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Abstra
tThis work summarises a 
omputational framework for dealing with dynami
multi-body fri
tional 
onta
t problems. It is in fa
t a detailed a

ount of an instan
eof the Conta
t Dynami
s method by Moreau and Jean. Hen
e the title. Multi-bodysystems with 
onta
t 
onstraints are 
ommon. Some of them, su
h as ma
hines orarrangements of parti
ulate media, need to be predi
table. Predi
tions 
orrespondto approximate solutions of mathemati
al models des
ribing intera
tions withinsu
h systems. The models are implemented as 
omputational algorithms.The main 
ontributions of the author are in an improved time integration methodfor rigid rotations, and in a robust Newton s
heme for solving the fri
tional 
onta
tproblem. A simple and e�
ient way of integrating rigid rotations is presented. Thealgorithm is stable, se
ond order a

urate, and in its expli
it version involves eval-uation of only two exponential maps per time step. The semi-expli
it version of theproposed s
heme improves upon the long term stability, while it retains the expli
-itness in the for
e evaluation. The algebrai
 stru
ture of both s
hemes makes themsuitable for the analysis of 
onstrained multi-body systems. The expli
it algorithmis spe
i�
ally aimed at the analysis involving small in
remental rotations, where itsmodest 
omputational 
ost be
omes the major advantage. The semi-expli
it s
hemenaturally broadens the s
ope of possible appli
ations. The semismooth Newton ap-proa
h is adopted in the 
ontext of the fri
tional 
onta
t between three-dimensionalpseudo-rigid bodies, proposed by Cohen and Mun
aster. The Signorini-Coulombproblem is formulated a

ording to the formalism of Conta
t Dynami
s. Hybrid lin-earisation, parameter s
aling and line sear
h te
hniques are 
ombined as the global
onvergen
e enhan
ements of the Newton algorithm. Quasi-stati
 simulations ofdry masonry assemblies exemplify performan
e of the presented framework.
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CHAPTER 1Introdu
tionI on
e wat
hed an interview with the Dut
h 
omputer s
ientist Edsger WybeDijkstra. In the �ow of the interview, he told a story about a le
ture he gave ata software 
ompany somewhere in Brussels. The le
ture was about writing 
orre
t
ode, and it turned out to be a 
omplete failure. A

ording to Dijkstra's judgement,the programmers were not interested in learning how to 
ode, be
ause they �derivedtheir intelle
tual ex
itement from the fa
t that they didn't quite know what theywere doing�. At that time I was working at a software 
ompany and I 
ould indeedobserve this type of ex
itement in my own manner of work. Sometime later I starteddo
toral studies in Glasgow. In fa
t I was not that mu
h interested in the topi
itself, but rather I wanted to �nd a way of turning the �intelle
tual ex
itement� intosomething more useful. This thesis gives a snapshot of an ongoing e�ort towardsrealisation of this aim. It would be far fet
hed to 
laim, that the state of mindmentioned by Dijkstra did not a

ompany me o

asionally in the 
ourse of thiswork. Nevertheless, upon re�e
tion I have to admit that maybe it is rather a kindof balan
e that should be sought.Style. This is the only 
hapter written in the �rst person. The remaining onesuse a mixture of the passive voi
e and the �royal we�, whi
h I have found most
onvenient and versatile. I did not manage to avoid expressions like: �It is easyto see ...�, or �It is not di�
ult ...�, or �Clearly ... � et
. This has to be broughtdown to my linguisti
 limitations, rather than mathemati
al skills. I did seriously
onsider removing them all after �nishing writing, but then I gave up, foreseeingtoo mu
h trouble. I trust the reader will a

ept my apologies here. I did makean e�ort to deliver some mathemati
al rigour, more for my own use and as anexer
ise, rather than be
ause it was unavoidable. For this reason, I suppose, amathemati
ian would �nd this text not only overblown but also la
king pre
ision,while an engineer 
ould �nd it at times formidable. I do tend to in
lude lengthyderivations whenever ne
essary, as I would like them to serve me (or someone else)as a referen
e at a later point. At the end of some 
hapters I have in
luded 
on
iseliterature reviews. This might seem like a strange 
hoi
e at �rst. I re
kon it isnot so, as it seems more natural to be
ome 
urious of related developments, afterhaving some taste of the main body of a 
hapter. Also for me it was often easierto summarise additional referen
es, after the foregoing material had taken its �nalshape.Topi
. This work outlines a 
omputational method aimed at tra
ing motionof bodies 
oming into 
onta
t with ea
h other. As su
h, the motion of 
onta
tingbodies is among the most 
ommon physi
al phenomena. By merely looking around,one 
an easily register a number of �multi-body systems with 
onta
t 
onstraints�.Almost every human a
tivity involves some kind of �
onta
t dynami
s�. For exam-ple, typing this very text. Of 
ourse, most of every day a
tions do not require to beabstra
ted in the language of mathemati
s in order to be exe
uted. But in general,there is a need for su
h abstra
tion. It is both pra
ti
al (driven by industry) andpurely 
ognitive. Several years ago, when reviewing literature related to the issues7



1. INTRODUCTION 8of 
onta
t, my attention was drawn to the works of Moreau [156℄ and Jean [102℄,des
ribing basi
s of their Conta
t Dynami
s method (CD). I did not understandmu
h of those papers at �rst. Over time, I have �lled most (but not all) of the gapsin my understanding. In the following I have des
ribed a parti
ular instan
e of aCD algorithm. I preferred not to repeat dully those aspe
ts of the mathemati
alformulation, whi
h are still beyond my grasp (e.g. measure theory). Hen
e, I tendto resort to dis
retisation. I do not deliberate mu
h on the 
onvergen
e of thedis
rete s
heme. Relevant referen
es are mentioned in the due time. My intentionis to deliver a self-
ontained summary for a programmer interested in getting intogrips with CD.Basi
s. It will be useful to introdu
e some basi
 notions here. It 
an be bestdone by drawing a �gure. Let us have a look
ui

q
i

Uα

Rα

There are four bodies in the �gure. Pla
ement of ea
h point of every body is deter-mined by the 
on�guration qi. Velo
ity of ea
h point of every body is determinedby the velo
ity ui. If the time history of velo
ity is known, the 
on�guration 
anbe 
omputed as(1.0.1) q (t) = q (0) +

∫ t

0

F (u (t)) dtwhere F is a general fun
tion, usually an identity, F (x) = x. The velo
ity isdetermined by integrating Newton's law(1.0.2) p (t) = p (0) +

∫ t

0

f (q,u, t) dt(1.0.3) u (t) = G (p (t))where p is the momentum, G is another general fun
tion, and f is the resultantfor
e. While integrating the motion of bodies, one keeps tra
k of a number of lo
al
oordinate systems. These will be 
alled lo
al frames. There are four of them inthe �gure. Ea
h lo
al frame is related to a pair of points, belonging to two distin
tbodies. An observer embedded in a lo
al frame 
al
ulates the lo
al relative velo
ity
U of one of the points, viewed from the perspe
tive of the other point. If ne
essary,



1. INTRODUCTION 9the observer applies some for
e R1. An a
tion of ea
h observer 
an be impli
itlydes
ribed as(1.0.4) C (U,R) = 0A
tions of observers are lo
al. They only know how to rea
t to a 
hange of velo
ity
U at the point of their residen
e. At the same time, as many of them a
t 
olle
tively,the e�e
t of their work in�uen
es one another. A global observer 
an see thishappening and is able to transform the relation(1.0.5) u (t) = G

(

p (0) +

∫ t

0

f (t) dt

)into a formula des
ribing what will be 
alled lo
al dynami
s(1.0.6) U = WR + B

W and B determine a linear transformation between the lo
al for
es R and velo
-ities U for every instant of time. The global observer 
an then for
e his lo
al peersto a
t in harmony by stating(1.0.7) C (WR + B,R) = 0In a sense, there is no more to it. In the above, when using symbols q, u, U and
R without indi
es, 
olle
tions of relevant variables were meant.Map. The remaining 
hapters de
ompose the above �gure into more or lessindependent modules. An experien
ed reader should be able to skip uninterestingbits, and move right to the one of his or her interest. In order to make this easier,I have summarised below all, but the last2, of the forth
oming 
hapters.Chapter 2: ShapeThe 
lass of shapes 
onsidered in the implementation is des
ribed. In short,these are arbitrary unions of 
onvex polyhedrons. These in
lude �nite-elementlike meshes, et
. A 
lass of surfa
e elements is distinguished. These are adja
entto the surfa
e of dis
retised bodies and will be used later for 
onta
t dete
tion.Chapter 3: Kinemati
sThis 
hapter deals with formula (1.0.1). It 
ontains quite a detailed a

ount ofwhat q and u are in the 
ase of rigid and so 
alled pseudo-rigid bodies. Notionsof the 
on�guration and tangent spa
es are introdu
ed, to whi
h respe
tively qand u belong. Issues of parametrisation of q by a redu
ed number of variables aredis
ussed for rigid bodies. Some basi
s of relevant tensor 
al
ulus are given.Chapter 4: Dynami
sFormulae (1.0.2) and (1.0.3) are a fo
us of attention here. The 
lassi
al Newtonianbalan
e prin
iples are worked out for rigid and pseudo-rigid bodies. The matrixnotation given at the end of the 
hapter will be of use for a reader interested in theimplementation.1Let us is temporarily abandon the traditional notion of a passive observer.2Is there a point in summarising 
on
lusions?



1. INTRODUCTION 10Chapter 5: Time steppingTime integration, that is a numeri
al equivalent of what happens in (1.0.1) and(1.0.2), is the �work horse� of the 
omplete s
heme. My intention here was to usethe simplest possible methods. For dynami
s, expli
it se
ond order s
hemes areemployed (equivalent to the 
entral di�eren
e method). Their a

ura
y redu
esto the �rst order in the presen
e of impa
ts. First order impli
it Euler s
heme isutilised for the quasi-stati
 
ase.Chapter 6: Lo
al framesIn this 
hapter the notion of the lo
al frame is given a pre
ise de�nition. The mainpoint here is in introdu
tion of a linear operator H, a role of whi
h is to transform
u into U. That is U = Hu. Spe
i�
 forms of H for rigid and pseudo-rigid bodiesare given. Chapter 7: Lo
al dynami
sThe notion of the lo
al frame and theHmapping are employed in order to derive theequations of lo
al dynami
s (1.0.6). Some links with 
onvexity and 
onjuga
y areexplained. As a byprodu
t, the numeri
al integration in time is given a wrappingof un
onstrained 
onvex minimisation. Also, some remarks about the stru
ture ofthe W operator are in
luded. Chapter 8: JointsA joint is pi
tured in the top-right part of the �gure given few pages earlier. Theslender body 
an only rotate around this point. Implementation of this and otherkinds of joints is des
ribed in this 
hapter. Spe
i�
 a
tions of the lo
al observer inform (1.0.4) are given. In other words, this 
hapter is about the equality 
onstraints.Chapter 9: Conta
t pointsThis 
hapter summarises algorithms, aimed at �nding 
andidate 
onta
t points.Contrary to joints, these are usually not known in advan
e. A geometri
al sear
hneeds to be done to identify pairs of points, where lo
al frames are later pla
ed.E�
ient methods for performing this task are given. One of the 
hara
teristi
features is the derivation of lo
al frames from the volumetri
 interse
tions betweenpairs of surfa
e elements. This is of use in the presen
e of nonsmooth geometry.Chapter 10: The fri
tional 
onta
t problemOn
e the lo
al frames related to 
onta
ts have been found, the fri
tional 
onta
tproblem 
an be de�ned. This is done in a standard manner, that is in stages.The fri
tionless non-penetration problem is dis
ussed at greatest length. Then thefri
tion problem, not 
oupled with non-penetration is summarised. The fri
tional
onta
t problem is given and di�
ulties related to its solution pointed out. In themeantime, the equality form (1.0.4) of the 
onta
t 
onstraints is worked out. Whenappli
able, analogies with 
onstrained minimisation are mentioned, although in theend only the root �nding problem (1.0.7) prevails.



1. INTRODUCTION 11Chapter 11: SolversNumeri
al methods for solving problem (1.0.7) are dis
ussed. The 
lassi
al �xed-point iteration is des
ribed, together with a semi-smooth Newton method and ahybrid method based on heuristi
 improvements. The blo
k Gauss-Seidel s
heme,traditionally used in CD, is also summarised.Chapter 12: ImplementationIn this brief 
hapter, the foregoing developments are summarised in two algorithms.One for dynami
s and one for quasi-stati
s.Chapter 13: ExamplesA number of examples is given here. This in
lude integration of rigid rotations,
onta
t dete
tion and Newton solvers. Several ben
hmarks are in
luded, 
omparingthe results with previously do
umented �gures.Contributions. The biggest gain from this work is of 
ourse personal. Itwas undoubtedly a privilege to have several years for dis
overing and improving amethod of work that suits me best. One the other hand, I should mention somepapers as these seem to be the agreed upon measure of performan
e.My �rst journal paper [123℄ des
ribed a Newton method for solving (1.0.7).The main s
heme was developed earlier by Hüeber et al. [96℄. My 
ontribution wasonly in translating that work into the 
ontext of CD and developing some heuristi
improvements (
f. Se
tion 11.2). The Signorini-Coulomb problem is formulateda

ording to the formalism of Conta
t Dynami
s. Hybrid linearisation, parameters
aling and line sear
h te
hniques are 
ombined as the global 
onvergen
e enhan
e-ments of the Newton algorithm. Quasi-stati
 simulations of dry masonry assembliesexemplify performan
e of the presented framework.The se
ond paper [124℄ des
ribed a new time integration s
heme for rigid rota-tions (
f. Se
tion 5.2). It arose as a byprodu
t of an intera
tion with our industrialpartner. Papers by Krysl et al. [126, 163, 128, 127℄ were of great help and servedas inspiration. The s
heme given in Se
tion 5.2 is simple and e�
ient. It is also sta-ble, se
ond order a

urate, and in its expli
it version involves evaluation of only twoexponential maps per time step. The semi-expli
it version of the proposed s
hemeimproves upon the long term stability, while it retains the expli
itness in the for
eevaluation. The algebrai
 stru
ture of both s
hemes makes them suitable for theanalysis of 
onstrained multi-body systems. The expli
it algorithm is spe
i�
allyaimed at the analysis involving small in
remental rotations, where its modest 
om-putational 
ost be
omes the major advantage. The semi-expli
it s
heme naturallybroadens the s
ope of possible appli
ations.During the �rst year of studies I was still biased by my programming ba
k-ground. It was easier to work on 
onta
t dete
tion, rather than study CD. Thework presented in Chapter 9 is quite laborious, although it does not seem to beadding mu
h to the saturated �eld of geometri
al algorithms. Some of the resultspresented there I have improved only re
ently, while writing up. More time isneeded to test them thoroughly.



CHAPTER 2ShapeShapes are approximated by volumetri
 meshes identi
al with those used in the�nite element analysis1. This serves a double purpose. Within the adopted, simpli-�ed representation of motion, mesh density 
orresponds to the a

ura
y of 
onta
tresolution. At the same time, an extension to the �nite element 
ase is made easier.Nevertheless, the extension is not pursued within this work. The shape of a bodyis then represented by a 
onvex de
omposition (dis
retisation) into hexahedrons,wedges, pyramids and tetrahedrons (Figure 2.0.1). Those are 
omposed of nodes,edges and fa
es in a manner suitable for identi�
ation of topologi
al adja
en
y re-lations. The volumetri
 
onvex 
ells are 
alled elements. All of those issues arerather elementary and need no further explanation. The only notion spe
i�
 tothe 
urrent 
ontext 
orresponds to the set of surfa
e elements. The fa
es of thoseelements have nonempty interse
tions with the dis
retised surfa
e of a body. Figure2.0.2 illustrates the idea.
Figure 2.0.1. Hexahedron, wedge, pyramid and tetrahedron. Ba-si
 elements used for the dis
retisation of a body shape.
Figure 2.0.2. Torus shaped body and a planar sli
e of its dis-
retisation. The surfa
e elements have been darkened.The surfa
e elements will play a role in the 
onta
t dete
tion pro
ess des
ribedin Chapter 9. As far as the present framework is 
on
erned, the remaining elementsare only used to 
al
ulate 
hara
teristi
s of mass distribution. It is relevant to point1This is assumed only to simplify the presentation. In the a
tual implementation, apart fromthe mesh representation, arbitrary unions of 
onvex shapes are admitted.12



2. SHAPE 13out that the 
onvexity of elements is a ne
essary 
ondition for the 
orre
tness ofsome of the subsequently employed algorithms. Within the 
lass of motions 
onsid-ered here, 
onvexity is naturally preserved (Chapter 3). An eventual generalisationadmitting a greater degree of deformability ought to a

ount for the possibilityof severe element distortion. This 
an be for example a
hieved, by employing anex
lusively tetrahedral mesh within the set of the surfa
e elements.



CHAPTER 3Kinemati
sPla
ement of a three-dimensional body 
an be identi�ed with a subset of theEu
lidean point spa
e E3. The open nonempty set o

upied by the body at time t0is denoted by B0. The 
losure of B0 bears the name of the referen
e 
on�guration.A

ordingly, at any time t the 
losure of an open nonempty set B is referred to asthe 
urrent 
on�guration. Boundaries of those sets are denoted by ∂B0 and ∂B. Aninvertible mapping χ 
arrying points of B0 into 
orresponding points of B is 
alleda motion. Thus x = χ (X, t), where x ∈ B and X ∈ B0.In order to express the motion in an expli
it form, it is ne
essary to sele
t 
oor-dinate systems {xi
} and {X i

}, 
overing respe
tively the 
urrent and the referen
e
on�guration. This is most naturally done by an introdu
tion of two Cartesian
oordinate systems, where both points and ve
tors are represented by triplets ofreal numbers. Let ei and Ei be two sets of orthonormal ve
tors (with respe
t to thestandard inner produ
t on R3). Keeping in mind the notional di�eren
e between apoint (lo
ation) and a ve
tor (equivalen
e 
lass of lo
ation di�eren
es), the spatialand referential points 
an be expressed in 
oordinates as x = xiei and X = X iEi.The real numbers xi, X i are the 
omponents of x,X with respe
t to the bases ei,Ei.The zero origins of the two 
oordinate systems need not 
oin
ide in the physi
alspa
e.It should be noted, that B0 and B, being open subsets of the Eu
lidean spa
e,are by de�nition manifolds. In general a di�erentiable manifold 
an be de�ned as aset in whi
h neighbourhoods of all points 
an be mapped in a smooth and invertiblemanner onto open subsets of Rn. A tangent spa
e TxB is a ve
tor spa
e spannedat a point x ∈ B of the manifold and 
omposed of all possible velo
ities of thepoint. The set of all tangent spa
es at all points is 
alled the tangent bundle TB.As all tangent spa
es of B0 and B are identi
al, ve
tor bases ei,Ei 
an be usedto parametrise the tangent bundles TB0 and TB. More pre
ise de�nitions 
an befound in Arnold [12, pp. 76-81℄ or Marsden and Hughes [147, pp. 35-36℄.3.1. Rigid bodyThe motion of a rigid body reads(3.1.1) x (X, t) = Λ (t)
(

X − X̄
)

+ x̄ (t)where Λ (t) is a 3×3 rotation operator, X̄ is a sele
ted referential point, and x̄ (t) isa spatial point. It is seen that x̄ (t) = x
(

X̄, t
) is the motion of the sele
ted point X̄.The term Λ (t)

(

X − X̄
) represents the rotation of X about the point X̄. Thus, therigidity 
ondition follows ‖x − x̄‖ =

∥

∥X − X̄
∥

∥, where the standard Eu
lidean normis assumed. The linear operatorΛ a
ts between the tangent bundles Λ : TB0 → TB.In order to represent rotations, Λ must be orthogonal ΛTΛ = I, where I is the 3×3identity on TB0. It is physi
ally meaningful to assume that Λ preserves orientation,so that det (Λ) = 1. The set of all 3×3 matri
es with the assumed properties formsa group under matrix multipli
ation, 
alled the spe
ial orthogonal group SO (3) [12,p. 126℄. The 
on�guration spa
e of a rigid body 
an be then de�ned as14



3.1. RIGID BODY 15(3.1.2) Qrig = R3 × SO (3)The set Qrig has the stru
ture of a six-dimensional manifold. The �rst three
oordinates are simply those of the point x̄. The remaining three 
oordinates
orrespond to the parametrisation of the rotation spa
e. As ΛTΛ is a symmetri
matrix, the 
ondition ΛTΛ = I indu
es six independent 
onstraints on nine entriesof the rotation matrix. It 
an be shown that the Ja
obian of the 
onstraints has fullrank everywhere, and thus the impli
it fun
tion theorem implies existen
e of lo
allysmooth and invertible maps from SO (3) into R3. Hen
e, the spe
ial orthogonalgroup is a manifold and so is the 
on�guration spa
e Qrig.In fa
t it will be useful to extend a bit the dis
ussion related to the 
onstraintfun
tion f (Λ) = ΛTΛ − I. The surfa
e f (Λ) = 0 is embedded in the nine-dimensional spa
e of all 3 × 3 matri
es. On the part where det (Λ) = 1, it is
omposed of the points of the manifold SO (3). A sele
ted point Λ ∈ SO (3)travels on SO (3) along the dire
tions tangent to the surfa
e: Λ̇ ∈ TΛSO (3). Thus
Λ̇ must be orthogonal to the gradients of all six s
alar 
onstraints in f . In otherwords Df (Λ) · Λ̇ = 0 or equivalently(3.1.3) Λ̇TΛ + ΛT Λ̇ = 0Let us de�ne an anti-symmetri
 3 × 3 operator as(3.1.4) Ω̂ = ΛT Λ̇so that (3.1.3) states Ω̂T = −Ω̂. If Λ = I, there follows that Ω̂ = Λ̇, hen
ethe tangent spa
e TISO (3) is 
omposed of anti-symmetri
 3 × 3 matri
es. In theremaining 
ase Λ 6= I, the tangent spa
e TΛSO (3) is 
omposed of matrix produ
ts
ΛΩ̂. It should be noted, that the three independent 
omponents of Ω̂ are exa
tlythe reason why Df was assumed to have full rank in the previous paragraph (thedimension of the null spa
e of Df , 
f. [1℄).The operator Ω̂ deserves further attention. From (3.1.1) and (3.1.4) the velo
ityof a spatial point 
an be 
omputed as follows(3.1.5) ẋ = ΛΩ̂

(

X− X̄
)

+ ˙̄xthus Ω̂ a
ts between the spa
es Ω̂ : TB0 → TB0. Let y = x − x̄ and Y = X − X̄.Noting that Y = ΛT y, equation (3.1.5) 
an be rewritten as(3.1.6) ẏ = ΛΩ̂ΛTyObviously, transformation ΛΩ̂ΛT preserves anti-symmetry of Ω̂. It is 
onvenientto de�ne the following operator(3.1.7) ω̂ = ΛΩ̂ΛTa
ting between the spa
es ω̂ : TB → TB. Equation (3.1.6) reads now(3.1.8) ẏ = ω̂y



3.1. RIGID BODY 16The above formula gives the velo
ity of a spatial ve
tor 
aused solely by the ro-tational motion. The operator ω̂ bears the name of the spatial angular velo
itytensor. By analogy Ω̂ is 
alled the referential1 angular velo
ity tensor.Let ω̂ be 
onstant (whereas Ω̂ need not be), so that (3.1.8) be
omes the homo-geneous system of linear ordinary di�erential equations with 
onstant 
oe�
ients.The solution to (3.1.8) 
an be expressed the following form [14, pp. 110-111℄(3.1.9) y (t) = exp (tω̂)y (0)where exp (·) is the matrix exponential, yet to be 
ommented on. Equation (3.1.8)
an be also rewritten in the referential form(3.1.10) Ẏ = Ω̂Ywhere Ẏ = ΛT ẏ. Similarly, if one assumes Ω̂ to be 
onstant (whereas ω̂ need notbe), the solution to (3.1.10) follows(3.1.11) Y (t) = exp
(

tΩ̂
)

Y (0)For both 
ases, one 
an 
ompute y (t) as(3.1.12) y (t) = [exp (tω̂)Λ (0)]Y (0)(3.1.13) y (t) =
[

Λ (0) exp
(

tΩ̂
)]

Y (0)where the terms in bra
kets [·] are respe
tively 
alled the spatial and the referential
ompound rotations [146, p. 29℄. In 
ase neither ω̂ nor Ω̂ are 
onstant, the aboveformulae still provide a good (�rst order) estimate of the rotation update for t→ 0.This feature is often utilised in the numeri
al 
ontext.The matrix exponential exp (·) is de�ned as follows(3.1.14) exp (A) = I + A +
A2

2!
+

A3

3!
+ ...where A : Rn → Rn is a linear operator and I is the identity. It is easy to showthat the above series 
onverges uniformly (at rate independent of the argument) ifonly A is bounded (it does not stret
h the unit ball in Rn in�nitely) [14, p. 105℄.One 
an 
onsider a one-parameter family of linear operators exp (tA) : Rn → Rn.It 
an be shown that this is a one-parameter group of linear operators [14, p. 109℄,that is(3.1.15) exp ((t+ s)A) = exp (tA) exp (sA)and(3.1.16) d

dt
exp (tA) = A exp (tA) is de�ned for all tThe above de�ned group is 
ommutative: exp (tA) exp (sA) = exp (sA) exp (tA).Another useful property follows from the de�nition of the matrix exponential (3.1.14)and the group property (3.1.15): a
tion of exp (·) on skew-symmetri
 matri
es pro-du
es orthogonal operators. This 
ould be anti
ipated from (3.1.12) and (3.1.13),1material, 
onve
ted or body-frame are also used in the literature



3.1. RIGID BODY 17although now it is 
lear that ΛTΛ = exp
(

Ω̂T
)

exp
(

Ω̂
)

= exp
(

−Ω̂
)

exp
(

Ω̂
)

=

exp (0) = I, where Λ = exp
(

Ω̂
) was assumed. It is easy to realise that rotationsdo not 
ommute in general (Λ1Λ2 6= Λ2Λ1, rotate a pen
il about the horizontaland then the verti
al axes and then swap the order). The rotation group SO (3) isnot 
ommutative. Nevertheless, the one-parameter group Λt = exp (tω̂) is 
ommu-tative. Experien
e suggests that this 
orresponds to the rotation about a �xed axis,where indeed the �nal e�e
t does not depend on the order in whi
h the rotationsare being applied. Λt 
an be interpreted as a 
urve on the surfa
e of SO (3), start-ing at the point I. After (3.1.16) the velo
ity of Λ0 along Λt reads d

dtΛ
t
∣

∣

t=0
= ω̂whi
h 
on�rms that ω̂ ∈ TISO (3) (note that ω̂ ≡ Ω̂ at I). Generally, the velo
ityalong Λt at some point Λs reads d

dtΛ
t
∣

∣

t=s
= ω̂Λs. By de�nition of the tangentspa
e ω̂Λs ∈ TΛsSO (3). Indeed, as ω̂ = ΛΩ̂ΛT , there holds ω̂Λ = ΛΩ̂ and it wasalready demonstrated, that ΛΩ̂ ∈ TΛSO (3).The matrix exponential (3.1.14) applied in the 
ontext of the group SO (3)is also 
alled the exponential map. This term is traditionally used in the theoryof Lie groups (groups L, where the internal operation L × L → L is 
ontinuousand di�erentiable), where the exponential map a
ts on the elements of the tangentspa
e at identity (
alled Lie algebra) and produ
es elements of the Lie group. Thisis exa
tly the 
ase with SO (3) [146, pp. 27-32℄. The pra
ti
al utility of theexponential map results here from the fa
t that (3.1.14) enjoys a 
losed form sum(3.1.17) exp [Ψ] = I +

sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2due to Euler and Rodrigues [100℄. The above expression is often addressed as theRodrigues formula. The argument Ψ and the operator [̂·] require some further ex-planation. Anti-symmetri
 matri
es in Rn generally have n (n− 1) /2 
omponents.It happens that 3 (3 − 1) /2 = 3, so that there is a one-to-one 
orresponden
e be-tween the 3 × 3 anti-symmetri
 matri
es and ve
tors in R3. Namely(3.1.18) Ψ̂ =





0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0



where Ψ ∈ TE3 and Ψ̂ ∈ TISO (3). Note, that Ψ a
ts as an argument to themapping outputting a point on the surfa
e of SO (3). Thus it is natural to interpret
Ψ as a point in E3 (rotations do not 
ommute - one does not add points). Onthe other hand, Ψ remains in 
orresponden
e with the skew-symmetri
 matri
es
Ψ̂ ∈ TISO (3) and in this 
ontext it is most 
onveniently interpreted as a ve
tor.This notional duality needs to be kept in mind. Ve
tor Ψ is 
alled the axial ve
torof the skew-symmetri
 matrix Ψ̂. This 
onvention allows to interpret ω and Ω asrespe
tively the spatial and the referential angular velo
ity ve
tors. It is easy tonoti
e, that a
tion of the skew-symmetri
 operator (3.1.18) on a ve
tor parallelsthe usual ve
tor produ
t formula(3.1.19) ω̂y = ω × yFormulae (3.1.18) and (3.1.19) establish an isomorphism (invertible, stru
ture pre-serving map) between the spa
es TE3 and TISO (3) (denoted as TE3 ∼= TISO (3)).In pra
ti
e it is often more e�
ient to operate on ve
tors, rather than skew-symmetri
 matri
es. For example, formula (3.1.7) takes the simple form
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=exp[   ]bb’ Ψ

||Ψ||

Ψ

b’

bFigure 3.1.1. The �nite rotation ve
tor Ψ and the a
tion of theexponential map exp [Ψ].(3.1.20) ω = ΛΩwhen ve
tors are used instead of the skew matri
es.Re
all, that the 
urve Λt = exp (tω̂) was interpreted as the rotation along a�xed axis. Ψ a
ting as an argument of (3.1.17) 
an be interpreted as the rotationve
tor, 
ollinear with the �xed axis. Note, that exp [Ψ]Ψ = Ψ (as Ψ̂Ψ = 0) sothat Ψ does not rotate ve
tors 
oaxial with itself. Geometri
ally, the a
tion of theoperator exp [Ψ] 
an be interpreted as the rotation of magnitude ‖Ψ‖ about theaxis 
ollinear with Ψ (Figure 3.1.1). Thus, the rotation ve
tor based parametri-sation of SO (3) is singular on spheres ‖Ψ‖ = 2πn, n ∈ {1, 2, ...} in the sense thatthese subsets of the Eu
lidean 3−spa
e are mapped into the single identity elementof the rotation spa
e. Nevertheless, the singularity 
an be avoided either by theadaptation of the in
remental formulation (3.1.12), (3.1.14) (the magnitudes of therotation in
rements need to be smaller than 2π), or by a suitable re-parametrisation[146, p. 26℄. The singularity of the map exp [Ψ] : E3 → SO (3) is related to theintrinsi
 in
ompatibility between the shapes of subsets of E3 and the manifold
SO (3). Although SO (3) is lo
ally Eu
lidean (looks like E3 in the neighbourhoodof ea
h point) it 
annot be spread in E3 without making a hole in it. Or 
onversely,one 
annot wrap E3 around SO (3) without having some bits of E3 overlapping(somewhat more rigorous dis
ussion 
an be found in [146, pp. 25-26℄). Similarly,a sphere in E3 
an be lo
ally deformed into a �at area, although there is no wayto spread it over a planar surfa
e without some damage. The sphere analogy is infa
t quite adequate, as the quaternion parametrisation allows to interpret SO (3)as the unit sphere embedded in E4 [100℄.One more thing to dis
uss is the relation between tangent spa
es at di�erentpoints of SO (3). Let us 
onsider Λ = exp [Ψ]. One 
an per
eive Ψ as a point in
E3 for whi
h a 
orresponding point in SO (3) 
an be found through exp [·]. It isnatural to ask, how a perturbation of the point Ψ a�e
ts the point Λ. Hen
e, alinearisation of the relation δΛ = exp [Ψ + δΨ] is sought. We already know that
δΛ = δω̂Λ = ΛδΩ̂ ∈ TΛSO (3), whi
h is simply another way of writing downthe velo
ity relations. The linear variation of exp [Ψ + δΨ] with respe
t to theperturbation ve
tor δΨ is delivered by the di�erential of exp [·]. There holds(3.1.21) dexp [Ψ] =

∂ exp [Ψ]

∂Ψ
δΨ =

d

ds
exp [Ψ + sδΨ]

∣

∣

∣

∣

s=0where δΨ ∈ TE3 ∼= TISO (3) is arbitrary. One 
an write now



3.1. RIGID BODY 19(3.1.22) δΩ̂ = ΛT ∂ exp [Ψ]

∂Ψ
δΨor equivalently(3.1.23) δΩ̂ = exp [−Ψ]

d

ds
exp [Ψ + sδΨ]

∣

∣

∣

∣

s=0It is seen that ΛT ∂ exp[Ψ]
∂Ψ

is a third-order obje
t, whi
h 
ontra
ted with δΨ deliversa skew-symmetri
 operator. One 
an thus use only three 
omponents of (3.1.22) inorder to 
reate a relation between the axial ve
tors(3.1.24) δΩ = TT δΨA lengthy and somewhat tedious 
al
ulation (Ibrahimbegovi¢ [99℄, Cris�eld [144℄,Ritto-Corrêa [145℄) leads to the following simple form of T(3.1.25) T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2One 
an also establish a relation between the spatial perturbation δω and δΨ bypro
essing the relation δω̂ = ∂ exp[Ψ]
∂Ψ

δΨΛT . The resultant formula reads [99, 145℄(3.1.26) δω = TδΨDue to (3.1.24), (3.1.26) and the transformation between the spatial and referentialangular velo
ity ve
tors (3.1.20), there holds(3.1.27) TT = ΛTTTransposition and right-multipli
ation by ΛT leads to(3.1.28) TT = TΛTso that Λ and T 
ommute. One 
an see from (3.1.17) and (3.1.25) that Λ and Tshare eigenve
tors and thus 
ommute [99℄.The operator T establishes a 
onne
tion between the tangent spa
es TISO (3)and TΛSO (3), where Λ is a point at t = 1 on the 
urve Λt = exp [tΨ]. In order topi
ture this graphi
ally, it is 
onvenient to make a notional distin
tion between thespatial and the material tangent spa
es at Λ. In referen
e to the algebrai
 form ofthe 
onstraint ΛTΛ − I, it is natural to speak about velo
ities Λ̇ ful�lling (3.1.3)as elements of the tangent spa
e TΛSO (3). It then follows that pre-multiplying
Λ by an anti-symmetri
 spatial angular velo
ity ω (or perturbation δω), or post-multiplying it by a referential (material) angular velo
ity Ω (or perturbation δΩ),
reates an element of the tangent spa
e TΛSO (3). This is in analogy with theaddition of ve
tors to points in E3, although the la
k of 
ommutativity of therotation group makes it ne
essary to speak about the left-multipli
ation and theright-multipli
ation separately. Thinking about anti-symmetri
 operators a
ting ona pointΛ, one 
an than introdu
e the notion of a spatial and material tangent spa
es
T spa
Λ SO (3) and Tmat

Λ SO (3), 
omposed respe
tively of all spatial and referential(material) angular velo
ities (perturbations) a
ting on Λ. In this respe
t, thereholds T : TISO (3) → T spa
Λ SO (3) and TT : TISO (3) → Tmat

Λ SO (3). This isillustrated in Figure 3.1.2.
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Λ

Ψ

exp[  ]

exp[     ]t Ψ

Ψ
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SO(3)

I

I

Λ

Figure 3.1.2. Interpretation of tangent spa
es on SO (3) togetherwith the a
tions of exp [·] and T operators.It is �nally relevant to 
omment on the pra
ti
al utility of the operator T.Elements of tangent ve
tor spa
es TΛSO (3) 
an be added to one another only ifthey are all of the same kind (spatial or material) and all based at the same point
Λ. That is, for Ω1 ∈ Tmat

Λ1
SO (3) and Ω2 ∈ Tmat

Λ2
SO (3) it is meaningful to 
onsiderthe sum Ω1 + Ω2 only if Λ1 = Λ2. In 
ase Λ1 6= Λ2, one of the ve
tors needs tobe brought into the tangent spa
e of the other one. T provides a spe
i�
 instan
eof su
h operation, of importan
e in numeri
al realisations.Rigid kinemati
s(1) Motion

x (X, t) = Λ (t)
(

X − X̄
)

+ x̄ (t)

x, x̄ ∈ B, X, X̄ ∈ B0, Λ ∈ SO (3)(2) Velo
ity
ẋ (X, t) = Λ̇ (t)

(

X − X̄
)

+ ˙̄x (t)

ẋ, ˙̄x ∈ TB, Λ̇ = ΛΩ̂ = ω̂Λ ∈ TΛSO (3)

ω̂ = ΛΩ̂ΛT ⇔ ω = ΛΩ(3) Parametrisation
Λ (Ψ) = exp [Ψ] , Ψ ∈ E3, Λ ∈ SO (3)

δΩ = TT δΨ, δω = TδΨ

ΛδΩ̂, δω̂Λ ∈ TΛSO (3) , δΨ ∈ TE3 ∼= TISO (3)

exp [Ψ] = I +
sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2

T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2

Ψ̂ =





0 −Ψ3 Ψ2

Ψ3 0 −Ψ1

−Ψ2 Ψ1 0



 , ‖Ψ‖ =
√

〈Ψ,Ψ〉



3.2. PSEUDO-RIGID BODY 213.2. Pseudo-rigid bodyThe motion of a pseudo-rigid body reads(3.2.1) x (t) = F (t)
(

X − X̄
)

+ x̄ (t)where x is the 
urrent image of a referential point X, F is a spatially homogeneousdeformation gradient (F = ∂χ/∂X), X̄ is a sele
ted referential point and x̄ = x̄ (t)is the 
urrent image of X̄. Deformation gradient F, being an invertible and ori-entation preserving (det (F) > 0) operator, belongs to the subgroup GL+ (3, R) ofthe general linear group GL (3, R) (group of real, invertible, 3 × 3 matri
es). The
onstraint det (F) > 0 indi
ates that GL+ (3, R) is an open subset of the twelve-
omponent spa
e of all 3×3 matri
es, trivially isomorphi
 with the Eu
lidean spa
e
E9. Hen
e, the 
on�guration spa
e of a pseudo-rigid body(3.2.2) Qprb = GL+ (3, R)× E3is a smooth manifold of dimension twelve. The velo
ity reads(3.2.3) ẋ (t) = Ḟ (t)

(

X − X̄
)

+ ˙̄x (t)where, 
ontrary to the rigid body 
ase (3.1.5), no spe
ial treatment of Ḟ is ne
essary.This results from the fa
t, than the inequality 
onstraint det (F) > 0 does notredu
e the dimension of the 
on�guration spa
e. By de�nition, every point Fhas an open neighbourhood 
ontained in GL+ (3, R). Thus all velo
ities Ḟ areeligible, as an instantaneous departure from GL+ (3, R) is not possible. This 
anbe shown on the following example. Assume F (0) = I and Ḟ (0) = A. Then
det (I + tA) = 1 + t

∑

iAii + O
(

t2
) [14, p. 116℄, so that det (I + tA) > 0 forsu�
iently small t.Instead of using the a= [a1, a2, ..., a9]

T notation for the 
oordinates of points in
E9, one 
an arrange them into the matrix form(3.2.4) A =





a1 a2 a3

a4 a5 a6

a7 a8 a9



and de�ne a binary operation E9 × E9 → E9 equivalent to the matrix produ
t.This establishes the isomorphism φ : E9 → GL+ (3, R), so that A = φ (a) and
a = φ−1 (A). Similarly as for rotations and the exp [·] mapping, one 
an ask whatis the linearised relation between the perturbations δA = φ (a + δa). Obviously
δA = d

dtφ (a + tδa)
∣

∣

t=0
= φ (δa). As all tangent spa
es of E9 are identi
al and 
anbe parametrised by the standard base ei = [0, 0, ..., 1i, 0, 0...]

T , one is free to addve
tors within TE9. One 
an de�ne δA + δB = φ
(

φ−1 (δA) + φ−1 (δB)
), whi
h isin fa
t the usual matrix addition. It follows that all tangent spa
es of GL+ (3, R)are identi
al. Thus, one 
an add velo
ities Ḟ (t) + Ḟ (s) for all t, s.The stru
ture of the 
on�guration spa
e Qprb is then simpler than that of Qrig.The above summary exhausts most of the points previously dis
ussed for the rigidbody. One more analogy 
an be drawn. As x − x̄ ∈ TB and X − X̄ ∈ TB0, itfollows that F, Ḟ : TB0 → TB are two-point obje
ts. One 
an de�ne a spatialobje
t L : TB → TB, similar to the spatial angular velo
ity ω̂(3.2.5) L = ḞF−1
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Figure 3.2.1. Two sets of base ve
torsDi,D
i and di,d

i spanningtangent and 
otangent spa
es TB0, T
∗B0 and TB, T ∗B.

L is 
alled the deforming tensor [46, p. 19℄. One 
an de
ompose L into the anti-symmetri
 spin tensor O and the symmetri
 stret
hing tensor D.(3.2.6) L = O + D(3.2.7) O =
1

2

(

L − LT
)

, D =
1

2

(

L + LT
)By utilising the polar de
omposition of F(3.2.8) F = ΛUwhere Λ is orthogonal and U is symmetri
 positive-de�nite, it is possible to expressthe spin and stret
hing tensors as [46, p. 19℄(3.2.9) O = Λ̇ΛT +

1

2
Λ
(

U̇U−1 − U−1U̇
)

ΛT(3.2.10) D =
1

2
Λ
(

U̇U−1 + U−1U̇
)

ΛTClearly, in the absen
e of deformation U = I, the stret
h tensor D is zero. For
U = I, the spin tensor be
omes anti-symmetri
 and equal to the spatial angularvelo
ity O ≡ ω̂|U=I. Pseudo-rigid kinemati
s(1) Motion

x (X, t) = F (t)
(

X − X̄
)

+ x̄ (t)

x, x̄ ∈ B, X, X̄ ∈ B0, F ∈ GL+ (3, R)(2) Velo
ity
ẋ (X, t) = Ḟ (t)

(

X − X̄
)

+ ˙̄x (t)

ẋ (X, t) = L (t) (x− x̄) + ˙̄x (t)

ẋ, ˙̄x ∈ TB, Ḟ = LF ∈ TFGL+ (3, R)
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s of ve
tors and tensors. It is useful to investigate, howthe assumed motion 
arries over geometri
al obje
ts atta
hed to a body. Let
T ∗B0, T

∗B be the 
ove
tor (dual) spa
es of TB0, TB, where the dual spa
e is
omposed of all linear fun
tionals (one-forms, 
ove
tors) a
ting on the elementsof the tangent spa
e (ve
tors). The distin
tion between ve
tors and 
ove
torsis made for the sake of 
larity, while it is a
knowledged that Rn is equal to itsdual [125, p. 121℄. Let base ve
tors Di,di and 
ove
tors Di,di respe
tivelyspan the tangent spa
es TB0, TB and their duals T ∗B0, T
∗B (Figure 3.2.1). Itis assumed that DiD

j = did
j = δj

i , where the Krone
ker delta is de�ned as
δj
i = {0 if i 6= j or 1 if i = j}. The deformation gradient 
an be expressed as(3.2.11) F (t) = di (t) ⊗ Diwhere ⊗ stands for the dyadi
 produ
t (a ⊗ b = aibjei ⊗ ej) and the Einsteinsummation 
onvention for repeated lower and upper indi
es is adopted (this holdsin the remaining part of this se
tion) [46, p. 44℄. Note that usually it is 
onvenientto assume Di = Di = Ei = Ei so that F 
an be viewed as 
omposed of 
olumn ve
-tors di. Through (3.2.1) and (3.2.11) the motion 
an be regarded as superpositionof translation and distortion of a 
oordinate system atta
hed to a sele
ted mate-rial point. One 
an 
on
eptually asso
iate various tensor entities with the frames

di (t) ,di (t). The time dependent distortion of di,d
i gives rise to several forms oftensor rates, depending on the sele
tion of an observer and the nature of involvedobje
ts.Let us re
all that the a
tion of a 
ove
tor n = ηid

i on a ve
tor a = αidi isde�ned as 〈n,a〉 = ηid
iαjdj = ηiα

jδi
j = ηiα

i. This, together with (3.2.11) allowsto dedu
e the basi
 transformation laws for ve
tors and 
ove
tors(3.2.12) a = FA(3.2.13) N = FT nwhere(3.2.14) A = αiDi, a = αidi(3.2.15) n = ηid
i, N = ηiD

iNote, that the a
tual 
oordinates with respe
t to the bases D,d do not 
hange,therefore a,A and n,N are 
alled the 
odeforming ve
tors and 
ove
tors. From(3.2.12) and (3.2.13) it is seen that while F : TB0 → TB, its transpose FT : T ∗B →
T ∗B0. Let us 
onsider A and N, �xed in the referen
e 
on�guration. The velo
ityof 
urrent images of A and N reads(3.2.16) ȧ = ḞA = ḞF−1a = La(3.2.17) ṅ = Ḟ−TN = Ḟ−T FTn = −

(

F−1ḞF−1
)T

FTn = −LTnwhere di�erentiation of FF−1 was exploited in the third step of (3.2.17). Thedeforming tensor L 
an be expressed as(3.2.18) L = ḞF−1 = ḋi ⊗ DiDj ⊗ dj = ḋj ⊗ dj = Li
jdi ⊗ djwhere Li

j are the 
omponents of the velo
ity of dj expressed in (the same) basis
di. The deforming tensor 
an be used to obtain velo
ities of ve
tors (3.2.16) and
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ove
tors (3.2.17) 
onve
ted with the body. In a more spe
i�
 situation of an antwalking on the surfa
e of a pseudo-rigid body, the velo
ity of the ant will follow froma 
hain rule of di�erentiation. The relative motion of the ant 
an be parametrisedby a ve
tor-valued fun
tion(3.2.19) a (t) = αi (t)diand thus the velo
ity reads(3.2.20) ȧ = α̇idi + αiḋi =
⋄
a + LaThe symbol ⋄

a stands for the 
odeforming derivative [46, p. 45℄ of the ve
tor fun
tion
a (t). The 
odeforming derivative des
ribes the velo
ity of a point travelling througha moving pseudo-rigid body, viewed from the perspe
tive of an observer embeddedin the deforming frame di. In other words(3.2.21) ⋄

a = α̇idi = ȧ − LaA similar exer
ise 
an be made for a 
ove
tor-valued fun
tion(3.2.22) n (t) = ηi (t)diNow the 
odeforming derivative reads(3.2.23) ⋄
n = η̇id

i = ṅ + LT nIt is quite easy to see that the 
odeforming derivative is in fa
t the Lie deriv-ative with respe
t to the �ow de�ned by the motion (3.2.1). For this to holdone needs to 
on
eptually extend the (
o)ve
tor fun
tion t (t) into a 
onstant(
o)ve
tor �eld t (x, t) = t (t), de�ned on B. The �ow based on the motion
χ (t) 
an be in general de�ned as χs,t = χ (t)χ (s)

−1 [147, p. 95℄. Note that
χr,tχs,r = χ (t)χ (r)−1 χ (r)χ (s)−1 = χs,t and χt,t is the identity. Let w = d

dtχt,sbe the spatial velo
ity �eld on B. The Lie derivative of t with respe
t to w isde�ned as(3.2.24) Lwt =
d

dt

(

χ∗
t,st (t)

)

∣

∣

∣

∣

t=swhere χ∗
t,s is the pull-ba
k operator related to t. For �xed t and s the �ow χs,tbe
omes a point mapping χs,t : Bs → Bt. For ve
tors, the push-forward χs,t∗ andthe pull-ba
k χ∗

s,t operators are respe
tively the Ja
obian and the inverse Ja
obianof χs,t. Thus χs,t∗ : TBs → TBt and χ∗
s,t : TBt → TBs for ve
tors. The relevantoperators for 
ove
tors are obtained in analogy to (3.2.13). For the pseudo-rigid
ase the �ow related formulae read(3.2.25) χ−1 (s) = F−1 (s) (x − x̄ (s)) + X̄(3.2.26) χ (t) = F (t)
(

X − X̄
)

+ x̄ (t)

χs,t = F (t)F−1 (s) (x − x̄ (s)) + x̄ (t)(3.2.27)Thus for ve
tors, the push-forward and pull-ba
k operators take the form
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∂χs,t

∂x
= F (t)F−1 (s)(3.2.29) χ∗

s,t =

(

∂χs,t

∂x

)−1

= F (s)F−1 (t)while for 
ove
tors, there holds(3.2.30) χs,t∗ =

(

∂χs,t

∂x

)−T

= F−T (t)FT (s)(3.2.31) χ∗
s,t =

(

∂χs,t

∂x

)T

= F−T (s)FT (t)Formula (3.2.21) 
an be rewritten as
⋄
a =

d

dt

(

F (s)F−1 (t)a (t)
)

∣

∣

∣

∣

t=s

(3.2.32)
=

[

FsḞ
−1
t at + FsF

−1
t ȧt

]

t=s

= FsF
−1
s ȧs − FsF

−1
s ḞsF

−1
s as

= ȧ − LaSimilarly (3.2.23) reads
⋄
n =

d

dt

(

F−T (s)FT (t)n (t)
)

∣

∣

∣

∣

t=s

(3.2.33)
=

[

F−T
s ḞT

t nt + F−T
s FT

t ṅt

]

t=s

= ṅ + LT nNote that due to (3.2.16) and (3.2.17), ⋄
t = 0 implies that the the (
o)ve
tor tis being 
onve
ted with the �ow of the motion. In this sense, the Lie derivativemeasures how mu
h a time dependent (
o)ve
tor �eld fails to be 
onve
ted withthe motion.A bilinear form E : N ×K → R, where n ∈ N , k ∈ K and N ,K ∈ {TBs, T

∗Bs}is a linear form with respe
t to ea
h of its arguments, E (αa + βb, ·) = αE (a, ·) +
βE (b, ·), analogously for E (·, αc + βd). One 
an de�ne it as follows(3.2.34) E (n,k) = n ·EkConventionally [147, p. 65℄, if n,k ∈ T ∗Bs then E is 
alled a 
ontravariant tensor,while for n,k ∈ TBs it is 
alled a 
ovariant tensor. It is a mixed tensor otherwise.Let us fo
us on the 
ontravariant 
ase, as it will be of use in the next 
hapter. Let
E be given by (3.2.34) for all n,k ∈ T ∗Bs. For any p,q ∈ T ∗Bt one 
an obtain
n = χ∗

s,tp and k = χ∗
s,tq and thus

E (p,q)|p,q∈T∗Bt
= E

(

χ∗
s,tp, χ

∗
s,tq
)(3.2.35)

=
(

F−T
s FT

t p
)

· EF−T
s FT

t q

= p ·FtF
−1
s EF−T

s FT
t q

= p · χs,t∗Eq



3.2. PSEUDO-RIGID BODY 26where(3.2.36) χs,t∗E = FtF
−1
s EF−T

s FT
tde�nes the push-forward of E : T ∗Bs × T ∗Bs → R into χs,t∗E : T ∗Bt × T ∗Bt → R.Conversly, one 
an de�ne the pull-ba
k of E : T ∗Bt × T ∗Bt → R into χ∗

s,tE :
T ∗Bs × T ∗Bs → R as follows(3.2.37) χ∗

s,tE = FsF
−1
t EF−T

t FT
sIt is possible to 
al
ulate now the Lie derivative of E with respe
t to the �ow de�nedby the pseudo-rigid motion

⋄

E =
d

dt

(

FsF
−1
t EF−T

t FT
s

)

∣

∣

∣

∣

t=s

(3.2.38)
=

[

FsḞ
−1
t EF−T

t FT
s + FsF

−1
t ĖF−T

t FT
s + FsF

−1
t EḞ−T

t FT
s

]

t=s

= Ė− LE − ELTwhere Ḟ−1 = −F−1ḞF−1 was utilised. The same formula 
an be worked out in
omponents
Ė =

d

dt

(

Eijdi ⊗ dj

)(3.2.39)
= Ėijdi ⊗ dj + Eij (Ldi) ⊗ dj + Eijdi ⊗ (Ldj)

= Ėijdi ⊗ dj + EijL (di ⊗ dj) + Eij (di ⊗ dj)L
Twhere a dire
t analogy to the 
odeforming derivative for ve
tors 
an be observed.That is ⋄

E = Ėijdi ⊗ dj . Codeforming rates 
an be similarly 
omputed for othertypes of tensors.The last dis
ussed rate is related to the linear map H : T ∗Bt → TBt. Thea
tion of H 
an be des
ribed as(3.2.40) p = Hnwhere p ∈ TBt and n ∈ T ∗Bt. One is then interested in 
omputing the a
tion of Hon 
ove
tors k ∈ T ∗Bs. Any k ∈ T ∗Bs 
an be pushed forward into χs,t∗k ∈ T ∗Btso that
q = Hχs,t∗k(3.2.41)

= HF−T
t FT

s k

= χ∗
s,tHkwhere the pull-ba
k of H is de�ned as(3.2.42) χ∗

s,tH = HF−T
t FT

sThe 
odeforming derivative of H follows
⋄

H =
d

dt

(

HF−T
t FT

s

)

∣

∣

∣

∣

t=s

(3.2.43)
= Ḣ− HLT
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tor and tensor kinemati
s(1) Flow gradient
Fs,t = F (t)F−1 (s) ⇒ F0,t = F, Fs,s = I(2) Ve
tors
a = Fs,tb, b = F−1

s,t a, a ∈ TBt, b ∈ TBs

⋄
a = ȧ − La(3) Cove
tors

k = F−T
s,t n, n = FT

s,tk, n ∈ T ∗Bs, k ∈ T ∗Bt

〈n, ·〉 : TBs → R
⋄
n = ṅ + LT n(4) Contravariant tensors
G = Fs,tEFT

s,t

E = F−1
s,t GF−T

s,t

E : T ∗Bs × T ∗Bs → R, G : T ∗Bt × T ∗Bt → R
⋄

E = Ė− LE − ELT(5) Contravariant linear maps
G = HFT

s,t

H = GF−T
s,t

H : T ∗Bs → TBs, G : T ∗Bt → TBt
⋄

H = Ḣ− HLT3.2.2. Pseudo-rigid motion and 
onvexity. The following trivial fa
t en-sures 
orre
tness of some of the subsequently employed algorithms.Fa
t 3.2.1. Pseudo-rigid motion preserves 
onvexity.Proof. Let B0 be 
onvex. Then λX + (1 − λ)Y ∈ B0 for all X,Y ∈ B0,
λ ∈ [0, 1].

λ
(

F
(

X − X̄
)

+ x̄
)

+ (1 − λ)
(

F
(

Y − X̄
)

+ x̄
)

=

= F
(

λX + (1 − λ)Y − X̄
)

+ x̄ ∈ B
�3.3. Matrix notationWhenever it is not ne
essary to be spe
i�
 about the underlying kinemati
s,it is 
onvenient to adopt a uni�ed notation. The generalised 
on�guration of abody will be denoted by q while the velo
ity will be denoted by u. Thus q ∈ Qand u ∈ TqQ, where Q is a generalised 
on�guration spa
e. From several possible
hoi
es, the following one is made for the rigid body(3.3.1) q =

















Λ11

Λ21

...
x̄1

x̄2

x̄3

















, u =

















Ω1

Ω2

Ω3

˙̄x1

˙̄x2

˙̄x3
















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onsisten
y with the algorithmi
 developments of Chapter 5. Itshould be noted that in (3.3.1) q̇ 6= u, but rather q̇ =
[

Λ I
]

u. One the otherhand, for the pseudo-rigid body, the most natural 
hoi
e reads(3.3.2) q =

















F11

F12

...
x̄1

x̄2

x̄3

















, u =

















Ḟ11

Ḟ12

...
˙̄x1

˙̄x2

˙̄x3















where obviously q̇ = u. The row-wise ordering of F in q is related to the 
om-putational e�
ien
y of some algebrai
 operations, to be 
ommented on at a laterpoint. 3.4. LiteratureStarting with Euler in the third quarter of the eighteenth 
entury, kinemati
sof rigid motion has been studied for over two hundred years now. A review paperby Dai [52℄ gives a good summary in that respe
t. A typi
al textbook exposition,like in Arnold [12℄, usually 
ontains a brief statement of kinemati
s followed byan exhaustive dis
ussion on dynami
s. From the numeri
al point of view though,parametrisation of rigid rotations is rather important. In the literature on the in-tegration of rigid motion, three major methods of updating the rotation operator
an be named. Cayley formula is used for example in an old paper by Bensonand Hallquist [23℄, as well as in one of the algorithms re
ently investigated byNukala and Shelton [171℄. Rodrigues formula is employed in the expli
it s
hemeby Simo and Wong [100℄, also by Krysl and Endres [163℄, Krysl [126, 128, 127℄,Nukala and Shelton [171℄. Quaternion based update is utilised in the impli
its
heme by Simo and Wong [100℄, also by Park and Chiou [110℄, Omelyan [162℄,Shivarama [189℄, Johnson et al. [187℄. On a somewhat more theoreti
al level, re-
ent quaternion based developments in
lude Kosenko [120℄ and Ri
o-Martinez andGallardo-Alvarado [179℄. On the other hand, the in
remental rotation angle andthe Rodrigues formula seem to be often exploited within the �eld of geometri
allyexa
t beam theories. Papers by Ibrahimbegovi¢ et al. [99℄, Cris�eld and Jeleni
[144℄, Ritto-Corrêa and Camotim [145℄, and the do
toral thesis by Mäkinen [146℄provide a good referen
e here.The pseudo-rigid body model was derived by Cohen and Mun
aster [46℄ as asimpli�ed 
ounterpart of �nite elastodynami
s. Kinemati
ally, it does not di�ermu
h from the point level des
ription of the 
lassi
al 
ontinuum. Thus, apartfrom the monograph [46℄, textbooks on 
ontinuum me
hani
s might be of use. Forexample, 
hapters on kinemati
s in Marsden and Hughes [147℄ and Belyts
hkoet al. [22℄ seem to be 
omplementary in terms of the balan
e between theoryand pra
ti
e. As dis
ussed by Nordenholz and O'Reilly [160, 161℄, pseudo-rigidbodies are equivalent to Cosserat points. As shown by Solberg and Papadopoulos[193℄, pseudo-rigid bodies are also equivalent to 
onstant strain �nite elements. Anextension of the pseudo-rigid body 
on
ept, admitting se
ond order deformatione�e
ts, has been proposed by Papadopoulos [167℄.



CHAPTER 4Dynami
sFor a body B, the 
onservation of mass and the balan
e of linear and angularmomentum respe
tively read(4.0.1) d

dt

∫

B

ρdv = 0(4.0.2) d

dt

∫

B

ρẋdv =

∫

∂B

tda+

∫

B

ρbdv(4.0.3) d

dt

∫

B

(x − x̄) × ρẋdv =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvwhere t is time, ρ is the mass density, ẋ is the point velo
ity, t is the surfa
e tra
-tion, b is the body for
e, and x̄ is a sele
ted point. All of the mentioned quantitiesare spatial and so is the integration domain B, being the 
urrent 
on�guration ofthe body. One 
an work out a spe
i�
 form of the above prin
iples, by 
onsideringkinemati
 models presented in the previous 
hapter. This time it is more 
onve-nient to start with the pseudo-rigid 
ase (Se
tion 4.1), and eventually simplify theobtained equations in order to embra
e the rigid body model (Se
tion 4.2).4.1. Pseudo-Rigid bodyThe s
alar mass of a body is(4.1.1) m =

∫

B

ρdvand the 
onservation of mass states(4.1.2) ṁ = 0The useful 
onsequen
e of the 
onservation of mass is that(4.1.3) ρJ = ρ0where J = det (F) is the Ja
obian (with respe
t to the Cartesian 
oordinates {xi
}and {X i

}), and ρ0 is the referential mass density. This follows from the fa
t, that
∫

B ρdv =
∫

B0
ρJdV =

∫

B0
ρ0dV . One 
an now move the time derivative under theintegral in the standard way(4.1.4) d

dt

∫

B

aρdv =
d

dt

∫

B0

aρ0dV =

∫

B0

da

dt
ρ0dVThe motion of the pseudo-rigid body is employed, in order to rewrite the linearmomentum balan
e as 29
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∫

B0

ρ0

(

X − X̄
)

dV +m¨̄x =

∫

∂B

tda+

∫

B

ρbdvClearly, it is advantageous to sele
t X̄ so that(4.1.6) ∫

B0

ρ0

(

X − X̄
)

dV = 0From now on X̄ is 
onsidered to be the referential mass 
entre of the body. Thelinear momentum balan
e reads then(4.1.7) m¨̄x = fwhere(4.1.8) f =

∫

∂B

tda+

∫

B

ρbdvis the resultant for
e. The angular momentum 
onservation 
an be worked out asfollows. First note, that
d

dt

∫

B

(x − x̄) × ρẋdv =

d

dt

∫

B0

[

F
(

X − X̄
)]

×
[

Ḟ
(

X − X̄
)

+ ˙̄x
]

ρ0dV =

∫

B0

[

Ḟ
(

X − X̄
)

]

×
[

Ḟ
(

X − X̄
)

+ ˙̄x
]

ρ0dV +

∫

B0

[

F
(

X − X̄
)]

×
[

F̈
(

X − X̄
)

+ ¨̄x
]

ρ0dV =

∫

B0

[

Ḟ
(

X − X̄
)

]

× ˙̄xρ0dV +

∫

B0

[

F
(

X − X̄
)]

× ¨̄xρ0dV +

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv =

−skew [ ˙̄x] Ḟ ∫
B0

(

X − X̄
)

ρ0dV − skew [¨̄x]F ∫
B0

(

X − X̄
)

ρ0dV +

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv =

∫

B

(x− x̄) ×
[

F̈F−1 (x − x̄)
]

ρdv(4.1.9)where a × a = 0 was used in the transition from line three to �ve, spatial homo-geneity of F and the fa
t that a×b = −skew [b]a (skew [·] makes a skew symmetri
operator of a ve
tor) were utilised in the transition from line �ve to seven, and for-mula (4.1.6) was exploited in order to rea
h the last line. The angular momentumbalan
e 
an now be phrased as(4.1.10) ∫
B

(x − x̄)×
[

F̈F−1 (x − x̄)
]

ρdv =

∫

∂B

(x − x̄)×tda+

∫

B

(x − x̄)×ρbdvLet ve
skew [·] make a 3-ve
tor out of a 3 × 3 skew symmetri
 matrix. By noti
ingthat a × b = ve
skew [b⊗ a − a ⊗ b], and the fa
t that A = B implies A − AT =
B− BT , one 
an rewrite the above as
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B

(x − x̄)⊗
[

F̈F−1 (x − x̄)
]

ρdv =

∫

∂B

(x − x̄)⊗tda+

∫

B

(x − x̄)⊗ρbdvor equivalently(4.1.12) ∫
B

[

F̈F−1 (x − x̄)
]

⊗(x − x̄) ρdv =

∫

∂B

t⊗(x − x̄) da+

∫

B

ρb⊗(x − x̄) dvThis 
an be further simpli�ed, by making use of the deforming tensor L = ḞF−1(4.1.13) L̇ = F̈F−1 + ḞḞ−1, Ḟ−1 = −F−1ḞF−1, F̈F−1 = L̇ + L2and the following relations for the tensor produ
t(4.1.14) a ⊗ (La) = (a ⊗ a)LT , (La) ⊗ a = L (a ⊗ a)and
d

dt
(La ⊗ a) = L̇a ⊗ a + Lȧ ⊗ a + La ⊗ ȧ

= L̇a ⊗ a + LLa ⊗ a + La ⊗ La

=
(

L̇ + L2
)

a ⊗ a + La ⊗ aLT(4.1.15)so that
∫

B

[

F̈F−1 (x − x̄)
]

⊗ (x − x̄) ρdv =

(

L̇ + L2
)

∫

B

(x − x̄) ⊗ (x − x̄) ρdv =

(

L̇ + L2
)

E =
d

dt
(LE) − LELT(4.1.16)where(4.1.17) E =

∫

B

(x − x̄) ⊗ (x − x̄) ρdvis the spatial Euler tensor. Finally, the tensor equation(4.1.18) d

dt
(LE) − LELT =

∫

∂B

t⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvdes
ribes the balan
e of the angular momentum.Formula (4.1.18) impli
itly represents a set of nonlinear ordinary di�erentialequations with respe
t to the 
omponents of the deformation gradient F and Eulertensor E. It is in
omplete though, in the sense that an integration of the aboveequation would allow a body to deform without a bound. Intuitively, su
h a bound
omes from the internal for
es, opposing any deformation. In our 
ase, this opposi-tion must be rather spe
i�
, so that the homogeneity of deformations is preserved.This issue has risen some 
ontroversy in the literature, see Steigmann [196℄ andCasey [36, 37℄. Nevertheless, we shall not be 
on
erned with this rather philosoph-i
al dis
ourse, as it does not a�e
t the pra
ti
al utility of the pseudo-rigid model.In order to bridge (4.1.18) with the deformation indu
ed for
es, we need to re
allthat as a 
onsequen
e of the Cau
hy's theorem (
f. Marsden and Hughes [147, pp.



