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Abstract

This work summarises a computational framework for dealing with dynamic
multi-body frictional contact problems. It is in fact a detailed account of an instance
of the Contact Dynamics method by Moreau and Jean. Hence the title. Multi-body
systems with contact constraints are common. Some of them, such as machines or
arrangements of particulate media, need to be predictable. Predictions correspond
to approximate solutions of mathematical models describing interactions within
such systems. The models are implemented as computational algorithms.

The main contributions of the author are in an improved time integration method
for rigid rotations, and in a robust Newton scheme for solving the frictional contact
problem. A simple and efficient way of integrating rigid rotations is presented. The
algorithm is stable, second order accurate, and in its explicit version involves eval-
uation of only two exponential maps per time step. The semi-explicit version of the
proposed scheme improves upon the long term stability, while it retains the explic-
itness in the force evaluation. The algebraic structure of both schemes makes them
suitable for the analysis of constrained multi-body systems. The explicit algorithm
is specifically aimed at the analysis involving small incremental rotations, where its
modest computational cost becomes the major advantage. The semi-explicit scheme
naturally broadens the scope of possible applications. The semismooth Newton ap-
proach is adopted in the context of the frictional contact between three-dimensional
pseudo-rigid bodies, proposed by Cohen and Muncaster. The Signorini-Coulomb
problem is formulated according to the formalism of Contact Dynamics. Hybrid lin-
earisation, parameter scaling and line search techniques are combined as the global
convergence enhancements of the Newton algorithm. Quasi-static simulations of
dry masonry assemblies exemplify performance of the presented framework.
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CHAPTER 1

Introduction

I once watched an interview with the Dutch computer scientist Edsger Wybe
Dijkstra. In the flow of the interview, he told a story about a lecture he gave at
a software company somewhere in Brussels. The lecture was about writing correct
code, and it turned out to be a complete failure. According to Dijkstra’s judgement,
the programmers were not interested in learning how to code, because they “derived
their intellectual excitement from the fact that they didn’t quite know what they
were doing”. At that time I was working at a software company and I could indeed
observe this type of excitement in my own manner of work. Sometime later I started
doctoral studies in Glasgow. In fact I was not that much interested in the topic
itself, but rather I wanted to find a way of turning the “intellectual excitement” into
something more useful. This thesis gives a snapshot of an ongoing effort towards
realisation of this aim. It would be far fetched to claim, that the state of mind
mentioned by Dijkstra did not accompany me occasionally in the course of this
work. Nevertheless, upon reflection I have to admit that maybe it is rather a kind
of balance that should be sought.

Style. This is the only chapter written in the first person. The remaining ones
use a mixture of the passive voice and the “royal we”, which I have found most
convenient and versatile. I did not manage to avoid expressions like: “It is easy
to see ...”, or “It is not difficult ...”, or “Clearly ... “ etc. This has to be brought
down to my linguistic limitations, rather than mathematical skills. I did seriously
consider removing them all after finishing writing, but then I gave up, foreseeing
too much trouble. I trust the reader will accept my apologies here. I did make
an effort to deliver some mathematical rigour, more for my own use and as an
exercise, rather than because it was unavoidable. For this reason, I suppose, a
mathematician would find this text not only overblown but also lacking precision,
while an engineer could find it at times formidable. I do tend to include lengthy
derivations whenever necessary, as I would like them to serve me (or someone else)
as a reference at a later point. At the end of some chapters I have included concise
literature reviews. This might seem like a strange choice at first. I reckon it is
not so, as it seems more natural to become curious of related developments, after
having some taste of the main body of a chapter. Also for me it was often easier
to summarise additional references, after the foregoing material had taken its final
shape.

Topic. This work outlines a computational method aimed at tracing motion
of bodies coming into contact with each other. As such, the motion of contacting
bodies is among the most common physical phenomena. By merely looking around,
one can easily register a number of “multi-body systems with contact constraints”.
Almost every human activity involves some kind of “contact dynamics”. For exam-
ple, typing this very text. Of course, most of every day actions do not require to be
abstracted in the language of mathematics in order to be executed. But in general,
there is a need for such abstraction. It is both practical (driven by industry) and
purely cognitive. Several years ago, when reviewing literature related to the issues

7



1. INTRODUCTION 8

of contact, my attention was drawn to the works of Moreau [156] and Jean [102],
describing basics of their Contact Dynamics method (CD). I did not understand
much of those papers at first. Over time, I have filled most (but not all) of the gaps
in my understanding. In the following I have described a particular instance of a
CD algorithm. I preferred not to repeat dully those aspects of the mathematical
formulation, which are still beyond my grasp (e.g. measure theory). Hence, I tend
to resort to discretisation. I do not deliberate much on the convergence of the
discrete scheme. Relevant references are mentioned in the due time. My intention
is to deliver a self-contained summary for a programmer interested in getting into
grips with CD.

Basics. It will be useful to introduce some basic notions here. It can be best
done by drawing a figure. Let us have a look

There are four bodies in the figure. Placement of each point of every body is deter-
mined by the configuration q;. Velocity of each point of every body is determined
by the velocity u;. If the time history of velocity is known, the configuration can
be computed as

(1.0.1) MQ—MW+A]WNmﬁ

where F is a general function, usually an identity, F () = x. The velocity is
determined by integrating Newton’s law

(1.0.2) p@:p@+Af@mﬂﬁ

(1.0.3) u(t)=g(p(t)

where p is the momentum, G is another general function, and f is the resultant
force. While integrating the motion of bodies, one keeps track of a number of local
coordinate systems. These will be called local frames. There are four of them in
the figure. Each local frame is related to a pair of points, belonging to two distinct
bodies. An observer embedded in a local frame calculates the local relative velocity
U of one of the points, viewed from the perspective of the other point. If necessary,
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the observer applies some force R'. An action of each observer can be implicitly
described as

(1.0.4) C(U,R)=0

Actions of observers are local. They only know how to react to a change of velocity
U at the point of their residence. At the same time, as many of them act collectively,
the effect of their work influences one another. A global observer can see this
happening and is able to transform the relation

(1.0.5) ut)=¢ (p (0) + /Otf(t) dt)

into a formula describing what will be called local dynamics

(1.0.6) U=WR+B

W and B determine a linear transformation between the local forces R and veloc-
ities U for every instant of time. The global observer can then force his local peers
to act in harmony by stating

(1.0.7) C(WR+B,R)=0

In a sense, there is no more to it. In the above, when using symbols q, u, U and
R without indices, collections of relevant variables were meant.

Map. The remaining chapters decompose the above figure into more or less
independent modules. An experienced reader should be able to skip uninteresting
bits, and move right to the one of his or her interest. In order to make this easier,
I have summarised below all, but the last?, of the forthcoming chapters.

Chapter 2: Shape

The class of shapes considered in the implementation is described. In short,
these are arbitrary unions of convex polyhedrons. These include finite-element
like meshes, etc. A class of surface elements is distinguished. These are adjacent
to the surface of discretised bodies and will be used later for contact detection.

Chapter 3: Kinematics

This chapter deals with formula (1.0.1). It contains quite a detailed account of
what q and u are in the case of rigid and so called pseudo-rigid bodies. Notions
of the configuration and tangent spaces are introduced, to which respectively q
and u belong. Issues of parametrisation of q by a reduced number of variables are
discussed for rigid bodies. Some basics of relevant tensor calculus are given.

Chapter 4: Dynamics

Formulae (1.0.2) and (1.0.3) are a focus of attention here. The classical Newtonian
balance principles are worked out for rigid and pseudo-rigid bodies. The matrix
notation given at the end of the chapter will be of use for a reader interested in the
implementation.

Ilet us is temporarily abandon the traditional notion of a passive observer.
2Ts there a point in summarising conclusions?
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Chapter 5: Time stepping

Time integration, that is a numerical equivalent of what happens in (1.0.1) and
(1.0.2), is the “work horse” of the complete scheme. My intention here was to use
the simplest possible methods. For dynamics, explicit second order schemes are
employed (equivalent to the central difference method). Their accuracy reduces
to the first order in the presence of impacts. First order implicit Euler scheme is

utilised for the quasi-static case.

Chapter 6: Local frames

In this chapter the notion of the local frame is given a precise definition. The main
point here is in introduction of a linear operator H, a role of which is to transform
u into U. That is U = Hu. Specific forms of H for rigid and pseudo-rigid bodies
are given.

Chapter 7: Local dynamics

The notion of the local frame and the H mapping are employed in order to derive the
equations of local dynamics (1.0.6). Some links with convexity and conjugacy are
explained. As a byproduct, the numerical integration in time is given a wrapping
of unconstrained convex minimisation. Also, some remarks about the structure of
the W operator are included.

Chapter 8: Joints

A joint is pictured in the top-right part of the figure given few pages earlier. The
slender body can only rotate around this point. Implementation of this and other
kinds of joints is described in this chapter. Specific actions of the local observer in
form (1.0.4) are given. In other words, this chapter is about the equality constraints.

Chapter 9: Contact points

This chapter summarises algorithms, aimed at finding candidate contact points.
Contrary to joints, these are usually not known in advance. A geometrical search
needs to be done to identify pairs of points, where local frames are later placed.
Efficient methods for performing this task are given. One of the characteristic
features is the derivation of local frames from the volumetric intersections between
pairs of surface elements. This is of use in the presence of nonsmooth geometry.

Chapter 10: The frictional contact problem

Once the local frames related to contacts have been found, the frictional contact
problem can be defined. This is done in a standard manner, that is in stages.
The frictionless non-penetration problem is discussed at greatest length. Then the
friction problem, not coupled with non-penetration is summarised. The frictional
contact problem is given and difficulties related to its solution pointed out. In the
meantime, the equality form (1.0.4) of the contact constraints is worked out. When
applicable, analogies with constrained minimisation are mentioned, although in the
end only the root finding problem (1.0.7) prevails.
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Chapter 11: Solvers

Numerical methods for solving problem (1.0.7) are discussed. The classical fixed-
point iteration is described, together with a semi-smooth Newton method and a
hybrid method based on heuristic improvements. The block Gauss-Seidel scheme,
traditionally used in CD, is also summarised.

Chapter 12: Implementation

In this brief chapter, the foregoing developments are summarised in two algorithms.
One for dynamics and one for quasi-statics.

Chapter 13: Examples

A number of examples is given here. This include integration of rigid rotations,
contact detection and Newton solvers. Several benchmarks are included, comparing
the results with previously documented figures.

Contributions. The biggest gain from this work is of course personal. Tt
was undoubtedly a privilege to have several years for discovering and improving a
method of work that suits me best. One the other hand, T should mention some
papers as these seem to be the agreed upon measure of performance.

My first journal paper [1238] described a Newton method for solving (1.0.7).
The main scheme was developed earlier by Hiieber et al. [96]. My contribution was
only in translating that work into the context of CD and developing some heuristic
improvements (cf. Section 11.2). The Signorini-Coulomb problem is formulated
according to the formalism of Contact Dynamics. Hybrid linearisation, parameter
scaling and line search techniques are combined as the global convergence enhance-
ments of the Newton algorithm. Quasi-static simulations of dry masonry assemblies
exemplify performance of the presented framework.

The second paper [124] described a new time integration scheme for rigid rota-
tions (cf. Section 5.2). It arose as a byproduct of an interaction with our industrial
partner. Papers by Krysl et al. [126, 163, 128, 127] were of great help and served
as inspiration. The scheme given in Section 5.2 is simple and efficient. It is also sta-
ble, second order accurate, and in its explicit version involves evaluation of only two
exponential maps per time step. The semi-explicit version of the proposed scheme
improves upon the long term stability, while it retains the explicitness in the force
evaluation. The algebraic structure of both schemes makes them suitable for the
analysis of constrained multi-body systems. The explicit algorithm is specifically
aimed at the analysis involving small incremental rotations, where its modest com-
putational cost becomes the major advantage. The semi-explicit scheme naturally
broadens the scope of possible applications.

During the first year of studies I was still biased by my programming back-
ground. It was easier to work on contact detection, rather than study CD. The
work presented in Chapter 9 is quite laborious, although it does not seem to be
adding much to the saturated field of geometrical algorithms. Some of the results
presented there I have improved only recently, while writing up. More time is
needed to test them thoroughly.



CHAPTER 2
Shape

Shapes are approximated by volumetric meshes identical with those used in the
finite element analysis'. This serves a double purpose. Within the adopted, simpli-
fied representation of motion, mesh density corresponds to the accuracy of contact
resolution. At the same time, an extension to the finite element case is made easier.
Nevertheless, the extension is not pursued within this work. The shape of a body
is then represented by a convex decomposition (discretisation) into hexahedrons,
wedges, pyramids and tetrahedrons (Figure 2.0.1). Those are composed of nodes,
edges and faces in a manner suitable for identification of topological adjacency re-
lations. The volumetric convex cells are called elements. All of those issues are
rather elementary and need no further explanation. The only notion specific to
the current context corresponds to the set of surface elements. The faces of those
elements have nonempty intersections with the discretised surface of a body. Figure
2.0.2 illustrates the idea.

WL

F1GURE 2.0.1. Hexahedron, wedge, pyramid and tetrahedron. Ba-
sic elements used for the discretisation of a body shape.

Ficurg 2.0.2. Torus shaped body and a planar slice of its dis-
cretisation. The surface elements have been darkened.

The surface elements will play a role in the contact detection process described
in Chapter 9. As far as the present framework is concerned, the remaining elements
are only used to calculate characteristics of mass distribution. It is relevant to point

IThis is assumed only to simplify the presentation. In the actual implementation, apart from
the mesh representation, arbitrary unions of convex shapes are admitted.

12
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out that the convexity of elements is a necessary condition for the correctness of
some of the subsequently employed algorithms. Within the class of motions consid-
ered here, convexity is naturally preserved (Chapter 3). An eventual generalisation
admitting a greater degree of deformability ought to account for the possibility
of severe element distortion. This can be for example achieved, by employing an
exclusively tetrahedral mesh within the set of the surface elements.



CHAPTER 3

Kinematics

Placement of a three-dimensional body can be identified with a subset of the
Euclidean point space E3. The open nonempty set occupied by the body at time ¢
is denoted by By. The closure of By bears the name of the reference configuration.
Accordingly, at any time ¢ the closure of an open nonempty set B is referred to as
the current configuration. Boundaries of those sets are denoted by 08y and 9B. An
invertible mapping x carrying points of By into corresponding points of B is called
a motion. Thus x = x (X, t), where x € B and X € By.

In order to express the motion in an explicit form, it is necessary to select coor-
dinate systems {xz} and {Xi}, covering respectively the current and the reference
configuration. This is most naturally done by an introduction of two Cartesian
coordinate systems, where both points and vectors are represented by triplets of
real numbers. Let e; and E; be two sets of orthonormal vectors (with respect to the
standard inner product on R3). Keeping in mind the notional difference between a
point (location) and a vector (equivalence class of location differences), the spatial
and referential points can be expressed in coordinates as x = 2’e; and X = X*E;.
The real numbers z*, X* are the components of x, X with respect to the bases e;, E;.
The zero origins of the two coordinate systems need not coincide in the physical
space.

It should be noted, that By and B, being open subsets of the Euclidean space,
are by definition manifolds. In general a differentiable manifold can be defined as a
set in which neighbourhoods of all points can be mapped in a smooth and invertible
manner onto open subsets of R™. A tangent space TyxBB is a vector space spanned
at a point x € B of the manifold and composed of all possible velocities of the
point. The set of all tangent spaces at all points is called the tangent bundle TB.
As all tangent spaces of By and B are identical, vector bases e;, E; can be used
to parametrise the tangent bundles T'By and T'B. More precise definitions can be
found in Arnold [12, pp. 76-81] or Marsden and Hughes [147, pp. 35-36].

3.1. Rigid body
The motion of a rigid body reads

(3.1.1) x(X,t)=A(t) (X =X)+x(t)

where A (t) is a 3 x 3 rotation operator, X is a selected referential point, and x (¢) is
a spatial point. It is seen that X (t) = x (X, t) is the motion of the selected point X.
The term A (t) (X — X) represents the rotation of X about the point X. Thus, the
rigidity condition follows ||x — %|| = ||X — X||, where the standard Euclidean norm
is assumed. The linear operator A acts between the tangent bundles A : TBy — T'B5.
In order to represent rotations, A must be orthogonal A” A = I, where I is the 3 x 3
identity on T'By. It is physically meaningful to assume that A preserves orientation,
so that det (A) = 1. The set of all 3 x 3 matrices with the assumed properties forms
a group under matrix multiplication, called the special orthogonal group SO (3) [12,
p. 126]. The configuration space of a rigid body can be then defined as

14
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(3.1.2) Q" = R3 x SO (3)

The set Q"% has the structure of a six-dimensional manifold. The first three
coordinates are simply those of the point X. The remaining three coordinates
correspond to the parametrisation of the rotation space. As ATA is a symmetric
matrix, the condition AT A = I induces six independent constraints on nine entries
of the rotation matrix. It can be shown that the Jacobian of the constraints has full
rank everywhere, and thus the implicit function theorem implies existence of locally
smooth and invertible maps from SO (3) into R®. Hence, the special orthogonal
group is a manifold and so is the configuration space Q"%9.

In fact it will be useful to extend a bit the discussion related to the constraint
function f(A) = ATA — 1. The surface f(A) = 0 is embedded in the nine-
dimensional space of all 3 x 3 matrices. On the part where det (A) = 1, it is
composed of the points of the manifold SO (3). A selected point A € SO (3)
travels on SO (3) along the directions tangent to the surface: A € TASO (3). Thus
A must be orthogonal to the gradients of all six scalar constraints in f. In other
words Df (A) - A = 0 or equivalently

(3.1.3) ATA+ATA=0

Let us define an anti-symmetric 3 X 3 operator as

(3.1.4) Q=ATA

so that (3.1.3) states Q7 = —Q. If A = I, there follows that = A, hence
the tangent space T1.50 (3) is composed of anti-symmetric 3 x 3 matrices. In the
remaining case A # I, the tangent space T SO (3) is composed of matrix products
AQ. Tt should be noted, that the three independent components of Q are exactly
the reason why D f was assumed to have full rank in the previous paragraph (the
dimension of the null space of D f, cf. [1]).

The operator 2 deserves further attention. From (3.1.1) and (3.1.4) the velocity
of a spatial point can be computed as follows

(3.1.5) X =AQ (X - X) +x

thus € acts between the spaces Q:TBy — TBy. Let y=x-%xXand Y =X - X.
Noting that Y = ATy, equation (3.1.5) can be rewritten as

(3.1.6) y = AQA Ty

Obviously, transformation AQAT preserves anti-symmetry of Q. It is convenient
to define the following operator

(3.1.7) o =AQAT

acting between the spaces @ : T — TB. Equation (3.1.6) reads now

(3.1.8) y =y
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The above formula gives the velocity of a spatial vector caused solely by the ro-
tational motion. The operator @ bears the name of the spatial angular velocity
tensor. By analogy Q is called the referential' angular velocity tensor.

Let & be constant (whereas € need not be), so that (3.1.8) becomes the homo-
geneous system of linear ordinary differential equations with constant coefficients.
The solution to (3.1.8) can be expressed the following form [14, pp. 110-111]

(3.1.9) y (t) = exp (t&) y (0)
where exp (-) is the matrix exponential, yet to be commented on. Equation (3.1.8)
can be also rewritten in the referential form

(3.1.10) Y = QY

where Y = ATy. Similarly, if one assumes €2 to be constant (whereas @ need not
be), the solution to (3.1.10) follows

(3.1.11) Y (t) = exp (m) Y (0)

For both cases, one can compute y (t) as

(3.1.12) y (£) = [exp (t&) A (0)] Y (0)

(3.1.13) v (t) = [A (0) exp (tﬂ)} Y (0)

where the terms in brackets [-] are respectively called the spatial and the referential
compound rotations [146, p. 29]. In case neither & nor Q are constant, the above
formulae still provide a good (first order) estimate of the rotation update for ¢ — 0.
This feature is often utilised in the numerical context.

The matrix exponential exp (+) is defined as follows

2 3

(3.1.14) eXp(A):I—FA—F%—F%—I—...

where A : R” — R™ is a linear operator and I is the identity. It is easy to show
that the above series converges uniformly (at rate independent of the argument) if
only A is bounded (it does not stretch the unit ball in R™ infinitely) [14, p. 105].
One can consider a one-parameter family of linear operators exp (tA) : R — R™.
It can be shown that this is a one-parameter group of linear operators [14, p. 109],
that is

(3.1.15) exp ((t + s) A) = exp (tA) exp (sA)
and
(3.1.16) %exp (tA) = Aexp (tA) is defined for all ¢

The above defined group is commutative: exp (tA)exp (sA) = exp (sA)exp (tA).
Another useful property follows from the definition of the matrix exponential (3.1.14)
and the group property (3.1.15): action of exp (-) on skew-symmetric matrices pro-
duces orthogonal operators. This could be anticipated from (3.1.12) and (3.1.13),

1material, convected or body-frame are also used in the literature
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although now it is clear that ATA = exp (QT> exp (Q) = exp (—Q) exp (fl) =

exp (0) = I, where A = exp (Q) was assumed. It is easy to realise that rotations

do not commute in general (A;Ay # A3Aq, rotate a pencil about the horizontal
and then the vertical axes and then swap the order). The rotation group SO (3) is
not commutative. Nevertheless, the one-parameter group A* = exp (t&) is commu-
tative. Experience suggests that this corresponds to the rotation about a fixed axis,
where indeed the final effect does not depend on the order in which the rotations
are being applied. A can be interpreted as a curve on the surface of SO (3), start-
ing at the point I. After (3.1.16) the velocity of A? along A’ reads %At|t:0 =w
which confirms that & € T1SO (3) (note that & = Q at I). Generally, the velocity
along A! at some point A® reads %At|t:s = @A*. By definition of the tangent
space WA® € TpAsSO (3). Indeed, as & = AQAT, there holds ®A = AQ and it was
already demonstrated, that AQ € Ty SO (3).

