismatches against the pT7S3-O1K B64 

plasmid reference sequence for all four controls plus biological sample 1 and 2. Moving 

from the left to the right-hand side of the graph, the large peaks on the left indicate that 

the majority of sites exhibit low frequency mismatches (mutations), whereas fewer sites 

exhibit high frequency mismatches, as indicated by smaller peaks on the right, but these 

occur more frequently in the biological samples compared to the controls.      

 

The majority of errors within the controls were at lower frequencies than those 

mutations exhibited within ‘Biological sample 1’ (Figure 4.16). However, the 

genetic diversity within ‘Biological sample 2’ was less than ‘Biological sample 1’, 

and therefore closer to that seen in the RT-PCR control, until a frequency of 

around 0.5% where the traces began to substantially diverge. When the mutation 

spectrum of both biological samples was compared to that of the RT-PCR control, 

it was found that 95% of mutations above 0.5% occurred within the biological 

samples and not in the RT-PCR control. The process of measuring genetic 

diversity within biological samples was as described in Chapter 3 and 5.  
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4.5 Discussion 
An efficient and robust method was developed to generate sufficient FMDV 

genetic material for NGS on the Genome Analyzer II platform (Illumina), by two, 

long PCR assays. The improved sensitivity of the optimized protocol meant a 

greater number of biological samples could be analysed by NGS in the future.  

 

Generally, the dependence of an RT-PCR assay on high quality RNA increases 

with amplicon length. Unfortunately, RNA is significantly more labile than DNA 

therefore often resulting in RNA template degradation. The combined 

requirements of the Glasgow Polyomics Facility for DNA fragmentation and IAH 

biosecurity, necessitated the use of two long PCR assays. Therefore, future 

projects of this type would benefit significantly from either an ‘in-house’ NGS 

service and/or alternative fragmentation methods, in terms of ease and robustness 

of sequencing template production from samples of low initial virus concentration. 

 

In relation to quantifying the detection limit of this protocol, it is important to note 

that a discrepancy existed between the assay used for RNA quantification by the 

qRT-PCR method and that used for the two long PCR amplifications described in 

the current chapter. This discrepancy, in essence, is caused by the greater 

amplicon size of the two long PCR assays compared to that of qRT-PCR. The 

majority of RNA, including partially degraded RNA, would have been quantified by 

the qRT-PCR assay, with an amplicon length of 106 nt. Conversely, only high 

quality (almost full length) RNA would have been picked up by each of the two 

long PCR assays, both with an approximate amplicon length of 4000 nt. This 

discrepancy may therefore explain the relatively high apparent detection limit of 

the two long PCR assays (final starting template concentration set at 106 viral RNA 

copies/"l), determined simultaneously by the above qRT-PCR assay. This starting 

template concentration was chosen as it was the one most consistently detected 

by the two long assays. However, the detection limit of the assay is also very 

much dependent on RNA template quality. 

 

While reducing the number of PCR cycles would have inevitably reduced the 

amount of sequence error introduced at the amplification stage, as demonstrated 

in the current chapter, section 4.4, it would also impact yield. Therefore, the 
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decision was made not to reduce cycle number as this would lead to the exclusion 

of too many biological samples when using the two long PCR assays. The same 

RNA extraction protocol was used for all samples, rather than performing 

optimised extractions per sample type, in order to further standardise the protocol 

and limit the potential introduction of bias.  

  

A better understanding of the introduction of errors into viral genomic sequences 

during experimental processing of FMDV samples, at the ultra-deep level by NGS, 

was obtained using four ‘clone’ controls. A single control, derived from relatively 

clonal, full-length infectious RNA (transcribed from the linearized pT7S3-O1K B64 

plasmid), gave a measure of the total artefacts incurred during sequence template 

production. The mutation spectrum of this control was compared against that 

obtained for two biological samples, one of which contained less diversity, i.e. a 

narrower and lower mutation spectrum, than the other. A more conservative 

estimate of 0.5%, taking into account the sample containing less diversity 

(Biological sample 2), was made. Above this frequency threshold we can be 

confident that 95% of the polymorphisms observed are genuine viral mutations.  

 

Previous work has been conducted, which also used plasmid controls to calculate 

such a threshold (Margeridon-Thermet, Shulman et al. 2009; Mitsuya, Varghese et 

al. 2008; Solmone, Vincenti et al. 2009; Varghese, Shahriar et al. 2009; Wang, 

Mitsuya et al. 2007) (as reviewed in Radford, Chapman et al. 2012). Some studies 

on HIV-1 (Mitsuya, Varghese et al. 2008; Varghese, Shahriar et al. 2009) and 

hepatitis B virus (Margeridon-Thermet, Shulman et al. 2009) used a similar 

technique, comparing mutation frequencies observed within the plasmid controls 

to those within biological samples. An alternative threshold of 2.0% has been 

established (Margeridon-Thermet, Shulman et al. 2009; Mitsuya, Varghese et al. 

2008; Varghese, Shahriar et al. 2009), above which the authors calculated very 

low probabilities of artefactual mutations (equivalent to being confident that 99.5% 

of polymorphisms observed above this threshold are genuine viral mutations). 

Both the study by Solmone el al. (2009) and Wang et al. (2007) sequenced 

plasmid controls by both ultra-deep pyrosequencing and the Sanger method in 

parallel. Taking into account the error rates within both homopolymeric and non-

homopolymeric regions and assuming pyrosequencing to be more error prone, 
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any differences then observed between the two methods were considered a 

product of this method (Solmone, Vincenti et al. 2009; Wang, Mitsuya et al. 2007). 

Solmone et al. (2009) established a mutation frequency threshold of 1%. 

Conversely, Wang et al. (2007) doesn’t define the sensitivity of ultra-deep 

pyrosequencing due to sample specific variations in a number of influencing 

factors including number of starting templates, read coverage and enzyme 

introduced errors. All of these potential influences on the calculation of a mutation 

frequency threshold were taken into account here, as was RT introduced error, 

which was lacking in the aforementioned studies.      

 

Future work would include repeats of this experiment to ascertain the robustness 

of this threshold and assess the need to include such a control with each new 

batch of samples. However, by more accurately measuring errors incurred during 

individual steps, by use of the three additional controls, three further estimations 

may be more precisely made: 1) starting population diversity (in this case incurred 

during bacterial growth and T7 transcription), 2) polymerase error rate and 3) RT 

error rate. To this end, the sequencing data from this clonal control study will be 

used as the basis for collaboration with a mathematical modeller, Richard Orton 

(University of Glasgow) to estimate mutation parameters associated with different 

parts of this sample preparation pipeline. 

   

Measures have been taken to improve the faithful representation of viral 

populations for analysis by NGS. These measures become increasingly important 

as attention is focused on lower frequency polymorphisms in the viral swarm. In 

the absence of direct high fidelity RNA sequencing, further understanding and 

reduction of these artefactual mutations and bias is required, in order to 

investigate the diversity of a viral population below 0.5%. 
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5.1 Summary 
RNA virus populations within samples are highly heterogeneous, containing a 

large number of minority sequence variants which can potentially be transmitted to 

other susceptible hosts. Consequently, consensus genome sequences provide an 

incomplete picture of within- and between-host viral evolution and the dynamics of 

these viral populations during transmission. Foot-and-mouth disease virus (FMDV) 

is an RNA virus that can spread through the circulatory system of a host to create 

multiple lesions in distant epithelia, each of them potentially undergoing 

independent evolution and seeding subsequent transmission events. The Illumina 

Genome Analyzer platform was used to sequence 18 FMDV samples collected 

from a chain of sequentially infected cattle, to obtain snap-shots of the evolving 

population structures within these different hosts, and to understand how the 

population structures are influenced by transmission. Analyses of the mutation 

spectra of the samples reveal polymorphisms >0.5% at between 21 and 146 sites 

across the genome, while 13 sites acquire mutations in excess of consensus 

frequency (50%). These results highlight that a number of minority variants can be 

transmitted during host-to-host infection events, while the size of the bottlenecks 

appear to be narrower (i.e. tighter) between samples from the same host. This 

suggests strong intra-host founding effects and a rich within-host viral diversity. 

The dynamics of minority variants are dominated by genetic drift rather than a 

strong selective pressure, with the consequence that populations collected in the 

same host can be more divergent than populations observed in different hosts. 
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5.2 Introduction 
Foot-and-mouth disease virus (FMDV) is a positive sense RNA virus, belonging to 

the Picornaviridae family, and the causative agent of the highly contagious and 

economically serious foot-and-mouth disease (FMD). RNA viruses evolve rapidly 

due to their large population size, high replication rate and poor proof-reading 

ability of their RNA-dependent RNA polymerase (quoted mutation rates commonly 

fall in the range of 10-3 – 10-5 per nt per transcription cycle (Duffy, Shackelton et al. 

2008)). Within their hosts these viruses exist as complex, heterogeneous 

populations, comprising non-identical genome sequences (Eigen 1971c; Eigen 

1978; Holmes and Moya 2002a). Much of the genetic variation within FMDV 

populations is thought to be driven by neutral selection or to be under varying 

levels of purifying selection, with evidence for positive selection observed in only a 

small fraction of capsid codons perhaps in response to interaction with the host 

immune system (Haydon, Bastos et al. 2001). To facilitate rapid replication and 

intra-host dissemination, FMDV has evolved specific mechanisms to evade the 

early innate and adaptive immune responses, as reviewed by Golde, de Los 

Santos et al. 2011. Infected hosts typically show clinical signs of FMD within 2-6 

days post exposure that include vesicles on the coronary bands of the feet, in the 

mouth and on the tongue and teats (Alexandersen, Oleksiewicz et al. 2001). 

Although alternative primary sites of replication have been studied (for a review, 

see (Arzt, Juleff et al. 2011)) rapid dissemination of FMDV from host entry most 

likely follows initial replication in the pharyngeal area, passing into the systemic 

circulation (Burrows, Mann et al. 1981; Alexandersen, Zhang et al. 2002b; 

Alexandersen, Quan et al. 2003), where the virus is thought not to replicate and 

from which virus is transported to other distant, non-contiguous epithelia, including 

those of the feet, where the virus can once again replicate.  

 

As a consequence of this transport to the discrete replication sites and subsequent 

establishment of new local foci, the initial viral population undergoes an intra-host 

‘bottlenecking’ process, similar to that encountered during host-to-host 

transmission. The founder effects caused by these bottlenecks as the virus 

disseminates from the host inoculation site and replication in specific tissues have 

been observed by conventional sequencing during serial FMDV infection in pigs 

(Carrillo, Lu et al. 2007a) and by use of cDNA clones in poliovirus infection in mice 

(Pfeiffer and Kirkegaard 2006). Subsequent transmission of virus to a naïve host 
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most frequently occurs shortly after the appearance of clinical signs (Charleston, 

Bankowski et al. 2011) when an infected individual can secrete large amounts of 

viral particles into the environment before developing a specific immune response.  

 

An integral part of any disease control strategy is the epidemiological tracing of 

virus transmission, which, together with conventional field investigations, has 

largely been achieved with the application of molecular and phylogenetic methods 

(Samuel and Knowles 2001; Knowles and Samuel 2003; Cottam, Wadsworth et al. 

2008a; Abdul-Hamid, Firat-Sarac et al. 2011; Kasambula, Belsham et al. 2011; 

Valdazo-Gonzalez, Knowles et al. 2011). Global tracing of FMDV movements 

have been successfully achieved using consensus sequences of the gene for one 

of the three surface exposed capsid proteins of the virus (VP1) (Samuel and 

Knowles 2001; Knowles and Samuel 2003; Kasambula, Belsham et al. 2011). 

However, at shorter ‘epidemic’ time scales, where the viral populations have not 

substantially diverged, VP1 sequencing cannot provide the required resolution. At 

this scale, complete genome consensus sequencing (CGCS) has proven to be a 

very powerful tool for transmission tracing (Cottam, Wadsworth et al. 2008a; 

Abdul-Hamid, Firat-Sarac et al. 2011; Valdazo-Gonzalez, Knowles et al. 2011). 

Both the heterogeneous nature of within host viral populations and the number of 

transmitted viruses between hosts may influence the rate of fixation of mutations 

(Kinnunen, Poyry et al. 1991; Villaverde, Martinez et al. 1991a); by only identifying 

the major viral sequence within a sample, CGCS masks the complex substructure 

of minority variants present and is therefore blind to subtle genetic differences 

between isolates that are closely related in space and time. Therefore, the level of 

resolution afforded by CGCS is inadequate to fully characterize single host-to-host 

transmissions and in particular to monitor the dynamics by which mutations 

accumulate over single transmission events. As a consequence, how variability 

generated at the intra-host scale is transmitted on to the inter-host scale is still 

poorly understood. 

 

Next-Generation Sequencing (NGS) techniques provide the means for rapid, cost-

effective dissection of viral population dynamics at an unprecedented level of 

detail (Hoffmann, Minkah et al. 2007; Wang, Mitsuya et al. 2007; Eriksson, Pachter 

et al. 2008b; Margeridon-Thermet, Shulman et al. 2009; Rozera, Abbate et al. 
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2009; Simen, Simons et al. 2009; Kampmann, Fordyce et al. 2011; Chapter 3). 

The resolution and high throughput nature of NGS platforms has the potential to 

allow differentiation between samples at the inter- and intra-host scale of infection. 

This technology has already been applied to compare ‘longitudinal’ samples of 

hepatitis C virus (HCV) and to study human immunodeficiency virus (HIV) infection 

and transmission (Fischer, Ganusov et al. 2010; Wang, Sherrill-Mix et al. 2010b; 

Bull, Luciani et al. 2011). These studies highlight the size of the population 

bottleneck during inter-host transmission as a likely influence on the long-term rate 

of nucleotide (nt) fixation. In contrast to both HIV and HCV, where typically only a 

few viral particles are transmitted to a naïve host (Fischer, Ganusov et al. 2010; 

Wang, Sherrill-Mix et al. 2010b; Bull, Luciani et al. 2011), investigations of the 

inter-host dynamics of equine influenza virus and norovirus have revealed inter-

host transmission events to be characterized by a wide (i.e. loose) bottleneck 

(Murcia, Baillie et al. 2010; Bull, Eden et al. 2012). NGS platforms have been used 

for investigations over time scales sufficient to incorporate the influence of intra-

host scale immune pressures on RNA virus population diversity and subsequent 

transmission (Fischer, Ganusov et al. 2010; Wang, Sherrill-Mix et al. 2010b; Bull, 

Luciani et al. 2011; Bull, Eden et al. 2012). However, much less is known about 

the insights that NGS technology can provide about the within and between host 

viral population dynamics of acute acting infections, particularly prior to the onset 

of a specific adaptive immune response. 