4.1. PSEUDO-RIGID BODY 32127-134℄), there exists a se
ond order 
ontravariant Cau
hy stress tensor σ, su
hthat(4.1.19) t = σnwhere n is the unit outward normal to ∂B. The following evaluation is now possible
∫

∂B

t⊗ (x − x̄) da =

∫

∂B

σn ⊗ (x − x̄) da

=

∫

B

divσ ⊗ (x − x̄) dv +

∫

B

σdv(4.1.20)where the divergen
e theorem ∫

B divadv =
∫

∂B a · nda has been applied with a =rowi [σ] (xj − x̄j) for all i, j. In the next step, the lo
al form of the linear momentumbalan
e (4.0.2)(4.1.21) ρẍ = ρb + divσand the mean Cau
hy stress tensor de�ned as(4.1.22) σ̄ =
1

V

∫

B

σdvare plunged ba
k into (4.1.20), so that(4.1.23) ∫

B

ρẍ⊗ (x − x̄) dv + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvEquivalently, by (4.1.9) and (4.1.16) there holds(4.1.24) d

dt
(LE) − LELT + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvwhere V =
∫

B
dv is the 
urrent volume. It should be noted, that the balan
e prin
i-ple (4.1.24) implies the angular momentum 
onservation (4.0.3), provided that theCau
hy stress tensor σ is symmetri
. The stress term V σ̄ prevents an unboundedgrowth of deformation, although for this one needs to de
lare a physi
ally plausiblerelationship between σ̄ and F. The relation σ̄ = σ̄ (F) bears the name of a 
on-stitutive equation. Let us not spe
ify this relation yet, but rather summarise the
urrent derivations. This is done in the box below.Spatial pseudo-rigid dynami
s(1) Mass 
onservation

ṁ = 0, Ė− LE − ELT = 0(2) Linear momentum balan
e
m¨̄x =

∫

∂B

tda+

∫

B

ρbdv(3) Angular momentum balan
e
d
dt (LE) − LELT + V σ̄ =

∫

∂B
t ⊗ (x − x̄) da+

∫

B
ρb ⊗ (x − x̄) dv

L = ḞF−1, σ̄ = σ̄ (F)



4.1. PSEUDO-RIGID BODY 33In the �rst point of the box, Ė− LE− ELT = 0 has been added in an ad-ho
manner. This 
orresponds to the 
onservation of the spatial Euler tensor, in thesense that, as viewed from the point of view of a 
o-deforming frame, it should not
hange with time. Re
all from the previous 
hapter, that ⋄

E = Ė − LE − ELT isa suitable Lie derivative, if only E 
an be regarded as a 
ontravariant obje
t. Itis so, be
ause n · Ek 
an be interpreted as measuring the amount of matter awayfrom a pair of planes n,k passing through x̄. Similarly, if one de�nes a generalisedangular momentum H = LE, and realises that this is a 
ontravariant map assigningto ea
h plane k (passing through x̄) the net linear momentum Hk orthogonal tothe plane, the term d
dt (LE) − LELT be
omes ⋄

H = Ḣ − HLT . This 
onne
ts ourderivation with that pursued by Cohen and Mun
aster [46, pp. 23-31℄, where amore 
onstru
tive approa
h was undertaken. Regardless of those subtleties, it isquite 
lear that the nonlinearities of the spatial equations render them quite uselessfor pra
ti
al purposes. In fa
t, the pun
h line of pseudo-rigid dynami
s is in thesimpli
ity of its referential formulation.4.1.1. Referential formulation. We wish to simplify d
dt (LE)−LELT . Letus �rst de�ne the referential Euler tensor as(4.1.25) E0 =

∫

B0

(

X − X̄
)

⊗
(

X− X̄
)

ρ0dVso that
E =

∫

B

(x − x̄) ⊗ (x− x̄) ρdv

=

∫

B0

F
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV = FE0F
T(4.1.26)We 
an now write

LELT = ḞF−1EF−T ḞT = ḞE0Ḟ
T(4.1.27)(4.1.28) d

dt
(LE) = L̇E + LĖ(4.1.29) L̇ = F̈F−1 + ḞḞ−1

Ė =
d

dt

∫

B

(x − x̄) ⊗ (x− x̄) ρdv

=
d

dt

∫

B0

F
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV

=

∫

B0

Ḟ
(

X − X̄
)

⊗ F
(

X − X̄
)

ρ0dV

+

∫

B0

F
(

X − X̄
)

⊗ Ḟ
(

X − X̄
)

ρ0dV

= ḞE0F
T + FE0Ḟ

T(4.1.30)so that
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d

dt
(LE) − LELT =

(

F̈F−1 + ḞḞ−1
)

FE0F
T + ḞF−1

(

ḞE0F
T + FE0Ḟ

T
)

− ḞE0Ḟ
T

= F̈E0F
T + ḞḞ−1FE0F

T + ḞF−1ḞE0F
T + ḞE0Ḟ

T − ḞE0Ḟ
T

= F̈E0F
T − ḞF−1ḞF−1FE0F

T + ḞF−1ḞE0F
T

= F̈E0F
T(4.1.31)where Ḟ−1 = −F−1ḞF−1 was utilised. This allows to rewrite the angular momen-tum balan
e as(4.1.32) F̈E0F

T + V σ̄ =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvand after right-multiplying by F−T obtain(4.1.33) F̈E0 + V σ̄F−T =

∫

∂B

t⊗ F−1 (x − x̄) da+

∫

B

ρb⊗ F−1 (x − x̄) dvThe term V σ̄F−T 
an be worked out as follows
V σ̄F−T =

∫

B

σF−T dv =

∫

B0

σF−TJdV =

∫

B0

PdV(4.1.34)where(4.1.35) P = JσF−Tis the �rst Piola-Kir
hho� stress tensor [147, p. 135℄. The average referentialstress is de�ned as(4.1.36) P̄ =
1

V

∫

B0

PdVwhi
h together with the surfa
e element transformation(4.1.37) t = σn, N = FT n, p = PN = Jσn = Jt ⇒ tda = pdAleads to the �nal form of the referential angular momentum balan
e(4.1.38) F̈E0 + V P̄ =

∫

∂B0

p⊗
(

X − X̄
)

dA+

∫

B0

ρob⊗
(

X− X̄
)

dVFrom the 
omputational point of view, the above equations improves mu
hupon the spatial formulation. Clearly, deformations of the pseudo rigid body 
anbe 
onveniently integrated in the referen
e frame, as soon as a 
onstitutive relation
P̄ = P̄ (F) is given. This is summarised in the box below.Referential pseudo-rigid dynami
s

F̈E0 + V P̄ =

∫

∂B0

p⊗
(

X − X̄
)

dA+

∫

B0

ρob ⊗
(

X− X̄
)

dV

P̄ = P̄ (F)



4.2. RIGID BODY 354.1.2. Constitutive equation. Cohen and Mun
aster [46, pp. 52-58℄ dis
ussa pseudo-rigid adaptation of the 
lassi
al 
onstitutive theory and examine severalwell established material models. In the 
urrent work a hyperelasti
 pseudo-rigid
ontinuum is 
onsidered, admitting the strain energy fun
tion Ψ, su
h that(4.1.39) P̄ = ∂FΨ (F)(4.1.40) Ψ =
1

4

[

FT F− I
]

: C :
[

FTF − I
](4.1.41) Cijkl = λδijδkl + µ [δikδjl + δilδjk]where the Saint Venant - Kir
hho� material was adopted. In the above λ and µare Lamé 
onstants, while δij is the Krone
ker delta. The Lamé 
onstants 
an beexpressed in terms of the Young modulus E and the Poisson ratio ν as(4.1.42) λ =

Eν

(1 + ν) (1 − 2ν)(4.1.43) µ =
E

2 + 2ν4.2. Rigid bodyThe mass 
onservation and the linear momentum balan
e do not 
hange forthe rigid body 
ase. Some work must be done however, in order to work out thebalan
e of the angular momentum. It is 
onvenient to start from equation (4.1.18)for pseudo-rigid bodies(4.2.1) d

dt
(LE) − LELT =

∫

∂B

t ⊗ (x − x̄) da+

∫

B

ρb ⊗ (x − x̄) dvThe deforming tensor L assigns velo
ities to spatial ve
tors, L : TB → TB. As itwas shown in Se
tion 3.1 of the previous 
hapter, for rigid bodies the same role isplayed by the spatial angular velo
ity ω̂. In other words, assuming an orthogonaldeformation gradient F = Λ, there follows(4.2.2) L = ω̂|F=Λso that(4.2.3) d

dt
(ω̂E) + ω̂Eω̂ =

∫

∂B

t⊗ (x − x̄) da+

∫

B

ρb⊗ (x − x̄) dvLet us now take the skew part of the above and 
ome ba
k to the ve
tor form ofthe equation. One 
an see that(4.2.4) skew [ω̂E] = ω̂E + Eω̂(4.2.5) skew [ω̂Eω̂] = ω̂Eω̂ − ω̂Eω̂ = 0(4.2.6) skew [a ⊗ b] = a ⊗ b− b ⊗ a



4.2. RIGID BODY 36where skew [·] was now used with respe
t to matri
es, and ω̂T = −ω̂ was utilised.When retrieving a ve
tor from (4.2.4), it 
an be noti
ed that(4.2.7) ve
skew [ω̂E + Eω̂] = [tr (E) I − E]ωBy de�nition(4.2.8) j = tr (E) I − Eis the spatial inertia tensor (I is the 3 × 3 identity). By noti
ing further(4.2.9) b× a = ve
skew [a⊗ b − b⊗ a]we 
an arrive at a ve
tor form of the spatial angular momentum 
onservation forrigid bodies(4.2.10) d

dt
(jω) =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvFor the 
omplete pi
ture, it remains to expand the d
dt (jω) term and 
ompute thereferential form of the equation. Noti
e that

Ė =

∫

B

ω̂ (x − x̄) ⊗ (x− x̄) ρdv +

∫

B

(x − x̄) ⊗ ω̂ (x − x̄) ρdv

= ω̂E− Eω̂(4.2.11)Now it is 
onvenient to start again with(4.2.12) d

dt
(ω̂E) = ˙̂ωE + ω̂Ė = ˙̂ωE + ω̂ω̂E− ω̂Eω̂and take the ve
tor representation its skew part. First and third 
omponents havealready been evaluated in (4.2.4) and (4.2.5). The remaining one 
an be 
omputedas(4.2.13) skew [ω̂ω̂E] = ω̂ω̂E− Eω̂ω̂whi
h happens to 
oin
ide with the ve
tor form(4.2.14) ve
skew [ω̂ω̂E− Eω̂ω̂] = ω × jωThe lo
al form of the spatial angular momentum balan
e reads now(4.2.15) jω̇ + ω × jω =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvThe referential form of the above equation follows by noti
ing that(4.2.16) ω = ΛΩ ⇔ ω̂ = ΛΩ̂ΛTand hen
e(4.2.17) ω × jω = ω̂jω = ΛΩ̂ΛT jΛΩwhi
h together with(4.2.18) ω̇ = Λ̇Ω + ΛΩ̇ = ΛΩ̂Ω + ΛΩ̇ = ΛΩ̇



4.3. MATRIX NOTATION 37allows to write(4.2.19) jΛΩ̇ + ΛΩ̂ΛT jΛΩ =

∫

∂B

(x − x̄) × tda+

∫

B

(x − x̄) × ρbdvand after left-multipli
ation by ΛT be
omes the desired referential form of thebalan
e(4.2.20) JΩ̇ + Ω × JΩ = ΛT

[∫

∂B

(x − x̄) × tda+

∫

B

(x− x̄) × ρbdv

]where by de�nition(4.2.21) J = ΛT jΛis the referential inertia tensor (also 
alled the body frame inertia tensor). It is notdi�
ult to verify that(4.2.22) J = tr (E0) I − E0Box below summarises rigid body dynami
s. Note, that 
onservation of the spatialEuler tensor is now automati
 ( ⋄E = Ė − ω̂E − Eω̂T = ω̂E − Eω̂ − ω̂E + Eω̂ = 0)and hen
e it was not stated expli
itly. This results from the rigidity, preventingany distortion of the 
o-deforming frame.Rigid dynami
s(1) Mass 
onservation
ṁ = 0(2) Linear momentum balan
e

m¨̄x =

∫

∂B

tda+

∫

B

ρbdv(3) Angular momentum balan
e
d

dt
(jω) = jω̇ + ω × jω = m ⇔ JΩ̇ + Ω× JΩ = ΛTm

m =

∫

∂B

(x − x̄) × tda+

∫

B

(x− x̄) × ρbdv

ω = ΛΩ, j = ΛJΛT , J = tr (E0) I − E04.3. Matrix notationWe adopt the following uniform matrix notation for the dynami
s of rigid andpseudo-rigid bodies(4.3.1) Mu̇ = fFor the rigid body 
ase the inertia operator reads(4.3.2) M =

[

J

mI

]and the generalised out of balan
e for
e is



4.4. LITERATURE 38(4.3.3) f =

[

ΛT
∫

∂B (x − x̄) × tda+ ΛT
∫

B (x − x̄) × ρbdv − Ω× JΩ
∫

∂B
tda+

∫

B
ρbdv

]For the pseudo-rigid body 
ase the inertia operator reads(4.3.4) M =









E0

E0

E0

mI







and the generalised out of balan
e for
e is(4.3.5) f =

[ ∫

∂B0
p ⊗

(

X − X̄
)

dA+
∫

B0
ρob⊗

(

X − X̄
)

dV − V P̄
∫

∂B
tda+

∫

B
ρbdv

]It should be noted, that it is the row-wise 
omposition of Ḟ in u (
f. Se
tion 3.3),whi
h allows us to use the 
omputationally 
onvenient blo
k-diagonal form of Mfor pseudo-rigid bodies. This results from the fa
t, that F̈ijE0jk 
an be seen asthree matrix-ve
tor produ
ts, where the ve
tors are rows of F̈, and the symmetryof E0 is utilised. 4.4. LiteratureRigid body dynami
s is a 
lassi
al subje
t and has been for example 
om-prehensively dis
ussed by Arnold [12℄. The monograph by Cohen and Mun
aster[46℄ provides the essential summary for the pseudo-rigid body 
ase. Althoughpseudo-rigid bodies seem not to have enjoyed many pra
ti
al appli
ations, the sim-ple nonlinear form of the governing equations made them spe
i�
ally attra
tivefor a theoreti
ally grounded resear
h. For example, Lewis and Simo [135℄ stud-ied stability of rotating pseudo-rigid bodies, Cohen and Ma
 Sithigh formulate apseudo-rigid impa
t model [47℄, and dis
uss the slip reversal problem for fri
tionalimpa
t [45℄, Nordenholz and O'Reilly [160, 161℄ dis
uss some aspe
ts of motionand stability of Cosserat points, and point out the 
ompatibility of their studieswith the pseudo-rigid 
ontext. Casey [36℄ gives a Lagrangian formulation of thepseudo-rigid dynami
s, and dis
usses imposition of the homogeneity of deforma-tion as a global 
onstraint. This gives rise to the latter dis
ussion with Steigmann[196, 37℄. Solberg and Papadopoulos [193℄ examine an energy 
onserving impa
tof a spheri
al pseudo-rigid body, and show that multiple impa
ts o

ur before re-bounding. The 
haoti
 behaviour of the pseudo-rigid impa
t hinted in [193℄ wasfurther studied by Kanso and Papadopoulos [113, 112℄.



CHAPTER 5Time steppingBefore de
iding upon a preferred time integration s
heme, it is useful to realisewhat our needs are. The general intention is to develop a framework dealing with
onstrained systems, with an emphasis on multi-body fri
tional 
onta
t problems.The employed kinemati
 models are quite simple, hen
e there is not mu
h of the dis-
repan
y between the eigenvalues related to the low and the high vibration modes.We intend to deal with non-smoothness su
h as sho
ks, and employ impli
it solversin order to deal with the 
onstraint. Having said that, it seems relevant to look for:
• A low order s
heme. Be
ause of a spe
i�
 manner of dealing with the non-smooth 
onstraints, the a

ura
y of any time-stepping will be redu
ed tothe �rst order, if su
h are present. Hen
e, there is not mu
h point inaiming at high a

ura
y. We will be satis�ed with a se
ond order method,as it will at the same time fa
ilitate an adequate treatment of smoothdynami
s.
• An expli
it s
heme. On one hand, the lightness of an expli
it s
hemeis preferred in order to balan
e out the expenses related to the impli
ittreatment of the 
onstraints. On the other hand, the issue of stabilitymight seem restri
tive. For the dynami
s of pseudo-rigid bodies this doesnot represent a signi�
ant 
ompromise. Skipping the few pseudo-rigidvibration modes by employing a large time step and a Newton solverseems vain, as one attempts to extra
t the rotational motion by meansof linearisation unaware of rotations. Why not resort to the rigid modelinstead? However, the issue of stability does not generally vanish for rigidbodies. In that respe
t, a new stable s
heme is proposed.Se
tion 5.1 summarises the time integration method employed for the dynami
sof pseudo-rigid bodies. This is followed by the exposition of a s
heme suitable forintegration of 
onstrained rotational motion (Se
tion 5.2). The quasi-stati
 
ase isbrie�y treated in Se
tion 5.3. A short literature review follows in Se
tion 5.4.5.1. Pseudo-rigid dynami
sThe time integrator ought to �t well into the stru
ture of the 
omputational
ode. In the expli
it analysis of 
onstrained multi-body dynami
s it is 
onvenientto employ the following time stepping(5.1.1) qt+ h

2 = qt +
h

2
ut(5.1.2) ut+h = ut + M−1hf t+ h

2 + M−1HTR(5.1.3) qt+h = qt+ h
2 +

h

2
ut+h39



5.1. PSEUDO-RIGID DYNAMICS 40where u is the velo
ity, q is the 
on�guration, M is the inertia operator, f representsthe generalised out of balan
e for
e, H in
orporates gradients of the 
onstraints,and R stores the 
onstraints rea
tions. The utility of the above formulae resultsfrom several elementary fa
ts:(1) Combination of the 
entral di�eren
e s
heme and the trapezoidal rulemaintains good 
onservation properties (Se
tion 5.1.3) and is se
ond ordera

urate (Se
tion 5.1.1). Conditional stability (Se
tion 5.1.2) is the only
ompromise here.(2) The mid-step 
on�guration qt+ h
2 
an be utilised for both, 
al
ulation ofthe 
onstraints gradients operator H and approximation of f t+ h

2 . In pra
-ti
e, this means that some of the 
onstraints (e.g. 
onta
ts) will be dis-
overed at the mid-step 
on�guration. As will be exempli�ed later, this
hoi
e allows to retain the se
ond order a

ura
y in the presen
e of smooth
onstraints.(3) The momentum balan
e (5.1.2) 
an be employed to 
al
ulate the 
on-straints rea
tions R. In parti
ular, the algebrai
 stru
ture of equation(5.1.2) allows for a 
onvenient reformulation, whi
h will be the subje
t ofdis
ussion in Chapter 7.(4) If a suitable kinemati
 formulation is used, the inverse of inertia M−1 is
omputed only on
e. Obviously, this is a desirable feature.The above s
heme is appli
able if the velo
ity and the 
on�guration belongto the same ve
tor spa
e. For pseudo-rigid bodies this was shown to be the 
ase(Se
tion 3.2). In fa
t, equations (5.1.1-5.1.3) are an expli
it reformulation and sim-pli�
ation of the impli
it s
heme given by Simo and Tarnow [190℄. The s
heme(5.1.1-5.1.3) was mentioned by Moreau [156℄, when presenting a �primitive exam-ple� of the sweeping pro
ess (
f. Chapter 10). In a sense, this thesis is merely avariation on the subje
t of this example. The following three se
tions show, thatthe above s
heme is identi
al with the 
entral di�eren
e method.5.1.1. A

ura
y. Assume that q̄ and ū are the solution of the initial valueproblem(5.1.4) Mu̇ = f (q, t)(5.1.5) q̇ = u(5.1.6) q (0) = q0, u (0) = u0For a general polynomial fun
tion f (x) it is easy to see that f (x+ hẋ) = f (x) +

hḟ (x) + O
(

h2
), where O (·) denotes terms growing no faster αh2, α > 0. Forexamplē

P

(

F +
h

2
Ḟ

)

=
1

2

(

F +
h

2
Ḟ

)

C :

{

(

F +
h

2
Ḟ

)T (

F +
h

2
Ḟ

)

− I

}

= P̄ (F) +
h

2
˙̄P (F) +O

(

h2
)(5.1.7)where P̄ is the �rst Piola-Kir
hho� stress 
omputed for the Saint Venant - Kir
hho�material model (F is the deformation gradient). Hen
e, one 
an write



5.1. PSEUDO-RIGID DYNAMICS 41(5.1.8) f

(

q̄t +
h

2
ūt, t+

h

2

)

= f
(

q̄t, t
)

+
h

2
ḟ
(

q̄t, t
)

+O
(

h2
)Also(5.1.9) ūt+h = ūt + h ˙̄ut +

h2

2
¨̄u +O

(

h3
)(5.1.10) q̄t+h = q̄t + h ˙̄qt +

h2

2
¨̄q + O

(

h3
)One 
an now 
ompute the residuals

τ1 (h) = M
(

ūt+h − ūt
)

− hf

(

q̄t +
h

2
ūt, t+

h

2

)

= h
[

M ˙̄ut − f
(

q̄t, t
)]

+
h2

2

[

M ¨̄u− ḟ
(

q̄t, t
)

]

+O
(

h3
)(5.1.11)

τ2 (h) = q̄t+h − q̄t − h
ūt + ūt+h

2

= h
[

˙̄qt − ūt
]

+
h2

2

[

¨̄q − ˙̄ut+h
]

+O
(

h3
)(5.1.12)and by assuming a su�
iently regularity of q̄, ū, f (terms in [·] vanish) 
on
lude,that ‖τ1 (h)‖ = O

(

h3
) and ‖τ2 (h)‖ = O

(

h3
). The method is then of the se
ondorder.5.1.2. Stability. Only the linearised 
ase is 
onsidered, whi
h a

ounts forthe ne
essary but not for the su�
ient stability 
ondition (
f. Hughes [98, p.135℄). The aim is to show brie�y that the linearised stability 
riterion is the sameas for the 
entral di�eren
e s
heme. Consider the following linearisation of equation(5.1.4)(5.1.13) Mδu̇ + Kδq = Owhere(5.1.14) K = −∂f/∂qis the tangent sti�ness operator, and δs denote linear variations of the respe
-tive arguments. Provided, that both M and K are symmetri
 and positive def-inite (semi- for K), standard spe
tral de
omposition related to the eigenproblem

(K− λM)ψ = 0 
an be applied. Assuming normalisation ΨT MΨ = I, where Ψis 
omposed of 
olumn-wise eigenve
tors ψ, equation (5.1.13) 
an be diagonalisedinto a number of s
alar equations of form(5.1.15) δu̇+ λδq = 0S
heme (5.1.1-5.1.3) is now applied to the above equation. After some simplealgebra, there follows(5.1.16) [

δut+h

δqt+h

]

=





(

1 − h2

2 λ
)

−hλ
h
(

1 − h2

4 λ
) (

1 − h
2

2
λ
)





[

δut

δqt

]
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h 
an be rewritten as(5.1.17) yt+h = AytThe s
heme is stable if(5.1.18) ‖A‖ ≤ 1where ‖·‖ is the natural linear operator norm, de�ned as the largest stret
h of aunit ve
tor, ‖A‖ = supy ‖Ay‖ / ‖y‖. If γi are the eigenvalues of A, there holds(5.1.19) ρ (A) = max
i

|γi| ≤ ‖A‖and hen
e the stability 
riterion 
an be repla
ed by ρ (A) ≤ 1, where ρ is 
alled thespe
tral radius of A. For a 2 × 2 matrix, the eigenvalues read(5.1.20) γ =
1

2

(tr (A) ±
√tr2 (A) − 4 det (A)

)and sin
e in our 
ase tr (A) = 2 − h2λ and det (A) = 1, there follows(5.1.21) γ = 1 − h2λ± h
√
h2λ2 − 4λ

2and 
onsequently |γ| ≤ 1 reads(5.1.22) −1 ≤ 1 − h2λ± h
√
h2λ2 − 4λ

2
≤ 1While the right inequality is satis�ed for any h, λ ≥ 0, the left one leads to the
onstraint on the time step(5.1.23) h ≤ 2√

λwhi
h is the same as for the 
entral di�eren
e s
heme [98, p. 94℄.5.1.3. Conservation. The following dis
ussion is largely based upon Simoand Tarnow [190℄. Let us de�ne the generalised momentum p = Mu and rewrite(5.1.4-5.1.6) as(5.1.24) ż = J∇H(5.1.25) z (0) = z0where(5.1.26) z =

[

q

p

]

, J =

[

0 I

−I 0

]and(5.1.27) H = Ek + Epis the Hamiltonian of the dynami
al system. By assumption we are dealing withan autonomous and 
onservative 
ase, that is the out of balan
e for
e in (5.1.4)



5.1. PSEUDO-RIGID DYNAMICS 43reads f (q) = −∂Ep/∂q, where Ep is the potential energy. The kineti
 energy is thequadrati
 form Ek = 1
2p

TM−1p. Hen
e, ∇H =
[

−f ,M−1p
]T . It is not di�
ult tonoti
e, that the Hamiltonian remains 
onstant along the integral 
urves of equation(5.1.24). Namely(5.1.28) 〈∇H, ż〉 = 〈∇H,J∇H〉 =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0In other words, solutions of (5.1.24-5.1.25) are the level 
urves of the total energyfun
tion and thus, the energy is 
onserved along the �ow de�ned by the ve
tor�eld J∇H . It 
an be also noti
ed that (5.1.28) holds, be
ause w (a,b) = 〈a,Jb〉is an anti-symmetri
 bilinear form (also 
alled the symple
ti
 two-form), and thus

w (a,a) = 0. Let M be the 
on�guration spa
e of all z. One distinguishes a 
lassof symple
ti
 transformations Gt : M → M , that preserve w in the sense that(5.1.29) d

dt
w (DGt (z) δz1, DGt (z) δz2) = 0for all δz1, δz2 ∈ TMz, where DGt (z) : TMz → TMGt(z) is the gradient of Gt.Note, that the above 
ondition means, that Gt moves points of M along some
urves in su
h a way, that the pull-ba
k of w de�ned at TMGt(z) is the same as wde�ned at TMz. That is(5.1.30) DGt (z)

T
JDGt (z) = JIn 
onsequen
e, under the 
hange of 
oordinates indu
ed by Gt the Hamilton-ian system (5.1.24-5.1.25) looks just the same. In the theory of Hamiltonian sys-tems su
h 
hanges of 
oordinates are 
alled 
anoni
al transformations. The phase�ow de�ned by equation (5.1.24) is 
omposed of 
anoni
al transformations (
f.Arnold [12, p. 190℄). When integrating the dynami
al problem numeri
ally, oneadvan
es the solution from zt to zt+h by �nding roots of some general nonlinear map

G
(

zt+h, zt
)

= 0. If G is symple
ti
, one hopes to obtain an approximation of theintegral 
urve, 
lose to the level 
urve of the Hamiltonian. Thus, in the numeri
alsense, symple
ti
 integrators are energy 
onserving. Te
hni
ally, the symple
ti
ityof G 
an be veri�ed on the basis of linearisation δzt+h = Aδzt, where the linearisedampli�
ation matrix A reads(5.1.31) A = A−1
1 A2and(5.1.32) A1 =

∂G
(

zt+h, zt
)

∂zt+h
, A2 = −∂G

(

zt+h, zt
)

∂ztBy analogy with (5.1.30), there needs to hold AT JA = J for the ampli�
ationmatrix to be symple
ti
 (and so for G). Note, that the 
ondition implies that
det (A) = 1, and thus the spe
tral radius ρ (A) = 1 (whi
h was the 
ase in theprevious se
tion). At this point it is 
onvenient to noti
e, that J = −JT = −J−1.Now, the 
ondition AT JA = J 
an be spelt out as AT

2 A−T
1 JA−1

1 A2 = J, furthertransformed into A−T
1 JA−1

1 = A−T
2 JA−1

2 and inverted, resulting in(5.1.33) A1JAT
1 − A2JAT

2 = OWe are �nally in the position to verify symple
ti
ity of the s
heme (5.1.1-5.1.3). Inour 
ase, the operator G reads
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(

zt+h, zt
)

= zt+h − zt − hJ

[

f
(

qt + h
2M−1pt

)

M−1
(

pt + pt+h
)

/2

]and hen
e(5.1.35) A1 = I − h

[

0 I

−I 0

] [

0 0

0 1
2M

−1

]

=

[

I −h
2M−1

0 I

](5.1.36) A2 = I + h

[

0 I

−I 0

] [

K h
2KM−1

0 1
2M

−1

]

=

[

I h
2M

−1

−hK I − h2

2 KM−1

]where K = ∂f (q) /∂q. After some algebra there follows, that the two triple prod-u
ts in (5.1.33) read(5.1.37) A1JAT
1 = A2JAT

2 = Jand thus the time stepping (5.1.1-5.1.3) is symple
ti
.5.2. Rigid dynami
sAs far as the linear motion is 
on
erned, the dis
ussion of the previous se
-tion applies. The rotational motion is solely of interest here. In prin
iple, theobje
tive is to devise a time integrator, preserving the stru
ture and the qualitiesof s
heme (5.1.1-5.1.3). In the pursuit of this goal it will be ne
essary to abuseslightly the notion of geometri
al 
onsisten
y, although the resulting s
heme willhave the qualities of modest 
omputational 
ost, se
ond order a

ura
y, and stabil-ity. Two versions of the new s
heme are 
onsidered. The fully expli
it one requiresless 
omputational e�ort, although it does experien
e a negative energy drift. Thesemi-expli
it version does not drift, and it retains expli
itness in the evaluation ofthe external for
e. Nonetheless, solution of a lo
al impli
it problem is ne
essary inorder to update the 
on�guration.After some preliminary remarks in Se
tion 5.2.1, the proposed s
heme is spe
-i�ed in Se
tion 5.2.2. Some 
omments about the 
onservation and stability prop-erties are given in Se
tion 5.2.3. A single illustrative example is given in Se
tion5.2.4. This is followed by a brief dis
ussion on e�
ien
y (Se
tion 5.2.5).5.2.1. Preliminaries. We re
all, that the orthogonal rotation operator Λ (t)belongs to a 
urved spa
e, the spe
ial orthogonal group SO (3). It is updated inthe multipli
ative manner(5.2.1) Λ (t+ h) = Λ (t) exp [Ψ (h)]where Ψ (h) is the in
remental rotation ve
tor, and exp [·] is the exponential mapde�ned by the Rodrigues formula(5.2.2) exp [Ψ] = I +
sin ‖Ψ‖
‖Ψ‖ Ψ̂ +

1 − cos ‖Ψ‖
‖Ψ‖2 Ψ̂2Above, I is the 3 × 3 identity operator, Ψ̂ 
reates the skew symmetri
 matrix outof a 3-ve
tor Ψ, and ‖·‖ stands for the Eu
lidean norm. As was already dis
ussedin Se
tion 3.1, the in
rement of rotation ‖Ψ‖ should be smaller then 2π in order toavoid the singularity of the exponential map. In pra
ti
e, and spe
i�
ally for the
onstrained systems, this is a rather realisti
 assumption.In the view of the update formula (5.2.1), the �nite rotation ve
tor Ψ 
an beper
eived as belonging to the tangent spa
e TR(t)SO (3). Operations su
h as ve
tor



5.2. RIGID DYNAMICS 45addition Θ1 + Θ2 make sense only if both ve
tors belong to the same tangentspa
e Θ1,Θ2 ∈ TR(t)SO (3) (geometri
al 
onsisten
y). When Θ1 ∈ TR(t)SO (3)and Θ2 ∈ TR(t+h)SO (3) the di�erential of the exponential map is employed inorder to shift a sele
ted ve
tor from its own tangent spa
e into the tangent spa
eof the other ve
tor. An example is(5.2.3) (

TTΘ1

)

+ Θ2where(5.2.4) T = I +
1 − cos ‖Ψ‖

‖Ψ‖2 Ψ̂ +
‖Ψ‖ − sin ‖Ψ‖

‖Ψ‖3 Ψ̂2was already de�ned as (3.1.25) in Se
tion 3.1. As Ψ̂Ψ = Ψ×Ψ = 0, there followsthat TTΨ = Ψ, whi
h represents a useful fa
t.The balan
e of the angular momentum, expressed in the body-frame, reads(5.2.5) JΩ̇ + Ω × JΩ = ΛT twhere J is the 
onstant referential inertia tensor, Ω is the referential angular velo
-ity, and t is the spatial torque. It is noteworthy that Ω (t) ∈ TR(t)SO (3), so thatan extrapolation Ψ (h) = hΩ + h2

2 Ω̇ makes sense.Another form of the balan
e of the angular momentum follows from the spatialformula(5.2.6) d

dt
(jω) = twhere j is the time-dependent spatial inertia tensor (j =ΛJΛT ), and ω is the spatialangular velo
ity (ω = ΛΩ). The above expression 
an be integrated over the timeinterval [t, t+ h]

jω|t+h
t = j (t+ h)ω (t+ h) − j (t)ω (t)

= Λ (t+ h)JΛT (t+ h)ω (t+ h) − Λ (t)JΛT (t)ω (t)

= Λ (t) exp [Ψ (h)]JΩt+h − Λ (t)JΩt

=

∫ t+h

t

tdt(5.2.7)resulting in(5.2.8) Ω (t+ h) = J−1 exp [−Ψ (h)]

[

JΩ (t) + ΛT (t)

∫ t+h

t

tdt

]Dis
retisations of the above formula give rise to the variety of well-behaved timestepping methods (e.g. Krysl [126℄). Nevertheless, an impli
it dependen
e of thein
remental rotation ve
tor Ψ on the external torque t pre
ludes a dire
t algorith-mi
 analogy with (5.1.2).5.2.2. S
heme. The proposed s
heme reads(5.2.9) Λt+ h
2 = Λt exp

[

h

2
Ωt

](5.2.10) Tt+ h
2 =

(

Λt+ h
2

)T

tt+ h
2
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2 = J−1

[

exp

[

−h
2
Ωt

]

JΩt +
h

2
Tt+ h

2

](5.2.12) Ωt+h
1 = Ωt + J−1h

[

Tt+ h
2 − Ωt+ h

2 × JΩt+ h
2

]If expli
it(5.2.13) Λt+h = Λt+ h
2 exp

[

h

2
Ωt+h

1

](5.2.14) Ωt+h
2 = J−1 exp

[

−h
2
Ωt+h

1

] [

exp

[

−h
2
Ωt

]

JΩt + hTt+ h
2

]otherwise(5.2.15) solve (exp

[

h

2
Ωt+h

3

]

JΩt+h
3 = exp

[

−h
2
Ωt

]

JΩt + hTt+ h
2

)(5.2.16) Λt+h = Λt+ h
2 exp

[

h

2
Ωt+h

3

]In the �rst formula (5.2.9) the mid-step rotation Λt+ h
2 is extrapolated with theforward Euler s
heme. It is then used to 
ompute the referential torque 
omponentsin (5.2.10). In equation (5.2.11) the idea of LIEMID[E1℄ algorithm by Krysl [126℄is borrowed in order to approximate the mid-step angular velo
ity Ωt+ h

2 . Formula(5.2.8) is employed, where the spatial torque integral is approximated by(5.2.17) ∫ t+ h
2

t

tdt ≃ h

2
tt+ h

2This allows to 
ompute the external for
e only on
e and reuse it at a later stage. The
entral di�eren
e s
heme is applied to the referential angular momentum balan
e informula (5.2.12). This step is somewhat naive, but we need it in order to preservethe algebrai
 stru
ture of formula (5.1.2). This is also the sour
e of the geometri
alin
onsisten
y. Due to the 
ollinearity of the in
remental rotation ve
tor and theinitial angular velo
ity there holds(5.2.18) TT

[

h

2
Ωt

]

Ωt = Ωtso that the right hand side of (5.2.12) resides in the tangent spa
e TΛ(t+h/2)SO (3).The left hand side, however, belongs to TΛ(t+h)SO (3). Thus, the equality in(5.2.12) is not formally rigorous. Furthermore, Ωt+h
1 generally implies neither theangular momentum 
onservation, nor energy 
onservation (
f. Se
tion 5.2.3).If the fully expli
it version of the s
heme is to be exe
uted, one would nev-ertheless like to make some use of Ωt+h

1 . As the right hand side of (5.2.12) is in
TΛ(t+h/2)SO (3), and it is supposed to approximate Ω (t+ h), one 
an notionallyinterpret (5.2.12) as an assignment to Ωt+h

1 of its own pull-ba
k (along the ex-ponential map) to TΛ(t+h/2)SO (3). Now formula (5.2.16) be
omes a �
onsistent�ba
kward Euler step, updating the mid-step rotation into Λt+h. There also holds(5.2.19) TT

[

h

2
Ωt+h

1

]

Ωt+h
1 = Ωt+h

1
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h happens to alleviate the in
onsisten
y (again, this is only a notional tri
k).The s
heme (5.2.9-5.2.13) has two drawba
ks: 
onservation of the angular momen-tum is only approximate, and the kineti
 energy experien
es a positive drift. This isremedied in (5.2.14), where the angular momentum 
onservation is algorithmi
allyenfor
ed. As will be illustrated, the s
heme (5.2.9-5.2.14) has a negative energydrift and be
omes strongly dissipative for large time steps.Although in appli
ations involving small in
remental rotations (e.g. 
onstrainedsystems) the s
heme (5.2.9-5.2.14) will be often su�
ient, it is useful to have at handa re�ned method, that does not experien
e the energy drift. Formulae (5.2.9-5.2.13)are still of use, although Ωt+h
1 be
omes now merely a dummy variable. Equation(5.2.12) needs to be stated only to solve for the 
onstraint rea
tions (whi
h 
on-tribute to Tt+ h

2 ). After that, the �nal impli
it Euler half-step is exe
uted morerigorously. As the 
on�guration has already been advan
ed from Λt to Λt+ h
2 , wedo not wish to undo it. Rather, the following mid-point approximation of (5.2.8) isexer
ised(5.2.20) exp

[

h

2
Ωt

]

exp

[

h

2
Ωt+h

]

JΩt+h = JΩt + htt+ h
2where the �rst exponential has already been 
omputed, while the se
ond one im-pli
itly involves Ωt+h. It should be noted, that the rotation update Λ (t+ h) =

Λ (t) exp [Ψ (h)] makes sense, provided Ψ (h) ∈ TΛ(t)SO (3). In that respe
t, whilethe �rst update Λt+ h
2 = Λt exp

[

h
2Ωt

] is 
orre
t, the 
onse
utive one Λt+h =

Λt+ h
2 exp

[

h
2Ωt+h

] might seem in
onsistent. More 
orre
tly, there should hold(5.2.21) Λt+h = Λt+ h
2 exp

[

TT

[

−h
2
Ωt+h

]

h

2
Ωt+h

]where h
2Ω

t+h ∈ TΛ(t+h)SO (3) was 
arried over to TΛ(t+h/2)SO (3) by means of thereverse half-rotation Ψ (h) = −h
2Ωt+h, and hen
e TT

[

−h
2Ω

t+h
]. Again, by the
ollinearity argument, there follows TT

[

−h
2Ωt+h

]

h
2Ω

t+h = h
2Ωt+h. The impli
itsolution (5.2.15) requires few iterations of Newton s
heme. The velo
ity Ωt+h

1 isused as an initial guess. The �nal 
on�guration update follows in (5.2.16).In the sequel the s
heme (5.2.9-5.2.13) will be addressed as NEW1, the s
heme(5.2.9-5.2.14) will be addressed as NEW2 and the s
heme (5.2.9-5.2.12, 5.2.15-5.2.16) will be addressed as NEW3.5.2.3. Conservation and stability. Conservation and stability propertiesare most 
onveniently analysed in the spa
e of referential angular momenta, Π =
JΩ. Assume, that the external torque t ≡ 0. Conservation of the spatial angularmomentum reads then(5.2.22) Λ (t)Π (t) = Λ (0)Π (0)whi
h together with the 
onservation of the kineti
 energy implies(5.2.23) 1

2
ΠT (t)Π (t) =

1

2
ΠT (0)Π (0)(5.2.24) 1

2
ΠT (t)J−1Π (t) =

1

2
ΠT (0)J−1Π (0)where the kineti
 energy Ek = 1

2Ω
TJΩ. Free rigid rotation 
an be then viewedas a purely geometri
al problem of interse
tion between the sphere (5.2.23) andthe ellipsoid (5.2.24) in the Π-spa
e. In general, the interse
tion 
urve is of higher
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annot be written down in an expli
it form. A rotation integrator tra
esthe 
urve numeri
ally. In parti
ular, let us have a look at formula (5.2.12)
Πt+h

1 = Πt + hΠt+ h
2 × Ωt+ h

2(5.2.25)At any time t, Π (t) is normal to the momentum sphere (5.2.23) and Ω (t) is normalto the energy ellipsoid (5.2.24). Hen
e, the produ
t Πt+ h
2 ×Ωt+ h

2 
an be interpretedas an approximation of the tangent to the interse
tion 
urve at t+h/2, and (5.2.25)be
omes a surfa
e interse
tion tra
ing s
heme. In our 
ase, Πt+ h
2 is obtained from

Πt by rolling on the surfa
e of the momentum sphere a

ording to the formula(5.2.26) Πt+ h
2 = exp

[

−h
2
Ωt

]

ΠtThis is a �rst order update, as it results from the solution of a linear ordinaryequation of rotation about a �xed axis (
f. remarks on the origin of the exponentialmap in Se
tion 3.1). Hen
e, Πt+ h
2 × Ωt+ h

2 = Π
(

t+ h
2

)

× Ω
(

t+ h
2

)

+ O
(

h2
),where Π (t) ,Ω (t) is the exa
t solution. In analogy with Se
tion 5.1.1, one 
anshow that (5.2.25) is of se
ond order. Unfortunately, as a tangent to two 
onvexsurfa
es is used, points generated by (5.2.25) lay outside of both surfa
es. Onlywith h → 0 they approa
h the a
tual interse
tion 
urve. For large h it is easy tostep far outside of both surfa
es and rapidly 
limb up over the in
reasing energylevels. NEW1 
onserves neither the momentum nor the energy and is prone to the
atastrophi
 energy blowup.By algorithmi
 enfor
ement of the momentum 
onservation (5.2.14), the solu-tion iterates 
ling to the momentum sphere. There holds(5.2.27) Πt+h

2 = exp

[

−h
2
Ωt+h

1

]

exp

[

−h
2
Ωt

]

Πtand thus, one always stays on the surfa
e of the 
onserved momentum. Stayingwithin a 
ompa
t set prevents an unbounded growth of the energy. The energyblowup is not possible for NEW2. The dissipative behaviour of the s
heme however,is not explained by this fa
t alone. Generally, a sequen
e of points on a 
ompa
tset will have at least one a

umulation point. Qualitatively, only three types ofbehaviour are possible (Figure 5.2.1):
• Swelling of the energy ellipsoid until its smallest radius and the radius ofthe momentum sphere be
ome equal. The �nal state 
orresponds to thestable rotation about the axis of the minimum moment of inertia. Thisbehaviour is typi
al for �rst order updates of kind (5.2.26), but also forexample the expli
it s
heme by Simo and Wong [100℄.
• Shrinking of the energy ellipsoid until its largest radius and the radius ofthe momentum sphere be
ome equal. The �nal state 
orresponds to thestable rotation about the axis of the maximum moment of inertia. Thisis the 
ase for NEW2.
• Os
illation about the interse
tion 
urve of the energy ellipsoid and themomentum sphere. This is the 
ase for NEW3, as well as for many otherimpli
it algorithms [126, 171℄.Swelling is the easiest to analyse. While applying (5.2.26) we would like toknow, how mu
h the energy grows from t to t + h/2. This 
an be estimated bethe linearisation of the mid-step kineti
 energy with respe
t to the time step. Themid-step energy reads
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shrinking oscillationswellingFigure 5.2.1. Qualitative behaviour of integration methods en-for
ing 
onservation of the spatial angular momentum. Se
tionthrough the momentum sphere and the energy ellipsoid. The el-lipsoid either swells (s
hemes with positive energy drift), shrinks(s
hemes with negative energy drift), or os
illates (stable s
hemes).(5.2.28) E

t+ h
2

k =
1

2

〈

Πt, exp

[

h

2
Ωt

]

J−1 exp

[

−h
2
Ωt

]

Πt

〉and its in
rement is roughly(5.2.29) △Et+ h
2

k ≃ Ė
t+ h

2

k (0)h+ Ë
t+ h

2

k (0)
h2

2where Ėk (0) = d
dhEk (h)

∣

∣

h=0
. The �rst derivative of the energy reads then

Ė
t+ h

2

k (0) =
1

4

〈

Πt, Ω̂tJ−1Πt
〉

− 1

4

〈

Πt,J−1Ω̂tΠt
〉

=
1

4

〈

Πt, Ω̂tJ−1Πt
〉

− 1

4

〈

J−1Πt, Ω̂tΠt
〉

=
1

4

〈

Πt, Ω̂tΩt
〉

− 1

4

〈

Ωt, Ω̂tΠt
〉

= 0(5.2.30)where Ω̂tΩt = 0 and Ωt ⊥ Ω̂tΠt were used. The se
ond derivative takes thefollowing form
Ë

t+ h
2

k (0) =
1

8

〈

Πt, Ω̂tΩ̂tJ−1Πt
〉

− 1

4

〈

Πt, Ω̂tJ−1Ω̂tΠt
〉

+
1

8

〈

Πt,J−1Ω̂tΩ̂tΠt
〉

=
1

8

〈

Πt, Ω̂tΩ̂tΩt
〉

+
1

4

〈

Ω̂tΠt,J−1Ω̂tΠt
〉

+
1

8

〈

Ωt, Ω̂tΩ̂tΠt
〉

=
1

4

〈

Π̂tΩt,J−1Π̂tΩt
〉(5.2.31)where terms with 1

8 vanish by similar arguments. Finally(5.2.32) △Et+ h
2

k ≃ h2

8

〈

Π̂tΩt,J−1Π̂tΩt
〉The above energy in
rement is always positive due to the same de�niteness of J.Clearly, if update (5.2.26) was to be solely used for advan
ing the motion, thesolution point would 
limb up the energy levels on the surfa
e of the momentumsphere, until Πt and Ωt would be
ome aligned and no more growth 
ould happen.At that stage, the energy ellipsoid would 
ontain the momentum sphere and theirinterse
tion would 
omprise only two opposite points.



5.2. RIGID DYNAMICS 50The �nal update of momentum in NEW2 reads(5.2.33) Πt+h
2 = exp

[

−h
2
Ωt+h

1

]

Πt+ h
2Point Πt+ h

2 
orresponds to the energy growth by at least (5.2.32). We shall investi-gate, whether the energy 
an be further in
reased by performing the step (5.2.33).Note, that (5.2.33) des
ribes rotation of Πt+ h
2 about the �xed axis Ωt+h

1 . At time
t+ h/2 we shall 
onsider the instantaneous linearisation of (5.2.33)

d

dh
Πt+h

2

∣

∣

∣

∣

h=0

=
1

2
Πt+ h

2 × Ωt+h
1(5.2.34)A linearised stability 
riterion is that d

dhΠt+h
2

∣

∣

h=0
should not have a 
omponentalong the dire
tion of the energy growth. Namely(5.2.35) 〈

Πt+ h
2 × Ωt+h

1 ,Ωt+ h
2

〉

≤ 0where Ωt+ h
2 is the energy gradient at t+ h/2, and the fa
tor of 1

2 was dropped o�.The above 
ondition 
an be expanded as follows
〈

Πt+ h
2 ×

[

Ωt − J−1h
(

Ωt+ h
2 × JΩt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Πt+ h
2 ×

[

Ωt + J−1h
(

Πt+ h
2 × Ωt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Πt+ h
2 × Ωt,Ωt+ h

2

〉

+
〈

Πt+ h
2 ×

[

J−1h
(

Πt+ h
2 × Ωt+ h

2

)]

,Ωt+ h
2

〉

=
〈

Π̂t+ h
2 Ωt,Ωt+ h

2

〉

+ h
〈

Π̂t+ h
2 J−1Π̂t+ h

2 Ωt+ h
2 ,Ωt+ h

2

〉

=

−
〈

Ωt, Π̂t+ h
2 Ωt+ h

2

〉

− h
〈

Π̂t+ h
2 Ωt+ h

2 ,J−1Π̂t+ h
2 Ωt+ h

2

〉

=(5.2.36)Let us now de�ne three fun
tions(5.2.37) a (h) = −
〈

Ωt, Π̂t+ h
2 Ωt+ h

2

〉(5.2.38) b (h) = −
〈

Π̂t+ h
2 Ωt+ h

2 ,J−1Π̂t+ h
2 Ωt+ h

2

〉(5.2.39) c (h) =
1

2
(a (h) + hb (h))where for c (h), the previously dropped fa
tor of 1

2 was restored. The stability
riterion reads now(5.2.40) a (h) + hb (h) ≤ 0Obviously, b (h) ≤ 0 for any h due to the positive de�niteness of J−1. Onthe other hand, a simple geometri
 arguments shows that, at least for small h,fun
tion a (h) ≥ 0. In order to see that, one needs to 
onsider 
ir
ulation of Π (t)along the interse
tion 
urve. Due to the interpretation of Π̂ (t)Ω (t) as the tangentto the 
urve, Π̂ (t+ s)Ω (t+ s) points away from Π (t) for some su�
iently small
s > 0, be
ause Π (t+ s) runs away from Π (t) along Π̂ (t+ s)Ω (t+ s). As Ω (t)is normal to the tangent plane of the energy ellipsoid at time t, the 
ompleteinterse
tion 
urve lays behind this plane. For su�
iently small s, point Π (t+ s)
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Ω(t+s)Π(t+s)

Ω(t) Ω(t+s)

Π(t+s)

x

Figure 5.2.2. Cir
ulation of Π (t) along the sphere-ellipsoid in-terse
tion 
urve. Due to the 
onvexity of the interse
ting surfa
es,for small s there holds 〈Ω (t) ,Π (t+ s) × Ω (t+ s)〉 ≤ 0.runs away from the plane and thus Π̂ (t+ s)Ω (t+ s) does not have a 
omponentaligned with the normal Ω (t). Hen
e, a (h) ≥ 0 for small h (Figure 5.2.2). In orderto verify 
ondition (5.2.40) for h→ 0, the following linearisation is 
onsidered(5.2.41) a (0) + ȧ (0)h+ 0b (0) + b (0)h+O
(

h2
)

≤ 0where the over-dot 
orresponds to d
dh . Re
alling, that Ωt+ h

2 = J−1 exp
[

−h
2Ωt

]

Πt,one obtains
d

dh

(

Ωt+ h
2

)

∣

∣

∣

∣

h=0

= −1

2
J−1Ω̂tΠt =

1

2
J−1Π̂tΩt(5.2.42)and

d

dh

(

Π̂t+ h
2 Ωt+ h

2

)

∣

∣

∣

∣

h=0

=
d

dh

(

Πt+ h
2

)

∣

∣

∣

∣

h=0

× Ωt + Πt × d

dh

(

Ωt+ h
2

)

∣

∣

∣

∣

h=0

=
1

2

{[

Π̂tΩt
]

× Ωt + Πt × J−1Π̂tΩt
}(5.2.43)so that

ȧ (0) = −
〈

Ωt,
1

2

{[

Π̂tΩt
]

× Ωt + Πt × J−1Π̂tΩt
}

〉

= 0 − 1

2

〈

Ωt, Π̂tJ−1Π̂tΩt
〉

=
1

2

〈

Π̂tΩt,J−1Π̂tΩt
〉(5.2.44)As a (0) = −

〈

Ωt, Π̂tΩt
〉

= 0 and b (0) = −
〈

Π̂tΩt,J−1Π̂tΩt
〉, there holds

a (0) + ȧ (0)h+ 0b (0) + b (0)h+O
(

h2
)

=

(ȧ (0) + b (0))h+O
(

h2
)

=

−h
2

〈

Π̂tΩt,J−1Π̂tΩt
〉

+O
(

h2
)

≤ 0(5.2.45)This shows, that for su�
iently small h, the kineti
 energy is always de
reased from
t + h/2 to t + h for the s
heme NEW2. The amount of the energy drop 
an beestimated as(5.2.46) △Et+h

k ≃ h

2
c (h) ≃ −h

2

8

〈

Π̂tΩt,J−1Π̂tΩt
〉



5.2. RIGID DYNAMICS 52
 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  10  20  30  40  50  60  70  80  90  100

M
ag

ni
tu

de
 o

f i
nc

re
m

en
ta

l r
ot

at
io

n 
[d

eg
]

Time

h = 1   
h = 1/2
h = 1/4
h = 1/8

Figure 5.2.3. Free rotation. Magnitude of the in
remental rota-tion ve
tor at a range of time steps.whi
h together with (5.2.32) shows, that up to the se
ond order terms the energygrowth and drop 
an
el out ea
h other. In other words(5.2.47) Et+h
k = Et

k +O
(

h3
)This 
on
lusion is not really signi�
ant, as it does not imply that NEW2 is ashrinking s
heme. In fa
t, numeri
al analysis shows that the long term negativedrift of NEW2 is overlapped by some up and down os
illations, related to the lo
al
urvature of the interse
ting surfa
es. This suggests, that the lo
al analysis ofthe above kind 
annot be 
on
lusive. We do not attempt further analysis. In thefollowing se
tion we resort instead to the numeri
al example.5.2.4. Free rotation. More examples will follow in Chapter 13. The 
urrentone is referred to after Krysl [126℄ and is meant to provide a brief summary ofthe essential features of the proposed s
hemes. The initial rotation is identity, theinitial angular velo
ity reads Ω0 = [0.45549, 0.82623, 0.03476], and the referentialinertia tensor is J = diag [0.9144, 1.098, 1.66]. No external for
ing is assumed.The proposed s
hemes are 
ompared against LIEMID[EA℄ by Krysl [126℄,whi
h is one of the best performing s
hemes today (although its 
omputational
ost per time step is rather high). In some of the 
omparisons the expli
it s
hemeby Simo and Wong [100℄ is also in
luded, as it requires relatively little 
omputa-tional e�ort per time step. It should be noted that neither the expli
it s
heme bySimo and Wong, nor LIEMID[EA℄ 
omply with the algebrai
 stru
ture of (5.1.2),whi
h from our point of view is a drawba
k.Figure 5.2.3 illustrates the magnitudes of the in
remental rotation ve
tor 
om-puted with NEW3, at a range of time steps. It is seen that small in
rements ofrotation, say ‖Ψ‖ ≪ 10 deg1, o

ur for time steps h < 1/8. This range of in
re-mental rotations is of the main interest here, although for the sake of illustrationthis and other examples in
lude larger in
rements.Figure 5.2.4 illustrates the 
hara
teristi
 momentum phase spa
e behaviour ofthe proposed s
hemes. The plots have been obtained over 500 steps of size h = 1(about 55 deg of in
remental rotation per time step). Clearly, NEW1 divergesgradually towards the energy blowup. NEW2 dissipates the energy and after a fewtens of steps around the original interse
tion 
urve, it swit
hes to the qualitativelynew state, asymptoti
ally equivalent to the rotation about the axis of the maximum1‖Ψ‖ =

‚

‚

‚

h
2
Ω

t
‚

‚

‚ +
‚

‚

‚

h
2
Ω

t+h
‚

‚

‚ is used for illustration
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Figure 5.2.4. Free rotation. Body-frame angular momentumspa
e plots for 500 steps of size h = 1 (about 55 deg of in
remen-tal rotation per time step). The large time step allows to 
apture
hara
teristi
 behaviour of all three s
hemes. NEW1 gradually di-verges, and it is about to blow up within the next few hundreds ofiterations. NEW2 dissipates energy until a stable rotation aboutthe axis of the maximum moment of inertia is rea
hed. NEW3stably os
illates about the original interse
tion 
urve between themomentum sphere and the energy ellipsoid.moment of inertia. NEW3, on the other hand, os
illates stably about the originalinterse
tion 
urve between the momentum sphere and the energy ellipsoid.Figure 5.2.5 illustrates the 
hara
teristi
 energy behaviour of the proposed algo-rithms. NEW1 experien
es a positive energy drift, while NEW2 experien
es nearlysymmetri
al negative energy drift. NEW3, similarly to LIEMID[EA℄ displays ex
el-lent stability although the solution in both 
ases is os
illatory. NEW3 os
illates onthe negative side and with larger amplitude then LIEMID[EA℄. The latter methodos
illates on the positive side.Figure 5.2.6 illustrates 
onservation of the spatial angular momentum (π =
ΛΠ). NEW2, NEW3 and LIEMID[EA℄ 
learly 
onserve the angular momentum(whi
h is their algorithmi
 feature). On the other hand, NEW1 displays an os
illa-tory drift for the large time step. For the smaller step, although not visible in the�gure, the drift is still present.
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Figure 5.2.5. Free rotation. Kineti
 energy for step sizes h = 1(left) and h = 1/8 (right).
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NEW3Figure 5.2.7. Free rotation. Convergen
e of the body-frame an-gular momentum Π = JΩ (left), and the rotation operator Λ(right). The referen
e solutions Π∗ and Λ∗ have been 
omputedwith LIEMID[EA℄ and the time step h = 2−15 at time t = 100.The solutions Π (h) and Λ (h) were 
omputed for time steps h ∈

{

1, 2−1, ..., 2−10
}.
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LIEMID[EA]NEW3NEW2Simo−WongFigure 5.2.8. Free rotation. Normalised runtimes 
omparison forten million steps of size h = 1
8 .Figure 5.2.7 illustrates the 
onvergen
e in the L2 norm, of the referential an-gular momentum Π = JΩ and the rotation operator Λ. The referen
e solutions

Π∗ and Λ∗ have been 
omputed with LIEMID[EA℄ and the time step h = 2−15at time t = 100. The solutions Π (h) and Λ (h) were 
omputed for time steps
h ∈

{

1, 2−1, ..., 2−10
} at time t = 100. It is seen that all of the 
ompared algo-rithms are se
ond order a

urate. All versions of the new s
heme outperform theexpli
it algorithm by Simo and Wong [100℄. Interestingly NEW1 displays ex
el-lent a

ura
y of the body-frame angular momentum and performs on a par withLIEMID[EA℄. For small time steps the a

ura
y of the rotation operator obtainedwith NEW1 also 
ompares well with the one rea
hed by LIEMID[EA℄.5.2.5. E�
ien
y. Many of the re
ently proposed algorithms [126, 163, 171℄posses ex
ellent stability properties and 
an pursue their tasks with extremely large

