
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 
Maxwell, Fraser (2013) The influence of biological ageing in the 
pathogenesis of colorectal cancer. MD thesis. 
 
 
 
http://theses.gla.ac.uk/4264/ 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4264/


 
 

The Influence of Biological Ageing in 
the Pathogenesis of Colorectal Cancer 

 
 
 
 
 

 
Fraser Maxwell 

BSc (Hons) MBChB (Hons) 
 
 
 

 
 

Submitted in fulfilment of the requirements for the Degree of Doctor of Medicine 
 
 
 
 

 
 
 

University of Glasgow 
 

College of Medical, Veterinary & Life Sciences 
 

Department of Surgery 
 
 

February 2013 
 
 
 
 
 
 
 
 



2 
 
SUMMARY 
 

Despite improvements in risk factor awareness, diagnosis and enhanced management 

strategies, the incidence and five year survival of colorectal cancer, has remained largely 

unchanged over the last twenty years.  As with many epithelial cancers, a preponderance of 

new colorectal cancer diagnoses occur in the over sixty five age group, making 

chronological age a strong risk factor.  Given this indelible link between ageing and cancer 

in general, genetic pathways which are implicated in one process could influence the other. 

Thus, an understanding of the biology of ageing and factors which regulate it may provide 

insight into cancer pathogenesis.  

 

Telomeres are nucleo-protein complexes sited at the ends of all chromosomes and have a 

critical function in the protection of the genome. Telomeres are implicated in the ageing 

process as a result of the inadequacies of the DNA replication machinery in somatic cells 

meaning that a section of telomeric DNA sequence is lost during each round of cell 

division, thus telomere length reduces with age and is a putative marker of biological 

ageing. Control of telomere length is complex and involves interplay between a number of 

genetic and environmental factors, of which oxidative stress is particularly important. 

However, critically short and hence dysfunctional telomeres have been implicated in 

cancer development through an inability to maintain genomic intergrity and an effect on 

senescence.  

 

Telomeres play an integral role in the sensing and repair of DNA damage, however, cells 

must possess a finely tuned mechanism through which they can sense DNA damage and 

initiate a response. This usually involves the activation of cell cycle checkpoints, either 

temporarily to allow repair, or on an irreversible basis to prevent the clonal expansion of 

cells with deleterious mutations. If the damage is deemed irrepairable apoptotic pathways 

are initiated.  The sirtuins are a group of genes first discovered and shown to control 

longevity in saccharomyces cerevisiae. Intense work has defined seven mammalian 

homologs termed SIRT1-7 which vary in their sub-cellular localisation, and have critical 

cellular functions ranging from the control of apoptosis, mitochondrial biogenesis, glucose 

and lipid metabolism, maintenance of genomic integrity and cell cycle control. Given these 

functions it is therefore no surprise that aberrancy of sirtuin expression is implicated in 

ageing and its commonly related diseases, particularly cancer. The aim of this study was 
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therefore, to determine if patients with colorectal cancer display aberrancy of ageing 

related factors, namely telomere biology and sirtuin expression. 

 

This study was undertaken using two sources of material for investigation. Quantitative-

PCR was utilised to measure telomere length in the peripheral blood leucocytes of 64 

colorectal cancer patients and 1348 controls. In addition, telomere length was similarly 

measured in colorectal cancer tumour and normal adjacent tissue. Telomere length was 

then correlated with a number of clinical and pathological parameters to determine 

diagnostic or prognostic utility. Furthermore, an attempt was made to establish whether 

telomere lengths were reflected in circulating mediators of inflammation and redox control 

factors, including fetuin-A a circulating modulator of calcium homeostasis. Sirtuin relative 

transcriptional expression (SIRT1-7) was then measured in the tumour and normal tissue 

samples. Clinically relevant information was derived by analysing the SIRT1-7 

transcriptional data in terms of clinico-pathological, inflammatory and outcome variables. 

Finally, sirtuin expression was correlated with other factors known to be involved with 

biological ageing to determine any potential association. 

 

Colorectal cancer patients had significantly shorter telomeres in their peripheral blood 

leucocytes (adjusted mean RelT/S=0.61) compared with chronologically older controls 

(mean age 75, adjusted mean RelT/S=0.70) (ANCOVA, p=0.004), indicating colorectal 

cancer patients were biologically older than their control counterparts. In addition, 

telomere length in tumour tissue (median=0.43, IQR=0.40) was significantly shorter than 

adjacent normal tissue (median=0.65, IQR=0.28) (p=0.004). Patients with low plasma 

fetuin-A levels were shown to have significantly shorter telomeres (p=0.041) and patients 

with rectal tumours had significantly higher levels of fetuin-A than those with colonic 

tumours (p=0.045). There was no correlation between telomere length and other redox 

factors, namely anti-oxidant vitamins, micronutrients and divalent cations. There was, 

however, a significant association between telomere length and systemic inflammation as 

determined by the neutrophil to lymphocyte ratio.  

 

SIRT 1-7 were differentially expressed between tumour and normal tissue, with significant 

attenuation evident in tumour samples when compared with normal tissue (p<0.0001 

except SIRT2 p=0.003). SIRT2 (p=0.021) and SIRT4 (p=0.027) expression in tumour 

samples, was significantly associated with anatomical tumour site and pathologically 

determined nodal status respectively. Whilst, SIRT3 expression in normal tissue correlated 
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with pro-inflammatory status, indicated by higher serum CRP levels. Finally, there was a 

significant inverse relationship with colorectal cancer tissue telomere length and SIRT3. 

When overall survival was considered, Kaplan-Maier analysis revealed a significant 

difference in survival in relation to SIRT4 expression levels.   

 

We have observed that patients with colorectal cancer display clear evidence of telomere 

attrition compared with controls. This is congruent with accelerated biological ageing in 

the pathogenesis of colorectal cancer and indicates cancer patients have ‘more miles on the 

clock’. An imbalance in redox control mechanisms and calcium homeostasis may be a 

contributing factor to telomere dynamics in these patients. The demonstration of attenuated 

sirtuin expression in colorectal cancer suggests a role as potential tumour suppressors and 

provides further evidence implicating biological ageing in the oncogenic process. 

Furthermore, plasma fetuin-A and tissue SIRT2 expression levels can be used to 

distinguish between colon and rectal cancers, providing further information regarding the 

molecular characteristics of these tumours. Telomere biology and the sirtuins could both 

play a pivotal role in the MTR (Mitochondria Telomere Ribosome biogenesis) paradigm, 

aberrancy of which could explain the apparent link between biological ageing and cancer. 

Enhancement of the understanding of the determinants of telomere length could mean that 

manipulation could lead to reduced colorectal cancer risk at the population level. In 

addition, the data provided in this thesis strengthens the evidence base which suggests that 

targeting individual sirtuins could be a future chemotherapeutic strategy, or indeed prove 

useful as markers of prognosis.  
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alpha 
PI3-k Phosphatidylinositol-3 kinase 
PPARγ Peroxisome proliferator-activated receptor Gamma 
PUMA P53 Up-regulated Modulator of Apoptosis 
Rap1 Repressor activator protein 1 
RENT Regulator of Nucleolar silencing and Telophase exit 
ROS Reactive Oxygen Species 
rDNA Ribsosomal DNA 
SOD Superoxide dismutase 
SNP Single Nucleotide Polymorphism 
SUN1 Sad1/UNC-84 homology 1 
Wnt Wingless-related MMTV integrated site 
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CHAPTER 1:  INTRODUCTION 

1.1 Ageing  

Interest in the field of ageing has increased exponentially in the last few decades. The 

reasons for this are multi-factorial and include intellectual curiosity, significant 

observations stimulating new and more complex discoveries, and probably most 

importantly the increase in the average human lifespan as a result of ‘epidemiological 

transition’. This transition has occurred in two stages the first of which resulted from 

improvements in public health and the development of antibiotics in the middle of the last 

century, along with a reduction in cardiovascular disease in the 1970’s and 80’s (Omran 

1971). This increase in population longevity has major implications for public health and 

global expenditure on ageing related maladies including cancer. Therefore, improvements 

in the knowledge base surrounding the ageing process could improve our ability to predict 

further fluctuations in lifespan, whilst identifying key determinants of lifespan could lead 

to the development of targeted interventions in some of the major pathological conditions 

inexorably linked to the ageing process, particularly cancer. It has been apparent from the 

earliest days of ageing research, that ageing is a complex multi-factorial process 

determined by a number of different extrinsic (environmental) and intrinsic (genetic) 

mechanisms which control the rate of ageing as well as the phenotype.  

Ageing itself has several definitions which broadly converge on the concept of increase in 

molecular chaos over time manifest as a detrimental change in phenotype culminating in 

an exponential increase in the likelihood of mortality (Shiels 1999).  The concept of 

increase in death rate with age was first proposed by Gompertz (1825). Two main concepts 

emerge from this broad definition: 

Chronological age;  defined as the time elapsed since birth 

Biological age; characterises the general condition of an individual at a certain time 

of his chronological age, which is marked by physical, psychical and 

social characteristics (Ries & Pöthig 1984). 

Whilst this definition of biological ageing concerns the individual as a whole it can be 

scaled down to the cellular level, where it could describe the general condition of the 

molecular machinery maintaining cellular homeostasis. When the two concepts of ageing 
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are compared they rarely equate with biological age subject to a variety of intrinsic and 

extrinsic forces which determine the level of damage accrued over time and the ability to 

counterbalance it (Karasik et al, 2005). The intrinsic forces which contribute to biological 

ageing include genetics, methods of maintaining genomic stability, epigenetic phenomena 

such as methylation or accumulation of anomalous proteins with the ability to resist normal 

degradation pathways (Kirkwood 2008). Extrinsic forces comprise a variety of 

environmental factors including nutrition, exercise, socioeconomic status and smoking that 

act to alter the rate of biological ageing. Aberrancy of any of these broad intrinsic factors 

or manipulation of extrinsic factors could therefore alter the course of biological ageing in 

a positive (deceleration) or negative (acceleration) fashion and provides the basic 

framework for ageing research ranging from the population to the molecular level.   

 

1.1.1 Ageing as an Evolutionary Concept  

Evolutionary concepts of ageing were devised in an attempt to answer fundamental 

questions such as ‘Why do we age’ and ‘Why do we live as long as we do’?  

1.1.1.1 Accumulated Mutations Theory 

Medawar first proposed this theory in 1952. The central theme is the idea that detrimental, 

late acting mutations may accumulate in the population and ultimately lead to growth 

arrest and pathology (Medawar 1952). The basis for these observations was the expansion 

of the knowledge surrounding Huntington’s disease. In the present day when there is 

relatively little risk of extrinsic pressures on mortality such as that from infectious disease 

or predation there is no real selection pressure to remove these late acting deleterious 

mutations  

1.1.1.2 Antagonistic Pleiotropy Theory 

This theory, also called the ‘trade-off theory’ espouses that genes exist which can have 

beneficial effects earlier in life but harmful effects later. The aim of optimal health earlier 

in life is to allow reproduction (Williams 1957). However, this theory has limited 

application in the modern human population where limited extrinsic pressures prevent 

early mortality thereby allowing the late onset deleterious effects to manifest. A 

physiological example of this theory would be the requirement of the prostate gland on 
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androgens for normal function, however later in life androgen exposure may contribute to 

the risk of prostate cancer (Imamoto et al, 2008). 

1.1.1.3 Disposable Soma Theory 

This theory argues that the investment in durability and maintenance of somatic tissues are 

predicted to keep the body in good repair through the normal expectation of life in the wild 

with some degree of reserve capacity (Kirkwood 1977, Kirkwood 2008). Essentially, the 

somatic organism is effectively maintained to allow reproductive success and once this has 

occurred becomes disposable, manifesting in ageing phenotypes. However, the 

reproductive tissues must be maintained to a level that allows accurate replication and 

passage of genetic material across a number of generations. This theory explains inter-

species variation in lifespan. The higher the extrinsic mortality rate of a species, the less 

energy should be invested in somatic maintenance and more towards reproduction, 

culminating in shortened lifespan (Kirkwood 2002).  

The previous two theories state the evolution of ageing results from gene action. In 

contrast, the disposable soma theory predicts that ageing evolves by genetic neglect, 

resulting in accumulation of molecular damage and eventually giving rise to age-related 

frailty and disease.  

 

1.1.2 Molecular & Cellular Mechanisms of Ageing  

Within the framework of the evolutionary theories of ageing described above there are a 

number of potential mechanistic pathways contributing to the decline in molecular and 

cellular viability associated with the ageing phenotype. These are varied and not mutually 

exclusive hence it is unlikely that any one acts independently (Table 1.1). 
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Table 1.1: Table summarising the key features of the main molecular and cellular mechanisms of 
ageing. 

 

Concept Key Features References 
Genetics • MZ twin lifespan more concordant than DZ. 

 
• Implicated genes include insulin/IGF1, FOXO 

and APOE, also chromosome 11p15.5. 
 

(vB Hjelmborg et al, 
2006) 
(Puca et al, 2001, Starr et 
al, 2008, Flachsbart et al, 
2009, Pawlikowska et al, 
2009)  

Senescence • Initiated by the observation of cessation of 
division by cells in culture after a certain number 
of replication cycles, termed the Hayflick limit. 

• Progressed by subsequent discovery that 
telomere attrition is a major driver of senescence 
and telomere length shortens with chronological 
age as a result of the end replication problem. 

• Senescent cells alter organ function and may 
contribute to the ageing phenotype.  

(Hayflick & Moorhead 
1961) 
 
 
 
(Olovnikov 1973, 
Aubert& Lansdorp 2008) 
(Campisi 2005, Campisi& 
d'Adda di Fagagna 2007) 

Genomic Instability • Maintenance of genomic integrity essential to 
prevent development of deleterious mutations 
which could contribute to the ageing process. 

• Checkpoint proteins (Chk1 & Chk2) monitor the 
genome and can halt cell cycle progression at 
either the G1/S or G2/M transition points, to 
allow the damage to be assessed and the requisite 
response elicited (repair, apoptosis or 
senescence).  

• DSB repaired via ATM and Chk2 pathway, 
single strand breaks via ATR and Chk1, 
downstream targets of both pathways include 
p53 and DNA repair proteins e.g. Ku. 

(Baute & Depicker 2008) 
 
 
(Stracker et al, 2009) 
 
 
 
 
 
(Baute & Depicker 2008, 
Smith et al, 2010, 
Warmerdam et al, 2010)  

Cumulative oxidative 
Burden 

• Free radical theory of ageing states that longevity 
is limited as a result of cumulative damage to 
DNA and other macromolecules by reactive 
oxygen species (ROS). It is theorised that long-
lived individuals have an augmented stress 
resistance capacity or produce less ROS. 

• Over-expression of SOD in model organisms can 
increase longevity. 

(Harman 1956) 
 
 
 
 
 
( Moskovitz et al, 2001, 
Salmon et al, 2009) 

Mitochondrial theory • Mitochondria are the main source of ROS in the 
cell and as such play a key role in the balance 
between oxidative damage and repair. 
Dysfunctional mitochondrial metabolic 
processes produce an excess of ROS via mutated 
mitochondrial DNA amongst other mechanisms. 

• Murine models of mutated mitochondrial DNA 
display evidence of accelerated ageing. 

(Edgar et al, 2009, Edgar 
& Trifunovic 2009) 

Nutrient Sensing 
pathways 

• Nutrient sensing is a key evolutionary conserved 
process which stimulates homeostatic 
modification to gain a survival advantage for 
organisms at times of low nutrient intake, 
allowing the potential for reproduction to be 
maintained. Two main pathways include:  

1. Insuin/IGF1- proliferation, protein synthesis, and 
the capacity to resist stress. These functions are 
facilitated through a complex cascade of kinases 

 
 
 
 
 
 
(Salminen & Kaarniranta 
2010) 
 



20 
 

such as the PI3-K/Akt/FOXO pathway 
2. mTOR- integrates cellular response with nutrient 

and energy levels through interaction with 
AMPK, responses include protein synthesis and 
ribosome biogenesis, autophagy, and 
mitochondrial activity. mTOR inhibition in 
murine models  

 

 
(Harrison et al, 2009, 
Zoncu et al, 2011) 

Epigenetics • Epigenetic phenomena are modifications to 
genes such that expression is altered without 
changes to the DNA sequence. This leads to 
aberrancy of gene expression most commonly 
resulting from chromatin remodelling due to 
processes such as DNA methylation and histone 
modification by methylation and acetylation.  

• The pattern of epigenetic modifications and 
chromatin structure is dynamic and varies 
throughout the lifespan of an organism- 
hypermethylation leads to suppression of 
expression of target genes with hypomethylation 
augmenting responsiveness. 

(Gravina& Vijg 2010) 

Stem Cell • Stem cells in adult tissues are responsible for the 
maintenance of function and structural integrity, 
due to differentiation or replenishment. 
Attenuation of stem cell function may contribute 
to the decline in tissue integrity and organ 
dysfunction associated with ageing. 

• Relationship with altered telomere biology and 
reduced capacity to facilitate DNA repair. 

(Charville & Rando 2011) 
 
 
 
 
 
(Flores& Blasco 2010, 
Rube et al, 2011) 

 

Calorie Restriction can Increase Lifespan 

Caloric restriction (CR) was first demonstrated to influence longevity in rodent studies 

performed in the 1930’s, since then a plethora of studies have replicated these findings in a 

number of different model systems from yeast to non-human primates (Kaeberlein et al, 

2004, Colman et al, 2009). CR stimulates a number of molecular adaptations which lead to 

robust changes in whole organism patho-physiology. Major changes induced by CR 

include reduction in body weight, body temperature and metabolic rate (Redman & 

Ravussin 2011, Rochon et al, 2011). Whilst endocrinological responses include improved 

glucose tolerance and insulin sensitivity, equivalent serum IGF-1, reduced T3 and 

increased cortisol (Redman et al, 2008). 
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1.2 Ageing and Cancer 

 

1.2.1 Trajectories of Ageing 

 

A recurring theme through the evolutionary concepts of ageing is one of degeneration in 

function as time progresses. Three trajectories of ageing have been described (Weinert & 

Timiras 2003). 

 

1. First, ageing characterised by disease and disability. 

2. Second, ‘usual’ ageing characterised by some decline in function but no overt 

pathology. 

3. Third, ‘successful’ ageing where there is little or no evidence of pathology and no 

decline in function. 

 

Ageing is deemed successful when an individual is free from disease and disability, has 

high cognitive and physical functioning, and engages in social and productive activities. 

Clearly a spectrum exists across the range of ageing phenotypes. As our adaptive and 

homeostatic mechanisms decline in function so the probability of disease and pathology 

increases. Although disease is not considered a prerequisite in the process of ageing a 

number of pathologies occur at a much higher frequency in older individuals. One of the 

most obvious examples is cancer. 

 

1.2.2 Common Mechanisms in Ageing & Cancer 

 

Cancer is to all intent and purposes a disease of ageing with 77% of all new diagnoses 

made in patients over the age of 55. This is mainly due to an excess of epithelial cancers, 

particularly breast, lung, colon and prostate, as opposed to those of mesenchymal or 

haematopoietic origin. For this reason age is considered the most potent of all carcinogens. 

The lack of a concomitant increase in tumours of diverse types with age suggests a 

complex relationship (DePinho 2000). 
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Age-related diseases are generally thought to result from a decline in tissue structure and 

function, an overall degenerative process. However, despite being considered a disease of 

ageing, cancer is paradoxically a gain of function disease, with cells acquiring the ability to 

hyper-proliferate and ultimately migrate. Mammalian species including humans have 

evolved the ability to renew somatic tissues which evidently confers an advantage, with the 

ability to repair damaged tissue to restore function. This ability, however, also gives rise to 

an elevated cancer risk as DNA replication is not fullproof thus potentially increasing the 

risk of oncogenic mutations. In addition to mutational load, cancer development also 

requires specific gene silencing through epigenetic regulation and a permissive 

environment in which cellular growth is encouraged. In order to prevent cancer formation a 

number of tumour suppressive mechanisms have evolved.  

 

1.2.2.1 Tumour Suppressor Mechanisms 

Tumour suppressors can be broadly categorised into two distinct groups. Caretaker tumour 

suppressors act on the genome to prevent or repair DNA damage. Mutations are therefore 

suppressed and risk of neoplastic transformation reduced. Examples of caretaker tumour 

suppressor genes include BRCA1/BRCA2, ATM and deleted in breast cancer-1. As 

deleterious events are reduced by caretaker tumour suppressors longevity is increased (van 

Heemst et al, 2007). 

 

The second main group of tumour suppressors are termed gatekeepers. These function to 

eliminate potentially cancerous cells by initiating senescence, thereby preventing further 

growth or division, or stimulating apoptosis. The gatekeeper tumour suppressor which has 

come under the most scrutiny is p53, due to its pervasive presence in many of the pathways 

controlling both cancer and ageing it deserves special mention. 

 

p53- a gatekeeper tumour suppressor 

p53 is a multi-functional transcription factor which regulates the transcription of a huge 

number of genes related to cellular processes such as response to stress, cell cycle 

checkpoint regulation, DNA repair and angiogenesis. Clearly these processes are 

fundamental to the initiation and progression of oncogenesis and it is therefore no surprise 

that p53 is mutated in almost 60% of human cancers (Vogelstein et al, 2000). The tumour 

suppressor effect of p53 arises as a result of activation of the ATM/ARF pathway by DNA 

damage or alternatively critically short telomeres. This propagates a response in which 

human double minute-2 (HDM2) is sequestered and its negative feedback relationship with 
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p53 reversed. The resulting increase in p53 expression facilitates either senescence or 

apoptosis. The decision as to which fate a cell is subjected to is not fully understood and 

likely to result from the damage stimulus and tissue type (Zuckerman et al, 2009).  

 

Recently p53 has been implicated as a regulator of the ageing process, in addition to its 

well described effect as a tumour suppressor. One might expect that as a potent tumour 

suppressor the effect on longevity would be simply that lifespan is extended as a result of a 

reduced incidence of cancer. However, p53 gain of function mutant mice exhibit an 

extraordinary resistance to cancer but died prematurely, exhibiting signs of accelerated 

ageing. Thus p53 over-expression results in a chronic engagement of DNA damage 

signalling which results in accelerated ageing phenotype and therefore has a marked pro-

ageing effect. (Tyner et al, 2002, Maier et al, 2004). Further complicating matters is the 

possibility that gatekeeper tumour suppressor genes including p53 could exert an 

antagonistic pleiotropic effect. In young individuals these genes have a beneficial effect by 

preventing the development of cancer. However, as lifespan progresses this effect can 

become deleterious and promote the ageing phenotype. In evolutionary terms because we 

are no longer subject to extrinsic hazards which curtail our lifespan (predation, infection 

etc) we now live longer, and as such are genetically exposed to the delayed detrimental 

effects of genes which are beneficial to younger organisms (Campisi 2005).  

 

It is clear the relationship between ageing and cancer is not a simple one to rationalise and 

that multiple layers of pathways controlling both processes exist. The initial underlying 

stimulus for both processes appears to be similar with disruption of genomic integrity, 

either within the genome in general or at the telomere. The response to this damage is 

integrated through the many of the same pathways such as p53, ATM/ARF and nutrient 

sensing pathways such as mTOR or the sirtuins. It is clear however, that the end 

phenotypes are distinct and that regulation of these pathways at the genetic, epigenetic and 

post-transcriptional level is responsible for these differences.    

 

 

 

1.2.3 Colorectal Cancer 

Colorectal cancer is the third most common cancer in the UK with 41,000 new cases 

diagnosed in 2009, and accounts for 14% of all new cases of cancer in general. Incidence 
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rates are approximately 75 / 100,000 in men and 59 / 100,000 in women, this difference is 

explained by a higher incidence of rectal cancer in men. Pertinent to this thesis is the fact 

that 72% of bowel cancers develop over the age of 65, making age a strong risk factor for 

the disease. This age related increase peaks between 75 and 80 where it remains at 500 

new cases / 100,000 in men and 338 / 100,000 in women. Incidence rates have remained 

on the whole static over the last twenty years, with survival rates doubling. However, 

overall five year survival is relatively poor at only 50% in both males and females (Cancer 

Research UK 2010). A short discussion of some of the common issues and terms with 

regards to CRC and pertinent to this thesis will now follow.  

1.2.3.1 Diagnosis and Staging 

Currently in the UK the pathways through which patients with CRC reach a diagnosis are 

altering. In the past symptomatic patients would be referred by their primary care physician 

generally with symptoms such as altered bowel habit, rectal bleeding, weight loss or local 

symptoms such as tenesmus. In addition to this group of patients there are a constant 

proportion of patients with CRC who present as an emergency with acute symptoms in 

relation to disease progression leading to bowel obstruction, perforation or acute 

haemorrhage (Crozier et al, 2009). The presentation of patients with symptoms whether 

emergent or otherwise has historically meant that a large proportion of patients present at a 

late stage when the chances of curative intervention are dramatically diminished. In an 

attempt to combat this phenomenon the National Bowel Screening Programme was 

recently implemented. This was done so on the basis of a number of trials which have 

shown that bowel screening for CRC by faecal occult blood testing can reduce mortality, 

with the most recently published UK trial showing a reduction in CRC specific mortality of 

13% (Scholefield et al, 2011). Based on this, and similar evidence the National Bowel 

Screening programme was initiated, which in Scotland involves an invitation from the age 

of 50-74 to submit a biennial faecal occult blood test. Should this prove positive patients 

are then invited to undergo a colonoscopy to visualise the mucosa of the colo-rectum, 

biopsy any abnormal areas or perform polypectomy. 

Staging of colorectal cancer is a fundamentally important process as the pre-operative 

staging of the disease will determine the treatment modality and the prognosis on an 

individual basis. For patients with colon cancer this involves a computed tomography (CT) 

scan to determine spread of disease to distant organs and some indication of local invasion. 
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Patients diagnosed with rectal cancer will undergo an additional MRI scan of the pelvis to 

determine the extent of local invasion. The TNM and Dukes classification are the most 

commonly used staging systems (Table 1.2). Both of these are pathologically determined 

therefore full assessment can only be made after surgical resection and pathological 

analysis of the tumour specimen.  

Table 1.2: Table summarising the components of the TNM and modified Dukes classification of 
colorectal cancer. 

TNM Classification Modified Dukes 
Classification 

 

Stages 
 

T N M Stages  

Stage 0 Tis N0 M0  
Disease confined 
to the bowel wall 
or adjacent 
structures 

Stage I T1 N0 M0 A 
T2 N0 M0 B1 

Stage II T3 N0 M0 B2 
T4 N0 M0 B2 

Stage III T1,T2 N1 or N2 M0 C1 Node positive 
disease T3,T4 N1or N2 M0 C2 

Stage IV Any T Any N M1 D Metastatic disease 
Details of T-stage given in Figure 1.9, Tis = in situ disease (not fully invasive), N1 = 1-3 positive lymph nodes, N2 = ≥ 4 

 

1.2.3.2 Pathological Concerns 

Tumour Site & Molecular Characteristics 

As depicted in Figure 1.1 the spread of distribution of tumours throughout the colo-rectum 

favours a predilection for the left or distal region with a ratio of approximately two thirds 

to one third. Distal (left colon and rectal) cancers are generally defined as those distal to 

the splenic flexure, with proximal (right and transverse) cancers the converse.  
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Figure 1.1: Distribution of tumour site throughout the colorectum (Cancer Research UK 2010).  

Recent interest in tumour site has lead to the discovery that there are particular clinical and 

molecular characteristics associated with the site of the tumour, meaning that CRC is now 

considered a heterogeneous disease. Initial characterisation was made on the basis that 

colon and rectal cancers were distinct entities but it now seems that proximal versus distal 

cancer is a more appropriate differentiation, however as molecular characterisation evolves 

this may also change (Minoo et al, 2010). The fundamental molecular difference lies in the 

driver of oncogenesis with proximal tumours generally initiated by dysfunctional mismatch 

repair pathways resulting in microsatellite instability, poor differentiation, mucinous 

histology and lymphocytic infiltration. Furthermore, these tumours are more likely to be 

hereditary resulting from an inherited mutation of one of the mismatch repair genes, most 

commonly MSH2.  Distal and rectal tumours are more likely to result from transformation 

within an adenomatous polyp via the adenoma-carcinoma sequence (discussed in due 

course), more likely to be microsatellite stable, have a higher frequency of KRAS mutation 

and more likely to be sporadic (Gordon 2007, Cunningham et al, 2010) 

Adenoma-Carcinoma Sequence 

This represents the proliferation of a single epithelial cell, to a benign polyp and 

sequentially on to a malignant neoplasm through a well defined series of genetic 
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mutational events (Figure 1.2). This was termed the adenoma-carcinoma sequence and 

characterised by the seminal work of Fearon and Vogelstein (Fearon & Vogelstein 1990). 

The clinical significance of the adenoma-sequence is that it takes approximately 7 years for 

normal epithelium to develop into a malignant lesion thus meaning that intervention to 

remove polyps should in theory prevent the development of invasive cancer, this provides 

the basic rationale behind the National Bowel Screening Programme (Gordon 2007). 

 

 

Figure 1.2: The sequence of genetic events and chromosomal site of progress through the adenoma-
carcinoma sequence. Taken from Gordon (2007). DCC- deleted in colorectal cancer 

 

1.2.3.3 Management Strategies  

The principle behind the surgical management with curative intent of CRC is resection of 

the tumour with adequate resection margins and sufficient lymphadenectomy to allow 

accurate staging of the disease. Surgical management of rectal cancer involves total 

excision of the mesorectum (TME) and adequate distal resection margins, if the lesion is 

too close to the anal verge to allow anastamosis the sphincter complex is resected and an 

end colostomy formed. As mentioned previously patients with rectal cancer undergo an 

additional staging pelvic MRI to assess the degree of local invasion of the tumour (Figure 

1.3). If on the basis of preoperative staging circumferential resection margins are deemed 

compromised patients are offered neoadjuvant therapy with either radiotherapy alone or in 
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combination with 5-fluorouracil based chemotherapy to downstage the disease and 

increase the likelihood of curative resection (Sebag-Montefiore et al, 2009, Cunningham et 

al, 2010). Generally patients who are lymph node positive (Dukes C) are offered post-

operative adjuvant chemotherapy to reduce the likelihood of systemic recurrence. 

Depending on the functional status of the patient combinations of either platinum or 5-

fluorouracil based chemotherapeutic regimens are employed (IMPACT Investigators 

1995). Dukes B or node negative patients prove more complex as the benefits of 

chemotherapy are less well established with only small gains in survival (Quasar 

Collaborative Group et al, 2007). The discovery during staging of metastatic disease does 

not preclude surgical intervention as synchronous or staged resection of the primary 

tumour and liver resection can be undertaken (Moug et al, 2010). 

 

A B C 

   

Figure 1.3: A Schematic representation of the layers of the colonic and rectal wall. B T-stage 
characterisation of colorectal cancer: T1- confined to submucosa, T2- extends beyond muscularis propria, 
T3- invades into subserosa T4- extends beyond subserosa and into adjacent structures.  (Brown et al, 1999). 
C MRI representation of T3 rectal cancer, lesion extension into subserosa indicated by the arrow (Kim et al, 
2004). 

 

It is clear that there are a number of areas of colorectal cancer biology and management 

where ambiguities lie, and which would benefit from an expansion of current knowledge. 

Obvious areas include the further molecular characterisation of tumours from different 

sites in the colo-rectum and identification of patients who are deemed to have poorer 

prognosis and may benefit from alteration of traditional follow-up and treatment strategies. 
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The clear increase in risk of CRC with age could provide a platform from which to further 

investigate the link between biological ageing and CRC. This thesis looked specifically at 

the role of telomere biology and sirtuin expression, the remainder of this introduction will 

outline the background of these two important areas of ageing and cancer biology. 

 

 

1.3 Telomere Biology 

In recent years the body of work surrounding telomere biology has increased 

exponentially. Furthermore, as the intricacies of the functional processes controlled by the 

telomere complex become more apparent, the role of telomere biology in the ageing 

process becomes more defined. Altered telomere biology has now been associated with a 

variety of age related pathologies from heart disease to cancer. A discussion of the 

structure and function of the telomere complex, along with control mechanisms 

determining telomere length (TL) will now follow, as will the relationship between TL and 

cancer.  

 

1.3.1 Telomere Structure 

The term telomere was first coined by Herman Muller during his seminal work with fruit 

flies, from the Greek meaning of ‘end’- telos and ‘part- meros. Both he and Barbara 

McLintock working with maize proposed that chromosome ends possess special structures 

required for chromosome stability and that without them chromosomes would fuse leading 

to breakages (McClintock 1939). 

1.3.1.1 Telomere DNA Structure 

The basic structure of the telomere is that of a nucleo-protein complex consisting of 

telomeric DNA and a number of bound proteins which are vital for the regulation of TL 

and the functionality of the telomere. Telomeric DNA structure consists of tandem repeats 

of G-rich sequences (TTAGGG)n (Moyzis et al, 1988). Investigation of the telomere 

structure using electron microscopy revealed the presence of large loops. These loops were 

dependent on the 3’G-strand overhang, which were tucked back inside the double stranded 

DNA and termed t-loops. Further analysis revealed the presence of a further loop structure 
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termed the d-loop (Greider 1999) (Figure 1.4). This ‘displacement’ loop is formed by 

single stranded DNA invasion of a double stranded sequence and base pairs with one of the 

strands. In the telomere this sequence extends for approximately 100-200 base pairs with 

the TTAGGG G-strand base paired to the CCCTAA sequence (Griffith et al, 1999a). The 

function of this loop structure is to enhance the ability of the telomere to protect the 

chromosome end from being recognised as a DNA break. This is not hard to envisage 

given the now ‘hidden’ 3’ overhang.  

 

 

Figure 1.4: Demonstration of the classical and newer ‘loop’ structure of the telomere. The original 
proposition of the telomere structure was that of a linear double stranded structure with a 3’ 
overhang on the G-strand and telomere-associated proteins positioned along its length. 
(Greider 1999).  

 

1.3.1.2 Telomere Associated Proteins 

Combined with the DNA structure of the telomere are a variety of proteins and enzymes, 

which confer structural integrity on the telomere, are responsible for elongation of 

telomeric DNA and aid in the functionality of the telomeric complex. Some of these 

proteins are permanently bound to the complex whereas others have a more dynamic 

relationship depending on cellular conditions such as stress and DNA damage. A 

schematic diagram of the most important telomere associated proteins is shown below 

(Figure 1.5). 
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Figure 1.5: Telomeric structure, including the major associated proteins (Hodes et al, 2002). 

Telomerase 

Telomerase is a specialised unique enzyme which is responsible for the elongation of the 

telomeric TTAGGG repeat sequences. It was first described in tetrahymena thermophilia 

and is composed of three core subunits; the first is the reverse transcription protein termed 

TERT and encoded by the hTERT gene located on chromosome 5p.15.33. Secondly, the 

RNA template for the TTAGGG sequence termed TERC, the hTERC (or hTR) gene is 

positioned at 3q21-q28. Finally, the third subunit is defined on a species specific basis 

which in humans is dyskerin, this is required for accurate folding and structural stability of 

the telomerase complex (Greider & Blackburn 1987, Morin 1989, Cohen et al, 2007) 

(Figure 1.6).  
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Figure 1.6: Diagram of the telomerase structure. NOP10, NHP2 and GAR1 are subunits of the 
dyskerin complex and are required for the correct processing of telomerase. hTR is 
interchangeable with hTERC. Adapted from (Armanios 2009) 

 

Shelterin 

Shelterin is a complex of six proteins composed of TRF1, TRF2, TIN2, Rap1, TPP1 and 

Pot1 (Figure 1.5), with all six proteins found in a single complex in fractionated nuclear 

extracts. TIN2 is considered to be the most important constituent of the complex due to its 

ability to tether TPP1/Pot1 to TRF1 and TRF2, whilst also linking TRF1 to TRF2 (de 

Lange 2005). Shelterin shows great specificity for the TTAGGG sequence of telomeric 

DNA by virtue of multiple recognition folds within the structure of TRF1, TRF2 and Pot1 

(Court et al, 2005). Shelterin is thought to shape the telomeric structure by encouraging the 

formation of the t-loop, a function particularly dependent on TRF2, given its ability to 

remodel artificial telomeric substrate into loops in vitro (Stansel et al, 2001). The presence 

of shelterin and the t-loop configuration function together to form a ‘cap’ on the telomere 

which functions to protect the chromosome end. Shelterin also contributes to the 

maintenance of TL and the DNA damage response mechanism.  

