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Introduction

Many physical processes may be modelled mathematically using a differential equation.

For example, Newton’s second law tells us that the position of a point-like particle in a

gravitational field is governed by a second order ordinary differential equation. Many

years later Hamilton gave a more geometric understanding of Newton’s equations of

classical mechanics by looking at solution curves in the position-momentum space. This

in turn led to the discovery of symplectic geometry. The beautiful theorem of Liouville

then gives the dictionary to translate the solvability of Hamilton’s equations into mathe-

matics: the existence of a maximal set of Poisson commuting invariants.

Differential equations come in many flavours - linear and nonlinear, ordinary and par-

tial, evolutionary and otherwise. The above example is an archetype of an integrable

differential equation: one’s initial motivation may come from physics, but with under-

standing of its solutions comes a flurry of pure mathematics.

Central to this thesis are the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations,

which are a system of over-determined partial differential equations that were found in

the study of topological field theory in the early ‘90’s [13, 67]. They are named after

Edward Witten, Robbert Dijkgraaf, Erik Verlinde, and Herman Verlinde who are pioneers

in this area. Roughly, they describe the conditions for the third derivatives

cαβγ(t) :=
∂ 3F(t)

∂ tα ∂ tβ ∂ tγ

of some function F(t) to define the structure functions of an algebra that is commutative,

associative, and unital.

The WDVV equations are an integrable system: they admit a zero-curvature repre-

sentation via the deformed Euclidean, or Dubrovin connection. Perhaps one of the most

spectacular classes of solutions from a mathematical perspective are generating func-

tions of genus zero Gromov-Witten invariants of a symplectic manifold. That these gen-

erating functions should satisfy WDVV follows from the geometry of the moduli spaces of

stable maps from the Riemann sphere with some marked points into our symplectic man-

ifold. The structure functions of the algebra then define a deformation of the cohomology

ring of the symplectic manifold, known as the quantum cohomology ring. For example,
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consider complex projective space of dimension two, whose small quantum cohomology

ring is isomorphic to C[x]/〈x3− e−t2 = 0〉. The corresponding solution to WDVV (a formal

power series) is

F(t1, t2, t3) =
1
2

t2
1t3 +

1
2

t1t2
2 + ∑

d≥1

Ndt3d−1
3

(3d−1)!
et2d,

where the coefficients satisfy the recursion relation

Nd = (3n−4)! ∑
a+b=d

a2b(3b−1)(2a−b)

(3a−1)!(3b−1)!
NaNb.

Thus by just knowing N1 = 1, N2 = 1, one can determine Nd, for all d ≥ 0. The first few are

1, 1, 12, 620, 87304, 26312976, ...

The numbers Nd have the interpretation of being the number of rational curves of degree

d passing through 3d−1 points in P2.

As mentioned above, the WDVV equations first appeared in topological field theory,

which is one model that can facilitate the marriage between quantum field theory and

gravity. Another approach is via a so-called matrix model. In the latter approach, it turns

out that the partition function of the theory is a tau-function of the Korteweg-de Vries

(KdV) equation,

ut = 6uux + uxxx,

which is another example of an integrable non-linear differential equation. Given that

any correct theory of quantum gravity must be unique, Witten was lead to conjecture

[67] that the generating function of the Gromov-Witten invariants (in this case of a point)

must also be a tau function for the KdV hierarchy. This was later proved by Kontsevich

[38], leading to him being awarded the Fields Medal in 1998. In fact, this tau-function

has a power series expansion, with the zeroth order term (the generating function of the

genus zero invariants) satisfying the WDVV equations. This zeroth order term is also a

tau function of the dispersionless KdV equation.

The notion of a Frobenius manifold was introduced by Dubrovin [17] in order to pro-

vide a geometric understanding of the solutions to the WDVV equations. Further, the

principal hierarchy of a Frobenius manifold shows how to construct an integrable hier-

archy of partial differential equations of hydrodynamic type (like the dispersionless limit

of the KdV equation) from a solution to the WDVV equations. This is done by constructing

a pair of compatible Poisson brackets, and an infinite number of conserved quantities on

the loop space of the Frobenius manifold. This hierarchy is integrable in the sense that

this infinite family of conserved quantities is in involution with respect to both Poisson

brackets.
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This thesis studies how a symmetry defined on the solution space to the WDVV equa-

tions, called the inversion symmetry, singles out a special class of solution: those that

lie at its fixed points. We will learn how demanding invariance of the solution under this

symmetry forces it to take on a very rich form: that of a quasi-modular function. We will

also study how the corresponding principal hierarchies inherit this symmetry from the

solution to the WDVV equations.

More specifically, Chapter 1 is introductory material on the theory of Frobenius man-

ifolds. We provide motivation, basic examples and tools that will be useful to us later.

As such it contains no original material. The references [1, 16, 17, 18, 19, 35, 37] were

extremely useful in the preparation of this chapter.

Chapter 2 is based on [45], which was written in collaboration with Professor Ian

Strachan. It appeared in Physica D: Nonlinear Phenomena. We study those solutions to

WDVV that lie at the fixed points the inversion symmetry. By studying the transformation

and homogeneity properties that such solutions must have, we set out a program for clas-

sification, with complete results presented for dimensions three and four, together with

partial results for dimension five. We show how various examples that have appeared

in the literature fit into our framework. Any material here that is not original is clearly

referenced.

Chapter 3 is background material on integrable systems. It begins with a little history

of the KdV equation, and explores some of the key properties that make it interesting

[15, 3]. We move on to the construction of Poisson brackets on loop spaces [48, 24],

and more specifically Poisson brackets of hydrodynamic type. We then sketch Dubrovin’s

construction [16] of the principal hierarchy from the geometry of the Frobenius manifold.

Chapter 4 is based on [44], a joint work with Professor Ian Strachan which appeared

in International Mathematics Research Notices. We study how the inversion symmetry

defined on the solution space to the WDVV equations lifts to the principal hierarchy. It

turns out that the action is an example of a so-called reciprocal transformation, intro-

duced by Rogers [52]. These results were obtained independently in [41], and more

recently in [26]. There is also some background material which has been tailored from

Dubrovin’s work [20] on so-called almost dual solutions to WDVV. We give a definition of

the inversion symmetry for these solutions and study how the inversion symmetry acts

on the associated hydrodynamic systems.

Chapter 5 is a very natural continuation of the results obtained in Chapter 4. Moti-

vated by the Witten-Kontsevich theorem, Dubrovin & Zhang [23] showed how the inclu-

sion of the elliptic Gromov-Witten invariants into the tau-function perturbs the equations

of the hierarchy. The results of Chapter 5 show how to extend the symmetry found at the

level of the hydrodynamic equations to these first order, (or genus one), deformations.
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1.1. Frobenius Algebras 2

1.1 Frobenius Algebras

Frobenius algebras are particularly rich mathematical structures that arise in different

areas of mathematics, as well as computer science. This is primarily because, as we will

see, they encode topological information, though they are classically elegant algebraic

structures in their own right. They are named after the German mathematician Ferdi-

nand Georg Frobenius. There are several definitions, but the one best suited to our needs

is:

Definition 1. The triple (A,◦,η) is a Frobenius algebra if:

1. (A,◦) is a commutative associative algebra over C with unity e;

2. η : A⊗A→ C is a non-degenerate bilinear pairing;

3. The pairing η and multiplication ◦ satisfy the following Frobenius condition

η(X ◦Y,Z) = η(X ,Y ◦Z) , X ,Y,Z ∈ A.

The bilinear pairing η is often called the ‘Frobenius form’.

Frobenius algebras arise in a purely abstract algebraic manner:

Example 1. Let A be the space of n× n matrices over C, with respect to the usual mul-

tiplication of matrices. Define η(x,y) = tr(xy), for x,y ∈ A. Because tr is a linear map, it

follows that η is bilinear. To prove that η is non-degenerate, let ei j be the matrix with 1

in the (i, j)th-entry, and zero everywhere else. Then η(x,y) = 0, ∀x implies, in particular,

that

0 = tr(ei jy) = y ji, for 1≤ i, j ≤ n.

That is y = 0. The compatibility between the multiplication and the Frobenius form fol-

lows from associativity of matrix multiplication.

They are important in singularity theory:

Example 2. Let p : Cn → C be a polynomial with an isolated singularity at z = 0. This

means that {
d p(z) = 0 for z = 0,

d p(z) 6= 0 for z 6= 0 sufficiently small.

Let

A =
C[z]
〈d p = 0〉 .

The algebra A is known as the Jacobi ring, or local algebra of the singularity [4]. We

define, for f ,g ∈ A,

η( f ,g) =−Resz=∞

(
f g

∂ p
∂ z1

∂ p
∂ z2

... ∂ p
∂ zn

)
dz.
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For example, for n = 1, taking

p = zN+1,

we have

η( f ,g) =
1

N +1

(
Coefficient of zN−1 in the product f g

)
.

They are integral to cohomological field theories, such as string theories:

Example 3. Let M be a smooth, orientable manifold of dimension 2n. Take as A the

evenly graded cohomology of M (the wedge product is commutative over even cohomol-

ogy classes). For α ,β ∈ Hev(M ), define

η(α ,β ) =
∫

M

α ∧β ,

that is the intersection form on α and β . The Frobenius property follows from associativ-

ity of the wedge product,

η(α ◦β ,γ) =
∫

M

(α ∧β )∧ γ =
∫

M

α ∧ (β ∧ γ) = η(α ,β ◦ γ),

while Poincarè duality ensures η is non-degenerate. Particularly, let M = Pd, complex

projective space of complex dimension d. The even cohomology Hev(Pd) is spanned by

{ 1,ω ,ω2, ...,ωd }, where ω is the standard Kähler form on Pd normalised by

∫

Pd
ωd = 1.

On this basis, the bilinear form reads

η(ω i,ω j) = δi+ j,d .

The next example explores one of the reasons that interest in Frobenius algebras has

intensified in recent years, and is closer to Dubrovin’s original motivation. In his 1988

work ‘Topological quantum field theories’, Atiyah [1] presented an axiomatic approach

to topological field theories. It was later proved by Dijkgraaf [12] that when these topo-

logical field theories are two dimensional (these are more commonly called topological

string theories), they are equivalent to Frobenius algebras.

Some notational points: Let 2Cob denote the category whose objects are oriented,

closed 1-manifolds, and whose morphisms are given by oriented cobordisms. For exam-

ple, a morphism between S1 and the disjoint union of two copies of S1 might look like
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The orientation on the cobordism is important: if the orientation of a boundary S1 is

anti-clockwise, we put it on the left of the picture, or as an ‘input’. If the orientation is

clockwise, we put it on the right as an ’output’. So, for example,

6=

Isomorphism classes will therefore consist of homeomorphic surfaces with the same num-

ber of input and output copies of S1.

Let VectC denote the category of complex, finite dimensional vector spaces. So the

objects are vector spaces, and the morphisms are C-linear maps.

We will give the definition of a two-dimensional topological field theory due to Atiyah

[1], although the way in which we explore the axioms here is closer to the approach given

by Hitchin in a series of lectures given on Frobenius manifolds [35].

Definition 2. A two-dimensional topological field theory (2dTQFT) is a functor Z : 2Cob→
VectC, which assigns to each oriented 1-manifold Σ a complex finite dimensional vector

space Z(Σ), and to each oriented 2-manifold M with Σ = ∂M a vector Z(M ) ∈ Z(Σ),

subject to the following conditions:

1. Z(Σ−) = Z(Σ)∗, where Σ− denotes the manifold Σ with the opposite orientation,

2. Z(Σ1∪Σ2) = Z(Σ1)⊗Z(Σ2),

3. if ∂M1 = Σ1∪Σ2, and ∂M2 = Σ2∪Σ3, then Z(M1∪Σ2 M2) ∈ Hom(Σ1,Σ3),

4. if ∂M1 = ∂M2∪X ∪X−, and M1 and M2 coincide outside a ball, then 1. and 2. imply

Z(M1) = Z(M2)⊗Z(X)⊗Z(X)∗. We identify the gluing of M1 and M2 along X with

the natural pairing Z(X)⊗Z(X)∗→ C in the tensor product.

5. Z( /0) = C,

6. Z(Σ× I) = id ∈ Hom(Z(Σ),Z(Σ)).

The definition of Z(M ) may appear at first sight vexatious: in order for Z to be a functor,

Z(M ) must be a linear map. Note that because of the dual pairing of vector spaces it is

enough to define Z(M ) where M has an empty boundary on the left or right, ∂M = /0∪Σ.
In this case, it follows from axioms 2. and 5. that Z(M ) : C→ Z(Σ) and is hence associated

with a single vector.

Axioms 1. and 2. say that if ∂M = Σ1∪Σ2, then Z(M ) ∈Hom(Z(Σ1),Z(Σ2)). Therefore a

cobordism defines a linear map Z(M ) : Z(Σ1)→ Z(Σ2). Composing two such cobordisms

gives axiom 3. Functoriality, together with axiom 6. imply homotopy invariance.
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Let A = Z(S1), and {φ1...φN} be a basis of A. We will endow A with the structure of

a Frobenius algebra as follows. Because S1 is the unique closed connected 1-manifold,

the image of any surface is an element of A⊗ ...⊗A︸ ︷︷ ︸
k

⊗A∗⊗ ...⊗A∗︸ ︷︷ ︸
s

. The components of the

images of the surfaces define the genus-g correlation functions of the field theory,

〈φα1, ...,φαk ,φ
αk+1, ...,φαk+ j 〉g := vα1...αk

αk+1...αk+ j ,g.

For example,

Z7−→ ∑N
i, j,k=1 vi

jk,1φi⊗φ j⊗φ k ∈ A⊗A∗⊗A∗.

Let us define some genus zero correlation functions by the surfaces

c = , η = , e = .

So, c ∈ A∗⊗A∗⊗A, η ∈ A∗⊗A∗, and e ∈ A (note that strictly speaking we mean the images

of these surfaces under Z, but we write it like this for notational convenience). We are

now ready to state the main

Theorem 1. [12] The tensors c and η define on A the structure of a Frobenius algebra

with unity e. Further, if

H =

then < φα1...φαN >g= η( φα1 ◦ ... ◦φαN , H ◦ ...◦H︸ ︷︷ ︸
g

), where on the right hand side ◦ denotes

multiplication in the Frobenius algebra.

Proof. The first step will be to confirm that the images of the surfaces defined above

satisfy the axioms of a Frobenius algebra. Commutativity of multiplication follows from

φi ◦φ j =
φi

φ j

= = φ j ◦φi

φ j

φi

since there clearly exists a homeomorphism that interchanges the two input S1’s while

fixing the output. Associativity follows from

=
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The surface e indeed provides the unity:

=

To see that the metric is non-degenerate, consider the surface η̃ : C→ A∗⊗A∗ :

η̃ =

Then Z(η̃ ∪S1 η) = id : A→ A:

=

So η̃ = η−1. The second part of the theorem follows from the diagram

=

which demonstrates the relation < φα1φα2 >2= η( φα1 ◦φα2,H
2 )

In fact it can be proved [37] that the surfaces e,c, and η are sufficient to generate any

morphism of 2Cob. This means that the category of commutative Frobenius algebras is

equivalent to the category of 2dT QFT s.

Now that we have defined a Frobenius algebra, and provided some motivation as to

why they are interesting objects, let us turn our attention to the definition of a Frobenius

manifold. Roughly speaking, a Frobenius manifold is a manifold for which each tangent

space carries the structure of a Frobenius algebra. The structure of these algebras

should vary smoothly as one moves between points in the underlying manifold. From the

point of view of 2dT QFT s, they parameterise certain canonical families of theories.
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1.2 Frobenius Manifolds

Frobenius manifolds were introduced by Boris Dubrovin (see, for example [16, 17]) as

a geometric interpretation of the solutions to the following nonlinear systems of partial

differential equations

∂ 3F

∂ tα ∂ tβ ∂ tλ ηλ µ ∂ 3F

∂ tµ∂ tδ ∂ tγ =
∂ 3F

∂ tδ ∂ tβ ∂ tλ ηλ µ ∂ 3F
∂ tµ∂ tα ∂ tγ (1.2.1)

for some function quasihomogeneous function F(t). These equations are known as the

WDVV equations after Edward Witten, Robbert Dijkgraaf, Erik Verlinde, and Herman

Verlinde who are pioneers in the area of topological field theory, where the system (1.2.1)

was first discovered. The indices here take values in {1, ...,N}. When using Greek indices,

use of the Einstein summation convention will be assumed unless otherwise stated. The

array ηαβ is defined by ηαβ ηβκ = δ α
κ where

ηαβ =
∂ 3F

∂ t1∂ tα ∂ tβ (1.2.2)

is constant and non-degenerate. Demanding F be quasihomogenous means that there

exists scalars d1, ...,dN ,dF such that

F(λ d1t1, ...,λ dN tN) = λ dF F(t1, ..., tN), ∀λ ∈ R. (1.2.3)

Note that if all the di are equal, this property restricts to homogeneity. Observe also that

solutions of the system (1.2.1) are only defined up to the addition of a quadratic. The

homogeneity property, together with this quadratic ambiguity may be re-cast as

LEF = E(F) = dF F modulo quadratic terms.

by introducing an Euler field,

E = ∑
α

(dα tα + rα)∂α .

The rich geometric object underlying this ansatz for the WDVV equations is known as a

Frobenius manfiold.

Definition 3. Let M be a smooth manifold. M is called a Frobenius manifold if each tan-

gent space TtM is equipped with the structure of a Frobenius algebra varying smoothly

with t ∈M , and further

1. The invariant inner product η defines a flat metric on M .

2. The unity vector field is covariantly constant with respect to the Levi-Civita connec-
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tion for η ,
∇e = 0. (1.2.4)

3. Let

c(X ,Y,Z) := η(X ◦Y,Z) , X ,Y,Z ∈ TtM . (1.2.5)

Then the (0,4) tensor ∇W c(X ,Y,Z) is totally symmetric.

4. There exists a vector field E ∈ Γ(TM ,M ) such that ∇∇E = 0 and

LEη = (2−d)η , LE◦= ◦, LEe =−e. (1.2.6)

E is called the Euler vector field.

Let us recover the ansatz outlined above for the WDVV equations from the definition

of a Frobenius manifold. Condition 1 implies there exists a choice of coordinates (t1, ..., tN)

such that the Gram matrix ηαβ = (∂α ,∂β ) is constant. Furthermore, this may be done in

such a way that e = ∂1. In such a coordinate system, partial and covariant derivatives

coincide, and condition 3 becomes

cαβγ ,κ = cαβκ,γ .

Successive applications of the Poincaré lemma then implies local existence of a function

F(t) called the free energy of the Frobenius manifold such that

cαβγ =
∂ 3F(t)

∂ tα ∂ tβ ∂ tγ . (1.2.7)

Since η(X ,Y ) = η(e◦X ,Y ) = c(e,X ,Y ), we have

ηαβ = c1αβ . (1.2.8)

Defining (ηαβ )−1 = ηαβ , the components of ◦ are given by cα
βγ = ηαεcεβγ . Associativity of

◦ is then equivalent to the system (1.2.1). Turning our attention to axiom 4.,

∇∇E = 0⇒ E = (qα
β tβ + rα)∂α ,

for some constants qα
β ,rα . Note that

LEη = (2−d)η
LE◦= ◦

}
⇒LEc = (3−d)c.
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In the flat coordinate system,

LE(∂α∂β ∂γF) = E(∂α∂β ∂γF)−qκ
γ ∂κ∂α∂β F−qκ

β ∂κ∂α ∂γF−qκ
α∂κ∂γ∂β F = ∂α∂β ∂γ(E(F)).

So

LEc = (3−d)c⇒ ∂α ∂β ∂γ(E(F)− (3−d)F) = 0⇒ E(F) = (3−d)F + Aαβ tα tβ + Bαtα +C.

(1.2.9)

If Q = (qα
β ) is diagonalisable, there exists another system of flat coordinates (recall that

flat coordinates are only defined up to a linear transformation) such that

E =
N

∑
α=1

(dα tα + rα)∂α

where {d1...dN} = spec(Q). The relation LEe = −e⇒ qσ
1 = δ σ

1 , so any such linear change

of the coordinates preserves e = ∂1. By shifting tα → tα − rα , for those α such that dα 6= 0,

we obtain

E =
N

∑
α=1

dα tα∂α + ∑
α :dα=0

rα ∂α , (1.2.10)

which is the homogeneity condition (1.2.3) in terms of the Euler field. We will restrict to

the case where the matrix Q is diagonalisable over TM r KerQ.

Let us present a technical lemma that will allow us to obtain some more explicit

formulas.

Note that because LEe =−e, we have

LEη
(

∂
∂ t1 ,

∂
∂ t1

)
= (LEη)

(
∂

∂ t1 ,
∂

∂ t1

)
+2η

(
LE

∂
∂ t1 ,

∂
∂ t1

)

= −dη
(

∂
∂ t1 ,

∂
∂ t1

)

because LEη = (2−d)η†. By definition the function η11 is constant in the flat coordinates,

and so either η11 = 0, or d = 0.

Lemma 1. [16] If η11 = 0 and Q is diagonalisable, then by a (possibly complex) linear

change of coordinates tα , we can reduce the Gram matrix ηαβ to anti-diagonal form:

ηαβ = δα+β ,N+1.

†Here d is a constant, and dη(∂1,∂1) means the multiplication of the scalar η(∂1,∂1) by this constant, not
its exterior derivative.
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In these coordinates the prepotential takes the form

F =
1
2
(t1)2(tN)+

1
2

t1
N=1

∑
α=2

tα tN−α+1+ f (t2, ..., tN). (1.2.11)

Furthermore, the sum

dα + dN−α+1 = 2−d (1.2.12)

does not depend on α.

Proof. To begin with, we claim that if η(∂1,∂1) = 0, then we can define tN in such a

way that η(∂1,∂N) = 1 and retain that ∂N is still an eigenvector of Q: Because η is non-

degenerate, ∃V ∈ Γ(TM ,M ) such that η(p1,V ) 6= 0. Because Q is diagonalisable,

V =
N

∑
i=2

vi∂i,

where each ∂i is an eigenvector for Q. But one can always multiply such eigenvectors

by a complex scalar and obtain another eigenvector for the same eigenvalue. Thus by

choosing appropriate scalar multiples of the ∂i we obtain that V is an eigenvector for Q.

We call it ∂n. On the orthogonal complement of ∂1 and ∂n we can reduce the metric to

anti-diagonal form by performing a C−linear change of bases, again using this freedom

to re-scale the eigenvectors. The formula (1.2.11) follows from (1.2.2).

The invariance of the sum (1.2.12) is equation LEη = (2−d)η in this newly normalised

basis of flat coordinates.

Example 4. Suppose N = 2. Then associativity is satisfied trivially because the algebras

are unital. If η11 = 0 and d 6= 1, then the prepotential and Euler field can take the form

F(t1, t2) =
1
2

t2
1t2 + f (t2), E = t1

∂
∂ t1 +(1−d)t2

∂
∂ t2

.

for some function f (t2). In examples, when the index of a coordinate field takes a specific

value (like 1 or 2 here), we will identify raised and lowered indices, so t1 = t1, t2 = t2. If

the index is not specified, the coordinate field with lowered index is achieved using the

isomorphism generated by η . For example, tα = ηαεtε .
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According to equation (1.2.9), this function must satisfy the homogeneity condition

E(F) = (3−d)F modulo quadratic terms

⇒ (d−1)t2 f ′(t2) = (3−d) f (t2)+ αt2
2 + β t2+ γ

t2 f ′(t2)−
3−d
1−d

f (t2) = α̃t2
2 + β̃ t2 + γ̃

⇒ t−k
2 f (t2) =

∫ ( α̃
tk−1
2

+
β̃
tk
2

+
γ̃

tk+1
2

)
dt2; k =

3−d
1−d

.

Integrating this equation, one finds that

F(t1, t2) =
1
2

t2
1t2 + tk

2, k =
3−d
1−d

, for d 6=−1,1,3, (1.2.13)

F(t1, t2) =
1
2

t2
1t2 + t2

2 logt2, for d =−1, (1.2.14)

F(t1, t2) =
1
2

t2
1t2− logt2, for d = 3. (1.2.15)

If η11 = 0 and d = 1, the Euler field takes the form

E = t1
∂

∂ t1
+ r

∂
∂ t2

,

for r constant. Homogeneity implies

r f ′(t2) = 2 f ,

which can be integrated to yield

F(t1, t2) =
1
2

t2
1t2 + e

2
r t2, for d = 1,r 6= 0, (1.2.16)

F(t1, t2) =
1
2

t2
1t2, for d = 1,r = 0. (1.2.17)

If η11 6= 0, (as we saw above, this can only happen if d = 0) then we can take

F =
1
6

t3
1 +

1
6

t3
2 + f (t2); E = t1

∂
∂ t1

+ t2
∂

∂ t2
.

Homogeneity gives that f is homogeneous of degree three up to a quadratic, and so

F(t1, t2) =
1
6

t3
1 +

1
6

t3
2 + r(t2)3 for d = 0 and r constant. (1.2.18)

This list (1.2.13) - (1.2.18) comprises a list of all two-dimensional semi-simple Frobe-

nius manifolds. All the two dimensional Frobenius manifolds are linked, in a way that will

be made precise, to the bi-Hamiltonian structures of certain hydrodynamic type partial
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differential equations. In particular, we will see that the manifolds (1.2.14) and (1.2.15)

describe the dispersionless limits of the bi-Hamiltonian structures of the Benney and Dym

hierarchies. It may be shown [16] that the the solutions (1.2.16) and (1.2.17) correspond

to the dispersionless limits of the Toda and KdV hierarchies respectively.

When the dimension of the manifold is greater than two, one encounters more inter-

esting nonlinear equations, but the problem of classification is much harder.

Example 5. Suppose N = 3 and let the Euler vector field and prepotential take the form

E = t1 ∂
∂ t1 +

1
2

t2 ∂
∂ t2 , F(t1, t2, t3) =

1
2
(t1)2t3 +

1
2

t1(t2)2− (t2)4

16
γ(t3). (1.2.19)

The WDVV equations are equivalent to the nonlinear differential equation (known as the

Chazy equation)

γ ′′′ = 6γγ ′′−9(γ ′)2 (1.2.20)

for the function γ(t3) (here ′ denotes differentiation with respect to the variable t3). It is

interesting that this differential equation has an SL(2,C) invariance, mapping solutions

to solutions,

t3 7→ t̂3 =
at3 + b
ct3 + d

, γ(t3) 7→ γ̂(t̂3) = (ct3 + d)2γ(t3)+2c(ct3 + d), ad−bc = 1. (1.2.21)

The metric in flat coordinates reads

∂1∂α ∂β F = c1αβ = ηαβ =




0 0 1

0 1 0

1 0 0


 ,

and the other non-zero elements of the multiplication are

c222 =−3
2γ(t3)t2, c223 =−3

4(t2)2γ ′(t3),

c233 =−1
4(t2)3γ ′′(t3), c333 =− 1

16(t
2)4γ ′′′(t3).

(1.2.22)

The hydrodynamic type system associated to this solution to WDVV is new. We will

see later on that it inherits the modular symmetry present in the solution γ to the Chazy

equation (2.1.2).

Next we introduce an important structure on a Frobenius manifold: the deformed

Euclidean, or Dubrovin connection.

1.3 Flat Sections of The Dubrovin Connection

The deformed Euclidean, or Dubrovin connection provides an elegant re-packaging of the

WDVV equations. Let (M ,η) be a Riemnnian manifold, and ∇ the covariant derivative
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for the corresponding Levi-Civita connection for η . Suppose further that we have a

multiplication of vectors fields ◦ : Γ(TM ,M )×Γ(TM ,M )→ Γ(TM ,M ), and consider

the 1-parameter family, ∇̃(λ ), of connections defined by

∇̃(λ )XY = ∇XY + λX ◦Y. (1.3.1)

Here λ is called the spectral parameter. Then we have

Theorem 2. The connection ∇̃(λ ) is torsion free if and only if ◦ is commutative. It is flat

identically in λ if and only if ◦ is associative and

∇X(Y ◦Z) = ∇Y (X ◦Z), X ,Y,Z ∈ Γ(TM ). (1.3.2)

Proof. The proof is by direct calculation and will be omitted. See, for example, [16],

Lecture 3.

On a Frobenius manifold we have a commutative associative product. Further, writing

the condition (1.3.2) in the flat coordinate system we have

(∂ε cσ
νκ −∂νcσ

εκ)∂σ = 0.

Taking the inner product with ∂µ we obtain the scalar-valued equation

∂ε cµνκ−∂νcµεκ = 0,

which is exactly the potentiality axiom of a Frobenius manifold. So,

{ ∇̃(λ ) is torsion free and flat ∀λ } ⇔ { WDVV equations }.

In fact, one can also incorporate the quasihomogeneity property required for a Frobenius

manifold: consider the extension of the connection ∇̃(λ ) onto T (M ×C∗) by the formulae

∇̃(λ )∂λ X = ∂λ X + E ◦X +
1
λ

QX ,

∇̃(λ )∂λ ∂λ = 0,

∇̃(λ )X ∂λ = 0,

for ∂λ ∈ TC∗, and X ∈ TM . Then the additional constraint [∇̃(λ )Y , ∇̃(λ )∂λ ] = 0, for Y ∈ TM

gives

{ ∇̃(λ ) is torsion free and flat ∀λ } ⇔ { Frobenius manifold }.

Frobenius’ integrability theorem states that the vanishing of the curvature of ∇̃(λ ) im-
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plies there exists N algebraically independent functions hσ (t1, ..., tN ;λ ), such that

∇̃(λ )dhσ (t;λ ) = 0, for σ = 1, ...,N. (1.3.3)

To put it another way, the functions {hσ : σ = 1, ...,N} comprise a system of flat coordinates

for the connection ∇̃(λ ). Writing equation (1.3.3) in the flat coordinate system for the

metric η , this reads
∂ 2hσ

∂ tε ∂ tκ = λcµ
εκ

∂hσ

∂ tµ . (1.3.4)

Givental originally coined the term ‘quantum differential equation’ for equation (1.3.4)

for examples of Frobenius manifolds coming from quantum cohomology. In this case the

structure functions of the Frobenius algebras are themselves Gromov-Witten invariants

of the symplectic manifold in question. For example, the solution (1.2.16) generates the

genus zero Gromov-Witten invariants of P1.

We will assume, following [16], that the solutions of this system are normalised in the

following way:

hσ (t,0) = tσ := ησα tα , (1.3.5)

< ∇hµ(t,λ ),∇hν (t;−λ ) >= ηµν , (1.3.6)

∂1hσ (t;λ ) = λhσ (t;z)+ η1σ . (1.3.7)

The first normalisation (1.3.5) is motivated by setting λ = 0: we recover the original Levi-

Civita connection for η , and so view the functions hσ as perturbations of the original flat

coordinate system. Hence one may seek power series solutions of the form

hσ (t;λ ) = tσ + ∑
n≥1

λ nhn,σ (t).

With this ansatz, we get the recursion relation

∂ 2hn,σ

∂ tε ∂ tκ = cν
εκ

∂hn−1,σ

∂ tν , h0,σ = tσ . (1.3.8)

The unity field gives the simplified recurrence relation

∂ 2hn,σ

∂ t1∂ tε =
∂hn−1,σ

∂ tε ,

which is (1.3.7) in terms of the coefficients hn,σ .

Remark. In physical literature, the coefficients hn,α appearing in the expansion of

these ‘deformed flat coordinates’ are know as gravitational descendants. The recursion

relation (1.3.8) first appeared in the paper [67] of Witten who wrote it down for the trivial
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Frobenius manifold,

F =
1
6

t3; E = t
∂
∂ t

Note that because for two solutions hµ , hν of (1.3.4) we have ∇ < ∇hµ(t,λ ),∇hν (t;−λ )>=

0, the assignment (1.3.6) is the canonical choice of a covariant constant, and defines a

bilinear pairing on the space of solutions.

Define the matrices Rr, r ≥ 0 by

LEhn,σ (t) = (dN−σ+1 + n)hn,σ (t)+
N

∑
r=1

N

∑
ν=1

hn−r,ν(t)(Rr)
ν
σ . (1.3.9)

The matrices Rr are constant and are characterised by the properties

(Rr)
ν
σ 6= 0 only if µν −µσ = r, ησγ(Rr)

γ
β +(−1)rηβγ(Rr)

γ
σ = 0,

where µα := 1− dα − d
2. The equation (1.3.9) fixes a choice of basis of deformed flat

coordinates uniquely. This is a nontrivial fact due to Dubrovin & Zhang. For a more com-

prehensive exposition of the definition of the matrices, and fixing the basis of solutions to

(1.3.4) see, for example, [19]. Note that the number of non-zero matrices Rr is bounded

above by the dimension of the Frobenius manifold. The motivation for equation (1.3.9) is

that ideally one would like to simply stipulate

LEhn,σ = (dN−σ+1 + n)hn,σ , (1.3.10)

but this does not fix the deformed flat coordinates uniquely in all cases: if dN−λ+1+n−r =

dN−σ+1 + n, i.e. the weights dN−λ+1 and dN−σ+1 differ by an integer r, then

LEhn,σ = LEhn−r,λ .

Thus (1.3.9) absorbs this ambiguity. The latter property of the matrices is to ensure

consistency with the normalisation (1.3.6). Frobenius manfiolds for which any of the

matrices Rr are non-zero are called resonent. Otherwise the Frobenius manifold is said

to be non-resonent. As we will see in later sections the solutions to these equations will

be extremely important to us.

Example 6. [19] For a Frobenius manifold whose flat coordinate system is normalised

as in Lemma 1, we have

F(t) =
1
2

{
〈∇h1,α ,∇h1,1〉ηαβ 〈∇h0,β ,∇h1,1〉− 〈∇h1,1,∇h2,1〉− 〈∇h3,1,∇h0,1〉

}
.
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Using (1.3.9) we find, upon comparison with (1.2.9), that

Aαβ = (R1)
ε
α ηεβ ,

Bα = (R2)
ε
α ηε1,

C = −1
2
(R3)

ε
1ηε1.

Example 7. For the trivial Frobenius manifold,

F(t) =
t3

6
, E = t

∂
∂ t

,

the quantum differential equation reads

∂h(t;z)
∂ t

= zh(t;z).

Choosing

h(t;z) =
1
z

etz,

we satisfy the normalisation h0(t) = t. Because the Frobenius manifold is one dimensional,

all the constants Rr = 0, r ≥ 0. As a power series,

h(t;z) = ∑
k≥0

zk tk+1

(k +1)!
. (1.3.11)

We will come to recognise the deformed flat coordinates hn(t) as the dispersionless limits

of conservation laws for the KdV hierarchy.

Example 8. [24, 65] For the Frobenius manifold defined by the data

F(t1, t2) =
1
2
(t1)2t2 +(t2)2 logt2,

E = t1 ∂
∂ t1 +2t2 ∂

∂ t2 ,

the quantum differential equation (1.3.4) decouples (this is true for any two dimensional

Frobenius manifold):

∂hσ (t;λ )

∂ t1∂ tβ = λδ ε
β

∂hσ (t;λ )

∂ tε
= λ

∂hσ (t;λ )

∂ tβ

⇒ ∂
∂ tβ

(
∂hσ (t;λ )

∂ t1 −λhσ (t;λ )

)
= 0, for β = 1,2

⇒ ∂hσ (t;λ )

∂ t1 = λhσ (t;λ )+ G(λ )



1.3. Flat Sections of The Dubrovin Connection 17

for some function G(λ ). This equation can be solved using an integrating factor to give

hσ (t;λ ) =− 1
λ

G(λ )+ et1λ H(t2;λ ). (1.3.12)

On the other hand, we also have

∂ 2hσ (t;λ )

∂ t2∂ t2 = λcε
22

∂hσ (t;λ )

∂ tε = λc1
22

∂hσ (t;λ )

∂ t1 ,

since we assume ηαβ = c1αβ = δα+β ,N+1. Upon substitution of the expression (1.3.12) we

obtain the second order ordinary differential equation for H(t2;λ ):

∂ 2H(t2;λ )

∂ t2∂ t2 =
λ 2

t2 H(t2;λ ),

which is a slightly re-scaled version of the well-known Bessel equation. The general

solution takes the form

H(t2;λ ) = α0λ
√

t2I1(2λ
√

t2)+ α12λ
√

t2K1(2λ
√

t2)

for scalars α0 and α1, and I1, K1 denote the modified Bessel functions of the first and

second kind [68]:

I1(z) = ∑
k≥0

1
k!(k +1)!

( z
2

)2k+1
, (1.3.13)

K1(z) =
(

γ + log
( z

2

))
I1(z)−∑

k≥0

1
k!(k +1)!

( z
2

)2k+1
(Hk + Hk+1) . (1.3.14)

γ is the Euler−Mascheroni constant and Hk is the kth Harmonic number,

Hk =
k

∑
r=1

1
r
.

Choosing

h1(t;λ ) = et1λ
{√

t2K1(2λ
√

t2)− (γ + logλ )
√

t2I1(2λ
√

t2)+
1
λ

}
− 1

λ
,

h2(t;λ ) = et1λ

{√
t2

λ
I1(2λ

√
t2)

}
,
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we satisfy the normalisation conditions. As power series these read:

h1(t;λ ) = et1λ

{
1
λ

+ ∑
k≥0

1
k!(k +1)!

(t2)k+1λ 2n (logt2−Hk−Hk+1
)
}

+
1
λ

, (1.3.15)

h2(t;λ ) = et1λ

{

∑
k≥0

1
k!(k +1)!

(t2)k+1λ 2n

}
. (1.3.16)

Note that because F satisfies the homogeneity condition LE(F) = 4F +2(t2)2, we have

R1 =

(
0 0

0 2

)
; Ri = 0, for i > 1.

The coefficitients appearing here in the expansions of the deformed flat coordinates

(1.3.15), (1.3.16) turn out to be dispersionless limits of conservation laws of the Ben-

ney hierarchy.

When the dimension of the manifold exceeds two it becomes more difficult to find

a closed form expression for the deformed flat coordinates. But we can still solve the

recursion:

Example 9 (Continued from Example 5, page 12). For the solution (1.2.19), we have the

recursion relations

∂ 2h(n)
σ

∂ tµ∂ tν = cε
µν

∂h(n−1)
σ

∂ tε , for µ ,ν ,σ = 1,2,3, n≥ 0,

subject to h(0)
σ = tσ . Solving this equation recursively gives the solutions

h1(t;λ ) = t3 + λ
{

t1t3 +
1
2
(t2)2

}

+λ 2
{
− 1

16
t3(t2)4γ ′(t3)− 1

8
(t2)4γ(t3)+

1
2

t1(t2)2 +
1
2
(t1)2t3

}
+O(λ 3),

h2(t;λ ) = t2 + λ
{

t1t2− 1
4
(t2)3γ(t3)

}

+λ 2
{
− 1

20
(t2)5γ ′(t3)+

9
160

(t2)5γ(t3)2− 1
4

t1(t2)3γ(t3)+
1
2
(t1)2t2

}
+O(λ 3),

h3(t;λ ) = t1 + λ
{

1
2
(t1)2− 1

16
(t2)4γ ′(t3)

}

+λ 2
{
− 1

480
(t2)6γ ′′(t3)+

1
80

(t2)6γ(t3)γ ′(t3)− 1
16

t1(t2)4γ ′(t3)+
1
6
(t1)3

}
+O(λ 3).