O (π) in
remental rotations. The pri
e for those advantages lies in the ne
essity forsolving lo
al impli
it problems, for whi
h Newton iterations are usually employed.For large time steps, the lo
al solutions involve evaluations of the exponential mapat the magnitudes of the rotation angle, for whi
h the trun
ated Taylor expansionof exp [·] is not e�e
tive. Thus, although sparse steps 
an be performed, the 
ost ofan individual step is high.In the expli
it multi-body analysis with 
onta
ts and joints the possibility ofperforming O (π) steps does not seem pra
ti
al. The time step has to be smallenough in order to 
apture the geometri
al nonlinearities of the multi-body inter-a
tions. This is why a lightweight, but well behaved time-stepper is usually a better
hoi
e. In this respe
t, NEW2 involves evaluation of only two exponential maps perstep. For small in
remental rotations this 
an be well dealt with by the trun
atedTaylor expansion of exp [·].For long term simulations, where the negative drift of NEW2 
annot be a
-
epted, NEW3 seems to be a good alternative, as it retains the expli
itness of thefor
e evaluation and improves mu
h upon the stability. Nevertheless, the singleimpli
it problem needs to be solved. In order to evaluate and 
ompare the rela-tive e�
ien
y of the proposed s
hemes, ten millions time steps of size 1
8 has beenperformed for the free rotation example of the previous se
tion. Figure 5.2.8 sum-marises the normalised runtimes. The expli
it s
heme by Simo and Wong [100℄
omputes only one exponential map and hen
e requires least time. NEW2 withits two exponential map evaluations pla
es itself right after the s
heme by Simoand Wong. NEW3 on the other hand takes roughly half of the time needed byKrysl's LIEMID[EA℄ [126℄. This is be
ause the latter method involves solution oftwo impli
it problems per time step.
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Figure 5.2.9. Free rotation. Loss of orthogonality illustrated bythe ∥∥I − ΛTΛ
∥

∥ norms 
omputed with NEW3 after one millionsteps with h ∈
{

1
2 ,

1
4 ,

1
8 ,

1
16

}. The left graph summarises the re-sults 
omputed with the numeri
ally exa
t routines. The rightgraph 
orresponds to the trun
ated expansion of exp [·].As the trun
ated Taylor expansion of exp [·] has been mentioned above, it isrelevant to verify whether the orthogonality of the rotation operator has not been
ompromised. Figure 5.2.9 illustrates the norms ∥∥I − ΛTΛ
∥

∥ 
omputed with NEW3after one million steps of the free rotation test at a range of time steps h = 1
2 , ...,

1
16 .The left graph 
orresponds to the numeri
ally exa
t 
omputations (library routineshas been used). The right graph 
orresponds to the same 
omputations employingthe trun
ated expansion of the s
alar terms in (5.2.2). It is seen that only for thelargest in
remental rotation magnitude (27 deg) some loss of orthogonality 
an beobserved. Six terms in the expansions were used.5.3. Quasi-stati
sQuasi-stati
 multi-body simulations with 
onta
t 
onstraints represent a subtleissue. During this sort of simulation individual members of a multi-body stru
ture
an undergo limited rigid motion a�e
ting the global deformation mode, while thedynami
 e�e
ts related to elasti
 deformability 
an remain negligible. In those
ir
umstan
es purely stati
 formulation does not provide su�
ient information, asthe 
onta
t for
es are transmitted mainly due to the freedom of rigid motion. Tan-gent sti�ness operator resulting from the stati
 formulation of a multi-body systemhas a vast null-spa
e, making it ne
essary to introdu
e some sort of regularisation.While this regularisation is expe
ted to provide a meaningful representation ofrigid modes, it seems most natural to adopt the dynami
 formulation for that pur-pose. The 
lassi
al dynami
 relaxation te
hnique by Underwood [205℄, 
onstru
tedaround the 
entral di�eren
e s
heme, was already su

essfully applied to stati
s ofgranular materials (
f. Bardet and Proubet [18℄). This was possible in the 
on-text of smoothed (penalty based) dis
rete element formulation, where availabilityof 
onta
t sti�ness provides means for identifying globally dominant modes. Su
hinformation is not expli
itly available in a non-smooth formulation. Neverthelessthe dynami
 approa
h is still of use. For assemblies of sti� bodies, whi
h are mostlyof interest here, optimally one would like to solve the quasi-stati
 
onta
t problem�on rigid modes� and only update the stresses on the way. The elasti
 deformabilityof su
h assemblies is limited, although presen
e of fri
tional sliding or rigid ro
kingdoes not ne
essarily render the stru
ture unstable. In general some amount of slowrigid dislo
ations 
an happen before the onset of a dynami
 failure me
hanism.Quasi-stati
 rigid motion was analysed to some extent in the �eld of roboti
s. Forexample Pang et al. [165℄ developed a linear programing te
hnique to solve anun
oupled 
omplementary problem resulting from a planar formulation. This workwas later extended to three dimensions [204℄, where polyhedral dis
retisation of thefri
tion 
one allowed to preserve the original algebrai
 stru
ture. The un
oupled
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ture of the 
omplementary problem resulted from the fa
t, that equilibriumof 
onta
t rea
tions and external for
es was sought. La
k of the inertial term leftthe diagonal zero and the amount of rigid motion a
ross a time step resulted di-re
tly from the assumed value of the step size and the velo
ity of time-dependent
onstraints. More generally, in a quasi-stati
 simulation of a multi-body system,the amount of stepwise rigid motion is merely a rational modelling 
hoi
e, adjustedto the velo
ity of a 
ontrol me
hanism. In the 
urrent development we de
idednot to dis
ard the inertia regularisation. Instead the inertial term will be manip-ulated in order to deliver an expe
ted behaviour. In the 
ontext of the Conta
tDynami
s method, A
ary and Jean [3℄ dis
uss adaptation of a dynami
 frameworkfor the needs of a quasi-stati
 simulation. A straightforward relaxation te
hniqueresults from assuming velo
ities to be zero at the beginning of ea
h iteration. Thisapproa
h is adopted here. The modi�ed ba
kward Euler step follows(5.3.1) ut+h = A−1hf
(

t+ h,qt
)

+ A−1HTR(5.3.2) qt+h = qt + hut+hwhere(5.3.3) A = M + h2 ∂2Ψ

∂q∂q

∣

∣

∣

∣

qt(5.3.4) H = H
(

qt
)Above, Ψ is the hyperelasti
 potential of the system and the remaining terms areinterpreted as in (5.1.1-5.1.3). Equations (5.3.1) and (5.3.2) apply dire
tly to thepseudo-rigid 
ontinuum 
ase. One 
an write down a similar time stepping for rigidrotations, by obtaining an auxiliary extrapolation of the angular velo
ity Ωt+h withan analogue of (5.2.9), and then plunging it into f (t+ h,qt). This way a 
onsistentlinearisation with respe
t to Ωt+h 
an be avoided, as it seems super�uous in thissimpli�ed setting. It has to be noted, that equation (5.3.1) holds true under thestrong assumption of the 
onstraints geometry remaining un
hanged over the timeinterval [t, t+ h]. Again, this simpli�es implementation, as the linearisation withrespe
t to H is avoided.For the quasi-stati
 simulation to make sense, it has to be assumed that a steadystate solution exists at t = 0. After that instant some sort of 
ontrol me
hanismis exe
uted at a slow rate. The displa
ement 
ontrol seems most appropriate,as it introdu
es inertia-independent velo
ity. On the other hand, the existen
e ofinertial terms allows for
e 
ontrol to be utilised to some extent. In this 
ase though,despite the fa
t that the above relaxation s
heme rules out a

eleration, on
e someun
onstrained rigid motion o

urs, the kineti
 energy remains proportional to theout of balan
e portion of the applied for
e. Few additional remarks 
an be made:(1) The operator A should be positive de�nite. Sin
e it is equal to M + h2K(where K is the 
urrent tangent) it follows that the assumed time step

h must be small enough. This will depend on material parameters, bodyvolume and mass properties.(2) Regarding the deformable part of the motion, it is desirable to imposeuniform 
onvergen
e of the Euler s
heme for all bodies. At the same timeinformation about their shape should not be dis
arded (so to a

ount forrotations). Hen
e, the inertia matri
es ought to be appropriately s
aled.A reasonable amount of numeri
al damping 
an be obtained for λh ≥ 4,
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ted eigenvalue of M−1K [98℄. For the pseudo-rigidmodel, a su�
ient heuristi
 is to impose a uniform (a
ross all bodies)distribution of λmaxh, where λmax is the maximum eigenvalue.(3) The amount of stepwise rigid motion (say, lmax) should be 
onstrained.Even if the 
ontrol me
hanism introdu
es a bounded amount of rigid dis-pla
ement, the possibility of free s
attering of an assembly exists. Onewould expe
t a rational behaviour of the numeri
al s
heme in su
h 
ase.Appropriate s
aling is possible for the linear part of the motion, as thedynami
s of the mass 
entre is de
oupled. A simple relation for the s
alarmass follows m = fmaxh2

lmax
, where fmax is the maximum magnitude of theresultant external for
e over all bodies. This 
hoi
e provides a uniformbound for the stepwise linear displa
ement.(4) At 
onstraint points, velo
ity 
ontributions of the rigid and deformablemotion should be separated (vdeformable ≪ vrigid). Assuming an equilib-rium 
on�guration exists, numeri
al s
heme (5.3.1-5.3.2) will 
onverge nofaster than the 
onstraints rea
tions. Solution for the 
onstraints deliv-ers rea
tions adjusted to the dynami
s of the overall system. In order toen
ourage fast identi�
ation of rigid modes, the velo
ity of those shoulddominate the stret
h velo
ity at 
onstraint points. If this 
ondition is notsatis�ed, stret
h velo
ities a�e
t the 
onstraint solver, whi
h 
onsiderablyslows down the 
onvergen
e.5.4. LiteratureSele
ted developments, spe
i�
 to the integration of rigid rotation are 
onsid-ered. In this respe
t, one of the early 
ontributions is due to Benson and Hallquist[23℄, where the 
entral di�eren
e s
heme was applied to the spatial angular mo-mentum balan
e. This simple s
heme seems to have survived until re
ently inLS-DYNA software [2℄. Simo and Vu-Quo
 [191℄ apply the Newmark method tothe body-frame angular momentum balan
e and develop an impli
it s
heme for thedynami
s of rods undergoing large rotations. Nevertheless, the mid-point versionof their algorithm 
onserves neither the energy nor the momentum. In a 
lassi
alpaper today, Simo and Wong [100℄ address this short
oming by algorithmi
allyenfor
ing 
onservation of the spatial angular momentum. This leads to an impli
its
heme that 
onserves both the momentum and the energy. As a side-e�e
t theirmain result, an expli
it s
heme examined in Se
tion 5.2.4 is also given. An idea ofdis
rete momentum 
onservation is also exploited by Park and Chiou [110℄, wherethe spatial 
entral di�eren
e s
heme is 
ombined with the quaternion parametrisa-tion based rotation update, in order to deliver an expli
it s
heme with good stability
hara
teristi
s. An inexperien
ed reader should be warned however, that this paper
ontains some 
onfusing notation �aws. In a short and informative paper, Omelyan[162℄ has proposed a lightweight semi-expli
it leap-frog integrator, targeted at themole
ular dynami
s simulations. Krysl and Endres [163℄ developed a semi-expli
itNewmark s
heme with good stability properties, although not 
onserving the spa-tial angular momentum. Krysl [126℄ has derived a mid-point approximation ofthe in
remental rotation angle, whi
h gave rise to a well behaved impli
it s
hemeand an expli
it s
heme LIEMIED[EA℄, examined in Se
tion 5.2.4. Both 
onservethe spatial angular momentum (exa
tly) and the energy (in a stable, but os
illa-tory manner). In the following paper [128℄, Kyrsl dis
usses a family of impli
ittrapezoidal rule based integrators, whi
h to some extent resemble the methods pre-sented in Se
tion 5.2.2. A fourth order Runge-Kutta method in the quaternionspa
e has been given by Johnson et al. [187℄. Kumar et al. [171℄ present sev-eral semi-impli
it integrators, in
luding a partitioned Runge-Kutta s
heme (good
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onservation properties, although relatively poor a

ura
y in the rotation spa
e)and sub-
y
ling based method (very a

urate and good 
onservation). It should benoted, that none of the listed methods dire
tly 
omplies with the algebrai
 stru
-ture of equations (5.1.1-5.1.3), whi
h was the reason behind the developments ofSe
tion 5.2.2.



CHAPTER 6Lo
al framesLet B1 and B2 be two bodies. Let us(1) Pi
k spatial points x1 ∈ B̄1 and x2 ∈ B̄2 at some time t.(2) Pi
k a 
oordinate system {αi
}, with base ai atta
hed to x1, and deformingwith B1 from t onwards.We would like observe the motion of x2 from the perspe
tive of the deforminglo
al frame {αi

}. For the relative displa
ement d{x} = x2 −x1, expressed in {αi
},there holds(6.0.1) {ai}d{α} = d{x}where {ai} is the 3 × 3 matrix of 
olumn-wise base ve
tors. Above, both the base

ai and the relative displa
ement d{x} 
hange in time. From the point of view of anobserver embedded in the lo
al frame {αi
} however, d{α} 
hanges only as far, as

x2 fails to be 
onve
ted with the motion of B1. The rate of su
h 
hange is des
ribedby the Lie derivative of d{α} with respe
t to the �ow indu
ed by the motion of B1.In order to show that, let us �rst noti
e that(6.0.2) d{α} = {ai}−1
d{x} =

{

ai
}T

d{x}where ai are elements of the dual base, and the fa
t that {ai
}T {ai} = I wasexploited. Without loss of generality, taking as an example the pseudo-rigid motion,one obtains

B1

B2

x1

a1

a2

a3
x2

d

Figure 6.0.1. A lo
al frame.60
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⋄

d{α} =

{

⋄
a

i
}T

d{x} +
{

ai
}T ⋄

d{x}

=
[

{

ȧi
}T

+
{

ai
}T

L
]

d{x} +
{

ai
}T
[

ḋ{x} − Ld{x}

]

=
{

ai
}T

ḋ{x}(6.0.3)where ⋄
a

i
= ȧi + LTai (as ai are 
ove
tors), ⋄

d{x} = ḋ{x} − Ld{x} (as d{x} is ave
tor), and {ȧi
}T

= 0 by de�nition (ai and hen
e ai do not expli
itly depend on
t). It might be noted that ai are interpreted as dual ve
tors, also be
ause theira
tion on d{x} results in s
alar 
omponents of d{α}. We re
all, that the notion of Liederivative was brie�y des
ribed in Se
tion 3.2.1. It is not di�
ult to see that ⋄

d{α} isan obje
tive rate in the sense that rigid rotations of the 
oordinate system {

xi
} donot a�e
t its 
omponents. Indeed {Λai

}T
Λḋ{x} =

{

ai
}T

ΛTΛḋ{x} =
{

ai
}T

ḋ{x},where Λ is an orthogonal operator.Admittedly, the frame-pi
king method from points 1-2 is somewhat simplisti
.This results from the pragmatism related to 
omputer implementation. The 
onsid-ered 
lass of shapes (Chapter 2) and motions (Chapter 3) allows to dis
ard the 
aseof 
urved geometry. Furthermore, we wouldn't like to be 
onstrained by a spe
i�
manner of sele
ting points x1,x2 and lo
al frames {αi
}. For example, 
lassi
ally in
onta
t problems, points x1 and x2 are related through proximity mapping, whi
htogether with some 
urvilinear stru
ture gives rise to the lo
al basis ai. The 
urvi-linear stru
ture needs not to be lo
ally Eu
lidean and hen
e ai is not ne
essarilyorthonormal (in the tangent plane). This 
an be of use for anisotropi
 problems.In our appli
ations it will be usually enough to use an orthonormal base. It mightbe useful to noti
e that equation (6.0.3) 
an be rephrased as(6.0.4) {ai}

⋄

d{α} = ḋ{x}and, after left multiplying by {ai}T , again expressed as(6.0.5) ⋄

d{α} = A−1 {ai}T
ḋ{x}where A = {ai}T {ai} is the metri
 tensor. The last equation parallels formula(4.21) from Wriggers [211, p. 64℄, provided d{x} = 0 at t. This 
orresponds tothe �zero gap� 
ase in a 
onta
t problem. In the predominately dynami
 frameworkpresented in this thesis, and not resorting solely to penalisation, we try to avoid�gaps�. This will be further 
ommented on in Chapters 9, 10 and 11 dealing withthe formulation and solution of the 
onta
t problem.In this 
ontext, one should mention the paper by Laursen [130℄ where a spe
i�
treatment of the 
onve
ted lo
al des
ription is developed. Similarly as in [211℄, theauthor assumes that the material point 
orresponding to x2 is 
hosen on
e and forall, and this in turn allows to sele
t x1 at any given time. Paths of x1 on the surfa
e

∂B1 are re
ognised as integral 
urves of an abstra
t �ow, with respe
t to whi
h one
an take required derivatives. The author favours the material des
ription, whi
his a minor nuan
e. The major 
on
eptual di�eren
e is that, whereas in [130℄ theobserver travels over the body B1 
hasing the shadow of x2, in our 
ase the observer
at
hes x2 red-handed (usually there will hold x1 = x2 at t) and then wat
hes itses
ape, while staying at x1.



6.2. RIGID KINEMATICS 626.1. From generalised to lo
al velo
itiesLet us rewrite the motion in the general form(6.1.1) x (X, t) = χ (X,q (t))where x is the spatial point, X is the referential point, and q is the 
on�guration.One 
an 
ompute the material velo
ity(6.1.2) ẋ (X, t) =
∂χ (X,q (t))

∂q
u (t)The 
omponents of x and ẋ are expressed in the spatial 
oordinate system {

xi
}.After the preliminary dis
ussion, it is not di�
ult to express the velo
ity ẋ in alo
al frame {αi

}, with dual base ai. Namely(6.1.3) U =
{

ai
}T ∂χ (X,q (t))

∂q
uwhere U 
omprises the 
omponents of the lo
al velo
ity of the spatial point x, withrespe
t to the base ai. This 
an be rephrased as(6.1.4) U = Huwhere(6.1.5) H =

{

ai
}T ∂χ (X,q (t))

∂qis a linear operator, a
ting between the spa
es of generalised and lo
al velo
ities
H : TQ → TE3. The operatorH takes a spe
i�
 form, depending on the underlyingkinemati
 model. 6.2. Rigid kinemati
sFor rigid bodies, there holds(6.2.1) ẋ = ΛΩ̂

(

X− X̄
)

+ ˙̄x(6.2.2) u =

[

Ω
˙̄x

]and hen
e(6.2.3) H =
{

ai
}T
[

Λ
(

ˆ̄X− X̂
)

I
]be
ause(6.2.4) Ω̂

(

X − X̄
)

= Ω×
(

X − X̄
)

=
(

X̄− X
)

× Ω =
(

ˆ̄X − X̂
)

ΩAbove, I is the 3 × 3 identity.



6.4. DYNAMICS AND QUASI-STATICS 636.3. Pseudo-rigid kinemati
sFor pseudo-rigid bodies, there holds(6.3.1) ẋ = Ḟ
(

X − X̄
)

+ ˙̄x(6.3.2) u =









Ḟ11

Ḟ12

...
˙̄x







and hen
e(6.3.3) H =
{

ai
}T





XT − X̄T 1
XT − X̄T 1

XT − X̄T 1



be
ause(6.3.4) Ḟ
(

X− X̄
)

= Ḟij

(

Xj − X̄j

)6.4. Dynami
s and quasi-stati
sFor dynami
s, when the time integration is exe
uted from a known step t to anunknown t+ h, it is further assumed that evaluation of H involves(6.4.1) {

ai
}T

=
{

ai
}T
(

qt +
h

2
ut

)Similarly, for quasi-stati
s there holds(6.4.2) {

ai
}T

=
{

ai
}T (

qt
)



CHAPTER 7Lo
al dynami
sLet us 
onsider the following fun
tion(7.0.3) L (u) =
1

2
〈Mu,u〉 − 〈b,u〉where(7.0.4) u = ut+h(7.0.5) b = hf t+ h

2 + MutThe velo
ity update of the dynami
 time-stepping given in Chapter 5 
an now beexpressed as(7.0.6) ∂L

∂u
= 0The unknown velo
ity u is obtained as a stationary point of L and hen
e, in a sense,

L 
an be regarded as a dis
rete Lagrangian of our me
hani
al system. From thegeometri
al point of view L is a stri
tly 
onvex fun
tion, L (λu1 + (1 − λ)u2) <
λL (u1) + (1 − λ)L (u2) for any u1, u2 and λ ∈ (0, 1), whi
h follows from thepositive de�niteness of M, preventing the graph of L from having linear slopes. Thestationary point in (7.0.6) is then unique. Su
h a wrapping of the time integrationformula might seem somewhat overblown. Nevertheless, it allows us to put theformulation of lo
al dynami
s into a broader 
ontext of duality. In the �rst pla
e,it is of use to interpret the 
ase(7.0.7) ∂L

∂u
= r 6= 0A velo
ity update formula derived from the above 
ondition adds r on the righthand side(7.0.8) Mu = b + rAlthough r 
annot be readily interpreted as a for
e at a parti
ular time t, it is
orre
t to view it as an integral of some for
e over the time interval [t, t+ h](7.0.9) r =

∫ t+h

t

drIf Q is the 
on�guration spa
e of the me
hani
al system, it is then easy to see that
u ∈ TQ, while b, r ∈ T ∗Q and M : TQ → T ∗Q. In the previous 
hapter, themapping H was de�ned 64
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ting between the spa
es of generalised and lo
al velo
ities H : TQ → TE3.Rows of H 
an be interpreted as elements of the generalised for
e spa
e T ∗Q andhen
e the transpose map HT a
ts between the spa
es of lo
al and generalised for
es
HT : T ∗E3 → T ∗Q. This is also seen from the duality pairing between lo
al andglobal variables (power 
onjuga
y)(7.0.11) 〈U,R〉 = 〈Hu,R〉 =

〈

u,HTR
〉where R ∈ T ∗E3 is by de�nition a lo
al net for
e over [t, t+ h]. Every lo
al for
e

R 
orresponds then to some generalised for
e r(7.0.12) r = HTRNote, that while H is a surje
tion, HT happens to be an inje
tion, 
overing onlya subset of T ∗Q. Nevertheless, for ea
h R we 
an obtain a 
orresponding u as asolution of(7.0.13) ∂L

∂u
= HTRwhi
h 
orresponds to the maximum, with respe
t to u, of the following saddlefun
tion(7.0.14) G (u,R) =
〈

u,HTR
〉

− L (u)The maximum 
an be 
omputed as(7.0.15) u (R) = M−1
(

b + HTR
)and plunged ba
k into G, resulting in

L∗
H (R) = G (u (R) ,R)

=
1

2
〈WR,R〉+ 〈B,R〉 + b(7.0.16)where(7.0.17) W = HM−1HT(7.0.18) B = HM−1b(7.0.19) b =

1

2

〈

M−1b,b
〉

L∗
H is the lo
al 
onjugate fun
tion of L, de�ned by the Legendre-Fen
hel transform(7.0.20) L∗

H (R) = sup
u

{〈Hu,R〉 − L (u)}We 
all it lo
al and index with H, as it 
orresponds to the duality between the lo
alvariables U and R, related to their generalised 
ounterparts through H. In general,
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onjugate fun
tion of a 
onvex fun
tion L reads (
f. Ro
kafellar and Wets [183,p. 473-474℄)(7.0.21) L∗ (r) = sup
u

{〈u, r〉 − L (u)}whi
h in our 
ase takes the form(7.0.22) L∗ (r) =
1

2

〈

M−1r, r
〉

+
〈

M−1b, r
〉

+ bClearly(7.0.23) L∗
H (R) = L∗

(

HTR
)so that L∗

H 
orresponds to the restri
tion of L∗ to a domain generated by the rowspa
e of H. The gradient of L∗
H reads(7.0.24) ∂L∗

H

∂R
= WR + Band from the algebrai
 stru
ture of W and B it is seen that it 
orresponds to somelo
al velo
ity(7.0.25) U = WR + BAs it 
an be dedu
ed from (7.0.7) and (7.0.22), while the gradient of L at u is

r, the gradient of L∗ at r is u, whi
h is 
hara
teristi
 for 
onjugate fun
tions. Itshould be noted, that a 
onjugate fun
tion L∗ is always 
onvex. In our 
ase, it isstri
tly 
onvex as the eigenvalues of M−1 are positive and bounded away from zero.The lo
al 
onjugate L∗
H might or might not be stri
tly 
onvex, depending on theparti
ular shape of the H mapping. This issue be
omes 
lear, when more than onelo
al frame is 
onsidered. It is relevant to mention, that as for R = 0 there follows

U = B, ve
tor B is sometimes 
alled the lo
al free velo
ity.7.1. Many bodies and lo
al framesLet {Bi} be a set of bodies and {Cα} be a set of lo
al frames. To ea
h lo
alframe Cα there 
orresponds a pair of bodies Bi and Bj . Let Bj be the body, towhi
h the lo
al frame is atta
hed. Bj will be 
alled the master in Cα and denotedby Mα. Consequently, Bi will be 
alled the slave in Cα and denoted by Sα. Of
ourse, the 
hoi
e is arbitrary. Considering evolution of a multi-body system overan interval [t, t+ h], an analogue of equation (7.0.25) 
an be written down for ea
hof the lo
al frames(7.1.1) Uα = Bα +
∑

β

WαβRβwhere(7.1.2) Uα = Hiαui − Hjαuj(7.1.3) Bα = HiαM−1
i bi − HjαM−1

j bj(7.1.4) Wαβ |α6=β = sαβHkβαM−1
kβ

HT
kββ
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i HT

iα + HjαM−1
j HT

jα(7.1.6) kβ =

{

i if Bi ∈ Cβ

j if Bj ∈ Cβ(7.1.7) sαβ =

{

−1 if Bkβ
is (Mα ∧ Sβ) ∨ (Sα ∧Mβ)

1 otherwiseThe above formulae 
an be 
onveniently applied in a 
omputer implementation.They stem from the following algebra of the multi-body dynami
s. Let q, u, f , Mgather the suitable ve
tors and matri
es as(7.1.8) q =









q1

q2

...
qn









,u =









u1

u2

...
un









, f =









f1
f2
...
fn









,M =









M1

M2

...
Mn







To ea
h lo
al frame Cα, there 
orresponds a blo
k-row of the global H operator(7.1.9) H =













... −Hj1 ... Hi1 ...

... ... ... ... ... ... ...
... Hiα ... −Hjα ...

... ... ... ... ... ... ...
... Him ... −Hjm ...











where(7.1.10) Hkα = H
({

ai
}

∈ Cα,X ∈ Bk

)is evaluated a

ording to the formula (6.1.5) of the previous 
hapter. All of thederivations from the introdu
tory se
tion of this 
hapter apply without 
hange andlead to the formulae (7.1.1-7.1.7). From now on a distin
tion between the single-body or the multi-body as well as between the single-frame or the multi-frame 
aseswill be made only, if it is not 
lear from the 
ontext.Operator W maps lo
al 
ovariant quantities into the 
ontravariant ones. Al-gebrai
ally, it is represented by a sparse matrix, 
omposed of dense 3 × 3 blo
ks
Wαβ . The sparsity pattern of W 
orresponds to the vertex 
onne
tivity in thegraph of lo
al frames. Verti
es of this graph are the lo
al frames {Cα}, while theedges 
omprise a subset of all bodies {Bi}, su
h that Bi ∈ Cα and Bi ∈ Cβ for α 6= β.This has been illustrated in Figure 7.1.1. Operator W derives from the formula(7.1.11) W = HM−1HTwhere M is a n × n symmetri
 and positive de�nite matrix, and H is an m × ntransformation operator (m and n in (7.1.8) and (7.1.9) are respe
tively equal n/kand m/3 here, where k is the dimension of TQ). Clearly, W is an m×m symmetri
matrix. It is positive de�nite, provided rows of H are linearly independent. Thisis easiest to see from the �ow of the a
tions in the above formula. A lo
al for
e
R is �rst mapped by HT into a generalised for
e r. If rows of H are not linearlyindependent, then there exist R1 6= R2 su
h that HTR1 = HTR2 and hen
e
W fails to be a bije
tion. This means, that the null spa
e of W is larger than
{0}, so that it is not invertible in the usual sense. W be
omes singular whenever
m > n, whi
h is trivially related to the number of 
onsidered bodies. On the other
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2

3

5

1

4

Figure 7.1.1. A graph of lo
al frames and the 
orresponding pat-tern of W.hand, one 
an always introdu
e singularity of W by using lo
al frames between thesame pair of bodies, whose H operators are linearly dependent. This 
an be easilyrelated to the deformability of our kinemati
 models. For example, the pseudo-rigid body has a linear distribution of the instantaneous velo
ity over an arbitrary�at surfa
e. Thus, the relative velo
ity between two bodies over a �at surfa
eis fully parametrised by three points. A larger number of lo
al frames results inthe singularity of W. So does their 
ollinearity. One 
an then generally speakabout the global and lo
al over-restraining of the system. In pra
ti
e, W oftenbe
omes numeri
ally singular for some parti
ular 
on�gurations of lo
al frames.Indetermina
y of lo
al for
es is then an unavoidable 
onsequen
e of the kinemati
simpli
ity, and as so it needs to be a

epted in numeri
al pra
tise. It might benoted, that semi-positive de�niteness of W implies non-stri
t 
onvexity of L∗
H .7.2. ConstraintsAs it was already mentioned, L is stri
tly 
onvex and hen
e, it admits a uniqueminimum at a root of its gradient. Formula 7.0.6 des
ribes this 
ase, whi
h by
onstru
tion 
orresponds to the numeri
al integration of an un
onstrained motion.It is not hard to guess however, that the lo
al dynami
al equation (7.0.25) wasintrodu
ed here in order to bring into the pi
ture the notion of 
onstraints. Withinthe 
urrent formulation, these will be phrased in the form of some lo
al equalities(7.2.1) C (U,R) = 0whi
h, 
ombined with (7.0.25), result in(7.2.2) C (WR + B,R) = 0The above is an impli
it, nonlinear and usually nonsmooth equation, numeri
allysolved for R. In some parti
ular 
ases, it does 
orrespond to the solution of a
onstrained minimisation problem. More often however, it 
an only be viewed asthe root �nding problem. These subtleties will be
ome 
learer, when parti
ularkinds of 
onstraints are introdu
ed in Chapters 8 and 10.7.3. Quasi-stati
sTake(7.3.1) M = A
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(

t+ h,qt
)where A was as (5.3.3) in Se
tion 5.3. The foregoing dis
ussion applies withoutfurther 
hanges.



CHAPTER 8JointsIt is often ne
essary to 
on�ne the motion of a material point X within apres
ribed manifold(8.0.3) x (X, t) ∈ C (t)This 
an be written down as an impli
it equation(8.0.4) c (x, t) = 0where c is a k-
omponent ve
tor fun
tion, with 1 ≤ k ≤ 3. The Ja
obian [∂c/∂x]is then a k×3 matrix, of full rank for well de�ned 
onstraints. In our 
ase, in orderto �t into the 3 × 3 blo
k stru
ture of the lo
al dynami
s equations, it would be
onvenient use a 3-
omponent c. This is easily a
hieved. Note that for ea
h t, rowsof [∂c/∂x] 
an be interpreted as some 
ove
tors ak in the Eu
lidean 3-spa
e E3,and(8.0.5) [∂c/∂x] δx = 0for all ve
tors δx in the tangent spa
e TxC (t). Note also, that 
ove
tors ak spanthe orthogonal 
omplement spa
e T⊥
x C (t) (Figure 8.0.1). For ea
h x and t, one
an always de�ne 3 − k 
ove
tors aj (k < j ≤ 3), spanning TxC (t). This way a
omplete dual base {ai

} is de�ned in E3. The 
onstraint equation (8.0.4) 
an nowbe suitably extended to(8.0.6) c (x, t) =





c1 (x, t)
〈

a2,x − x (X, t)
〉

〈

a3,x − x (X, t)
〉



 , when C (t) is a surfa
eand to
C

x

T
⊥
x
C

TxC

Figure 8.0.1. Geometri
al interpretation of a 
onstraint manifold
C, the tangent spa
e TxC and the orthogonal 
omplement T⊥

x C.70



8.1. BACK TO THE DISCRETE CASE 71(8.0.7) c (x, t) =





c1 (x, t)
c2 (x, t)

〈

a3,x− x (X, t)
〉



 , when C (t) is a 
urve.The velo
ity form of so extended (8.0.4) reads now(8.0.8) [∂c/∂x] ẋ + ċ = 0where the last j equations are satis�ed by 
onstru
tion. This somewhat redundantderivation was made here in order to rewrite (8.0.8) as(8.0.9) {

ai
}T

ẋ = −ċ or U (t) = −ċ (t)where U is a lo
al velo
ity with respe
t to the base {ai}. Hen
e, a point 
onstraintof form (8.0.4) naturally de�nes a lo
al frame.8.1. Ba
k to the dis
rete 
aseResorting ba
k to the time-stepping s
heme and the lo
al dynami
s of theprevious 
hapter, it is seen that the integration of motion 
onstrained in the abovemanner 
an be stated as(8.1.1) minu L (u)
Hu + ċ = 0where by 
onvention u = ut+h and ċ = ċ (t+ h). The lo
al for
e R 
an now be in-terpreted as a ve
tor of Lagrange multipliers 
orresponding to the a�ne 
onstraints

Hu + ċ = 0. The Lagrangian of (8.1.1) reads(8.1.2) Lc (u) = L (u) − 〈Hu + ċ,R〉and its optimality 
onditions lead to the saddle point problem(8.1.3) [

M −HT

H 0

] [

u

R

]

=

[

b

−ċ

]This 
an be further transformed into(8.1.4) −ċ = HM−1HTR + HM−1bor(8.1.5) −ċ = WR + BBe
ause of the redundant 
omponents in the 
onstraints of type (8.0.6-8.0.7) anddue to (7.0.25) and (8.0.9), some of the rows in the above system might be identities.The motion along the 
orresponding dire
tions ai should not be 
onstrained, andhen
e these rows are repla
ed by diagonal terms Ri = 0. This leads to the followinguniform notation for a 
onstraint equation, spe
i�ed at some point x(8.1.6) C (U,R) = 0where C is a 3-
omponent ve
tor fun
tion
Ci (U,R) =

{

U i + ċi for ai ∈ T⊥
x Ct+h

Ri for ai ∈ TxCt+h(8.1.7)
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ally, (8.1.6) des
ribes also the system of 3m equations for a multi-bodysystem with m joints. In order to �nd the 
onstraint rea
tions R, one then solvesthe system(8.1.8) C (WR + B,R) = 0where U i are expressed by the suitable rows of U = WR + B.8.2. Single-body jointsLet a dummy body Bi be de�ned as follows(8.2.1) qi (t) = qi (0)(8.2.2) ui (t) = 0(8.2.3) M−1
i = 0so it does not move and has a zero inverse inertia operator. One 
an use a dummybody in order to introdu
e a single-body 
onstraint Cα within the framework oflo
al dynami
s. For this, one pi
ks a body of interest Bj and atta
hes to it a lo
alframe. Together with the dummy body Bi, this allows to formulate a blo
k-rowof the U = WR + B relation. Assumption (8.2.2) implies, that in the absen
e ofother 
onstraints, the relative lo
al velo
ity Uα is solely due to the motion of Bj .The following assumption (8.2.3) allows to reuse the same dummy body in order toimpose other 
onstraints. The zero inverse inertia operator breaks the o�-diagonal
ouplings in the blo
k-row Wαβ , so that the rea
tions of other 
onstraints using Bido not 
ontribute to Uα. In other words, a dummy body does not 
orrespond toan edge in the graph of lo
al frames.Assume that X is a referential point, to whi
h the lo
al frame with base {ai} isatta
hed at t = 0. In the view of (8.1.7), it is not di�
ult to 
ome up with severaltypi
al 
onstraintsFixed point. Motion of X is pre-
luded. C (U,R) = UFixed line. Motion of X is al-lowed along a line aligned with a3and passing through X at t = 0. C (U,R) =





U1

U2

R3



Fixed plane. Motion of X is al-lowed within a plane normal to a3and passing through X at t = 0. C (U,R) =





R1

R2

U3



Pres
ribed velo
ity. The lo
al ve-lo
ity of X reads V (t). C (U,R) = U − V



8.4. CONFIGURATION SPACE 73One important subtlety needs to be mentioned for the dynami
 time stepping.As the 
on�guration update is of the kind(8.2.4) qt+h = qt +
h

2

(

ut + ut+h
)and the above 
onstraint de�nitions 
orrespond to the velo
ity ut+h, an O (h)violation of the 
onstraint is possible between t = 0 to t = h. If the 
onstraints
annot be pres
ribed in a way, whi
h prevents the lo
al velo
ities from having
omponents along the orthogonal 
omplement spa
e T⊥C, it is possible to enfor
ethis 
ondition by solving(8.2.5) C (WR + B,R) = 0at t = 0, followed by the update of velo
ity(8.2.6) u0 = u0 + M−1HTR8.3. Multi-body jointsJoints between pairs of bodies 
an be de�ned in a natural manner. The dis-
ussion of the previous se
tion applies without 
hanges, although the dummy bodyneeds to be repla
ed by a regular one. For example, the �xed point 
onstraint 
annow be reinterpreted as a spheri
al joint, as soon as the referential points X ∈ Biand Y ∈ Bj are assumed to 
oin
ide at t = 0. As an example of a more elaborate
onstraint, let us 
onsider a rigid weightless rod, inserted between an arbitrary pairof points X ∈ Bi, Y ∈ Bj at t = 0. The rigid rod 
onstraint 
orresponds to thebelow statement(8.3.1) ‖xi (X, t) − xj (Y, t)‖ = ‖X − Y‖Let us de�ne the dual base ve
tor a1 as(8.3.2) a1 (t) = [xi (X, t) − xj (Y, t)] / ‖xi (X, t) − xj (Y, t)‖and sele
t the remaining 
ove
tors {a2,a3

}

⊥ a1. With this de�nition of the lo
alframe, the rod 
onstraint 
an be expressed as(8.3.3) C (U,R) =





U1

R2

R3



8.4. Con�guration spa
eA multi-body system without 
onstraints has freedom to move inside of its
on�guration spa
e Q. Enfor
ement of some equality 
onstraints (joints) redu
esthis spa
e to a subset ofQ. In the following this fa
t will be impli
itly a
knowledged.Nevertheless, from the point of view of our implementation it is more 
onvenientto think about Q as inta
t. This is be
ause all of the 
onstraints will be dealtwith in a uniform manner, and no formal redu
tion of the 
on�guration spa
e willbe performed. At times, it will be 
onvenient though to re-frame our thinkingand treat some of the bodies as �moving boundaries�. This will be emphasised bywriting Q (t).



CHAPTER 9Conta
t pointsBodies never 
ome into 
onta
t at a single point. At some level of observation,one 
an usually speak about a smooth 
onta
t surfa
e. Yet, from the 
omputationalpoint of view it is 
onvenient to 
onsider instead the set of �oriented points� (Figure9.0.1). Here the 
onta
t 
orresponds to a point and a normal dire
tion atta
hedto it. It is 
ustomary to refer by the single notion of �
onta
t� to the totalityof entities atta
hed to a 
onta
t point. The multi-body framework has to 
opewith identi�
ation and maintenan
e of a representative set of 
onta
ts. Optimally,the 
ost of those a
tivities should be 
omparable with the one pertinent to otheressential 
omputations (e.g. the time stepping). In order to a

omplish this goal, itis ne
essary to resort to some of the methods studied within the �eld of 
omputers
ien
e. This requires a temporary departure from me
hani
s into the realm ofalgorithms and data stru
tures.Let the set of bodies {Bi} be 
alled a 
on�guration. Let {Bi}t
, {Bi}t+h be two
onse
utive 
on�gurations, possibly admitting small interpenetrations (the timeindexing is used at 
onvenien
e). The motion a�e
ts shapes and positions of bodiesin {Bi} . Additional operations 
ause stru
tural 
hanges to {Bi} (e.g. insertion ordeletion of bodies). Let the tuple Cα = (x,n,Bi,Bj)α store the point, the normaldire
tion and the pairing of bodies involved in a 
onta
t. The goal is to e�
ientlymaintain {Cα}, under possible 
hanges of {Bi}.What pre
isely e�
iently means, will be the matter of dis
ussion in Se
tion9.2. Before that, Se
tion 9.1 introdu
es a number of auxiliary data stru
tures,setting the ba
kground for the forth
oming developments. Se
tion 9.3 dis
ussesthe approximate 
onta
t sear
h methods. Se
tion 9.4 deals with the dete
tion of
onta
t points and normals. Brief literature review follows in the last se
tion.9.1. Auxiliary data stru
turesThe notion of a data stru
ture will not be expli
itly introdu
ed. It will emergeas a result of presentation of a number of beings belonging to this 
ategory. Letus dis
uss some general properties instead. Data stru
tures require spa
e in orderto store their elements. A basi
 question is how mu
h spa
e is required in order tostore n elements? Stru
tures are a

ompanied by algorithms operating on them.Another elementary question is then how mu
h time is ne
essary for an algorithm

Figure 9.0.1. An admittedly telephone-like example of 
onta
tbetween two bodies. The set of oriented points represents twodisjoint 
onta
t surfa
es. 74
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x.n y.n z.n

z.py.px.p

nil yx z nilFigure 9.1.1. A doubly-linked list.to a

omplish its goal? Both issues 
an be brie�y addressed as the spa
e and thetime 
omplexity, and examined on a 
ase by 
ase basis. Without resorting to anyparti
ular example, it is adequate to re
all some notations 
ommonly employedin the analysis of algorithms. Let g (x) be a known fun
tion. The growth of anyfun
tion f (x) 
an be related to the growth of g (x) in a number of ways. De�nitionsbelow are quoted after Wilf [209℄Definition 9.1.1. We say that f (x) = O (g (x)) (x→ ∞) if ∃C, x0 su
h that
|f (x)| < Cg (x) (∀x > x0).Definition 9.1.2. We say that f (x) = Θ (g (x)) if there are 
onstants c1 > 0,
c2 > 0, x0 su
h that for all x > x0 it is true that c1g (x) < f (x) < c2g (x).Definition 9.1.3. We say that f (x) = Ω (g (x)) if there is an ǫ > 0 and asequen
e x1, x2, x3, ...→ ∞ su
h that ∀j : |f (xj)| > ǫg (xj).Thus, f (x) = O (g (x)) implies that f (x) grows no faster than g (x), f (x) =
Θ (g (x)) states that f (x) and g (x) grow at the same rate, while f (x) = Ω (g (x))means that f (x) grows at least at the rate of g (x).Considering an algorithm operating on n elements of a data stru
ture, it is noweasier to des
ribe its spa
e and time demands. In pra
ti
e one is mostly interestedin data stru
tures with O (n) spa
e 
omplexity. Fast algorithms will usually haveruntime 
omplexity similar to O (na logb n

), where a, b ≥ 0 will depend on the stateof the ordering and dimensionality of the input data. The runtime is measuredby the number of dis
rete steps. In the following, unless spe
i�ed otherwise, thelogarithm to the base 2 is 
onsidered.9.1.1. Tuple. Tuple is a grouping of elements. For example (b, c, d) is a tuple
omposed of elements (members) b, c, d. Any of the elements 
an be a tuple itself.Let a = (b, c, d) be a variable storing the tuple. We 
an refer to the members of aby a.b, a.c, a.d.9.1.2. Pointer. A pointer is a symboli
 link to a tuple. For example let thetuple (d, n) be 
omposed of an arbitrary data d, and a pointer n. Then it is fairto 
reate a variable a = (d, n) and assign the pointer value a.n = a. The member
a.n behaves now as it was a. For example a.n.d is the same as a.d and the in�nitereferen
e a.n.n.n... makes sense. If the pointer value was not assigned, the defaultvalue nil is assumed. It is also valid to assign the nil value a.n = nil expli
itly.Note, that pointers do not stand out in the adopted notation. It is enough tomention them, when a tuple is being �rst de�ned.9.1.3. List. Ea
h item of a (doubly-linked) list is 
omposed of three elements
(d, p, n), where d stores an arbitrary data, p is a pointer to the previous list item,and n is a pointer to the next list item (Figure 9.1.1). There are as many list itemsas there are data items, so that the spa
e demand of the list stru
ture is O (n). Alist is represented by a pointer to the �rst element, say l. A data item d is insertedinto the list l as follows



9.1. AUXILIARY DATA STRUCTURES 76Algorithm 9.1.4. List_Insert (l, d)1 a = (d, p, n)2 if l 6= nil then l.p = a3 a.n = l4 l = aIt is seen that the newly 
reated list item a repla
es the head of the list l. Point-ers are updated a

ordingly. The 
omplexity of this operation is O (1). Anotherelementary operation is deletion. Let us delete an item a from lAlgorithm 9.1.5. List_Delete (l, a)1 if a.p 6= nill then a.p.n = a.n2 else l = a.n2 if a.n 6= nil then a.n.p = a.pThe O (1) deletion 
omprises obvious updates of pointers. The following routine�nds a list item asso
iated with a spe
i�
 data dAlgorithm 9.1.6. List_Find_Item (l, d)1 a = l2 while a 6= nil do3 if a.d = d then4 return a5 end if6 a = a.n7 end while8 return nilAs there is no other way to identify the list item storing d, the O (n) sear
his ne
essary. Combining the two above algorithms allows to delete the list itemasso
iated with dAlgorithm 9.1.7. List_Delete_Data (l, d)1 a = List_Find_Item (l, d)2 if a 6= nil then List_Delete (l, a)Somewhat more interesting 
ode 
an be written down, on
e the order of datais taken into a

ount. The 
lassi
al merge sort algorithm 
an be implemented asfollowsAlgorithm 9.1.8. List_Merge_Sort (l)1 o = 12 while true do3 h = t = nil, j = l4 while true do5 i = j, m = 06 while m < o ∧ j 6= nil do j = j.n, m = m+ 17 k = j, n = 08 while n < o ∧ k 6= nil do k = k.n, n = n+ 19 if j = nil ∧ i = l then10 for i = l until nil do i.p = j, j = i, i = i.n11 return l12 else if m+ n = 0 break13 if h = nil then if i.d ≤ j.d then h = i else h = j14 while m > 0 ∧ n > 0 do15 if i.d ≤ j.d then16 if t 6= nil then t.n = i



9.1. AUXILIARY DATA STRUCTURES 7717 t = i, i = i.n, m = m− 118 else19 if t 6= nil then t.n = j20 t = j, j = j.n, n = n− 121 end if22 end while23 while m > 0 do t.n = i, t = i, i = i.n, m = m− 124 while n > 0 do t.n = j, t = j, j = j.n, n = n− 125 end while26 t.n = nil, l = h, o = 2o27 end whileAlgorithm 9.1.8 has O (n logn) runtime 
omplexity. This is easy to see, on
ethe idea of the merge sort be
omes 
lear. Let us 
onsider a simple illustration.The sequen
e 7, 2, 6, 1, 4, 5, 9, 3 is to be sorted. First adja
ent pairs of numbers aregrouped (7, 2), (6, 1), (4, 5), (9, 3) and the numbers within the pairs sorted (2, 7),
(1, 6), (4, 5), (3, 9). In the next step the pairs are merged into the groupings offour numbers, while the order is being preserved. (1, 2, 6, 7), (3, 4, 5, 9). The mergeoperation is performed again and the �nal sorted sequen
e results. Ea
h mergeoperation 
an be done in O (n) time and there is at most logn groupings, thusthe runtime 
omplexity follows. In the above algorithm the outer loop 
ontrols the
urrent length of grouping (o+ 1), while the merge operation is performed in lines14 - 25.One 
an imagine the situation when a long and initially sorted list is alteredin the way, that ea
h item is shifted by few pla
es to the right or to the left. Thelist remains sorted in the average sense. That is to say, if we 
ould assign a 
olourto the magnitude of ea
h data item, then the altered list observed from a distan
ewould seem very similar to the sorted one. Under a 
loser look it appears mostnatural to restore the right order by inspe
ting ea
h item and shifting it ba
k intothe right position. This 
an be done in a fast manner, provided the alteration issmall 
ompared to the length of the list. This idea is utilised by the insertion sortalgorithmAlgorithm 9.1.9. List_Insertion_Sort (l)1 p = l2 while p 6= nil3 q = p, p = p.n4 while q.p 6= nil ∧ q.p.d > q.d do5 o = q.p6 if o.p 6= nil then o.p.n = q7 else l = q8 if q.n 6= nil then q.n.p = o9 q.p = o.p, o.n = q.n, q.n = o, o.p = q10 end while11 end whileThe insertion sort has 
omplexity O (an) where a is the average shift lengthin the originally sorted list. For a ≪ n it be
omes O (n), whi
h is a useful resultat times. The fa
t that the average shift is enough to asses the 
omplexity followsfrom the simple observation that (c1 + c2 + ...+ cn) /n = a, where ci is the numberof 
omparisons ne
essary to bring an altered item ba
k into its right pla
e.9.1.4. Hash table. Let h[·] be a table of pointers to lists (d, p, n), de�ned inthe previous se
tion. Assume h[·] is of size m. Let f (d) be a surje
tive hashingfun
tion su
h that
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nil
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Figure 9.1.2. Hash table with lists.(9.1.1) ∀d : f (d) ∈ {1, 2, ...,m}and the evaluation time of f (d) takes O (1) time. One 
an de�ne the followingoperationsAlgorithm 9.1.10. Hash_Table_Insert (h, f, d)1 List_Insert (h [f (d)] , d)andAlgorithm 9.1.11. Hash_Table_Delete (h, f, d)1 List_Delete_Data (h [f (d)] , d)as well asAlgorithm 9.1.12. Hash_Table_Find (h, f, d)1 return List_Find_Item (h [f (d)] , d)The insertion into the hash table has O (1) 
omplexity. The hash table deletionand sear
h on the other hand, have the 
omplexity proportional to the length ofthe list stored at the table element h [f (d)]. This length depends on the quality ofthe hashing fun
tion. By de�nition it is possible that(9.1.2) ∃x, y : f (x) = f (y)whi
h is 
alled a 
ollision. A hash table 
an be e�
ient, provided 
ollisions happenrarely. This is in general the 
ase, if the probability of 
ollision reads(9.1.3) ∀x,y : P |f(x)=f(y) = O

(

1

m

)with a small (≪ m) 
onstant in O (·). In this 
ase 
ollisions are distributed uni-formly over h [·], with the probability proportional to n
m , where n is the number ofstored data items. Thus, for a good hashing fun
tion the average length of the liststored at any element h [·] is O ( n

m

). If all data items d are known, one 
an alwaysindex them from 1 to m in su
h a way, that no more than ⌊ n
m

⌋

+ 1 share an index,where ⌊·⌋ indi
ates the nearest smaller or equal integer. If the set of d is not knownin advan
e, existen
e of good hashing fun
tions is not assured. In pra
ti
e though,reasonably e�
ient fun
tions 
an be found. It should be noted, that the presented
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39Figure 9.1.3. Priority queue arranged into a tree-like heap [50℄.The dashed lines shows that all k nodes with y ≥ 8 
an be reportedby simply des
ending down the tree in O (k) time.
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3Figure 9.1.4. A binary sear
h tree. The thi
kened path has tobe traversed in order to enumerate all k nodes with x ≥ 8, whi
hfor a balan
ed tree 
an be done in O (logn+ k).variant of hashing is not among the most subtle versions of this te
hnique. Onemight like to 
onsult Knuth [119, pp. 552-601℄ for a more insightful exposition.9.1.5. Priority queue. Let us 
onsider a set Q of n elements (d, y), where
d represents an arbitrary data and y des
ribes a priority assigned to this data.The interest is in maintaining Q in su
h a way, that the subset of k elements su
hthat y ≥ y0 
an be a

essed in O (k) time. The maintenan
e operations in
ludeinsertions and deletions of elements and eventually, updates of their priorities. Adata stru
ture fa
ilitating the mentioned operations bears the name of the priorityqueue. A typi
al e�
ient implementation of the priority queue exploits the heapstru
ture as its skeleton. A through des
ription of both stru
tures 
an be found inCormen et al. [50, pp. 127-144℄. A spe
i�
 implementation of the priority queuewill be outlined in Se
tion 9.1.7. Here instead, let us illustrate that the elements ofa priority queue 
an be arranged into a tree-like heap stru
ture. Let us expand thetuple (d, y) into (d, y, p, l, r), where p is the pointer to a parent node in the tree, l isthe pointer to the left sub-tree (left 
hild), and r is the pointer to the right sub-tree(right 
hild). One 
an arrange the elements of Q into a tree-like stru
ture satisfyingthe heap property : for ea
h v ∈ Q, if v.p 6= nil then v.p.y ≥ v.y. Consider elementsof Q with priorities {1, 2, 3, 4, 7, 8, 9, 10, 14, 16}. An example of su
h arrangementis given in Figure 9.1.3. The dashed line bounds 5 elements with priorities y ≥ 8.They 
an be enumerated by des
ending down the tree in the O (5) time.9.1.6. Binary sear
h tree. Similarly as in the previous se
tion, let us 
on-sider a set Q of n elements (d, x), where d represents an arbitrary data and x standsfor a 
oordinate assigned to this data. The obje
tive will be to maintain Q in su
ha way, that for a given x0 the set of all k elements v ∈ Q su
h that v.x ≥ x0 
anbe identi�ed in O (logn+ k) time. It is possible to arrange the elements of Q into
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Figure 9.1.5. Priority sear
h tree based on the red-bla
k treestru
ture. Red nodes are light-grey. Numbers outside of the re
t-angular leaves and 
ir
ular nodes represent the priority queue.Dashed lines indi
ate pointers.a tree-like stru
ture (d, x, p, l, r) satisfying the binary sear
h tree property : for ea
h
v ∈ Q, if v.l 6= nil then v.l.x ≤ v.x and if v.r 6= nil then v.x ≤ v.r.x. Of 
ourse
p, l, r denote respe
tively, the pointer to a parent node in the tree, the pointer tothe left sub-tree, and the pointer to the right sub-tree. The n elements of Q 
an bearranged into a binary sear
h tree in su
h a way that the number of nodes alongthe longest path in the tree is O (logn). Su
h a tree is 
alled balan
ed. A balan
edbinary sear
h tree 
orresponding to the 
oordinate set {1, 2, 3, 4, 7, 8, 9, 10, 14, 16}is illustrated in Figure 9.1.4. A spe
i�
 instan
e of the balan
ed binary sear
h treewill be detailed in the next se
tion.9.1.7. Priority sear
h tree. Priority sear
h tree has been proposed by M
-Creight [148℄ as a 
ombination of the priority queue and the balan
ed binary sear
htree. The stru
ture operates on tuples (d, x, y), where an arbitrary data d is asso
i-ated with two 
oordinates x and y. Priority sear
h tree allows to e�
iently pro
essa number of range queries, one of whi
h is of parti
ular interest in the 
urrent
ontext (Se
tion 9.3.2):Problem 9.1.13. For a set Q of n tuples (d, x, y), given x0 and y0, report all
v ∈ Q su
h that v.x > x0 and v.y > y0.The priority sear
h tree presented in this se
tion is based on the red-bla
k treestru
ture, invented by Bayer [21℄ (the name used by him was the symmetri
 binaryB-tree, while Guibas and Sedgewi
k [80℄ have introdu
ed the red-bla
k 
olouring
onvention). A 
omprehensive des
ription of the data stru
ture 
an be found inCormen et al. [50, pp. 273-301℄. For the sake of 
ompleteness, a rather detailedextra
tion from Cormen et al. is in
luded here. It is further 
ompleted by embed-ding the priority queue stru
ture within the red-bla
k tree.An element of the priority sear
h tree 
omprises (u, t, c, p, l, r, q), where u is thetuple (d, x, y), t ∈ {node, leaf} des
ribes the type of the element, c ∈ {red, black}is the 
olour of the element, p is the pointer to the parent of the element, l is thepointer to the left sub-tree (left 
hild), r is the pointer to the right sub-tree (right
hild), and q is the pointer to the element of the priority queue (Figure 9.1.5). Tree



9.1. AUXILIARY DATA STRUCTURES 81elements v for whi
h v.t = node are 
alled nodes, while those where v.t = leaf are
alled leaves. The following properties are quoted after Cormen et al. [50, p. 273℄:(1) Every node is either red or bla
k.(2) The root is bla
k.(3) Every leaf is bla
k.(4) If a node is red, then both its 
hildren are bla
k.(5) For ea
h node, all paths from the node to des
endant leaves 
ontain thesame number of bla
k nodes.It should be noted, that in general it is not ne
essary to employ separate treeelements for all leaves in the red-bla
k tree. In a typi
al appli
ation only nodesstore data. Nevertheless, the priority sear
h tree requires the additional leaf spa
e.Let us de�ne bh (v), the bla
k height of a node v, as the number of bla
k nodes (notin
luding v) on the way from v down to a leaf. Similarly, let h (v) bet the height ofthe sub-tree rooted at v, that is the maximal number of nodes (in
luding v) on theway down from v to a leaf. Also, let n (v) denote the number of nodes of a sub-treerooted at v. An empty tree 
ontains no nodes, that is if v is the root, then v = nil.Lemma below states a basi
 result about the e�
ien
y of red-bla
k trees.Lemma 9.1.14. Red-bla
k tree with n nodes has height at most 2 log (n+ 1).Proof. First one needs to show that n (v) ≥ 2bh(v) − 1. If h (v) = 0 thenbh (v) = 0. Thus n (v) ≥ 20 − 1 = 0, whi
h is 
orre
t. Now assume h (v) =

k and n (v) ≥ 2bh(v) − 1. Take w, su
h that h (w) = k + 1. If w.c = readthen (from property 4) bh (w) = bh (w.l) + 1 = bh (w.r) + 1, otherwise bh (w) =bh (w.l) = bh (w.r). Thus, by the indu
tive hypothesis n (w) ≥
(

2bh(w)−1 − 1
)

+
(

2bh(w)−1 − 1
)

+ 1 = 2bh(w) − 1. Let h be the height of the tree. From property5 there follows that the bla
k height of the root is at least h/2 (try to insert asmany red nodes as possible). It results that h ≥ 2h/2 − 1, or in other words
h ≤ 2 log (n+ 1). �The height of the proposed priority sear
h tree is then O (logn). This impliesthat, as long as the properties 1-5 
an be maintained, all operations traversing thetree along its height and performing on the way some 
onstant time a
tions willhave O (logn) 
omplexity. Three basi
 operations will be 
onsidered: insertion,deletion, and the already mentioned two-sided range query. It will be useful tode�ne the 
omparison of tuples (d, x, y) �rst(9.1.4) (di, xi, yi) < (dj , xj , yj) i� xi < xj ∨ (xi = xj ∧ di < dj)

(di, xi, yi) = (dj , xj , yj) i�xi = xj ∧ di = dj

(di, xi, yi) > (dj , xj , yj) otherwise.The following two routines will be utilised to maintain the priority sear
h tree.Algorithm 9.1.15. Pst_Push (v, q)1 while v.q 6= nil2 if v.q.u.y < q.u.y then3 s = v.q, v.q = q, q = s4 end if5 if q.u ≤ v.u then v = v.l6 else v = v.r7 end whileThe above algorithm des
ends down from the root v 
omparing the 
urrentqueue 
oordinates v.q.u.y against the 
andidate q.u.y (lines 2-4). If the 
urrently
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Figure 9.1.6. Left and right rotations. The left to right orderingof data tuples a

ording to 
omparison (9.1.4) is preserved in nodes
x, y and sub-trees α, β, γ.stored v.q.u.y is smaller than the 
andidate 
oordinate, v.q and q are swapped (line3) and the des
end 
ontinues along the binary sear
h path of q (lines 5-6). If the
omparison (9.1.4) is O (1) then the runtime of Algorithm 9.1.15 is O (logn). The

Pst_Push routine does not a�e
t the stru
ture of the red-bla
k tree. A reverseoperation follows.Algorithm 9.1.16. Pst_Pull (v)1 do2 if v.t = leaf then3 v.q = nil4 return5 else s = v.l6 if s.q = nil ∨ (v.r.q 6= nil ∧ v.r.q.y > s.q.y) then s = v.r7 v.q = s.q8 v = s9 while v.q 6= nilAlgorithm 9.1.16 des
ends down the tree v. For ea
h tree node v, its priorityqueue link v.q is repla
ed with either v.l.q or v.r.q (line 7), depending on whetherrespe
tively v.l.q ≥ v.r.q or the opposite holds (lines 5-6). The sear
h 
ontinuesdown the path of the maximal priority 
hoi
e (line 8). The loop terminates eitherat a leaf element (lines 2-4), or at the end of the queue (line 9). The runtime is
O (logn). The stru
ture of the red-bla
k tree remains una�e
ted.Stru
tural 
hanges to the red-bla
k tree will be 
aused by insertions and dele-tions. Before these 
an be analysed, the following two auxiliary routines need to be
onsidered.Algorithm 9.1.17. Pst_Rotate_Left (v, x)1 y = x.r2 x.r = y.l3 y.l.p = x4 y.p = x.p5 if x.p = nil then v = y6 else if x = x.p.l then x.p.l = y7 else x.p.r = y8 y.l = x9 x.p = y10 s = y.q, y.q = x.q, x.q = s11 Pst_Pull (x)12 if s 6= nil then Pst_Push (y, s)and