The matrix exponential (3.1.14) applied in the context of the group SO (3)
is also called the exzponential map. This term is traditionally used in the theory
of Lie groups (groups L, where the internal operation L x L — L is continuous
and differentiable), where the exponential map acts on the elements of the tangent
space at identity (called Lie algebra) and produces elements of the Lie group. This
is exactly the case with SO (3) [146, pp. 27-32]. The practical utility of the
exponential map results here from the fact that (3.1.14) enjoys a closed form sum

sin||\Il||‘il 1 — cos !‘I’H‘ilz
(R4l @]

due to Euler and Rodrigues [100]. The above expression is often addressed as the

(3.1.17) exp [¥] =1+

Rodrigues formula. The argument ¥ and the operator [-] require some further ex-
planation. Anti-symmetric matrices in R™ generally have n (n — 1) /2 components.
It happens that 3 (3 — 1) /2 = 3, so that there is a one-to-one correspondence be-
tween the 3 x 3 anti-symmetric matrices and vectors in R?. Namely

A 0 —U3 U,
(3.1.18) b=| o3 0 -
—W, W0

where ¥ € TE® and ¥ € TySO (3). Note, that ¥ acts as an argument to the
mapping outputting a point on the surface of SO (3). Thus it is natural to interpret
¥ as a point in E3 (rotations do not commute - one does not add points). On
the other hand, ¥ remains in correspondence with the skew-symmetric matrices
¥ e T1SO (3) and in this context it is most conveniently interpreted as a vector.
This notional duality needs to be kept in mind. Vector W is called the azial vector
of the skew-symmetric matrix ¥. This convention allows to interpret w and € as
respectively the spatial and the referential angular velocity vectors. It is easy to
notice, that action of the skew-symmetric operator (3.1.18) on a vector parallels
the usual vector product formula

(3.1.19) Wy =wxy

Formulae (3.1.18) and (3.1.19) establish an isomorphism (invertible, structure pre-
serving map) between the spaces TE? and T1SO (3) (denoted as TE? = TySO (3)).
In practice it is often more efficient to operate on vectors, rather than skew-
symmetric matrices. For example, formula (3.1.7) takes the simple form
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b'=exp[W]b

FIGURE 3.1.1. The finite rotation vector ¥ and the action of the
exponential map exp [¥].

(3.1.20) w=AQ

when vectors are used instead of the skew matrices.

Recall, that the curve A' = exp (t) was interpreted as the rotation along a
fixed axis. ¥ acting as an argument of (3.1.17) can be interpreted as the rotation
vector, collinear with the fixed axis. Note, that exp [¥]® = ¥ (as ¥¥ = 0) so
that ¥ does not rotate vectors coaxial with itself. Geometrically, the action of the
operator exp [¥] can be interpreted as the rotation of magnitude ||¥| about the
axis collinear with ¥ (Figure 8.1.1). Thus, the rotation vector based parametri-
sation of SO (3) is singular on spheres | ¥|| = 27n, n € {1,2,...} in the sense that
these subsets of the Euclidean 3—space are mapped into the single identity element
of the rotation space. Nevertheless, the singularity can be avoided either by the
adaptation of the incremental formulation (3.1.12), (3.1.14) (the magnitudes of the
rotation increments need to be smaller than 27), or by a suitable re-parametrisation
[146, p. 26]. The singularity of the map exp [¥] : E3 — SO (3) is related to the
intrinsic incompatibility between the shapes of subsets of E® and the manifold
SO (3). Although SO (3) is locally Euclidean (looks like E3 in the neighbourhood
of each point) it cannot be spread in E? without making a hole in it. Or conversely,
one cannot wrap E3 around SO (3) without having some bits of E3 overlapping
(somewhat more rigorous discussion can be found in [146, pp. 25-26]). Similarly,
a sphere in E3 can be locally deformed into a flat area, although there is no way
to spread it over a planar surface without some damage. The sphere analogy is in
fact quite adequate, as the gquaternion parametrisation allows to interpret SO (3)
as the unit sphere embedded in E* [100].

One more thing to discuss is the relation between tangent spaces at different
points of SO (3). Let us consider A = exp [¥]. One can perceive ¥ as a point in
E3 for which a corresponding point in SO (3) can be found through exp[]. It is
natural to ask, how a perturbation of the point ¥ affects the point A. Hence, a
linearisation of the relation JA = exp [¥ + d¥] is sought. We already know that
SA = 6&A = ASY € TASO (3), which is simply another way of writing down
the velocity relations. The linear variation of exp [¥ 4 §®| with respect to the
perturbation vector §® is delivered by the differential of exp [-]. There holds

_ Jexp [¥] oW = 4 exp [P + s0 W]

s=0

where W € TE? = T1SO (3) is arbitrary. One can write now
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A Oexp [P]
_ AT
(3.1.22) =A 3 o

or equivalently

(3.1.23) 0 = exp [~ P] diexp (W + s07]
S s=0

It is seen that ATaeg—f’I,['I'] is a third-order object, which contracted with ¥ delivers
a skew-symmetric operator. One can thus use only three components of (3.1.22) in
order to create a relation between the axial vectors

(3.1.24) 6Q =TT 5w

A lengthy and somewhat tedious calculation (Ibrahimbegovic¢ [99], Crisfield [144],
Ritto-Corréa [145]) leads to the following simple form of T

—cos ] ¢, = sin | @] o,

1w Rl
One can also establish a relation between the spatial perturbation dw and 0¥ by
processing the relation dw = ae;—F"I,['I'](S\IIAT. The resultant formula reads [99, 145]

1
(3.1.25) T=1+

(3.1.26) Sw = T6W

Due to (3.1.24), (3.1.26) and the transformation between the spatial and referential
angular velocity vectors (3.1.20), there holds

(3.1.27) T = ATT
Transposition and right-multiplication by A7 leads to

(3.1.28) T = TA”

so that A and T commute. One can see from (3.1.17) and (3.1.25) that A and T
share eigenvectors and thus commute [99].

The operator T establishes a connection between the tangent spaces T1.SO (3)
and TA SO (3), where A is a point at ¢ = 1 on the curve A* = exp [t®]. In order to
picture this graphically, it is convenient to make a notional distinction between the
spatial and the material tangent spaces at A. In reference to the algebraic form of
the constraint ATA — I, it is natural to speak about velocities A fulfilling (3.1.3)
as elements of the tangent space TASO (3). It then follows that pre-multiplying
A by an anti-symmetric spatial angular velocity w (or perturbation dw), or post-
multiplying it by a referential (material) angular velocity € (or perturbation 0€2),
creates an element of the tangent space TASO (3). This is in analogy with the
addition of vectors to points in E?, although the lack of commutativity of the
rotation group makes it necessary to speak about the left-multiplication and the
right-multiplication separately. Thinking about anti-symmetric operators acting on
a point A one can than introduce the notion of a spatial and material tangent spaces
TS0 (3) and TR**SO (3), composed respectively of all spatial and referential
(material) angular velocities (perturbations) acting on A. In this respect, there
holds T : T1SO (3) — T)*SO(3) and T : T1SO (3) — TR***SO (3). This is
illustrated in Figure 3.1.2.
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FIGURE 3.1.2. Interpretation of tangent spaces on SO (3) together
with the actions of exp [-] and T operators.

It is finally relevant to comment on the practical utility of the operator T.
Elements of tangent vector spaces TA SO (3) can be added to one another only if
they are all of the same kind (spatial or material) and all based at the same point
A. That is, for Q1 € TY***SO (3) and Qo € TX*SO (3) it is meaningful to consider
the sum Q7 + Qs only if A; = As. In case A1 # Ao, one of the vectors needs to
be brought into the tangent space of the other one. T provides a specific instance
of such operation, of importance in numerical realisations.

Rigid kinematics
(1) Motion
x(X,t) =A(t) (X = X) +x(t)
x,x€B, X,X € By, AcSO(3)
(2) Velocity
(X, t)=A@t) (X -X) +x(t)
x,x€TB, A=AQ=0A € TS0 (3)
o =A0QAT & w=AQ
(3) Parametrisation
A(P)=exp[P], TecE3 AcSO(3)
0Q = TT6W, dw=T6¥
ASY, 6OA € TASO (3), 0¥ € TE®> =TS0 (3)
sin [ @] g, 1= cos |||l ;o

exp [P] =1+

| @)
_ l_COS!‘IIH\iI H‘I’H—blgH‘I’H‘ip
| e
X 0 -3 WUy
U = U 0 -0y |, ||\Il|| = <\Il,\Il)

-0, Uy 0
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3.2. Pseudo-rigid body

The motion of a pseudo-rigid body reads

(3.2.1) x(t)=F(t) (X =X) +x(t)

where x is the current image of a referential point X, F is a spatially homogeneous
deformation gradient (F = 0x/0X), X is a selected referential point and % = % (t)
is the current image of X. Deformation gradient F, being an invertible and ori-
entation preserving (det (F) > 0) operator, belongs to the subgroup GL; (3, R) of
the general linear group GL (3, R) (group of real, invertible, 3 x 3 matrices). The
constraint det (F) > 0 indicates that GL4 (3, R) is an open subset of the twelve-
component space of all 3 x 3 matrices, trivially isomorphic with the Euclidean space
E°. Hence, the configuration space of a pseudo-rigid body

(3.2.2) QP = GL, (3,R) x E3

is a smooth manifold of dimension twelve. The velocity reads

(3.2.3) x(t)=F () (X-X)+x(t)

where, contrary to the rigid body case (3.1.5), no special treatment of F is necessary.
This results from the fact, than the inequality constraint det (F) > 0 does not
reduce the dimension of the configuration space. By definition, every point F
has an open neighbourhood contained in GLy (3, R). Thus all velocities F are
eligible, as an instantaneous departure from GL4 (3, R) is not possible. This can
be shown on the following example. Assume F (0) = I and F(0) = A. Then
det T+tA) = 14+ t>, Ay + O (t?) 14, p. 116], so that det (I+tA) > 0 for
sufficiently small ¢.

Instead of using the a=[aq, ag, ..., ag]T notation for the coordinates of points in
E? one can arrange them into the matrix form

apr a2 as
(3.2.4) A= as a5 ag
ary ag Gy

and define a binary operation E° x E° — E° equivalent to the matrix product.
This establishes the isomorphism ¢ : E° — GL, (3, R), so that A = ¢(a) and
a= ¢ ! (A). Similarly as for rotations and the exp [-] mapping, one can ask what
is the linearised relation between the perturbations 0A = ¢ (a + da). Obviously
0A = %qﬁ (a+ t5a)‘t:O = ¢ (da). As all tangent spaces of E° are identical and can

be parametrised by the standard base e; = [0,0, ..., 11-,0,0...]T7 one is free to add
vectors within TE®. One can define A + 0B = ¢ (¢! (JA) + ¢~ (6B)), which is
in fact the usual matrix addition. It follows that all tangent spaces of GL4 (3, R)
are identical. Thus, one can add velocities F () + F (s) for all ¢, s.

The structure of the configuration space QP ig then simpler than that of Qrig,
The above summary exhausts most of the points previously discussed for the rigid
body. One more analogy can be drawn. As x —x € TB and X — X € TBy, it
follows that F,F : TBy, — TB are two-point objects. One can define a spatial
object L : TB — TB, similar to the spatial angular velocity @

(3.2.5) L=FF!
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FIGURE 3.2.1. Two sets of base vectors D;, D and d;, d’ spanning
tangent and cotangent spaces TBy, T*By and TB,T*B.

L is called the deforming tensor [46, p. 19]. One can decompose L into the anti-
symmetric spin tensor O and the symmetric stretching tensor D.

(3.2.6) L=0+D

(3.2.7) 0= % (L-1L"), D=-(L+L")

N =

By utilising the polar decomposition of F

(3.2.8) F =AU

where A is orthogonal and U is symmetric positive-definite, it is possible to express
the spin and stretching tensors as [46, p. 19|

(3.2.9) 0 = AA" + %A (UU—1 - U—lU) AT

1 . .
(3.2.10) D= A (UU*1 + U’lU) AT

Clearly, in the absence of deformation U = I, the stretch tensor D is zero. For
U =1, the spin tensor becomes anti-symmetric and equal to the spatial angular
velocity O = @|y_;-

Pseudo-rigid kinematics
(1) Motion
x(X,t)=F () (X - X) +x(t)
x,Xx€B, X,XeBy, FeGL,(3,R)
(2) Velocity
X (X, t)=F (1) (X - X) +x(t)
x(X,t) =L(t) (x — %) +x(t)
x,x € TB, F=LF € TgGL, (3,R)
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3.2.1. Kinematics of vectors and tensors. It is useful to investigate, how
the assumed motion carries over geometrical objects attached to a body. Let
T*Bo, T*B be the covector (dual) spaces of TBy, TB, where the dual space is
composed of all linear functionals (one-forms, covectors) acting on the elements
of the tangent space (vectors). The distinction between vectors and covectors
is made for the sake of clarity, while it is acknowledged that R™ is equal to its
dual [125, p. 121]. Let base vectors D;,d; and covectors D¢ d’ respectively
span the tangent spaces TBy,TB and their duals T*By, T*B (Figure 3.2.1). It
is assumed that D;,D’ = d,d7 = 5{, where the Kronecker delta is defined as

55 ={0ifi#jor 1if i = j}. The deformation gradient can be expressed as

(3.2.11) F(t) =d; (t) ® D’

where @ stands for the dyadic product (a ® b = a'be; @ e;) and the Einstein
summation convention for repeated lower and upper indices is adopted (this holds
in the remaining part of this section) [46, p. 44]. Note that usually it is convenient
to assume D; = D* = E; = E? so that F can be viewed as composed of column vec-
tors d;. Through (3.2.1) and (3.2.11) the motion can be regarded as superposition
of translation and distortion of a coordinate system attached to a selected mate-
rial point. One can conceptually associate various tensor entities with the frames
d; (t),d(t). The time dependent distortion of d;,d* gives rise to several forms of
tensor rates, depending on the selection of an observer and the nature of involved
objects.

Let us recall that the action of a covector n = 7;d’ on a vector a = a’d; is
defined as (n,a) = n;d*a’d; = 1;078% = n;’. This, together with (3.2.11) allows
to deduce the basic transformation laws for vectors and covectors

(3.2.12) a=FA
(3.2.13) N =F"n
where

(3.2.14) A =o'D;, a=a'd;
(3.2.15) n=nd’, N =nD*

Note, that the actual coordinates with respect to the bases D,d do not change,
therefore a, A and n, N are called the codeforming vectors and covectors. From
(3.2.12) and (3.2.13) it is seen that while F : TBy — T8, its transpose FT : T*B —
T*By. Let us consider A and N, fixed in the reference configuration. The velocity
of current images of A and N reads

(3.2.16) a=FA=FF 'a=La

. . . T
(3.2.17) h=FTN=FTFn=— (F—lFF—l) F'n=-L"n
where differentiation of FF~!1 was exploited in the third step of (3.2.17). The
deforming tensor L can be expressed as
(3.2.18) L=FF'=d,®eD'D;0d =d; ®d’ = Lid; o &’

where L; are the components of the velocity of d; expressed in (the same) basis
d;. The deforming tensor can be used to obtain velocities of vectors (3.2.16) and
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covectors (3.2.17) convected with the body. In a more specific situation of an ant
walking on the surface of a pseudo-rigid body, the velocity of the ant will follow from
a chain rule of differentiation. The relative motion of the ant can be parametrised
by a vector-valued function

(3.2.19) a(t)=a'(t)d;

and thus the velocity reads

(3.2.20) a=d'd;+ao'd; =a+La

The symbol a stands for the codeforming derivative [46, p. 45] of the vector function
a (t). The codeforming derivative describes the velocity of a point travelling through
a moving pseudo-rigid body, viewed from the perspective of an observer embedded
in the deforming frame d;. In other words

(3.2.21) a=d'd;=a—La

A similar exercise can be made for a covector-valued function

(3.2.22) n(t) =mn; (t)d’

Now the codeforming derivative reads

(3.2.23) n=nd =n+L"n

It is quite easy to see that the codeforming derivative is in fact the Lie deriv-
ative with respect to the flow defined by the motion (3.2.1). For this to hold
one needs to conceptually extend the (co)vector function t(¢) into a constant
(co)vector field t(x,t) = t(t), defined on B. The flow based on the motion
X (t) can be in general defined as ys, = x (t)x(s)”' [147, p. 95]. Note that
XrtXsr = X(t)x(r)_l x (1) x (s)_l = Xs,t and ¢ is the identity. Let w = %Xt.,s
be the spatial velocity field on B. The Lie derivative of t with respect to w is
defined as

(3.2.24) Lot = di (xi.st (1)
t t=s

where x; ¢ is the pull-back operator related to t. For fixed ¢ and s the flow X
becomes a point mapping xs.: : Bs — B;. For vectors, the push-forward x .. and
the pull-back X3, operators are respectively the Jacobian and the inverse Jacobian
of xs,¢. Thus xsx : TBs — TB; and Xsit TB; — TBg for vectors. The relevant
operators for covectors are obtained in analogy to (3.2.13). For the pseudo-rigid
case the flow related formulae read

(3.2.25) X)) =F1(s)(x—x%x(s) +X
(3.2.26) x({t)=F () (X -X)+x(t)
(3.2.27) Xst = FOF () (x—%(s)+x(t)

Thus for vectors, the push-forward and pull-back operators take the form
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aXs,t

3.2.28 e = =F()F!
( ) Xs.t % (t) (s)
(3.2.29) P X - =F(s)F (1)
2. Xt %
while for covectors, there holds
(3.2.30) Norw = (Do g () FT (s)
eh S,t* 8X
(3.2.31) oy = (Lt C_pr (s)F7 (1)
o st 0x
Formula (3.2.21) can be rewritten as
o d .
(3.2.32) a = —(F(s)F ' (t)a(t))
dt t=s
_ [FSFglat n FSFglat}
t=s
= F,F;la, - F,F;'F.F la,
= a-—La
Similarly (3.2.23) reads
4 (R T
(3.2.33) no= - (F~" (s)F" (t)n (1))
t=s

— [F;TFtTnt n FS_TFtTht} t

=s
= n+L'n
<&
Note that due to (3.2.16) and (3.2.17), t = 0 implies that the the (co)vector t
is being convected with the flow of the motion. In this sense, the Lie derivative

measures how much a time dependent (co)vector field fails to be convected with
the motion.

A bilinear form E : N x K — R, wheren € N, k € K and N, K € {TB,, T*Bs}
is a linear form with respect to each of its arguments, E (ca + 0b, ) = aE (a,-) +
BE (b, ), analogously for E (-,ac + 8d). One can define it as follows

(3.2.34) E(n,k) =n-Ek

Conventionally [147, p. 65], if n,k € T*B, then E is called a contravariant tensor,
while for n, k € TB; it is called a covariant tensor. It is a mixed tensor otherwise.
Let us focus on the contravariant case, as it will be of use in the next chapter. Let
E be given by (3.2.34) for all n,k € T*B,. For any p,q € T*B; one can obtain
n = x;,p and k = x} ;q and thus

(3.2.35) E@P Al qer-5, = BN P X:,.9)
~ (F,"Flp) EF;"Flq
= p-FF'EF;TFIq

= P- Xs,t*Eq
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where

(3.2.36) Xs.xE = F,F'EF;TF]

defines the push-forward of E: T*B; x T*B; — R into x4 E : T*B, x T*B; — R.
Conversly, one can define the pull-back of E : T"B; x T*B; — R into x;,E :
T*Bs x T*Bs — R as follows

(3.2.37) x:,E=F,F,'EF;"F]

It is possible to calculate now the Lie derivative of E with respect to the flow defined
by the pseudo-rigid motion

< d _ _
(3.2.38) E o (F,F,'EF;"F])

t=s

- [FSFglEF;TFST +F,F;'EF,"FT + F,F, '"EF, "F”

t=s

= E-LE-EL”
where F~! = —F~'FF~! was utilised. The same formula can be worked out in
components

. d ”
(3.2.39) E = o (EYd; ® d;)

= BV ©d;+EY (Ld)®d; + EYd; ® (Ld))
= BEYd;©d; + EL(d; © d;) + BV (d; @ d;) L”
where a direct analogy to the codeforming derivative for vectors can be observed.

That is ]% = Fid; @ d;. Codeforming rates can be similarly computed for other
types of tensors.

The last discussed rate is related to the linear map H : T*B; — TB;. The
action of H can be described as

(3.2.40) p=Hn

where p € TB; and n € T*B;. One is then interested in computing the action of H
on covectors k € T*B;. Any k € T*B; can be pushed forward into xs <k € T*B;
so that

(3.2.41) q = Hysuk
= HF;"FTk
= xi,tHk
where the pull-back of H is defined as

(3.2.42) xiH=HF,"F
The codeforming derivative of H follows
O d _
(3.2.43) H = — (HF; "FI)
= H-HL"

t=s
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Vector and tensor kinematics
(1) Flow gradient

Fo,=Ft)F'(s)=Fo;=F, Fo, =1
(2) Vectors
a=F,;b, b=F_ ja, acTB;, beTB,
a=a—La
(3) Covectors
k=F,/n n=Fl k neT"B, keT*B
(n,-): TBs — R
n=n +L"n
(4) Contravariant tensors
G =F,,EF],
E=F,/GF,]
E:T"B, xT*Bs — R, G:T*B, xT*B; — R
<& .
E=E-LE-EL?
(5) Contravariant linear maps
G = HF!,
H=GF,/
H:T*B, —TBs, G:T*B; — TB;
< .
H=H-HLT

27

3.2.2. Pseudo-rigid motion and convexity. The following trivial fact en-

sures correctness of some of the subsequently employed algorithms.

Fact 3.2.1. Pseudo-rigid motion preserves convexity.

PrOOF. Let By be convex. Then AX + (1-)\)Y € B for all X, Y € By,

A€ 0,1].

AMFX-X)+x)+(1-N)(F(Y-X)+x) =

=F(AXX+(1-N)Y-X)+xeB

3.3. Matrix notation

Whenever it is not necessary to be specific about the underlying kinematics,

it is convenient to adopt a unified notation.

The generalised configuration of a

body will be denoted by q while the velocity will be denoted by u. Thus q € Q
and u € T4 Q, where Q is a generalised configuration space. From several possible
choices, the following one is made for the rigid body

(3.3.1)

Ar O
Aoy Qs
Q3
q - jl ) u = ‘%1
€2 f2



3.4. LITERATURE 28

This is due to consistency with the algorithmic developments of Chapter 5. It
should be noted that in (3.3.1) ¢ # u, but rather ¢ = [ A1 ] u. One the other
hand, for the pseudo-rigid body, the most natural choice reads

F1y Fll
Fio F1a
3.3.2 | |, u=|:
(3.3.2) q 5 |0 ® 5
.fQ jj2
i'3 ILg

where obviously ¢ = u. The row-wise ordering of F in q is related to the com-
putational efficiency of some algebraic operations, to be commented on at a later
point.

3.4. Literature

Starting with Euler in the third quarter of the eighteenth century, kinematics
of rigid motion has been studied for over two hundred years now. A review paper
by Dai [52] gives a good summary in that respect. A typical textbook exposition,
like in Arnold [12], usually contains a brief statement of kinematics followed by
an exhaustive discussion on dynamics. From the numerical point of view though,
parametrisation of rigid rotations is rather important. In the literature on the in-
tegration of rigid motion, three major methods of updating the rotation operator
can be named. Cayley formula is used for example in an old paper by Benson
and Hallquist [23], as well as in one of the algorithms recently investigated by
Nukala and Shelton [171]. Rodrigues formula is employed in the explicit scheme
by Simo and Wong [100], also by Krysl and Endres [163], Krysl [126, 128, 127],
Nukala and Shelton [171]. Quaternion based update is utilised in the implicit
scheme by Simo and Wong [100], also by Park and Chiou [110], Omelyan [162],
Shivarama [189], Johnson et al. [187]. On a somewhat more theoretical level, re-
cent quaternion based developments include Kosenko [120] and Rico-Martinez and
Gallardo-Alvarado [179]. On the other hand, the incremental rotation angle and
the Rodrigues formula seem to be often exploited within the field of geometrically
exact beam theories. Papers by Ibrahimbegovié et al. [99], Crisfield and Jelenic
[144], Ritto-Corréa and Camotim [145], and the doctoral thesis by Méakinen [146]
provide a good reference here.