Dynamic Telomere Associated Proteins 

This is a substantial group of proteins which transiently bind to the telomere and shelterin 

complex. Many of these proteins have a dual role in regulating the DNA damage response 
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in addition to contributing to the maintenance of optimal TL. Some of these proteins and 

their key functions are listed in the table below. 

 

Table 1.3: Table listing some of the major transient telomere associated proteins with their binding 
targets and function. 

Protein Binding Site Function 
 

Tankyrase TRF1 TRF1 down-regulation with resulting increased 
activity of telomerase and positive regulation of 

telomere length 
 

DNA-PK TRF1 Aids in creation of t-loops 
 

DNA-PKcs TRF2 Signals short telomeres as DNA damage 
 

Ku70/86 dsDNA Inhibits telomerase 
Recruits DNA-PKcs 

Recruits/stimulates WRN/MRN 
Regulates Atm 

 
MRN 
Mre11 
Rad50 
NBS1 

 
TRF2 
TRF2 

TRF1/2 

Modulates Atm 
t-loop stabilisation 

stimulates Mre11 activity 
Unpairing/opening t-loop 

 
WRN TRF2 Unwinds 3’ loop 

 
BLM TRF1 Unwinds dsDNA 

 
RPA ssDNA Prevents re-annealing 

 
Atm TRF2 DNA damage signalling 

 
ERCC1 TRF2 Removes G-overhang 

 
BRCA1 TRF1 Regulates transcription hTERT 

 
 
DNA-PK, DNA-protein kinase; DNA-PKcs, DNA-protein kinase catalytic subunit; dsDNA, double stranded DNA; Mre11, meiotic 
recombination 11; NBS1, Nijmegen breakage syndrome 1; WRN, Werner syndrome; BLM, Bloom syndrome; RPA, Replication protein 
A; ssDNA, single stranded DNA; Atm, Ataxia-Telangiectasia-mutated; ERCC1, Excision repair cross-complementing 1; BRCA1, Breast 
cancer associated 1  

 

1.3.2 Maintenance of Telomere Length 

1.3.2.1 Telomere Dynamics 

Maintenance of TL is critical to telomere functionality as upon reaching a critically short 

length a series of responses are elicited which can ultimately lead to the removal of the cell 

from the population. Therefore, a number of mechanisms have evolved to maintain TL at a 



34 
 
constant length. However, this is complicated by the fact that one of the key mechanisms 

for maintaining TL, the enzyme telomerase,  is ‘switched off’ in somatic cells meaning that 

as they replicate TL shortens, this observation lead to the concept of TL reflecting the 

replicative capacity of the cell and functioning as a mitotic clock. This link with replicative 

capacity is not limited to the cellular level as TL also reduces with increasing 

chronological age, a process which can be altered by a number of intrinsic and extrinsic 

factors.   

Maintenance of TL is a complex process which is reflected by the fact that TL is highly 

variable. Average TL in normal human population varies between 5-10Kb but this can vary 

on an individual basis between organ systems, cells and even between chromosomes. 

Variability within individuals was demonstrated by Takubo et al (2002) who showed that 

the longest telomeres were evident in the myocardium with the shortest in the liver and 

renal cortex. This may reflect the replicative and rejuvenative capacity of these organs, 

with non-replicative tissues retaining baseline TL (Takubo et al, 2002). The heterogeneity 

of TL has recently been partially characterised in a longitudinal study following 635 

volunteers over a 5-10 year period. The rate of change in TL was highly variable with 

some individuals seemingly gaining in TL, however a shorter TL at baseline was translated 

into a more rapid loss of TL overall. The authors therefore conclude that factors other than 

the end-replication problem influence TL dynamics (Aviv et al, 2009). 

1.3.2.2 End Replication Problem 

The end replication problem suggests that TL reduces with every round of cell division 

until a critical length is reached, when signalling pathways are activated which remove the 

cell from the replicating population by either apoptosis or senescence. The end replication 

problem arises due to the uni-directional nature of DNA replication and the 5’ to 3’ 

function of DNA polymerase. This means that synthesis of the lagging strand must occur 

discontinuously with small RNA primers added a short distance ahead to elongate the 

DNA sequence via the formation of Okazaki fragments. However, when the replication 

fork reaches the end of the lagging strand a gap is left in the sequence once the RNA 

primer has been removed. This means DNA polymerase is unable to replicate the 

sequence, therefore a section of telomeric DNA is lost with subsequent replications (Levy 

et al, 1992). The concept of the number of repetitive sequences at the chromosome end 

determining the replicative capacity of somatic cells, as well as the telomeric repeat 

sequences acting as a protective buffer to upstream genes was put forward by Olovnikov 
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(1973). In addition, Olovnikov also suggested that cells from continually dividing tissues 

and organs required a mechanism by which to overcome the end replication problem. The 

discovery of telomerase and its ability to elongate telomeric DNA repeats solved the 

mystery of the end replication problem (Olovnikov 1973).  

1.3.2.3 Role of Telomerase 

Telomerase is considered prerequisite for any cell type which has the need to undergo 

continual division. Thus telomerase is expressed in over ninety percent of human tumours 

and is also constitutively expressed in germ-line cells and many types of human stem cells 

(Kim et al, 1994). Modest amounts of telomerase activity have been discovered in 

progenitor cells of skin, gut epithelium and bone marrow, reflecting the potential for 

renewal in these cell compartments (Artandi & DePinho 2010). Introduction of telomerase 

into telomerase null cells confers a survival advantage with telomerase expressing cells 

displaying longer TL, increased replicative capacity and reduced evidence of cellular 

senescence (Bodnar et al, 1998).  

In vitro reconstitution experiments with single amino acid modified hTERT confirms it to 

be the catalytic component of the telomerase enzyme, and essential for telomerase function 

(Weinrich et al, 1997). Immortality of normal prostate cells in culture is achieved by c-myc 

mediated up-regulation of hTERT expression and results in stabilisation of TL (Gil et al, 

2005). Factors essential for normal cell cycle checkpoints and maintenance of senescence 

such as p53 and p16INK4A can down-regulate hTERT expression (Kanaya et al, 2000, 

Bazarov et al, 2010). Conversely, growth factors known to stimulate cellular proliferation 

such as the viral oncogenes human papilloma virus and cytomegalovirus can up-regulate 

hTERT expression (Horikawa & Barrett 2003, Straat et al, 2009). Variation at the TERC 

gene has also been shown to influence TL. Genome wide association analyses have 

revealed a locus at 3q26 which correlates with mean leucocyte TL, a locus which includes 

the TERC gene (Codd et al, 2010).  

1.3.2.4 Components of Shelterin Influence Telomere Length 

The shelterin complex as a whole and its constituents influence TL in a number of ways. 

TRF1 and TRF2 are negative regulators of TL acting indirectly to control the access of 

telomerase to the telomere. This is performed by facilitation of an isometric change in the 

telomere to cis configuration, by doing so the telomere changes from an open to a closed 

state preventing the access of telomerase and an inability to elongate TL if required (De 
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Boeck et al, 2009). It is postulated that TRF1 and TRF2 effectively sense TL, as the longer 

the telomere the more abundant the levels of TRF1 and TRF2, with very short telomeres 

unable to bind enough TRF1 and TRF2 to generate the closed state (van Steensel & de 

Lange 1997, Smogorzewska et al, 2000).  TRF2 makes a further contribution to the control 

of TL by its role in the maintenance of the t-loop (Stansel et al, 2001).  

Pot1 can also play a role in the maintenance of telomeric DNA content. This occurs as a 

function of the interaction between Pot1, TRF1 and the single stranded 3’ overhang section 

of the telomere. It is the presence of Pot1 at the 3’ overhang which directly inhibits the 

interaction between the RNA template and DNA primer. Thus in the most simple terms 

Pot1 acts as a negative regulator of TL by inhibiting telomerase (Loayza & De Lange 

2003, Kelleher et al, 2005).  

1.3.2.5 Epigenetic Regulation 

Epigenetic regulation of telomeric heterochromatin signatures by methylation of 

subtelomeric DNA, in addition to the epigenetic regulation of the expression of telomerase 

subunits is an important mechanism in the maintenance of TL. Alteration of the 

methylation status of telomeric chromatin by knockout of the SUV39H1 and SUV39H2 

methyltransferases resulted in hypomethylated telomeres which showed an impaired ability 

to elongate (Garcia-Cao et al, 2004). This effect may be linked to alteration in the ability of 

components of the shelterin complex to regulate telomerase activity (Benetti et al, 2007).   

Delineating the effect epigenetic modulation of the hTERT gene on TL has proved 

troubling with both hypo- and hypermethylation of the hTERT promoter and associated 

histones shown to impact on hTERT expression and TL (Devereux et al, 1999, Guilleret & 

Benhattar 2003, Atkinson et al, 2005). The discovery of methylation status contributing to 

TL control is significant. Methylation can be intrinsically controlled but nutrition may also 

play a role hence both of these factors could impact on TL (Paul 2011).  

1.3.2.6 Alternative Lengthening of Telomeres 

Telomerase is responsible for the maintenance of TL in approximately 85-90% of human 

cancers, a process known as alternative lengthening of telomeres (ALT) is responsible for 

the remainder. ALT is thought to occur by a homologous recombination mechanism which 

elongates telomeres independent of telomerase. This confers a number of phenotypic 

changes in cells that have undergone this process and a number of controlling factors have 

been identified. However, the reason why some cell types utilise this method of telomere 
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maintenance as opposed to telomerase dependent mechanisms is not clearly understood 

(Cesare & Reddel 2010).  

Homologous recombination (HR) is thought to represent the most conserved method of 

ALT. ALT was first reported in mammalian cells by Murnane et al (1994) and confirmed 

by Bryan et al (1995) when it was noted that in cells without telomerase, telomeres were 

highly heterogenous, with rapid changes occurring on longer telomeres (Murnane et al, 

1994, Bryan et al, 1995).  The current thoughts are that the telomere replicates itself via the 

t-loop or copying of a sister chromatid (Cesare & Reddel 2010). Master control of the ALT 

process resides with the telomere associated proteins, in particular the MRN complex 

(Zhong et al, 2007). One of the key phenotypic changes seen in cells that have undergone 

ALT is the generation of t-circles. These are thought to form during the resolution of the 

telomere-loop junction and were first identified by electron microscopy of telomere 

enriched nuclear extracts (Cesare & Griffith 2004). They may contribute to the ALT 

process by providing a template for telomeric extension.  

 

1.3.3 Determinants of Telomere Length 

1.3.3.1 Age 

The relationship between ageing and TL is one that despite being first recognised over 

twenty years ago still has not been fully delineated. It is clear that TL declines with age as 

predicted by the end replication problem, but it is not clear whether a cause and effect 

relationship exists.  

Cooke and Smith first linked telomeres to the ageing process with the observation that 

germ cells had much longer telomeres than adult cells of the non-germ line variety, and 

that this might be due to the fact somatic cells lacked the recently discovered telomerase 

(Cooke & Smith 1986). Cooke and Smith thus provided a framework to explain the end 

replication problem and its relationship with the Hayflick limit. This theory was 

corroborated with the observation that the TL of fibroblasts in culture reduced with serial 

passage and that initial TL determined the replicative capacity of similarly cultured 

fibroblasts (Allsopp et al, 1992, Harley et al, 1990, Allsopp et al, 1995, Vaziri et al, 1994). 

These observations then lead to the theory that TL could act as a mitotic clock in human 

cells given the dependent relationship of TL with replication (Vaziri et al, 1994, Allsopp et 

al, 1995). If the initial observations of Cooke and Smith were true and that telomere 
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attrition stimulated cells to enter senescence then the consequences of this mitotic clock 

‘running down’ should be entry into senescence. This was confirmed by Allsop & Harley 

(1995) who demonstrated that a critical TL was responsible for the entry into senescence 

(Allsopp & Harley 1995). Senescence was by-passed by the introduction of telomerase into 

human cells which had longer telomeres and reduced markers of senescence (Bodnar et al, 

1998).  

Since these initial in vitro observations, efforts have been made to extrapolate them to the 

organismal level, particularly in human lifespan. Numerous studies have established that as 

expected human TL falls with increasing chronological age similar to cells in vitro. This 

has been confirmed in various human cell types including peripheral blood leucocytes 

(Hastie et al, 1990, Vaziri et al, 1994), colorectal tissue (Nakamura et al, 2000), liver 

(Takubo et al, 2002) and pancreas (Ishii et al, 2006). TL in post-mitotic tissues such as 

neurons from the cerebral cortex and cardiac myocytes has been shown to be maintained in 

relation to chronological age, on a consistent basis (Takubo et al, 2002). Results 

quantifying the annual rate of telomere loss have been variable but the rate of loss usually 

lies between 20-60bp per year (Takubo et al, 2010). However on a population level 

differences in attrition rates are impacted on by a number of different factors which are 

potentially modifiable (Shiels et al, 2011).  

Further refinement of the hypothesis of telomere biology in the ageing process has been 

possible due to the development of telomerase deficient mouse models. Through deletion 

of the TERC gene mice with phenotypic changes consistent with accelerated ageing are 

obtained. These include infertility, heart failure, immune deficiencies, tissue atrophy and 

reduced regenerative capacity. Molecular analysis of these animals revealed critically short 

telomeres in comparison with control animals, with gross evidence of multiple 

chromosomal abnormalities indicative of telomere dysfunction (Blasco et al, 1997).  

In a reverse of the process which produced the original TERC deficient model, late 

generation TERC-/- mice were crossed with TERC+/- producing offspring in which 

telomerase was re-activated. These mice had telomeres which were restored to normal 

length and, moreover, the premature ageing phenotype was rescued (Samper et al, 2001). 

The effect of over-expressing telomerase on lifespan has also been investigated. Initial 

models of TERT over-expression did have overall longer survival but this was complicated 

by an increase in sporadic malignancies in some generations (Gonzalez-Suarez et al, 

2005). In order to circumvent this predicted issue, a mouse model, known as SUPER-M 



39 
 
has been constructed. In addition to over-expression of TERT; p53, p16 and p19ARF tumour 

suppressors are also constitutively over-expressed. By doing so the incidence of cancer is 

reduced and therefore dissociated from the ageing process. SUPER-M mice have a delayed 

onset of age related pathologies, improved overall survival, and longer telomeres in both 

stem and differentiated cells compared with wild type controls (Tomas-Loba et al, 2008). 

Jaskelioff et al (2011) have reversed degenerative phenotypes in multiple organs including 

testes, spleen and intestines as well as reversing markers of neurodegeneration, in a mouse 

model in which telomerase activity is induced and TL extended in late generations 

(Jaskelioff et al, 2011).  

1.3.3.2 Genetic Determinants  

TL is known to be determined in part by intrinsic genetic factors inherited by the 

individual, and is thought to explain some of the inter-individual variability of TL. Indeed 

Slagboom et al (1994) used 123 human mono- and di-zygotic twin pairs, and calculated 

78% heritability in TL (Slagboom et al, 1994). Further investigation has revealed that TL 

is predominantly inherited from the paternal lineage. Paternal age at birth was positively 

associated with offspring TL, with no relationship demonstrated between maternal age and 

TL (De Meyer et al, 2007). Variability in TL as a result of inherited factors could result 

from different mechanisms. The finding of paternal age significantly impacting on TL 

could indicate that TL is not fully re-set after fertilisation and that if paternal TL is short 

this is inherited by the offspring (De Meyer et al, 2007). This is a scenario similar to that 

seen in animals created by nuclear transfer, in particular when the donor nucleus is 

harvested from a somatic cell of an older animal (Shiels et al, 1999). However, under 

normal reproductive mechanisms germ cells are the source of parental DNA, which retain 

the ability to maintain TL using telomerase.  This is consistent with the fact that TL at birth 

is similar between organs of individuals and between sexes, but a wide inter-individual 

variability remains and further highlights the fact that adult TL is determined in part by 

intrinsic genetic and in-utero factors (Okuda et al, 2002).  

 1.3.3.3 Sex 

Male sex confers a lower mean age of mortality compared with females in a number of 

different populations. Consistent with this, a number of studies have established that males 

have shorter overall TL and faster rates of telomere attrition (Njajou et al, 2009). However, 

at birth there is no sex difference in TL indicating that factors which contribute to telomere 

maintenance, or accelerate attrition, accumulate throughout an individual’s lifetime (Okuda 
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et al, 2002). An obvious mediator of this sex difference later in life is the effect of 

oestrogen exposure and the menopausal state. Lin et al (2011) have recently reported that 

increased endogenous oestrogen exposure was associated with greater TL suggesting 

oestrogens may be associated with decelerated cellular ageing (Lin et al, 2011). Exogenous 

hormone replacement of oestrogen and progesterone has also been associated with greater 

TL in post-menopausal women (Lee et al, 2005). In a molecular context oestrogen has 

been shown to increase telomerase expression by up-regulation of hTERT activity with a 

concomitant increase in TL (Bayne et al, 2011). 

1.3.3.4 Oxidative stress 

Damage induced by ROS has emerged as a key player in the determination of TL by virtue 

of accumulating evidence from a number of different experimental systems. The 

heterogeneity of TL both in vitro in cultures cells and in vivo is partly explained by the 

balance of oxidant load and antioxidant defence mechanisms. The intimate relationship 

between TL and oxidative stress has stimulated some investigators to theorise TL as a 

biomarker of oxidative damage. 

Investigators focusing on the capacity of telomere attrition rates to affect the replicative 

potential of cells in culture discovered that manipulation of the culture conditions could 

have a profound effect. Culture of human fibroblasts under mild hyperoxia (oxygen partial 

pressure 40%) irreversibly blocks proliferation, induces a state indistinct from senescence 

and is signalled by increased telomere attrition rates with a cut-off of 4Kb (von Zglinicki et 

al, 1995). Treatment of cells cultured under stressful conditions with free radical 

scavengers abrogates the induced accelerated telomere attrition and can even prolong 

replicative lifespan (von Zglinicki et al, 2000). Whilst cells with an inherent augmented 

antioxidant capacity such as human foreskin BJ fibroblasts are protected against telomere 

damaging effects of oxidative stress (Lorenz et al, 2001). 

A number of diseases in which oxidative stress plays a critical role have been shown to be 

associated with short telomeres in peripheral blood leucocytes (PBLs) namely, vascular 

dementia (von Zglinicki et al, 2000), atherosclerosis (Brouilette et al, 2008) and COPD 

(Savale et al, 2009). Patients with chronic kidney disease (CKD) on dialysis suffer from 

increased mortality due to an excess of a number of pathologies related to oxidative stress. 

In these patients this excess risk of mortality is mediated by telomere attrition with a 

dependant relationship between fetuin-A a circulating inhibitor of calcification and 

mediator of oxidative stress, and short TL (Carrero et al, 2008).  
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Variation in endogenous antioxidant mechanisms could explain some of the variability in 

TL at the in vivo level. Starr et al (2008) correlated a panel of 384 SNPs from 141 

oxidative stress genes with TL, with two genes in particular displaying a significant 

association (Starr et al, 2008). Furthermore, increased consumption of antioxidant vitamins 

has also been confirmed as an independent correlate of longer TL in a female population 

(Xu et al, 2009).  

Telomeres exhibit a number of features which makes them particularly susceptible to 

oxidative damage. The base guanine is particularly sensitive to oxidative damage which is 

reflected in the level of modified guanine bases particularly 8-oxodG, in senescent cells 

exposed to oxidative damage (Kawanishi & Oikawa 2004). Oxidative damage induces 

single strand DNA breaks in telomeric repeats causing interference with the replication 

fork at telomere ends leading to enlargement of unreplicated ends (von Zglinicki 2002). 

Moreover, telomeres are less proficient at repair of single-strand breaks than the remainder 

of the genome, as indicated by the enhanced level of repair in minisateillites compared 

with telomeres in cells exposed to oxidative damage (Petersen et al, 1998). This 

impairment of damage repair at the telomere may in part be explained by the positioning of 

TRF2 at the telomere end and has been shown to block the access of DNA repair enzymes 

to telomeric strand breaks (Richter et al, 2007).  

Endogenous ROS is mainly derived from mitochondria as an inevitable by-product of 

oxidative metabolism, with damage occurring due to an imbalance between ROS 

generation and scavenging pathways (Shiels & Davies 2004, Muller et al, 2007). A pro-

inflammatory state is a well recognised stimulator of excess ROS production mainly from 

immune cells such as macrophages and neutrophils. Hence, patients suffering from 

conditions typified by a chronic inflammatory response have been shown to display 

evidence of telomere attrition, which is postulated to be as a result of excess ROS 

generation. Typical conditions include inflammatory bowel disease (Risques et al, 2008b), 

chronic pancreatitis (Hashimoto et al, 2008) and type II diabetes mellitus (Sampson et al, 

2006).  

Exogenous or environmental sources of ROS include cigarette smoke. Cigarette smoke 

contains ROS but can also stimulate endogenous generation by virtue of its pro-

inflammatory effects. Several studies have determined a link between cigarette smoke and 

TL. Indeed, Valdes et al (2005) estimated that a 40 pack year smoking history corresponds 

to 7.4 years of ageing related telomere attrition (Valdes et al, 2005).  
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1.3.4  Telomere Function & Molecular Basis of Dysfunction 

As outlined above the maintenance of TL is a stochastic and heterogeneous process 

whereby a variety of endogenous and external factors co-operate to determine TL. The 

importance of maintaining an adequate TL is fundamental to the functionality of the 

telomere, as short telomeres are almost universally dysfunctional.  

1.3.4.1 Protection of the Genome & Role in Senescence 

Telomeric suppression of DNA damage signalling 

The unique nucleo-protein structure of the telomere is essential for its ability to suppress 

the DDR that would otherwise be initiated if the ends of chromosomes were not protected 

by the telomere. The most important of these components is the shelterin complex, 

particularly TRF2 and Pot1. TRF2 has been shown to play a clear role in DDR suppression 

as exemplified by the fact that deletion of TRF2 leads to accumulation of γH2Ax (a 

modified histone indicative of DNA damage) and frequent telomere fusions both 

suggesting de-protection of telomeres (Lazzerini Denchi et al, 2006). TRF2 is thought to 

suppress the initiation of a DDR through direct interaction with ATM the major 

intermediary in the response to double strand DNA breaks (DSBs). Deletion of TRF2 leads 

to ATM activation and formation of DNA damage foci at telomeres, which are identical to 

those formed at sites of DSBs (Karlseder et al, 1999, Lazzerini Denchi et al, 2006). TRF2 

may also suppress the DDR through its ability to create the t-loop configuration of the 

telomere end thereby preventing the apparatus for detecting DSBs access to the telomere 

end which would otherwise be recognised as a DNA break (Stansel et al, 2001).  

A further contribution to the suppression of a DDR is the ability of Pot1 to suppress the 

ATR pathway. Inhibition of Pot1 triggers the accumulation of DNA damage foci at 

telomeres, leading to the accumulation of γH2Ax and other factors signifying a damage 

response (Hockemeyer et al, 2005). The ability of Pot1 to repress ATR signalling lies in its 

interaction with another shelterin component, TPP1. TPP1 recruits Pot1 to the telomere 

and improves its ability to bind to the G-overhang. Moreover, deletion of TPP1 results in 

damage foci at telomeres indistinct from those caused by Pot1 deletion (Denchi & de 

Lange 2007, Hockemeyer et al, 2007).   

Whether telomere attrition occurs through replicative means as determined by the end 

replication problem or is accelerated by oxidative damage the end result is indistinct, 

namely uncapping of the telomere and loss of its key function in suppressing the DDR. 
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This mainly results from the reduced ability to recruit shelterin complexes in sufficient 

numbers to maintain TL and, the inability of TRF2 and Pot1 to suppress the DDR as 

outlined above (Smogorzewska et al, 2000, de Lange 2005).  

The exact length at which telomeres become uncapped and lose their protective function is 

a matter for debate and appears to be organism dependent (O'Sullivan & Karlseder 2010). 

In human fibroblasts in senescence the bulk of telomeres as determined by southern 

analysis appeared to be around 4kb (Karlseder et al, 2002). However, ultra-short telomeres 

of seven canonical telomeric repeats termed t-stumps have been identified in cancer cells 

(Xu & Blackburn 2007), whereas in telomerase negative cells repeats of 12.8bp have been 

noted (Capper et al, 2007). It has also been shown that it is the shortest telomere and not 

average TL that is the main stimulus for senescence (Abdallah et al, 2009). 

Uncapped telomeres stimulate senescence via initiation of a DNA damage 

response 

The molecular response of the cell to critical telomere attrition and uncapping is a complex 

interplay between DDR effectors many of which play a dual role in the maintenance of TL. 

In basic terms, when DDR signalling cascades are initiated in response to telomere attrition 

cell cycle checkpoints are elicited resulting in either; i) removal of the cell at the G1/S 

transition by either induction of senescence or apoptosis, or ii) sensing and repair of the 

damage. Some of the key pathways involved in this process are described below. 

Loss of telomeric sequences including bound shelterin complexes results in the activation 

of the ATM pathway. The exposed DNA is sensed as a DSB by the MRN complex (Table 

1.2) and activates ATM, which has been de-repressed by the loss of TRF2 from the 

telomere complex. A series of reactions then ensues which culminates in the activation of 

p21 via p53 phosphorylation (Figure 1.7). p21 inhibits cell cycle progression by 

inactivating pRB and is prerequisite for the induction and maintenance of senescence 

(d'Adda di Fagagna et al, 2003, Herbig et al, 2004). As opposed to senescence and 

depending on the cell type, apoptosis may be triggered in a p53 dependent manner 

(Karlseder et al, 1999). Alternatively, if telomeric damage results in exposure of single 

stranded DNA then the ATR response pathway is invoked by the de-repression of ATR by 

Pot1 (Denchi & de Lange 2007) (Figure 1.7). The DDR is actively maintained in senescent 

cells to prevent future re-entry into the cell cycle, thus telomere initiated senescence 

reflects a direct DNA damage response checkpoint reliant on dysfunctional telomeres 

(d'Adda di Fagagna et al, 2003). 
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Figure 1.7: Schematic representation of the response elicited by telomere uncapping, modified from 
Deng et al 2008. 

 

Similar to p21, p16INK4A (CDKN2A) is a cyclin dependent kinase inhibitor which prevents 

pRB phosphorylation, maintaining it in an activated state and preventing cell proliferation 

by inhibition of E2F (a growth factor which increases the transcription of a plethora of 

genes required for progress through the cell cycle).  Both telomeric and non-telomeric 

DNA damage can engage the p16INK4A pathway but do so with slower kinetics to that of 

the p53/p21 pathway, and in this setting is seen as secondary to the p53/p21 pathway 

(Jacobs & de Lange 2005). Cells that senesce solely due to p53/p21 activation can resume 

growth after inactivation of p53 whereas those fully engaging the p16INK4A /pRB pathway 

cannot, even after inactivation of p53, p16INK4A and pRB (Beausejour et al, 2003). Clearly 

this finding is relevant in the presence of inactivating mutations of p53 when senescence 

checkpoints can be bypassed leading to uncontrolled proliferation. 

Uncapped telomeres result in chromosomal instability 

Short dysfunctional telomeres not only initiate a DDR and senescence, but also allow 

deleterious repair reactions to occur, namely NHEJ and HR. NHEJ in particular results in 

‘end to end’ chromosome fusions, which are dicentric and therefore cannot be segregated 

in mitosis. The consequence of this is bridge breakage fusion events, translocations, 

karyotypic instability and aneuploidy (Riboni et al, 1997) (Figure 1.8).  
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Figure 1.8: Slide to the left indicates normal chromosomal arrangement. Slide to the right shows 
karyotype after NHEJ induced by dysfunctional telomeres (indicated by circle). 

 

 1.3.4.2 DNA Replication 

Facilitation of DNA replication is an integral function of the telomere, which is performed 

by permanent and dynamic telomere associated proteins. As mentioned previously 

complete telomere (and hence complete chromosome) replication is only possible through 

the unique action of telomerase. However, even in the absence of telomerase (when 

telomeric sequences will be lost due to the end replication problem) a functional 

relationship is required between DNA replication machinery and the telomere associated 

proteins. For example, telomere replication requires the RecQ helicase WRN in a TRF2 

dependent relationship (Crabbe et al, 2004). Verdun et al (2005) showed that telomeres 

recruit elements of the MRN complex and ATM in the G2 phase of the cell cycle. This led 

the authors to conclude that a localised DDR at telomeres is essential for recruiting the 

processing machinery that promotes formation of the chromosome end complex (Verdun et 

al, 2005). This relationship highlights the intricate nature of the interplay between proteins 

which have a seemingly paradoxical relationship by promoting efficient telomeric 

replication, but also sensing and signalling telomere damage and initiating cell cycle 

checkpoints.  

1.3.4.3 Telomeres are required for Efficient Meiosis 

Attachment of telomeres to the nuclear envelope in meiosis is required to promote accurate 

chromosome pairing, by reducing the freedom of movement of sequences near telomeres 

and limiting chromosomal attachment sites (Gilson et al, 1993). This gives rise to the 

‘bouquet’ arrangement of chromosomes in meiotic prophase and is dependent on 

interaction between the telomere and the nuclear membrane protein SUN1 (Ding et al, 

2007). The consequences of inadequate chromosomal pairing and bouquet formation is 
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apparent in SUN1 knockout mice where massive apoptotic events are induced leading to 

the abolition of gametogenesis (Ding et al, 2007).  

 

 

1.3.5 Epidemiological Aspects of Telomere Research 

 

Maintenance of TL is clearly a complex process and determining the exact relationship 

between telomere dynamics with both ageing and cancer proving similarly difficult. Some 

of the reasons for this are methodological and explained by variation in the means used to 

determine TL in index studies. These methodological differences may preclude TL use as a 

true biomarker of ageing, as was first proposed by the discovery of TL attrition with 

increasing chronological age.  

 

1.3.5.1 Methods of Telomere Length Measurement 

The main methods used to determine TL are southern blot analysis, quantitative 

fluorescence in-situ hybridisation (q-FISH) and quantitative-PCR (q-PCR). Each of these 

techniques harbours a number of advantages and disadvantages, which could potentially 

determine the significance of results gained through their use. The techniques and related 

comments are outlined in the table below (Table 1.4).  
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Table 1.4: Table displaying summary of the main mechanistic details of the commonly used 

techniques to determine telomere length including the advantages and disadvantages of 
each (Aubert et al, 2011).  

 

Technique Method Advantages Disadvantages 

Southern Blotting • Restriction enzyme cut 
DNA, separated by 
electrophoresis and 
transferred to membrane. 

• Hybridisation with specific 
telomere probe. 

• ‘Smear’ signal converted to 
Kb TL by various 
algorithms. 

• Thought to be most 
accurate method and 
‘gold standard’. 

• Reproducible 

• Time consuming 
• Large quantity of 

DNA required. 
• Relative 

insensitivity for very 
short telomeres. 

Q-FISH • Uses image cytometry and 
metaphase spreads. 

• Uses high affinity peptide 
nucleic acid probes which 
hybridise to denatured 
telomere DNA repeats. 

• Fluorescent signal detected 
and measured relative to 
known telomere length. 

• Allows 
simultaneous 
karyotyping. 

• Microscopically 
identified cells can 
be selected for 
analysis. 

• Single telomere 
analysis possible. 

 

• Difficult to achieve 
semi- quantification 
of TL due to 
hybridisation 
factors.  

• Unable to measure 
TL in terminally 
senescent or highly 
aberrant cells. 

Q-PCR • Based on the method fist 
reported by Cawthon 
(2002). 

• Uses primers which anneal 
to C- and G-rich strands of 
the telomere but have 
mismatches across their 
length leading to less 
primer dimer formation.  

• Amplification measured 
quantitatively and 
compared with that of a 
single copy gene (S).  

• Generates a ratio between 
telomere (T) and single 
copy amplification termed 
T/S ratio.  

• Recently modified as 
monochrome multiplex 
technique (Cawthon 2009). 

• High throughput 
possible as less 
labour intensive.  

• Large numbers of 
samples analysed in 
short space of time.  

• If performed with 
required precision 
and controls 
accurate 
comparisons with 
southern blots 
achievable. 

• Concerns over 
reproducibility. 

• Small errors can 
result in significant 
alterations in T/S 
(improved with 
introduction of 
monochrome 
technique).  

 

 

The convenience of the q-PCR methodology to determine TL has lead to its widespread 

use as the method of choice in the majority of experimental, clinical and epidemiological 

studies. However, as outlined in Table 1.4 this methodology is fraught with technical 

considerations, which may confound results and lead to misleading conclusions. The main 

problem associated with the technique is the variability in data leading to equivocal results 

and poor correlation between data derived from southern blotting, the so-called ‘gold 

standard’ method (Aviv 2004, Aviv 2008, Aviv 2009). These differences have stimulated 

leaders in the field to call for uniformity of methodology in an attempt to reduce variability 
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and prevent confounding factors skewing results. Potential ways in which variability could 

be reduced includes; double blind analysis of samples, standardisation of DNA 

preparation, inclusion of suitable controls and introduction of a worldwide laboratory 

standard operating procedure (Shiels 2010, Martin-Ruiz et al, 2011). Despite potential 

issues with the technique q-PCR is a useful tool for researchers in the field of telomere 

biology and its relation to ageing and disease. However, it is imperative that conclusions 

drawn from studies using the technique are done so in the context of the potential 

limitations.  

 

1.3.5.2 Telomere length as a Biomarker of Ageing 

 

The initial observations of a decline in TL with chronological age lead to the introduction 

of the concept of TL as a biomarker of aging. However, as it became clear that telomere 

dynamics were subject to manipulation by numerous intrinsic and extrinsic forces the 

emphasis was shifted more towards using TL as a marker of cellular bio-ageing.  

 

Baker and Sprott (1988) outlined the criteria considered prerequisite for any marker to be 

classified as a biomarker of ageing. They defined such a marker as:  

 

“a biological parameter of an organism that either alone or in some multivariate composite 

will, in the absence of disease better predict functional capability at some late age, than 

will chronological age” (Baker & Sprott 1988). 

 

 

Although the change in TL with chronological age is incontrovertible the use of TL as a 

marker of ageing has recently been questioned. Mather et al (2011) have recently reviewed 

the literature pertinent to the utilisation of TL as a biomarker of ageing and suggest that 

whilst there is clear evidence that telomeres are involved in ageing and diseases of 

premature ageing, the data supporting TL as a biomarker of ageing is inconclusive (Mather 

et al, 2011). There are a number of potential reasons highlighted, the high degree of inter-

individual variability at similar chronological ages, the lack of definitive association 

between TL and functional capacity, and the methodological reasons outlined above. To be 

a useful biomarker TL should predict lifespan better than chronological age. Studies 

investigating this specific issue are inconclusive. Cawthon et al (2003) first reported an 

overall increase in mortality with reduction in TL. This excess mortality was attributed to 
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higher mortality from cardiovascular and infectious disease (Cawthon et al, 2003). A 

recent report has also confirmed a weak association between short TL and mortality in an 

elderly population (Fitzpatrick et al, 2011). However, several studies have failed to 

conclusively demonstrate that short TL predicts mortality (Bischoff et al, 2005, Harris et 

al, 2006).  

 

 

1.3.6 Telomere Dysfunction & Cancer 

As outlined above, telomeres not only act as a cellular marker of replicative potential but 

they also function to maintain genomic integrity and facilitate accurate chromosomal 

replication. Integral to the ability to maintain genomic integrity is the capacity to induce 

cell cycle checkpoints, allowing repair of sensed damage, or if the damage is deemed 

irreparable removal of the cell from the proliferating population by apoptosis or 

senescence. It is therefore no surprise that acceleration of telomere attrition, or aberration 

of any of the elements maintaining optimal telomere dynamics leads to the development of 

chromosomal abnormalities which are not just typical of transformed cells, but essential 

for the initiation of neoplasia. The body of evidence implicating altered telomere biology 

in the cancer process is increasing rapidly. Some of the postulated mechanisms and in vivo 

studies providing the rationale for this indelible relationship will be discussed below. 