9.1. AUXILIARY DATA STRUCTURES 83Algorithm 9.1.18. Pst_Rotate_Right (v, x)Rewrite Algorithm 9.1.17 with .l and .r swapped.Above v is the root of the tree, and x is the node about whi
h the rotationis supposed to happen. The left rotation and the right rotation are pi
tured inFigure 9.1.6. Lines 1-9 in Algorithm 9.1.17 basi
ally update pointers in 
omplian
ewith Figure 9.1.6. This is a standard part of left-rotation, exa
tly as in Cormenet al. [50℄. Lines 10-12 update the priority sear
h tree stru
ture. It is seen thatas a result of the left rotation y, a former 
hild of x, be
omes the parent of x.Thus 
ertainly the queue pointers in x and y need to be swapped. This happens inline 10. The pointer y.q maintains the priority queue property with respe
t to itsboth 
hildren (y.q ≥ γ.q is preserved, and the swap in line 10 ensures y.q ≥ x.q).Nevertheless, although x.q ≥ β.q (inherited after y), there does not ne
essarily hold
x.q ≥ α.q. This is remedied by pulling x.q out of the queue in line 11, followed bypushing it ba
k down the queue in line 12 (s is pushed down the y−rooted tree, asit a
tually might have been 
oming from the γ sub-tree). Be
ause of the priorityqueue update, the runtime of Algorithms 9.1.17 and 9.1.18 is O (logn).Rotations will be utilised as one of the a
tions aimed at restoring the red-bla
ktree properties 1-5 after an insertion or a deletion has taken pla
e. Let us 
onsiderthe insertion �rst.Algorithm 9.1.19. Pst_Insert (v, x, y, d)1 if v = nil then2 v = ((d, x, y) , leaf, black, nil, nil, nil, nil), v.l = v.r = v.q = v3 return4 end if5 p = q = v6 u = (d, x, y)7 while p.t 6= leaf8 q = p9 if u < p.u then p = p.l10 else if u > p.u then p = p.r11 else return12 end while13 if u = p.u then return14 if p 6= q then p.p = q15 p.t = node, p.c = red16 p.l = (nil, leaf, black, nil, nil, nil, nil), p.l.l = p.l.r = p.l17 p.r = (nil, leaf, black, nil, nil, nil, nil), p.r.l = p.r.r = p.r18 if u < p.u then19 p.r.u = p.u20 p.l.u = p.u = u21 for q = p while q.q 6= p do q = q.p22 q.q = p.r23 Pst_Push (v, p.l)24 else25 p.r.u = u26 p.l.u = p.u27 for q = p while q.q 6= p do q = q.p28 q.q = p.l29 Pst_Push (v, p.r)30 end if31 Pst_Insert_Fixup (v, p)



9.1. AUXILIARY DATA STRUCTURES 84Algorithm 9.1.19 takes as the arguments the tree root v, the two 
oordinates xand y and a data item d. In 
ase the tree is empty, a single leaf element is 
reatedas a root (lines 1-4). Otherwise the tree is traversed down the (d, x, y) 
omparisonpath, until a leaf is found (lines 5-12). It is assumed, that all data items d aredistin
t. Thus, the insertions exits in lines 11 and 13, rather than updating the
y priority. The parent pointer is updated in line 14, for all but the initial rootleaf. Then the found leaf is transformed into a node, and its 
olour 
hanged frombla
k into red in line 15. Two leaf 
hildren of the new node are 
reated in lines16-17. Note that the pointers are set 
hara
teristi
ally for leaves (for the sake of
orre
tness of rotation routines). In the binary sear
h ordering of the red-bla
ktree stru
ture the 
onvention is used, that all ≤ data is stored to the left of a node.It follows that the former data of node p is now moved to its right 
hild in line19. Then the new data takes pla
e of the one in node p and in its left 
hild (line20). Lines 21-23 deal with the update of priority queue. We wish to preserve theprin
iple, that queue pointers point to the data stored at leaves. Thus, the sear
his done up the tree in line 21, in order to lo
ate the queue pointer, pointing at p.As ps data has moved to its right 
hild, the pointer is now reset to p.r (line 22).The newly inserted data is pushed down the priority queue in line 23. The samepro
edure is repeated symmetri
ally in lines 25-29. Finally, as the 
olour of thenew node was 
hanged to red in line 15, the red-bla
k tree stru
ture needs to bemaintained in order to preserve properties 1-5. This is done inside of the �x-uproutine listed below.Algorithm 9.1.20. Pst_Insert_Fixup (v, x)1 while x 6= v ∧ x.p.c = red2 if x.p = x.p.p.l then3 y = x.p.p.r4 if y.c = red then5 x.p.c = black6 y.c = black7 x.p.p.c = red8 x = x.p.p9 else10 if x = x.p.r then11 x = x.p12 Pst_Rotate_Left (v, x)13 end if14 x.p.c = black15 x.p.p.c = red16 Pst_Rotate_Right (v, x.p.p)17 end if18 else... Rewrite lines 3-17 with .l and .r swapped.34 end if35 end while36 v.c = blackA detailed analysis of Algorithm 9.1.20 
an be found in Cormen et al. [50, pp.280-287℄. As it is rather lengthy, it would be ex
essive to repeat it here. It is enoughto note, that the properties of the red-bla
k tree are restored by Algorithm 9.1.20 in
O (logn) time. The only point where an additional 
omment is ne
essary 
on
ernsrotations. Due to the priority queue related modi�
ations the time 
omplexity ofrotations is O (logn) rather than O (1). Nevertheless, as 
ommented in [50, p. 287℄,the insertion �x-up performs at most two rotations. As a result the total runtime



9.1. AUXILIARY DATA STRUCTURES 85of the insertion Algorithm 9.1.19 remains O (logn). Let us resort to the deletionnow.Algorithm 9.1.21. Pst_Delete (v, x, y, d)1 u = (d, x, y)2 r = v, p = q = nil3 while r.t 6= leaf4 if r.q 6= nil ∧ u = r.q.u then p = r5 q = r6 if u ≤ r.u then r = r.l7 else r = r.r8 end while9 if u 6= r.u then return10 if p 6= nil then Pst_Pull (p)11 if q 6= nil then12 if r = q.l then p = q.r13 else p = q.l14 p.p = q.p15 if q.p = nil then v = p16 else if q = q.p.l then q.p.l = p17 else q.p.r = p18 if q.q 6= nil ∧ q.q 6= q then Pst_Push (p, q.q)19 if q.c = black then Pst_Delete_Fixup (v, p)20 free q21 else v = nil22 free rAlgorithm 9.1.21 takes as arguments the tree root v, the 
oordinates x and y,and the data item d. It des
ends down the tree until a leaf r holding u = (d, x, y) isfound (lines 3-8). Along the way a pointer p to the tree node holding the priorityqueue element asso
iated with u is re
order (line 4). If the right leaf was not found,the algorithm exits in line 9. If a priority queue element asso
iated with u was foundin a tree node, it is pulled out of the queue in line 10. For a tree not 
omposedof a single root leaf (line 11), the usual binary tree deletion is performed on node
q (otherwise the root is set to nil in line 21). First the qs parent bran
h is set tothe 
hild of q whi
h is not being deleted (lines 12-17). As q itself is to be removedan eventual queue element is push down the remaining sub-tree in line 18. If q isbla
k, then its deletion is likely to alter the balan
e of bla
k nodes a
ross the treeheight (prin
iple 5). An appropriate �x-up is performed in line 19. It is marked inthe 
ode, that the storage of q and r 
an be deleted (lines 20 and 22).Algorithm 9.1.22. Pst_Delete_Fixup (v, x)1 while x 6= v ∧ x.c = black2 if x = x.p.l then3 y = x.p.r4 if y.c = red then5 x.p.c = red6 y.c = black7 Pst_Rotate_Left (v, x.p)8 y = x.p.r9 end if10 if y.l.c = black ∧ y.r.c = black then11 y.c = red12 x = x.p



9.1. AUXILIARY DATA STRUCTURES 8613 else14 if y.r.c = black then15 y.l.c = black16 y.c = red17 Pst_Rotate_Right (v, y)18 y = x.p.r19 end if20 y.c = x.p.c21 x.p.c = black22 y.r.c = black23 Pst_Rotate_Left (v, x.p)24 x = v25 end if26 else... Rewrite lines 3-25 with .l and .r swapped.42 end if43 end while44 x.c = blackSimilarly as in 
ase of insertion, the purpose of Algorithm 9.1.22 is to maintainproperties and therefore balan
e of the underlying red-bla
k tree stru
ture. Thepro
edure is in
luded here for the sake of 
ompleteness. For a through analysis thereader is referred to the 
omments in [50, pp. 288-293℄. At most three rotations
an take pla
e during the deletion �x-up, thus the usual O (logn) deletion time ismaintained, even though rotations take O (logn) in the 
urrent 
ase.It remains to dis
uss an algorithm answering the query de�ned as Problem9.1.13. The following routine takes as the arguments the tree root v, the min-imal 
oordinates x0 and y0, an arbitrary data pointer δ, and a 
allba
k routine
Report(δ, d).Algorithm 9.1.23. Pst_Query (v, x0, y0, δ, Report)1 p = nil2 while v 6= p ∧ v.q 6= nil2 p = v4 if v.q.u.x > x0 ∧ v.q.u.y > y0 then Report (δ, v.q.u.d)5 if x0 ≤ v.u.x then6 if v 6= v.r then Pst_Report_Down (v.r, y0, δ, Report)7 v = v.l8 else v = v.r9 end whileAlgorithm 9.1.23 des
ends down the tree along the path indi
ated solely by the
x 
oordinate of the stored data (lines 5, 8) and the range limit x0. If the 
urrent
x 
oordinate is larger or equal to x0, the right sub-tree 
an only store data with
x > x0. Thus, a 
omplete bran
h of the priority queue is re
ursively reported aslong as y > y0 (line 6, and Algorithm 9.1.24 below). Similarly, queued data itemsen
ountered on the way down are eventually reported in line 4.Algorithm 9.1.24. Pst_Report_Down (v, y0, δ, Report)1 if v.q = nil then return2 else if v.q.u.y ≤ y0 then return3 Report (δ, v.q.u.d)4 if v.t = leaf then return5 Pst_Report_Down (v.l, y0, δ, Report)6 Pst_Report_Down (v.r, y0, δ, Report)
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Figure 9.1.7. Binary tree on atomi
 intervals9.1.8. Segment and interval trees. All of the presented so far data stru
-tures had O (n) spa
e 
omplexity. The stru
tures outlined in this se
tion demandmore spa
e, whi
h is also the reason why they are rarely implemented in pra
ti
e.A suitable, pra
ti
al generalisation will be detailed in Se
tion 9.3.4.A data stru
ture 
alled the segment tree [25℄ allows to solve the followingProblem 9.1.25. (Stabbing query) Given a set of intervals S and a query point,report all intervals that 
ontain the point.On the other hand, the range tree [27℄ 
an be used to solveProblem 9.1.26. (Range sear
h) Given a set of points P and a query interval,report all points that belong to the interval.It is easy to noti
e that Problems 9.1.25 and 9.1.26 are dual in the followingsense: The same set of pairsX ⊂ S×P is reported, when solving either the stabbingproblem on S with points from P , or then range sear
h problem on P with intervalsfrom S.Let us have a look into the segment tree �rst. Endpoints of intervals from Ssubdivide the real line into the set of so 
alled atomi
 intervals (intervals i1, i2, ..., i15in Figure 9.1.7). They 
an be assumed half-open, say at their right endpoints. Itis not di�
ult to 
reate a balan
ed binary sear
h tree, su
h that atomi
 intervalsare leaves and ea
h node is a union of its o�spring intervals. Consequently, theroot node spans the entire real line. This is a 
onvenient sear
h stru
ture for pointqueries, but not yet a segment tree. To obtain the segment tree, one needs to storeinformation about the intervals of S in tree nodes. Assume that tree nodes aresupplied with auxiliary lists, storing some of the intervals from S. Let tree node ube asso
iated with an interval Iu. The following rule is applied: An interval s ∈ Sis stored in u if and only if Iu ⊂ s and Iparent(u) 6⊂ s (Figure 9.1.8). This ensures,that an interval is stored at most twi
e at ea
h level of the tree. For if this wouldn'tbe the 
ase and there would exist n nodes u1, u2, ..., un storing an interval s at onelevel of the tree, then Iparent(u2) ⊂ s, Iparent(u3) ⊂ s, ..., Iparent(un−1) ⊂ s (due to thebinary tree stru
ture), whi
h 
ontradi
ts the assumed manner of storing intervalsat tree nodes. Hen
e, ea
h interval is stored no more than O(log n) times in thetree. It follows, that the O(n logn) spa
e is ne
essary for the segment tree.Segment tree 
an be 
onstru
ted in bottom-up or top-down manner. In theformer 
ase, a good algorithm �nding an approximate median of a set of points isne
essary [44, 20℄. The tree is begin built by des
ending down and splitting pointsets a

ording to the median. Building the tree this way requires O(n logn) stepson average. In 
ase of the bottom-up approa
h one �rst sorts P , and then buildsthe tree 
limbing up from the leaves level. This results in the well balan
ed tree,built in at most O(n logn) steps.
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Figure 9.1.8. Storing an interval into a segment tree.
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stabbing query:

Figure 9.1.9. A 
omplete segment tree with a stabbing query example.It remains to dis
uss is the stabbing query itself (Figure 9.1.9). One needs
O (logn) steps to query the segment tree with a point. For ea
h node u the intervalsstored in the nodal list Lu are reported. This way ea
h of the intervals stabbed bythe point is reported on
e, whi
h gives O (logn+ k) query 
omplexity. On
e thetree has been built, the stabbing query 
an be answered e�
iently. Nevertheless, weare not satis�ed with the spa
e requirements of the segment tree. In Se
tion 9.3.4it will be shown, how to avoid storing of the 
omplete tree in 
omputer memory,whi
h 
onsiderably relaxes the theoreti
al spa
e requirements of the stru
ture.The range tree stru
ture is quite similar to the segment tree. The only di�eren
eis that in auxiliary nodal lists one stores points, 
ontained within the nodal intervals.Root of the tree stores then the 
omplete set P . One queries the range tree withan interval s, and during this pro
ess splits s into O(log n) parts (exa
tly as it wasdone, while storing s in the segment tree). As the query des
ends down the tree,all points stored in nodes whose intervals Iu are 
ontained in partitions of s arereported. The remarks relevant to the spa
e and time requirements of the segmenttree 
an be repeated for the range tree without 
hange.9.2. The optimal data stru
tureWhen implementing a 
omputer 
ode, one naturally realises what are the de-sired features of an algorithm. Simpli
ity, speed and modest usage of spa
e areamong the sought qualities. At the same time, one realises that these goals are attimes mutually ex
lusive. Some need to be traded o� against others. This is not anex
eption for the algorithms related to 
onta
t sear
h. The purpose of this se
tionis to dis
uss an imaginary, optimal data stru
ture suitable for 
onta
t sear
h indynami
 multi-body simulations. It is relevant to realise what an ideal is, before
ompromising some of its aspe
ts on the way to the pra
ti
al implementation.
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ided here to use elements as irredu
ible geometri
 atoms. Hen
efor a 
onta
t point, there followsDefinition 9.2.1. A single oriented 
onta
t point results from an overlap oftwo surfa
e elements.To be somewhat more pre
ise, let B̄i = ∪j ēij be the 
on�guration of body i,where eij is the jth surfa
e element of body i, and the upper dash stands for theset 
losure. Assume that there exist two bodies Bi and Bk, su
h that B̄i ∩ B̄k 6=
∅. Then, the set of 
onta
ts (xikjl ,nikjl ,Bi,Bk) is de�ned by points and normals
orresponding to all nonempty interse
tions of elements ēij ∩ ēkl 6= ∅. Details on
al
ulating (x,n)ikjl for a pair of elements (eij , ekl) are provided in Se
tion 9.4. Forthe moment, it is enough to say that this operation takes O (1) time (with a ratherlarge 
onstant fa
tor), whi
h results from the �nite variety of element shapes.Within the above model of a
quiring 
onta
ts, it is natural to think about adata stru
ture storing elements, and possessing the following qualities:(1) Insertion of new elements is possible and fast. This is related to thes
enario, when new bodies enter an a
tive simulation. For example agranular �ow simulation with a sour
e requires insertions.(2) Deletion of elements is possible and fast. For example s
attering of bod-ies might require deletions, when some pres
ribed boundaries are 
rossed.Insertion and deletion together allow for modelling of 
ra
king and sepa-ration.(3) Insertions and deletions should take at most O (logn) steps, where n isthe number of stored elements.(4) Overlap 
reation between pairs of elements should be e�
iently reported.This in
ludes both the overlaps resulting from element insertions and theoverlaps 
reated after an update of element positions.(5) Overlap release between pairs of elements should be e�
iently reported.This in
ludes both the overlaps released after element deletions and theoverlaps released after an update of element positions.(6) Overlap 
reation/release reports should take at most O (n+ k) steps,where k is the number of 
reation/release events.(7) Elements dire
tly, topologi
ally adja
ent in a mesh should be ex
ludedfrom overlap reports. The self-
onta
t 
ase is still in
luded.(8) Ex
lusion of sele
ted pairs of elements should be possible. This mightbe of use in the vi
inity of joints, where mesh overlaps are sometimestolerated.(9) The spa
e 
omplexity of the data stru
ture should be O (n).The insertion and deletion times listed in point 3 is quite stringent. Withouthaving in mind yet any spe
i�
 realisation of the data stru
ture, it is a
knowledgedthat data should be stored in some order. The fastest purely 
ombinatorial linearstru
tures allowing for dynami
 insertions and deletions are balan
ed binary sear
htrees. Thus, although our hypotheti
al stru
ture operates in three dimensions,we wish to retain the O (logn) insertion and deletion times. The overlap report
omplexity listed in point 6 is in fa
t even more stringent. It is assumed thatthe ordering maintained during insertions, deletions and updates of the stru
tureis su�
ient to tra
e 
reation and release of overlaps in O (n+ k) time. If this
ould be assured, 
omplexity of the 
onta
t sear
h would not ex
eed that of thetime stepping. Nevertheless, algorithms dete
ting overlaps between geometri
alobje
ts in three dimensions are slower. This will be demonstrated for shapes as
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tilinear boxes in Se
tion 9.3.1.1. Still, our hope is in the improvementresulting from pro
essing nearly ordered data, similarly as it was the 
ase withsorting (Algorithm 9.1.9). A 
onta
t sear
h algorithm operates in between of thetime integration steps. Therefore it is quite legitimate to assume that ordering ofdata 
orresponding to adja
ent time frames is similar. This is 
alled time 
oheren
e.Several overlap sear
h algorithms and related data stru
tures will be investigatedin Se
tion 9.3. Few of them will take advantage of the time 
oheren
e.It will be useful to sket
h the interfa
e routines for the hypotheti
al data stru
-ture s. Let insertion and deletion of elements e readAlgorithm 9.2.2. Imaginary_Insert (s, e)Insert e into s while preserving an impli
it ordering.andAlgorithm 9.2.3. Imaginary_Delete (s, e)Delete e from s while preserving an impli
it ordering.Somewhat more 
an be said about the a
tions taken inside of the update rou-tine. All of the overlap event reports happen as a 
onsequen
e of the update ofthe stru
ture. This means that overlap events related to insertions and deletionsare postponed and exe
uted on the o

asion of an update. This is related to theanti
ipated di�
ulties with an e�
ient reporting of overlaps during the insertionpro
ess. In 
onsequen
e it is more elegant to assume that all overlap events arereported during the update. This is just a pragmati
 
hoi
e, di
tated by experien
e.The update routine follows below.Algorithm 9.2.4. Imaginary_Update (s, δ, Created,Released)Find overlaps released due to deletions.Find overlaps released due to motion of elements.For ea
h overlap release 
all Released (δ, eij, ekl).Find overlaps 
reated due to insertions.Find overlaps 
reated due to motion of elements.For ea
h overlap 
reation 
all Created (δ, eij, ekl),if and only if the element pair is not topologi
allyadja
ent or it was not expli
itly ex
luded.Equipped with the above stru
ture and the knowledge on how to extra
t 
onta
tpoints and normals from the pairwise element overlaps, one 
an easily exe
ute avariety of 
onta
t dete
tion tasks. Of 
ourse, in pra
ti
e some aspe
ts of this generalidea (typi
ally e�
ien
y) will need to be 
ompromised.9.3. Finding 
onta
t 
andidatesThe data stru
ture outlined in the previous se
tion operated on the surfa
e ele-ments, de�ned in Chapter 2. In fa
t, this is not the most 
onvenient approa
h. It isunderstandable, that overlaps between obje
ts of simple shapes 
an be found morerapidly, then between those of intri
ate shapes. Although element shapes are quitesimple, designing a data stru
ture operating dire
tly on them is still too 
umber-some. In terms of maintaining an ordering or testing for interse
tions, rather thanusing the elements, it is mu
h easier to deal with their axis-aligned extents. Thethree axis-aligned intervals form a box, 
alled the axis aligned bounding box (Fig-ure 9.3.1). Obviously, if two bounding boxes do not overlap, their related elements
annot interse
t. Thus, the reje
tion test is simple and 
on
lusive. On the otherhand, the overlap of boxes only indi
ates a potential interse
tion of the underlyingelements. It will be shown in Se
tion 9.3.1, that under some pra
ti
al assumptions,the bounding box overlaps re�e
t quite well the a
tual element overlaps.
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Figure 9.3.1. An axis aligned bounding box around a pyramidelement. Proje
tions on the 
oordinate axes have been thi
kened.For taxonomi
 reasons it is relevant to mention, that the presented frameworkbelongs to the broader 
ategory of two-phase 
ollision/
onta
t/interfa
e dete
tionmethods. Se
tion 9.3 
orresponds to the broad phase, usually involving some sort ofspa
e partitioning and/or bounding volume strategy, aimed at reporting the 
onta
t
andidate obje
t pairs. Se
tion 9.4 
orresponds to the narrow phase, pursuing 
on-
lusive interse
tion tests between the reported pairs of obje
ts. Interfa
e dete
tionmethods will be brie�y reviewed in Se
tion 9.5.9.3.1. Axis aligned bounding boxes. Although the axis aligned boundingboxes are a rather simple geometri
al devi
e, they proved to be e�e
tive in manyappli
ations (e.g. 
omputer graphi
s, geometri
 modelling, interfa
e dete
tion).The reasons behind this e�e
tiveness have been studied by Suri et al. [201℄ andZhou and Suri [215℄. It will be useful to re
all some of their results. For a set P of
n obje
ts in d−dimensional spa
e, the following ratio was 
onsidered(9.3.1) ρ (P) =

Kb (P)

n+Ko (P)where Kb (P) denotes the number of interse
ting bounding boxes, and Ko (P) 
or-responds to the number of a
tual interse
tions among the obje
ts. Formula (9.3.1)des
ribes the e�
ien
y of the bounding box heuristi
. The number of obje
ts nadded in the denominator allows to 
onsider also the 
ase when Ko = 0. At thesame time O (n+K0) 
orresponds to the 
omplexity of an optimal algorithm �nd-ing all interse
tions between the n obje
ts. If ρ (P) is a small 
onstant, then one
an 
on
lude that the bounding box heuristi
 performs well, i.e. the overhead of�
titious overlap reports is small. Although it is not hard to pi
ture a situationwhere ρ (P) = O (n) (e.g. Figure 9.3.2), it generally 
orresponds to some patho-logi
al shapes arranged in a rather spe
ial way. After all, in the 
urrent 
ase, thebounding boxes en
lose the 
onvex surfa
e elements and thus, it is not possible toend up with a 
on�guration similar to the one in Figure 9.3.2. In [201, 215℄ theobje
t shapes are 
hara
terised by their aspe
t ratio and s
ale fa
tor. For an obje
t
P , its aspe
t ratio is de�ned as(9.3.2) α (P ) =

vol (b (P ))vol (c (P ))
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Figure 9.3.2. Example of obje
ts shapes where Kb = O

(

n2
) and

K0 = O (1).where b (P ) and c (P ) are respe
tively the en
losing box and the 
ore of P. The en-
losing box is de�ned as the smallest L∞ ball (or simply, a smallest box) 
ontaining
P . Core on the other hand, is the largest L∞ ball 
ontained in P . The aspe
t ratioof the set P reads(9.3.3) α (P) = max

i
α (Pi)while the average aspe
t ratio for the set P is de�ned as(9.3.4) αavg (P) =

1

n

n
∑

i=1

α (Pi)It is 
lear that the aspe
t ratio measures the elongation of an obje
t. The aspe
tratio of the set from Figure 9.3.2 is high. The s
ale fa
tor measures the disparityof obje
t sizes. It is de�ned then for the set P as(9.3.5) σ (P) = max
i,j

vol (b (Pi))vol (b (Pj))The di�eren
e between the smallest and the largest en
losing box in Figure 9.3.2is relatively large. Hen
e, one 
an see that the large aspe
t ratio and so the s
alefa
tor of the obje
ts in Figure 9.3.2 notably 
ontribute to the possibility of anarrangement resulting in ρ (P) = O (n).In the 
hronologi
ally �rst paper [201℄, Suri et al. analyse the ratio (9.3.1) interms of the maximal bounds (9.3.3) and (9.3.5). The following theorem is quotedwithout proofTheorem 9.3.1. Let P be a set of obje
ts in d dimensions, with aspe
t bound αand s
ale fa
tor σ, where d is a 
onstant. Then, ρ = O
(

α
√
σ log2 σ

). Asymptoti-
ally, this bound is almost tight, as we 
an show a family P a
hieving ρ = Ω (α
√
σ).Thus, if α and σ are small 
onstants, there holds Kb = O (Ko) +O (n), whi
hshows that the number of box overlaps does not grow faster than the number ofa
tual obje
t interse
tions (plus an extra O (n) fa
tor, related to the work thatanyhow has to be done if n obje
ts are to be examined). In many pra
ti
al appli-
ations α, σ are small 
onstants. Eventually, obje
ts 
an be subdivided in order toredu
e α and σ, whi
h should in
rease the e�e
tiveness of the heuristi
. Note, thatthe aspe
t ratio a�e
ts the result in a greater degree than the s
ale fa
tor.The lower bound ρ =Ω (α

√
σ), des
ribed in Theorem 9.3.1, is indeed quite tightfor small σ. The authors 
onstru
t a rather pe
uliar family of non-
onvex obje
ts inorder to exemplify it. The bound will not be rea
hed in our setting, where 
onvexelements are en
losed by the boxes. In [215℄, Zhou and Suri manage to improve
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h together with the already mentioned lower bound allowsto re�ne Theorem 9.3.1 into the followingTheorem 9.3.2. Let P be a set of n obje
ts in d dimensions, where ea
h obje
thas aspe
t ratio at most α and the family has the s
ale fa
tor σ, where d is a
onstant. Then ρ (P) = Θ (α
√
σ).In the same paper [215℄, the value of ρ is estimated with respe
t to the averageaspe
t ratio αavg. The following result is proven.Theorem 9.3.3. Let P be a set of n obje
ts in d dimensions , with the aver-age aspe
t ratio αavg and the s
ale fa
tor σ, where d is 
onstant. Then ρ (P) =

Θ
(

α
2/3
avgσ1/3n1/3

).It is seen, that if only the average aspe
t ratio is bounded (rather than themaximal one), a somewhat less optimisti
 estimate of the performan
e is a
hieved.Nevertheless, n1/3 grows slowly and still - a relatively good performan
e is expe
ted.Proofs of all of the above theorems are too long and te
hni
al to be in
luded.However, it is fair to say that the te
hniques applied in [201, 215℄ seem potentiallyappli
able in the analysis of other geometri
al algorithms.In the 
ontext of the results brought up in the above, it is relevant to mentionthe paper by de Berg et al. [54℄, where the idea of realisti
 input models is dis
ussed.The authors noti
e, that the worst-
ase performan
e of geometri
 algorithms often
orresponds to some ill-
onditioned and quite unlikely 
on�gurations of obje
ts(Figure 9.3.2). By formalisation of the shape and arrangement 
hara
teristi
s, amore realisti
 analysis be
omes possible (e.g. introdu
tion of the aspe
t ratio andthe s
ale fa
tor led to the pra
ti
al bounds on ρ). The following notion de�ned in[54℄ will be of use in our 
ase.Definition 9.3.4. Let P = {P1, ..., Pn} be a set of d−dimensional obje
ts, andlet λ ≥ 1 be a parameter. We say that P is λ−low-density if for any L∞ ball B, thenumber of obje
ts Pi ∈ P with radius (b (Pi)) ≥ radius (B) that interse
t B is atmost λ. The density of P is de�ned as the smallest λ for whi
h P is λ−low-density.9.3.1.1. Remarks on �nding overlaps. The above dis
ussion allows to 
on
ludemerely, that the axis aligned boxes are useful. The potential of this observationdepends however on the availability of an e�
ient algorithm for the box inter-se
tion problem. Several results 
an be found in the literature in this respe
t.A two-dimensional version of the problem was solved by Six and Wood [192℄ in
O (n logn+ k) time and O (n logn) spa
e, where n is the number of boxes and k isthe number of interse
tions. The fastest d−dimensional result is due to Edelsbrun-ner and Maurer [64℄ and Edelsbrunner [65, 66℄, where O (n logd−1 n+ k

) time and
O
(

n logd−2 n
) spa
e was used. Nonetheless, the algorithm is too 
ompli
ated to bepra
ti
al for d > 2. Edelsbrunner and Overmars [67℄ dis
uss a bat
hed version ofthe interse
tion problem, enjoying an optimal O (n logd−1 n+ k

) time and O (n)spa
e 
omplexity. Zomorodian and Edelsbrunner [216℄ give a fast and pra
ti
alre�nement of this approa
h, to be dis
ussed in Se
tion 9.3.4.The brief review of the state of the art allows to 
on
lude, that the algorithmdis
ussed in Se
tion 9.2 is not attainable in general. Hen
e, when none previoussolution is known, the interse
tion sear
h has to take at least O (n log2 n+ k
) time.For the 
onse
utive runs though, one hopes to redu
e the runtime by exploiting thetime 
oheren
e.9.3.1.2. Bounding box data type. Let the following tuple (d, lo, hi) des
ribe theaxis aligned bounding box. The members of the tuple are respe
tively: d pointing
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ipro
ate positions of two interse
ting intervals.to an arbitrary data, lo [·] being a table of three low 
orner 
oordinates, and hi [·]being a table of three high 
orner 
oordinates.9.3.2. 1D interval overlap. The following two obvious fa
ts are looselyquoted after [216℄Fa
t 9.3.5. Two boxes interse
t if and only if they interse
t in every dimensionindependently. Hen
e, it is enough to 
onsider interse
tion of one-dimensionalintervals.Fa
t 9.3.6. Two intervals interse
t if and only if one 
ontains the low endpointof the other. There are four general positions of two interse
ting intervals (Figure9.3.3).Solving the interval overlap problem is then an essential step on the way towardsthe three-dimensional box interse
tion. Three stati
 methods and one dynami
 willbe dis
ussed for that purpose. A stati
 algorithm takes as an input the 
ompleteset of intervals, and outputs the overlapping pairs. A dynami
 algorithm bases ona data stru
ture fa
ilitating insertions, deletions as well as the overlap queries.9.3.2.1. S
anning (stati
). If only we would live in a one-dimensional universe,s
anning would have been the single best approa
h to the box overlap problem. Leta list l store as data the box tuples de�ned in Se
tion 9.3.1.2. De�ne the following
omparison for a pair u, v of box tuples(9.3.6) u < v i�u.lo [d] < v.lo [d] ∨ (u.lo [d] = v.lo [d] ∧ u.d < v.d)
u = v i�u.lo [d] = v.lo [d] ∧ u.d = v.d

u > v otherwise.where 1 ≤ d ≤ 3 is a 
onstant. The following algorithm performs s
anning andreports the overlapping interval pairs.Algorithm 9.3.7. One_Way_S
an (l, d, tc, δ, Report)1 if tc > 0 then List_Insertion_Sort (l)2 else List_Merge_Sort (l)3 while l 6= nil4 for u = l.n while u 6= nil ∧ u.d.lo [d] < l.d.hi [d] do Report (δ, l.d, u.d)5 l = l.n6 end whileThe �rst argument l of Algorithm 9.3.7 is the list of boxes. The se
ond argu-ment d is the dimension along whi
h the box indu
ed intervals should be s
anned.The third argument tc is a �ag indi
ating whether the time 
oherent run is to beexe
uted (tc > 0). The fourth and �fth arguments are an arbitrary data δ of theoverlap report 
allba
k routine Report, and the routine itself. In the �rst line, ifthe time 
oheren
e is on, the insertion sort is performed, using the box tuple 
om-parison de�ned in (9.3.6). Otherwise, the merge sort is employed (line 2). In thenext stage, a loop over the sorted elements of l is exe
uted (lines 3-6). As intervalsare sorted a

ording to their low endpoints, it is now easy to �nd and report alloverlapping pairs by exploiting Fa
t 9.3.6 (line 4). S
anning is illustrated in Figure9.3.4.If tc ≤ 0, the runtime of Algorithm 9.3.7 is O (n logn+ k), where n is thenumber of obje
ts and k is the number of interval interse
tions. It should be noted
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Figure 9.3.4. An idea of s
anning. The dashed line 
orrespondsto the overlap reports in line 4 of Algorithm 9.3.7.that only the box interse
tions along the dth dimension are reported, whi
h leavesthe remaining two dimensions unveri�ed. Hen
e k ≥ kbox, where kbox is the numberof a
tual interse
tions between the boxes. In pra
ti
e k ≫ kbox for large n, whi
hrenders the s
anning quite ine�e
tive as the box overlap solver on large data sets.If time 
oheren
e 
an be enabled (the list is almost sorted), the runtime redu
es to

O (n+ k). S
anning is then ideally 
ompliant to the speedup indu
ed by the time
oheren
e.9.3.2.2. Using segment tree (stati
). Due to Fa
t 9.3.6, the interval overlapproblem 
an be formulated as the stabbing query problem (Problem 9.1.25). Inorder to �nd all interval overlaps it is enough to identify the pairs (interval, lowendpoint), where the low endpoint stabs the interval. Thus, one 
an build a segmenttree on a given set of intervals, and query it with the set of low endpoints. Buildingthe tree takes O (n logn) time and spa
e. This, together with its logarithmi
 querytime, results in the O (n logn+ k) runtime for the interval overlap problem. Theadvantage of the time 
oheren
e is limited in this 
ontext. Although one 
ouldargue, that the segment tree 
an be rebuilt in O (n) time if the intervals werealmost sorted, the ne
essity of performing n queries taking O (logn) time ea
h isnot removed.9.3.2.3. Spatial hashing (stati
). Although it is not the best idea, also hashing
an be applied to the interval interse
tion problem. A number of elementary fea-tures of the spatial hashing 
an be illustrated on a one dimensional example - thisis why the te
hnique is outlined here. Let f (i) be a hashing fun
tion from the setof all integer numbers Z onto the set {1, 2, ...,m}. That is(9.3.7) f : Z → {1, 2, ...,m}An example of su
h fun
tion is f (i) = i · c (mod m), where c is typi
ally a largeprime integer [203℄. Let a fun
tion g : R → Z surje
tively map real numbers ontothe integer numbers in the following way(9.3.8) g (x, s) =
⌊x

s

⌋where s the so 
alled voxel size, and ⌊·⌋ extra
ts the largest integer, not greaterthan its argument. Let h [·] be a hash table of size m, let 1 ≤ d ≤ 3 and b be thebox tuple, de�ned in Se
tion 9.3.1.2. One 
an now de�ne the following insertionroutineAlgorithm 9.3.8. Hash_1D_Insert (h, s, d, b)1 i = g (b.lo [d] , s) , j = g (b.hi [d] , s)2 while i ≤ j3 List_Insert (h [f (i)] , b)4 i = i+ 15 end whileIn the �rst line above the (i, j) limits of the box proje
tion along the d−axisare found. Then all of the k−indexed 
ells, i ≤ k ≤ j, are hashed into the table



9.3. FINDING CONTACT CANDIDATES 96
1

2
3

4

5, 6, 71, 2, 3, 4

i+2i+1i ...

5
6

7

f(i) f(i+1)
f(i+2)

hash collision

hash table

s

1, 2, 4, 5, 6, 7Figure 9.3.5. An idea of one-dimensional spatial hashing.
h [·] in line 3. Hen
e, the box pointer b is pla
ed in the hash lists ranging from h [i]to h [j]. Re
alling the dis
ussion from Se
tion 9.1.4, the e�
ien
y of the hash tabledepends on the average length of those lists. The shorter, the better. Negle
tingthe in�uen
e of the hash fun
tion, it is readily seen that the voxel size s seriouslya�e
ts the length of lists stored in h [·]. If s → ∞, there will be at most two longlists, one for the negative and one for the positive 
oordinates. On the other hand,
s → 0 results in j − i → ∞ and due to the �nite size of h [·] ea
h interval will bestored in ea
h entry of the hash table. In between of those two extremes, there isan optimal size of the voxel. Let li = bi.hi [d]− bi.lo [d] be the length of the intervalasso
iated with box bi. It is always fair to demand that ∑ (j − i) = O (n) in the�rst line of Algorithm 9.3.8, where the sum is taken over all inserted boxes. Thisresults from a simple observation, that the overlap sear
h algorithm should not takemore then O (n) time to examine all of the inserted items. Hen
e ∑ li/s = O (n),whi
h immediately leads to(9.3.9) s = O

(

n
∑

i=1

li
n

)being quite obviously the average interval length. This simple result was 
on�rmedexperimentally by Tes
hner et al. [203℄. A more 
omprehensive analysis has beenin
luded in Se
tion 9.3.3.3. Figure 9.3.5 illustrates an exemplary out
ome of theone-dimensional hashing.On
e the intervals have been inserted into the hash table, the overlap dete
tion
an be performed. The following simple algorithm 
an be employedAlgorithm 9.3.9. Hash_1D_Dete
t (h,m, d, δ, Report)1 for i = 1 while i ≤ m do2 One_Way_S
an (h [i] , d, 0, δ, Report)3 end forAlgorithm 9.3.9 employs s
anning for ea
h of the hash lists (line 2). If the voxelsize has been sele
ted a

ording to (9.3.9), then the total length of lists∑i |h [i]| =
O (n). Note that tc = 0 and the merge sort for ea
h list takes O (|h [i]| log |h [i]|).Further, ∑i |h [i]| log |h [i]| ≤ n logn, so that the total 
ost of sorting the partiallists is O (n logn). The fa
t that overlapping intervals 
an be hashed into severaldistin
t lists (Figure 9.3.5), results in the possibility of multiple interse
tion reportsfor the same pair of intervals. The repeated reports ought to be suppressed, whendete
ting the overlaps. This requires an additional 
omputational e�ort, and hen
ethe spatial hashing has no advantage over s
anning in one dimension. A 
onvenientway of avoiding the repeated reports will be detailed in Se
tion 9.3.5.Due to the a
tion of the hashing fun
tion (9.3.7), an interval travelling over ad-ja
ent voxels 
an be mapped into arbitrary entries of the hash table. The 
oheren
eof hash lists is thus not preserved and the advantage of it 
annot be taken.
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Figure 9.3.6. Intervals mapped into two-dimensional points andthe related priority-sear
h tree stru
ture.9.3.2.4. Using priority sear
h tree (dynami
). There exists a 
urious mappingbetween the one-dimensional intervals and the two-dimensional points, making itpossible to apply the priority-sear
h tree as the solver to the dynami
 intervaloverlap problem [184℄. This is illustrated in Figure 9.3.6. Consider a set of intervals
[loi, hii], i = 1, 2, ..., n. It is easy to noti
e, that an interval [loj , hij] interse
ts
[loi, hii] if and only if(9.3.10) hii > loj ∧ loi < hijNote symmetry with respe
t to i and j. One 
an rewrite (9.3.10) as(9.3.11) hii > loj ∧ −loi > −hijwhi
h implies, that the 
hange of 
oordinates(9.3.12) {

xi = hii
yi = −loi

{

x0j = loj

y0j = −hijallows to formulate the interval interse
tion problem as the two-sided range queryProblem 9.1.13. The priority sear
h tree, introdu
ed in Se
tion 9.1.7, solves Prob-lem 9.1.13 and hen
e the dynami
 interval interse
tion problem in optimal spa
eand time. The following three routines make use of (9.3.12) and employ intervalsrelated to d−proje
tions of bounding boxes.Algorithm 9.3.10. Pst_1D_Insert (t, d, b)1 Pst_Insert (t, b.hi [d] ,−b.lo [d] , b)



9.3. FINDING CONTACT CANDIDATES 98Algorithm 9.3.11. Pst_1D_Delete (t, d, b)1 Pst_Delete (t, b.hi [d] ,−b.lo [d] , b)Algorithm 9.3.12. Pst_1D_Query (t, d, b, δ, Report)1 Pst_Query (t, b.lo [d] ,−b.hi [d] , δ, Report)Having a priority sear
h tree t, one 
an then insert and delete intervals in
O (logn) time (Algorithms 9.3.10 and 9.3.11). At any time it possible to �nd alloverlaps between a given interval and all intervals stored in t in O (logn+ k) time(Algorithm 9.3.12).9.3.3. 2D re
tangle overlap. A stati
 re
tangle interse
tion algorithm isoutlined �rst. This will not be of dire
t use in the three-dimensional framework.Nevertheless, it allows to visualise a general 
omputational te
hnique known as linesweeping. A dynami
 re
tangle interse
tion problem is solved next. Four di�erentvariants of the dynami
 data stru
ture are investigated for that purpose. Theyare employed later in Se
tion 9.3.6, where the sweeping algorithm is developed inthree-dimensions.9.3.3.1. Line-sweep algorithm. Sweeping is one of the 
lassi
al te
hniques in
omputational geometry. Some exemplary developments related to general inter-se
tion problems in the plane in
lude [24, 159, 63℄. As already mentioned, Sixand Wood [192℄ give an O (n logn+ k) time and O (n logn) spa
e algorithm forreporting k overlaps between n planar, axis-aligned re
tangles. Few years laterM
Creight [148℄ de�ned the priority sear
h tree stru
ture and redu
ed the spa
e
omplexity of the overlap dete
tion algorithm to the optimal O (n).Let an auxiliary tuple (b, t, x) store the bounding box pointer b, the type t ∈
{low, high}, and the 
oordinate x. Let u = (b, t, x) be 
alled an endpoint. Let u, vbe of type (b, t, x), and the 
omparison of endpoints read(9.3.13) u < v i�u.x < v.x ∨ (u.x = v.x ∧ u.b.d < v.b.d)

u = v i� u.x = v.x ∧ u.b.d = v.b.d
u > v otherwise.Let l be a list all low and high endpoints of bounding boxes, that is a list made ofthe 
ompound tuples ((b, t, x) , p, n). Consider the set of related boxes in the i× jplane, where 1 ≤ i 6= j ≤ 3. M
Creight's approa
h 
an now be summarised in thefollowingAlgorithm 9.3.13. Sweep_2D (l, i, j, tc, δ, Report)1 for u = l while u 6= nil do2 if u.d.t = low then u.d.x = u.d.b.lo [i]3 else u.d.x = u.d.b.hi [i]4 end for5 if tc > 0 then List_Insertion_Sort (l)6 else List_Merge_Sort (l)7 t = nil8 while l 6= nil9 if l.d.t = low then10 δ.b = l.d.b11 Pst_1D_Query (t, j, l.d.b, δ, Report)12 Pst_1D_Insert (t, j, l.d.b)13 else14 Pst_1D_Delete (t, j, l.d.b)15 end if16 l = l.n
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Figure 9.3.7. An example of the line-sweep approa
h. Two re
t-angles interse
t the sweep line. The middle, bla
k re
tangle will be
onsidered next and its overlaps with the green and purple re
tan-gles will be dete
ted.17 end whileIn lines 1-4 above, the i−dimension aligned endpoints are updated to the 
ur-rent values of the relevant box 
oordinates. Then, in lines 5 and 6, either theinsertion or the merge sorting is performed, where 
omparison (9.3.13) is in use.An empty priority sear
h tree is initialised in line 7. Next, a loop over all endpointsis exe
uted (lines 8-17). If the low endpoint is en
ountered, the priority sear
h treeis queried with the j−dimension aligned extent of a box. All interse
tions betweenthe box l.d.b and the boxes stored in t, whose j−dimension extents interse
t thoseof l.d.b, are reported (line 11). Then the interval is inserted into the tree (line12). In 
ase of the high endpoint, the interval is deleted from the tree (line 14).Note, that it is assumed that the auxiliary pointer δ has a va
ant member pointer

δ.b, whi
h used in line 10, so that the Report 
allba
k knows about the pairs ofoverlapping obje
ts (being 
omposed of δ.b and of the se
ond argument of Report).To bring up into the pi
ture the a
tual line and the sweeping pro
ess, one shouldimagine a few axis aligned re
tangles s
attered over a plane. Sweeping a verti
alline from the far left to the right allows to a

ount for the re
tangles 
urrently beinginterse
ted by the line. Obviously, all of them must overlap along the horizontaldire
tion. If one 
ould now solve the interval overlap problem in the remaining,verti
al dire
tion - that would eventually reveal all pairs of overlapping re
tangles.Now, it is enough to move the line from one endpoint to the other, as only at thosepoints status 
hange happen. In Algorithm 9.3.13, the sweep-line is symboli
allyrepresented by the 
urrent l.d.x 
oordinate (position of the verti
al line), and bythe priority sear
h tree t (storing re
tangles 
urrently interse
ted by the line). If anew re
tangle is about to enter the line, one �rst looks for interse
tions along theverti
al dire
tion - this happens during the tree query in line 11. The re
tangle isthen simply inserted into the tree (line 12). As soon as its endpoint is rea
hed (theverti
al plane does not interse
t it any more), it is removed from the tree t (line14). Figure 9.3.7 gives an additional illustration.The input list l has length 2n and its sorting takes O (n logn) time. Thetime 
oheren
e 
an be exploited and the list sort 
an eventually take O (n) steps.Nevertheless, the priority sear
h tree insertions/deletions and queries for all 2nendpoints 
an still respe
tively takeO (n logn) and O (n logn+ k) time in the worst
ase. One 
an thus only expe
t redu
tion of the 
onstant fa
tor in the O (·) notationin 
ase of 
oheren
e. Optimisti
ally however, if boxes are not too densely pa
ked,only a fra
tion of them will be stored in t at a given moment. Then, in 
ase of
oheren
e, the expe
ted runtime would be O (n logm+ k), where m ≤ n.
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 re
tangle interse
tion. Like in Se
tion 9.3.2.4, the obje
tiveis to �nd a data stru
ture fa
ilitating insertions, deletions and queries 
orrespond-ing to the re
tangle overlap problem. Optimally, insertions and deletions shouldtake O (logn) time, while the overlap queries should take O (logn+ k) time. Un-fortunately, to the best of our knowledge, su
h a stru
ture has not yet been de-s
ribed. It seems that the 
losest result is due to Mortensen [157℄, where an
O (n logn/ log logn) spa
e stru
ture is proposed. However, it 
an only be appliedindire
tly, as it solves the dynami
 orthogonal segment interse
tion problem. Fur-thermore, it is of purely theoreti
al interest, being too intri
ate for an implementa-tion. To 
omplement this example one should mention the paper by Samet [185℄,reviewing various re
tangle indexing te
hniques. None of them is fully dynami
 inthe sense expe
ted here. Also the so 
alled box-trees, analysed by Agarwal et al.[4℄ are not dynami
 and have a rather pessimisti
 O (

√
n+ k) query time. Fa
ingthe la
k of a suitable stru
ture, it remains to resort to an approximation. Fourvariants will be 
onsidered.Two-dimensional hashing . The hashing fun
tion (9.3.7) from Se
tion 9.3.2.3needs to be rede�ned as(9.3.14) f : Z × Z → {1, 2, ...,m}where a suitable example 
ould be f (i, j) = (i · c xor j · d) (mod m), where c, d arelarge primes [203℄. Assume also that the data pointed by the box tuple member

b.d, has a spare pointer member b.d.m. Now the insertion/query routine 
an bephrased asAlgorithm 9.3.14. Hash_2D_Insert (h, s, k0, k1, b, δ, Report)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 flag = 06 for l = h [f (i, j)] while l 6= nil do7 if l.d.b = b then flag = 1, l = nil8 else if l.d.m 6= b ∧ overlap (b, l.d, k0, k1) then9 Report (δ, b, l.d)10 l.d.m = b11 end if12 l = l.n13 end for14 if flag = 0 then15 b.m = nil16 List_Insert (h [f (i, j)] , b)17 end if18 j = j + 119 end for20 i = i+ 121 end forIn the �rst two lines of Algorithm 9.3.14 the voxel index ranges (i0, i1) and
(j0, j1) are determined. The k0 × k1-re
tangle of box b is 
overed by the voxels
(i, j) ∈ (i0, i1) × (j0, j1). The double loop from lines 3,4 till 19, 21 iterates over allindi
es from that 
overing. The hash list 
orresponding to ea
h h [f (i, j)] is tra-versed in lines 6-13. If the box was already stored in the list, the loop is terminatedand a flag set up (line 7). Note, that due to the way items are inserted into the list



9.3. FINDING CONTACT CANDIDATES 101(Algorithm 9.1.4), b must have bean stored at the head element of the list. Hen
e,lines 8-10 
ould not be exe
uted if l.d.b = b. Otherwise, the re
tangles stored inthe list are 
he
ked for not being marked (l.d.m 6= b), and eventually overlaps with
b are reported (line 8). Before the overlap report between b and l.d, the box storedat l is marked in line 9. Marking allows to avoid repeated reports, when the samepairs of boxes o

upy di�erent hash lists. In 
ase box b was not found in the 
urrenthash list (line 14), it is inserted into the list (line 16). Just before that, its markerpointer is set to nil (line 15), whi
h ensures the 
orre
tness of marking. A mu
hsimpler deletion algorithm is given below. No 
omments seem ne
essary.Algorithm 9.3.15. Hash_2D_Delete (h, s, k0, k1, b)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 List_Delete (h [f (i, j)] , b)6 j = j + 17 end for8 i = i+ 19 end forTwo-dimensional hashing and priority sear
h tree. This variant is similar tothe previous one in that respe
t, that it still utilises the two-dimensional hashing.The di�eren
e is, that instead of the hash lists, the priority sear
h trees are usedat the h [·] entries of the hash table. This allows for a more intelligent �ltering ofoverlaps (
ompared with Algorithm 9.3.14) and should improve e�
ien
y for densedata sets. More 
omments will follow in Se
tion 9.3.3.3. As the priority sear
h treequery will be exploited, the following auxiliary 
allba
k needs to be de�ned.Algorithm 9.3.16. Aux_Pst_Callba
k (α, b)1 if b.d.m = α.b then return2 else if b.hi [α.i] ≤ α.b.lo [α.i] ∨ b.lo [α.i] ≥ α.b.hi [α.i] then return3 α.Report (α.δ, α.b, b)4 b.d.m = α.bIn the above α = (i, b, δ, Report), where 1 ≤ i ≤ 3, b is a box pointer, δ is a
allba
k data pointer, and Report is the external 
allba
k routine. Note that thepriority sear
h tree 
allba
k used in Algorithm 9.1.23 naturally used two arguments,while for reporting overlap pairs the 
allba
k in line 3 uses three arguments. Theseare of 
ourse only te
hni
al details, of quite minor importan
e. We 
an now de�nethe suitable insertion/query routine.Algorithm 9.3.17. Hash_2D_Pst_Insert (h, s, k0, k1, b, δ, Report)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 Pst_1D_Query (h [f (i, j)] , k0, b, (k1, b, δ, Report) , Aux_Pst_Callback)6 Pst_1D_Insert (h [f (i, j)] , k0, b)7 j = j + 18 end for9 i = i+ 110 end forFor ea
h (i, j) voxel 
overing the k0 × k1 re
tangle of box b, the prioritysear
h tree stored at the hash table element h [f (i, j)] is �rst queried with the
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k0−aligned interval (line 5, the 
hoi
e of k0 is arbitrary). Then the interval is in-serted into the tree (line 6). Note that the tuple (k1, b, δ, Report) and the 
allba
k
Aux_Pst_Callback are passed to the tree query routine in line 5. Then, if the
k0−dimension aligned intervals overlap, the auxiliary Algorithm 9.3.16 
he
ks ifthis is not a repeated report (line 1), followed by the overlap test in k1−dimension(line 2). If the k1−dimensional intervals overlap and this is the �rst report, it isfurther reported in line 3, whi
h is followed by marking the box stored in the tree(line 4), so that the repeated reports are avoided. Again, the deletion routine issimple and requires no 
omments.Algorithm 9.3.18. Hash_2D_Pst_Delete (h, s, k0, k1, b)1 i0 = g (b.lo [k0] , s) , i1 = g (b.hi [k0] , s)2 j0 = g (b.lo [k1] , s) , j1 = g (b.hi [k1] , s)3 for i = i0 while i ≤ i1 do4 for j = j0 while j ≤ j0 do5 Pst_1D_Delete (h [f (i, j)] , k0, b)6 j = j + 17 end for8 i = i+ 19 end forOne-dimensional hashing and priority sear
h tree. The approa
h from the pre-vious paragraph might still appear somewhat exaggerated. After all, the prioritysear
h tree works optimally in one dimension and it does not seem to need theadditional granularity of the two-dimensional hashing. Hen
e, one 
an hash thespa
e along one dimension and use the tree along the other dire
tion. The resul-tant 
ode is an obvious simpli�
ation of Algorithms 9.3.17 and 9.3.18. It is givenbelow without further 
omments.Algorithm 9.3.19. Hash_1D_Pst_Insert (h, s, j, k, b, δ, Report)1 i0 = g (b.lo [j] , s) , i1 = g (b.hi [j] , s)2 for i = i0 while i ≤ i1 do3 Pst_1D_Query (h [f (i)] , j, b, (k, b, δ, Report) , Aux_Pst_Callback)4 Pst_1D_Insert (h [f (i)] , j, b)5 i = i+ 16 end forAlgorithm 9.3.20. Hash_1D_Pst_Delete (h, s, j, b)1 i0 = g (b.lo [j] , s) , i1 = g (b.hi [j] , s)2 for i = i0 while i ≤ i1 do3 Pst_1D_Delete (h [f (i)] , j, b)4 i = i+ 15 end forPriority sear
h tree only . It remains to employ the priority sear
h tree as thesole �ltering strategy. This is obviously an abuse of its original purpose, althoughit will be nevertheless interesting to investigate the e�
ien
y of this approa
h alongwith the previous ones. This however has to wait until Chapter 13. The suitableinsertion/query and deletion routines are now the simpli�
ations of Algorithms9.3.19 and 9.3.20. They readAlgorithm 9.3.21. Pst_2D_Insert (t, j, k, b, δ, Report)1 Pst_1D_Query (t, j, b, (k, b, δ, Report) , Aux_Pst_Callback)2 Pst_1D_Insert (t, j, b)Algorithm 9.3.22. Pst_2D_Delete (t, j, b)1 Pst_1D_Delete (t, j, b)
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Figure 9.3.8. Four approximations of the dynami
 re
tangle in-terse
tion stru
ture.Common interfa
e. Let us de�ne a tuple (h, t), where h is a hash table, and tis a priority sear
h tree. This will be brie�y 
alled the dynami
 re
tangle stru
ture.Assume that α ∈ {H2D,H2DPST,H1DPST, PST 2D} is a 
onstant, and let v =
(h, t). It is 
onvenient to de�ne the following 
ommon interfa
e for all four variantsof the dynami
 re
tangle stru
ture. The four variants of the stru
ture have beenvisualised in Figure 9.3.8.Algorithm 9.3.23. Dynre
t_Insert (α, v, s, i, j, b, δ, Report)1 if α = H2D then Hash_2D_Insert (v.h, s, i, j, b, δ, Report)2 else if α = H2DPST then Hash_2D_Pst_Insert (v.h, s, i, j, b, δ, Report)3 else if α = H1DPST then Hash_1D_Pst_Insert (v.h, s, i, j, b, δ, Report)4 else if α = PST 2D then Pst_2D_Insert (v.t, i, j, b, δ, Report)Algorithm 9.3.24. Dynre
t_Delete (α, v, s, i, j, b)1 if α = H2D then Hash_2D_Delete (v.h, s, i, j, b)2 else if α = H2DPST then Hash_2D_Pst_Delete (v.h, s, i, j, b)3 else if α = H1DPST then Hash_1D_Pst_Delete (v.h, s, i, b)4 else if α = PST 2D then Pst_2D_Delete (v.t, i, b)9.3.3.3. Analysis of the dynami
 re
tangle stru
ture. It is not di�
ult to givethe quite pessimisti
, worst 
ase performan
e estimates of the dynami
 re
tanglestru
ture. Assuming that, among others, there is a hash table entry into whi
h allof the n boxes will be mapped, one 
an readily obtain the bounds listed in Table 1.Nevertheless, upon a more 
areful study of relations between the shape of bodies,the density of their pa
king and the voxel size, signi�
antly more realisti
 bounds
an be obtained.It should be noted, that the performan
e of the dynami
 re
tangle stru
tureought to be invariant with respe
t to rigid rotations of spa
e. This is why a uniformvoxel size s is employed along all spatial dimensions.
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H2D H2DPST , H1DPST , PST 2DInsertion/query O
(

n2 + q
)

O (logn+ q)Deletion O (n) O (logn)Spa
e O (n) O (n)Table 1. Worst 
ase 
omplexity of insertion/query and deletionfor the dynami
 re
tangle stru
ture. The number of pairs that needto be 
he
ked for interse
tions is q = Ω (k), whi
h a

ounts for thene
essity of avoiding repeated reports (k is the a
tual number ofbox interse
tions).Re
all the terminology introdu
ed in Se
tion 9.3.1. Let P = {P1, P2, ..., Pn} bea set of obje
ts, ci be the 
ore of Pi, and bi be the en
losing box of Pi. Two waysof 
al
ulating s will be investigated(9.3.15) s =

(

n
∑

i=1

vol (bi)
n

)1/dand(9.3.16) s =

(

n
∑

i=1

vol (bi)1/d

n

)where d is the dimension of spa
e. The following fa
t is useful to start up.Lemma 9.3.25. Assume, that P is λ−low-density. If σ is the s
ale fa
tor of
P, and ea
h obje
t in P has aspe
t ratio at most α, then the number of obje
tinterse
tions is O (σλn), while the number of box interse
tions is k = O

(

ασ3/2λn
).Proof. There holds vol (bi) ≤ σvol (bj). Let j = arg mini vol (bi). Ea
h obje
t
an be 
overed by at most O (σ) translations of bj . Ea
h su
h box 
an interse
tat most λ obje
ts and hen
e ea
h obje
t interse
ts at most O (σλ) others. Taking

Ko = O (σλn) in Theorem 9.3.2 gives k = O
(

ασ3/2λn
)

.
�Let α, σ, λ ≪ n be small 
onstants. Then Lemma 9.3.25 implies that k = O

(

n2
)interse
tions 
annot o

ur. If the hash table has size m = O (n) and the hashingfun
tion has property (9.1.3), the worst 
ase 
omplexity 
orresponds to the dense
luster s
enario, depi
ted in Figure 9.3.9.Let us noti
e, that the axis aligned bounding box of obje
t Pi is always 
on-tained within the en
losing box bi. Thus, arguing about the en
losing boxes is more
onservative than arguing about the bounding boxes.