We will use these deformed flat coordinates to generate commuting functionals for a new

integrable hierarchy. One can verify equations (1.3.5) - (1.3.7) explicitly up to O(λ 3). This

solution to WDVV satisfies the homogeneity condition LEF = 2F , and so Ri = 0, i≥ 0.
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1.4 Semi-Simple Frobenius Manifolds

Throughout this thesis, we will restrict ourselves to the case where the Frobenius algebra

structure on the tangent spaces to our manifold is generically semi-simple. This leads to

the construction of another coordinate system that capitalises on this simple algebraic

structure. They are known in the literature as canonical coordinates. As we will see this

new coordinate system can be difficult to construct explicitly (it will involve finding the

roots of a degree N polynomial, where N = dim(M )), but they can be an extremely useful

tool for proving results on semi-simple Frobenius manifolds in general.

Definition 4. Let (A,◦,e) be a unital algebra of dimension N (as a vector space). We say

that A is semi-simple if it decomposes as the direct sum of N one-dimensional algebras.

That is, there exists a basis of idempotents { u1, ...,uN } such that

ui ◦u j = δi ju j.

We will call a point t ∈M semi-simple if the the Frobenius algebra on the tangent space

TtM is semi-simple. If the tangent algebras are generically semi-simple, then we say that

the Frobenius manifold is semi-simple.

Lemma 2. [16] Let (M ,η ,◦,e,E) comprise a Frobenius manifold. In a neighbourhood of

a semi-simple point, canonical coordinates exists such that

∂
∂ui
◦ ∂

∂u j
= δi j

∂
∂u j

. (1.4.1)

Proof. In a neighbourhood of a semi-simple point t, a basis of vector fields {ξ1, ...,ξN}
exists such that

ξi ◦ξ j = δi jξ j.

To show that this is a coordinate basis, i.e. ξi = ∂/∂ui for some coordinates system

{ u1, ...,uN }, we must show that the vector fields commute pairwise. To this end con-

sider the obstructions to commutativity,

N

∑
k=1

f k
i jξk = [ξi,ξ j].

Writing the zero curvature condition of ∇̃(λ ) in the basis of idempotents, we have

Γl
k jδ

l
i + Γl

kiδk j−Γl
kiδ

l
j −Γl

k jδki = f l
i jδ l

k,

where Γi
jk are the Christoffel symbols of the metric η . Choosing l = k gives f k

i j = 0.

Latin indices will be used when working in canonical coordinates, and the summation



1.4. Semi-Simple Frobenius Manifolds 20

convention will be suspended unless otherwise stated. Let us investigate how some of

the main tensors on a Frobenius manifold look.

• The unity field takes the form

e =
N

∑
i=1

∂
∂ui

. (1.4.2)

This follows from (
N

∑
i=1

∂
∂ui

)
◦ ∂

∂u j
=

∂
∂u j
◦ ∂

∂u j
=

∂
∂u j

.

• The Euler field takes the form

E =
N

∑
i=1

ui
∂

∂ui
. (1.4.3)

To see this, note that the multiplication is invariant under the re-scalings u 7→ ku,

for constant k. Then the axiom LE◦ = ◦ is equivalent to E being the vector field

(1.4.3) generating this one-paramater family of diffeomorphisms: f (u) = ku satisfies

E( f ) = ku, i.e. u 7→ ku is an integral curve for E.

• The metric is diagonal,

η
(

∂
∂ui

,
∂

∂u j

)
= ηii(u)δi j,

for some non-zero functions η11(u), ...,ηNN (u):

η
(

∂
∂ui

,
∂

∂u j

)
= η

(
e◦ ∂

∂ui
,

∂
∂u j

)
= η

(
e,

∂
∂ui
◦ ∂

∂u j

)
= δi jη

(
e,

∂
∂u j

)
.

So

ηii(u) = η
(

e,
∂

∂ui

)
. (1.4.4)

• The tensor c takes the form

c

(
∂

∂ui
,

∂
∂u j

,
∂

∂uk

)
= ηii(u)δi jδ jk,

which is immediate from its definition.

From a geometer’s point of view, the canonical coordinates comprise a system of curvi-

linear orthogonal coordinates. Because the metric is diagonal, most of the Christoffel

symbols, and therefore components of the Riemann curvature tensor, vanish. Let us

compute how the Christoffel symbols for a diagonal metric look. Recall that

Γk
i j =

1
2

N

∑
s=1

ηks(∂iη js + ∂ jηis−∂sηi j),
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and so for a diagonal metric we have

Γk
i j =

1
2

ηkk(∂iη jk + ∂ jηik−∂kηi j) (no sum).

It is clear then that for i, j,k all distinct, Γk
i j = 0. Suppose i = j = k. Then

Γk
kk =

1
2

ηkk∂kηkk.

It is convenient to introduce the rotation coefficients, βi j(u), which are defined by

βi j =
∂i
√

η j j(u)√
ηii(u)

. (1.4.5)

In general, βi j 6= β ji. In terms of the rotation coefficients, we have

Γk
kk = βkk.

If i 6= k, we have

Γk
ii = −1

2
ηkk∂kηii =−

√ηii√ηkk
βki;

Γk
ki =

1
2

ηkk∂iηkk =

√ηii√ηkk
βik.

Proposition 1. [17] On a Frobenius manifold, the rotation coefficients are symmetric,

βi j = β ji,

and so the metric is Egoroff, with potential t1(u),

ηii(u) = ∂it1(u).

Furthermore, the rotation coefficients βi j are quasi-homogeneous with weight -1:

E(βi j) =−βi j.

Conversely, suppose we have a metric that is Egoroff with respect to a coordinate system

{u1, ...,uN}, and whose rotation coefficients satisfy the non-linear system of differential
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equations

∂iβ jk = βikβk j, (1.4.6)

∑
i

∂iβ jk = 0, (1.4.7)

∑
i

ui∂iβ jk = −β jk. (1.4.8)

Then the structure of a semi-simple Frobenius manifold exists with canonical coordinates

{u1, ...,uN}.

Remark. The system of equations (1.4.6) - (1.4.8) is known as the Darboux-Egoroff

system. Choosing the canonical coordinates has simplified the algebraic structure, and

so the WDVV equations; instead the non-linearity manifests itself as the zero-curvature

of the metric η .

Proof. On a Frobenius manifold, the unity field is covariantly constant. Then it follows

from the expression for e in canonical coordinates (1.4.2) that

N

∑
s=1

Γr
ks = 0 for r,k = 1, ...,N.

In particular, if r 6= k,

Γr
rk + Γr

kk = 0⇒ βrk = βkr⇒ ∂rηkk(u) = ∂kηrr(u).

So the one-form η(e, − ) is closed. Recall that we have arranged the flat coordinates in

such a way that the metric is anti-diagonal, and so

η
(

∂
∂ t1 , −

)
= dt1.

Secondly, the Euler field is covariantly linear,

∇ j∇iE
k = ∇ j∇iuk = 0, for i, j,k = 1, ...,N

⇔
N

∑
p=1

∂ jΓk
ipup + Γk

i j +
N

∑
s,p=1

up

(
Γk

s jΓ
s
ip−Γs

i jΓ
k
sp

)
= 0. (1.4.9)

Now use the fact that the curvature of the metric η is zero,

Rk
i jp = 0 ⇔

N

∑
s=1

Γk
s jΓ

s
ip−Γs

i jΓ
k
sp =−∂ jΓk

ip + ∂pΓk
i j,
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to rewrite this expression (1.4.9) as

N

∑
p=1

up

(
∂ jΓk

ip + ∂pΓk
i j−∂ jΓk

ip

)
+ Γk

i j = 0

⇔
N

∑
p=1

up∂pΓk
i j + Γk

i j = 0

⇔
N

∑
p=1

up∂pβi j = −βi j.

To show the converse, one uses standard formulas of Riemannian geometry to show

that the axioms of a Frobenius manifold in canonical coordinates are satisfied. The Rie-

mann curvature tensor in the canonical coordinates {ui : i = 1, ...,N} is given by

Ri j
kl =

N

∑
s,p=1

gis
(

∂kΓ j
sl−∂lΓ j

sk + Γi
pkΓp

sl−Γ j
plΓ

p
sk

)
. (1.4.10)

It is clear that for a diagonal metric, Ri j
kl = 0 for i, j,k, l all distinct. Further, standard

skew-symmetries of the curvature tensor give

Ri j
il =−Ri j

li = R ji
il =−R ji

il .

By definition Ri j
kk = 0, ∀i, j,k. We also have

Rii
kl = η ii (∂k∂l

√
ηii−∂l∂k

√
ηii) = 0 ⇔ [∂l,∂k] = 0,

which is true irrespective of the values of l and k. Owing to the standard symmetries of

the Riemann tensor, we are left with the following cases to analyse:

i) Ri j
il for i, j and l distinct;

ii) Ri j
i j for i and j distinct.

Case i) We have

Ri j
il =

N

∑
s,p=1

η is
(

∂iΓ j
sl,i−∂lΓ j

si + Γ j
piΓ

p
sl−Γ j

plΓ
p
si

)
=

1
ηii

(
∂iΓ j

il−∂lΓ j
ii

)

︸ ︷︷ ︸
A

− 1
ηii

N

∑
p=1

(
Γ j

piΓ
p
il−Γ j

plΓ
p
ii

)

︸ ︷︷ ︸
B

.

In this case, i, j and l are distinct and so Γi
jl = 0, and we obtain for the first term

A =
1

ηii
∂l

(√ηii√η j j
β ji

)
=

1
ηii

(√ηll√η j j

∂l
√ηii√η ll

−
√ηii

η j j
∂l
√η j j

)
+

1√ηii
√η j j

β ji,l

=

√ηll

ηii
√η j j

βliβ ji−
√ηll

η j j
√ηii

+
1√ηii
√η j j

β ji,l .
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For the second term,

B =
1

ηii

N

∑
p=1

(
Γ j

piΓ
p
il−Γ j

plΓ
p
ii

)
=

1
ηii

(
Γi

iiΓ
i
il + Γ j

liΓ
l
il−Γ j

jlΓ
j
ii−Γ j

llΓ
l
ii

)

=
1

ηii

({
−
√ηii√η j j

β ji

}{√ηll√ηii
βli

}
−
{√ηll√η j j

βli

}{
−
√ηii√η j j

β ji

}
−
{
−
√ηll√η j j

β jl

}{
−
√ηii√ηll

βli

})

= −
√ηll

ηii
√η j j

βliβ ji +

√ηll

η j j
√ηii

βl jβ ji−
1√ηii
√η j j

β jlβli.

Therefore,

Ri j
il =

1√ηii
√η j j

(
∂lβ ji−β jlβli

)
. (1.4.11)

Case ii) Ri j
i j for i 6= j. We have

N

∑
s,p=1

η is
(

∂iΓ j
s j−∂ jΓ j

si + Γ j
piΓ

p
s j−Γ j

p jΓ
p
si

)
=

1
ηii

(
∂iΓ j

i j−∂ jΓ j
i i
)

︸ ︷︷ ︸
C

+
1

ηii
∑
p

(
Γ j

piΓ
p
i j−Γ j

p jΓ
p
ii

)

︸ ︷︷ ︸
D

.

The first term reads

C =
1

ηii

{
∂i

(√ηii√η j j
βi j

)
+ ∂ j

(√ηii√η j j
β ji

)}

=
1

ηii

{
∂i
√ηii√η j j

βi j−
√ηii∂i

√η j j

η j j
βi j +

√ηii√η j j
∂iβi j +

∂ j
√ηii√η j j

β ji−
√ηii∂ j

√η j j

η j j
β ji +

√ηii√η j j
∂ jβ ji

}

=
1√ηii
√η j j

{
∂iβi j + ∂ jβ ji + βiiβi j−β j jβ ji−

√ηii√η j j

(
∂i
√η j j√ηii

)
βi j +

(
∂ j
√ηii√η j j

)√η j j√ηii
β ji

}

=
1√ηii
√η j j

{
∂iβi j + ∂ jβ ji + βiiβi j−β j jβ ji−

√ηii√η j j
β 2

i j +

√η j j√ηii
β 2

ji

}
,

and the second

D =
1

ηii
∑
p

(
Γ j

piΓ
p
i j−Γ j

p jΓ
p
ii

)
=

1
ηii

∑
p

(
Γ j

iiΓ
i
i j + Γ j

jiΓ
j
i j−Γ j

i jΓ
i
ii−Γ j

j jΓ
j
ii− ∑

p6=i, j

Γ j
jpΓp

ii

)

=
1

ηii

{(
−
√ηii√η j j

β ji

)(√η j j√ηii
β ji

)
+

(√ηii√η j j
βi j

)(√ηii√η j j
βi j

)
−
(√ηii√η j j

βi j

)
(βii)

−(β j j)

(
−
√ηii√η j j

β ji

)
+ ∑

p6=i, j

(√ηpp√η j j
βp j

)( √ηii√ηpp
βpi

)}

=
1√ηii
√η j j

{

∑
p6=i, j

βp jβpi−
√η j j√ηii

β 2
ji +

√ηii√η j j
β 2

i j−βi jβii + β j jβ ji

}
.
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Therefore,

Ri j
i j =

1√ηii
√η j j

(
∂iβi j + ∂ jβ ji + ∑

p6=i, j

βp jβpi

)
. (1.4.12)

We arrive at the statement

R = 0 ⇔
{

∂lβ ji−β jlβli = 0

∂iβi j + ∂ jβ ji + ∑p6=i, j βp jβpi = 0
. (1.4.13)

This system (1.4.13) for the zero curvature of a diagonal metric is known as the Dar-

boux system. Adding the assumption that the metric is Egoroff implies that the rotation

coefficients are symmetric:

βi j =
1
2

∂i∂ jΦ√
∂iΦ∂ jΦ

. (1.4.14)

Using the symmetry of the rotation coefficients, together with the former of the two

equations, we have

(1.4.12) ⇒ ∂iβi j + ∂ jβ ji + ∑
p6=i, j

βp jβpi = 0
βi j=β ji⇐⇒

N

∑
p=1

∂pβi j = 0. (1.4.15)

Hence the Egoroff property of the metric gives a refinement of (1.4.13):

R = 0 ⇔
{

∂lβ ji−β jlβli = 0

∑N
p=1∂pβi j = 0

. (1.4.16)

We have already seen that the covariant linearity of the Euler field is equivalent to (1.4.8),

and so it only remains to show that the 4−tensor ∇kδi jδ jl is totally symmetric. This follows

from the the symmetry

Γi
i j =−Γi

j j

of the Christoffel symbols.

1.4.1 The Intersection Form

On a Frobenius manifold, there exists a second metric defined on the cotangent bundle,

g(ω1,ω2) = ιE(ω1◦ω2), for ω1,ω2 ∈ Γ(T ∗M ,M ). (1.4.17)

In flat coordinates,

g(dtα ,dtβ ) = Eεcαβ
ε ,

where the original metric η is used to provide the isomorphism between TM and T ∗M .

The second metric g is called the intersection form of the Frobenius manifold.
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Example 10. For the Frobenius manifold of Example 5 presented on page 12, the inter-

section form reads

gαβ =



−1

8(t2)4γ ′′(t3) −3
8(t2)

3γ ′(t3) t1
−3

8(t2)
3γ ′(t3) t1− 3

4γ(t3)(t2)2 1
2t2

t1 1
2t2 0


 .

Note that for this example ∂1gαβ = ηαβ . This means that the metrics η and g form a

flat pencil: the linear combination g−1−λη−1 is a flat metric ∀λ . We will return to this

observation presently. For now, let us note the following useful lemma for computing the

canonical coordinates of a Frobenius manfiold using the intersection form.

Lemma 3. [16] On a semi-simple Frobenius manifold, the roots of the characteristic

equation

det(gαβ (t)−uηαβ ) = 0 (1.4.18)

are simple, and are canonical coordinates for the Frobenius manifold. Conversely, if the

roots of the characteristic equation are generically simple, then the Frobenius manifold

is semisimple.

Proof. Recall the definition of the intersection form,

g(ω1,ω2) = ιE(ω1 ◦ω2),

and so in the canonical coordinate system we have

gii = uiη ii(u), for η ii = η−1
ii .

Hence the equation (1.4.18) reads

N

∏
i=1

(u−ui) = 0.

Example 11. For the Frobenius manifold defined by the data (1.2.14), the canonical

coordinates are

u1 = t1 +2
√

t2, u2 = t1−2
√

t2.

In this coordinate system, the metric reads

ηi j =

(
1
8(u1−u2) 0

0 −1
8(u1−u2)

)
.
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Note that the Egoroff potential is Φ = 1
16(u1−u2)

2.

Example 12 (Continued from Example 5, page 12). For the Frobenius defined by the

data

E = t1 ∂
∂ t1 +

1
2

t2 ∂
∂ t2 , F(t1, t2, t3) =

1
2
(t1)2t3 +

1
2

t1(t2)2− (t2)4

16
γ(t3), E = t1 ∂

∂ t1 +
1
2

t2 ∂
∂ t2 ,

recall that the WDVV equations are equivalent to the nonlinear differential equation

γ ′′′ = 6γγ ′′−9(γ ′)2. (1.4.19)

Under the identification

γ(τ) =−2
3

(ω1(τ)+ ω2(τ)+ ω3(τ)) ,

the Chazy equation is equivalent to the following dynamical system ( ˙ ≡ d
dt3
)

ω̇1 = −ω2ω3 + ω1(ω2 + ω3) ,

ω̇2 = −ω3ω1 + ω2(ω3 + ω1) , (1.4.20)

ω̇3 = −ω1ω2 + ω3(ω1 + ω2) ,

on the functions {ω1,ω2,ω3}. The system (2.3.3) was originally discovered by Halphen

[33], and was re-discovered by Atiyah and Hitchin in the study of metrics on monopole

moduli spaces [2]. We will call it the Halphen system. The canonical coordinates are

given by

ui(t1, t2, t3) = t1 +
1
2

t2
2ωi(t3), for i = 1,2,3. (1.4.21)

In this coordinate system the metric reads

ηi j =
1
4

t2
2




(u1−u2)
−1(u1−u3)

−1 0 0

0 (u2−u1)
−1(u2−u3)

−1 0

0 0 (u1−u3)
−1(u2−u3)

−1


 .

Lemma 4. [16] The curvature of the intersection form is zero.

Proof. In canonical coordinates, the covariant components of the intersection form read

gi j = uiηiiδi j.

Denoting the rotation coefficients for g by

β̃i j =
∂ j
√

gii√
g j j

,
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we have

β̃i j =
∂ j
√

uiηii√
u jη j j

=

√
ui

u j
βi j, (1.4.22)

where the βi j are the rotation coefficients for the metric η . As for the metric η , because
the intersection form diagonalises in the canonical coordinates, flatness of g is equivalent

to the vanishing of

R̃i j
il =

1√
gii
√

g j j

(
∂l β̃ ji− β̃ jlβ̃li

)
,

R̃i j
i j =

1√
gii
√

g j j

(
∂iβ̃i j + ∂ jβ̃ ji + ∑

p6=i, j

β̃p jβ̃pi

)
.

We have, on using (1.4.22), (recall that i, j, and l are distinct)

R̃i j
il =

1√
gii
√

g j j

(
∂l β̃ ji− β̃ jlβ̃li

)
=

1
√

uiu j
√ηii
√η j j

(√
ui

u j
∂lβ ji−

√
ul

u j
β jl

√
ui

ul
ηli

)
=

1
u j

Ri j
il ,

(1.4.23)

and so is zero if the curvature of η is zero. Similary, we find

R̃i j
i j =

1√
gii
√

g j j

(
∂iβ̃i j + ∂ jβ̃ ji + ∑

p6=i, j

β̃p jβ̃pi

)

=
1

√
uiu j
√ηii
√η j j

(
∂i

(√
ui

u j
βi j

)
+ ∂ j

(√
u j

ui
β ji

)
+ ∑

p6=i, j

(√
up

u j
βp j

)(√
up

ui
βpi

))

=
1

√
uiu j
√ηii
√η j j

(√
ui

u j
∂iβi j +

1
2
√

uiu j
βi j +

√
u j

ui
∂ jβ ji +

1
2
√

uiu j
β ji + ∑

p6=i, j

up√
uiu j

βp jβpi

)

=
1

uiu j
√ηii
√η j j

(
ui∂iβi j + u j∂ jβ ji +

1
2

βi j +
1
2

β ji + ∑
p6=i, j

upβp jβpi

)
.

Using the vanishing of the curvature of Ri j
il , we have βp jβpi = ∂pβ ji. Using this, together

with the Egoroff property of the metric η , βi j = β ji, we have

R̃i j
i j =

1
uiu j
√ηii
√η j j

(
N

∑
p=1

up∂pβi j + βi j

)
. (1.4.24)

Recall also that the symmetry of the rotation coefficients, combined with the vanishing

of the components Ri j
i j of the Riemann tensor gave

N

∑
p=1

up∂pβi j =−βi j.

The lemma is proved.
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1.4.2 Flat Pencils of Metrics and Frobenius Manifolds

We have seen that on a Frobenius manifold we can define two flat metrics η and g. We

saw in the proof of Lemma 4 that the vanishing of the curvature of g depended not just on

the flatness of η , but also on the the covariant constancy of the unity field, and covariant

linearity of the Euler field (recall that these led to a refinement of the Darboux equations

and homogeneity properties of the rotation coefficients). It would appear then, by the

converse of Proposition 1, that having a pair of flat metrics on a manifold M , whose

curvature is dependent upon one another (for example, via equations (1.4.23), (1.4.24))

is rather close to the existence of a Frobenius manifold.

One way to make this connection more explicit would be to carry out the curvature

calculations for the intersection form in the flat coordinates { tα : α = 1, ...,N } for the

metric η . In this coordinate system, the contravariant Christoffel symbols (defined by

Γαβ
γ =−gασ Γβ

σγ ) of the the intersection form read [18]

gΓαβ
γ (t) =

(
1−d

2
δ ε

γ − (∇E)ε
γ

)
cαβ

ε (t). (1.4.25)

Then the calculation for R̃ = 0 uses associativity, potentiality, and homogeneity. The no-

tion that formalises this interplay between the two metrics is that of a flat pencil of

metrics.

The following is an amalgamation of results, slightly recast or trimmed to suit our

needs. For a more comprehensive introduction, we refer the reader to [18].

Definition 5. Two contravariant metrics ( · , · )1 and ( · , · )2 form a flat pencil if:

1) The linear combination

( · , · )1−λ ( · , · )2 (1.4.26)

is a contravariant metric for all values of λ .

2) If 1Γαβ
γ and 2Γαβ

γ are the contravariant components of their corresponding Levi-

Civita connections, then the linear combination

1Γαβ
γ −λ · 2Γαβ

γ

gives the components of the Levi-Civita connection for the metric (1.4.26).

3) The metric (1.4.26) is flat for all λ .

Lemma 5. If for a flat metric in some coordinate system { xi : i = 1, ...,N }, both the

components of the metric gαβ (x), and the components of the connection Γαβ
γ depend at
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most linearly on the coordinate x1, then the metrics

gαβ
1 := gαβ and gαβ

2 =
∂

∂x1 gαβ

form a flat pencil assuming that det(gαβ
2 ) 6= 0. The correspondent Levi-Civita connections

have the form
1Γαβ

γ = Γαβ
γ , 2Γαβ

γ =
∂

∂x1 Γαβ
γ .

Proof. Is straightforward and will be omitted, the reader is referred to [16], Appendix

D.

Proposition 2. On a Frobenius manifold, the metrics η and g form a flat pencil.

Proof. This will be done by showing that the bilinear form

P = g−1−λη−1

is in fact a metric, and satisfies the criteria of Lemma 5. To see that P is non-degenerate,

note that for Euler vector fields of the form (1.2.10) (i.e. d1 = 1), we have chosen the flat

coordinates in such a way that

gαβ (t) = E1cαβ
1 +

N

∑
σ=2

Eσ cαβ
σ = t1ηαβ + g̃αβ (t2, ..., tN). (1.4.27)

Hence,

gαβ (t)−ληαβ = ηαβ (t1−λ )+ g̃αβ(t2, ..., tN) (1.4.28)

is non-degerate for all λ . Equation (1.4.27) also shows that g depends linearly on t1. Note

also that
∂

∂ t1
gΓαβ

γ =
∂

∂ t1

{(
d−1

2
δ ε

γ +(∇E)ε
γ

)
cαβ

γ

}
= 0,

since cαβ
γ1 = 0. It remains to show that the curvature of the metric P is zero. Recall that the

contravariant components of the Levi-Civita connection of a metric g are the solutions to

the equations

∂γgαβ = Γαβ
γ + Γβα

γ (1.4.29)

gαεΓβκ
ε = gβε Γακ

ε . (1.4.30)

In the flat coordinates of the metric η , we have

∂
∂ tγ Pαβ =

∂
∂ tγ

(
gαβ −ληαβ

)
=

∂
∂ tγ gαβ = gΓαβ

γ + gΓβα
γ .
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The latter equation (1.4.30) for the pencil of metrics reads

(gαε(t)−ληαε)PΓβκ
ε = (gβε (t)−ληβε)PΓακ

ε .

Or, recalling equation (1.4.28),

(ηαε(t1−λ )+ g̃αε(t2, ..., tN))PΓβκ
ε = (ηβε(t1−λ )+ g̃βε(t2, ..., tN))PΓακ

ε .

Equating coefficients of t1 implies

(ηαε)PΓβκ
ε = (ηβε)PΓακ

ε ⇒ (gαε)PΓβκ
ε = (gβε )PΓακ

ε .

Hence
PΓαβ

γ (t) = gΓαβ
γ (t) ⇒ PRα

βγδ = gRα
βγδ .

But gRα
βγδ = 0. The lemma is proved.

Therefore, given a Frobenius manifold, one can always construct a flat pencil of met-

rics. It turns out that one can (almost) go in the other direction as well - we did not use

the homogeneity properties of the metric in deriving the zero curvature of P. One needs

some extra assumptions, namely that the metrics form a quasihomogeneous flat pencil.

Definition 6. A flat pencil of metrics ( · , · )1− ( · , · )2 is said to be quasihomogeneous if

there exists a function τ on M such that the vector fields E := 1∇τ , e := 2∇τ satisfy

1) [e,E] = e,

2) LE( · , · )1 = (d−1)( · , · )1,

3) Le( · , · )1 = ( · , · )2,

4) Le( · , · )2 = 0.

Choosing ( · , · )1 = g and ( · , · )2 = η , we obtain from an arbitrary Frobenius manifold

a quasihomogeneous flat pencil. Thus, we have one direction of

Theorem 3. Every Frobenius manifold carries a natural quasihomogeneous flat pencil;

conversely every regular quasihomogeneous flat pencil on a manifold endows it with the

structure of a Frobenius manifold.

To construct a Frobenius manifold from a flat pencil of metrics, one first observes

that the differences

∆αβγ := 1Γβγ
ε gαε

1 − 2Γαγ
σ gβσ

2
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are the components of a tensor. From this one constructs a bilinear operation

∆ : Γ(T ∗M ,M )×Γ(T ∗M ,M )→ Γ(T ∗M ,M ), (ζ ,ξ ) 7→ ∆(ζ ,ξ ), for ζ ,ξ ∈ Γ(T ∗M ,M ).

In local coordinates { xα : α = 1, ...,N },

∆(ζ ,ξ )σ =
N

∑
α ,β=1

ζα ξβ ∆αβγg2 γσ .

The adjective regular means the endomorphism of the tangent bundle whose components

in the flat coordinates of the metric ( · , · )2 are given by

Rα
β =

d−1
2

δ α
β + 2∇β Eα (1.4.31)

is non-degenerate. One obtains a unique Frobenius structure on M by defining

ζ ◦ξ = ∆(ζ ,R−1ξ ).

As we will see in forthcoming chapters, owing to the work of Dubrovin and Novikov on

the bi-Hamiltonian structure of partial differential equations, the theory of flat pencils of

metrics gives a direct link between integrable PDEs of hydrodynamic type and Frobenius

manifolds. Flat pencils of metrics can also be used to endow the orbit space of a finite

Coxeter group with the structure of a Frobenius manifold.

1.5 The Inversion Symmetry

In this section we outline a symmetry of the WDVV equations that lies at the heart of this

thesis. Verlinde and Warner’s 1991 paper [66] studied the families of topological field

theories described by the Landau-Ginzburg superpotential

λ (z1,z2,z3; t) = −1
3

(
z3
1 + z3

2+ z3
3

)
+ α1(t8)z1z2z3 + α2(t8)(t5z1z2 + t6z1z3 + t7z2z3)

+α3(t8)(t2z1 + t3z2 + t4z3)+ α4(t8)(t5t6z1 + t5t7z2 + t6t7z3)

+
1
2

α5(t8)(t
2
7z1 + t2

6z2 + t2
5z3)+ α6(t8)(t2t7 + t3t6 + t4t5)

+
1
6

α7(t8)(t
3
5 + t3

6 + t3
7)+ α8(t8)t5t6t7 + t1.

The parameters { tα : α = 1, ...,8 } are interpreted as moduli describing deformations of

the theory defined by the potential λ (z1,z2,z3;0). They found the Frobenius manifold
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structure on the so-called Chiral ring of primary fields of the theory,

A =
C[z1,z2,z3]

〈dλ = 0〉 .

Note that the algebra at the origin (the point where all the moduli are equal to zero) is

the Jacobi ring of the singularity of λ (z1,z2,z3;0) at z1 = z2 = z3 = 0. This is an example of a

phenomenon called mirror symmetry. Verlinde and Warner found the following solution

to WDVV

F =
1
2

t2
1t8 + t1(t2t7 + t3t6 + t4t5)+ t2t3t4 f0(t8)+

1
6
(t3

2 + t3
3 + t3

4) f1(t8)

+(t2t3t6t7+ t2t4t5t7 + t3t4t5t6) f2(t8)+
1
2
(t2

2t5t6 + t2
3t5t7 + t2

4t6t7) f3(t8)

+(t2t3t2
5 + t2t4t2

6 + t3t4t2
7) f4(t8)+

1
4
(t2

2t2
7 + t2

3t2
6 + t2

4t2
5) f5(t8)

+
1
6
[t2t7(t

3
5 + t3

6)+ t3t6(t
3
5 + t3

7)+ t4t5(t
3
6 + t3

7)] f6(t8) (1.5.1)

+
1
2
(t2t5t6t2

7 + t3t5t2
6t7 + t3t2

5t6t7) f7(t8)+
1
4
(t2t2

5t2
6 + t3t2

5t2
7 + t4t2

6t2
7) f8(t8)

+
1
24

(t2t4
7 + t3t4

6 + t4t4
5) f9(t8)+

1
36

(t3
5t3

6 + t3
5t3

7 + t3
6t3

7) f10(t8)

+
1
24

(t5t6t4
7 + t5t4

6t7 + t4
5t6t7) f11(t8)+

1
8

t2
5t2

6t2
7 f12(t8)+

1
720

(t6
5 + t6

6 + t6
7) f13(t8) ,

with Euler field

E = t1 ∂
∂ t1 +

2
3

(
t2∂

∂ t2 + t3∂
∂ t3 + t4∂

∂ t4

)
+

1
3

(
t5 ∂

∂ t5 + t6∂
∂ t6 + t7∂

∂ t7

)
.

The functions fi may all be expressed in terms of the Schwarzian triangle function

S[1
2, 1

2, 1
6, t] (for the definition of the Schwarzian triangle function, see Chapter 2). In-

terestingly, this solution was found before the formal definition of a Frobenius manifold.

The functions { f0, ..., f13 } appearing in their solution were shown to have the follow-

ing transformation properties under t8→−1/t8:

fi

(
− 1

t8

)
=





t2
8 fi(t8)+2t8, for i = 2,5,

t8 fi(t8), for i = 0,1,

t2
8 fi(t8), for i = 3,4,

t3
8 fi(t8), for i = 6,7,8,9,

t4
8 fi(t8), for i = 10,11,12,13.

(1.5.2)

This remarkably rich structure led Verlinde and Warner to make the following remarks

[66]:
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“There are one or two surprises in the foregoing results. Most particularly λ
and F are not manifestly modular invariant... To render λ completely modu-

lar invariant one must require that under t8 7→ (at8 + b)/(ct8 + d) the coupling

constant t1 transforms according to

t1 7→ t1 +
c(ct8 + d)

ad−bc
(t2t7 + t3t6 + t4t5). (1.5.3)

This then renders λ completely modular invariant. The modular properties

of F are more vexatious. Based on the transformation properties of the cos-

mological constant one finds that F should have weight −1, and indeed this

is consistent with the weights of the fn. There is also a modular anomaly in

f2 and f5, akin to the one in α6. This anomaly can almost be cancelled by a

transformation of the form (1.5.3). The real problem is, however, with the

very first term in F, which manifestly cannot be rendered modular invariant

without modifying F. This raises the question as to whether F should be mod-

ular invariant since it is a prepotential... The fact that λ should be modular

invariant is intuitively clear, but the modular anomaly and its cancellation by

(1.5.3) is somewhat unexpected.”

The answer to their question as to how the prepotential should transform is given by

t1 7→ t̂1 := t1 +
1

2t8
(t2t7 + t3t6 + t4t5) ,

ti 7→ t̂i :=
ti
t8

, for i 6= 1,N,

t8 7→ t̂8 := − 1
t8

,

F(t) 7→ F̂(t̂) := F(t(t̂))− 1
2

t1(t1t8 + t2t7 + t3t6 + t4t5)

Then the transformation properties (1.5.2) mean that under this transformation we have

F̂(t̂) = F(t̂)

The structure that Verlinde and Warner had found is what we will come to know as a

modular Frobenius manifold, and will be the subject of the next chapter. Let us elevate

the symmetry observed here to a definition:

Definition 7. [16] The inversion symmetry is defined by

t̂1 =
1
2

tσ tσ

tN , t̂α =
tα

tN , (for α 6= 1,N), t̂N =− 1
tN ,
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F̂(t̂) = (t̂N)2F

(
1
2

t̂σ t̂σ

t̂N ,− t̂2

t̂N , ...,− t̂N−1

t̂N ,− 1
t̂N

)
+

1
2

t̂1t̂σ t̂σ , (1.5.4)

η̂αβ = ηαβ .

It can be shown by direct calculation [16] that the structure constants of the inverted

Frobenius manifold are related to those of the original by

ĉαβγ(t̂) = (tN)−2 ∂ tλ

∂ t̂α
∂ tµ

∂ t̂β
∂ tν

∂ t̂γ cλ µν(t(t̂)), (1.5.5)

which shows that the inversion symmetry is a genuine symmetry of WDVV: it maps solu-

tions to solutions.

Under the assumption that ri = 0 for i = 1, . . . ,N the corresponding Euler vector field of

the inverted Frobenius manifold F̂ has the form

Ê(t̂) = ∑
α

(1− d̂
2
− µ̂α)t̂α ∂̂α , (1.5.6)

where

d̂ = 2−d, µ̂1 = µN −1, µ̂N = µ1 +1, µ̂i = µi, for i 6= 1,N. (1.5.7)

Example 13. [Continued from Example 5, page 12] Suppose N = 3 and let the Euler

vector field and prepotential take the form

E = t1 ∂
∂ t1 +

1
2

t2 ∂
∂ t2 , F(t1, t2, t3) =

1
2
(t1)2t3 +

1
2

t1(t2)2− (t2)4

16
γ(t3). (1.5.8)

The WDVV equations are equivalent to the nonlinear differential equation (known as the

Chazy equation)

γ ′′′ = 6γγ ′′−9(γ ′)2 (1.5.9)

for the function γ(t3) (here ′ denotes differentiation with respect to the variable t3). The

equation has an SL(2,C) invariance, mapping solutions to solutions,

t3 7→ t̂3 =
at3 + b
ct3 + d

, γ(t3) 7→ γ̂(t̂3) = (ct3 + d)2γ(t3)+2c(ct3 + d), ad−bc = 1. (1.5.10)

A simple calculation shows that under the inversion symmetry

F̂(t̂) =
1
2
(t̂1)2t̂3 +

1
2

t̂1(t̂2)2− (t̂2)4

16

{
1

(t̂3)2 γ
(−1

t̂3

)
− 2

t̂3

}
,

=
1
2
(t̂1)2t̂3 +

1
2

t̂1(t̂2)2− (t̂2)4

16
γ̂(t̂3)

where, on using the symmetry given by (1.5.10), γ̂ is also a solution of the Chazy equation.

Thus under inversion symmetry one has a weak modular symmetry: the functional form
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of the prepotential is preserved, but with the function γ being replaced by a new solution

of the same equation connected by a special case of the symmetry (1.5.10).

The inversion symmetry also maps distinct solutions of WDVV to one another:

Example 14. Recall that the free energy and Euler vector field

F =
1
2

t2
1t2 + t2

2 logt2; E = t1
∂

∂ t1
+2t2

∂
∂ t2

defines a two-dimensional Frobenius manifold. Applying the inversion symmetry, we find

t̂2
2F

(
t̂1,−

1
t̂2

)
+

1
2

t̂1(t̂1t̂2 + t̂2t̂1) = t̂2
2

(
1
2

t̂2
1

(
− 1

t̂2

)
+

(
− 1

t̂2

)2

log

(
− 1

t̂2

))

=
1
2

t̂2
1t2− log(t̂2),

since F is only defined up to the addition of a quadratic. The Euler field transforms as

E = t1
∂

∂ t1
+2t2

∂
∂ t2

= t̂1
∂

∂ t1
− 2

t̂2

(
t̂2
2

∂
∂ t̂2

)
= t̂1

∂
∂ t̂1
−2t̂2

∂
∂ t̂2

.

Recalling the list of two dimensional Frobenius manifolds, we see that the solution

(1.2.14) is mapped to (1.2.15),

F̂ =
1
2

t̂2
1 t̂2− logt̂2; Ê = t̂1

∂
∂ t1
−2t̂2

∂
∂ t̂2

.