 

1.3.6.1 Mechanisms of Tumourigenesis 

 

Dysfunctional Telomeres & p53 

In an attempt to characterise the relationship between telomere attrition, p53 and malignant 

transformation a number of mouse models have been developed. These have used the 

aforementioned TERC-/- mouse crossed with mouse models designed to reflect aberrancy 

of different components of the telomere complex and DDR mechanism. In the context of 

the relationship between human cancer and ageing perhaps the most important observation 

results from the TERC-/-,Trp53-/- (p53 null) mouse. In these animals progressive telomere 

attrition corresponded with increased tumour incidence and decreased survival. Moreover, 

late generation mice succumbed to a range of tumours strikingly similar to those seen in 

elderly humans, namely breast, skin and intestinal. Cytogenetic analysis also revealed 



50 
 
chromosomal aberrations typical of these tumour types (Artandi et al, 2000, O'Hagan et al, 

2002). This model emphasises the importance of mutated p53 in the initiation of 

tumourigenesis in the setting of critically short telomeres (Chin et al, 1999).  

Models of specific tumour types have also yielded valuable information. The APCmin 

mouse model has been designed to develop benign micro and macroadenomas throughout 

the gastrointestinal tract. When crossed with the TERC-/- mouse, early generation offspring 

develop microadenomas, which progress onto more aggressive and detrimental 

macroadenomas. However, in later generation animals which have short and dysfunctional 

telomeres only microadenomas develop (Rudolph et al, 2001). This finding of protection 

against cancer in later generation in animals with short telomeres is observed in a 

CDKN2A-/- mouse deficient in p16INK4A and ARF who develop increased incidence of 

lymphoma and sarcoma (Greenberg et al, 1999). These findings suggest that in the 

presence of competent tumour suppressive pathways in particular p53, short telomeres 

elicit a protective function against neoplasia, presumably through initiation of senescence.  

Telomere dysfunction drives chromosomal instability 

Human tumours particularly of an epithelial origin display large numbers of focal 

amplifications and deletions. These copy number alterations are thought to drive the 

process of carcinogenesis by causing activation of proto-oncogenes or inactivation of 

tumour suppressor genes (Pinkel & Albertson 2005). Spectral karyotype analysis of cancer 

cells from tumours in mouse models driven by telomere dysfunction reveal similar copy 

number alterations. These show chromosome end fusions and numerous non-reciprocal 

translocations leading to aberrant copy number. Furthermore, these have been shown to be 

a major driver of amplication/deletion events at genes relevant to the initiation and 

maintenance of neoplasia (O'Hagan et al, 2002). These hallmarks are evident not only in 

the TERC-/- mouse model of telomere attrition, but also in the TPP1acd/acd mouse which 

models telomere uncapping by disrupting the shelterin complex. These mice display 

increased epithelial cancers particularly of the skin, in a p53 deficient setting with hallmark 

copy number aberrations (Else et al, 2009).  

 

 

1.4.6.2 Senescence & Cancer 

The irreversible growth arrest initiated by senescence makes it an ideal candidate for a role 

in the prevention of neoplastic transformation and tumour suppression. Indeed senescent 
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cells have been shown in abundance in a variety of pre-malignant lesions. For example, 

pre-malignant lesions from the lungs of an oncogenic k-Ras mouse model contained 

abundant senescent cells, when compared with invasive lung adenocarcinomas (Collado et 

al, 2005). These findings have been corroborated in a mouse model of prostate cancer 

lacking the tumour suppressor PTEN and importantly, from benign lesions of human skin 

carrying oncogenic mutant BRAF (Michaloglou et al, 2005, Chen et al, 2005b). These 

findings implicate senescence as a barrier of transformation from benign non-invasive 

lesions to malignancy.  

 

Both oncogene induced and replicative senescence have been shown to exert a tumour 

suppressive role. Analysis of benign naevi showed high levels of senescence but no 

discernible reduction in TL, indicating that oncogene-induced senescence rather than 

replicative senescence may confer the limitation of proliferation in these lesions 

(Michaloglou et al, 2005). Meanwhile, complex inter-generational crossing of the 

telomerase knockout mouse with the Eμ-Myc transgenic model of Burkitts lymphoma 

revealed hallmarks of chromosomal instability due to telomere dysfunction in tumour cells 

of late generation animals. Furthermore, over-expression of the anti-apoptotic gene Bcl2 in 

cells from late generation crossed animals with subsequent re-implantation resulted in 

lymph node tumours which were small and proved positive for markers of senescence such 

as p16INK4A. These results suggest that dysfunctional telomeres can induce senescence in 

the absence of apoptosis to exert a tumour suppressive effect (Feldser & Greider 2007). 

Similarly, telomerase null mice in which the pro-apoptotic effect of p53 was ameliorated 

but p53-dependant senescence pathways maintained, displayed near universal reduction in 

tumour formation (Cosme-Blanco et al, 2007).   

 

Whilst the studies mentioned above provide evidence of senescence acting as a barrier to 

malignant transformation, some of the characteristics of senescent cells confer tumour 

promoting properties. The development of the secretory associated senescence phenotype 

(SASP) can alter the behaviour of neighbouring cells via the secretion of mostly pro-

inflammatory cytokines and growth factors known to stimulate various characteristics of 

neoplasia (Rodier & Campisi 2011). Human cells subjected to DNA damage adopt the 

senescence phenotype and secrete IL-6 in a manner dependent on the DDR proteins ATM, 

NBS1 and Chk2. Furthermore, IL-6 promoted human cancer cell invasiveness in a 

dependent relationship with ATM (Rodier et al, 2009) and stimulated both pre-malignant 

and weakly malignant cells to penetrate the basement membrane (Coppe et al, 2008). In 
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addition, vascular endothelial growth factor (VEGF) released by senescent cells can 

stimulate endothelial cell migration and invasion, both key steps in the process of 

neoangiogenesis (Coppe et al, 2006). Senescent cells also harbour the ability to secrete 

matrix metalloproteinases (MMPs) particularly MMP-1, -3 and -10. These proteases 

contribute to the tissue remodelling required for tumour cell invasion (Davalos et al, 2010). 

It is therefore plausible that senescent cells could play a role in the progression and 

development of neoplasia via paracrine signalling to neighbouring cells (Campisi & 

d'Adda di Fagagna 2007). In support of this paradigm Krtolica et al (2001) reported that 

co-injection of senescent cells into xenograft models of malignancy stimulated pre-

malignant lesions to become malignant and accelerated the rate of tumour formation when 

co-injected with malignant cells (Krtolica et al, 2001). The seemingly dichotomous 

relationship between senescence and cancer can be explained in evolutionary terms as a 

further example of antagonistic pleiotropy. Whereby tumour suppression by senescence is 

a protective mechanism in younger individuals but, as an individual ages and deleterious 

mutations accumulate its effect becomes pro-tumourigenic (Coppe et al, 2010).   

 

 

1.3.6.3 Telomere Length and Human Cancer Risk 

 

Numerous studies have now been published with the aim of delineating the relationship 

between human TL and cancer risk. The methodologies used to measure TL, the source of 

telomeric DNA and the cancer populations studied have been diverse. On the whole the 

results have indicated that short TL is associated with increased cancer risk. However, 

some studies have produced conflicting results with both short and long TL associated with 

increased cancer risk in some histological subtypes. These differences are difficult to 

rationalise however inherent differences in the methodologies used and the natural history 

of the cancer type under investigation could explain some of the heterogeneity.   

 

Leucocyte Telomere Length & Cancer Risk 

 

The rationale behind using peripheral blood leucocytes (PBLs) as a source of telomeric 

DNA is one borne of convenience. Evidently it is easier to obtain a patient blood sample 

than a sample of tumour cells, particularly of solid tumours. The use of PBLs may also 

give a more general indication of telomere dynamics as opposed to the tumour level where 

the reactivation of telomerase will stabilise TL to enable enhanced proliferation. TL in 
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different cell compartments have been shown to be comparable, indicating PBL TL could 

serve as a surrogate parameter of the tissue under investigation (Friedrich et al, 2000).  

 

Over the last ten years the number of studies documenting an association between PBL TL 

and cancer risk has steadily increased. The first study to investigate any potential link was 

published by Wu et al (2003) using a retrospective case-control study design and southern 

blot analysis to determine TL. The authors reported a significant association between short 

TL and bladder, lung, head and neck and renal cell cancer (Wu et al, 2003). Since these 

initial findings numerous cancer types have been investigated producing similar results. 

Short TL has been associated with an increased risk of breast (Shen et al, 2009), bladder 

(McGrath et al, 2007), ovarian (Mirabello et al, 2010), gastric (Hou et al, 2009), colorectal 

(Pooley et al, 2010) and oesophageal cancer (Xing et al, 2009). Conversely some studies 

have reported an equivocal risk of colorectal (Zee et al, 2009, Lee et al, 2010), prostate 

(Mirabello et al, 2009) and breast (Kim et al, 2011) cancer with short TL. Whilst, some 

studies have even reported an association between long telomeres and an  increased risk of 

colorectal (Jones et al, 2011), breast cancer (Svenson et al, 2008) and clear cell renal 

cancer (Svenson et al, 2009). These conflicting results clearly indicate a degree of 

heterogeneity between studies. Such sources could relate to the method used to determine 

TL or the study population under investigation. The natural history of the cancer type 

under investigation could also potentially confound results, as could the retrospective 

design of most of the studies. Willeit et al (2010) therefore employed a prospective 

longitudinal study design to investigate cancer risk in 787 healthy participants followed-up 

over a period of 10 years. They reported that both cancer risk and mortality from cancer 

was increased in patients in the shortest telomere group when compared with the longest 

(Willeit et al, 2010).   

 

Overall cancer risk has been shown to be affected by genetic variation in expression of 

telomere-associated proteins. Four SNPs in the TERT and Pot1 genes were associated with 

increased breast cancer risk (Shen et al, 2010). Similarly variation in the TERT and TRF1 

gene was associated with skin cancer risk (Nan et al, 2011), with TERT and TNKS 

variability associated with susceptibility to lung cancer (Choi et al, 2009). Whilst it is clear 

genetic variability influences cancer risk the direct relationship with TL can only be 

speculated on as concomitant measurement of TL was not performed in these studies. 
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Tissue telomere length & Cancer Risk 

 

Measurement of cancer tissue TL has the added advantage over PBL TL that direct 

correlation of TL from pathological specimens with outcome measurements could provide 

a novel addition to routine biomarkers of risk stratification. Several studies in a number of 

tumour subtypes have attempted to provide prognostic information (Bisoffi et al, 2006). 

Short TL has been shown to be associated with adverse pathological features, metastasis 

and poor prognosis in breast cancer (Griffith et al, 1999b, Fordyce et al, 2006). Similarly 

TL in prostate cancer sample specimens predicts time to recurrence independent of age, 

Gleason score and pelvic node involvement (Fordyce et al, 2005). However, this 

correlation between TL and adverse outcomes was not replicated in colorectal cancer 

where longer TL was associated with poor outcome and more advanced disease. Although, 

as in the previous studies mentioned in different tumour subtypes TL in cancer specimens 

was significantly shorter than adjacent normal tissue (Gertler et al, 2004, Garcia-Aranda et 

al, 2006). These differences may result from the behavioural characteristics of colorectal 

cancers relating to the natural history of the progression through the adenoma-carcinoma 

sequence of events leading to cancer development in this tissue (Kim et al, 2002, Plentz et 

al, 2003). 

  

Clearly a number of aspects of telomeric function are altered in the development and 

progression of oncogenesis. In order to provide a molecular context for this a number of 

pathways which intricately link ageing and cancer were considered. For example, the 

ability of a cell to optimally respond to stressful stimuli is dependent on its ability to sense 

the damage and respond accordingly, in the face of the metabolic and oxidative conditions 

at that time. It has been postulated that one way in which this critical cellular response can 

be rationalised is via the concept of the MTR trinity (Mitochondrion Telomere and 

Ribosome biogenesis). Through this triad critical DNA damage is sensed by the telomere 

nucleo-protein complex which also plays a role in effector mechanisms such as 

senescence. Energy production and apoptosis are facilitated by the mitochondria and 

energy utilisation, as well as the requisite protein synthetic pathways are controlled via 

rDNA (Shiels & Davies 2004). A potential linking factor of these individual elements of 

the MTR are a group of nutrient sensing proteins termed the sirtuins. These proteins 

control a number of critical cellular functions fundamental to both the ageing and cancer 

with aberrancy of their expression linked to both processes. A full description of this 

interesting group of proteins will now follow. 
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1.4 Sirtuins 

 

1.4.1 Silent Information Regulator 2 (Sir2) 

 

The term Silent information regulator 2 (Sir2) was coined to describe the product of a 

unique class of genes first discovered in the budding yeast Saccharomyces cerevisiae, 

which function to silence gene transcription at the silent mating type loci. This contributes 

to a number of different mechanisms which control gene expression at the level of 

transcription at specific chromosomal domains. Transcriptional silencing involves 

induction of a specialised chromatin structure that physically impedes transcription as well 

as a number of other processes, including epigenetic modification by methylation 

(Guarente 1999, Gartenberg 2000). Following intensive investigation it has become clear 

that Sir2 is part of a family of genes phylogenetically conserved from bacteria to man more 

broadly termed the sirtuins. However, it was not until Sir2 was implicated in the control of 

yeast longevity and latterly the ageing process in general that interest increased, giving rise 

to the prospect that manipulation of these genes or their products could affect human 

longevity or even reverse the ageing process (Kaeberlein et al, 2007, Kaeberlein 2008).  

 

1.4.2 MAMMALIAN SIRTUINS 

The field of ageing research was fundamentally changed with the discovery that Sir2 and 

its homologues not only controlled key cellular processes but also longevity in model 

organisms (Kaeberlein et al, 1999). Work was therefore initiated to determine whether the 

same effects were evident in higher organisms including humans. To date seven 

homologues of Sir2 termed sirtuin 1-7 have been discovered in mammals, these have 

varying sub-cellular localisations and functions compatible with critical regulators of 

cellular function. Some of the key aspects of the molecular biology and physiology of the 

sirtuins are discussed below.  
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1.4.2.1 Homology with Sir2   

Genetic Homology 

In mammals there are seven orthologues of the Sir2 gene termed sirtuin (SIRT) 1-7. SIRT1 

shares the closest homology with the yeast Sir2, whilst SIRT4 and SIRT5 resemble 

prokaryotic sirtuin sequences. SIRT6 and SIRT7 more closely resemble each other than the 

Sir2 gene (Frye 1999, Frye 2000). Analysis of over sixty conserved sirtuin sequences from 

a varying range of organisms has identified five groups into which the sirtuins can be 

classified, termed class I-IV and U. Yeast Sir2, SIRT1, SIRT2 and SIRT3 lie within class I. 

SIRT4 and SIRT5 are class II and class III sirtuins respectively with class IV containing 

mammalian SIRT6 and SIRT7. Neither class I nor class IV are found in prokaryotes. Class 

U contains sirtuins from some gram positive bacteria and Thermotoga maritima in which 

the sequence motifs are intermediate between class I to IV (Frye 2000).  

Structural & Enzymatic Homology 

The basic structure of the mammalian sirtuins resembles that described previously in yeast, 

consisting of a large domain of a classical open α/β, Rossman fold structure and a smaller 

domain.  The main enzymatic function of yeast Sir2 is as a histone deacetylase requiring 

NAD+ as a dependant cofactor, which is conserved by the mammalian sirtuins (Imai et al, 

2000). The NAD+ binding site was discovered to be situated within a pocket in which the 

large domain forms the floor and the small domain the ceiling. The conserved domain 

contains a motif of Cys-X-X-Cys-(X)15-20-Cys-X-X-Cys which is thought to bind a Zn+ 

ion (Min et al, 2001).  

The utilisation of NAD+ as a cofactor for the deacteylase activity of the mammalian 

sirtuins is maintained by SIRT1, SIRT2, SIRT3, SIRT5 and SIRT6 (Schwer et al, 2002, 

Michishita et al, 2005, Michishita et al, 2009, Nakagawa et al, 2009). In addition SIRT4 

and SIRT6 have been shown to possess robust ADP-ribosyl-transferase activity, a reaction 

which also requires NAD+ as a fundamental cofactor ( Liszt et al, 2005, Haigis et al, 2006, 

Michishita et al, 2009). The control of the deacetylase activity is dependent on the 

NAD+/NADH ratio within the cell. This requirement of NAD+ as a cofactor for the 

catalytic activity of Sir2 and the sirtuins in general raises the intriguing possibility of 

altering key cellular processes implicated in organismal ageing through varying availability 

of metabolic intermediates, potentially by dietary manipulation (Guarente 2000).  
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1.4.2.2 Sirtuin Sub-Cellular Localisation  

The most extensive study investigating the cellular localisation of the sirtuins was 

undertaken by Michishita and colleagues (2005). SIRT1, SIRT6 and SIRT7 were found 

mainly in the nucleus, however there was some sub-nuclear variation in that SIRT1 

appeared to be excluded from the nucleoli and SIRT6 was found overlapped with 

heterochromatic regions (Michishita et al, 2005). SIRT3 was already known to reside in 

mitochondria (Schwer et al, 2002).This was confirmed and expanded upon by data 

demonstrating that SIRT4 and SIRT5 co-localised with a mitochondrial marker confirming 

SIRT3, SIRT4 and SIRT5 as mitochondrial sirtuins (Michishita et al, 2005).   Consistent 

with its role as a tubulin deacteylase SIRT2 is predominantly found in the cytoplasm, 

however during mitosis resides in the nucleus (North et al, 2003).  

Some of the major features of the mammalian sirtuins including genetics, activity and 

localisation are summarised in Table 1.5.  
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Table 1.5: Table displaying some of the common characteristics of SIRT1-7. 

Sirtuin Class Chromososme Cellular 
Localisation 

Enzymatic 
Function 

Targets Cellular Function 

SIRT1 I 10q21.3 Nucleus, 
cytoplasm 

Deacetylase H1, H3, H4 
p53, NF-κB, 
ku70, FOXO, 
PGC-1α,  

Cell survival, glucose 
metabolism, 
inflammation, 
neurodegeneration 

SIRT2 I 19q13.2 Cytoplasm Deacetylase H4, α-tubulin Cell cycle control 

SIRT3 I 11p15.5 Mitochondria Deacetylase Acetyl CoA 
synthetase 2, 
long chain acyl 
CoA 
dehydrogenase 

Thermogenesis, 
metabolic response 

SIRT4 II 12q24.23 Mitochondria ADP-
ribosyl 
transferase 

Glutamate 
dehydrogenase 

Insulin 
secretion/metabolic 
control 

SIRT5 III 6p23 Mitochondria Deacetylase Carbamoyl 
phosphate 
synthetase-1 

Control of urea cycle 

SIRT6 IV 19p13.3 Nucleus Deacetylase
ADP-
ribosyl 
transferase 

Telomere 
histone H3, 
HIF-1α, DNA-
dependent 
protein kinase 

Maintenance of 
genomic integrity, 
DNA repair, insulin 
secretion 

SIRT7 IV 17q25 Nucleus Deacetylase RNA 
polymerase I 

rDNA transcription, 
cell proliferation 

 

This variability in the sub-cellular localisation and targets with which they interact is 

reflected in the diverse fundamental cellular processes under the control of the sirtuins.  

The sirtuins, in particular SIRT1 have been demonstrated to regulate not only histones but 

a multitude of other non-histone proteins which control a number of key processes such as 

cell survival, stress resistance, metabolism and protection of genomic integrity. Clearly, 

these processes need to be controlled with fine precision as they are intricately linked not 

only to normal and premature ageing but also to some of the deleterious pathological 

outcomes associated with ageing, in particular neoplasia. The key features and functions of 

each of the sirtuins will now be discussed.  
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1.4.3 SIRTUIN 1 

Cloning studies have determined that the human Sirt1 gene spans 33,660 bp over one 

genomic locus. FISH analysis defined the position of the Sirt1 gene to chromosome 

10q21.3. Whilst, phylogenetic analysis revealed the human Sirt1 gene shared 56% pair 

wise homology with yeast Sir2, the highest of any the human sirtuins (Voelter-Mahlknecht 

& Mahlknecht 2006). Consistent with its place in the group of histone deacetylases SIRT1 

exerts a controlling influence on chromatin and hence epigenetic phenomena. SIRT1 

displays strong deacetylase activity towards lysine 26 on histone H1 (H1K26), H4K16 and 

H3K9. RNA interference to knockdown SIRT1 expression reveals hypoacetylation at these 

and other key sites suggesting a key involvement of SIRT1 in heterochromatin regulation 

(Vaquero et al, 2004). SIRT1 can further modify chromatin via its ability to deacetylase 

and regulate key methyltransferases, namely SUV39H1. The acetylation of H4K16 is 

thought to be particularly important for optimal chromatin function and is evolutionarily 

conserved (Vaquero et al, 2004, Vaquero et al, 2007).  

1.4.3.1 SIRT1 Controls Key Homeostatic Processes 

Cell Survival & Response to Stress 

The main feature of SIRT1 which distinguishes it from the remainder of the sirtuins and its 

yeast homolog Sir2 is its ability to deacetylate a multitude of non-histone targets including 

p53, FOXO, NF-κB and Ku70 (Yang et al, 2005, Jeong et al, 2007, Ghosh et al, 2007, Yi 

& Luo 2010) (Figure 1.9). This confers SIRT1 with the capacity to regulate a number of 

key cellular processes and adaptive mechanisms, allowing the tailoring of stress response 

to the level of any external insult such as CR or genotoxic stress, and dictating cellular fate 

by modulating apoptotic pathways and intermediaries (Milner 2009). 
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Figure 1.9: Some of the processes and downstream targets through which SIRT1 acts to regulate cell 
survival and response to stress. Taken from (Haigis & Sinclair 2010).  

 

SIRT1 Interaction with p53- Apoptosis & Senescence 

Two separate studies identified p53 to be the first SIRT1 non-histone target.  These studies 

demonstrated that p53 was a SIRT1 target and that the p53 pro-apoptotic response to stress 

was repressed by SIRT1 induced deacetylation of p53. Whilst expression of dominant 

negative SIRT1 potentiated the p53 controlled cellular stress response (Luo et al, 2001, 

Vaziri et al, 2001).  

SIRT1 mediates an effect over the two known pathways of p53 induced apoptosis. 

Transcription independent apoptosis is modulated via SIRT1 control over p53 sub-cellular 

localisation. This was demonstrated by Han et al (2008) in mouse embryonic stem cells 

(mES) cells where SIRT1 blocked nuclear translocation of cytoplasmic p53 in response to 

endogenous ROS (Han et al, 2008a). Transcription dependant apoptosis is a finely 

balanced process involving p53 mediated upregulation of pro-apoptotic genes such as Bax, 

PUMA and NOXA (Yu & Zhang 2008). SIRT1 has the ability to influence this pro-

apoptotic pathway by deacetylating members of this intricately controlled process. For 
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example, deacetylation of Ku70 alters the Ku70/Bax interaction resulting in an altered 

apoptotic response (Cohen et al, 2004a). 

The effect of SIRT1 on p53 mediated senescence is complex with the results of studies 

seemingly at odds. SIRT1 represses p53 activation by deacetylation thereby antagonising 

premature senescence in MEFs (Langley et al, 2002). However, in contrast with these 

findings SIRT1 deficient MEFs displayed an enhanced resistance to replicative senescence 

under conditions of chronic sublethal genotoxic stress induced by H2O2, an effect which is 

mediated by p19ARF and its ability to positively regulate p53 (Chua et al, 2005). Thus 

SIRT1 has two distinct mechanisms of influencing p53 function, by direct deacetylation 

and through regulation of p19ARF. These have opposite affects on net p53, thus highlighting 

the complexity of the role SIRT1 plays in the control of senescence. It is likely that the 

overall effect is dependent on the trigger of cellular stress and the apoptotic signalling 

mechanism induced. 

SIRT1 and other Non—Histone Targets 

FOXO transcription factors have been shown to up-regulate the transcription of genes 

controlling apoptosis, cell cycle arrest and differentiation. Integrated responses to stressful 

stimuli are achieved by a number of mechanisms including modification of acetylation 

status by SIRT1. SIRT1 has been shown to deacetylate FOXO1, FOXO3 and FOXO4 but 

the overall effect of deacetylation is complex (Brunet et al, 2004, Daitoku et al, 2004, 

Motta et al, 2004, van der Horst et al, 2004). Deacetylation can result in activation of 

FOXO1 and FOXO4 with subsequent upregulation of target genes involves in stress 

resistance, or inhibition of FOXO3 dependant apoptosis and promotion of DNA repair 

(Brunet et al, 2004, Daitoku et al, 2004, Kobayashi et al, 2005, Yang et al, 2005). The 

overall effect appears to be one of shifting FOXO-dependant responses towards cell 

survival by stress resistance and inhibition of apoptosis, leading to cell cycle arrest.  

NF-κB controls key processes involved in cell cycle control, cell fate and is paramount for 

both adaptive and innate immune responses.  Once activated it translocates to the nucleus 

where it enhances transcription by tethering histone acetyl transferases (HATs). SIRT1 

physically interacts with the RelA/p65 subunit of NF-κB resulting in its deacetylation and 

inactivation, thus SIRT1 activity augments TNF-α induced apoptosis (Yeung et al, 2004). 

Thus the effect of the interaction between SIRT1 and NF-κB is to positively regulate 

apoptosis whereas interaction of SIRT1 with p53, Ku-70 and FOXO results in the 



62 
 
attenuation of apoptosis, promoting cell survival. It is therefore clear that the overall effect 

of SIRT1 on cell survival is varied and complex. Some of the reported variations can be 

explained by the response induced by the different types of experimental stimuli utilised. 

For example induction of the DNA damage response by γ-irradiation stimulates ATM 

dependant accumulation of p53 and ultimately upregulation of pro-apoptotic gene products 

whilst TNF-α induces p53-independant apoptosis which is repressed by NF-κB (Yi & Luo 

2010). Further variation in response depending on the cell type used is almost certainly 

inevitable. It stands to reason that aberrancy of expression of SIRT1 or any of the 

mediators involved in the signalling pathways controlling cell survival leading to altered 

longevity and cell turnover with the obvious implications for ageing and cancer. 

Metabolic Regulation 

SIRT1 plays a role in glucose homeostasis by two main mechanisms, regulation of insulin 

secretion and stimulation of hepatic gluconeogensis. Moynihan et al (2005) using β-cell-

specific SIRT1-overexpressing mice and Bordone et al (2006) using SIRT1-/- mice 

independently demonstrated that SIRT1 positively regulates glucose stimulated insulin 

secretion in pancreatic β-cells (Moynihan et al, 2005, Bordone et al, 2006). Modulation of 

hepatic gluconeogenesis occurs via SIRT1 mediated activation of PGC-1α. Activation of 

PGC-1α in the liver stimulates gluconeogenesis and inhibits glycolytic pathways via a 

nutrient signalling response mediated by pyruvate (Rodgers et al, 2005).  

In addition to its role in glucose homeostasis SIRT1 can regulate adipogenesis and 

lipolysis via its interaction with PPARγ. Repression of PPARγ by SIRT1 results in 

attenuation of adipogenesis and upregulation of lipolysis in response to food withdrawal 

(Picard et al, 2004).  

Vascular Biology 

There is increasing evidence that SIRT1 plays a key role in vascular function and 

lipoprotein metabolism, translating to a protective effect against cardiovascular disease. 

SIRT1 activates transcription of liver X receptors (LXR) target gene encoding the ATP-

binding cassette transporter A1. This has the effect of increasing high density lipoprotein 

synthesis with the concomitant benefits on atherosclerotic plaque formation via altered 

cholesterol transport (Li et al, 2007). In addition, SIRT1 has been shown to regulate 
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vascular tone by deacetylating and stimulating endothelial nitric oxide synthase (eNOS) 

thereby increasing nitric oxide (NO) levels (Mattagajasingh et al, 2007).  

Neuronal Function 

SIRT1 has been shown in a number of model systems to play a key role in neuronal 

survival, in particular axonal degeneration. The wallerian degeneration slow (Wlds) mouse 

line exhibits delayed axonal degeneration in response to injury, an effect which is mediated 

by the increased expression of an enzyme (Nmnat1) required for the de novo synthesis and 

salvage of NAD+ with SIRT1 as a downstream effector (Araki et al, 2004). In a more 

clinical context SIRT1 has been shown to modulate disease activity in Alzheimer’s disease 

(AD) by ameliorating the damage induced by Aβ peptides through an effect on NF-κB 

signalling (Albani et al, 2010).  

Differentiation 

Terminal cellular differentiation of a number of different histological subtypes provides 

another mechanism by which SIRT1 can alter tissue dynamics in response to changes in 

the metabolic micro-environment. SIRT1 can modulate neuronal differentiation by 

becoming transiently translocated to the nucleus of neural precursor cells (stem-like cells) 

and repressing the Notch1/Hes1 signalling pathway. However, the functional role of 

SIRT1 on neuronal development remains to be fully elucidated (Hisahara et al, 2008). 

Skeletal muscle differentiation and gene expression is also subject to regulation by SIRT1 

due to dynamic fluctuations in [NAD+]:[NADH] and overexpression of SIRT1 results in 

immature myotubes with reduced expression of myosin heavy chain and myogenin. Thus 

gene expression and muscle differentiation is regulated by metabolic demands of muscle 

that occur in response to food intake, fasting and exercise (Fulco et al, 2003). 

 

1.5.4 SIRTUIN 2 

FISH analysis of the human SIRT2 gene localises it to chromosome 19q13.1 (Voelter-

Mahlknecht et al, 2005). SIRT2 is predominantly located in the cytoplasm and expression 

profiling reveals high levels in foetal brain, adult brain and kidney (Michishita et al, 2005). 
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The bulk of evidence investigating the cellular function of SIRT2 points to its role as a 

mediator of the cell cycle via its ability to deacetylate tubulin (North et al, 2003). 

1.4.4.1 Functions of SIRT2   

Cell Cycle Control 

Functional studies of human SIRT2 have revealed that its expression is abundantly 

increased during mitosis and in particular at the G2/M transition of the cell cycle when it is 

also phosphorylated. Cells overexpressing SIRT2 display a marked prolongation of the 

mitotic phase of the cell cycle (Dryden et al, 2003). Further analysis by North and 

colleagues (2003) revealed the predominant intra-cellular target of SIRT2 to be α-tubulin 

(North et al, 2003). SIRT2 has also been shown to deacetylate lysine 16 on H4 again 

specifically during the G2/M transition when SIRT2 can be localised on Chromatin 

(Vaquero et al, 2006). The ability of SIRT2 to control mitotic exit from the cell cycle is 

dependent on its phosphorylation levels. Dephosphorylation of SIRT2 by the phosphatase 

CDC14B also has the effect of destabilising the SIRT2 protein promoting mitotic exit 

(Dryden et al, 2003). Phosphorylation of SIRT2 has since been demonstrated to be 

achieved by the cell cycle regulator cyclin-dependent kinase 1 at serine 368 (North & 

Verdin 2007b).  Failure of SIRT2 to control cell cycle exit and act as a checkpoint could 

allow abnormal chromosomal condensation and therefore chromosomal aberrancy. SIRT2 

has therefore been identified as a potential contributor to the chromosomal abnormalities 

evident in some tumour types.  

 Tubulin-Independent targets 

Pertinent to its potential role in cell turnover and accurate chromosomal replication SIRT2 

has recently been demonstrated to interact with the ubiquitous transcription factor NF-κB. 

SIRT2 can deacetylate the p65 subunit both in vitro and in vivo at Lys 310. Furthermore 

p65 is hyperacetylated in SIRT2(-/-) cells stimulated by TNF-α, leading to the increased 

expression of NF-κB dependant genes (Rothgiesser et al, 2010).  
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1.4.5 SIRTUIN 3, 4 & 5 

Collectively SIRT3, 4 & 5 are termed the mitochondrial sirtuins. Localisation of these 

sirtuins to the mitochondria stimulated great intrigue in the ageing research community 

given the importance of these organelles in regulating nutrient utilisation, energy 

production and in apoptosis. Furthermore, as a by-product of the reactions involved in 

energy production, mitochondria are the primary site of reactive oxygen species generation 

in the cell (Huang et al, 2010). 

1.4.5.1 Sirtuin 3 

The human SIRT3 gene is located on the short arm of chromosome 11 at position 15.5. It 

possesses robust NAD+ deacetylase activity and is localised to the mitochondrial matrix 

(Onyango et al, 2002, Schwer et al, 2002, Michishita et al, 2005). Some controversy exists 

as to whether SIRT3 is truly mitochondrial. Upon translation it translocates from the 

cytoplasm into mitochondria where it is cleaved and activated by matrix processing 

peptidase (Scher et al, 2007). Other studies, however, have confirmed SIRT3 as a purely 

mitochondrial deacetylase (Hallows et al, 2006). 

SIRT3 and Metabolic Regulation  

Although SIRT3 targets a wide range of mitochondrial proteins for deacetylation the most 

widely characterised substrate is acetyl-CoA synthetase 2 (AceCS2). AceCS2 converts 

acetate to acetyl-CoA in the presence of ATP and its transcription is upregulated during 

ketogenic states such as starvation or diabetes. SIRT3 deacetylates and hence activates 

AceCS2 at lysine 642 providing a potential mechanism whereby SIRT3 could play a 

regulatory role in energy production and utilisation under certain conditions (Hallows et al, 

2006, Schwer et al, 2006). Generation of a transgenic SIRT3 knockout mouse confirmed 

that a variety of mitochondrial proteins exhibit marked hyperacetylation. However, despite 

this profound alteration in enzymatic structure no demonstrable effect on physiological 

phenotype was noted under normal and short-term fasting conditions (Lombard et al, 

2007). SIRT3 has also been implicated in the evolution of the ketogenic response to fasting 

by its ability to deacetylate mitochondrial 3-hydroxy 3-methylglutaryl CoA synthase 2 

(HMGCS2) the rate limiting step in β-hydroxybutyrate synthesis (Shimazu et al, 2010). 

Hirschey et al (2010) report SIRT3 levels in liver and brown adipose tissue are increased 

in response to fasting. Furthermore, SIRT3 null mice exhibit hallmarks of fatty acid 
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oxidation disorders during fasting including reduced ATP levels and intolerance to cold 

exposure (Hirschey et al, 2010). It therefore, appears that SIRT3 may be involved in 

response to states of energy limitation when it can control the rate of ketosis and 

incorporate acetate into central metabolism where it can be used as an energy source.   

1.4.5.2 Sirtuin 4 

SIRT4 is found in mitochondria and unlike the sirtuin proteins already discussed it 

possesses ADP-ribosyltransferase activity, as demonstrated by the fact that mice lacking 

SIRT4 show no significant change in mitochondrial protein acetylation levels (Michishita 

et al, 2005, Lombard et al, 2007). SIRT4 has been implicated in amino acid-stimulated 

insulin secretion from pancreatic β-cells due to its ability to ADP-ribosylate and inhibit 

glutamate dehydrogenase (GDH). This enzyme controls the conversion of glutamate into 

α-ketoglutarate, a component of the citric acid cycle. By doing so it increases the 

ATP:ADP ratio a key stimulant of insulin secretion. Knockdown of SIRT4 results in 

upregulated amino-acid stimulated insulin secretion by increasing GDH activity (Haigis et 

al, 2006, Ahuja et al, 2007). SIRT4 may also play a role in the response to CR. Levels of 

SIRT4 are noted to decrease during CR corresponding with an increased GDH activity and 

hence insulin secretion from β-cells isolated from CR mice. Thus SIRT4 may play a role in 

changing the main stimulus to insulin secretion from carbohydrate to amino acids during 

CR (Haigis et al, 2006). A further recently identified function of SIRT4 is the capacity to 

oxidise fatty acids in liver and muscle cells. SIRT4 was knocked down both in vivo and in 

vitro resulting in an increase in hepatic mitochondrial and fatty acid oxidation gene 

expression (Nasrin et al, 2010). These findings again correlate with the potential that 

inhibition of SIRT4 during CR or periods of fasting controls entry into alternative means of 

energy production.  