Figure 9.3.9. A dense 
luster.
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ube u (L∞ ball of radius s), su
hthat s ≥ mini radius (bi). Then vol (bi) ≤ σsd and radius (bi) ≤ σ1/ds. Hen
e, allof the boxes that 
an interse
t u lay inside of the u−
entred L∞ ball v of radius
(

1 + 2σ1/d
)

s. One 
an rewrite (9.3.15) as(9.3.17) ∑

i∈IN(v)

vol (bi) +
∑

j∈OUT (v)

vol (bj) = sdnwhere(9.3.18) IN (v) = {i : bi ⊂ v}(9.3.19) OUT (u) = {1, 2, ..., n} \ IN (u)The following result will be of use.Lemma 9.3.26. There holds ∑i∈IN(v) vol (bi) = O
(

ασλsd
).Proof. Consider bi : i ∈ IN (v). Let us split v regularly into sub-volumes

vj as long as there is no bi, su
h that radius (bi) > radius (vj). Ea
h vj over-laps λj ≤ λ obje
ts Pi. Sin
e vol (bi) ≤ αvol (ci) and vol (ci) ≤ vol (Pi), therefollows ∑i∈IN(v) vol (bi) ≤ α
∑

i∈IN(v) vol (Pi) ≤ α
∑

j vol (vj)λj ≤ vol (v)αλ =
(

1 + 2σ1/d
)d
sdαλ = O

(

ασλsd
). �Obviously, the maximal number of elements of the index set IN (v) 
orrespondsto the worst 
ase 
omplexity. For any i ∈ IN (v) and j ∈ OUT (v) there holdsvol (bj) ≤ σvol (bi), and thus(9.3.20) t times

∑any j∈OUT (v)

vol (bj) ≤ σ
t times
∑any i∈IN(v)

vol (bi)or spe
i�
ally(9.3.21) l

n−l
∑

j

vol (bj) ≤ σ (n− l)

l
∑

i

vol (bi)hen
e(9.3.22) ∑

j∈OUT (v)

vol (bj) ≤ σ
n− l

l

∑

i∈IN(v)

vol (bi)where l = |IN (v)| is the number of elements of IN (v). Due to Lemma 9.3.26, thelast inequality 
an be summarised asLemma 9.3.27. There holds ∑j∈OUT (v) vol (bj) = O
(

ασ2λsd
)

n−l
l , where l =

|IN (v)|.Equation (9.3.17), together with Lemmas 9.3.26 and 9.3.27 state sdn = O
(

ασλsd
)

+

O
(

ασ2λsd
)

n−l
l . In both Os the hidden 
onstant is pre
isely 2d, whi
h allows to
on
lude that(9.3.23) l ≤ ασ2λn

2dn− ασλ + ασ2λ
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H2D H2DPST , H1DPST PST 2DInsertion/query O

(

α2σ5λ2 + q
)

O
(

σ log
(

ασ2λ
)

+ q
)

O (logn+ q)Deletion O
(

ασ3λ
)

O
(

σ log
(

ασ2λ
))

O (logn)Table 2. Re�ned 
omplexity of insertion/query and deletion forthe dynami
 re
tangle stru
ture. The number of pairs that needto be 
he
ked for interse
tions is q = Ω (k), whi
h a

ounts for thene
essity of avoiding repeated reports (k is the a
tual number ofbox interse
tions).For n→ ∞ the above results in(9.3.24) l = O
(

ασ2λ
)The following overall estimates 
an be made.Theorem 9.3.28. Let P = {P1, P2, ..., Pn} be a set of obje
ts, ci be the 
oreof Pi, and bi be the en
losing box of Pi. Take s = (

∑n
i=1 vol (bi) /n)

1/d. Assume,that P is λ−low-density, σ is the s
ale fa
tor of P, and ea
h obje
t in P has aspe
tratio at most α. Then, the number of axis aligned bounding boxes interse
ting anarbitrary s× s× ...× s 
ube is l = O
(

ασ2λ
), while ea
h box 
an interse
t at most

r = O (σ) disjoint s× s× ...× s 
ubes.Proof. The l−estimate follows from the reasoning that led to (9.3.24), ifonly one 
an show that (
∑n

i=1 vol (bi) /n)
1/d ≥ mini radius (bi). But this implies

∑n
i=1 vol (bi) /n ≥ mini vol (bi) and of 
ourse the average is greater or equal to theminimum. The r−estimate follows from the fa
t that maxivol (bi) /mini vol (bi) = σand sd ≥ mini vol (bi). �In order to derive similar estimates, for the 
ase when s is 
omputed a

ordingto formula (9.3.16), it is 
onvenient to assume that mini vol (bi) = 1. There is noloss of generality, as it only a 
hange of gauge is involved. Then(9.3.25) sn =

n
∑

i=1

vol (bi)1/d ≤
n
∑

i=1

vol (bi)and one 
an go along similar lines as before, in order to show that l = O
(

ασ2λsd−1
).At the same time 1 ≤ vol (bi) ≤ σ implies that 1 ≤ radius (bi) ≤ σ1/d and thus

s ≤ σ1/d. Hen
e l = O
(

ασ3−1/dλ
). The r−estimate is not a�e
ted.Table 2 summarises the re�ned 
omplexity estimates. Chara
teristi
ally, dueto the assumed density, all of the hashing based variants of the stru
ture haveoperation times independent of the number of re
tangles. Of 
ourse, these are stillthe worst 
ase estimates, but this time expressed in terms of α, σ and λ. Intuitivelythe operations that will take that long, 
orrespond to the largest and most distortedshapes. Due to its higher order presen
e, the s
ale fa
tor σ plays the dominant role.In our 
ase, of 
onvex elements en
losed by boxes, the aspe
t ratio and densitywill usually be small 
onstants, and the e�
ien
y will be related to the disparitybetween the smallest and the largest element. In 
ase of a uniform mesh, therefollows α2σ5λ2 = O (1) and σ log
(

ασ2λ
)

= O (1), whi
h indi
ates high e�
ien
y.9.3.4. The referen
e approa
h. An ex
ellent, fast and pra
ti
al algorithmfor the box overlap problem was given by Zomorodian and Edelsbrunner [216℄. Infa
t, it is fast enough to serve as the referen
e approa
h, against whi
h e�
ien
y
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ompared. As already mentioned, the 
ore ideaof this approa
h has been given by Edelsbrunner and Overmars [67℄. It is basedon solving the bat
hed version of the box interse
tion problem, that is, queryingsome data stru
ture with all boxes simultaneously. This way, at any time, onlya part of the stru
ture (being 
urrently visited by the boxes) needs to be kept inmemory. The te
hnique is 
alled streaming, and allows to redu
e spa
e demands ofsome otherwise unpra
ti
al stru
tures.Se
tion 9.3.2.2 dis
usses an appli
ation of the segment tree (de�ned in Se
tion9.1.8) to the interval interse
tion problem. Basi
ally a segment tree is build on aset of intervals and the queried with the low endpoints of the intervals. Assuming Ito be the set of intervals and P to be the set of their low endpoints, one 
an applystreaming in the following wayAlgorithm 9.3.29. Stream_1D (I, P, lo, hi, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 Im = {i ∈ I : [lo, hi) ⊆ i}3 for i ∈ Im, p ∈ P do Report (δ, i, p)4 mi =Approximate_Median (P, h (P ))5 Pl = {p ∈ P : p < mi}6 Il = {i ∈ I \ Im : i ∩ [lo,mi) 6= ∅}7 Stream_1D (Il, Pl, lo,mi, δ, Report)8 Pr = {p ∈ P : p ≥ mi}9 Ir = {i ∈ I \ Im : i ∩ [mi, hi) 6= ∅}10 Stream_1D (Ir, Pr,mi, hi, δ, Report)In order to report all interval overlaps one 
alls Stream_1D (I, P,−∞,∞, ...).In the se
ond line, the set Im of intervals stored at the 
urrent node of the segmenttree is 
onstru
ted. Note, that the 
urrent nodal interval is [lo, hi), and Im is
omposed of all members of I that 
ontain it. A tree node is entered with the set ofpoints P belonging to the nodal interval, hen
e points from P belong to intervalsfrom Im. That is, intervals from Im and intervals 
orresponding to the points from
P overlap. This is reported in line 3. The segment tree 
onstru
tion pro
eeds in line4, where an approximate median of the point set is found. In [216℄ the algorithmproposed by Clarkson et al. [44℄ is employed. It readsAlgorithm 9.3.30. Approximate_Median (P, h)1 if h = 0 then return random (p ∈ P )2 return median-of-three (Approximate_Median (P, h− 1),3 Approximate_Median (P, h− 1),4 Approximate_Median (P, h− 1))so that a ternary random tree of height h is build re
ursively, where h (P ) =
O (log |P |). On
e the median mi has been 
omputed, in line 4 of Algorithm 9.3.29,points Pl on the left from it and intervals Il overlapping [lo,mi) are sele
ted (lines5, 6). The left sub-tree is then build re
ursively in line 7. One 
an see, that there
ursion 
ontinues until Il 6= ∅ and Pl 6= ∅ (line 1). On
e the left sub-tree walkis exhausted, the right sub-tree is analogously visited on the way ba
k from theleft-re
ursion (lines 8-9). All this takes O (n logn+ k) time and O (n) spa
e.Assume now that the sets I of intervals and P of low endpoints 
orrespondto the d−proje
tions of boxes from a set A. The one-dimensional streaming 
ansolve the interval interse
tion problem along any of d ∈ {1, 2, 3} dimensions. Thebasi
 insight allowing to solve the 
omplete problem, is that the overlap reports inline 3 of Algorithm 9.3.29 
an be repla
ed by streaming segment trees along theremaining dire
tions. Hen
e the three-dimensional streaming would look like



9.3. FINDING CONTACT CANDIDATES 108Algorithm 9.3.31. Stream_3D (I, P, lo, hi, d, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 Im = {i ∈ I : [lo, hi) ⊆ i}3 if d = 1 then for i ∈ Im, p ∈ P do Report (δ, i, p)4 else5 Stream_3D (Im, P,−∞,∞, d− 1, δ, Report)6 Stream_3D (P, Im,−∞,∞, d− 1, δ, Report)... Rewrite lines 4-10 of Algorithm 9.3.29... repla
ing �Stream_1D� with �Stream_3D�14 end ifCalling Stream_3D(A,A,−∞,∞, 3, ...) a

ounts for all of the box overlaps in
O
(

n log3 n+ k
) time and O (n) spa
e. It is impli
itly assumed that for ea
h 
all,sets I, P 
orrespond to the d−proje
tions of boxes from A. As boxes related toelements of Im and P overlap along the dire
tion d, it remains to 
he
k whetherthey overlap along the remaining dire
tions. Hen
e, the d−1 dimensional sub-treesare traversed in lines 5, 6 (interval and point roles need to be ex
hanged in orderto a

ount for all possible overlaps). Only if all of the sub-trees have been 
he
ked(d = 1) the box overlaps are reported (line 3).In [216℄ the authors noti
e that streaming the 
omplete segment tree is stilltoo expensive. Although the O (n log3 n+ k

) runtime seems satisfa
tory, the 
ostof re
ursive 
onstru
tion of the tree bears prohibitively high 
onstant fa
tors. Ahybridisation te
hnique based on one-dimensional s
anning is proposed. Insteadof building the 
omplete tree, on
e the amount of obje
ts drops below some 
uto�value c, s
anning is performed. Similarly, the tree 
onstru
tion is 
eased at thelowest d = 1 level. Instead, again s
anning is employed. The hybrid approa
hreadsAlgorithm 9.3.32. Hybrid_3D (I, P, lo, hi, d, δ, Report)1 if I = ∅ ∨ P = ∅ then return2 if d = 1 then OneWayS
an (I, P, d, δ, Report)3 if |I| < c ∨ |P | < c then TwoWayS
an (I, P, d, δ, Report)4 else5 Im = {i ∈ I : [lo, hi) ⊆ i}6 Hybrid_3D (Im, P,−∞,∞, d− 1, δ, Report)7 Hybrid_3D (P, Im,−∞,∞, d− 1, δ, Report)... Rewrite lines 4-10 of Algorithm 9.3.29... repla
ing �Stream_1D� with �Hybrid_3D�15 end ifThe pro
edure OneWayS
an sorts intervals from I and points from P , ands
ans the intervals with the points (along the dimension 1) reporting all en
ounteredoverlaps (this happens at the lowest level of the tree, so that interse
tions of intervalsand points from I and P indi
ate box overlaps). The pro
edure TwoWayS
an alsosorts intervals from I and points from P along the dimension 1. It then performs as
an 
on
urrently inter
hanging the roles of points and intervals so that all possibleoverlaps of intervals are dis
overed. For ea
h su
h overlap, the remaining 2, ..., doverlap 
he
ks need to be performed before a 
on
lusive box overlap report 
an bemade.9.3.5. Spatial hashing. Spatial hashing has been already dis
ussed in detailin Se
tions 9.3.2.3, 9.3.3.2 and 9.3.3.3. Hen
e, without repeating the basi
 
har-a
teristi
s of this te
hnique, it is su�
ient to spe
ify a data stru
ture, 
ompliantwith the interfa
e suggested in Se
tion 9.2. Let q = (s, d, frq, n, cur, out) store thesize of voxel s, the dimension of s
anning d (let d = 0 for a newly 
reated q), the
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y frq ≥ 1 of updates of s, d, the number of stored boxes n, the list of
urrently stored boxes cur, and the list of boxes to be removed out. Let e be anelement pointer. The following simple insertion routine 
an be implemented.Algorithm 9.3.33. Hash_3D_Insert (q, e)1 adj = nil, lo = hi = [0, 0, 0]2 List_Insert (q.cur, ((e, adj) , lo, hi))3 q.n = q.n+ 14 return q.inThe �rst line initialises some auxiliary variables. In the se
ond line the q.curlist appended by the bounding box of element e. Note, that the data �eld of thebounding box stores the tuple (e, adj) 
omprising the element and an adja
en
ylist adj. The adja
en
y list stores pointers to bounding boxes overlapping the boxof e. The insertion routine returns the head of the list, whi
h 
ontains the newlyinserted data. The pointer to this list item is then ba
ked up by the 
aller, andreused for fast deletion. The deletion routine follows below.Algorithm 9.3.34. Hash_3D_Delete (q, i)1 List_Delete (q.cur, i)2 List_Insert (q.out, i.d)3 q.n = q.n− 1The pointer i above has been returned by the insertion Algorithm 9.3.33, andhen
e it 
an be dire
tly employed in the list deletion 
all (line 1). In the next line,the bounding box pointer 
orresponding to the deleted data (i.d) is being insertedinto the q.out list. This will be further exploited during an update, where all of theadja
ent overlaps need to signalised as released. The update routine readsAlgorithm 9.3.35. Hash_3D_Update (q, δ, Created,Released)1 for v ∈ q.out do2 for w ∈ v.d.d.adj do3 Released (δ, v.d.d.e, w.d.d.e)4 List_Delete_Data (w.d.d.adj, v.d)5 end for6 end for7 q.out = nil8 for v ∈ q.cur do9 for w ∈ v.d.d.adj do10 if no-overlap (v.d, w.d) then11 Released (δ, v.d.d.e, w.d.d.e)12 List_Delete_Data (w.d.d.adj, v.d)13 List_Delete_Data (v.d.d.adj, w.d)14 end if15 end for16 update-box (v.d)17 end for18 if q.d = 0 ∨ random(q.frq) = 0 then19 q.s =
(

∑

v∈q.cur vol (b (v.d.d.e)) /q.n
)1/320 q.d = argmind∈{1,2,3}

[

maxv,w∈q.cur
v.d.hi[d]−v.d.lo[d]
w.d.hi[d]−w.d.lo[d]

]21 end if22 i = {1, 2, 3} \ q.d, j = {1, 2, 3} \ {q.d, i}, α = (i, j, δ, Created)23 h =hash-table (q.n)24 for v ∈ q.cur do



9.3. FINDING CONTACT CANDIDATES 11025 loi∈{1,2,3} = g (v.d.lo [i] , q.s) , hii∈{1,2,3} = g (v.d.hi [i] , q.s)26 for (i, j, k) ∈ [lo1, .., hi1] × [lo2, .., hi2] × [lo3, .., hi3] do27 List_Insert (h [f (i, j, k)] , v.d)28 end for29 end for30 for i = 1 while i ≤ q.n do31 One_Way_S
an (h [i] , q.d, 0, α, Aux_Hash_Callback)32 i = i+ 133 end forThe �rst seventeen lines of Algorithm 9.3.35 
orrespond to the released overlapssear
h. In the �rst pla
e (lines 1-6), all of the adja
ent boxes pairs involving deletedelements are reported as released. The sear
h is 
ontinued through the remainingadja
ent pairs (lines 7-17), and if an overlap release is found between previouslyinterse
ting boxes (line 10), it is reported and the adja
en
y lists are updateda

ordingly (lines 11-13). By this o

asion boxes extents are updated in orderto bound the moving elements (line 16). In line 18, it is 
he
ked whether thespatial dimension q.d was initialised (by de�nition q.d = 0 initially), or if a randomnumber between 1 and q.frq has been drawn (the randomisation serves the purposeof minimising 
onstant fa
tors of the algorithm, as frequent updates of q.s and q.dare not ne
essary in pra
tise). In any of those 
ases, the voxel size q.s is 
al
ulateda

ording to formula (9.3.15) and the spatial dimension q.d is sele
ted. The 
hoi
e of
q.d is su
h, that the q.d-dimensional s
ale fa
tor of box related intervals is minimal.A

ording to the analysis given in Se
tion 9.3.3.3, along this dimension the numberof voxels spanned by a single interval is minimal. In other words maximal hid− lod,
omputed in line 25, is minimised. This in turn is expe
ted to in
rease the e�
ien
yof s
anning (line 31). In the meantime a tuple α = (i, j, δ, Created) is prepared inline 22. Note that i, j are the remaining dimensions (di�erent than q.d). An emptyhash table of size q.n is 
reated in line 23. In the loop between lines 24 and 29,fun
tions (9.3.8) and(9.3.26) f : Z × Z × Z → {1, 2, ..., q.n}are used in order to map the boxes into the hash table in the usual manner (Zis the set of integers). The hashing fun
tion employed here reads f (i, j, k) =
(i · a xor j · b xor k · c) (mod q.n), where a, b, c are large primes [203℄. S
anningalong the dth dimension is performed next (line 31) for all hash lists. The tempo-ral 
oheren
e is swit
hed o� (note, that the hash lists are 
reated anew for ea
hupdate).Pairs of boxes overlapping along the dimension q.d are reported to the aux-iliary Algorithm 9.3.36. There, the �rst two lines exe
ute simple reje
tion tests
orresponding to the interse
tion along the remaining two dimensions. In line 3, itis 
he
ked whether the two boxes have not been already adja
ent (the update rou-tine reports only newly 
reated overlaps). If this is not the 
ase, the newly 
reatedbox interse
tion is reported (line 4). If the report 
allba
k returns a positive 
ode,the overlap is re
order in the adja
en
y lists (lines 5, 6). This leaves some �exibilityto the user, who supplies the report 
allba
ks (if the return value is semi-negative,the box overlap will be redis
overed the next time). For example, one might like towait until a pair of elements whose boxes overlap be
omes 
lose enough, and leavethe job of suggesting this pair to the overlap update algorithm.Algorithm 9.3.36. Aux_Hash_Callba
k (α, a, b)1 if a.hi [α.i] ≤ b.lo [α.i] ∨ a.lo [α.i] ≥ b.hi [α.i] then return2 else if a.hi [α.j] ≤ b.lo [α.j] ∨ a.lo [α.j] ≥ b.hi [α.j] then return



9.3. FINDING CONTACT CANDIDATES 111Hash_3DInsertion O (1)Deletion O (1)Update O (n logn+ q)Spa
e O (n)Table 3. Complexity of insertion, deletion and update for thethree-dimensional hashing. The number of attempted overlap re-ports is q = Ω (k), where k is the a
tual number of box interse
-tions.3 else if List_Find_Data (a.d.adj, b) 6= nil then return4 if α.Created (α.δ, a.d.e, b.d.e) > 0 then5 List_Insert (a.d.adj, b)6 List_Insert (b.d.adj, a)7 end ifThe analysis of the above approa
h is quite straightforward. Spa
e 
omplexityis O (n), as the assumed voxel size (Algorithm 9.3.35, line 19) guarantees that allof the elements 
an be 
overed by O (n) voxels. Insertions and deletions obviouslytake O (1) time. As to the update, the �rst seventeen lines of Algorithm 9.3.35 take
O (n+ k) time, where k is the 
urrent number of box overlaps (there is O (k) itemsin the adja
en
y lists). The lines 18-29 take O (n) time. Sorting hash lists inside ofthe s
an routine (line 31) takes(9.3.27) n

∑

i

mi log (mi) ≤
n
∑

i

mi log (n) = O (n logn)time, where mi is the length of ith hash list. The q overlap reports 
orrespond tothe q 
alls of the auxiliary Algorithm 9.3.36, whi
h takes 
onstant time, providedthe density of the element set is bounded (line 3, adja
en
y sear
h). Repeated 
allsto the auxiliary routine are possible, so that q = Ω (k). In total the update takes
O (n logn+ q) time, where q = Ω (k). All this is summarised in Table 3.9.3.6. Plane-sweep approa
h. Three-dimensional sweeping is simply an ex-tension of the two-dimensional approa
h outlined in Se
tion 9.3.3.1. In the 
urrent

x

y

z

structure

dynamic rectangle

Figure 9.3.10. General idea of the three-dimensional plane sweeping.
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ase, instead of using the sweep-line and the dynami
 interval interse
tion stru
ture,a sweep-plane and a dynami
 re
tangle interse
tion stru
ture are employed (Fig-ure 9.3.10). This is why the dynami
 re
tangle stru
ture was developed in Se
tion9.3.3.2. As the general idea should be already 
lear, it remains to spe
ify a datastru
ture, 
ompliant with the interfa
e suggested in Se
tion 9.2. Let an auxiliarytuple (b, t, x) store the bounding box pointer b, the type t ∈ {low, high}, and the
oordinate x. Let u = (b, t, x) be 
alled an endpoint. Let u, v by of type (b, t, x),and the 
omparison of endpoints read(9.3.28) u < v i�u.x < v.x ∨ (u.x = v.x ∧ u.b.d < v.b.d)
u = v i� u.x = v.x ∧ u.b.d = v.b.d

u > v otherwise.Let q = (pts, alg, s, d, frq, n, cur, in, out) store respe
tively the list of endpoints pts,the dynami
 re
tangle algorithm type alg ∈ {H2D,H2DPST,H1DPST, PST 2D},the size s of the two-dimensional voxel, the dimension d of the axis orthogonal tothe sweep-plane (let d = 0 for a newly 
reated q), the integer frequen
y frq ≥ 1of internal updates of s and d, the number of all stored boxes n, the list cur of
urrently stored boxes, the list of newly inserted boxes in, and the list of re
entlydeleted boxes out. The element insertion routine readsAlgorithm 9.3.37. Sweep_3D_Insert (q, e)1 b =(nil, [0, 0, 0] , [0, 0, 0]), adj = nil2 l = (b, low, 0), h = (b, high, 0)3 b.d = (e, adj, l, h)4 List_Insert (q.in, b)5 q.n = q.n+ 16 return q.inA bounding box pla
eholder and an empty adja
en
y list are prepared in the�rst line above. Two new endpoints are the 
reated and linked with the box (line2). Finally box data is pointed at the tuple (e, adj, l, h), 
omposed of the elementpointer e, the list of boxes overlapping the bounding box of e, the low endpointpointer l, and the high endpoint pointer h. The box is inserted into the list in,and the newly 
reated list item is returned to the 
aller (in order to fa
ilitate fastdeletion). The deletion routine follows below.Algorithm 9.3.38. Sweep_3D_Delete (q, i)1 List_Delete (q.cur, i)2 List_Delete (q.pts, i.d.d.l)3 List_Delete (q.pts, i.d.d.h)4 List_Insert (q.out, i.d)5 q.n = q.n− 1The input pointer i 
orresponds to an element of the list q.cur (returned byAlgorithm 9.3.37). It is deleted from the list in the �rst line above. Next, in lines2 and 3, the endpoint pointers stored at the data tuple of the bounding box i.dare used to remove the endpoints from the list q.pts. The list item is s
heduled for�nal deletion by pla
ing in the q.out list (line 4). This will be further used in theupdate routine, where the overlaps released due to the deletion will be reported.The update routine 
an be summarised as followsAlgorithm 9.3.39. Sweep_3D_Update (q, δ, Created,Released)... Repeat lines 1-17 of Algorithm 9.3.3518 t = nil19 for v ∈ q.in do



9.3. FINDING CONTACT CANDIDATES 11320 update-box (v.d)21 List_Insert (t, v.d.d.l)22 List_Insert (t, v.d.d.h)23 List_Insert (q.cur, v.d)24 end for25 q.in = nil26 d = q.d27 if d = 0 ∨ random(q.frq) = 0 then28 d =Aux_Sweep_Dire
tion (q.cur, q.n)29 q.s =
(

∑

v∈q.cur vol (b⊥d−dim (v.d.d.e)) /q.n
)1/230 end if31 for v ∈ q.cur do32 v.d.d.l.x = v.d.lo [q.d], v.d.d.h.x = v.d.hi [q.d]33 end for34 List_Merge_Sort (t)35 if q.d = d then List_Insertion_Sort (q.pts)36 else q.d = d, List_Merge_Sort (q.pts)37 u = q.pts, w = nil38 while t 6= nil do39 while u 6= nil ∧ u.d < t.d do40 if w 6= u.p then w.n = u, u.p = w41 w = u, u = u.n42 end while43 if w = nil then q.pts = t, t.p = nil44 else if w 6= t.p then w.n = t, t.p = w45 w = t, t = t.n46 end while44 i = {1, 2, 3} \ d, j = {1, 2, 3} \ {d, i}, α = (δ, Created)45 h =hash-table (q.n), dr = (h, nil)46 for u = q.pts while u 6= nil do47 if u.d.t = low then48 Dynre
t_Insert (q.alg, dr, q.s, i, j, u.d.b, α,Aux_Sweep_Callback)49 else50 Dynre
t_Delete (q.alg, dr, q.s, i, j, u.d.b)51 end if52 u = u.n53 end forThe �rst seventeen lines of Algorithm 9.3.39 are the same as in the 
ase of three-dimensional hashing. They 
orrespond to the released overlap dete
tion and hasbeen already 
ommented on. In lines 18-24 the newly inserted boxes are updatedand the list t of 
orresponding endpoints is 
reated. The new boxes are transferredto the list of 
urrent boxes (line 23), and their original list is emptied (line 25). Thesweep dire
tion q.d and the size of a two-dimensional voxel q.s are updated in lines26-30. This happens with a user spe
i�ed probability of 1/q.frq as frequent updatesare not pra
ti
al (
on�guration of boxes does not 
hange mu
h from one update toanother). It should be noted that b⊥d−dim (·) denotes the two-dimensional en
losingbox in the plane orthogonal to the dth dimension (line 29). The 
oordinates in theendpoints list q.pts are updated in lines 31-33. Next, the list of newly 
reatedendpoints is sorted (without 
oheren
e, line 34). The list of old endpoints q.ptsis sorted using 
oheren
e, if only the sweep dimension q.d has not just 
hanged(line 35). Otherwise, the merge sort is employed (line 36). Comparison (9.3.28)



9.3. FINDING CONTACT CANDIDATES 114Sweep_3DInsertion O (1)Deletion O (1)Worst 
ase update O (n (logn+ β) +m logm+ q)Typi
al update O (βn+ q)Spa
e O (n)Table 4. Complexity of insertion, deletion and update for thethree-dimensional sweeping. The number of attempted overlap re-ports is q = Ω (k), where k is the a
tual number of box interse
-tions. The 
oe�
ient β ∈
{

α2σ5λ2, σ log
(

ασ2λ
)

, logn
} dependson the variant of the employed dynami
 re
tangle stru
ture. Inte-ger m 
orresponds to the number of new element insertions, pre-
eding the update.is employed in sorting routines from lines 34-36. In lines 37-46 the two lists t and

q.pts are merged in linear time (the ordering is preserved). In lines 44-53 the �nalplane-sweep is performed. The dynami
 re
tangle stru
ture is used in order to solvethe two-dimensional sub-problem (lines 48, 50). The user spe
i�ed variant of thealgorithm is employed (q.alg). The auxiliary sweep 
allba
k is ne
essary in orderto �lter out already adja
ent box pairs. In the �rst line of Algorithm 9.3.40 theadja
en
y based reje
tion test is performed. The 
allba
k routine follows exa
tlythe already dis
ussed Algorithm 9.3.36.Algorithm 9.3.40. Aux_Sweep_Callba
k (α, a, b)1 if List_Find_Data (a.d.adj, b) 6= nil then return2 if α.Created (α.δ, a.d.e, b.d.e) > 0 then3 List_Insert (a.d.adj, b)4 List_Insert (b.d.adj, a)5 end ifSome 
omments about the sele
tion of the sweep dimension are in pla
e here.One 
ould argue that the sweep should take pla
e along the dire
tion of the maximalone-dimensional s
ale fa
tor. This would minimise the s
ale fa
tor in the remainingtwo dimensions and hen
e improve the e�
ien
y of the dynami
 re
tangle stru
ture.Nevertheless, it is easy to see that for a 
ase as simple as a set of uniform 
ubes this
riterion is not 
on
lusive. The one-dimensional s
ale fa
tors are equal, althoughone would preferably sweep along the most elongated dimension of the box set.In result, a smaller number of obje
ts would be stored in the dynami
 re
tanglestru
ture at any time. Hen
e, the number of unne
essary overlap 
he
ks wouldde
rease (the 
onstant in the q = Ω (k) notation would be smaller). Algorithm9.3.41 sele
ts a dimension along whi
h, on average, the largest number of boxes
an be pa
ked. If the density of pa
king is bounded, this dimension is likely to beorthogonal to the planes 
utting through relatively small amount of boxes. Thus,storing as few boxes as possible in the dynami
 re
tangle stru
ture is en
ouraged.Algorithm 9.3.41. Aux_Sweep_Dimension (cur, n)1 γi∈{1,2,3} = maxv,w∈cur [v.d.hi [i] − w.d.lo [i]]2 αi∈{1,2,3} =
∑

v∈cur [v.d.hi [i] − v.d.lo [i]] /n3 d = argmaxi∈{1,2,3} [γi/αi]4 return dComplexity of three-dimensional sweeping is summarised in Table 4. The worst
ase update s
enario happens when the dimension of sweeping is 
hanged (e.g.
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i�ed frequen
y, anddoes not 
orrespond to a typi
al run. Even though the m newly inserted boxesalways enfor
e the O (m logm) sort of the endpoints, typi
ally m ≪ n and thisterm 
an be negle
ted. Hen
e a typi
al update time is O (βn+ q), where β ∈
{

α2σ5λ2, σ log
(

ασ2λ
)

, logn
} and q = Ω (k). For a set of elements with α, σ, λbeing small 
onstants this runtime quite tightly approximates the optimal O (n+ k)one. 9.4. Finding points and normalsOn
e a pair of elements likely to interse
t has been identi�ed, it remains toextra
t the 
onta
t point and the normal dire
tion. It has been quite arbitrarilyde
ided here, that a single oriented 
onta
t point results from an overlap of twosurfa
e elements (De�nition 9.2.1). This is motivated by two fa
tors:(1) The point and the normal dire
tion derived from an overlap of two ele-ments are well de�ned for nonsmooth geometry.(2) We wish to use as few 
onta
t points as possible, but still be able to 
ontrolthe a

ura
y of 
onta
t resolution by mesh re�nement.Two elements are in 
onta
t if their interse
tion is not empty. The interse
-tion is d-dimensional, where d ∈ {0, 1, 2, 3}. Only the 3-dimensional, volumetri
interse
tion is 
onsidered. The remaining 
ases are 
ast into the volumetri
 onethrough a simple regularisation. Assume, that two elements e1 and e2 overlap likein Figure 9.4.1. Their interse
tion o = e1 ∩ e2 is a 
onvex polyhedron, with thesurfa
e 
ontaining two parts ∂o1 ∪∂o2 ⊂ ∂o, where ∂ok ⊂ ∂ek and ∂ok = ∂o∩∂Bk.For ea
h part, one 
an 
ompute the resultant normal(9.4.1) n̄k =

∫

∂ok

ndaand the variation of normal(9.4.2) ñk =

∫

∂ok

(n − n̄k)
2
daThe �nal outward normal is the one with a smaller variation

B2

B1

e

e

1

2

n

x

Figure 9.4.1. A 
onta
t point x and a normal n extra
ted fromthe interse
tion of two 
onvex elements.



9.4. FINDING POINTS AND NORMALS 116(9.4.3) n (e1 ∩ e2) =
n̄k

‖n̄k‖
, k = argmin

i
(‖ñi‖)The 
onta
t point 
an be 
omputed as the mass 
entre of the surfa
e part with thelarger variation of normal (hen
e, it is a deeper submerged point of the two possibly
omputed this way)(9.4.4) x (e1 ∩ e2) =

∫

∂ok
xda

∫

∂ok
da

, k = arg max
i

(‖ñi‖)If elements e1 and e2 tou
h without an overlap, they are extended by a small margin:
ek = ek + B (0, ǫ), where B (0, ǫ) is the zero 
entred ball of radius ǫ. The epsilonshould be several orders of magnitude smaller than the shortest edge in ek. Note,that ∂ok are pie
ewise �at, and hen
e the above evaluations are trivial.It remains to dis
uss the 
omputation of e1 ∩ e2. A simple, brute-for
e method
ould be des
ribed as followsAlgorithm 9.4.1. Simple_Element_Interse
tion (e1, e2)1 i = 1, j = 22 
opy surfa
e fa
es of ek into sk for k ∈ {1, 2}3 for ea
h fa
e f ∈ si do4 for ea
h half-plane h bounding ej do5 trim f with h so that f = f ∩ h6 end do7 end do8 if i = 1 then i = 2, j = 1, goto 39 return s1 ∪ s2S
raps of the fa
es in s1 ∪ s2 form the boundary of the interse
tion (note, thatit might be empty). The method takes O (nm) time where n is the number of fa
esin e1 and m is the number of fa
es in e2. For shapes as simple as the elementsthis might seem a

eptable. However, this 
an only be veri�ed by 
omparison witha more elaborate method. In this respe
t, the method by Müller and Preparata[158℄ has been implemented. The basi
 idea relies on the polarity of 
onvex sets(
f. Ro
kafellar and Wets [183, p. 490℄). For a 
onvex set C su
h that 0 ∈ C, thepolar of C is the set(9.4.5) Co = {v : 〈v,x〉 ≤ 1 for all x ∈ C}whi
h is a 
onvex and 
loset set. The bipolar of C is the set(9.4.6) Coo = (Co)o = {x : 〈v,x〉 ≤ 1 for all v ∈ Co}and Coo = C, when C is 
losed (whi
h is assumed here). For two sets C and D,their interse
tion and sum respe
tively read(9.4.7) C ∩D = {x : x ∈ C and x ∈ D}(9.4.8) C ∪D = {x : x ∈ C or x ∈ D}If both C and D are 
onvex, so is their interse
tion. Assume now, that 0 ∈ C ∩Dand let
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o (Co ∪Do)where(9.4.10) 
o A =

{

p
∑

i=0

λixi : xi ∈ A, λi ≥ 0,

p
∑

i=0

λi = 1, p ≥ 0

}is the 
onvex hull of a set. In parti
ular, for any λ ∈ [0, 1] there holds(9.4.11) λvC + (1 − λ)vD ∈ E for all vC ∈ Co and vD ∈ DoThe polar set of E 
an now be de�ned as(9.4.12)
Eo = {x : 〈λvC + (1 − λ)vD,x〉 ≤ 1 for all vC ∈ Co,vD ∈ Do, λ ∈ [0, 1]}Summarising

λ 〈vC ,x〉 + (1 − λ) 〈vD,x〉 ≤ 1 for all vC ∈ Co and vD ∈ Do

〈vC ,x〉 ≤ 1 for all x ∈ C

〈vD,x〉 ≤ 1 for all x ∈ D(9.4.13)The �rst inequality in (9.4.13) 
an hold only, if the two remaining ones do as well.Otherwise, one 
an always pi
k x ∈ C, x /∈ D and for λ = 0 obtain 〈vD,x〉 > 1.Hen
e, Eo is 
omposed of points x ∈ C ∩D, or in other words(9.4.14) C ∩D = (
o (Co ∪Do))oThe last formula is the departure point for the algorithm given by Müller andPreparata [158℄. There are however, two stumbling blo
ks on the way towards itsrealisation. First of all, we have assumed that 0 ∈ C ∩D. In pra
tise, this meansthat one has to �nd a point belonging to the interse
tion (then it is easy to 
hange
oordinates, so that it is 0). A te
hnique for that had been dis
ussed in [158℄,although ten years later Gilbert et al. [73, 1988℄ proposed a more elegant andsimpler method (Se
tion 9.4.1). The se
ond obsta
le is related to the 
omputationof the 
onvex hull in (9.4.14). Müller and Preparata referen
e an algorithm givenin [173℄. Again, in our implementation a newer and simpler method by Barber etal. [17℄ is employed (Se
tion 9.4.2).It might seem, like the a
tual polarisation of a set C → Co is also 
omputa-tionally nontrivial. Fortunately, for polyhedral 
onvex sets this is not so. For anyparti
ular representation of a 
onvex polyhedron C with n fa
es (an element in our
ase), it is easy to 
ompute a set of planes su
h that(9.4.15) x ∈ C ⇔ 〈ni,x〉 ≤ 1 for all i ∈ {1, 2, ..., n}where ni are the fa
e normals (not ne
essarily unit). From the analogy between(9.4.5) and (9.4.15) it is 
lear, that normals ni 
orrespond to the verti
es of Co (atmost, 
onvex 
ombinations of normals ful�l 〈∑i λini,x〉 ≤ 1), so that(9.4.16) Co = 
o {n1,n1, ...,nn}We 
an now to bring up a data stru
ture, 
onvenient for both storing andpolarising 
onvex polyhedrons. It was given in [158℄ under the name of the doubly
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Figure 9.4.2. A planar graph of some 
onvex polyhedron C andan edge in the DCEL stru
ture. On the right, the 
orrespondingedge in Co is given.
onne
ted edge list (DCEL). A tuple des
ribing the list element 
an be expressedas (o, t, ln, rn, le, re), where o is a pointer to the origin vertex of the edge, t is apointer to the terminus vertex of the edge, ln points to the normal of the fa
e onthe left from the edge, rn points to the similar normal on the right, le points to thenext 
ounter-
lo
kwise edge around the origin, and re points to the next 
ounter-
lo
kwise edge around the terminus. It is impli
itly assumed, that the normalsstored in the data stru
ture are su
h, that the 
ondition (9.4.15) holds true. Thedata stru
ture is illustrated in Figure 9.4.2. Apart from its 
on
ise format, theutility of the stru
ture stems from the fa
t, that the polarisation pro
edure takesthe following simple formAlgorithm 9.4.2. DCEL_Polarise (d, k)1 for i = 1 while i ≤ k do2 o = d[i].o, t = d[i].t3 d[i].o = d[i].ln, d[i].t = d[i].rn4 d[i].ln = t, d[i].rn = o5 i = i+ 16 end for7 return dwhere d [·] is a table of k edges of a polyhedron. In the above pro
edure theedge pointers le and re in DCEL need not to be altered, although one needs tokeep in mind that le and re pointers 
orrespond now to the next 
lo
kwise edgesaround respe
tively the origin and the terminus (Figure 9.4.2). The algorithm for
omputing an interse
tion between two elements 
an now be given asAlgorithm 9.4.3. Fast_Element_Interse
tion (e1, e2)1 (p,q) =GJK (e1, e2)2 if ‖p− q‖ > 0 then return ∅3 assuming 0 ≡ p, 
ompute ni, i ∈ {1, 2, ..., n+m}, representing
e1 for i ≤ n and e2 for n < i ≤ n+m by 〈ni,x〉 ≤ (1 + ǫ)4 (d, k) =Qui
khull ({ni})5 return DCEL_Polarise (d, k)In the �rst line of Algorithm 9.4.3 the Gilbert-Johnson-Keerthi pro
edure isused in order to 
ompute a pair of 
losest points p ∈ e1, q ∈ e2 (Se
tion 9.4.1).If the distan
e between the elements is nonzero, an empty set is returned in thenext line. Otherwise, p = q and the 
oordinates are suitably 
hanged, so thatthe zero point 0 ≡ p (line 3). The representation (9.4.15) is 
omputed for bothelements, where (1 + ǫ) is used on the right hand side, in order to a

ount for the
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tion (GJK usually returns apoint on the boundary of the element interse
tion). The Quickhull routine takesas an argument a set of verti
es and returns the table of DCEL edges of their
onvex hull (Se
tion 9.4.2). All of the normals are passed as the argument, whi
ha

ounts for the union of the polar sets Co ∪Do in (9.4.14). Finally, the returnedhull is polarised in line 5, whi
h 
orresponds to the outer-most operation of (9.4.14).In pra
ti
e, the runtime of Algorithm 9.4.3 is 
lose to O (n logn), where n is themaximum of the sums of node and fa
e 
ounts in e1 and e2. The exa
t theoreti
albound however needs yet to be done, as the 
omplexity of the GJK algorithm hasnot been thoroughly investigated in the literature (to our knowledge).It ought to be stressed, that the fragments ∂ok of the surfa
e of o = e1 ∩ e2used in the evaluation of (9.4.1-9.4.4) should 
orrespond only to the surfa
e fa
esof the elements. More pre
isely ∂ok = ∂o ∩ ∂Bk, where Bk is the body whosedis
retisation 
omprises ek. This way the inner fa
es of elements, that is those thatseparate elements within a mesh, are not a

ounted for in the 
omputations. The�ltering is easily implemented, although the details have been omitted so to avoidan unne
essary 
lutter.9.4.1. Finding a 
ommon point. Gilbert, Johnson and Keerthi [73℄ gavea very elegant and e�
ient method for �nding a pair of points p ∈ C and q ∈ D,su
h that ‖p − q‖ is minimal, where C and D are 
onvex. The algorithm is onlyoutlined here, and it is noted that in the implementation the papers by Cameron[35℄ and Van den Bergen [207℄ were also helpful. The basi
 insight here is, thatinstead of looking for p ∈ C and q ∈ D minimising ‖p − q‖, it might be more
onvenient to look for v ∈ C −D minimising ‖v‖. The set C −D is not expli
itly
omputed, but rather it is approximated by a series of simpli
es 
ontained in it,and lo
ated su

essively 
loser to the origin. The GJK algorithm 
an be spe
i�edalong the lines of [207℄ as followsAlgorithm 9.4.4. GJK (e1, e2)1 C = verti
es-of (e1), D = verti
es-of (e2)2 W = ∅, µ = 0, v = any-point-from (C −D)3 toofar = true4 while toofar ∧ ‖v‖ 6= 05 w = argmax {〈−v,x〉 : x ∈ C −D}6 δ = 〈v,w〉 / ‖v‖7 µ = max (µ, δ)8 toofar = ‖v‖ − µ > ǫ9 if toofar then10 v = arg min {‖x‖ : x ∈ 
o (W ∪ {w})}11 W = smallest X ⊆W ∪ {w} su
h that v ∈ 
o (X)12 end if13 end whileIn the �rst line the sets of verti
es C and D are initialised. The set W is ini-tialised as empty in the se
ond line. It will store the simplex giving the 
onservative(inner) approximation of C−D. The parameter µ = 0 will be used as a lower boundfor ‖v‖ in the termination 
ondition. Ve
tor v is initially 
hosen as arbitrary x−y,where x ∈ C and y ∈ D. The loop in lines 4-13 iterates over the su

essive approx-imations of the set W , whi
h 
omprises at most four verti
es (
orresponding to apoint, a line, a triangle and a tetrahedron). Note that, C −D 
ould be 
omputedas a 
onvex hull of all possible point di�eren
es x − y, where x ∈ C and y ∈ D.This however, would be rather ine�
ient. W stores few points of C −D and hen
eits 
onvex hull is always an inner approximation of the set di�eren
e. At ea
h stage
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Figure 9.4.3. Three iterations of the GJK algorithm. The dashedline passes through a vertex x maximising 〈−v,x〉 for a 
urrentstep.of the algorithm, we 
an �nd a point v ∈ 
on (W ) su
h that ‖v‖ is minimal. If thelength ‖v‖ = 0 then 0 ∈ C −D and the two 
onvex obje
ts overlap. Otherwise, we
an ask how mu
h our approximation of C −D 
an be extended in the dire
tion of
−v, taking us 
loser to the origin. The point w, extending the 
urrent set W along
−v, is 
omputed in line 5. The next three lines deal with the termination 
ondition.It is 
lear, that the sequen
e of produ
ed lengths ‖vk‖ is monotoni
ally de
reasing.After 
omputing the new point w ∈ C −D, we 
an 
he
k whether it a
tually im-proves upon v in terms of its proximity to the origin. The length of the proje
tionof w along v 
an only be smaller or equal to ‖v‖, hen
e ‖v‖ − 〈v,w〉 / ‖v‖ > 0.The parameter µ = max (µ, 〈v,w〉 / ‖v‖) provides then a monotoni
ally in
reasinglower bound for ‖v‖. As soon as the di�eren
e ‖v‖ − µ be
omes small enough, thealgorithm is terminated (line 8). It should be noted, that appli
ation of µ in thetermination 
ondition is not really ne
essary for the polytope geometry. It was usedin [207℄ in order to fa
ilitate termination for smooth 
onvex sets. It is retained herefor the sake of generality. If the termination 
ondition is not satis�ed (line 9), itremains to 
ompute new v ∈ W ∪{w} minimising ‖v‖ (line 10). The set W is thenredu
ed to the smallest simplex (point, line, triangle, or tetrahedron) 
ontaining v(line 11). Three iterations of the algorithm has been summarised in Figure 9.4.3.GJK wouldn't probably be that su

essful, if not the re
ursive formula given in[73℄, allowing to exe
ute the last two steps in an e�
ient manner. Assuming that
W = {w0,w1, ...,wn}, there of 
ourse holds(9.4.17) v =

n
∑

i=0

λiwi and λi ≥ 0,
n
∑

i=0

λi = 1Be
ause ‖v‖ is minimised, v is orthogonal to the a�ne hull of the smallest subset
X ⊆ W , su
h that v ∈ 
on (X) (the a�ne hull of X is the set generated by some
∑

j∈IX
λjwj , where ∑j∈IX

λj = 1 and IX ⊆ {0, 1, ..., n}, hen
e it is the naturalextension of 
on (X) to the whole spa
e). Let thenX = {wi : i ∈ IX} with |IX | ≤ n,and let equivalently X = {x0,x1, ...,xm} with m = |IX |. At most, there are elevena�ne hulls of X (the 
omplete spa
e for X being the tetrahedron, four planes forthe triangular fa
es, and six lines for the edges). One needs to sele
t the largestsubset X , for whi
h the solution of 〈v,x0 − xj〉 = 0 for j ∈ {1, ...,m}, results inpositive λs. The re
ursive formula for 
omputing λs reads(9.4.18) λi = △i (X) /△ (X)where
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∑

i∈IX

△i (X)(9.4.20) △i ({wi}) = 1

△j (X ∪ {wj}) =
∑

i∈IX

△i (X) (〈wi,wk〉 − 〈wi,wj〉)and j /∈ IX , while k is a �xed index in IX . The set X in line 11 of Algorithm 9.4.4is sele
ted in su
h a way, that △i (X) > 0 for all i ∈ IX and △i (X ∪ {wj}) ≤ 0 forall j /∈ IX . At the same time, v is 
omputed as v =
∑

i∈IX
λiwi.Upon termination, it remains to obtain the pair of 
losest points p ∈ e1 and

q ∈ e2. When 
omputing ws in the �fth line of Algorithm 9.4.4, one in fa
t storesas well the points pi ∈ e1 and qi ∈ e2, su
h that wi = pi −qi. On
e the algorithmhas terminated, the resulting pair of 
losest points is 
omputed as(9.4.21) p =
∑

i∈IX

λipi, q =
∑

i∈IX

λiqi9.4.2. Computing the 
onvex hull. Barber, Dobkin and Huhdanpaa [17℄des
ribed a fast multi-dimensional 
onvex hull algorithm, extending the 
lassi
alQui
khull method [62, 34℄. The algorithm starts with a single d−dimensionalsimplex, 
onstru
ted from the d+1 arbitrary points. The 
urrent 
onvex polytope,des
ribing the 
onvex hull, is 
omposed of fa
es, edges and verti
es. A vertexis above a fa
e, if it belongs to the positive half-spa
e de�ned by the fa
e planeequation. Otherwise it is below the fa
e. Re
ipro
al statement 
an be made abouta fa
e being above or below a vertex. Ea
h fa
e f = (v, e) is 
omposed of a list vof unpro
essed verti
es pla
ed above of the fa
e, and a list e of edges bounding thefa
e. Ea
h edge e = (o, t, f) 
omprises a pointer o to its origin vertex, a pointer tto its terminus vertex, and a pointer f to the fa
e, being the neighbour of a fa
e gstoring e in its g.e list. The in
ident fa
es of an edge e are the fa
e g and f , su
hthat e ∈ g.e and f = e.f . Let a set of edges 
onne
ted through 
ommon endpointsbe 
alled a ridge. The following theorem by Grünbaum [79℄ hints a basi
 prin
iplebehind in
remental 
onstru
tion of 
onvex hulls [17℄Theorem 9.4.5. (Simpli�ed beneath-beyond) Let H be a 
onvex hull in Rd andlet p be a point in Rd \H. Then f is a fa
e of 
on (H ∩ p) if and only if1. f is a fa
e of H and p is below f , or2. f is not a fa
e of H and its verti
es are p and the verti
es of an edge in Hwith one in
ident fa
e below p and the other in
ident fa
e above p.It is easy to see, that a 
onvex hull 
an be 
onstru
ted in
rementally by takingthe initial simplex to be H , followed by inserting one point at a time and applyingthe rules of the above theorem. Essentially, at ea
h step, one dete
ts the ridge ofedges satisfying property 2 of the theorem. If the ridge is an empty set, point p isdis
arded. Otherwise, a 
one of new fa
es is 
reated, 
onne
ting the edges of theridge with p. All of the old fa
es lo
ated below p are then deleted from H . This issummarised below.Algorithm 9.4.6. Qui
khull ({pi})1 H = arbitrary-tetrahedron ({pi})2 {pi} = {pi} \verti
es-of (H)3 for ea
h p ∈ {pi} do4 for ea
h fa
e f ∈ H



9.4. FINDING POINTS AND NORMALS 1225 if p is above f then List_Insert (f.v,p)6 end for also if p is above f7 end for8 for ea
h fa
e f ∈ H ∧ f.v 6= nil do9 p = furthest-point-from-fa
e (f, f.v)10 R = ridge-of-edges-with-property-2 (H,p)11 V = fa
es-below-point (p)12 G = ∅13 for ea
h edge e ∈ R do14 g = new-fa
e (e,p)15 G = G ∪ g16 end for17 for ea
h t ∈ V do18 for ea
h q ∈ t.v do19 for ea
h g ∈ G do20 if p is above g then List_Insert (g.v,p)21 end for also if p is above g22 end for23 end for24 H = H \ V , H = H ∪G25 end forThe novelty in the above algorithm, introdu
ed by the authors of [17℄, is instoring in ea
h fa
e f the list of verti
es f.v lo
ated above it. The initial assignmentof the input points into the fa
e lists f.v is done in lines 3-7. The loop betweenlines 8-24 
ontinues, until there are fa
es with nonempty vertex lists f.v 6= nil. Forea
h su
h fa
e, an extreme vertex is 
hosen (line 9), maximising among all p ∈ f.vthe distan
e from the fa
e plane. Then the ridge R of edges having the property 2of Theorem 9.4.5 is 
reated (line 10). The so 
alled visible set V , of fa
es lo
atedbelow the point p is 
reated next. For ea
h edge e of the ridge R, a new triangularfa
e is 
reated between p and e (lines 12-16). It should be noted, that one needsto properly maintain the adja
en
y information at this stage, so that fa
es in Gand H \ V are 
orre
tly 
onne
ted. In lines 17-23 the verti
es stored in the fa
elists t.v of t ∈ V are reassigned to the fa
e lists g.v of g ∈ G. The visible V setis deleted from H and the newly 
reated 
one of fa
es G is added to H in line 24.The authors of [17℄ show, that under some balan
e 
onditions, the runtime of theabove algorithm is O (n logn) in three dimensions, where n is the number of inputpoints.9.4.3. No gaps? Traditionally, in 
omputational 
onta
t analysis one oftenresorts to the notion of a gap between two obje
ts. The gap 
an be de�ned as asigned s
alar fun
tion, positive when two obje
ts are apart, and semi-negative whenthey are in 
onta
t. The 
onta
t point and the normal dire
tion 
omputed froman interse
tion of two elements pre
lude an appli
ation of the gap fun
tion. Thisis motivated by two major fa
tors:(1) No dire
t use of gaps would be made of in the 
urrent dynami
 velo
ity-based framework.(2) Robust implementation of gaps is troublesome for assemblies of geomet-ri
ally rough bodies.Nevertheless, the notion of gap will be ne
essary in order to derive unilateral 
on-straints in the next 
hapter. Also, the quasi-stati
 
onta
t algorithm presentedtherein will in
orporate gaps. For these purposes, the gap fun
tion is de�ned asfollows



9.5. LITERATURE 123(9.4.22) g (t) =

{

minx,y ‖x − y‖ : x ∈ ē1,y ∈ ē2 when ē1 ∩ ē2 = ∅
miny 〈n,x − y〉 : y ∈ ∂ek,x ∈ ē1 ∩ ē2 otherwisewhere in the se
ond line, the normal n and the point x are given by (9.4.3) and(9.4.4), while the k-index 
orresponds to the one de�ned in (9.4.3). The �rst linedes
ribes the proximity of the two elements. The se
ond one de�nes a negativedistan
e along n, from x towards the surfa
e of the interse
tion ē1∩ ē2. This simplestrategy is su�
ient for our purposes.9.5. LiteratureConta
t dete
tion1 is among the basi
 problems of 
omputational geometry. A
omprehensive introdu
tion 
an be found in the survey work [104℄. Some sele
tedpapers will be dis
ussed here in order to put the 
urrent development in 
ontext.Se
tion 9.5.1 enumerates papers des
ribing general interfa
e dete
tion methods andrelated te
hniques. Se
tion 9.5.2 summarises several papers dealing with 
omputingdistan
es and interse
tions between polytopes.9.5.1. Collision dete
tion. In an arti
le on interfa
e dete
tion, Boyse [31℄only brie�y mentions the obje
t 
ir
ums
ribed spheres and boxes utilised to a
-
elerate the 
onta
t sear
h. The fo
us is pla
ed on pairwise interse
tion betweenpolyhedra, with an emphasis on interfa
e dete
tion between a moving obje
t andstati
 obsta
le. Dete
ting 
onta
t between a large number of obje
ts is not 
ru-
ial, thus no spe
ial attention is payed to the bounding volumes. Nevertheless,this is one of the earliest papers where the two-phase approa
h is suggested as anobvious heuristi
. Culley and Kempf [51℄ propose a 
ollision dete
tion algorithmbased on the velo
ity and distan
e bounds. Hayward [84℄ an algorithm for roboti
sbased on the re
ursive o
tree de
omposition of manipulator workspa
e. In the sim-ilar 
ontext of motion planning, Herman [89℄ des
ribes another three-dimensionalo
tree based te
hnique. Moore and Wilhelms [152℄ build an o
tree stru
ture onsurfa
e points and query it with bounding boxes of swept surfa
e triangles. Pairsof moving points and triangles, resulting from point in box 
ontainment test, arefurther 
he
ked for 
ollisions. Wu and Lee [212℄ use two-dimensional proje
tionsof three-dimensional obje
ts in order to solve 
ollision dete
tion between movingrobot arms. Bara� [16℄ hints bounding volumes as an enhan
ement of an initialsear
h for 
onta
t 
andidates. He 
omments however in greater detail on the roleof 
oheren
e in dynami
 simulations. Typi
ally geometri
 
on�guration of bodiesdoes not 
hange 
onsiderably between 
onse
utive time steps. The advantage ofthat 
an be taken to a

elerate both phases of interfa
e dete
tion. As dis
ussedby Bara�, surfa
e entities involved in a 
onta
t 
an be 
a
hed and reused. In thete
hni
al report [88℄ Heinstein et al. dis
uss a 
onta
t dete
tion algorithm forstru
tural dynami
s, based on the node to fa
e proje
tion method. Gar
ia-Alonsoet al. [72℄ dis
uss a voxel based method utilising additionally bounding boxes andan O (n2

) spa
e �
ollision interest matrix� used for body-pairwise events, where nis the number of bodies. A 
lassi
al 
ombination of broad and narrow phase algo-rithms was proposed by Cohen et al. [48℄. For the pairwise 
ollision test between
onvex polytopes the Lin-Canny [139℄ algorithm is employed. Closest feature oftwo polytopes is 
a
hed and reused as an initial guess at the next time step (thisresult in an expe
ted 
onstant runtime). Axis aligned bounding boxes are exploitedto en
lose 
onvex obje
ts. The broad phase is based on s
anning along the three
oordinate axes. The algorithm maintains three sorted lists of proje
ted intervalendpoints. Assuming 
oheren
e, appli
ation of insertion sort for almost ordered1
onta
t/
ollision/interfa
e dete
tion



9.5. LITERATURE 124lists results in an expe
ted linear runtime. Swaps of endpoints o

urring duringthe sort pro
ess are related to 
hanges in overlap states. The amount of overlapstatus 
hanges is of quadrati
 order with respe
t to the number of boxes n. Orig-inal implementation of the approa
h presented in [48℄ utilised an auxiliary O (n2
)storage for status 
hange 
a
hing. Attaway et al. [15℄ present a parallel 
ollisiondete
tion framework for stru
tural dynami
s, based on the Re
ursive CoordinateBise
tion method by Berger and Bokhari [28℄. Gotts
halk et al. [75℄ des
ribe theobje
t oriented binary tree stru
ture, fa
ilitating pairwise 
ollision tests betweenarbitrary bodies. Hubbard [95℄ des
ribes a te
hnique for approximating polyhe-dra with spheres, and the related sphere-tree stru
ture. Li and Chen [138℄ shownhow to use hierar
hi
al data stru
tures in an in
remental way (exploiting time 
o-heren
e). Kim et al. [117℄ give an event-driven algorithm for 
ollisions betweenmoving spheres. Kitamura et al. [118℄ and Joukhadar [108℄ dis
uss 
ollision dete
-tion between deformable polyhedra. Diekmann et al. [58℄ used spa
e �lling 
urveste
hnique to dete
t 
onta
ts in planar large deformation �nite element simulations.Perkins and Williams [169℄ dis
uss a sorting based interfa
e dete
tion s
heme forplanar obje
ts. Feng and Owen [68℄ presented a spatial tree stru
ture for 
onta
tdete
tion, based on the kd−tree by Bentley [26℄. Li et al. [137℄ presented a mesh-free method based 
onta
t dete
tion algorithm. Bruneel and De Ry
ke [33℄ giveanother spatial tree based te
hnique for a tool-obsta
le 
onta
t problem. Zomoro-dian and Edelsbrunner [216℄ present their fast algorithm for box interse
tion basedon streaming the segment trees, 
uto�s and s
anning. Luque et al. [143℄ use binaryspa
e partition trees and s
anning, 
ombined with automated tree 
orre
tions im-proving the work balan
e. Tes
hner et al. [203℄ dis
usses the spatial hashing basedapproa
h for deformable animations. Again in the �eld of animation, Govindarajuet al. [76℄ employ graphi
s hardware to speed up 
ollision dete
tion. James andPai [101℄ present an output-sensitive sphere tree for deformable obje
ts. Wu et al.[213℄ dis
uss a simple vertex to fa
e 
onta
t resolution method. Chakraborty etal. [38℄ present an interior point method based te
hnique for 
omputing distan
ebetween 
onvex impli
it surfa
es. Coming and Staadt [49℄ present an event-drivensweep and prune approa
h for box overlap, improving upon the previous result byCohen et al. [48℄. Han et al. [81℄ present a method for a planar 
ollision dete
tionbetween superquadri
s. Li et al. [136℄ present a box interse
tion s
heme based on
oherent spatial sorting, similar to the s
anning used by Cohen et al. [48℄, althoughdemanding only O (n) spa
e due to the employed spa
e subdivision. Fünfzig et al.[71℄ presented a hierar
hi
al spheri
al distan
e �eld te
hnique for pairwise 
ollisiondete
tion.9.5.2. Polyhedra. Muller and Preparata [158℄ presented an algorithm for apairwise interse
tion of 
onvex polyhedra, and adopted it further [174℄ to 
omputeinterse
tion of half-spa
es. A plane-sweep approa
h was employed by Hertel et al.[90℄ to solve the 
onvex interse
tion problem and other set-theoreti
 operations.Meyer [149℄ dis
usses a te
hnique for 
al
ulating distan
e between arbitrarily ro-tated boxes. Gilbert et al. [73℄ spe
ify the GJK algorithm for 
al
ulating distan
ebetween 
onvex polytopes. San
heti and Keerthi [186℄ dis
uss some aspe
ts of 
om-plexity of 
onvex proximity algorithms. An algorithm for 
omputing an interse
tionbetween an arbitrary and a 
onvex polyhedron was given by Dobrindt et al. [59℄.Quinlan [176℄ employs a sphere three stru
ture and the GJK algorithm in order to
ompute the distan
e between non
onvex polyhedrons. Barber et al. [17℄ spe
ifya fast algorithm for 
omputing multi-dimensional 
onvex hulls. Bhatta
harya andSen [29℄ give a randomised planar 
onvex hull algorithm. Cameron [35℄ des
ribesan enhan
ed version of the GJK algorithm with hill-
limbing te
hnique for speed-ing up restarts. Mirti
h [151℄ has presented a fast Voronoi region 
lipping based



9.5. LITERATURE 125algorithm for �nding distan
es between 
onvex polyhedra. Levey et al. [134℄ 
om-pared some 
onvex distan
e 
omputing algorithms and designed improved metri
sfor an evaluation of their relative e�
ien
y. Van den Bergen [207℄ presented an-other optimised implementation of the GJK algorithm, and applied it to distan
e
omputation between smooth 
onvex sets. Kawa
hi and Suzuki [116℄ presenteda voxel-based distan
e 
omputation s
heme for non
onvex polyhedra. Vla
k andTa
hi [208℄ presented a spatio-temporal implementation of the GJK s
heme. Llanaset al. [141℄ give a 
onvex distan
e algorithm based on fa
e representation. Dyllongand Luther [61℄ implemented the interval arithmeti
 based version of GJK. Kavanet al. [115℄ dis
uss fast approximation of planar 
onvex hulls.