The pseudo-rigid body model was derived by Cohen and Muncaster [46] as a
simplified counterpart of finite elastodynamics. Kinematically, it does not differ
much from the point level description of the classical continuum. Thus, apart
from the monograph [46], textbooks on continuum mechanics might be of use. For
example, chapters on kinematics in Marsden and Hughes [147] and Belytschko
et al. [22] seem to be complementary in terms of the balance between theory
and practice. As discussed by Nordenholz and O’Reilly [160, 161], pseudo-rigid
bodies are equivalent to Cosserat points. As shown by Solberg and Papadopoulos
[193], pseudo-rigid bodies are also equivalent to constant strain finite elements. An
extension of the pseudo-rigid body concept, admitting second order deformation
effects, has been proposed by Papadopoulos [167].



CHAPTER 4
Dynamics

For a body B, the conservation of mass and the balance of linear and angular
momentum respectively read

d
4.0.1 = —
(4.0.1) p /dev 0
d .
(4.0.2) — pxdv:/ tda—|—/pbdv
dt /s oB B
d _ : _ _
(4.0.3) — [ (x=X) X pXxdv = / (x — x) x tda —|—/ (x — X) X pbdv
dt Js o8B B

where t is time, p is the mass density, x is the point velocity, t is the surface trac-
tion, b is the body force, and X is a selected point. All of the mentioned quantities
are spatial and so is the integration domain B, being the current configuration of
the body. One can work out a specific form of the above principles, by considering
kinematic models presented in the previous chapter. This time it is more conve-
nient to start with the pseudo-rigid case (Section 4.1), and eventually simplify the
obtained equations in order to embrace the rigid body model (Section 4.2).

4.1. Pseudo-Rigid body

The scalar mass of a body is

(4.1.1) m = /dev

and the conservation of mass states

(4.1.2) =0

The useful consequence of the conservation of mass is that

(4.1.3) pJ = po

where J = det (F) is the Jacobian (with respect to the Cartesian coordinates {2}
and {Xi}), and pg is the referential mass density. This follows from the fact, that
fB pdv = fBo pJdV = fBo podV. One can now move the time derivative under the
integral in the standard way

da

d d
4.1.4 — dv = — av = | —pedV
(4.1.4) dt/Bap U= S, 5, d"°

The motion of the pseudo-rigid body is employed, in order to rewrite the linear
momentum balance as

29
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(4.1.5) F/ po (X — X) dV+m$"c=/ tda+/pbdv
Bo oB B

Clearly, it is advantageous to select X so that

(4.1.6) / po (X —X)dV =0
Bo

From now on X is considered to be the referential mass centre of the body. The
linear momentum balance reads then

(4.1.7) mx = f

where

(4.1.8) f:/ tda+/pbdv
oB B

is the resultant force. The angular momentum conservation can be worked out as
follows. First note, that

d
dt Js

/B [F (X - X)) x [B (X -X) +%] podv =

(x —X) X pkxdv =

/B [ (X X)] x [ (X - X) 4 %] podv +

/B [F(X-X)] x :F(X—X)Jri"c: podV =

/B{F(X—X)}xipodV—i—/B [F (X —X)] x %podV  +

/B(x —X) X [FF_l (x — )‘()} pdv =

(X = X) podV — skew [X] F/ (X = X) podV  +
Bo

_skew [x] F /

Bo

/B(x —X) X [FF_l (x — )‘()} pdv =

(4.1.9) / (x — X) X [FF_l (x — )‘()} pdv

B
where a X a = 0 was used in the transition from line three to five, spatial homo-
geneity of F' and the fact that a x b = —skew [b] a (skew [-] makes a skew symmetric

operator of a vector) were utilised in the transition from line five to seven, and for-
mula (4.1.6) was exploited in order to reach the last line. The angular momentum
balance can now be phrased as

(4.1.10) /B(x—x)x [FF’l(x—i)} pdv—/(98(x—x)><tda—|—/6(x—x)><pbdv

Let vecskew [-] make a 3-vector out of a 3 x 3 skew symmetric matrix. By noticing
that a x b = vecskew [b ® a — a ® b], and the fact that A = B implies A — AT =
B — BT, one can rewrite the above as
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(x — i)@tda—l—/ (x — %) @ pbdv
B

(4.1.11) /B(X—x)@)[FFl(X—X)} pdv:/

oB
or equivalently

@r12) [ [FF 0] b x) po = |

This can be further simplified, by making use of the deforming tensor L = FF-!

t®(x—5<)da—|—/ pPbR(x — X) dv
B B

(4.1.13) L=FF !'4+FF ! F'=_F'FF ! FF!=L+L?

and the following relations for the tensor product

(4.1.14) a®(La)=(a®a)L?, (La)®a=L(a®a)
and
d - . .
E(La@a) = La®a+La®a+La®a
= La®a+LLa®a+La®La
(4.1.15) = (L+L2) a®a+ La®aL’
so that

/B {FF_l (x — 5()} ®x—X)pdv =

(L—i—Lz)/B(x—i)@(x—i)pdv =
d

(4.1.16) (L+17)E = = (LE) - LEL”
where
(4.1.17) Ez/B(x—i)@)(x—i)pdv

is the spatial Euler tensor. Finally, the tensor equation

(4.1.18) d (LE) — LEL” :/

dt 9B
describes the balance of the angular momentum.

Formula (4.1.18) implicitly represents a set of nonlinear ordinary differential
equations with respect to the components of the deformation gradient F and Euler
tensor E. It is incomplete though, in the sense that an integration of the above
equation would allow a body to deform without a bound. Intuitively, such a bound
comes from the internal forces, opposing any deformation. In our case, this opposi-
tion must be rather specific, so that the homogeneity of deformations is preserved.
This issue has risen some controversy in the literature, see Steigmann [196] and
Casey [36, 37]. Nevertheless, we shall not be concerned with this rather philosoph-
ical discourse, as it does not affect the practical utility of the pseudo-rigid model.
In order to bridge (4.1.18) with the deformation induced forces, we need to recall
that as a consequence of the Cauchy’s theorem (cf. Marsden and Hughes [147, pp.

t®(x—5c)da—|—/pb®(x—5c)dv
B
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127-134]), there exists a second order contravariant Cauchy stress tensor o, such
that

(4.1.19) t=on

where n is the unit outward normal to 5. The following evaluation is now possible

/mst@(x—)‘c)da

/ on® (x — X)da
oB

/diva@(x—i)dv—i—/adv
B B

where the divergence theorem fB divadv = faB a - nda has been applied with a =
row; [o] (x; — &;) for all 4, j. In the next step, the local form of the linear momentum
balance (4.0.2)

(4.1.20)

(4.1.21) p% = pb + dive

and the mean Cauchy stress tensor defined as

1
(4.1.22) g = V/Badv

are plunged back into (4.1.20), so that

(4.1.23) /Bpi:@(x—fc) dv—l—V&:/

oB
Equivalently, by (4.1.9) and (4.1.16) there holds

t®(x—i)da+/pb®(x—i)dv
B

(4.1.24) d (LE) - LEL” + V& = /

— t®(x—i)da+/pb®(x—i)dv
dt o8B B

where V = fB dv is the current volume. It should be noted, that the balance princi-
ple (4.1.24) implies the angular momentum conservation (4.0.3), provided that the
Cauchy stress tensor o is symmetric. The stress term V& prevents an unbounded
growth of deformation, although for this one needs to declare a physically plausible
relationship between & and F. The relation & = & (F) bears the name of a con-
stitutive equation. Let us not specify this relation yet, but rather summarise the
current derivations. This is done in the box below.

Spatial pseudo-rigid dynamics
(1) Mass conservation
m=0, E-LE—EL” =0

(2) Linear momentum balance

mi:/ tda—l—/pbdv
oB B

(3) Angular momentum balance
4 (LE) - LEL” + V5 =

Jost® (x —x)da+ [;pb® (x —X)dv

L=FF ! 5=5(F)
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In the first point of the box, E — LE — EL” = 0 has been added in an ad-hoc
manner. This corresponds to the conservation of the spatial Euler tensor, in the
sense that, as viewed from the point of view of a co-deforming frame, it should not

change with time. Recall from the previous chapter, that ]% = E—-LE—EL7 is
a suitable Lie derivative, if only E can be regarded as a contravariant object. It
is so, because n - Ek can be interpreted as measuring the amount of matter away
from a pair of planes n, k passing through X. Similarly, if one defines a generalised
angular momentum H = LE, and realises that this is a contravariant map assigning
to each plane k (passing through X) the net linear momentum Hk orthogonal to

the plane, the term % (LE) — LEL” becomes I<->I = H — HL”. This connects our
derivation with that pursued by Cohen and Muncaster [46, pp. 23-31], where a
more constructive approach was undertaken. Regardless of those subtleties, it is
quite clear that the nonlinearities of the spatial equations render them quite useless
for practical purposes. In fact, the punch line of pseudo-rigid dynamics is in the
simplicity of its referential formulation.

4.1.1. Referential formulation. We wish to simplify % (LE) — LEL”. Let
us first define the referential Euler tensor as

(4.1.25) Ey :/ (X - X)® (X =X) podV
Bo

so that

(x —X) ® (x — x) pdv

o o

(4.1.26) = F(X-X)®F (X -X)pydV =FEF”

0

We can now write

(4.1.27) LEL” = FF'EF7F’ = FE,F”
(4.1.28) % (LE) = LE + LE
(4.1.29) L=FF'4+FF!
B - 4 (x — %) ® (x — %) pdv
dt /s
d

= 2/ FX-X)2F(X-X)podV
dt Jg,

- /Fm_m®Fm_mmw
+ /B F(X-X)®F (X -X)podV

(4.1.30) = FEF" + FEFT
so that
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= (LE) ~LEL” - (FF’l + FF*l) FE(F! + FF~! (FEOFT + FEOFT) —FE T
= FE(F? + FF'FEFT + FF'FE\F” + FE\F” — FE F”
= FE(F?” — FF 'FF 'FE.F? + FF 'FE,F”
(4.1.31) = FE(FT
where F~! = —F~!FF~! was utilised. This allows to rewrite the angular momen-

tum balance as

(4.1.32) FE;FT + Vi = /

t®(x—i)da+/pb®(x—i)dv
oB B

and after right-multiplying by F~7 obtain

(4.1.33) FE0+V5F—T:/

t®F_1(x—i)da—i—/pb@F_l(x—X)dv
oB B

The term VGF~7T can be worked out as follows

(4.1.34) VoF~ 1T = /UF_Tdv:/ aF—TJdV:/ PdV
B Bo Bo
where
. = JoF~
(4.1.35) P=JoF T

is the first Piola-Kirchhoff stress tensor [147, p. 135]. The average referential
stress is defined as

_
(4.1.36) P=— [ PdV
V /s,

which together with the surface element transformation

(4.1.37) t=on, N=F'n, p=PN=Jon=Jt= tda=pdA

leads to the final form of the referential angular momentum balance

(4.1.38) FE, + VP = /

p®(X—X)dA+/ pob & (X — X) dV
oBo

Bo

From the computational point of view, the above equations improves much
upon the spatial formulation. Clearly, deformations of the pseudo rigid body can
be conveniently integrated in the reference frame, as soon as a constitutive relation
P = P (F) is given. This is summarised in the box below.

Referential pseudo-rigid dynamics

FE,+ VP = /
9Bo

p®(X—X)dA+/ pob & (X - X) dV
Bo




4.2. RIGID BODY 35

4.1.2. Constitutive equation. Cohen and Muncaster [46, pp. 52-58] discuss
a pseudo-rigid adaptation of the classical constitutive theory and examine several
well established material models. In the current work a hyperelastic pseudo-rigid
continuum is considered, admitting the strain energy function ¥, such that

(4.1.39) P =0pV¥ (F)
(4.1.40) U= i [F"F-1]:C: [F'F -1
(4.1.41) Cijel = MijOrt + 1[0k 051 + 0a 0]

where the Saint Venant - Kirchhoff material was adopted. In the above A and p
are Lamé constants, while §;; is the Kronecker delta. The Lamé constants can be
expressed in terms of the Young modulus £ and the Poisson ratio v as

Ev
(4.1.42) M aroa-w)

E
(4.1.43) h= 5oy

4.2. Rigid body

The mass conservation and the linear momentum balance do not change for
the rigid body case. Some work must be done however, in order to work out the
balance of the angular momentum. It is convenient to start from equation (4.1.18)
for pseudo-rigid bodies

(4.2.1) 4 (LE) — LELT = /
The deforming tensor L assigns velocities to spatial vectors, L : TB — TB. As it
was shown in Section 3.1 of the previous chapter, for rigid bodies the same role is
played by the spatial angular velocity @. In other words, assuming an orthogonal
deformation gradient F = A, there follows

t®(x—5<)da+/pb®(x—5<)dv
B

(4.2.2) L=0lg_4
so that
d . N - -
(4.2.3) — (WE) + 0Ew = / t® (x —X) da—l—/ pb ® (x — %) dv
dt oB B

Let us now take the skew part of the above and come back to the vector form of
the equation. One can see that

(4.2.4) skew [VE] = OE + E®

(4.2.5) skew [WEQ] = 0BG — 0EO =0

(4.2.6) skewla@b]=a®b-b®a
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where skew [-] was now used with respect to matrices, and @7 = —& was utilised.
When retrieving a vector from (4.2.4), it can be noticed that

(4.2.7) vecskew [OE 4+ E@] = [tr (E)I — E]w
By definition

(4.2.8) j=tr(E)I-E
is the spatial inertia tensor (I is the 3 x 3 identity). By noticing further

(4.2.9) b x a =vecskew[a® b — b ® a]

we can arrive at a vector form of the spatial angular momentum conservation for

rigid bodies

(4.2.10) % (jw) = /83 (x — X) X tda + /B (x — X) X pbdv

For the complete picture, it remains to expand the % (jw) term and compute the
referential form of the equation. Notice that

E = A@(x—i)@(x—i)pdv—l—/(x—i)@d}(x—i)pdv
(42.11) = GE—E

Now it is convenient to start again with

d
dt
and take the vector representation its skew part. First and third components have
already been evaluated in (4.2.4) and (4.2.5). The remaining one can be computed
as

(4.2.12) (OE) = OE + 0E = OE + 04E — 0E®

(4.2.13) skew [0WE] = GOE — EQd

which happens to coincide with the vector form

(4.2.14) vecskew [OWE — EQ®] = w X jw

The local form of the spatial angular momentum balance reads now

(4.2.15) jo+tw xjwz/ (x—i)xtda—i—/(x—i)prdv
oB B

The referential form of the above equation follows by noticing that

(4.2.16) w=AQ & o =A0AT

and hence

(4.2.17) w X jw = @jw = AQATJAQ

which together with

(4.2.18) w=AQ+AQ = AQQ + AQ = AQ
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allows to write

(4.2.19) JAQ + AQATIAQ = /

(x—i)xtda+/(x—i)prdv
oB

B

and after left-multiplication by A7 becomes the desired referential form of the
balance

(4.2.20) JQ—l—QxJQ_AT[/ (x—i)xtda+/
o

; (x — %) % pbdv]

B
where by definition

(4.2.21) J=ATjA

is the referential inertia tensor (also called the body frame inertia tensor). It is not
difficult to verify that

(4222) J=1tr (Eo) I- E()

Box below summarises rigid body dynamics. Note, that conservation of the spatial
o .

Euler tensor is now automatic (E = E — 0E — E0T = OE — E0 — OE + E0 = 0)

and hence it was not stated explicitly. This results from the rigidity, preventing
any distortion of the co-deforming frame.

Rigid dynamics
(1) Mass conservation
m =0

(2) Linear momentum balance

mf{z/ tda—l—/pbdv
oB B

(3) Angular momentum balance

d .
%(jw):jw+w><jw:m<:>JQ+QxJQ:ATm

m= (x—i)xtda—l—/(x—i)prdv
oB B
w=AQ, j=AJAT, J=tr(Eo)I-E,

4.3. Matrix notation

We adopt the following uniform matrix notation for the dynamics of rigid and
pseudo-rigid bodies

(4.3.1) Mi = f

For the rigid body case the inertia operator reads

(4.3.2) M = {

and the generalised out of balance force is



4.4. LITERATURE 38

ATIBB(X—X) xtda—l—ATfB(x—fc) x pbdv — Q x JQ
Jop tda + [ pbdv
For the pseudo-rigid body case the inertia operator reads

(4.3.3) f=

Eo
_ Eo
(4.3.4) M — -

ml

and the generalised out of balance force is

e [ Jo,p® (X=X)dA+ [ pb@ (X = X)dV — VP
a faBtda—l—prbdv

It should be noted, that it is the row-wise composition of F in u (cf. Section 3.3),
which allows us to use the computationally convenient block-diagonal form of M
for pseudo-rigid bodies. This results from the fact, that ﬁ'ionjk can be seen as
three matrix-vector products, where the vectors are rows of F, and the symmetry
of Eq is utilised.

(4.3.5)

4.4. Literature

Rigid body dynamics is a classical subject and has been for example com-
prehensively discussed by Arnold [12]. The monograph by Cohen and Muncaster
[46] provides the essential summary for the pseudo-rigid body case. Although
pseudo-rigid bodies seem not to have enjoyed many practical applications, the sim-
ple nonlinear form of the governing equations made them specifically attractive
for a theoretically grounded research. For example, Lewis and Simo [135] stud-
ied stability of rotating pseudo-rigid bodies, Cohen and Mac Sithigh formulate a
pseudo-rigid impact model [47], and discuss the slip reversal problem for frictional
impact [45], Nordenholz and O’Reilly [160, 161] discuss some aspects of motion
and stability of Cosserat points, and point out the compatibility of their studies
with the pseudo-rigid context. Casey [36] gives a Lagrangian formulation of the
pseudo-rigid dynamics, and discusses imposition of the homogeneity of deforma-
tion as a global constraint. This gives rise to the latter discussion with Steigmann
[196, 37]. Solberg and Papadopoulos [193] examine an energy conserving impact
of a spherical pseudo-rigid body, and show that multiple impacts occur before re-
bounding. The chaotic behaviour of the pseudo-rigid impact hinted in [193] was
further studied by Kanso and Papadopoulos [113, 112].



CHAPTER 5
Time stepping

Before deciding upon a preferred time integration scheme, it is useful to realise
what our needs are. The general intention is to develop a framework dealing with
constrained systems, with an emphasis on multi-body frictional contact problems.
The employed kinematic models are quite simple, hence there is not much of the dis-
crepancy between the eigenvalues related to the low and the high vibration modes.
We intend to deal with non-smoothness such as shocks, and employ implicit solvers
in order to deal with the constraint. Having said that, it seems relevant to look for:

e A low order scheme. Because of a specific manner of dealing with the non-
smooth constraints, the accuracy of any time-stepping will be reduced to
the first order, if such are present. Hence, there is not much point in
aiming at high accuracy. We will be satisfied with a second order method,
as it will at the same time facilitate an adequate treatment of smooth
dynamics.

o An explicit scheme. On one hand, the lightness of an explicit scheme
is preferred in order to balance out the expenses related to the implicit
treatment of the constraints. On the other hand, the issue of stability
might seem restrictive. For the dynamics of pseudo-rigid bodies this does
not represent a significant compromise. Skipping the few pseudo-rigid
vibration modes by employing a large time step and a Newton solver
seems vain, as one attempts to extract the rotational motion by means
of linearisation unaware of rotations. Why not resort to the rigid model
instead? However, the issue of stability does not generally vanish for rigid
bodies. In that respect, a new stable scheme is proposed.

Section 5.1 summarises the time integration method employed for the dynamics
of pseudo-rigid bodies. This is followed by the exposition of a scheme suitable for
integration of constrained rotational motion (Section 5.2). The quasi-static case is
briefly treated in Section 5.3. A short literature review follows in Section 5.4.

5.1. Pseudo-rigid dynamics

The time integrator ought to fit well into the structure of the computational
code. In the explicit analysis of constrained multi-body dynamics it is convenient
to employ the following time stepping

, h
(5.1.1) qt: =q' + Eut
(5.1.2) uth = ut + M af s - MTTHTR
h
5.1.3 th— gt 3 4 sttt
(5.1.3) q QA+

39
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where u is the velocity, q is the configuration, M is the inertia operator, f represents
the generalised out of balance force, H incorporates gradients of the constraints,
and R stores the constraints reactions. The utility of the above formulae results
from several elementary facts:

(1) Combination of the central difference scheme and the trapezoidal rule
maintains good conservation properties (Section 5.1.3) and is second order
accurate (Section 5.1.1). Conditional stability (Section 5.1.2) is the only
compromise here.

(2) The mid-step configuration q'*% can be utilised for both, calculation of
the constraints gradients operator H and approximation of f£i+3 . In prac-
tice, this means that some of the constraints (e.g. contacts) will be dis-
covered at the mid-step configuration. As will be exemplified later, this
choice allows to retain the second order accuracy in the presence of smooth
constraints.

(3) The momentum balance (5.1.2) can be employed to calculate the con-
straints reactions R. In particular, the algebraic structure of equation
(5.1.2) allows for a convenient reformulation, which will be the subject of
discussion in Chapter 7.

(4) If a suitable kinematic formulation is used, the inverse of inertia M~ is
computed only once. Obviously, this is a desirable feature.

The above scheme is applicable if the velocity and the configuration belong
to the same vector space. For pseudo-rigid bodies this was shown to be the case
(Section 3.2). In fact, equations (5.1.1-5.1.3) are an explicit reformulation and sim-
plification of the implicit scheme given by Simo and Tarnow [190]. The scheme
(5.1.1-5.1.3) was mentioned by Moreau [156], when presenting a “primitive exam-
ple” of the sweeping process (cf. Chapter 10). In a sense, this thesis is merely a
variation on the subject of this example. The following three sections show, that
the above scheme is identical with the central difference method.

5.1.1. Accuracy. Assume that q and u are the solution of the initial value
problem

(5.1.4) Mu = f (q,t)
(5.1.5) q=u
(5.1.6) q(0) = o, u(0) =ug

For a general polynomial function f (z) it is easy to see that f (z + hz) = f (x) +
hf (z) + O (h?), where O (-) denotes terms growing no faster ah®, o > 0. For
example

I %(mgp)c{(mgp)T(mgp) _1}

(5.1.7) = P(F)+gf’(F)+O(h2)

where P is the first Piola-Kirchhoff stress computed for the Saint Venant - Kirchhoff
material model (F is the deformation gradient). Hence, one can write
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h h h,
(5.1.8) f (qt + §ﬁt,t—|— 5) =f(q',t)+ of (@',t) + 0 (h?)
Also
2
(5.1.9) a'th zﬁt—i—hﬁt—l—%i‘i—i—O(h?’)
2
(5.1.10) a*" :qt+hdt+%i’i+0(h3)

One can now compute the residuals

m(h) = M(a"t" —a') - hf (qf + gﬁf,t + g)
2
(5.1.11) = h[Mu' —f(q',t)] + % [Mi—i —f (qt,t)} +0 (h?)
ot =t+h
(k) = qt‘f‘h -q - %
2
(5.1.12) = hlg'—u']+ % [a— 0" +0(h?)

and by assuming a sufficiently regularity of q,u,f (terms in [-] vanish) conclude,
that || (h)|| = O (h*) and |72 (h)|| = O (h®). The method is then of the second
order.