1.4.5.3 Sirtuin 5  

Initial studies mapped the human SIRT5 gene to chromosome 6p.23 and found that it was 

particularly well expressed in cardiac myocytes and lymphoblasts, however further studies 

have demonstrated high expression levels in brain, liver, kidney, skeletal muscle and testis 

(Mahlknecht et al, 2006a). The first target of SIRT5 described was cytochrome C, a 

protein found in the mitochondrial inter-membrane space with a role in oxidative 

metabolism and apoptosis (Schlicker et al, 2008). The first in vivo target identified was 

recently uncovered as carbamoyl phosphate synthetase I (CPS I). This enzyme plays a key 
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role in the in the urea cycle which is responsible for the detoxification and excretion of the 

ammonia produced during the breakdown of amino acids. SIRT5 deacetylates and 

increases activity of CPS I, a response which is seen during conditions of fasting when the 

levels of NAD+ increase in isolated mouse hepatocytes. Thus an adaptive mechanism by 

which nitrogenous waste, which is particularly abundant when amino acids are utilised as 

an energy source is induced. This was confirmed by the fact high levels of ammonia were 

recorded in fasted SIRT5 KO mice. These findings were also evident in mice chronically 

calorie restricted and fed high protein diets (Nakagawa et al, 2009, Nakagawa & Guarente 

2009). It is therefore tempting to speculate that SIRT5 may contribute to the control of life 

span due to its ability to aid in the adaptation to alternative energy sources.  

 

1.4.6 SIRTUIN 6 

Intensive investigations into the function of SIRT6 have elucidated that its main function 

concerns DNA repair and maintenance of genomic integrity. It is located on chromosome 

19 at position 13.3 and seems to possess both NAD+ dependent deacetylase as well as 

ADP-ribosyl transferase activity. Expression levels are noted to be highest in thymus, 

skeletal muscle and brain (Liszt et al, 2005, Mahlknecht et al, 2006b, Pan et al, 2011). 

Initial clues regarding SIRT6 function came from knockout studies. SIRT6-/- mice were 

small, displayed profound abnormalities including lymphopenia, loss of subcutaneous fat, 

lordokyphosis, and severe metabolic defects including hypoglycaemia eventually dying at 

around four weeks (Mostoslavsky et al, 2006). These features are consistent with a 

premature ageing phenotype.   

1.4.6.1 SIRT6 Maintains Genomic Integrity 

SIRT6 plays an important role in the maintenance of genomic integrity and more 

specifically DNA damage repair. Analysis of MEFs isolated from SIRT6-/- mice revealed 

striking chromosomal aberrations and increased sensitivity to radiation damage. 

Furthermore they exhibited reduced capacity for BER when exposed to agents known to 

elicit DNA damage repaired by this pathway (Mostoslavsky et al, 2006). Recent evidence 

has also implicated SIRT6 in promoting DSB repair by promoting DNA-dependant protein 

kinase (DNA-PK) (McCord et al, 2009, Kaidi et al, 2010). Further work has also defined a 

role for SIRT6 in the maintenance of telomeric function. Cells deficient in SIRT6 
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displayed a senescence phenotype with increased markers of senescence and DNA damage 

response at telomeres. In addition there was evidence of increased chromosome end-to-end 

fusions indicating defective telomere function. The mechanism of telomere dysfunction is 

thought to be mediated through alteration in acetylation at H3K9 (Michishita et al, 2008b). 

It is, therefore clear from the results of these studies that SIRT6 is firmly established as a 

key mediator of genomic integrity with the ability to repair DNA damage of different 

types. As is evident from the original knockout mouse model this has fundamental 

implications for the ageing process.  

1.4.6.2 SIRT6 & Metabolic Response 

The potential role of SIRT6 in glucose homeostasis became apparent from examination of 

the SIRT6 knockout mice. These animals are hypoglycaemic from day 12 onwards to the 

extent that by day 24 glucose levels are undetectable with serum IGF-1 levels 

concomitantly reduced (Mostoslavsky et al, 2006). The mechanism behind this profound 

hypoglycaemia has recently been elucidated by Zhong and colleagues (2010). SIRT6 

deficiency causes an upregulation of glucose uptake and switch in glucose metabolism to 

glycolysis from mitochondrial respiration, an effect caused by the SIRT6 mediated co-

repression of HIF-1α, which is a key factor of the cellular adaptation to nutrient and 

hypoxic stress (Zhong et al, 2010, Zhong& Mostoslavsky 2010). This model predicts that 

in times of nutrient stress, for example CR, that SIRT6 would be inactivated triggering a 

HIF-1α dependant metabolic switch favouring glycolysis. This contradicts evidence 

produced by Kanfi et al (2008) suggesting that SIRT6 levels increase during CR (Kanfi et 

al, 2008b). This response is more in keeping with that expected for SIRT1 where it is seen 

to increase in response to nutrient deprivation (Cohen et al, 2004b). It may be that different 

sirtuins have evolved to function in contrasting scenarios.  

1.4.6.3 SIRT6 & NF-κB 

An intriguing discovery was that of Kawahara et al (2009), who show that SIRT6 

functions at chromatin to attenuate NF-κB signalling. This is achieved by two main 

mechanisms firstly; SIRT6 interacts directly with the NF-κB RelA subunit and secondly by 

deacetylating H3K9 at NF-κB target gene promoters. Interaction between NF-κB and 

SIRT6 is implicated in normal and premature ageing as haploinsufficiency of the NF-κB 

subunit RelA rescues the premature ageing phenotype of SIRT6 deficient mice (Kawahara 

et al, 2009).  
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1.4.7 SIRTUIN 7 

There is a relative paucity of information regarding the physiological function of SIRT7 in 

comparison with the other human SIRT proteins. The genomic locus has been shown to 

reside at 17q25.3. Expression levels of SIRT7 appear to be highest in blood and CD33+ 

bone marrow precursor cells as well as other rapidly dividing tissues such as liver, spleen 

and testis (Voelter-Mahlknecht et al, 2006).  

Initial studies investigating the potential function of SIRT7 demonstrated that it co-

localises to the nucleolus where it interacts with RNA polymerase Pol I, increasing its 

transcription and activity. Cells expressing SIRT7-shRNAs were significantly reduced in 

number, with further assays indicating cellular depletion of SIRT7 leads to apoptosis (Ford 

et al, 2006). Thus SIRT7 is implicated in the regulation of cell growth by driving ribosome 

biogenesis in response to fluctuating metabolic conditions. Grob et al, have also reported a 

role for SIRT7 in the resumption of rDNA transcription during telophase (Grob et al, 

2009). Contrary to these findings studies using a SIRT7 knockout mouse model and 

harvested cells, have demonstrated anti-proliferative effects of SIRT7. MEFs derived from 

the SIRT7 knockout mouse model demonstrated increased viability under both normal and 

pro-oxidative conditions. (Vakhrusheva et al, 2008a). SIRT7 knockout mice display 

reduced mortality with evidence of myocardial hypertrophy and inflammatory 

cardiomyopathy. In addition, SIRT7 interacts with p53 resulting in its deacetylation 

corresponding to hyperacetylation of p53 and increased apoptosis in the myocardium of 

mutant mice (Vakhrusheva et al, 2008b). 

 

1.4.8 Sirtuins in Mammalian Ageing, Calorie Restriction & the MTR  

As outlined in the previous section there is an ever expanding body of evidence linking 

sirtuin expression to a complex array of biochemical and ultimately physiological 

processes, progressive dysfunction of which typify normal and abnormal organismal 

ageing. 
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1.4.8.1 Ageing & Lifespan Regulation 

SIRT1 has been implicated in a number of different facets of the ageing process. For 

example, Chua et al (2005) reported that SIRT1 deficient MEFs have a dramatically 

increased resistance to replicative senescence, essentially becoming immortalised (Chua et 

al, 2005). Sasaki et al (2006) analysed SIRT1 levels from human lung fibroblasts and 

MEFs with normal, accelerated and delayed ageing. SIRT1 decreased with serial passage 

of cells and decreased rapidly in prematurely senescent cells. Furthermore at the animal 

level, SIRT1 decreased in the tissues in which mitotic activity decreases with age. This loss 

was accelerated in mice with an accelerated ageing phenotype (Sasaki et al, 2006). 

When overall survival is taken into consideration results are variable. With both normal 

and prolonged lifespan reported in SIRT1 under-expressing transgenic mouse models 

under both normal and CR conditions (Boily et al, 2008, Li et al, 2008). The importance of 

SIRT1 in overall cellular function is underlined by the fact that mice in which the SIRT1 

gene is completely knocked out rarely survive past the post-natal period, a response 

associated with p53 hyperacetylation (Cheng et al, 2003) 

Evidence implicating sirtuins expression in human lifespan is sparse. However, it has been 

demonstrated that under-expression of human SIRT3 seems to be detrimental for 

longevity. Bellizi et al (2003) analysed the allele frequency of a VNTR polymorphism, 

which was shown to exhibit enhancer activity at the SIRT3 gene. The specific allele 

lacking enhancer activity was almost completely lacking in male study participants over 

the age of 90 (Rose et al, 2003, Bellizzi et al, 2005). Put together, the results of all these 

studies implicate the sirtuins in the control of longevity. This effect is likely to result from 

the ability of the sirtuins to maintain a fine balance between cellular resistance to stress, 

apoptosis and the promotion of efficient DNA repair.      

1.4.8.2 Calorie Restriction 

CR has been shown to extend lifespan in a number of different model systems (Imai & 

Guarente 2010). The adaptive responses induced by calorie restriction in mammalian 

models includes improved insulin sensitivity, reduced levels of glucose, cholesterol and 

free fatty acids along with reduced fat mass and increased levels of activity (Anderson & 

Weindruch 2010). A number of avenues of investigation have been followed leading to the 
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assumption that the responses induced by CR are mediated in part by the sirtuins and in 

particular SIRT1.  

1. Expression of SIRT1 is induced in calorie restricted rats, an effect dependent on 

SIRT1 deacetylation of Ku70, inhibiting stress-induced apoptosis (Cohen et al, 

2004b, Kanfi et al, 2008a). 

2. Increased activity induced by CR is dependent on adequate SIRT1 expression 

(Chen et al, 2008). 

3. Transgenic mice over-expressing SIRT1 display a number of phenotypic responses 

similar to those seen in CR mice (Bordone et al, 2007). 

4. Treatment of regular chow fed mice with the SIRT1 activator resveratrol induces a 

transcription profiles similar to that of CR (Pearson et al, 2008).  

5. Under-expression of SIRT1 specifically in the brain results in mutant mice who 

display defects in the endocrine and behavioural responses to CR (Cohen et al, 

2009). 

Clearly there exists a role for SIRT1 in the response to CR however both SIRT3 and 

SIRT6 have similarly been implicated. SIRT6 levels are increased in cultured cells, fasted 

mice and calorie restricted rats, an effect mediated by protein stabilisation as opposed to 

increased mRNA expression (Kanfi et al, 2008a). Two recent studies have implicated 

SIRT3 in the response to CR. Qui et al (2010) have demonstrated that SIRT3 is required 

for the protective effect of CR on levels of oxidative stress. Furthermore, reduction of 

cellular ROS levels is dependent on SIRT3 mediated deacetylation and hence 

augmentation of the activity of SOD2 (Qiu et al, 2010). Complementing these findings 

Someya and colleagues (2010) report that SIRT3 is required for the CR mediated 

prevention of age related hearing loss in transgenic mice. Again, this effect is mediated by 

SIRT3 dependent enhancement of the mitochondrial anti-oxidant defence system through 

regulation of isocitrate dehydrogenase 2 (Idh2) (Someya et al, 2010).   
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1.4.8.3 Sirtuins & the MTR 

As mentioned previously the MTR trinity (Mitochondrion Telomere and Ribosome 

biogenesis) could provide a rationale paradigm whereby DNA damage is sensed and 

repaired. When the sub-cellular localisation and cellular function of the sirtuins are 

considered it is no surprise that they are considered the linchpin of the MTR hypothesis 

Each of the sirtuins could conceivably play a role in the MTR controlled stress response 

and it may be that there is interaction between sirtuins. As mentioned previously one of the 

defining features of sirtuin kinetics is the fact that NAD+ is an essential cofactor for the 

activity of the majority of the sirtuins. This provides a plausible link between the metabolic 

state of the cell and the response to stress. SIRT1 is likely to be a key player in the overall 

response given its wide ranging function. Its ability to deacetylate p53 is likely to be 

crucial in the response mechanism. Via p53 SIRT1 has been shown to modulate cellular 

senescence and apoptosis in a number of models (Langley et al, 2002, Chua et al, 2005).  

SIRT1 has also recently been shown to attenuate ageing associated telomere attrition; 

hence SIRT1 could also play a role in determining the telomere associated DNA damage 

response (Palacios et al, 2010). Whilst SIRT6 plays a crucial role in the propagation of a 

specialised telomeric chromatin state essential for normal telomere function (Michishita et 

al, 2008b). The key roles of the mitochondrial sirtuins in metabolism and hence energy 

production are essential to fuel the damage response. However, this could be a double-

edged sword as increase fuel utilisation with concomitantly increased generation of ROS 

could accelerate telomere attrition and initiate the DNA damage response. The interaction 

of the mitochondrial sirtuins, in particular SIRT3, with intermediaries of metabolism and 

anti-oxidant mechanisms is likely to be crucial in balancing the response (Schwer et al, 

2002, Qiu et al, 2010). Ribosome biogenesis is one of the most energy consuming cellular 

processes, hence a balancing act where adaptation to cellular energy status is essential. 

SIRT1 has been shown to be essential for this response as part of the eNoSC (energy 

dependant nucleolar silencing complex) in combination with nucleomethylin and 

SUV39H1. This complex senses energy status, controls rRNA transcription and establishes 

silent chromatin at the rDNA locus (Murayama et al, 2008). Further control over ribosomal 

gene transcription is elicited by SIRT7,  

Aberrancy of any of the components of the MTR could lead to dysregulation of any of the 

effector pathways resulting in a reduced capacity to sense and repair genotoxic damage, 
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with the ensuing potential of accelerated biological ageing and concomitantly associated 

condition such as cancer.  

 

1.4.9 Sirtuins & Cancer 

When the myriad of cellular processes in which the sirtuins have been implicated are 

considered it is no surprise that aberrancy of their expression is implicated in the process of 

cancer development and progression. This is particularly important in the case of SIRT1 

which has an intimate relationship with p53, FOXO and many other factors not only 

fundamental in regulating the DNA damage response and the fate of a cell in stress, but 

ultimately protecting the cell from neoplastic transformation i.e. tumour suppressors. 

Rationalising the relationship between the sirtuins and tumourigenesis is complex. 

Currently the literature attempting to delineate the relationship between the sirtuins, and in 

particular SIRT1 and the cancer process is divergent with some studies claiming a tumour 

suppressor and some a tumour promoter role.  

1.4.9.1 SIRT1 & Cancer 

SIRT1 as a Tumour Promoter 

It has been purported that SIRT1 could promote cancer formation and increase cancer risk 

by virtue of its ability to negatively regulate mediators known to act as tumour suppressors 

such as p53. However the relationship is not straightforward with complex interacting 

feedback loops regulating SIRT1, and its effect over a number of pro- and anti-oncogenic 

transcription factors and non-histone proteins. In order to be classed as a positive regulator 

of neoplastic transformation over-expression of SIRT1 in transgenic mice should increase 

the rate of detection of spontaneous cancers. However, although such mouse models show 

improvements in metabolic parameters consistent with the role of SIRT1 in metabolic 

pathways no increase in tumour development has been detected as yet (Banks et al, 2008, 

Pfluger et al, 2008). 

In order to be recognised as a potential tumour promoter expression levels in isolated and 

cultured cells would have to be reflective of this hypothesis. Consistent with this SIRT1 
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has been shown to be upregulated in human cancer specimens and cells of different 

histological subtype (Table 1.6). 

Table 1.6: Table summarising SIRT1 in cancer tissue expression studies. 

Cancer Type Specimen Method of 
Analysis 

Comments Reference 

Acute myeloid 
Leukaemia (AML) 

Isolated and 
cultured  primary 
AML blasts  

RTq-PCR Comparison with 
control cells 
(CD34+ 
progenitors, 
peripheral blood 
mononuclear cells) 
 

(Bradbury et al, 
2005) 

Human prostate  
 
 
Human prostate  
 

Tumour specimen 
 
 
Tumour specimen 
 

IHC 
 
 
IHC 
 

Comparison with 
uninvolved cells.  
 
Comparison with 
normal adjacent 
prostate tissue. 
 

(Huffman et al, 
2007) 
 
(Jung-Hynes et al, 
2009) 

Skin Squamous cell, 
basal cell, Bowens 
disease, actinic 
keratosis biopsies 
 

IHC Comparison with 
20 normal skin 
biopsies 

(Hida et al, 2007) 

Colorectal Surgical specimens 
& CRC cell lines 

IHC Comparison with 
adjacent normal 
mucosa 
 

(Stunkel et al, 
2007) 

Gastric Surgical specimens 
post-gastrectomy 

IHC No direct 
comparison made 
but low expression 
in normal samples 
 

(Cha et al, 2009) 

Ovarian Tumour samples IHC Increased 
expression in 
malignant 
compared with 
benign tumours. 

(Jang et al, 2009) 

 

SIRT1, p53 & Cancer 

The ability of SIRT1 to deacetylate and therefore inhibit p53 activity lead investigators to 

assume SIRT1 expression would increase the risk of neoplastic transformation. Indeed 

overexpression of SIRT1 has been demonstrated to repress p53-dependant cell cycle arrest 

and apoptosis in response to DNA damage and oxidative stress, with the overall effect of 

promoting tumour growth (Luo et al, 2001, Vaziri et al, 2001, Cheng et al, 2003, Brunet et 
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al, 2004).  Fine control of the p53-SIRT1 axis is essential for normal response to stress and 

the ageing process. A variety of control mechanisms have evolved to regulate the level of 

SIRT1 controlled acetylation level of p53 and hence its activity. One such strategy is the 

interaction between p53 and microRNA 34a (miR34a). The miR34a family regulates cell 

cycle progression, senescence and apoptosis and, importantly its transcription can be 

activated by p53. Moreover, it is suggested it functions as tumour suppressor in vivo 

(Yamakuchi & Lowenstein 2009). miR34a can also bind to the 3’-UTR of SIRT1 mRNA 

to repress its translation. Consistent with this finding over-expression of miR34a reduced 

SIRT1 activity in human colon cancer cells and enhanced p53-dependent apoptosis, an 

effect not observed in cells lacking p53. Importantly, over-expression of SIRT1 rescued 

colon cancer cells from miR34a induced apoptosis (Yamakuchi et al, 2008). Thus in a 

cellular environment where SIRT1 is over-expressed the tumour suppressor effect of p53 

and miR34a is abrogated by disruption of the SIRT1-p53-miR34a axis. 

SIRT1, HIC1 & p53 

Hypermethylated in cancer-1 (HIC1) is a commonly mutated tumour suppressor gene. This 

is particularly important when the interaction between HIC1, SIRT1 and p53 is considered. 

HIC1 and SIRT1 form a transcriptional repression complex which binds directly to the 

SIRT1 promoter, repressing its transcription. In cancer cells mutated and hence inactivated 

HIC1 results in up-regulated SIRT1 expression, leading to augmented deacetylation and 

inactivation of p53, thus allowing cells to bypass apoptosis and survive DNA damage 

(Chen et al, 2005a). The authors propose a HIC1-SIRT1-p53 regulatory loop that in 

normal circumstances controls growth arrest and apoptosis in response to DNA damage. 

This regulatory loop gains particular importance during organismal aging when the HIC1 

promoter becomes progressively hypermethylated, promoting survival of aging cells but 

increasing cancer risk (Chen et al, 2005a).  

SIRT1, DBC1 & p53 

Deleted in Breast Cancer-1 (DBC1) is a protein with purported tumour suppressor function 

resulting from its effect on cell proliferation, apoptosis and histone modification (Kim et 

al, 2009). DBC1 is a negative regulator of SIRT1 which forms a stable complex with 

SIRT1 inhibiting its activity, as expected this leads to increased p53 acetylation and up-

regulation of p53 function. Knockdown of DBC1 by RNAi promoted SIRT1 mediated 

deacetylation of p53 and inhibited apoptosis induced by genotoxic stress (Kim et al, 2008, 
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Zhao et al, 2008). These data indicate that increased SIRT1 expression or reduced DBC1 

activity increase cancer risk by inhibiting p53.  

SIRT1, FOXO & Cancer 

The ability of the FOXO factors to induce cell cycle arrest, DNA repair and apoptosis 

makes them attractive candidates as tumour suppressors. Inactivation of FOXO could lead 

to dysfunctional cell cycle checkpoints leading to neoplastic transformation. Consistent 

with this over-expression of FOXO reduces tumourigenicity in a number of experimental 

models (Greer & Brunet 2005, Greer & Brunet 2008). Ford et al (2005) used RNAi to 

determine if either FOXO3 or FOXO4 can influence the apoptotic consequences of SIRT1 

inhibition in human colorectal cancer cells. Co-silencing experiments revealed that 

FOXO4 but not FOXO3 rescues SIRT1 siRNA-treated cells from apoptosis, inferring that 

FOXO4 is essential for apoptosis in these cancer cells (Ford et al, 2005). Thus the overall 

effect of the interaction between the FOXO transcription factors and SIRT1 may be to 

promote tumourigenesis by a shift from pro- to anti-apoptotic pathways with promotion of 

cell cycle progression.  

SIRT1 as a Tumour Suppressor 

For a gene product to be considered a tumour suppressor a number of key criteria have to 

be met. Firstly, over-expression in cell culture should induce cell growth arrest. Secondly, 

there should be evidence of deleterious point mutations or gene deletions in human cancer 

subtypes and finally there should be evidence of under-expression or hypo-activity in 

isolated cancer cells (Brooks & Gu 2009). There is accumulating evidence from expression 

studies and in vitro work in specific cancer types that SIRT1 can act in a tumour 

suppressive fashion. 

Wang et al (2008) have extensively investigated the expression of SIRT1 in a number of 

tumour types. They report that levels of SIRT1 were lower than normal control tissue in 

glioblastoma, bladder, prostate and ovarian carcinoma. These results were validated using 

western blot analysis, where there was reduced expression in breast and hepatocellular 

carcinoma with equivalent expression levels between lung, colon, stomach, bladder and 

skin cancer specimens, and their respective control tissue samples (Wang et al, 2008a).   
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Stimulation of SIRT1 deficient MEFs by chronic oxidative stress resulted in diminished 

upregulation of the senescence mediator p19ARF and its downstream target p53, with a 

concomitant extension of replicative lifespan. These results raise the possibility that SIRT1 

may exert a negative regulatory role on oncogenesis by inducing the expression of tumour 

suppressor genes and senescence. However, the same study failed to show any change in 

p19ARF expression or progress through the cell cycle in SIRT1 deficient MEFs subjected to 

viral oncogene expression (Chua et al, 2005).  

 

Two main studies have utilised transgenic models to provide evidence that it is the ability 

of SIRT1 to promote genomic integrity that may explain in part its tumour suppressive 

effect. Wang et al (2008) developed double heterozygotic SIRT1+/-; p53+/- mice, which 

developed a high incidence of tumours with evidence of aneuploidy and chromosomal 

aberrations consistent with severe genetic instability. (Wang et al, 2008a). Oberdoerffer et 

al (2008) developed a transgenic murine p53+/- model in which SIRT1 was over-expressed. 

This combination resulted in decreased incidence of thymic lymphoma and increased 

survival following exposure to γ-irradiation. Further investigation using isolated MEFs 

showed that SIRT1 dissociates from its original loci to DSBs. Again this was shown to be 

dependent on H2γX, but also on intact ATM signalling pathways (Oberdoerffer et al, 

2008). These studies provide further evidence of a tumour suppressive function of SIRT1 

via its role in the maintenance of genomic integrity and prevention of potentially 

oncogenic chromosomal aberrations.    

 

SIRT1 as a Pro-apoptotic Tumour Suppressor 

An interaction exists between SIRT1 and survivin in BRCA1 association breast cancers 

whereby, SIRT1 suppresses survivin. Survivin is an inhibitor of apoptosis and is over-

expressed in many tumour types, making it an attractive chemotherapeutic target. BRCA1 

associated cancers have low SIRT1 expression levels with high levels of survivin. BRCA1 

is found at the SIRT1 promoter in cells expressing wild type BRCA1 and increases SIRT1 

expression which in turn inhibits survivin by deacetylation. Furthermore, treatment with 

resveratrol inhibits the growth of BRCA1 deficient tumours both in vitro and in vivo 

(Wang et al, 2008b). 
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As mentioned previously NF-κB is a ubiquitous mediator of the cell, cycle, growth, 

angiogenesis and apoptosis. Yeung et al (2004) demonstrated that SIRT1 over-expression 

or treatment with resveratrol sensitised non-small cell lung cancer (NSCLC) cells to 

apoptosis when stimulated by TNF-α, by deacetylating the RelA/p65 subunit of NF-κB 

(Yeung et al, 2004).  

 

SIRT1 Activation by Resveratrol  

Resveratrol (3,5,40-trihydroxystilbene) is a naturally occurring phytoalexin found in 

grapes, peanuts and various berries. It has gained popular attention due to its purported 

health benefits stemming from its anti-oxidative capacity. It is thought to some degree to 

explain the French paradox whereby rates of coronary artery disease are lower in France 

compared many other western countries despite high levels of saturated fat intake. This 

effect is thought in part to be mitigated by higher levels of red wine and hence resveratrol 

consumption (Lippi et al, 2010). However, a number of other potential health benefits have 

been attributed to resveratrol, particularly pertinent is its beneficial effect in cancer. The 

mechanism by which resveratrol imparts its beneficial effects is matter of great debate, 

however there are well defined effects on sirtuin expression, particularly an up-regulation 

of SIRT1 levels (Howitz et al, 2003). 

The anti-proliferative effect of SIRT1 activation by resveratrol has been investigated in a 

number of experimental contexts. It was first demonstrated to possess anti-carcinogenic 

effects in 1997, on a murine model of skin carcinogenesis (Jang et al, 1997). However, it 

also has beneficial effects on tumour growth in a mouse model of colorectal carcinogenesis 

(Firestein et al, 2008), in BRCA1 mutated breast cancer models (Wang et al, 2008b) and is 

pro-apoptotic in non-small cell lung cancer cells (Yeung et al, 2004). The beneficial effect 

of resveratrol on a murine model of skin cancer is partly SIRT1 dependent (Boily et al, 

2009).  

1.4.9.2 SIRT2 & Cancer 

SIRT2 is a tubulin deacetylase required for normal mitotic progression and control of 

mitotic checkpoint function to ensure chromosomal fidelity (North et al, 2003, Inoue et al, 

2007, Inoue et al, 2009). Hence is reported to be a negative regulator of cellular 

proliferation. Consistent with this SIRT2 expression is found to be reduced in human 
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glioma tissue samples and cell lines, indicating a potential tumour suppressor effect 

(Hiratsuka et al, 2003).  

 

1.4.9.3 SIRT3, SIRT4, SIRT5 & Cancer 

It is becoming more apparent that the ‘mitochondrial’ sirtuins have complex cellular 

functions not just limited to their original description as regulators of metabolism. The first 

supportive evidence demonstrated a link between SIRT3 expression and node positive 

breast cancer (Ashraf et al, 2006). More recently Kim et al (2010) provided evidence 

supporting a tumour suppressor role for SIRT3. SIRT3-/- mice develop ER/PR-positive 

mammary tumours, whilst in vitro transformation of SIRT3-/- MEFs by oncogene 

expression is reversed by superoxide dismutase (Kim et al, 2010).  

There are as yet no studies directly linking either SIRT4 or SIRT5 to cancer initiation, 

progression or metastasis. This situation will almost certainly change in the future as the 

knowledge base surrounding these sirtuins expands. 

1.4.9.4 SIRT6 & Cancer  

SIRT6 is responsible for maintenance of genomic integrity, an effect mediated by its 

ability to control BER via its ability to complex with DNA-PK and modulate telomeric 

chromatin (Mostoslavsky et al, 2006, McCord et al, 2009, Michishita et al, 2009). Clearly 

aberration of SIRT6 expression could therefore lead to genomic instability, a hallmark of a 

number of cancer subtypes. In contrast, lack of SIRT6 might provide a growth advantage 

for tumour cells as SIRT6 deficient cells are more resistant to apoptosis when exposed to 

hypoxia, an effect mediated by HIF-1α, which is up-regulated in many primary cancers 

(Zhong et al, 2010).  

 

1.4.9.5 SIRT7 & Cancer 

Potential for the role of SIRT7 in cancer comes from different lines of research. The region 

of the genome in which SIRT7 resides is frequently implicated in acute leukaemia and 

lymphoma. (Voelter-Mahlknecht et al, 2006). Meanwhile SIRT7 expression is reported to 

be increased in human papillary thyroid cancer, and also in breast cancer tissue when 

compared with control and non-malignant tissue (Ashraf et al, 2006, de Nigris et al, 2002, 

Frye 2002).  



80 
 
1.5 Statement of Research Aims 

With the advancing age of the general population and the strong risk elicited by 

chronological age on cancer risk, the incidence of cancer is only likely to increase in the 

next few decades. It is therefore intuitive that delineating the molecular mechanisms which 

influence each of the processes could lead to the development of novel targets for 

intervention. As presented above accelerated telomere attrition and aberrant sirtuin 

expression have shown a clear and consistent link with the cancer process in published 

studies. However, some controversies and dichotomies exist. Some studies have presented 

counter-intuitive evidence of long telomeres associated with cancer risk. Whilst, studies 

have still have not reconciled the role of the sirtuins as either tumour promoters or 

suppressors. In addition studies have mainly focused on the molecular biology of the 

sirtuins in the neoplastic as opposed to the clinical significance of their expression. The 

overall aim of this study, therefore, is to determine the role and significance of telomere 

attrition and sirtuin relative expression in colorectal cancer. This will be achieved through 

a number of research questions: 

1. Do patients with colorectal cancer display evidence of accelerated biological ageing 

in the form of telomere attrition? 

 

2. Are peripheral blood leucocyte (PBL) telomere lengths reflected in associations 

with,  pro-inflammatory cytokines (IL-6/IL-10), CRP and levels of circulating 

factors involved in redox control (fetuin-A, antioxidant vitamins, trace elements) 

inthe CRC  patient cohort? 

 

3. Does PBL telomere length predict adverse pathological or prognostic factors? 

 

4. Is there a difference in telomere length between colorectal tumour and normal 

adjacent tissue, does tissue telomere length correlate with pathological features? 

 

5. Is aberrancy of sirtuin expression evident in colorectal cancer, as indicated by 

differential relative expression between tumour and adjacent normal tissue? 

6. Do sirtuin expression levels predict adverse pathological or prognostic tumour 

features? 
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7. Is there any relationship between sirtuin expression and cellular ageing indicated by 

telomere length at the tumour level? 

8. Finally, does sirtuin expression correlate with a variety of commonly recorded 

biochemical and haematological variables, particularly those involved in systemic 

inflammation? 

The work carried out in this thesis therefore aims to place the biology of ageing and 

CRC in a clinical context, and by doing so provide robust information that may prove 

useful in the hunt for genuine new targets for anti-mitotic agents or markers of disease 

severity. 
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CHAPTER 2:  MATERIALS & METHODS 

As outlined in the aims section of this thesis there are two main components to this study: 

determination of differences in the biological age of colorectal cancer patients compared 

with controls using PBL TL and comparison of the relative transcriptional expression 

levels of SIRT1-7 between colorectal tumour and normal tissue. This therefore required 

two sources of study material from colorectal cancer patients, blood samples to harvest 

PBLs and extract DNA and tumour tissue to extract RNA.  

 

2.1 Patient Recruitment & Sample Collection 

2.1.1 PBL Group 

This group was comprised of patients recruited prospectively from the Department of 

Colorectal Surgery, Glasgow Royal Infirmary. All patients were admitted for assessment 

and management of histologically proven colorectal adenocarcinoma. Blood samples 

(n=64) were collected for analysis during diagnostic workup. 10mls of whole blood was 

collected in EDTA tubes and immediately centrifuged. The resulting cellular component 

and buffy coat was stored at 4oC until use in the telomere assay.  The plasma was stored at 

-80oC and used in the experiments to determine potential correlates of TL including redox 

control factors, markers of systemic inflammation and fetuin-A. Table 2.1 presents details 

of the patient clinical and pathological variables for this group (this group will be referred 

to as the CRC PBL group). Full ethical approval from the local NHS ethics committee was 

gained prior to the commencement of any sample collection (COREC 08/S0704/22). 
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Table 2.1: Table displaying baseline demographic and clinico-pathological variables for the CRC PBL 

telomere group. 
 
 CRC PBL Group 

Characteristic Number/Total % 
Sex Male 33/64 51.56 

 Female 31/64 48.44 
Age 45-55 9/64 14.06 

56-65 17/64 26.66 
66-75 24/64 37.5 
76-85 14/64 21.88 

Tumour 
Site 

Colon 42/64 65.63 
Rectum 22/64 34.37 

Duke’s 
Stage 

A 6/64 9.38 
B 23/64 35.94 
C 16/64 25.00 
D 18/64† 28.13 

Unknown 1/64 1.67 
Tumour T1 2/52 3.85 

T2 8/52 15.38 
T3 30/52 57.69 
T4 12/52 23.08 

   
Nodes N0 30/52 57.69 

N1 15/52 28.85 
N2 7/52 13.46 

Metastasis M0 47/52 90.38 
M1 5/52¶ 9.62 

‡Peterson 
Index 

High Risk 13/48 27.18 
Low Risk 35/48 72.92 

mGPS 0 42/64 65.63 
1 13/64 20.31 
2 9/64 14.06 

Unknown   
Smoker Never 23/64 43.40 

Ever 20/64 37.74§ 
Unknown 11/64 18.86 

Carstairs  
Index 

2 2/64 3.13 
3 8/64 12.5 
4 11/64 17.2 
5 7/64 11.0 
6 5/64 7.81 
7 28/64 43.75 

 Unknown 3/64  
    
† Includes patients with in-operable disease and patients who underwent synchronous resection of their primary cancer and liver 
metastasis. 
¶ Synchronous resection of liver metastasis. 
‡ Pathological scoring system where score of 2 or more indicates high risk pathological features. Points awarded for vascular 
invasion (1), margin positivity (1), peritoneal breach (1) & tumour perforation (2) 
§This compares with 58% of the control population who had ‘ever’ smoked. 
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2.1.2 Tissue Group 

 

The second group utilised colorectal cancer tissue (tumour and normal) collected under the 

auspices of the local Biobank (NHS Greater Glasgow & Clyde), this group was used to 

determine relative transcriptional expression levels of SIRT1-7 and in addition, cancer 

tissue TL (Table 2.2). All measurements were performed in paired samples (tumour and 

adjacent normal tissue) to allow direct comparison. Colorectal cancer patients who were 

admitted for potentially curative surgery were approached pre-operatively by Biobank staff 

and full informed consent obtained for the collection and use of excess tissue for research 

purposes. A total of fifty five paired samples were available for RNA extraction. All 

samples were snap frozen in liquid nitrogen and stored at -80oC until use. All tissue 

samples were validated by a consultant pathologist and deemed representative of the 

pathological specimen. Of the 55 samples, 32 paired tissue samples were available for 

additional DNA extraction and subsequent TL analysis (this group will be referred to as the 

CRC tissue group). Full ethical approval was gained for use of surplus Biobank tissue for 

use in research (COREC 08/S0704/42) 
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Table 2.2: Table displaying the patient characteristics of the full group of patients from tissue samples 

were collected and RNA extracted for use in the RT-PCR assay to determine SIRT1-7 
relative expression and the 32 samples from which DNA was extracted to determine tissue 
telomere length. 