As mentioned earlier, we will come to see that these two Frobenius manifolds describe

the Bi-Hamiltonian structures of the dispersionless limits of the Benney and Harry Dym

hierarchies respectively. Investigating how various structures on the respective Frobe-

nius manifolds are related will lead to an understanding of how the inversion symmetry

lifts to these two hierarchies of partial differential equations of hydrodynamic type.
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1.6 Examples of Frobenius Manifolds

In this section we will describe a couple of well known examples of Frobenius manifolds.

1.6.1 Rational Maps of Degree N +1

This example follows on from Example 2, and is originally due to Dubrovin. The Frobe-

nius manifold structure is given on the space of versal deformations of the singularity.

Let M be the space of complex polynomials of the form

p(z) = zN+1 + aNzN−1 + ...+ a1, ai ∈ C

The tangent space is identified with the space of polynomials of degree strictly less than

N:

TpM
∼= C[z]

< p′(z) >
.

This algebra has dimension N as a vector space: it is spanned by the monomials { 1,z, ...,zN−1 }.
So tangent vectors at p have the form

ṗ(z) = ȧNzN−1 + ...+ ȧN.

We define the inner product on TpM by

η(ṗ, q̇) =−Resz=∞
ṗ(z)q̇(z)

p′(z)
dz.

Then M is a Frobenius manifold with canonical coordinates given by the critical points

of p:

ui = p(αi), for p′(αi) = 0.

Hence this Frobenius manifold will be semi-simple if and only if the polynomial p′(z) has

no multiple roots, which is generically true. Those submanifolds where this assumption

fails are known as caustics. Note that the tangent space at the origin of the coordinate

system { ai : i = 1, ...,N } coincides with with the algebra presented in Example 2.

The Euler vector field and unity take the form

E =
1

N +1∑
k

(N− k +1)ak
∂

∂ak
, e =

∂
∂a1

.

To prove this assertion, we will show that the metric is flat and Egoroff, with potential

Φ =
aN

N +1



1.6. Examples of Frobenius Manifolds 38

and apply the converse of Proposition 1. First, note that

δi j =
∂ui

∂u j
=

∂
∂u j

p(αi) =
∂ p
∂u j

(αi)+ p′(αi)
∂αi

∂u j

=
∂ p
∂u j

(αi), as p′(αi) = 0.

Therefore by Lagrange interpolation we have

∂ p
∂u j

= ∏
i6= j

z−αi

α j−αi
.

Therefore p′(z) = (N + 1)(z−α1)...(z−αN) divides the product ∂ p
∂ui

∂ p
∂u j

, and so the residue

vanishes for i 6= j:

η
(

∂ p
∂ui

,
∂ p
∂u j

)
=−Resz=∞

∂ p
∂ui

∂ p
∂u j

dz
p′

= 0.

If, on the other hand i = j,

ηii = −Resz=∞

(
∏ j 6=i

z−α j

αi−α j

)2

(N +1)∏k(z−αk)
dz

= −Resz=∞
∏ j 6=i

z−α j

(αi−α j)2

(N +1)(z−αi)
dz.

Note that this differential has two poles, at z = ∞ and z = αi, and on a compact Riemann

surface (such as P1), the sum of the residues of a meromorphic differential is equal to

zero. Hence

−Resz=∞
∏ j 6=i

z−α j

(αi−α j)2

(N +1)(z−αi)
dz = Resz=αi

∏ j 6=i
z−α j

(αi−α j)2

(N +1)(z−αi)

=
1

N +1∏
j 6=i

z−α j

αi−α j
|z=αi

=
1

N +1∏
j 6=i

1
α j−αi

.

In order to see that the metric is Egoroff, equate factorised and unfactorised expressions

for ∂ p
∂u j

:

∂ p
∂u j

= ∏
i6= j

z−αi

α j−αi
=

N

∑
i=1

∂ai

∂u j
zi−1,

and compare coefficients of zN−1,

∏
i6= j

1
α j−αk

=
∂aN

∂u j
⇒ ηii =

1
N +1

∂aN

∂ui
.
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That the identity element is given by ∂/∂a1 is obvious: multiplying any polynomial by a

constant will give an isomorphic polynomial in the algebra,

∂ p
∂a1

∂ p
∂ai

=
∂ p
∂ai

, for i = 1, ...,N.

To see that the metric is flat, we can construct a flat coordinate system for η explicitly.

This is done by introducing a new function

w := p(z)
1

N+1 .

Near z = ∞, we obtain the Puiseaux series

z(w, t) = w +
t1
w

+
t2
w2 + ...+

tN
wN +O

(
1

wN+1

)

for z. Each ti is a polynomial in the coefficients {a1, ...,aN}. Differentiating p(z(w, t)) =

wN+1, we obtain an expression for the vector fields ∂ti:

∂ p
∂ ti

(z(w, t))+ p′(z(w, t))
∂ z
∂ ti

=
∂ p
∂ ti

(z(w, t))+ p′(z(w, t))
1
wi = 0.

Hence

η
(

∂ p
∂ ti

,
∂ p
∂ t j

)
= −Resz=∞

(
∂ p
∂ ti

∂ p
∂ t j

)
dz
p′

=−Resz=∞
p′(z)2dz

wi+ j p′(z)

= −Resw=∞
d(wN+1)

wi+ j =−Resw=∞(N +1)wN−i− jdw = (N +1)Resv=0vi+ j−(N+2)dv,

for w = 1/v. This gives constant coefficients. It is also obvious that the metric is non-

degenerate: the gram matrix in this coordinate system takes the form

ηi j = (N +1)δi+ j,N+1.

More explicitly, for the particular case

p(z) = z4 + a1z2 + a2z+ a1,

the tangent algebra is spanned by the monomials f1 = z2, f2 = z, f3 = 1. The inner product

is given by the formula

η( fi, f j) =−4Resz=∞
fi(z) f j(z)

4z3 +2a1z2 + a2
dz,
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whose Gram matrix in the coordinate system { a1,a2,a3 } is given by

ηi j(a) =




0 0 1

0 1 0

1 0 −1
2a1


 .

Introducing the coordinate system

a3 = t1 +
1
8

t2
3,

a2 = t2,

a1 = t3,

we obtain constant coefficients,

ηαβ (t) = ∑
s,r

∂ar

∂ tα

∂as

∂ tβ
asr(a) = δi+ j,N+1.

The structure constants of the algebras are given by

cαβγ (t) =−Resz=∞

(
∂ p
∂ tα

∂ p
∂ tβ

∂ p
∂ tγ

dz
p′(z)

)
.

One finds

c122 = 1, c113 = 1, c223 =−1
4

t3, c233 =−1
4

t2, c333 =
1
16

t2
3,

which may be integrated to obtain the polynomial solution to WDVV

F =
1
2

t2
1t3 +

1
2

t1t2
2−

1
16

t2
2t2

3 +
1

960
t5
3. (1.6.1)

This solution to WDVV can also be found as the unique Frobenius manifold structure on

the space of orbits of the Coxeter group for the root system of type A3. The construction

of the Frobenius structure on Coxeter group orbit spaces is our next example.

1.6.2 Coxeter Group Orbit Spaces

In this section we will outline the construction of an important class of Frobenius man-

ifolds. They arise in the study of the differential geometry of the orbit spaces of finite

Coxeter groups. It follows from the construction given in [16], Lecture 4 that the cor-

responding solutions to the WDVV equations will be polynomial in the flat coordinates

{ tα : α = 1, ...,N }. The solutions (1.2.13), (1.6.1), are examples.

Definition 8. A finite Coxeter group is a finite group of linear transformations of a real

vector space V of dimension N, which is generated by reflections.
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Less formally, dismantling a kaleidoscope is a good way to gain an understanding of

what a Coxeter group is (at least for N = 2). Typically, a kaleidoscope will consist of a

pair of mirrors intersecting at some special angle at its centre in such a way that any

object between these two mirrors, once reflected, generates a finite number of images.

That one sees a ‘nice’ image is due to the fact that the mirrors that one is looking down

between intersect at an angle of the form 2π/k, for k ∈ Z. Most kaleidoscopes have k = 6,

which generates an image with hexagonal symmetry. When N > 2, the alignments of

mirrors that give nice images (i.e. that generate closed orbits) become a lot more special.

Indeed in dimension 3, there are just three mirror arrangements. These correspond to

the symmetries of the Platonic solids.

Let W be a finite Coxeter group. By definition, W acts on the vector space V . Once

a basis for V is chosen, we obtain an action of W on the coordinates of V , and in turn

the symmetric algebra S(V )∼= C[x1, ...,xN ] of polynomials in these coordinates. Inside S(V )

there sits a distinguished class of polynomial, S(V )W , that are invariant under the action

of the Coxeter group W . This subalgebra has a very nice basis:

Theorem 4 (Chevalley). S(V )W is generated by N algebraically independent homoge-

neous polynomials,

C[x1, ...,xN ]W ∼= C[y1, ...,yN ]. (1.6.2)

Proof. Is beyond the scope of the present discussion; we refer the reader to Humphreys

[36].

The degrees of these invariant polynomials are uniquely determined by the Coxeter

group. Writing dα = deg(yα ), we arrange them such that

d1 = h > d2≥ ...≥ dN−1 > dN = 2.

The sum

dα + dN−α+1 = h+2,

does not depend on α, and is known as the duality condition. The degree h of the highest

weight polynomial is known as the Coxeter number. The strict inequality h > d2 means

that the polynomial y1, and so the vector field

e =
∂

∂y1 ,

are fixed uniquely up to a scalar multiple. The existence of a degree 2 invariant for any

Coxeter group is obvious: it is a function of distance from the origin. In particular, we

can take

yN =
1
2h

N

∑
i=1

(xi)2.
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The vector field encoding the homogeneity of the basic invariant polynomials is

E =
1
h

N

∑
α=1

dα yα ∂
∂yα ; E(yα) = dα yα . (1.6.3)

Example 15 (Dihedral Groups). Consider a regular k−gon in R2 ∼= C, centered at the

origin, and one of whose vertices lies on the x−axis (real axis). The group of symmetries

of the k−gon, denoted I2(k), is generated by the rotation z 7→ e2πi/kz, and reflection z 7→ z̄.

The basic invariant polynomials are

y1 = zk + z̄k,

y2 =
1
2k

zz̄.

Assuming that the original coordinates { xi : i = 1, ...,N } are orthogonal with respect

to the standard Euclidean metric on V , gi j = δi j, we have in the basis { yα : α = 1, ...,N },
of W -invariant polynomials

gαβ (y) =
N

∑
i=1

∂yα

∂xi

∂yβ

∂xi . (1.6.4)

The corresponding connection one-forms read

N

∑
γ=1

gΓαβ
γ (y)dyγ =

N

∑
i, j,k=1

∂ 2yα

∂xi∂x j

∂yβ

∂xk dxk. (1.6.5)

Proposition 3. [16] The functions gαβ (y), Γαβ
γ (y) depend at most linearly on y1.

Proof. It follows from the definitions (1.6.4), (1.6.5) that the functions gαβ (y), Γαβ
γ (y) are

polynomials of degree

deg(gαβ (y)) = dα + dβ −2,

deg(gΓαβ
γ (y)) = dα + dβ −dγ −2.

Owing to the ordering of the degrees, dα + dβ ≤ 2d1 = 2h, these polynomials can be at

most linear in y1.

This Proposition is key in constructing the Frobenius manifold structure. We define

ηαβ(y) :=
∂

∂y1 gαβ (y), (1.6.6)

η Γαβ
γ (y) :=

∂
∂y1

gΓαβ
γ (y). (1.6.7)

The bilinear form (1.6.6) is called the Saito metric after Kyoji Saito. That we are calling
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this bilinear form a metric is justified by Lemma 5. Further, the Lemma tells us that the

pair of metrics η and g form a flat pencil. This flat pencil is regular and quasihomoge-

neous with respect to the vectors fields e and E defined above, and so by Theorem 3 a

unique, up to isomorphism, Frobenius manifold structure exists on M .

Let us us follow the recipe outlined by Theorem 3 to construct the Frobenius manifold

structure on the orbit space of the dihedral group I2(k).

Example 16 (Dihedral Groups Continued). The standard Euclidean (contravariant) met-

ric on R2∼= C is given by

g = 2
∂
∂ z
⊗ ∂

∂ z̄
+2

∂
∂ z̄
⊗ ∂

∂ z
.

In the system of invariant polynomials, we have

g = 2kk+1yk−1
2

∂
∂y1
⊗ ∂

∂y1
+2y1

∂
∂y1
⊗ ∂

∂y2
+

2
k

y2
∂

∂y2
⊗ ∂

∂y2
.

We can solve the system (1.4.29), (1.4.30) to obtain the non-zero Christoffel symbols,

Γ11
2 = kk+1(k−1)yk−2

2 , Γ12
1 =

k−1
k

, Γ22
2 =

1
k
, Γ21

1 =
1
k
.

Equation (1.6.3) gives the Euler field

E = y1
∂

∂y1
+

1
2k

y2
∂

∂y2
,

while the unity is given by

e =
∂

∂y1
.

The tensor R defined by (1.4.31) is invertible, with inverse

R−1 =
k

k−1
∂

∂y1
⊗dy1 + k

∂
∂y2
⊗dy2.

Using this we obtain the multiplication table

∂
∂y1
◦ ∂

∂y1
=

∂
∂y1

,

∂
∂y1
◦ ∂

∂y2
=

∂
∂y2

,

∂
∂y2
◦ ∂

∂y2
= kk+2(k−1)yk−2

2
∂

∂y1
,

which gives

F =
1
2

y2
1y2 +

kk+1

k +1
yk+1

2 .
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This is solution (1.2.13), up to a re-scaling of the functions y1,y2.

It is clear from the construction that any solution to the WDVV equations arising in

this way will be polynomial - the components of the intersection form will be polynomials

in the basis of invariant polynomials of the Coxeter group. This polynomiality is then

inherited by the Christoffel symbols and Saito metric, from which the structure constants

of the algebra are built (without taking quotients). After the details of this construction

were given by Dubrovin, a beautiful result of Hertling [34] states that every polynomial

Frobenius manifold arises in this way. Thus the orbit space construction sketched here

provides a classification of polynomial solutions to the WDVV equations.

Beyond polynomial solutions to WDVV, there are solutions that involve trigonometric

and modular functions. Analogously, beyond the Coxeter groups, there are extended

affine Weyl groups and so-called Jacobi groups, whose rings of invariants are no longer

polynomials, but instead trigonometric and modular functions respectively. This perhaps

suggests that progress towards classification of trigonometric and modular solutions to

the WDVV equations may arise through the study of Frobenius structures on the orbit

spaces of these groups. More specifically, Dubrovin and Zhang [22] provided the orbit

space construction for the case of extended affine Weyl groups, and in his Ph.D. thesis,

Bertola [6] showed how to construct a Frobenius manifold on the orbit spaces of a Jacobi

group, one example of which is the solution presented in Example 5 [16]. The problem

of classifying solutions to the WDVV equations is an open problem, the current state of

play being summarised most succinctly in a diagram:

polynomial −→ trigonometric −→ modular

∼= ←֓ ←֓

Coxeter groups −→ extended affine Weyl groups −→ Jacobi groups

The solutions found by Bertola, together with the solution found by Verlinde and Warner

[66], fall into a class of Frobenius manifolds that we will callmodular Frobenius manifolds

- they are examples of objects in the codomain of the rightmost map. In the next chapter

we will set out a program for how one might tackle the problem from the side of the

WDVV equations, and provide classification results for low dimensions. We will show

that all of the solutions we find do not violate the possibility that the rightmost map in

the diagram is also surjective.
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Modular Frobenius Manifolds
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2.1 Modular Frobenius Manifolds

The inversion symmetry singles out a special class of Frobenius manifolds: those that lie

at its fixed points. Such Frobenius manifolds have a particularly rich structure. As we

will see, the prepotential will be a quasi-modular form. It is interesting that some of the

first solutions (1.5.1) of the WDVV equations found by Verlinde & Warner [66] were of

this type. More recently prepotentials of this form are appearing in the study of orbifold

quantum cohomology [46, 59, 11]. As mentioned at the end of the previous chapter, the

examples of Bertola [6] coming from the orbit spaces of Jacobi groups also fall into this

class.

Such solutions are isolated examples ofmodular Frobenius manifolds. We will demon-

strate how demanding invariance of the prepotential under the inversion symmetry re-

stricts its functional form, and set out a framework for classification of prepotentials with

this property. We give classification results for so-called polynomial modular Frobenius

manifolds in dimensions 3 and 4, with partial results for dimension 5.

To motivate what follows, let us consider an example (taken from [16] Appendix C).

Example 17. [Continued from Example 5, page 12] Recall that under the inversion sym-

metry, the functional form of the Frobenius manifold defined by the data

F(t1, t2, t3) =
1
2
(t1)2t3 +

1
2

t1(t2)2− (t2)4

16
γ(t3), E = t1 ∂

∂ t1 +
1
2

t2 ∂
∂ t2 . (2.1.1)

was preserved, and the WDVV equations are equivalent to the Chazy equation,

γ ′′′ = 6γγ ′′−9(γ ′)2 (2.1.2)

for the function γ(t3). One simple explicit solution of the Chazy equation is given by

γ(t3) =
πi
3

E2(t
3) ,

where E2 is the second Eisenstein series,

E2(τ) =
1

3π2 ∑
(m,n)∈Z2r(0,0)

1
(m + nτ)2 .

With this explicit solution one has a stronger symmetry. Since E2 has the modularity

properties

E2(τ +1) = E2(τ) , E2

(
−1

τ

)
= τ2E2(τ)+

12
2πi

τ (2.1.3)

then under inversion symmetry one has F̂(t̂) = F(t̂) , i.e. both the functional form of the

prepotential and the specific solution of the Chazy equation are preserved.
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We would like to study the class of Frobenius manifold that this example falls into. The

characterising property of this class is an invariance for the modular group of SL(2,Z).

The inversion symmetry defines a representation of the generator τ 7→ −1/τ on the space

of Frobenius manifolds. A modular Frobenius manifold must also be invariant under

periodic shifts in τ:

Definition 9. Let M be a Frobenius manifold with fixed coordinates {t}, and Euler

vector field E. The manifold M is defined to be a modular Frobenius manifold if both

1. The prepotential is invariant under periodic shifts in tN ,

F(t1, ..., tN−1, tN +1) = F(t1, ..., tN−1, tN) modulo quadratic terms. (2.1.4)

2. The data F̂, Ê, {t̂} defining the image M̂ of the Frobenius manifold M under the

inversion symmetry, is given by

F̂(t̂) = F(t̂), and Ê(t̂) = E(t̂). (2.1.5)

Thus instead of transforming the original prepotential into a different prepotential, the

inversion symmetry maps the prepotential to itself, as in Example 5, and hence one

may think of modular Frobenius manifolds as lying at the fixed point of the involutive

symmetry I . A comparison of the two Euler fields, using (1.5.6) and (1.5.7), gives the

following constraints: d̂ = d and hence d = 1. Thus we have the following necessary

conditions for a Frobenius manifold to be modular:

E =
N−1

∑
α=1

(
1
2
−µα)tα ∂α , (2.1.6)

LEF = 2F . (2.1.7)

Since the variables t1 and tN behave differently from the remaining variables it is

useful to use a different notation, namely:

u = t1 , zi = t i , i = 2, . . . ,N−1, τ = tN ,

and z = (z2 , . . . ,zN−1) . The two notations will be used interchangeably in what follows.

Proposition 4. [16] The group SL(2,C) acts on the space of modular Frobenius manifolds
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by

u 7→ û = u+
1
2

c
cτ + d

η(z,z),

z 7→ ẑ =
z

cτ + d
, (2.1.8)

τ 7→ τ̂ =
aτ + b
cτ + d

,

for ad−bc = 1.

Proof. Note that the re-scalings τ 7→ aτ + b act trivially on the solution space to WDVV

with d = 1 (∂/∂τ ∈ KerQ): they leave the WDVV equations and scaling condition LEF =

2F invariant. Composing these re-scalings with the invariance (2.1.5) of F under the

inversion symmetry, we arrive at the desired action.

A simple calculation then yields the modularity properties of the non-cubic part of the

prepotential.

Proposition 5. The prepotential

F =
1
2

u2τ− 1
2

uη(z,z)+ f (z,τ) (2.1.9)

(where η(W,y) = ∑N−1
i, j=2 ηi jxiy j) defines a modular Frobenius manifold if and only if

f

(
z
τ
,−1

τ

)
=

1
τ2 f (z,τ)− 1

4τ3η(z,z)2 , and f (z,τ +1) = f (z,τ) (2.1.10)

2.2 Modularity and Quasi-Homogeneity

We will consider polynomial prepotentials of the form (2.1.9) with

f = ∑
α∈L

{
N−1

∏
i=2

(t i)αi

}
gα(tN) , (2.2.1)

so z = {t2 , . . . , tN−1} ,τ = tN and α = (α2, ...,αN−1) ∈ L := ZN−2
≥0 . We do not assume any gen-

eral properties of the functions gα at this stage - the aim is to obtain the differential

equations that these functions must satisfy in order for the WDVV equations to hold.

Boundary or other conditions (for example, solutions being analytic at infinity) will then

place constraints on these functions, but a priori no such constraints will be imposed. We

will also impose the assumption of semi-simplicity on the solutions we seek. As we will

see, this then places extremely strong restrictions on the possible values of the weights

di. The following definition, while not immediately obvious, will play an important role in

what follows.
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Definition 10. A pivot-point α ∈ L is a lattice point for which

coeffα

(
N−1

∑
i , j=2

ηi jt
it j

)2

6= 0,

where coeffα(p) is the coefficient of ∏N−1
i=2 (t i)αi of the polynomial p .

Proposition 6. Assume that f defined above satisfies the modularity condition (2.1.10).

Then

gα (τ +1) = gα (τ) ,

and:

• If α is not a pivot-point then:

gα

(
−1

τ

)
= τ (∑αi)−2gα(τ);

• If α is a pivot-point then:

gα

(
−1

τ

)
= τ2gα(τ)− 1

4
τ coeffα

(
N−1

∑
i , j=2

ηi jt
it j

)2

The proof is by direct computation and will be omitted.

These modularity properties place constraints on the functions lying at pivot points,

illustrated by the following

Lemma 6. Let g : H→ C∪{∞} be a meromorphic function enjoying the transformation

properties

g

(−1
τ

)
= τ2g(τ)+ aτ , g(τ +1) = g(τ) (2.2.2)

for some constant a. Then

g(τ) = a
πi
6

E2(τ)+
d

dτ
(P( j(τ)) , (2.2.3)

for some polynomial P in the modular j-invariant.

Proof. Recall that the j-invariant has a simple pole at q = 0 [50]:

j(τ)∼ 1
q

+ positive powers of q, q = e2πiτ

Also, note that (
g− d

dτ
P( j)

)(−1
τ

)
= τ2

(
g− d

dτ
P( j)

)
(τ)+

πi
6

τ ,
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We can define a polynomial P such that

(
g− d

dτ
(P( j))

)
(τ) = a0 + ∑

n>0

anqn,

i.e. contains only positive powers of q. This means that g− d
dτ P( j) is a quasi-modular form

of weight 2, i.e. proportional to E2.

Note that without placing analytic constraints on the function g, we cannot fix the

polynomial P.

Having determined the modularity properties of the functions we now apply quasi-

homogeneity. This will determine the possible terms that can appear in the ansatz (2.2.1).

Recall that the Euler field takes the form

E =
N−1

∑
i=1

dit
i ∂
∂ t i

where di + dN+1−i = 1. We now assume further that the di are positive rational numbers.

Applying the quasihomogeneity condition E(F) = 2F (recall modular Frobenius manifold

must have d = 1) implies the following constraint on the αi :

N−1

∑
i=2

diαi = 2. (2.2.4)

Thus given the di we arrive at a special Diophantine equation whose solutions determines

the possible monomials in (2.2.1) (rather remarkably, this special type of Diophantine

equation is known in number theory as a Frobenius equation).

Pivot-points - which are defined without reference to the Euler vector field - play an

important role in the construction of solutions of this equation.

Lemma 7. Pivot-points automatically satisfy the Frobenius equation (2.2.4).

Proof. On expanding
(

∑N−1
i , j=2 ηi jt it j

)2
one can obtain the form of the pivot-points, namely

(and here only non-zero elements are shown, all other elements are zero):

(i) α = (. . . ,2, . . . ,2, . . .) with 2 in the i and N +1− i positions;

(ii) α = (. . . ,1, . . . ,1, . . . ,1, . . . ,1, . . .) with 1 in the i , j and N +1− i ,N +1− j positions (i 6= j).

If N is odd one obtains two further pivot-points:

(iii) α = (. . . ,4, . . .) with 4 in the middle position;

(iv) α = (. . . ,1, . . . ,2, . . . ,1, . . .) with 1 in the i and N + 1− i positions and 2 in the middle

position.
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Since di + dN+1−i = 1 (and hence d(N+1)/2 = 1/2 if N is odd) the result follows.

Given the above forms of the pivot-points one can easily count the number of such points:

if N is even the number of pivot-points is N(N−2)/8 and if N is odd the number of pivot-

points is (N +1)(N−1)/8.

Example 18. Suppose N = 8. Then

(
N−1

∑
i, j=2

ηi jt
it j

)2

= (t2t7 + t3t6 + t4t5)
2 = (t2t7)

2 +(t3t6)
2 +(t4t5)

2 +2t2t7t3t6 +2t3t6t4t5 +2t2t7t4t5,

and we have six pivot points

{(2,0,0,0,0,2),(0,2,0,0,2,0),(0,0,2,2,0,0),

(1,1,0,0,1,1),(0,1,1,1,1,0),(1,0,1,1,0,1)}.

Note that the first three are of the form (i) and the latter form (ii). They all satisfy the

Frobenius equation. For example, consider the first one:

2d2 +2d7 = 2(d2 + d7) = 2,

since di + dN−i+1 = 1.

One can now give the geometric motivation for the name ‘pivot-point’. The Frobenius

equation (2.2.4) defines a hyperplane Π in α-space and we wish to find integer solutions,

i.e. the points in Π∩L . Since pivot-points are independent of the di as the di vary the

plane Π ‘pivots’ around these points. In the simplest non-trivial example, when N = 4, we

have (1−d3)α2+d3α3 = 2 and a single pivot-point (2,2) . Thus as d3 varies the line rotates,

or pivots, about this point:

α2

α3

d3 = 1/2

d3 = 2/3

(1−d3)α2 + d3α3 = 2

y

(2,2)

It is also obvious geometrically from the direction of the normal vector to Π that the

number of solutions to the Frobenius equation is finite and hence (2.2.1) is a polynomial

in the variables {t2, , . . . , tN−1} .
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The number of independent pivot terms can be reduced further; in fact to one. Let

γ(τ) be any function with the transformation property

γ
(
−1

τ

)
= τ2γ(τ)− 1

4
τ

and let

f (z,τ) = γ(τ)(z,z)2 + g(z,τ) .

Then equation (2.1.10) implies that

g

(
z
τ
,−1

τ

)
=

1
τ2g(z,τ) .

Thus one can obtain a refinement of Proposition 5:

Proposition 7. The prepotential of a modular Frobenius manifold takes the form

F =
1
2

u2τ− 1
2

u(z,z)+ γ(τ)(z,z)2 + g(z,τ) (2.2.5)

where

γ
(
−1

τ

)
= τ2γ(τ)− 1

4
τ , γ(τ +1) = γ(τ), g

(
z
τ
,−1

τ

)
=

1
τ2g(z,τ) , g(τ +1) = g(τ).

Moreover, if

g(z,τ) = ∑
α∈L∩Π

{
N−1

∏
i=2

(zi)αi

}
gα(τ)

then

gα

(
−1

τ

)
= τ (∑αi)−2gα(τ) .

Thus modularity and quasi-homogeneity determine the modularity properties of the

functions γ and gα together with the form of the monomial coefficients of these functions.

We have arrived at the most concise ansatz possible given our assumptions. The next step

will be to posit our ansatz as a solution to the WDVV equations, which will turn out to

be equivalent to ordinary differential equations in the functions {γ ,gα}, with a modular

symmetry of the same flavour as that of the Chazy equation (2.1.2). When we have found

these ordinary differential equations we can check, without first having to solve them,

whether or not the resulting solution to WDVV will be semi-simple.

Remark. Another functional class in which to look for modular manifolds could be

obtained by weakening the polynomial ansatz and replacing it with a rational ansatz (e.g

rational in the variable tN−1 and polynomial in the variables t1 , . . . , tN−2) - this would then

include the AN−2 and BN−2 examples of Bertola [6] . These examples, while rational, are
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constrained by the condition that the functions gα(τ) are never of negative weight, i.e.

∑αi ≥ 2. Such a generalization will not be pursued here.

2.3 The WDVV Equations and Modular Dynamical Systems

Recall that the WDVV equations are satisfied if and only if all of our algebras are as-

sociative. Therefore in order to analyze the equations, we consider the obstruction to

associativity

∆[X ,Y,Z] = (X ◦Y )◦Z−X ◦ (Y ◦Z) .

We are assuming the algebras are unital, and so if any of the vector fields X ,Y, or Z are

equal to the unity field then ∆ vanishes identically. The form of our ansatz means that the

variable tn (also denoted τ) is also special. For example, the dependence of our ansatz

for the prepotential on the variable τ is not polynomial. The variable τ also behaves

differently under the inversion symmetry. Therefore we decompose the WDVV equations

into different classes, determined by the number of τ-derivatives present. Taking the

inner product of ∆[X ,Y,Z] with a fourth arbitrary vector field W in order to obtain scalar

valued equations, we arrive at the following:

Proposition 8. The WDVV equations for a multiplication with unity field are equivalent

to the vanishing of the following functions:

∆(1)(X ,Y ) = η(∂τ ◦∂τ ,X ◦Y )−η(∂τ ◦X ,∂τ ◦Y ) ,

∆(2)(X ,Y,Z) = η(∂τ ◦X ,Y ◦Z)−η(∂τ ◦Z,X ◦Y ) ,

∆(3)(X ,Y,Z,W ) = η(X ◦Y,Z ◦W )−η(X ◦W,Y ◦Z)

for all X ,Y ,Z ,W ∈ span{ ∂t i : i = 2, . . . ,N−1 } .

In terms of coordinate vector fields these conditions are:

∆(1)
i j = ηi j cτττ + η pq{cττ p ci jq− cτ ip cτ jq

}
,

∆(2)
i jk =

{
η jk cττ i−ηi j cττk

}
+ η pq{cτ ip c jkq− cτkp ci jq

}
(2.3.1)

∆(3)
i jrs =

{
ηi j cτrs + ηrs cτ i j−ηis cτr j−ηr j cτ is

}
+ η pq

{
ci jp crsq− cisp cr jq

}
.

Hence imposing the WDVV equations gives systems of over-determined non-linear

ordinary differential equations (in the variable τ). By construction, these systems will

possess similar properties to the Chazy equation (2.1.2): their solutions will have an

SL(2,C) symmetry. To get a modular Frobenius manifold one then looks for solutions
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which have an invariance under SL(2,Z). This was illustrated in Example 5, when we

chose the solution

γ(τ) =
πi
6

E2(τ)

to (2.1.2). In addition, if one then imposes the condition of semi-simplicity on the result-

ing multiplication one finds that this then leads to very strong constraints on the possible

di that give modular Frobenius manifolds.

The transformation properties of the functions {γ ,gα} derived above, together with

the equations (2.3.1) that they must satisfy motivate the following. Suppose that one

has a set of quasi-modular functions (we assume no analytic properties such as being

holomorphic in the upper-half plane) γ(τ) and gα(τ) ,α ∈W for some indexing set W such

that:

γ
(
−1

τ

)
= τ2γ(τ)+ aτ , a 6= 0 constant,

gn

(
−1

τ

)
= τngn(τ) .

Such a gn is said to have weight n . Define next a Rankin-type derivative

D(gn) =
dgn

dτ
− nγ

a
gn ,

D(γ) =
dγ
dτ
− 1

a
γ2 .

It is easy to check that D(γ) has weight 4 and D(gn) has weight n+2 and that D(gngm) =

gnDgm + gmDgn .

Definition 11. Let W be some (finite) indexing set. A modular dynamical system takes

the form

D(γ) = q(g) ,

D(gα) = pα(g) , α ∈W .

where the polynomials q and pα are constrained so that the resulting system is invariant

under the transformation τ→− 1
τ .

Example 19 (The Ramanujan System). The Eisenstein series are defined by

E2k(τ) =
1

2ζ (2k) ∑
(n,m)∈Z2r(0,0)

1
(m + nτ)2k ,

where ζ (s) is Riemann’s zeta function, ζ (s) = ∑n≥0
1
ns . From the definition it follows that
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for k ≥ 2

E2k(τ +1) = E2k(τ),

E2k

(
−1

τ

)
= τ2kE2k(τ).

If k = 1, we have

E2

(
−1

τ

)
= τ2E2(τ)+

12
2πi

τ ,

as above. Srinivasa Ramanujan found the following modular dynamical system on {E2,E4,E6}:

E ′2 =
1
12

(E2
2−E4),

E ′4 =
1
3
(E2E4−E6),

E ′6 =
1
2
(E2E6−E2

4),

where ′ ≡ q d
dq ; q = e2πiτ . Here E2 plays the role of γ, defining the Rankin derivative.

Proposition 9. The WDVV equations for a polynomial modular Frobenius manifold are

equivalent to a modular dynamical system.

Proof. We saw in Proposition 7 that the number of pivot functions present in the prepo-

tential of a modular Frobenius manifold may be reduced to one. Hence the obstructions

to WDVV take the form

∆(3) = 0 ⇒
{

Dγ = pγ (g1, ....,gk),

Dgi = pi(g1, ...,gk), for i = 1, ...,k,

∆(2) = 0 ⇒
{

D2γ = qγ(g1, ....,gk),

D2gi = qi(g1, ...,gk), for i = 1, ...,k,

∆(1) = 0 ⇒
{

D3γ = rγ(g1, ....,gk),

D3gi = ri(g1, ...,gk), for i = 1, ...,k,

where k is the number of non-pivot functions present in the ansatz (2.2.5), and { pσ ,qσ ,rσ :

σ = 1, ...,k,γ } are polynomials of various degrees such that the resulting system is mod-

ular invariant.

2.3.1 Modular Dynamical Systems for N = 3.

In this simplest case (see Example 5) there is no freedom: the Euler vector field is fixed

by the fact that d = 1 and hence
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E = t1 ∂
∂ t1 +

1
2

t2∂
∂ t2

The Frobenius equation (2.2.4) only has one solution and hence modularity and quasi-

homogeneity imply a prepotential of the form

F =
1
2

t2
1t3 +

1
2

t1t2
2−

1
16

t4
2γ(t3) .

The WDVV equations then imply that γ must satisfy the third order equation

γ ′′′−6γγ ′′+9(γ ′)2 = 0. (2.3.2)

This is nothing more than the Chazy equation, whose modularity properties are well

known (see [16]). Under the identification

γ(τ) =−2
3

(ω1(τ)+ ω2(τ)+ ω3(τ)) ,

the Chazy equation is equivalent to the Halphen system (2.3.3):

ω̇1 = −ω2ω3 + ω1(ω2 + ω3) ,

ω̇2 = −ω3ω1 + ω2(ω3 + ω1) , ˙ ≡ d
dτ

ω̇3 = −ω1ω2 + ω3(ω1 + ω2) ,

on the functions {ω1,ω2,ω3}. Here the SL(2,C) action is defined by

τ 7→ τ̂ =
aτ + b
cτ + d

, ωi (τ) 7→ ω̂i(τ̂) = (cτ + d)2ωi

(
aτ + b
cτ + d

)
− (cτ + d), for i = 1,2,3.

In order to construct a modular Frobenius manifold, one must now choose an SL(2,Z)-

invariant solution to the modular dynamical system. One can also use the techniques de-

veloped in the next section to solve the Chazy equation (2.3.2) in terms of the Schwarzian

triangle function S[1
2, 1

3,0, t] .

2.3.2 Modular Dynamical Systems for N = 4.

In this case there is a 1-parameter family of possible Euler fields, namely

E = t1 ∂
∂ t1 +(1−σ)t2∂

∂ t2 + σ t3∂
∂ t3 .

Without loss of generality we may assume decreasing degrees and hence σ ≤ 1
2 . A de-

tailed analysis of the Frobenius equation (2.2.4) gives the solutions summarized below:
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σ Non-pivot solutions (α2,α3):
1
2 (4,0) ,(3,1) ,(1,3) ,(0,4) ;

1
3 (3,0) ,(1,4) ,(0,6) ;

1
n ,(n ≥ 4) (1,n+1) ,(0,2n) ;

2
2n+1 ,(n ≥ 2) (0,2n+1) ;

other none .

Table 2.1: Non-pivot solutions of the Frobenius equation (2.2.4) for N = 4.

We now analyze each of the four cases in turn.

N = 4, σ = 1/n, n≥ 4.

We have the ansatz

F =
1
2

t2
1t4 + t1t2t3−

1
4

γ(t4)(t2t3)
2 + g1(t

4)t2tn+1
3 + g2(t4)t

2n
3 ;

E = t1
∂
∂ t1

+
n−1

n
t2

∂
∂ t2

+
1
n

t3
∂
∂ t3

.

Where

g1

(−1
τ

)
= τng(τ), g2

(−1
τ

)
= τ2n−2g2(τ), γ

(−1
τ

)
= τ2γ(τ)+2τ .

Requiring ∆(3) = 0means that the function γ must satisfy a first order differential equation

of the form

Dγ = p(g1,g2)

where p is a polynomial in the functions g1 and g2 which makes the differential equation

invariant under τ 7→ −1/τ . Note that, by definition,

(Dγ)

(−1
τ

)
= τ4Dγ(τ).

But the weights of g1,g2 are such that there does not exist a polynomial satisfying

p(g1,g2)

(−1
τ

)
= τ4p(g1,g2)(τ).

Therefore

Dγ = 0.
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Recalling the definition of the operator D, this is

γ ′ =
1
2

γ2 ⇒ γ(τ) =
2

τ0− τ
, for some constant τ0.

This function does not satisfy the required transformation properties of a pivot function:

it may be reduced to zero by the transformation

τ 7→ τ̂ =
1

τ− τ0
.

Hence any resulting solution to the WDVV equations lies on the same SL(2,Z) orbit as

the trivial 4 dimensional Frobenius manifold,

F =
1
2

t2
1t4 + t1t2t3,

which is not semi-simple.

N = 4, σ = 2/(2n+1), n≥ 2

This case is similar. We have the ansatz

F =
1
2

t2
1t4 + t1t2t3−

1
4

γ(t4)(t2t3)
2 + g(t4)t

2n+1
3 ;

E = t1
∂
∂ t1

+
2n−1
2n+1

t2
∂
∂ t2

+
2

2n+1
t3

∂
∂ t3

.