CHAPTER 10The fri
tional 
onta
t problemIt is standard to dis
uss at similar o

asions, �rstly and separately, the 
onta
tproblem and the fri
tion problem. The 
onta
t problem formulates motion of bodiestou
hing without penetrations, but also without resistan
e to their relative slip. Thefri
tion problem introdu
es a simple slip resistan
e law. Both 
an be formulated inthe language of 
onvex optimisation, whi
h is why their exposition is often pursuedin the �rst pla
e. As soon as the fri
tional 
onta
t problem is introdu
ed, anintera
tion between the slip and the interpenetration pre
ludes dire
t analogy withoptimisation. This happens, be
ause 
onvexity in the problem stru
ture is lost.Nevertheless, the foregoing methods and vo
abulary are still of use in the analysisof this more realisti
 s
enario. In the following se
tions, the three problems areformulated within the adopted framework of lo
al dynami
s.10.1. The 
onta
t problemThe gap fun
tion between a pair of elements e1 and e2 was de�ned in thefollowing way(10.1.1) g (t) =

{

minx,y ‖x − y‖ : x ∈ ē1,y ∈ ē2 when ē1 ∩ ē2 = ∅
miny 〈n,x − y〉 : y ∈ ∂ek,x ∈ ē1 ∩ ē2 otherwisewhere in the se
ond line, x and n are given by (9.4.4) and (9.4.3). The latterformula de�nes also the k-index. The �rst line des
ribes the proximity of the twoelements. The se
ond one de�nes a negative distan
e along n, from x towards thesurfa
e of the interse
tion ē1 ∩ ē2 (Figure 10.1.1).By using the methods spe
i�ed in the previous 
hapter, for all bodies we 
anidentify pairs of potentially overlapping elements. Hen
e, at all times it is possibleto maintain a ve
tor of gaps(10.1.2) g (t) =





...
gα (t)
...



between all of the identi�ed pairs. Bodies do not penetrate ea
h other, if only
g

x

y

n

x
y gFigure 10.1.1. Gap a

ording to de�nition (10.1.1).126



10.1. THE CONTACT PROBLEM 127(10.1.3) g (t) ≥ 0 for all twhere the inequality is understood in a 
omponent-wise manner. The time depen-den
e of the gap fun
tion resolves more dire
tly as(10.1.4) g (t) = g (q (t))where q is the 
on�guration of the multi-body system. In the 
urrent 
ontext wedo not 
onsider �time dependent boundaries�, as these 
an always be realised bypres
ribing some time dependent joints to sele
ted bodies. From the gaps point ofview, only moving bodies are seen. This is why g = g (q), rather than g = g (q, t).10.1.1. From gaps to velo
ity 
onstraints. Gradient of the gap fun
tionreads(10.1.5) ∇g =

{

(x − y) / ‖x− y‖ when ē1 ∩ ē2 = ∅
n otherwisewhere x, y and n were de�ned in (10.1.1). One 
an de�ne a lo
al base(10.1.6) {ai} = {aT1 ⊥ ∇g,aT2 ⊥ ∇g,aN = ∇g}where {T 1, T 2, N} indexing repla
ed {1, 2, 3}, and aT1 × aT2 6= 0 was assumed.The gap velo
ity reads

ġ = 〈∇g, ẋ− ẏ〉(10.1.7)and the lo
al velo
ity with respe
t to the base (10.1.6) follows as(10.1.8) U =
{

ai
}T

(ẋ − ẏ)More generally, for a multi-body system, the ve
tor of lo
al velo
ities U for all
onta
t related lo
al frames 
an be expressed in a familiar form(10.1.9) U = Huwhere H is evaluated a

ording to (7.1.9), and u is the generalised velo
ity of thesystem. In the evaluation of H, one employs the referential images of x and ytogether with {ai
}T

= {ai}−1. For the moment, relation (10.1.9) is understood inthe time 
ontinuous, rather than dis
rete sense. From (10.1.9) one 
an extra
t thegap velo
ity fun
tion in its ve
tor form(10.1.10) ġ = HN∗uwhere HN∗ denotes sele
tion of the normal 
omponent rows of H. Hen
e, ġ is theve
tor of the lo
al normal velo
ities(10.1.11) ġ =





...
UαN

...



Let us now de�ne a set(10.1.12) Γ (q, t) =

{

u ∈ TqQ : UαN ≥ 0 for gα (t) ≤ 0
TqQ otherwise



10.1. THE CONTACT PROBLEM 128In his integration lemma, Moreau [153℄ shows thatLemma 10.1.1. If the in
lusion(10.1.13) u ∈ Γ (q, t)holds for almost every1 t ∈ [0, T ) and the inequality (10.1.3) is veri�ed for t = 0,then the same inequality is veri�ed for t ∈ [0, T ).The proof relies on an assumption, that the 
on�guration q is obtained fromthe velo
ity u as a result of integration(10.1.14) q (t) = q (0) +

∫ t

0

u (s) dswhi
h for rigid rotations needs to be understood in a suitably generalised manner.The rest of the proof 
an be summarised as follows. One assumes g (τ) < 0, τ < Tand then looks for a 
ontradi
tion. As g (0) ≥ 0 and g (t) is 
ontinuous, it has topass by 0, say at time σ, on its way towards g (τ) < 0. As ġ ≥ 0 holds almosteverywhere in [0, T ), there follows g (τ) =
∫ τ

σ ġdt ≥ 0 whi
h gives the desired
ontradi
tion. We have omitted te
hni
al assumptions related to the regularity ofthe involved fun
tions.Taking the lo
al velo
ity U point of view on the above lemma, the non-penetration 
onstraint 
an be summarised as follows
U ∈ TE3 if g > 0

[UT , UN ] ∈ TE2 ×R+ if g ≤ 0(10.1.15)where R+ = [0,∞) is the semi-positive real half-line and the se
ond line holdsalmost everywhere in [0, T ). The lo
al velo
ity is allowed to take arbitrary values,when the gap between an element pair is positive. Otherwise, while the tangent
omponent UT remains arbitrary, the normal 
omponent UN needs to be semi-positive.10.1.2. Moreau's sweeping. A spe
i�
 instan
e of a solution to the problemposed by the di�erential in
lusion (10.1.13) is the Moreau's sweeping pro
ess. One
an de�ne a set of all interpenetration free body positions as(10.1.16) Φ (t) = {q ∈ Q (t) : g (q) ≥ 0}where Q (t) is used to emphasise a possible presen
e of time dependent joints.Imagine for example someone slowly sweeping a pool table top with a hand brush.A pa
k of 
igarettes left on the table is being pushed around slowly enough, so thatit freezes right after losing 
onta
t with the brush. For ea
h position of the brush,the pa
k of 
igarettes 
ould be pla
ed anywhere within the table borders and awayfrom the brush. The set of those pla
ements is the interior of Φ, the position ofthe pa
k is q and its velo
ity is u. The sort of behaviour just des
ribed, 
an bea
hieved by sele
ting for ea
h time t an element u ∈ Γ (q, t), su
h that the norm
‖u‖ is minimised. To des
ribe it more 
onsistently, it is temporarily 
onvenientto assume g = g (q, t) (i.e. a

ount for the motion of the brush as a movingboundary), rather than g = g (q) (i.e. 
onsider the two-body system, where thenon-penetration and the imposed motion 
onstraints are handled simultaneously).If all g > 0 then u = 0 (the brush is away from the pa
k and hen
e the pa
k is leftat rest). If some of the gaps gα ≤ 0, then the point q ∈ ∂Φ tou
hes the boundary1by whi
h one means t ∈ [0, T ) \ Z for sets Z su
h that R

[0,T )\Z
u =

R

[0,T )
u, where Z 
anbe understood as an arbitrary sequen
e {tn} ⊂ [0, T )
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N (q)

Φ

g>0
α

g>0
β

q

Φ

Figure 10.1.2. Normal 
one NΦ at q ∈ ∂Φ. Note that q + NΦwas plotted rather than NΦ (whi
h should be rooted at 0).of Φ (e.g. the brush is pushing the pa
k). A

ording to (10.1.15), the 
ondition isnow UαN = ∇qgα · u + ∂gα/∂t ≥ 0, where ∇qgα = HT
αN∗. For gα ≤ 0 there holdsthen(10.1.17) HαN∗u + ∂gα/∂t ≥ 0We have ∂gα/∂t = 0 if this is the gap between the pa
k and a table border, andpossibly ∂gα/∂t 6= 0 if this is the gap between the pa
k and the brush. A

ording tothe assumed sele
tion rule, one now wishes to �nd the smallest velo
ity satisfyingthe above system of inequalities(10.1.18) u = argmin ‖u‖ : HαN∗u + ∂gα/∂t ≥ 0If all of the ∂gα/∂t ≥ 0 then the brush, although tou
hing the pa
k, is about tomove away. Hen
e, the minimal u = 0, as the origin belongs to the set boundedby (10.1.17). If there are some ∂gα/∂t < 0, then the brush is a
tively pushingthe pa
k. From the geometri
al point of view, the system of inequalities (10.1.17)des
ribes a 
onvex polyhedral set P , not 
ontaining the origin. A point u ∈ P ,
losest to the origin, 
an then be expressed as a linear 
ombination of normals tothe hyperplanes not 
ontaining the origin. This is pre
isely(10.1.19) u =

∑

α

λαHT
αN∗where(10.1.20) λα = −min (0, ∂gα/∂t) /
∥

∥HT
αN∗

∥

∥

2 ≥ 0From the above it follows, that for gα = 0 the 
ondition ∇qgα ·u+∂gα/∂t = 0 holdsas equality, so that the point q �
at
hes up� with the boundary of Φ. For q ∈ ∂Φformula (10.1.19) des
ribes u as a semi-positive linear 
ombination of ve
tors∇qgα.Any su
h 
ombination forms a 
one. It is 
onvenient to generalise this notion forall q. The normal 
one of the set Φ is de�ned as follows (Figure 10.1.2)(10.1.21) NΦ =







−∑λα∇qgα, λα ≥ 0, gα = 0 when q ∈ ∂Φ
{0} when q ∈ interior (Φ)
∅ otherwise



10.1. THE CONTACT PROBLEM 130In [153℄ Moreau shows, that the velo
ity sele
tion rule in the sweeping pro
ess 
anbe equivalently des
ribed as(10.1.22) −u ∈ NΦ(t) (q (t)) almost everywhere in [0, T )This results from the fa
t, that u /∈ ∅ for almost every t, whi
h implies that ∇qgα ·
u + ∂gα/∂t < 0 is not allowed to happen (i.e. λα are appropriately 
hosen in(10.1.21), otherwise one 
ould always pi
k u = 0 and soon end up with q /∈ Φand hen
e u ∈ ∅). We have then q ∈ Φ, whi
h also follows from Lemma 10.1.1 as
−NΦ(t) (q) ⊆ Γ (q, t). For q ∈ interior (Φ) there follows u = 0 and the point staysat rest. In the remaining 
ase, q ∈ ∂Φ 
an hold for a sequen
e {tn} ∈ [0, T ), butwhenever q ∈ ∂Φ over [a, b] ⊆ [0, T ), there must almost everywhere in [a, b] hold
∇qgα ·u+∂gα/∂t = 0, whi
h leads to (10.1.19). There 
annot be q ∈ ∂Φ over [a, b]together with ∇qgα ·u+∂gα/∂t > 0, be
ause gα (q, b) = gα (q, a)+

∫ b

a
ġα (q, s) ds >

0 and q departs from the boundary.Let us re
apitulate. Assume that q ∈ Φ at t = 0. We 
an sweep q withset Φ as soon as u = 0 if g > 0, or (10.1.19) is used when gα ≤ 0. Formula(10.1.14) is utilised to advan
e q. The sweeping pro
ess 
an be understood asquasi-stati
 pushing of q by the boundary of Φ. In [155℄ Moreau detailed this ideain the in�nite-dimensional 
ontext. An introdu
tion to Moreau's sweeping withappli
ations to unilateral me
hani
s 
an be found in Kunze and Monteiro Marques[129℄.10.1.3. Velo
ity jumps. In order to preserve non-penetration, it is ne
essaryto admit jumps in the graph of the gap velo
ity ġ (t). This allows bodies to rebound,while the graph of the gap 
an have sharp minima tou
hing the horizontal axis. Fora given lo
al frame, at ea
h time t one 
an de�ne the left and the right velo
ity(10.1.23) U−
N (t) = lim

s↓0
UN (t− s) , U+

N (t) = lim
s↓0

UN (t+ s)An impa
t 
orresponds to g (t) = 0 and U−
N < 0. To se
ure non-penetration, forthe right velo
ity there needs to hold U+

N ≥ 0. The 
hange of sign in the relativevelo
ity 
annot output more energy than it 
onsumes, and hen
e(10.1.24) U+
N = −ηU−

Nwhere η ∈ [0, 1] is 
alled Newton's 
oe�
ient of restitution. The extrema of theabove relation(10.1.25) U+
N = 0 and UN = −U−

N
orrespond respe
tively to the ideally plasti
 and ideally elasti
 impa
ts. In theformer 
ase, after an impa
t the material points move within the tangent planespanned by aT1 and aT2. In the latter one, they rebound without loss of thekineti
 energy Ek = 1
2 ‖U‖2.It is 
onvenient to rephrase 
ondition (10.1.15) as

U+ ∈ TE3 if g > 0
[

U+
T , U

+
N

]

∈ TE2 × R+ if g ≤ 0(10.1.26)whi
h must hold everywhere in [0, T ). While the above assures non-penetration, noparti
ular value is assigned to U+
N . For 
omputational purposes it is 
onvenient tode�ne the following auxiliary velo
ity
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N + ηmin

(

0, U−
N

)The unilateral 
onta
t 
onstraint 
an be spelt out again as
U+ ∈ TE3 if g > 0

[

U+
T , ŪN

]

∈ TE2 ×R+ if g ≤ 0(10.1.28)where for ŪN = 0 the Newton's restitution law (10.1.24) is re
overed if U−
N < 0.10.1.4. Ba
k to the dis
rete 
ase. In the time dis
retised 
ontext, for ea
h

t we shall identify(10.1.29) U+ = Ut+h and U− = UtBe
ause(10.1.30) Ut+h = WR + B
onditions put on Ut+h 
an be realised by an appropriate 
hoi
e of R. We assumela
k of resistan
e with respe
t to the tangential motion(10.1.31) RT = 0In the absen
e of the free velo
ity B = 0, one 
an see that the above 
onditionand semi-positive de�niteness of W imply that a positive normal rea
tion RN > 0
auses a semi-positive normal velo
ity U t+h
N . In other words, a positive normalrea
tion implies separation, while the negative one 
an pull a pair of material pointstogether. We do not 
onsider adhesion and hen
e(10.1.32) RN ≥ 0Consequently, a semi-positive rea
tion is needed in order to assure ŪN ≥ 0. Thisallows to state 
onditions for the 
onta
t rea
tion R, analogous to (10.1.28)

R = 0 if g > 0

[RT , RN ] ∈ 0×R+ if g ≤ 0(10.1.33)If an impa
t happens between t and t + h, or an established 
onta
t persists over
[t, t+ h], the normal rea
tion is used so to assure that ŪN = 0. Note that when
U−

N < 0 this results in Newton's restitution, while when U−
N = 0 then U+

N = 0 followsand the 
onta
t persists. De�ning ŪN = U+
N +ηmin

(

0, U−
N

) is meant to be adjustedto our way of dete
tion and resolution of 
onta
t. An element overlap 
an persistover a sequen
e of adja
ent time moments t, t + h, ..., t + nh, although an impa
t
orresponds only to the reversal of the velo
ity sign. It would be inappropriate touse ŪN = U+
N + ηU−

N when U−
N > 0, as then the 
ondition ŪN = 0 
ould imply

U+
N < 0. In the next step that would lead to U−

N < 0 and the velo
ity sign would
ontinue reversing as long as the overlap between the elements would hold. Using(10.1.27) naturally prevents this s
enario.Conditions (10.1.28), (10.1.33) and the above dis
ussion lead to the following
omplementarity between the auxiliary normal velo
ity and the normal rea
tion(10.1.34) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0The above is sometimes referred to as the velo
ity Signorini 
ondition (
f. Jean[102℄). Conditions (10.1.34) 
an be 
ombined with the normal part of relation
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omplementary problem (in short an LCP) asfollows(10.1.35) {

Ut+h
N = WNNRN + BN

ŪαN ≥ 0, RαN ≥ 0, ŪαNRαN = 0where Ut+h
N and other ve
tors with index N 
omprise only normal 
omponents,and WNN is obtained from W by removing all tangential terms. Any pair Ut+h

N ,
RN verifying the above system together with RT = 0, solve the dis
rete dynami

onta
t problem. Whether the 
ontinuous 
onta
t problem is solved when h → 0is a separate question. Signorini 
onditions (10.1.34) imply that the right velo
ity
U t+h

N ≥ 0 for all t + h. As U+
N = limh→0 U

t+h
N , in the limit 
ondition (10.1.26) isveri�ed. If the left velo
ity U−

N is negative only on a sequen
e of points {tn} ⊂
[0, T ), then 
ondition (10.1.13) in the integration Lemma 10.1.1 does hold almosteverywhere. If U+

N > 0, then the 
onta
t is released and due to the 
ontinuityof the gap fun
tion, some time is needed before U−
N < 0 
an happen again. Thisseparates two impa
t events. If U+

N = 0, then the gap fun
tion 
an remain zero orgrows as U+
N ≥ 0 for g = 0. Again, this separates two 
onse
utive U−

N < 0 events.The above dis
ussion is rather rough, and does not mention regularity assumptions.Intuitively, �it should work� provided that (10.1.35) 
an be always solved and thefree velo
ity BN (t) is not everywhere dis
ontinuous. Fore a rigorous treatment werefer the reader to the already mentioned referen
es [155, 129℄.10.1.5. From inequalities to equalities. We would like to use the uniformnotation C (U,R) = 0 for all 
onstraints. This is not quite the 
ase for the 
om-plementary 
onditions (10.1.34), but it is not di�
ult to 
ast them into the form ofequality. The following variational inequality is equivalent to the 
omplementarity
onditions (10.1.34)(10.1.36) RN ∈ R+ ∀S ∈ R+ ŪN (S −RN ) ≥ 0where R+ stands for the semi-positive real half-spa
e. This 
an be 
he
ked byinspe
tion. Take any RN > 0, then ŪN (S −RN ) ≥ 0 implies that ŪN = 0. Take
ŪN > 0, then there must hold RN = 0. Finally, for RN = 0 we have ŪN ≥ 0. Theinequality ŪN (S −RN ) ≥ 0 
an be rewritten as(10.1.37) (

RN −
(

RN − ρŪN

))

(S −RN ) ≥ 0for any ρ > 0. As RN , S ∈ R+ the above 
an be viewed as a de�nition of proje
tion(10.1.38) RN = projR+

(

RN − ρŪN

)of the ve
tor RN − ρŪN onto the 
onvex set R+ (Figure 10.1.3). The a
t of sub-tra
tion RN − ρŪN requires a 
omment. Note, that 
omponents of the rea
tion Rare expressed with respe
t to the dual base ai, while the 
omponents of the velo
-ity U are expressed with respe
t to the base ai. Thus operation R ± U does notmake sense, unless one of the obje
ts is brought to the base of the other one. Forexample, the metri
 tensor A = {ai}T {ai} 
an be employed in order to 
ompute
Ui = AijU

j. This follows from {

ai
}

U{i} = {ai}U{i} and {ai}T {
ai
}

= I. The
orre
tion reads R ±AU. Nevertheless, due to the de�nition of the base (10.1.6),the metri
 tensor looks like
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0

A

B

C

SFigure 10.1.3. Interpretation of formula (10.1.37) as proje
tion.Let C be a 
onvex set. For all S ∈ C we have 〈A − B,S− A〉 ≥ 0.This implies that A = projC (B).(10.1.39) A =





A11 A12 0
A21 A22 0
0 0 1



and hen
e the normal 
omponent UN = UN . The proje
tion formula (10.1.38) isthen 
onsistent. We 
an now state the 
onta
t law as(10.1.40) C (U,R) = 0where(10.1.41) C (U,R) =







R if g > 0
[

RT

RN − projR+

(

RN − ρŪN

)

] if g ≤ 0Additional 
omments about the above derivation 
an be found for example in Wosleand Pfei�er [210℄.10.1.6. Non-smoothness. Proje
tion in (10.1.41) is a nonsmooth fun
tion.To pi
ture that, let us 
onsider a one dimensional simpli�
ation of the 
onta
tproblem(10.1.42) {

u = wr + b
r = projR+

(r − u)where ρ = 1 and η = 0 was assumed. The above system 
an be rewritten as(10.1.43) c (r) = r − max (0, r (1 − w) − b) = 0whi
h is a nonlinear equation the root of whi
h is sought. One 
an see that for
r < b/ (1 − w) the root is r = 0 while in the remaining 
ase r = −b/w. In theformer 
ase u = b ≥ 0, as b < 0 suppresses the root r = 0. In the latter 
ase u = 0and r ≥ 0, whi
h re
overs the Signorini 
ondition. The multi-dimensional versionof (10.1.43) reads(10.1.44) cα (r) = rα − max



0, rα (1 − wαα) − bα −
∑

β 6=α

wαβrβ



 = 0A series of plots of c (r) for various values of b 
orresponds to a series of se
tionsof cα (r) for some �xed rβ 6=α. This 
an be observed for the two-dimensional 
ase inFigure 10.1.4. What is also visible is the non-smoothness of the 
onstraint graphs.
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h surfa
e plot splits into the part where cα (r) = rα, and into another one where
cα (r) is an arbitrarily in
lined half-plane. Both parts are 
onne
ted in a 
ontinuousmanner along the line rα − ρuα = 0. This is where the non-smoothness o

urs. Insituations when derivatives of C (U,R) need to be 
omputed, one has to sort outdi�erentiation along rα − ρuα = 0. This will be further 
ommented on in the next
hapter.

c1(r1, r2) = r1 - max (0, r1(1 - w11) - b1 - w12r2)

c1(r1, r2) = 0
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c
(r

)

r

c(r) = r - max (0, r(1 - w) - b)

b =  1.0
b =  0.5
b =  0.0
b = -0.5
b = -1.0Figure 10.1.4. Plots of the Signorini 
onstraints (10.1.43) and(10.1.44) for w = w11 = 0.5, w12 = 0.3, b1 = 0.10.1.7. Existen
e of solutions. It is relevant to ask whether the solution for(10.1.44) a
tually exists. As suggested by the 
ontour line c1 (r1, r2) = 0 in Figure10.1.4, ea
h 
onstraint 
ontributes a 
urve 
omposed of two straight half-lines. Ifall su
h 
urves have a nonempty interse
tion, the solution exists. If the interse
tionhappens to be a point, the solution is unique. The half-line 
omponents are either

rα = 0 or bα + wαβrβ = 0, where the summation over β is assumed.Let W be positive-de�nite. The matrix w is the prin
ipal sub-matrix of W,obtained by removing all rows and 
olumns involved in the tangential response
w = WNN . Constru
ted this way, w remains symmetri
 and positive de�nite[200, p. 339℄. Su
h W and w are sometimes 
alled P-matri
es or said to haveP-property. It is readily seen that this property assures the existen
e of a solution.For the two extreme 
ases one has either all rα = 0 (no 
onta
t) or the systemof equations bα + wαβrβ = 0 is uniquely solved (all points in 
onta
t). In theremaining 
ases some rα∈I = 0 and some emerge as a solution of bα + wαβrβ = 0,where α, β /∈ I. The latter system 
an always be solved due to the P-property of
w. In order to show uniqueness, let us sele
t the index set I of minimal size |I|,su
h that bα + wαβrβ = 0 results in rβ > 0 for all α, β /∈ I. Su
h I is unique and
an be empty. Then by de�nition, for ea
h α ∈ I and β /∈ I(10.1.45) rα = −bα + wαβrβ

wαα
≤ 0and sin
e wαα > 0 (positive-de�niteness), there follows uα = bα + wαβrβ ≥ 0. If alarger I with property bα + wαβrβ = 0 ⇒ rβ > 0 for α, β /∈ I would be 
onsidered,then by similar argument uα ≤ 0 and 
omplementarity wouldn't hold. Hen
e theuniqueness. This is in fa
t a 
lassi
al result related to 
onvex optimisation, orsolution of linear 
omplementary problems (
f. Hintermüller et al. [93℄).When W is only semi-positive de�nite, existen
e of a solution 
annot be assuredfor arbitrary bα. Lu
kily, as bα = BαN and B = HM−1b (
f. Chapter 7), a lineardependen
y in H a�e
ts b in the same way as it does a�e
t w. In other words the
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e bα +wαβrβ = 0 is likely to besolvable, be
ause there 
annot be any bα from outside of the range of w. This willbe also visible from the stru
ture of the minimisation problem in Se
tion 10.1.9.Of 
ourse, a solution may fail to exist for a spe
i�
 instan
e of time dependent
onstraints. One 
an imagine a rigid blo
k squeezed from two opposite dire
tions,so that the two 
onstraints 
annot be simultaneously ful�lled. This is a situationwhen 
ontradi
tory pair exists, b+w1βrβ = 0 and w2βrβ−b = 0, where w1β = λw2βand λ > 0. However, this 
ase 
an be per
eived as a �modelling error�.10.1.8. Conta
t problem as root �nding. Let us denote(10.1.46) dN (UN , RN ) = RN − ρŪNand 
all dN a normal predi
tor. We 
an rewrite the non-penetration 
onstraint(10.1.38) as(10.1.47) CN (UN , RN ) = RN − max (0, dN )Gathering all the 
onstraints into a ve
tor operator and using lo
al dynami
s, we
an then state the following root �nding problem(10.1.48) CN (UN ,RN ) = 0|UN =WNNRN+BNor in short(10.1.49) CN (RN) = 0An important feature of the operator CN is its monotoni
ity. This means that forall pairs A, B there holds(10.1.50) 〈CN (A) − CN (B) ,A − B〉 ≥ 0The above 
an be shown to hold as follows. Let Newton's 
oe�
ient of restitution be
η = 0. This does not obs
ure generality, while the predi
tor 
an now be expressedas(10.1.51) dN (RN ) = RN − ρUN (RN )Operator CN 
an be rewritten as(10.1.52) CN (RN ) = RN − projX (dN (RN ))where X is the positive orthant R+ × R+ × ... × R+. It will be helpful to noti
e,that(10.1.53) ‖WNNA‖ ≤ λmax ‖A‖(10.1.54) 〈

W−1
NNA,A

〉

≥ 1

λmax
‖A‖2where λmax is the maximal eigenvalue of WNN . Estimate (10.1.53) holds, be
ausethe l2 norm of a symmetri
 matrix is equal to its spe
tral radius. Estimate (10.1.54)
an also be derived from the spe
tral pi
ture of the s
alar produ
t, and the fa
t that

λmin

(

W−1
NN

)

= 1/λmax (WNN). In the following derivation it will be 
onvenientto use δRN = R1N − R2N and δUN = U1N − U2N . It will be also useful to note
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e the ratio β = ‖δUN‖ / ‖δRN‖. From the semi-positive de�nitenessof WNN , the S
hwarz inequality |〈x,y〉| ≤ ‖x‖ ‖y‖ and (10.1.55), one 
an obtain
‖δUN‖ ‖δRN‖ ≥ 〈δUN , δRN 〉 ≥ λmin ‖δRN‖2, and by using (10.1.53) 
on
lude,
λmin ≤ β ≤ λmax. The two extreme eigenvalues are both of WNN . The proje
tiononto a 
onvex set is a 
ontra
tion (
f. [183, p. 545℄) and hen
e

‖projX (dN (R1N )) − projX (dN (R2N ))‖2 ≤
‖dN (R1N) − dN (R2N )‖2 ≤

‖δRN − ρδUN‖2 ≤
‖δRN‖2 − 2ρ

〈

W−1
NNδUN , δUN

〉

+ ρ2 ‖δUN‖2 ≤
(

1 − 2

λmax
ρβ2 + ρ2β2

)

‖δRN‖2 ≤

‖δRN‖2 for ρ <
2

λmax
(10.1.56)and(10.1.57) min

ρ

(

1 − 2

λmax
ρβ2 + ρ2β2

)

= 1 − β2

λ2
max

≤ 1 − λ2
min

λ2
maxA more general derivation of (10.1.56) 
an be found in the paper by Laborde andRenard [168℄. Finally we 
an write

〈CN (A) − CN (B) ,A− B〉 =

〈A − projX (dN (A)) − B + projX (dN (B)) ,A− B〉 =

‖A − B‖2 − 〈projX (dN (A)) − projX (dN (B)) ,A− B〉 ≥ 0(10.1.58)This proves monotoni
ity of CN for ρ < 2
λmax

. Be
ause of property (10.1.50),a simple re
ursive s
heme Rn+1
N = projX (dN (Rn

N )) 
onverges to a �xed point,being the root of CN . Also, semi-positive de�niteness of the Ja
obian ∂CN/∂RNrepresents a useful fa
t, when Newton s
heme is applied to the root �nding problem(10.1.49). In a more general sense, monotone mappings 
an sometime be identi�edwith generalised gradients of 
onvex fun
tions (
f. [183, p. 547℄ or [180℄). Inthis 
ontext, the root of (10.1.49) 
orresponds to a minimum of su
h fun
tion.This argument 
an be sometimes used to argue about existen
e and uniqueness ofsolutions.10.1.9. Conta
t problem as minimisation. The dis
rete 
onta
t problem
an also be stated as the following 
onvex program(10.1.59) minu L (u)
ŪαN (u) ≥ 0where L was de�ned as (7.0.3), and ŪN is given in (10.1.27). The 
onvexity of

U =
{

u : ŪαN (u) ≥ 0
} results from the a�ne stru
ture of the 
onstraints. L isstri
tly 
onvex and it attains a unique minimum at the velo
ity of an un
onstrainedmotion (
f. Chapter 7). Hen
e, the existen
e of a solution for the 
onstrainedproblem relies solely on the 
onstraints. An obvious ne
essary 
ondition is that

U 6= ∅. For U to be
ome empty, it is enough to have a pair of 
ontradi
tory
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onstraints, similarly as in the example given in the last paragraph of Se
tion10.1.7. Assume, that this is not the 
ase. A ve
tor RN = [..., RαN , ...], where
RαN ≥ 0 will be 
alled a Kuhn-Tu
ker ve
tor, if the in�mum of the fun
tion(10.1.60) f (u) = L (u) −

∑

α

RαN ŪαN (u)is equal to the optimal value of the 
onvex program (10.1.59). If su
h ve
tor existsand is known, one 
an easily 
ompute the solution. Sin
e f (u) is stri
tly 
onvex(as a sum of L and some linear fun
tions), its un
onstrained minimisation will leadto a unique point, being the solution of (10.1.59).The Kuhn-Tu
ker ve
tor, if it exists, naturally leads to the 
omplementarity
onditions (10.1.34). This follows from the fa
t that by de�nition RαN ≥ 0, Ūα ≥ 0and the minimum of f is equal to L (ū) for some ū ∈ U . As generally there holds
f ≤ L, the only situation for whi
h f = L is possible requires RαN ŪαN = 0. Thelinear 
omplementary problem (10.1.35) 
an then be viewed as a summary of theoptimality 
onditions of the 
onvex program (10.1.59). This is readily seen, as
UN = WNNRN + BN is merely an algebrai
 transformation of ∇f = 0.By the de�nition of the normal 
one (10.1.21) and be
ause of the 
omplemen-tarity (10.1.34) shown in the previous paragraph, the optimality 
ondition ∇f = 0
an be expressed as(10.1.61) −∇L (ū) ∈ NU (ū)where the normal 
one reads(10.1.62) NU =







−∑RαN∇ŪαN when u ∈ ∂U
{0} when u ∈ interior (U)
∅ otherwiseExisten
e of the Kuhn-Tu
ker ve
tor 
orresponds then to U having a boundary,whi
h seems to be trivially true for all kinds of U . However, not all kinds of theboundaries are equally �good�. De�nition of NU is not pre
ise in this respe
t. Adegenera
y 
orresponds to U being a single point, and hen
e ∂U = U . Of 
oursethen U = {ū}, 
omprises only the solution. At the same time, there is no restri
tionon the dire
tion of the gradient ∇L (ū). If we admit for an instant ŪαN (u) to bea general smooth fun
tions, then the singleton {ū} 
an be obtained in a variety ofways. For example two 
urves 
an tou
h just at this single point. For su
h a 
asethe 
orresponding gradients ∇ŪαN span only a single line and hen
e ∇L (ū) 
annotbe, in general, expressed as their linear 
ombination. The Kuhn-Tu
ker ve
tor isnot guaranteed to exist, if the 
onstraints are nonlinear and ∂U = U . In our 
asehowever, the 
onstraints are linear. An interse
tion of half-planes 
an be a point.But then, their normals need to span the 
omplete spa
e. The Kuhn-Tu
ker ve
toris then guaranteed to exist, if only U 6= ∅.Let us summarise. The stri
t 
onvexity of L, the fa
t that it admits a �nite un-
onstrained minimum, and the linearity of 
onstraints ensure existen
e of a uniquesolution to (10.1.59) whenever U 6= ∅. Presen
e of redundant 
onstraints does notalter this 
on
lusion, as the �shape� of U is not 
hanged. The only 
onsequen
eof redundan
y is the non-uniqueness of the 
orresponding Kuhn-Tu
ker ve
tor. Athrough exposition of the related issues 
an be found in Ro
kafellar [182, pp. 273-290℄. The result 
orresponding to the linear 
onstraints is given there in Corollary28.2.2.
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s. In 
ase of quasi-stati
s, we would like to exploit tosome extent 
omplementarity between the gap fun
tion and the 
onta
t rea
tion.That is(10.1.63) g (t) ≥ 0, RN (t) ≥ 0, g (t)RN (t) = 0where the above is assumed to hold almost everywhere in a 
onsidered time interval(so we do not need to worry, what RN (t) means during impa
ts). In the view ofthe impli
it Euler s
heme adopted in Se
tion 5.3, the gap fun
tion dis
retisationreads(10.1.64) gt+h = gt + hU t+h
NThe dis
retised gap-for
e 
omplementarity 
an be rewritten as(10.1.65) gt+h ≥ 0, RN ≥ 0, gt+hRN = 0The above relation 
an be divided by h resulting in(10.1.66) gt

h
+ U t+h

N ≥ 0, RN ≥ 0,

(

gt

h
+ U t+h

N

)

RN = 0The following substitution(10.1.67) ŪN =
max (0, gt)

h
+ U t+h

Nallows for (10.1.66) to be rewritten in a modi�ed form(10.1.68) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0whi
h bears the name of the quasi-inelasti
 sho
k law [102℄. It is seen that (10.1.68)
orresponds to the gap 
omplementarity (10.1.65), if the 
onta
t at t is not estab-lished. It is related to the velo
ity 
omplementarity (10.1.34) with zero restitution
η = 0, in 
ase of an established 
onta
t. The 
onta
t law (10.1.68) is adopted hereas it is numeri
ally better behaved 
ompared with (10.1.65). This is related to thelow deformability of the utilised kinemati
 models, for whi
h 
an
ellation of nega-tive gaps might result in ex
essively high 
onta
t rea
tions. The dis
ussion of theprevious se
tions applies without 
hanges, on
e ŪN de�ned a

ording to (10.1.67)is employed instead of the one de�ned in (10.1.27).10.2. The fri
tion problemWhile the 
onta
t problem was derived from a purely kinemati
 idea of non-penetration, the fri
tion problem deals with the resistan
e with respe
t to thetangential motion. As su
h, it needs to be stated in terms of for
es, and eventuallylinked with a kinemati
 e�e
t of their a
tion. A simple visualisation 
ould 
omprisea 
oin resting on a table top. A su�
iently small horizontal for
e applied to the
oin is not able to alter its position. Only after some threshold value is rea
hed,the 
oin will start moving. The motion will be opposed by the fri
tion for
e. This
an be summarised as follows(10.2.1) 





‖RT ‖ ≤ F
‖RT ‖ < F ⇒ UT = 0

‖RT ‖ = F ⇒ ∃λ≥0UT = −λRT
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alled Tres
a'sfri
tion law. A distin
tive feature and the 
ore of simpli�
ation is in the la
k of
oupling with the 
onta
t problem, as F is assumed �xed and arbitrary. The aboverelation is assumed to hold almost everywhere in a 
onsidered time interval. Fromnow on the time dis
retised 
ase is 
onsidered only.10.2.1. Retrieving the proje
tion formula. As in Se
tion 10.1.5, we shallderive an equality form of relation (10.2.1). The Tres
a fri
tion law 
an be expressedin form of the maximal dissipation prin
iple(10.2.2) RT (t) ∈ D (F ) , ∀S ∈ D (F ) , 〈UT ,S − RT 〉 ≥ 0where D (F ) is a two-dimensional 0-
entred dis
 of radius F , RT is the tangentialrea
tion and UT is the tangential relative velo
ity. In the above 〈·, ·〉 stands for thes
alar produ
t with respe
t to the lo
al tangent 
oordinates. The norm in (10.2.1)is related to the inner produ
t through(10.2.3) ‖RT ‖2
=
〈

A−1
TT RT ,RT

〉where 
ontravariant 
omponents of RT were obtained by inverting Ri = AijR
jand using the stru
ture of (10.1.39). The disk D (F ) 
an then be deformed into askewed ellipse, whi
h allows to a

ount for an anisotropy. The fri
tion for
e smallerthan F implies sti
king, while sliding o

urs for the tangential for
e of value F , andwith the dire
tion opposite to the slip velo
ity. Equivalen
e of (10.2.2) and (10.2.1)
an be again veri�ed by inspe
tion. If ‖RT ‖ < F , then S − RT is allowed to haveall possible dire
tion in E2. Hen
e, UT = 0. On the other hand if ‖RT ‖ = F ,then for 〈UT ,S − RT 〉 ≥ 0 to hold, UT must be normal to the disk D (F ) at point

−RT . Hen
e, UT = −λRT and λ ≥ 0. The inequality in (10.2.2) 
an be rewrittenas(10.2.4) 〈

A−1
TT RT −

(

A−1
TT RT − ρUT

)

,S− RT

〉

≥ 0where ρ > 0. In analogy with (10.1.37-10.1.38) and Figure 10.1.3 one 
an write(10.2.5) RT = ATTprojD(F )

(

A−1
TT RT − ρUT

)Having a
knowledged the above possibility, we shall assume in the following, thatthe lo
al frame ai is always orthonormal, and hen
eA ≡ I. The following, simpli�edform of the proje
tion formula will be further employed(10.2.6) RT = projD(F ) (RT − ρUT )In dynami
 appli
ations it might be of use sometimes to a

ount for a �tangentialsho
k�, resulting in the velo
ity restitution rather then sti
king. For su
h 
aseMoreau [154℄ proposed to repla
e UT in (10.2.1-10.2.6) with a 
onvex 
ombination(10.2.7) ŪT =
1

1 + τ
U+

T +
τ

1 + τ
U−

TThe sti
king 
ondition ŪT = 0 implies then U+
T = −τU−

T , where τ ∈ [0, 1] is thetangential 
oe�
ient of restitution.
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tion problem as root �nding. Let us denote(10.2.8) dT (UT ,RT ) = RT − ρUTand 
all dT a tangential predi
tor. Like in the work of Hüeber et al. [96℄ we 
anrewrite the single point Tres
a 
onstraint (10.2.1) as(10.2.9) CT (UT ,RT ) = max (F, ‖dT ‖)RT − FdT = 0Gathering all the 
onstraints into a ve
tor operator and using lo
al dynami
s, we
an then state the following root �nding problem(10.2.10) CT (UT ,RT ) = 0|UT =WT T RT +BTor in short(10.2.11) CT (RT ) = 0Operator CT 
an be rewritten as(10.2.12) CT (RT ) = RT − projY (dT (RT ))where Y = D (F1)×D (F2)× ...×D (Fn) is 
onvex. By exa
tly the same argumentas for CN in Se
tion 10.1.8, CT is monotone for ρ < 2
λmax

. Similarly as before, thishints, that the root �nding problem (10.2.11) is well behaved.10.2.3. Fri
tion problem as minimisation. The dis
rete fri
tion problem
an also be stated as the following 
onvex program(10.2.13) minR L∗
H (R)

‖RαT ‖ ≤ Fα, RαN = 0where L∗
H was de�ned in (7.0.16) and the normal rea
tion RN = 0 was 
an
elled,in order to preserve the de
oupled 
hara
ter of fri
tion and 
onta
t problems. Asthe 
onstraints are put on the for
es, it is most 
onvenient to utilise the dualformulation with the lo
al 
onjugate of L as the merit fun
tion. L∗

H is 
onvex,although not stri
tly so, when H is not of full rank. Hen
e the minima, if theyexist, do not need to be unique. If we quite reasonably assume that all Fα > 0,then there is RT ∈ interior (Y ), where Y = D (F1) × D (F2) × ... × D (Fn). Thereasoning given in Se
tion 10.1.59, and more rigorously Theorem 28.2 in [182, p.277℄, ensure then the existen
e of the Kuhn-Tu
ker ve
tor for the problem (10.2.13).Note, that the elements of the Kuhn-Tu
ker ve
tors λα have been used in thede�nition of the Tres
a 
ondition, when ‖RαT ‖ = Fα then ∃λα≥0UαT = −λαRαT .Be
ause U = ∇L∗
H (R), Tres
a law (10.2.1) 
orresponds in fa
t to the optimality
onditions of the 
onvex program (10.2.13). Assume that RT is a solution. When

‖RαT ‖ < Fα then UT = 0, be
ause the minimum is un
onstrained. Otherwise
UαT = −λαRαT / ‖RαT ‖ belongs to the normal 
one NY (RT ).In summary, the solution is guaranteed to exist if all Fα > 0. It is not unique,when H is not of full rank. Of 
ourse here, as well as in Se
tion 10.1.59, 
onvexityof the optimisation problems remains in dire
t relation with the monotoni
ity ofthe 
orresponding root �nding problems.



10.3. THE FRICTIONAL CONTACT PROBLEM 14110.3. The fri
tional 
onta
t problemThis is the 
ase where the analogies related to 
onvexity break down. Unfor-tunately, this is also the most realisti
 
ase. Constraints on the fri
tion for
es arenow des
ribed by the Coulomb law(10.3.1) 





‖RT ‖ ≤ µRN

‖RT ‖ < µRN ⇒ UT = 0

‖RT ‖ = µRN ⇒ ∃λ≥0UT = −λRTwhere µ ≥ 0 is the Coulomb's 
oe�
ient of fri
tion. As the normal rea
tion isemployed, the above 
onditions need to be stated together with the Signorini law(10.3.2) ŪN ≥ 0, RN ≥ 0, ŪNRN = 0The fri
tional 
onta
t problem will be also 
alled the Signorini-Coulomb problem.As it was shown, the 
onta
t problem alone 
an be most naturally stated as 
on-strained minimisation with respe
t to velo
ities. On the other hand, the fri
tionproblem 
an be most naturally phrased as 
onstrained minimisation with respe
tto for
es. In an attempt of merging these two, one fails to identify a single �eld,be it primal or dual, optimisation problem for the Signorini-Coulomb law. Thisis quite a short
oming, both in theory and pra
ti
e. This feature of the fri
tional
onta
t law is often referred to as la
k of normality or as being non-asso
iated.10.3.1. Proje
tion formulae. In the view of (10.1.38) and (10.2.6) the pro-je
tion formulae for the fri
tional 
onta
t problem read(10.3.3) {

RN = projR+

(

RN − ρŪN

)

RT = projD(µRN ) (RT − ρUT )A single proje
tion formulation is also possible. This might be bene�
ial in numer-i
al appli
ations. The formula is due to De Sax
é and Feng [55℄ and is given herefor the sake of 
ompleteness. There follows(10.3.4) R = projC(µ)

(

R − ρ

[

UT

ŪN + µ ‖UT ‖

])where C (µ) is the fri
tion 
one(10.3.5) C (µ) = {R : ‖RT ‖ ≤ µRN , RN ≥ 0}More will be said about (10.3.4) in Se
tion 10.3.4.10.3.2. Potentials, normality, monotoni
ity and asso
iation. It is 
om-mon in me
hani
s to pres
ribe a relation between primal and dual variables, whi
ha

ounts for an observable physi
al phenomenon. Su
h relation is 
ustomarily 
alleda 
onstitutive equation. An example was given in Se
tion 4.1.2, where the SaintVenant - Kir
hho� material was spe
i�ed. There, a fun
tion Ψ was assumed toexist su
h that(10.3.6) P̄ = ∂Ψ (F) /∂Fwhere P̄ was a stress, and F was a deformation gradient. Whenever Ψ is a 
onvexfun
tion, its sum over a domain 
an be minimised (also in the presen
e of 
onstraintson F), whi
h 
orresponds to the solvability of a stati
 boundary value problem.Convexity of Ψ allows also to derive a 
onjugate relation
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Figure 10.3.1. Monotoni
ity of 
onvex fun
tions. Closed 
on-tours 
orrespond to the level 
urves of a 
onvex fun
tion.(10.3.7) F = ∂Ψ∗
(

P̄
)

/∂P̄where Ψ∗ is the Legendre-Fen
hel transform of Ψ (
f. Chapter 7). Any of the aboverelations 
an be at �rst dis
overed in a form of equality P̄=ψ (F) or F=ψ−1
(

P̄
).At a later point one 
an realise, that there exists a suitable potential Ψ (or Ψ∗),with whi
h ψ (or ψ−1) is asso
iated by being its gradient. This usually 
orrespondsto some symmetries in the stru
ture of ψ. Whenever however su
h an identi�-
ation 
annot be pursued, the 
onstitutive relation ψ needs to be registered asnon-asso
iated. In other words, there does not exist a potential, whose gradient

ψ might be. Looking at the same thing from the geometri
al point of view, one
an see that ∇f |x=x0

orresponds to a normal to the level 
urve f (x) = f (x0)taken at the point x0. This is why, the above relations are said to 
omply withnormality. Hen
e in general, one does not need for Ψ to be 
onvex in order to speakabout normality. In fa
t, 
onvexity is also not ne
essary in order to speak aboutasso
iation. However then, Ψ and Ψ∗ are not any more 
onjugate in the sense ofbeing the Legendre-Fen
hel transforms of ea
h other. When 
onvexity is present,ea
h level 
urve f (x) = a bounds a 
onvex set Sa = {x : f (x) ≤ a}. For any twoarguments x and y, there holds either Sf(x) ⊆ Sf(y) or Sf(y) ⊆ Sf(x). Convexityassures, that 〈∇fx −∇fy, x− y〉 ≥ 0 be
ause(10.3.8) 〈∇fy, x− y〉 ≤ f (x) − f (y) ≤ 〈∇fx, x− y〉This is equivalent to the monotoni
ity of the gradient mapping ∇f . A graphi
alinterpretation is given in Figure 10.3.1. Whenever the 
onstitutive fun
tion ψ 
anbe identi�ed with a gradient of a 
onvex fun
tion, the monotoni
ity holds. This
ondition is not ne
essary though, as ψ 
an be monotone without 
orresponding toa gradient (e.g. a non-symmetri
 positive semi-de�nite matrix).In the absen
e of smoothness the above dis
ussion remains valid, although somete
hni
al amendments are ne
essary. For 
onvex f , the notion of gradient ∇f at xneeds to be repla
ed by the subgradient x∗, de�ned at x by(10.3.9) f (y) ≥ f (x) + 〈x∗, y − x〉 for all yThe subgradient x∗ 
orresponds then to the normal of a supporting plane of thegraph of f at x. The set of all subgradients bears the name of subdi�erential. It isde�ned at x as(10.3.10) ∂f = {x∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 for all y}It is an example of a set valued mapping. When y ∈ Sf(x), then f (y) ≤ f (x)and hen
e 〈x∗, y − x〉 ≤ 0. This shows that the subdi�erential is equivalent to the
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one at x to the set Sf(x), quite like it was said in the vi
inity of formulae(10.1.21) or (10.1.62). One more tool is ne
essary, in order to de�ne potentialsen
ompassing the 
onta
t and fri
tion laws. The indi
ator fun
tion of a set S isde�ned as follows(10.3.11) δ (x|S) =

{

0 if x ∈ S
∞ if x /∈ SSignorini law 
an now be then expressed as(10.3.12) −RN ∈ ∂δ
(

ŪN |R+

)(10.3.13) ŪN ∈ ∂δ∗ (−RN |R+)and similar relations 
an be obtained for the Tres
a law(10.3.14) −RT ∈ ∂δ∗ (UT , D (F ))(10.3.15) UT ∈ ∂δ (−RT , D (F ))Fun
tion δ∗ (·, S) is the Legendre-Fen
hel transform of δ (·, S) and it is also 
alledthe support fun
tion of the 
onvex set S. We have(10.3.16) δ∗ (x∗, S) = sup
x

{〈x, x∗〉 − δ (x, S)} = sup
x∈S

〈x, x∗〉One might like to note, that the support fun
tion was already employed in the�fth line of Algorithm 9.4.4. Existen
e of nonsmooth, yet 
onvex potentials for the
onta
t and fri
tion problems additionally 
on�rms their well-behavedness.10.3.3. La
k of potential, normality, monotoni
ity and asso
iation.One 
an show the la
k of monotoni
ity of the fri
tional 
onta
t law. This implies,that there does not exist a 
onvex potential related to it. Let us �rst note, thatmonotoni
ity of the pure fri
tion law is related to the inequality(10.3.17) 〈

R1
T − R2

T ,U
1
T − U2

T

〉

≤ 0whi
h holds true for all pairs of UT and RT verifying Tres
a's relation. In the in�n-itesimal sense, this implies dissipation of energy for all in
rements of the variables.In order to obtain the ≥ inequality, one should use −RT instead, similarly like in(10.3.14) and (10.3.15). This is merely a matter of 
onvention. The important bitis in preserving the parti
ular kind of inequality for all pairs of variables verifyingan interfa
e law. It is then enough to show, that one kind of inequality 
annot hold,in order to prove nonmonotoni
ity. This is simply done for the fri
tional 
onta
tlaw. Let us take(10.3.18) R1
T = αR2

T ,
∥

∥Ri
T

∥

∥ = µRi
N , α > 0(10.3.19) U1

T = βU2
T , β > 0Then, there holds(10.3.20) 〈

R2
T − R1

T ,U
2
T − U1

T

〉

= (1 − α) (1 − β)
〈

R2
T ,U

2
T

〉
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. α

α

a

bc

C*Figure 10.3.2. Constru
tion of a ve
tor c = [a, b]
T , su
h that

−c ∈ NC(µ) from a horizontala and b = tan (α) ‖a‖.Sin
e α and β are not related, any sign in the above s
alar produ
t is possible.Hen
e, the fri
tional 
onta
t law is not monotone. In 
onne
tion with optimisation,analogous observation 
an be made with respe
t to the normality. Assume, thatwe would like to extend problem (10.2.13) to the following one(10.3.21) minR L∗
H (R)

‖RαT ‖ ≤ µRαN , RαN ≥ 0The 
onstraints state, that the 
onta
t rea
tions belong to the fri
tion 
one (10.3.5).When 
onsidering optimality 
onditions for the above problem, one 
an noti
e thatthe velo
ity(10.3.22) −
[

UT

ŪN

]

/∈ NC(µ) (R)does not belong to the normal 
one of the fri
tion 
one C (µ). This is be
ause, thenormal velo
ity restitution law �knows nothing� about the µ-slope of the fri
tion
one. Fore example when Newton's restitution 
oe�
ient is η = 0, then U isparallel to the plane spanned by a1T and a2T . In 
onsequen
e, the gradient of −L∗
H
annot be expressed as a linear 
ombination of gradients of the a
tive 
onstraints.The Kuhn-Tu
ker ve
tor does not exist and one 
annot establish the �rst orderoptimality 
onditions. Hen
e, the fri
tional 
onta
t problem 
annot be per
eivedas minimisation.10.3.4. The Bipotential Method. A formal workaround for the la
k of nor-mality of the fri
tional 
onta
t law was proposed by De Sax
é and Feng [55℄. Al-though (10.3.22) 
annot be helped, one 
an modify the left hand side, so that ave
tor belonging to the normal 
one (of the fri
tion 
one) is obtained. That is(10.3.23) −

[

UT

ŪN + µ ‖UT ‖

]

∈ NC(µ) (R)for whi
h a simple geometri
al explanation is given in Figure 10.3.2. It turns out,that the above in
lusion implies the fri
tional 
onta
t law. For RN > 0 there musthold ŪN = 0 and then −UT ∈ ND(µRN ) (RT ). For RN = 0 the normal 
one
NC(µ) (R) is the polar 
one C∗ of the fri
tion 
one C (µ), marked in Figure 10.3.2.In this 
ase the geometri
al 
onstru
tion allows any ŪN ≥ 0 whi
h retrieves theSignorini 
ondition. For RN = 0 no restri
tion is put on the magnitude of theslip velo
ity ‖UT ‖. Of 
ourse, by 
onstru
tion, the fri
tional 
onta
t law impliesin
lusion (10.3.23), whi
h establishes their equivalen
e.
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lusion (10.3.23), although useful on its own, 
an be further shown to �t intothe framework of Impli
it Standard Materials, proposed by the authors in [55℄. Asdis
ussed in the previous se
tion, there does not exist a single-�eld 
onvex potential,whose gradient expresses the fri
tional 
onta
t law. The authors 
onsider insteadbipotentials, that is fun
tions impli
itly handling a relation between dual variables.By de�nition, a bipotential is(10.3.24) X ×X∗ → [−∞,+∞] : (x, x∗) → b (x, x∗)where b (·, x∗) and b (x, ·) are separately 
onvex, lower semi-
ontinuous2, and su
hthat for all x and x∗ there holds(10.3.25) b (x, x∗) ≥ 〈x, x∗〉The above inequality allows to write(10.3.26) x ∈ ∂x∗b (x, x∗)(10.3.27) x∗ ∈ ∂xb (x, x∗)whi
h follows from (10.3.25) as(10.3.28) b (x, y∗) ≥ b (x, x∗) + 〈x, y∗ − x∗〉 for all y∗(10.3.29) b (y, x∗) ≥ b (x, x∗) + 〈y − x, x∗〉 for all yCondition (10.3.25) is a generalisation of Fen
hel's inequality(10.3.30) f (x) + f∗ (x) ≥ 〈x, x∗〉whi
h in turn is a 
onsequen
e of f∗ (x∗) = supx {〈x, x∗〉 − f (x)}. Let Ū =
[

UT , ŪN

]T . In [55℄ a bipotential for the fri
tional 
onta
t law is de�ned as(10.3.31) b
(

Ū,R
)

= δ
(

−ŪN |R−

)

+ δ (R, C (µ)) + µRN ‖−UT ‖and in
lusion (10.3.23) is shown to be equivalent to(10.3.32) −Ū ∈ ∂Rb
(

Ū,R
)This partially brings ba
k the idea of normality. Nevertheless, it does not removedi�
ulties related to the solution of the fri
tional 
onta
t problem.10.3.5. Fri
tional 
onta
t as root �nding. Similarly to the work of Hüeberet al. [96℄ we 
an state the single point fri
tional 
onta
t operator as(10.3.33) C (U,R) =

[

max (µdN , ‖dT ‖)RT − µmax (0, dN )dT

RN − max (0, dN )

]where the 
omponents of the predi
tor(10.3.34) d (U,R) =

[

dT (UT ,RT )
dN (UN , RN )

]2A fun
tion f is lower semi-
ontinuous if for all α sets {x : f (x) ≤ α} are 
losed.
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Figure 10.3.3. Plots of the Signorini-Coulomb 
onstraints for ρ =
1, η = 0, Wii = 0.8, Wi6=j = 0.4, BT1 = BT2 = 0, BN = −2. The
oe�
ient of fri
tion was µ = 0.1 in the left pi
ture, and µ = 0.9in the right one.were de�ned in (10.1.46) and (10.2.8). As usual, the root �nding problemC (R) = 0
an be stated by eliminating U = WR + B. This time however, not mu
h 
an besaid about its stru
ture. Some visualisation is possible, at most, for a single pointproblem. The three s
alar equations in C (R) = 0 des
ribe some impli
it surfa
esin the R-spa
e. This is depi
ted in Figure 10.3.3. The in
lined surfa
e des
ribes thenormal 
onstraint CN (R) = 0. The two nearly verti
al (aligned with the RN axis)surfa
es 
orrespond to the 
omponents of the tangential 
onstraint CT (R) = 0.The solution rests at the interse
tion point of all three surfa
es. Small fri
tion
oe�
ient in the left pi
ture results in fri
tional slipping. Larger 
oe�
ient in theright pi
ture allows to pronoun
e the transition from the slip to the sti
k state.The 
onstraint surfa
es are visibly 
urved, as the non-smooth transition bendsthem along verti
al lines. The solution point in the right pi
ture is in the state ofsti
king. Essentially, for problems with many 
onta
t points, one is interested in�nding interse
tion points like those in Figure 10.3.3.Surely, operator C (R) is not monotone. This implies that there exist R1, R2su
h that(10.3.35) 〈C (R1) − C (R2) ,R1 − R2〉 < 0Thus3, a linear expansion of C (R) 
an experien
e a negative de�nite Ja
obian.This is not a desirable feature from the point of view of a Newton s
heme appliedto the solution of the root �nding problem C (R) = 0. When C (R) is per
eivedas a gradient of a general non
onvex fun
tion, �nding C (R) = 0 
an be regardedas looking for a lo
al extremum. A lo
al minimum is preferred as a stable solution,but the negative de�niteness of the Ja
obian 
an spoil the 
onvergen
e. In su
h
ase the s
heme requires globalisation (line sear
h) in order to avoid divergen
e or
onvergen
e to a lo
al maximum. A te
hnique of this sort will be examined in thenext 
hapter.3ERRATA: In our paper [123℄, Se
tion 4.1.3, there is an erroneous statement: �A simplenumeri
al experiment shows that for data from Figure 10.3.3, and for
e pairs generated randomlyon a unit ball the above inequality holds true in 30% of 
ases (µ = 0.4).� This was wrongly
on
luded due to a �awed 
ode. In fa
t, for randomly generated for
e pairs and the values of ρlargely ex
eeding 2/λmax, a small per
entage (up to 3%) of negative results (10.3.35) is obtained.
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ation. What happens ifwe juxtapose the 
onta
t problem and the fri
tion problem operators? We have(10.3.36) CF (R) =

[

CT (R)
CN (R)

]

=

[

RT − projY (dT (R))
RN − projX (dN (R))

]where X is the positive orthant R+×R+× ...×R+ and Y = D (F1)×D (F2)× ...×
D (Fn). The F index stands for the ve
tor of all fri
tion thresholds [..., Fα, ...]. Byexa
tly the same argument as in (10.1.56), one 
an show that the above operatoris monotone for ρ < 2/λmax, where this time λmax is the maximal eigenvalue ofthe 
omplete operator W. Of 
ourse, �nding R su
h that CF (R) = 0, althoughit might be easy, does not solve the fri
tional 
onta
t problem. Nevertheless, onemight try to do it repeatedly, while updating F to the most re
ent value of µRN .Convergen
e of su
h pro
edure will depend on the fa
t, whether from the globalpoint of view it 
an be per
eived as a 
ontra
tion. If so, it shall 
onverge to a �xedpoint F = RN . The issue of 
onvergen
e was studied by Stadler [195℄, where theuniqueness of solution was shown for su�
iently small 
oe�
ient of fri
tion (seealso [168℄). All of the root �nding s
hemes dis
ussed in the next 
hapter 
an beregarded as exploiting a 
ontra
tion property of some operators. Nevertheless, itwill be 
ustomary to refer to the spe
i�ed here pro
edure as the �xed point method.10.3.7. Can the fri
tional 
onta
t operator be monotone? Let us rewrite(10.3.33) as(10.3.37) C (R) =

[

CT (R)
CN (R)

]

=

[

RT − projZ (dT (R))
RN − projX (dN (R))

]where X is the positive orthant R+ × R+ × ... × R+ and Z = D
(

µ1 (d1N )+
)

×
D
(

µ2 (d2N )+
)

× ...×D
(

µn (dnN )+
). By (x)+ we mean max (0, x). In analogy with(10.1.58), C be
omes monotone, if only the proje
tion(10.3.38) R = projZ×X (d (R))is a 
ontra
tion. By Lemma 2 from [168℄, there holds(10.3.39) ∥

∥

∥projZ(A) (dT (R1)) − projZ(B) (dT (R2))
∥

∥

∥

2

≤

≤ ‖dT (R1) − dT (R2)‖2
+ µ2

max ‖dN (R1) − dN (R2)‖2where µmax = maxα µα. One 
an now write(10.3.40) ∥

∥projZ×X (d (R1)) − projZ×X (d (R2))
∥

∥

2 ≤

≤ ‖d (R1) − d (R2)‖2 + µ2
max ‖d (R1) − d (R2)‖2and further, by the same argument as in (10.1.56), obtain(10.3.41) ∥

∥projZ×X (d (R1)) − projZ×X (d (R2))
∥

∥

2 ≤

≤
(

1 + µ2
max

)

(

1 − 2
λmax

ρβ2 + ρ2β2
)

‖R1 − R2‖2A

ording to (10.1.57), the minimum over ρ of the se
ond bra
ket above is boundedby 1−λ2
min/λ

2
max and hen
e the 
ondition (1 + µ2

max

) (

1 − λ2
min/λ

2
max

)

≤ 1 resolvesas
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√

λ2
min

λ2
max − λ2

minThe proje
tion projZ×X (·) is a 
ontra
tion and C (R) be
omes monotone, only fora su�
iently small 
oe�
ient of fri
tion, where λmin and λmax are the minimaland the maximal eigenvalues of W. The above dis
ussion shows, that the fri
tional
onta
t problem enjoys a unique solution, when 
ondition (10.3.42) is satis�ed.10.4. CohesionIn our framework 
ohesion 
an bond points of distin
t bodies, similarly to aglue. It 
an be used with respe
t to sele
ted 
onta
t points, provided that theywere present at t = 0. The situation is rather simple. For all 
onta
t points we 
anwrite(10.4.1) ŪαN ≥ 0, RαN + hcα ≥ 0, ŪαN (RαN + hcα) = 0where hcα ≥ 0 is an integral of the 
ohesion threshold over [t, t+ h]. This meansthat the average normal 
onta
t for
e RαN/h 
an be negative up to the absolutelevel of cα. Only when this value is surpassed, the normal velo
ity is allowed tobe
ome positive, resulting in de
ohesion. This needs to be followed by setting
cα = 0 to indi
ate a brittle failure. Hen
e, the 
ohesion law should be 
ompletedby a 
ondition, exe
uted after the solution for 
onta
t rea
tions is preformed. Itreads(10.4.2) if cα > 0 ∧ (RαN + hcα) = 0 then cα = 0whi
h brings ba
k the adhesion-less form of the Signorini formula. When cα > 0the remaining formulae in the formulation of the root �nding problem need to beupdated a

ordingly. Let us �rst denote(10.4.3) R̄αN = RαN + hcαso that(10.4.4) ŪαN ≥ 0, R̄αN ≥ 0, ŪαN R̄αN = 0holds. If in all ne
essary formulae we 
ould repla
e RN s with R̄N s, then globalpi
ture would not be altered. This 
an be done by 
onsequently applying the
hange of 
oordinates (10.4.3). As RαN = R̄αN − hcα, there holds(10.4.5) U = W∗TRT + W∗N

(

R̄N − hc
)

+ Bwhi
h 
an be rewritten as(10.4.6) U = WR̄ + B̄(10.4.7) R̄ =
[

...,RαT , R̄αN , ...
]T(10.4.8) B̄ = B− W∗Nhc



10.5. ENERGETIC CONSISTENCY 149where the start ∗ stands for all relevant indi
es, so that W∗N 
omprises the 1 ×
3 normal 
olumn blo
ks Wαβ∗N = [WαβTN ,WαβNN ]