 

Utilizing Illumina NGS technology, this study investigates the evolutionary 

dynamics of FMDV intra- and inter-host transmissions during serial, acute 

infections, both through time and between samples, prior to the onset of the 

adaptive immune response. Due to the greater resolution offered by NGS, we 

were able to characterize the polymorphic structure of viral populations within the 

samples collected from three hosts. These data were combined with those from a 

previous study of the inoculum and first bovine host in this chain (Chapter 3). We 

investigated the diversity and relatedness between these populations, the 

dynamics of polymophisms across the genome through time, and were able to 

make an assessment of inter- and intra-host bottleneck size. 
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5.3 Methods 

5.3.1 Transmission experiment and sample collection 
The samples analysed were collected during an infection experiment where FMDV 

was passaged in series through a group of four calves (Juleff, Valdazo-Gonzalez 

et al. 2013). Calf 1 (A1) was inoculated intradermolingually with a dose of 105.7 

50% tissue culture infective doses (TCID50) of FMDV (O1BFS 1860). The full-

length FMDV genome sequence of this inoculum had previously been determined 

using Sanger sequencing (GenBank accession number EU448369). In addition, 

NGS data for selected samples originating from A1 have been previously 

described (Chapter 3). Twenty-four hours post needle-challenge, calf 1 (A1) was 

used to challenge naïve calf 2 (A2) by direct contact for a total of 4 days 

(transmission period 1 [T1] in the scheme in Figure 5.1). A1 was then removed 

from the experiment, and A2 was used to challenge naïve calf 3 (A3) by direct 

contact for 24 hrs (T2 in Figure 5.1). Following challenge, A2 was removed from 

the experiment. Successively, A3 was placed into direct contact with naïve calf 5 

(A5) to be housed together until study termination (T3 in Figure 5.1). Calf 4 (A4) 

was an indirect contact challenge animal and therefore did not form part of the 

transmission chain and so was not included in this analysis. Sequenced samples 

are indicated in Figure 5.1. 
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Figure 5.1 

Temporal scheme of the transmission chain between calves 1 to 5 (A1, A2, A3 and A5) 

with the three transmission events (T1 to T3) indicated. Calf 4 (A4) did not form part of 

this analysis. Although calf 1 (A1) is included, only the 18 samples analysed here from 

calf 2 to 5 (A2, A3 and A5) are shown (serum [SR]; probang [PB]; front left foot [FLF] 

lesion; front right foot [FRF] lesion; back right foot [BRF] lesion). One timeline for each 

transmission event is indicated, where days post first contact (DPFC) applies to the 

naïve calf in that transmission event. A five-pointed black star indicates when lesions 

appeared on all four feet and the equivalent white star indicates when the first foot 

lesions appeared on the FR and BL for both calf 2 (A2) and calf 3 [A3]). 

 

The sample types analysed here include blood serum (SR), oesophageal-

pharyngeal scraping (‘probang’, PB) and foot lesion epithelium samples, indicated 

as XYF, where X= {B,F} for Back and Front, and Y= {L,R} for Left and Right, and F 

for Foot. The nomenclature for these samples followed the notation An-mDPFC-Z, 

where n={2,3,5} represented the animal number in the chain, m was the number of 

days post first contact (DPFC) with an infected host for that particular animal, and 

Z was the sample type: for example, A2-4DPFC-SR corresponds to a serum 

sample taken from calf 2, 4 days after first contact with an infected host. Blood 

serum samples were taken daily and probang samples every other day. Foot 

lesion epithelium samples were collected within 24 hrs of first appearance. Daily 

rectal temperatures were monitored and clinical signs were defined here as any 

visible lesion or body temperature above 39.5°C.  

5.3.2 Genome amplification 
Total RNA was extracted (TRIzol, Invitrogen, Paisley, UK) from all biological 

samples collected from the experiment described above and quantified. 

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was 
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performed for quantification of FMDV genome copies in each of the samples, 

using an assay which can detect all serotypes of FMDV, as described previously 

(Callahan, Brown et al. 2002). rRT-PCR assays were performed on a Stratagene 

Mx3005P machine (Agilent Technologies, UK). For the generation of standard 

curves, a FMDV RNA standard was synthesized in vitro from a plasmid containing 

a 950 base pair insert from the 3D region of FMDV O/KUW/4/97 using a 

MEGAScript T7 kit (Ambion, UK) as described previously (Quan, Murphy et al. 

2004). 
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FMDV concentrations in each of the samples (A2-A5) were normalized to 106 

copies of FMDV RNA/!l prior to RT-PCR amplification (for reasons discussed in 

Chapter 4, section 4.3). Two genome fragments were amplified using a protocol 

modified from that previously described (Chapter 3). Briefly, two independent 

reverse transcription reactions were performed for each sample. An enzyme with 

high fidelity (Superscript III reverse transcriptase, Invitrogen) was used in each 

reaction plus two FMDV specific primers (see Table 5.1) in order to reduce RT-

introduced artefacts and the risk of amplification bias (as described in Chapter 4, 

section 4.3). 

 

Table 5.1 Oligonucleotide primers used for the amplification of the two large, 

overlapping FMDV genome fragments for both replicates. The fragments have 

the 5# UTR S fragments omitted, up to and including the poly(C) tract, and 

overlap by 470 bp 

PCR 
Set  

Primer1 Primer Sequence (5' to 3') Location on 
Genome2 

Amplicon 
Size (bp) 

1 

OBFS-516+F CCTTCGCTCGGAAGTAAAACG
A 

499-520 

4065 

OBFS 4563 R CCCGCTGCTTTTCAAGGAT 4545-4563 

2 
OBFS 4094 F TCTCGACGAGGCCAAACC 4094-4111 

4033 
OBFS 8126 R CTCCTAAGGTGTCGCGCG 8109-8126 

RT Set Primera Primer Sequence (5' to 3') Location on 
Genome - 

1 OBFS 8193 R TTTTTTTTTTTTTTGATTAAGG 8155-8176  

2 OBFS 4926 R AAGTCCTTGCCGTCAGGGT 4908-4926   
1Last letter indicates a forward or reverse primer 
2Numbering according to Genbank sequence EU448369!
 

For each of these replicas, two PCR reactions generating long overlapping 

fragments (4065 bp and 4033 bp respectively) were carried out using a proof-

reading enzyme mixture (Platinum Taq Hi-Fidelity, Invitrogen). For biosecurity 

reasons these individual fragments comprised <80% of the complete FMDV 

genome, and corresponded to nts 499-4563 and 4094-8126 of EU448369 (see 

Table 5.1 for PCR fragment and primer details). This enabled the amplified DNA to 

be transported outside of the high containment FMD laboratory for sequencing. 
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The samples were amplified using the following cycling programme: 94 ˚C (5 min), 

followed by 94 ˚C (30 s), 60 ˚C (30 s) and 72 ˚C (4 min) for 39 cycles, with a final 

step of 72 ˚C for 7 min. Where a sample fell within half a log below the 106 copies 

of FMDV RNA/!l, neat sample was processed and sent for sequencing as long as 

it still yielded at least 700 ng of PCR product, samples below this threshold were 

not sequenced as indicated in Figure 5.2.  

 

Two additional RT reactions were performed to yield enough cDNA to perform 

complete genome consensus sequencing (CGCS), via the Sanger method, on 

seven of the samples from calf 2 (A2) for validation purposes. The RT method was 

modified from that used in (Cottam, Haydon et al. 2006) and the PCR method from 

that used in (Cottam, Wadsworth et al. 2008a) (as described in Chapter 2, Section 

2.3.3). These samples included the following: A2-2DPFC-PB, A2-2DPFC-SR, A2-

4DPFC-PB, A2-4DPFC-SR, A2-6DPFC-PB, A2-6DPFC-FLF, and A2-6DPFC-FRF.     

 

5.3.3 Illumina sequencing 
The independently amplified replicates of each sample were sequenced with the 

Genome Analyzer IIx (Illumina) maintained by Glasgow Polyomics facility at the 

University of Glasgow, according to the protocol as detailed in (Chapter 3). 

Following the temporal order in the transmission chain, the first 12 samples were 

multiplexed on the same lane, while the corresponding duplicates were sequenced 

on a second lane, and ran on a different flow cell. The last 6 samples were 

multiplexed together on a lane belonging to a third flow cell. The 6 corresponding 

duplicates were multiplexed on a separate lane on the same flow cell.  

 

5.3.4 Sanger sequencing 

The protocol used for CGCS has been described (Cottam, Wadsworth et al. 

2008a). However, sequencing reactions were performed using the Applied 

Biosystems BigDye Terminator V3.1 Cycle Sequencing Kit and an ABI 3730 

genetic analyser. 
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5.3.5 Filtering and alignment 
Single-end reads were 70 nt long for the first 12 samples, and 73nt long for the 

last 6. As commonly encountered with Illumina technology, the reads displayed a 

loss of quality for the nucleotides (nts) added last. A few reads were corrupted, 

with low quality throughout the whole length. Reads with unresolved nts or 

corrupted tags were removed from the analysis. We filtered the reads, removing 

any with an average probability of error per nt greater than 0.1% (probability of 

errors can be readily obtained from Illumina quality scores with the relation

, where Q is the quality score and p is the probability of error). We 

observed that the same strategy removed about 20% of the reads for the first 12 

samples, but over 30% for the last 6 samples (precise quantification can be found 

in the Supporting Table S1 in Appendix 4). Moreover, we trimmed the reads to 65 

nt for the first 12 samples, and to 70 nt for the last 6.  

 

The filtered, trimmed reads were aligned to FMDV genome O1BFS1860 (the 

consensus sequence for the inoculum used to initiate the transmission chain) with 

a simple, custom-made scoring algorithm. No reads aligned ambiguously. For all 

subsequent analyses, we further trimmed the first and last 5 nts of each aligned 

reads, as they showed a higher number of mismatches to the reference sequen"#!
due to insertions or deletions close to the edges of the reads (Chapter 3), and we 

masked all nts whose individual probability of error was higher than 10-3 

(corresponding to quality scores of 30 or lower). Primer regions (detailed in Table 

5.1) were excluded from the analysis. Consensus sequences were always found 

to be identical between the two replicates for each sample. The genealogical 

relationships between consensus genomes were computed with the software 

package TCS (Clement, Posada et al. 2000) and reflected the most parsimonious 

genealogy. A schematic description of the steps in the analysis pipeline can be 

found in the Supplementary Table S2 (Appendix 4). 

 

5.3.6 Validation of low-frequency polymorphisms 
The frequency of a polymorphism at a particular position in the genome in a viral 

population was defined as the frequency of mismatches in the aligned reads 

relative to the consensus of the inoculum (GenBank accession no. EU448369). A 

proportion of these mismatches were expected to be artefacts, arising from base 

p =1/ (1+10Q/10 )
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mis-callings in the sequencing process. In order to distinguish between real and 

artefactual variation, we extended the validation method described in (Chapter 3), 

summarized below. Under the assumption of independence, sequencing errors 

are binomially distributed, with the probability of observing xi or more mismatches 

given by Binom(xi; pi/3, ni), where xi is the number of nts bearing the most 

abundant mutation at site i, ni is the coverage, pi is the error probability computed 

from base qualities, and pi/3 represents the probability of the specific mutation 

observed in the reads. A score for site i was obtained, defined as si=1-Binom(xi; 

pi/3, ni). We defined si,1 to be the score obtained for the first replicate of the 

sample, and si,2 the score obtained for the second replicate. Only sites where the 

most frequent mutation was the same in the two replicates, and where si,1< $ and 

si,2<$, with $ being a threshold chosen to be >0.05, were validated and used for 

successive analyses. Finally, in order to minimize artefacts introduced through RT 

and PCR error, we considered only mutations at frequencies above 0.5% (choice 

based on the analysis of control data generated using a FMDV cDNA clone, as 

described in Chapter 4, section 4.4). The second most abundant mismatched nt 

exceeded 0.5% in both replicates at only 1 site across the 18 samples so we focus 

here only on the most abundant mismatches. 

!
From each alignment we constructed the ‘mutation spectrum’ which we define as a 

profile generated by the number of sites (y-axis) with a mismatch frequency of x (x 

suitably ‘binned’ on the x-axis). This was viewed as a log-log plot. 

 

5.3.7 Genetic distance, entropy and dN/dS 

Let fi,A be the frequency of the most abundant polymorphism at position i in sample 

A, obtained as a weighted average of the two replicates {1,2}: 

 

!!!! ! !!!!!!! ! !!!! ! !!!!!! ! !!!!!!!!!!! ! !!!!! 
 

where ni,1 is the coverage of site i in the first replicate, and similarly for ni,2. Genetic 

distance between two samples A and B was computed with a population-wide 

measure: 
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 ! ! !
! !!!!! ! !!!!!!!

!!!   

 

where N is the length of the sequence. Distances between samples were 

illustrated with a reduction to a two-dimensional space with classic (metric) multi-

dimensional scaling, as implemented in the R software package; with this method, 

the distances between the points on the graph approximate the dissimilarities 

between the viral populations. Similarly, the complexity of the viral populations was 

characterized by computing their Shannon entropy at each site, and then 

averaging over every site in the sequenced genome for sample A:  

 

 !! ! !
! !!!!! !" !!!! ! !!! !!!! !!"! !! !!!!!!!

!!! .  

 

The genome-wide entropy measures the amount of “disorder” in the population, 

and it is maximum when all sites have perfectly balanced polymorphisms (i.e. 

fi,A=0.5 for all i). In order to estimate the synonymous to non-synonymous ratio 

dN/dS, for each codon i in the ORF, we first computed the expected number of 

synonymous (si) and non-synonymous (ni) sites. Then, for each read j covering 

entirely codon i, we counted the number of observed synonymous (sOij) and non-

synonymous (nOij) substitutions with respect to the consensus sequence of the 

inoculum. Using all codons where si>0 and , we obtained an estimate for 

the number of synonymous substitutions per synonymous site, pS, and for the 

number of non-synonymous substitutions per non-synonymous site, pN, using the 

following equation: 

 

   

where ncod is the number of codons where the conditions above are met and ri is 

the number of reads spanning entirely codon i. pN was determined analogously. 

dN/dS was determined from pN and pS as described in (Nei and Gojobori 1986). 
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5.3.8 Complete genome consensus sequence analysis 

Raw sequence data from the seven validation samples were assembled using 

SeqMan Pro™ 10.0.1  (DNASTAR, Madison, WI) followed by BioEdit v7.1.3.0 

(Hall 1999) for all subsequent sequence comparisons (as described in Chapter 2, 

section 2.3.5). 
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5.4 Results 
In this section, we discuss the results of the Illumina sequencing of 18 FMDV 

positive samples, distributed as follows: 9 from A2, 7 from A3 and 2 for A5. As the 

progenitor of this transmission chain, 2 samples from A1 plus the original inoculum 

(derived from a bovine tongue vesicle that had been extensively passaged in cell 

culture and used to artificially infect A1), previously described in (Chapter 3), were 

also included in analyses and discussed where appropriate. Short read data for all 

18 samples were submitted to the EBI short read archive (SRA), which will be 

available from 01.05.13.  

 
5.4.1 Quantification of viral titres 
FMDV genome copies quantified by rRT-PCR of all the samples collected from 

A1-A5 (including the 18 samples analyzed in this study by NGS) are shown in 

Figure 5.2 (A-D). During these early stages of disease higher concentrations of 

viral RNA were measured in probang samples compared to serum samples. 

Viraemia, at 1-2 days post first contact, coincided with the clinical phase of 

disease. For A2 and A3 this correlated with the onset of fever and lasted up to 6 

days after first contact with an infected host. As a consequence of being needle 

inoculated, the clinical phase of disease in A1 was shorter than that seen in 

subsequent animals. Conversely, the clinical phase of disease in A5 appeared 

elongated and less pronounced, as demonstrated by epithelial lesions not 

appearing on the feet until 8 and 9 days post first contact (not sequenced), as well 

as reduced fever and vireamia.   
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Figure 5.2  

Quantification of viral RNA copy number and clinical signs (temperature) of infected 

hosts. FMDV RNA load in all samples collected during the serial passage of FMDV 

through four calves, detected by quantitative reverse-transcription polymerase chain 

reaction (qRT-PCR). Graph A-D, calf 1, 2, 3 and 5 (A1, A2, A3 and A5) respectively. A 

(A1) previously discussed in Chapter 3, sequenced samples in white with thick border 

and non-sequenced samples in white; B-D (A2, A3 and A5), sequenced samples in dark 

grey with thick border and non-sequenced samples in light grey. Inoculum (Inoc [A1 

only]); serum (SR); probang (PB); front left foot (FLF) lesions; front right foot (FRF) 

lesions; back left foot (BLF) lesion; back right foot (BRF) lesion. Dashed lines indicate the 

minimum initial viral load to be amplified (106 copies of FMDV RNA/!l of sample) for A2, 

A3 and A5. Grey arrows indicate the time the calf spent in contact with the next calf, 

while black arrows indicate the time spent in contact with the previous calf in the 

transmission chain. Animal temperatures are shown on the same graphs (black solid 

line). White stars indicate the day when the first foot lesions appeared (FRF and BLF for 

both A2 and A3 [note, only BLF material from A3 was available to perform qRT-

PCR]), while black stars indicate the day at which lesions appeared on all four feet. 
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5.4.2 Coverage and consensus genomes 
Reads that passed the quality test were aligned to the consensus genome 

sequence of the original inoculum (FMDV strain O1BFS1860). The coverage of the 

different samples were influenced by the different multiplexing of the Illumina 

lanes, and ranged from 11605x (A2-4DPFC-PB, first replicate) to 32208x (A3-

5DPFC-BLF, second replicate); precise figures can be found in the Supporting 

Table S1 (Appendix 4). We computed the average frequency, for each mutation, 

that was weighted on the coverage received in the two replicates of each sample. 