5.1.2. Stability. Only the linearised case is considered, which accounts for
the necessary but not for the sufficient stability condition (cf. Hughes [98, p.
135]). The aim is to show briefly that the linearised stability criterion is the same
as for the central difference scheme. Consider the following linearisation of equation
(5.1.4)

(5.1.13) Méu+ Kdiqg=0
where
(5.1.14) K = —-0f/0q

is the tangent stiffness operator, and ds denote linear variations of the respec-
tive arguments. Provided, that both M and K are symmetric and positive def-
inite (semi- for K), standard spectral decomposition related to the eigenproblem
(K — AM) v = 0 can be applied. Assuming normalisation $"MW¥ = I, where ¥
is composed of column-wise eigenvectors 1, equation (5.1.13) can be diagonalised

into a number of scalar equations of form

(5.1.15) i+ Mg =0

Scheme (5.1.1-5.1.3) is now applied to the above equation. After some simple
algebra, there follows

(5.1.16) [ (;Z:: ] = h((ll__}?z) (1 :h;ﬁ) { st: }
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which can be rewritten as

(5.1.17) yih = Ay!

The scheme is stable if

(5.1.18) Al <1

where ||-|| is the natural linear operator norm, defined as the largest stretch of a
unit vector, [|A| = supy, [[Ay]| /[yl If ; are the eigenvalues of A, there holds

(5.1.19) p(A) = max|y| < [[A]

and hence the stability criterion can be replaced by p (A) < 1, where p is called the
spectral radius of A. For a 2 x 2 matrix, the eigenvalues read

% (n (A) % \/tr? (A) - ddet (A))

and since in our case tr (A) = 2 — h2)\ and det (A) = 1, there follows

(5.1.20) N =

h2X £ hvh2X2 — 4\
2

(5.1.21) N=1

and consequently |y| < 1 reads

h2X\ £ hv/h2X2 — 4\ <1
5 <
While the right inequality is satisfied for any h, A > 0, the left one leads to the
constraint on the time step

(5.1.22) -1<1

(5.1.23) h <

S

which is the same as for the central difference scheme [98, p. 94].

5.1.3. Conservation. The following discussion is largely based upon Simo
and Tarnow [190]. Let us define the generalised momentum p = Mu and rewrite
(5.1.4-5.1.6) as

(5.1.24) z=JVH
(5.1.25) z(0) =z
where

| a B 0 I
510 =[] 5[ 1]
and
(5.1.27) H=F,+E,

is the Hamiltonian of the dynamical system. By assumption we are dealing with
an autonomous and conservative case, that is the out of balance force in (5.1.4)
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reads f (q) = —0E,/Jq, where E, is the potential energy. The kinetic energy is the
quadratic form Ej = %pTl\/Iflp. Hence, VH = [—f, Mflp}T. It is not difficult to
notice, that the Hamiltonian remains constant along the integral curves of equation
(5.1.24). Namely

(5.1.28) <VH,Z>:<VH,JVH>28—Ha—H—a—Ha—H:0
dq dp  Jp 0q

In other words, solutions of (5.1.24-5.1.25) are the level curves of the total energy
function and thus, the energy is conserved along the flow defined by the vector
field JVH. It can be also noticed that (5.1.28) holds, because w (a,b) = (a,Jb)
is an anti-symmetric bilinear form (also called the symplectic two-form), and thus
w(a,a) = 0. Let M be the configuration space of all z. One distinguishes a class
of symplectic transformations G : M — M, that preserve w in the sense that

(5.1.29) %w (DG (z) 6z1, DGy (z) 6z2) =0

for all 021,06z € TM,, where DGy (z) : TM, — TMg,() is the gradient of Gy.
Note, that the above condition means, that G; moves points of M along some
curves in such a way, that the pull-back of w defined at TMg, () is the same as w
defined at T'M,. That is

(5.1.30) DGy (2)"IDG, (2) =J

In consequence, under the change of coordinates induced by G; the Hamilton-
ian system (5.1.24-5.1.25) looks just the same. In the theory of Hamiltonian sys-
tems such changes of coordinates are called canonical transformations. The phase
flow defined by equation (5.1.24) is composed of canonical transformations (cf.
Arnold [12, p. 190]). When integrating the dynamical problem numerically, one
advances the solution from z* to z**" by finding roots of some general nonlinear map
G (z'*",z') = 0. If G is symplectic, one hopes to obtain an approximation of the
integral curve, close to the level curve of the Hamiltonian. Thus, in the numerical
sense, symplectic integrators are energy conserving. Technically, the symplecticity
of G can be verified on the basis of linearisation dz!t" = Adz’, where the linearised
amplification matriz A reads

(5.1.31) A=A'A,

and

oG (z'th, z")

By analogy with (5.1.30), there needs to hold ATJA = J for the amplification
matrix to be symplectic (and so for G). Note, that the condition implies that
det (A) = 1, and thus the spectral radius p(A) = 1 (which was the case in the
previous section). At this point it is convenient to notice, that J = —J7 = —J~1.
Now, the condition ATJA = J can be spelt out as AQTAITJAflAQ = J, further

transformed into AITJAII = A;TJA;1 and inverted, resulting in

7A2:_

(5.1.33) AJAT — A JAT =0

We are finally in the position to verify symplecticity of the scheme (5.1.1-5.1.3). In
our case, the operator G reads
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f (q' + 2M~'pt)
5.1.34 G (2" 2") =2 — 2" — hJ :
( ) (z ,z) z Z M-1 (pt+pt+h) /2
and hence
o I1][o o I —4M!
p— —_ == 2

(5.1.35) A =1 h[ T 0 ] [ 0 %M*l ] |: 0 1 :|

0 I][K LKM! I sM!
(5.1.36) A, —I+h[ -1 0 ] [ 0 %M*l ] o |: —hK 1I-— %2KM_1 :|

where K = 0f (q) /0q. After some algebra there follows, that the two triple prod-
ucts in (5.1.33) read

(5.1.37) AJAT = A JAT =7
and thus the time stepping (5.1.1-5.1.3) is symplectic.

5.2. Rigid dynamics

As far as the linear motion is concerned, the discussion of the previous sec-
tion applies. The rotational motion is solely of interest here. In principle, the
objective is to devise a time integrator, preserving the structure and the qualities
of scheme (5.1.1-5.1.3). In the pursuit of this goal it will be necessary to abuse
slightly the notion of geometrical consistency, although the resulting scheme will
have the qualities of modest computational cost, second order accuracy, and stabil-
ity. Two versions of the new scheme are considered. The fully explicit one requires
less computational effort, although it does experience a negative energy drift. The
semi-explicit version does not drift, and it retains explicitness in the evaluation of
the external force. Nonetheless, solution of a local implicit problem is necessary in
order to update the configuration.

After some preliminary remarks in Section 5.2.1, the proposed scheme is spec-
ified in Section 5.2.2. Some comments about the conservation and stability prop-
erties are given in Section 5.2.3. A single illustrative example is given in Section
5.2.4. This is followed by a brief discussion on efficiency (Section 5.2.5).

5.2.1. Preliminaries. We recall, that the orthogonal rotation operator A (t)
belongs to a curved space, the special orthogonal group SO (3). It is updated in
the multiplicative manner

(5.2.1) A(t+h)=A(t)exp [ (h)]

where ¥ (h) is the incremental rotation vector, and exp [-] is the exponential map
defined by the Rodrigues formula

sin||\Il||‘il 1 — cos !‘Iln\iﬂ
] ||

Above, I is the 3 x 3 identity operator, ¥ creates the skew symmetric matrix out
of a 3-vector ¥, and ||-|| stands for the Euclidean norm. As was already discussed
in Section 3.1, the increment of rotation ||¥|| should be smaller then 27 in order to
avoid the singularity of the exponential map. In practice, and specifically for the
constrained systems, this is a rather realistic assumption.

In the view of the update formula (5.2.1), the finite rotation vector ¥ can be
perceived as belonging to the tangent space Tr()SO (3). Operations such as vector

(5.2.2) exp [P] =1+
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addition ®1 + ®5 make sense only if both vectors belong to the same tangent
space ©1,02 € Tr; SO (3) (geometrical consistency). When @1 € T SO (3)
and @2 € Tg(t4+1)SO (3) the differential of the exponential map is employed in
order to shift a selected vector from its own tangent space into the tangent space
of the other vector. An example is

(5.2.3) (T"©1) + O,

where

L cos [ g, | ] sin| %) 5
]| IR
was already defined as (3.1.25) in Section 3.1. As ¥W¥ = ¥ x ¥ = 0, there follows

that TT® = ¥, which represents a useful fact.
The balance of the angular momentum, expressed in the body-frame, reads

(5.2.4) T=I+

(5.2.5) JQ+QxJQ=ATt

where J is the constant referential inertia tensor, €2 is the referential angular veloc-
ity, and t is the spatial torque. It is noteworthy that € (t) € Tg)SO (3), so that

an extrapolation ¥ (h) = hQQ + %29 makes sense.

Another form of the balance of the angular momentum follows from the spatial
formula

d

— (jw) =1t

7 )

where j is the time-dependent spatial inertia tensor (j =AJAT), and w is the spatial
angular velocity (w = A€2). The above expression can be integrated over the time

interval [t,t + h]

(5.2.6)

i =GR wt+h) =i ()w)
= A(t+h)IAT(t+hw(t+h) —Al)IAT (H)w(t)
= A(t)exp[¥ (h)]IQT" — A (1) JQ!

t+h
(5.2.7) = / tdt
t

resulting in

(5.2.8) Qt+h) =T texp[-T (h)]

JO (1) + AT (t) /Hh tdt]

Discretisations of the above formula give rise to the variety of well-behaved time
stepping methods (e.g. Krysl [126]). Nevertheless, an implicit dependence of the
incremental rotation vector ¥ on the external torque t precludes a direct algorith-
mic analogy with (5.1.2).

5.2.2. Scheme. The proposed scheme reads
t+2& t h e
(5.2.9) A2 = Alexp 59

T
(5.2.10) Tt+5 — (AH%) gt
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(5.2.11) QT =37 [exp [_gﬂt} Jol+ gTH%}
(5.2.12) Qith =t 4 371 {TH% _ Qs « JQH%}
If explicit
(5.2.13) AR — AP oxp EQW]
h h .

(5.2.14) 0, =J 7 exp {—59?’1} [exp {—Ent} ot + hT%}
otherwise

h h ’
(5.2.15) solve (exp [iﬂgﬂz} .]Qg*h = exp [—§Qt] JOt + hTHZ)

h

(5.2.16) AP — AE exp {595}1]

In the first formula (5.2.9) the mid-step rotation A% is extrapolated with the
forward Euler scheme. It is then used to compute the referential torque components
in (5.2.10). In equation (5.2.11) the idea of LIEMID[E1] algorithm by Krysl [126]
is borrowed in order to approximate the mid-step angular velocity Q% Formula
(5.2.8) is employed, where the spatial torque integral is approximated by

t+% h bt
(5.2.17) tdf =~
t

This allows to compute the external force only once and reuse it at a later stage. The
central difference scheme is applied to the referential angular momentum balance in
formula (5.2.12). This step is somewhat naive, but we need it in order to preserve
the algebraic structure of formula (5.1.2). This is also the source of the geometrical
inconsistency. Due to the collinearity of the incremental rotation vector and the
initial angular velocity there holds

(5.2.18) T7 {gnt} Q=

so that the right hand side of (5.2.12) resides in the tangent space Tp (445/2)SO (3).
The left hand side, however, belongs to TA(14,)S0 (3). Thus, the equality in
(5.2.12) is not formally rigorous. Furthermore, Q’i”'h generally implies neither the
angular momentum conservation, nor energy conservation (cf. Section 5.2.3).

If the fully explicit version of the scheme is to be executed, one would nev-
ertheless like to make some use of Q" As the right hand side of (5.2.12) is in
TA(t+n/2)50 (3), and it is supposed to approximate €2 (¢ + h), one can notionally
interpret (5.2.12) as an assignment to Q?h of its own pull-back (along the ex-
ponential map) to Ty (44r/2)S0 (3). Now formula (5.2.16) becomes a “consistent
backward Euler step, updating the mid-step rotation into A**". There also holds

h

(5.2.19) TT [§Q§+h] Qwi+h _ QiiJrh
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which happens to alleviate the inconsistency (again, this is only a notional trick).
The scheme (5.2.9-5.2.13) has two drawbacks: conservation of the angular momen-
tum is only approximate, and the kinetic energy experiences a positive drift. This is
remedied in (5.2.14), where the angular momentum conservation is algorithmically
enforced. As will be illustrated, the scheme (5.2.9-5.2.14) has a negative energy
drift and becomes strongly dissipative for large time steps.

Although in applications involving small incremental rotations (e.g. constrained
systems) the scheme (5.2.9-5.2.14) will be often sufficient, it is useful to have at hand
a refined method, that does not experience the energy drift. Formulae (5.2.9-5.2.13)
are still of use, although Q’i+h becomes now merely a dummy variable. Equation
(5.2.12) needs to be stated only to solve for the constraint reactions (which con-
tribute to TH%). After that, the final implicit Euler half-step is executed more
rigorously. As the configuration has already been advanced from A' to ATE | we
do not wish to undo it. Rather, the following mid-point approximation of (5.2.8) is
exercised

h h
(5.2.20) exp [§Qt} exp [59”’1} JQU = I 4 htttE

where the first exponential has already been computed, while the second one im-
plicitly involves Q!+, Tt should be noted, that the rotation update A (t + h) =
A (t) exp [ (h)] makes sense, provided W (h) € TA+)SO (3). In that respect, while
the first update A'*3 = Alexp [2Q%] is correct, the consecutive one Ath =
AHS exp [2Q""] might seem inconsistent. More correctly, there should hold
(5.2.21) AR = AT exp [TT [—gnt“] gnt”]
where %Qt"’h € Ta(t+1)SO (3) was carried over to Ty (14-4/2)SO (3) by means of the
reverse half-rotation W (h) = —2Q!*" and hence T [-2Q!*"]. Again, by the
collinearity argument, there follows T [—%QHh] %Q”h = %QtJrh. The implicit
solution (5.2.15) requires few iterations of Newton scheme. The velocity Q’_{‘Lh is
used as an initial guess. The final configuration update follows in (5.2.16).

In the sequel the scheme (5.2.9-5.2.13) will be addressed as NEW1, the scheme
(5.2.9-5.2.14) will be addressed as NEW2 and the scheme (5.2.9-5.2.12, 5.2.15-
5.2.16) will be addressed as NEW3.

5.2.3. Conservation and stability. Conservation and stability properties
are most conveniently analysed in the space of referential angular momenta, IT =
JQ. Assume, that the external torque t = 0. Conservation of the spatial angular
momentum reads then

(5.2.22) A TI(t) = A (0)TI(0)

which together with the conservation of the kinetic energy implies

(5.2.23) %HT () TI(t) = %HT (0)TI (0)
(5.2.24) %HT () I (t) = %HT (0)I71I(0)

where the kinetic energy Ej = %QTJQ. Free rigid rotation can be then viewed
as a purely geometrical problem of intersection between the sphere (5.2.23) and
the ellipsoid (5.2.24) in the II-space. In general, the intersection curve is of higher
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order and cannot be written down in an explicit form. A rotation integrator traces
the curve numerically. In particular, let us have a look at formula (5.2.12)

(5.2.25) O = IIf 4 hITH S x QFF3

At any time ¢, IT (¢) is normal to the momentum sphere (5.2.23) and € (¢) is normal
to the energy ellipsoid (5.2.24). Hence, the product IT** % x Q+% can be interpreted
as an approximation of the tangent to the intersection curve at t+h/2, and (5.2.25)
becomes a surface intersection tracing scheme. In our case, IT'*% is obtained from
IT¢ by rolling on the surface of the momentum sphere according to the formula

, h
(5.2.26) T2 = exp {—inf} 11§

This is a first order update, as it results from the solution of a linear ordinary
equation of rotation about a fixed axis (cf. remarks on the origin of the exponential
map in Section 3.1). Hence, II""3 x Q3 = II(t+2) x Q(t+ 1) + 0(h?),
where II (t),€ (¢) is the exact solution. In analogy with Section 5.1.1, one can
show that (5.2.25) is of second order. Unfortunately, as a tangent to two convex
surfaces is used, points generated by (5.2.25) lay outside of both surfaces. Only
with h — 0 they approach the actual intersection curve. For large h it is easy to
step far outside of both surfaces and rapidly climb up over the increasing energy
levels. NEW1 conserves neither the momentum nor the energy and is prone to the
catastrophic energy blowup.

By algorithmic enforcement of the momentum conservation (5.2.14), the solu-
tion iterates cling to the momentum sphere. There holds

h h
(5.2.27) IS = exp [—§Q§+h] exp [—iﬂt} T’

and thus, one always stays on the surface of the conserved momentum. Staying
within a compact set prevents an unbounded growth of the energy. The energy
blowup is not possible for NEW2. The dissipative behaviour of the scheme however,
is not explained by this fact alone. Generally, a sequence of points on a compact
set will have at least one accumulation point. Qualitatively, only three types of
behaviour are possible (Figure 5.2.1):

e Swelling of the energy ellipsoid until its smallest radius and the radius of
the momentum sphere become equal. The final state corresponds to the
stable rotation about the axis of the minimum moment of inertia. This
behaviour is typical for first order updates of kind (5.2.26), but also for
example the explicit scheme by Simo and Wong [100].

e Shrinking of the energy ellipsoid until its largest radius and the radius of
the momentum sphere become equal. The final state corresponds to the
stable rotation about the axis of the maximum moment of inertia. This
is the case for NEW2.

e Oscillation about the intersection curve of the energy ellipsoid and the
momentum sphere. This is the case for NEW3, as well as for many other
implicit algorithms [126, 171].

Swelling is the easiest to analyse. While applying (5.2.26) we would like to
know, how much the energy grows from ¢ to ¢ + h/2. This can be estimated be
the linearisation of the mid-step kinetic energy with respect to the time step. The
mid-step energy reads
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O O T

FIGURE 5.2.1. Qualitative behaviour of integration methods en-
forcing conservation of the spatial angular momentum. Section
through the momentum sphere and the energy ellipsoid. The el-
lipsoid either swells (schemes with positive energy drift), shrinks

(schemes with negative energy drift), or oscillates (stable schemes).

o1 h h
(5.2.28) E7? = 3 <Ht,exp [§Qt] J exp [—inf} Hf>

and its increment is roughly

h2
2
where Ej, (0) = By, (h)’h:O' The first derivative of the energy reads then

h . h . h
(5.2.29) AE? ~ B2 (0)h+ E;2 (0)

EFR ) = i (', Q- - i (31
_ E<Ht,QtJ71Ht> _ i <J71Ht,Qth>
(5.2.30) = i <1‘[t, Qtnt> - i <Qt, Qtnt> =0

where Q'O = 0 and QF | Q!TI! were used. The second derivative takes the
following form

Ly h 1 Ay A 1 A A 1 PP
EZ+}2 0) = §<Htvﬂtﬂt~]71ﬂt>—1 Ht7QtJflﬂth>+§<Ht7JflﬂtQt1—[t>
1 Ay A 1/ A 1 Ay A
= 2 <Ht7QtQtQt> 4 7 <Qth7Jflﬂt1—[t> n = <Qt7QtQt1—[t>
1 /- A
(5.2.31) = Z<11tfzt,r111tnt>

where terms with % vanish by similar arguments. Finally

h h? /. .
(5.2.32) AESE o % (e’ 3-'re')

The above energy increment is always positive due to the same definiteness of J.
Clearly, if update (5.2.26) was to be solely used for advancing the motion, the
solution point would climb up the energy levels on the surface of the momentum
sphere, until IT* and 2! would become aligned and no more growth could happen.
At that stage, the energy ellipsoid would contain the momentum sphere and their
intersection would comprise only two opposite points.
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The final update of momentum in NEW2 reads

h g3
(5.2.33) IS = exp {—593”1] s

Point IT*+% corresponds to the energy growth by at least (5.2.32). We shall investi-
gate, whether the energy can be further increased by performing the step (5.2.33).
Note, that (5.2.33) describes rotation of II*+% about the fixed axis Q¢F". At time
t + h/2 we shall consider the instantaneous linearisation of (5.2.33)

d
2.34 —Tth
(5.2.34) A

1
_ §Ht+% « in—i-h

h=0
A linearised stability criterion is that %H§+h|h:0 should not have a component
along the direction of the energy growth. Namely

(5.2.35) <Ht+% « QiJrh, Qt+%> <0

where Q{+% is the energy gradient at ¢t + h/2, and the factor of % was dropped off.
The above condition can be expanded as follows

<Ht+% X {Qt It (9”2 x JQUE )} >

<1‘It+2 x [nf+J 1h(nf+z x Qit% )} ,nf+%>

<Ht+% X Qt,nt+%> n <Ht+% x [J 1 (HHQ x Qb *)} ,Qt+%>
<ﬂt+%nt,nt+%>+h<ﬂt+u It Qits ot > -
(5.2.36) —<nf,ﬂt+%nf+%>—h<ﬂf+%nt+%,r1ﬂf+%nt+%> -

Let us now define three functions

(5.2.37) a(h) = — <Qt,ﬂt+%gt+%>
(5.2.38) b(h) = — <ﬂt+%nt+%,J—1ﬂt+%Qt+%>
(5.2.39) c(h) = % (a () + hb ()

where for ¢ (h), the previously dropped factor of % was restored. The stability
criterion reads now

(5.2.40) a(h)+hb(h) <0

Obviously, b(h) < 0 for any h due to the positive definiteness of J=*. On
the other hand, a simple geometric arguments shows that, at least for small h,
function a (h) > 0. In order to see that, one needs to consider circulation of II (¢)
along the intersection curve. Due to the interpretation of II (£) € (¢) as the tangent
to the curve, IT (£ + )  (t 4 s) points away from II (¢) for some sufficiently small
s > 0, because II (£ + s) runs away from II (t) along IT(t +s) Q (t + ). As Q(t)
is normal to the tangent plane of the energy ellipsoid at time ¢, the complete
intersection curve lays behind this plane. For sufficiently small s, point II (¢t + s)
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Q(t+s)
\ [MTt+s)x Q (t+s)

F1aurr 5.2.2. Circulation of II (¢) along the sphere-ellipsoid in-
tersection curve. Due to the convexity of the intersecting surfaces,
for small s there holds (€ (¢),II(t +s) x Q (¢t +s)) <O0.

runs away from the plane and thus II (t + s) Q (¢ + s) does not have a component
aligned with the normal € (¢). Hence, a (k) > 0 for small h (Figure 5.2.2). In order
to verify condition (5.2.40) for h — 0, the following linearisation is considered

(5.2.41) a(0)+a(0)h+0b(0)+b(0)h+0 (h%) <0

where the over-dot corresponds to 4. Recalling, that Qs =J lexp Lt 11t
one obtains

(5.2.42) d% (Q”%) = —%J*lﬂtnt = %J*lﬂtnt
and
d% (fw%n”%) - d% (H”%) X Q' + I x d% (QH%) .
(5.2.43) - % {[ﬂtnt} x Q4 II x J*lﬂtnt}
so that
a(0) = — <Qf, % { [ﬂtnt} x QF + I x J—lﬂtnt}>
(5.2.44) - 0- % <nf,ﬂtJ—1ﬂfnf> - % <ﬂtnt,J—1f{tnt>

Asa(0) = — <Qt, ﬂtnf> —0and b(0) = — <ﬂtnf,J—1f{tnt>, there holds

a(0)+a(0)h+0b(0)+b(0)h+0(h*) =
(@(0) +b(0)) h+ O (h*)
(5.2.45) —g <ﬂtnt,J*1ﬂtQt> +0 (%) < 0

This shows, that for sufficiently small h, the kinetic energy is always decreased from
t+ h/2 to t + h for the scheme NEW2. The amount of the energy drop can be
estimated as

2 A A
(5.2.46) AEh ~ gc(h) ~ —% <anf,J—1anf>
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FIGURE 5.2.3. Free rotation. Magnitude of the incremental rota-
tion vector at a range of time steps.

which together with (5.2.32) shows, that up to the second order terms the energy
growth and drop cancel out each other. In other words

(5.2.47) E;" =B +0 (h?)