 
 
 

 CRC Tissue Group 
 Sirtuin Experiment Telomere Experiment  

Characteristic Number/Total % Number/Total % 
Sex Male 27/55 49.1 15/32 46.88 

 Female 28/55 50.9 17/32 53.13 
Age <65 9/55 16.4 4/32 12.5 

65-75 24/55 43.6 15/32 46.9 
>75 22/55 40 13/32 40.6 

     
Tumour 

Site 
Colon 39/55 70.9 26/32 81.25 

Rectum 16/55 29.1 6/32 18.75 
Duke’s 
Stage 

A 10/55 18.2 4/32 12.5 
B 27/55 49.1 16/32 50.0 
C 12/55 21.8 8/32 25.0 
D 6/55† 10.9 4/32† 12.5 
     

Tumour T1 0/55  0/32  
T2 10/55 18.2 4/32 12.5 
T3 28/55 50.9 19/32 59.38 
T4 17/55 30.9 9/32 28.13 

     
Nodes N0 39/55 70.9 21/32 65.63 

N1 13/55 23.6 9/32 28.13 
N2 3/55 5.5 2/32 6.25 

Metastasis M0 49/55 89.1 28/32 87.5 
M1 6/55† 10.9 4/32† 12.5 

Peterson 
Index‡ 

 

Low Risk 
High Risk 

40/55 
15/55 

72.7 
27.3 

26/32 
6/32 

81.25 
18.75 

mGPS 0 31/55 56.4 18/32 56.25 
1 10/55 18.2 3/32 9.38 
2 6/55 14.5 6/32 18.75 

Unknown 6    
Smoker No 28/55 50.9 5/32 15.63 

Yes 23/55 41.8 18/32 56.25 
Unknown 4  11/32 34.38 

 † synchronous resection of their primary cancer and liver metastasis. 
‡ Pathological scoring system where score of 2 or more indicates high risk pathological features. Points awarded for vascular 
invasion (1), margin positivity (1), peritoneal breach (1) & tumour perforation (2) 

 

 

2.1.3 Correlation with Patient Clinico-Pathological Factors 

 

An attempt was made to correlate both PBL TL and sirtuin expression data with routinely 

available clinico-pathological parameters. Where possible biochemical, haematological 

and pathological data were extracted from a prospective database maintained by the 

Department of Surgery (details in individual results chapters). The Peterson Index (PI) was 

used as an additional measure to identify patients with pathologically more aggressive 
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disease and hence poorer outcome. Pathologically determined vascular invasion, margin 

involvement or serosal breach was allocated a score of 1, with tumour perforation scoring 

2. A cumulative score of 0-1 indicates a low risk and 2-5 a high risk PI. A high risk PI 

suggests aggressive disease and has been shown to correlate with a poorer outcome from 

CRC in lymph node negative patients (Petersen et al, 2002).   

 

2.1.4 Control Group 

 

The control population used in the comparative study with CRC patients was comprised of 

subjects from the MRC West of Scotland Twenty-07 Cohort. Subjects used to form this 

cohort comprised of 1348 individuals aged either 57 (n=847) or 76 (n=501).  This is a 

community-based cohort study designed to longitudinally investigate the social processes 

that produce or maintain inequalities in health and has been described in detail previously 

(Benzeval et al, 2009). The two age groups were specifically chosen to demonstrate that 

both the chronologically older group and an age adjusted combined group had longer 

telomeres than CRC patients. In addition to age, sex and smoking status was available for 

this cohort. None of the subjects in this group had been diagnosed with cancer at any stage.  

 

 

2.2 Quantitative Real-Time PCR 

 

Quantitative real-time PCR was utilised as the assay of choice in the analysis of PBL TL 

and also SIRT1-7 relative expression. Although the same basic technique was used in each 

of the assays different methods of quantification were used to give an estimation of TL and 

relative quantification of sirtuin gene transcription. These modifications along with the 

specifics of the reaction will be outlined in the relevant methods section. The essential 

steps of the reaction are however are now discussed.  

 

Real-time PCR (RT-PCR) has a number of advantages over more rudimentary PCR 

techniques. The main advantage is the ability to detect PCR amplification during the early 

phases of the reaction. Basic end-point PCR techniques rely on agarose gels to detect the 

amplification product towards the end of the reaction leading to results which are 

imprecise, of low sensitivity and resolution. Accuracy is greatly increased by 

quantification at the earlier exponential phase of the PCR reaction.  
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The RT-PCR reaction assumes that there is a quantitative relationship between the amount 

of starting target sample and the amount of PCR product at any given cycle number. The 

reaction relies on a DNA polymerase with 5’ exo-nuclease activity of which there are 

several commercially available systems such as AmpliTaq Gold® TaqMan® system. The 

other key component to this reaction is a specific oligonucleotide probe which is specific 

for a DNA sequence between the forward and reverse primers. These probes are designed 

with a high energy dye at the 5’ end termed a reporter and lower energy dye at the 3’ end 

termed a quencher. When the probe is intact the reporter dye emission is suppressed by the 

quencher. However, when the probe is cleaved by the 5’ exo-nuclease the energy from the 

reporter molecule is released and sensed by a fluorescence sequence detection system 

(again a number of these are commercially available such as the ABI Prism Detection 

System).  Thus with each cycle of the PCR reaction there is an increase in the fluorescence 

emission detected by the reporter dye, furthermore the reaction is specific at three levels, 

the complementary probe cleaved during the amplification reaction along with the forward 

and reverse primers.  
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Figure 2.1: Schematic representation of the RT-PCR reaction involving the specific Taqman® probe 
and primer set with attached quencher and reporter (fluorophore) dyes. Taken from 
(Stratagene 2004) 

 

 

Quantification of gene expression using RT-PCR requires normalisation of the reporter dye 

emission signal using a passive reference dye. This is incorporated into the PCR mastermix 

and is required to correct for fluctuations in fluorescence as a result of alterations in 

concentration or volume. The Rn (normalised reporter) value is the emission of the reporter 

dye divided by the emission of the normalised reporter. The ΔRn is the change in Rn 

between an untreated or early cycle sample (Rn-, no template control) and a sample 

containing a full complement of reaction components including the target (Rn+). The ΔRn 

reflects the initial level of target DNA, as the signal increases this indicates the amount of 

hybridised probe that has been degraded by the exo-nuclease. The Rn is used by the 

software of the detection system to define a baseline of fluorescence (usually determined 

from the initial cycles of the reaction) and a threshold which is the average standard 

deviation of Rn for the early PCR cycles and is set in the exponential phase of the reaction 
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when it is at its most efficient. Finally, the threshold cycle (Ct) is the cycle number at 

which fluorescence passes the fixed threshold. The Ct value is used in the final calculation 

of gene expression. Different methods of relative quantification were used in this study to 

determine PBL TL and sirtuin gene relative expression which will be detailed in due 

course.     

 
 

Figure 2.2: Schematic representation of the ideal RT-PCR reaction.  

 

 

 

 

2.3 PBL and Tissue Telomere Length Determination and 

Correlation in Colorectal Cancer 

 

 

2.3.1 Tissue Processing & DNA extraction  

 

DNA was extracted from both blood and tissue using the Maxwell® automated 

purification system according to the manufacturer’s instructions (Promega, WI, USA). 

Briefly, whole blood samples were spun down into cellular and plasma components. The 

erythrocytic component and buffy coat were thoroughly mixed and 300µl aliquoted into 
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the predispensed reagent cartridges.  Cancer and normal tissue samples were thawed and 

50mg added to the reagent cartridge. The DNA concentration and purity were quantified 

using the Nanodrop spectrophotometer (Thermo Fisher Scientific, MA, USA). All DNA 

samples were validated on 0.5% agarose gel (Figure 2.3). 

 

 
 

Figure 2.3: 0.5% TBE agarose gel demonstrating validation of the extracted DNA for use in the 
telomere length determination assay (300ng DNA used). 

 

 

2.3.2 Telomere length Determination Using Real-Time PCR 

 

Telomere lengths were determined from DNA extracted as outlined above from the PBLs 

of both the control and CRC group and from the CRC tissue (tumour and normal). This 

was achieved by Q-PCR using the method first described by Cawthon (Cawthon 2002). 

This method aims to determine sample DNA relative TL (relative T/S) by determining the 

ratio of telomere repeat copy number to single gene copy number and comparing this with 

a reference DNA sample of known relative TL. The telomere repeat to single copy gene 

ratio (T/S ratio) is proportional to the average TL. The quantity of telomere and single 

copy repeats are determined using the standard curve method where successive dilutions of 

the reference DNA are used to construct a standard curve which is then used to determine 

copy number. The gene used to determine single copy number was the ribosomal protein 

36B4 gene. 

 

2.3.2.1 Plate Construction 

All samples were assayed in triplicate on 96-well plates. In order to determine the telomere 

copy number to single gene copy number pairs of plates were used to run each sample 



91 
 
using the telomere primer mix and the single gene primer mix, in this case the acidic 

ribosomal phosphate 36B4 was utilised.  Telomere and 36B4 plates were constructed 

identically to include; a five point standard curve created from the stock solution of 

reference DNA (standards range from 100ng-3.13ng), reference DNA sample (positive 

control/calibrator 10ng/µl), no template negative control and sample DNA (7ng/µl) (Table 

2.3 & Figure 2.4).  

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A SD1 SD1 SD1 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

B SD2 SD2 SD2 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

C SD3 SD3 SD3 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

D SD4 SD4 SD4 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

E SD5 SD5 SD5 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

F SD6 SD6 SD6 Sample Sample Sample Sample Sample Sample Sample Sample Sample 

G SC SC SC Sample Sample Sample Sample Sample Sample Sample Sample Sample 

H Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample 

Figure 2.4: 96 well plate layout for both telomere and 36B4 plates. SD1-6 = serial dilutions for 
standard curve construction. SC = control reference sample. 
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Table 2.3:  Table displaying the reaction constituents for the telomere and 36B4 plates. Sample DNA 

was used at a concentration of 7ng/µl. (Primer sequences displayed in Figure 2.5) 
 

Telomere Master Mix 
 

Volume (µl) 36B4 Master Mix Volume (µl) 

SYBER green 2X master 
mix (Roche, Switzerland) 

10 SYBER green 2X master 
mix (Roche, Switzerland) 

10 

Telo 1 primer 0.75 36B4 Fwd primer 0.4 
Telo 2 primer 0.75 36B4 Rev primer 0.4 
PCR grade H20 3.5 PCR grade H20 4.2 
Sample DNA  5 Sample DNA  5 
Total 20 Total 20 
 

 

Analysis was performed on the Roche Light Cycler LC480 (Roche, Switzerland). The 

telomere-specific amplicon primer set was previously validated and the optimum 

concentration determined (Koppelstaetter et al, 2005) (Figure 2.5).   

 

 

Tel 1, CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT 

Tel 2, GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT 

 

36B4 for, CAGCAAGTGGGAAGGTGTAATCC 

36B4 rev, CCCATTCTATCATCAACGGGTACAA 

 

Figure 2.5: Primer sequences for telomere and 36B4 genes. 

 

 

All samples were heated to 95oC for 5 minutes prior to plate construction and then 

subsequently run under the following conditions: 

 

Telomere plates: 95oC for 10 minutes (polymerase activation) 

   30 cycles of  95oC for 5 seconds  
     59oC for 10 seconds 
     72oC for 2 minutes 
   

Melt Sequence  (1 cycle) 95oC for 30 seconds  
     65oC for 30 seconds 
     95oC for 2 minutes 
 
 Cool Sequence (1 cycle) 40oC for 10 minutes 
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36B4 plates:  95oC for 10 minutes (polymerase activation) 

   35 cycles of  95oC for 5 seconds  
     59oC for 15 seconds 
     72oC for 15 seconds 
 

Melt Sequence  (1 cycle) 95oC for 30 seconds  
     65oC for 30 seconds 
     95oC for 2 minutes 
 
 Cool Sequence (1 cycle) 40oC for 10 minutes 
 
 
 
 

2.3.2.2 Data Analysis 

 

The LightCycler LC480 software version 1.5 was used to generate standard curves and for 

subsequent quantification of the telomere and single gene copy number. This relative T/S 

value is the estimate of the relative TL of the sample in question. In order to make 

meaningful comparisons between the two plates (telomere and single copy) the efficiency 

of the PCR reaction of the two plates should be as similar as possible. This is determined 

by the slope of the standard curve, which was deemed acceptable if the slope was between 

-3.1 and -3.8 with a perfect slope = -3.2. An example of a typical generated standard curve 

is shown in Figure 2.6. The computer software then compares the sample quantities on the 

telomere plate with their counterparts on the 36B4 plate to give a T/S ratio, which is then 

normalised to the T/S of the reference DNA sample to give a relative T/S or telomere 

length for each DNA sample under investigation.  

 

The intra-assay co-efficient of variation (CV) for the telomere plates was 0.43% and 0.15% 

for the 36B4 plates. The intra-assay CV was 17%. 
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Figure 2.6: Shows the software generated standard curve. x-axis displays the logarithmic 

transformation of the individual standard concentrations. y-axis displays the crossing point 
which is analogous to the Ct and is the threshold cycle at which amplification products are 
first detected. The slope for this curve is -3.147. 

 

  

 

2.3.3 Correlates of PBL Telomere Length 

 

2.3.3.1 Measurement of Plasma Fetuin-A 

Fetuin-A concentrations were measured from the plasma of blood samples of CRC PBL 

patients using a commercial Human Fetuin-A ELISA Kit (BioVendor R&D, Czech 

Republic). Fetuin-A was not measured in either the CRC tissue group or the control 

population. Samples were measured in triplicate. Absorbance of each sample was read by a 

microplate reader at dual wavelengths 405nm and 650nm, and sample concentrations were 

then calculated using the standard curve. All methodologies were carried out according to 

the manufacturer’s instructions. The minimum detectable concentration was 0.35ng/ml. 

 

2.3.3.2 Measurement of Markers of Systemic Inflammation 

Systemic inflammation is known to predict poor outcome from colorectal cancer and is 

also intricately linked with aspects of biological ageing, in particular telomere attrition. For 

the CRC PBL and tumour patients, routinely available indices of inflammation (CRP, 

albumin, white cell, neutrophil and lymphocyte count) were measured using routine 

methods in the Departments of Haematology and Biochemistry, Glasgow Royal Infirmary. 

For the CRC PBL patients only plasma concentrations of interleukin (IL)-6, IL-10 and 
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vascular endothelial growth factor (VEGF) were measured using enzyme linked 

immunosorbent assay (ELISA) kits (Quantikine ELISA, R&D Systems, Huntingdon, UK). 

The minimum detectable concentrations were 2 pg/ml for IL-6, 4pg/ml for IL-10 and 

5pg/ml for VEGF (these analyses were performed by Fiona Breckenridge, Dept of 

Biochemistry, Glasgow Royal Infirmary). The neutrophil to lymphocyte ratio (NLR) and 

modified Glasgow Prognostic Score (mGPS) was calculated for each patient thereby 

giving an estimation of systemic inflammation. mGPS is calculated by awarding a point for 

plasma albumin level under 35 mg/dl and C- Reactive Protein (CRP) under 10 mg/l 

thereby giving a score of 0,1 or 2. A score of 1 or 2 indicates higher levels of systemic 

inflammation and has been shown in numerous cancer types to correlate with poor cancer 

specific survival (Roxburgh& McMillan 2010).  

2.3.3.3 Measurement of Redox Control Factors  

The separated plasma from each blood sample was used to create a redox profile for each 

CRC PBL patient. Concentrations of antioxidant vitamins A (retinol) and E (α-tocopherol) 

and the carotenoids (lutein, lycopene, α- and β-carotene) were determined using a high 

performance liquid chromatography (HPLC) based assay as previously described (Talwar 

et al, 1998). Plasma was de-proteinised with alcohol containing internal standards and 

extraction of the analytes was performed using hexane. Analysis was carried out using 

reversed phase–HPLC (5 µm microbore, Phenomenex, Macclesfield, UK) and dual 

wavelength monitoring (Waters, MA). The 95% normal reference intervals for the above 

assays as established in our laboratory were as follows: retinol (1.0-2.8 µmol/l), α-

tocopherol (14-39 µmol/l), lutein (82-202 µg/l), lycopene (100-300 µg/l), α-carotene (14-

60 µg/l) and β-carotene (92-312 µg/l). These analyses were performed in the laboratory of 

Dr Dhinesh Talwar, Department of Biochemistry, Glasgow Royal Infirmary.  

2.3.3.4 Measurement of Vitamin D 

Plasma Vitamin D (25-OHD) concentration was measured from collected and separated 

samples using an automated solid phase extraction procedure with subsequent HPLC- mass 

spectrometry technique. The lower limit of sensitivity was 4 nmol/L (assay performed in 

the laboratory of Dr Dhinesh Talwar, Department of Biochemistry, Glasgow Royal 

Infirmary.   
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2.3.4 Statistical Analysis 

All clinical, pathological and biochemical data were displayed either categorically or as 

median with inter-quartile range (IQR). TL was analysed as both a continuous and 

categorical variable by sub-division into quartiles. Pearsons correlations were performed to 

establish any relationships between the various parameters. Comparison between groups of 

continuous variables was achieved using the Mann-Whitney or Wilcoxon Signed Rank test 

and categorical variables by chi-square analysis. TL was corrected for age and sex using 

analysis of covariance analysis. All analyses were performed using SPSS version 15 (SPSS 

Inc, Chicago, Illinois).   

 

 

 

2.4 Sirtuin Relative Expression in Colorectal Cancer Tumour & 

Normal Tissue 

 

2.4.1 Tissue Processing & RNA Extraction 

Specimens were crushed using a mortar and pestle under liquid nitrogen. The resulting 

tissue powder was then used for RNA extraction which was performed using TRIzol® (Life 

Technologies) following the manufacturers guidelines; briefly, 50mg of tissue was 

homogenised in 1ml of TRIzol then incubated for 5 minutes at room temperature. Phase 

separation was achieved using 200µl of chloroform per 1ml of TRIzol and incubation for 

2-3 minutes at room temperature. Samples were then centrifuged (12000g) for 15 minutes 

at 4oC. The resulting RNA containing aqueous phase was transferred to a fresh tube and 

the RNA precipitated with 500µl of isopropanol. The samples were then rested for 15 

minutes at room temperature and subsequently centrifuged for 10 minutes at 4oC and 

12000g. The supernatant was then removed and the RNA pellet suspended in 1ml of 75% 

ethanol, this was then further centrifuged for 5 minutes at 40C and 7500g.  The supernatant 

was removed and the resulting RNA pellet air dried. The RNA pellet was dissolved in 30-

100µl of RNA/DNA free H20 and incubated for 10 minutes in a heatblock at 57oC.  The 

RNA concentration and purity of the resulting solution were estimated using the Nanodrop 

spectrophotometer (Thermo Fisher Scientific, MA, USA). Validation of the RNA was 

achieved by 1% TBE containing agarose gel electrophoresis. Ethidium bromide 0.5µg/ml 

and a UV lightbox were used to achieve visualisation (Figure 2.7). 
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Figure 2.7: Extracted RNA (500ng) from tumour and adjacent colorectal cancer sample run on 1% 
agarose gel (100V for 90 minutes). Prominent and intact 18S and 28S bands represent 
ribosomal RNA the presence of which validates the RNA extraction process and sample 
integrity. 

 

2.4.2 DNAse Treatment 

All traces of contaminating DNA was removed from the RNA samples using a 

commercially available DNA-Free Kit (Ambion, UK) performed following the 

manufacturer’s instructions.  

 

2.4.3 cDNA Synthesis 

cDNA for use in the q-PCR assay was synthesised from the extracted RNA by reverse 

transcription using 2µg of DNase treated RNA. The Superscript First-strand Synthesis 

System for reverse transcriptase PCR (Invitrogen, UK) was utilised to achieve full length 

cDNA. Briefly, an RNA/primer mix containing hexamer 50ng/µl, 10mM dNTP, RNA 2µg 

was made up to a total volume of 12µl with H2O. This was then incubated at 65oC for 5 

minutes followed by 1 minute on ice. 5X first strand buffer, 0.1M DTT and 1µl RNAase 

out were then added and incubated at 25oC for 2 minutes. The SuperScript II reverse 

18S 

28S 
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transcriptase enzyme was then added and incubated at 25oC for 10 minutes, 42oC for 50 

minutes and the reaction finally terminated at 75oC for 15 minutes. A parallel reaction 

without the reverse transcriptase enzyme was used as a negative control. The reaction was 

completed with RNase H (1µl) and incubated at 37oC for 20 minutes. These samples were 

then stored at -20oC if not used immediately. 

2.4.3.1 Validation of the cDNA Product 

A validation reaction was performed to ensure cDNA of sufficient quality had been 

synthesised during the previous step. This was achieved using a non-quantitative reverse 

transcriptase PCR reaction using the β-actin housekeeping gene (Appendix 1), this step 

was performed on both the tissue sample under investigation and corresponding negative 

control. The reaction mixture was composed of:  

• cDNA (12.5ng), forward and reverse primers (400nm), magnesium poor 10X PCR 

buffer, 10mM dNTP, 50mM MgCl2, Taq DNA polymerase (5U/μl) and nuclease 

free water to a total volume of 50μl.  

The reaction was run using the DNA Engine thermocycler PTC-200 (BioRad) under the 

following conditions:   

• 94oC for 3mins, followed by 30 cycles of 94oC for 45 seconds (denaturing), 61oC 

for 30 seconds (annealing), 72oC for 1 minute 30 seconds (extension) and a final 

extension step of 10 minutes at 72oC. 

The resulting reaction products were then analysed using 1% agarose gel electrophoresis 

with samples taken on for use in the RT-PCR step if they displayed the β-actin band at 

350bp and the corresponding negative control did not show any amplification which would 

otherwise indicate contamination of the samples (Figure 2.8).  
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Figure 2.8: 1% TBE agarose gel showing the product of the cDNA synthesis step and subsequent 
validation by β-actin reverse transcriptase PCR. Each lane represents a tissue sample with 
corresponding negative control. 

 

2.4.4 Real-time polymerase chain reaction (PCR) 

Quantitative RT-PCR was performed to estimate the mRNA expression patterns for 

SIRT1-7 using the Applied Biosystems 7500 Fast RealTime PCR System (Life 

Technologies Corporation, CA).  

2.4.4.1 Endogenous Reference Gene & Quantification of Gene Expression 

Quantification of the sirtuin relative expression in the tumour and normal samples was 

performed using the 2-∆∆Ct method, otherwise known as the comparative Ct method (as 

opposed to the standard curve method used for TL determination). This uses an 

endogenous reference or housekeeping gene in comparison with the target gene, with a 

final comparison with a normal sample or no template control. In this study the enzyme 

hypoxanthine ribosyltransferase (HPRT) was used as the endogenous reference gene. This 

gene had been validated as the reference gene in previous work from our laboratory. 

Briefly, to be utilised in the experiment the amplification efficiencies between the 

housekeeping gene and target gene must be approximately equal. This is investigated 

experimentally by serially diluting the target sample and recording the ΔCtsample, the ΔCt is 

plotted against the log of the template concentration with a slope of 0 indicating equal 

efficiency (Zino 2010). HPRT has been further validated in an independent study aiming to 
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determine the best candidate for use as the endogenous control in RT-PCR experiments 

using CRC tissue (de Kok et al, 2005).  

2.4.4.2 Taqman Primer & Probe Validation  

As mentioned in the description of the main steps involved in the real-time PCR reaction, a 

specific TaqMan® primer-probe set which contain the conjugated quencher and reporter 

tags are required to allow fluorescence detection and subsequent quantification. The 

sequence of each of the seven SIRT gene forward primer, reverse primer and TaqMan® 

probe are outlined in Appendix 1. The SIRT4, SIRT5 and SIRT6 primer-probe sets used in 

the RT-PCR experiment were pre-designed and validated by the company of purchase 

(Applied Biosystems, UK. Manufacturers code- SIRT4 HS00202033_m1, SIRT5 

HS00229729_m1 & SIRT6 HS00213036_m1). The SIRT1, SIRT2, SIRT3. SIRT7 and 

HPRT primer-probe sets were designed and validated by Mr Samer Zino during the course 

of previous sirtuin research performed in the host laboratory. These were designed using 

the Primer Express software programme (Applied Biosystems, UK). From these 

experiments concentrations of 900nM forward and 900nM reverse were deemed optimal 

for SIRT1, SIRT2, SIRT3 and HPRT with 300nM forward and 900nM reverse for SIRT7. 

A probe concentration of 225nM was the most efficient for all five genes (Zino 2010). 

2.4.4.3 Reaction Conditions 

Real time PCR was performed in 96-well plates using a 25µl reaction. An individual 

master mix solution was prepared for each gene and to reduce error samples were analysed 

in batches (Table 2.4).  
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Table 2.4: Table displaying the constituents for the individual master mix used for each sirtuin and 

endogenous reference gene analysis experiment. 

 

Master mix for SIRT1-SIRT3, 
SIRT7 and HPRT 

Volume 
(µl) 

Master mix for SIRT4, SIRT5 & 
SIRT6 

Volume 
(µl) 

ABI 2X TaqMan® master mix 12.5 ABI 2X TaqMan® master mix 12.5 
Forward primer 1.5 Primer mix 1.25 
Reverse primer 1.5 Template (6.25ng/µl) 8 
Probe 1 PCR grade water 3.25 
Template (6.25ng/µl) 8   
PCR grade water 0.5   
Total 25 Total 25 
 

Primer-probe concentrations for SIRT1-3, SIRT7 and HPRT used were as outlined above. 

The volume of pre-manufactured primer mix (SIRT4-6) was used to give a final 

concentration of forward 900nM and reverse 900nM. 

Cycle conditions for real-time quantitative PCR were 50oC for 2min, 95oC for 10min 

followed by 50 cycles of 95oC for 15s and 60oC for 1min.  

Configuration of the software on the ABI Fast 7500 thermocycler allowed relative 

quantification calculations to be performed for each gene in comparison with the HPRT 

endogenous reference with a normal sample as control. No template and no amplitude 

controls were also included in batch sample runs for validation purposes. Relative 

quantification values were the taken forward for analyses with patient variables. 

2.4.5 Statistical Analysis 

Relative expression levels are expressed as median and IQR or 95% confidence interval 

where appropriate. Differences in expression between the tissue groups were determined 

using the Mann-Whitney or Wilcoxon Signed Rank test where appropriate. Sirtuin 

expression levels were correlated with clinico-pathological characteristics as a continuous 

variable using Pearsons correlation analysis and categorical variable using chi-square, 

Mann-Whitney or Kruskal-Wallis where appropriate. Bonferroni correction was used in 

the analysis of inter-relationships between individual sirtuins. Determination of a 

relationship with survival was performed using Kaplan-Meier and log rank analysis. All 

analyses were performed using SPSS version 15.0 (Chicago, Illinois, USA).  
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CHAPTER 3:  TELOMERE LENGTH AND COLORECTAL CANCER 

3.1 Introduction 

Colorectal cancer (CRC) is the third most common cancer in the UK and is responsible for 

approximately 16,000 deaths every year. Increasing chronological age is a risk factor for 

many types of cancer including colorectal, with eighty percent of CRC cases occurring in 

patients over the age of sixty (Cancer Research UK 2010). Consequently, an understanding 

of the biology of ageing may provide insight into cancer pathogenesis (Lamb & Shiels 

2009). Biological ageing comprises ageing at the cellular and organ level and is affected by 

genetic, metabolic and environmental factors. Fully delineating the key molecular 

mechanisms underpinning both the biological ageing and cancer processes could improve 

the understanding of the disease process and lead to the discovery of novel biomarkers or 

targets for therapeutic intervention, further improving survival rates. 

A key manifestation of ageing at the cellular level is telomere attrition. Telomeres are 

nucleoprotein structures located at the ends of all eukaryotic chromosomes and are 

composed of a repetitive guanine-rich DNA sequence (TTAGGG)n (Moyzis et al, 1988). 

They possess a number of critical functions including maintenance of genomic integrity by 

protecting chromosomes from fusion events, repair of DNA damage and maintenance of 

cellular stability (Lamb & Shiels 2009). Telomere attrition is associated with increasing 

chronological age and furthermore may act as a biomarker of replicative ageing, or mitotic 

clock (Harley et al, 1990). Once this progressive loss of telomeric DNA content reaches a 

critical level, cells are stimulated to either apoptose, or enter replicative senescence 

(Hayflick & Moorhead 1961).  

Evidence is accumulating that telomere attrition and senescence are contributory factors in 

a range of age related disease processes including cancer (Blasco 2005), cardiovascular 

disease (Brouilette et al, 2007), chronic kidney disease (Carrero et al, 2008) and 

pulmonary disease (Savale et al, 2009). Furthermore, critically short telomeres have been 

linked with life stress (Epel et al, 2004, Shiels et al, 2011) and an overall increased 

likelihood of mortality (Cawthon et al, 2003). In essence, telomere attrition in PBLs 

reflects ‘miles on the clock’ and a corresponding increased likelihood of disease and 

mortality. The body of work aimed at delineating the relationship between critical telomere 

attrition and the cancer process is rapidly expanding. Short telomeres in peripheral blood 

leucocytes (PBL) have been shown to be associated with an increased risk in a variety of 
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solid tumours (Wu et al, 2003, Jang et al, 2008, Hou et al, 2009, Mirabello et al, 2010). 

However, results of recent studies from the same laboratory have indicated an increased 

risk of breast and renal cell carcinoma with increased and not decreased TL (Svenson et al, 

2008, Svenson et al, 2009, Svenson& Roos 2009). These results are counter-intuitive and 

are divergent from the majority of pertinent work in the area.  

Chapter Aims 

• To test the hypothesis that patients with colorectal cancer display evidence of 

accelerated biological ageing in the form of telomere attrition when compared with 

healthy controls.  

• By determining telomere length in PBL, tumour tissue and normal colonic tissue 

we aim to provide key information on telomere dynamics in each of these 

important cell compartments.  

• Correlate PBL and tissue telomere length with clinical and pathological outcomes 

to determine whether telomere length could prove useful as a prognostic tool. 

 

3.2 Results 

3.2.1 Analysis of telomere lengths in PBLs of CRC patients and healthy                
controls 
 

Sixty-four (64) patients were available for analysis in the CRC PBL patient group (mean 

age = 68 ± 10.8). These were compared with one thousand three hundred and forty eight 

(1348) West of Scotland control subjects (no diagnosed cancer), aged approximately 57 

(n=847, male 46%, female 54%) and 76 (n=501, male 42%, female 58%) years old (mean 

age = 64 ± 9.24). As expected there was a significant negative association between 

chronological age and TL in the healthy controls (Pearson r=-0.215, p<0.001). Likewise a 

significant negative relationship was observed between chronological age and PBL 

telomere length in the CRC group (Pearson r=-0.257, p=0.04, Figure 3.1A), indicating that 

as patient age increased, TL decreased. Although this negative association was maintained 

when the CRC PBL group was split according to sex (Figure 3.1B), the relationship did not 



104 
 
reach significance in either males (Pearson r=-2.43, p=0.123) or females (Pearson r=-2.47, 

p=0.187). This age-related telomere attrition demonstrates the association between 

chronological and biological ageing. 

 

 

 
 

 
 

Figure 3.1: (A) Scatter plot displaying the significant negative correlation between relative T/S and 
chronological age in the CRC PBL group (Pearson r=-0.257, p=0.04). (B) Similar scatter 
plot with CRC PBL group split according to sex, relationship not significant. Trend line 
identical for male and female. 
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Patients had consistently shorter telomeres than the control population (p<0.001) (Figure 

3.2), indicating that the CRC patients were of increased biological age. Since the median 

age of the control population was greater than that of the CRC group, analyses were 

performed correcting for both age and gender. After correction of TL for age and gender, 

colorectal cancer patients still had consistently shorter telomeres (adjusted mean 

RelT/S=0.66±0.02(se)) compared with those in the control group (adjusted mean 

RelT/S=0.75±0.005(se), p<0.001), indicating that the colorectal cancer patients were of 

increased biological age. To further validate that the cancer patients were more 

biologically aged, we compared them to a sub-group of the control population, those 

individuals aged 76yrs.  Analysis of covariance revealed that despite being on average 

chronologically younger, the cancer group had significantly shorter telomeres (adjusted 

mean RelT/S=0.61±0.03(se)) than the control population (adjusted mean 

RelT/S=0.70±0.01(se)) and hence were more biologically aged (p=0.004). The median 

duration of diagnosis in the CRC PBL group (defined as the date of positive tissue 

diagnosis until date of sample collection) was 42 (6-185) days. Analysis did not reveal any 

association between duration of diagnosis and TL.  

 

 
 

Figure 3.2: Measurement of PBL telomeres from a control and colorectal cancer (CRC) population 
revealed that the CRC patients had significantly shorter telomeres (Mean telomere length ± 
standard error (Rel T/S 0.66 ± 0.02) than the control population ((0.75 ± 0.05) p<0.001). 

 
 

 



106 
 
3.2.2 Clinico-pathological Correlation with CRC PBL Telomere Length  

 
No associations, other than chronological age were observed between PBL telomere length 

and the various clinico-pathological parameters when analysed using the continuous 

variable. Consequently, patients were categorised into those with short telomeres (Relative 

T/S < 0.55, shortest quartile) and those with long telomeres (Relative T/S > 0.55). Short 

TL was significantly positively associated with high risk pathological features indicated by 

a high risk Peterson Index (chi square, P=0.035). However, no significant relationship was 

identified between tumour site, Dukes stage, and any other clinico-pathological 

characteristic measured.  

 

3.1.2.3 Socio-Economic Correlation with Telomere Length 

 
The Carstairs index was used to stratify the patients in the CRC PBL group according to 

levels of socio-economic deprivation. This system uses four variables; overcrowding, male 

unemployment, low social class and lack of motor vehicle to compose an overall score for 

a postcode sector. Every postcode sector in Scotland is therefore assigned a score ranging 

from 1 (least deprived) to 7 (most deprived) (Carstairs& Morris 1989). The distribution of 

Carstairs index scores in this group of patients is outlined in (Table 2.1). There is a clear 

preponderance of patients from areas of socio-economic deprivation with 43.75% residing 

in areas with a Carstairs Index of 7. There was no apparent significant relationship 

demonstrated between levels of socio-economic deprivation and TL, in this group of 

patients (Figure 3.3). However, this study is not correctly designed or powered to tease out 

relationships between TL and population variables such as deprivation, this will be 

addressed in due course. 
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Figure 3.3: Bar chart displaying telomere length stratified according to the Carstairs Index of 

deprivation. There was no significant relationship between telomere length and the 
different levels of deprivation score (error bars ± 95% confidence interval) 

 

 

 
3.1.2.4 Comparison of telomere length in colorectal tumour tissue and 
normal adjacent tissue 
 

The relative T/S ratio of 32 matched colorectal tumour tissue and adjacent normal mucosa 

samples was compared to determine whether a difference in biological age was apparent 

between tissue types. Telomere length in the tumour tissue (median=0.43, IQR=0.40) was 

found to be significantly shorter than in the adjacent normal tissue (median=0.65, 

IQR=0.28) (p=0.004, Figure 3.4). Additionally, a comparison was made between the TL 

from the three tissue sources. There was no significant difference in TL between the CRC 

PBL group and that from the normal CRC tissue group (Figure 3.5).  
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Figure 3.4: Box plot highlighting the difference in telomere lengths between thirty two matched 

tumour and adjacent normal tissue samples of colorectal cancer patients. Tumour tissue 
(median Rel T/S = 0.43) displayed significantly shorter telomeres than normal tissue 
samples (median Rel T/S = 0.65, Wilcoxon signed rank test, p=0.004).  

 
 

 

Figure 3.5: Box plot displaying the difference between the difference telomere length between the PBL 
and tissue group. No significant difference between the TL in PBL and normal tissue. TL 
in CRC tumour tissue significantly shorter than TL in CRC PBL (Mann-Whitney, 
p=0.003). 
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3.1.2.5 Clinico-pathological Correlation with Tissue Telomere Length  

Analysis of TL from both CRC tissue and normal adjacent mucosa as a continuous or 

categorical variable did not reveal any significant associations with the clinic-pathological 

variables outlined in Table 2.1. Of particular note and in contrary to the relationship seen 

in the CRC PBL group there was no association between CRC tissue TL with 

chronological age, nor any sex difference. Although there was no significant association 

with any pathological variables there was an interesting trend in TL with Dukes stage 

where TL decreased progressively from Dukes’ A to C then increased in Dukes D patients 

(Figure 3.6A). There was no significant difference between CRC tissue TL according to 

tumour site, with median rectal relative T/S 0.33 (±0.79) compared with colonic relative 

T/S 0.42 (±0.93), p = 0.412 (Figure 3.6B).  