The unknown functions {γ ,g} have the modularity properties

g

(−1
τ

)
= τ2n−1g(τ), γ

(−1
τ

)
= τ2γ(τ)+2τ .

Vanishing of the obstruction ∆(3) means γ must satisfy a first order differential equation.

No positive integer power of the function g is a modular function of weight 4, so

Dγ = 0,

and we arrive in the same situation as the previous case.

N = 4,σ = 1
2.

In this case we have the ansatz

F =
1
2

t2
1t4 + t1t2t3−

1
4
(t2t3)

2γ(t4)+ t4
3 g1(t4)+ t2t3

3 g2(t4)+ t3
2t3g3(t4)+ t4

2 g4(t4);

E = t1
∂
∂ t1

+
1
2

t2
∂
∂ t2

+
1
2

t3
∂
∂ t3

.

In this case the analysis is a lot more involved, and is typical of that required throughout
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the rest of this section. For this reason we will give a lot of detail here, but will be more

succinct in the analysis of further cases. We begin by first eliminating the obstruction

∆(3). In particular, ∆(3)
3233= 0⇔

g′2 = γg2 +24g1g3, Dg2 = 24g1g3,

g′3 = γg3 +24g2g4, ⇔ Dg3 = 24g2g4,

γ ′ = 1
2γ2−288g1g4 Dγ = −288g1g4.

(2.3.3)

Using these differential equations to replace all the first order derivatives of g2,g3, and γ
appearing in the WDVV equations we find that the obstruction ∆(2)

232 = 0⇔

24g1g3g4 + g2g4γ−g2g′4 = 0, (2.3.4)

24g1g2g4 + g1g3γ−g3g′1 = 0, (2.3.5)

g4g′1−g1g′4 +6(g1g2
3−g2

2g4) = 0, (2.3.6)

−3456g2
1g4 +6g1γ−12γg′1 +4g′′1 = 0, (2.3.7)

where we have suppressed the functional dependence on the variable t4, ′ ≡ d
dt4
. Equa-

tions (2.3.4), (2.3.5) suggest splitting the analysis of this system into the following cases:

i) g2 = 0 and g3 = 0,

ii) g2 6= 0 and g3 = 0,

iii) g2 = 0 and g3 6= 0,

iv) g2 6= 0 and g3 6= 0.

Case i) g2 = 0,g3 = 0. Then equation (2.3.6) becomes

g4g′1 = g1g′4⇒ g4 = µg1,

where µ is a constant of integration. Then (2.3.7) gives the evolution of γ and g1:

g′′1 = 3γ g′1−
3
2

g1γ2 +864µg3
1.

This can also be rewritten as

γ ′ =
1
2

γ2−288µg2
1 ,

g′′1 = 3γ g′1−3g1γ ′ .
(2.3.8)

On eliminating g1 one obtains a third-order scalar equation

...γ =
1
2

(γ̈−2γγ̇)2

γ̇− γ2 +8γγ̈−10γ̇2 . (2.3.9)
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Here the independent variable has been rescaled, t = 1
2t4 , and hence γ ′ = 1

2 γ̇ etc.. This

falls within Bureau’s class (see Section 2.4) and its solutions are given in terms of the

Schwarzian triangle function y(t) = S[1
2, 1

4,0, t] , namely

γ(t) =
1
2

{
ÿ
ẏ
−
(

1/2
y

+
3/4

y−1

)
ẏ

}
,

=
1
2

d
dt

log

{
ẏ

y
1
2 (y−1)

3
4

}
,

g1(t) =
1

192µ 1
2

1

y
1
2 (y−1)

1
2

ẏ .

An alternative way to solve (2.3.9) (following Satake [58] and Example 22) is to ex-

press the solutions in terms of solutions to the Halphen system. In particular, we take

γ(t) =
1
4
(ω1 +2ω2 + ω3) ,

g1(t) =
1

96µ 1
2

(ω1−2ω2 + ω3) .

The required modularity properties of γ and g1 then follow automatically from the known

modularity properties of the solution to the Halphen system.

Recall Lemma 1.4.18, that the canonical coordinates of a Frobenius manifold are the

roots of the equation

p(u) := det
(

gαβ (t)−uηαβ
)

= 0. (2.3.10)

This provides a way to check whether the Frobenius manifold in question is semi-simple

or not: we compute the roots of this polynomial. If the roots are all distinct the canonical

coordinate system is well defined and the manifold is semi-simple. If the polynomial

has repeated roots then the manifold is nilpotent. Of course, the expressions for the

canonical coordinates in terms of the flat coordinates can be extremely complicated, and

already in dimension 4 requires one to solve a quartic. Alternatively, one can check by

computing the resultant

res(p, p′) = ∏
(x,y)∈S

(x− y),

where S = {(x,y) : p(x) = 0 , p′(y) = 0}. If the resultant is zero, p has a repeated root and

the manifold is nilpotent. If the resultant is non-zero the manifold is semi-simple. This

procedure only depends on the form of the dynamical system, not the particular solution.

In particular, for the case in hand,

res(p, p′) 6= 0,

and the solution is semi-simple.
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Case ii) g2 6= 0,g3 = 0. In this case equation (2.3.5) becomes

24g1g2g4 = 0 ⇒ g1 = 0, or g4 = 0 (as g2 6= 0).

But if either g1 = 0, or g4 = 0, the evolution of γ is given by (2.3.3)

Dγ = 0,

and any resulting solution of the WDVV equation will not give a modular Frobenius man-

ifold, as above.

Case iii) g2 = 0,g3 6= 0. In this case equation (2.3.4) becomes

24g1g3g4 = 0 ⇒ g1 = 0, or g4 = 0,

and we are in the same scenario as in Case i).

Case iv) g2 6= 0,g3 6= 0. Because g2 and g3 are non-zero we may divide equations (2.3.4),

(2.3.5) by g2 and g3 respectively to obtain

Dg4 =
12g1g3g4

g2
=

g4

g2
Dg2; Dg1 =

24g1g2g4

g3
=

g1

g3
Dg3.

Consider the latter of these equalities. Un-packing we obtain the relationship

1
g1

(g′1− γg1) =
1
g3

(g′3− γg3)⇒ g1 = µg3.

Similarly, the former gives g2 = µ2g4. Analyzing the obstructions to associativity with

these algebraic relationships in place we find the constraint µ2 = 4/µ. The WDVV equa-

tions are then equivalent to modular dynamical system

γ ′ =
1
2

γ2−288g1g4 Dγ = −288g1g4 ,

g′1 = γ g1 +24µg2
4 ⇔ Dg1 = 24µg2

4 ,

g′4 = γ g4 +24µ−1g2
1 Dg4 = 24µ−1g2

1 .

(2.3.11)

Eliminating g1 and g4 yields the Chazy equation (2.3.2). This system was originally dis-

covered by Guerts, Martini & Post [31].

From the expressions for γ ′ and γ ′′ one can easily obtain two algebraic relations con-

necting g1 and g4 to the γ. Hence one can obtain, by solving these algebraic equations, the
general solution in this subcase. Since it is well known that the Halphen system is equiv-

alent to the Chazy equation, one may also express the solution in terms of { ω1,ω2,ω3 }.
One can also show, without first having to solve the equations, that the solution is semi-

simple.
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N = 4,σ = 1
3.

We have the ansatz

F =
1
2

t2
1t4 + t1t2t3−

1
4
(t2t3)

2γ(t4)+
{

t6
3 g4(t4)+ t2t4

3 g3(t4)+ t3
2 g1(t4)

}
. (2.3.12)

Because the analysis of the WDVV equations is analogous to the above we do not give

details. The WDVV equations are equivalent to the system (there are other subcases

which appear in the analysis, but these yield non-semi-simple solutions):

γ ′ =
1
2

γ2−72µg4
1 ,

g′′1 = 2γ g′1−g1γ ′
(2.3.13)

where µ is a constant and

g3 = µg3
1 , g4 =

µg1

30

[
g′1−

1
2

g1γ
]

.

On eliminating g1 one obtains a third-order scalar equation

...γ =
3
4

(γ̈−2γγ̇)2

γ̇− γ2 +6γγ̈−6γ̇2 . (2.3.14)

Here the independent variable has been rescaled, t = 1
2t4 , and hence γ ′ = 1

2 γ̇ etc.. This

falls within Bureau’s class, and its solutions are given in term of the Schwarzian triangle

function y(t) = S[1
2, 1

6,0, t] . One can check, without first solving the differential equations,

that the solution is semi-simple.

γ(t) =
1
2

{
ÿ
ẏ
−
(

1/2
y

+
5/6

y−1

)
ẏ

}
,

=
1
2

d
dt

log

{
ẏ

y
1
2 (y−1)

5
6

}
.

Given this solution one may easily find the remaining functions: they all take the schematic

form

gi(t) =
ci

yai(y−1)bi
(ẏ)

i
2 , i = 1,3,4

for various constants ai ,bi ,ci .
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Example 20. [Folding Verlinde & Warner’s Solution] By restricting the prepotential

found by Verlinde & Warner (1.5.1) to the hyperplanes

t2 = t3 = t4, t5 = t6 = t7,

we obtain the ansatz (2.3.12) (up to a re-scaling). This process of restricting to hyper-

planes is known as ‘folding’ because it was shown by Zuber [70], in the case of polynomial

Frobenius manifolds, that the non-simply-laced examples (namely Bn ,F4 ,G2 ,H3,4 , I2(n))

may be obtained by restricting the simply laced examples (namely An ,Dn ,E6,7,8) to certain

hyperplanes, which can be understood as foldings of the corresponding Dynkin diagrams

by an automorphism. In order to obtain a subalgebra one requires the condition

c k
i j

∣∣∣
Σ

= 0, ∀i , j ∈ I ,∀k /∈ I .

Verlinde & Warner [66] found that the WDVV equations reduce, quite remarkably, to a

third order modular invariant differential equation for their pivot term

γVW (t) =
1
2

{
β ′′

β ′
+

(
1

3(1−β )
− 2

3β

)
β ′
}

,

where β = S[1
3,0,0;t]. It does not appear at first sight that this solution to WDVV obtained

by folding the solution (1.5.1), and the solution (2.3.14) agree - the triangle functions look

completely different (recall that the function γ(t) appearing in the solution (2.3.14) was

given in terms of the triangle function y(t) = S[1
2, 1

6,0;t]). However, due to non-linear iden-

tities between hypergeometric functions due to Goursat [30], [43] we obtain via equation

(2.4.10) identities connecting different Schwarzian triangle functions. For example, if we

define

β (t) = S[
1
3
,0,0;t],

y(t) = S[
1
2
,
1
6
,0;t],

then the identity (Goursat (44) [30])

(1− z)−
1
6 2F1

(
1
6
,
1
6
,
5
6

;z :=
x2

4(x−1)

)
= 2F1

(
1
3
,
1
3
,
2
3

;x

)
⇒ y =

β 2

4(β −1)
.
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σ Non-pivot solutions (α2,α3,α4):

1
2 (4,0,0) ,(3,0,1) ,(1,0,3) ,(0,0,4)

(3,1,0) ,(2,1,1) ,(1,1,2) ,(0,1,3)
(2,2,0) ,(0,2,2)
(1,3,0) ,(0,3,1);

1
3 (3,0,0) ,(1,0,4) ,(0,0,6) (0,2,3);

1
4 (1,0,5) ,(0,0,8)

(2,1,0) ,(1,1,3) ,(0,1,6)
(0,2,4) ,(0,3,2);

1
n ,(n ≥ 5,and odd) (1,0,n+1) ,(0,0,2n)(0,2,n);

2
2n+1 ,(n≥ 2) (0,0,2n+1) ;

1
2n ,(n > 2) (1,0,2n+1) ,(0,0,4n) ,(1,1,n +1) ,(0,1,3n)

(0,2,2n) ,(0,3,n)

3
2n ,(n ≥ 4) (0,1,n)

arbitrary none .

Table 2.2: Non-pivot solutions of the Frobenius equation (2.2.4) for N = 5.

2.3.3 Modular Dynamical Systems for N = 5.

There is again a 1-parameter family of Euler vector fields,

E = t1 ∂
∂ t1 +(1−σ)t2∂

∂ t2 +
1
2

t3 ∂
∂ t3 + σ t4∂

∂ t4 .

In this case we have 3 pivot points which correspond to the monomials {(t2t4)2, t2(t3)2t4,(t3)4}.
Again, without loss of generality we may assume decreasing degrees and hence σ ≤ 1

2 . In

this case, solutions of the Frobenius equation correspond to the intersection of a plane

and N3. As σ varies this plane pivots about a line which intersects the three pivot points.

Analyzing the Frobenius equation (2.2.4), we find the non-pivot terms summarized in

Table 2.2.

Perhaps rather remarkably, in all cases except σ = 1/2, there exist no semi-simple

modular Frobenius manifolds. The obstructions to associativity typically reduce to dif-

ferential equations of the following types:

1. second order Euler-type differential equations that may be integrated explicitly to
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yield a non-semi-simple solution to WDVV.

2. first order equations of the form

γ ′− 1
2

γ2 = 0,

where γ is a pivot term. As in the analysis of N = 4, we may reduce any such function

to zero, and hence the modularity properties of any resulting Frobenius manifold

will be destroyed.

N = 5,σ = 1
2.

In this case we have the ansatz

F =
1
2

t2
1t5 + t1t2t4 +

1
2

t2t2
3−

1
4

(
γ1(t5)(t2t4)

2 + γ2(t5)t2t2
3t4 + γ3(t5)t

4
4

)

+g1(t5)t
4
2 + g2(t5)t

3
2t4 + g3(t5)t2t3

4 + g4(t5)t
4
4 + g5(t5)t

3
2t3 + g6(t5)t

2
2t3t4 + g7(t5)t2t3t2

4

+g8(t5)t3t3
4 + g9(t5)t

2
2t2

3 + g10(t5)t
2
3t2

4 + g11(t5)t2t3
3 + g12(t5)t

3
3t4; (2.3.15)

E = t1
∂
∂ t1

+
1
2

t2
∂
∂ t2

+
1
2

t3
∂
∂ t3

+
1
2

t4
∂
∂ t4

.

Though it was not possible to give a classification of all the solutions of this form, we give

examples of two that have appeared in the literature.

Example 21. The following example (rescaled slightly) was found Guerts, Martini & Post

[31].

F =
1
2

t2
1t5 + t1

(
t2t4 +

1
2

t2
3

)
− 1

4

(
t2t4 +

1
2

t2
3

)2

γ(t5)

+
1
24

(
t4
2−2t2t3

3−2t2t3
4 +3t2

3t2
4

)
h1(t5)+

1
24

(
t4
4−2t4t3

3−2t3
2t4 +3t2

2t2
3

)
h2(t5)

where

γ ′ =
1
2

γ2− 1
2

h1h2 ,

h′1 = γh1 + h2
2 , (2.3.16)

h′2 = γh2 + h2
1 .

This system reduces to the Chazy equation for the function γ .

Example 22. In the same way that we folded Verlinde & Warner’s solution in Example

20, the following solution may be obtained by restricting the D(1,1)
4 solution found by

Satake [58] to certain hyperplanes Σ = {t i = 0, i /∈ I} for some subset I ⊂ {1, . . . ,N} .
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For the case in hand, we can reduce Satake’s six dimensional solution to a five di-

mensional one by setting any one t i = 0, for i ∈ {2, ...,N−1}. Following this procedure we

find

F =
1
2

t2
1t5 +

1
2

t1
(
t2
2 + t2

3 + t2
4

)
− 1

16

(
t2
2 + t2

3 + t2
4

)2γ(t5)

+
(
t4
2 + t4

3−2t2
3t2

4−2t2
2t2

3−2t2
2t2

4

)
g1(t5)+

1
2
(t2t3t2

4)g2(t5) ,

where

γ ′ =
1
2

γ2− 2
3

g2
2−128g2

1 ,

g′1 = γg1−
1
12

g2
2 +16g2

1 , (2.3.17)

g′2 = γg2−32g1g2 .

This system also reduces to the Chazy equation for the function γ . Note the slightly

different form of metric in this example.

Though not obvious in their current form, it turns out that the two systems in these

examples are inequivalent. Both fall into a class of differential equations called (for

obvious reasons) quadratic differential equations, first studied by Lawrence [39], and

more recently by Ohyama [49]. As we will see in the remainder of this chapter, one

may associate to such a system an algebra in a very natural way. The systems are then

analysed by studying the properties of these associated algebras. For the two examples

presented here the corresponding algebras - to be defined in the next section - are non-

isomorphic, and hence so are the modular Frobenius manifolds.

2.4 Solving Modular Dynamical Systems

We now turn our attention to the methods employed to solve the dynamical systems de-

rived above. Upon eliminating the non-pivot functions, all the dynamical systems we have

found yield a third order modular invariant differential equation for the pivot function γ.
They all fall into a class of differential equations of the form

...
u = α

(ü−2uu̇)2

u̇−u2 + βuü+ γ u̇2 + δ (u̇−u2)2, (2.4.1)

the general solution of which was first constructed by Bureau [7]. As hinted at earlier,

equations of the form (2.4.1) will be referred to as Bureau’s class. The constants α ,β ,γ
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and δ are subject to the constraints

16α − γ = 18, 2β + γ = 6.

The importance of the class of equations (2.4.1) becomes more apparent when written in

terms of the Rankin derivative,

(Du)(D3u) = α(D2u)2 +(δ +16α−24)(Du)3.

The constants are subject to the same constraints. In fact, any modular invariant differ-

ential equation of rank three and modular weight 8 can be obtained from this one by an

appropriate choice of the constants. This follows from the following

Proposition 10. [16] Let P be a polynomial. Suppose that the differential equation

P(γ ,γ ′,γ ′′, ...,γ(k)) = 0 (2.4.2)

is invariant with respect to Möbius transformations of the independent variable τ . Then
the differential equation (2.4.2) can be represented as

Q(Dγ ,D2γ , ...,Dlγ) = 0, k = l +2,

where Q(Dγ ,D2γ , ...,Dlγ) is a homogenous polynomial in γ and its Rankin derivatives.

Proof. One direction is easy: by construction, any such Q is modular invariant. To show

that such a Q exists, it is enough to consider the case where P is linear in the highest

order term γ(k). Because P is modular invariant, each term must be of the same weight.

Therefore it can be factorised as follows:

P =
k

∏
i=1

(
d

dτ
−α jγ

)i

γ = 0.

Then we must show that α j = 1/2, for j = 1, ...,n. To this end, suppose ∃α j 6= 1/2. Then

P = ∏
i6= j

(
d

dτ
− 1

2
γ
)i

(
d

dτ
−α jγ)γ

= Dk−1
(

Dγ +

(
1
2
−α j

)
γ2
)

= Dkγ +2γ
(

1
2
−α j

)
Dk−1γ .

Note that the second term is not modular invariant. So αi = 1/2, for i = 1, ...,n.
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For example, when α = 0, we obtain the so-called Chazy class XII,

D3u = (δ −24)(Du)2,

with Chazy itself appearing for δ = 0.

Bureau found that the solution to (2.4.1) is given in terms of a function y,

u =
1
2

(
ÿ
ẏ
−q(y)ẏ

)

=
1
2

d
dt

log

(
ẏ

y(1−n)(y−1)(1−m)

)
,

where

q(y) =

(
(1−n)

y
+

(1−m)

y−1

)

and y satisfies the Schwarzian differential equation

...
y

ẏ
− 3

2

{
ÿ
ẏ

}2

=−1
2

{
1−n2

y2 +
1−m2

(1− y)2 −
(1+ p2−m2−n2)

y(y−1)

}
ẏ2 . (2.4.3)

The relationship between α ,β ,γ ,δ and m ,n , p are given by the requirement that Li =

0, i = 1,2,3 where

L1 = (1−2n) [1−3n−α(1−2n)] ,

L2 = (1−2m) [1−3m−α(1−2m)] ,

L3 = (1−2m)(2−3n)+ (1−2n)(2−3m)−2α(1−2m)(1−2n)

+
1
4
(γ + δ −6)

[
(1−m−n)2− p2] .

We recall briefly here how to construct solutions of the Schwarzian differential equation

2.4.3.

Consider the second order Fuchsian differential equation

x′′(z)+ I(z)x(z) = 0. (2.4.4)

Fuchsian means that the function I(z) has poles of order at most 2. One may keep in

mind the hypergeomertric equation, as three regular singular points will suffice for our

needs. Let x1 and x2 be any two linearly independent solutions to (2.4.4). Then

x′′1x2− x1x′′2 = 0⇒ x′1x2− x1x′2 = c, c 6= 0 constant.

That is, the Wronskian of the solutions is constant. This constant is non-zero because the
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solutions are linearly independent. Now consider their ratio,

τ(z) =
x2(z)
x1(z)

.

For example, in the case of the hypergeometric equation,

z(z−1)x′′+[(a+ b+1)z− c]x′+ abx = 0, (2.4.5)

we have

τ(z) =
z1−c

2F1(1+ a− c,1+ b− c,2− c,z)

2F1(a,b,c,z)
.

The inverses of ratios of hypergeometric functions like this are known as Schwarzian

triangle functions. Due to the constancy of the Wronskian, it follows that τ satisfies the

Schwarzian differential equation,

τ ′′′

τ ′
− 3

2

(
τ ′′

τ ′

)2

= 2I(z). (2.4.6)

To introduce some terminology, the left hand side of (2.4.6) is known as the Schwarzian

derivative of τ with respect to z. It is denoted

{τ ,z} =
τ ′′′

τ ′
− 3

2

(
τ ′′

τ ′

)2

.

Two key properties are

• The Schwarzian is a projective invariant:

{
aτ + b
cτ + d

,z

}
= {τ ,z},

for ad−bc 6= 0.

• The Schwarzian satisfies the connection formula: If w(z) is a non-constant function

of z,

{τ ,w}= {z,w}+{τ ,z}
(

dz
dw

)2

.

An equivalent interpretation of the former property is

{τ ,x}= 0⇔ x =
aτ + b
cτ + d

.

For the case in hand, the Schwarzian trivializes the monodromy of the ODE (2.4.4): If

one analytically continues a pair of solutions around a loop encircling a singular point of
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the differential equation, we obtain two new solutions related to the original ones by an

invertible linear transformation,

x1(z) 7→ ax1(z)+ bx2(z)

x2(z) 7→ cx1(z)+ dx2(z)

}
⇒ τ(z) 7→ aτ(z)+ b

cτ(z)+ d
.

From the latter property it follows that

{z,τ}=−
(

dz
dτ

)2

{τ ,z}

if we take τ = w, since {τ ,τ}= 0. Although both properties have a deep geometric mean-

ing, they can be checked directly by calculation.

Using the second property, we find that the inverse function z(τ) satisfies the nonlin-

ear differential equation

{z,τ}=−I(z)

(
dz
dτ

)2

.

This is exactly the equation (2.4.3), for the choice

I(z) =−1
2

{
1−n2

z2 +
1−m2

(1− z)2 −
(1+ p2−m2−n2)

z(z−1)

}
.

So starting from an appropriate second order Fuchsian differential equation, we may

construct, by taking the inverse of the ratio of two solutions, solutions to the Schwarzian

differential equation (2.4.3).

The constraints Li = 0, for i = 1,2,3 on the various parameters, although not immedi-

ately obvious, follow from

Proposition 11 (Due to I.A.B. Strachan (2011), unpublished). Suppose

u =
1
2

{
z̈
ż
−q(z)ż

}

where z satisfies the Schwarzian differential equation

{z,τ}=−1
2

I(z)ż2. (2.4.7)

Then

Dnu = hn(z)ż
n+1, n ∈ N,

for

hn(z) = ḣn−1(z)+ nq(z)hn−1(z).
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Proof. Proof is carried out by induction. We have

Du = u̇−u2 =
1
2

( ...
z

ż
−
(

z̈
ż

)2

−q′(z)−2q(z)z̈

)
− 1

4

(
z̈
ż
−q(z)ż

)2

,

=
1
2

( ...
z

ż
− 3

2

(
z̈
ż

)2
)
−
(

1
2

q′(z)+
1
4

q(z)2
)

ż2,

=

(
−1

4
I(z)− 1

2
q′(z)+

1
4

q(z)2
)

ż2 = h1(z)ż
2.

So the assertion holds for n = 1. Suppose now that Dnu = hn(z)żn+1. Then, by definition of

the Rankin derivative, we have Dnu = D(Dn−1u)−2nuDn−1u, and so

Dn+1u = h′n(z)ż
n+2 + hn(z)(n+1)żn z̈−2u(n+1)hn(z)ż

n+1.

By definition, z̈ = 2uż + q(z)ż2, and so

Dn+1u = h′n(z)ż
n+2 +(n+1)hn(z)ż

n (2uż + q(z)ż2)−2u(n+1)hn(z)ż
n+1

=
(
h′n(z)+ (n+1)hn(z)q(z)

)
żn+2

= hn+1(z)ż
n+2.

This proposition turns modular invariant differential equations into algebraic equations,

and gives a simplification of Bureau’s original argument. For example, Bureau’s equation

(2.4.1) becomes

h1(z)h3(z) = αh2(z)
2 +(δ +16α−24)h1(z)

3. (2.4.8)

For I(z) and q(z) defined above one can easily check that

h1(z) =−1
4

(
(1−m−n)2− p2

z(z−1)

)
=:−1

4
M

z(z−1)
, (2.4.9)

for M = (1−m−n)2− p2. Using the recursion relation derived above, one can compute

h2(z) = −1
4

M

(
1−2n

z2(z−1)
+

1−2m
z(z−1)2

)
,

h3(z) = −1
4

M

(
1

z3(z−1)
(3(1−n)(1−2n)−2(1−2n))

+
1

z(z−1)3 (3(1−m)(1−2m)−2(1−2m))

+
1

z2(z−1)2 ((2n+2m−2)+3(1−n)(1−2m)+3(1−m)(1−2n))

)
.
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Substituting into (2.4.8) and equating powers of z, we arrive at Bureau’s constraints

Li = 0, for i = 1,2,3.

Let us summarize our strategy for solving the dynamical systems derived above. Note

that although a lot of the theory set out above applies to modular differential equations

of arbitrary order, all of the dynamical systems we have found are of rank three.

Step 1. Solve the constraints Li = 0 , for i = 1,2,3 to identify the parameters m,n, and

p to appear in the triangle function τ(z) = S[m,n, p,z] that satisfies the differential

equation

{τ ,z}= I(z),

in terms of the coefficients appearing in the third order modular differential equa-

tion (2.4.1).

Step 2. Construct the solution S[m,n, p,z] implicitly as the ratio of two linearly indepen-

dent solutions of the Hypergeometric equation

τ(z) = S−1[m,m, p,z] = z1−c 2F1(1+ a− c,1+ b− c,2− c,z)

2F1(a,b,c,z)
(2.4.10)

The parameters m,n and p appearing in the triangle function found by solving Li =

0 , for i = 1,2,3 then determine the parameters of the hypergeometric function

according to [7]

n2 = (1− c)2, m2 = (a+ b− c)2, p2 = (a−b)2. (2.4.11)

This is done by writing the hypergeometric equation in Q-form.

Step 3. Using the properties of the Schwarzian derivative, we know that the inverse

function z(τ) = S[m,n, p,τ ] satisfies the nonlinear differential equation

{z,τ} =−I(z)ż2,

and so define

u =
1
2

{
z̈
ż
−q(z)ż

}
,

which satisfies the third order equation modular invariant differential equation

(2.4.1).

Step 4. Use the dynamical system to find expressions for the non-pivot terms in terms of

the solution to (2.4.1). The technicalities of this step are simplified thanks to the

Proposition 11.
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Let us illustrate the above procedure for the 4 dimensional Frobenius manifold with

σ = 1/3. Recall that the pivot γ satisfies the third order equation (2.3.14)

...γ =
3
4

(γ̈−2γγ̇)2

γ̇− γ2 +6γγ̈−6γ̇2 .

In terms of the Rankin derivative,

Dγ(D3γ) =
3
4
(D2γ)2−12(Dγ)3.

This is equivalent to the algebraic constraints

(1−2n)(1−6n) = 0,

(1−2m)(1−6m) = 0,

(2−3m)m +(2−3n)n+3p2− 1
2

= 0

on m,n and p. Solving the system, we find p = 0, and we can choose (m,n) = (1
2, 1

6). The

function q is given by

q(z) =
1
2z

+
5

6(z−1)
.

The solution to 3rd order equation (2.3.14) is given in terms of the Schwarzian triangle

function† z(τ) = S[1
2, 1

6,0,τ ] :

γ(τ) =
1
2

d
dτ

(
ż

z
1
2 (1− z)

5
6

)
.

We recover the non-pivot terms from the dynamical system with the aid of Proposition

11. Recall that the system was

γ ′ =
1
2

γ2−72µg4
1 ,

g′′1 = 2γ g′1−g1γ ′
(2.4.12)

where µ is a constant and

g3 = µg3
1 , g4 =

µg1

30

[
g′1−

1
2

g1γ
]

. (2.4.13)

Taking into account the re-scaling of the independent variable t = 1
2t4, the differential

†Note that we have freedom of choice here between the values of m and n. (m,n) = ( 1
2 , 1

2) corresponds
to the trivial solution u = 0. Aside from this choice, the other values give equivalent solutions due to well
known identities between hypergeometric functions due to Euler, Kummer and Goursat.
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equation for γ becomes

Dγ = −144µg4
1

= h1(z)ż
2 (due to Proposition 11)

= −1
4

M
z(z−1)

ż2 (using (2.4.9))

= − 1
36

ż2

z(z−1)

⇒ g1 =
1

5184
1
4 µ 1

4

(
ż

1
2

z
1
4 (z−1)

1
4

)
.

Using this, the other equations (2.4.13) imply

g3 =
µ 3

4

5184
3
4

(
ż

3
2

z
3
4 (z−1)

3
4

)
, g4 =

µ 1
2

25920

(
ż2

z
3
2 (z−1)

1
2

)
.

Note that as pointed out above, the non-pivot functions take the schematic form

gi(τ) =
ci

zai(z−1)bi
ż

i
2 .

So we are able to solve the modular dynamical systems in terms of Schwarzian triangle

functions. Let us now turn our attention to the rather elegant approach, initially due to

Lawrence [39] and then extended by Ohyama [49], for studying quadratic systems.

2.5 Modular Dynamical Systems and Non-Associative Alge-

bras

Motivated by the form of the dynamical systems found above we make

Definition 12. [39] A quadratic system of differential equations takes the form

dxi

dt
=

n

∑
j,k=1

ai
jkx jxk, i = 1, ...,n, (2.5.1)

where the n3 constants ai
jk satisfy ai

jk = ai
k j.

To understand the relevance of such systems, one should keep in mind the set of

functions {γ ,g1, ...,gk}. For example, the systems (2.3.16), (2.3.17), and (2.3.11) are of

this form. Lawrence’s idea was to study the following algebra:
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Definition 13. [39] The associated linear algebra is defined by

Xi ◦X j =
n

∑
k=1

ak
i jXk. (2.5.2)

The algebra is called linear because any element can be written as a linear combina-

tion of the basis elements {X1, ...,Xn}. Note that the algebra is commutative due to the

relation ai
jk = ai

k j, but it is not necessarily associative. Demanding associativity of the

algebra places quadratic constraints on the structure constants ai
jk, just like the WDVV

equations. As noted above, for polynomial modular Frobenius manifolds, the WDVV equa-

tions are equivalent to a modular dynamical system. For the case when this is a quadratic

system, it is an interesting problem to find an explicit formula for the constants ai
jk in

terms of those of the Frobenius algebras.

Example 23. Consider the system (2.3.16) of Example 21:

γ ′ =
1
2

γ2− 1
2

h1h2 ,

h′1 = γh1 + h2
2 ,

h′2 = γh2 + h2
1 .

The associated algebra is given by the multiplication table:

◦ Γ H1 H2

Γ Γ H1 H2

H1 H1 2H2 −1
2Γ

H2 H2 −1
2Γ 2H1

(2.5.3)

So the algebra is unital, with unity Γ.

In fact, it follows from the definition of the Rankin derivative that quadratic systems that

are also modular invariant are unital. For a polynomial modular Frobenius manifold, this

is proportional to the pivot function: Suppose we have a set {γ ,g1, ...,gn} of n+1 functions

in the variable τ . Define an SL(2,C) action by

γ
(

aτ + b
cτ + d

)
= (cτ + d)2γ(τ)+2c(cτ + d),

gi

(
aτ + b
cτ + d

)
= (cτ + d)2gi(τ), for i = 1, ...,n.
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Then any modular dynamical system in the variables {γ ,g1, ...,gn} takes the form

Dγ =
n

∑
i, j=1

aγ
i jgig j,

Dgi =
n

∑
j,k=1

ai
jkg jgk.

i.e. a quadratic system. Furthermore, the associated algebra is unital, with unity Γ̃ = 1
2Γ.

This can be seen by a direct calculation.

As promised earlier, the study of these associated algebras would allow us to decide

whether or not the two Frobenius manifolds (2.3.16), (2.3.17) are the same. The following

theorem provides a large step towards answering this question:

Theorem 5. [39] Two quadratic systems

dxi

dt
=

n

∑
j,k=1

ai
jkx jxk, i = 1, ...,n, (2.5.4)

dyi

dt
=

n

∑
j,k=1

ai
jky jyk, i = 1, ...,n, (2.5.5)

are equivalent under a nonsingular linear change of variables

xi =
n

∑
j=1

b j
i y j

if and only if their respective associated algebras are isomorphic.

Therefore we need to determine whether or not the algebras associated to the two solu-

tions in question are isomorphic. The calculation will be made easier by choosing a basis

of nilpotent elements for the algebras. It will be useful to have at hand for reference the

algebra associated to the solution found by folding that of Satake (2.3.17),

◦ Γ G1 G2

Γ Γ G1 G2

G1 G1 −4Γ−4G1 G2

G2 G2 4G2 −4Γ−4G1

(2.5.6)

Recall that nilpotent elements of an algebra satisfy H2 = 0. Solving this equation for the

algebras (2.5.3), (2.5.6), and re-writing the multiplication tables in these bases ({E,F,H}
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and {Ẽ, F̃ ,H̃} respectively), we find

(2.5.3) 7→

◦ E F H

E E F H

F F 0 1
2E + F + H

H H 1
2E + F + H 0

(2.5.6) 7→

◦ Ẽ F̃ H̃

Ẽ Ẽ F̃ H̃

F̃ F̃ 0 −1
2Ẽ + F̃ + H̃

H̃ H̃ −1
2Ẽ + F̃ + H̃ 0

A quick calculation then shows that there does not exist an isomorphism between these

algebras. Hence the functions in the respective modular dynamical systems are different,

and the Frobenius manfiolds are non-isomorphic. To summarize, we have proved

Proposition 12. The polynomial modular Frobenius manifolds corresponding to the

modular dynamical systems (2.3.16) and (2.3.17) are not isomorphic.

It is interesting that all of the modular dynamical systems appearing in this thesis are

of rank three. Even for the solution of Verlinde & Warner [66], which is an 8 dimensional

Frobenius manifold, the WDVV equations reduce to a modular dynamical system of rank

three. A priori, there is no reason why this should be the case - with the ansatz (1.5.1)

there is no reason why the underlying system could not be of rank 13, for example. If

further progress in the classification of modular Frobenius manifolds is to be made, this

phenomenon must be understood.

Frobenius manifold structures on Hurwitz spaces are some of the best understood

[16], with modular Frobenius manifolds being important in the study of so-called genus

one Hurwitz spaces. These are moduli spaces of algebraic curves of genus one with

a fixed meromorphic function of degree N + 1 that realises the curve as a N + 1 sheet

covering of P1. It would be interesting to try to construct such meromorphic functions

for the modular Frobenius manifolds presented here.

To summarise, we have defined a class of Frobenius manifolds whose prepotential

is a quasi-modular function, and set out a program for classification. We have provided

perspective on how existing examples in the literature fit into the framework presented

here. Complete classification results for dimensions three and four have been presented,

as well as partial results for dimension five. Further we have shown how to decide

whether polynomial modular Frobenius manifolds are isomorphic.

The next challenge will be to look at the principal hierarchy of a given modular Frobe-

nius manifold. We will study how the modular symmetry present in the prepotential is

inherited by this hierarchy. As we will see, this provides examples of integrable systems

with a modular symmetry.
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3.1 Infinite Dimensional Hamiltonian Systems

At the very least, an integrable equation is a non-linear (partial or ordinary) differen-

tial equation that can be solved exactly. We have already seen an example of an inte-

grable system in Chapter 1: the WDVV equations. The preceding chapters should have

convinced the reader that a more optimistic or fruitful point of view would be to under-

stand why an equation is integrable, and what meaning its solutions have. This Chapter

explores how the Frobenius manifolds themselves can be viewed as a geometric struc-

ture on the space of dependent variables of a system evolutionary partial differential

equations of hydrodynamic type (sometimes called the target space of the system). The

archetypal PDE of this type is the dispersionless KdV equation, thus providing the perfect

platform from which to introduce many key concepts.

3.1.1 The Korteweg-de Vries Equation

The KdV equation,

uT = 6uuX + uXXX (3.1.1)

was originally derived in 1895 by Korteweg and de Vries, after whom it is named. They

were interested in modelling the propagation of waves in a shallow channel of water.

Any solution u(X ,T ) is a function of both space X and time T . Equations like (3.1.1) that

involve only a first order time derivative are sometimes called evolution equations. One

may look for solutions that travel to the right with constant speed c: u(X ,T ) = f (X + cT ).

With this ansatz, one obtains the ordinary differential equation

( f ′)2 = c f 2−2 f 3

Solving subject to the boundary conditions that f , f ′, f ′′→ 0 as X + cT →±∞, one obtains

the solution

u(X ,T ) =
c
2
sech2

(√
c

2
(X + cT + φ)

)
. (3.1.2)

This sech2 profile models the shape of a wave moving to the right with constant speed

c. Note that the speed with which such a wave moves depends on its amplitude. An

interesting feature of these solutions is the way they interact. One would expect that

if two waves were to collide in a shallow canal of water the result would be a plethora

of discombobulated sloshings. However, it was shown by Kruskal and Zabusky that this

is not the case. Amazingly, they found that two solutions of the form (3.1.2) could pass

through one another unperturbed, up to a shift in phase. This led to the coining of the

term ‘soliton’ for solutions of this form due to their particle-like interactions.

Over the past three decades there has been fresh interest in the area of integrable
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systems from mathematicians working across a wide range of topics. Of particular in-

terest are evolutionary PDEs like the KdV equation. This is primarily due to the work

of E.Witten and M. Kontsevich that establishes deep connections between the KdV hi-

erarchy and intersection theory on moduli space of Riemann surfaces satisfying certain

stability conditions. This connection has been exploited to answer very old questions

arising in the field of enumerative geometry.