This conclusion is not really significant, as it does not imply that NEW2 is a
shrinking scheme. In fact, numerical analysis shows that the long term negative
drift of NEW?2 is overlapped by some up and down oscillations, related to the local
curvature of the intersecting surfaces. This suggests, that the local analysis of
the above kind cannot be conclusive. We do not attempt further analysis. In the
following section we resort instead to the numerical example.

5.2.4. Free rotation. More examples will follow in Chapter 13. The current
one is referred to after Krysl [126] and is meant to provide a brief summary of
the essential features of the proposed schemes. The initial rotation is identity, the
initial angular velocity reads Q° = [0.45549,0.82623,0.03476], and the referential
inertia tensor is J = diag[0.9144,1.098,1.66]. No external forcing is assumed.

The proposed schemes are compared against LIEMID[EA] by Krysl [126],
which is one of the best performing schemes today (although its computational
cost per time step is rather high). In some of the comparisons the explicit scheme
by Simo and Wong [100] is also included, as it requires relatively little computa-
tional effort per time step. It should be noted that neither the explicit scheme by
Simo and Wong, nor LIEMID[EA| comply with the algebraic structure of (5.1.2),
which from our point of view is a drawback.

Figure 5.2.3 illustrates the magnitudes of the incremental rotation vector com-
puted with NEW3, at a range of time steps. It is seen that small increments of
rotation, say ||¥|| < 10deg', occur for time steps h < 1/8. This range of incre-
mental rotations is of the main interest here, although for the sake of illustration
this and other examples include larger increments.

Figure 5.2.4 illustrates the characteristic momentum phase space behaviour of
the proposed schemes. The plots have been obtained over 500 steps of size h = 1
(about 55deg of incremental rotation per time step). Clearly, NEW1 diverges
gradually towards the energy blowup. NEW2 dissipates the energy and after a few
tens of steps around the original intersection curve, it switches to the qualitatively
new state, asymptotically equivalent to the rotation about the axis of the maximum

1wl = HgntH n Hgnt+hH is used for illustration
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FIGURE 5.2.4. Free rotation. Body-frame angular momentum
space plots for 500 steps of size h = 1 (about 55 deg of incremen-
tal rotation per time step). The large time step allows to capture
characteristic behaviour of all three schemes. NEW1 gradually di-
verges, and it is about to blow up within the next few hundreds of
iterations. NEW2 dissipates energy until a stable rotation about
the axis of the maximum moment of inertia is reached. NEW3
stably oscillates about the original intersection curve between the
momentum sphere and the energy ellipsoid.

moment of inertia. NEW3, on the other hand, oscillates stably about the original
intersection curve between the momentum sphere and the energy ellipsoid.

Figure 5.2.5 illustrates the characteristic energy behaviour of the proposed algo-
rithms. NEW1 experiences a positive energy drift, while NEW2 experiences nearly
symmetrical negative energy drift. NEW3, similarly to LIEMID[EA] displays excel-
lent stability although the solution in both cases is oscillatory. NEW3 oscillates on
the negative side and with larger amplitude then LIEMID[EA]. The latter method
oscillates on the positive side.

Figure 5.2.6 illustrates conservation of the spatial angular momentum (7 =
AII). NEW2, NEW3 and LIEMID[EA] clearly conserve the angular momentum
(which is their algorithmic feature). On the other hand, NEW1 displays an oscilla-
tory drift for the large time step. For the smaller step, although not visible in the
figure, the drift is still present.
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FIGURE 5.2.7. Free rotation. Convergence of the body-frame an-
gular momentum IT = J (left), and the rotation operator A
(right). The reference solutions Ilx and Ax have been computed
with LIEMID[EA| and the time step h = 2715 at time ¢t = 100.
The solutions IT (k) and A (h) were computed for time steps h €
{1,271,..,2710},
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FIGURE 5.2.8. Free rotation. Normalised runtimes comparison for
ten million steps of size h = é.

Figure 5.2.7 illustrates the convergence in the Lo norm, of the referential an-
gular momentum II = JQ and the rotation operator A. The reference solutions
ITx and Ax have been computed with LIEMID[EA]| and the time step h = 2715
at time ¢ = 100. The solutions II (h) and A (h) were computed for time steps
h e {1,2_1, ...,2_10} at time ¢ = 100. It is seen that all of the compared algo-
rithms are second order accurate. All versions of the new scheme outperform the
explicit algorithm by Simo and Wong [100]. Interestingly NEW1 displays excel-
lent accuracy of the body-frame angular momentum and performs on a par with
LIEMID[EA]. For small time steps the accuracy of the rotation operator obtained
with NEW1 also compares well with the one reached by LIEMID[EA].

5.2.5. Efficiency. Many of the recently proposed algorithms [126, 163, 171]
posses excellent stability properties and can pursue their tasks with extremely large
O (m) incremental rotations. The price for those advantages lies in the necessity for
solving local implicit problems, for which Newton iterations are usually employed.
For large time steps, the local solutions involve evaluations of the exponential map
at the magnitudes of the rotation angle, for which the truncated Taylor expansion
of exp [] is not effective. Thus, although sparse steps can be performed, the cost of
an individual step is high.

In the explicit multi-body analysis with contacts and joints the possibility of
performing O (7) steps does not seem practical. The time step has to be small
enough in order to capture the geometrical nonlinearities of the multi-body inter-
actions. This is why a lightweight, but well behaved time-stepper is usually a better
choice. In this respect, NEW2 involves evaluation of only two exponential maps per
step. For small incremental rotations this can be well dealt with by the truncated
Taylor expansion of exp [-].

For long term simulations, where the negative drift of NEW2 cannot be ac-
cepted, NEW3 seems to be a good alternative, as it retains the explicitness of the
force evaluation and improves much upon the stability. Nevertheless, the single
implicit problem needs to be solved. In order to evaluate and compare the rela-
tive efficiency of the proposed schemes, ten millions time steps of size % has been
performed for the free rotation example of the previous section. Figure 5.2.8 sum-
marises the normalised runtimes. The explicit scheme by Simo and Wong [100]
computes only one exponential map and hence requires least time. NEW2 with
its two exponential map evaluations places itself right after the scheme by Simo
and Wong. NEW3 on the other hand takes roughly half of the time needed by
Krysl’s LIEMID[EA] [126]. This is because the latter method involves solution of
two implicit problems per time step.
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FIGURE 5.2.9. Free rotation. Loss of orthogonality illustrated by
the ||I— ATAH norms computed with NEW3 after one million
steps with h € {%, %, %, %} The left graph summarises the re-
sults computed with the numerically exact routines. The right
graph corresponds to the truncated expansion of exp [].

As the truncated Taylor expansion of exp [-] has been mentioned above, it is
relevant to verify whether the orthogonality of the rotation operator has not been
compromised. Figure 5.2.9 illustrates the norms HI — ATAH computed with NEW3
after one million steps of the free rotation test at a range of time steps h = %, e %.
The left graph corresponds to the numerically exact computations (library routines
has been used). The right graph corresponds to the same computations employing
the truncated expansion of the scalar terms in (5.2.2). It is seen that only for the
largest incremental rotation magnitude (27 deg) some loss of orthogonality can be

observed. Six terms in the expansions were used.

5.3. Quasi-statics

Quasi-static multi-body simulations with contact constraints represent a subtle
issue. During this sort of simulation individual members of a multi-body structure
can undergo limited rigid motion affecting the global deformation mode, while the
dynamic effects related to elastic deformability can remain negligible. In those
circumstances purely static formulation does not provide sufficient information, as
the contact forces are transmitted mainly due to the freedom of rigid motion. Tan-
gent stiffness operator resulting from the static formulation of a multi-body system
has a vast null-space, making it necessary to introduce some sort of regularisation.
While this regularisation is expected to provide a meaningful representation of
rigid modes, it seems most natural to adopt the dynamic formulation for that pur-
pose. The classical dynamic relaxation technique by Underwood [205], constructed
around the central difference scheme, was already successfully applied to statics of
granular materials (cf. Bardet and Proubet [18]). This was possible in the con-
text of smoothed (penalty based) discrete element formulation, where availability
of contact stiffness provides means for identifying globally dominant modes. Such
information is not explicitly available in a non-smooth formulation. Nevertheless
the dynamic approach is still of use. For assemblies of stiff bodies, which are mostly
of interest here, optimally one would like to solve the quasi-static contact problem
“on rigid modes” and only update the stresses on the way. The elastic deformability
of such assemblies is limited, although presence of frictional sliding or rigid rocking
does not necessarily render the structure unstable. In general some amount of slow
rigid dislocations can happen before the onset of a dynamic failure mechanism.
Quasi-static rigid motion was analysed to some extent in the field of robotics. For
example Pang et al. [165] developed a linear programing technique to solve an
uncoupled complementary problem resulting from a planar formulation. This work
was later extended to three dimensions [204], where polyhedral discretisation of the
friction cone allowed to preserve the original algebraic structure. The uncoupled
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structure of the complementary problem resulted from the fact, that equilibrium
of contact reactions and external forces was sought. Lack of the inertial term left
the diagonal zero and the amount of rigid motion across a time step resulted di-
rectly from the assumed value of the step size and the velocity of time-dependent
constraints. More generally, in a quasi-static simulation of a multi-body system,
the amount of stepwise rigid motion is merely a rational modelling choice, adjusted
to the velocity of a control mechanism. In the current development we decided
not to discard the inertia regularisation. Instead the inertial term will be manip-
ulated in order to deliver an expected behaviour. In the context of the Contact
Dynamics method, Acary and Jean [3] discuss adaptation of a dynamic framework
for the needs of a quasi-static simulation. A straightforward relaxation technique
results from assuming velocities to be zero at the beginning of each iteration. This
approach is adopted here. The modified backward Euler step follows

(5.3.1) ut = A7'nf (t+h,q') + ATTH'R
(5.3.2) q't" = q' + hu't"
where
0%
5.3.3 A =M + h?
(333) " 9adq ot
(5.3.4) H=H/(q")

Above, V¥ is the hyperelastic potential of the system and the remaining terms are
interpreted as in (5.1.1-5.1.3). Equations (5.3.1) and (5.3.2) apply directly to the
pseudo-rigid continuum case. One can write down a similar time stepping for rigid
rotations, by obtaining an auxiliary extrapolation of the angular velocity Q" with
an analogue of (5.2.9), and then plunging it into f (t + h,q"). This way a consistent
linearisation with respect to Q‘T" can be avoided, as it seems superfluous in this
simplified setting. It has to be noted, that equation (5.3.1) holds true under the
strong assumption of the constraints geometry remaining unchanged over the time
interval [t,t 4+ h]. Again, this simplifies implementation, as the linearisation with
respect to H is avoided.

For the quasi-static simulation to make sense, it has to be assumed that a steady
state solution exists at t = 0. After that instant some sort of control mechanism
is executed at a slow rate. The displacement control seems most appropriate,
as it introduces inertia-independent velocity. On the other hand, the existence of
inertial terms allows force control to be utilised to some extent. In this case though,
despite the fact that the above relaxation scheme rules out acceleration, once some
unconstrained rigid motion occurs, the kinetic energy remains proportional to the
out of balance portion of the applied force. Few additional remarks can be made:

(1) The operator A should be positive definite. Since it is equal to M + h2K
(where K is the current tangent) it follows that the assumed time step
h must be small enough. This will depend on material parameters, body
volume and mass properties.

(2) Regarding the deformable part of the motion, it is desirable to impose
uniform convergence of the Euler scheme for all bodies. At the same time
information about their shape should not be discarded (so to account for
rotations). Hence, the inertia matrices ought to be appropriately scaled.
A reasonable amount of numerical damping can be obtained for A\h > 4,
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where \ is a selected eigenvalue of M~'K [98|. For the pseudo-rigid
model, a sufficient heuristic is to impose a uniform (across all bodies)
distribution of A\,,q.h, where A4, is the maximum eigenvalue.

(3) The amount of stepwise rigid motion (say, lmnas) should be constrained.
Even if the control mechanism introduces a bounded amount of rigid dis-
placement, the possibility of free scattering of an assembly exists. One
would expect a rational behaviour of the numerical scheme in such case.
Appropriate scaling is possible for the linear part of the motion, as the
dynamics of the mass centre is decoupled. A simple relation for the scalar
mass follows m = f’l’”—IhQ, where fq. 18 the maximum magnitude of the
resultant external force over all bodies. This choice provides a uniform
bound for the stepwise linear displacement.

(4) At constraint points, velocity contributions of the rigid and deformable
motion should be separated (vgeformabie <K Vrigid). Assuming an equilib-
rium configuration exists, numerical scheme (5.3.1-5.3.2) will converge no
faster than the constraints reactions. Solution for the constraints deliv-
ers reactions adjusted to the dynamics of the overall system. In order to
encourage fast identification of rigid modes, the velocity of those should
dominate the stretch velocity at constraint points. If this condition is not
satisfied, stretch velocities affect the constraint solver, which considerably
slows down the convergence.

5.4. Literature

Selected developments, specific to the integration of rigid rotation are consid-
ered. In this respect, one of the early contributions is due to Benson and Hallquist
[23], where the central difference scheme was applied to the spatial angular mo-
mentum balance. This simple scheme seems to have survived until recently in
LS-DYNA software [2]. Simo and Vu-Quoc [191] apply the Newmark method to
the body-frame angular momentum balance and develop an implicit scheme for the
dynamics of rods undergoing large rotations. Nevertheless, the mid-point version
of their algorithm conserves neither the energy nor the momentum. In a classical
paper today, Simo and Wong [100] address this shortcoming by algorithmically
enforcing conservation of the spatial angular momentum. This leads to an implicit
scheme that conserves both the momentum and the energy. As a side-effect their
main result, an explicit scheme examined in Section 5.2.4 is also given. An idea of
discrete momentum conservation is also exploited by Park and Chiou [110], where
the spatial central difference scheme is combined with the quaternion parametrisa-
tion based rotation update, in order to deliver an explicit scheme with good stability
characteristics. An inexperienced reader should be warned however, that this paper
contains some confusing notation flaws. In a short and informative paper, Omelyan
[162] has proposed a lightweight semi-explicit leap-frog integrator, targeted at the
molecular dynamics simulations. Krysl and Endres [163] developed a semi-explicit
Newmark scheme with good stability properties, although not conserving the spa-
tial angular momentum. Krysl [126] has derived a mid-point approximation of
the incremental rotation angle, which gave rise to a well behaved implicit scheme
and an explicit scheme LIEMIED[EA], examined in Section 5.2.4. Both conserve
the spatial angular momentum (exactly) and the energy (in a stable, but oscilla-
tory manner). In the following paper [128], Kyrsl discusses a family of implicit
trapezoidal rule based integrators, which to some extent resemble the methods pre-
sented in Section 5.2.2. A fourth order Runge-Kutta method in the quaternion
space has been given by Johnson et al. [187]. Kumar et al. [171] present sev-
eral semi-implicit integrators, including a partitioned Runge-Kutta scheme (good
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conservation properties, although relatively poor accuracy in the rotation space)
and sub-cycling based method (very accurate and good conservation). It should be
noted, that none of the listed methods directly complies with the algebraic struc-
ture of equations (5.1.1-5.1.3), which was the reason behind the developments of
Section 5.2.2.



CHAPTER 6

Local frames

Let B; and Bs be two bodies. Let us

(1) Pick spatial points x; € By and x5 € By at some time t.
(2) Pick a coordinate system {04Z }, with base a; attached to x1, and deforming
with B; from t onwards.

We would like observe the motion of x5 from the perspective of the deforming
local frame {oﬁ}. For the relative displacement d,} = x2 —x1, expressed in {oﬁ},
there holds

(6.0.1) {ai}d{a} = d{w}

where {a;} is the 3 x 3 matrix of column-wise base vectors. Above, both the base
a; and the relative displacement dy,, change in time. From the point of view of an
observer embedded in the local frame {ai} however, d(,} changes only as far, as
X fails to be convected with the motion of B;. The rate of such change is described
by the Lie derivative of d;,) with respect to the flow induced by the motion of B;.
In order to show that, let us first notice that

_ T
(6.0.2) dioy = {ai} ' disy = {a } diazy

where a’ are elements of the dual base, and the fact that {ai}T {a;} =TI was
exploited. Without loss of generality, taking as an example the pseudo-rigid motion,
one obtains

FIGURE 6.0.1. A local frame.
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N T
< 7 7:rI‘<>
diay = {3} disy +{a'} diy
T T AT [
{a'} +{a'} L) dgy + {a'}" gy — Ldgy

(6.0.3) — {2’} dgy

% . . . o .
where a = a' + LTa’ (as a are covectors), d(,y; = dz} — Ldy, (as d,y is a
vector), and {ai}T = 0 by definition (a; and hence a’ do not explicitly depend on

t). It might be noted that a’ are interpreted as dual vectors, also because their
action on d,y results in scalar components of d¢,). We recall, that the notion of Lie

derivative was briefly described in Section 3.2.1. It is not difficult to see that gl{a} is
an objective rate in the sense that rigid rotations of the coordinate system {3:1} do
not affect its components. Indeed {Aai}T Ad{z} = {ai}T ATAd{z} = {ai}T d{m},
where A is an orthogonal operator.

Admittedly, the frame-picking method from points 1-2 is somewhat simplistic.
This results from the pragmatism related to computer implementation. The consid-
ered class of shapes (Chapter 2) and motions (Chapter 3) allows to discard the case
of curved geometry. Furthermore, we wouldn’t like to be constrained by a specific
manner of selecting points x1, X3 and local frames {ai}. For example, classically in
contact problems, points x; and x5 are related through proximity mapping, which
together with some curvilinear structure gives rise to the local basis a;. The curvi-
linear structure needs not to be locally Euclidean and hence a; is not necessarily
orthonormal (in the tangent plane). This can be of use for anisotropic problems.
In our applications it will be usually enough to use an orthonormal base. It might
be useful to notice that equation (6.0.3) can be rephrased as

o .
(6.0.4) {al} d{a} = d{z}

and, after left multiplying by {ai}T7 again expressed as

<o .
(6.0.5) digy = A {ai} dyy

where A = {a;}” {a;} is the metric tensor. The last equation parallels formula
(4.21) from Wriggers [211, p. 64|, provided dy,; = 0 at ¢. This corresponds to
the “zero gap” case in a contact problem. In the predominately dynamic framework
presented in this thesis, and not resorting solely to penalisation, we try to avoid
“gaps”. This will be further commented on in Chapters 9, 10 and 11 dealing with
the formulation and solution of the contact problem.

In this context, one should mention the paper by Laursen [130] where a specific
treatment of the convected local description is developed. Similarly as in [211], the
author assumes that the material point corresponding to x5 is chosen once and for
all, and this in turn allows to select x; at any given time. Paths of x; on the surface
0B are recognised as integral curves of an abstract flow, with respect to which one
can take required derivatives. The author favours the material description, which
is a minor nuance. The major conceptual difference is that, whereas in [130] the
observer travels over the body B; chasing the shadow of x5, in our case the observer
catches xo red-handed (usually there will hold x; = x5 at ¢) and then watches its
escape, while staying at x;.
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6.1. From generalised to local velocities

Let us rewrite the motion in the general form

(6.1.1) x(X,t) = x (X,qa(t))

where x is the spatial point, X is the referential point, and q is the configuration.
One can compute the material velocity

Ix (X,q(t))

(6.1.2) *(X,0) = S

u(t)

The components of x and x are expressed in the spatial coordinate system {xl}
After the preliminary discussion, it is not difficult to express the velocity x in a
local frame {0/}7 with dual base a'. Namely

T Ox (X, q(t
U: {a’L}T X( aq( ))u
dq
where U comprises the components of the local velocity of the spatial point x, with
respect to the base a;. This can be rephrased as

(6.1.3)

(6.1.4) U =Hu

where

1 Ox (X, q(t
H = (a1} XX a0)
dq
is a linear operator, acting between the spaces of generalised and local velocities
H:TQ — TE3. The operator H takes a specific form, depending on the underlying
kinematic model.