We define consensus-level mutations as polymorphisms that appeared in more 

than 50% of this weighted average, with respect to the original inoculum.  

We found a total of 13 consensus-level mutations across the samples in calves 

A2-A5, summarized in Table 5.2. The Sanger and NGS method both identified the 

same nine sites containing high frequency mutations within the same seven 

samples analysed; five mutated sites were identified at the consensus level by 

both methods. The remaining four mutated sites were identified at consensus level 

by NGS but remained as mixed populations (ambiguous sites) by Sanger 

sequencing (as detailed in Table 5.2). Figure 5.3 shows example chromatogram 

for two sites exhibiting mixed populations.  
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Figure 5.3 

Chromatograms showing mixed populations within Sanger sequences for sample A2-

6DPFC-PB at site 2417 and 7376 (numbering according to GenBank sequence 

EU448369)  

 
 
 
  

2417 7376



 Chapter 5 
 

163 
 

 

Table 5.2 Consensus-level mutations, and their characterization. The mutation 

frequency is the weighted average frequency over the two sequencing runs for each 

sample  
Position Mutation Frequency in 

sample 
Gene Syn/ 

Nonsyn1 
Ts/ 
Tv2 

Codon 
position  

Sample3 

1087 C->T 54.4% Leader N: T->I362 Ts 2 A2-2DPFC-PB4 
1164 A->G 63.9% Leader N: K->E388 Ts 1 A2-6DPFC-P5 
2417 C->A 51.1% 

52.8% 
VP2 S: P->P Tv 3 A2-6DPFC-PB5 

A3-3DPFC-PB 
2754 C->T > 60% VP3 N: R->C918 Ts 1 ALL BUT A16 
2767 G->A 64.1% VP3 N: G->D922 Ts 2 A1-2DPFC-FLF 
2768 C->T 52.8% VP3 S: G->G Ts 3 A3-3DPFC-PB 
5435 C->T > 55% 3A S: G->G Ts 3 ALL BUT7 A1 & 

A2-2DPFC-PB 
A2-4DPFC-SR 
A2-5DPFC-SR 

A2-6DPFC-BRF 
A2-6DPFC-PB 
A3-3DPFC-PB 

5669 T->A 99.0% 3A S: L->L Ts 3 A2-6DPFC-FLF4 
5933 A->G 50.4% 3B2 S: K->K Ts 3 A5-7DPFC-PB 
6065 C->T 56.2% 

99.7% 
99.3% 
75.6% 
99.6% 
99.7% 
93.8% 
99.9% 

3C S: G->G Ts 3 A3-1DPFC-PB 
A3-3DPFC-SR 
A3-4DPFC-SR 
A3-5DPFC-PB 
A3-5DPFC-SR 
A3-5DPFC-BLF 
A5-5DPFC-PB 
A5-7DPFC-PB 

6167 C->T 77.0% 3C S: F->F Ts 3 A2-6DPFC-FRF4 
7355 C->A 58.0% 3D S: A->A Tv 3 A2-2DPFC-PB5 
7376 T->C 54.4% 

68.5% 
54.6% 

3D S: D->D Ts 3 A2-3DPFC-SR5 
A2-6DPFC-PB5 
A3-3DPFC-PB 

7964 T->C 96.6% 
97.6% 
53.4% 
99.1% 
99.9% 
91.2% 
99.8% 

3D S: S->S Ts 3 A3-3DPFC-SR 
A3-4DPFC-SR 
A3-5DPFC-PB 
A3-5DPFC-SR 
A3-5DPFC-BLF 
A5-5DPFC-PB 
A5-7DPFC-PB 

1 Synonymous or Non-synonymous mutation with associated amino acid change and position 
2 Transition or Transversion 
3 Sample notation as described in the Methods section 
4 Mutated site identified by both the Sanger method and NGS at consensus level  
5 Visible as mixed population via the Sanger method but identified at consensus level by NGS 
6 All 9 mutated sites 
7 Mutated site identified at consensus level by both the Sanger method and NGS for A2- 6DPFC-
FLF and –FRF. 
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Previous analysis of the samples collected from the inoculated calf A1 (Chapter 3) 

identified one consensus-level mutation at position 2767, unobserved at this level 

in subsequent animals. Furthermore, two additional consensus-level mutations 

found in calf A1 in the 3’ UTR region (position 8134 and 8140) could not be 

followed in this study, as the modified RT-PCR fragments ended at position 8126 

(omitting 36 nt of the 3’ UTR). Among the 13 mutations, one was present in every 

sample (site 2754, C->T). This mutation changes an amino acid residue in capsid 

protein VP356 associated with heparan sulphate (HS) binding, as does position 

2767 in A1 (Chapter 3): the inoculum used in this experiment had undergone 

extensive cell culture passage and, in common with other in-vitro adapted viruses, 

utilizes HS as a cellular receptor (Sa-Carvalho, Rieder et al. 1997a; Fry, Lea et al. 

1999a). Subsequent replication in mammalian hosts drives the reversion of 

positively charged amino acid residues at specific sites in the viral capsid, which is 

then fixed in the host chain.  

 

Seven of the 13 mutations appeared only once across the samples (see Table 

5.2), while several mutations (positions 5435, 6065, 7964) were fixed in the 

populations after the second transmission event. All the mutations appeared in the 

coding region of the genome: the majority were transitions (11/13), synonymous 

(10/13) and appeared at third codon positions (10/13), suggesting that most of 

these mutations did not confer any obvious selective advantage to the virus, but 

were likely close to neutral and subject to drift in the populations. When mutations 

were close enough to be spanned by a single read, we could check their co-

occurrence (linkage): in the case of sites 2754 and 2768 in A3-3DPFC-PB, almost 

all the reads showed the former, but only half the latter, suggesting the co-

circulation of two different viral variants, one of them acquiring the second 

mutation later in time. Moreover, two samples showing mutations at position 7376 

(A2-3DPFC-SR and A2-6DPFC-PB) also exhibited a number of reads showing a 

mutation at position 7355 (~12% and 1% respectively), but almost no reads 

showed both sites mutated. We also interpret this finding as demonstrating the co-

circulation of two different variants in the population, with two alternative 

mutations. 
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Figure 5.4 depicts the genealogy of the samples, based on statistical parsimony 

analysis of consensus sequences, and obtained with the software package TCS 

(Clement, Posada et al. 2000 961): the consensus genomes of the samples are 

very similar, as they were obtained within short time intervals of each other. Three 

samples in A2 have identical consensus genomes, and the same situation is found 

for 4 late samples in A3. The consensus of these samples further coincides with 

one sample in A5. The network shows accumulation of mutations through the 

chain, yet the structure is not simple: every host harbors multiple populations 

differing at one or more sites, and samples obtained from different hosts often fail 

to segregate (they can even display the same consensus, as discussed above). At 

the consensus level, the network appears to show several evolutionary “dead-

ends”, i.e. mutations that did not transmit further down the chain. 

 

 

Figure 5.4 

Genetic network of the samples based on statistical parsimony and obtained with the 

software TCS (Clement, Posada et al. 2000). 

  

Finally, we saw no evidence at the consensus level of mutations within the non-

structural genes that would suggest attenuation of the virus, as previously 

demonstrated during serial passage of FMDV in pigs (Carrillo, Lu et al. 2007a), to 

explain the observed elongated incubation period in calf A5. Although impacts on 

genome secondary structure cannot be ruled out with such data, due to lack of 
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polymorphism linkage, this elongated incubation is more likely a result of reduced 

infective dose, indirectly indicated by the reduction in viral RNA copy number 

within samples from this host. 

 

5.4.3 Sub-consensus mutations 
Using the high coverage obtained with deep sequencing and the validation 

procedure described in the Methods section, we determined minority variants at 

each genomic site. First, we looked for the presence of the 13 consensus-level 

mutations in all samples (A2-A5). We found that many were present at sub-

consensus levels in several samples. In particular, Figure 5.5 shows the “time 

series” of nine of these mutations, grouped by their respective dynamics: the first 

group includes mutations that were lost through the chain (sites 1087 and 7355, 

Figure. 5.6, top panel); we note that polymorphism frequencies at these two sites 

were tightly correlated along the chain, suggesting that they were both mutated on 

the same group of genomes. Other sites were mutated at sub-consensus levels 

only in some samples (Figure 5.5, middle panel): for example, site 2417 was found 

mutated in A3-5DPFC-PB and in A5-5DPFC-PB, but not in other late samples in 

A3. Finally, some mutations were fixed through the transmission chain (Figure 5.5, 

bottom panel). The dynamics of four additional consensus-level mutations are 

displayed in Supporting Figure S1 (Appendix 4), together with the single 

consensus-level mutation previously found in host A1 at site 2767. Supporting 

Figure S2 (Appendix 4) depicts the frequencies of the polymorphisms across the 

genome, for all the samples. 
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Figure 5.5 

Frequencies across samples of 9 out of the 13 mutations reaching consensus in at least 

one sample, divided according to patterns. Top panel: Mutations present in A2 and then 

gradually lost in the next hosts. Middle panel: Mutations prevalently present in probang 

samples and sera, across all hosts. Bottom panel: Mutations reaching fixation. 

 

Next, we obtained mutation spectra for all samples, defined as the collection of 

mutated sites, segregated into individual bins according to their frequencies. We 

computed the distance matrix between all the samples, displayed in Figure 5.6A: 

host boundaries are marked, although they did not always correspond to a sudden 

increase in the distance measures. In particular, early samples of A3 are more 

related to samples in A2 than to later samples in the same host. Late samples in 

A3, in turn, are very similar to samples in A5. Finally, samples like A2-6DPFC-FLF 

are very different from everything else, suggesting an independent evolutionary 

dynamic, which did not propagate through the infection chain.  
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Figure 5.6  

Panel A: Distances between viral populations collected in hosts A1-A5, obtained 

considering all validated mutations at frequencies above 0.5%. A2 presents a large 

heterogeneity, with the FLF samples being very different from all others. Conversely, A3 

shows remarkably similar late samples, while the early probangs bear a larger similarity 

with the A2 samples. Samples in A5 are very similar to several late A3 samples. Panel B: 

Metric two-dimensional multidimensional scaling analysis of the distance matrix: the data 

formed the characteristic horseshoe pattern, sign of a latent order in the data. 
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The minimum distance between A3 and samples of A2 collected at 6DPFC is 

found between samples A2-6DPFC-FRF and A3-1DPFC-PB: based solely on this 

observation we would conclude that the viral population transmitted to A3 derived 

from the A2 FRF lesion. However, a closer inspection of the time series shows that 

the minimum distance between hosts A2 and A3 is found between A2-5DPFC-SR 

and A3-1DPFC-PB. Moreover, sample A3-1DPFC-PB has a comparable low 

distance from samples A2-4DPFC-SR, A2-4DPFC-PB and A2-3DPFC-SR. Finally, 

the presence of a consensus level mutation at site 6167 in A2-6DPFC-FRF, which 

was not found at any significant frequency in any A3 samples analysed here, 

reduces the probability that the transmitted viral population was seeded directly 

from this foot lesion. Considering all these observations, a possible scenario is that 

infection occurred around day 5 through a viral population originating from the 

upper oesophagus and pharynx of A2. Around the same time, other 

subpopulations originating in the palate seeded the feet lesions, where the virus 

underwent independent replication and diverged from the sample passed on to A3.  

 

Moving on to the infection from A3 to A5, we noticed a more blurred situation: A5-

5DPFC-PB was close to a number of A3 samples, including two serum samples, 

the back right foot lesion and, to a lesser extent, a late probang (the absolute 

minimum found with A3-3DPFC-SR). As samples are very similar to each other, 

resolution is limited and we cannot disprove either a direct infection route 

originating from a foot lesion in A3 or an infection originating from a population 

compatible to that found in the probang.  

 

An easier visualization of the relationships between samples can be obtained with 

a standard metric multi-dimensional analysis in two dimensions, displayed in 

Figure 5.6B: the observed “horseshoe” pattern is typical of dimensionality 

reduction techniques, and is the sign of a latent ordering of the data, namely the 

accumulation of mutations along the transmission chain (Diaconis, Goel et al. 

2008). 

 
5.4.4 Inter-and intra-host bottlenecks 
If a bottleneck is narrow (tight), only a few viral particles found a new population. 

Consequently, mutations included in the founding population will be likely fixed in 

the new population. Early replication cycles will introduce new variants which can 
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spread in the population if neutral or advantageous. However, if the population is 

only recently founded, it is unlikely that these new mutations will reach significant 

frequencies. A population founded as a result of a narrow bottleneck could 

therefore be recognized by a depletion of sites with intermediate polymorphic 

frequencies in the mutation spectrum. Conversely, in the case of a wide 

bottleneck, the diversity of the founding population is a good representation of the 

diversity of the ancestral population, and we should then expect to see the 

mutations at intermediate frequencies well preserved in the new population. This 

criterion was used to qualitatively assess the size of the founding population in 

each of our samples. Here, we considered both intra-host bottlenecks (i.e. events 

leading to the founding of a new lesion in a distant epithelium) and inter-host 

bottlenecks (i.e. events leading to a host-to-host transmission).  

 

Figure 5.7 displays the mutation spectra for all samples in calves A2-A5. We 

observed a typical pattern, depleted of intermediate frequencies, in a number of 

samples, and in particular in all the feet lesions in A2 and A3. This observation 

supports the hypothesis that these populations underwent a narrow intra-host 

bottleneck. The pattern is roughly U-shaped and originates from the combination 

of low-frequency mutations created in recent rounds of replication and mutations 

at consensus level, present in the founding population, and fixed by genetic drift. 

A3-1DPFC-PB, the earliest sample in A3, does not show this depletion, suggesting 

that the transmission to A3 arose as a result of the transfer of a sizable viral 

population from A2. A probang sample taken 5 days post first contact was the 

earliest sample to contain the minimum initial viral load of 106 copies of FMDV 

RNA/!l of sample from calf 5 (A5). A5-5DPFC-PB shows again the typical pattern 

corresponding to narrow bottlenecks. Unexpectedly, the viral population had not 

recovered sufficiently to demonstrate a full range of mutation frequencies 5 days 

post first contact; however, the elongated incubation period observed in A5, 

together with the observation that the calf showed no vireamia until 4DPFC, 

support the hypothesis of transmission to A5 through a severe bottleneck. 
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Figure 5.7 

Mutation spectra representing the abundance of mutations at frequencies above 0.5% 

across the different samples: in some cases (typically probangs and sera) the mutation 

spectrum smoothly decreases in abundance as the frequency of mutations increases. 

However, in some samples (typically feet), the intermediate frequency region is depleted, 

suggesting narrow bottlenecks. 