3.1.2 Conservation Laws of the KdV Equation

A key property of the KdV equation is the existence of conservation laws. A conservation

law is an equation of the form

∂T h(u,uX ,uXX , ....) = ∂X f (u,uX ,uXX , ...). (3.1.3)

The reason for this choice of name becomes apparent if one considers the function

H =

∫

D

h(u,uX ,uXX , ...)dX .

Taking the time derivative, we have

∂T

∫

D

h(u,uX ,uXX , ....)dX =

∫

D

∂X f (u,uX ,uXX , ....)dX = f (u,uX ,uXX , ...)|∂D .

If the boundary conditions are chosen in such a way that f (u,uX ,uXX , ...)|∂D = 0, then we

see that the functional

H =

∫

D

h(u,uX ,uXX , ....)dX

is a constant of evolution. Such constants of evolution are known as Hamiltonians. Usu-

ally, it is specified that the spatial domain of integration is R, subject to u,uX ,uXX , ...→ 0

as X→±∞, as in the construction of soliton solutions (3.1.2) of the KdV equation. From a

mathematical point of view, integration over a spatial domain which is a closed manifold

like S1 provides an adequate model in which to make sense of conservation laws as well.

Example 24. Note that the KdV equation itself can be written as a conservation law,

∂T (u) = ∂X
(
3u2 + uXX

)
, (3.1.4)

so that H1 =
∫

u dX is a conserved quantity. This conservation law has the physical inter-

pretation of conservation of mass. We also have

∂T

(
1
2

u2
)

= uuT = u(6uuX + uXXX)

= 6u2uX + uuXXX = ∂X

(
uuXX +2u3− 1

2
u2

X

)
, (3.1.5)
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so that H1 =
∫ 1

2u2 dX is also a conserved quantity, corresponding to conservation of mo-

mentum. Finally, one can check that

∂T

(
u3− 1

2
u2

X

)
= ∂X

(
−uX uXXX +

1
2

u2
XX +3u2uXX −6uu2

X +
9
2

u4
)

(3.1.6)

which corresponds to conservation of total energy, H3 =
∫
(u3− 1

2u2
X ) dX . What makes the

KdV equation special is that as well as these physically intuitive conserved quantities, it

admits infinitely many conservation laws. This statement was conjectured by Miura, and

later proved by Gardener. For a proof of this result see, for example, the book of Drazin

and Johnson [15].

The existence of infinitely many conservation laws for the KdV equation may be in-

terpreted in another way: the KdV equation is a member of an infinite hierarchy of

commuting partial differential equations, generated by its conservation laws. The other

ingredient involved in generating this hierarchy will be a Poisson bracket.

3.1.3 Poisson Brackets on Loop Spaces

Let us set out a framework with which we can extend many of the integrable character-

istics we have observed for the KdV hierarchy to other evolutionary PDEs. For a more

detailed exposition of this setup, see [48, 24].

Let M be a smooth manifold of dimension N. Consider the space L(M ) = Maps(S1,M )

of smooth maps from S1 into M . If X is our coordinate on S1, any element of L(M ) is

represented by an N−tuple (v1(X), ...,vN(X)). The coordinate X ∈ S1 will play the role of

the independent spatial variable in the PDEs we will construct.

Motivated by the conservation laws of the KdV equation, we are interested in func-

tionals over our loop space,

F =
∫

S1
f (v,vX ,vXX , ...vkX ) dX , (3.1.7)

whose density depends on derivatives of the coordinates v with respect to X of order up

to k < ∞. The ‘Euler-Lagrange’ or ‘variational’ derivative is defined on functionals of this

form by

δF =

∫

S1

δF

δvσ δvσ (X) dX

where
δF

δvσ =
∂ f
∂vσ −∂X

(
∂ f
∂vX

)
+ ...+(−1)k∂ k

X

(
∂ f

∂vkX

)
.

Definition 14. A Poisson bracket on the space of functionals on the loop space L(M ) is

a bilinear pairing satisfying, for any three functionals H ,F , and G of the form (3.1.7)
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1. Anti-symmetry,

{F ,G }=−{G ,F},

2. The Jacobi identity,

{{F ,G },H }+{{H ,F},G }+{{G ,H },F} = 0,

3. The Leibniz rule,

{F ,G H }= G {F ,H }+H {F ,G }.

There is an obvious grading on the space of functionals that counts the number of

X−derivatives. This can be made explicit by re-scaling the spatial variable, X 7→ εX ,

for |ε | small. This induces a mapping on the operator ∂X :

X 7→ εX , ∂X 7→ ε∂X ,

and so powers of ε ‘count’ X -derivatives. A Poisson bracket of order κ on the space of

functionals is given by

{F ,H }=

∫

S1

δF

δvσ

k1

∑
k=0

Aσν
k (v,vX , ...,vk2X)∂ k

X

(
δH

δvν

)
dX ,

where κ = max{k1 + k2 : k = 0, ...,k1}. The conditions that this defines a Poisson bracket

then place very strict constraints on the coefficients Aσν
k (v,vX , ...,vk2X).

Example 25 (κ = 0). Let us study Poisson brackets on our loop space of order zero,

{F ,H }=

∫

S1

δF

δvσ

k1

∑
k=0

Aσν(v)
δH

δvν dX .

Such Poisson brackets are generated by Poisson brackets on C∞(M ). For example, if the

underlying target manifold M admits a symplectic form ω ∈∧2(M ), the assignment

Aσν = ωσν

defines a Poisson bracket over the space of functionals. In the case where our functional

densities depend only on the coordinate fields and not their derivatives,

F =

∫

S1
f (u) dX ,

we generate Hamilton’s equations of motion,

d f = ιv̇ω .
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What happens when κ ≥ 1?

3.1.4 Poisson Brackets of Hydrodynamic Type

Let us consider Poisson brackets that are homogeneous of degree one. These take the

form

{H ,F}=

∫

S1

∂h
∂vα

(
gαβ ∂X + bαβ

κ vκ
,X

) ∂ f

∂vβ dX , (3.1.8)

for any two functionals

H =
∫

S1
h(u)dX , F =

∫

S1
f (u)dX , (3.1.9)

whose densities are functions of the coordinates { vα : α = 1, ...,N } and not their X -

derivatives. We will call Poisson brackets (functionals) of this form hydrodynamic type

Poisson brackets (functionals). This is because the Hamiltonian system they generate

takes the form of a hydrodynamic type PDE:

∂T vα = {uα(X),H }=

(
gαβ ∂ 2h

∂vβ ∂vσ + bαβ
σ

∂h

∂vβ

)
∂X vσ (3.1.10)

Recall that in order for the bi-linear pairing (3.1.8) to define a Poisson bracket it must

satisfy, in particular, the Jacobi identity:

{{H ,F},K }+{{K ,H },F}+{{F ,K },H }= 0.

Dubrovin and Novikov [21] found the following differential-geometric interpretation of

this constraint: if the matrix gαβ is non-degenerate, the bracket (3.1.8) satisfies the Jacobi

identity iff

• gαβ define the inverse of a flat metric;

• bαβ
γ =−gασ Γβ

σκ , where Γβ
σκ are the components of the Levi-Civita connection for the

flat metric g.

Although the result is very elegant, the proof is technical and will be omitted. The reader

is referred to their orginal paper [21], or the lectures of Hitchin for a slightly more

intrinsic approach [35]. Hence by choosing a system of flat coordinates for the metric g,

the Christoffel symbols vanish and we are left with

{H ,F}=

∫

S1

∂h
∂vα gαβ ∂X

(
∂ f

∂vβ

)
dX . (3.1.11)

In this coordinate system skew-symmetry of the bracket and the Leibniz rule are more

or less immediate from integration by parts. This flat coordinate system is the set of

Darboux coordinates for Poisson brackets of hydrodynamic type. For example, the first

Hamiltonian structure of the KdV equation was of this type.
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Note that the flat coordinates { vσ : σ = 1, ...,N } of the metric g,

vσ (X) =
∫

S1
vσ (Y )δ (X −Y) dY

span the centre of the bracket (3.1.8).

Example 26 (The KdV Hierarchy). As was noted above, the KdV equation itself may

be written as a conservation law. Let us see how the KdV equation fits into an infinite

hierarchy of PDEs. For this example, we take the target manifold M = R. The Gardner-

Zakharov-Faddeev (GZF) bracket is defined by

{F ,H }GZF =
∫

S1

δF

δu
∂X

(
δH

δu

)
dX .

Then the conservation law (3.1.4) may be written in Hamiltonian form

KdV1 : ∂T 1u = {u,H2}GZF = ∂X

(
δH2

δu

)
.

The KdV hierarchy is given by

KdVn : ∂T nu = {u,Hn+1}GZF, n≥ 0.

The flows of the hierarchy commute,

∂T n∂T mu = ∂T m∂T nu,

due to the Jacobi identity and the fact that {Hn,Hm} = 0, ∀n,m ≥ 0. The KdV hierarchy

is also Hamiltonian with respect to a second Poisson bracket (though this one is not of

Hydrodynamic type) called the Lenard-Magri (LM) bracket,

{F ,H }LM =
∫

S1

δF

δu

(
∂ 3

X +4u∂X +2uX
)(δH

δu

)
dX ,

but with a shift in the indices appearing,

KdVn : ∂T n u = {u,Hn}LM.

For example, the KdV equation is given by

KdV1 : ∂T 1u = {u,H1}LM = {u,
1
2

u2}LM =
(
∂ 3

X +4u∂X +2uX
)

u

The Hamiltonian representation of an integrable hierarchy of PDEs, such as the KdV

hierarchy also consists of an infinite family of commuting functionals. How can one
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characterise hydrodynamic-type functionals that Poisson commute?

Lemma 8. [64, 35] Let H and F define hydrodrynamic-type functionals as in (3.1.9).

Then

{H ,F} = 0 ⇔ g−1(∇αdh,∇β d f ) = g−1(∇β dh,∇α d f ), (3.1.12)

where ∇ denotes the covariant derivative for the metric g.

Proof. In light of the differential-geometric characterisation of the Jacobi identity given

by Dubrovin and Novikov, we can give a coordinate-free re-interpretation of the definition

(3.1.8),

{H ,F} =

∫

S1
g−1 (dh,∇X d f ) dX , (3.1.13)

where ∇X := ∂vα

∂X ∇α . Therefore,

{H ,F} = 0⇔
∫

S1

∂vσ

∂X
g−1(dh,∇σ d f )dX = 0 =:

∫

S1
v∗θ .

Because exterior differentiation commutes with the pull-back map, the one-form v∗θ :=
∂vσ

∂X g−1 (dh,∇σ d f )dX ∈ Γ(T ∗S1,S1) integrates to zero on each loop (locally, or for M simply

connected) iff dθ = 0, or in the flat coordinates of the metric g iff

∇α g−1(dh,∇β d f ) = ∇β g−1(dh,∇α d f ).

Because ∇ is the Levi-Civita connection for g, we also have ∇g−1 = 0. Further we know

that in order for the bracket (3.1.13) to satisfy the Jacobi identity ∇ is flat, i.e. [∇α ,∇β ] = 0.

Therefore

∇αg−1(dh,∇β d f ) = g−1(∇α dh,∇β d f )+ g−1(dh,∇α ∇β d f )

= g−1(∇α dh,∇β d f )+ g−1(dh,∇β ∇αd f )

= ∇β g−1(dh,∇α d f )

⇔ g−1(∇α dh,∇β d f ) = g−1(∇β dh,∇α d f ).

3.1.5 Bi-Hamiltonian Structures and Flat Pencils of Metrics

The theorem of Dubrovin and Novikov gives a way to construct Poisson structures from

flat metrics. On a Frobenius manifold, we have not one but two flat metrics which, as we

saw in Chapter 1 combine to form a flat pencil: g−λη is again a flat metric for all values

of λ . What is the interpretation of this stronger statement in the context of Hamiltonian

systems? The answer is that it is a bi-Hamiltonian system.



3.2. The Principal Hierarchy 86

As we have seen, the KdV equation is Hamiltonian with respect to two different Pois-

son brackets,

KdVn : ∂T nu = {u,Hn+1}GZF = {u,Hn+1}LM

It was first noted by Magri [?] that these Poisson structures have the remarkable property

that the linear combination

{ · , · }LM−λ{ · , · }GZF

is again a Poisson bracket for any value of λ . This was one of the main motivating

examples for the

Definition 15. A bi-Hamiltonian structure on a manifold M is a 2-dimensional linear

subspace in the space of Poisson structure on M .

Although the notion of a bi-Hamiltonain structure makes the connection with Frobe-

nius manifolds more rigid, the main question we will be concerned with answering in this

thesis will be how a certain symmetry present at the level of Frobenius manifolds lifts to

the hydrodynamic flows (3.1.10). Therefore it will suffice for our purposes to study just

one of the Hamiltonian structures.

3.2 The Principal Hierarchy

3.2.1 Families of Commuting Functionals on Frobenius Manifolds

The Hamiltonian representation of the KdV hierarchy comprised a Poisson structure,

together with an infinite family of conservation laws. On a Frobenius manifold we have

not just one, but two candidates for the Poisson structure, but what about the infinite

family of commuting functionals?

Lemma 9. Let (M ,◦,e,E,η) be a Frobenius manifold. Let { hα(t;z) : α = 1, ...,N} be a

fundamental system of solutions to the system (1.3.4), and consider the power series

expansion

hα(t;λ ) = ∑
n≥0

λ nhn,α (t).

Then the functionals

Hn,α =

∫

S1
hn,α (t)dX (3.2.1)

satisfy

{Hn,α ,Hm,β}= 0, for α ,β = 1, ...,N, and n,m ≥ 0, (3.2.2)

where

{Hn,α ,Hm,β}=

∫

S1
η−1(dhn,α (t),∇X dhm,β (t)

)
dX .
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Proof. Owing to Lemma 8, we are to show that

η−1(∇σ dhn,α (t),∇κ dhm,β (t)
)

= η−1(∇κdhn,α(t),∇σ dhm,β (t)
)
.

In the flat coordinates { tσ : σ = 1, ...,N } of the metric η , this reads

η µν

(
∂ 2hn,α

∂ tσ ∂ tµ
∂ 2hm,β

∂ tκ∂ tν −
∂ 2hn,α

∂ tσ ∂ tν
∂ 2hm,β

∂ tκ ∂ tµ

)
= 0.

Using the recursion relation (1.3.8), this becomes

λη µν (cρ
σ µcε

κν − cρ
σνcε

κµ
) ∂hn−1,α

∂ tρ
∂hm−1,β

∂ tε = 0, (3.2.3)

which is exactly the associativity property of the Frobenius algebras, or WDVV equations.

To summarise, given a Frobenius manifold we have both an infinite family of commuting

functionals and a bi-Hamiltonian structure given by our pencil of flat metrics. From

the point of view of our discussion above, we have all the ingredients of a integrable

hierarchy of partial differential equations.

3.2.2 The Principal Hierarchy

Definition 16. The principal hierarchy of a Frobenius manifold (M ,◦,e,E,η) is defined

by
∂ tσ

∂T n,α = {tσ ,Hn,α} , (3.2.4)

where

{Hn,α ,Hm,β}=

∫

S1
η−1(dhn,α (t),∇X dhm,β (t)

)
dX . (3.2.5)

Note that the flows of the hierarchy commute,

∂ 2tσ

∂T n,α ∂T m,β =
∂ 2tσ

∂T m,β ∂T n,α

due to the involutivity of the functionals and the Jacobi identity. To gain a more explicit

formula for the flows of this hierarchy, note that the coordinate fields may be expressed

as functionals using a Dirac-delta function,

tσ (X) =

∫

S1
tσ (Y )δ (X −Y )dY.
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Hence,

∂ tσ

∂T n,α =

∫

S1
δ σ

κ δ (X −Y )ηκµ∂Y

(
∂hn,α (t)

∂ tµ

)
dY,

= ησ µ∂X

(
∂hn,α (t)

∂ tµ

)
,

= ησ µ ∂ 2hn,α(t)
∂ tµ∂ tν tν

X ,

= ησ µcκ
µν

∂hn,α (t)
∂ tκ tν

X .

This makes it clear how the properties of the principal hierarchy, such as commutativity

of the flows, depend on the algebraic structure present on the tangent spaces TtM . If

you like, this is another manifestation of equation (3.2.3) present in the proof of Lemma

9.

Example 27 (Frobenius manifold for the KdV hierarchy). If we re-scale both the space

and time variables, X → εX , T → εT , |ε |<< 1, the KdV equation becomes

uT = 6uuX + ε2uXXX ,

which is known as the small dispersion expansion of the KdV equation. Taking the limit

ε → 0, we obtain the dispersionless, or quasi-classical limit of the KdV equation,

uT = 6uuX , (3.2.6)

known as the Burger’s-Hopf equation. This is the simplest example of a nonlinear wave

equation. In this limit, the behaviour of solutions changes dramatically: soliton solutions

like (3.1.2) no longer exists, with solutions to (3.2.6) becoming multi-valued in finite

time. It is the balance of the nonlinear uuX term with the dispersion uXXX term in the KdV

equation that allow the existence of soliton solutions.

Having said this, the Jacobi identity for the Poisson brackets { , }GZF, { , }LM and

involutivity of the conservation laws are satisfied identically in ε . Hence the Burger’s-

Hopf equation (3.2.6) is bi-Hamiltonian, with respect to the Poisson brackets

{F ,H }1 = {F ,H }GZF

{F ,H }2 = lim
ε→0

∫

S1

δF

δu

(
ε2∂ 3

X +4u∂X +2uX
)(δG

δu

)
dX ” = ” lim

ε→0
{ · , · }LM,

and it admits infinitely many conserved quantities,

Ĥn(u) := lim
ε→0

Hn(u,εuX ,ε2uXX , ...), n≥ 0.
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Recall that for the trivial Frobenius manifold,

F =
1
6

t3, E = t
∂
∂ t

,

the deformed flat coordinate was

h(t;λ ) = ∑
n≥0

λ n tn+1

(n+1)!
,

which leads to the infinite family of functionals

Hn =
1

(n+1)!

∫

S1
tn+1 dX , n≥ 0.

The first Hamiltonian structure for this manifold is given by

{Hn,Hm}=

∫

S1
dhn(t)∂X dhm(t)dX ,

which leads to the flows

{t,Hn}=
1
n!

tntX , n≥ 0,

which we recognise as the (slightly re-scaled) dispersionless limit of the KdV hierarchy.

For example, for n = 1 recover Burger’s equation (3.2.6). The intersection form is given

by g = t, and so the second Hamiltonian structure is given by

{Hn,Hm}2 =
∫

S1
dhn(t)

(
t∂X +

1
2

tX

)
dhm(t) dX .

This second Hamiltonian structure is the dispersionless limit of the Lenard-Magri bracket.

It may be shown (see, for example [16], [17]), that the principal hierarchy possesses a

tau-structure: Let { vσ (X ,T ) : σ = 1, ...,N } be a solution of the principal hierarchy. Then

all the Hamiltonian densities are given by

hn,α (v) =
∂ 2 logτ(T )

∂X∂T n,α , α = 1, ...,N, n≥ 0. (3.2.7)

It was proved by Dubrovin in [17] that on the small phase space M := {T α ,p = 0, for p≥
0; T α ,0≡ tα}, the logarithm of the tau-function coincides with the genus zero pre-potential

of the Frobenius manifold,

logτ |M = F(v). (3.2.8)

In particular, for n = 0, the solution itself is given by (we identify the time T 0,1 = X with

the spatial variable)

vσ =
∂ 2 logτ

∂X∂T 0,σ .
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This structure is important to an approach given by Dubrovin & Zhang [23] to re-constructing

a fully dispersive hierarchy, like the KdV hierarchy, from its dispersionless limit. In some

cases, all the information required to re-construct the full hierarchy is contained in the

dispersionless limit, with this re-construction being performed by a so-calledMuira map,

which takes the form

vσ 7→ ∑
k≥0

Fσ
k (v;vX , ...,vkX ), for σ = 1, ...,N.

One should keep in mind here moving from the genus zero to the full Gromov-Witten

potential of a symplectic manifold. From the point of view of the Hamiltonian represen-

tations considered here, such a reconstruction is possible when the Poisson cohomology

of the hierarchy vanishes, which is true for any Frobenius manifold [24].
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4.1 The Inversion Symmetry in Canonical Coordinates

A natural question has been raised. Suppose one has two Frobenius manifolds linked by

the inversion symmetry, or indeed a modular Frobenius manifold. How does this symme-

try lift to the principal hierarchy of the Frobenius manifolds? The answer to this question

will come in two steps. Firstly, we must understand how the Hamiltonians of the princi-

pal hierarchy are transformed. Recall that these were the successive approximations to

the deformed flat coordinates of the Frobenius manifold. Secondly, we must understand

the action on the Poisson structure used to define the Hamiltonian vector fields on the

loop space of the manifold. A key technical observation will be that in the canonical

coordinates the inversion symmetry acts as a conformal transformation of the metric.

Let us begin by collecting some technical results. Throughout this chapter and the

next, t1 := η1αtα = tN is the Egoroff potential for the metric η .

Proposition 13. Under the inversion symmetry, the canonical coordinates are fixed,

ui = ûi, for i = 1, ...,N.

Proof. We begin by observing that the inversion symmetry acts as a conformal transfor-

mation of both metrics. This follows from the transformation properties of the structure

functions (1.5.5):

cαβγ = t̂−2
1

∂ t̂σ

∂ tα
∂ t̂κ

∂ tβ
∂ t̂λ

∂ tγ ĉσκλ ⇒ ηαβ = t̂−2
1

∂ t̂σ

∂ tα
∂ t̂κ

∂ tβ η̂σκ ⇒ ηαβ = t̂2
1

∂ tα

∂ t̂σ
∂ tβ

∂ t̂κ η̂σκ .

From this it follows that

cαβ
γ = t̂2

1
∂ t̂α

∂ tσ
∂ t̂β

∂ tκ
∂ tν

∂ t̂γ ĉσκ
ν ⇒ gαβ = t̂2

1
∂ tα

∂ t̂σ
∂ tβ

∂ t̂κ ĝσκ .

Recall (1.4.18) that the canonical coordinates may be defined as the roots of the charac-

teristic equation

det
(

gαβ (t)−uηαβ
)

= 0.

It follows from the transformation properties of the contravariant metrics that the roots

of this equation are invariant under the inversion symmetry. Hence the canonical coor-

dinates are invariant, up to re-ordering.

Proposition 14. In the canonical coordinate system, the inversion symmetry acts as a

conformal transformation of the metric η .

Proof. Recall that in the canonical coordinate system the metric is Egoroff, with potential
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t1(u):

η =
N

∑
i=1

∂it1(u)dui⊗dui.

The inversion symmetry acts as a Möbius transformaion of the Egoroff potential:

t1 7→ t̂1 =− 1
t1
⇒ η̂ii =

1

t2
1

ηii.

Example 28. Recall for the Frobenius manifold defined by the prepotential and Euler

field

F =
1
2
(t1)2t3 +

1
2

t1(t2)2− (t2)4

16
γ(t3); E = t1 ∂

∂ t1 +
1
2

t2 ∂
∂ t2 ,

the canonical coordinates were given by

ui = t1 +
1
2
(t2)2ωi(t

3), for i = 1,2,3,

where { ω1,ω2,ω3 } satisfy the Halphen system (2.3.3). Solutions to the Halphen system

have the modularity properties [43]

ωi

(
−1

τ

)
= τ2ωi(τ)− τ , ωi(τ +1) = ωi(τ), for i = 1,2,3.

Using this fact, we have

ui
(
t(t̂)
)

= t̂1 +
(t̂2)2

2t̂3 +
1
2

(
− t̂2

t̂3

)2

ωi

(
− 1

t̂3

)
= t̂1 +

1
2
(t̂2)2ωi(t̂

3) = ui(t̂).

The rotation coefficients may be re-cast in terms of the Egoroff potential:

βi j(u) =
∂ j
√

ηii(u)√
η j j(u)

=
1
2

∂i∂ jt1√
∂it1∂ jt1

,

where we have dropped the explicit dependence t1 = t1(u). The inversion symmetry acts

by a shift on the rotation coefficients: If β̂i j denote the rotation coefficients of the inverted

Frobenius manifold, then they are related to those of the original manifold by

β̂i j(u) = βi j(u)− 1
t1(u)

√
∂it1∂ jt1.

Using standard formulae of Riemannian geometry (see Section 1.4), one finds the follow-
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ing formulae for the non-zero Christoffel symbols:

Γi
i j = βi j

√
∂ jt1
∂it1

, Γ j
ii =−βi j

√
∂it1
∂ jt1

, for i 6= j,

Γi
ii =−∑

k 6=i

βik

√
∂kt1
∂it1

.

Putting this together with the transformation properties of the rotation coefficients im-

mediately gives the action of the inversion symmetry on the Christoffel symbols:

Γi
i j = Γ̂i

i j−
1
t̂1

∂ jt̂1, i 6= j

Γ j
ii = Γ̂ j

ii +
1
t̂1

∂it̂1, i 6= j, (4.1.1)

Γi
ii = Γ̂i

ii +
1
t̂1

∑
k 6=i

∂kt̂1 = Γ̂i
ii−

1
t̂1

∂it̂1,

where the last inequality follows from the identity e(t1(u)) = ∑N
i=1∂it1(u) = 0.

4.2 Inversion Symmetry and Principal Hierarchies

We aim now to construct an ansatz for how the inversion symmetry acts on the deformed

flat coordinates. Let us take as motivation our canonical example of a modular Frobenius

manifold.

Example 29. Recall that for the Frobenius manifold defined by the data

F =
1
2

t2
1t3 +

1
2

t1t2
2 +

t4
2

16
γ(t3), E = t1

∂
∂ t1

+
1
2

∂
∂ t2

,

where γ(t3) satisfies the Chazy equation,

γ ′′′ = 6γγ ′′−9(γ ′)2,

we have the recursion relation

∂ 2h(n)
σ

∂ tµ∂ tν = cε
µν

∂h(n−1)
σ

∂ tε , for µ ,ν ,σ = 1,2,3, n≥ 0,
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subject to h(0)
σ = tσ . Solving this equation recursively gives the solutions

h1(t;λ ) = t3 + λ
{

t1t3 +
1
2
(t2)2

}

+λ 2
{
− 1

16
t3(t2)4γ ′(t3)− 1

8
(t2)4γ(t3)+

1
2

t1(t2)2 +
1
2
(t1)2t3

}
+O(λ 3),

h2(t;λ ) = t2 + λ
{

t1t2− 1
4
(t2)3γ(t3)

}

+λ 2
{
− 1

20
(t2)5γ ′(t3)+

9
160

(t2)5γ(t3)2− 1
4

t1(t2)3γ(t3)+
1
2
(t1)2t2

}
+O(λ 3),

h3(t;λ ) = t1 + λ
{

1
2
(t1)2− 1

16
(t2)4γ ′(t3)

}

+λ 2
{
− 1

480
(t2)6γ ′′(t3)+

1
80

(t2)6γ(t3)γ ′(t3)− 1
16

t1(t2)4γ ′(t3)+
1
6
(t1)3

}
+O(λ 3).

Let us compute how some of the coefficients transform. For example,

h0,1(t) = t3⇒ h0,1

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=− 1

t̂3
=− 1

t̂3
h−1,3(t̂

1, t̂2, t̂3);

h0,2(t) = t2⇒ h0,2

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=− t̂2

t̂3 =− 1
t̂3

h0,2(t̂
1, t̂2, t̂3);

h0,3(t) = t1⇒ h0,3

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
= t̂1 +

(t̂2)2

2t̂3 =
1
t̂3

h1,1(t̂
1, t̂2, t̂3);

h1,1(t) = t1t3 +
1
2
(t2)2⇒ h1,1

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=

(
t̂1 +

(t̂2)2

2t̂3

)(
− 1

t̂3

)
+

1
2

(
t̂2

t̂3

)2

= − t̂1

t̂3 −
1
2

(
t̂2

t̂3

)2

+
1
2

(
t̂2

t̂3

)2

=− t̂1

t̂3 =− 1
t̂3

h0,3(t̂
1, t̂2, t̂3);

h1,2(t) = t1t2− 1
4
(t2)3γ(t3)⇒ h1,2

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=

(
t̂1 +

(t̂2)2

2t̂3

)(
− t̂2

t̂3

)
+

1
4

(
t̂2

t̂3

)3

γ
(
− 1

t̂3

)

= − t̂1t̂2

t̂3 +
(t̂2)3

4t̂3

{
1

(t̂3)2γ
(
− 1

t̂3

)
− 2

t̂3

}

= − 1
t̂3

(
t̂1t̂2− 1

4
(t̂2)3γ(t̂3)

)
=− 1

t̂3h1,2(t̂
1, t̂2, t̂3);

h1,3(t) =
1
2
(t1)2− 1

16
(t2)4γ ′(t3)⇒ h1,3

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=

1
2

(
t̂1 +

(t̂2)2

2t̂3

)2

− 1
16

(
t̂2

t̂3

)4

γ ′
(
− 1

t̂3

)

=
1
t̂3

(
1
2
(t̂1)2t̂3 +

1
2

t̂1(t̂2)2
)
− (t̂2)4

16

{
1

(t̂3)4 γ ′
(
− 1

t̂3

)
− 2

(t̂3)2

}

=
1
t̂3

(
1
2
(t̂1)2t̂3 +

1
2

t̂1(t̂2)2− 1
16

t̂3(t̂2)4γ ′(t̂3)− 1
8
(t̂2)4γ(t̂3)

)
=

1
t̂3h2,1(t̂

1, t̂2, t̂3).

Note the use of the modularity properties of the solution to Chazy’s differential equation

and its derivative. One can continue to compute explicitly the transformation propoerties
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of higher order approximations, but the calculations rapidly become more involved.

In general, we observe the following pattern:

hn,α (t(t̂)) = hn,α

(
t̂1 +

(t̂2)2

2t̂3 ,− t̂2

t̂3 ,− 1
t̂3

)
=± 1

t̂3hñ,α̃(t̂),

where

ñ =





n+1, if α = 3,

n, if α = 2,

n−1, if α = 1,

α̃ =





1, if α = 3,

α , if α = 2,

3, if α = 1,

±=

{
+, if α = 3,

−, else.

This can be summarised diagramatically:

α = 3 •

∂α ∂β h(n,κ) = cσ
αβ ∂σ h(n−1,κ) -

-
@

@
@

@
@

@
@

@
@R@

@
@

@
@

@
@

@
@I

• -
@

@
@

@
@

@
@

@
@R@

@
@

@
@

@
@

@
@I

•

I I

α = 2 •
	I

- •
	I

- •
	I

α = 1 •
n−1

- •
n

- •
n +1

We take this example as motivation for the more general anstaz that extends to Frobe-

nius manfiolds that do not lie at fixed points of the inversion symmetry (in general it is

not true that hn,α(t̂) = ĥn,α(t̂), as in the above example). The results of the next Proposi-

tion were obtained independently in [41]. Recently a third, and rather different proof,

has appeared in [26].

Proposition 15. The inversion symmetry acts on the deformed flat coordinates of a

semi-simple Frobenius manifold as

hn,α
(
t(t̂)
)

=± 1
t̂3 ĥñ,α̃(t̂), (4.2.1)

where

ñ =





n+1, if α = N,

n, if α 6= 1,N,

n−1, if α = 1,

α̃ =





1, if α = N,

α , if α 6= 1,N,

N, if α = 1,

±=

{
+, if α = N,

−, else.
(4.2.2)
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Proof. Firstly, we need to show that if hn,α (t1, ..., tN) satisfies the recursion relation

∂ 2hn,α

∂ tµ∂ tν = cσ
µν

∂hn−1,α

∂ tσ

then hn,α(t̂1, ..., t̂N) := t̂Nhn,α

(
t̂σ t̂σ

2t̂N ,− t̂2

t̂N , ...,− t̂N−1

t̂N ,− 1
t̂N

)
satisfies the recursion relation

∂ 2hn,α

∂ t̂µ∂ t̂ν = ĉσ
µν

∂hn−1,α

∂ t̂σ . (4.2.3)

Secondly, we must verify the identification of the labels, which will be done using their

homogeneity properties (1.3.9). We begin by noting that in the canonical coordinate

system the recursion relation becomes

∇i∇ jhn,α = δi j∇ jhn−1,α ,

where ∇ denotes the covariant derivative of the Levi-Civita connection for the metric η .
In particular, the first statement we need to prove (4.2.3) reads

∇̂i
∂

∂u j

(
t̂Nhn,α

)
= δi j

∂
∂u j

(
t̂Nhn−1,α

)
. (4.2.4)

To this end, let us compute how the covariant derivatives of two one-forms are related via

the inversion symmetry. This is a direct calculation using the transformation properties of

the Christoffel symbols derived above. Let φ = ∑i φidui ∈ Γ(T ∗M,M). Because of the index

dependence of the transformation properties of the Christoffel symbols we decompose

the computation. Suppose i 6= j. Then

∇ jφi = ∂ jφi−
N

∑
s=1

Γs
jiφs = ∂ jφi−Γ j

jiφ j−Γi
jiφi

= ∂ jφi−
(

Γ̂ j
ji−∂i logt̂1

)
φ j−

(
Γ̂i

ji−∂ j logt̂1
)

φi

= ∇̂ jφi +(∂i log t̂1)φ j +(∂ j log t̂1)φi. (4.2.5)

If i = j, we have

∇iφi = ∂iφi−
N

∑
s=1

Γs
iiφs = ∂iφi−Γi

iiφi = ∑
s 6=i

Γs
iiφs

= ∂iφi−
(
Γ̂i

ii−∂i log t̂1
)

φi−∑
s 6=i

(
Γ̂s

ii + ∂i logt̂1
)

φs

= ∇̂iφi +(∂i logt̂1)φi− (∂i logt̂1)∑
s 6=i

φs. (4.2.6)
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Consider the left hand side of (4.2.4). If i 6= j, we have

∇̂i∂ j(t̂1hn,α) = ∇̂i (η̂ j jhn,α + t̂1∂ jhn,α )

= η̂ j j∂ihn,α + ∂it̂1∂ jhn,α + t̂1∇̂i∂ jhn,α as ∇̂η̂ = 0,

=
1

t̂2
1

η j j∂ihn,α +
1

t̂2
1

ηii∂ jhn,α −
1
t1

{
∇i∂ jhn,α +

1
t1

ηii∂ jhn,α +
1
t1

η j j∂ihn,α

}

= − 1
t1

∇i∂ jhn,α = 0, if i 6= j,

because the hn,α satisfy the recursion relation of the uninverted manifold. If, on the other

hand i = j, the left hand side of (4.2.4) reads

∇̂i∂i(t̂1hn,α) = ∇̂i (∂it̂1hn,α + t̂1∂ihn,α )

= 2∂it̂1∂ihn,α + t̂1∇̂i∂ihn,α

= 2∂it̂1∂ihn,α + t̂1

{
∇i∂ihn,α + ∂i logt1∂ihn,α −∂i logt1∑

s 6=i

∂shn,α

}

=
∂it1
t2
1

∂ihn,α + t̂1∇i(∂ihn,α)+
1

t2
1

∂it1 (hn−1,α −∂ihn,α )

= t̂1∇i (∂ihnα)+ (∂it̂1)hn−1,α ,

which is equal to the right hand side of the equation (4.2.4) in the case where i = j. Note

that we have made use of the simplified recursion,

e(hn,α ) = hn−1,α ⇒ ∑
s 6=i

∂shnα = hn−1,α −∂ihn,α .

In conclusion, the functions 1
t̂1

hn,α

(
t̂σ t̂σ

2t̂N ,− t̂2

t̂N , ...,− t̂N−1

t̂N ,− 1
t̂N

)
satisfy the recursion relations

of the inverted manifold.

To identify the labels (4.2.2), we are to show

LE

{
hn,α

(
t̂σ t̂σ

2t̂N
,− t̂2

t̂N
, ...,− t̂N−1

t̂N
,− 1

t̂N

)}
= LÊ

{
1
t̂1

ĥñ,α̃

}
. (4.2.7)

This follows from how the spectrum of the Frobenius manifold is mapped under the

inversion symmetry. By definition of the inversion symmetry, we have

µ̂1 = 1−µN , µi = µ̂i, for i 6= 1,N, µ̂N = µ1 +1, d̂ = 2−d.

From this one can compute the matrices (Rr)
µ
ν in terms of (R̂r)

µ
ν . Recall that these matri-
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ces were defined by (1.3.9) on page 15. For example, let α = i 6= 1,N. We have

LE(hn,i) = (dN−i+1 + n)hn,i +
n

∑
r=1

(Rr)
σ
i hn−r,σ

= (d̂N−i+1− d̂N + n)hn,i +
n

∑
r=1

(Rr)
N
i hn−r,N +

n

∑
r=1

(Rr)
1
i hn−r,1 +

n

∑
r=1

(Rr)
j
i hn−r, j,

= (d̂N−i+1− d̂N + n)hn,i +
n

∑
r=1

(R̂r−1)
1
i hn−r,N +

n

∑
r=1

(R̂r+1)
N
i hn−r,1 +

n

∑
r=1

(R̂r)
j
i hn−r, j,

= (d̂N−i+1− d̂N + n)hn,i +
n

∑
r=1

(R̂r)
1
i hn−r+1,N +

n

∑
r=1

(R̂r)
N
i hn−r−1,1+

n

∑
r=1

(R̂r)
j
i hn−r, j.

On the other hand, (recall that we claim ñ = n, if α = i 6= 1,N)

LÊ

(
1
t̂1

ĥn,i

)
= (d̂N−i+1 + n− d̂N)

1
t̂1

ĥn,i +
1
t̂1

n

∑
r=1

(R̂r)
σ
i ĥn−r,σ

= (d̂N−i+1− d̂N + n)
1
t̂1

ĥn,i +
1
t̂1

n

∑
r=1

(R̂r)
N
i ĥn−r,N +

1
t̂1

n

∑
r=1

(R̂r)
1
i ĥn−r,1 +

1
t̂1

n

∑
r=1

(R̂r)
j
i ĥn−r, j.

Note then that our ansatz then satisfies the equality (4.2.7). Analogous calculations are

possible for α = 1 and α = N and will be omitted.

Finally the identification of the signs is straightforwad: If hk,α
(
t(t̂)
)

= ± 1
t̂1

ĥk̃,α̃(t̂), then

hk+1,α
(
t(t̂)
)
=± 1

t̂1
ĥk̃+1,α̃(t̂), i.e. the recursion (1.3.8) respects signs. Thus the signs filter up

from those present at the level of the Casimirs, which are as stated in the proposition.

One is now naturally led to consider how this action lifts to the flows. As with Propo-

sition 15, this result was also obtained independently by Zhang, et. al. [41].