(6.1.5)

6.2. Rigid kinematics
For rigid bodies, there holds

(6.2.1) X =AQ (X - X) +x

(6.2.2) u= [ 2 ]

and hence

(6.2.3) H={a}" | A(X-X) 1]

because

(6.2.4) Q(X-X)=0x (X-X) = (X-X) xQ= (X-X)Q

Above, I is the 3 x 3 identity.
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6.3. Pseudo-rigid kinematics

For pseudo-rigid bodies, there holds

(6.3.1) x=F(X-X)+x

Fll
(6.3.2) u= | fr

X
and hence

XX ) 1
(6.3.3) H={a'} Xt —XT ) 1
xXT - XT 1

because
(6.3.4) F(X-X)=F;(X,-X;)

6.4. Dynamics and quasi-statics

For dynamics, when the time integration is executed from a known step ¢ to an
unknown ¢ + h, it is further assumed that evaluation of H involves

(6.4.1) {a'}" = {a'}" <qt + gut)

Similarly, for quasi-statics there holds

(6.4.2) {a'}" = {a'}" (a")



CHAPTER 7

Local dynamics

Let us consider the following function

1
(7.0.3) L(u)= B (Mu,u) — (b,u)
where
(7.0.4) u=ut"
(7.0.5) b = A% + Mu'

The velocity update of the dynamic time-stepping given in Chapter 5 can now be
expressed as

oL
ou
The unknown velocity u is obtained as a stationary point of L and hence, in a sense,
L can be regarded as a discrete Lagrangian of our mechanical system. From the
geometrical point of view L is a strictly convex function, L (Au; + (1 — M) ug) <
AL (uy) + (1 = A) L (uz) for any uy, us and A € (0,1), which follows from the
positive definiteness of M, preventing the graph of L from having linear slopes. The
stationary point in (7.0.6) is then unique. Such a wrapping of the time integration
formula might seem somewhat overblown. Nevertheless, it allows us to put the
formulation of local dynamics into a broader context of duality. In the first place,
it is of use to interpret the case

(7.0.6) 0

oL
7.0.7 — = 0
(7.0.7) a7
A velocity update formula derived from the above condition adds r on the right
hand side

(7.0.8) Mu=b+r

Although r cannot be readily interpreted as a force at a particular time ¢, it is
correct to view it as an integral of some force over the time interval [t,t + h]

t+h
(7.0.9) r= / dr
¢

If Q is the configuration space of the mechanical system, it is then easy to see that
u € TQ, while br € T"Q and M : TQ — T*Q. In the previous chapter, the
mapping H was defined

64



7. LOCAL DYNAMICS 65

(7.0.10) U =Hu

acting between the spaces of generalised and local velocities H : TQ — TE3.
Rows of H can be interpreted as elements of the generalised force space T*Q and
hence the transpose map H” acts between the spaces of local and generalised forces
HT : T*E® — T*Q. This is also seen from the duality pairing between local and
global variables (power conjugacy)

(7.0.11) (U,R) = (Hu,R) = (u,H'R)

where R € T*E? is by definition a local net force over [t,t + h]. Every local force
R corresponds then to some generalised force r

(7.0.12) r=H'R

Note, that while H is a surjection, H” happens to be an injection, covering only
a subset of T*Q. Nevertheless, for each R we can obtain a corresponding u as a
solution of

OL
0.1 — =H"7
(7.0.13) o R

which corresponds to the maximum, with respect to u, of the following saddle
function

(7.0.14) G(u,R) = (u,H'R) — L (u)

The maximum can be computed as

(7.0.15) u(R)=M"" (b+H'R)
and plunged back into G, resulting in

Ly (R) = G(u(R),R)
(7.0.16) _ % (WR,R) + (B,R) + b
where
(7.0.17) W =HM 'HT
(7.0.18) B=HM 'b
1 -1
(7.0.19) b= 3 (M~'b,b)

Li; is the local conjugate function of L, defined by the Legendre-Fenchel transform

(7.0.20) Lix (R) = sup {(Hu, R) — L (u)}

We call it local and index with H, as it corresponds to the duality between the local
variables U and R, related to their generalised counterparts through H. In general,
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a conjugate function of a convex function L reads (cf. Rockafellar and Wets [183,
p. 473-474])

(7.0.21) L*(r)= stlllp{<u, r)—L(u)}

which in our case takes the form

(7.0.22) L*(r) = % (M~ 'r,r) + (M 'b,r) +b
Clearly
(7.0.23) Ly (R)=L* (H'R)

so that Lyj corresponds to the restriction of L* to a domain generated by the row
space of H. The gradient of Lj; reads

OL%
OR
and from the algebraic structure of W and B it is seen that it corresponds to some
local velocity

(7.0.24) -~ WR+B

(7.0.25) U=WR+B

As it can be deduced from (7.0.7) and (7.0.22), while the gradient of L at u is
r, the gradient of L* at r is u, which is characteristic for conjugate functions. It
should be noted, that a conjugate function L* is always convex. In our case, it is
strictly convex as the eigenvalues of M~! are positive and bounded away from zero.
The local conjugate Lj; might or might not be strictly convex, depending on the
particular shape of the H mapping. This issue becomes clear, when more than one
local frame is considered. It is relevant to mention, that as for R = 0 there follows
U = B, vector B is sometimes called the local free velocity.

7.1. Many bodies and local frames

Let {B;} be a set of bodies and {C,} be a set of local frames. To each local
frame C, there corresponds a pair of bodies B; and B;. Let B; be the body, to
which the local frame is attached. B; will be called the master in C, and denoted
by M. Consequently, B; will be called the slave in C, and denoted by S,. Of
course, the choice is arbitrary. Considering evolution of a multi-body system over
an interval [t,t + h], an analogue of equation (7.0.25) can be written down for each
of the local frames

(7.1.1) U, =Ba+ > WasRg
3
where
(7.1.2) Ua = Hiaui - Hjau]‘
(7.1.3) B, = Hi\uM; 'b; — H;oM; 'b;

(7.1.4) Wasloss = sanggaM,;;H;{ﬁﬁ
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o —1gg7T —1gT

(715) Waa - H'LaMi Hia + HJO‘MJ H]a
. i if B; € Cﬁ
(7.16) b={ incd

(7.1.7) Sap = { —1 if By, is (Ma ASp) V (Sa A Mp)

1 otherwise

The above formulae can be conveniently applied in a computer implementation.
They stem from the following algebra of the multi-body dynamics. Let q, u, f, M
gather the suitable vectors and matrices as

qi u; f M,
(7.1.8) q= P ,u= "2 = b M = M

To each local frame C,, there corresponds a block-row of the global H operator

—Hjl Hil
(7.1.9) H= H,, .  —Hj,
Hzm _Hjm
where
(7.1.10) Hio =H ({a'} € Ca, X € By)

is evaluated according to the formula (6.1.5) of the previous chapter. All of the
derivations from the introductory section of this chapter apply without change and
lead to the formulae (7.1.1-7.1.7). From now on a distinction between the single-
body or the multi-body as well as between the single-frame or the multi-frame cases
will be made only, if it is not clear from the context.

Operator W maps local covariant quantities into the contravariant ones. Al-
gebraically, it is represented by a sparse matrix, composed of dense 3 x 3 blocks
W,3. The sparsity pattern of W corresponds to the vertex connectivity in the
graph of local frames. Vertices of this graph are the local frames {C,}, while the
edges comprise a subset of all bodies {B;}, such that B; € C, and B; € Cg for o # (3.
This has been illustrated in Figure 7.1.1. Operator W derives from the formula

(7.1.11) W =HM 'H”

where M is a n X n symmetric and positive definite matrix, and H is an m x n
transformation operator (m and n in (7.1.8) and (7.1.9) are respectively equal n/k
and m/3 here, where k is the dimension of T'Q). Clearly, W is an m x m symmetric
matrix. It is positive definite, provided rows of H are linearly independent. This
is easiest to see from the flow of the actions in the above formula. A local force
R is first mapped by H” into a generalised force r. If rows of H are not linearly
independent, then there exist R; # Ry such that H”R, = HTR, and hence
W fails to be a bijection. This means, that the null space of W is larger than
{0}, so that it is not invertible in the usual sense. W becomes singular whenever
m > n, which is trivially related to the number of considered bodies. On the other
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FIGURE 7.1.1. A graph of local frames and the corresponding pat-
tern of W.

hand, one can always introduce singularity of W by using local frames between the
same pair of bodies, whose H operators are linearly dependent. This can be easily
related to the deformability of our kinematic models. For example, the pseudo-
rigid body has a linear distribution of the instantaneous velocity over an arbitrary
flat surface. Thus, the relative velocity between two bodies over a flat surface
is fully parametrised by three points. A larger number of local frames results in
the singularity of W. So does their collinearity. One can then generally speak
about the global and local over-restraining of the system. In practice, W often
becomes numerically singular for some particular configurations of local frames.
Indeterminacy of local forces is then an unavoidable consequence of the kinematic
simplicity, and as so it needs to be accepted in numerical practise. It might be
noted, that semi-positive definiteness of W implies non-strict convexity of L};.

7.2. Constraints

As it was already mentioned, L is strictly convex and hence, it admits a unique
minimum at a root of its gradient. Formula 7.0.6 describes this case, which by
construction corresponds to the numerical integration of an unconstrained motion.
It is not hard to guess however, that the local dynamical equation (7.0.25) was
introduced here in order to bring into the picture the notion of constraints. Within
the current formulation, these will be phrased in the form of some local equalities

(7.2.1) C(U,R)=0
which, combined with (7.0.25), result in

(7.2.2) C(WR+B,R)=0

The above is an implicit, nonlinear and usually nonsmooth equation, numerically
solved for R. In some particular cases, it does correspond to the solution of a
constrained minimisation problem. More often however, it can only be viewed as
the root finding problem. These subtleties will become clearer, when particular
kinds of constraints are introduced in Chapters 8 and 10.

7.3. Quasi-statics
Take

(7.3.1) M=A



7.3. QUASI-STATICS 69

(7.3.2) b = hf (t+ h,q")

where A was as (5.3.3) in Section 5.3. The foregoing discussion applies without
further changes.



CHAPTER 8

Joints

It is often necessary to confine the motion of a material point X within a
prescribed manifold

(8.0.3) x (X, t) € C (1)

This can be written down as an implicit equation

(8.0.4) c(x,t)=0

where ¢ is a k-component vector function, with 1 < k& < 3. The Jacobian [0c/0x]
is then a k x 3 matrix, of full rank for well defined constraints. In our case, in order
to fit into the 3 x 3 block structure of the local dynamics equations, it would be
convenient use a 3-component c. This is easily achieved. Note that for each ¢, rows
of [0c/0x] can be interpreted as some covectors a¥ in the Euclidean 3-space E3,
and

(8.0.5) [Oc/0x]0x =0

for all vectors 6x in the tangent space TyC (t). Note also, that covectors a* span
the orthogonal complement space T2C (t) (Figure 8.0.1). For each x and ¢, one
can always define 3 — k covectors a/ (k < j < 3), spanning TxC (t). This way a
complete dual base {ai} is defined in E3. The constraint equation (8.0.4) can now
be suitably extended to

¢ (x,1)
(8.0.6) c(x,t)=| (a%,x—x(X,1) , when C (t) is a surface
3 x X,t

and to

TdC

FIGURE 8.0.1. Geometrical interpretation of a constraint manifold
C, the tangent space TC and the orthogonal complement T-C.

70
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ct (x,1)
(8.0.7) c(x,t) = c?(x,t) , when C (t) is a curve.
<a3, x —x (X, t)>

The velocity form of so extended (8.0.4) reads now

(8.0.8) [Dc/dx] % + ¢ =0

where the last j equations are satisfied by construction. This somewhat redundant
derivation was made here in order to rewrite (8.0.8) as

(8.0.9) {al % =—¢ or U®t)=—¢(1)

where U is a local velocity with respect to the base {a;}. Hence, a point constraint
of form (8.0.4) naturally defines a local frame.

8.1. Back to the discrete case

Resorting back to the time-stepping scheme and the local dynamics of the
previous chapter, it is seen that the integration of motion constrained in the above
manner can be stated as

miny, L (u)

(8.1.1) Hu+é=0

where by convention u = u’*" and ¢ = ¢ (¢ + h). The local force R can now be in-
terpreted as a vector of Lagrange multipliers corresponding to the affine constraints
Hu + ¢ = 0. The Lagrangian of (8.1.1) reads

(8.1.2) Le(u) =L (u) — (Hu+¢,R)

and its optimality conditions lead to the saddle point problem
M -HT u b

oo (AT

This can be further transformed into

(8.1.4) —¢=HM'H'R + HM 'b

or

(8.1.5) —-c=WR+B

Because of the redundant components in the constraints of type (8.0.6-8.0.7) and
due to (7.0.25) and (8.0.9), some of the rows in the above system might be identities.
The motion along the corresponding directions a; should not be constrained, and
hence these rows are replaced by diagonal terms R; = 0. This leads to the following
uniform notation for a constraint equation, specified at some point x

(8.1.6) C(U,R)=0
where C is a 3-component vector function

Ul+¢t for a; € TECH!

(8.1.7) Ci(UR) = { R; for a'e T C!th
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Symbolically, (8.1.6) describes also the system of 3m equations for a multi-body
system with m joints. In order to find the constraint reactions R, one then solves
the system

(8.1.8) C(WR+B,R)=0
where U are expressed by the suitable rows of U = WR. + B.

8.2. Single-body joints
Let a dummy body B; be defined as follows

(8.2.1) q; (t) = q; (0)
(8.2.2) u; (1) =0
(8.2.3) M; =0

so it does not move and has a zero inverse inertia operator. One can use a dummy
body in order to introduce a single-body constraint C, within the framework of
local dynamics. For this, one picks a body of interest B; and attaches to it a local
frame. Together with the dummy body B;, this allows to formulate a block-row
of the U = WR + B relation. Assumption (8.2.2) implies, that in the absence of
other constraints, the relative local velocity U, is solely due to the motion of B;.
The following assumption (8.2.3) allows to reuse the same dummy body in order to
impose other constraints. The zero inverse inertia operator breaks the off-diagonal
couplings in the block-row W3, so that the reactions of other constraints using B;
do not contribute to U,. In other words, a dummy body does not correspond to
an edge in the graph of local frames.

Assume that X is a referential point, to which the local frame with base {a;} is
attached at ¢ = 0. In the view of (8.1.7), it is not difficult to come up with several
typical constraints

Fized point. Motion of X is pre- C(UR)=U
cluded.

Fized line. Motion of X is al- [ U ]
lowed along a line aligned with ag | C(U,R) = | U,
and passing through X at ¢t = 0. | Rs |
Fized plane. Motion of X is al- [ Ry
lowed within a plane normaltoaz | C(U,R) = | Rs
and passing through X at ¢t = 0. | Us |
Prescribed velocity. The local ve- _

locity of X reads V (¢). C(UR)=U-V
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One important subtlety needs to be mentioned for the dynamic time stepping.
As the configuration update is of the kind

h
(8.2.4) a"" =d'+ 3 (0 +ut)

and the above constraint definitions correspond to the velocity u***, an O (h)
violation of the constraint is possible between ¢ = 0 to t = h. If the constraints
cannot be prescribed in a way, which prevents the local velocities from having
components along the orthogonal complement space TC, it is possible to enforce
this condition by solving

(8.2.5) C(WR+B,R)=0
at t = 0, followed by the update of velocity

(8.2.6) wW=u"+M'H'R
8.3. Multi-body joints

Joints between pairs of bodies can be defined in a natural manner. The dis-
cussion of the previous section applies without changes, although the dummy body
needs to be replaced by a regular one. For example, the fized point constraint can
now be reinterpreted as a spherical joint, as soon as the referential points X € B;
and Y € B; are assumed to coincide at ¢ = 0. As an example of a more elaborate
constraint, let us consider a rigid weightless rod, inserted between an arbitrary pair
of points X € B;, Y € B; at t = 0. The rigid rod constraint corresponds to the
below statement,

(8.3.1) i (X, 1) =%, (Y, )] = [|X = Y|

Let us define the dual base vector al as

(8.3.2) al (1) = [xi (X, 1) = x; (Y. )] / xi (X, 1) — x; (Y, 1)

and select the remaining covectors {a2, a3} 1 a'. With this definition of the local
frame, the rod constraint can be expressed as

U,
(8.3.3) C(UR)= | R
R3

8.4. Configuration space

A multi-body system without constraints has freedom to move inside of its
configuration space Q. Enforcement of some equality constraints (joints) reduces
this space to a subset of Q. In the following this fact will be implicitly acknowledged.
Nevertheless, from the point of view of our implementation it is more convenient
to think about Q as intact. This is because all of the constraints will be dealt
with in a uniform manner, and no formal reduction of the configuration space will
be performed. At times, it will be convenient though to re-frame our thinking
and treat some of the bodies as “moving boundaries”. This will be emphasised by
writing Q ().



CHAPTER 9

Contact points

Bodies never come into contact at a single point. At some level of observation,
one can usually speak about a smooth contact surface. Yet, from the computational
point of view it is convenient to consider instead the set of “oriented points” (Figure
9.0.1). Here the contact corresponds to a point and a normal direction attached
to it. It is customary to refer by the single notion of “contact” to the totality
of entities attached to a contact point. The multi-body framework has to cope
with identification and maintenance of a representative set of contacts. Optimally,
the cost of those activities should be comparable with the one pertinent to other
essential computations (e.g. the time stepping). In order to accomplish this goal, it
is necessary to resort to some of the methods studied within the field of computer
science. This requires a temporary departure from mechanics into the realm of
algorithms and data structures.

Let the set of bodies {B;} be called a configuration. Let {B;}", {B;}'*" be two
consecutive configurations, possibly admitting small interpenetrations (the time
indexing is used at convenience). The motion affects shapes and positions of bodies
in {B;} . Additional operations cause structural changes to {B;} (e.g. insertion or
deletion of bodies). Let the tuple Co, = (x,n, B;,B;),, store the point, the normal
direction and the pairing of bodies involved in a contact. The goal is to efficiently
maintain {C,}, under possible changes of {B;}.

What precisely efficiently means, will be the matter of discussion in Section
9.2. Before that, Section 9.1 introduces a number of auxiliary data structures,
setting the background for the forthcoming developments. Section 9.3 discusses
the approximate contact search methods. Section 9.4 deals with the detection of
contact points and normals. Brief literature review follows in the last section.

9.1. Auxiliary data structures

The notion of a data structure will not be explicitly introduced. It will emerge
as a result of presentation of a number of beings belonging to this category. Let
us discuss some general properties instead. Data structures require space in order
to store their elements. A basic question is how much space is required in order to
store n elements? Structures are accompanied by algorithms operating on them.
Another elementary question is then how much ¢ime is necessary for an algorithm

N

FIGURE 9.0.1. An admittedly telephone-like example of contact
between two bodies. The set of oriented points represents two
disjoint contact surfaces.
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X.n y.n zZ.n

X.p y.p z.p

F1GURE 9.1.1. A doubly-linked list.

to accomplish its goal? Both issues can be briefly addressed as the space and the
time complezity, and examined on a case by case basis. Without resorting to any
particular example, it is adequate to recall some notations commonly employed
in the analysis of algorithms. Let g (z) be a known function. The growth of any
function f (x) can be related to the growth of g (x) in a number of ways. Definitions
below are quoted after Wilf [209]

DEFINITION 9.1.1. We say that f () = O (g (z)) (x — o) if 3C, x¢ such that
[f ()] < Cg () (V& > zo).

DEFINITION 9.1.2. We say that f () = © (g (z)) if there are constants ¢; > 0,
co > 0, xp such that for all z > zg it is true that c1g (z) < f (z) < cag ().

DEFINITION 9.1.3. We say that f(z) = Q(g(z)) if there is an € > 0 and a
sequence 1, T, r3,... — oo such that ¥, : |f (z;)| > eg (z;).

Thus, f(x) = O (g (z)) implies that f (z) grows no faster than g (x), f(z) =
O (g (z)) states that f (z) and g (z) grow at the same rate, while f (z) = Q (g (x))
means that f (x) grows at least at the rate of g ().

Considering an algorithm operating on n elements of a data structure, it is now
easier to describe its space and time demands. In practice one is mostly interested
in data structures with O (n) space complexity. Fast algorithms will usually have

runtime complexity similar to O (n“ logb n) , where a, b > 0 will depend on the state

of the ordering and dimensionality of the input data. The runtime is measured
by the number of discrete steps. In the following, unless specified otherwise, the
logarithm to the base 2 is considered.

9.1.1. Tuple. Tuple is a grouping of elements. For example (b, ¢, d) is a tuple
composed of elements (members) b, ¢, d. Any of the elements can be a tuple itself.
Let a = (b, ¢,d) be a variable storing the tuple. We can refer to the members of a
by a.b, a.c, a.d.

9.1.2. Pointer. A pointer is a symbolic link to a tuple. For example let the
tuple (d,n) be composed of an arbitrary data d, and a pointer n. Then it is fair
to create a variable a = (d,n) and assign the pointer value a.n = a. The member
a.n behaves now as it was a. For example a.n.d is the same as a.d and the infinite
reference a.n.n.n... makes sense. If the pointer value was not assigned, the default
value nil is assumed. It is also valid to assign the nil value a.n = nil explicitly.
Note, that pointers do not stand out in the adopted notation. It is enough to
mention them, when a tuple is being first defined.

9.1.3. List. Each item of a (doubly-linked) list is composed of three elements
(d,p,n), where d stores an arbitrary data, p is a pointer to the previous list item,
and n is a pointer to the next list item (Figure 9.1.1). There are as many list items
as there are data items, so that the space demand of the list structure is O (n). A
list is represented by a pointer to the first element, say [. A data item d is inserted
into the list [ as follows
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ALGORITHM 9.1.4. List Insert (I,d)

1 a=(dp,n)

2 ifl#nil thenlp=a
3 an=I

4 l=a

It is seen that the newly created list item a replaces the head of the list [. Point-
ers are updated accordingly. The complexity of this operation is O (1). Another
elementary operation is deletion. Let us delete an item a from [

ALGORITHM 9.1.5. List_Delete (I, a)
1 if a.p # nill then a.p.n=an

2 elsel=an

2 if a.n # nil then a.n.p = a.p

The O (1) deletion comprises obvious updates of pointers. The following routine
finds a list item associated with a specific data d

ALGORITHM 9.1.6. List Find_Item (I,d)
1 a=1

2 while a # nil do
3 if a.d = d then
4 return a

5 end if

6 a=an

7 end while

8 return nil

As there is no other way to identify the list item storing d, the O (n) search
is necessary. Combining the two above algorithms allows to delete the list item
associated with d

ALGORITHM 9.1.7. List Delete_ Data (I,d)
1 a = List_Find_Item (l,d)
2 if a # nil then List_ Delete (I,a)

Somewhat more interesting code can be written down, once the order of data
is taken into account. The classical merge sort algorithm can be implemented as
follows

ALGORITHM 9.1.8. List Merge Sort (1)
1 o=1

2 while true do

3  h=t=nil j=1

4 while true do

5 i=7,m=0

6 whilem <oANj#nil doj=jn, m=m+1
7 k=3,n=0

8 whilen <oANk#nil dok=kn,n=n+1
9 if j=nil Ni=1 then

10 fori=1luntilnil doip=j,j=1,i=1in
11 return |

12 else if m +n =0 break

13 if h = nil then ifi.d < j.d then h =1 else h =
14 while m >0An >0 do

15 if i.d < j.d then

16 if t # nil then t.n =1
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17 t=t,1=1tn, m=m-—1

18 else

19 if t # nil then t.n = j

20 t=j,7=jn,n=n—-1

21 end if

22 end while

23 whilem >0dotn=i,t=1i,1=in, m=m-—1
24 whilen >0dotn=j,t=j,j=jn,n=n—1

25 end while
26 tn=mnil,l =h, o= 20
27 end while

Algorithm 9.1.8 has O (nlogn) runtime complexity. This is easy to see, once
the idea of the merge sort becomes clear. Let us consider a simple illustration.
The sequence 7,2,6,1,4,5,9,3 is to be sorted. First adjacent pairs of numbers are
grouped (7,2), (6,1), (4,5), (9,3) and the numbers within the pairs sorted (2,7),
(1,6), (4,5), (3,9). In the next step the pairs are merged into the groupings of
four numbers, while the order is being preserved. (1,2,6,7), (3,4,5,9). The merge
operation is performed again and the final sorted sequence results. Each merge
operation can be done in O (n) time and there is at most logn groupings, thus
the runtime complexity follows. In the above algorithm the outer loop controls the
current length of grouping (o + 1), while the merge operation is performed in lines
14 - 25.