  

5.4.5 Entropy and dN/dS 
Shannon entropy is a measure of the complexity of a population. Complexity can 

be acquired in two complementary ways: 1) through the presence of many low 

frequency polymorphic sites across the genome, where a nucleotide is largely 

dominant, and 2) through fewer but more balanced polymorphic sites where the 

nucleotides are equally represented.  

 

Samples founded by a small initial population typically have not recovered from 

the loss of complexity associated with a narrow bottleneck (although vigorous 

replication could lead to high entropy through route 1). Conversely, samples 

founded by a large seeding population should display only a mild decrease in 

entropy. Figure 5.8A shows entropy for all the samples. The values fluctuate 

considerably: the lowest values are observed in the feet (host A2 and A3), 

reinforcing the hypothesis that these are “young” populations that have 
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experienced a narrow bottleneck. However, the entropy of foot lesion A2-6DPFC-

FRF is high: this value is reached through the very large number of polymorphic 

sites at frequencies around 0.5% found for this sample (see Figure 5.7) suggesting 

that this lesion was founded by a slightly larger population, and that early 

replication introduced numerous new mutations at low frequencies. 

 

Early probang samples in A3 and the first probang in A5 available for sequencing 

show intermediate values of entropy. For A3, where the probang sample was 

taken only 1 day post first contact, the value observed, together with the absence 

of depletion in the mutation spectrum discussed above, supports the hypothesis 

that this complexity was inherited from an ancestral population through a wide 

bottleneck.  

 

Finally, we computed the non-synonymous to synonymous ratio (dN/dS) for all the 

samples in this study (see Figure 5.8B). We found a monotonic reduction in dN/dS 

through the transmission chain, across all the samples collected from all tissues. 

While the values of dN/dS were close to 1 in A2, suggesting dominant random 

drift, it steadily decreases in A3 and A5, where the viral populations appear to 

undergo a continuous purifying selective pressure.  
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Figure 5.8  

Shannon entropy (A) and dn/ds (B), across all samples, computed with validated 

mutations at frequencies above 0.5%. The complexity of viral populations fluctuates 

across samples, with lower values often found in correspondence of foot lesions. On the 

other hand, dn/ds ratios show a clear decreasing trend along the transmission chain.  

  

!

"
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5.5 Discussion 
A total of 21 FMDV samples from a sequential infection experiment were analyzed 

using Illumina technology. These comprised 18 samples from calves A2-A5 and 

three samples (the inoculum and two foot samples from calf A1) discussed in 

(Chapter 3). There was good correlation between samples that were sequenced 

by both the Sanger and NGS method, NGS demonstrating improved sensitivity at 

sites identified as ambiguous by Sanger sequencing. No additional ambiguous 

sites were identified by Sanger sequencing. However, before interpretation of 

subsequent NGS viral population profiles, the genetic data should be put into 

context of the biological samples from which they were derived. For example, the 

different samples analysed are not anatomically equivalent. While foot lesions 

comprised a relatively spatially-discrete source of virus, probangs (oesophageal-

pharyngeal scrapings) are thought to be composed of several infection foci (as 

well as those infected earliest), including the oesphagus, pharynx and oral cavity, 

and therefore are often more heterogeneous than samples taken from feet lesions. 

However, in addition to reconstructing a network at the level of viral consensus 

sequences, deep-sequencing has provided an unprecedented profile of the intra-

sample evolution of the disease within and across hosts. 

 

The consensus sequence network is informative and can be used to reconstruct 

the sequential accumulation of nt substitutions between hosts and provide 

evidence for the transmission of two separate viral populations from calf 2 (A2) to 

calf 3 (A3). However, this approach has limited resolution to differentiate between 

samples collected at the intra and inter-host scale as shown by the presence of 

identical consensus sequences within the same host (A2, 3 samples and A3, 4 

samples) and between hosts (A2 and A3; A3 and A5). Deep sequencing allowed 

us to characterize samples collected from the transmission chain at a much 

deeper resolution than consensus sequencing. These data monitored low-

frequency variation at specific sites in early samples prior to their appearance as 

consensus-level substitutions in later samples. For example, the advantageous 

mutation at genome position 2754 (VP356) related to the switch in receptor binding 

was rapidly fixed early in the transmission chain. NGS data also revealed patterns 

of apparently neutral mutations which were sometimes observed at lower 

frequencies but drifted over and under the consensus threshold through time. This 

study identified 13 consensus-level mutations (A2-A5) that were generated during 
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the transmission chain. Of these: four were fixed at the level of the consensus by 

the end of the experiment; two were lost and a total of seven exhibited a ‘drifting’ 

pattern, appearing successively fixed and lost in the population. Additionally, the 

frequency profile of the two lost mutations (at sites 1087 and 7355) closely 

‘mirrored’ each other so, although the short length of the NGS reads prevented the 

systematic reconstruction of viral haplotypes, linkage between mutations may be 

inferred by this tightly correlated pattern of mutation frequency over time. 

Moreover, by checking the linkage of significant mutations spaced on the genome 

less than the length of a single read, we were able to demonstrate that several 

viral genotypes can co-circulate in a lesion (as suggested by previous work 

(Cottam, King et al. 2009b)).  

 

Investigation of the mutation spectra provided evidence for variation in the 

polymorphic structure of viral populations. In particular, we found indications of two 

types of founding events: intra-host, when the infection reaches a distant 

epithelium through the blood stream, and inter-host, when the infection is 

transmitted to the next host. In this experiment, several related lines of evidence 

point toward narrow bottlenecks during the process of virus dissemination during 

intra-host infections and a wider bottleneck for the inter-host transmissions. These 

include: 1) distances between viral populations were sometimes larger within hosts 

compared to between hosts; 2) the mutation spectra of populations sampled early 

during the infection of a host exhibited polymorphisms across a range of 

frequencies, while those of newly-formed lesions at the end of the clinical phase 

displayed a depletion of polymorphisms with intermediate frequencies; and 3) the 

Shannon entropy of populations did not drop substantially across hosts but was 

often low in samples recovered from ‘younger’ feet lesions. Where wide inter-host 

bottleneck transmissions have also been demonstrated in both Equine (Murcia, 

Baillie et al. 2010;) and avian-like swine (Murcia, Hughes et al. 2012) influenza 

virus, inter-host transmissions for HIV, for example, have been shown to be via 

extremely narrow bottlenecks of only a few particles (Fischer, Ganusov et al. 2010; 

Wang, Sherrill-Mix et al. 2010b; Bull, Luciani et al. 2011; Bull, Eden et al. 2012). In 

contrast to wide bottlenecks, where a more faithful representation of the diversity 

within a donor host is transmitted, extreme bottlenecks, such as those experienced 

during HIV transmission, further call into question whether there are biologically 
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meaningful features of these few transmitted/founder viruses that facilitate their 

transmission.     

 

The lack of clear boundaries between FMDV populations collected from different 

hosts highlights the importance of founder effects and subsequent tissue/organ-

specific amplification during viral spread in an individual host. Following host entry 

and dissemination, a distant epithelial lesion can be considered as hosting a viral 

population that is relatively distinct from the systemic circulation, and founded by a 

subsample of an ancestral population. However, mixing of these populations 

through interchanges of viral particles via the blood stream may blur population 

‘boundaries’ at finer scales. Nonetheless, the presence of large differences 

between populations within a single host suggests that the size of this founding 

population may be relatively small. Some populations detected across different 

hosts were surprisingly similar, both at the consensus and sub-consensus 

sequence level. This scenario is compatible with some host-to-host transmission 

events seeded by large viral populations, where a rather faithful representation of 

the diversity in the ancestor population is passed on to the next host. Analysis 

conducted with mutation spectra, at the host-to-host scale, showed a strong trend 

in dN/dS towards an increased purifying selective pressure along the chain. If a 

role for the adaptive immune response is ruled out so early in infection, we can 

hypothesize that the declining dN/dS ratio results from the elimination of mildly 

deleterious mutations generated early in the chain. We conclude that host-to-host 

transmissions can be seeded by populations of different sizes, while in all cases 

examined, seeding of a distant host epithelium lesion occurred via a small 

founding population.  

 

In the present study, we considered only polymorphisms at frequencies higher 

than 0.5%. The coverage obtained by NGS allowed us to investigate lower 

frequencies, but at the likely price of introducing significant numbers of artefactual 

mutations into the analysis. Accordingly, we note that Shannon entropy was 

computed in (Chapter 3) for A1 samples in a slightly different manner: to avoid 

contamination by low-frequency artefactual mutations, we considered here only 

the contribution deriving from the dominant polymorphism at each site. The 

entropy of the original inoculum, computed according to the method used in this 
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work then becomes 2.07x10-4, while we obtain 4.22x10-4 and 6.98x10-4 for the A1 

FLF and BRF lesions, respectively. These values are compatible with those found 

later in the transmission chain, confirming that a single host passage results in a 

cell-cultured population acquiring complexity equivalent to a natural in vivo 

infection. $%&'#!polymorphisms at frequencies below 0.5% are unlikely to change 

the conclusions of the present study, a more comprehensive understanding of the 

population genetics of acute RNA virus infections will require quantifying 

polymorphic frequencies well below this threshold. Such understanding will require 

either direct high fidelity sequencing of RNA without amplification, or more detailed 

study and reduction of the errors introduced by the RT-PCR process and 

sequencing reactions themselves.  

 

Taking multiple samples from the different hosts allowed us to see a host as a 

collection of potential sources of infection rather than harboring a single 

heterogeneous population. The different populations, while clearly related, can 

differ at several consensus positions (in accordance with previous studies (Carrillo, 

Lu et al. 2007a)), and showed different levels of heterogeneity, potentially caused 

either by tissue/organ-specific amplification or bottlenecking and founder effects 

during intra-host viral spread. While the ability to recognize a single lesion as a 

source of infection is limited to the samples available and by the extent of mixing 

between populations via the blood stream, characterizing multiple potential source 

populations is a clear advancement. This information could be a powerful tool to 

reconstruct more refined transmission trees and develop a more sophisticated 

understanding of how viral genetic differences accumulate with transmission 

events. 

 

 

 

 

 



 

 
 

Chapter 6 
 

The effects of sequential 
bottlenecks on foot-and-mouth 
disease virus population diversity 
in vitro 
 

The analytical and statistical pipeline used within this chapter was as described in 

Chapter 5 (constructed by Dr Marco Morelli). Statistical analysis was performed by 

Dr Richard Orton (University of Glasgow). 
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6.1 Summary 

This chapter describes the optimization and results of a novel experimental 

design, the aim of which was to further investigate the impact of bottleneck size on 

the acquisition and fixation of mutations within FMDV populations, characterised at 

the ultra-deep level using NGS. Rescued virus from a full-length FMDV cDNA 

clone was subjected to serial passage in vitro to better characterise viral 

population diversity generated from a more defined clonal starting material. NGS 

successfully demonstrated that mutation frequency in the population increases 

more rapidly during small population passages and provided evidence for positive 

selection during the passage of large populations. The novel experimental design 

described provides a potential resolution for such investigations negatively 

impacted by background sequence noise by use of an evolutionary marker.  
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6.2 Introduction 

RNA viruses exist as swarms, or populations, of closely related viral genomes as a 

consequence of the poor proofreading ability of the viral RNA dependent RNA 

polymerase. The error rate of this polymerase is in the order of 10-3 to 10-5 

misincorporations per nucleotide (nt) copied (Batschelet, Domingo et al. 1976; 

Drake 1993; Domingo and Holland 1997; Drake and Holland 1999), and confers 

on RNA virus populations a high degree of genetic heterogeneity, which is thought 

to favour adaptability to different environments. The serial passage of relatively 

large proportions of this heterogeneity (i.e. transferring large viral populations) is 

generally accompanied by an overall gain in population fitness within the 

environment in which replication takes place (Novella, Duarte et al. 1995; 

Escarmis, Davila et al. 1999) referenced in (Escarmis, Lazaro et al. 2008). 

Competitive optimization between different mutants within the viral swarm may 

explain this observation (Escarmis, Davila et al. 1999). Conversely, the serial 

passage of a small proportion of this heterogeneity (i.e. transferring small viral 

populations), by subjecting the viral population to sequential bottlenecks, results in 

reduced mutant spectrum diversity and has been demonstrated for a range of 

plant, animal and human RNA viruses (Li and Roossinck 2004; Ali, Li et al. 2006; 

Jridi, Martin et al. 2006; Murcia, Baillie et al. 2010; Boeras, Hraber et al. 2011). 

The serial bottleneck passage of small viral populations results in average fitness 

loss (Escarmis, Davila et al. 1999). Next-generation sequencing (NGS) has been 

used to provide initial evidence for bottleneck driven diversification of Norovirus 

populations (Bull, Eden et al. 2012), as well as for similar studies of Hepatitis C 

virus (Wang, Sherrill-Mix et al. 2010b; Bull, Luciani et al. 2011), and HIV-1 

(Fischer, Ganusov et al. 2010) diversification, in vivo, as was discussed for FMDV 

in Chapter 5. 

 

Viral fitness loss, associated with serial bottleneck events, may be explained by 

the predominant effect of genetic drift, where the probability of replicative 

optimization is restricted to competition between founding variants. As a result of 

genetic drift, mutations may become more rapidly fixed in small founding 

populations by chance and, if deleterious in nature, will often lead to the decline in 

replicative ability of that population. Bottleneck associated decline in viral 

population fitness has been demonstrated experimentally in vitro, where a range of 
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RNA viruses have been subjected to serial bottleneck events via plaque-to-plaque 

passages (Duarte, Clarke et al. 1992; Novella, Elena et al. 1995; Escarmis, Davila 

et al. 1996; Yuste, Sanchez-Palomino et al. 1999). Bottleneck size has been 

controlled experimentally by varying MOI, between 0.01-0.1 (low MOI) and 1-10 

(high MOI) (Escarmis, Davila et al. 1999; Escarmis, Lazaro et al. 2008). This 

bottleneck effect was mimicked during serial contact transmission of FMDV in pigs 

(Carrillo, Lu et al. 2007a).    

 

Similar cell-culture based, serial passage, experiments have been conducted to 

investigate the impact of viral load (in the form of MOI) on FMDV populations 

undergoing enhanced mutagenesis (Sierra, Davila et al. 2000; Moreno, Tejero et 

al. 2012). A study by (Sevilla, Ruiz-Jarabo et al. 1998) looked at the effect of MOI 

on the relative fitness of two competing viral subpopulations of FMDV in vitro. In 

this study, the subpopulation with increased affinity for heparan sulphate was 

found to out-compete the other viral subpopulation when passaged in BHK-21 

cells at low MOIs. 

 

The current study used NGS to dissect the evolutionary progression of rescued 

virus subjected to two different bottleneck regimes in vitro, at the ultra-deep level. 

The ultra-deep coverage provided by NGS reveals mutations present in only a 

small fraction of the population. Therefore, NGS may potentially provide 

information about the fine-scale impacts of these different bottleneck regimes on 

the viral swarm, which would have been missed by less high-throughput 

techniques such as cloning. The aim of this study was to test the hypothesis that 

mutations, irrespective of selective value, become more rapidly fixed in the 

population during more severe bottleneck transmissions.  
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6.3 Experimental design & optimization 

Previous studies have conducted serial, extreme bottleneck transmissions as 

plaque-to-plaque transfers in which each infection is initiated by a single infectious 

particle. Such experiments have compared the pattern of mutations and their 

distribution along the FMDV genome of clones subjected to serial plaque-to-

plaque transfers to those observed within FMDV clones subjected to serial large 

population passages (Escarmis, Davila et al. 1999; Escarmis, Lazaro et al. 2008). 

Other studies have looked at the impact of bottleneck size on the fitness of 

vesicular stomatitis virus during serial cell-culture passages. One such study 

varied the number of infectious particles sampled from the parental population 

during serial plaque-to-plaque transfers (Novella, Elena et al. 1995), another 

varied bottleneck size by using flasks of an appropriate size for each population 

size (Novella, Dutta et al. 2008). 