Proposition 16. The inversion symmetry acts on the principal hierarchy of a semi-simple

Frobenius manifold by
∂

∂T n,α =±t̂1
∂

∂ T̂ ñ,α̃ ∓ ĥñ−1,α̃
∂

∂X
(4.2.8)

where the definitions of ñ, α̃, and ± are as above.

Proof. Most of the hard work has been done in the previous proposition. Recall that the

principal hierarchy in flat coordinates takes the form

∂ tσ

∂T n,α = ησεcλ
εν

∂hn−1,α

∂ tλ
∂ tν

∂X
.

Then it follows that in the canonical coordinates it takes the form

∂ur

∂T n,α = η rr ∂hn−1,α

∂ur

∂ur

∂X
(no sum).



4.2. Inversion Symmetry and Principal Hierarchies 100

Hence

∂ur

∂T n,α = t̂2
1η̂ rr ∂

∂ur

(
± 1

t̂1
ĥñ−1,α̃

)
∂ur

∂X
,

= t̂2
1

(
± 1

t̂1
η̂ rr ∂ ĥñ−1,α̃

∂ur
∓ 1

t̂2
1

η̂ rrη̂rrĥñ−1,α̃

)
, (as η̂rr = ∂r t̂1)

= ±t̂1
∂ur

∂ T̂ ñ,α̃ ∓ ĥñ−1,α̃
∂ur

∂X
.

The canonical coordinates have a natural interpretation in the context of hydrody-

namic systems: they are a specific example of a system of Riemann invariants for the

principal hierarchy. Transformations of this form between equations of hydrodynamic

type are known as reciprocal transformations. They were originally introduced by Rogers

[52]. Ferapontov and Pavlov [27] studied how they act on the Hamiltonian operators of

hydrodynamic type.

Theorem 6. The group SL(2,C) acts on the principal hierarchy of a modular Frobenius

manifold by

∂
∂T α ,p =±(ctN + d)

∂
∂T α̃,p̃ ∓hα̃,p̃−1

∂
∂X

, for

(
a b

c d

)
∈ SL(2,C),

where ± and (ñ, α̃) are as above.

Proof. Owing to Proposition 4, one can identify objects with and without hats on a mod-

ular Frobenius manifold. Combining this with the results of the above Proposition 16 we

have, in particular,
∂

∂T α ,p =
∂

∂ T̂ α ,p
.

Let us now turn our attention to a couple of examples. The first will be of two dis-

tinct two dimensional Frobenius manifolds in dimension two, linked under the inversion

symmetry. The second will be of the three dimensional modular Frobenius manifold pre-

sented above.
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4.2.1 Dispersionless Limits of the David Benney and Harry Dym Hierar-

chies

The dispersionless limit of the Benney hierarchy may be defined by the dispersionless

Lax equations
∂L
∂Tn

= { Ln
≥1 , L }

for the Laurent series

L = p+ v1(x)+ v2(x)p−1,

and the canonical Poisson bracket on R2:

{ · , · }=
∂
∂x
∧ ∂

∂ p
.

The subscript ≥ 1 denotes the projection onto part of the Laurent series containing

strictly positive powers of p. The time T 1 is identified with the spatial variable X . Com-

puting the first couple of flows of the hierarchy, one finds

∂
∂T 2

(
v1

v2

)
=

∂
∂X

(
(v1)2 +2v2

2v1v2

)

∂
∂T 3

(
v1

v2

)
=

∂
∂X

(
6v1v2 +6(v1)2

3(v1)2v2 +3(v2)2

)

The T 2 flow is called the Benney equation after David Benney. It can be used to model

the propagation of water waves.

The hierarchy also admits a Bi-Hamiltonan respresentation,

∂vσ

∂T n,α = Pσε
1

∂hn+1,α

∂vε = Pσε
2

∂hn,α

∂vε , α ,σ = 1,2;

where

P1 =

(
0 ∂X

∂X 0

)
; P2 =

(
2∂X v1

X

v1∂X v2∂X + v2
X

)
,

and the Hamiltonian densities have the form [65]

hn,2 =
1
n!

[
Coeffp−1 (Ln)

]
, (4.2.9)

hn,1 =
2
n!

[
Coeffp−1 (Ln(logL−Hn))

]
, (4.2.10)

where as in Chapter 1, Hn denotes the nth harmonic number. In the above flows, T n :=

T n,2. This is exactly the Bi-Hamiltonian structure generated by the pencil of flat metrics
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corresponding to the two dimensional Frobenius manifold

F =
1
2

t2
1t2 + t2

2 logt2; E = t1
∂

∂ t1 −2t2
∂

∂ t2
.

Indeed,

Pαβ
1 = ηαβ ∂X ; Pαβ

2 = gαβ (t)∂X + Γαβ
γ tγ

X .

Further, expanding the expressions for the Hamiltonians given by the Lax representation

(4.2.9) (4.2.10), we have

h0,2 = v1, h0,1 = v2,

h1,2 = 1
2(v1)2 + v2(logv2−1) h1,1 = v1v2,

h2,2 = 1
6(v1)3 + v1v2(logv2−1), h2,1 = 1

2(v1)2v2 + 1
2(v2)2,

h3,2 = 1
24(v

1)3 + 1
2(v1)2v2(logv2−1)+ 1

2(v2)2(logv2− 5
2), h3,1 = 1

6(v1)3v2 + 1
2v1(v2)2,

(4.2.11)

which coincide with the coefficients in the expansions of the deformed flat coordinates

(1.3.15), (1.3.16) for this Frobenius manifold.

In Example 14 we computed that the inversion symmetry mapped this Frobenius

manifold to another two dimensional Frobenius manifold described by the free energy

and Euler field

F̂ =
1
2

t̂2
1t2− logt̂2; Ê = t̂1

∂
∂ t1
−2t̂2

∂
∂ t̂2

.

We list here some of the coefficients appearing in the expansions of the deformed flat

coordinates for this manifold,

ĥ0,2 = t̂1, ĥ0,1 = t̂2,

ĥ1,2 = 1
2 t̂2

1− 1
2t̂2 ĥ1,1 = t̂1t̂2,

ĥ2,2 = 1
6(t̂1)3− t̂1

2t̂2 , ĥ2,1 = 1
2(t̂1)2t̂2 + logt̂2,

ĥ3,2 = 1
24(t̂

1)4− 4(t̂1)4

t̂2 + 1
12t̂2 , ĥ3,1 = 1

6(t̂1)3t̂2 + t̂1(logt̂2 +1),

ĥ4,2 = 1
120(t̂

1)5− (t̂1)3

12t̂2 + t̂1

12(t̂2)2 , ĥ4,1 = 1
24(t̂

1)4t̂2 + 1
2(t̂1)2(logt̂2 +1)− 1

2t̂2

(
logt̂2 + 5

2

)
.

(4.2.12)

The principal hierarchy of this Frobenius manifold is linked to the dispersionless limit of

the Dym hierarchy [65], after Harry Dym. The pencil of metrics for this manifold gives

rise to the compatible pair of Hamiltonian operators

P1 =

(
0 ∂X

∂X 0

)
; P2 =

(
2

(t̂2)2 ∂X − 2
(t̂2)3 t̂2

X t̂1∂X − t̂1
X

t̂1∂X +2t̂1
X −2t̂2∂X − t̂2

X

)
,

which together with the functions ĥn,α can be used to generate the principal hierarchy.
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For example, the T̂ 1,2-flow reads

∂
∂ T̂ 1,2

(
t̂1

t̂2

)
=

∂
∂X

(
1

2(t̂2)2

t̂1

)
. (4.2.13)

Comparing the lists (4.2.11) and (4.2.12), we observe Proposition 15 for this example,

for n≤ 4:

hn,2

(
t̂1,− 1

t̂2

)
=

1
t̂2 ĥn+1,1

(
t̂1, t̂2) , hn,1

(
t̂1,− 1

t̂2

)
=− 1

t̂2 ĥn−1,2
(
t̂1, t̂2) , for n = 1,2,3,4.

Taking the Benney equation, (recall that T 2 = T 2,1, i.e. is generated by the Hamiltonian

H2,1 =

∫

S1

(
1
2
(v1)2v2 +

1
2
(v2)2

)
dX

with respect to the operator P1), and applying the inversion symmetry, we have

∂
∂T 2,1

(
t̂1

− 1
t̂2

)
=

∂
∂X

(
1
2(t̂1)2− 1

t̂2

− t̂1

t̂2

)

⇒ ∂
∂T 2,1

(
t̂1

t̂2

)
=

(
t̂1t̂1

X +
t̂2
X

(t̂2)2

−t̂1
X t̂2 + t̂1t̂2

X

)
=−t̂2 ∂

∂X

(
1

2(t̂2)2

t̂1

)
+ t̂1 ∂

∂X

(
t̂1

t̂2

)

=

(
−t̂2 ∂

∂ T̂ 1,2
+ ĥ0,2

∂
∂X

)(
t̂1

t̂2

)
.

This is an example of Proposition 16. In this case the inversion symmetry lifts to a

reciprocal transformations between the dispersionless Dym and Benney hierarchies. Of

course, one can complete the calculations and verify the results of the proposition for

any flow of the principal hierarchies.

4.2.2 A Modular Integrable System

Consider the Frobenius manifold defined by the free energy

F =
1
2

t2
1t3 +

1
2

t1t2
2−

t4
2

16
γ(t3) ; E = t1

∂
∂ t1

+
1
2

t2
∂

∂ t2
, (4.2.14)

where γ is some unknown 1-periodic function. For the duration of this example all coor-

dinates will be written with lowered indices (tα = tα). In order for F to satisfy WDVV, γ
must satisfy Chazy’s equation,

γ ′′′(t3) = 6γ(t3)γ ′′(t3)−9(γ ′(t3))2.
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We saw in Chapter 2 that this solution to WDVV defined a modular Frobenius manfiold.

Recall the diagram depicting how the densities are mapped under the inversion sym-

metry, outlined in in the motivating Example 29 at the beginning of this chapter. Let us

compute how this symmetry lifts to the flows.

The flow corresponding the the density h(0,2) is

∂
∂T 1,2




t1
t2
t3


=




0 −3
4 t4

2γ ′(t3) −3
4t3

2γ ′′(t3)
1 −3

2γ(t3)t2 −3
4t2

2γ ′(t3)
0 1 0




∂
∂X




t1
t2
t3


 ,

Inverting this one finds

∂
∂T 1,2




t̂1
t̂2
t̂3


 =




t̂2 3
4 t̂2

2 t̂3γ ′(t̂3) 1
4 t̂3

2 t̂3γ ′′(t̂3)
−t̂3 t̂2 + 3

2γ(t̂3)t̂2t̂3 3
4 t̂2

2 t̂3γ ′(t̂3)
0 −t̂3 t̂2




∂
∂X




t̂1
t̂2
t̂3




=


−t̂3




0 −3
4 t̂4

2γ ′(t̂3) −3
4 t̂3

2γ ′′(t̂3)
1 −3

2γ(t̂3)t̂2 −3
4 t̂2

2γ ′(t̂3)
0 1 0


+ t̂21




∂
∂X




t̂1
t̂2
t̂3




=
(
−t̂3M̂1,2(t̂)+ h(0,2)(t̂)1

) ∂
∂X




t̂1
t̂2
t̂3


 ,

as predicted by (4.2.8).

Similarly, one can see how the flows corresponding to α = 1 and α = 3 are related.

The flow corresponding to h(1,1) is

∂
∂T 2,1




t1
t2
t3


=




t1 −3
4t3

2γ ′(t3)− 1
4t3

2t3γ ′′(t3) −1
4t4

2γ ′′(t3)− 1
16t4

2t3γ ′′′(t3)
t2 t1− 3

2γ(t3)t2
2− 3

4t2
2t3γ(t3) −3

4t3
2γ ′(t3)− 1

4t3
2t3γ ′′(t3)

t3 t2 t1




∂
∂X




t1
t2
t3


 .
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This may be inverted to give

∂
∂T 2,1




t̂1
t̂2
t̂3


 =




t̂1 1
4 t̂3

2 t̂3γ ′′(t̂3) 1
16t̂4

2 t̂3γ ′′′(t̂3)
0 t̂1 + 3

4 t̂2
2 t̂3γ ′(t̂3) 1

4 t̂3
2 t̂3γ ′′(t̂3)

−t̂3 0 t̂1




∂
∂X




t̂1
t̂2
t̂3




=


−t̂3




0 −1
4 t̂3

2 t̂2γ ′′(t̂3) − 1
16t̂4

2γ ′′′(t̂3)
0 −3

4 t̂2
2γ ′(t̂3) −1

4 t̂3
2γ ′′(t̂3)

1 0 0


+ t̂11




∂
∂X




t̂1
t̂2
t̂3




= (−t̂3M̂(1,3)(t̂)+ ĥ(0,3)(t̂)1)
∂

∂X




t̂1
t̂2
t̂3


 .

Note the use, in the above example, of the modular transformation properties of

solutions of Chazy’s equation and their derivatives.
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4.3 Almost Duality of Frobenius Manifolds

We saw that the structure of a Frobenius manifold is equivalent to a particular ansatz for

a solution to the WDVV equations. As one might expect then, it is possible to relax some

of the axioms of a Frobenius manifold and still obtain a solution to the WDVV equations.

For example, what happens if one does not stipulate the unity field on the manifold be

covariantly constant? We can still obtain a solution to the WDVV equations, and in fact

the structure on the tangent spaces is still that of a Frobenius algebra. A good example

of a family of solutions for which the unity field is not covariantly constant was found by

Feigin & Veselov [28],

F⋆ = ∑
α∈RW

hα(α ,z)2 log(α ,z)2. (4.3.1)

Here z = (z1, ...,zN) are a system of flat coordinates for the metric ( · , · ), with respect

to which the function F⋆ satisfies the WDVV equations. RW denotes the root system

corresponding to a finite irreducible Coxeter group W and hα are a set of constants.

This raises the question: what are the geometric structures defined by these solutions

to WDVV that just fail to be Frobenius manifolds?

4.3.1 The Existence of F⋆ and Twisted Periods

Given a Frobenius manifold, we may define a new multiplication ⋆ by taking the original

one and twisting by the Euler field:

X ⋆Y = E−1◦X ◦Y, for X ,Y ∈ Γ(TM ,M ). (4.3.2)

The vector field E−1 is the solution of the linear (in the components of E−1) system

E−1◦E = e.

So (4.3.2) is well defined whenever E−1 is. Let M ⋆ = M r {t ∈M : E is not invertible}.
Clearly ⋆ is commutative, and has unity field E:

E ⋆X = E−1◦E ◦X = e◦X = X .

What is more, this multiplication, together with the intersection form ( · , · ) endow T ∗M

with the structure of a Frobenius algebra:

g(ω1 ⋆ω2,ω3) = ιE(ω1 ⋆ω2◦ω3) = ιE(E−1◦ω1◦ω2 ◦ω3), ∀ω1,ω2,ω3 ∈ Γ(T ∗M ,M )

is symmetric in ω1, ω2, and ω3. Thus we have gone some way to showing that the data

(M ⋆,g( · , · ),⋆,E) satisfy the axioms of a Frobenius manifold. It is not difficult to show
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the potentiality, i.e. that the 4−tensor g∇W g(X ⋆Y,Z) is totally symmetric. We refer the

reader to [20] for details. Thus, we arrive at

Theorem 7. [20] Given a Frobenius manifold (M ,◦,e,E,η), there exists a function F⋆

defined on M ⋆ such that:

⋆
ci jk = g

(
∂
∂ zi ⋆

∂
∂ z j ,

∂
∂ zk

)
,

=
∂ 3F⋆

∂ zi∂ z j∂ zk .

Moreover, the pair (F⋆,g) satisfy the WDVV-equations in the flat coordinates { zi i =

1, ...,N } of the metric g, where g is the intersection form of the underlying Frobenius

manifold.

What has not been discussed so far are the homogeneity conditions usually present

in the definition of a Frobenius manifold. Also, there is no reason that the unity field

(remember that this will be given by the Euler field of the underlying Frobenius manifold)

should be covariantly constant with respect to g. From this point the analysis splits, and

the technical results presented all depend on whether d = 1 or d 6= 1.

Lemma 10. [20] Let {z1, ...,zN} be a system of flat coordinates for the intersection form.

If d 6= 1 then they can be chosen to satisfy the homogeneity condition

LEzσ =
1−d

2
zσ . (4.3.3)

If d = 1 then the vector field E is covariantly constant.

Proof. That the set of functions {z1, ...,zN} are flat coordinates for the intersection form

means they satisfy the system of partial differential equations

gαε ∂ 2zσ

∂ tβ ∂ tε + cαρ
β (t)

(
∇E− 1−d

2

)ε

ρ

∂ zσ

∂ tε = 0, σ = 1, ...,N.

Multiplying through by gαε and contracting with the Euler field we obtain

Eε ∂ 2zσ

∂ tβ ∂ tε + Eεgβν cνρ
ε (t)

(
∇E− 1−d

2

)ε

ρ

∂ zσ

∂ tε = 0, σ = 1, ...,N,

⇔ Eε ∂ 2zσ

∂ tβ ∂ tε +

(
∇E− 1−d

2

)ε

β

∂ zσ

∂ tε = 0, σ = 1, ...,N,

⇔ d (ιEdzσ ) =
1−d

2
dzσ , σ = 1, ...,N, (4.3.4)

⇔ ιEdzσ =
1−d

2
zσ +const., σ = 1, ...,N.
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So if d 6= 1, we can perform a shift in the variable zσ so that the homogeneity condition

(4.3.3) is satisfied.

If d = 1, equation (4.3.4) reads

d (ιEdzσ ) = 0, for σ = 1, ...,N,

which means that the entries of the Euler field are constant in the flat coordinates of the

intersection form, i.e. E is covariantly constant.

Thus we arrive at a fork in the road. Both routes must be explored in turn.

4.3.2 Almost duality for d 6= 1

The results appearing in this subsection first appeared in [20], though have been slightly

re-cast to suit our needs.

Lemma 11. If, for d 6= 1, the flat coordinates {z1(t), ...,zN (t)} of the intersection form are

chosen in such a way that

LEz =
1−d

2
z (4.3.5)

and

g(dza,dzb) = gab,

then

t1 = η1α tα =
1−d

4
gabzazb. (4.3.6)

Proof. By definition of the intersection form,

(g∇t1)
ε = g(dt1,dtε )

= η1σ g(dtσ ,dtε)

= η1σ Eµcσε
µ

= Eµcε
1µ = Eε .

Here g∇t1 means the gradient of the function t1 with respect to the intersection form.

Thus, we have shown
g∇t1 = E.

Now equation (4.3.5) implies

E =
1−d

2
za ∂

∂ za ,

and so

gab ∂ t1
∂ zb =

1−d
2

za ⇒ t1 =
1−d

4
gabzazb.



4.3. Almost Duality of Frobenius Manifolds 109

Corollary 1. If d 6= 1, the almost dual prepotential F⋆ satisfies the homogeneity condition

∑
i

zi ∂F⋆

∂ zi = 2F⋆ +
1

1−d ∑
i, j

gi jz
iz j. (4.3.7)

Proof. The components of the metric

gi j =

(
∂

∂ zi ,
∂

∂ z j

)

are constant in the flat coordinates { zi : i = 1, ...,N }. The Euler vector field coincides

with the unity. Therefore

gi j =

(
∂

∂ z j ,
∂

∂ zk

)
=

(
E ⋆

∂
∂ z j ,

∂
∂ zk

)
= ∑

i

E i ∂ 3F⋆

∂ zi∂ z j∂ zk (4.3.8)

⇔ 2
1−d

g jk = ∑
i

zi ∂ 3F⋆

∂ zi∂ z j∂ zk . (4.3.9)

Integrating twice, we obtain the equation (4.3.7).

Example 30. Recall that the Free energy and Euler field

F =
1
2

t2
1t2 +

1
2

t2
2

(
logt2−

3
2

)
; E = t1

∂
∂ t1

+2t2
∂

∂ t2 (4.3.10)

defines a two-dimensional Frobenius manifold. Computations give

g = 2
∂

∂ t1
⊗ ∂

∂ t1
+ t1

∂
∂ t1
⊗ ∂

∂ t2
+ t1

∂
∂ t2
⊗ ∂

∂ t1
+

∂
∂ t2
⊗ ∂

∂ t2
;

E−1 =
1
∆

(
t1

∂
∂ t1
−2t2

∂
∂ t2

)
; ∆ = t2

1−4t2.

Therefore M ⋆ = M r∆. One finds the flat coordinate system for the intersection form to

be given by

t1 = z1 + z2, t2 = z1z2.

In this coordinate system the metric takes an anti-diagonal form,

g =
∂

∂ z1
⊗ ∂

∂ z2
+

∂
∂ z2
⊗ ∂

∂ z1
.
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Further, we have

∂
∂ z1

⋆
∂

∂ z1
=

1
z1− z2

∂
∂ z1

+

(
1
z1

+
1

z2− z1

)
∂

∂ z2

∂
∂ z1

⋆
∂

∂ z2
=

1
z2− z1

∂
∂ z1

+
1

z1− z2

∂
∂ z2

∂
∂ z2

⋆
∂

∂ z2
=

1
z2− z1

∂
∂ z2

+

(
1
z2

+
1

z1− z2

)
∂

∂ z2
,

from which it follows that

F⋆
111 =

1
z1

+
1

z2− z1
,

F⋆
112 =

1
z1− z2

,

F⋆
122 =

1
z2− z1

,

F⋆
222 =

1
z2

+
1

z1− z2
.

Integrating these equations, we find

F⋆ =
1
2

(
z2
1 logz1− (z1− z2)

2 log(z1− z2)+ z2
2 logz2

)
.

We see that this solution to WDVV fits into the class studied by Feigin & Veselov [28].

Here the Coxeter group is generated by the root system B2. If α1 = (1,0), α2 = (0,1) and

α3 = (−1,1), we have h1 = h2 = 1, h3 =−1.

Recall that the vanishing of the curvature of the deformed Euclidean connection was

equivalent to the WDVV equations. Therefore we can repeat the construction of flat sec-

tions for a 1-parameter family of deformed flat connections on the almost dual manifold

M ⋆. These are by definition independent solutions of the differential equation

g∇(ν)dζi = 0, i = 1, ...,N, (4.3.11)

where
g∇(ν)Y X = g∇Y X −νX ⋆Y, ∀X ,Y ∈ Γ(TM

⋆,M ⋆). (4.3.12)

We will call solutions to the differential equation (4.3.11) twisted periods of the almost

dual structure. In the flat coordinates of the intersection form, the twisted periods satisfy

∂ 2ζl(z;ν)

∂ zi∂ z j = ν ⋆
c

k

i j(z)
∂ζl(z;ν)

∂ zk .
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Proposition 17. For d 6= 1, the twisted periods satisfy the homogeneity conditions

LEζ (z,ν) =

(
1−d

2
+ ν
)

ζ (z,ν). (4.3.13)

Proof. Recall Cartan’s formula for the Lie derivative of a one form along a vector field,

LEω = ιEdω + d(ιEω).

Let ω = dζ . Then, using d2 = 0, we have in the flat coordinates of the intersection form,

LE

(
∂ζ
∂ zk

)
= ∂k

(
1−d

2
zi ∂ζ

∂ zi

)
,

=
1−d

2
zi ∂ 2ζ

∂ zi∂ zk +
1−d

2
∂ζ
∂ zk ,

=
1−d

2
νzi⋆c

j

ik
∂ζ
∂ z j +

1−d
2

∂ζ
∂ zk .

We now use the homogeneity of the second derivatives of the almost dual prepotential,

zi⋆c
j

ik = g jszi ∂ 3F⋆

∂ zs∂ zi∂ zk = g js
(

2
gsk

1−d

)
= 2

δ j
k

1−d
.

So

LEdζ =

(
ν +

1−d
2

)
dζ .

Using LEdζ = d(LEζ ) the result follows.

Thus demanding the homogeneity (4.3.13) fixes a basis of twisted periods {ζ1, ...,ζN}.
We may again seek power series solutions (recall that LEzi = 1

2(1−d)zi)

ζi(z;ν) = ∑
n≥0

ζn,i(z)νn.

The equation (4.3.11) then gives a recurrence relation for the coefficients ζn,i(z). These

‘approximations’ inherit their own homogeneity properties from the twisted periods:

LEζn,i(z) =
1−d

2
ζn,i(z)+ ζn−1,i(z). (4.3.14)

Example 31. For the example given above, with prepotential

F⋆ =
1
2

(
z2
1 logz1− (z1− z2)

2 log(z1− z2)+ z2
2 logz2

)
,
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we may start the recursion with the seed solutions

ζ0,1 = z1 = g1aza, ζ0,2 = z2 = g2aza.

Solving the recursion, we find

ζ1,1 = (z2− z1) log(z2− z1)+ z1 logz1, (4.3.15)

ζ1,2 = (z1− z2) log(z1− z2)+ z2 logz2. (4.3.16)

The complexity of the functions grows extremely quickly: the third order approxima-

tions for both ζ1 and ζ2 involve dilogarithms. Note the homogeneity properties (4.3.14).

Because for this example we have d =−1, we can check

(E−1)ζ1,1 =

(
z1 ∂

∂ z1 + z2 ∂
∂ z2 −1

)
ζ1,1 = z2 = ζ0,1 (4.3.17)

(E−1)ζ1,2 =

(
z1 ∂

∂ z1 + z2 ∂
∂ z2 −1

)
ζ1,2 = z1 = ζ0,2. (4.3.18)

These results only hold if d 6= 1. In particular, they rely on the normalisation (4.3.6).

4.3.3 Almost Duality for d = 1

Lemma 12. Suppose d = 1. Then t1 is a flat coordinate for both η and g .

Proof. Recall that the proof of Lemma 11 uses the statement

g∇t1 = E,

which is independent of d. We have also seen in Lemma 10, that for the case d = 1, the

Euler field is covariantly constant,
g∇E = 0.

The composite of these statements is: if d = 1, then g∇2t1 = 0, i.e. t1 is a flat coordinate

for the metric g.

Recall that E plays the role of the unity vector field in the dual picture. Thus when d = 1

the unity vector field is covariantly constant, so almost dual Frobenius manifolds at d = 1

are even closer to Frobenius manifolds than for those with d 6= 1. We will return to this

point later. Unfortunately, this appears to been at the expense of losing our grading of

TM . As we will see however, we do get a new modular invariance of the almost dual

prepotential.

Our next goal will be to define a notion of inversion symmetry solutions to the WDVV

that are almost dual to a Frobenius manifold and then look at how the action lifts to the
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functions ζn,i. This, in an analogous fashion to the case for Frobenius manifolds, allow us

to study the symmetry on the hydrodynamic type systems associated to these solutions

of WDVV.

4.4 Inversion Symmetry and Almost Duality

The aim of this section is to construct the symmetry I⋆ of the WDVV equations that makes

the diagram

F
I−→ F̂

↓ ↓
F⋆ I⋆

99K F̂⋆

(4.4.1)

commute. Recall that for the case of a Frobenius manifold, the inversion symmetry was

defined in the flat coordinate systems. Thus, given the above results, any definition of

I⋆ will have to treat the two cases d = 1 and d 6= 1 separately. We proceed by analysing

examples for which the inversion symmetry I on the underlying Forbenius manifold is

well understood.

Example 32. We have already seen that the two dimensional Frobenius manifolds

{
F = 1

2t2
1t2 + t2

2(logt2− 3
2);

E = t1 ∂
∂ t1

+2t2 ∂
∂ t2

}
I−→
{

F̂ = 1
2 t̂2

1 t̂2 + t̂2
2 logt̂2;

Ê = t̂1 ∂
∂ t̂1
−2t̂2 ∂

∂ t̂2

}

are related by the inversion symmetry (here d 6= 1). Further, we can compute the almost

dual prepotentials for both manifolds. We demand that our definition of I⋆ must map

between these almost dual structures:

{
F⋆ = 1

2

(
z2
1 logz1− (z1− z2)

2 log(z1− z2)+ z2
2 logz2

)
;

E = z1
∂

∂ z1
+ z2

∂
∂ z2

}
I⋆

−→
{

F̂⋆ = 1
2(ẑ1− ẑ2)

2(log ẑ1 + log ẑ2− log(ẑ1− ẑ2)) ;

E =−z1
∂

∂ z1
− z2

∂
∂ z2

}

On defining

ẑi =
zi

t1
, i = 1,2,

ĝi j = gi j,

F̂⋆(ẑ) =
1

t̂2
1

F⋆(z(ẑ)),

the diagram (4.4.1) commutes for this example.

This relationship between the flat coordinate systems holds more generally:
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Lemma 13. Suppose d 6= 1. Let {zi, i = 1, ...,N} be a system of flat coordinates for the

metric g. Then {
ẑi =

zi

t1
, i = 1, ...,N

}
(4.4.2)

is a flat coordinate system for ĝ.

To prove this we will use the rather elegant

Lemma 14. For a semisimple Frobenius manifold with canonical coordinate system

{u1, ...,uN}, the corresponding almost dual multiplication ⋆will be semisimple, with canon-

ical coordinates {τ1, ...,τN} on M ⋆ given by

τi = logui. (4.4.3)

Proof. Note that in the canonical coordinates,

E =
N

∑
i=1

ui
∂

∂ui
⇒ E−1 =

N

∑
i=1

1
ui

∂
∂ui

.

Also the definition (4.4.3) gives

dτi =
1
ui

dui⇒
∂

∂τi
= ui

∂
∂ui

.

Therefore,

∂
∂τi

⋆
∂

∂τ j
= E−1◦

(
ui

∂
∂ui

)
◦
(

u j
∂

∂u j

)

=
1
ui

δi ju
2
j

∂
∂u j

= δi jui
∂

∂ui

= δi j
∂

∂τi
.

Corollary 2. The intersection form is Egoroff in the coordinates {τ1, ...,τN}, with Egoroff

potential t1(τ).

Let us return to the proof of Lemma 13.

Proof. In canonical coordinates the intersection form reads

g =
N

∑
i=1

1
ui

∂ t1(u)

∂ui
dui⊗dui =

N

∑
i=1

∂ t1(τ)

∂τi
dτi⊗dτi
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(recall the functions t1(u) is the Egoroff potential for the metric η). Therefore, just as

with the original metrics η and η̂ of the underlying Frobenius manifolds, the intersection

forms are also related by a conformal transformation:

g =
1

t̂2
1

ĝ.

Hence one can employ exactly the same formulae used in the proof of Proposition 15 to

show that
g∇dz = 0 ⇒ ĝ∇d

(
z
t1

)
= 0.

Because one of the forthcoming Theorems uses the same arguments, and they are tech-

nically more involved, we will omit the calculations verifying this statement. To see that

the definition (4.4.2) does indeed define a coordinate system, one must compute the

determinant of the pullback: ∣∣∣∣
(

∂ ẑi

∂ z j

)∣∣∣∣=−
1

t̂N+1
1

which uses the normalisation (4.3.6). Finally, the Gram matrices for g and ĝ coincide:

t̂1 =
1− d̂

4
ĝi j ẑ

iẑ j =
1− (2−d)

4
ĝi j

ziz j

t2
1

⇔ 1
t̂1

=
d−1

4
ĝi jz

iz j

⇔−t1 =
d−1

4
ĝi jz

iz j.

Comparing coefficients gives gi j = ĝi j.

How are the flat coordinate systems of two intersection forms g and ĝ related at d = 1?

Theorem 8. Suppose d = 1 and rN = 0 and let { zi : i = 1, . . . ,N } be a flat coordinate

system for g . Let

ẑ1 =
1
2

zσ zσ

zN , ẑα =
zα

zN , (for α 6= 1,N), ẑN =− 1
zN , (4.4.4)

where zN = t1 . Then {ẑi : i = 1, . . . ,N} are a flat coordinate system for ĝ .

Proof. From the above lemma t1 is a flat coordinate for g and hence we choose zN = t1 .

With this E(zN) = 0 and since g∇E = 0, the vector field E must take the form E = ∑N−1
i=1 ci

∂
∂ zi

for some constants ci . Using the freedom to redefine the pi for i 6= N one may set

E =
∂

∂ z1 .

With this g(E,E) = η(E−1◦E,E) = η(e,E) = rN = 0 (again since d = 1). Thus from Lemma
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1 [16] one may redefine coordinates so

gi j = δi+ j,N+1

in the {zi}-coordinates. The process of proving that the coordinates defined above are

indeed flat for ĝ we employ the samemethod as before. Because the calculations for ẑi, for

i = 2, ...,N are analogous to ones given earlier, we will just give details of the calculations

for ẑ1 which is slightly more involved.

To this end, recall relationships (4.2.5), (4.2.6). Let us compute the transformation

rules for the coordinate differentials. The canonical coordinates of ◦ are fixed by the

inversion symmetry, and by virtue of equation (4.4.3), so are those of ⋆. In the canonical

coordinates {τ1, ...,τN} of the intersection form ĝ we have for (4.2.5) (i 6= j):

ĝ∇i
∂ zk

∂τ j
= g∇i

∂ zk

∂τ j
+ ∂i logt1

∂ zk

∂τ j
+ ∂ j logt1

∂ zk

∂τ j
; ∂i :=

∂
∂τi

.

If i = j,

ĝ∇i
∂ zk

∂τi
= g∇i

∂ zk

∂τi
+ ∂i logt1

∂ zk

∂τi
−∂i logt1 ∑

j 6=i

∂ zk

∂τ j

= g∇i
∂ zk

∂τi
+2∂i logt1

∂ zk

∂τi
−δ k

1∂i logt1,

because ∑N
i=1 ∂izk = E(zk) = δ k

1 , as we chose E = ∂z1. Therefore, using g∇dzi = 0, for i =

1, ...,N, we have

ĝ∇dzi = 2d logt1⊗dzi−δ i
1

N

∑
k=1

∂k logt1dτk⊗dτk.

= 2d logt1⊗dzi− δ i
1

zN g (4.4.5)

because t1 = zN is the Egoroff potential for g. We need to show

ĝ∇dẑ1 = ĝ∇

{
d

(
z1 +

1
2zN ∑

i, j 6=1

gi jz
iz j

)}
= 0.
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Un-packing the right hand side of this expression, and using (4.4.5) we have,

ĝ∇dẑ1 = ĝ∇dz1 +
1

2zN

{
N−1

∑
i=2

(
2dzi⊗dzi + zig∇dzi + zi

g∇dzi)
}

− 1
2(zN)2

N−1

∑
i=2

(
zidzi + zidzi)⊗dzN +

1
(zN)3

N−1

∑
i=2

ziz
idzN ⊗dzN

− 1
2(zN)2

{(
N−1

∑
i=2

zidzi + zidzi

)
⊗dzN−

N−1

∑
i=2

zizi
g∇dzN

}

= 2d logt1⊗dz1− 1
zN g+

1
2zN

{
N−1

∑
i=2

(
2dzi⊗dzi + zi2d logt1⊗dzi + zi2d logt1⊗dzi)

}

− 1
2(zN)2

N−1

∑
i=2

(
zidzi + zidzi)⊗dzN +

1
(zN)3

N−1

∑
i=2

ziz
idzN ⊗dzN

− 1
2(zN)2

{(
N−1

∑
i=2

zidzi + zidzi

)
⊗dzN−

N−1

∑
i=2

zizi2d logt1⊗dzN

}

=
2
zN dz1⊗dzN− 1

zN g+
2
zN

N−1

∑
i=2

dzi⊗dzi = 0.

So {ẑ1, ..., ẑN} are flat functions for ĝ. Further they comprise a coordinate system:

∣∣∣∣
(

∂ ẑi

∂ z j

)∣∣∣∣=−
1

t̂N
1

.

Using the fact that the metrics g and ĝ are related by a conformal transformation, we

have

ĝpq = t−2
1

∂ zi

∂ ẑp

∂ zi

∂ ẑq gi j.

This yields, using the definition (4.4.4) gi j = ĝi j.

We are now ready to define the dual inversion symmetry I⋆ in full.

Theorem 9. Let F define a Frobenius manifold and let F̂ denote the induced manifold

under the action of the symmetry I . Let F⋆ and F̂⋆ denote the corresponding almost dual

structures. Then I⋆, the induced symmetry acts as:

• Case I: d 6= 1 :

ẑi =
zi

t1
, i = 1, . . . ,N ,

ĝab = gab , (4.4.6)

F̂⋆(ẑ) =
F⋆(z(ẑ))

t2
1
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where t1 = (1−d)
4 gabzazb .

• Case II: d = 1 :

ẑ1 =
1
2

zσ zσ

t1
, ẑi =

zi

t1
, i = 2, . . . ,N−1, ẑN =− 1

t1
,

ĝab = gab ,

F̂⋆(ẑ) = (ẑN)2F (z(ẑ))+
1
2

ẑ1ẑσ ẑσ ,

where t1 = zN .

Note, in both cases zN is the Egoroff potential for the metric η .

Proof. Recall (4.3.7) that for d 6= 1 the dual prepotential satisfies the homogeneity condi-

tion

∑
α

zα ∂F⋆

∂ zα = 2F⋆ +
1

1−d
gαβ zα zβ ,

from which it follows that

∑
σ

zσ ∂ 2F⋆

∂ zσ ∂ zκ =
∂F⋆

∂ zκ +
2zκ

1−d
; (4.4.7)

∑
σ

zσ ∂ 3F⋆

∂ zσ ∂ zκ ∂ zε =
∂ 2F⋆

∂ zκ ∂ zε +
2gκε

1−d
. (4.4.8)

Using this and the explicit coordinates given in Proposition 9, equation (4.4.6), one finds

that
∂

∂ ẑα =−t1
∂

∂ zα − zαE,

where E is the Euler field. From this it follows that

∂
∂ ẑα

(
F⋆

t2
1

)
= − 1

t1

∂F⋆

∂ zα −
2

t1(1−d)
zα ,

∂ 2

∂ ẑα ∂ zβ

(
F⋆

t2
1

)
=

∂ 2F⋆

∂ zα ∂ zβ −
4gαβ

1−d
− 2

t1(1−d)
zα zβ ,

∂ 3

∂ ẑα ∂ ẑβ ∂ ẑγ

(
F⋆

t2
1

)
= −t1

∂ 3F⋆

∂ zα ∂ zβ ∂ zγ +
2

1−d
(gαβ zγ + gαγzβ + gβγ zα)− 2

t1(1−d)
zα zβ zγ .

Inserting this into the WDVV equations we obtain 25 terms in the left and right hand

sides which pair off and cancel. So F̂⋆ satisfies the WDVV equations in the {ẑi}-variables.

If d = 1 the proof is identical to the original inversion symmetry as presented in [16].
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It remains to show how the deformed flat coordinates ξ (z;ν) for g∇ behave under

inversion symmetry. This will be done in the next section. We will end this section with a

couple of examples.