One can imagine the situation when a long and initially sorted list is altered
in the way, that each item is shifted by few places to the right or to the left. The
list remains sorted in the average sense. That is to say, if we could assign a colour
to the magnitude of each data item, then the altered list observed from a distance
would seem very similar to the sorted one. Under a closer look it appears most
natural to restore the right order by inspecting each item and shifting it back into
the right position. This can be done in a fast manner, provided the alteration is
small compared to the length of the list. This idea is utilised by the insertion sort
algorithm

ALGORITHM 9.1.9. List Insertion_Sort (1)

1 p=lI

2  while p # nil

3 q=p,p=pn

4 while q.p # nil A\ q.p.d > q.d do

5 0=4q.p

6 if 0.p # nil then o.p.n =q

7 elsel =q

8 if g.n # nil then gn.p=o

9 q.p=o0.p, 0n=qmn, qgn=o0, 0.p=q

10 end while
11 end while

The insertion sort has complexity O (an) where a is the average shift length
in the originally sorted list. For a < n it becomes O (n), which is a useful result
at times. The fact that the average shift is enough to asses the complexity follows
from the simple observation that (¢1 4+ ¢2 + ... + ¢,,) /n = a, where ¢; is the number
of comparisons necessary to bring an altered item back into its right place.

9.1.4. Hash table. Let h[-] be a table of pointers to lists (d, p,n), defined in
the previous section. Assume h[-] is of size m. Let f (d) be a surjective hashing
function such that
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hik] | nil

nil‘b@@\n"
@mnn
hik+3] | nil ‘

.
nil n
> |

nil

nil
N

F1GURE 9.1.2. Hash table with lists.

(9.1.1) vd: f(d) € {1,2,...,m}

and the evaluation time of f(d) takes O (1) time. One can define the following
operations

ALGORITHM 9.1.10. Hash_ Table Insert (h, f,d)
1 List_Insert (h[f (d)],d)

and

ALGORITHM 9.1.11. Hash_ Table_ Delete (h, f,d)
1 List_Delete_Data (h[f (d)],d)

as well as

ALGORITHM 9.1.12. Hash Table Find (h, f,d)
1 return List Find Item (h[f (d)],d)

The insertion into the hash table has O (1) complexity. The hash table deletion
and search on the other hand, have the complexity proportional to the length of
the list stored at the table element & [f (d)]. This length depends on the guality of
the hashing function. By definition it is possible that

(9.1.2) Jz,y: f(x) = f(y)
which is called a collision. A hash table can be efficient, provided collisions happen
rarely. This is in general the case, if the probability of collision reads

1
(9.1.3) Vo : Plyay=p) =0 (E>

with a small (« m) constant in O (). In this case collisions are distributed uni-
formly over h[-], with the probability proportional to >, where n is the number of
stored data items. Thus, for a good hashing function the average length of the list
stored at any element h[-] is O (%) If all data items d are known, one can always
index them from 1 to m in such a way, that no more than L%J + 1 share an index,
where |-] indicates the nearest smaller or equal integer. If the set of d is not known
in advance, existence of good hashing functions is not assured. In practice though,
reasonably efficient functions can be found. It should be noted, that the presented
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FIGURE 9.1.3. Priority queue arranged into a tree-like heap [50].
The dashed lines shows that all k£ nodes with y > 8 can be reported
by simply descending down the tree in O (k) time.

FIGURE 9.1.4. A binary search tree. The thickened path has to
be traversed in order to enumerate all k£ nodes with = > 8, which
for a balanced tree can be done in O (logn + k).

variant of hashing is not among the most subtle versions of this technique. One
might like to consult Knuth [119, pp. 552-601] for a more insightful exposition.

9.1.5. Priority queue. Let us consider a set @ of n elements (d,y), where
d represents an arbitrary data and y describes a priority assigned to this data.
The interest is in maintaining ) in such a way, that the subset of k elements such
that y > yo can be accessed in O (k) time. The maintenance operations include
insertions and deletions of elements and eventually, updates of their priorities. A
data structure facilitating the mentioned operations bears the name of the priority
queue. A typical efficient implementation of the priority queue exploits the heap
structure as its skeleton. A through description of both structures can be found in
Cormen et al. [50, pp. 127-144|. A specific implementation of the priority queue
will be outlined in Section 9.1.7. Here instead, let us illustrate that the elements of
a priority queue can be arranged into a tree-like heap structure. Let us expand the
tuple (d,y) into (d, y, p,,r), where p is the pointer to a parent node in the tree, [ is
the pointer to the left sub-tree (left child), and r is the pointer to the right sub-tree
(right child). One can arrange the elements of @ into a tree-like structure satistying
the heap property: for each v € Q, if v.p # nil then v.p.y > v.y. Consider elements
of @ with priorities {1,2,3,4,7,8,9,10,14,16}. An example of such arrangement
is given in Figure 9.1.3. The dashed line bounds 5 elements with priorities y > 8.
They can be enumerated by descending down the tree in the O (5) time.

9.1.6. Binary search tree. Similarly as in the previous section, let us con-
sider a set @ of n elements (d, ), where d represents an arbitrary data and x stands
for a coordinate assigned to this data. The objective will be to maintain ) in such
a way, that for a given zg the set of all k elements v € @ such that v.z > zy can
be identified in O (logn + k) time. It is possible to arrange the elements of @ into
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nil

FiGURE 9.1.5. Priority search tree based on the red-black tree
structure. Red nodes are light-grey. Numbers outside of the rect-
angular leaves and circular nodes represent the priority queue.
Dashed lines indicate pointers.

a tree-like structure (d, z, p, [, r) satistying the binary search tree property: for each
v € Q, if v.l # nil then v.l.x < v.x and if v.r # nil then v.x < v.r.x. Of course
p, 1, r denote respectively, the pointer to a parent node in the tree, the pointer to
the left sub-tree, and the pointer to the right sub-tree. The n elements of ) can be
arranged into a binary search tree in such a way that the number of nodes along
the longest path in the tree is O (logn). Such a tree is called balanced. A balanced
binary search tree corresponding to the coordinate set {1,2,3,4,7,8,9,10,14, 16}
is illustrated in Figure 9.1.4. A specific instance of the balanced binary search tree
will be detailed in the next section.

9.1.7. Priority search tree. Priority search tree has been proposed by Mc-
Creight [148] as a combination of the priority queue and the balanced binary search
tree. The structure operates on tuples (d, x,y), where an arbitrary data d is associ-
ated with two coordinates = and y. Priority search tree allows to efficiently process
a number of range queries, one of which is of particular interest in the current
context (Section 9.3.2):

PROBLEM 9.1.13. For a set @ of n tuples (d, z,y), given 2y and yo, report all
v € @ such that v.x > xg and v.y > yo.

The priority search tree presented in this section is based on the red-black tree
structure, invented by Bayer [21] (the name used by him was the symmetric binary
B-tree, while Guibas and Sedgewick [80] have introduced the red-black colouring
convention). A comprehensive description of the data structure can be found in
Cormen et al. [50, pp. 273-301]. For the sake of completeness, a rather detailed
extraction from Cormen et al. is included here. It is further completed by embed-
ding the priority queue structure within the red-black tree.

An element of the priority search tree comprises (u, t, ¢, p,1,7, ¢q), where u is the
tuple (d,x,y), t € {node,leaf} describes the type of the element, ¢ € {red, black}
is the colour of the element, p is the pointer to the parent of the element, [ is the
pointer to the left sub-tree (left child), r is the pointer to the right sub-tree (right
child), and ¢ is the pointer to the element of the priority queue (Figure 9.1.5). Tree
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elements v for which v.t = node are called nodes, while those where v.t = leaf are

called leaves. The following properties are quoted after Cormen et al. [50, p. 273]:

) Every node is either red or black.

) The root is black.

) Every leaf is black.

4) If a node is red, then both its children are black.

5) For each node, all paths from the node to descendant leaves contain the
same number of black nodes.

1
2
3

(
(
(
(
(

It should be noted, that in general it is not necessary to employ separate tree
elements for all leaves in the red-black tree. In a typical application only nodes
store data. Nevertheless, the priority search tree requires the additional leaf space.
Let us define bh (v), the black height of a node v, as the number of black nodes (not
including v) on the way from v down to a leaf. Similarly, let h (v) bet the height of
the sub-tree rooted at v, that is the maximal number of nodes (including v) on the
way down from v to a leaf. Also, let n (v) denote the number of nodes of a sub-tree
rooted at v. An empty tree contains no nodes, that is if v is the root, then v = nil.
Lemma below states a basic result about the efficiency of red-black trees.

LeEMMA 9.1.14. Red-black tree with n nodes has height at most 2log (n + 1).

PRrROOF. First one needs to show that n (v) > 2bhew) _ 1 gy h(v) = 0 then
bh(v) = 0. Thus n(v) > 2° — 1 = 0, which is correct. Now assume h (v) =
k and n(v) > 2bh() _ 1 Take w, such that h(w) = k+ 1. If w.ec = read
then (from property 4) bh (w) = bh (w.l) + 1 = bh (w.r) + 1, otherwise bh (w) =
bh (w.l) = bh (w.r). Thus, by the inductive hypothesis n (w) > (Qbh(“’)’l - 1) +

(2bh(“’)’1 - 1) +1=2Ph) _ 1 Let h be the height of the tree. From property

5 there follows that the black height of the root is at least h/2 (try to insert as
many red nodes as possible). Tt results that h > 2"/2 — 1, or in other words
h <2log(n+1). O

The height of the proposed priority search tree is then O (logn). This implies
that, as long as the properties 1-5 can be maintained, all operations traversing the
tree along its height and performing on the way some constant time actions will
have O (logn) complexity. Three basic operations will be considered: insertion,
deletion, and the already mentioned two-sided range query. It will be useful to
define the comparison of tuples (d, z,y) first

(dz,.fz,yz) < (dj,Ij,yj) iff v; < T \Y (:Ez =Tj ANd; < dj)
(9.1.4) (diszi,yi) = (dj, vj,y5) ff e, = 25 N d; = d;
(di, zi,y:) > (dj, xj,y;) otherwise.
The following two routines will be utilised to maintain the priority search tree.

ALGORITHM 9.1.15. Pst_ Push (v, q)
1 while v.q # nil

2 if v.qu.y < q.u.y then

3 §=0.q,V.q=¢q,q=S5
4 end if

5 if qu < v.u then v =wv.l
6 elsev=uvr

7 end while

The above algorithm descends down from the root v comparing the current
queue coordinates v.q.u.y against the candidate g.u.y (lines 2-4). If the currently
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Pst_Rotate Left (v,X)
/—\B

Pst_Rotate_Right (v,y)
-~ - - —

B y a B

F1GURE 9.1.6. Left and right rotations. The left to right ordering
of data tuples according to comparison (9.1.4) is preserved in nodes
x,y and sub-trees «, 3,7.

stored v.q.u.y is smaller than the candidate coordinate, v.q and ¢ are swapped (line
3) and the descend continues along the binary search path of ¢ (lines 5-6). If the
comparison (9.1.4) is O (1) then the runtime of Algorithm 9.1.15 is O (logn). The
Pst  Push routine does not affect the structure of the red-black tree. A reverse
operation follows.

ALGORITHM 9.1.16. Pst_Pull (v)
1 do

2 if vt =leaf then

3 v.q = nil

4 return

5 else s =v.l

6 if s.qg = nil vV (vor.q #nil Nv.r.qy > s.qy) then s = v.r
7 V.q = 8.q

8 V=35

9 while v.q # nil

Algorithm 9.1.16 descends down the tree v. For each tree node v, its priority
queue link v.q is replaced with either v.l.q or v.r.q (line 7), depending on whether
respectively v.l.g > v.r.q or the opposite holds (lines 5-6). The search continues
down the path of the maximal priority choice (line 8). The loop terminates either
at a leaf element (lines 2-4), or at the end of the queue (line 9). The runtime is
O (logn). The structure of the red-black tree remains unaffected.

Structural changes to the red-black tree will be caused by insertions and dele-
tions. Before these can be analysed, the following two auxiliary routines need to be
considered.

ALGORITHM 9.1.17. Pst_ Rotate Left (v,x)

1 y=uzr

2 zr=uyl

3 ylp==z

4 yp=uax.p

5 ifz.p=mnil thenv=y

6 else if v =x.p.l then x.pl=1y
7 elsexpr=y

8§ yl==x

9 zp=y

10 s=vy.q,yq=2.q,x.q =35
11 Pst_Pull (x)
12 if s # nil then Pst_Push (y, s)

and
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ALGORITHM 9.1.18. Pst_Rotate_ Right (v,x)
Rewrite Algorithm 9.1.17 with .l and .r swapped.

Above v is the root of the tree, and z is the node about which the rotation
is supposed to happen. The left rotation and the right rotation are pictured in
Figure 9.1.6. Lines 1-9 in Algorithm 9.1.17 basically update pointers in compliance
with Figure 9.1.6. This is a standard part of left-rotation, exactly as in Cormen
et al. [50]. Lines 10-12 update the priority search tree structure. It is seen that
as a result of the left rotation y, a former child of z, becomes the parent of z.
Thus certainly the queue pointers in  and y need to be swapped. This happens in
line 10. The pointer y.g maintains the priority queue property with respect to its
both children (y.q > +.¢ is preserved, and the swap in line 10 ensures y.q > z.q).
Nevertheless, although z.q > §.¢ (inherited after y), there does not necessarily hold
x.q > «a.q. This is remedied by pulling z.q out of the queue in line 11, followed by
pushing it back down the queue in line 12 (s is pushed down the y—rooted tree, as
it actually might have been coming from the 7 sub-tree). Because of the priority
queue update, the runtime of Algorithms 9.1.17 and 9.1.18 is O (logn).

Rotations will be utilised as one of the actions aimed at restoring the red-black
tree properties 1-5 after an insertion or a deletion has taken place. Let us consider
the insertion first.

ALGORITHM 9.1.19. Pst_Insert (v,x,y,d)

if v = nil then
v=((d,z,y),leaf,black,nil, nil, nil,nil), vl =vr =v.g=v
return

end if

bPp=gqg=v

u=(d,x,y)

while p.t # leaf
q=p
if u < pu then p=p.l

10 else if u > p.u then p = p.r

11 else return

12 end whale

18 if u = p.u then return

14 ifp#q thenpp=q

15 p.t =node, p.c = red

16 p.l = (nil,leaf,black, nil, nil, nil, nil), p.l.l = p.l.r = p.l

17 p.r = (nil,leaf,black,nil, nil,nil, nil), p.r.l = p.r.r = p.r

18 if u < p.u then

19  pru=pu

20 plu=pu=u

21 for g = p while q.q #p do q=q.p

22 q.q = p.r

23  Pst_Push (v,p.l)

24 else

25 pru=u

26 plu=pu

27  for q=p while q.q #p do q=q.p

NSRS N NV S

28 q.q =np.l
29  Pst_Push (v,p.r)
30 end if

31 Pst_Insert Fizup (v,p)
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Algorithm 9.1.19 takes as the arguments the tree root v, the two coordinates x
and y and a data item d. In case the tree is empty, a single leaf element is created
as a root (lines 1-4). Otherwise the tree is traversed down the (d, z,y) comparison
path, until a leaf is found (lines 5-12). It is assumed, that all data items d are
distinct. Thus, the insertions exits in lines 11 and 13, rather than updating the
y priority. The parent pointer is updated in line 14, for all but the initial root
leaf. Then the found leaf is transformed into a node, and its colour changed from
black into red in line 15. Two leaf children of the new node are created in lines
16-17. Note that the pointers are set characteristically for leaves (for the sake of
correctness of rotation routines). In the binary search ordering of the red-black
tree structure the convention is used, that all < data is stored to the left of a node.
It follows that the former data of node p is now moved to its right child in line
19. Then the new data takes place of the one in node p and in its left child (line
20). Lines 21-23 deal with the update of priority queue. We wish to preserve the
principle, that queue pointers point to the data stored at leaves. Thus, the search
is done up the tree in line 21, in order to locate the queue pointer, pointing at p.
As ps data has moved to its right child, the pointer is now reset to p.r (line 22).
The newly inserted data is pushed down the priority queue in line 23. The same
procedure is repeated symmetrically in lines 25-29. Finally, as the colour of the
new node was changed to red in line 15, the red-black tree structure needs to be
maintained in order to preserve properties 1-5. This is done inside of the fix-up
routine listed below.

ALGORITHM 9.1.20. Pst Insert Fizup (v,x)

1 while x #v A z.p.c=red

2 if ©.p = z.p.p.l then

3 Yy = z.p.p.r

4 if y.c = red then

5 x.p.c = black

6 y.c = black

7 z.p.p.c =red

8 T =2x.pp

9 else

10 if © =x.p.r then

11 T =2x.p

12 Pst_ Rotate_ Left (v, x)
18 end if

14 x.p.c = black

15 x.p.p.c =red

16 Pst_ Rotate_ Right (v, z.p.p)
17 end if

18 else

Rewrite lines 3-17 with .l and .r swapped.
34 end if

35 end whale

36 v.c = black

A detailed analysis of Algorithm 9.1.20 can be found in Cormen et al. [50, pp.
280-287|. As it is rather lengthy, it would be excessive to repeat it here. It is enough
to note, that the properties of the red-black tree are restored by Algorithm 9.1.20 in
O (logn) time. The only point where an additional comment is necessary concerns
rotations. Due to the priority queue related modifications the time complexity of
rotations is O (logn) rather than O (1). Nevertheless, as commented in |50, p. 287],
the insertion fix-up performs at most two rotations. As a result the total runtime
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of the insertion Algorithm 9.1.19 remains O (logn). Let us resort to the deletion
now.

ALGORITHM 9.1.21. Pst_ Delete (v,z,y,d)
u=(d,x,y)
r=wv, p=q=nil
while r.t # leaf
ifrq#nil ANu=rqu thenp=r
qg=r
if u <rwu thenr=r.l
elser =rr
end while
if u # r.u then return
10 if p # nil then Pst_ Pull (p)
11 if q # nil then
12 if r =q.l thenp=q.r
13 else p=q.l
14 pp=qp
15 if g.p = nil thenv=7p
16 else if q=q.p.l then q.pl=1p
17 else g.p.r =p
18 if q.q # nil A q.q # q then Pst_ Push (p,q.q)
19 if g.c = black then Pst_Delete Fizup (v,p)
20  free q
21 else v =nil
22 freer

NSRS A NV S

Algorithm 9.1.21 takes as arguments the tree root v, the coordinates x and vy,
and the data item d. It descends down the tree until a leaf r holding v = (d, z,y) is
found (lines 3-8). Along the way a pointer p to the tree node holding the priority
queue element associated with w is recorder (line 4). If the right leaf was not found,
the algorithm exits in line 9. If a priority queue element associated with u was found
in a tree node, it is pulled out of the queue in line 10. For a tree not composed
of a single root leaf (line 11), the usual binary tree deletion is performed on node
q (otherwise the root is set to nil in line 21). First the ¢s parent branch is set to
the child of ¢ which is not being deleted (lines 12-17). As ¢ itself is to be removed
an eventual queue element is push down the remaining sub-tree in line 18. If ¢ is
black, then its deletion is likely to alter the balance of black nodes across the tree
height (principle 5). An appropriate fix-up is performed in line 19. It is marked in
the code, that the storage of ¢ and r can be deleted (lines 20 and 22).

ALGORITHM 9.1.22. Pst_ Delete Fizup (v, x)
1 while x # v A\ x.c = black
2 if t = x.p.l then

3 Yy =z.p.r

4 if y.c = red then
5 r.p.c = red

6 y.c = black

7 Pst_ Rotate_ Left (v, x.p)

8 Y =x.p.r

9 end if

10 if y.l.c = black N y.r.c = black then
11 y.c =red

12 T=x.p
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13 else

14 if y.r.c = black then

15 y.l.c = black

16 y.c =red

17 Pst_ Rotate_ Right (v,y)
18 Y =z.p.r

19 end if

20 y.c=xT.p.C

21 x.p.c = black

22 y.r.c = black

23 Pst_ Rotate_ Left (v, x.p)
24 =0

25 end if

26 else

Rewrite lines 3-25 with .l and .r swapped.
42 end if

438 end while

44 x.c = black

Similarly as in case of insertion, the purpose of Algorithm 9.1.22 is to maintain
properties and therefore balance of the underlying red-black tree structure. The
procedure is included here for the sake of completeness. For a through analysis the
reader is referred to the comments in [50, pp. 288-293]. At most three rotations
can take place during the deletion fix-up, thus the usual O (logn) deletion time is
maintained, even though rotations take O (logn) in the current case.

It remains to discuss an algorithm answering the query defined as Problem
9.1.13. The following routine takes as the arguments the tree root v, the min-
imal coordinates xy and ¥, an arbitrary data pointer d, and a callback routine
Report(0,d).

ALGORITHM 9.1.23. Pst_ Query (v, xo, Yo, 9, Report)

1 p=mnal

2 while v # p AN v.q # nil

2 p=v

4 if v.qu.x > xo Av.guy > yo then Report (0,v.q.u.d)

5 if vo < v.u.x then

6 if v # v.r then Pst_ Report_ Down (v.r,yo, 0, Report)
7 v=uv.l

8 else v=uv.r

9 end while

Algorithm 9.1.23 descends down the tree along the path indicated solely by the
x coordinate of the stored data (lines 5, 8) and the range limit xg. If the current
x coordinate is larger or equal to xg, the right sub-tree can only store data with
x > xg. Thus, a complete branch of the priority queue is recursively reported as
long as y > yo (line 6, and Algorithm 9.1.24 below). Similarly, queued data items
encountered on the way down are eventually reported in line 4.

ALGORITHM 9.1.24. Pst_Report Down (v, yo, d, Report)
if v.q = nil then return

else if v.q.u.y < yg then return

Report (8, v.q.u.d)

if v.t = leaf then return

Pst_Report_Down (v.l,yo,d, Report)

Pst_ Report_Down (v.r,yo, 0, Report)

D Gr AN o O~
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FiGURE 9.1.7. Binary tree on atomic intervals

9.1.8. Segment and interval trees. All of the presented so far data struc-
tures had O (n) space complexity. The structures outlined in this section demand
more space, which is also the reason why they are rarely implemented in practice.
A suitable, practical generalisation will be detailed in Section 9.3.4.

A data structure called the segment tree [25] allows to solve the following

PROBLEM 9.1.25. (Stabbing query) Given a set of intervals S and a query point,
report, all intervals that contain the point.

On the other hand, the range ¢ree [27] can be used to solve

PROBLEM 9.1.26. (Range search) Given a set of points P and a query interval,
report all points that belong to the interval.

It is easy to notice that Problems 9.1.25 and 9.1.26 are dual in the following
sense: The same set of pairs X C Sx P is reported, when solving either the stabbing
problem on S with points from P, or then range search problem on P with intervals
from S.