Within this experimental design, MOI was also kept constant by varying the 

number of cells between the two passage series. Small viral populations were then 

sequentially transferred between an accordingly small number of cells and large 

viral populations between an accordingly large number of cells, as demonstrated 

in Figure 6.1. Therefore, serial passage of large viral populations would simulate 

serial wide bottleneck transmission and small viral populations, serial narrow 

bottleneck transmission (series ‘A’ and ‘B’ in Figure 6.1 respectively). Conducting 

serial cell-culture passage in liquid culture medium, rather than semi-solid culture 

medium, would allow the inclusion of the entire viral population at each passage, 

not just fit viral particles.  
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Figure 6.1  

Schematic depicting the theoretical principle behind the experimental design of this 

study. Green dots represent the viral swarm and red dots represent a specific mutation 

that either slowly increases in frequency within a large viral population (series A, wide 

bottleneck transmission) or, by chance, reaches fixation by virtue of being passaged from 

one small viral population to the next (series B, narrow bottleneck transmission).     

 

The main experimental variables to be kept constant between the passage series 

were MOI and incubation period. In order to keep MOI constant, confluency of the 

cell monolayer needed to be consistent. To this end, passages were only 

conducted when both the ‘Large’ and ‘Small’ viral population (population L and S 
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respectively) were at 100% confluency. An additional consideration was the 

relative homogeneity of the starting viral population with regards to observing the 

potential impact of bottleneck size, which was achieved by use of an infectious 

clone. Additionally, the minimum amount of virus propagation was conducted to 

infect population L at the highest of two MOIs tested (MOI of 1). 

A major concern of this study was that a large number of passages would be 

required before mutation frequency reached levels above background sequence 

noise (set at 0.5%, as discussed in Chapter 4, section 4.4). Therefore, the virus 

and cell line used were chosen in order to induce some degree of selective 

pressure at known sites of biological significance associated with a switch in 

cellular receptor usage (see below). If appropriate selective pressure was exerted 

on the viral population to induce mutations at these sites, the hope was that these 

mutations may then reach fixation more rapidly. Such mutations would therefore 

act as a form of evolutionary marker.  

   

An important factor which determines the infectivity of a number of animal viruses 

is the presence of suitable cellular surface receptors for attachment and 

internalization. The epithelial cell expressed heterodimer, integrin, has been 

shown to be the cellular receptor for FMDV in vivo (Jackson, Clark et al. 2004; 

Monaghan, Gold et al. 2005; O'Donnell, Pacheco et al. 2009). Although several 

integrins are known to bind to the conserved RGD amino acid motif found on the 

VP1 capsid protein of FMDV, including %v&8 and %v&3, the integrin %v&6 is 

considered the main receptor of wild-type FMDV. However, Jackson et al. (1996) 

observed that the glycosaminoglycan, heparan sulphate (HS), could mediate the 

interaction of FMDV serotype O with cells in culture. Nine motifs, associated with 

the subtype O1 FMDV-HS receptor complex, namely residue 134, 135 and 138 of 

VP2, residues 56, 59, 60, 87 and 88 of VP3, and residue 195 of VP1 are 

discussed in (Fry, Lea et al. 1999a). Amino acid residue 56 of VP3, an arginine in 

cell-culture-adapted viruses and commonly a histidine or cysteine in ‘field’ strains 

of FMDV, is critical to virus/receptor recognition (Fry, Lea et al. 1999a; Borca, 

Pacheco et al. 2012). The HS-binding phenotype has been linked to attenuation of 

a serotype O genetically engineered virus in cattle (Sa-Carvalho, Rieder et al. 

1997a). However, the progression of two amino acid reversions associated with 

the switch from a cell-culture to host adapted virus (HS to integrin receptor usage), 
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was observed in cattle at the ultra-deep level using NGS, as discussed in Chapter 

3. Although HS binding has been observed for cell-culture adapted FMDV 

serotype C viruses (Baranowski, Ruiz-Jarabo et al. 2000), serotype A viruses (Fry, 

Newman et al. 2005) and SAT-type viruses (Maree, Blignaut et al. 2010), it is not 

clear whether HS can be utilized by all serotypes of FMDV as an alternative cell 

receptor (Botner, Kakker et al. 2011). 

 

Experimental design was consistent between the two passage series. Therefore, 

time, virus and reagent expenditure was minimised by conducting optimisation 

steps on a single population size, where appropriate. Total RNA extraction, RT, 

PCR and product visualization was as described in Chapter 4, section 4.4, 

including the same RT and PCR primers. As the FMDV genomic region of interest, 

in terms of selective pressure during cell-culture passage, was incorporated within 

fragment 1 (PCR1) amplification, this assay alone was performed. qRT-PCR was 

as described in Chapter 4, section 4.3.5.  

 

6.3.1 Bottleneck size 

Bottleneck size was controlled by varying the size of the viral population 

transferred at each cell-culture passage. However, to maintain constant MOI, the 

number of cells available for infection needed to be varied accordingly, which was 

achieved by using different sized polystyrene cell-culture vessels. The aim was to 

demonstrate the impact of bottleneck size on the mutation frequency distribution of 

a viral population. The priority was therefore to achieve as large a differential in 

bottleneck size as possible and, in order to do this at constant MOI, as large a 

differential between cell-culture vessels needed to be achieved. The two vessels 

tested provided an approximate 3 log differential (as detailed in Table 6.1). 
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Table 6.1 Cell-culture vessel details for population L and S 

Population Cell-culture 

vessel 

Manufacturer Surface area 

(cm2) 

Cell count 

(100% confluent 

monolayer) 

L T175 flask Greiner Bio-One 175  2.0 x 107 (1) 

S 96-well (3) NUNC 0.3 3.4 x 104 (2) 

(1) Cell count obtained from an average within this size vessel using a haemocytometer 
(2) Cell count extrapolated from that given for the T175 flask according to surface area  

(3) A single well of a 96 well, flat bottomed ELISA plate  

 

6.3.2 FMDV full-length cDNA plasmids  

The virus studied had been rescued from a plasmid containing full-length FMDV 

O1Kaufbeuren cDNA (pT7S3) (Ellard, Drew et al. 1999). This infectious copy was 

a cell-culture-adapted B64 strain of the O1Kaufbeuren virus (O1K B64) (Ellard, 

Drew et al. 1999), and therefore has the ability to bind HS, producing observable 

cytopathic effect (CPE) in both the first and second passage in BHK cells (Botner, 

Kakker et al. 2011). A study by Botner et al. (2011) found that the O1K B64 

infectious copy grew well in both BTY cells and a goat cell line (ZZ-R 127), 

producing complete CPE in each cases (Botner, Kakker et al. 2011). The pT7S3 

plasmid, with its nucleotide sequence, was kindly provided by Veronica Fowler 

(IAH, Pirbright). 

 

6.3.3 Cell-culture cell line 

The ZZ-R 127 fetal goat tongue epithelium cell line was developed from the 

Friedrich-Loeffler-Institute (FLI) Collection of Cell Lines in Veterinary Medicine 

(CCLV). An evaluation study by (Brehm, Ferris et al. 2009) found that the 

sensitivity of ZZ-R 127 cells to infection by both wild-type and cell-adapted FMDV 

strains was only slightly inferior to that of primary BTY cells, the most sensitive 

cells for FMDV isolation. Preliminary studies by (Brehm, Ferris et al. 2009) 

indicated that > 90% of ZZ-R 127 cells expressed the %v&6 integrin receptor, 

potentially explaining the higher sensitivity of this cell line to field strains of FMDV 

compared to other permanent cell lines, including BHK-21. However, in contrast to 

primary BTY cells, ZZ-R 127 cell lines maintain their polymorphic epithelium-like 
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morphology and sensitivity to FMDV after multiple passages. The decision was 

therefore made to use the more stable ZZ-R 127 cell line for this study. 

Additionally, by using this cell line, genomic sites associated with the switch in 

cellular receptor usage could potentially provide a genetic marker in testing the 

study hypotheses. Using these sites in this way required the assumption that there 

may be some increasing level of selective pressure for the cell-culture adapted 

infectious copy to switch receptor usage to integrin with passage.  

 

6.3.4 Rescue and growth of virus from full-length cDNA plasmids 

In vitro transcription of full-length FMDV RNAs was achieved using the same 

protocol as described in Chapter 4, section 4.4.1. After quantification and checking 

transcribed RNAs by gel electrophoresis, the RNAs were introduced into BHK cells 

by electroporation, essentially as described previously (Nayak, Goodfellow et al. 

2006) and depicted in Figure 6.2.   
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Figure 6.2 

Schematic of the electroporation process for the rescue of O1K B64 and O-UKG virus 

 

An initial experiment was conducted in order to demonstrate the degradation of 

RNA left on the outside of cells by natural RNases with time (Figure 6.3). The 

same quantity of RNA was either i) introduced into cells and incubated at 37oC for 

6 hrs, as above, (RNA ‘Inside’ cells) or ii) introduced to cells after they had been 

electroporated and given time for the membrane pores to close so that RNA sat on 

the outside of cells at 37oC for 6 hrs (RNA ‘Outside’ cells). Electroporated cells in 

both scenarios were added to 5 ml of nutrient rich media for incubation (as above). 

PCR1 amplification was performed, as described in Chapter 4, section 4.4. All 

bands were at the correct size (between 4 and 5 kb).  

~ 1ug input 
RNA 

800 !l BHK cell suspension in electroporation buffer 
(~106 cells) in chilled 0.4 cm electroporation cuvette 

(Bio-Rad) 

Two pulses of 0.75kV (25!FD) (Bio-Rad 
MicroPulser Electroporator) 

Incubate BHK cells at room temperature for 10 mins 

Transfer cells to T25 cell culture flask containing 5 ml of 
nutrient rich media (10% foetal calf serum) 

Incubate cells at 37oC in a CO2 incubator 

1 

2 

3 

4 

5 

6 
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Figure 6.3  

Agarose gel depicting PCR1 products for O1K B64 rescued virus at time zero (T’0’) in 

duplicate, followed by after 6 hrs incubation at 37oC inside BHK cells (T’6hrs’ RNA inside 

cells) in triplicate, and after 6 hrs incubation at 37oC outside BHK cells (T’6hrs’ RNA 

outside cells) in triplicate.   

 

A time course was also conducted to demonstrate replication. Electroporated cells 

containing O1K B64 RNAs were incubated for 2 hrs, 3hrs, 4 hrs, 5 hrs, 6 hrs, 8 hrs 

and 12 hrs. Following each incubation period, the appropriate T25 flask, containing 

media/cells and virus, was frozen at - 20oC for at least 2 hrs to detach and burst 

any adhered cells, creating a ‘virus/cell’ suspension. Two hundred microliters of 

this suspension was then added directly to 800 !l of TRIzol (Invitrogen, Paisley, 

UK) for total RNA extraction. PCR product visualization and corresponding 

quantification using a Nanodrop spectrophotometer (Figure 6.4a and b 

respectively) demonstrated an increase in product from 8 to 12 hrs. All 260/280 

ratios were between 1.80 and 1.87. All bands were at the correct size (between 4 

and 5 kb).  
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Figure 6.4 

O1K B64 time course results a) agarose gel depicting PCR1 product and b) graph 

showing PCR1 product yield (ng/!l), as quantified on a Nanodrop spectrophotometer, 

with trendline fitted. 

 

In order to generate enough initial ‘Input’ virus to infect population L at the highest 

MOI tested (MOI 1), a virus titre of at least 2.0 x 107 plaque forming units (PFU)/ml 

needed to be achieved. This was done by overlaying the electroporated cells onto 

a fresh monolayer of BHK-21 cells for 24 hrs and conducting a single passage 

onto the same cell line until CPE was observed. 

  

After growing sufficient virus in BHK cells, the actual study would be conducted 

using ZZ-R 127 cells therefore duplicate virus titres were measured by plaque 

assay using this cell line (method modified from (Dulbecco and Vogt 1954)). 

Briefly, infected cells were incubated at 37oC, under a Noble agar (Sigma-Aldrich) 

overlay and stained with crystal violet at 72 hrs post infection. O1K B64 (VP356-

Arg) demonstrated a small plaque morphology (Figure 6.5a and b) as described 

previously (Borca, Pacheco et al. 2012). In total, O1K B64 virus ‘Input’ had a total 

of 33.5 hrs of replication in BHK-21 cells (achieving a final average titre of 4.4 x 

107 PFU/ml).              
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Figure 6.5 

Plaque assay quantification of O1K B64 rescued virus a) and b) represent duplicate 

plates. Plaques from appropriate dilutions are shown. 

 

6.3.5 Measuring viral replication & infectivity  

An increase in virus titre at each passage, from input to output, can be used to 

provide a quantitative measure of viral replication. However, traditional methods, 

such as the plaque assay discussed in section 6.3.4, or endpoint dilution, 

measuring the tissue culture infective dose that produces CPE in 50% of an 

inoculated cell culture (TCID50/ml) (Khatib, Chason et al. 1980), are relatively 

insensitive and time-consuming.  

 

 6.3.5a PFU to FMDV RNA copy number comparison 

A literature search revealed qRT-PCR as potentially providing a more rapid means 

of viral quantification. (Jonsson, Gullberg et al. 2009) observed a strong linear 

correlation between Ct (threshold cycle) value obtained by a two-step qRT-PCR 

method and viral titre (PFU/ml) obtained by the plaque assay method when 

quantifying the enterovirus EV7W. However, the calculated number of RNA 

genomes (‘viral particles’) needed to generate a plaque was not consistent across 

enterovirus serotypes, which ranged from a mean value of 94 to 3552 (Jonsson, 

Gullberg et al. 2009), with an average of 1001. Estimates for the PFU to FMDV 

particle ratio varies considerably and have been quoted as ranging between 1:7 x 

103 and 1:1 x 104 (reference (Verdaguer, Fita et al. 1997) within (Sevilla, Ruiz-

Jarabo et al. 1998), and between 1:8.3 x 101 and 1:2.5 x 103 (Bachrach, Trautman 

et al. 1964). Duplicate estimates of the PFU to FMDV particle ratio were made for 

O1K B64 (mean value of 1:2.9 x 103). Consequently, this value of FMDV RNA copy 
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number was used to calculate the number of RNA copies to be added at each 

passage, equating to a constant MOI, for both population sizes. These calculations 

were according to the T175 (population L) and 96-well (population S) cell counts 

given in table 6.1. RNA genomes were quantified by the one-step qRT-PCR, as 

described in Chapter 4, section 4.3.5, and PFU/ml was quantified using ZZ-R 127 

cells.  

 

 6.3.5b Initial test at MOI 1 

An initial test was conducted, in duplicate, to measure the increase in RNA copy 

number from time zero until 100% CPE was observed within population L infected 

at an MOI of 1. Figure 6.6 summarises the overall workflow for this procedure 

within either population L or S. It should be noted that inoculation volume for 

population S at step 2 of the workflow was dependent on the quantification of RNA 

copy number at step 1. The citric acid wash (AW) at step 5 was modified from that 

used in (Jackson, Ellard et al. 1996a), and contained citric acid crystals (Sigma), 

sodium citrate powder (Sigma) in saline solution. Media used for all experiments 

using ZZ-R 127 cells, as described in (Brehm, Ferris et al. 2009), although only 

1% foetal calf serum used. The calculation for the average difference in PFU to 

RNA copies to infect population L at an MOI of 1, is not shown. 
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Figure 6.6 

Schematic of experimental workflow for the infection of either population L or S 

 

100% CPE was observed within duplicate populations after 7 hrs incubation of 

infected ZZ-R 127 cells, at which time they were both frozen at -20oC for 2 hrs 

(step 7 Figure 6.6). After thawing, 200 !/ of ‘virus/cell’ suspension was added 

directly to 800 !l of TRIzol (Invitrogen, Paisley, UK) for total RNA extraction. 