Example 33 (d 6= 1). Given an irreducible Coxeter group W of rank N , the Saito con-

struction gives a Frobenius manifold structure on the orbit space CN/W . The almost dual

prepotential takes the form

F⋆(z) =
1
4 ∑

α∈RW

(α ,z)2 log(α ,z)2

where ( , ) is the metric g .

Application of the I⋆ transform (recall d 6= 1 for these examples) yields the solution

F̂⋆(ẑ) =
1
4 ∑

α∈RW

(α , ẑ)2 log(α , ẑ)2− h
4
(ẑ, ẑ) log(ẑ, ẑ)

where h is defined by the relation ∑α∈RW
(α ,z)2 = h(z,z) (and hence depends on the nor-

malization of the roots α ∈ RW ).

Thus the original solution is recovered but with the addition of a new radial term.

Such solutions have been constructed directly (i.e. without knowledge of its geometric

origins) in [40].

Example 34 (d = 1). Given the Weyl groups AN and BN with Lie algebra g with Cartan

subalgebra h one may construct the so-called Jacobi group J(h) and orbit space Ω/J(g)

where Ω = C⊕ h⊕H [6]. This orbit space carries the structure of a Frobenius manifold

and it was shown by Riley and Strachan [51] that the dual prepotential takes the form

F⋆(u ,z,τ) =
1
2

τu2− 1
2

u(z,z)+ ∑
α∈U

h(α .z,τ)

Here the function h is essentially the elliptic trilogarithm introduced by Beilinson and

Levin [5] and the set U contains certain vectors - an elliptic generalization of classical

root systems. The basic function h satisfies the modularity property (c.f. Example 5)

h
( z

τ

)
=

1
τ2h(z,τ)− z4

4!τ3

up to quadratic terms. The proof that this almost dual prepotential lies at a fixed point

of the inversion symmetry may be found in [61].



4.5. The Inversion Symmetry and Twisted Periods 120

4.5 The Inversion Symmetry and Twisted Periods

With a definition of the inversion symmetry on the space of almost dual Frobenius man-

ifolds in place, we can now study how the symmetry lifts to the corresponding twisted

periods and dispersionless principal hierarchies associated to the solutions of WDVV.

Proposition 18. Suppose d 6= 1. Let {ζi(z;ν), i = 1, ...,N} and {ζ̂i(ẑ;ν), i = 1, ...,N} be fun-

damental sets of twisted periods for two solutions F⋆ and F̂⋆ of the WDVV equations that

are linked by the almost dual inversion symmetry of Theorem 9. Then if

ζi(z;ν) = ∑
n≥0

ζn,i(z)νn; ζ̂i(ẑ;ν) = ∑
n≥0

ζ̂n,i(ẑ)νn

we have

ζn,i

(
ẑ
t̂1

)
=

1
t̂1

ζ̂n,i(ẑ).

Proof. Again, we first need to show that the functional form of the proposition is correct.

This is the same as in the proof of Proposition 15. In the canonical coordinates {τi, i =

1, ...,N} the recursion relation becomes

g∇i
∂

∂τ j
ζn,s(z) = δi j

∂
∂τ j

ζn−1,s(z),

and so the same technique applies. Where this proof differs (slightly) is in the indenti-

fication of the labels. Recall that the basis of solutions {ζ̂i(ẑ;ν), i = 1, ...,N} was fixed by

the homogeneity condition

LEζi(z;ν) =

(
d−1

2
+ ν
)

ζi(z;ν),

which means that the coefficients were fixed by

LEζn,i(z) =
1−d

2
ζn,i(z)+ ζn−1,i(z).

The dual inversion symmetry fixes the canonical coordinates, so it also fixes the unity

E = Ê, up to a re-scaling. Therefore

LÊζn,i

(
ẑ
t̂1

)
= LEζn,i(z) =

(
1−d

2

)
ζn,i(z)+ ζn−1,i(z).
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On the other hand,

LÊ

(
1
t̂1

ζ̂n,i(ẑ)
)

=
1
t̂1

LÊ ζ̂n,i(ẑ)−
1

t2
1

ζ̂n,i(ẑ)LÊ t̂1

=
1
t̂1

(
1− d̂

2
ζ̂n,i(ẑ)+ ζ̂n−1,i(ẑ)

)
− 1

t̂2
1

ζ̂n,i(ẑ)(1− d̂)t̂1

=
1
t1

(
1− (2−d)

2
ζ̂n,i(ẑ)

)
+

1
t̂1

ζ̂n−1,i(ẑ)−
1

t̂2
1

(1− (2−d))ζ̂n,i(ẑ)t̂1

=

(
1−d

2

)
1
t̂1

ζ̂n,i(ẑ)+
1
t̂1

ζ̂n−1,i(ẑ).

So the normalisation conditions are satisfied.

Of course, the flat pencil of metrics that allowed us to construct the principal hierar-

chy still exists, only now we obtain a hydrodynamic type system on the flat coordinates

of the intersection form. The almost dual principal hierarchy reads

∂ zσ

∂T k,β =

{∫

S1
zσ (X)dX ,

∫

S1
ζk+1,β dX

}

2
=

{∫

S1
zσ (X) dX ,

∫

S1
ζk,β dX

}

1
, k ≥ 0, β = 1, ...,N,

where the Poisson brackets are as for the principal hierarchy of the underlying Frobenius

manifold. The spatial derivative operator is as for the principal hierarchy,

∂
∂X

:=

{
· ,

∫

S1
tN(X) dX

}

2
.

Note that if d 6= 1 the induced map between the principal hierarchies arising from these

almost dual solutions is different to that for Frobenius manifolds because the twisted

periods behave differently to the deformed flat coordinates of the underlying Frobenius

manifold.

Corollary 3. For d 6= 1, the dual inversion symmetry I⋆ acts on the principal hierarchy by

∂
∂T n,i = t̂1

∂
∂ T̂ n,i

− ζ̂n−1,i(z)
∂

∂X
. (4.5.1)

Example 35. We saw in example 4.2.1, that the inversion symmetry led to a reciprocal

transformation

Dispersionless Benney Hierarchy
R−→ Dispersionless Dym Hierarchy

of the principal hierarchies corresponding to the Frobenius manifolds (1.2.14), (1.2.15)

respectively. Example 32 showed that the almost dual structures constructed from these

manifolds were linked by the almost dual inversion symmetry for d 6= 1 (4.4.6). Therefore,

these almost dual structures provide an explicit example of Corollary 3.
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The first couple of flows corresponding to the almost dual solution

F⋆ =
1
2

(
z2
1 logz1− (z1− z2)

2 log(z1− z2)+ z2
2 logz2

)
; E = z1

∂
∂ z1

+ z2
∂

∂ z2

read

∂
∂T 1,1

(
z1

z2

)
=

(
1

z1−z2
− 1

z1−z2
1
z1
− 1

z1−z2

1
z1−z2

)
∂

∂X

(
z1

z2

)
,

∂
∂T 1,2

(
z1

z2

)
=

(
− 1

z1−z2

1
z2

+ 1
z1−z2

1
z1−z2

− 1
z1−z2

)
∂

∂X

(
z1

z2

)
.

Those for the solution

F̂⋆ =
1
2
(ẑ1− ẑ2)

2(log ẑ1 + log ẑ2− log(ẑ1− ẑ2)) ; E =−z1
∂

∂ z1
− z2

∂
∂ z2

read

∂
∂ T̂ 1,1

(
z1

z2

)
=

(
1

ẑ1−ẑ2
− 1

ẑ1
− 1

ẑ2
− 1

ẑ1−ẑ2
ẑ2
ẑ2
1
+ 1

ẑ1
− 1

ẑ1−ẑ2

1
ẑ1−ẑ2

− 1
ẑ1

)
∂

∂X

(
ẑ1

ẑ2

)
,

∂
∂ T̂ 1,2

(
z1

z2

)
=

(
− 1

ẑ2
− 1

ẑ1−ẑ2

ẑ1
ẑ2
2
+ 1

ẑ1−ẑ2
+ 1

ẑ2

1
ẑ1−ẑ2

− 1
ẑ1

− 1
ẑ2
− 1

ẑ1−ẑ2

)
∂

∂X

(
ẑ1

ẑ2

)
.

Using the normalisation tN = 1−d
2 ∑a,b gabzazb, it is a straightforward exercise to observe

the symmetry (4.5.1) between these flows.

As we have seen, the study of almost dual solutions to the WDVV equations makes a

clear distinction between the two cases d = 1 and d 6= 1. In [20], Dubrovin gives a recipe

for how to reconstruct a Frobenius manifold from an almost dual solution to the WDVV

equations if d 6= 1. The proof uses, in particular, the homogeneity properties (4.3.13)

of the twisted periods (see [20], Lemma 3.12, Lemma 3.13). As we have seen, these

are absent when d = 1, and the reconstruction problem is open. Instead, we have an

invariance of F⋆ under the inversion symmetry and covariant constancy of the unity field

E. It would be interesting to see if one could use these properties, specific to d = 1, to

give a reconstruction theorem in this case.

From the point of view of bi-Hamiltonian systems, it is an interesting to study how

equations of hydrodynamic type arising from pencils of metrics in the same conformal

class are related. The inversion symmetry of Frobenius manifolds is an example of such

a conformal transformation. It turns out that in some sense it is always the case that

metrics in the same conformal class give hydrodynamic systems related by a conformal

transformation. See the paper [27] of Ferapontov and Pavlov and the references therein.
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5.1 Introduction

We have seen in earlier chapters how to construct from an arbitrary semi-simple Frobe-

nius manifold an integrable hierarchy of hydrodrnamic type PDEs called the principal

hierarchy. We have also seen how hydrodynamic type equations arise as the dispersion-

less limits of integrable equations of higher order. For example, we saw how Burger’s

equation arose as the dispersionless limit of the KdV equation. A natural question to ask

therefore is can one do the opposite: given a hydrodynamic type PDE, can one success-

fully reconstruct the dispersive terms whilst retaining integrability?

From the point of view of the bi-Hamiltonian structure of the evolution equations,

obtaining the dispersive hierarchies from their dispersionless limits must be done by ob-

taining deformations of the various objects involved in defining the equations of hydro-

dynamic type: both the Poisson brackets and the Hamiltonians defining the flows. For an

arbitrary semi-simple Frobenius manifold, this was done to first order, or to one-loop, by

Dubrovin and Zhang in their 1998 work [23].

Theorem 10. [23] There exists a unique hierarchy of the form

∂ t
∂T n,α = K[0];n,α (t,∂X t)+ ε2[K′(t)[1];n,α ;λ tλ

XXX + K′(t)[1];n,α ;λν tλ
XXtν

X + K′(t)[1];n,α ;λν µ tλ
X tν

X tµ
X ]+O(ε4)

(5.1.1)

such that the function t(T ) = (t1(T ), ..., tN(T )) satisfies the underlying principal hierarchy

(5.1.1) up to order ε4 for an arbitrary solution v(T ) of (3.2.4),

tα(T ) = vα(T )+ ε2 ∂ 2

∂T α ,0∂T 1,0 [
1
24

logdetcµνσ tσ
X + G(t)]t=v(T ) +O(ε4). (5.1.2)

The functions K′(t)β ,p;λ ,K′(t)β ,p;λν ,K′(t)β ,p;λν µ , and G(t) are analytic functions on the Frobe-

nius manifold.

The hierarchy (5.1.1) admits a representation

∂ t
∂T n,α =

{
t(X),Hn,α + ε2δH

′
n,α + ε2δH

′′
n,α
}

[0]
+ ε2{t(X),Hn,α}′[1] + ε2{t(X),Hn,α}′′[1] +O(ε4)

(5.1.3)

where

{H ,F}[0] =
∫

S1

δH

δ tα Pαβ
[0]′ (t)

δF

δ tβ dX , (5.1.4)

{H ,F}[1]′ =
∫

S1

δH

δ tσ Pαβ
[1]′ (t)

δF

δ tσ dX , (5.1.5)

{H ,F}[1]′′ =
∫

S1

δH

δ tα Pαβ
[1]′′(t)

δF

δ tβ dX (5.1.6)
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for

Pαβ
[0]′ (t) = ηαβ ∂X

Pαβ
[1]′ (t) =

1
24

(
f αβ (t)∂ 3

X +
3
2

∂X( f αβ (t))∂ 2
X +

1
2

∂ 2
X( f αβ (t))∂X

)

Pαβ
[1]′′(t) = aαβ (t)∂ 3

X +

(
3
2

∂X(aαβ (t))+ bαβ (t,∂X tX )

)
∂X +(∂X bαβ (t,∂X t)+ ∂ 2

X(aαβ (t)))∂X

and

f αβ (t) = η µνcαβ
µν := η µνηασ ηβκ ∂ 4F

∂ tσ ∂ tκ ∂ tµ∂ tν ,

aαβ (t) = 2cαβν ∂G
∂ tν ,

bαβ (t) =
3
2

∂X aαβ +
∂ 2G

∂ tσ ∂ tρ

(
cασ

µ ηβρ − cβσ
µ ηαρ

)
tµX .

The Hamiltonians of the deformed hierarchy are given by

Hn,α =

∫

S1
hn,α (t) dX , (5.1.7)

δH
′

n,α =
∫

S1
Ξn+1,α ;σν(t)tσ

X tν
X dX , (5.1.8)

δH
′′

n,α =

∫

S1
ϒn+1,α ;σν(t)tσ

X tν
X dX , (5.1.9)

where the functions hn,α (t) were defined in (3.2.1), and

Ξ0,α ;σν(t) = 0,

Ξn+1,α ;σν(t) =
1
24

(
cµσ

µβ cκ
νγ − cµν

γ cκ
µνβ

) ∂hn,α

∂ tκ −
1
24

cγ
ζξ cζσ

ν cζ
σ µ

∂hn−1,α

∂ tγ ,

ϒn+1,α ;σν(t) = cγ
ζν cµζ

σ
∂hn,α

∂ tγ
∂G
∂ tµ .

The HamiltoniansHn,α +ε2δH ′
n,α +ε2δH ′′

n,α commute pairwise with respect to the Poisson

bracket

{ · , · }[0] + ε2{ · , · }[1]′ + ε2{ · , · }[1]′′

modulo O(ε4).

The proof of this theorem is beyond the scope of our present discussions; the reader

is referred to [23] for details. Our present discussion will focus on how the inversion

symmetry acts on these deformations of the principal hierarchy.

A couple of remarks:

1. The hierarchy (5.1.1) is a deformation of the principal hierarchy in the sense that
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its dispersionless limit coincides with the principal hierarchy:

Kσ
[0];n,α (t, tX ) = ησνcµ

νζ
∂hn,α

∂ tµ tζ
X .

2. The function G(t) is known as the ‘G-function’ of the Frobenius manifold. It was

originally discovered by Getzler in his study [29] of recursion relations for genus

one Gromov-Witten invariants. Indeed, for examples of Frobenius manifolds aris-

ing from quantum cohomology it is the generating function of the elliptic Gromov-

Witten invariants of the symplectic manifold in question. However, its definition

makes sense for an arbitrary Frobenius manifold and is non-zero for examples not

arising from quantum cohomology. It has been computed explicitly for many Frobe-

nius manifolds [62].

Example 36 (Reconstructing the KdV Hierarchy). [23] For the Frobenius manifold cor-

responding to the KdV hierarchy,

F =
1
6

t3, E = t
∂
∂ t

,

the G-function is zero, and so the perturbations { · , · }[1]′′ , δH ′′ vanish. The 4-point

functions cαβγκ(t) also vanish because the pre-potential is cubic, meaning that the per-

turbation { · , · }[1]′ also vanishes. The Hamiltonians receive the correction (5.1.8):

H0 7→ H0 + ε2δH
′

0 =

∫

S1
t(X) dX ,

H1 7→ H1 + ε2δH
′

1 =

∫

S1

1
6

t(X)3− ε2 1
24

tX(X)2 dX ,

H2 7→ H2 + ε2δH
′

2 =
∫

S1

1
24

t(X)4− ε2 1
24

t(X)tX(X)2 dX .

This leads to the first few flows of the hierarchy getting corrections

∂ t
∂T 0 = tX ,

∂ t
∂T 1 = ttX +

1
12

ε2tXXX ,

∂ t
∂T 2 =

1
2

t2tX −
1
2

ε2tX tXX −
1
12

ttXXX .
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5.2 Preliminaries

As pointed out above, in order to understand how the inversion symmetry acts on the

first order deformation to the hierarchy, we must compute how it acts on the various

objects involved in its Hamiltonian representation. The four-point functions,

cαβγκ(t) =
∂ 4F(t)

∂ tα ∂ tβ ∂ tγ∂ tκ ,

are heavily involved in the construction of these objects, and so understanding their

transformation properties will be our starting point.

5.2.1 Four-point Functions in Canonical Coordinates

In canonical coordinates we replace partial derivatives with covariant ones. Therefore in

canonical coordinates, the four-point functions are given by

ci
jkl = ∇i∇ j∇k∇lF = η ii(u)∇i∇ j∇k∇lF.

Equation (1.4.1) means that locally the structure functions of our Frobenius algebras are

constant:

ci
jk = δ i

jδ i
k, (5.2.1)

which implies that in the canonical coordinates, the four-point functions will be linear

combinations of Christoffel symbols. This means that if a four-point function has more

than two indices distinct, then it is zero. More concretely, by definition of the covariant

derivative

ci
jkl = 0−Γi

l jδ
i
k−Γi

lkδ i
j + Γi

l jδ
j

k .

If i = j = k = l,

ci
iii =−Γi

ii;

If i = j = k 6= l,

ci
iil =−Γi

il;

If i = j 6= k = l,

ci
ill =−Γi

ll;

If i 6= j = k = l,

ci
j j j = Γi

j j.

It now follows from the fact that ∇W c(X ,Y,Z) it totally symmetric, and 〈∂i,∂ j〉 diagonal that
these are all non-zero 4−point functions. Now using the transformation properties of the

Christoffel symbols computed (4.1.1) in Chapter 4, we can read off the transformation
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properties of the four-point functions: If i = j = k = l, then

ci
iii =−Γi

ii =−(Γ̂i
ii−∂i log t̂1) = ĉi

iii + ∂i logt̂1;

If i = j = k 6= l, then

ci
iil =−Γi

il =−(Γ̂i
il−∂l logt̂1) = ĉi

iil + ∂l logt̂1;

If i = j 6= k = l, then

ci
ill =−Γi

ll =−(Γ̂i
ll + ∂l log t̂1) = ĉi

ill −∂l logt̂1; ;

If i 6= j = k = l, then

ci
j j j = Γi

j j =−(Γ̂i
j j + ∂ j log t̂1) = ĉi

j j j + ∂ j logt̂1.

5.3 Action on Deformed Hamiltonians

Together with the transformation properties of the deformed flat coordinates developed

in Chapter 4, we now have essentially all the components we need to compute the action

on the deformed Hamiltonians.

5.3.1 Perturbation 1: δH ′
(n,κ)

The first step will be to write the perturbations δH ′
(n,κ) found by Dubrovin and Zhang

[23] in canonical coordinates.

Proposition 19. In canonical coordinates, the first perturbation to the Hamiltonian den-

sities takes the form

δHn,κ =− 1
24

∫

S1

(
N

∑
r=1

η rr ∂h(n−1,κ)

∂ur

(
∂ur

∂X

)2

+
N

∑
r,p=1,r 6=p

η rrΓp
rr

∂h(n,κ)

∂up

(
∂up

∂X
− ∂ur

∂X

)2
)

dX .

(5.3.1)

Proof. Theorem 10 states that the Hamiltonians of the principle hierarchy obtain a first

correction

Hn,κ =
∫

S1
hn,κ(t)dX 7→Hn,κ + ε2δH

′
n,κ =

∫

S1

(
hn,κ (t)+ ε2Ξn+1,κ ;µ ,ν(t)

∂ tµ

∂X
∂ tν

∂X

)
dX ,
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where

Ξ0,α ;σν(t) = 0,

Ξn+1,α ;σν(t) =
1
24

(
cµσ

µβ cκ
νγ − cµν

γ cκ
µνβ

) ∂hn,α

∂ tκ
︸ ︷︷ ︸

term A

− 1
24

cγ
ζξ cζσ

ν cζ
σ µ

∂hn−1,α

∂ tγ
︸ ︷︷ ︸

term B

.

Consider term A. In canonical coordinates, this becomes

1
24

N

∑
s,l,m,r,n=1

(csl
smcr

ln
∂hn,κ

∂ur
)
∂um

∂X
∂un

∂X
− 1

24

N

∑
a,b,r,n,m=1

(cab
n cr

abm
∂hn,κ

∂ur
)
∂um

∂X
∂un

∂X
.

Using (5.2.1) this simplifies to

1
24

N

∑
m,r,s=1

csr
sm

∂hn,κ

∂ur

∂um

∂X
∂ur

∂X
−

N

∑
r,m,b=1

cbr
bm

∂hn,κ

∂ur

∂um

∂X
∂ub

∂X
=: term A|u.

As pointed out above, the four-point functions in canonical coordinates are linear combi-

nations of Christoffel symbols, and so if they have more than three distinct indices they

vanish. Therefore we decompose the above sums as follows:

term A|u =
1
24

(
N

∑
s,m=1,s 6=m

css
sm

∂hn,κ

∂us

∂um

∂X
∂us

∂X
+

N

∑
s,n=1,s 6=n

csn
ss

∂hn,κ

∂un

∂un

∂X
∂us

∂X

+
N

∑
s,m=1,s 6=n

csm
sm

∂hn,κ

∂um

(
∂um

∂X

)2

+
N

∑
s=1

css
ss

∂hn,κ

∂us

(
∂us

∂X

)2
)

− 1
24

(
N

∑
s,m=1,s 6=m

css
sm

∂hn,κ

∂us

∂um

∂X
∂us

∂X
+

N

∑
s,n=1,s 6=n

csn
ss

∂hn,κ

∂un

(
∂us

∂X

)2

+
N

∑
s,m=1,s 6=n

csm
sm

∂hn,κ

∂um

∂um

∂X
∂us

∂X
+

N

∑
s=1

css
ss

∂hn,κ

∂us

(
∂us

∂X

)2
)

=
1
24

(
N

∑
s,m=1,s 6=m

csm
ss

∂hn,κ

∂um

∂us

∂X

(
∂um

∂X
− ∂us

∂X

)
+

N

∑
s,m=1,s 6=m

csm
sm

∂hn,κ

∂um

∂um

∂X

(
∂um

∂X
− ∂us

∂X

))

=
1
24

(
N

∑
s,m=1,s 6=m

η sscm
sss

∂hn,κ

∂um

∂us

∂X

(
∂um

∂X
− ∂us

∂X

)

+
N

∑
s,m=1,s 6=m

η sscm
ssm

∂hn,κ

∂um

∂um

∂X

(
∂um

∂X
− ∂us

∂X

))

=
N

∑
s,m=1,s 6=m

η ssΓm
ss

∂hn,κ

∂um

∂us

∂X

(
∂um

∂X
− ∂us

∂X

)
−

N

∑
s,m=1,s 6=m

η ssΓm
ss

∂hn,κ

∂um

∂um

∂X

(
∂um

∂X
− ∂us

∂X

)

= − 1
24

N

∑
s,m=1,s 6=m

η ssΓm
ss

∂h(n,κ)

∂um

(
∂um

∂X
− ∂us

∂X

)2

. (5.3.2)
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Now consider term B. This term is a lot simpler since it contains no 4−point functions.
In flat coordinates we have

term B|t =− 1
24

cγ
λξ ηλε cσ

εν cξ
σ µ

∂hn−1,κ

∂ tγ
dtµ

dX
dtν

dX
.

Again canonical coordinates simplify this expression,

term B|u =− 1
24

N

∑
r,l,i,s,n,m=1

(δ r
l δ r

i )η ll(δ s
l δ s

n)(δ i
sδ i

m)
∂hn−1κ

∂ur

dum

dX
dun

dX

=− 1
24

N

∑
i=1

η ii ∂hn−1κ

∂ui

(
dui

dX

)2

.

Hence

term A|u + term B|u =− 1
24

N

∑
s,m=1,s 6=m

η ssΓm
ss

∂h(n,κ)

∂um

(
∂um

∂X
− ∂us

∂X

)2

− 1
24

N

∑
s=1

η ss ∂hn−1κ

∂us

(
dus

dX

)2

,

which is equal to the (integrand appearing on the) right hand side.

Now we have an expression for the first perturbation in canonical coordinates, we

can apply the inversion symmetry.

Corollary 4. Under the inversion symmetry, the first perturbation to the Hamiltonians

transforms as

δH
′

n,κ =±t̂1δĤ
′

ñ,κ̃ + #̂′ñ,α̃ (5.3.3)

where

#̂′ñ,α̃ =± 1
24

∫

S1

(
N

∑
s,m=1,s 6=m

(
−ĥñ,κ̃(Γ̂s

sm + ∂m logt̂1)+
∂ ĥñ,κ̃

∂um

)(
∂um

∂X
− ∂us

∂X

)2

±ĥñ−1,κ̃

N

∑
s=1

(
∂us

∂X

)2
)

dX ,

unless (n,κ) = (0,1), in which case

δH
′

0,1 = δĤ
′

0,1−
1
24

∫

S1

N

∑
r,i=1,r 6=i

∂r logt̂1

(
∂ur

∂X
− ∂ui

∂X

)2

dX .

Proof. Recall the transformation properties for the unperturbed Hamiltonians:

hn,κ (t(t̂)) =± 1
t̂1

ĥñ,κ̃(t̂); ñ =





n+1, if α = N,

n, if α 6= 1,N,

n−1, if α = 1,

α̃ =





1, if α = N,

α , if α 6= 1,N,

N, if α = 1.

We use these, combined with the relationship between Christoffel symbols corresponding
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to a pair of metrics related by a conformal transformation. We have

δH
′

n,κ =− 1
24

∫

S1

(
N

∑
r=1

η rr ∂h(n−1,κ)

∂ur

(
∂ur

∂X

)2

+
N

∑
r,p=1,r 6=p

Γp
rr

∂h(n,κ)

∂up

(
∂up

∂X
− ∂ur

∂X

)2
)

dX

=− 1
24

∫

S1
∑
s 6=m

t̂2
1η̂ ss (Γ̂m

ss + ∂s log t̂1
)
(
±1
t̂1

∂ ĥñ,κ̃

∂um
∓ ĥñ,κ̃

t̂2
1

∂mt̂1

)(
∂up

∂X
− ∂ur

∂X

)2

dX

− 1
24

∫

S1
t̂2
1

N

∑
s=1

η̂ ss

(
± 1

t̂1

∂ ĥñ−1,κ̃

∂us
∓ ĥñ−1,κ̃

t̂2
1

∂st̂1

)(
∂us

∂X

)2

dX . (5.3.4)

Now using the fact that t̂1 is the Egoroff potential for the metric η̂ , ∂st̂1 = η̂ss, the above

formula (5.3.3) follows immediately. For the exceptional case (n,κ) = (0,1), note that the

perturbation takes the form

δH
′

0,1 =
1
24

∫

S1
cσ

σ µν
∂ tµ

∂X
∂ tν

∂X
dX =− 1

24

∫

S1

N

∑
r,i=1,r 6=i

ci
iri

(
∂ur

∂X
− ∂ui

∂X

)2

dX .

From the transformation properties of the 4−point functions the result follows immedi-

ately.

5.3.2 Perturbation 2: δH ′′
(n,κ)

The inclusion of a G-function also gives a correction to the Hamiltonians, whose trans-

formation properties will again be investigated in the canonical coordinate system. A

key ingredient in understanding the behaviour of this perturbation is the transformation

properties of the G−function under the inversion symmetry. This was computed for an

arbitrary semi-simple Frobenius manifold by Strachan [63]:

G = Ĝ+

(
N
24
− 1

2

)
logt̂1.

Thus we have all the information we need to compute the action of the inversion symme-

try on this second perturbation.

Proposition 20. In canonical coordinates, the second perturbation to the Hamiltonians

takes the form

δH
′′

n,κ =
∫

S1

N

∑
s=1

η−1
(

∂hn,κ

∂us
,

∂G
∂us

)(
∂us

∂X

)2

dX , (5.3.5)

where η−1 is the metric on T ∗M induced by η .

Proof. This follows from the fact that in canonical coordinates the multiplication diago-

nalises.
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Corollary 5. Under the inversion symmetry, the perturbation δH ′′
n,κ transforms as

δH
′′

n,κ =±t̂1δĤ
′′

n,κ + #̂′′ñ,α̃ (5.3.6)

where

#̂′′ñ,α̃ =∓
∫

S1

N

∑
s=1

(
ĥñ,κ̃

∂ Ĝ
∂us
−
(

∂ ĥñ,κ̃

∂us
− ĥñ,κ̃ ∂s logt̂1

)(
N
24
− 1

2

))(
∂us

∂X

)2

dX ,

unless (n,κ) = (0,1), in which case

δH
′′

0,1 = δĤ
′′

0,1 +

(
N
24
− 1

2

)∫

S1

N

∑
i=1

∂i logt̂1

(
∂ui

∂X

)2

dX

= δĤ
′′

0,1 +

(
N
24
− 1

2

)∫

S1

1
t̂1

∂ t̂σ
∂X

∂ t̂σ

∂X
dX . (5.3.7)

Proof. Combining the above proposition with the transformation properties of the G-

function gives

N

∑
s=1

η−1
(

∂hn,κ

∂us
,

∂G
∂us

)(
∂us

∂X

)2

=
N

∑
s=1

t̂2
1η̂−1

(
± 1

t̂1

∂hn,κ

∂us
∓ ĥñ,κ̃

t̂2
1

∂st̂1,
∂ Ĝ
∂us

+

(
N
24
− 1

2

)
∂s logt̂1

)(
∂us

∂X

)2

=±t̂1
N

∑
i=1

η̂ ii ∂ ĥñ,κ̃

∂ui

∂ Ĝ
∂ui

(
dui

dX

)2

∓ ĥñ,κ̃

N

∑
i=1

∂ Ĝ
∂ui

(
dui

dX

)2

±
(

N
24
− 1

2

) N

∑
i=1

η̂ ii ∂ ĥñ,κ̃

∂ui

(
dui

dX

)2

∓
(

N
24
− 1

2

)
1
t̂1

ĥñ,κ̃

N

∑
i=1

η̂ii

(
dui

dX

)2

.

For the exceptional case (n,κ) = (0,1), note that the perturbation takes the form

δH
′′

0,1 =

∫

S1
ηξνcσξ

µ
∂G
∂ tσ

∂ tµ

∂X
∂ tν

∂X
dX =

∫

S1

N

∑
i=1

∂G
∂ui

(
∂ui

∂X

)2

dX .

Using the transformation properties of the G−function, we have

δH
′′

0,1 =
∫

S1

N

∑
i=1

(
∂ Ĝ
∂ui

+

(
N
24
− 1

2

)
∂i logt̂1

)(
∂ui

∂X

)2

dX

= δ Ĥ ′′0,1 +

(
N
24
− 1

2

)∫

S1

N

∑
i=1

∂i log t̂1

(
∂ui

∂X

)2

dX .
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5.4 Action on Deformed Poisson Prackets

5.4.1 Deformations of the Poisson Brackets in Canonical Coordinates

We follow the ideas of Dubrovin & Zhang, repeating their arguments for the construction

of the perturbations but this time in canonical coordinates. They construct the perturba-

tions in flat coordinates, homogeneous of degree three. Thus, in general we may assume

that the general form of the perturbation in canonical coordinates is of the form

Pi j(u) = Pi j
[0]

(u)+ ε2
(

Pi j
[1]′(u)+ Pi j

[1]′′(u)
)

+O(ε4).

Proposition 21. In canonical coordinates, the first perturbations to the first Poisson

bracket takes the form

Pi j
[1]′(u) = f i j(u)∇3

X +
3
2

∇X( f i j(u))∇2
X +

1
2

∇2
X( f i j(u))∇X , (5.4.1)

where

∑
i, j

f i j(u)
∂

∂ui
⊗ ∂

∂u j
= ∑

i, j,r,s
η rsci j

rs
∂

∂ui
⊗ ∂

∂u j
∈ Γ(TM ⊗TM ,M ).

Proof. Recall first that in the flat coordinates this perturbation takes the form

Pαβ
[1]′ (t) =

ε2

24

(
f αβ (t)∂ 3

X +
3
2

∂X( f αβ (t))∂ 2
X +

1
2

∂ 2
X( f αβ (t))∂X

)
.

This follows from antisymmetry of the Poisson bracket

{F ,G }=

∫

S1

δF

δ tα Pαβ
[1]′

δG

δ tβ dX (5.4.2)

and that the functionals ∫

S1
tγ (X)dX +O(ε4)

span its centre. Secondly, in order for (5.4.2) to define a Poisson bracket, we must have

that f αβ (t) are the components of a tensor of rank (2,0). Finally, we view the operator

∂X as the covariant derivative along the vector field tangent to the image of a loop in

our manifold, written in flat coordinates. Thus in another coordinate system where the

Christoffel symbols are non-zero, we must replace this operator with the appropriate

covariant derivative:

∂X −→ ∇X . (5.4.3)
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For example,

∂X f αβ (t) = ∂X

(

∑
i, j

∂ tα

∂ui

∂ tβ

∂u j
f i j(u(t))

)

= ∑
i, j

(
∂ tα

∂ui

∂ tβ

∂u j
∂X( f i j(u(t))+∂X

(
∂ tα

∂ui

)
∂ tβ

∂u j
f i j(u(t))

∂ tα

∂ui
∂X

(
∂ tβ

∂u j

)
f i j(u(t))

)
.(5.4.4)

Now

∂X

(
∂ tα

∂ui

)
= ∑

k

∂ 2tα

∂ui∂uk

∂uk

∂X
= ∑

j,k

∂ tα

∂u j
Γ j

ik
∂uk

∂X
,

so we can rewrite the above expression (5.4.4) as

∑
i, j

(
∂ tα

∂ui

∂ tβ

∂u j
∂X( f i j(u(t)))+

∂ tβ

∂u j
∑
r,s

∂ tα

∂ur
Γr

is
∂us

∂X
+

∂ tα

∂ui
∑
r,s

∂ tβ

∂ur
Γr

js
∂us

∂X
c

)

= ∑
i, j

∂ tα

∂ui

∂ tβ

∂u j
∇X( f i j(u(t))). (5.4.5)

The covariant derivative along a fixed vector field is a derivation

∇X : Γ(TM
⊗r ⊗T ∗M⊗s

)→ Γ(TM
⊗r ⊗T ∗M⊗s

)

that preserves the rank of tensors. So the array ∇X( f i j) still defines a tensor of rank two,

although its components may now depends on the jets:

∑
i, j

∇X( f i j(u))
∂

∂ui
⊗ ∂

∂u j
= ∑

i, j

( f̃ i j(u,∂Xu))
∂

∂ui
⊗ ∂

∂u j

Therefore we may also replace the higher order derivatives as well:

∂ 2
X −→ ∇2

X ,

∂ 3
X −→ ∇3

X .

Corollary 6. In the canonical coordinates, the flows of the principal hierarchy do not

diagonalize.

Proof. This follows from the fact that the tensor f i j(u) is not diagonal in the canonical

coordinates.
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Remark. Dubrovin’s approach to the theory of Poisson brackets of this form is different

in the following way: He considers Poisson brackets of the form

{H ,F} =

∫

S1

N

∑
α ,β=1

(
δH

δvα

) N

∑
s=1

Aαβ
s ∂ s

X

(
δF

δvβ

)
dX

where the coefficients Aαβ
s are not tensors for s 6= N. As a consequence, under a change

of coordinates their transformations properties are extremely complicated. In my for-

malism, we replace the operators ∂X with covariant ones ∇X , where ∂X is understood as

a vector field on the manifold, that is

{H ,F} =
∫

S1

N

∑
α ,β=1

(
δH

δvα

) N

∑
s=1

Aαβ
s ∇s

X

(
δF

δvβ

)
dX .

Here all the coefficients Aαβ
s are tensors of rank (2,0). The reason for doing this is that

when we come to look at the action of the inversion symmetry, this will make it easier to

compute.

We repeat the idea for the second deformation arising from the inclusion of a G−function.
In the case just considered all the coefficients in the Hamiltonain operator Pi j

[1]′(u) are

functions of f i j(u). For the second perturbation this is not the case.

Proposition 22. In canonical coordinates, the second perturbations to the first Poisson

bracket takes the form

Pi j
[1]′′(u) = ai j(u)∇3

X +

(
3
2

∇X(ai j(u))+ bi j(u,∂Xu)

)
∇2

X +(∇Xbi j(u,∂Xu)+
1
2

∇2
X(ai j(u)))∇X ,

(5.4.6)

where

ai j(u) = 2δ i j(η ii)2 ∂G
∂u j

, bi j(u,∂Xu) = ∇i∇ jG

(
∂ui

∂X
− ∂u j

∂X

)
, (5.4.7)

and we use the abbreviation ∇i = η ii∇i.

Proof. In the flat coordinate system, Dubrovin and Zhang showed that this second per-

turbation takes the form

Pαβ
[1]′′(t) = aαβ (t)∂ 3

X +

(
3
2

∂X(aαβ (t))+ bαβ (t,∂X t)
)

∂X +(∂Xbαβ (t,∂X t)+ ∂ 2
X(aαβ (t)))∂X

where

aαβ (t) = cαβγ ∂G
∂ tγ , bαβ (t,∂X t) =

∂ 2G
∂ tσ ∂ tρ (cασ

µ ηβρ − cβσ
µ ηαρ)

∂ tµ

∂X
.

The expression (5.4.6) then follows in an analogous manner to the calculations carried

out in the proof of Proposition 21.
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5.4.2 The Inversion Symmetry and the Deformed Poisson Brackets

Now that we have expressions for the Poisson brackets in the canonical coordinate sys-

tem we can start to compute how the inversion symmetry acts on them. Just as in the

proof of Proposition 15 presented in Chapter 4, firstly, we must compute how the objects

f i j(u), ai j(u), and bi j(u) behave under the inversion symmetry. The second step will be to

consider the behaviour of their covariant derivatives.

Recall that

f = ∑
i, j

f i j(u)
∂

∂ui
⊗ ∂

∂u j
=

1
12 ∑

i, j,r,s
η rsci j

rs
∂

∂ui
⊗ ∂

∂u j
∈ Γ(TM ⊗TM ,M ).