T . Owing to (10.4.4) and(10.4.6), one 
an now solve the usual root �nding problem, involving the proje
tionformulae having RN repla
ed by R̄N .In order to avoid 
lutter in the notation, it is from now on assumed, thatthe following sequen
e of steps is exe
uted whenever solution for the 
onstraints isdis
ussed(10.4.9) RN = RN + hc(10.4.10) B = B− W∗Nhc(10.4.11) C (WR + B,R) = 0(10.4.12) RN = RN − hc(10.4.13) for all α, if cα > 0 ∧ (RαN + hcα) = 0 then cα = 0This will be re
alled, when the 
omplete time stepping s
hemes are assembled inChapter 12. For the moment, let us forget about that. A 
omprehensive dis
ussionabout in
orporation of more sophisti
ated interfa
e laws 
an be found in Jean etal. [103℄. 10.5. Energeti
 
onsisten
yTotal energy of a multi-body system should not grow due to the in
orporationof 
onta
t and fri
tion 
onstraints. In parti
ular, 
onsidering a dynami
al systemwithout unbalan
ed for
es (a rigid multi-body system with some initial velo
ity),this statement needs to hold with respe
t to the kineti
 energy. Similarly as in [42℄one 
an then write(10.5.1) 2
(

E+
k − E−

k

)

=
(

u+ + u−
)T

M
(

u+ − u−
)and use the momentum balan
e over an impa
t episode(10.5.2) M

(

u+ − u−
)

= HTRin order to arrive at
2
(

E+
k − E−

k

)

=
(

u+ + u−
)T

HTR

=
〈

H
(

u+ + u−
)

,R
〉

=
〈

U+ + U−,R
〉(10.5.3)The last formula suggests, that if only ŪT = a

(

U+
T + U−

T

) and ŪN = b
(

U+
N + U−

N

)were employed in the 
onta
t and fri
tion 
onstraints (10.1.34) and (10.3.1), dis-sipativity 
ould be assured (a, b > 0). This would 
orrespond to the fully elasti
tangential sho
k for sti
king 
onta
ts, and to the fully elasti
 normal impa
t for
U−

N ≤ 0. Su
h 
hoi
e, with a = b = 1
2 , is in fa
t quite natural in the view of the
on�guration update formula qt+h = qt+ 1

2

(

ut + ut+h
). This seems to be the basisof the energeti
ally 
onsistent developments by Laursen and Chawla [202, 206℄.Nevertheless, in the 
ontext of kinemati
 models with limited deformability, the
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 restitution is rather 
onstraining. Here, one would like to use a varietyof restitution 
oe�
ients at di�erent 
onta
t points, distin
t for the normal andtangential 
omponents. Unfortunately, for the simple Newton's restitution modelenergeti
 
onsisten
y 
an only be assured in few spe
ial situations. This, 
om-bined with the in
onsisten
ies related to the fri
tional e�e
ts, renders the adopted
onta
t-impa
t-fri
tion framework only an illustrative tool. Having said that, letus dis
uss some parti
ular sour
es of the (in)
onsisten
y.10.5.1. Conta
ts, ideally plasti
 impa
ts, and fri
tion. By a 
onta
t wemean a situation, where the gap fun
tion g ≤ 0 and U−
N ≥ 0. In this 
ase, the
onta
t point should not be ex
luded from the formulation of the 
onstraints. It iswell possible, that due to the kinemati
 intera
tions with other 
onta
t points, theright velo
ity be
omes negative U+

N < 0. This should not be allowed. The 
onta
tpoint is then preserved, and ŪN = U+
N + ηmin

(

0, U−
N

)

= U+
N . On the other hand,by an impa
t we mean, that g ≤ 0 and U−

N < 0, and hen
e ŪN = U+
N + ηU−

N . Onlyideally plasti
 impa
ts are 
onsidered here, where η = 0. Thus again, ŪN = U+
N .In this situation it is easy to show, that dissipativity always holds. We have(10.5.4) U+ = WR + U−and hen
e(10.5.5) 〈U+ + U−,R〉 = 〈2U+ − WR,R〉 =

2
〈

U+
T ,RT

〉

− 〈WR,R〉+ 2
〈

U+
N ,RN

〉The �rst s
alar produ
t 〈U+
T ,RT

〉

≤ 0, due to the fri
tion law (10.3.1). The qua-drati
 form 〈WR,R〉 ≥ 0, be
auseW is semi-positive de�nite. Finally 〈U+
N ,RN

〉

=

0, due to the Signorini 
ondition (10.1.34). Thus, E+
k − E−

k ≤ 0.10.5.2. Fri
tionless impa
ts and 
onta
ts. We are assuming now RT = 0.Let S be the index set of α, where U−
αN < 0 and thus U+

αN = −ηαU
−
αN (impa
ts).Let P be the index set of α, where U−

αN ≥ 0 and thus U+
αN ≥ 0 (
onta
ts). Thequestion is about the sign of 〈U+

N + U−
N ,RN

〉. For α ∈ P and U+
αN > 0 therefollows RαN = 0, and hen
e the 
orresponding term in the s
alar produ
t is zero.It is fair to assume U+

αN = 0 for all α ∈ P . Then(10.5.6) {

U+
αN = −ηαU

−
αN for α ∈ S

U+
βN = 0 for β ∈ PFor better illustration let ηα = η for all α. One 
an now write(10.5.7) U+

N + U−
N =

[

(1 − η)U−
SN

U−
PN

](10.5.8) RN = −W−1
NN

[

(1 + η)U−
SN

U−
PN

]Hen
e(10.5.9) −
〈

U+
N + U−

N ,RN

〉

=

=
〈

W−1
NNU−

N ,U
−
N

〉

− η2

〈

W−1
NN

[

U−
SN

0

]

,

[

U−
SN

0

]〉



10.5. ENERGETIC CONSISTENCY 151In the above, the right hand side di�eren
e 
an be
ome negative. This is seen eitherfrom the spe
tral pi
ture of the s
alar produ
ts4, or simply by noti
ing that subtra
-tion from a quadrati
 form of some of its diagonal squares turns it into a saddle sur-fa
e. Hen
e, the energy growth is possible. On the other hand, for P = ∅, dissipativ-ity is restored. This follows also from 〈

U+
N + U−

N ,RN

〉

=
〈

(1 − η)U−
N ,RN

〉

≤ 0,as it was shown by Glo
ker [42℄. One 
ould then 
onsider only impa
ts, de�ned by
U−

N ≤ 0. This however is not always suitable. For example, for �at surfa
es in astati
ally overdetermined 
onta
t, su
h assumption would lead to a noisy, spuriousro
king after the de
ay of boun
ing, for some η < 1. This would result from su

es-sive swit
hing o� and on of some 
onta
t points, for whi
h the value of U−
N wouldos
illate around zero, on the level of numeri
al toleran
es. Pro
essing a nonemptyset P stabilises this sort of behaviour. In the example from Se
tion 13.4.3, theenergy growth does not happen, be
ause there indeed P = ∅. An additional fa
toreasing o� a possible energy growth is the square η2 in (10.5.9), where η ≤ 1.10.5.3. Impa
ts, 
onta
ts and fri
tion. Considering now also the fri
tionale�e
ts RT 6= 0, let us additionally assume that some unbalan
ed for
es do exist.In the 
ontext of the dynami
 time stepping, we 
an write(10.5.10) 1

2

(

u+ + u−
)

M
(

u+ − u−
)

=
h

2

(

u+ + u−
)

f +
1

2

〈

U+ + U−,R
〉whi
h 
orresponds to(10.5.11) △Ek + △Ep =

1

2

〈

U+ + U−,R
〉where the 
onservative for
e f = −∂Ep/∂q, and the fa
t that △q = h

2 (u+ + u−)were used. Taking the total energy E = Ek + Ep, one obtains △Ek + △Ep =
E+ − E−, and hen
e similarly as in the previous 
ase(10.5.12) 2

(

E+ − E−
)

=
〈

U+ + U−,R
〉Now(10.5.13) U+ = WR + Brather than (10.5.4). Thus, derivation of kind (10.5.5) is no longer possible. One
an merely write(10.5.14) 〈U+ + U−,R〉 =

=
〈

U+
T ,RT

〉

+
〈

U+
PN ,RPN

〉

+
〈

U−
T ,RT

〉

+
〈

−QU−
SN ,RSN

〉where Q = diag (ηα), and index sets S and P were already de�ned in the previousse
tion. On the right hand side above, the sum of �rst two s
alar produ
ts is semi-negative, due to the fri
tion and 
onta
t 
onditions. The last s
alar produ
t ispositive. The one but the last 
an be positive, when 〈U+
T ,U

−
T

〉

≤ 0 (asU+
T = −λRTwith λ ≥ 0). This 
orresponds to slip reversal. The amount of positive and negativevalues in (10.5.14) is the matter of a parti
ular setup. Nothing general 
an be saidabout it, maybe with the ex
eption of stating, that the in
onsisten
y results fromour model and it should be 
orre
ted by developing a better one. It is relevant tomention, that the quasi-stati
 s
heme from Se
tion 5.3 remains 
onsistent, as there

U− = 0 by de�nition.4An unpra
ti
al 
riterion for stability would be η2 ≤ mini ai/ maxj bj , where a is the pro-je
tion of U
−
N

on the eigenbasis of W
−1
NN

, and b is a similar proje
tion of h

U
−1
ST

,0
iT .



10.6. LITERATURE 15210.6. LiteratureA review paper on dynami
s of rigid bodies with fri
tion and impa
ts was givenby Stewart [198℄. Another general review, oriented more towards the event drivenstrategies is due to Brogliato et al. [32℄. A review paper on the formulation ofelastostati
 fri
tional 
onta
t problems was also given by Mijar and Arora [150℄.Monograph by Wriggers [211℄ gives a 
omprehensive summary of 
omputationalte
hniques related to deformable 
onta
t problems.The Conta
t Dynami
s method developed by Moreau [156℄ and Jean [102℄ isparti
ularly 
onvenient for kinemati
ally modest �nite deformation formulations,where the dual form of the 
onta
t problem 
an be inexpensively utilised (e.g. as-sembly of rigid bodies, for whi
h an expli
it inversion of the inertia operator is
omputationally feasible). The main features of the method 
omprise the use of avelo
ity level time stepping, the non-regularised treatment of fri
tional 
onta
t law,and the blo
k Gauss-Seidel relaxation utilised stepwise in order to resolve unilat-eral 
onstraints. The method was developed within the 
ontext of rigid and �niteelement dis
retised 
ontinua. Appli
ations range from granular �ow [178℄, throughstati
s of masonry [40℄, to deep drawing simulations [109℄. Conta
t Dynami
sbelongs to a broader 
ategory of s
hemes dealing with the non-smooth dynami-
al systems. For example, developments by Wösle and Pfei�er [210℄ and Pfei�eret al. [170℄ utilise the same theoreti
al apparatus, although they di�er in details(a

elerations are involved, Newton s
heme is used rather than the Gauss-Seidel).In the 
ontext of rigid multi-body simulations, Stewart and Trinkle [199℄ devel-oped a time-stepping method based on an inelasti
 impa
t law and polyhedral lin-earisation of the Coulomb fri
tion 
one. Their formulation does not allow violationof interpenetration 
onstraints, and the resulting linear 
omplementary problem(LCP) is guaranteed to posses solutions at all times. Pang et al. [165℄ developeda linear programing te
hnique to solve an un
oupled 
omplementary problem re-sulting from the planar formulation of a quasi-stati
 evolution of rigid multi-bodysystems. This work was later extended to three dimensions by Trinkle et al. [204℄,where polyhedral dis
retisation of the fri
tion 
one (like in [199℄) allowed to pre-serve the original algebrai
 stru
ture. Anites
u et al. [10℄ review several aspe
tsof time-stepping methods for rigid bodies. Anites
u and Potra [9℄ design a time-stepping method for rigid multi-body systems with sti� for
es. A linearly impli
ittime integrator is used in 
ombination with the LCP formulation of 
onstraints.The method is shown to be stable in the sti� limit, where a sti� for
e joining twopoints a
ts as a joint 
onstraint. Potra et al. [70℄ des
ribe a se
ond order, sti�ystable linearly impli
it time-stepping for rigid multi-body fri
tional 
onta
t prob-lems. They employ an event predi
tion method, a Poisson restitution model andan LCP formulation of the 
onstraints. The se
ond order 
onvergen
e rate of themethod is exempli�ed on few examples (
f. Se
tions 13.4.4 and 13.4.5). Song et al.[194℄ des
ribe a linear 
omplementarity based framework for 
ompliant 
onta
ts,and prove solvability of the so posed problem. Leine and Glo
ker [132℄ developa Coulomb-Contensou fri
tional law for rigid bodies, where the 
onta
t surfa
e isapproximated by a disk, allowing to extra
t a torque-spin relation. The 
onstitutivelaw is applied in the 
onta
t of time-stepping methods, for an example of the tipple-top toy. This work 
an be related to the one by Goyal et al. [77℄, where a similarholisti
 approa
h to the motion of rigid, sliding bodies was undertaken. Glo
ker[42℄ dis
usses di�eren
es between Newton's and Poisson's impa
t models. Leine etal. [131℄ design a simple me
hani
al system named the Fri
tional Impa
t Os
il-lator, and examine the o

uren
e of Painlevé paradox for their setup. A numberof interesting 
on
lusions is drawn, regarding the 
onditions under whi
h fri
tionalhopping 
an happen. Stewart [197℄ gives a proof of 
onvergen
e of a time-stepping



10.6. LITERATURE 153algorithm similar to the one given in [199℄. He also resolves a parti
ular instan
eof the Painlevé paradox.In the 
ontext of deformable 
ontinua, an augmented Lagrangian formulationof the fri
tional 
onta
t problem was developed by Alart and Curnier [7℄. Theauthors derive a linearisation of their formulation and apply Newton method as asolution strategy. This formulations serves as a basis for many subsequent devel-opments. For example, Heegaard and Curnier [85℄ dis
uss a suitable extension tolarge slip problems, and Heege and Alart [86℄ develop a �nite element for metalforming appli
ations. Jones and Papadopoulos [106℄ develop a heuristi
 method ofimposing sti
k and slip 
onditions based on a relaxed in�ation of fri
tion 
one and a
ontrol of slip reversal. Newton method is used as a solution strategy for some two-dimensional examples. An anisotropi
 fri
tion model is developed in the followingwork by Jones and Papadopoulos [107℄. Kane et al. [111℄ develop a formulationof the fri
tionless 
onta
t problem by applying tools of nonsmooth analysis [43℄.Their non-penetration 
ondition based on volumetri
 overlap of �nite elements issimilar to the one undertaken in the 
urrent work. The 
onta
t problem is formu-lated as a generalised, non-smooth minimisation (indi
ator fun
tions are used) andthe sequential quadrati
 programming s
heme is employed as a solution strategy.Pandol� et al. [164℄ extend this framework into the fri
tional 
ase and, in thealgorithmi
 sense, they maintain the variational (minimisation based) stru
ture ofthe formulation. The Bipotential formulation summarised in Se
tion 10.3.4 wasinitially introdu
ed by De Saxe and Feng in [56℄.



CHAPTER 11SolversThe obje
tive is to solve(11.0.1) C (WR + B,R) = 0where all kinds of 
onstraints are in
luded. In the following, it will be at times
onvenient to write C (R) = 0 instead of the above. Cal
ulation of the 
onstraintrea
tions allows to advan
e the time step and step up a 
onse
utive system of
onstraint equations. Properties of C and several numeri
al te
hniques for solving(11.0.1) will be dis
ussed in the following se
tions.11.1. Properties of COperatorC inherits its properties after both, the individual 
onstraints and W.In the presen
e of the fri
tional 
onta
t 
onstraints it is unavoidably nonmonotone.This suggests the possibility of non-uniqueness of roots of C (R) = 0. A pro
ess oflooking for those 
an be further undermined by the la
k of invertibility of C. Thisremains in a dire
t relation with the invertibility of W. Finally, non-smoothnessof C plays a role whenever derivatives are to be 
omputed. The nonmonotoni
ityhas already been dis
ussed at some length. The invertibility and non-smoothnessrequire few additional 
omments.11.1.1. Invertibility. In general, C (R) needs not to be invertible (more pre-
isely lo
ally invertible, that is, invertible for a su�
iently small neighbourhood ofea
h R). This is more of an issue for poorly deformable kinemati
s (like here),although for FEM dis
retised models the problem pra
ti
ally disappears. The dis-
ussion on the invertibility of W (Se
tion 7.1) remains valid, nevertheless one needsto realise that C (R) ≃ WR + B only for some spe
i�
 situations (e.g. when all
onta
ts are sti
ky), so that invertibility of W does not dire
tly translate into thatof C. In the further exposition we shall make a pragmati
 assumption:Assumption. In the 
ontext of Newton methods presented in Se
tion 11.2, itwill be impli
itly assumed that C (R) is lo
ally invertible.Hen
e, the Ja
obian ∂C (R) /∂R (or its generalisation) will be by the assump-tion non-singular. The linearisation based methods will be tested in 
ombinationwith pseudo-rigid kinemati
s. This renders our simpli�
ation easier to a
hieve. Ex-tension of the methods from Se
tion 11.2 to the 
ase of non-invertible C (R) needsto be registered as a matter of future resear
h.11.1.2. Semi-smoothness. It 
an be shown that C (R) is Lips
hitz 
ontin-uous, that is for all R1 and R2(11.1.1) ‖C (R1) − C (R2)‖ ≤ K ‖R1 − R2‖where K is a 
onstant. One 
an use (10.3.41) and the triangle inequality in orderto show that. K depends on the maximal fri
tion 
oe�
ient µ, on the s
aling154



11.1. PROPERTIES OF C 155parameter ρ, and on the maximal eigenvalue of W. As it was for example shownin Se
tion 10.1.6, C (R) is not smooth. The sour
e of non-smoothness is due to the
max fun
tion employed in the proje
tion formulae des
ribing 
onta
t 
onstraints.Be
ause of this feature, C (R) is not di�erentiable in the usual sense for all R. Thismeans that the Fré
het derivative DC, de�ned as(11.1.2) lim

‖h‖→0

‖C (R + h) − C (R) −DC (R) · h‖
‖h‖ = 0does not exist for all R. In our setting, max (x, y) is not di�erentiable when x = y.This 
orresponds to a surfa
e S inR-spa
e, impli
itly de�ned by µdαN = ‖dαT ‖ and

dαN = 0, 
f. (10.3.33). Intuitively, a
ross S the 
onta
t and fri
tion states 
hange(e.g. from sti
k to slip). Hen
e, one 
annot des
ribe DC by a single linear operator,when R ∈ S. Several generalisations of di�erentiability have been proposed in orderto work around similar di�
ulties [43, 39℄. For 
onvex fun
tions, the subdi�erentialde�ned in (10.3.10) is an example. C (R) however does not pertain to 
onvexity,as it was shown to be nonmonotone. For Lips
hitz fun
tions, Clarke [43, p. 70℄de�nes a generalised Ja
obian(11.1.3) ∂C (R) = 
o








lim
Ri → R

Ri ∈ DC

DC (Ri)

















as the 
onvex hull of all limits of Fré
het derivatives, where DC denotes the set ofpoints where C is di�erentiable (see also [39℄). Qi and Sun [175℄ use the notion ofsemi-smoothness in referen
e to (lo
ally) Lips
hitzian fun
tions, for whi
h the limit(11.1.4) lim
V ∈ ∂C (R + tg)

g → h, t ↓ 0

{V g}exists for any h. The authors show, that for semismooth fun
tions there holds(11.1.5) V h− C
′

(R;h) = o (‖h‖) , V ∈ ∂C (R) , h → 0(11.1.6) C (R + h) − C (R) − C
′

(R;h) = o (‖h‖) , h → 0where C
′

(R,h) is the dire
tional derivative(11.1.7) C
′

(R;h) = lim
t↓0

C (R + th) − C (R)

tand f (x) = o (g (x)), when lim f (x) /g (x) = 0 for x → 0. Assuming invertibilityof V ∈ ∂C (R) and uniform boundedness1 of V −1 in the neighbourhood of R,formulae (11.1.5) and (11.1.6) allow to show lo
al super-linear 
onvergen
e of thefollowing semi-smooth Newton s
heme(11.1.8) Rk+1 = Rk − V −1
k C

(

Rk
)

, Vk ∈ ∂C
(

Rk
)1there exist a neighbourhood N (R) and a 
onstant C, su
h that ‚

‚V −1
‚

‚ < C for all V ∈

∂C (S), where S ∈ N (R)



11.2. NEWTON METHOD 156One might like to note, that in the above s
heme some freedom is left as to the
hoi
e of Vk. In parti
ular for Rk ∈ S, one 
an 
hoose the semi-smooth tangentoperator to be a limit of just one sequen
e (11.1.3), ranging through points of asmooth pat
h adja
ent to S in the neighbourhood of Rk. This freedom will be usedin Se
tion 11.2, when de�ning a
tive sets. Now, taking R∗ to be the solution of
C (R) = 0, we 
an write

∥

∥Rk+1 − R∗
∥

∥ =
∥

∥Rk − R∗ − V −1
k C

(

Rk
)∥

∥ =
∥

∥

∥−V −1
k

[

C
(

Rk
)

− C (R∗) − C
′
(

R∗;Rk − R∗
)

+ C
′
(

R∗;Rk − R∗
)

− Vk

(

Rk − R∗
)

]∥

∥

∥

≤
∥

∥V −1
k

∥

∥

∥

∥

∥

[

C
(

Rk
)

− C (R∗) − C
′
(

R∗;Rk − R∗
)

]∥

∥

∥+

+
∥

∥V −1
k

∥

∥

∥

∥

∥

[

Vk

(

Rk − R∗
)

− C
′
(

R∗;Rk − R∗
)

]∥

∥

∥ =

= o
(∥

∥Rk − R∗
∥

∥

)Hen
e, by pi
king a starting point R0 for su�
iently 
lose to R∗, a super-linear
onvergen
e 
an be a
hieved, as ∥∥Rk+1 − R∗
∥

∥ /
∥

∥Rk − R∗
∥

∥ be
omes arbitrarilysmall. In pra
tise, it is the major di�
ulty to �nd an appropriate starting point.The Newton method presented Se
tion 11.2, 
an be regarded as an instan
e of thesemi-smooth te
hnique sket
hed above. A formal proof would have to show, that
C (R) is semi-smooth for R ∈ S. It is smooth for the remaining part of the domain.It seems 
lear, that similarly as for the augmented Lagrangian 
orresponding to a
onvex program, shown to be semismooth in [175℄, one 
an pursue su
h exer
ise inour 
ase. On the other hand, the issue of a parti
ular 
hoi
e of the lo
al 
onvergen
etheory, remains in a sense the matter of taste. For example, for similar 
lass ofproblems, Pang [166℄ applied the idea of B-di�erentiability. Although in thatdevelopment, existen
e of Fré
het derivative was assumed at R∗, it did not preventa su

essful appli
ation of the method to fri
tional 
onta
t problems [41℄. Also, ageneralisation of the lo
al 
onvergen
e theory was proposed by Chen et al. [39℄,where the notion of slant di�erentiability was introdu
ed. Among the useful featuresof this approa
h, there is appli
ability in the in�nite dimensional 
ontext, as well asno need for the uniform boundedness of a linear operator generalising the Ja
obianin the vi
inity of a solution point.11.2. Newton methodWe present a linearisation of the fri
tional 
onta
t problem, as it is the mostinvolving part of (11.0.1). In
lusion of other kinds of 
onstraints 
orresponds merelyto a simple extension of the linear systems presented in the following. This will bedis
ussed at a later point. Operator (11.0.1) for the fri
tional 
onta
t problem 
anbe rewritten as(11.2.1) {

U = B + WR

C (U,R) = 0where(11.2.2) C (U,R) =









...
CαT (Uα,Rα)
CαN (Uα,Rα)

...







(11.2.3) CαT (Uα,Rα) = max (µdαN , ‖dαT ‖)RαT − µmax (0, dαN )dαT



11.2. NEWTON METHOD 157(11.2.4) CαN (Uα,Rα) = RαN − max (0, dαN)(11.2.5) dαT (Uα,Rα) = RαT − ρUαT(11.2.6) dαN (Uα,Rα) = RαN − ρŪαNSimilar formulation is a starting point of the development by Hüeber et al. [96℄.There however, the �nite element mortar dis
retisation provides the �rst relationin (11.2.1). Contrary to the above, the formulation in [96℄ is stated in the standardprimal form, with displa
ements a
ting on the global tangent operator. The 
urrentformulation is usually more suitable for kinemati
 models with a moderate amountof freedom, as W and B 
an be inexpensively 
omputed.In order to approximately solve (11.2.1), the a
tive set strategy and the fri
-tional Newton step proposed in [96℄ will be adopted. For the 
lass of problems likethe unilateral 
onta
t alone, the primal-dual a
tive set te
hnique was shown to beequivalent to the semismooth Newton method by Hintermüller et al. [93℄, so thatthe overall development 
an be regarded as a variant of the Newton algorithm.11.2.1. Unilateral 
onta
t. The fri
tionless 
ase is brie�y examined. Find-ing normal rea
tions redu
es to a well behaved problem, the stru
ture of whi
h wasalready dis
ussed in Se
tion 10.1.7. A

ording to the reasoning presented therein,on
e the index sets of zero and nonzero rea
tions are identi�ed, the solution 
an beobtained in one step. The two possible index sets will be denoted as a
tive AN andina
tive IN . Although their immediate identi�
ation is usually not possible, thepredi
tive formula (11.2.6) and the normal 
onstraint (11.2.4) suggest the followingapproximation(11.2.7) AN = {α : dαN ≥ 0} IN = {α} \ ANThe primal-dual a
tive set algorithm solves a series of redu
ed linear systems forsu

essive approximations of the above sets. This 
an be summarised as followsAlgorithm 11.2.1. UNIL1 k = 02 Tk = WRk + B − Uk3 Ak
N =

{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N4 if k > 0 ∧ Ak
N = Ak−1

N then stop5 X = Ak
NN Y =

{

Ak
NT
}

∪ Ik
N6 [

WXX WXY

0 IY

] [

δRX

δRY

]k

=

[

−ŪX − TX

−RY

]k7 Rk+1 = Rk + δRk8 Uk+1 = Uk + WδRk + Tk9 k = k + 110 goto 2For the sake of 
onsisten
y with the forth
oming fri
tional linearisation, thein
remental formulation is utilised above. An update of the residual Tk in line 2 isfollowed by the predi
tion of the a
tive and ina
tive sets in line 3. From the 
omple-mentarity 
onsiderations, it is seen that on
e the 
orre
t sets were predi
ted, theyare not 
hanged in line 3. Thus, the termination 
riterion takes quite spe
i�
 form(line 4). In line 5 two index sets are 
reated: X enumerating normal 
omponents in
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tive set, and Y enumerating all of the tangential 
omponents together withthe ina
tive normal ones. The linear system in line 6 follows from(11.2.8) Uk + δUk = W
(

Rk + δRk
)

+ Bwhen 
onsidered with Ūk
αN +δUk

αN = 0 for α ∈ AN and Rk
αN +δRk

N = 0 for α ∈ IN ,as well as Rk
αT + δRk

αT = 0 for all α. The last four lines 
on
lude the algorithm inan obvious way. The above re
ipe 
an be optimised by eliminating all tangential
omponents.11.2.2. Fri
tional tangents. As explained by Hüeber et al. [96℄, a numeri-
ally robust linearisation of the fri
tional 
onstraint (11.2.3) requires some heuristi
modi�
ations. The authors examine a number of su
h modi�
ations, one of whi
hproves to be the most e�e
tive. Here, a brief derivation of the relevant formulae isprovided.The basi
 te
hni
al step relies on the di�erentiation of the max fun
tion, asthe non-smoothness of the Eu
lidean norm in (11.2.3) will not play any role (theterm vanishes for sti
king points and is nonzero otherwise). The generalised partialderivative of the fun
tion f (x, y) = max (x, y) 
an be written as Gfx = 1 if x ≥ yand Gfx = 0 if x < y. Gfy is 
al
ulated analogously. As adopted in [175℄, atany point the generalised derivative belongs to the set-valued gradient de�ned byClarke [43℄. As a 
onsequen
e, the partial derivatives at x = y 
an be equal toany number in the range [0, 1]. Thus when 
omparing x and y, the equality 
anbe adopted on either side. From the algorithmi
 point of view this 
orresponds toa nuan
e in the de�nition of the a
tive and ina
tive sets, utility of whi
h will be
ommented on at a later point (Se
tion 11.2.3). The a
tive and ina
tive tangentialsets are de�ned as follows(11.2.9) AT = {α ∈ AN : ‖dαT ‖ − µdαN ≥ 0} IT = AN \ ATLet us fo
us on a 
onta
t point with index α, and temporarily negle
t the α-indexing. The 
hara
teristi
 fun
tion χS = 1 if α ∈ S and χS = 0 otherwise.A

ording to the above de�nitions the di�erential of the tangential 
onstraint reads(11.2.10) GCT
(δR, δU) = χAT

dT (δRT −ρδUT )
‖dT ‖ RT

+χIT
µ (δRN − ρδUN )RT + max (µdN , ‖dT ‖) δRT

−χAN
µ (δRN − ρδUN )dT − µmax (0, dN ) (δRT − ρδUT )and the tangential Newton step takes the form(11.2.11) GCT

(

δRk, δUk
)

= −CT

(

Rk,Uk
)(11.2.12) (

Rk+1,Uk+1
)

=
(

Rk,Uk
)

+
(

δRk, δUk
)In 
ase of fri
tional sti
king (‖dT ‖ < µdN ), equation (11.2.11) simpli�es to(11.2.13) δUk

T = −Uk
T

dk
N

δRN − Uk
T

dk
N

ρŪk
N − Uk

TCondition Ūk
N + δUk

N = 0 was utilised to derive the above (fri
tional linearisationis 
onsidered on the a
tive normal set). Using (11.2.12), formula (11.2.13) 
an berewritten as Uk+1
T =

(

1 −Rk+1
N /dk

N

)

Uk
T , where it is seen that for a 
onvergent
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e of iterates Uk+1
T → 0, as ∣∣Rk+1

N − dk
N

∣

∣ → 0. In the remaining 
ase offri
tional slipping (‖dT ‖ ≥ µdN ), equation (11.2.11) takes the following form(11.2.14) Rk
T +

(

I − Mk
)

δRk
T + ρMkδUk

T = vk
Tµ
(

Rk
N + δRN

)where I stands for the two-dimensional identity matrix, and(11.2.15) Mk = ek
(

I− Fk
)(11.2.16) Fk =

Rk
T ⊗ dk

T

µdk
N

∥

∥dk
T

∥

∥(11.2.17) ek =
µdk

N
∥

∥dk
T

∥

∥(11.2.18) vk
T =

dk
T

∥

∥dk
T

∥

∥Equation (11.2.14) expresses a ray-wise Coulomb 
onstraint along the predi
tordire
tion vk
T . Evidently, variations of the tangential rea
tion and velo
ity together
ontribute to the ful�lment of the linearised 
onstraint. Thus, the iterates of therea
tion Rk+1
T do not ne
essarily belong to the fri
tion 
one before the 
onvergen
etightens. The following modi�
ation(11.2.19) F̃k =

Rk
T ⊗ dk

T

max
(

µdk
N ,
∥

∥Rk
T

∥

∥

) ∥

∥dk
T

∥

∥results in an approximate proje
tion of Rk+1 onto the tangent to the 
urrent se
tionof the fri
tion 
one [96℄. This results from the fa
t, that whenever Rk
T and dk

T arenearly aligned, together with ∥∥Rk
T

∥

∥ ≥ µdk
N , the matrix I − F̃k a
ts roughly asa proje
tion on the dire
tion perpendi
ular to vk

T . Therefore, the modi�ed Mk�lters out 
omponents parallel to vk
T . One 
an see, that when (11.2.19) is in power,

Rk
T + δRk

T will approximately lay on the line perpendi
ular to vk
T and tangentto the µRk+1

N se
tion of the fri
tion 
one. This 
an be best observed in Figure11.2.1. In pra
ti
e then, the 
oe�
ients in relation (11.2.14) are 
omputed with(11.2.16) repla
ed by (11.2.19). The modi�
ation results in faster and more robust
onvergen
e behaviour. This is be
ause the iterates of Rk+1
T remain 
loser to thefri
tion 
one, thus less signi�
antly intera
t through the kinemati
 
oupling in W.This seems parti
ularly helpful in the formulation admitting large rotations andtherefore stronger normal-tangential 
oupling.It is appropriate to mention another modi�
ation investigated in [96℄. Theauthors regularise the operator I − Mk in (11.2.14), so that it is always invertibleand positive de�nite. This is not pursued here, as it proved not to be 
onsistentlybene�
ial in the numeri
al realisation. This might be due to the di�erent way ofeliminating variables in the 
urrent development.11.2.3. Complete algorithm. The normal a
tive set strategy from Se
tion11.2.1 
an now be 
ombined with the tangential linearisation, in order to deliver a
omplete Newton s
heme for the fri
tional 
onta
t problem. As it was mentionedin Se
tion 10.3.5, the nonmonotone 
hara
ter of the adopted 
onta
t law resultsin the need to globalise the Newton s
heme. This is provided by means of thenonmonotone line sear
h te
hnique by Grippo et al. [78℄. The 
hoi
e seems to bemore relevant to the nature of problem at hand. Nevertheless, the simple Armijo's
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UT

k

dT
k

RT
k

δRT

δUT

δRT

δUT

Figure 11.2.1. The E�e
t of the modi�
ation (11.2.19). The
ir
le radii are µRk
N (solid), and µRk+1

N (dashed). On the left,the unmodi�ed iteration of the Newton step (11.2.11), (11.2.12)is presented. The ellipsoid 
orresponds to the points of Rk
T +

(

I − Mk
)

δRk
T + ρMkS, where ‖S‖ =

∥

∥δUk
T

∥

∥. On the right, thesame iteration with (11.2.19) enabled results in the narrowed ellip-soid, with one of its eigenve
tors nearly orthogonal to dk
T . Thus,

Ri+1
T is approximately pla
ed on the tangent to the 
urrent se
tionof the fri
tion 
one.[11℄ line sear
h will also be investigated. This type of monotone globalisation wasapplied by Christensen et al. [41℄ in the 
ontext of two dimensional linearly elasti
problems.The sequen
e of iterates of 
onta
t rea
tions is generated a

ording to(11.2.20) Rk+1 = Rk + αkδRkwhere δRk is the sear
h dire
tion, and αk ∈ (0, 1] is the step size. The sear
hdire
tion results from the semismooth Newton step applied to the system (11.2.1).Three ways of 
al
ulating δRk will be dis
ussed. The �rst one results from the 
on-sistent linearisation of (11.2.1). The normal a
tive set strategy and the tangentiallinearisation are 
ombined as followsAlgorithm 11.2.2. NEWT1 Tk = WRk + B − Uk2 Ak

N =
{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =

{

α :
∥

∥dk
αT

∥

∥− µdk
αN ≥ 0 ∧ α ∈ Ak

N

}

Ik
T = Ak

N \ Ak
T4 solve ΩkδRk = Πk where5 for α ∈ Ik

N

Ωk
αα = I Ωk

αβ = 0 Πk = −Rk6 for α ∈ Ak
N

Ωk
αβN∗ = WαβN∗ Πk

αN = −Ūk
αN − T k

αN7 for α ∈ Ik
T

Ωk
ααT∗ =

[

WααTT WααNT + Uk
αT /d

k
αN

]

Ωk
αβT∗ = WαβT∗ Πk

αT = −
(

1 + ρŪk
αN/d

k
αN

)

Uk
αT − Tk

αT8 for α ∈ Ak
T ∧ dαN = 0

Ωk
ααT∗ =

[

I 0
]

Ωk
αβT∗ = 0 Πk

αT = −Rk
αT9 for α ∈ Ak

T ∧ dαN > 0
Ωk

ααT∗ =
[ (

I− Mk
α

)

+ ρMk
αWααTT ρMk

αWααNT − µvk
αT

]

Ωk
αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αTR
k
αN − Rk

αT − ρMk
αTk

αT



11.2. NEWTON METHOD 161The residual update in the �rst line above is followed by the sele
tion of a
tiveand ina
tive sets (lines 2, 3). The tangential sets are subsets of the normal a
tiveone, Ak
N = Ak

T ∩Ik
T . The in
rement δRk results from the solution of a linear systemin line 4. The system matrix Ω is 
omposed of dense 3× 3 blo
ks Ωαβ, and has thesame blo
k-sparsity pattern as W. This is of use in the numeri
al realisation, asthe symboli
 fa
torisation of Ω 
an be 
omputed only on
e. The stru
ture of rowsin line 5 results from the fa
t that Rk+1

α = 0 is assumed on Ik
N for the full Newtons
heme (αk = 1). Thus δRk

α = −Rk
α on the ina
tive normal set. The normal rowstru
ture in line 62 results from the reasoning already presented in Se
tion 11.2.1.In short, it 
orresponds to the rows of(11.2.21) Uk + δUk = W

(

Rk + δRk
)

+ Bwritten with the a

ount of Ūk
αN + δUαN = 0 for α ∈ AN . In line 7, the 
oupling(11.2.13) is utilised in order to eliminate the velo
ity in
rement δUk

αT from thetangential rows of (11.2.21), with α ∈ Ik
T . As the a
tive sets were de�ned withthe equality in
lusion ≥, one needs to deal with the a
tive tangential 
ase, 
orre-sponding to the zero fri
tion bound (line 8). This is a pragmati
 
hoi
e motivatedby a faster 
ommuni
ation during the solution pro
ess. In parti
ular, 
onsidering astru
ture 
omposed of 
onta
ting bodies with a for
e applied to only one of them,the above algorithm will assume the fri
tionless 
onta
t for all bodies not dire
tlyadja
ent to the one with the nonzero for
e. The next iteration will then start fromsome nonzero rea
tions guess for all bodies 
onne
ted in the 
onta
t graph (thenonzero blo
k pattern graph of W). If the sharp inequality > was utilised to de�nethe a
tive sets, the nonzero 
onta
t for
ing would have to gradually propagate a
-
ording to the immediate adja
en
y in the 
onta
t graph. Coming ba
k to the line8, it is seen that the zero tangential response is enfor
ed for α ∈ Ak

T and dαN = 0.The remaining non-degenerate tangential 
ase (dαN > 0) is 
onsidered in line 9.Here, the tangential rows of Ω are obtained by substituting δUk
T , 
al
ulated from(11.2.21) into the tangent relation (11.2.14). This way of eliminating variables ismotivated by the intention of preserving the impa
t of modi�
ation (11.2.19).In fa
t, the des
ent dire
tions provided by the algorithm NEWT are not amongthe most e�e
tive, when 
al
ulated far from the solution. As a result of numer-i
al experiments aimed at improvement of the global 
onvergen
e properties, thefollowing hybrid s
heme has arisenAlgorithm 11.2.3. HYB1 Tk = WRk + B − Uk2 Ak

N =
{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =

{

α :
∥

∥dk
αT

∥

∥− µRk
αN ≥ 0

}

Ik
T = {α} \ Ak

T4 solve ΩkδRk = Πk where5 for α ∈ Ik
N

Ωk
αα = I Ωk

αβ = 0 Πk = −Rk6 for α ∈ Ak
N

Ωk
αβN∗ = WαβN∗ Πk

αN = −Ūk
αN − T k

αN7 for α ∈ Ik
T

Ωk
αβT∗ = WαβT∗ Πk

αT = −Uk
αT − Tk

αT8 for α ∈ Ak
T ∧ dαN = 0

Ωk
ααT∗ =

[

I 0
]

Ωk
αβT∗ = 0 Πk

αT = −Rk
αT9 for α ∈ Ak

T ∧ dαN > 02In the algorithms presented in this se
tion the asterisk subs
ript �∗� repla
es �all relevantindi
es�, e.g. ΩN∗ =
ˆ

ΩNT ΩNN

˜.
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Ωk

ααT∗ =
[ (

I− Mk
α

)

+ ρMk
αWααTT ρMk

αWααNT − µvk
αT

]

Ωk
αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αTR
k
αN − Rk

αT − ρMk
αTk

αTContrary to the previous 
ase, the normal and tangential sets are independentlyset in lines 2 and 3. Also, the bound employed in line 3 is not any more based onthe predi
tor dk
αN , but owes to the 
urrently 
omputed normal rea
tion Rk

αN . Thelast di�eren
e with regard to the algorithm NEWT is the assumption of Uk+1
αT = 0 for

α ∈ Ik
T , expressed in line 7. This means, that the stri
t linearisation of the ina
tivetangential 
ase is not pursued. The above s
heme 
an be linked to the �xed pointte
hnique, presented in the referen
e work [96℄. The major in
onsisten
y is inusing the full Newton linearisation for the slip 
onta
t, in line 9. In the �xed pointapproa
h, the tangential slip relations are linearised a

ording to the Tres
a fri
tionmodel. The linearisation 
an be obtained from (11.2.14), by dis
arding the terminvolving δRk

N and employing a �xed normal bound bN instead of dk
N(11.2.22) Rk

T +
(

I− Mk
)

δRk
T + ρMkδUk

T = vk
TµbNwhere in the intermediate formulae (11.2.16), (11.2.17), and (11.2.19) the normalpredi
tor dk

N is repla
ed by the �xed bound bN . The �xed point approa
h is sum-marised belowAlgorithm 11.2.4. FIX1 Tk = WRk + B − Uk2 Ak
N =

{

α : dk
αN ≥ 0

}

Ik
N = {α} \ Ak

N3 Ak
T =

{

α :
∥

∥dk
αT

∥

∥− µbαN ≥ 0
}

Ik
T = {α} \ Ak

T4 solve ΩkδRk = Πk where5 for α ∈ Ik
N

Ωk
αα = I Ωk

αβ = 0 Πk = −Rk6 for α ∈ Ak
N

Ωk
αβN∗ = WαβN∗ Πk

αN = −Ūk
αN − T k

αN7 for α ∈ Ik
T

Ωk
αβT∗ = WαβT∗ Πk

αT = −Uk
αT − Tk

αT8 for α ∈ Ak
T ∧ dαN = 0

Ωk
ααT∗ =

[

I 0
]

Ωk
αβT∗ = 0 Πk

αT = −Rk
αT9 for α ∈ Ak

T ∧ dαN > 0
Ωk

ααT∗ =
[ (

I− Mk
α

)

+ ρMk
αWααTT ρMk

αWααNT

]

Ωk
αβT∗ = ρMk

αWαβT∗ Πk
αT = µvk

αT bαN − Rk
αT − ρMk

αTk
αTIt is seen that the third line of the algorithm HYB is a spe
ial 
ase of the
orresponding line of FIX, with bαN = Rk

αN . This 
orresponds to an update of thefri
tion bound in every iteration of the �xed point s
heme. In pra
ti
e, at leastin 
ase of the 
urrent kinemati
 formulation, that frequent update of the fri
tionbound prevents 
onvergen
e of the �xed point approa
h. This happens be
ausethe tangential-normal 
oupling in line 9 results only from the problem kinemati
s.Nevertheless, the Tres
a regularisation usually results in a good global 
onvergen
ebehaviour, provided the updates of bαN are sparse enough. The hybrid approa
hprovides then an intermediate 
ase between the full Newton and the �xed pointmethods. The poor 
onvergen
e of the �xed point approa
h with the most frequentupdate of normal bounds is remedied by the full linearisation of the tangential slip.This heuristi
 attempt of synergy between the Newton and �xed point approa
hesis to be numeri
ally investigated in the next se
tion.One thing to be noted about all three algorithms is that they result in anunsymmetri
 systems to be solved for δRk. This 
an be to some extent remedied



11.2. NEWTON METHOD 163by multiplying the two tangential rows given in lines 9 by the operator [ρMk
α

]−1.This introdu
es more symmetry into Ω and seems to be parti
ularly advantageousfor the �xed point s
heme, where the system matrix be
omes gradually symmetri
with progressing 
onvergen
e. On the other hand, the modi�
ation (11.2.19) doesnot a
t any more on the entire row of Ω. The experien
e shows that (at least withinthe 
urrent formulation) this way of eliminating variables is not e�e
tive. Thus, itwill not be further investigated.The above three s
hemes need to be embra
ed by some global 
riteria of advan
-ing the iterations. In 
ase of NEWT and HYB this will be provided by the mentionedline sear
h te
hnique. The �xed point s
heme, being generally better behaved interms of the global 
onvergen
e, will only be wrapped into a suitable external loopupdating the normal bounds bαN . All together, this 
an be stated as followsAlgorithm 11.2.5. SCSOL (ALG, σ, γ, β, J, ǫ,K, φ, L)1 k = 02 do3 δRk = ALG ()4 αk = 15 while M
(

Rk + αkδRk
)

> max
0≤j≤min(k,J)

Mk−j − 2γαkMk

∧ k > 0 ∧ αk > β ∧ ALG 6=FIX do αk = σαk6 Rk+1 = Rk + αkδRk7 Uk+1 = Uk + αkWδRk + Tk8 err =
∥

∥δRk
∥

∥ /
∥

∥Rk+1
∥

∥9 k = k + 110 if ALG =FIX ∧ err ≤ ǫ then11 err =
∥

∥Rk
N − bN

∥

∥ /
∥

∥Rk
N

∥

∥12 bN = Rk
N13 end if14 if ALG 6=FIX ∧ k > L then SCALE ({ρα} , φ, L)15 while err > ǫ ∧ k ≤ KThe argument ALG 
an be NEWT, HYB or FIX. The next three arguments σ, γ, β ∈

(0, 1) 
orrespond to the line sear
h step. The ǫ des
ribes numeri
al a

ura
y, Kbounds the maximal number of iterations, and J is the length of memory bu�er usedby the line sear
h. The remaining arguments φ, L ≥ 1 are used for the purpose ofthe penalty s
aling and will be 
ommented on later in this se
tion. In the third lineabove, the 
urrent in
rement of rea
tions is 
omputed by ALG. The initial s
alingparameter αk is set equal to 1 in the following line. The loop in line 5 
orrespondsto the nonmonotone line sear
h [78℄. Note, that for J = 0 it is equivalent to the linesear
h of Armijo's type [11℄. Both approa
hes were originally designed for smoothproblems. The analysis suitable for the nonsmooth setting was provided by Ferrisand Lu
idi [69℄. The auxiliary merit fun
tion is de�ned as(11.2.23) M (R) =
1

2
CT (R,U)C (R,U)

∣

∣

∣

∣

U=WR+Bwhere (11.2.1) was utilised. The symbol Mk refers to M
(

Rk
). If the minimisationin line 5 is su

essful (iterations end before αk ≤ β), it is seen that a monotoni
de
rease of the merit fun
tion is enfor
ed for J = 0, while this is not ne
essarilythe 
ase for J > 0. The a

eptability 
riterion(11.2.24) M

(

Rk + αkδRk
)

≤ max
0≤j≤min(k,J)

Mk−j − 2γαkMk



11.2. NEWTON METHOD 164allows for the temporary growth of the merit fun
tion if only J > 0. At the sametime the solution point remains inside of the nested level sets Rk ∈ Λk ⊆ Λk−1(11.2.25) Λk =

{

R : M (R) ≤ max
0≤j≤min(k,J)

M
(

Rk−j
)

}The parameter J is then proportional to the allowed extent of the temporary growthof the merit fun
tion. Grippo et al. [78℄ prove that this relaxation does nothinder the global 
onvergen
e, if only some 
onditions hold (roughly, the meritfun
tion must be bounded below, and δR must be a des
end dire
tion). At thesame time, for the nonmonotone problems this may lead to a faster 
onvergen
e, asa 
onvergent sequen
e of iterates does not have to 
orrespond to a monotoni
allyde
reasing sequen
e of fun
tion values. The threshold value β is used due to the�nite pre
ision of numeri
al 
omputations (the line sear
h loop exits after a �nitenumber of steps). For this reason the line sear
h 
annot be fully robust in pra
ti
e.In the above algorithm, the line sear
h te
hnique is applied for k > 0, whi
h resultsin α0 = 1. This is a heuristi
 di
tated by an observation, that usually it is moree�e
tive to start globalisation from the iterate obtained by the pure Newton step
orresponding to an initial residual. In other words, it often happens that thesubsequent alphas are �large�, while if the line sear
h was performed for k = 0,initial alphas often happen to be �small�. Finally, it is seen that the line sear
h isomitted for the �xed point s
heme. The update of rea
tions and velo
ities followsin lines 6, 7. Line 7 
orresponds to the Newton step(11.2.26) δUk = WδRk + Tk(11.2.27) Tk = WRk + B− Ukthus the residual Tk+1 is always zero(11.2.28) Uk+1 = Uk + αkWδRk + WRk + B− Uk = WRk+1 + BIt is possible to modify UNIL, NEWT, HYB and FIX by repla
ing the 
omputation of
Tk by the update of velo
ity Uk = WRk + B. This, 
ombined with the removalof line 7 from SCSOL still provides a feasible framework. Nevertheless, experien
eshows that pro
essing the residual is advantageous and results in smaller numbersof iterations. From the lines 8-13 it is seen that in 
ase of the �xed point method,after ea
h 
onvergent run with a �xed normal bound, the bound is updated andthe relative error of this update repla
es the error 
ontrolling the termination ofthe algorithm. Note also, that s
aling is not applied in 
ase of the �xed points
heme (line 14), as we are interested in testing the plainest possible version of thisapproa
h.Algorithms like the one above, where the tangent operator results from a non-smooth, and to some extent 
ombinatorial stru
ture, are prone to 
y
ling. By thisit is meant that for some parameter sets, the algorithm may get 
aught into a
y
le (here 
orresponding to a sequen
e of 
onta
t states) preventing further 
on-vergen
e. In the 
ontext of fri
tional 
onta
t problems, this was mentioned by Alartand Curnier [7℄, or DeSax
é and Feng [55℄. In general, 
y
ling is more frequentfor sti� problems and its o

urren
e is related to the regularisation parameter ρ,used in predi
tive formulae (11.2.5) and (11.2.6). This issue is more thoroughly
ommented in [7℄. In this work, initial values of ρα are independently set for ea
h
onta
t ρα = 1/λmax (Wαα), where λmax is the maximal eigenvalue of the diagonalblo
k matrix Wαα. This 
orresponds to the monotoni
ity 
riteria of the diagonalsub-problems of the simpli�ed problem (10.3.36). In the 
ourse of solution, ea
h
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hange of the tangential 
onta
t state (from sti
k to slip or vi
e versa) is furtherpenalised by in
reasing ρα. As the maximal value of ρα ought to be bounded by
2/λmax (W) [7℄, only a �nite number (bounded by L) of su
h in
reases is per-formed, although an expli
it estimate of λmax (W) is not a

ounted for. In orderto avoid ex
essive number of heuristi
 parameters, L provides also the lower itera-tions bound after whi
h the s
aling is applied. This strategy seems to be su�
ientin pra
ti
e. The SCALE routine is summarised below (initial lα are assumed equalzero)Algorithm 11.2.6. SCALE ({ρα} , φ, L)1 for ea
h α do2 if lα < L ∧ (stick → slip ∨ slip→ stick)α then3 ρα = φρα4 lα = lα + 15 end if6 end forIt is relevant to ask why does not the line sear
h pro
edure su�
e to avoid
y
ling. In Se
tion 10.3.5 it was shown that the single 
onta
t point problembehaves in a nonmonotone way. Using the un
onstrained minimisation analogy,one 
ould say that the merit fun
tion 
orresponding to this simplest 
ase possessesa region of 
on
avity. For problems with many 
onta
t points the 
orrespondingmerit fun
tions possess regions of 
on
avity not only juxtaposed from the singlepoint problems, but also 
reated through their kinemati
 intera
tions. In otherwords the problem be
omes highly nonlinear. Theoreti
ally, enfor
ing a monotonede
rease of the merit fun
tion (J = 0) should guarantee a des
ent towards thelo
al minimum. In pra
tise though, the line sear
h loop is for
ed to end after arelatively small number of steps (one is not interested in updating the solution with
αk 
lose to the numeri
al zero). After an �un�nished� sear
h the solution point mayjump to a neighbouring hill. This pro
ess may 
ontinue in a 
y
li
 manner. Thenonmonotone line sear
h (J > 0) only in
reases the probability of su
h s
enario(nevertheless, it is potentially bene�
ial otherwise).11.2.4. In
lusion of joints. When joints are present, they 
orrespond to ad-ditional rows in the system ΩkδRk = Πk. Joints are expressed as linear 
onstraintson sele
ted 
omponents of lo
al velo
ity. For example a 
onstraint(11.2.29) aUαN + b = 0through linearisation(11.2.30) a (UαN + δUαN ) + b = 0and(11.2.31) (UαN + δUαN ) = WαN∗ (R + δR) + BαNresults in a row(11.2.32) WαN∗δR

k+ = − b

a
− BαN − Wα∗R

kso that(11.2.33) Ωα∗ = WαN∗
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a
− BαN − WαN∗R

kIf there is no restri
tion on the motion in the tangent plane, two additional rows
IδRk

αT = −Rk
αT 
an be added to the system, assuring Rk+1

αT = 0. Alternatively,one 
an use Ωαα = [0,WααNN ] and this way avoid pro
essing of RαT .11.3. Gauss-Seidel methodOne of the 
hara
teristi
 features of the Conta
t Dynami
s Method is a blo
kGauss-Seidel relaxation employed to solve (11.0.1). The method is rather robustin pra
tise, although its lo
al 
onvergen
e 
an be extremely slow. The advantageis, that it 
onverges regardless of the invertibility of W. An in
omplete proof ofthe 
onvergen
e for the three-dimensional fri
tional 
onta
t problem was given byJourdan et al. [109℄ (where also a 
omplete, two-dimensional proof 
an be found).Let {Cα} be the set of all individual 
onstraints, pres
ribed as Cα (Uα,Rα) = 0.The Gauss-Seidel method 
an be summarised as followsAlgorithm 11.3.1. Gauss_Seidel (ǫ,K)1 k = 12 do3 for all α do4 B̄α =
∑

β 6=α WαβRβ + Bα5 solve C
(

WααRk+1
α + B̄α,R

k+1
α

)

= 06 end for7 err =
∥

∥Rk+1 − Rk
∥

∥ /
∥

∥Rk+1
∥

∥8 k = k + 19 while err > ǫ ∧ k ≤ KThe paradigm of a Gauss-Seidel relaxation is 
learly pronoun
ed in the above.A series of diagonal problems is solved in the internal loop from lines 3-6. As asolution method in line 5, any of the s
hemes des
ribed in the previous se
tion 
anbe used. The single diagonal problem is usually quite well behaved, and a semi-smooth Newton method requires just few iterations (without line sear
h) in orderto �nd a solution. A very simple 
onvergen
e 
riterion is used in lines 7, 9. In theliterature spe
i�
 to the Conta
t Dynami
s Method, some more elaborate 
riteriaare mentioned [102, 177℄. 11.4. LiteratureThe Newton method under 
onsideration in Se
tion 11.2 stems from a broaderrange of s
hemes for non-di�erentiable systems. General developments of this kindwere dis
ussed by Pang [166℄ and Qi and Sun [175℄. Global 
onvergen
e of su
hs
hemes was dis
ussed by Han et al. [82℄, Ferris and Lu
idi [69℄, or Dai [53℄. Inthe 
ontext of the mixed fri
tional 
onta
t formulation Alart and Curnier [7℄ dis-
uss the generalised Newton method (GNM), whi
h belongs to the same 
ategory.An observation made in [7℄, about the pra
ti
al robustness of GNM applied tofri
tionless problems, was later 
on�rmed under the umbrella of the primal-duala
tive set method [94℄. The latter was shown to be equivalent to the semismoothNewton method by Hintermüller et al. [93℄. In 
ase of fri
tional problems, Chris-tensen et al. [41℄ developed a linearisation along the lines of [166℄, and presentedtwo-dimensional linearly elasti
 examples. In three dimensions, the non-smoothNewton s
heme was re
ently applied by Jones and Papadopoulos [107℄ to solveanisotropi
 fri
tional problems. The referen
e development for Se
tion 11.2, Hüe-ber et al. [96℄, dis
usses a multi-grid implementation of the �xed point Tres
a
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h and 
ompares it with the semi-smooth Newton step employing a dire
tsolver. Barral et al. [19℄ des
ribe a generalised Newton method applied to a planarfri
tionless 
onta
t problem with Maxwell-Norton material. Zavarise and Wriggers[214℄ obtain a super-linear method for the augmented Lagrangian formulation ofthe fri
tionless 
onta
t problem. The �rst order update of Lagrange multipliers isenhan
ed by a heuristi
 method of retrieving higher order information. The te
h-nique retains simpli
ity of the Uzawa-like algorithm, although its extensibility tothe Coulomb fri
tion problem is not 
lear. Large multi-body 
onta
t problems werenot extensively studied within the 
ontext of Newton methods. Two-dimensionalfri
tionless developments involving the primal-dual a
tive set approa
h 
an be foundin Ainsworth and Mihai [6℄, as well as in Hüeber and Wohlmuth [97℄.Multi-body formulations, in
luding fri
tion and �nite kinemati
s usually resortto methods avoiding formation of global tangents. The Gauss-Seidel te
hnique ofthe Conta
t Dynami
s method [156, 102℄ is a good example here. Jourdan etal. [109℄ prove the 
onvergen
e of the Gauss-Seidel s
heme for two-dimensionalproblems. The s
heme is similar to other splitting-type te
hniques, relaying onthe �xed point ideas. In an elegant paper, Laborde and Renard [168℄ dis
uss anumber of �xed point strategies to the fri
tional 
onta
t problem. Their formula-tion fa
ilitates fast translation of results between �nite dimensional and fun
tionspa
e settings. Bisegna et al. [30℄ dis
uss relaxation te
hniques for two dimensionalSignorini-Coulomb problems based on the dual formulation, and hen
e similar tothe Gauss-Seidel approa
h. This is a typi
al splitting te
hnique, where the fri
tionand the 
onta
t problems are solved alternately. Another splitting based algorithmis dis
ussed by Haslinger et al. [83℄ and Dostál et al. [60℄. As shown in [83℄, for thistype of approa
hes a �xed point exists for a su�
iently small fri
tion 
oe�
ient.A splitting type method was also used by Ainsworth and Mihai [5℄ in the 
ontextof large, dynami
 simulations of masonry. The primal-dual a
tive set method wasapplied in order to alternatively solve the fri
tion and the 
onta
t problems. Inthe 
ontext of the Gauss-Seidel method [109℄, Joli and Feng [105℄ developed lin-earisation of the proje
tion formula pertinent to the Bipotential Method [55℄, andutilised it in a Newton method, solving the lo
al diagonal sub-problems.In [188℄ Sha et al. developed a linear 
omplementary formulation of a de-formable expli
it fri
tional 
onta
t problem and applied a 
onjugate gradient methodas a solution strategy. A 
onjugate gradient method is also developed by Heinsteinand Laursen [87℄ and applied in the 
ontext of an in
remental matrix-free formu-lation. In the 
ontext of two-dimensional granular media simulations, Renouf andAlart [177℄ develop a pre
onditioned 
onjugate-gradient solver, whi
h is shown tooutperform the Gauss-Seidel method used in Conta
t Dynami
s [102℄.For rigid bodies, Stewart and Trinkle [199℄ use polyhedral approximation ofthe fri
tion 
one and develop a linear 
omplementary (LCP) formulation solvableby Lemke's method [133℄. A number of following developments in rigid multi-bodydynami
s involves similar LCP approa
h [10, 194, 70℄. An interesting and e�
ientsimpli�
ation of the rigid multi-body fri
tional 
onta
t problem was developed byKaufman et al. [114℄ and applied in the �eld of 
omputer animation.