Subsequent quantification by the one-step qRT-PCR, as described above, 

revealed only a tenfold increase in RNA copy number from input to output 

therefore the decision was made to test an alternative MOI.  

  

 6.3.5c Initial test at MOI 0.01 

A literature search revealed that, when an excess of virus is present at high MOI, 

binding to surface polymers may approach saturation and tends to become 

independent of the affinity of the virus for those polymers (Sevilla, Ruiz-Jarabo et 

al. 1998). The same study hypothesised that, if binding to heparan sulphate, or 

other negatively charged cell-surface polymers, is a first step in the interaction of 

Dilute virus to appropriate MOI for appropriate cell-culture vessel and 
make up to final inoculation volume (2 ml for population L and 10 µl for 

population S)

Pour/pipette away media, inoculate cell monolayer and ensure even 
spread of virus inoculum

Incubate at 37!C in a CO2 incubator for 30 mins

Pour/pipette away excess inoculum and wash cell monolayer with citric 
acid wash (pH 5.2)

Add media (10 ml for population L and 350 µl for S) 

Incubate at 37!C in a CO2 incubator until 100% CPE observed in either 
population L or S where both frozen at -20 !C for at least 2 hrs
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FMDV with BHK-21 cells (Jackson, Ellard et al. 1996a), it may be possible that a 

low MOI can lead to selection of viral subpopulations with increased affinity for 

such charged polymers. Following this rational, a low MOI may therefore favour 

the inducement of selective pressure upon the cell-culture adapted virus studied 

here for the alternative cell surface receptor expressed by ZZ-R 127 cells 

(integrin). The hope was that infecting cells at a lower MOI might drive beneficial 

mutations towards fixation above background sequence noise more rapidly. It was 

also hypothesised that, if lower MOIs equate to more viral multiplication cycles, 

then this may result in a more pronounced increase in RNA copy number from 

input to output. Therefore, an inoculation MOI of 0.01 was tested. The average 

difference in PFU to RNA copies was then calculated for both population L and S, 

to give the total number of FMDV RNA copies added at every passage, equating 

to an MOI of 0.01 (Table 6.3). 
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Table 6.3 FMDV RNA copies/PFU comparison for population L & S (MOI 0.01) 

    Total RNA copies (‘Input’) to 

achieve an MOI of 0.01 

Virus RNA 

copies/ml1 

PFU/ml1 Difference1 Population L Population S 

O1K B64 1.3 x 1011 4.4 x 107 2.9 x 103 5.7 x 108 9.7 x 105 

1 Average of two measurements 

 

The test described in section 6.3.5b was repeated but for both population L and S. 

Cell monolayers were checked for CPE every 2 hrs. After 12 hrs of incubation at 

37oC (step 7, Figure 6.5), no CPE was observed and so both populations were 

frozen at -20oC for 2 hrs and total RNA extraction, followed by quantification by 

qRT-PCR, as above. 

   

 

Figure 6.7 

Quantification of FMDV RNA copy number by qRT-PCR for population L (solid line) and 

population S (dashed line) infected at MOI 0.01: Increase in RNA copy number from 

‘Input’ to ‘Output’ (following incubation at 37oC for 12 hrs) is indicated by a red arrow.  

 

After 12hrs of incubation, and although no visible CPE was observed, both 

population L and S demonstrated an approximate hundred-fold increase in FMDV 
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RNA copy number (Figure 6.7). The decision was therefore made to conduct the 

main experiment at an MOI of 0.01 with a fixed incubation period of 12 hrs.   

 6.3.5d Additional attempts to standardise the two population sizes  

A number of measures were taken to standardise the relative rate of virus 

attachment and entry into cells within population L and S. As well as keeping 

incubation time constant, where possible, the difference in inoculation volume to 

monolayer surface area ratio was kept within a log between the two series. 

Attempts were also made to ensure even spread of virus inoculum within both cell-

culture vessels, before incubation, through tilting (T175 flask) and rapid, horizontal 

movement’s back-and-forth (96-well). 
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6.4 Results 

6.4.1 In vitro serial passage 

Rescued infectious virus from the PT7S3 plasmid (Ellard, Drew et al. 1999) was 

subjected to two serial passages in vitro. One passage series was through 

simulated serial narrow bottleneck transmissions and, the other, wide bottleneck 

transmissions. Viral replication was measured by increases in viral RNA copy 

number, quantified by qRT-PCR (as described previously). Although the 

incubation period was constant (12 hrs), increase in viral RNA copy number 

decreased with passage, within both population L and S (Figure 6.8a and b) 

 

  

Figure 6.8 

Quantification of O1K B64 RNA copy number by qRT-PCR across 3 passages in cell 

culture for a) population L and b) population S. Both populations were infected at an MOI 

of 0.01. Passage 1 ‘Input’ to ‘Output’ indicated by a black solid line, passage 2 by a dark 

grey solid line and passage 3 by a light grey solid line. Inoculation volumes are indicated 

and were modified for population S for passage 3 in order to account for FMDV 

concentration. 

 

However, this decrease in RNA copy number was more pronounced within 

population S, compared to population L. Inoculation volume remained constant 

within population L but, where required to compensate for decrease in RNA copy 

number, was increased in population S. 

  

6.4.2 Quantification of PCR products prior to NGS analysis 

Following quantification by qRT-PCR, as described previously, starting template 

copy number was standardised across samples (for the reasons given in Chapter 

4, section 4.2.1). One sample from passage 1 to 3 for O1K B64 population S and L 
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was diluted to a total of 5.0x105 RNA copies before RT-PCR was performed, as 

described previously, before sequencing on the Illumina Genome Analyzer IIx 

platform. PCR products were visualized on a 0.7% Agarose gel, as described 

previously, where single products of the correct size (between 4 and 5 kb) were 

demonstrated (data not shown). PCR1 product yield was quantified using the 

Nanodrop spectrophotometer (Table 6.4).  

 

Table 6.4 Nanodrop spectrophotometer quantification of PCR1 products for O1K 

B64  

Pass Virus Population size PCR1 product yield 

(ng/!l) 

260/280 

1 O1K B64 Large 23.6 1.86 

Small 18.5 1.74 

2 O1K B64 Large 13.6 1.91 

Small 20.1 1.90 

3 O1K B64 Large 21.4 1.76 

Small 12.6 1.83 

‘Input’ O1K B64 - 22.9 1.84 

 

6.4.2 NGS analysis 

NGS workflow was as described in Chapter 3, although the Genome Analyzer II(x) 

platform was used (Glasgow Polyomics, University of Glasgow). Read filtering and 

trimming was essentially as detailed for the analysis pipeline discussed in Chapter 

5 (Supplementary Table S2, Appendix 4). However, validation of observed 

mutations was achieved by use of the background sequence noise threshold of 

0.5% (discussed in Chapter 4, section 4.4), plus the qualitative method described 

in Chapter 3 and 5, alone as no duplicate sequencing run had been performed. 

The nucleotide sequence of the linearized pT7S3-O1K B64 plasmid was used as 

the reference sequences to which all reads were aligned.  
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All samples received coverage between X16,000 and X65,000 and shared similar 

regions of low and high coverage, as was found across samples discussed in 

Chapter 3 and 5. Figure 6.9 shows the coverage for all samples and indicates the 

over-represented primer regions that were omitted from analysis.     

 

Figure 6.9 

Coverage of the filtered and trimmed reads for O1K B64 virus ‘Input’ plus population L 

and S (passage 1 to 3). Numbering is according to GenBank sequence EU448369. Over-

represented primer regions, omitted from the analysis, are indicated.   

 

The pattern of mutation frequency (> 0.5%) from ‘Input’ through to passage 3 (P3) 

revealed an observable difference between population L and S for O1K B64 

(Figure 6.10a and bi). Eight of a total of 40 sites where mutation frequency 

reached above 0.5% were omitted from analysis for population L and three of 18 

sites from population S due to presence within primer associated regions. 

  

The highest mutation frequency found within population L (9.7%) and S (12.9%) 

were found at site 2334 (VP2134) and 883 (5’ UTR), respectively (numbering 

according to GenBank sequence EU448369). The majority of mutations that 

occurred above 0.5% occurred below 1.0%. However, whereas no mutation 

reached above 1% within population L until P2, six mutations were observed 

above this frequency by P1 within population S. Of these six more dominant 
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mutations, four were found within the polyprotein, the frequency pattern of which is 

shown in Figure 6.10 bii. Additionally, whereas all mutations (n=15) within 

population S were transitions (Ts), a relatively high number of transversions (n=7) 

were found within population L.  
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Figure 6.10 

Mutation frequency within O1K B64 virus ‘Input’ and a) at all 32 sites within population L 

(passage 1 to 3). bi) at all 15 sites within population S (passage 1 to 3). bii)  at four 

highly dominant sites within the FMDV polyprotein of population S (solid lines indicate 

non-synonymous mutations and the dashed line a single synonymous mutation). Only 

mutations that reached above 0.5% were included in this analysis.  

 

Population L and S of O1K B64 were also found to differ over a very narrow range 

(between 1.25 and 1.04) when comparing the ratio of non-synonymous to 
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synonymous mutations within the open reading frame (dN/dS) (Figure 6.11 a). 

dN/dS was calculated as described in Chapter 5.    

 

  

Figure 6.11 

Evidence of selective pressure. a) Ratio of non-synonymous to synonymous mutations 

(dN/dS) within O1K B64 virus population L (black solid line) and population S (dark grey 

solid line) from ‘Input’ through to passage 3. b) Mutation frequency within O1K B64 virus 

‘Input’ and population L (passage 1 to 3) for non-synonymous mutations associated with 

the subtype O1 FMDV-HS receptor complex only: VP2134 (black line), VP388 (purple line), 

VP2138 (gold line), VP1195 (grey line), VP360 (green line), VP356 (turquoise line), VP359 

(red line).  

 

Additional evidence for positive selection was provided by increasing frequencies 

of non-synonymous mutations associated with the subtype O1 FMDV-HS receptor 

complex in population L (Figure 6.11 b). Increased mutation frequency was found 

within seven of the nine motifs identified previously (Fry, Lea et al. 1999a) (Table 

6.5 provides details of the substitutions and subsequent amino acid property 

changes at these sites). No mutations occurred above 0.5% at these sites within 

population S.  
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Table 6.5 Details of non-synonymous mutations associated with the subtype O1 

FMDV-HS receptor complex in population L (O1K B64 virus) 
Genome 

position1 

Ligand Nt 

change 

Amino acid 

change 

Amino acid Property change Maximum mutation 

frequency (%) observed 

2334 VP2134 A ' C Lys(K) ' 

Gln(Q) 

Polar/positive ' /neutral  9.8 

2346 VP2138 T ' C Tyr(Y) ' 

His(H) 

Polar/neutral ' /sometimes 

positive 

3.4 

2754 VP356 C ' T Arg(R) ' 

Cys(C)  
Polar/positive ' /neutral 1.3 

2764 VP359 G ' C2 Gly(G) ' 

Ala(A) 

No change  0.7 

2767 VP360 G ' A Gly(G) ' 

Asp(D) 
Non polar/neutral ' /negative 1.7 

2851 VP388 A ' G Asn(N) ' 

Ser(S) 

No change 4.0 

3832 VP1195 A ' C2 His(H) ' 

Pro(P) 
Polar/sometimes positive ' 

non polar/neutral 

2.2 

1 Numbering according to GenBank sequence EU448369 
2 Alternative Nt substitution found within ‘Input’ and P1 but below 0.5% threshold limit 

  

The A ' C mutation at VP2134 reached the highest frequency through the passage 

series within population L of O1K B64, whereas the C ' T mutation at VP356 

thought of as the most critical motif in terms of virus/cell receptor recognition, only 

reached a frequency of 1.3% by P3. The mutation with the second highest 

frequency within O1K B64 population L was T ' A mutation at VP361. 
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Figure 6.12 

Predicted structure of the molecular surface of the FMDV pentamer. A Front on image 

showing repeated elements, VP1 (washout blue); VP2 (washout green); VP3 (washout 

red). HS associated motifs are highlighted: VP2134and VP2138 in red and orange 

respectively; VP356,VP359, VP360 and VP388 in green, blue, purple and hot pink 

respectively; VP1195 in cyan. The additional motif at VP361 is highlighted in yellow. B 

Enlarged image of HS associated motifs. Predicted structure made using Pymol version 

1.5.0.4 from Schrodinger LLC.  

 

The additional VP361motif (highlighted in yellow in Figure 6.12) clusters with the 

other seven HS associated motifs on the FMDV capsid surface. However it is not 

known if this motif has a role to play in the O1 FMDV-HS receptor complex.  

 

Additionally, the complexity of both O1K B64 populations was found to differ 

through the passage series, measured by Shannon entropy (as described in 

Chapter 5). A two fold difference in entropy was observed between population L-

P3 and population S-P3). After an initial increase from ‘Input’ to P1, for both 

populations, entropy was found to remain relatively constant within population L 

and decrease within population S (Figure 6.12).  

! "
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Figure 6.13 

Pattern of population complexity (measured by Shannon entropy) within O1K B64 virus 

population L (black solid line) and population S (dark grey solid line) from ‘Input’ through 

to passage 3. 
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6.5 Discussion 

A study was conducted to better characterise viral population diversity generated 

during serial passage of FMDV in vitro from a more defined starting material. 

Performing the experiment with two different viral population sizes tested the 

hypothesis that mutations, irrespective of selective value, become more rapidly 

fixed in the population during more severe bottleneck transmissions. 

 

No mutation, in either passage series, was observed above 13%. In contrast to the 

amount of viral replication that occurs at the intra-host scale, where consensus 

sequences can remain invariant (Murcia, Baillie et al. 2010; Bull, Luciani et al. 

2011; Bull, Eden et al. 2012), relatively little viral replication had occurred by cell-

culture passage 3; therefore it was not surprising that no mutations had reached 

consensus level. Consequently, the current study provided evidence in support of 

the hypothesis that mutations become more rapidly fixed in the population during 

more severe bottleneck transmissions. However, there was no genetic evidence to 

suggest whether mutations observed in population S were either advantageous or 

deleterious, which will be addressed later in the discussion.   

 

The decreasing level of population complexity observed during serial small but not 

large population passage of FMDV was comparable to that demonstrated within 

published in vitro studies (Novella, Duarte et al. 1995; Escarmis, Davila et al. 

1996; Escarmis, Davila et al. 1999; Escarmis, Gomez-Mariano et al. 2002; 

Domingo, Pariente et al. 2005; Escarmis, Lazaro et al. 2008) and reviewed by 

Domingo, Escarmis et al. 2005. An additional comparison can be drawn between 

the observations made here and those by Escarmis et al. (2008) where evidence 

for positive selection was also demonstrated during large population passages but 

not during ‘bottleneck transfers’, or small population passages (Escarmis, Lazaro 

et al. 2008). However, the number of biologically significant sites at which the 

cellular receptor associated mutations occurred and rate at which they 

accumulated, was surprising. The in vitro system used was a proxy for the host 

environment because a large proportion of ZZ-R 127 cells are known to express 

%v&6 integrin, compared to other cell lines (for example, BHK-21 cells) that 

express heparan sulphate. However, this system comprised polymorphic but 
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mainly epithelium cell types and, as such, was a relatively simple system when 

compared to, for example, a bovine host.  

The agreement between these and published in vitro results, plus observations 

made of mutations at biologically significant sites, provide a degree of confidence 

that these observations were not all artefacts of the experimental design. The 

increase in mutation frequency at the biologically significant sites, coupled with the 

relatively constant entropy measures for population L, provides additional 

evidence that virus was not being ‘diluted out’ through the passage series. 