 

 

 

 

 

 

 

 

 



110 
 

 

 

 

Figure 3.6: (A) Box plot displaying TL in CRC tissue samples in relation to Dukes stage. No 
significant relationship demonstrated. Dukes A- Tumour limited to muscularis propria, 
Dukes B- local spread beyond muscularis propria, Dukes C- nodal spread, Dukes D- 
Distant metastasis (B) Box plot displaying non-significant difference between colonic and 
rectal tissue telomere length (p=.412) 

 

3.3 Discussion 
 

3.3.1 Patients with CRC display evidence of accelerated biological ageing 

 

This study demonstrates that patients with colorectal cancer display clear evidence of 

accelerated biological ageing in the form of telomere attrition when compared with healthy 
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control subjects (Maxwell et al, 2011). The relationship between TL and CRC risk is 

proving to be a difficult one to fully delineate but highlights the inter-individual variation 

in both biological ageing and the effect of potential confounders. Demonstration of 

telomere attrition in the PBLs of CRC cancer patients is similar to that reported by Pooley 

et al (2010) in both retro- and prospectively recruited patients (Pooley et al, 2010). These 

data contradict two studies of both male and female CRC patients where no relationship 

between CRC and TL was identified (Lee et al, 2010, Zee et al, 2009).  

 

The intricacies of the relationship between TL and CRC are highlighted in a recent study 

by Jones et al (2011). The authors report a significant association between a SNP at the 

TERC locus, long telomeres and increased CRC risk. The supposition from this data is that 

longer telomeres predispose to CRC cancer, potentially resulting from an increased 

replicative capacity of cells with longer telomeres and hence more chance of acquiring 

tumour-causing mutations.  However, in the same study the authors report that TL in PBLs 

from CRC patients is shorter than control subjects. This relationship was determined using 

DNA from patients enrolled in three different trials involving varying aspects of CRC 

management. The authors use these differences in populations as an explanation of the 

seemingly paradoxical results within this study (Jones et al, 2011). Prevalent studies 

investigating a number of other cancer entities including gastric (Hou et al, 2009), bladder 

(Wu et al, 2003), ovarian (Mirabello et al, 2010) and lung (Jang et al, 2008) are, however, 

in concordance with our observations.   

 

Clearly some heterogeneity exists between studies attempting to determine the relationship 

between TL and varying types of cancer. In order to eliminate some of this heterogeneity 

between studies and increase the sample size under investigation Ma et al (2011) have 

recently reported a meta-analysis, which provides perhaps the most compelling evidence 

for an association between cancer risk and shortened PBL TL. The authors amalgamated 

previously published data thereby producing a study population for investigation which 

contained 11,255 cases and 13,101 controls. They report that shorter telomeres were 

significantly associated with some individual cancers for example bladder and lung, and 

also grouped cancers such as those of the gastrointestinal tract and urogenital system (Ma 

et al, 2011). Another recent meta-analysis has confirmed this association of short TL with 

overall cancer risk in retrospective analyses (Wentzensen et al, 2011). Prospective as 

opposed to retrospective studies have the advantage that they are less open to observer bias 

and other potentially confounding factors. The results of these studies are again 
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heterogeneous. Most recently Willeit et al (2011) have reported long-term follow up of a 

random sample of 1000 persons aged 40-79 years. TL was measured at two time points and 

cancer incidence recorded over a 15 year period. The authors report a change in TL over 

time with short telomeres associated with an increased cancer risk and mortality from 

cancer. This study corroborates previously reported 10 year follow up data from the same 

authors (Willeit et al, 2010, Willeit et al, 2011). However, meta-analysis of prospective 

studies has not revealed any significant association between short TL and over-all cancer 

risk (Wentzensen et al, 2011).  Analysis of prospective longitudinal studies must be done 

with caution as they, depending on the design, cannot look at the relative rate of change 

compared with a baseline (birth) TL. Thus any change may be a regression to the mean and 

not a true reflection of TL change over a lifetime.   

 

The original hypothesis of this study was to determine if patients with CRC display 

evidence of accelerated biological ageing. The significant difference in TL between the 

PBL CRC and control group indicates advanced biological age in the CRC group and 

supports the original hypothesis. This is exemplified by the fact that when the analyses 

were corrected for age the significant difference in TL remained, meaning that although the 

two groups were similar in chronological age the cancer patients displayed evidence of 

accelerated biological ageing. The possibility exists that accelerated ageing arises as a 

consequence of the disease process (Svenson & Roos 2009). Possible reasons for this 

include the fact that the cancer process is well known to induce a pro-oxidative and 

systemic inflammatory state (Leung et al, 2008). If this were the case then it would be 

expected that TL would continue to shorten the longer the disease progressed. Longer 

telomeres closer to diagnosis have been demonstrated in CRC patients previously (Jones et 

al, 2011). However, our analysis refutes this, as there was no relationship between TL and 

the duration of the disease prior to sample collection. It may be that our median duration of 

42 days between diagnosis and sample collection is not sufficient to observe any effect 

elicited by the disease process. This could only be resolved by making serial measurements 

of TL throughout the course of the disease, but this is almost certainly an impossible aim 

as treatment of the tumour either with palliative or curative intent could confound results. 

It would also be of interest to monitor the effect of curative resection of the tumour, if the 

disease process is the driver of telomere attrition then this should be attenuated when the 

tumour is removed.   
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Although analysis did not reveal any association between socio-economic deprivation and 

TL in our group, recent evidence has suggested such a link exists in a population with 

similar demographics and spectrum of socio-economic deprivation (Shiels et al, 2011). In 

this study lower socio-economic class and poor diet contributed to accelerated biological 

ageing, represented by telomere attrition. Furthermore, there was a potential association 

with the pro-inflammatory cytokine IL-6. This study provides evidence supporting the link 

between social deprivation and a biological explanation of the excess disease burden, 

including cancer seen in this population. It is likely that the number of participants in the 

current study prohibited determination of any association between socio-economic 

deprivation and altered telomere dynamics.  

 

Our analysis suggests that the cancer patients with the shortest PBL telomeres have 

pathologically more severe disease as indicated by a higher Peterson Index. This is an 

intriguing observation as it indicates that systemic telomere biology could not only affect 

the risk of CRC but also the pathological outcome. It is, therefore relevant that there is no 

significant difference in TL between PBL and normal colonic tissue comparing our two 

sample groups (Figure 3.2). It should be borne in mind that this comparison is not direct 

i.e. the blood sample and colonic tissue sample were not from the same patient. The groups 

are, however, comparable in terms of demographics and pathology. No study has ever 

reported on the compartmental telomere dynamics in cancer patients. Clearly, direct 

comparison would need to be made before firm conclusions could be drawn but PBL TL 

could prove useful as a surrogate marker of pathological aggressiveness and could allow 

risk stratification prior to commencement of specific treatment algorithms.   

 

As outlined in the introduction to this thesis telomeres have been shown to be critical 

mediators of genomic integrity with telomere attrition associated with major chromosomal 

abnormalities. One of the key concepts in the process of genomic instability induced by 

dysfunctional telomeres is that of crisis. This is a period of rampant genomic instability 

and cell death which is driven by continued telomere erosion and uncapping in cells 

deficient in p53/pRB. Mutation of p53 is critical, as up-regulation of wild type p53 would 

in normal circumstances facilitate senescence and prevent ongoing proliferation. It is 

therefore pertinent that 50-75% of colorectal cancers express some form of deleterious 

mutation of p53 (Pino & Chung 2010). Clearly this state of crisis is not compatible with 

the enhanced proliferative capacity of neoplastic cells. However, neoplastic cells almost 
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universally adopt telomere maintenance programmes (either re-activation of telomerase or 

ALT) which stabilise telomeres and allow continuing replication. Replication proceeds in 

the context of a permissive mutated genome which is reflected in the chromosomal 

aberrations typical of many human cancers including colorectal (Counter et al, 1992, 

Raynaud et al, 2008, Deng et al, 2008). This permissive mutated genome could explain the 

step-wise mutational model of colorectal carcinogenesis proposed by (Fearon& Vogelstein 

1990). Whereby, the process of carcinogenesis is initiated by mutation of the APC tumour 

suppressor gene, followed by activating mutation of KRAS and subsequent mutation of 

p53, TGF-β and PIK3CA. It is this sequence of mutations which drives the adenoma-

carcinoma sequence of events in colorectal carcinogenesis (Leslie et al, 2002).  

3.3.2 Tissue telomere dynamics in colorectal cancer 

 

In concordance with previous studies we have confirmed that TL in CRC tissue is 

significantly shorter than normal adjacent colorectal mucosa (Hastie et al, 1990, Rosenberg 

et al, 2003, Gertler et al, 2004, Rampazzo et al, 2010). One might expect that given 

telomerase activity in neoplastic cells, including those of a colorectal origin, TL would be 

elongated in representative neoplastic tissue. However, our data suggest the opposite, 

meaning telomerase must maintain telomeric DNA content at a level consistent with a high 

rate of cell proliferation. This avoids the initiation of senescence or apoptosis which would 

otherwise mean exit from the cell cycle, and prohibit the rapid proliferation of neoplastic 

cells. These cells can therefore continue to divide but do so with requisite maintenance of 

TL. Telomerase is reactivated in colorectal cancer. Activation has also been shown to 

reflect progression through the adenoma-carcinoma sequence. Yan et al (1999) have 

demonstrated that telomerase activity was significantly associated with the progression of 

adenomatous polyps from low to high grade, with activation universally demonstrated in 

all carcinoma specimens investigated (Yan et al, 1999). Studies have attempted to correlate 

TL with the various stages of adenoma-carcinoma sequence of CRC development. TL in 

epithelial cells at the earliest morphological definable stage of carcinoma (high grade 

dysplasia with minimal invasive growth) was shorter compared with surrounding adenoma, 

indicating that cancers arise from cells with critically short telomeres within the adenoma 

(Plentz et al, 2003).  

In this study there was no significant correlation of CRC tissue TL with any of the clinico-

pathological parameters in Table 2.1. However, as shown in Figure 3.6 TL appears to be 

longer in patients with more advanced disease (Dukes D). Although not statistically 
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significant this is pertinent as longer TL in more advanced disease is a recurring finding in 

analysis of tissue specimens of CRC. Both Gertler et al (2004) and Garcia-Aranda et al 

(2006) report that tissue TL is shorter in cancer specimens when compared with adjacent 

normal tissue. They also both report a significant association between longer carcinoma 

TL, more advanced disease (Dukes C and D) and poor prognosis (Gertler et al, 2004, 

Garcia-Aranda et al, 2006). Increased telomerase expression in CRC tissue samples has 

also been shown to correlate with poorer prognosis (Tatsumoto et al, 2000) and more 

aggressive disease (Simsek et al, 2010). It is therefore postulated that telomere attrition and 

subsequent chromosomal instability is required for the progression from dysplasia to 

neoplasia. But, upregulation of telomere maintenance mechanisms such as telomerase 

confers a proliferative advantage which is reflected in the association between longer TL, 

high telomerase expression levels and poor prognosis in CRC. Whilst we noted similar 

findings to those previously reported these were not significant and it may be that 

increasing the power of our study could replicate these significant recurring findings of 

increased TL with more advanced disease. 

As expected we have demonstrated that patients with CRC display evidence of accelerated 

biological ageing and that telomere dynamics in different tissue compartments in these 

patients are altered. As already mentioned the mechanisms controlling TL are only partly 

understood. We therefore attempted to correlate our TL measurements with factors 

involved in the control of the redox state and systemic inflammation, both known to impact 

on TL at a number of levels. 
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CHAPTER 4: CORRELATES OF TELOMERE LENGTH IN 
COLORECTAL CANCER 

4.1 Introduction 
 

Telomeres not only potentially serve as biomarkers of senescence and biological ageing, 

but also form part of a damage sensing and signalling system, facilitating DNA repair or 

apoptosis (Misri et al, 2008). Potential determinants of TL are varied. Telomere length is 

highly heritable therefore a proportion is genetically determined (Slagboom et al, 1994). 

Alteration in the expression of telomerase, can significantly affect telomere dynamics. In 

mice, knock out of the telomerase coding sequence resulted in progressive loss of 

telomeric DNA and progeria (Blasco et al, 1997). Reintroduction of telomerase reversed 

both these effects (Samper et al, 2001). A major influence on TL and hence telomere 

function is the control of redox state and potential damage induced by reactive oxygen 

species (Saretzki & Von Zglinicki 2002, von Zglinicki 2002). Correlation of TL with genes 

controlling redox state in a narrow age range cohort provides further evidence for a 

plausible mechanistic link between redox control and telomere biology (Starr et al, 2008). 

Pertinent in this respect, is the observation that fetuin-A, a mediator of redox homeostasis 

in the circulation, displays a dependent relationship with PBL TL in patients with chronic 

kidney disease. (Carrero et al, 2008). Fetuin-A is a ubiquitous serum protein which plays a 

role in extra-cellular calcium metabolism by virtue of its ability to inhibit calcium-

phosphate precipitation and is an important inhibitor of extra-skeletal calcification, an 

effect important in patients with chronic kidney disease on dialysis (Westenfeld et al, 

2007). Furthermore fetuin-levels are down-regulated according to the acute phase 

inflammatory response in a manner similar to serum albumin, corresponding to an inverse 

relationship with C-reactive protein (CRP) and inflammatory cytokines (Dervisoglu et al, 

2008). In clinical terms the effects of fetuin-A are complex with both high and low levels 

predicting risk and outcome of ischaemic heart disease and stroke. These differences could 

result from the differing effects of fetuin-A not only on inflammation but also on adhesion 

molecule interaction (Weikert et al, 2008, Bilgir et al, 2010).  

 

 

Other factors known to generate potentially damaging reactive oxygen species includes 

altered antioxidant ratio, disordered calcium and other divalent cation homeostasis, and 

alteration of micronutrient status. In addition to damage induced by reactive oxygen 
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species, inflammation has been shown to play a determining role in experimental and 

population based models of telomere attrition (Carrero et al, 2008, Shiels et al, 2011). The 

overall effect of oxidative damage and systemic inflammation is reflected in the correlation 

between PBL TL and solid organ biological age. Indeed in their work in vascular disease 

Wilson et al (2008) report that PBL TL is strongly correlated with vascular wall TL, thus 

indicating that PBL TL acts as a surrogate for vascular wall aging and supporting the 

notion that factors influencing TL do so at a systemic level (Wilson et al, 2008). 

Furthermore chronic systemic inflammation has a well characterised deleterious role in the 

development and progression of cancer, and in particular CRC (Roxburgh & McMillan 

2010).  

 

Chapter Aims 

 

• To assess whether PBL TL in CRC patients were reflected in markers of systemic 

inflammation including the mGPS, pro-inflammatory cytokines and common 

haematological indices of inflammation.  

 

• Delineate the relationship between PBL TL and factors known to exert control over 

redox state including antioxidant vitamins, factors involved in calcium homeostasis 

including circulating levels of fetuin-A and micronutrient status.  

 

• Further characterise the interplay between fetuin-A, inflammation and clinical 

parameters in our CRC patients. 

 

 

4.2 Results 
 

4.2.1 Correlation of CRC PBL telomere length and redox state 

 

4.1.2.1 No Association between Telomere Length and Antioxidant Vitamins 

or trace elements 

 

There was no significant association between TL as either a continuous or categorical 

variable, and anti-oxidant status as determined by correlation with serum levels of 



118 
 
antioxidant vitamins (retinol, α-tocopherol, lutein, lycopene, α-carotene and β-carotene)  

(Table 4.1). In addition, there was no correlation between TL and serum levels of the 

micronutrient trace elements; Mg2+, Fe2+, Cu2+, Zn2+ and Se2+ (Table 4.1). Furthermore, 

there was no correlation between any of the redox control factors and any clinico-

pathological parameters. 

 

 

Table 4.1: Table displaying relationship between CRC PBL telomere length with antioxidant vitamins 
and trace elements. 

 

Antioxidant Vitamins 

 Median (range)  Correlation with Telomere 
length‡ (p<0.05) 
 

Retinol 1.80 (0.7-3.70) µmol/L 1.67 (0.298) 

 α-tocopherol 26.5 (12.0-40.0) µmol/L 0.072 (0.652) 

Lutein  88.0 (21.0-607.0) µg/L 0.047 (0.772)  

Lycopene 83.0 (10.0-373.0) µg/L -0.006 (0.971) 

α-Carotene 15.5 (10.0-151.0) µg/L 0.178 (0.260) 

β-Carotene 65.5 (10.0-862.0) µg/L -0.174 (0.271) 

Micronutrient Trace Elements 

Magnesium (mmol/l) 0.82 (0.56-1.11) 0.009 (0.947) 

Iron (Fe2+, µmol/l) 20.2 (5.6-168.7) 0.067 (0.631) 

Copper (µmol/l) 19.4 (12.7-31.9) 0.132 (0.345) 

Zinc (µmol/l) 10.3 (6.6-14.1) 0.05 (0.721) 

Selenium (µmol/l) 0.84 (0.45-1.23) 0.143 (0.306) 
 
‡ Relationship displayed as Pearson correlation with telomere length as continuous variable (p<0.05). 
 

 

 

4.1.2.2 Relationship between CRC PBL telomere length and calcium 

homeostasis 

 

An attempt was made to determine any relationship between TL, plasma calcium 

concentration and factors involved in calcium homeostasis, namely vitamin D. When 

analysed as both categorical and continuous variables there was no relationship between 

TL and plasma calcium. Likewise there was no relationship between TL and vitamin D 

levels (n=26, Pearson r -0.75, p=0.715, Table 4.2).  
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Table 4.2: Table displaying the relationship between telomere length and elements associated with 

calcium homeostasis. Inter-relationship between Fetuin-A and elements of systemic 
inflammation. 

 

Calcium Homeostasis 

 Median (range) Correlation with telomere 
length (p<0.05) 

 
Fetuin-A 
 

*Age 
*Albumin 
*Calcium 

*IL-10 
*IL-6 

27.16 (14.71-67.27) ng/ml 
 
r= -0.32 
r= 0.28 
r= 0.30 
r= -0.21 
r= -0.483 

0.041† 

 
0.011 
0.03 
0.022 
0.061 
0.005 

Calcium 2.44 (2.31-2.61) mmol/L 0.072 (0.590)‡ 

Vitamin D 31.5 (11-111) nmol/L -0.75 (0.715)‡ 

 

†Patients with low fetuin-A (fetuin-A < log median=1.47/median=29.6) had significantly shorter telomeres (median T/S = 
0.6 Vs 0.72, Mann-Whitney).  
*Relationship with plasma log Fetuin-A concentration, displayed as Pearson correlation. 
‡ Relationship displayed as Pearson correlation with telomere length as continuous variable (p<0.05). 
 
 

 
 
4.2.2 Plasma levels of Fetuin-A are associated with chronological and 
biological age in colorectal cancer 
 

Fetuin-A concentration of plasma samples was measured to assess whether levels were 

associated with chronological and biological ageing within the CRC PBL group. A 

significant relationship was observed between fetuin-A concentration and the 

chronological age of subjects (Pearson r=-0.32, p=0.011, Figure 4.1A, Table 4.2), 

increasing chronological age was associated with decreasing fetuin-A concentration. There 

was no significant association between TL and fetuin-A. Therefore, further analysis of the 

relationship between fetuin-A concentration and TL was performed. Patients were 

categorised into two groups around the median plasma level giving a low fetuin-A level 

group (fetuin-A < log median=1.47/median=29.6) and a high fetuin-A level group (fetuin-

A > log median=1.47/median=29.6). Patients with low fetuin-A levels were shown to have 

significantly shorter telomeres (median RelT/S = 0.6) than those patients with high fetuin-

A levels (median RelT/S = 0.72) (Pearson r=0.3, p=0.019, Mann Whitney p=0.041, Table 

4.2), this relationship was maintained when the analysis was adjusted for age. Patients with 

low fetuin-A levels had significantly shorter telomeres (adjusted mean Rel T/S=0.59) in 

comparison to those patients with high fetuin-A levels (adjusted mean RelT/S =0.68, 
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p=0.047, Figure 4.1B). No difference in fetuin-A level was observed between males and 

females. 

 

 

 
 

Figure 4.1: Scatterplot (A) illustrating the significant negative correlation between patient 
chronological age and plasma fetuin-A level (pearson = -0.32, p=0.011). Boxplot (B) 
displaying  the association between plasma fetuin-A level and PBL telomere length in 
colorectal cancer patients. Patients with low levels of fetuin-A had significantly shorter 
telomeres when compared with those with higher Fetuin-A levels (Mann-Whitney, 
p=0.041). 
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4.2.2.1 Association between plasma Fetuin-A levels and patient clinico-
pathological parameters 
 

No association was apparent between fetuin-A concentration and tumour characteristics 

such as T-stage, lymph node involvement or Dukes stage, within the CRC PBL group. 

However, increasing concentrations of fetuin-A were significantly associated with 

increasing levels of albumin (Pearson r=0.28, p = 0.03) and calcium (Pearson r=0.30, 

p=0.022), but decreasing levels of IL-6 (Pearson r=-0.483, p=0.005) (Table 4.2, Figure 

4.2). A trend also existed between fetuin-A concentration and IL-10 (Pearson r=-0.21, 

p=0.061) (Table 4.2, Figure 4.2), whereby increasing concentrations of fetuin-A in patients 

was associated with decreasing levels of IL-10 (Figure 4.2).  
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Figure 4.2: Scatter plot displaying the relationship between  albumin (A), calcium (B), interleukin-10 

(C),  interleukin-6 (D) and log plasma fetuin-A concentration.  Both albumin 
(Pearson=0.28, p = 0.03) and calcium (Pearson=0.30, p=0.022) were significantly postively 
associated with fetuin-A concentration. Interleukin-6 displayed a significant negative 
association (Pearson=-0.483, p=0.005) and interleukin-10 a negative trend (Pearson=-0.21, 
p=0.061) . 

 

 

4.2.2.2 Tumour site is distinguishable by Fetuin-A and White Cell Count 

 

Patients in the CRC PBL group with rectal tumours (n=22) were associated with higher 

circulating concentrations of fetuin-A (log median=1.52/median=33.5), whereas those with 

colonic tumours (n=42) were associated with lower concentrations (log 

median=1.45/median=28.7) (p=0.045) (Figure 4.3a). Further comparison of the clinico-

pathological differences between colonic and rectal tumours showed that colonic tumours 
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were significantly associated with an increased white cell count (median=7.9) compared 

with rectal tumours (median=6.8) (p=0.011, Figure 4.3b). 

 

 

 
 

 

Figure 4.3: Differentiation of tumour site in the CRC PBL group using plasma fetuin-A (A) and white 
cell count (B). Patients with rectal cancers had significantly higher levels of fetuin-A 
(p=0.045) and a significantly lower white cell count (p=0.011) when compared with colon 
cancer patients. 
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4.2.3 Correlation of CRC PBL telomere length with markers of systemic 
inflammation 
 

TL was again analysed both as a continuous and categorical variable. Patients were 

categorised into those with short telomeres (RelT/S < 0.55, shortest quartile) and those 

with long telomeres (RelT/S > 0.55). No significant relationship was observed between TL 

and CRP, pro-inflammatory cytokines (IL-6, IL-10, VEGF) or mGPS as analysed as a 

continuous or categorical variable (Table 4.3).  

 

Table 4.3: Table displaying the relationship between CRC PBL telomere length and factors involved 
in systemic inflammation. 

 

Systemic Inflammation 

 Median (range)/ 
No Patients  

Correlation with Telomere 
Length (p<0.05) 

C-Reactive Protein 7.5 (0.40-95.0) mg/l 0.043 (0.743)‡ 

IL-6 6.5 (1.75-39.8) pg/ml -0.031 (0.814)‡ 

Il-10 11.2 (5.68-34.82) pg/ml -0.092 (0.490)‡ 

VEGF 84.75 (7.28-952.96) pg/ml 0.089 (0.503)‡ 

Neutrophil:Lymphocyte 

(NLR) 

 

0.32 (0.04-0.94) 

 

0.047¶ 

mGPS 
0 
1 
2 

 
42 (65.6%) 
13 (20.3%) 
9 (14.1%) 

 
NS 
NS 
NS 
 

 

‡ Relationship displayed as Pearson correlation with telomere length as continuous variable (p<0.05). 
¶Significant difference in NLR between short (Rel T/S <0.55, NLR 0.39 (IQR 0.90)) and long (Rel T/S >0.55, NLR 0.28 
(IQR 0.71)) telomere group (Mann-Whitney 0.047). 
 

 

 

However, there was a significant relationship between patients with short TL when 

analysed as a categorical variable and an elevated neutrophil:lymphocyte (NLR=0.39 (IQR 

0.90) Vs NLR=0.28 (IQR 0.71)) (Mann-Whitney, p=0.047, Figure 4.4, Table 4.3). Thus, 

indicating higher levels of systemic inflammation in CRC patients with shorter TL, hence a 

potential association between inflammation and accelerated biological ageing. 
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Figure 4.4: Box plot displaying the significant difference in NLR between the short (relative T/S 
<0.55) and long telomere (relative T/S > 0.55) group, Mann-Whitney p=0.047. 

 
 
 

4.3 Discussion 

 

As indicated in the previous chapter there is clear evidence of accelerated biological ageing 

in the form of telomere attrition in the CRC patients under investigation. As outlined in the 

introduction to this thesis (Introduction section 1.3.3) there are a number of factors which 

have been shown to play a role in the determination of TL. An attempt was therefore made 

to correlate TL with circulating factors involved in redox control and systemic markers of 

inflammation. Any potential association could indicate a mechanistic link in the 

determination of TL and hence a role in the pathogenesis of CRC.  

 

4.3.1 Correlation of telomere length with factors involved in redox control 

 

4.3.1.1 Antioxidant Vitamin Status 

 

Various investigators, using a number of experimental modalities, have identified damage 

induced by reactive oxygen species and oxidative stress as a key determinant of telomere 

erosion rates (von Zglinicki 2002, Serra et al, 2003). The relationship between redox state 

and telomere dynamics is likely to be a complex one involving interaction between a wide 

array of genetic and environmental factors.  The potential role of disordered redox state in 

this study was determined by measuring plasma levels of anti-oxidant vitamins, 
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micronutrient trace element status and factors involved in calcium homeostasis including, 

fetuin-A (a circulating calcium binding protein). Despite multi-modal analysis no 

significant relationship was demonstrated between TL and anti-oxidant status in this group 

of CRC patients. However, studies ranging from cell culture analysis to population based 

studies, have shown that anti-oxidants can protect against free radical induced telomere 

attrition. Alpha-tocopherol (vitamin E) can protect against H2O2 induced telomere damage 

in cultured fibroblasts, an effect dependent on telomerase activity (Makpol et al, 2010). 

Patients with type 2 diabetes mellitus, a condition associated with oxidative stress, display 

evidence of telomere attrition. This effect is mediated by plasma antioxidant status and 

genotypic variation in the expression of UCP-2, a gene involved in mitochondrial 

production of ROS (Salpea et al, 2010). In a group of healthy female study participants 

longer TL was associated with increased intake of multivitamins which included vitamin C 

and E (Xu et al, 2009). Specific to cancer patients, Shen et al (2009) report that breast 

cancer risk was significantly associated with shorter TL and that this risk was increased by 

reduced dietary intake of antioxidant vitamins (Shen et al, 2009). These studies indicate 

that the increased cancer risk associated with telomere attrition could in part be mediated 

by altered antioxidant status. However, it is unlikely that this current study is sufficiently 

powered to uncover any association between TL and plasma antioxidant status in this 

group of CRC patients. One advantage it does have is that determination of plasma 

antioxidant status is a potentially more objective assessment than dietary questionnaire. 

Hence studies using this methodology such as the one described above are potentially 

unreliable.  

 

4.3.1.2 Trace Element Status 

 

Similar to plasma antioxidant status, analysis of TL with regards to levels of trace element 

divalent cations namely; Mg2+, Fe2+, Cu2+, Zn2+ and Se2+ did not reveal any significant 

association. The potential for transition metals such as copper and iron to regulate TL by 

disrupting redox potential is intuitive when the Haber-Weiss and Fenton reactions are 

considered. In the presence of reducing agents these metal ions catalyse the production of 

superoxide anions (O2
-), H2O2 and hydroxyl radicals in vivo, all potentially damaging 

reactive oxygen species. Copper ions have previously been shown to induce telomere 

attrition, an effect abrogated by subsequent cell culture with a copper ion binding molecule 

(Bar-Or et al, 2001). The effect of cancer risk predicted by the serum level of these metal 

ions has been investigated in the past, however never in the context of telomere attrition. 
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Although iron has not been shown to alter TL in vitro (Liu et al, 2004), there is some 

evidence that increased iron levels can increase cancer risk by altering redox state (Kabat 

& Rohan 2007). Magnesium and selenium ions on the other hand are considered to have 

anti-oxidant capabilities and hence a protective function over TL. Rats fed a magnesium 

deficient diet display evidence of accelerated telomere attrition rates in liver tissue samples 

and cultured cells, with lower activity levels of measured antioxidant enzymes. The authors 

conclude that magnesium deficiency leads to oxidative stress, apoptosis and accelerated 

ageing. Unfortunately there was no mention of cancer incidence in these animals (Martin et 

al, 2008). Selenium has also been shown to exert a protective effect over TL at the in vitro 

level, an effect mediated through increased telomerase activity (Liu et al, 2003). The effect 

of zinc on TL is unclear. In vitro treatment of hepatoma cells with zinc caused telomere 

attrition (Liu et al, 2004), however there are no studies correlating in vivo TL with zinc 

levels in cancer patients. Although the assessment of trace element status in this study is 

made from plasma samples it may be that a more accurate form of intra-cellular 

determination may give a more physiological depiction.   

 

4.3.1.3 Calcium Homeostasis 

 

Analysis has not revealed any significant relationship between PBL TL and plasma 

calcium concentration. Disordered calcium homeostasis could impact on TL through an 

increase in free radical generation and subsequent oxidative damage. Excessive calcium 

has been shown to increase mitochondrial free radical generation through a number of 

mechanisms including; enhanced citric acid cycle activity, increased NADH formation, 

activation of ROS generation enzymes such as α-ketoglutarate dehydrogenase and 

promoting the loss of cytochrome c (Kowaltowski et al, 2009). These sequelae of 

increased calcium concentration at the mitochondrial level could reflect a relative inability 

to bind free calcium caused by lower fetuin-A, with subsequent promotion of a pro-

oxidative state and leading to accelerated telomere attrition. Excess calcium has been 

shown to negatively impact on prostate cancer outcome. Potential reasons for this include 

the fact that both calcium and parathyroid hormone (release of which is stimulated by 

excess physiological calcium) can promote proliferation and metastasis of prostate cells in 

vitro, however an impact on redox state cannot be discounted (Skinner & Schwartz 2009).  

 

Some recent studies have uncovered a potential relationship between levels of vitamin D 

and the ageing process, specifically with TL. Analysis of serum vitamin D levels in the 
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context of TL in the CRC patients in this study did not reveal any significant association. 

This was also the case when vitamin D levels were correlated with patient clinic-

pathological parameters. Correlation of TL with vitamin D levels in a large population-

based cohort of twins has revealed significant strong positive relationship, which became 

stronger as vitamin D level increased. Furthermore, Vitamin D levels were negatively 

correlated with CRP in the study population. It therefore appears that the protective effect 

of Vitamin D over TL results from its ability to act as an anti-inflammatory mediator. 

Indeed vitamin D receptors are ubiquitously expressed on both T and B cells, and can 

down-regulate cytokine production producing an anti-inflammatory effect (Richards et al, 

2007). Thus the effect of Vitamin D on TL appears to be independent of its role in the 

maintenance of plasma calcium levels. However, these studies need to be interpreted with 

caution as evidence has also pointed to promotion of a premature ageing phenotype in 

mutant mice (klotho-/- and FGF23-/-) exposed to hypervitaminosis D3 through dietary 

modification and genetic manipulation of the vitamin D receptor. Although, TL was not 

specifically examined in these models expression of ageing-related genes was altered 

(Tuohimaa 2009). The current study was not sufficiently powered to fully delineate the 

relationship between vitamin D, telomere attrition and CRC, however given recent 

intriguing experimental evidence a potentially manipulatable determinant of TL in cancer 

patients may exist.    

 

 

Within the CRC PBL group patients with lower fetuin-A levels had shorter telomeres. 

These findings are consistent with those in CKD patients where there is an established link 

between low fetuin-A levels, short TL and reduced anti-oxidative capacity. Indeed, in this 

group of patients TL was associated with increased mortality, independent of age and sex 

but dependent on fetuin-A levels (Carrero et al, 2008). The relationship between TL and 

fetuin-A indicates biological ageing is associated with reduced redox capacity within the 

blood of CRC patients. Interleukin 6 (IL-6), a pro-inflammatory cytokine, alters the gene 

expression and synthesis of fetuin-A by hepatocytes, similar to its action on albumin 

(Gangneux et al, 2003). This study showed that decreasing fetuin-A levels correlates with 

decreasing albumin concentration and increasing IL-6 and IL-10 levels, supporting the 

hypothesis of inflammation-dependent down-regulation of fetuin-A expression. These 

observations concur with those described in patients with renal failure on dialysis 

(Hermans et al, 2007) and also with results from a rodent model of lethal systemic 

inflammation where fetuin-A exerted a protective role (Li et al, 2011a). However, the 
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relationship between fetuin-A is not a straightforward one given the finding of elevated 

levels in patients with previous myocardial infarction and obesity (Voros et al, 2011).   

 

In patients with glioblastoma, the most commonly occurring brain tumour low serum 

fetuin-A levels predicted poor survival (Petrik et al, 2008). Moreover, Rho et al (2009) 

report differential expression of fetuin-A between lung adenocarcinoma and adjacent 

normal tissue with both total protein and mRNA abundance reduced in cancer samples 

(Rho et al, 2009). These findings, in conjunction with our own observations, lead to the 

intriguing possibility of utilising fetuin-A as a prognostic/predictive marker for tumours 

from a histologically varied origin. Work is required to determine whether it is by virtue of 

its role in calcium homeostasis and hence redox state, that fetuin-A contributes to the 

determination of TL. Clearly comparison of fetuin-A levels between cancer patients and 

healthy controls would also be essential in any further investigation of the role of fetuin-A 

in cancer. 

 

Rampazzo et al (2010) have identified right-sided colonic tumours as having shorter TL 

than left-sided and rectal cancers, which may result from an alteration in mismatch repair 

pathways (Rampazzo et al, 2010). The molecular and clinical characteristics of right and 

left colon cancers are well established with right sided tumours classically associated with 

microsateillite instability and alteration in CpG island methylator phenotype, and left sided 

cancers with chromosomal instability (Iacopetta 2002). The observation that plasma fetuin-

A levels vary with the anatomical site of the primary tumour is pertinent and may reflect 

differences in the systemic oxidative-inflammatory milieu as a result of differing molecular 

characteristics in the anatomical position of the tumour. This could particularly reflect 

differing rates of telomere attrition which were not elicited in the current study as no 

relationship between tumour site and TL was determined. The pre-operative management 

of colonic and rectal cancers in the context of chemo-radiotherapy differs, hence, further 

molecular differentiation of colon and rectal cancers could lead to the discovery of new 

therapeutic targets thereby improving the outcome of rectal cancer. Obviously, further 

work in a larger patient group is required to substantiate these preliminary findings and 

determine ’cause and effect’ relationship between anatomical differences in tumour site 

and telomere dynamics.  
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4.3.2 Correlation of Telomere Length with Markers of Inflammation 

 

Inflammation is an important determinant of TL which has been implicated in the ageing 

process and as a universally detrimental factor at all stages of the neoplastic process. We 

therefore sought to correlate TL with common bio-haematological markers of 

inflammation, in addition to pro-inflammatory cytokines.   