CHAPTER 12ImplementationThe framework des
ribed in the foregoing 
hapters has been implemented as a
omputer program named Solfe
. The dynami
 and the quasi-stati
 time-steppingsunderlying this implementation have been summarised below.Algorithm 12.0.1. Solfe
_Dynami
 (h, T )1 for t = 0 while t < T do2 qt+ h
2 = half-step (qt,ut)3 {Cα}c

= update-
onta
ts (qt+ h
2

)4 {Cα}j = update-joints (qt+ h
2

)5 (H,W,B) = 
ompute-operators ({Cα}c ∪ {Cα}j
)6 solve C (WR + B,R)7 ut+h = ut + M−1hf t+ h

2 + M−1HTR8 qt+h = half-step (qt+ h
2 ,ut+h

)9 t = t+ h10 end forThe time step is h and the duration of simulation is T are the arguments ofAlgorithm 12.0.1. In the se
ond line, the mid-step 
on�guration qt+ h
2 is obtainedby performing a half-step, a

ording to (5.1.1) for the linear and deformable motion,and a

ording to (5.2.9) for rigid rotations. Based on the mid-step 
on�guration, a
onta
t dete
tion algorithm is exe
uted in the third line. This 
ould be any of themethods presented in Se
tions 9.3.4, 9.3.5 or 9.3.6, 
ombined with an extra
tionof lo
al frames as des
ribed in Se
tion 9.4. The 
onta
t update involves deletionsof lo
al frames for element pairs whose overlap has 
eased. It involves as well anupdate of all lo
al frames related to the new and to the old 
onta
t points. In thefourth line, the lo
al frames 
orresponding to joints are updated. The operatorsdes
ribing lo
al dynami
s are 
omputed in line 5, as des
ribed in Se
tion 7.1. The
onstraint equations are solved next (line 6), where one of the methods des
ribedin Chapter 11 is employed. It is re
alled, that steps (10.4.9-10.4.13) need to beexe
uted in order to a

ount for 
ohesion. The velo
ity update follows next, andit is a

ompanied by the �nal update of 
on�guration in line 8. For linear anddeformable motion qt+h is obtained a

ording to (5.1.3). For rigid rotations the�nal 
on�guration is 
omputed with (5.2.13) or (5.2.16).Algorithm 12.0.2. Solfe
_Stati
 (h, T,K, r)1 for t = 0 while t < T do2 {Cα}c = update-
onta
ts (qt)3 M = s
ale-inertia (h, 4.0, {Bi})4 qt+h

0 =qt, k = 1, V = ∞5 do6 {Cα}c
= update-gaps (qt+h

)7 {Cα}j
= update-joints (qt+h

)168
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ompute-operators ({Cα}c ∪ {Cα}j
)9 solve C (WR + B,R)10 ut+h = A−1hf (t+ h,qt) + A−1HTR11 qt+h

k = step (qt+h
k−1,u

t+h
)12 Ek = kineti
-energy-of-mass-
entres ({Bi})13 if k = 2 then V = max (log (E1/E2

)

, 0
)14 k = k + 115 while k < K ∧ log (Ek−1/Ek

)

≥ rV16 t = t+ h17 end forThe quasi-stati
 Algorithm 12.0.2 takes as its arguments the time step h, theduration T , a dynami
 relaxation iterations bound K, and a kineti
 energy droprate fa
tor r. There are two loops in the algorithm, between lines 1-17 and betweenlines 5-15. The external loop advan
es the arti�
ial time, while the internal oneattempts to �nd a steady state solution for ea
h instant of time. Conta
ts aredete
ted and update in the external loop, in line 2. This task is relatively 
ostlyand hen
e we do not wish to run it too frequently. Instead, in the inner loop (line 6),only 
onta
t gaps are updated, a

ording to formula (10.1.1). Another motivationbehind the sparser updates of 
onta
ts, is to avoid �noise� in the dynami
 relaxationloop 5-15. This would be introdu
ed due to the small 
hanges of 
onta
t frameso

urring after the 
on�guration updates in line 11. In line 3, the inertia operatorsof individual bodies are s
aled in order to assure a uniform damping of the impli
itEuler s
heme. Su
h s
aling has been des
ribed in Se
tion 5.3. In our routine themaximal eigenvalue of M−1K is s
aled in order to assure λmaxh = 4 for ea
hpseudo-rigid body. On
e the gaps have been updated (line 6), the update of lo
alframes related to the equality 
onstraints follows in line 7. The lo
al dynami
soperators are 
omputed in line 8 and the solution of the 
onstraint equations followsin the next line (note, that (10.4.9-10.4.13) is exe
uted in the presen
e of 
ohesion).The velo
ity update is performed next (line 10). It should stressed, that the timeis �xed here to t + h, so that the time-dependent loadings (or 
onstraints) donot 
hange in the internal loop. The 
on�guration update follows in line 11. Forpseudo-rigid bodies the formula qt+h
k = qt+h

k−1 + hut+h is exe
uted, while a generalstep update in line 11 hints the possibility of an analogous update for rigid bodies
Λt+h

k = Λt+h
k−1 exp

[

hΩt+h
]. The kineti
 energy of mass 
entres is 
omputed next.The rate of de
ay of the energy is used as a termination 
riterion for the innerloop (together with the bound on the maximal number of iterations K). If theenergy is de
reasing, the initial slope of its drop is used as a referen
e value V . Onthe other hand, if the energy grows, then V = 0 and the inner loop terminates.The logarithmi
 s
ale is employed in order to 
onveniently a

ount for the dropspanning several orders of magnitude. The rate of the energy drop is used, be
ausethe graph of the kineti
 energy usually resembles Figure 12.0.1. Naturally, the lo
al
onvergen
e of our simpli�ed relaxation method 
annot be fast, as the ne
essarylinearisations have been skipped.

E

kFigure 12.0.1. A typi
al de
ay of kineti
 energy for the dynami
relaxation loop.



CHAPTER 13Examples13.1. Rigid rotationsS
hemes (5.2.9-5.2.16) from Chapter 5 are further 
ompared with LIEMID[EA℄by Krysl [126℄ and the expli
it method by Simo and Wong [100℄.13.1.1. Unstable rotation. This example is referred to after Simo and Wong[100℄. The example is based on the fa
t that rigid rotation is stable only about theaxes of minimum and maximum moment of inertia (Arnold [13℄, Chapter 29.2).Small perturbation of rotation around the axis of intermediate moment of inertialeads to unstable os
illation. The initial rotation is identity, the initial angularvelo
ity is zero, and the referential inertia tensor is J = diag [5, 10, 1]. The spatialtorque reads
t (t) =







[20, 0, 0] for 0 ≤ t < 2
[0, 1/ (5h) , 0] for 2 ≤ t ≤ 2 + h
[0, 0, 0] for 2 + h < tso that an impulse inverse proportional to the time step is delivered at t = 2. Dueto the dependen
e of torque on the time step, the 
onvergen
e rate 
an be only
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W3[3]Figure 13.1.3. Unstable rotation. Components of the angular ve-lo
ity in body frame. The W [∗] 
omponents have been obtainedwith the expli
it s
heme by Simo and Wong and h = 0.001. The

W [1] 
omponents have been obtained with NEW1 and h = 0.01.Components W [2] 
orrespond to the largest step, for whi
h a qual-itatively 
orre
t result was obtained with NEW2 (h = 0.0019).Components W [3] 
orrespond to the similar result obtained withNEW3 (h = 0.05).linear for this example. Nevertheless the 
onvergen
e analysis is in
luded, as thisexample seems parti
ularly appealing in the 
ontext of 
onta
t/impa
t analysis.Figure 13.1.1 
ompares magnitudes of the in
remental rotation ve
tor at therange of time steps from h = 2−5 to h = 2−8. The 
hara
teristi
 drift properties ofthe new s
heme are 
learly visible here. It is seen that the positive drift of NEW1is smaller than the negative drift of NEW2. At the same time NEW3 gives the bestqualitative mat
h with the results obtained with LIEMID[EA℄.Figure 13.1.2 illustrates the 
hara
teristi
 energy behaviour at h = 2−5 and
h = 2−8. The energy drift of NEW1 and NEW2 is mu
h smaller in 
omparisonwith the one experien
ed by the expli
it s
heme by Simo and Wong [100℄ at thelarger time step. For the smaller time step all algorithms deliver the solutionwithout a visible drift.Figure 13.1.3 shows the 
hara
teristi
 pro�le of the body-frame angular velo
ity.High a

ura
y of the body-frame variables obtained with NEW1 is 
on�rmed, asthe solution obtained with this algorithm at h = 0.01 
oin
ides with the referen
esolution obtained with the expli
it s
heme by Simo and Wong at h = 0.001. It isalso visible that the relative a

ura
y of NEW2 is smaller, as the �rst qualitatively
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NEW3Figure 13.1.4. Unstable rotation. Convergen
e of the body-frame angular momentum Π = JW (left), and the rotation opera-tor R (right). The referen
e solutions Π∗ and R∗ have been 
om-puted with the expli
it s
heme by Simo and Wong and h = 2−22at time t = 10. The solutions Π (h) and R (h) were 
omputed fortime steps h ∈

{

2−5, 2−6, ..., 2−15
}.
orre
t result has been obtained at h ≃ 0.0019. NEW3 still gives a qualitativelya

eptable result at h = 0.05.Figure 13.1.4 illustrates the 
onvergen
e behaviour. It is noteworthy that thespatial torque formula had to be modi�ed so that the interval 2 ≤ t ≤ 2+ 0.9h was
onsidered for the disturban
e impulse. Without this modi�
ation LIEMID[EA℄
onsistently delivered very poor results, whi
h is related to the fa
t that this s
heme
al
ulates the torque at the ends of the time interval. Again it 
an be seen thatNEW1, NEW3 and LIEMID[EA℄ perform similarly in terms of the absolute errorin the referential angular momentum Π, although NEW1 and NEW3 seem mu
hmore a

urate with respe
t to the 
omputation of the rotation operator R. Thereferen
e solution was 
omputed in this 
ase with the expli
it s
heme by Simo andWong with h = 2−22 at time t = 10.13.1.2. Heavy top. This is the se
ond example referred to after Simo andWong [100℄. The heavy symmetri
al top is spinning around the �xed base point.In this example the applied torque depends on the 
on�guration, introdu
ing addi-tional sour
e of nonlinearity. The top of mass M and axis of symmetry E3 rotatesin the uniform gravitational �eld −ge3. The spatial torque reads

t = −Mgr× e3 r = lRE3 = Ri3, i ∈ {1, 2, 3}where the assumed values areM = 20, g = 1, l = 1. As Krysl points out [126℄, theheavy top model 
onserves the Hamiltonian
H =

1

2
π · j−1π +Mge3 · rwhere π = jw is the spatial angular momentum, j = RJRT is the spatial tensorof inertia, and w = RW is the spatial angular velo
ity. In this example the initialrotation is R (0) = exp [0.3, 0, 0], the initial angular velo
ity is W (0) = [0, 0, 50]and the spatial torque reads t (t) = 20 [−R23 (t) , R13 (t) , 0].Figure 13.1.5 illustrates the Hamiltonian history 
omputed with the large timestep h = 2−5 (nearly π/2 of rotation in
rement per step) and the history 
omputedwith the smaller step h = 2−8 (10 deg rotation in
rement). The 
hara
teristi
 driftbehaviour is visible for the large step, while after the de
rease of the time step
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Figure 13.1.5. Heavy top. Plots of Hamiltonian for h = 2−5(left) and for h = 2−8 (right).
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NEW3Figure 13.1.6. Heavy top. Convergen
e of the body-frame an-gular momentum Π = JW (left), and the rotation operator R(right). The referen
e solutions Π∗ and R∗ have been 
omputedwith LIEMID[EA℄ and h = 2−20 at time t = 10. The solutions

Π(h) and R (h) were 
omputed for time steps h ∈
{

2−5, 2−6, ..., 2−15
}.by the fa
tor of eight, the drift be
omes negligible for NEW1 and NEW2. NEW3behaves stably, although the negative os
illations are 
learly pronoun
ed.Figure 13.1.6 illustrates the 
onvergen
e behaviour. The referen
e solution was
omputed with LIEMID[EA℄ and h = 2−20 at time t = 10. LIEMID[EA℄ also
learly outperforms other s
hemes. All of the proposed algorithms are positionedin between of the expli
it approa
h by Simo and Wong and LIEMID[EA℄. NEW2and NEW3 behave alike and are more a

urate in 
omparison with NEW1.13.1.3. Rotating plate. In the last example the pendulum 
omprising a lightre
tangular plate and a weightless rigid rod is 
onsidered (Figure 13.1.7). The platehas dimensions 0.2× 0.2× 0.01 and the length of the rod is l =

√
0.1. In the initial
on�guration, the rod is �xed to the mass 
entre of the side wall of the plate at oneend. The other end rests at a spatial point pla
ed at distan
e h = 0.3 above themass 
entre of the plate. The 
on�guration of the plate is q = [R, x̄], where x̄ is thespatial pla
ement of the mass 
entre. The initial 
on�guration reads q (0) = [I,0],and the initial angular velo
ity is W (0) = [0, 0, 50]. The initial linear velo
ity iszero. The mass density is ρ = 1 and the the uniform gravitational �eld is −ge3,where g = 9.81.Figure 13.1.8 illustrates the history of the kineti
 energy 
omputed over thetime interval [0, 10] with the time step h = 2−10 (‖Ψ‖ < 10 deg). It is seen that
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W(0)

Figure 13.1.7. Rotating plate. Re
tangular plate with the initialangular velo
ity W (0) is 
onstrained by the rigid rod �xed to the
entre of the side wall. The other end of the rod rests at a spatialpoint passing trough the axis 
ollinear with W (0) and 
oin
identwith the mass 
entre of the plate.
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 energy 
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Figure 13.1.9. Rotating plate. The linear (left) and the angular(right) velo
ities over the time interval [0, 1], 
omputed with NEW2at the time step h = 2−10.an intera
tion between the drift of the spatial angular momentum and the imposed
onstraint results in the 
onsiderable loss of energy for NEW1. The momentum
onserving s
hemes NEW2 and NEW 3 pursue the analysis without a visible dissi-pation.NEW2 was utilised in order to obtain the time histories of the linear and theangular velo
ities in Figure 13.1.9. Fast rotation around the verti
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entre os
illates around its initial position.
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Figure 13.1.10. Rotating plate. Absolute error of the 
on�gura-tion q = [R, x̄] (left), and the 
onvergen
e rate (right). The ref-eren
e solution q∗ has been 
omputed with NEW3 and h = 2−22at time t = 1. The solution q (h) was 
omputed for time steps
h ∈

{

2−8, 2−9, ..., 2−18
}.Figure 13.1.10 illustrates the 
onvergen
e. The referen
e solution q∗ was 
om-puted with NEW3 and h = 2−22 at time t = 1. The solution q (h) was 
omputedfor time steps h ∈

{

2−8, 2−9, ..., 2−18
}. The momentum drift of NEW1 redu
es itsa

ura
y to the �rst order for the 
onsidered instan
e of the 
onstrained motion.NEW2 and NEW3 maintain the se
ond order a

ura
y. Clearly, NEW3 is the mosta

urate s
heme. 13.2. Conta
t sear
hWe illustrate performan
e of the broad phase algorithms for the pairwise overlapdete
tion between the axis aligned bounding boxes. Three kinds of box test setsare used in the evaluation. A 2 × 2 × 2 
ube is �lled with: a randomly generatedbox set, a set of adja
ently pa
ked boxes, and a set of spheri
ally distributed boxes.These are illustrated in Figure 13.2.1. All boxes are of a 
ubi
al shape. Their sizeis 
hosen, so that ea
h box has on average 10 overlaps with other boxes in all ofthe test sets.Figures 13.2.2, 13.2.3 and 13.2.4 illustrate the runtimes1 for sizes of test setsranging from 104 to 106. Clearly, the plane-sweep algorithm using only the pri-ority sear
h tree as a dynami
 re
tangle stru
ture performs very poorly (SWEEP-PST2D). This is be
ause the priority tree is essentially one dimensional. The hybridapproa
h by Zomorodian and Edelsbrunner [216℄ performs extremely well in mostof the 
ases. It 
onsistently outperforms the algorithms proposed in Chapter 9 for11.7GHz CPU with 1GB of RAM

Figure 13.2.1. Examples of three 
lasses of testing sets: random,adja
ent, and spheri
al distributions of bounding boxes.
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Figure 13.2.4. Sphere distribution. Without (left) and with(right) time-
oheren
e.random and spheri
al box distributions. Without surprise, the algorithms basedon spatial hashing perform well for the uniform distribution of adja
ent boxes. Itshould be noted, that the simple 
ombination of sweeping and two dimensional hash-ing performs best among the proposed s
hemes (SWEEP-H2D). The se
ond is thesweeping 
ombined with the dynami
 re
tangle stru
ture based on one-dimensionalhashing and the priority sear
h tree (SWEEP-H1DPST). This stru
ture most logi-
ally uses strengths of hashing and the 
ombinatorial �ltering property of the binarytree. It 
an also be noti
ed, that the time-
oheren
e (linear time sorting along thesweep dimension) has only a minor e�e
t on the performan
e. This suggests that
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e.the 
onstant fa
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Figure 13.3.1. The 
ube, wall and dome assemblies, all resting ona rigid foundation. Cube units have dimensions 0.1 × 0.1 × 0.1m,and are subje
ted to gravity of (2, 2,−10)m/s2. Wall units areof dimensions 0.2 × 0.2 × 0.1m, and are subje
ted to gravity of
(0, 0,−10)m/s2, along with the upper bar load of (0, 0,−30)kN .The inner radius of dome is 10m, and the thi
kness is 0.6m. Itdeforms under the gravity of (0, 0,−10)m/s2. The lower left 
or-ner of the wall is restrained by a rigid 
ubi
 obsta
le. Materialproperties are 15.5GPa for Young modulus, 0.2 for Poisson ratio,and 2200 kg/m3 for the density.is in
luded. Further investigation is ne
essary before a de�nite 
on
lusion 
an berea
hed. 13.3. Newton solversThree examples are studied for three sizes of assemblies and a range of fri
tion
oe�
ients. The two-dimensional wall example 
orresponds to the experimentalsetup by Louren
o et al. [142℄. The three-dimensional 
ube, and the dome exampleshave been sele
ted to pi
ture 
onvergen
e for various geometri
al pla
ements of
onta
t points. The fo
us is on the numeri
al properties of SCSOL, rather then on theme
hani
al response of test examples. Assembly geometries, loading 
onditions andmaterial properties are given in Figure 13.3.1. Pseudo-rigid 
uboids are employedas the individual bodies, and hen
e a single 
onta
t point is established betweenea
h pair of adja
ent bri
ks.The time stepping from Se
tion 5.3 is employed. As a quasi-stati
 responseis 
onsidered, inertia properties were s
aled in order to impose uniform numeri
aldamping. For the impli
it Euler s
heme, a reasonable amount of damping 
an beobtained for λh ≥ 4, where λ is a sele
ted eigenvalue of M−1K, h is the time step,and K is the 
urrent sti�ness tangent [98℄. Here h = 1 was assumed, and inertiatensors E0 were s
aled, so that λmax

(

M−1K
)

= 4 for all bodies.Table 1 summarises numbers of bodies, 
onta
t points, and 
ondition num-bers of respe
tive W operators. Assemblies of variable size preserve geometri
alfeatures des
ribed in Figure 13.3.1. The 
ondition numbers were obtained withdgs
on routine of the sparse fa
torisation pa
kage SuperLU [57℄, whi
h was alsoemployed as the linear solver. The 
ondition numbers are high, yet far from singu-lar. Nevertheless, for the wall example the ill-
onditioning of W signi�
antly growswith the stru
ture size. This 
orresponds to the dis
ussion presented in Se
tion7.1. Conditioning of W does not dire
tly 
orrelate to that of Ω. In fa
t Ω = Wonly if all 
onta
t points are in the fri
tional sti
k state. In most 
ases Ω 6= W and
Ω ought to be assembled with some 
are. As W 
orresponds to the inverse of a



13.3. NEWTON SOLVERS 179Table 1. Numbers of bodies, 
onta
t points, and 
ondition num-bers of W.Example Bodies Conta
ts W 
onditioningCUBE1 27 63 2E+7CUBE2 125 325 5E+7CUBE3 343 931 9E+7WALL1 56 147 3E+6WALL2 162 451 4E+7WALL3 338 963 2E+8DOME1 60 120 7E+5DOME2 220 440 2E+6DOME3 480 960 8E+6Table 2. Parameters of SCSOL used in the performan
e study.
σ γ β J ǫ K φ L

0.9 0.1 0.034 0 or 10 1E-10 1000 10 6sti�ness matrix, its entries are likely to be quite small (O (10−8
) for example). Thelinearised 
onstraints though, are usually of the order O (1). For this reason, to pre-vent ill-
onditioning, system rows 
orresponding to those 
onstraints are s
aled bythe relevant diagonal entries of W. For example a row ... 0 1 0...R = Πi is repla
edby ... 0Wii 0...R = WiiΠi. Generally, s
aling is applied to system rows de�ned inlines 5, 8, and 9 of NEWT, HYB, and FIX. As a result, the 
ondition numbers of Ω are
omparable to those of W, provided the s
aling of the regularisation parameter ραis not ex
essive (routine SCALE).The input parameters of SCSOL are summarised in Table 2. Both the monotone(J = 0) and nonmonotone (J = 10) variants were investigated. The set of testedfri
tion 
oe�
ients was µ ∈

{

0, 1
3 ,

2
3 , 1
}. For ea
h dis
retisation (Table 1), onehundred in
remental runs of the time stepping were performed. In all test 
ases thezero initial guess was used for R and U for the �rst run of SCSOL. The 
onse
utiveruns started from the previous solution. To report averages of entities spanningseveral orders of magnitude, the following pro
edure was applied(13.3.1) average = exp

(

n
∑

i=1

log (valuei) /n

)where n is either the total number of system solutions (when reporting the 
ondi-tioning of Ω) or the total number of 
onvergent runs (when reporting the average�nal value of the merit fun
tion M). In the following, instead of referring to SCSOLwith a parti
ular argument ALG, a dire
t referen
e to NEWT, HYB or FIX is sometimesmade. The monotone (Armijo's type, J = 0) line sear
h based algorithms are de-noted by NEWT(A) and HYB(A), while the nonmonotone (Grippo's type, J = 10)line sear
h based ones are denoted by NEWT(G), HYB(G).For the fri
tionless problems SCSOL redu
es to UNIL, regardless of the argumentALG. Results for this 
ase are presented in Table 3. For all examples numbers ofiterations are smaller than �ve. It is also seen that the system matri
es are ratherwell behaved. This 
ase 
an be ta
kled very e�
iently.
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Figure 13.3.2. Aggregate statisti
s forNEWT, FIX andHYB(nine examples, three fri
tion levels µ ∈
{

1
3 ,

2
3 , 1
}, hundred in-
rements). Note that statisti
s on line sear
hes and s
aling arenot appli
able to FIX and therefore omitted. NEWT(A) andHYB(A) 
orrespond to the monotone (Armijo's) line sear
h, whileNEWT(G) and HYB(G) to the nonmonotone (Grippo's) linesear
h.



13.3. NEWTON SOLVERS 181Table 3. Results for the fri
tionless 
ase, µ = 0.Maximal number of iterations 5Average 
onditioning of Ω 2E+3Average �nal value of M 1E-23Aggregate statisti
s for all fri
tional 
omputations with µ ∈
{

1
3 ,

2
3 , 1
} have beensummarised in Figure 13.3.2. The reported average values 
orrespond to the 2700runs of SCSOL (nine examples, three fri
tion levels, hundred in
rements), while thereported average maximal values 
orrespond to the averages of the 27 maxima (nineexamples, three fri
tion levels) taken over the hundred in
rements. As the maximalvalues usually 
orrespond to the �rst run of SCSOL (starting from the zero initialguess), the average maxima give an estimate of the worst 
ase performan
e.In Figure 13.3.2 (j) it is seen, that while NEWT and FIX often failed to 
onvergewithin the pres
ribed 1000 iterations, HYB is the only s
heme whi
h su

eeded inall 
ases. It must be stated though, that while the failures of the full Newtonapproa
h 
orrespond to the divergen
e (unbounded growth of the auxiliary meritfun
tion), those of the �xed point method 
orrespond to the insu�
ient numberof 
onverging iterations. At the same time the full Newton method is more proneto divergen
e, when 
ombined with the nonmonotone line sear
h. This is be
ausethe minimisation along a given dire
tion is not always su

essful (β > 0), and anunbounded growth of the auxiliary merit fun
tion (11.2.23) is thus possible. In thenonmonotone sear
h 
ase, a number of su
h failed minimisations 
an be stored andthe maximal of them used as the referen
e value in the line sear
h loop, resultingin a greater probability of divergen
e.Comparison of the average iteration numbers in Figure 13.3.2 (a) shows thatthe hybrid approa
h inherits good lo
al 
onvergen
e properties of the full Newtons
heme - the numbers of iterations are similar for both approa
hes (less then 5).At the same time the �xed point method needs 
onsiderably more iterations to
onverge (25 on average). In Figure 13.3.2 (b) it is seen that the average worst 
aseperforman
e of HYB 
ompares favourably with the 
ompetitors. The nonmonotoneversion of the line sear
h results in slightly smaller numbers of iterations for thehybrid approa
h, while it is quite on the 
ontrary for the full Newton s
heme (
f.
omments in the previous paragraph). It should be noted, that the number ofiterations for the �xed point s
heme was found to be 
learly related to the problemsize (although it 
annot be dedu
ed from the presented �gures).In Figures 13.3.2 (
), (d) it 
an be seen that the nonmonotone line sear
h
onsistently results in a smaller average numbers of line sear
hes, when 
omparedto the Armijo's type line sear
h.In terms of the system 
onditioning, it is seen in Figure 13.3.2 (e) that thehybrid linearisation inherits good properties of the �xed point s
heme. The highworst 
ase averages in Figure 13.3.2 (f) 
orrespond to the nearly singular systemso

urring towards the end of the �rst solver run. This issue does not representa signi�
ant numeri
al di�
ulty, as SuperLU is 
apable of ta
kling ill-
onditionedproblems. The ill 
onditioning of systems produ
ed by HYB is milder, 
ompared tothose resulting from NEWT.Figure 13.3.2 (g) shows that the hybrid s
heme on average results in the small-est �nal values of the auxiliary merit fun
tion. This is in relation with the amountof penalty s
aling, presented in Figure 13.3.2 (h), whi
h is smaller for the hybridmethod (the penalty s
aling per
entage equals, for one solver run, to the per
ent-age of regularisation parameters ρα a�e
ted by the routine SCALE). Similarly, the
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aling is related to the average worst 
ase system 
onditioning presentedin Figure 13.3.2 (f).It is seen in Figure 13.3.2 (i), that the full Newton s
heme generated roughlyten times more negative de�nite systems, 
ompared with the hybrid method (whi
hprodu
ed less then 0.5% of them). Using the un
onstrained minimisation analogy,one 
ould say that the full Newton method visits the tops of the hills more frequentlythen the hybrid s
heme. This might to some extent explain its poor robustness.In 
on
lusion, the full Newton s
heme (NEWT) appears to be unreliable in oursetting, although it performs pretty well, whenever 
onvergent. The �xed pointmethod (FIX) performs robustly, and usually deals with well 
onditioned systems.Nevertheless it does fail to 
onverge within a thousand iterations for relatively ele-mentary test examples. The hybrid linearisation (HYB) nearly 
onsistently deliversthe best performan
e, espe
ially when 
ombined with the nonmonotone line sear
h.13.4. Some ben
hmarksSeveral ben
hmarks are presented. The purpose is to validate the implementa-tion on few simple, do
umented examples.13.4.1. Pendulum.Referen
e: W. Rubinowi
z, W. Królikowski, Me
hanika teorety
zna (Theoreti
alme
hani
s), Pa«stwowe Wydawni
two Naukowe, Warszawa, 1998, pp. 91-99.Summary: A mathemati
al pendulum 
omposed of a mass point and a weight-less rod swings with a large amplitude. Pendulum period, energy 
onservation,
onstraint satisfa
tion and 
onvergen
e are examined.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelThe period of an os
illatory mathemati
al pendulum reads(13.4.1) T = 2π

√

l

g3

(

1 +

(

1

2

)2

k2 +

(

1 · 3
2 · 4

)

k2 +

(

1 · 3 · 5
2 · 4 · 6

)

k2 + ...

)where(13.4.2) k = sin

(

θmax

2

)and l is the length of the pendulum, g3 is the verti
al 
omponent of the gravitya

eleration and θmax is the maximal tilt angle of the pendulum. Let us assumethe initial velo
ity of the pendulum to be zero. Thus θmax = θ (0). Taking the rest
on�guration position of the mass point x̄ = [0, 0, 0] and 
onsidering the swing inthe x− z plane, the initial position of the pendulum reads(13.4.3) x̄ (0) =





l sin (θmax)
0

l (1 − cos (θmax))



Without the initial kineti
 energy (Ek (0) = 0), the energy 
onservation requiresthat(13.4.4) Ek (t) + Ep (t) = Ep (0)
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Figure 13.4.1. Energy balan
e over one period of the pendulum(red line 
orresponds to the total energy).where(13.4.5) Ep (0) = mg3x̄3 (0)and m is the s
alar mass. Input parametersLength (m) l = 1Mass (kg) m = 1Initial angle θ (0) = θmax (rad) θmax = π/2Gravity a

eleration (m/s2) g =
[

0, 0,−π2
]The gravity a

eleration g3 has been 
hosen so that for θmax = 0 deg there holds

T = 2s. ResultsThe table below summarises the results for the time step h = 0.001. It is seenthat the solution is a

urate and stable, regardless of the duration of the numeri
alsimulation. Target Solfe
 RatioPendulum period - 1 swing (s) 2.36068 2.63000 0.9997Pendulum length - 1 swing (m) 1.0 1.0 1.0Total energy - 1 swing (J) π2 9.86960 1.0Pendulum period - 1000 swings (s) 2360.68 2360.68 1.0Pendulum length - 1000 swings (m) 1.0 1.0 1.0Total energy - 1000 swings (J) π2 9.86960 1.0Figure 13.4.1 illustrates the energy balan
e over one period of the pendulum.The potential and kineti
 energies sum up to π2. Figure 13.4.2 shows os
illatorybut stable behaviour of the equality 
onstraint (the length of the rigid rod). Figure13.4.3 
on�rms the se
ond order 
onvergen
e in the presen
e of equality 
onstraints(the referen
e solution q∗ has been 
omputed at time t = 1.0 with h = 2−20).
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Figure 13.4.2. Length of the pendulum over the time of fourperiods, 
omputed for several time steps h ∈ {0.001, 0.005, 0.025}.
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onvergen
e rate ≃ 4 
on�rms the se
ondorder a

ura
y in the presen
e of equality 
onstraints.13.4.2. Sphere impa
ting a plate.Referen
e: The solution is self-evident.Summary: A sphere impa
ts a plate. Newton impa
t law is validated for severalvalues of the restitution parameter η and a single-point 
onta
t.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelSphere of radius r and with the initial velo
ity vz impa
ts the horizontal fri
-tionless surfa
e (Figure 13.4.4). Single 
onta
t point is established. The pre- andpost-impa
t velo
ities are related through the Newton's law(13.4.6) v+
z = −ηv−z

r v

m

zFigure 13.4.4. Sphere in the initial 
on�guration.



13.4. SOME BENCHMARKS 185thus for η = 1 the total energy is 
onserved while for η < 1 the energy is dissipated.In the initial 
on�guration the sphere is about to hit the plate, so that vz (0) = v−zfor the �rst impa
t. Input parametersSphere radius (m) r = 0.1Sphere mass (kg) m = 1Initial velo
ity v (0) = [0, 0,−4]Gravity a

eleration (m/s2) g = [0, 0,−10]Velo
ity restitution η ∈ {0, 0.25, 0.5, 0.75, 1}Coulomb fri
tion 
oe�
ient µ = 0ResultsFigure 13.4.5 illustrates the energy balan
e over the time interval [0, 2.4] forthe ideally elasti
 impa
t, η = 1. It is seen that the total energy is 
onserved, whilethree 
onse
utive impa
ts take pla
e. In Figure 13.4.6 the velo
ity 
omponent vzis depi
ted for �ve restitution 
oe�
ients ranging from the ideally elasti
 to theideally plasti
 one. The plots start from v+
z following the initial impa
t and thusthe values 4, 3, 2, 1, 0 
orrespond to the restitution 
oe�
ients 1, 0.75, 0.5, 0.25, 0.For the 
onse
utive impa
ts the post-impa
t velo
ities are appropriately de
reasedand eventually vanish, when the time between the two 
onse
utive impa
ts be
omesof the order of the time step.
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Figure 13.4.5. Energy balan
e for the ideally elasti
 impa
t η =
1, 
omputed with the time step h = 0.001.
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oe�
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omputed with the time step
h = 0.001.
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ting a plate.Referen
e: The solution is self-evident.Summary: A 
ube impa
ts a plate. Newton impa
t law is validated for severalvalues of the restitution parameter η and a multi-point 
onta
t.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelThis example mimi
s the previous one (Example 13.4.2), with the 
ube ofdimensions a× b×h repla
ing the sphere (Figure 13.4.7). Again, in the initial 
on-�guration the 
ube is about to hit the plate, so that vz (0) = v−z for the �rst impa
t.Due to the dis
retisation of the geometry four 
onta
t points are established.Input parametersCube dimensions (m) a× b× h = 0.1 × 0.1 × 0.1Cube density (kg/m3
)

ρ = 125Initial velo
ity v (0) = [0, 0,−4]Gravity a

eleration (m/s2) g = [0, 0,−10]Velo
ity restitution η ∈ {0, 0.25, 0.5, 0.75, 1}Coulomb fri
tion 
oe�
ient µ = 0ResultsThe mass density has been sele
ted su
h that the 
ube example should behaveexa
tly as Example 13.4.2. It is seen that Figures 13.4.5 and 13.4.8 are identi
al.The same 
an be said about Figures 13.4.6 and 13.4.9. All the 
omments fromExample 13.4.2 apply here.
vz

ρ

a
b

h

Figure 13.4.7. Cube in the initial 
on�guration.
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Figure 13.4.8. Energy balan
e for the ideally elasti
 impa
t η =
1, 
omputed with the time step h = 0.001.
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Figure 13.4.9. The velo
ity 
omponent vz plots for restitution
oe�
ients η ∈ {0, 0.25, 0.5, 0.75, 1}, 
omputed with the time step
h = 0.001.13.4.4. Double pendulum impa
ting a rigid wall.Referen
e: Florian A. Potra, Mihai Anites
u, Bogdan Gavrea, Je� Trinkle. Alinearly impli
it trapezoidal method for integrating sti� multibody dynami
s with
onta
t, joints, and fri
tion. International Journal for Numeri
al Methods in Engi-neering, vol. 66, pp. 1079-1124, 2006.Summary: A double pendulum 
omposed of two mass points 
onne
ted by weight-less rods impa
ts a rigid wall. Position and energy plots are 
ompared against thoseavailable in the sour
e paper.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelThe referen
e [70℄ uses the Poisson impa
t model, while Solfe
 uses the Newtonmodel. Both models are equivalent in 
ase of fri
tionless impa
t if all restitution
oe�
ients are identi
al [42℄. This is the 
ase in the example, thus the 
omparisonis feasible. As Solfe
 does not handle 
onta
ts between obje
ts with zero volume,mass points were approximated by spheres and the distan
e between the wall andthe rest 
on�guration of the pendulum was shifted by the sphere radius.

Figure 13.4.10. Double pendulum in the initial 
on�guration.



13.4. SOME BENCHMARKS 188
 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2  2.5

E
to

t(t
) 

- 
E

to
t(2

.5
)

Potra et al.Solfec

Figure 13.4.11. Comparison the total energy plots versus time.
 1.5

 1

 0.5

 0
 0  0.5  1  1.5  2  2.5

x1(t)
x2(t)

Solfec Potra et al.

Figure 13.4.12. Comparison of the x-
oordinate plots (xi (t)stands for the i-th mass point x-
oordinate).Input parametersMass (kg) m1 = m2 = 1Length (m) l1 = l2 = 1Point x0 (m) x0 = [0, 0, 2]Point x1 (m) x1 =
[

sin
(

π
3

)

, 0, 2 − cos
(

π
3

)]Point x2 (m) x2 =
[

sin
(

π
3

)

+ sin
(

π
5

)

, 0, 2 − cos
(

π
3

)

− cos
(

π
5

)]Initial velo
ities (m/s) all zeroGravity a

eleration (m/s2) g = [0, 0,−9.81]Velo
ity restitution ǫ = 0.1Coulomb fri
tion 
oe�
ient µ = 0ResultsSimulation over the time interval [0, 2.5] was performed with the time step
h = 0.001. As the referen
e [70℄ does not spe
ify numeri
al values of the results,only a visual 
omparison of the total energy and the x-
oordinate histories of themass points is available. The �gures are juxtaposed for 
larity, although theyexa
tly overlap when pro
essed in a graphi
al software.
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k sliding on a fri
tional table.Referen
e: Florian A. Potra, Mihai Anites
u, Bogdan Gavrea, Je� Trinkle. Alinearly impli
it trapezoidal method for integrating sti� multibody dynami
s with
onta
t, joints, and fri
tion. International Journal for Numeri
al Methods in Engi-neering, vol. 66, pp. 1079-1124, 2006.Summary: A blo
k subje
ted to a sinusoidal for
e slips over a fri
tional surfa
e.Position and velo
ity plots are 
ompared against those available in the sour
e paper.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelThe blo
k has been dis
retised into four hexahedral elements, thus four 
onta
tpoints result from the element to element 
onta
t model implemented in Solfe
. Anequivalent three-dimensional model is used in Solfe
 as the referen
e [70℄ uses atwo-dimensional set-up. The external for
e a
ting on the mass 
entre of the 
ubereads(13.4.7) f (t) = [8 cos (t) , 0, 0]Input parametersBlo
k density (kg/m3
)

ρ = 111.1(1)Blo
k dimensions (m) a× b× h = 0.3 × 0.3 × 0.1Initial velo
ities (m/s) all zeroGravity a

eleration (m/s2) g = [0, 0,−9.81]Velo
ity restitution ǫ = 0Coulomb fri
tion 
oe�
ient µ = 0.8ResultsSimulation over the time interval [0, 10] was performed with the time step
h = 0.001. As the referen
e [70℄ does not spe
ify numeri
al values of the results,only a visual 
omparison of the vx velo
ity 
omponent and the x-
oordinate historiesof the mass 
entre is available. The �gures are juxtaposed for 
larity, although theyexa
tly overlap when pro
essed in a graphi
al software.

Figure 13.4.13. Blo
k sliding on top of a fri
tional surfa
e - ini-tial 
on�guration with four 
onta
t points.
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Figure 13.4.14. Comparison of the vx velo
ity 
omponent plotsof the blo
k mass 
entre.
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Figure 13.4.15. Comparison of the x-
oordinate plots of theblo
k mass 
entre.13.4.6. Newton's 
radle.Referen
e: F. Herrmann, P. S
hmälzle. A simple explanation of a well-known
ollision experiment, Am. J. Phys. 49, 761 (1981).Summary: Newton's 
radle is modelled by �ve intera
ting pendulums. Ideallyelasti
 impa
t (η = 1) is assumed.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelAs shown in the referen
e, it is not possible to explain the behaviour of New-ton's 
radle solely by the prin
iples of energy and momentum 
onservation. If thenumber of balls is larger then two, it is the dispersion-free propagation of an elasti
wave whi
h results in the 
hara
teristi
 behaviour of the 
radle. Thus, in general,Newton's 
radle is not 
ompatible with rigid kinemati
s. This implies that 
on-sidering all impa
ts at the same time results in a multipli
ity of solutions. It isnot guaranteed that a physi
ally plausible solution will be sele
ted by the numer-i
al s
heme. A simple workaround is to separate the balls by a small distan
e,and therefore algorithmi
ally enfor
e the wave propagation e�e
t. This approa
his undertaken here. Input parameters
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Figure 13.4.16. Newton's 
radle in the initial 
on�guration.Mass density (kg/m3
)

ρ = 1000Ball radius (m) r = 0.05Pendulum length (m) l = 0.5Pendulum separation (m) u = 10−10Initial angle (rad) θmax = π/8Initial velo
ities (m/s) all zeroGravity a

eleration (m/s2) g = [0, 0,−9.81]Velo
ity restitution ǫ = 1Coulomb fri
tion 
oe�
ient µ = 0ResultsConservation of energy requires that
Etot (t) = Epot (0) = ρ · 4

3
πr3 · |g3| · l (1 − cos (θmax)) = 0.195497Upon full energy restitution the 
radle behaves essentially as a single pendulum.Thus formula (13.4.1) 
an be used in order to 
al
ulate the period of the 
radle.Table below summarises (among others) numeri
ally 
omputed periods for su

es-sively smaller time steps. It is evident that the 
onvergen
e rate is linear. Thisis an algorithmi
 feature of the s
heme implemented in Solfe
 in the presen
e ofunilateral 
onstraints (impa
ts, sti
k-slip transitions). It is also seen that the to-tal energy is 
onserved exa
tly - regardless of the time step (note that only linearmotion is present). Target Solfe
 RatioCradle period T , h = 0.01 (s) 1.432297 1.500000 1.05Cradle period T , h = 0.001 (s) 1.432297 1.438000 1.004Cradle period T , h = 0.0001 (s) 1.432297 1.433000 1.0005Total energy at t = 10T , h = 0.01 (J) 0.195497 0.195497 1.0Total energy at t = 10T , h = 0.001 (J) 0.195497 0.195497 1.0Total energy at t = 10T , h = 0.0001 (J) 0.195497 0.195497 1.0
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e over two periods of the 
radle.

Figure 13.4.18. Sixteen frames of the simulation over the 
om-plete period. The sequen
e pro
eeds from left to right, top tobottom.13.4.7. Masonry ar
h.Referen
e: Gilbert, M. and Casapulla, C. and Ahmed, H. M., Limit analysisof masonry blo
k stru
tures with non-asso
iative fri
tional joints using linear pro-gramming, Computers and Stru
tures, vol. 84, pp. 873-887, 2006.Summary: A semi
ir
ular ar
h is subje
ted to the uniform gravitational �eld.The dynami
 stability of the ar
h is investigated for varying ratios of the thi
knessto 
entreline radius h/r. The results are 
ompared against the available �ndingsbased on the limit-state analysis.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelGilbert et al. [74℄ present a numeri
al solution to the 
lassi
al problem of thestability of a semi
ir
ular ar
h under gravity load. The analysis provided in [74℄spans fri
tion 
oe�
ients from the interval [0.2, 0.8] and identi�es three geometri
alfailure modes (Figure 13.4.22). The 
lassi
al analysis provided by Heyman [92℄ as-sumes no fri
tional slip, and therefore 
overs only one 
ase of me
hanism formation(mode I - typi
al for large fri
tion). Several fa
tors need to be taken into a

ountwhen 
onsidering reprodu
tion of the results presented in Figure 13.4.22:
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Figure 13.4.19. The three-dimensional ar
h model in Solfe
.Ea
h of the 27 blo
ks is 
omposed of 6 elements: two along thewidth w, and three along the thi
kness h. Thus six 
onta
t pointsare established initially between a pair of blo
ks.(1) A linear programming based limit-state formulation is employed in [74℄,whereas the dynami
 
onta
t algorithm is used in Solfe
.(2) The analysis provided in [74℄ is two-dimensional, whereas Solfe
 dealswith a three-dimensional model.(3) A node to fa
e 
onta
t model is employed in [74℄, whereas the fa
e tofa
e (or more generally element to element) 
onta
t model is employed inSolfe
.Due to the modelling di�eren
es (inertial e�e
ts, 
onta
t resolution) it is reasonableto a

ept a margin of dis
repan
y between the results obtained by both methods.The dynami
 stability analysis will be based on the observation of the kineti
 energyhistories, 
al
ulated for ar
hes with thi
knesses varying around the do
umented in[74℄ stability limits. Figure 13.4.19 summarises the geometry and dis
retisationadopted in the Solfe
 model. In order to geometri
ally 
apture the hinging e�e
tfrom the �rst moments of simulation, the subdivision along the blo
k thi
kness
omprises two narrow elements at the extrados and intrados of the ar
h.Input parametersUnder the assumptions dis
ussed by Heyman [92℄, formation of a failure me
h-anism is of purely geometri
al nature. Therefore the material parameters 
an be
hosen arbitrary (none have been reported in [74℄). The table below summarisesthe assumed parameters.Mass density (kg/m3
)

ρ = 1Centreline radius (m) r = 10Ar
h width (m) w = 5Number of blo
ks {27, 15}Initial velo
ities (m/s) all zeroGravity a

eleration (m/s2) g = [0, 0,−9.81]Velo
ity restitution η = 0Time step 0.001Results
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riti
al thi
kness to radius ratios h/r, 
omputed for the expe
ted mode-Iand mode-II failures have been summarised in the table below. The number ofblo
ks was 27, similarly like in [74℄. Taking the mentioned modelling di�eren
es, it
an be 
on
luded that the results obtained with Solfe
 remain within an a

eptablemargin of a

ura
y. Target Solfe
 RatioCriti
al ratio h/r, µ = 0.4 0.1070 0.1082 1.011Criti
al ratio h/r, µ = 0.311 0.1955 0.1965 1.005Figures 13.4.20 and 13.4.21 illustrate the kineti
 energy histories 
orrespondingto the values reported in the table. The initial growth of the energy results fromthe fa
t, the 
onta
t for
es are all zero at t = 0. Hen
e, the stru
ture undergoes adynami
 pro
ess, purposely started in the vi
inity of a steady state solution. Theslight overestimation of the 
riti
al thi
kness results in part from the inertial e�e
tsrelated to the dynami
 pro
ess. Also, as the element to element 
onta
t model isused, the lo
ations of 
onta
t for
es are shifted away by a small distan
e from theexternal surfa
es of the ar
h. This de
reases the e�e
tive thi
kness, and has anadditional in�uen
e on the overestimation of the 
riti
al ratio.
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13.4. SOME BENCHMARKS 195Figure 13.4.22 illustrates the results 
omputed for an ar
h 
omprising 15 blo
ks.A fri
tion-
ohesion map of 
riti
al thi
kness values h (µ, c) was obtained on a 10×10grid of µ× c, that is fri
tion×
ohesion. It is in the �rst pla
e 
lear, that the threefailure modes reported in Gilbert et al. [74℄ have been well reprodu
ed for the zero
ohesion 
ase. The in�uen
e of 
ohesion results in a de
rease of the 
riti
al ar
hthi
kness.
Friction

Friction

M
in

im
um

 th
ic

kn
es

s 
−

 h

h=0.5

h=0.3

h=1.0

C
oh

es
io

n

10

h

Gilbert et al.C&S, 84, 2006

Figure 13.4.22. Fri
tion-
ohesion map of the 
riti
al ar
h thi
k-ness h and the three 
hara
teristi
 failure modes for the zero 
o-hesion 
ase.13.4.8. Box-kite push until lo
kup.Referen
e: Reports C6508/TR/0006 and 5014549/06/34/0 provided by Atkins.Summary: Two layers of �at, non
onvex, a
ryli
 bri
ks are �tted into a 3 × 3pattern. The middle bri
ks are 
ra
ked and oriented at various angles. Shearand separation loads are applied to the top bri
k halves. The relative shear andseparation displa
ements at lo
kup are reported.Kinemati
s/Analysis/Solver: Rigid/Dynami
/Gauss-SeidelA
ryli
 bri
ks were assembled into a 3 × 3 two-layer pattern embra
ed by awooden frame (Figure 13.4.23). The middle two bri
ks were 
ra
ked independentlyat various angles (Figure 13.4.24). A hand load was applied to the two top bri
khalves and the maximal lo
kup displa
ements were reported. A model of the box-kite prepared in Solfe
 was used to 
ross-examine an FEM model used by Atkins.The me
hani
al model 
omprised:
• ideally plasti
 impa
ts (in order to approximate quasi-stati
 
onditions ofthe experiment)
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Figure 13.4.23. The box-kite assembly of bri
ks as modelled in Solfe
.
• boundary 
onditions indu
ed solely by 
onta
t (no expli
it restri
tions ondispla
ements and rotations)
• shear and separation loads applied dire
tly to the mass 
entres of the twotop bri
k halves (no load-indu
ed rotation)The di�
ulty in reprodu
ing the experimental results was twofold:(1) The for
e was manually applied during the experiment, an exa
t mannerof whi
h was unknown.(2) The way in whi
h the shear and separation displa
ements were measuredwas also unknown.The �rst di�
ulty was resolved by applying the for
e to the mass 
entres of thetwo top bri
k halves. This is equivalent to any for
e system whose resultant torqueis zero and hen
e indu
ing only a linear motion. Any rotations happen solelydue to the 
onta
t intera
tions. The se
ond di�
ulty has been approa
hed bymeasuring the relative displa
ement for a variety of 
ontrol points. As illustratedin Figure 13.4.25, the strategy is to pi
k two arbitrary points A and B and allowthem be 
onve
ted by the motion of the respe
tive top bri
k halves. The relativedispla
ement is measured along the �xed dire
tions of the a
tion of the appliedfor
es. Only one set of results, 
orresponding to the sele
tion of mass 
entres asthe 
ontrol points is summarised further.
Figure 13.4.24. Example of 
ra
ked middle bri
ks from the topand bottom layers.
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B

A
0

Figure 13.4.25. The two top bri
k halves and an exemplary sheardispla
ement measurement.
Input parametersMass density (kg/m3

)

ρ ∈ {10, 1150}Initial velo
ities (m/s) all zeroGravity a

eleration (m/s2) g = [0, 0,−10]Velo
ity restitution η = 0Time step h = 0.001Fri
tion µ ∈ {0, 0.3, 0.5, 0.8}The smaller mass density ρ = 10 is used in fri
tionless 
al
ulations (this irrel-evant from the results standpoint, but it speeds up solution for 
onta
t rea
tions).When the e�e
t of fri
tion is investigated, the density ρ = 1150 typi
al for thea
ryli
 glass is assumed (we wish those results to be easier to imagine).ResultsFigure 13.4.26 summarises the initial set of 
onta
ts. There are no horizontalnormals in the �gure, be
ause all of the bri
ks are separated by a small 
learan
e. Inthe experiment, two 
learan
e sizes were 
onsidered. Without getting into details,these will be further 
alled the large and the small 
learan
e. Various orienta-tions of 
ra
k angles 
orrespond to di�erent test 
ases, spe
i�
ally numbered in thereferen
ed reports. As there would be not mu
h gain from spe
ifying the angles,without giving other detailed information, we do not attempt to do that. It isenough to say that the numbering 
onvention is of the kind 31N or 31T , where the
N and T letters 
orrespond to the separation and shear tests. The 
urrent exampleshould then be regarded only as a qualitative demonstration of the 
omputationalframework.Figures 13.4.27 and 13.4.28 
ompare the experimental, FEM (Atkins) and Solfe
results. Both, in Solfe
 and FEM 
omputations zero fri
tion was assumed. Twolargest dis
repan
ies happen for 
ases 31 and 44. Case 31 undergoes a 
ompleteseparation. Case 44 opens too wide in shear. Similarly, for the small 
learan
e,
ase 48 opens too wide in separation, while 
ase 61 opens too wide in shear. In theremaining 
ases we are somewhat 
loser to the experiment, when 
ompared withFEM (small 
learan
e, Figure 13.4.28).
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Figure 13.4.26. Conta
ts dete
ted after the �rst step of the time stepping.
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Figure 13.4.27. Large 
learan
e. Experiment, FEM and Solfe
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e. Experiment, FEM and Solfe
.



13.4. SOME BENCHMARKS 199In order to verify the role of fri
tion, the 
ase 31N has been given a 
loserlook. The assumed material parameters were ρ = 1150 for the mass density and
µ ∈ {0.0, 0.3, 0.5, 0.8} for fri
tion. Case 31 separates fully in the fri
tionless 
ase,and the purpose here is to investigate whether fri
tional e�e
ts 
an a�e
t this result(whi
h might have happened during the experiment). The load of value 150N isramped over the time interval [0, 1, 2] (Figure 13.4.29). Separation is large, althoughthe e�e
t of fri
tion is 
lear. The in
reased load of 250N was again applied thetime interval [0, 1, 2]. This 
orresponds to lifting up 50kg, although here the leftand the right hand apply the load in opposite dire
tions. Figure 13.4.30 shows thatthe separation is now mu
h 
loser to the fri
tionless 
ase. Nevertheless, the e�e
tof fri
tion is still visible.
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o's wall.Referen
e: Louren
o, P. B. and Oliveira, D. V. and Ro
a, P. and Orduna, A.,Dry joint stone masonry walls subje
ted to in-plane 
ombined loading, Journal ofStru
tural Engineering, vol. 131, pp. 1665-1673, 2005.Summary: A dry masonry wall undergoes a 
ombined loading. After an initialphase of verti
al loading, a horizontal loading is applied and the load-displa
ementpath is re
orded.Kinemati
s/Analysis/Solver: Pseudo-Rigid/Quasi-Stati
/Hybrid-NewtonThe quasi-stati
 time stepping is veri�ed against the experimental data byLouren
o et al. [142℄. A series of dry joint stone planar masonry wall tests wereperformed under 
ombined loading. The s
heme of the experimental setup is pre-sented in Figure 13.4.31. The wall is �rst loaded with the verti
al for
e, followed bya displa
ement 
ontrolled horizontal loading. Plots of the horizontal displa
ementversus the horizontal for
e were obtained under 
onstant verti
al loading of 30kN.In experiments, a high strength mortar was used on the upper and lower layers ofstones in order to 
orre
t roughness of 
onta
t surfa
es. Due to the existen
e of therigid obsta
le in the lower left 
orner, no 
ohesion at the lower layer was assumed inthe numeri
al model. At the upper layer, a small value of 
ohesion of c = 0.3MPawas assumed.Two 
ases of the load 
ontrol (5N/s and 1N/s) and two 
ases of the displa
ement
ontrol were 
omputed (0.1mm/s and 0.02mm/s). In 
ase of the load 
ontrol thereported horizontal for
e is the sum of fri
tional 
onta
t for
es a
ting on the lowersurfa
e of the 
on
rete slab, while the displa
ement is measured at the 
entre pointof the surfa
e. The displa
ement 
ontrol was obtained by pla
ing a dummy 
onta
tpoint where the horizontal for
e should be applied. At this point a pres
ribedvelo
ity was applied and the resulting 
onta
t for
e and displa
ement were reported.The following s
aling of the 
ontrol point velo
ity was used s(t) = 1e−5t/(1+1e−5t)in order to obtain smooth transition from the initial state. Thus as a result, the
ontrol velo
ity was growing with time a

ording to the formula vhorizontal (t) =
vis (t), where vi ∈ {0.1mm/s, 0.02mm/s}. This transition proved to be ne
essaryin order to avoid abrupt 
hanges of solution at the initial stage of displa
ementloading. Input parameters

Figure 13.4.31. Wall geometry and loading (Louren
o et al. [142℄).



13.4. SOME BENCHMARKS 201Young's modulus (GPa) E = 15.5Poisson's ratio ν = 0.2Coulomb fri
tion µ = 0.62Cohesion (MPa) c = 0.3Time step (s) h = 1Mass s
aling λmaxh = 4Dynami
 relaxation termination ratio r = 0.1Dynami
 relaxation iterations bound K = 100Load 
ontrol velo
ities (N/s) {5, 1}Displa
ement 
ontrol velo
ities (mm/s) {0.1, 0.02}Verti
al load (kN) 30Maximum stepwise displa
ement (mm) δlmax = 1ResultsFirgure 13.4.32 shows the maxium 
ompressive 
omponents of Cau
hy stress forthe horizontal displa
ement of 15mm. At this stage a damage me
hanism was fullyformed in the experimental setup. It 
an be seen that numeri
al simulations are
apable of reprodu
ing the 
hara
teristi
 shear and ro
king failure, for whi
h thelower triangular part of the wall is unloading (subje
ted only to the gravitationalloading). Sensitivity of the results with respe
t to the 
ontrol me
hanism is visi-ble, as the range of 
ompressive stresses di�ers for the for
e and the displa
ement
ontrolled 
ases.Poor performan
e of the pseudo-rigid bodies in the elasti
 part of the displa-
ement-for
e graphs (Figures 13.4.33, 13.4.34) is no surprise. Assumption of uni-form deformations results in a very sti� behaviour, and this 
annot be helpedwithout a higher order kinemati
s. The nonlinear part of graphs displays 
learly arate-dependen
e of the numeri
al model. While this is in some a

ordan
e with thephysi
al reality and numeri
ally 
orresponds to the inertial terms being involvedin the transfer of 
onta
t for
es, no rate-dependent 
omponents exist in the under-lying formulation. For the displa
ement 
ontrol 
ase this 
an be explained by the
t = 17272.000000 s -8.31e-01 -1.13e-02 COMP [MPa]

y x
z

s t = 8226 s -8.20e-01 -9.01e-03 COMP [MPa]

y x
zFigure 13.4.32. Maximum 
ompressive Cau
hy stress for hori-zontal displa
ement equal 15mm. On the left the for
e 
ontrol wasapplied at a rate 1N/s. On the right displa
ement 
ontrol wasapplied at a rate 0.02mm/s. Bri
ks below the threshold of 1% ofthe maximum 
ompressive stress value are not 
oloured.
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Figure 13.4.34. Displa
ement 
ontrolled horizontal displa
ementversus horizontal for
e load paths.fa
t, that assuming a spe
i�
 velo
ity at a 
ontrol point enfor
es a spe
i�
 distan
ewhi
h the point travels a
ross the time step. With a �xed time step, a large enfor
eddispla
ement results in a large value of the 
ontrol rea
tion, whi
h instantaneouslypropagates through the stru
ture, rendering its answer sti�er. In the 
ase of theload 
ontrol a larger stepwise in
rement of the horizontal for
e results in highervelo
ity, whi
h propagates instantaneously with the same e�e
t. It is the questionfor a further resear
h, whether and how this kind of e�e
t 
an be ex
luded in the
ontext of a non-regularised quasi-stati
 multi-body formulation.



CHAPTER 14Con
lusionsThere is a number of issues whi
h need to be addressed, in order to 
ompletethe presented framework:(1) Energeti
 in
onsisten
y, pointed out in Se
tion 10.5, needs to be resolved.Only the ideally plasti
 impa
t model 
an be applied with some 
on�den
e,whenever su
h simpli�
ation is a

eptable. This was the 
ase in Se
tion13.4.8. Most 
onveniently, for deformable kinemati
s, one 
an use theaverage velo
ity Ū = 1
2 (U+ + U−) in the formulation of fri
tional 
onta
t
onstraints. For rigid bodies however, a more versatile solution is needed.Perhaps, it will be ne
essary to use a two-phase approa
h, 
ombined withPoisson's impa
t model, as it was done in [8, 70℄.(2) In the 
ontext of rigid kinemati
s, a rigorous treatment of multiple impa
tshas to be worked out. The la
k of a rational in
orporation of the sho
kpropagation e�e
ts represents a serious drawba
k. This is still an a
tiveresear
h topi
. Re
ent development by Liu et al. [140℄ deals with thefri
tionless 
ase and seems to be a good starting point in this respe
t.(3) The hybrid Newton te
hnique from Se
tion 11.2 needs to be extended inorder to 
ope with singular problems. Only then it 
an be
ome usefulin the 
ontext of rigid kinemati
s. Apart from the rigid 
ase, of equalimportan
e is an in
lusion of the �nite element dis
retised kinemati
s. Itremains a matter of future resear
h to investigate whether the proposedhybrid linearisation performs for these 
lassi
al approa
hes as well as itdoes in the pseudo-rigid setting.(4) Convergen
e of the 
omplete time-stepping remains to be shown. Quitelikely, on the way towards su
h a proof, some 
hanges to the overall designwill be ne
essary. However, this should not hinder the pra
ti
al utility ofthe numeri
al tool already at hand.(5) Theoreti
al estimates of 
omplexity of the dynami
 re
tangle stru
turefrom Se
tion 9.3.3.3 need to be experimentally veri�ed. Also in the 
on-text of 
onta
t dete
tion, implementation of the fast interse
tion Algo-rithm 9.4.3 needs to be 
ompleted and 
ompared against the simpler ap-proa
h from Algorithm 9.4.1. For the moment, only Algorithm 9.4.1 wasemployed in all of the presented examples involving 
onta
t.(6) On the presentation side, it would be useful to draw a link between theequality form of 
onta
t and fri
tion 
onstraints and the augmented La-grangian method by Hestenes, Powell and Ro
kafellar [91, 172, 181℄.This would shed additional light on the origins of the predi
tor d =R−ρŪ.The pseudo-rigid 
ontinuum model by Cohen and Mun
aster [46℄ was exempli-�ed only in the 
ontext of quasi-stati
s. Integration of an un
onstrained dynami
motion merely 
on�rms 
onservation properties of the time stepping s
heme (5.1.1-5.1.3). While the single impa
t behaviour was already studied in [193, 113, 112℄,it might be interesting to investigate appli
ation of the pseudo-rigid model as asimple workaround to the la
k of a pra
ti
al multiple-impa
t resolution for rigid203



14. CONCLUSIONS 204kinemati
s. Some early dynami
 examples were given in [121℄. The pra
ti
al limi-tation is in the ne
essity of using an extremely small time step, for realisti
 valuesof the material parameters. This, 
ombined with the need for the solution of animpli
it nonlinear problem at every time step, renders this approa
h rather unfea-sible for large and dense multi-body problems. On the other hand, only for su
hproblems the simpli�ed deformability 
an be eventually a

epted. An interestingimprovement here would be to time-homogenise 
onta
t variables, and hen
e solvethe fri
tional 
onta
t problem only every n steps. In the quasi-stati
 
ontext, thepseudo-rigid model proved useful and allowed to test 
onta
t solvers on the pro-totype of a �nite-kinemati
s, multi-body framework (
f. Se
tion 13.3). From thispoint of view, the model 
an be regarded as a good stress post-pro
essor, althoughits elasti
 response is too sti� (
f. Se
tion 13.4.9). In pra
tise, it might be more 
on-venient to use few �nite elements instead of a single pseudo-rigid body - espe
iallyin the situations, where large rotations are not essential.The hybrid Newton solver from Se
tion 11.2 shows promise in dealing with thefri
tional 
onta
t problem. Apart from the already mentioned re�nement, fa
ili-tating appli
ation to over-determined systems, one 
an also think about a parallelimplementation of this approa
h. A dire
t linear solver 
ould be repla
ed by an iter-ative one, pre
onditioned with positive-de�nite tangents resulting from the Tres
aformulation. An implementation of the framework presented here has already beenpartly parallelised [122℄. Nevertheless, this e�ort stumbled on the di�
ulty withan e�e
tive, distributed memory implementation of the Gauss-Seidel solver. Thismotivated developments of Se
tion 11.2.As a more a

omplished fa
t, one should mention the time stepping s
hemesfrom Se
tion 5.2.2. NEW2 and NEW3 do have some good properties. For severalreasons NEW2 appears to be well suited for the short to moderate term analysis of
onstrained systems. As it was shown, the exa
t 
onservation of the angular mo-mentum may o

ur ne
essary in order to maintain a

ura
y (Example 13.1.3). Atthe same time, the amount of the energy loss is often a

eptable for the in
remen-tal rotations of magnitudes di
tated by an a

urate integration of the 
onstrainedmotion. Additionally, the dissipative behaviour of NEW2 seems advantageous inthe 
ontext of an expli
it multi-body 
onta
t analysis, where the episodes of ex
es-sively high 
onta
t rea
tions should not render the analysis unstable. For longerterm analysis or for the 
ases where a higher a

ura
y is required, NEW3 
omesquite handy, with only a moderate in
rease of the 
omputational 
ost and stillo�ering all of the advantages of NEW2.
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