However, although ‘infective’ dose (RNA copy number) and incubation period was 

kept constant, there was still an apparent decrease in productive viral replication, 

within both population S and L with viral passage.  

 

No evidence of lethal mutation (STOP codons) or ‘defector’ genomes (non-

synonymous mutations within highly conserved regions of the polyprotein) was 

found. Defector genomes are defined as any type of replication-competent 

genome (dependent or not on the standard virus for replication) with the potential 

to interfere with the replication of the standard virus. These defector genomes 

therefore include defective-interfering (DI) particles, which are dependent on 

standard virus for completion of their infectious cycle (Moreno, Tejero et al. 2012). 

The influence of such genomes cannot be ruled out as mutations leading to their 

creation may have occurred within the un-sequenced region (containing non-

structural proteins). Production of mutant and defector viruses is favoured by 

increased mutation frequency at low MOI. However, positive stranded RNA 

viruses, including FMDV, have been shown to be more tolerant of defector 

genomes, replicating at enhanced mutation rates at low MOI, compared to 

negative strand viruses such as vesicular stomatitis (Moreno, Tejero et al. 2012). 

The presence of a high proportion of defector genomes is often given as an 

explanation for the high virus particle to PFU ratio (Holland, Spindler et al. 1982; 

Domingo, Martinez-Salas et al. 1985). However, a study by Belsham et al. (1988) 

demonstrated that, FMDV RNA molecules, microinjected directly into the 

cytoplasm of BHK cells, had an infectivity close to 1 PFU per molecule. The same 

study speculated that high virus particle number to PFU ratios may reflect some 

inefficiency within a component of viral RNA delivery to the cytoplasm rather than 

due to a large proportion of defective viral genomes (Belsham and Bostock 1988). 
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The exact cause for the decrease in viral replication observed during these 

experimental passages is not known. Future work may include a repeat of this 

experiment, with population L only initially, using the same MOI but quantifying 

viral titre by plaque assay at each passage to ascertain whether the same 

decrease in viral replication was observed. If a greater number of passages could 

be achieved, it may also be interesting to note the progression of mutations 

associated with the cellular receptor switch with passage and if/when this resulted 

in any changes in plaque morphology.  

 

The same experiment was attempted using a variant of the infectious copy studied 

here. This chimera virus contained an approximately 5 kb long sequence for the 

surface-exposed capsid proteins from the FMDV field-strain, O/UKG/34/2001, as 

described in (Botner, Kakker et al. 2011). However, no increase in RNA copy 

number was observed following passage 1, which is why this study was 

terminated. Nevertheless, future work could involve further investigation of the 

evolutionary progression of phenotypically distinct viruses, subjected to different 

environmental pressures in vitro, at the ultra-deep level. Sequencing the full FMDV 

genome by NGS, with or without enhanced mutagenesis, may also clarify the 

potential impact of defector genomes.  

 

Although all practical measures were taken to keep conditions between the two 

populations studied as constant as possible, this process was not exhaustive. In 

particular, it is speculated that surface tension and so called ’slosh dynamics’ 

would have varied between culture vessels due to variations in surface area 

relative to depth. Such variations in fluid dynamics may have implications for virus 

spread over the cell monolayer. Therefore, care would need to be taken especially 

when using this experimental design to investigate fine-scale viral evolutionary 

dynamics at the inter and intra-cellular scale.  

 

This pilot study has demonstrated the importance of population size to the 

evolutionary dynamics of FMDV, at a previously un-obtained depth of resolution 

using NGS. Specifically, the study shows that the variance in the level of site-

specific polymorphism depends directly on the bottleneck size – with higher 

variances related to narrower bottlenecks.  Furthermore, the successful application 
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of NGS, in conjunction with a known biological marker, may provide ‘proof of 

concept’ for its application for similar investigations at scales previously not 

thought possible in terms of background sequence noise.  



 

 
 

Chapter 7 
 

Discussion 
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7.1 Overview of thesis 

The genetic relatedness between full genome consensus sequences provides 

valuable insights into the evolutionary dynamics of FMDV at the epidemic scale, 

as described for the 1967 UK FMD outbreak, within Chapter 2. However, during an 

epidemic, virus replicates within multiple animals, where it is also replicating and 

evolving within multiple tissues and cells. Each scale of evolution, from a single 

cell to multiple animals across the globe, involves evolutionary processes that 

shape the viral diversity generated below the level of the consensus. The use of 

next-generation sequencing (NGS) for the dissection of the finer scales of viral 

population diversity has been evaluated for FMDV within this thesis. Substantially 

increased coverage provided by NGS has enabled improved resolution and 

characterisation of viral populations below the level of the consensus, as 

described in Chapter 3.  

 

Collaboration with the Institute of Biodiversity, Animal Health and Comparative 

Medicine at the University of Glasgow provided the specialist bioinformatic and 

statistical capabilities required for the analysis NGS datasets. As part of this 

collaboration, a new systematic approach was developed to process data 

produced by NGS and distinguish genuine mutations from artefacts. Additionally, 

NGS data produced during this PhD was used within evolutionary models to 

estimate parameters such as the genome-wide mutation rate of FMDV.  

 

The bulk of the diversity identified by NGS is provided by low frequency mutations 

which poses a challenge in terms of distinguishing genuine mutations from 

artefacts. As one of the most significant challenges facing the use of this 

technology, experiments were undertaken to quantify the occurrence of these 

artefacts (Chapter 4). Analysis of the mutation spectra generated from a clonal 

control study established a mutation frequency threshold of 0.5% above which 

there can be a high degree of confidence that a mutation is real in the sense that it 

is present in the sampled virus population. This threshold, together with an 

optimized sample processing protocol, was used for the more extensive 

investigation of within and between host viral population dynamics during 

transmission (Chapter 5). Variations in the polymorphic structure of FMDV 

populations extracted from biological samples revealed evidence for two 
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bottleneck sizes occurring within and between hosts. However, following the 

pattern of mutation frequency at single nucleotide (nt) positions was also revealing 

about forces of evolution at play. 

A limited number of sites typically demonstrated higher frequency mutations 

(>1%), including sites of biological significance, both in vivo and in vitro. These 

sites provided the opportunity to determined fine-scale fluctuations in mutation 

frequency during in vitro passage (Chapter 6), thus providing the necessary 

resolution to further demonstrate the impact of bottleneck size on viral populations. 

 

7.2 Site specific polymorphisms  
Cell-culture adapted viruses of the same topotype were used during both in vitro 

passage series in Chapter 6 (O1K B64) and the in vivo transmission chain 

discussed in Chapter 3 (O1OUK 2007). The in vitro cell-culture system used was a 

proxy for the host environment, as discussed in Chapter 6. However, direct 

comparison between this in vivo and in vitro system should be attempted 

cautiously since the defined area of infection, rounds of replication, number of 

infected cells and interchange of virus particles are not necessarily equivalent. In 

spite of these differences, it is interesting to compare the frequency of site-specific 

mutations observed within the ‘large’ population in vitro passage series and those 

in vivo. Where seven amino acid motifs associated with the cellular receptor switch 

from HS to integrin had an average mutation frequency of 3.2% by passage three 

in vitro, only two were present in calf 1 (A1) two days post inoculation in vivo. Both 

of these mutations were present as a minority within VP356 (C'T change at the 

first codon position resulting in an Arginine to Cysteine amino acid change and a G 

' A change at the second codon position resulting in an Arginine to Histidine 

amino acid change). Following the progression of these known sites through the in 

vivo transmission chain, where the G'A change within VP356 fell in frequency 

until it was no longer observed above background sequence error, the C'T 

change within VP356 increased in frequency and became fixed in the population. 

However, although the G'A change within VP356 was below consensus level in 

calf 2 (A2) when sampled six days post first contact, a probang sample taken from 

A2 32 days later revealed this mutation at consensus level (Juleff, Valdazo-

Gonzalez et al. 2013), resulting in a Histidine at VP356 rather than a Cysteine. 
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Although fitness was not directly tested, it may be reasonable to infer that 

replicating viruses exhibiting mutations at sites associated with the switch in 

cellular receptor usage, both in vitro and in vivo, were moving towards increased 

fitness. Additional evidence for positive selection acting on the viral swarm 

subjected to ‘large’ population passages in vitro was provided by the ratio of 

transitions to transversions. Transversions were relatively common among the 

observed mutations in vitro. However, this observation was not mirrored in vivo (( 

defined as 2Ts/Tv, of 7.1 compared to > 60 respectively), where additional 

evidence for positive selection was absent. The frequency distribution over time of 

site-specific mutation, as measured by NGS, therefore provides additional 

evidence of the impact of both selective pressure and bottleneck size on the 

fixation of mutations in the consensus sequence. Furthermore, where minimal 

variation in entropy levels were measured, by virtue of the mutation spectra in 

vitro, frequency distribution of site-specific mutations provided the additional 

resolution necessary to observe the impact of bottleneck size. 

 

7.2.3 Implications 

NGS allows both the measure of mutation spectra (all mutations) and tracking of 

site-specific mutation frequency over time and through transmission events. The 

combined application of both of these features has enabled the effective 

evaluation of bottleneck size and its impact on viral population diversity and 

fixation of mutations into the consensus sequence. NGS analysis confirmed that 

within-host viral populations are highly diverse and demonstrated often greater 

variations in population heterogeneity compared to those measured between 

different hosts. According to the findings of this thesis, a faithful representation of 

within-host diversity is typically transmitted to the next host, whereas more acute 

impacts of bottleneck events are more frequently demonstrated within a single 

host. The analysis of FMDV deep sequence data across epidemiologically 

significant scales has resulted in a more sophisticated understanding of the 

consensus sequence, in terms of its use for transmission tree reconstruction, and 

a better calibration of how viral genetic differences accumulate with transmission. 

Furthermore, the ability to distinguish between the population structure of multiple 

samples taken from a single host may provide the means to reconstruct both intra- 

and inter-host transmission routes in the future.  
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7.4 Future work 

The volume of data generated during this PhD was only possible by use of NGS. 

However, the viral diversity observed, within-host and through transmission, could 

be further validated via targeted molecular cloning techniques. Such techniques 

could also validate future haplotype frequency estimations using the Bayesian 

statistical tool, ShoRAH (Zagordi, Geyrhofer et al. 2010). Although labour-

intensive, endpoint dilution of template would avoid PCR introduced amplification 

errors and would therefore also be employed during future validation experiments. 

The dataset compiled represents a novel opportunity to evaluate different 

filtering/alignment/SNP calling algorithm and software. Running this data set 

through multiple pipelines would not only provide a controlled evaluation of those 

pipelines but would also potentially validate the analysis conducted within this 

PhD.   

 

The observation of variations in FMDV population diversity within-host requires 

further investigation. Applying NGS analysis to tissue-specific sampling may yield 

additional information regarding the influence of tissue-specific amplification of 

virus to the generation of viral diversity within-host. Future application of NGS to 

strand-specific amplification strategies may also play an important role in 

improving the estimates of viral mutation rate. 

 

Although NGS provides the means to characterise intra-sample viral swarms at 

previously unobtainable depth, questions remain about the impact of introduced 

bias and error during RT-PCR and sequencing, as well as variations in the 

efficiency of the processes themselves. Ideally, an RNA template control of known 

sequence would be processed in parallel to assess and quantify the accumulation 

of such artefacts. The External RNA Control Consortium (ERCC) ‘synthesizes’ 

RNA by in vitro transcription of synthetic DNA sequences, as well as DNA derived 

from Bacillus subtilis and the deep-sea vent microbe Methanocaldococcus 

jannaschii. These standardised control RNAs are being developed to be used in 

microarray, qPCR and sequencing applications (Baker, Bauer et al. 2005; 

Devonshire, Elaswarapu et al. 2010). A study by Jiang et al (2011) examined the 

use of spike-in ERCC RNA controls during RNA-seq data generation on the 

Illumina GAII and concluded that their inclusion allowed the measurement of 
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systematic biases in quantification, such as underrepresentation of short 

transcripts and read coverage heterogeneity (Jiang, Schlesinger et al. 2011). Such 

a standardised set of RNA controls (spike-in and/or external) could also be used 

for the direct measurement of sequencing error rates, coverage biases and other 

variables that affect the accurate representation of viral populations using NGS. 

The ERCC are addressing fundamental questions about RNA control sequence 

uniqueness (for spike-in), secondary structure and length. The future may entail 

the availability of entirely chemically synthesized viral RNA/DNA genomes, which 

take into account target genome sequence length (with improved synthesis 

fidelity), secondary structure and nucleotide composition. At such a time, aside 

from obvious biosecurity and ethical concerns, one could imagine effectively using 

such synthetic genomes, not only as an authentic control but potentially, as 

template material upon which to conduct experimental evolution studies 

themselves. 

 

With the intended commercialisation of ‘Strand sequencing’ by Oxford Nanopore 

Technologies by the end of this year, it would be extremely short sighted not to 

discuss direct RNA sequencing within this section. Briefly, strand sequencing is a 

technique that passes intact DNA or RNA polymers through a protein nanopore 

set in an electrically resistant membrane bilayer, sequencing in real time as the 

DNA/RNA translocates this pore. Error rate is typically estimated to be high for 

current single molecule platforms, which are susceptible to quenching effects 

between adjacent dye molecules as well as the effects of ‘Dark nucleotides/ 

probes’ (a nucleotide or probe that does not contain a fluorescent label) (Metzker 

2010). However, developers at Oxford Nanopore technologies are apparently 

already working on improving accuracy. Reads of several kb in length will be 

invaluable for haplotyping, the study of epistasis and structural variant analysis. 

Among other applications, this technology will enable more informative, achievable 

and cost effective exploration of RNA virus fitness landscapes. By resolving the 

issue of linkage between mutations and allowing the reconstruction of haplotypes, 

these ‘Third’ generation sequencing platforms are closing the gap between viral 

populations that exist at the finest scales in nature and what we are capable of 

sequencing.  
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7.5 Conclusions 

When applied to the investigation of rapidly evolving RNA viruses, the power of 

NGS lies with its depth of resolution into the viral swarm. As demonstrated within 

this thesis and previous studies, this level of resolution is imperative for the 

dissection of such viral populations present within a single host. While viral 

diversity at any given scale can be considered as a function of that observed at the 

scale immediately below, this function diminishes with distance between scales. 