  

Cellular senescence is a permanent state of growth arrest and hence a potent mechanism of 

tumour suppression. The triggers of senescence in vivo include critical telomere attrition, 

activation of oncogenes, oxidative stress, genotoxic stress and some therapeutic 

interventions for example irradiation and chemotherapy. Recent evidence indicates that 

senescent cells secrete a multitude of signalling factors, termed the “senescence associated 

secretory phenotype” (SASP) (Coppe et al, 2008). These signals are mostly pro-

inflammatory and include factors such as IL-1α and β, IL-6 and IL-8. The SASP provides 

an intuitive explanation of our observed association between short TL and systemic 

inflammation, indicated by a raised neutrophil:lymphocyte ratio. Interestingly, patients 

with ulcerative colitis an inflammatory condition of the colon who exhibit an increased risk 

of CRC display evidence of telomere attrition in leucocytes (Risques et al, 2008a). Even 

minute quantities of pro-inflammatory cytokines released by populations of senescent cells 

in biologically aged individuals could stimulate a more chronic systemic inflammation by 

virtue of positive feedback loops. At the peri-tumoural level these factors could also act in 

a paracrine fashion to create an environment where tumour cells can flourish by 

stimulating hyperproliferation, de-differentiation, immune evasion, migration and invasion 

(Davalos et al, 2010).  

 

It is therefore likely that a complex inter-relationship exists between telomere dynamics 

and inflammation via positive feedback loops. As pro-inflammatory signalling pathways 

are up-regulated and haemopoetic stem cells stimulated to differentiate into lymphocytic 

cells repeated rounds of division will contribute to the acceleration in telomere attrition 

demonstrated in PBLs. Increased numbers of senescent cells would therefore lead to an 

increase in the pro-inflammatory milieu and perpetuation of the pro-inflammatory state 

contributing to the acceleration of biological ageing.   
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CHAPTER 5:  SIRTUIN EXPRESSION IN COLORECTAL CANCER 

5.1 Introduction 

 

Colorectal cancer is the third most common cancer in the UK and is responsible for 16,000 

deaths every year (Cancer Research UK 2010). Improving understanding of the key 

mechanisms underpinning the disease process could lead to the discovery of novel 

prognostic biomarkers or targets for therapeutic intervention. The link between cancer and 

ageing seems intuitive given that age is a risk factor common to most solid organ cancers, 

especially those of an epithelial origin (DePinho 2000). Current lines of investigation 

linking the two processes include the contribution of telomere biology (Shay & Wright 

2010, Maxwell et al, 2011) and manipulation of nutrient sensing pathways, such as 

mammalian target of rapamycin (mTOR) (Zoncu et al, 2011). The sirtuin family of genes 

have been intensely investigated due to their diverse cellular functions and ability to 

influence longevity in certain organisms.   

 

Variability in the sub-cellular localisation of the sirtuins is reflected in the variety of 

critical cellular functions to which the sirtuins contribute. At the mitochondrial level, 

SIRT3 and SIRT4 have been shown to regulate the activity of acetyl-CoA (Hallows et al, 

2006) and glutamate dehydrogenase (Haigis et al, 2006) respectively, whereas SIRT5 is 

implicated in the control of the urea cycle (Nakagawa & Guarente 2009). SIRT6 plays an 

important role in the maintenance of genomic integrity and DNA damage repair 

(Mostoslavsky et al, 2006). SIRT6 has also been shown to modulate telomeric chromatin 

and hence function by histone H3 deacetylation (Michishita et al, 2008a). SIRT1 

contributes to glucose homeostasis by stimulating hepatic gluconeogenesis (Rodgers et al, 

2005) and insulin release from pancreatic β-bells (Moynihan et al, 2005). In addition, by 

virtue of its ability to deacetylate a number of non-histone proteins such as p53, FOXO, 

NF-κB and Ku70, SIRT1 controls the response to cellular stress and dictates cellular fate 

by modulating apoptotic and DNA repair pathways (Yang et al, 2005, Jeong et al, 2007, 

Ghosh et al, 2007, Yi& Luo 2010).  SIRT7 appears to regulate cell growth in response to 

changing metabolic conditions by stimulating ribosome biogenesis (Ford et al, 2006). 

SIRT2 has been shown to exert control over the cell cycle by deacetylating α-tubulin, 

whilst its levels increase during mitosis with overexpression delaying mitosis (North & 

Verdin 2007b).  
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These key cellular processes over which the sirtuins exert a degree of control all play a role 

in normal organismal ageing. It therefore stands to reason that dysregulation of sirtuin 

expression could alter lifespan and contribute to the development of age related diseases. 

Indeed SIRT6 knockout mice die young displaying signs of progeria, whilst SIRT1 has 

been implicated in the lifespan extension of model organisms conferred by caloric 

restriction (Cohen et al, 2004b, Mostoslavsky et al, 2006). The sirtuin family have been 

implicated in the pathophysiology of age-related conditions including cancer.  Attempting 

to delineate the relationship between the sirtuin family and cancer is proving complex. This 

is exemplified by the fact that despite the plethora of studies in numerous experimental 

systems there is still some dubiety as to whether they function primarily as tumour 

promoters or suppressors. Reflecting this dichotomous position SIRT1 has been shown to 

be upregulated in leukaemia, prostate and skin cancer (Bradbury et al, 2005, Hida et al, 

2007, Huffman et al, 2007), while downregulated in colorectal cancer (Firestein et al, 

2008). SIRT2 and SIRT7 have been implicated in the development of gliomas (Hiratsuka 

et al, 2003) and human papillary thyroid cancer cell lines respectively (de Nigris et al, 

2002).  

We have previously hypothesised that the sirtuins link Mitochondria and the Telomere 

nucleoprotein complex with Ribosome biogenesis (Shiels & Davies 2004). This provides a 

plausible mechanistic pathway where the energy balance of a cell in stress is sensed and 

the requisite damage response mechanisms initiated. Aberrant sirtuin expression could, 

therefore, upset the balance of these factors hence tipping the cell into crisis if key repair 

pathways could not be initiated. Moreover, the inability of the cell to respond to DNA 

damage in particular could lead to deleterious chromosomal events and potentially 

carcinogenesis. It is therefore conceivable that the sirtuins play a key role in the 

development and progression of the cancer process.  

Chapter Aims 

• To determine the relative transcription levels of SIRT1-7 in colorectal cancer tissue 

and adjacent normal mucosal tissue, identification of a positive or negative 

relationship between the two tissue types could provide further evidence to support 

a tumour suppressive or promoting role for the sirtuins in CRC.  
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• Expression data was then correlated with a variety of commonly recorded clinico-

pathological, biochemical and haematological variables. Therefore, we aimed to 

place the biology of ageing and cancer in a clinical context. 

• Characterise the relationship between sirtuin expression and TL in CRC tissue. 

• Correlation with pathological and cancer outcome was also made to allow 

evaluation of sirtuin expression as a marker of prognosis. 

 

5.2 Results 

5.2.1 Differential Expression between Colorectal Tumour and Adjacent 

Normal Tissue 

The overall aim of this study was to create an expression profile for SIRT 1-7 from 

colorectal cancer specimens and paired adjacent normal tissue. There was a universal 

significant attenuation in relative expression levels of all seven sirtuins in the tumour tissue 

when compared with normal tissue (SIRT3 n=43, SIRT5 n=46, SIRT1 and SIRT6 n=47, 

SIRT2 and SIRT7 n=48, SIRT4 n=49; Figure 5.1). All but SIRT 2 (p=0.026) displayed a 

significant difference in expression at the p<0.001 level. Within the tumour samples the 

lowest expression levels were evident with SIRT4 (0.14, IQR 0.18) and highest with 

SIRT5 (0.55, IQR 0.51). As indicated in Figure 5.1 SIRT1 (0.41, IQR 0.22), SIRT2 (0.42, 

IQR 0.27) and SIRT3 (0.39, IQR 0.21) all displayed similar expression levels within the 

tumour tissue (Kruskal-Wallis, p=0.962), while there was a significant difference in the 

expression of the mitochondrial sirtuins, with SIRT4 displaying the lowest relative 

transcription levels (Kruskal-Wallis, p<0.001). Analysis of cancer tissue subgroups 

revealed differences in the relative expression between rectal tumour tissue samples from 

patients who had undergone neo-adjuvant therapy prior to their index procedure (Effect of 

Neo-Adjuvant Therapy on SIRT Relative Expression 5.2.3.1). To prevent these differences 

confounding the overall results, therefore giving a more accurate representation of relative 

expression these samples were excluded from the SIRT transcriptional analysis presented 

above. 
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Figure 5.1: Bar chart displaying the median expression level (± 95% C.I) of each of the sirtuins in 
colorectal cancer tissue (solid bar) and adjacent normal tissue. Expression level was 
significantly reduced in all seven sirtuins in cancer tissue compared with normal. 
(Wilcoxon signed  rank Test, **P<0.0001, *P=0.003). 

 

5.2.2 Inter-relationship between sirtuins in tumour and normal tissue 

To determine if there was any inter-relationship between individual sirtuin relative 

expression levels from tumour and normal tissue, cross-correlation analysis was 

performed. The various correlations are outlined in Table 5.1, with a number of strong 

positive correlations revealed. Of particular note, within the tumour samples SIRT1 was 

strongly positively correlated with SIRT2 (Pearson r = 0.827), SIRT3 (Pearson r = 0.647) 

and SIRT4 (pearson r = 0.850), all p<0.001. In addition SIRT3 correlated with all but 

SIRT7 at the p < 0.001 level. There were some major differences in the correlation analysis 

from the normal tissue samples, with the loss of all significant associations between 

SIRT5, SIRT6 and the remainder of the sirtuins (Table 5.1). There was, however, an 

association gained between SIRT3 and SIRT7 (Pearson r = 0.665, p < 0.001).  
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Table 5.1: Table displaying correlations between SIRT1-7 in the CRC tumour (A) and normal (B) 

samples. 

A Tumour 

 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7 
SIRT1 
Pearson r 

p-value 

 
0.827 
<0.001 

 
0.647 
<0.001 

 
0.850 
<0.001 

 
0.319 
0.033 

 
0.447 
0.002 

 
0.396 
0.006 

SIRT2 
Pearson r 

p-value 

  
0.610 
<0.001 

 
0.753 
<0.001 

 
0.475 
0.001 

 
0.414 
0.004 

 
0.453 
0.001 

SIRT3 
Pearson r 

p-value 

   
0.609 
<0.001 

 
0.568 
<0.001 

 
0.531 
<0.001 

 
0.438 
0.002 

SIRT4 
Pearson r 

p-value 

    
0.216 
0.170 

 
0.420 
0.006 

 
0.209 
0.178 

SIRT5 
Pearson r 

p-value 

     
0.463 
0.001 

 
0.628 
<0.001 

SIRT6 
Pearson r 

p-value 

  
 

    
0.635 
<0.001 

 

B Normal 

 SIRT2 SIRT3 SIRT4 SIRT5 SIRT6 SIRT7 
SIRT1 
Pearson r 

p-value 

 
0.902 
<0.001 

 
0.509 
<0.001 

 
0.758 
<0.001 

 
0.222 
0.143 

 
0.056 
0.711 

 
0.140 
0.348 

SIRT2 
Pearson r 

p-value 

  
0.665 
<0.001 

 
0.834 
<0.001 

 
0.151 
0.318 

 
0.003 
0.983 

 
0.165 
0.262 

SIRT3 
Pearson r 

p-value 

   
0.744 
<0.001 

 
0.386 
0.008 

 
0.363 
0.012 

 
0.665 
<0.001 

SIRT4 
Pearson r 

p-value 

    
0.199 
0.207 

 
-0.042 
0.793 

 
0.244 
0.116 

SIRT5 
Pearson r 

p-value 

     
0.257 
0.089 

 
0.364 
0.013 

SIRT6 
Pearson r 

p-value 

  
 

    
0.888 
<0.001 

 
P≤0.002 deemed significant after Bonferroni correction (emboldened p value = significant) 
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5.2.3 Differentiation of Tumour Site 

An attempt was made to differentiate between tumour site according to sirtuin relative 

expression level. Tumour site was defined according to operative findings and pathological 

examination of the resected specimen. Rectal cancers were deemed to lie below the 

peritoneal reflection with colon cancers above. Colon cancers were further divided into 

proximal and distal according to their position in relation to the splenic flexure. Analysis 

revealed that colon cancer specimens had significantly lower levels of SIRT2 expression 

(Figure 5.2) (Mann-Whitney, p=0.021) with SIRT4 levels also reduced, the relationship 

displaying a trend towards significance (Mann-Whitney, p=0.056). Further differentiation 

into proximal and distal colon cancers revealed a sequential reduction in SIRT2 expression 

levels from the rectum to the proximal colon, which displayed a clear trend but did not 

reach significance (Kruskal-Wallis, p=0.072). Interestingly, SIRT2 expression in the 

normal tissue samples was also significantly different between colonic and rectal tissue 

samples in a similar pattern to that seen in tumour tissue (Mann-Whitney, p=0.025). 

 

 

Figure 5.2: Differentiation of tumour site using median SIRT2 (± 95% C.I.) relative expression. 
Patients with colon cancer had significantly lower levels of SIRT2 compared to those with 
rectal cancer (Mann-Whitney, p=0.021). 
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5.2.3.1  Effect of Neo-adjuvant therapy on SIRT relative expression 

Using the small group of rectal cancer patients (n=6) who had undergone neo-adjuvant 

therapy an attempt was made to determine if pre-operative chemo/radiotherapy had an 

effect on the expression on SIRT1-7 in the cancer and normal samples. As displayed in 

Table 5.2 there was a significant increase in the relative expression of SIRT1, SIRT3 and 

SIRT4 in the cancer tissue samples when comparing non- and neo-adjuvantly treated 

patients. This was most pronounced for SIRT3 where there was a marked increase in 

expression in tumours exposed to neo-adjuvant therapy (0.85 (±0.36) Vs 0.41 (±0.21), 

p<0.001). Within the normal samples neo-adjuvant therapy significantly increased SIRT6 

expression (0.97 (±0.49) Vs 0.54 (±0.51), p = 0.033). Moreover, neo-adjuvant therapy 

appears to reverse the differential expression of SIRT1-SIRT4, between tumour and 

normal tissue with higher relative transcriptional levels in the tumour samples (Table 5.2). 

However, none of the differences reached a significant level. For a number of reasons these 

data should be interpreted with a degree of caution. The small sample size is an obvious 

limitation as is the lack of detail regarding the specificities of the therapeutic regimens 

employed. Importantly, there are also no direct control pre-neo-adjuvant treatment samples 

from which to make comparisons therefore it is possible SIRT levels could have been 

elevated in the relevant samples prior to neo-adjuvant therapy.  
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Table 5.2: Table displaying the difference in relative expression of SIRT1-7 in each of the cancer and 
normal tissue source, further stratified according to neo-adjuvant therapy. 

  
Tumour 

 
Normal 

 Neo-
adjuvant 

 
Non neo-
adjuvant 

 

P 
(<0.05) 

Neo-
adjuvant 

Non neo-
adjuvant 

P 
(<0.05) 

SIRT1 
 0.69 (0.36)* 0.43 (0.22) 0.022 0.53 (0.68)* 0.69 (0.42) 0.845 

SIRT2 
 0.64 (0.56)* 0.42 (0.27 0.106 0.50 (0.75)* 0.54 (0.41) 0.501 

SIRT3 
 0.85 (0.40)* 0.41 (0.21) <0.001 0.80 (0.67)* 0.65 (0.43) 0.088 

SIRT4 
 0.38 (0.30)* 0.14 (0.17) 0.026 0.32 (0.96)* 0.32 (0.31) 0.960 

SIRT5 
 0.68 (0.80) 0.56 (0.19) 0.408 1.10 (1.08) 0.98 (0.63) 0.854 

SIRT6 
 0.28 (0.10) 0.23 (0.12) 0.263 0.92 (0.49) 0.54 (0.51) 0.033 

SIRT7 
 0.52 (0.39) 0.35 (0.21) 0.106 0.96 (0.66) 0.67 (0.55) 0.133 

 

All values displayed as median (IQR). N=6 in the neoadjuvant treated group 
Differences between the two groups analysed by Mann-Whitney, p<0.05 deemed significant. 
*The relationship between relative expression has been reversed with higher levels within the tumour samples compared 
with the normal (SIRT1-4). None of these reached significance (Wilcoxon signed rank test p>0.05)   
 

 

5.2.4 Association with Clinico-pathological parameters 

We attempted to delineate any relationship between sirtuin expression and commonly 

recorded patient clinico-pathological characteristics. In order to achieve this, our analysis 

was performed with SIRT1-7 expression level included as both a continuous or categorical 

variable where appropriate. Categorisation into high or low expression groups was 

achieved by dividing expression level around the median value for the respective sirtuin. 

Analysis of expression levels of SIRT4 in tumour samples revealed a significant difference 

in expression between patients with lymph node positive and negative disease (Mann-

Whitney, p=0.027), with higher SIRT4 levels apparent in patients with node positive 

disease (Figure 5.3). There were no other significant relationships between SIRT1-7 and 

any of the other parameters outlined in Table 2.2.  
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Figure 5.3: Bar chart demonstrating the significant difference in median SIRT4 expression (± 95% C.I) 
in cancer tissue differentiated by pathological nodal status (Mann-Whitney, p=0.027). 

 

5.2.5 Correlation with Survival 

The median survival of the patient group was 54.1 months (0.33-84.40). Survival analysis 

was performed using the sirtuin expression data in the categorical form as before. Analysis 

revealed that higher expression levels of SIRT4 were associated with a poorer outcome in 

terms of survival, with more deaths in this group compared with low expression levels. 

(log rank p =0.025, Figure 5.4). There was no association with survival for the remaining 

sirtuins. 
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Figure 5.4 Kaplan-Meier survival curve comparing survival with SIRT4 expression at high or low 
levels. Significantly more deaths in the  SIRT4 expression group (log rank p=0.025). 

 

5.2.6 Sirtuin Expression and Indices of Biological Ageing 

5.2.5.1 Correlation with Systemic Inflammation 

On analysis of sirtuin expression levels in the context of common indices of inflammation 

(WCC, neutrophils, CRP, albumin and mGPS) there was a significant relationship between 

CRP level and relative expression levels of SIRT2, SIRT3, SIRT4 and SIRT7 in the 

normal colorectal tissue. Whereby, patients with higher levels of CRP and hence higher 

levels of inflammation displayed lower expression levels of the respective sirtuins (Mann-

Whitney, SIRT2 p=0.025, SIRT3 p=0.012, SIRT4 p=0.021 and SIRT7 p=0.047) (Figure 

5.5A). Consistent with these findings there was an inverse relationship between CRP and 

both SIRT2 (Pearson r -.346, p=0.093) and SIRT4 (Pearson r -.323, p=0.088) (Figure 

5.5B), which did not reach significance. There was no relationship between tumour sirtuin 

expression level and indices of inflammation. 
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Figure 5.5:  (A) Bar chart indicating the significant difference in expression levels in normal colorectal 
tissue of SIRT2 (p=0.025), SIRT3 (p=0.012), SIRT4 (p=0.021) and SIRT7 (p=0.047) 
between those patients with high (>10 mg/l) and low (<10 mg/l) levels of C-reactive 
protein ± 95% C.I. (B) Scatter plot demonstrating the inverse relationship between SIRT2 
(Pearson r -.251, p=0.093), SIRT4 (Pearson r -.266, p=0.088) and C-reactive protein. 

 

5.2.5.2 Correlation with chronological and biological ageing 

No significant relationship was demonstrated between chronological age and any of the 

individual sirtuins, in either the tumour or normal tissue samples. DNA was available for 

determination of TL in twenty-nine matched samples from the original batch of thirty-two. 

As was previously reported TL was significantly shorter in tumour samples (median=0.41, 
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IQR=0.26) when compared with normal adjacent normal tissue (median=0.63, IQR=0.22) 

(Mann-Whitney, p<0.001). Thus, indicating tumour cells were more biologically aged than 

adjacent normal cells. Expression levels of all seven sirtuins were correlated with TL from 

both the cancer and normal tissue cohort. Analysis revealed a significant inverse 

relationship between TL and SIRT3 relative expression in cancer tissue (Pearson r -.353, 

p=0.047) (Figure 5.6). 

 

 

Figure 5.6: Scatter plot demonstrating the significant inverse relationship between SIRT3 relative 
expression and telomere length in colorectal cancer specimens (Pearson r -.353. p=0.047). 

 

5.3 Discussion 

5.3.1 Differential Relative Expression of SIRT1-7 in Tumour and Normal 

Tissue 

We have constructed an expression profile for all seven mammalian sirtuins in the index 

cohort of CRC patients. These results demonstrate that relative expression levels of all 

seven sirtuins were significantly attenuated in tumour tissue when compared with normal 
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adjacent tissue. These data corroborate previous studies which have implicated the sirtuins, 

in particular SIRT1 as potential tumour suppressors (Kabra et al, 2009).  

5.3.1.2 Reduced relative expression of SIRT1 in Colorectal cancer tissue 

Given the pro-apoptotic effect of SIRT1 a tumour suppressive function is not difficult to 

rationalise. The reduced expression in the colorectal tumour samples compared with 

normal tissue in this study indicate a reduced apoptotic capacity and therefore reduced 

ability to eliminate damaged cells. Aberrancy of the SIRT1-NFκB axis could explain the 

tumour suppressive effect of SIRT1. SIRT1 represses NFκB and facilitates TNF-α induced 

apoptosis, therefore attenuation of SIRT1 expression would result in the loss of this 

important pro-apoptotic pathway (Yeung et al, 2004). Loss of SIRT1 could also promote 

neoplastic transformation by a reduced capacity to maintain genomic integrity. Wang et al 

(2008) report that not only is SIRT1 expression reduced in a variety of human cancers 

compared with controls but that SIRT1 deficient mice display chromosomal aberrations 

with a reduced ability to repair DNA double strand breaks (DSBs) characterised by 

diminished γH2AX, BRCA1, RAD51 and NBS1 foci (Wang et al, 2008a).  

Consistent with our demonstration of a reduced relative expression of SIRT1 in CRC 

samples, two published studies have investigated the potential for SIRT1 to act as a tumour 

suppressor specifically in CRC. Using cultured colorectal cancer cells (HCT116 cells) 

Kabra et al (2009) report that over-expression of SIRT1 induced efficient G1 cell cycle 

arrest. Treatment of these cultured cells with a specific SIRT1 inhibitor stimulated 

proliferation, an effect not seen in SIRT1 null MEFs. A tumour xenograft assay also 

demonstrated tumour growth was increased upon inoculation of athymic nude mice with 

HCT116 cells in which the SIRT1 gene was inactivated by shRNA. Finally, colorectal 

cancer specimens and controls were stained for SIRT1 revealing high expression in normal 

tissue and benign adenomas, with 30% of tumour samples showing less intense staining 

than control samples. The authors conclude that the tumour suppressive role for SIRT1 in 

this setting results from activation of E2F1 and hyper-phosphorylation of pRb. Attenuated 

expression of SIRT1 in this scenario would allow cells to by bypass senescence in the face 

of stress leading to increased proliferation and neoplastic transformation (Kabra et al, 

2009).  
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Firestein et al (2008) have also demonstrated suppression of intestinal tumourigenesis by 

SIRT1 using a comprehensive array of methodologies.  This group generated transgenic 

mice (APCmin/+SIRT1ΔSTOP) which over-expressed SIRT1 in the setting of a β-catenin 

driven model of intestinal tumourigenesis. These animals displayed fewer tumours than 

controls and similar levels to APCmin/+ mice fed a calorie restricted diet. Ectopic induction 

of SIRT1 in a β-catenin driven model of colorectal cancer greatly reduced proliferation, 

giving some insight into a potential mechanism of tumour suppression. The authors also 

report a significant inverse correlation between nuclear SIRT1 and β-catenin in colon 

cancer specimens (Firestein et al, 2008). Analysis of the drivers of colorectal neoplasia 

used was not performed in our study group, however constitutive activation of the 

canonical Wnt/β-catenin pathway has been demonstrated in the majority of colorectal 

cancers (McDonald & Silver 2011). This means that the attenuation of SIRT1 in cancer 

cells in our group of colorectal cancer patients could in theory facilitate neoplastic 

transformation via de-repression of the Wnt/β-catenin pathway.   

Although there is compelling evidence to support SIRT1 as a tumour suppressor one might 

expect that aberrant expression of genes which promote longevity should, as a by-product 

of encouraging cell survival lead to an increase in neoplasia in populations of dividing cells 

i.e. act as a oncogene. In this regard, SIRT1 can deacetylate and therefore inhibit p53 

leading to the bypassing of apoptosis, a fundamental tumour suppressor mechanism (Luo 

et al, 2001, Vaziri et al, 2001). Consistent with this, levels of SIRT1 have been shown to 

be significantly elevated in human skin cancer (Hida et al, 2007), colon cancer (Stunkel et 

al, 2007) and prostate cancer (Huffman et al, 2007). Furthermore, SIRT1 deficient mice 

exhibit p53 hyperacetylation and increased radiation induced apoptosis (Cheng et al, 

2003). Whilst, Zhao et al (2008) report that deleted in breast cancer-1 (DBC-1) inhibits 

SIRT1 activity with concomitant increased p53 functionality which is reversed by knock-

down of DBC-1 using RNA-interference (Zhao et al, 2008). Both of these studies suggest 

SIRT1 expression may increase cancer risk by inhibiting p53.  Dysregulation of the HIC1-

SIRT1-p53 regulatory loop has also been implicated in cancer development and outcome 

with the finding that deregulation of this feedback loop equates with poor prognosis from 

lung cancer (Tseng et al, 2009).  
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5.3.1.2 Reduced relative expression of SIRT2 in colorectal cancer tissue 

The data presented here pertaining to the reduced relative expression of SIRT2 in CRC 

specimens confirms that previously reported in glioma samples and cell lines, at both the 

protein and RNA level (Hiratsuka et al, 2003). SIRT2 is implicated in tumour formation 

through its role as a mitotic checkpoint regulator via modification of α-tubulin. Attenuated 

SIRT2 expression could therefore confer on tumour cells the ability to escape mitotic 

checkpoints in the face of otherwise fatal genotoxic damage. Consistent with this ectopic 

expression of SIRT2 exerts an anti-proliferative effect on glioma cells (Inoue et al, 2007, 

Inoue et al, 2009).  Attenuated SIRT2 expression could result from the telomerase driven 

shortening of cell cycle check point time due to hyper-proliferation. As SIRT2 does not 

have time to function adequately its expression is therefore down-regulated.   

 

However, the effect of SIRT2 expression on tumour cells mirror that of SIRT1 in that 

recent evidence has also indicated that SIRT2 inhibition can induce apoptosis in HeLa and 

other cancer cells caused by the accumulation of p53. An effect caused by the p38 MAPK 

dependent degradation of p300 and subsequent MDM2 degradation (Li et al, 2011). This 

evidence implicates SIRT2 as a promoter of tumour cell survival.                                                                                                                                                                                                                                                                                     

Attenuation of SIRT2 function with specific inhibitors has shown promise as novel anti-

cancer therapies by promoting cell cycle arrest and apoptosis in prostate, pancreatic and 

lung cancer cell lines (Zhang et al, 2009).  

 

Clearly there is contrasting evidence relating to the role of SIRT2 in the neoplastic process. 

This may relate to the different model systems used as Hela cells of squamous origin will 

differ in their biology in comparison with neuronal cells such as those used in the glioma 

cell experiments described above. It is therefore difficult to extrapolate these results into 

the CRC setting used in our study as the histological origin, risk factor profile and 

molecular drivers of these tumours differs from those of CRC.  

5.3.1.3 Reduced relative expression of SIRT3 in colorectal cancer tissue 

SIRT3 relative expression was reduced in tumour tissue when compared with normal 

colorectal tissue. This finding validates those by Kim et al (2010) who also confirmed that 

SIRT3 expression was reduced in breast, testicular, glioblastoma multiforme, prostate, 

head and neck squamous cell, clear cell renal and hepatocellular cancer (Kim et al, 2010). 

The ability of SIRT3 to suppress damage induced by ROS seems key to its tumour 
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suppressor effect as isolated MEFs from SIRT3-/- mice show increased stress induced 

superoxide levels and genomic instability, augmented superoxide dismutase expression 

abrogated some of these effects (Kim et al, 2010). This intricate relationship between 

SIRT3 and oxidative stress is confirmed by a decrease in tumour development induced by 

over-expression of SIRT3 in tumour xenograft models, an effect mediated by regulation of 

HIF-1α (Bell et al, 2011). These and our data implicate SIRT3 as a tumour suppressor, an 

effect mediated through an integrated cellular response encompassing key mitochondrial 

mechanisms to suppress ROS generation and subsequent neoplasia inducing genotoxic 

damage.  

In contrast to the evidence supporting a tumour suppressor role for SIRT3 a further recent 

study has reported an over-expression of SIRT3 in oral squamous cell carcinoma tissue 

microarrays and cell lines. In vivo models showed reduced tumour burden upon transgenic 

down-regulation of SIRT3 (Alhazzazi et al, 2011). These findings indicate this particular 

tumour type requires SIRT3 for its ongoing survival.  

5.3.1.4 Reduced relative expression of SIRT4 and SIRT5 in colorectal cancer 

tissue 

All data pertaining to SIRT4 and SIRT5 relates to their role in the regulation of fuel 

utilisation, mitochondrial metabolism, control of the urea cycle and control of insulin 

secretion (Ahuja et al, 2007, Haigis & Sinclair 2010). Our demonstration of reduced 

expression in CRC tissue is therefore the first description of aberrant SIRT4 or SIRT5 

expression in cancer. The potential relationships can only be speculated upon given the 

lack of pertinent data. The reduced expression may reflect a compensatory mechanism by 

the tumour to regulate energy utilisation in the face of variability in supply depending the 

degree and functionality of neoangiogenesis. The lack of identification of functional 

relationship between SIRT4, SIRT5 and any factors know to regulate cell survival makes it 

unlikely they act in a tumour suppressive fashion, however this may change as 

enhancement of the understanding of these relationships develops.  

5.3.1.5 Reduced relative expression of SIRT6 in colorectal cancer tissue 

Demonstration of a reduced expression of SIRT6 in colorectal tumour samples compared 

with normal tissue is confirmatory of a tumour suppressive function of SIRT6. A number 

of histone and non-histone interactions explain this function:  
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1. As described previously SIRT6 has a well recognised effect on DNA repair and 

hence is regarded as maintainer of genomic integrity. This effect is mainly 

mediated through the ability of SIRT6 to modulate both BER and DSB repair 

pathways (Tennen & Chua 2011). DSB repair by homologous recombination is 

reliant on the SIRT6 dependent deacetylation of C-terminal binding protein 

interacting protein (CtIP), which is required to resect DNA at sites of damage and 

facilitate repair (Kaidi et al, 2010). Clearly loss of this function could contribute to 

genomic instability which is considered a hallmark and instigator of most human 

cancers, including colorectal (Pino & Chung 2010).  

2. SIRT6 has been shown to interact with Grap2 and cyclin-D interacting protein 

(GCIP), a helix-loop-helix protein and putative tumour suppressor under-expressed 

in a number of human tumour types, including colorectal (Ma et al, 2007). Loss of 

the positive regulatory effect of GCIP on SIRT6 could explain lower expression 

levels in CRC tissue and putative tumour suppressive effect.  

3. SIRT6 over-expression in cancer cells initiates a massive apoptotic response 

resulting in attenuated proliferation of cultured cells, but not in normal cells. This 

response is dependent on the ADP-ribosyl transferase activity of SIRT6 through an 

interaction with both p53 and p73 (Van Meter et al, 2011).  

4. SIRT6 can deacetylate H3K9 at the NF-κB promoter attenuating its transcription. 

Thus SIRT6 deficiency is associated with enhanced NF-κB downstream 

modulation of gene expression which results in enhanced resistance to apoptosis. 

This loss of a potential tumour suppressor mechanism could contribute to the 

development of neoplasia. This, however is tempered by increased levels of 

senescence which could compound this effect (Kawahara et al, 2009). 

5. The role of SIRT6 in tumour cell metabolism will be discussed in due course.  

Attenuated SIRT6 expression confirms previous work in our laboratory demonstrating a 

similar expression pattern in breast carcinoma samples compared with normal and non-

malignant samples. Furthermore, SIRT6 expression proved a superior predictor of outcome 

when compared with current clinical scoring methods such as the Nottingham prognostic 

index (Zino 2010). Aside from this there is currently a lack of data placing SIRT6 

expression in cancer in a clinical context. Further molecular dissection of the DNA repair 
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pathways involved in cancer could lead to as yet undiscovered interactions with SIRT6 and 

in particular its capability as a potential tumour suppressor.  

5.3.1.6 Reduced relative expression of SIRT7 in colorectal cancer tissue 

Predictably, studies investigating the role of SIRT7 in cancer have provided dichotomous 

results. Contrary to the currently presented findings of reduced SIRT7 expression in CRC 

tissue, SIRT7 has also been shown to be over-expressed in both breast and thyroid 

malignant tissue (de Nigris et al, 2002, Frye 2002, Ashraf et al, 2006). These observations 

could be explained by the original description of SIRT7 as a positive regulator of cell 

proliferation via its effect on Pol1 and apoptosis (Ford et al, 2006). 

However, SIRT7 knockout mouse-derived MEFs display increased viability under standard 

and stressful culture conditions. Furthermore, tumour cells from different histological 

backgrounds (P19 (teratocarcinoma), NB41A3 (neuroblastoma), C3H/MCA (transformed 

fibroblast-derived cell line) displayed lower SIRT7 expression levels compared with non-

tumour parental controls (Vakhrusheva et al, 2008a). The continued proliferation of SIRT7 

deficient cells in the face of conditions of stress could be reminiscent of the conditions 

facing a cell in the early throes of neoplastic transformation. The divergence in published 

effect of SIRT7 expression may in part be explained by p53 status (Vakhrusheva et al, 

2008a).  

 

5.3.1.7 Role of the Sirtuins in Oncogenesis   

 

It is difficult to reconcile the relationship identified between the individual sirtuins in the 

CRC group in this study. The demonstration of attenuated relative expression between the 

tumour and normal samples could indicate a mechanism whereby normal expression is 

suppressed in tumour cells. This could form part of a process conferring a survival 

advantage of tumour cells by repressing the tumour suppressive function of the sirtuins 

particularly SIRT1, SIRT2, SIRT3 and SIRT6. This is not inconceivable, as DBC-1 has 

been shown to inhibit SIRT1 activity and suppress its function (Kim et al, 2008, Zhao et 

al, 2008), thus a molecule up-regulated during the neoplastic process could exert a similar 

effect. 
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The combination of our demonstration of attenuated sirtuin expression with the studies 

mentioned above paints a clear picture of the involvement of the sirtuins in the 

development of cancer. However, the complexities of the up-stream regulation and down-

stream targets of the sirtuins make it unlikely that a single unifying mechanism of tumour 

suppression (or promotion) will be demonstrated. Rather it is more likely that the effect of 

a particular sirtuin is context and tissue type driven. Specific examples of this would 

include the implication of the tumour suppressive effect in β-catenin driven colon cancer 

and BRCA1 associated breast cancers (Firestein et al, 2008, Wang et al, 2008a).  

 

Recent evidence has, however, suggested one area where there could be a convergence of 

pathways mediated by different sirtuins, cancer cell metabolic reprogramming. Otto 

Warburg first demonstrated that cancer cells become reprogrammed to preferentially 

metabolise glucose via glycolysis irrespective of the surrounding oxygen tension. This 

altered pathway therefore metabolises glucose into lactate to provide ATP for the cellular 

energy requirements. This is termed the Warburg effect and is considered as a hallmark of 

a transformed malignant cell (Warburg 1956). Metabolic reprogramming requires 

upregulation of the enzymatic components of the glycolytic pathway such as hexokinase 

and phosphofructokinase, with concomitant upregulation of lactate dehydrogenase (LDH). 

Downregulation of the enzymes involved in the tri-carboxylic cycle (TCA) is also essential 

to allow the preferential metabolism of glucose to lactate (Bayley & Devilee 2012). Key 

recent evidence has suggested that the sirtuins, namely SIRT3 and SIRT6 may evoke a 

tumour suppressor effect by preventing the metabolic reprogramming of cancer cells. 