We need consider the transformation properties of f i j(u) in two stages, according to

whether we are considering diagonal components of f i j(u) or not. Firstly, if i 6= j we have

1
12∑

r
ci jr

r =
1
12

(ci ji
i + ci j j

j ) =
1
12

η iiη j j(ci
i ji + c j

i j j)

=
1
12

η iiη j j(−Γi
i j−Γ j

ji)

=
t̂4
1

12
η̂ iiη̂ j j(−Γ̂i

i j− Γ̂ j
ji)+

t̂4
1

12
(∂i logt̂1 + ∂ j logt̂1)

= t̂4
1 f̂ i j +

t̂3
1

12
(η̂ ii + η̂ j j) (5.4.8)

In the case i = j, we have

f ii =
1
12∑

s
ciis

s =
1
12

(η ii)2∑
s

cs
iis =

1
12

(η ii)2

(

∑
s 6=i

(cs
iis)+ ci

iii

)

=
1
12

(η ii)2

(

∑
r 6=i

(−Γr
ii)−Γi

ii

)
=

1
12

(η ii)2

(

∑
r 6=i

(Γr
ri)−Γi

ii

)

=
t̂4
1

12
(η̂ ii)2

(

∑
r 6=i

(Γ̂r
ri−∂i logt̂1)− Γ̂i

ii + ∂i logt̂1

)

= t̂4
1 f̂ ii− t̂4

1

12
(N−2)(η̂ ii)2∂i logt̂1.

Therefore

f i j(u) = t̂4
1 f̂ i j(u)+ t̂3

1φ̂ i j(u), (5.4.9)

where

φ̂ i j(u) =

{
1
12

(
η̂ ii + η̂ j j

)
, for i 6= j,

1
12(2−N)η̂ ii, for i = j.

It will be useful to also have an expression for the transformation properties in the flat
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coordinate system. Let us denote

φ̂αβ =
N

∑
i, j=1

∂ t̂α

∂ui

∂ t̂β

∂u j
φ̂ i j.

Un-packing this we have

N

∑
i, j=1

∂ t̂α

∂ui

∂ t̂β

∂u j
φ̂ i j =

N

∑
i=1

∂ t̂α

∂ui

∂ t̂β

∂ui
φ̂ ii + ∑

i6= j

∂ t̂α

∂ui

∂ t̂β

∂u j
φ̂ i j

=
1
12

(
(2−N)η̂αβ +

N

∑
i=1

∂ t̂α

∂ui

(
ê(t̂β )− ∂ t̂β

∂ui

)
η̂ ii +

N

∑
j=1

(
ê(t̂α)− ∂ t̂α

∂u j

)
∂ t̂β

∂u j
η̂ j j

)

= − N
12

η̂αβ +
1
12

N

∑
j=1

η̂ j j ∂
∂u j

(δ α1t̂β + δ β1t̂α)

= − N
12

η̂αβ +
1
12

(
δ α1 ∂

∂ t̂β
+ δ β1 ∂

∂ t̂α

) N

∑
i=1

ui. (5.4.10)

Now commutativity of the diagram

f i j(u)
I−→ t̂4

1 f̂ i j(u)+ t̂3
1φ̂ i j(u)

yu 7→ t
yu 7→ t̂

∂ui
∂ tα

∂u j

∂ tβ f αβ (t) −̃→
I

∂ui
∂ tα

∂u j

∂ tβ

(
t̂4
1 f̂ αβ (t̂)+ t̂3

1φ̂αβ (t̂)
)

(5.4.11)

means that in the flat coordinate system we have

f αβ =
∂ tα

∂ t̂ε
∂ tβ

∂ t̂κ
(
t̂4
1 f̂ εκ + t̂3

1
ˆφ εκ
)
, (5.4.12)

where φ̂ εκ are defined by (5.4.10). This follows from the fact that the canonical co-

ordinate system is fixed by the inversion symmetry (recall that the action in canonical

coordinates is by a conformal transformation of the metric η). There is a check we can

perform to make sure the calculation is correct. In the flat coordinates the tensor f αβ = 0

if α = N, or β = N, which follows from the fact that c1αβ are constants. Now by definition

of the inversion symmetry, t1 is a function of t̂1 alone, and so

∂ tN

∂ t̂ε =
δ N

ε
(tN)2 .

Therefore

f Nα = 0⇒ φ̂Nα = 0. (5.4.13)
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We need only check the case (α ,β ) = (N,1) since the others will be satisfied trivially by

the definition (5.4.10). We have

φ̂N1 =− N
12

+
1
12

N

∑
i=1

∂ t̂N

∂ui
η̂ ii =− N

12
+

1
12

N

∑
i=1

η̂iiη̂ ii = 0,

since t̂N is the Egoroff potential for the metric η̂. So the identity (5.4.13) is satisfied.

We also take note of the analogous statement in canonical coordinates. Namely the

endomorphism f i
j(u) induced by lowering one index using the metric is trace free:

N

∑
s=1

φ̂ rs∂st̂1 = 0,
N

∑
s=1

f̂ rs∂st̂1 = 0. (5.4.14)

To see prove the first assertion, we simply un-pack the definition of the tail term φ̂ i j. We

have

N

∑
s=1

φ̂ rs∂st̂1 = ∑
s 6=r

1
12

(
1

∂r t̂1
+

1
∂ t̂s

)
∂st̂1 +

2−N
12

∂rt̂1
∂rt̂1

= ∑
s 6=r

1
12

(
∂st̂1
∂r t̂1

+1

)
+

2−N
12

= (N−1)
1
12
− 1

12
+

2−N
12

= 0,

since ê(t̂1) = 0. To prove the second assertion we write out the expression for the tensor

f i j in canonical coordinates. We have

N

∑
s=1

f̂ rs∂st̂1 =
N

∑
s,i=1

ĉirs
i ∂st̂1 = ∑

i,s

ĉir
is = ∑

i

η̂ ii
(

∑
s

ĉr
iis

)

= ∑
i

η̂ ii
(

∑
s

Γ̂r
is

)
= 0,

as ∇̂(ê) = 0⇒ ∑s Γ̂r
is = 0. The identities (5.4.14) will be useful when we come to let the

operator act on the Hamiltonians, since the components of their exterior derivatives

transform according to

∂hα ,p(u)

∂us
7→ ± 1

t̂1

∂ ĥα̃ ,p̃(u)

∂us
∓ ∂st̂1

t̂2
1

ĥα̃,p̃(u)

under the inversion symmetry. Using the identities (5.4.14) together with ∇̂X ∂st̂1 = 0 it

also follows that

N

∑
s=1

∇̂n
X(φ̂ rs)∂st̂1 = 0,

N

∑
s=1

∇̂n
X(ĥrs)∂st̂1 = 0, for n≥ 0 : (5.4.15)
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By (5.4.14), we have, for example:

0 = ∇̂X

(
N

∑
s=1

φ̂ rs∂st̂1

)
= ∇̂X

(
N

∑
s=1

φ̂ rs

)
∂st̂1 +

N

∑
s=1

φ̂ rs ∇̂X (∂st̂1)︸ ︷︷ ︸
=0

.

The other identities follow analogously.

For the second perturbation, Pi j
[1]′′(u), we must understand the action on the objects

ai j(u) = 2δ i j(η ii)2 ∂G
∂u j

, bi j(u,∂Xu) = ∇i∇ jG
∂

∂X
(ui−u j).

A quick calculation gives

ai j(u) = t̂4
1 âi j(u)+ t̂3

1η̂ i j
(

N
12
−1

)
=: t̂4

1 âi j(u)+ t̂3
1ψ̂ i j(u). (5.4.16)

Therefore in the flat coordinate system we have

aαβ =
∂ tα

∂ t̂σ
∂ tβ

∂ t̂κ

(
t̂4
1 âσκ + t̂3

1ψ̂σκ) for ψ̂αβ (t̂) :=
N

∑
i, j=1

∂ t̂α

∂ui

∂ t̂β

∂u j
ψ̂ i j(u). (5.4.17)

Explicitly,

ψ̂αβ =

(
N
12
−1

)
η̂αβ

The calculation of the transformation properties of the bi j(u) is slightly more involved.

First off,

G = Ĝ+

(
N
24
− 1

2

)
log t̂1⇒ dG = dĜ +

(
N
24
− 1

2

)
d logt̂1,

and so

∇ j

(
∂G
∂ui

)
=

∂ 2Ĝ
∂ui∂u j

−∑
s

Γs
i j

∂ Ĝ
∂us

+

(
N
24
− 1

2

)
∇ j

(
1
t̂1

∂it̂1

)
.

Now use the transformation properties for the Christoffel symbols, and the fact that bi j

is anti-symmetric (this means we only need the transformation properties of Γi
i j and Γ j

i j)
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in the canonical coordinates to get

∇i∇ jG = ∇̂i∇̂ jĜ + ∂i logt̂1∂ jĜ + ∂ j logt̂1∂iĜ

+

(
N
24
− 1

2

){
∂ j

(
η̂ii

t̂1

)
−Γs

i j

(
η̂ii

t̂1

)}

= ∇̂i∇̂ jĜ + ∂i logt̂1∂ jĜ + ∂ j logt̂1∂iĜ +

(
N
24
− 1

2

)

×





− 1

t̂2
1

η̂ j jη̂ii−Γ̂s
i j

(
η̂ss

t̂1

)
+

1
t̂1

∂ jη̂ii

︸ ︷︷ ︸
=0 as ∇̂η̂=0

+∂i logt̂1
η̂ j j

t̂1
+ ∂ j logt̂1

η̂ii

t̂1





(5.4.18)

And so, using the fact that covariant differentiation commutes with the raising and low-

ering of indices, we arrive at

bi j(u,∂Xu) = t̂4
1b̂i j(u,∂Xu)+

{
t̂3
1

(
η̂ j j∂ jĜ + η̂ ii∂iĜ

)

+ t̂4
1η̂ iiη̂ j j

(
N
24
− 1

2

)(
− 1

t̂2
1

η̂ j jη̂ii + ∂i log t̂1
η̂ j j

t̂1
+ ∂ j logt̂1

η̂ii

t̂1

)}
∂

∂X
(ui−u j)

= t̂4
1b̂i j(u,∂Xu)+

{
t̂3
1

(
η̂ j j∂ jĜ+ η̂ ii∂iĜ

)
+ t̂2

1

(
N
24
− 1

2

)}
∂

∂X
(ui−u j)

=: t̂4
1b̂i j(u)+ ω̂ i j(u). (5.4.19)

To find the rule for the transformation properties of bαβ (t), i.e. an explicit formula for

ω̂αβ (t̂) :=
N

∑
i, j=1

∂ t̂α

∂ui

∂ t̂β

∂u j
ω̂ i j(u),

consider the equation (5.4.18) in flat coordinates:

∂ 2G
∂ tσ ∂ tκ =

∂ 2Ĝ
∂ t̂σ ∂ t̂κ +

∂ logt̂1
∂ t̂σ

∂ Ĝ
∂ t̂κ +

∂ log t̂1
∂ t̂κ

∂ Ĝ
∂ t̂σ +

(
N
24
− 1

2

)
∂ logt̂1

∂ t̂σ
∂ logt̂1

∂ t̂κ .

Using this we can compute directly the transformation properties of the bαβ (t):

bαβ (t) =
∂ 2G

∂ tσ ∂ tρ (cασ
µ ηβρ − cβσ

µ ηαρ)
∂ tµ

∂X

=
∂ tα

∂ t̂ε
∂ tβ

∂ t̂ν

{(
∂ 2Ĝ

∂ t̂σ ∂ t̂κ +
∂ log t̂1

∂ t̂σ
∂ Ĝ
∂ t̂κ +

∂ log t̂1
∂ t̂κ

∂ Ĝ
∂ t̂σ +

(
N
24
− 1

2

)
∂ logt̂1

∂ t̂σ
∂ logt̂1

∂ t̂κ

)

× t̂4
1

(
ĉεσ

µ η̂νρ− ĉνσ
µ η̂ερ) ∂ t̂µ

∂X

}

=
∂ tα

∂ t̂ε
∂ tβ

∂ t̂ν

(
t̂4
1b̂εν + ω̂εν) ,
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for

ω̂εν = t̂3
1

((
δ ε

µ η̂νρ−δ ν
µ η̂ερ) ∂ Ĝ

∂ t̂ρ +
(
δ ν1ĉεσ

µ −δ ε1ĉνσ
µ
) ∂ Ĝ

∂ t̂σ

)
∂ t̂µ

∂X
+ t̂2

1

(
N
24
− 1

2

)(
δ ν1∂ t̂ε

∂X
−δ ε1∂ t̂ν

∂X

)
.

Let us now turn our attention to the behaviour of the covariant derivatives.

∇X f i j(u). Since this is the first computation of this nature we’ll go through it step by step.

Firstly, we compute the covariant derivatives of h along the basic vector fields ∂/∂ui. Be-

cause of the index-dependence of the transformation properties of the Christoffel sym-

bols, we must decompose the calculations accordingly. Consider first the off-diagonal

components of h in the canonical coordinate system. Suppose s, i and j are all distinct.

∇s f i j = ∂s f i j +
N

∑
k=1

(Γi
skhk j + Γ j

skhik)

= ∂s f i j + Γi
ss f s j + Γi

si f i j + Γ j
s j f i j + Γ j

ss f is

= ∂s f i j +(Γ̂i
ss + ∂s logt̂1) f s j +(Γ̂i

si−∂s log t̂1) f i j

+(Γ̂ j
s j−∂s logt̂1) f i j +(Γ̂ j

ss + ∂s log t̂1) f is

= ∇̂s f i j + ∂s logt̂1( f s j + f is−2 f i j).

We also have

∇i f i j = ∂i f i j +
N

∑
k=1

(Γi
ikhk j + Γ j

ikhik)

= ∂i f i j + Γi
ii f i j + ∑

k 6=i

Γi
ikhk j + Γ j

i j f i j + Γ j
ii f ii

= ∂i f i j +(Γ̂i
ii−∂i log t̂1) f i j + ∑

k 6=i

(Γ̂i
ik−∂k logt̂1) f k j

+(Γ̂ j
i j−∂i log t̂1) f i j +(Γ̂ j

ii + ∂i logt̂1) f ii

= ∇̂i f i j−
N

∑
k=1

∂k logt̂1hk j + ∂i log t̂1( f ii− f i j)

= ∇̂i f i j + ∂i logt̂1( f ii− f i j) by identity (5.4.14) (5.4.20)
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Therefore, for i 6= j

∇X f i j =
N

∑
s=1

∂us

∂X
∇s f i j

= ∇̂X f i j + ∑
s 6=i, j

∂us

∂X
∂s logt̂1( f s j + f is−2 f i j)

+
∂ui

∂X
∂i logt̂1( f ii− f i j)+

∂u j

∂X
∂ j logt̂1( f j j− f i j)

= ∇̂X f i j−2∂X log t̂1 f i j +
1
t̂1

∂ui

∂X
∂it̂1( f i j + f ii)+

1
t̂1

∂u j

∂X
∂ jt̂1( f i j + f j j)

+
1
t̂1

∑
s 6=i, j

∂us

∂X
∂st̂1( f s j + f is)

= ∇̂X f i j−2∂X log t̂1 f i j +
1
t̂1

N

∑
s=1

∂us

∂X
∂st̂1( f s j + f is). (5.4.21)

The case i = j is easier since there are less sub-cases to consider. Quick calculations give

∇s f ii = ∇̂s f ii +2∂s logt̂1 f si−2∂s log t̂1 f ii,

∇i f ii = ∇̂i f ii−2∂i logt̂1 f ii−2∑
s 6=i

∂s log t̂1 f si

which imply

∇X f ii = ∇̂X f ii−2∂X log t̂1 f ii +2∑
s 6=i

∂us

∂X
∂s log t̂1 f si−2

∂ui

∂X ∑
s 6=i

∂s logt̂1 f si

= ∇̂X f ii−2∂X log t̂1 f ii +2
N

∑
s=1

∂us

∂X
∂s logt̂1 f si by identity (5.4.14) (5.4.22)

In conclusion

∇X f i j = ∇̂X f i j−2∂X log t̂1 f i j +
1
t̂1

(
N

∑
s=1

∂us

∂X
∂st̂1( f is + f s j)

)
. (5.4.23)

Now compose this with the transformation law (5.4.9) to get

∇X f i j = t̂4
1∇̂X f̂ i j + t̂3

1∇̂X φ̂ i j +2t̂3
1∂X t̂1 f̂ i j + t̂2

1∂X t̂1φ̂ i j +
1
t̂1

N

∑
s=1

∂us

∂X
∂st̂1

(
t̂4
1( f̂ s j + f̂ is)+ t̂3

1(φ̂ s j + φ̂ is)
)
.

Expanding,

t̂3
1

N

∑
s=1

∂us

∂X

(
f̂ j
s + f̂ i

s

)
= t̂3

1


∇̂X φ̂ i j− N

12
δ i j ∇̂X η̂ ii

︸ ︷︷ ︸
=0


 ,
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t̂2
1

N

∑
s=1

∂us

∂X
∂st̂1

(
φ̂ is + φ̂ s j) =

t̂2
1

12

(
η̂ ii + η̂ j j)∂X t̂1 +

t̂2
1

6
∂X

(
N

∑
s=1

us

)
− Nt̂2

1

12
∂X(ui + u j)

= t̂2
1∂X t̂1φ̂ i j +

t̂2
1

6
∂X

(
N

∑
s=1

us

)
− Nt̂2

1

12

(
∂X(ui + u j)−δ i jη̂ ii∂X t̂1

)
.

Hence

∇X f i j = t̂4
1

(
∇̂X +2∂X logt̂1

)
f̂ i j +2t̂3

1

(
∇̂X + ∂X logt̂1

)
φ̂ i j

+
t̂2
1

6
∂X

(
N

∑
s=1

us

)
− Nt̂2

1

12

(
∂X(ui + u j)−δ i jη̂ ii∂X t̂1

)
. (5.4.24)

In the flat coordinate system, this reads

∂X f αβ =
∂ tα

∂ t̂σ
∂ tβ

∂ t̂ε

(
t̂4
1(∂X +2∂X logt̂1)ĥ

σε +
t̂3
1

6
(∂X + ∂X logt̂1)

{
δ σ1 ∂

∂ t̂ε
+ δ ε1 ∂

∂ t̂σ

} N

∑
i=1

ui

+
Nt̂2

1

12

{
δ ε1 ∂ t̂σ

∂X
+ δ σ1∂ t̂ε

∂X
−∂X t̂1η̂εσ

})
+

t̂2
1

6
∂X

N

∑
i=1

ui. (5.4.25)

The appearance of terms of the form ∑i ui is intriguing. In the flat coordinate system

it has the following interpretation. Let U : TM → TM , X 7→ E ◦X . Then the canonical

coordinates are the eigenvalues of this operator, and the trace is their sum:

N

∑
i=1

ui = tr(U ε
ν ) ; U

ε
ν := Eσ cε

σν .

∇X ai j(u). Somewhat simpler calculations (recall that a diagonalizes in the canonical co-

ordinates) give

∇sa
ii = ∇̂sa

ii−2∂s log t̂1aii, for s 6= i,

∇ia
ii = ∇̂ia

ii−2∂i logt̂1aii.

Hence

∇X ai j = t̂4
1∇̂X âi j +2t̂3

1∂X t̂1âi j + t̂2
1∂X t̂1ψ̂ i j. (5.4.26)

5.4.3 The Action on the Sections ∇X dhα,p and ∇2
X dhα,p.

The final ingredient we need is the action on the 1-forms ∇X dhα ,p and ∇2
Xdhα ,p. Again, we

will use canonical coordinates to do the calculations.
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∇X dhα ,p. Recall that the Hamiltonian densities satisfy the recursion relations

∇i∇ jhα ,p = δ k
i δ k

j ∇khα ,p−1. (5.4.27)

We use this to obtain in canonical coordinates

∇X

(
∂hα ,p

∂ui

)
=

N

∑
s=1

∂us

∂X
∇s∇ihα ,p

=
∂ui

∂X
∇ihα ,p−1 using (5.4.27). (5.4.28)

Note the particular case
∂ui

∂X
∂it1 = ∇X

(
∂h1,1

∂ui

)
. (5.4.29)

Using the transformation properties of the exterior derivatives dhα ,p together with (5.4.28)

it is straightforward to compute the action on ∇X dhα ,p:

∂ui

∂X
∇ihα ,p−1 =

∂ui

∂X

(
± 1

t̂1
∇̂iĥα̃ ,p̃−1∓

1

t̂2
1

∂it̂1ĥα̃ ,p̃−1

)

= ± 1
t̂1

∇̂X

(
∂hα̃ ,p̃

∂ui

)
∓ 1

t̂2
1

∇̂X

(
∂h1,1

∂ui

)
hα̃,p̃−1, (5.4.30)

where in the last step we have used the identity (5.4.29). The coordinate free expression

is:

∇X (dhα ,p) =± 1
t̂1

∇̂X
(
dĥα̃ ,p̃

)
∓ 1

t̂2
1

∇̂X
(
dĥ1,1

)
ĥα̃ , ˜p−1 (5.4.31)

This agrees with the earlier results when we investigated the action of the inversion

symmetry on the dispersionless principal hierarchy. The above expression is essentially

those transformation properties.

∇2
X dhα ,p. We first obtain an expression for the ith component of the section ∇2

X dhα ,p in

canonical coordinates and then apply the inversion symmetry. Using the recursion rela-

tion (5.4.27) we have

∇2
X (∂ihα ,p) = ∇X

(
∂ui

∂X
∇ihα ,p−1

)

= ∇2
X ui∇ihα ,p−1 + ∂Xui∇X ∇ihα ,p−1

= ∇2
X ui∇ihα ,p−1 +(∂Xui)

2∇ihα ,p−2. (5.4.32)

Hence we need to calculate the transformation properties of ∇2
X ui. We treat ∂X ui as

a vector field and compute its covariant derivative accordingly, and so as above the

transformation properties of the Christoffel symbols will then dictate the transforma-

tion properties of ∇2
X ui. Due to the index dependence of the transformation properties
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of the Christoffel symbols we will decompose the calculation as follows. Let v = ∑i v
i∂i ∈

Γ(TM ,M ). Suppose s 6= i. Then

∇sv
i = ∂sv

i +
N

∑
p=1

Γi
psv

p

= ∂sv
i + Γi

isv
i + Γi

ssv
s

= ∂sv
i +
(
Γ̂i

is−∂s logt̂1
)

vi +
(
Γi

ss + ∂s log t̂1
)

vs

= ∇̂sv
i + ∂s logt̂1(v

s− vi).

If s = i then

∇iv
i = ∂iv

i +
N

∑
p=1

Γi
piv

p

= ∂iv
i + Γi

iiv
i + ∑

p6=i

Γi
piv

p

= ∂iv
i +
(
Γ̂i

ii−∂i logt̂1
)

vi + ∑
p6=i

(
Γ̂i

pi−∂p log t̂1
)

vp

= ∇̂iv
i−∂i logt̂1vi−∑

p6=i

∂p logt̂1vp.

Hence

∇Xvi = ∇̂X vi +∑
s 6=i

∂X us
(
∂s logt̂1(v

s− vi)
)
+ ∂X ui

(
−∂i logt̂1vi−∑

s 6=i

∂s log t̂1vs

)

= ∇̂X vi−∂X logt̂1vi +∑
s 6=i

∂s logt̂1vs(∂X(us−ui)). (5.4.33)

Now, for the particular case vi = ∂X ui, we get

∇2
X ui = ∇̂2

X ui−2∂X logt̂1∂Xui +
n

∑
s=1

∂s logt̂1(∂X us)
2. (5.4.34)

We can re-write this as

∇2
X ui = ∇̂2

X ui−2∂X logt̂1∂Xui +
1
t̂1

η̂(∂Xu,∂Xu).
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Now we have all the ingredients to invert (5.4.32). We get

∇2
X(∂ihα ,p) =

(
∇̂2

X ui−2∂X logt̂1∂X ui +
1
t̂1

η̂(∂X u,∂X u)

)(
± 1

t̂1
∇̂iĥα̃,p̃−1∓

1

t̂2
1

∂it̂1ĥα̃ ,p̃−1

)

+(∂X ui)
2
(
± 1

t̂1
∇̂iĥα̃ ,p̃−2∓

1

t̂2
1

∂it̂1ĥα̃ ,p̃−2

)

= ± 1
t̂1

(
∇̂X −2∂X logt̂1

)
∇̂X(∂iĥñ,α̃)∓ ĥα̃ ,p̃−1

t̂2
1

(
∇̂X −2∂X logt̂1

)
∇̂X
(
∂iĥ1,1

)

+η̂(∂X u,∂X u)

(
± 1

t̂1
∂iĥα̃,p̃−1∓

1

t̂2
1

∂it̂1ĥα̃ ,p̃−1

)
∓ 1

t̂2
1

∂X ui∇̂X(∂iĥ1,1)ĥα̃ ,p̃−2.(5.4.35)

The first two terms appear to mimic those of (5.4.31), while the meaning of the latter two

is more mysterious.

Confirmation of the action on ∇X . We will show how to confirm (5.4.31) using the

conformal geometry approach. Let us recall briefly how the covariant derivatives of two

one-forms are related via the inversion symmetry. Let φ = ∑i φidui ∈Γ(T ∗M ,M ). Suppose

i 6= j.

∇ jφi = ∂ jφi−
N

∑
s=1

Γs
jiφs = ∂ jφi−Γ j

jiφ j−Γi
jiφi

= ∂ jφi = ∂ jφi−
(

Γ̂ j
ji−∂i logt̂1

)
φ j−

(
Γ̂i

ji−∂ j logt̂1
)

φi

= ∇̂ jφi + ∂i logt̂1φ j + ∂ j log t̂1φi. (5.4.36)

If i = j, we have

∇iφi = ∂iφi−
N

∑
s=1

Γs
iiφs = ∂iφi−Γi

iiφi = ∑
s 6=i

Γs
iiφs

= ∂iφi−
(
Γ̂i

ii−∂i log t̂1
)

φi−∑
s 6=i

(
Γ̂s

ii + ∂i logt̂1
)

φs

= ∇̂iφi + ∂i logt̂1φi−∂i logt̂1∑
s 6=i

φs. (5.4.37)

Therefore,

∇Xφi =
N

∑
s=1

∂us

∂X
∇sφi =

∂ui

∂X
∇iφi +∑

s 6=i

∂us

∂X
∇sφi

= ∇̂X φi +
∂ui

∂X

(
∂i log t̂1φi−∂i logt̂1∑

s 6=i

φs

)
+∑

s 6=i

(∂i log t̂1φs + ∂s log t̂sφi)
∂us

∂X

= ∇̂X φi + ∂X logt̂1φi + ∂i logt̂1∑
s 6=i

φs
∂

∂X
(us−ui). (5.4.38)
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From this calculation we just obtain the transformation properties of the operator ∇̂X

acting on 1-forms.

Consider the case φi = ∂ihα ,p. Using the transformation properties of the functions {hα ,p},
and the fact that e(hα ,p) = hα ,p−1, we have

∑
s 6=i

∂shα ,p = hα ,p−1−∂ihα ,p,

and the expression (5.4.38) becomes:

∇X (∂ihα ,p) = ∇̂X (∂ihα ,p)+ ∂X logt̂1∂ihα ,p + ∂i logt̂1∂X hα ,p−
∂ui

∂X
∂i logt̂1hα ,p−1. (5.4.39)

Composition with the transformation properties of the {hα ,p}gives:

∇̂X (∂ihα ,p) = ∇̂X

(
± 1

t̂1
∂iĥñ,α̃ ∓

1

t̂2
1

∂it̂1ĥñ,α̃

)

= ± 1
t̂1

∇̂X ĥñ,α̃ ∓
1

t̂2
1

∂X t̂1ĥñ,α̃ ±
2

t̂3
1

∂X ∂it̂1ĥñ,α̃ ∓
1

t̂2
1

∂it̂1∂X ĥñ,α̃ . (5.4.40)

Note the use of the identity ∇̂X ∂it̂1 = 0, which may be interpreted as the fact the ∇̂ is a

metric connection, or that the function t̂1 is a flat coordinate for the metric η̂. We also

have

∂X logt̂1∂ihα ,p = ∂X logt̂1

(
± 1

t̂1
∂iĥñ,α̃ ∓

1

t̂2
1

∂it̂1ĥñ,α̃

)
,

∂i logt̂1∂X hα ,p = ∂i log t̂1

(
± 1

t̂1
∂X ĥñ,α̃ ∓

1

t̂2
1

∂X t̂1ĥñ,α̃

)
.

This means, perhaps quite remarkably, that

∇̂X (∂ihα ,p)+ ∂X logt̂1∂ihα ,p + ∂i log t̂1∂X hα ,p =± 1
t̂1

∇̂X ∂iĥñ,α̃ . (5.4.41)

Finally we get

∇X (∂ihα ,p) =± 1
t̂1

∇̂X(∂iĥñ,α̃)∓ 1

t̂2
1

∂ui

∂X
∂it̂1ĥα̃ ,p̃−1, (5.4.42)

which, upon use of (5.4.29), verifies (5.4.31). The point of this approach is that it can

now, at least in theory, be extended to compute the transformation properties of higher

covariant derivatives of the sections {dhα ,p}.
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5.5 The Inversion Symmetry and the Principal Hierarchy at

Genus One

We have now built a library of transformation properties of all the components in the

Hamiltonian representation of the principal hierarchy. Therefore let us now state the

main Theorems of this chapter.

Theorem 11. The perturbation to the flows

∂ui

∂T n,α
[1]′

= ε2η ii∇X

(δH ′
n,α

δui

)
+ ε2∇X

(
N

∑
s=1

f is∇2
X

(
∂hn,α

∂us

)
+

1
2

N

∑
s=1

∇X f is∇X

(
∂hn,α

∂us

))
+O(ε4).

arising from the transformation

tα(T ) = vα(T )+ ε2 ∂ 2

∂T α ,0∂T 1,0 [
1
24

logdetcµνσ tσ
X ]t=v(T ) +O(ε4),

transforms under the inversion symmetry as

∂ui

∂T n,α
[1]′

= σ̂ (1)
ñ,α̃ ; i + ∇̂X σ̂ (2)

ñ,α̃; i−∂X logt̂1σ̂ (2)
ñ,α̃; i + ∑

s 6=i

∂s logt̂1σ̂ (2)
ñ,α̃ ; s∂x(us−ui)+O(ε4),

where

σ̂ (1)
ñ,α̃ ; i = t̂2

1η̂ ii∇̂X

(
δ #̂′ñ,α̃

δui

)
+2t̂1∂X t̂1∆̂H

′
ñ,α̃ ± t̂2

1η̂ ii∂X t̂1
δ ∆̂H

′
ñ,α̃

δui
+ t̂1∂X t̂1η̂ ii

δ #̂′ñ,α̃

δui

+t̂1∑
s 6=i


±t̂1

δ ∆̂H
′
ñ,α̃

δus
+

δ #̂′ñ,α̃

δus


∂X(us−ui)

σ̂ (2)
ñ,α̃ ; i =

N

∑
s=1

(
t̂4
1ĥis + t̂3

1φ̂ is)
{
± 1

t̂1
(∇̂X −2∂X logt̂1)∇̂X

(
∂sĥñ,α̃

)

∓ 1

t̂2
1

ĥñ,α̃(∇̂X −2∂X log t̂1 +
1

t̂2
1

∂X us)(∇̂X ∂sĥ1,1)±
1

t̂2
1

η(∂X u,∂X u)(∂sĥα ,p−1)

}

±1
2

N

∑
s=1

(
t̂4
1(∇̂X +2∂X logt̂1)ĥ

is +2t̂3
1(∇̂X + ∂X logt̂1)φ̂ is− N

12
t̂1
(
∂X(ui + us)−δ isη ss∂X t̂1

))

×
{

1
t̂1

∇̂X(∂sĥñ,α̃)− ∇̂X(∂ jĥ1,1)ĥñ−1,α̃

}
,

f̂ i j, φ̂ i j are as above, and

ñ =





n+1, if α = N,

n, if α 6= 1,N,

n−1, if α = 1,

α̃ =





1, if α = N,

α , if α 6= 1,N,

N, if α = 1,

±=

{
+, if α = N,

−, else.
(5.5.1)
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Theorem 12. The perturbation to the flows

∂ui

∂T n,α
[1]′′

= ε2η ii∇X

(δH ′′
n,α

δui

)

+ε2∇X

(
N

∑
s=1

ais∇2
X

(
∂hn,α

∂us

)
+

(
1
2

N

∑
s=1

∇X ais + bis

)
∇X

(
∂hn,α

∂us

))
+O(ε4).

arising from the transformation

tα(T ) = vα(T )+ ε2 ∂ 2

∂T α ,0∂T 1,0 [G(t)]t=v(T ) +O(ε4),

transforms under the inversion symmetry as

∂ui

∂T n,α
[1]′

= ε̂ (1)
ñ,α̃ ; i + ∇̂X ε̂ (2)

ñ,α̃; i−∂X logt̂1ε̂ (2)
ñ,α̃ ; i + ∑

s 6=i

∂s logt̂1ε̂ (2)
ñ,α̃ ; s∂x(us−ui)+O(ε4),

where

ε̂ (1)
ñ,α̃ ; i = t̂2

1η̂ ii∇̂X

(
δ #̂′′ñ,α̃

δui

)
+2t̂1∂X t̂1∆̂H

′′
ñ,α̃ ± t̂2

1η̂ ii∂X t̂1
δ ∆̂H

′′
ñ,α̃

δui
+ t̂1∂X t̂1η̂ ii

δ #̂′′ñ,α̃

δui

+t̂1∑
s 6=i


±t̂1

δ ∆̂H
′′
ñ,α̃

δus
+

δ #̂′′ñ,α̃

δus


∂X(us−ui)

ε̂ (2)
ñ,α̃ ; i =

N

∑
s=1

(
t̂4
1âis + t̂3

1ψ̂ is)
{
± 1

t̂1
(∇̂X −2∂X logt̂1)∇̂X

(
∂sĥñ,α̃

)

∓ 1

t̂2
1

ĥñ,α̃(∇̂X −2∂X log t̂1 +
1

t̂2
1

∂X us)(∇̂X ∂sĥ1,1)±
1

t̂2
1

η(∂X u,∂X u)(∂sĥα ,p−1)

}

±1
2

N

∑
s=1

(
1
2

(
t̂4
1(∇̂X +2∂X logt̂1)â

is + t̂2
1∂X t̂1ψ̂ is

)
+ t̂4

1b̂is + ω̂ is
)

×
{

1
t̂1

∇̂X(∂sĥñ,α̃)− ∇̂X(∂ jĥ1,1)ĥñ−1,α̃

}
.

and âi j, b̂i j, ψ̂ i j, ω̂ i j, ñ and α̃ are as above.

Remarks. Note that schematically both theorems state that the flows are mapped to

themselves, up to a conformal factor and the addition of an appropriately defined vector

field:
∂ui

∂T n,α
[1]′

=±t̂3
1

∂ui

∂ T̂ ñ,α̃
[1]′

+ v̂ñ,α̃ ; i.

One drawback of the approach presented by Dubrovin & Zhang is that the complexity

of the expressions grows rapidly; for the modular Frobenius manifold first presented in
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Example 5 even the perturbations δH ′
1,α , δH ′′

1,α are becoming unmanageable. Secondly,

as with their expression for the genus two free energy presented in [22], the scope of the

Theorems 11, 12 remains at this stage abstract: we are restricted to computing examples

where the canonical coordinates are known explicitly. Such examples also happen to be

those for which the perturbations take on an extremely simple form, and a lot of the

structure derived above is not present.

Let us consider a slightly different approach that could be used to independently

verify the results of this chapter. Liu, Xu, & Zhang [41] computed the transformation

properties of the genus one free energy,

F̂
[1](t̂,∂X t̂) = F

[1](t,∂X t)− N
24

logt1. (5.5.2)

Dubrovin & Zhang’s deformed Hamiltonians are given by [23]

δH
′

n,α +H
′′

n,α =
∂ 2F [1](t̂,∂X t̂)

∂X∂T n,α .

Thus using the transformation properties of the vector fields given in Proposition (16),

combined with the relation (5.5.2) one could independently verify the results of Propo-

sitions (19) and (20). The drawback of this approach is that tackling the transformation

properties of the Poisson brackets in this framework appears to be more vexatious.



Outlook

The main theme of this thesis has been to study how the inversion symmetry singles

out a special class of solution to the WDVV equations: modular Frobenius manifolds. In

addition to the specific points raised earlier, there are two major avenues for further

research that stem from this work:

1. Classification of modular Frobenius manifolds;

2. Construction of dispersive evolution equations with modular symmetry.

More specifically, in Chapter 2 we defined, and set out a program for classification of,

modular Frobenius manifolds. We used the homogeneity and modular properties of the

prepotential to construct an ansatz for the WDVV equations. As the dimension of the

Frobenius manifold increases the number of terms present in our ansatz grows rapidly

(particularly for the homogeneous cases), and finding all the solutions of WDVV for a

given ansatz becomes computationally unmanageable. An obvious avenue for further ex-

ploration would be to try to refine our ansatz by using not just the invariance under the

inversion symmetry, but the full SL(2,Z) action. It may also be of interest to place con-

straints on the behaviour of the pivot functions (which define the Rankin derivative in the

corresponding modular dynamical system) at τ = i∞, and obtain classification results for

modular Frobenius manifolds with specified analytic properties. It is also worth pointing

out that all the modular Frobenius manifolds in the literature have an interesting level

of symmetry between the polynomial variables. Perhaps this can be explained by more

sophisticated representation theoretic techniques.

All the systems found in Chapter 2 are of rank 3, and are equivalent (sometimes via a

non-linear change of variables) to a quadratic system. As already mentioned, if progress

towards classification is to be made in higher dimensions is to be made, the reasons

for this must be understood. Ohyama [49] has shown how a given quadratic system of

rank 3 is naturally associated to a second order Fuchsian ODE (like the hypergeometric

equation). It would be interesting to see if one can find explicit formulas for the structure

constants of these quadratic systems in terms of the structure constants of the Frobenius

algebras.
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It would also be interesting to try and construct the almost dual prepotentials for

the modular Frobenius manifolds of Chapter 2. The almost dual solutions should fall

within the class found by Riley & Strachan [51]. Explicit verification of this statement

for the modular Frobenius manifolds of Chapter 2 would help to provide understanding

of the geometric origins of these Frobenius manifolds. An associated problem would be

to construct the Landau-Ginzburg superpotentials for these solutions.

The action of the inversion symmetry on the dispersionless principal hierarchy is now

completely understood: it acts as a reciprocal transformation. This reciprocal transfor-

mation should also be present at the level of the fully dispersive hierarchies, and it would

be nice to obtain some explicit results. Chapter 5 shows how the flows behave at genus

one, and in particular the results depend on the transformation properties of F [1]. In

their work [41], Zhang et. al. presented a conjecture for how the genus-g generating

functions F [g] transform under the inversions symmetry for all g≥ 0. Understanding the

action of the inversion symmetry on Dubrovin & Zhang’s universal loop equation ([24],

Theorem 3.10.31) would be key to proving this conjecture, and in turn perhaps allow one

to obtain explicit results for how the fully dispersive hierarchies are related.
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