Therefore, while ultra-deep sequencing by NGS has provided clarification of the 

use of the consensus sequence, it would be unnecessary and counter-productive 

to use such depth of sequence coverage for routine tracing measures above the 

host-to-host scale. Nevertheless, the high-throughput nature of the technology, 

without the need for additional depth of sequence coverage, can be utilized for 

processing a greater number of samples more rapidly. Future research in the field 

of RNA virus evolution, which utilizes these advancing sequencing technologies, 

should rather focus on refining our understanding of virus- host interaction and 

pathogenesis. This thesis therefore provides a stepping stone in a rapidly evolving 

field of research and also demonstrates the invaluable partnership between ‘wet’ 

and ‘dry’ science. The dynamic between model driven and experiment driven 

research is potentially very powerful, especially when combined with continued 

advances in viral genomic sequencing. A more sophisticated, tailored 

understanding of viral diversity at its finest scales will lead to more well informed 

and accurate models of viral evolution. This in turn could hold the key to the better 

understanding of viral pathogenesis and, therefore development of effective and 

sustainable disease treatment and control measures.
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Appendix 1 
 

 

Figure 1 

Full genome consensus sequencing overview 

 

  

 

Sampling processing – original 
epithelium  
Approx. 600ul 

RNA Extraction 
Elute in 50ul 

Reverse Transcription 
2x 40ul ! 80ul 

Clean-up 
Elute 2x 40ul ! 80ul 

PCR 
23x 50ul 

Clean-up 
23x Elute in 50ul 

Sequencing Rxn Set-Up 
23x 10ul  

Ethanol Precipitation 
23x Resuspend in 20ul 

Sequencing on ABI 3730 
capillary sequencer and 

analysis 



 

218 
 

Protocol for (complete genome consensus sequencing (CGCS)) and (next-
generation sequencing (NGS)) template production  
 

qPCR quantification of RNA template (NGS), using the SuperScript III One-Step 

RT-PCR System with Platinum Taq High Fidelity (Invitrogen)  

 

 X1 

2x reaction mix  12.5!l 

Nuclease free water 1.5 !l 

Forward primer (3D 

Callahan) 10mM 
2 !l 

Reverse primer (3D 

Callahan) 10mM 
2 !l 

Probe (3D Callahan) 

5mM 
1.5 !l 

High fidelity enzyme 

mix 
0.5 !l 

   

20 !l of above master mix added to 5 !l of RNA template before quantification on 

Stratagene Mx3005P machine (Agilent Technologies, UK) with following thermal 

cycling conditions: 

 

Step Temp oC time 

1 60 30 minutes 

2 95 10 minutes 

3 95 15 seconds 

4 60 1 min 6 seconds 

5 Go to step 3 x 50 times 
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Reverse transcription using 2 x 15"l RNA (CGCS) and 1x 15 "l RNA (NGS) 
 

Set up reverse transcription reaction/s as follows; 

 

In a 0.2ml eppendorf add 15!l RNA, 3!l oligo-dT primer (10!M), and 3!l 10mM 

dNTP (CGCS as detailed in Chapter 2), 3!l FMDV specific primer 1 (10!M) and 

3!l FMDV specific primer 2 and 3!l 10mM dNTP (NGS as detailed in Chapter 3, 4 

and 5).    

 

Heat to 70oC for 3 minutes 

Place immediately on ice for 3 minutes 

 

Add RNA\primer\dNTP from above to 17 !l (CGCS) and 14 !l (NGS) freshly made 

RT mix in 0.2ml eppendorfs; 

 

RT mix 

 X1 

5 x FS buffer 8 !l 

0.1mM DTT 2 !l 

RNase OUT 2 !l 

Nuclease free water 5 !l 

 

Add 2 !l of Superscript III reverse transcriptase (Invitrogen) to each reaction 

 

Run on a thermocyler on the following programme 

Temperature oC Time 

45 60 min (CGCS) 90 min (NGS)   

85 5 min 

4 ) 
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cDNA clean-up to give pooled total of 80"l (CGCS) or single 40"l (NGS)  
 
Use the GFX clean-up columns (GE Healthcare) (CGCS) QIAquick PCR 

Purification Kit (QIAGEN) (NGS) both as per the manufactures instructions 

 
23 PCR reactions (CGCS) and 4 PCR reactions (NGS) using 3"l cDNA per 
reaction  
 

Master PCR mix made up as follows: 

 

 X 1 X 50 

10x PCR Buffer (Invitrogen kit) 5 !l 250 !l 

MgSO4 (Invitrogen kit) 2 !l 100 !l 

dNTP (10mM) 1 !l 50 !l 

Platinum Hi fidelity Taq (Invitrogen 

kit) 
0.25 12.5 !l 

Nuclease free water 37 1850 !l 

Forward primer (10!M)1, 2 1!l  

Reverse primer (10!M) 1, 2 1!l  

cDNA 3!l  

Mastermix (Table 1) 45!l  

Total 50"l  

 
1 As detailed in Chapter 2 (with M13 tagged primers) 
2 As described in Chapter 3, 4 and 5 

 

Add 45 !l of master mix to each reaction  

 

Add 3 !l of cDNA 
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PCR thermal programme: 

 

Step Temp oC time 

1 94 5 minutes 

2 94 30 seconds 

3 55 30 seconds 

4 72 1 minute (CGCS) 

4 minute (NGS) 

5 Go to step 2 x 39 times 

6 72 7 minutes 

7 4 ) 

 
PCR reaction clean-ups to give 50"l DNA 
 

Clean up the PCR reactions as described for the cDNA reactions, however elute in 

50!l.   
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Ethanol Precipitation (method) 
 

Turn on centrifuge to be at 4oC 

Make up stop solution using 170µl of 100mM EDTA, 170µl 3MNaOAc, and 85µl of 

glycogen. 

Add 5µl of freshly prepared stop solution to each reaction 

Add 60µl ice cold 95% ethanol to each well 

Seal plate with adhesive foil and mix thoroughly by vortexing 

Centrifuge at maximum speed (>1100 x g) for 30 minutes at 4oC 

Invert plate and pour out supernatant over sink – three gentle shakes 

Gently add 200µl ice cold 70% ethanol 

Centrifuge at maximum speed for 15 minutes at 4oC 

Invert plate over sink and pour off supernatant 

Gently add 200µl ice cold 70% ethanol 

Centrifuge at maximum speed for 15 minutes at 4oC 

Invert plate over sink and pour off supernatant keep plate upside down and gently 

blot on tissue paper 

Vacuum dry for - until dry! 

Re-suspend pellets in 40µl Sample Loading Solution 

Leave for 5 minutes then vortex. 

Either put in freezer or add a drop of mineral oil and run on sequencing machine 
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Sequencing reaction set-up using the BigDye Terminator V3.1 Cycle 
Sequencing Kit by Applied Biosystems for sequencing on the ABI 3730 
genetic analyser (CGCS). 

 X1 

5x sequencing buffer 1.88!l 

BigDye 0.25 !l 

Primer (1mM)* 1.5 !l 

Nuclease free water 5.37 !l 

Template 1 !l 

Total 10 "l 

 

* After PCR in performed with M13 tagged primers, sequencing is performed with 

both Uni-F1 and Uni-R1 primers and 23 times untagged 

 

Sequencing thermal cycle 
 

Step Temperature ºC Time 

1 96 1 min 

2 96 10 seconds 

3 50 5 seconds 

4 60 4 min 

5 Go to 2 25 times 

6 4 Hold 
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Figure 1 
Summary of the of the Illumina GA library preparation workflow 
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Appendix 2 
 

Basic statistics of Illumina yield  
The reads obtained with the Illumina Genome Analyzer were collected in .fastq 

files.  The first run consisted of a total of 7,190,884 reads of 57-nucleotides (nt) in 

length. The last 7 nts of each read defined the sequence tag, and were used to 

assign individual reads to each sample. Reads containing at least one unresolved 

nt (387,809, 5.55% of the total), and reads having a corrupted tag (207,749, 2.89% 

of the total) were removed from the analysis. The 6,595,326 remaining, 50nt-long 

reads, were assigned to the three samples: 1,723,151 (26.1%) had the first tag 

(corresponding to the Inoculum), 2,751,260 (41.7%) had the second tag (lesion on 

the Front Left Foot, or FLF) and 2,112,932 (32.0%) had the third tag (lesion on the 

Back Right Foot, or BRF). 

The second run yielded 10,116,147 79-nt long reads, with the last 9 nts containing 

the sequence tag. 26,428 (0.27%) reads contained at least one unresolved nt and 

288,230 (2.85%) reads had a corrupted tag and were removed from the analysis. 

Among the remaining 9,801,489 70-nt reads, 3,775,685 (38.5%) belonged to the 

Inoculum, 2,542,913 (25.9%) to FLF and 3,482,891 (35.5%) to BRF. 

 

Data filtering 
The quality scores associated with each nucleotide were lower on the first run and 

decreased towards the end of reads (Figure 1). In order to make direct 

comparisons between the two runs, we trimmed reads from the second run to 

50nt. Typically, quality scores decreased along a read, as the reliability of the 

sequencing process decreased with the number of cycles of the Sequencing 

Platform. As Figure A1 shows, a trade-off is present between the number of reads 

kept and their quality. For both runs, we discarded reads with average error per nt 

below $ = 0.2%, %, resulting in a flatter error profile along the read. 

With this choice of the threshold, 66% of the reads were retained from the first run 

(a total of 4,361,101 reads: 1,060,906 for the Inoculum, 1,736,381 for FLF and 

1,328,588 for BRF), and 95% of reads from the second run (a total of 9,277,876 

reads: 3,567,541 for the Inoculum, 2,412,897 for FLF and 3,303,438 for BRF).  

The better performance of the second dataset has to be attributed to an upgrade 

of the Illumina platform. 
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Reads alignment and trimming 
The vast majority of the filtered 50nt-reads aligned unambiguously with less than 5 

mismatches to the reference inoculum genome, previously established using 

conventional Sanger sequencing (Cottam, Wadsworth et al. 2008b) (Genbank 

accession no. EU448369), (run 1: 92.5% for Inoculum, 98.9% for FLF, and 97.8% 

for BRF, run 2: 95.8% for Inoculum, 98.4% for FLF and 96.2% for BRF). The 

remaining reads were either ambiguously aligned reads or contained a large 

number (>4) of mismatches to the reference sequence, and were discarded from 

the analysis. For each sample, an almost equal number of reads were derived 

from positive and negative strands of the viral cDNA. 
Further filtering of the data was undertaken after alignment of the reads. Within the 

aligned reads, mismatches occurred with similar frequency at each of the 50nt of 

the reads, except from the edges, where a higher number of mismatches was 

observed (Figure 2).  Presumably, these peaks were due to a small number of 

sequences with insertions or deletions close to the ends of the reads: for 

subsequent analysis we trimmed away the first and last 5 nts of each aligned read, 

leaving only the 40 central nucleotides where the mismatch curve was flat. 

 

Data handling 
All data handling was performed with parsing scripts, written in C language, acting 

on plain text files. 
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Figure 1  
Average error on reads, computed with base qualities. Panel A: first dataset; panel 

B: second dataset. The average error increases greatly towards the end of the 

reads (solid lines). The second dataset was less noisy. Different filtering strategies 

were tested: only the reads whose average error was below a threshold $ were 

accepted. More stringent thresholds decrease the errors on the reads (small 

dashed, dotted, dot-dashed and dashed lines). The insets show the fraction of 

reads retained after the filtering process (using a threshold $ =0.2%) and retaining 

66% of the reads in the first dataset and 95% of the second dataset. 
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Figure 2:  
Distribution of mismatches to the reference genome on the reads after alignment.  

Left column: first dataset, right column: second dataset. The curves are largely flat, 

indicating an even distribution of mismatches over the reads, apart for a mild 

increase towards the edges of the reads, possibly due to reads containing 

insertions and deletions. We kept only data coming from the flat region of the 

curve, i.e. nucleotides from 5 to 45 in each aligned read.  
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Appendix 3 
 

Alternative oligonucleotide primers tested for the amplification of the 
FMDV genomes studied. 

 

PCR 
Primer1 

(OBFS) 

Location on 

genome 

(region) 

Amplicon 

size (nt) 
Primer Sequence (5' to 3') Tm

oC GC(%) 

O
pt

im
is

ed
-1

 

1i 516+F 
499-5202 

(5’UTR) 
4411 CCTTCGCTCGGAAGTAAAACGA 57 50 

 4926 R 
4908-49262 

(2C) 
 AAGTCCTTGCCGTCAGGGT 59 58 

2i 3876 F 
3876-38932 

(VP1) 
4303 AAATTGTGGCACCGGTGA 55 50 

 8159 R 
8142-81612 

(3’UTR) 
 ATTAAGGAAGCGGGAAAAGC 53 45 

O
pt

im
is

ed
-3

 

1iii 

516+F 499-5202 

(5’UTR) 
4003 

CCTTCGCTCGGAAGTAAAACGA 57 50 

4501 R 4481-45012 

(2C) 

GCGATCCAAGCCTTAATCCAG 56 52 

2iii 

4035 F 4035-40552 

(2B) 
4009 

AACCGGTTAGTGTCCGCATTT 57 48 

8043 R 8019-80432 

(3D) 
GCAGGTAAAGTGATCTGTAGCTTGG 58 48 

O
pt

im
is

ed
-4

 

2iiii 
4035 F 

4035-40552 

(2B) 
4120 

AACCGGTTAGTGTCCGCATTT 57 48 

8154 R 8135-81542 

(3’UTR) 

AAGCGGGAAAAGCCCTTTCG 59 55 

1 The last letter indicates a Forward (F) or Reverse (R) primer 

2 Numbering according to GenBank sequence EU448369 
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Appendix 4 

 

  

Table S1 Details on illumina data: number of raw and filtered reads and 
coverage for both replicates of each sample. 

Sample #read (1) #filtered 

read (1) 

Coverage  

(1) 

#read (2) # filtered 

read (2) 

Coverage 

(2) 

A2-2DPFC-PB 2790963 2128716 15351x 2101069 1709078 12325x 

A2-3DPFC-SR 2807388 2168346 15637x 2626534 2162173 15592x 

A2-4DPFC-PB 2092694 1609323 11605x 2797204 2311235 16667x 

A2-4DPFC-SR 2720760 2076448 14974x 2073010 1722013 12418x 

A2-5DPFC-SR 3336753 2542656 18336x 2974976 2463627 17766x 

A2-6DPFC-BRF 2561453 1962495 14152x 2650213 2214366 15967x 

A2-6DPFC-FLF 2704138 2085893 15042x 2657830 2207046 15916x 

A2-6DPFC-FRF 2550724 1958710 14125x 2626899 2188872 15785x 

A2-6DPFC-PB 2249190 1691592 12199x 2607965 2142547 15451x 

A3-1DPFC-PB 2752115 2140025 15432x 2326107 1930781 13924x 

A3-3DPFC-PB 2458092 1870211 13487x 2059365 1705933 12302x 

A3-3DPFC-SR 2691979 2075898 16330x 2926522 2411961 18974x 

A3-4DPFC-SR 4746119 2761230 21721x 5450750 3778399 29723x 

A3-5DPFC-BLF 5311265 3079516 24225x 6000979 4094216 32208x 

A3-5DPFC-PB 4353393 2469838 19429x 5598961 3724627 29300x 

A3-5DPFC-SR 5231498 3049485 23989x 5611303 3891223 30611x 

A5-5DPFC-PB 5444899 3238943 25479x 5622686 3931106 30924x 

A5-7DPFC-PB 5420473 3249013 25559x 4858806 3410646 26830x 
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Table S2 NGS data analysis pipeline 
Stage 
1 

Raw 
Reads 

(demultiplexed) 

Stage 
2 

Filtering Removing all reads with average quality score < 30 (corresponding to 
probability of error of 0.1%) 

Stage 
3 

Trimming Removing last nucleotides of each read (3-5 according to quality 
scores) 

Stage 
4 

Alignment Aligning the reads to the O1BFS1860 FMDV genome with a simple 
custom-made scoring routine. Reads with 5 or more mismatches were 
discarded.  

Stage 
5 

Trimming Trimming the first and last 5 nucleotides of the aligned reads to 
remove indels 

Stage 
6 

Masking Removing from analysis every nucleotide with quality score < 30 
(corresponding to probability of error of 0.1%) 

Stage 
7 

Consensus 
genomes 

Determination of consensus genomes by counting the most abundant 
nt in the reads at every genomic position 

Stage 
8 

Validation Statistical validation of observed polymorphisms, based on a binomial 
null distribution. Polymorphisms at frequencies <0.5% were discarded 
because potentially due to amplification artefacts 

Stage 
9 

Analysis Generation of quantity of interest: mutation spectra, population 
distances, Shannon entropy, dN/dS 
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Figure S1 
Frequencies across samples of the four remaining mutations reaching consensus 

in one sample only (for the nine mutations described in the main text, see Figure 

4), together with site 2767, previously found mutated in the inoculated calf A1. Top 

panel: Mutations prevalently present in the probangs. Bottom panel: Mutations 

present at high frequency in a single sample (6167 is present in a second sample 

at about 10% frequency). 
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Figure S2  
Frequencies of mutations across the genome, computed with respect to the initial 

inoculum. 
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