Finley et al (2011) have shown that SIRT3 can influence the cancer cell glycolytic 

pathway via the regulation of HIF-1, an effect mediated by mitochondrial ROS. HIF-1 is 

one of the main drivers of the metabolic switch, and this study demonstrates that loss of 

SIRT3 drives HIF-1 activation leading to a change in the gene expression profile in SIRT3 

K/O mice compared with wild type littermates. In addition, treatment with the anti-oxidant 

N-acetylcysteine abolishes this effect, confirming the dependence on ROS. Over-

expression of SIRT3 in breast cancer cell lines reduced proliferation and suppressed the 

Warburg effect. Furthermore, the authors show that SIRT3 protein expression is reduced in 

human breast cancer samples with a concomitant increase in HIF-1 and its downstream 

targets (Finley et al, 2011).  

 

Metabolic switch to aerobic glycolysis and lactate production is one of the key features 

identified in the phenotype of the SIRT6 KO mouse. Furthermore this effect is also 
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dependent on HIF-1. Although not directly tested in tumour cells in this study, SIRT6 

deficient embryonic stem cells did exhibit an increased resistance to apoptosis when 

exposed to hypoxia/hypoglycaemia (Zhong et al, 2010). However, the tumour suppressor 

effect of SIRT6 with particular reference to its regulation of tumour cell aerobic glycolysis 

has recently been characterised. In collaboration with our laboratory and through a number 

of experiments, Sebastian et al demonstrated that SIRT6 deficiency leads to tumour 

formation in non-transformed cells both in vitro and in vivo, with a concomitant increase in 

glycolysis. Furthermore, deletion of a conditional SIRT6 allele in a well characterised 

mouse model of colorectal adenomatous disease increases the size, aggressiveness and 

number of tumours. In addition, SIRT6 also plays a role in ribosome biogenesis through 

co-repression of MYC transcriptional activity. Finally, this study replicates our 

demonstration of attenuated SIRT6 expression in human cancer samples, with SIRT6 

protein expression predicting both prognosis and tumour-free survival rates (Sebastian et 

al, 2012).    

 

Thus attenuated expression of SIRT3 and SIRT6, as we have shown in CRC could provide 

a survival advantage for cancer cells by mediating the switch from oxidative to the 

preferred glycolytic metabolic pathway. Interestingly, in the correlation analysis presented 

in Table 5.1 SIRT3 and SIRT6 exhibit a strongly positive relationship in tumour tissue but 

not in normal tissue. This could indicate a common mechanism of repressed expression in 

the cancer cells thereby promoting cancer cell survival potentially through metabolic re-

programming.  

 

 

5.3.2 Sirtuin Expression & Tumour Site 

The observation of SIRT2 and SIRT4 differential expression between colon and rectal 

cancers is intriguing, particularly when the previous demonstration of altered plasma 

fetuin-A levels in patients with colon and rectal cancers are considered (Chapter 4- 

4.2.2.2). A difference in the molecular pathways involved in the pathogenesis of right and 

left sided colon including rectal cancers is well established. Right sided cancers 

characteristically display features of microsatellite instability due to alteration in mismatch 

repair genes and variation in the CpG island methylator phenotype. Whereas, left sided and 

rectal cancers display evidence of chromosomal instability and accumulation of mutations 
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in genes implicated in the adenoma-carcinoma sequence such as adenomatous polyposis 

coli (APC), p53 and deleted in colorectal carcinoma (DCC) (Iacopetta 2002, Li & Lai 

2009). Frattini et al report less k-ras and more APC gene mutations in rectal compared with 

colon cancers (Frattini et al, 2004). Consistent with this the APC/β-catenin pathway has 

been implicated in the pathogenesis of rectal cancers (Kapiteijn et al, 2001). This is 

important given the reported relationship between SIRT1 and β-catenin driven CRC 

(Firestein et al, 2008). These distinct pathways explain to some degree the differing natural 

history and behaviour of CRC. For example, right sided cancers are more sensitive to 5-

fluorouracil based chemotherapeutic agents with a concomitant improvement in survival 

with adjuvant therapy (Elsaleh et al, 2000).  

We have demonstrated that SIRT2 expression levels reduce sequentially in specimens from 

the right colon, left colon and rectum. This finding adds further validity to the growing 

body of evidence supporting the argument that CRC should in fact be classed as three 

entities; right colon, left colon and rectal cancer (Li & Lai 2009). Whether our observations 

implicate SIRT2 in either of the distinct molecular pathways contributing to colorectal 

cancer remains to be fully elucidated. Current data evaluating the sirtuins in this context 

are lacking. There are no reports of downstream regulation of any of the transcriptional 

factors involved in microsatellite instability by SIRT2. However, SIRT1 expression has 

been shown to correlate with CpG island methylator phenotype and microsatellite 

instability in human CRC, however no relationship with tumour site was identified (Nosho 

et al, 2009). Continued enhancement of the molecular profile of colonic and rectal cancers 

is particularly important when the differing treatment algorithms between the two tumour 

sites are considered. 

5.3.2.1 Effect of Neo-adjuvant Therapy 

In the current study levels of SIRT1, SIRT3 and SIRT4 were significantly increased in 

tumour tissue exposed to chemo-radiotherapy treatments compared with those not treated. 

In addition SIRT6 expression was increased within the normal samples. Perhaps of more 

relevance is the fact that the relationship between expression of SIRT1-4 in tumour and 

normal samples from patients who had undergone neo-adjuvant therapy was reversed, with 

SIRT1-4 expression higher in tumour samples. However, it should be borne in mind that 

the number of patients who had undergone neo-adjuvant therapy in the group were small 

(n=6) and as such this data should be regarded as preliminary and interpreted with caution. 
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It should also be emphasised that only patients with rectal cancer undergo neo-adjuvant 

treatment for the reasons outlined in the introduction to this chapter. 

The finding of sirtuin up-regulation in samples of both tumour and normal rectal tissue 

from patients who had undergone neo-adjuvant therapy is logical when the function, 

particularly of SIRT1 is considered. The anti-proliferative effects of chemo/radiotherapy 

are mediated through DNA damage and subsequent induction of senescence or apoptosis 

(Begg et al, 2011). SIRT1 has been shown to play a role in the stress and DNA damage 

response induced by ionizing radiation, a feature that has led investigators to conclude that 

aberrant SIRT1 expression may in part modulate tumour cell resistance to 

chemo/radiotherapy (Olmos et al, 2011). Indeed, much of the work pertaining to the in 

vivo expression of SIRT1 and the response to chemo/radiotherapy has been performed in 

the context of treatment resistant tumours. Chu et al (2005), analysed expression of SIRT1 

in cancer specimens from patients who had not responded to chemotherapeutic treatment. 

In these chemo-resistant patients SIRT1 levels as detected by western blot analysis were 

found to be significantly increased in tumour tissue after chemotherapy treatment and were 

associated with expression of the multidrug resistant molecule P-glycoprotein (Chu et al, 

2005). The small number of patients who had undergone neo-adjuvant treatment and a lack 

of clinical data related to treatment regimes prevented a more in depth analysis of 

resistance to treatment in the current CRC group. However, the finding of differential 

expression of SIRT1 could indicate a potential role of SIRT1 in the tumour cell response to 

chemotherapy.  

Data pertaining to the remainder of the sirtuins and the response to chemotherapy are 

sparse. In the Chu et al study mentioned above none of the remaining sirtuins were 

differentially expressed in response to chemotherapy (Chu et al, 2005). SIRT3 has been 

shown to translocate to the mitochondria in cells treated with etoposide or UV irradiated, 

an indication of SIRT3 involvement in the stress response (Scher et al, 2007).  Meanwhile, 

SIRT6-null mouse cells are hypersensitive to DNA damage by ionizing radiation 

(Mostoslavsky et al, 2006). These findings could in part explain the finding of augmented 

levels of SIRT3 and SIRT6 in tumour specimens from patients exposed to chemo-

radiotherapy.  

Drawing firm conclusions regarding the interaction between the sirtuins and the cellular 

response to chemo-radiotherapy is difficult using the data presented in this chapter. Clearly 
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further characterisation in larger numbers of therapy exposed tissue with relevant controls 

is required. It would also be interesting to gain further information regarding sirtuin 

expression and the pathological response to treatment as manipulation of sirtuins 

expression could therefore be used to improve tissue responsiveness to neo-adjuvant 

treatment. 

 

5.3.3 Sirtuin Expression as a Marker of Prognosis 

Correlation of our sirtuin expression profile with pathological parameters has demonstrated 

a significant association between SIRT4 and node positive disease, with SIRT4 expression 

higher in node positive disease. Furthermore, the group of patients with higher SIRT4 

expression also had poorer survival. Currently, patients who are deemed to have more 

aggressive disease determined by either nodal status or adverse pathological features such 

as those quantified by the Peterson Index are offered adjuvant chemotherapy, co-morbidity 

permitting (Petersen et al, 2002). In node positive disease adjuvant therapy results in a 

survival gain of 10-15%, however the benefits in node negative disease are much less clear 

with a survival gain of only 3.6% (Cunningham et al, 2010). We have previously 

demonstrated increased SIRT3 in node positive breast cancer patients (Ashraf et al, 2006), 

whilst Cha et al have shown SIRT1 protein expression to correlate with nodal status and 

other markers of disease severity, as well as being a significant prognostic indicator in 

gastric carcinoma (Cha et al, 2009). Attenuated SIRT2 expression identified using gene 

expression array analysis has also been proposed as a poor prognostic indicator in 

oesophago-gastric carcinoma (Peters et al, 2010). 

The relevance of the relationship between SIRT4, nodal status and survival is not entirely 

clear, as although SIRT4 has well recognised effects on metabolism and response to CR in 

mice (Haigis et al, 2006), it has not been shown to have any direct effect on the oncogenic 

process. The preponderance of deaths in the group of patients with higher SIRT4 

expression is almost certainly as a result of more aggressive disease as indicated by nodal 

status. It should be borne in mind that there were relatively few deaths in the high SIRT4 

expression group with none in the low expression group, meaning this could be an 

anomaly. Increasing the study numbers could help to fully delineate this relationship. 

Further work to fully characterise SIRT4 post-translational expression levels in cancer 

specimens will determine whether it may be used as a novel molecular marker of risk 
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stratification or predictor of outcome, which could be used to select patients who may 

benefit from adjuvant therapy, or be used as a pathological marker of severity.  

The demonstrated difference in SIRT4 expression with stage of disease could indicate that 

it is not only the level of expression but the timing of this response that is important in the 

oncogenic process. SIRT1 expression has been shown to sequentially decrease from 

normal tissue, through non-malignant adenomas to high grade malignant disease (Kabra et 

al, 2009). This could indicate that SIRT1 levels are maintained at a high level in normal 

tissue and pre-cancerous lesions to prevent malignant transformation. The exact stimulus 

for this change in expression can only be speculated upon but could be related to cellular 

stress levels and the subsequent activation of downstream damage response pathways. The 

adenoma-carcinoma multi-hit sequence of events in colorectal oncogenesis could be 

particularly important in this scenario as mutations of genes such as p53, APC and k-RAS 

could interact and alter sirtuin expression with obvious downstream effects. In this study it 

is not clear if this is the reason for the noted differential expression of SIRT4. Within the 

tumour cells SIRT4 expression could be upregulated from its suppressed state to allow to 

the tumour to continue to proliferate indicated by advanced stage. The data pertaining to 

the remainder of the sirtuins and the relationship with tumour stage i.e. similar expression 

levels throughout stages could indicate the sirtuins are important for initiation and 

development of CRC, not just at the later stages. 

 

5.3.4 Inter-Relationships between Sirtuins 

Using the generated expression profile for the individual sirtuins association analysis was 

performed to determine any significant inter-relationships. This analysis yielded multiple 

significant associations between individual sirtuins. Whilst it is difficult to speculate upon 

the exact significance of these findings a number of general conclusions can be drawn. A 

striking feature is that all the associations deemed significant by statistical analysis were of 

a positive nature, where for example as SIRT1 levels increase so do SIRT2, SIRT3 and 

SIRT4 (Table 5.1), in a highly significant relationship. Within the tumour samples the 

relationship was most prominent with SIRT2, SIRT3 and SIRT4 in whom there was a 

highly significant relationship with all but one of the other sirtuins (Table 5.1). These data 

could indicate a common regulator of sirtuin expression responsible for controlling the 

transcriptional response to appropriate stimuli. 
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Whilst some of the individual downstream regulators of individual sirtuins are mentioned 

above, common control pathways between the sirtuins have been difficult to identify, if 

indeed they do exist. The most obvious ubiquitous control mechanism for sirtuin activity is 

the dependence by the sirtuins on the metabolic intermediary NAD+ as a cofactor for 

activity. As mentioned earlier this introduces the potential for nutritional manipulation to 

alter sirtuin activity. Further layers of expressional control are conferred by some of key 

effectors of the cellular stress response, SIRT1 and SIRT2 have both been shown to be 

transcriptionally up-regulated by the acetyl transferase p300 with concomitant effects on 

p53 activity (Han et al, 2008b).  

Table 5.1 shows a clear correlative relationship between the mitochondrial sirtuins (SIRT3, 

SIRT4 and SIRT5) in the tumour samples. This could indicate commonality of 

transcriptional control and function, however no such relationship has been previously 

identified. As mentioned above SIRT3 has been recently implicated in the metabolic 

reprogramming essential for tumour cell proliferation (Finley et al, 2011). The 

demonstrated correlation between the mitochondrial sirtuins in our CRC tumour samples 

could implicate their involvement in this process. Very little is known regarding common 

pathways involving the mitochondrial sirtuins. However, Nakamura et al (2008) have 

demonstrated that intra-cellular shuttling of SIRT3 is dependent of co-expression with 

SIRT5 (Nakamura et al, 2008). This raises the possibility SIRT5 may not possess a tumour 

suppressor function per se but it is required in some capacity for SIRT3 to function, 

indicated by their demonstrated relationship in CRC tumour cells.  

A common expression mechanism between the sirtuins could be responsible for the 

positive inter-associations demonstrated, however, given the complexities of sirtuin 

regulation and functionality it seems unlikely that such a simple control mechanism would 

be utilised.  

 

5.3.5 Sirtuin Expression and Biological Age 

Our data demonstrate a link between low sirtuin expression levels and systemic 

inflammation. Sirtuin expression and control of the inflammatory cascade are intricately 

linked through the control of NF-κB transcription by SIRT1 (Yeung et al, 2004) and 

SIRT6 (Kawahara et al, 2009). This relationship has been investigated in a clinical context 
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by Singh et al who have reported that SIRT1 is implicated in the pathogenesis of colitis by 

inversely regulating NF-κB and that inducing SIRT1 activity by resveratrol abrogates the 

process in a well characterised mouse model of colitis (Singh et al, 2010). Lower SIRT1 

levels have also been reported in the lungs and macrophages of patients with COPD 

(Rajendrasozhan et al, 2008). The presence of a systemic inflammatory response in cancer 

patients confers poor survival independent of factors such as tumour stage. This systemic 

inflammation is thought to represent a host characteristic (Roxburgh & McMillan 2010). 

The association between altered sirtuin expression in normal colorectal tissue and indices 

of systemic inflammation could implicate the sirtuins in this host response. The sirtuin 

expression profile namely suppressed SIRT2, SIRT3, SIRT4 and SIRT7 could highlight a 

previously undiscovered role in the control of pro-inflammatory pathways for these genes, 

an effect which requires validation in in vivo models. 

We have observed, in the context of low expression in tumour samples a significant 

inverse relationship between SIRT3 and TL. This finding is a pertinent one given that short 

TL indicates advanced biological age of these cells, as a result of uncontrolled cell 

turnover. Higher SIRT3 expression levels in this scenario could be a response to 

dysregulated mitochondrial function evident in these biologically aged neoplastic cells. 

This association between sirtuin expression and TL lends further support to our hypothesis 

that the sirtuins link TL and hence DNA damage response with energy utilisation via the 

MTR. 

 

5.3.6 Conclusion 

The expression data presented above provides clear evidence that sirtuin expression is 

attenuated in the colorectal cancer specimens under investigation, indicating a tumour 

suppressive effect. In order to lose the tumour suppressive effect with the result of 

oncogenic transformation of a colorectal epithelial cell to a malignant cancer cell, sirtuin 

expression must be repressed to result in the attenuated expression levels we have 

demonstrated.  As with many aspects of the sirtuin story this is almost certainly a process 

with a great variety of complicating factors not only dependant on the molecular 

characteristics of tumour type but factors closely associated with the sirtuins themselves. 

Namely, the up-stream regulatory mechanisms which can control expression, the sub-
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cellular localisation and the presence or otherwise of sirtuin isoforms may complicate 

interpretation.   

Information regarding the regulation of sirtuin expression is scanty with much more known 

about their functional downstream targets. A number of mediators act at the promoter level 

to repress SIRT1 transcription. Both HIC-1 (Chen et al, 2005a) and miR34-a (Yamakuchi 

& Lowenstein 2009) exert a tumour suppressive effect via feedback loops in a p53 

dependant fashion to reduce SIRT1 transcription. This relationship could be of particular 

importance as recent evidence suggests that levels of miR34a increase relative to 

chronological age with a reciprocal attenuation in SIRT1 protein levels (Li et al, 2011b). 

Thus age related reduction in SIRT1 expression through a miR34a dependent mechanism 

would mean a loss of its tumour suppressor effect and could also partly explain the 

increasing incidence of cancer with chronological age. One potential complicating problem 

is the presence or absence of mutated p53. 

Other mechanisms of suppressed sirtuin gene expression can only be speculated upon. 

Environmental factors are known to affect sirtuin expression, the most famous example 

being the induction of sirtuin expression in particular SIRT1, SIRT3 and SIRT6 by calorie 

restriction (Cohen et al, 2004b, Kanfi et al, 2008b, Qiu et al, 2010). As mentioned 

previously calorie restriction has consistently been shown to increase lifespan in a number 

of different model systems. In addition, it has also been shown to reduce the incidence of 

cancer in higher organisms (Omodei & Fontana 2011). This could imply that the tumour 

suppressor effect of calorie restriction is in part mediated through induction of sirtuin 

expression. Conversely, a diet high in fat has been shown to induce tumour progression 

and features of metastasis in various animal models of colon cancer (Park et al, 2011, Tang 

et al, 2012). Furthermore, recent studies have indicated this may be mediated through 

induction of β-catenin targets regulating colon epithelial cells and Wnt signalling pathway 

(Liu et al, 2011, Padidar et al, 2012). Whilst sirtuin modulation has not been shown to be 

directly affected by high fat diet in animal models of cancer, suppression of SIRT1 

function has been demonstrated in atherosclerotic lesions. In animals fed a high fat diet 

p53 acetylation at K382 (the acetylation site specific to SIRT1) was significantly reduced 

indicating this dietary regimen could influence sirtuin expression (Xu et al, 2011). 

Similarly, mice fed a high fat diet exhibit attenuated hepatic SIRT3 expression and activity 

(Kendrick et al, 2011). It is enticing to think that diet could suppress sirtuin expression to 
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the extent that the tumour suppressive capacity would be lost in a tissue specific context 

contributing to the oncogenic process.  

It is clear there is a dearth of knowledge regarding the controlling mechanisms of sirtuin 

expression. Other complicating factors which could influence not only sirtuin expression 

but activity are;  

• Epigenetic phenomena such as silencing of the respective sirtuin genes, could alter 

their expression through chromatin remodelling. As yet there are no reports in the 

literature either in vitro or in vivo. 

• Post-translational modification such as phosphorylation at specific residues within 

the SIRT1 enzyme can alter activity. Indeed, cyclinB/Cdk1 has been identified as a 

key regulator of SIRT1 phosphorylation (Sasaki et al, 2008). In addition, a recent 

key study by Back et al (2011), demonstrated that phosphorylation of SIRT1 by 

mTOR promotes prematurely senescent squamous cell carcinoma cell survival. 

This effect was seen in the absence of functional p53 and could re-constitute the 

scenario of human in vivo cancer recurrence where tumour cells re-enter the cell 

cycle causing recurrent disease (Back et al, 2011).      

The effect of the sub-cellular localisation of the sirtuins on their function and potential 

tumour suppressor role has not been established. The basic pattern of sub-cellular 

localisation is well established, however evidence is emerging that there are some caveats 

to this picture. Byles et al (2010) have demonstrated that SIRT1, which was previously 

thought to be predominantly nuclear in location, is present in the cytoplasm of DU-145 

(prostate cancer) cells. This occurs as result of increased protein stability and is regulated 

by elevated mitotic activity (Byles et al, 2010). Whilst, SIRT2 has previously been shown 

to shuttle between the nucleus and cytoplasm depending on the stage of the cell cycle 

(North & Verdin 2007a). These studies demonstrate the dynamic nature of sirtuin sub-

cellular localisation, it seems likely that the localisation is dependent on tissue type and 

prevailing cellular conditions. This phenomenon has already been demonstrated with 

regards to SIRT3 which has been shown to shuttle from the nucleus to mitochondria on 

sensing of cellular stress (Scher et al, 2007). 

Clearly there is ambiguity in the literature as to whether the sirtuins, in particularly SIRT1 

are tumour suppressive or oncogenic. This is reflected in studies which have attempted to 
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pharmacologically manipulate sirtuin activity to alter the oncogenic process. The sirtuin 

modulator which has garnered the most publicity is the polyphenol resveratrol. Whilst 

several anti-cancer properties have been related to resveratrol there is considerable 

controversy in the scientific literature regarding the SIRT1 dependency of its mechanism 

of action. Claims and counter claims argue that SIRT1 is activated downstream of AMPK 

which is initially activated by resveratrol due to its ability to inhibit phosphodiesterases 

thereby increasing cAMP availability. The overall effect is an increase in NAD+ levels 

leading to SIRT1 activation (Chung 2012, Park et al, 2012). Nonetheless, trials are 

underway to determine whether treatment of patients with resveratrol can recapitulate the 

chemo-preventative effects seen in vitro and in murine models. In this regard resveratrol 

has been shown to be safe in the quantity required to produce a biological effect in vivo. 

Furthermore, resveratrol also caused a modest reduction in cell proliferation in CRC tissue 

samples. Unfortunately this study did not examine any of the purported downstream targets 

of resveratrol (Patel et al, 2010). Pharmaceutical companies have sought to utilise the 

beneficial effects of SIRT1 activation by developing activating compounds (STACs). A 

number of these have been developed, one such compound, ST1720 has been shown to 

reduce the proliferation of multiple myeloma cells in vitro via SIRT1 dependent apoptosis 

(Chauhan et al, 2011).  

Whilst our data support the notion that activation or upregulation of SIRT1 could produce 

beneficial effects, it is not clear what effect this may have on the rest of the sirtuins. The 

demonstration of correlation between sirtuin expression patterns could theoretically 

indicate that activation of SIRT1 may influence the expression of the remaining sirtuins. 

However, despite a number of studies investigating the effect of pharmacological SIRT1 

activation none have examined the effect of activation of any of the other sirtuins or what 

the effect of SIRT1 activation has on downstream SIRT2-7 levels. As indicated there are 

clear mechanistic pathways by which the remainder of the sirtuins affect the oncogenic 

process with particularly strong evidence supporting the tumour suppressive effect of 

SIRT3 and SIRT6. It may be pharmacological augmentation of SIRT responsiveness could 

alter the oncogenic process at various stages. For example increasing SIRT6 expression 

specifically in colorectal adenomas could promote genetic stability and prevent onward 

progression through the adenoma-carcinoma sequence.  

In summary, we have created a unique expression profile for SIRT1-7 in colorectal cancer 

patients. This has provided clear evidence that expression of all seven sirtuins is reduced in 
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cancer specimens when compared with normal tissue. These findings support the argument 

that sirtuins act as tumour suppressors in colorectal cancer. However, the in vivo role of 

the sirtuins in oncogenesis is likely to be complex. Further work is required to fully 

delineate whether there is molecular ‘cross-talk’ between individual sirtuins and whether 

their role will be dependent on tumour type and distinct molecular pathways driving 

oncogenesis. Our analysis has highlighted novel associations linking sirtuin expression 

with factors indicative of biological ageing namely inflammation and TL. Furthermore we 

have utilised sirtuin expression to differentiate between tumour site and pathologically 

more aggressive disease. Thus study providing clear evidence that targeting of individual 

sirtuins could prove useful in the quest to identify novel chemotherapeutic agents. 
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CHAPTER 6: GENERAL DISCUSSION 

The data presented in this thesis supports the original hypothesis of biological ageing 

contributing to the pathogenesis of CRC in the study population. This relationship has been 

demonstrated by aberrancy of two molecular pathways shown to influence biological 

ageing namely accelerated telomere attrition and altered sirtuin expression.   

6.1 Miles on the Clock Hypothesis 

The paradigm whereby altered telomere biology could lead to the development of cancer is 

intuitive, with the multi-factorial determination of TL and rate of attrition a key concept. 

Whilst there was no significant relationship between socio-economic status and TL in the 

group under investigation in this study, the well documented pro-inflammatory and 

oxidative state found in this population is likely to reflect chronic exposure to a variety of 

environmental and lifestyle stressors, for example cigarette smoke and poor diet. The level 

of socio-economic deprivation in the study population may of course confound results by 

not giving an accurate representation of the population in general but it does provide an 

ideal environment to test the proposed hypothesis. A pro-inflammatory and oxidative state 

could impact on telomere attrition rates in a number of ways. Clearly increased 

inflammatory cell turnover would lead to progressive telomere attrition in the 

haemopoietic compartment. This progressive telomere attrition could then lead to a state of 

crisis and senescence with subsequent release of pro-inflammatory mediators 

compounding the pro-inflammatory state. Low socio-economic status is typified by a poor 

quality, high fat content and sugar rich diet. This has been shown to result in enhanced 

production of ROS resulting in a pro-oxidative state. As described in depth previously 

ROS are directly toxic to telomeric DNA resulting in acceleration of telomere attrition. 

This pro-inflammatory state and cumulative oxidative burden is therefore thought to be key 

to the acceleration in biological ageing and increased cancer risk in the current study 

group. Indeed socio-economic deprivation such as that seen in the cancer patients under 

investigation has recently been associated with accelerated telomere attrition (Shiels et al, 

2011). This state in which patients display evidence of biological ageing in the form of 

progressive telomere attrition has been equated colloquially with the concept of a car 

running up miles on the clock, hence this has been termed the ‘miles on the clock’ 

hypothesis. Generalised telomere dysfunction could then impact on cancer risk and 
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progression as outlined previously by promoting chromosomal instability and altering the 

peri-tumoral milieu via cellular senescence.  

 

6.2 MTR Hypothesis 

As described earlier the sirtuins provide an intuitive link between the energy dependent 

sensing of DNA damage and initiating the optimal response of the cell to either repair the 

damage or prevent replication of potential mutations by facilitating either apoptosis or 

senescence. Optimal responsiveness of the MTR trinity would require normal functioning 

of each of the triumvirate as well as fine control of sirtuin expression. Alteration in any of 

these components could lead to knock-on effects on the remainder of the pathway. It is 

appealing to speculate that aberrancy of this pathway could play a role in biological ageing 

and the development of some of the pathological processes associated with it, particularly 

cancer. 

The results presented in this thesis provide clear and compelling evidence that accelerated 

telomere attrition and attenuated sirtuin expression are implicated in the pathogenesis of 

CRC. Aberrancy of these pathways supports the hypothesis that dysregulation of the MTR 

could play a role in CRC development. Interplay between elements of the MTR is evident 

with the identified association between SIRT3 expression and tumour tissue TL. As 

mentioned earlier elevated SIRT3 expression could be a response to dysregulated 

mitochondrial function in neoplastic cells or could indicate a novel functional relationship 

between SIRT3 and telomere biology required for uncontrolled cellular proliferation. Such 

a relationship has recently been identified in hepatocellular carcinoma where SIRT1 was 

shown to be involved in telomere maintenance (Chen et al, 2011).  

 

6.3 Clinical Translation 

Utilisation of some of the aspects of biological ageing investigated in this thesis could 

prove useful in the continued quest to treat cancer of different histological subtypes and at 

various interventional stages. 
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6.3.1 Epidemiology  

The concept of biological ageing as a risk factor for cancer is an attractive proposition as it 

opens the possibility of identifying a window of opportunity where through lifestyle 

modification the process of biological ageing could be retarded thereby reducing cancer 

risk. Possibilities to achieve this could be through further rationalisation of the 

determinants of TL or identification of new contributing factors, such as the potential 

interaction with fetuin-A identified in this study. Ornish et al (2008), report that 

comprehensive lifestyle modifications can increase telomere maintenance mechanisms in 

the white cells of patients with prostate cancer (Ornish et al, 2008). This study provides 

preliminary evidence that lifestyle modification could alter the process of biological 

ageing.  Further support for the ability of lifestyle modification to alter the course of the 

bio-ageing process comes from a recent study by Du et al (2012). The authors report a 

modestly significant association between self-reported activity levels and TL, with 

increasing levels of activity associate with longer TL after adjustment for confounding 

factors such as age and BMI (Du et al, 2012). If confirmed in larger population based 

randomised controlled trials these data would support the more intensive adoption of 

public health measures to improve cancer risk through lifestyle modification.      

6.3.2 Diagnosis & Prognosis of Cancer 

This study has demonstrated an association between aspects of biological ageing (PBL 

telomere length and SIRT4 expression) and pathologically more aggressive disease. 

Stratifying patients using molecular markers of severity could allow the identification of 

patients who may benefit from a more aggressive management strategy which could in turn 

facilitate overall improvements in outcome. Clearly more work is required to validate these 

molecular markers in large numbers of patients and potentially in different types of cancer. 

The ability to differentiate between anatomical tumour sites in this group of CRC patients 

using factors involved in biological ageing (fetuin-A, SIRT2 and SIRT4) supports further 

work to improve the molecular characterisation of these tumours. These differences could 

be exploited to propose different management strategies for CRC depending not only on 

anatomical tumour site as is currently the case but also in conjunction with molecular 

differences.   
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6.3.3 Therapeutic targets  

One of the defining aims of this study is to provide further information of the expression of 

ageing related genes in CRC with the aim of identifying potential targets for intervention. 

The demonstration of attenuated sirtuin expression in CRC raises the possibility that 

enhancing sirtuin signalling could provide a tumour suppressor effect. The difficulty with 

this lies in the fact that depending on the cancer type and model used sirtuin expression has 

opposing effects. It is likely, therefore, that a ‘one size fits all’ approach to developing 

agents which could alter sirtuin activity will not yield the desired results. Hence an 

approach using the concept of personalised chemotherapy where cancers are targeted on an 

individual basis depending on the genetic and epigenetic profile could prove useful. In the 

case of the sirtuins determination of p53 status, acetylation status, molecular driver of the 

cancer e.g. β-catenin or the recognition of polymorphic forms of the sirtuin genes could 

dramatically affect the activity of proposed agents. Further refinement may also be 

possible using techniques such as RNA interference to target and deliver specific genes. 

The era of personalised chemotherapy in clinical practice is in its infancy, however KRAS 

mutation testing and subsequent intervention using anti-EGFR monoclonal antibodies is 

now a management option in metastatic CRC (Van Schaeybroeck et al, 2011). The finding 

of increased sirtuin expression in patients who had undergone neo-adjuvant treatment 

indicates a potential role for the sirtuins in the response to chemo-radiotherapy. It may 

therefore be possible to exploit this to allow more efficient delivery and hence improve 

response to current treatment regimes.  

 

6.4 Limitations & Future Work 

A constant theme through the telomere and sirtuin components of this thesis has been the 

contribution played by p53 to both of these pathways. Therefore, determination of the p53 

status of the tumours and also patient p53 genotyping would allow a more comprehensive 

approach to elucidating the interplay between the biological aging and cancer pathways. 

Similarly, relating SIRT1 expression to the numerous other non-histone proteins such as 

FOXO, NF-κB or Bcl, over which it has been shown to influence would provide greater 

understanding of the mechanistic pathways involved in the cancer model used in this 

investigation.  
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With regards to the investigation into the contribution of telomere attrition in CRC the 

main area in which could be improved is to have a completely matched group with blood 

cells and tumour tissue from the same patient. Increasing the overall numbers would also 

enhance the capability to tease out relationships between TL and patient sub-groups which 

were not identified during analysis of the current data. Identifying further clinically 

important relationships could improve the therapeutic potential of telomere biology in the 

cancer setting. It may also be possible that the methods used to delineate any relationship 

between TL and oxidant status were not sensitive enough. Methods to detect fine changes 

in ROS or their intermediaries at the sub-cellular level may provide a more accurate 

representation of the flux in oxidative potential and the effect on TL.  

To gain a more accurate representation of sirtuin expression incorporation of a non-

malignant group from a patient source with no history of cancer with which to compare 

sirtuin relative expression levels from the cancer and adjacent normal tissue would have 

been useful. This further comparison would have negated any potential effect of a field 

change in sirtuin gene expression which extended from the peri-tumoural area to adjacent 

normal tissue. Incorporation of such a group was however, not possible through the local 

Biobank repository for ethical reasons. Further improvements in the overall picture of 

sirtuin expression would be to quantify protein expression using western blot analysis. 

Comparing the current mRNA expression profile with the protein expression profile could 

also determine the presence and significance of post-translational modification. In addition, 

immunohistochemical staining of tissue arrays could address the issue of sub-cellular 

localisation of the sirtuins in cancer cells. As mentioned in the relevant discussion section 

pre-neoadjuvant treatment biopsies would have allowed a more accurate conclusion to be 

drawn as to the effect on sirtuin expression by this treatment. This could be complemented 

by in vitro analysis of cultured cells exposed the chemo-radiation. Recent evidence has 

also suggested that variation in SIRT1 genotype may have an effect on its clinical effect 

(Zillikens et al, 2009). Whilst this was not considered in this thesis a more refined picture 

of sirtuin expression may be possible by examining the effect of sirtuin genotype in cancer 

patients. 
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6.5 Final Conclusion 

The results reported in this thesis support the initial hypothesis of biological ageing playing 

a role in the pathogenesis of CRC in our patient group. We have observed that patients 

with CRC have significantly shorter telomeres than control subjects, congruent with 

accelerated biological ageing in the pathogenesis of CRC. These observations are in 

keeping with the hypothesis of telomere attrition predisposing to disease. Furthermore, 

patients with shorter telomeres display evidence of systemic inflammation and 

pathologically more advanced disease. An imbalance in redox control mechanisms and 

calcium homeostasis may be a contributing factor to telomere dynamics in our group of 

patients. Further refinement of the factors determining TL and subsequent manipulation 

could alter the risk profile of CRC. 

Furthermore, we have created a unique expression profile for the ageing associated genes 

SIRT1-7 in CRC patients. We have provided clear evidence that expression of all seven 

sirtuins is attenuated in cancer specimens when compared with normal tissue, lending 

further support to the argument that sirtuins act as tumour suppressors in colorectal cancer. 

However, the in vivo role of the sirtuins in oncogenesis is likely to be complex with 

molecular ‘cross-talk’ between individual sirtuins, tumour type and the molecular profile 

of an individual tumour all important factors in determining the overall effect of the 

individual sirtuins. This analysis has highlighted novel associations linking sirtuin 

expression with factors indicative of biological ageing namely inflammation and TL. 

Furthermore sirtuin expression proved a useful molecular mechanism to differentiate 

between tumour site and pathologically more aggressive disease. This study provides clear 

evidence that targeting of individual sirtuins could prove useful in the quest to identify 

novel chemotherapeutic agents. 
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Appendix 1 
 
β-actin Fwd -  GGTCACCCACACTGTGCCCAT 
β-actin Rev – GGATGCCACAGGACTCCATGC 
 
 
Gene Fwd Primer 5’-3’ Rev Primer 3’-5’ TaqmanTM probe 

SIRT1 TAGAGCCTCACATGCAAGCTCTA GCCAATCATAAGATGTTGCTGAAC ACTCCAAGGCCACGGATAGGTCCATATACTT 

SIRT2 CCTCGCCTGCTCATCAACA TCCTCCGAGGCCCATAATC TGGCCAGTCGGACCCTTTCCTG 

SIRT3 CATTCGGGCTGACGTGATG AACCACATGCAGCAAGAACCT TGCACCGGCGTTGTGAAGCC 

SIRT7 CGTCCGGAACGCCAAATAC GACGCTGCCGTGCTGATT TGGTCGTCTACACAGGC 
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