Let us have a look into the segment tree first. Endpoints of intervals from S
subdivide the real line into the set of so called atomic intervals (intervals i, ia, ..., 915
in Figure 9.1.7). They can be assumed half-open, say at their right endpoints. It
is not difficult to create a balanced binary search tree, such that atomic intervals
are leaves and each node is a union of its offspring intervals. Consequently, the
root node spans the entire real line. This is a convenient search structure for point
queries, but not yet a segment tree. To obtain the segment tree, one needs to store
information about the intervals of S in tree nodes. Assume that tree nodes are
supplied with auxiliary lists, storing some of the intervals from S. Let tree node u
be associated with an interval I,,. The following rule is applied: An interval s € S
is stored in v if and only if I, C s and Ipgpent(uy ¢ s (Figure 9.1.8). This ensures,
that an interval is stored at most twice at each level of the tree. For if this wouldn’t
be the case and there would exist n nodes ui, ug, ..., u, storing an interval s at one
level of the tree, then Iparent(us) C S5 Iparent(us) C 85 -+ Iparent(un_,) C § (due to the
binary tree structure), which contradicts the assumed manner of storing intervals
at tree nodes. Hence, each interval is stored no more than O(logn) times in the
tree. It follows, that the O(nlogn) space is necessary for the segment tree.

Segment tree can be constructed in bottom-up or top-down manner. In the
former case, a good algorithm finding an approximate median of a set of points is
necessary [44, 20]|. The tree is begin built by descending down and splitting point
sets according to the median. Building the tree this way requires O(nlogn) steps
on average. In case of the bottom-up approach one first sorts P, and then builds
the tree climbing up from the leaves level. This results in the well balanced tree,
built in at most O(nlogn) steps.
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FI1GURE 9.1.8. Storing an interval into a segment tree.
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F1GURE 9.1.9. A complete segment tree with a stabbing query example.

It remains to discuss is the stabbing query itself (Figure 9.1.9). One needs
O (logn) steps to query the segment tree with a point. For each node u the intervals
stored in the nodal list L, are reported. This way each of the intervals stabbed by
the point is reported once, which gives O (logn + k) query complexity. Once the
tree has been built, the stabbing query can be answered efficiently. Nevertheless, we
are not satisfied with the space requirements of the segment tree. In Section 9.3.4
it will be shown, how to avoid storing of the complete tree in computer memory,
which considerably relaxes the theoretical space requirements of the structure.

The range tree structure is quite similar to the segment tree. The only difference
is that in auxiliary nodal lists one stores points, contained within the nodal intervals.
Root of the tree stores then the complete set P. One queries the range tree with
an interval s, and during this process splits s into O(logn) parts (exactly as it was
done, while storing s in the segment tree). As the query descends down the tree,
all points stored in nodes whose intervals I,, are contained in partitions of s are
reported. The remarks relevant to the space and time requirements of the segment
tree can be repeated for the range tree without change.

9.2. The optimal data structure

When implementing a computer code, one naturally realises what are the de-
sired features of an algorithm. Simplicity, speed and modest usage of space are
among the sought qualities. At the same time, one realises that these goals are at
times mutually exclusive. Some need to be traded off against others. This is not an
exception for the algorithms related to contact search. The purpose of this section
is to discuss an imaginary, optimal data structure suitable for contact search in
dynamic multi-body simulations. It is relevant to realise what an ideal is, before
compromising some of its aspects on the way to the practical implementation.
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It was already assumed in Chapter 2 that bodies are subdivided into elements.
It is arbitrarily decided here to use elements as irreducible geometric atoms. Hence
for a contact point, there follows

DEFINITION 9.2.1. A single oriented contact point results from an overlap of
two surface elements.

To be somewhat more precise, let B; = Ujé;; be the configuration of body 1,
where e;; is the jth surface element of body ¢, and the upper dash stands for the
set closure. Assume that there exist two bodies B; and By, such that B; N By #+
(. Then, the set of contacts (X1, Nikji, Bi, Bi) is defined by points and normals
corresponding to all nonempty intersections of elements &;; N &y # 0. Details on
calculating (x, n)ikjl for a pair of elements (e;;, e;) are provided in Section 9.4. For
the moment, it is enough to say that this operation takes O (1) time (with a rather
large constant factor), which results from the finite variety of element shapes.

Within the above model of acquiring contacts, it is natural to think about a
data structure storing elements, and possessing the following qualities:

(1) Insertion of new elements is possible and fast. This is related to the
scenario, when new bodies enter an active simulation. For example a
granular flow simulation with a source requires insertions.

(2) Deletion of elements is possible and fast. For example scattering of bod-
ies might require deletions, when some prescribed boundaries are crossed.
Insertion and deletion together allow for modelling of cracking and sepa-
ration.

(3) Insertions and deletions should take at most O (logn) steps, where n is
the number of stored elements.

(4) Overlap creation between pairs of elements should be efficiently reported.
This includes both the overlaps resulting from element insertions and the
overlaps created after an update of element positions.

(5) Overlap release between pairs of elements should be efficiently reported.
This includes both the overlaps released after element deletions and the
overlaps released after an update of element positions.

(6) Overlap creation/release reports should take at most O (n+ k) steps,
where k is the number of creation/release events.

(7) Elements directly, topologically adjacent in a mesh should be excluded
from overlap reports. The self-contact case is still included.

(8) Exclusion of selected pairs of elements should be possible. This might
be of use in the vicinity of joints, where mesh overlaps are sometimes
tolerated.

(9) The space complexity of the data structure should be O (n).

The insertion and deletion times listed in point 3 is quite stringent. Without
having in mind yet any specific realisation of the data structure, it is acknowledged
that data should be stored in some order. The fastest purely combinatorial linear
structures allowing for dynamic insertions and deletions are balanced binary search
trees. Thus, although our hypothetical structure operates in three dimensions,
we wish to retain the O (logn) insertion and deletion times. The overlap report
complexity listed in point 6 is in fact even more stringent. It is assumed that
the ordering maintained during insertions, deletions and updates of the structure
is sufficient to trace creation and release of overlaps in O (n + k) time. If this
could be assured, complexity of the contact search would not exceed that of the
time stepping. Nevertheless, algorithms detecting overlaps between geometrical
objects in three dimensions are slower. This will be demonstrated for shapes as
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simple as rectilinear boxes in Section 9.3.1.1. Still, our hope is in the improvement
resulting from processing nearly ordered data, similarly as it was the case with
sorting (Algorithm 9.1.9). A contact search algorithm operates in between of the
time integration steps. Therefore it is quite legitimate to assume that ordering of
data corresponding to adjacent time frames is similar. This is called time coherence.
Several overlap search algorithms and related data structures will be investigated
in Section 9.3. Few of them will take advantage of the time coherence.

It will be useful to sketch the interface routines for the hypothetical data struc-
ture s. Let insertion and deletion of elements e read

ALGORITHM 9.2.2. Imaginary_ Insert (s, e)
Insert e into s while preserving an implicit ordering.

and

ALGORITHM 9.2.3. Imaginary_ Delete (s, e)
Delete e from s while preserving an implicit ordering.

Somewhat more can be said about the actions taken inside of the update rou-
tine. All of the overlap event reports happen as a consequence of the update of
the structure. This means that overlap events related to insertions and deletions
are postponed and executed on the occasion of an update. This is related to the
anticipated difficulties with an efficient reporting of overlaps during the insertion
process. In consequence it is more elegant to assume that all overlap events are
reported during the update. This is just a pragmatic choice, dictated by experience.
The update routine follows below.

ALGORITHM 9.2.4. Imaginary_ Update (s, 9, Created, Released)
Find overlaps released due to deletions.
Find overlaps released due to motion of elements.
For each overlap release call Released (0, e;j, exr).
Find overlaps created due to insertions.
Find overlaps created due to motion of elements.
For each overlap creation call Created (0, e;5, 1),
if and only if the element pair is not topologically
adjacent or it was not explicitly excluded.

Equipped with the above structure and the knowledge on how to extract contact
points and normals from the pairwise element overlaps, one can easily execute a
variety of contact detection tasks. Of course, in practice some aspects of this general
idea (typically efficiency) will need to be compromised.

9.3. Finding contact candidates

The data structure outlined in the previous section operated on the surface ele-
ments, defined in Chapter 2. In fact, this is not the most convenient approach. It is
understandable, that overlaps between objects of simple shapes can be found more
rapidly, then between those of intricate shapes. Although element shapes are quite
simple, designing a data structure operating directly on them is still too cumber-
some. In terms of maintaining an ordering or testing for intersections, rather than
using the elements, it is much easier to deal with their axis-aligned extents. The
three axis-aligned intervals form a box, called the azis aligned bounding bozx (Fig-
ure 9.3.1). Obviously, if two bounding boxes do not overlap, their related elements
cannot intersect. Thus, the rejection test is simple and conclusive. On the other
hand, the overlap of boxes only indicates a potential intersection of the underlying
elements. It will be shown in Section 9.3.1, that under some practical assumptions,
the bounding box overlaps reflect quite well the actual element overlaps.
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FIGURE 9.3.1. An axis aligned bounding box around a pyramid
element. Projections on the coordinate axes have been thickened.

For taxonomic reasons it is relevant to mention, that the presented framework
belongs to the broader category of two-phase collision/contact/interface detection
methods. Section 9.3 corresponds to the broad phase, usually involving some sort of
space partitioning and/or bounding volume strategy, aimed at reporting the contact
candidate object pairs. Section 9.4 corresponds to the narrow phase, pursuing con-
clusive intersection tests between the reported pairs of objects. Interface detection
methods will be briefly reviewed in Section 9.5.

9.3.1. Axis aligned bounding boxes. Although the axis aligned bounding
boxes are a rather simple geometrical device, they proved to be effective in many
applications (e.g. computer graphics, geometric modelling, interface detection).
The reasons behind this effectiveness have been studied by Suri et al. [201] and
Zhou and Suri [215]. It will be useful to recall some of their results. For a set P of
n objects in d—dimensional space, the following ratio was considered

Ky (P)
n+ K, (P)

where Kj (P) denotes the number of intersecting bounding boxes, and K, (P) cor-
responds to the number of actual intersections among the objects. Formula (9.3.1)
describes the efficiency of the bounding box heuristic. The number of objects n
added in the denominator allows to consider also the case when K, = 0. At the
same time O (n 4+ Kj) corresponds to the complexity of an optimal algorithm find-
ing all intersections between the n objects. If p (P) is a small constant, then one
can conclude that the bounding box heuristic performs well, i.e. the overhead of
fictitious overlap reports is small. Although it is not hard to picture a situation
where p(P) = O (n) (e.g. Figure 9.3.2), it generally corresponds to some patho-
logical shapes arranged in a rather special way. After all, in the current case, the
bounding boxes enclose the convex surface elements and thus, it is not possible to
end up with a configuration similar to the one in Figure 9.3.2. In [201, 215] the
object shapes are characterised by their aspect ratio and scale factor. For an object
P, its aspect ratio is defined as

(9.3.1) p(P)=

(9.3.2) a(P) =
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FicuRrE 9.3.2. Example of objects shapes where K;, = O (n2) and
Ko=0().

where b (P) and ¢ (P) are respectively the enclosing box and the core of P. The en-
closing box is defined as the smallest L., ball (or simply, a smallest box) containing
P. Core on the other hand, is the largest L., ball contained in P. The aspect ratio
of the set P reads

(9.3.3) a(P) = maxa (P)

2

while the average aspect ratio for the set P is defined as

1
(9.3.4) Oavg (P) = — Z} a(P)
=
It is clear that the aspect ratio measures the elongation of an object. The aspect
ratio of the set from Figure 9.3.2 is high. The scale factor measures the disparity
of object sizes. It is defined then for the set P as

vol (b ()

(9.3.5) o(P)= max - 0P
The difference between the smallest and the largest enclosing box in Figure 9.3.2
is relatively large. Hence, one can see that the large aspect ratio and so the scale
factor of the objects in Figure 9.3.2 notably contribute to the possibility of an
arrangement resulting in p (P) = O (n).

In the chronologically first paper [201], Suri et al. analyse the ratio (9.3.1) in
terms of the maximal bounds (9.3.3) and (9.3.5). The following theorem is quoted
without proof

THEOREM 9.3.1. Let P be a set of objects in d dimensions, with aspect bound «
and scale factor o, where d is a constant. Then, p = O (a\/Elog2 U). Asymptoti-
cally, this bound is almost tight, as we can show a family P achieving p = Q (a/0).

Thus, if @ and o are small constants, there holds K, = O (K,) + O (n), which
shows that the number of box overlaps does not grow faster than the number of
actual object intersections (plus an extra O (n) factor, related to the work that
anyhow has to be done if n objects are to be examined). In many practical appli-
cations «, o are small constants. Eventually, objects can be subdivided in order to
reduce « and o, which should increase the effectiveness of the heuristic. Note, that
the aspect ratio affects the result in a greater degree than the scale factor.

The lower bound p =Q (ay/0), described in Theorem 9.3.1, is indeed quite tight
for small o. The authors construct a rather peculiar family of non-convex objects in
order to exemplify it. The bound will not be reached in our setting, where convex
elements are enclosed by the boxes. In [215], Zhou and Suri manage to improve
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the upper bound, which together with the already mentioned lower bound allows
to refine Theorem 9.3.1 into the following

THEOREM 9.3.2. Let P be a set of n objects in d dimensions, where each object

has aspect ratio at most « and the family has the scale factor o, where d is a
constant. Then p(P) = 0 (a/0).

In the same paper [215], the value of p is estimated with respect to the average
aspect ratio aq.g. The following result is proven.

THEOREM 9.3.3. Let P be a set of n objects in d dimensions , with the aver-
age aspect ratio Qqypg and the scale factor o, where d is constant. Then p (P) =

© (a%ial/gnl/g).

It is seen, that if only the average aspect ratio is bounded (rather than the
maximal one), a somewhat less optimistic estimate of the performance is achieved.
Nevertheless, n'/3 grows slowly and still - a relatively good performance is expected.
Proofs of all of the above theorems are too long and technical to be included.
However, it is fair to say that the techniques applied in [201, 215] seem potentially
applicable in the analysis of other geometrical algorithms.

In the context of the results brought up in the above, it is relevant to mention
the paper by de Berg et al. [54], where the idea of realistic input models is discussed.
The authors notice, that the worst-case performance of geometric algorithms often
corresponds to some ill-conditioned and quite unlikely configurations of objects
(Figure 9.3.2). By formalisation of the shape and arrangement characteristics, a
more realistic analysis becomes possible (e.g. introduction of the aspect ratio and
the scale factor led to the practical bounds on p). The following notion defined in
[54] will be of use in our case.

DEFINITION 9.3.4. Let P = { P4, ..., P,} be a set of d—dimensional objects, and
let A > 1 be a parameter. We say that P is A—low-density if for any L., ball B, the
number of objects P, € P with radius (b(P;)) > radius (B) that intersect B is at
most A. The density of P is defined as the smallest A for which P is A—low-density.

9.3.1.1. Remarks on finding overlaps. The above discussion allows to conclude
merely, that the axis aligned boxes are useful. The potential of this observation
depends however on the availability of an efficient algorithm for the box inter-
section problem. Several results can be found in the literature in this respect.
A two-dimensional version of the problem was solved by Six and Wood [192] in
O (nlogn + k) time and O (nlogn) space, where n is the number of boxes and k is
the number of intersections. The fastest d—dimensional result is due to Edelsbrun-
ner and Maurer [64] and Edelsbrunner [65, 66], where O (n log? ' n + k) time and

0] (n log”l_2 n) space was used. Nonetheless, the algorithm is too complicated to be
practical for d > 2. Edelsbrunner and Overmars [67] discuss a batched version of
the intersection problem, enjoying an optimal O (n logd*1 n+ k) time and O (n)
space complexity. Zomorodian and Edelsbrunner [216] give a fast and practical
refinement of this approach, to be discussed in Section 9.3.4.

The brief review of the state of the art allows to conclude, that the algorithm
discussed in Section 9.2 is not attainable in general. Hence, when none previous
solution is known, the intersection search has to take at least O (n log? n + k) time.
For the consecutive runs though, one hopes to reduce the runtime by exploiting the
time coherence.

9.3.1.2. Bounding box data type. Let the following tuple (d,lo, hi) describe the
axis aligned bounding box. The members of the tuple are respectively: d pointing
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FI1GURE 9.3.3. Reciprocate positions of two intersecting intervals.

to an arbitrary data, lo[] being a table of three low corner coordinates, and hi [-]
being a table of three high corner coordinates.

9.3.2. 1D interval overlap. The following two obvious facts are loosely
quoted after [216]

FAacT 9.3.5. Two boxes intersect if and only if they intersect in every dimension
independently. Hence, it is enough to consider intersection of one-dimensional
intervals.

FAcT 9.3.6. Two intervals intersect if and only if one contains the low endpoint
of the other. There are four general positions of two intersecting intervals (Figure

9.3.3).

Solving the interval overlap problem is then an essential step on the way towards
the three-dimensional box intersection. Three static methods and one dynamic will
be discussed for that purpose. A static algorithm takes as an input the complete
set of intervals, and outputs the overlapping pairs. A dynamic algorithm bases on
a data structure facilitating insertions, deletions as well as the overlap queries.

9.3.2.1. Scanning (static). If only we would live in a one-dimensional universe,
scanning would have been the single best approach to the box overlap problem. Let
a list [ store as data the box tuples defined in Section 9.3.1.2. Define the following
comparison for a pair u, v of box tuples

u < viffulo[d] < wv.lo[d]V (u.lo[d] = v.lo[d] A u.d < v.d)
(9.3.6) u=viffu.lo[d] = v.lo[d] Au.d =v.d
u > v otherwise.

where 1 < d < 3 is a constant. The following algorithm performs scanning and
reports the overlapping interval pairs.

ALGORITHM 9.3.7. One_ Way Scan (1,d, tc, o, Report)

1 iftc >0 then List Insertion_Sort (1)

2 else List_ Merge Sort ()

3  while | # nil

4 for u = l.n while u # nil A u.d.lo[d] < l.d.hi[d] do Report (d,1.d,u.d)
5 l=1In

6 end while

The first argument [ of Algorithm 9.3.7 is the list of boxes. The second argu-
ment d is the dimension along which the box induced intervals should be scanned.
The third argument tc is a flag indicating whether the time coherent run is to be
executed (tc > 0). The fourth and fifth arguments are an arbitrary data ¢ of the
overlap report callback routine Report, and the routine itself. In the first line, if
the time coherence is on, the insertion sort is performed, using the box tuple com-
parison defined in (9.3.6). Otherwise, the merge sort is employed (line 2). In the
next stage, a loop over the sorted elements of [ is executed (lines 3-6). As intervals
are sorted according to their low endpoints, it is now easy to find and report all
overlapping pairs by exploiting Fact 9.3.6 (line 4). Scanning is illustrated in Figure
9.3.4.

If te < 0, the runtime of Algorithm 9.3.7 is O (nlogn + k), where n is the
number of objects and k is the number of interval intersections. It should be noted
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FIGURE 9.3.4. An idea of scanning. The dashed line corresponds
to the overlap reports in line 4 of Algorithm 9.3.7.

that only the box intersections along the dth dimension are reported, which leaves
the remaining two dimensions unverified. Hence k > kp,, where kpo, is the number
of actual intersections between the boxes. In practice k >> ko, for large n, which
renders the scanning quite ineffective as the box overlap solver on large data sets.
If time coherence can be enabled (the list is almost sorted), the runtime reduces to
O (n+ k). Scanning is then ideally compliant to the speedup induced by the time
coherence.

9.3.2.2. Using segment tree (static). Due to Fact 9.3.6, the interval overlap
problem can be formulated as the stabbing query problem (Problem 9.1.25). In
order to find all interval overlaps it is enough to identify the pairs (interval, low
endpoint), where the low endpoint stabs the interval. Thus, one can build a segment
tree on a given set of intervals, and query it with the set of low endpoints. Building
the tree takes O (nlogn) time and space. This, together with its logarithmic query
time, results in the O (nlogn + k) runtime for the interval overlap problem. The
advantage of the time coherence is limited in this context. Although one could
argue, that the segment tree can be rebuilt in O (n) time if the intervals were
almost sorted, the necessity of performing n queries taking O (logn) time each is
not removed.

9.3.2.3. Spatial hashing (static). Although it is not the best idea, also hashing
can be applied to the interval intersection problem. A number of elementary fea-
tures of the spatial hashing can be illustrated on a one dimensional example - this
is why the technique is outlined here. Let f (i) be a hashing function from the set
of all integer numbers Z onto the set {1,2,...,m}. That is

(9.3.7) fiZ—={1,2,...,m}

An example of such function is f (i) = i - ¢ (mod m), where c is typically a large
prime integer [203]. Let a function g : R — Z surjectively map real numbers onto
the integer numbers in the following way

(9.3.8) g(x,8) = LfJ

s
where s the so called vozel size, and |-] extracts the largest integer, not greater
than its argument. Let h[] be a hash table of size m, let 1 < d < 3 and b be the
box tuple, defined in Section 9.3.1.2. One can now define the following insertion
routine

ALGORITHM 9.3.8. Hash_1D_Insert (h,s,d,b)
1 i=g(blold],s), j=g(b.hild],s)

2 whilei <j

3 List_Insert (h[f (i)],b)

J i=itl

5 end while

In the first line above the (i,7) limits of the box projection along the d—axis
are found. Then all of the k—indexed cells, ¢ < k < j, are hashed into the table
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FIGURE 9.3.5. An idea of one-dimensional spatial hashing.

h[-] in line 3. Hence, the box pointer b is placed in the hash lists ranging from h [7]
to h[j]. Recalling the discussion from Section 9.1.4, the efficiency of the hash table
depends on the average length of those lists. The shorter, the better. Neglecting
the influence of the hash function, it is readily seen that the voxel size s seriously
affects the length of lists stored in h[-]. If s — oo, there will be at most two long
lists, one for the negative and one for the positive coordinates. On the other hand,
s — 0 results in j — ¢ — oo and due to the finite size of h[-] each interval will be
stored in each entry of the hash table. In between of those two extremes, there is
an optimal size of the voxel. Let I; = b;.hi [d] — b;.lo [d] be the length of the interval
associated with box b;. It is always fair to demand that > (j — i) = O (n) in the
first line of Algorithm 9.3.8, where the sum is taken over all inserted boxes. This
results from a simple observation, that the overlap search algorithm should not take
more then O (n) time to examine all of the inserted items. Hence > 1;/s = O (n),
which immediately leads to

(9.3.9) s=0 i)
(>

being quite obviously the average interval length. This simple result was confirmed
experimentally by Teschner et al. [203]. A more comprehensive analysis has been
included in Section 9.3.3.3. Figure 9.3.5 illustrates an exemplary outcome of the
one-dimensional hashing.

Once the intervals have been inserted into the hash table, the overlap detection
can be performed. The following simple algorithm can be employed

ALGORITHM 9.3.9. Hash 1D _Detect (h,m,d,d, Report)
1 fori=1 whilei <m do

2 One_ Way Scan (h[i],d,0,0, Report)

3 end for

Algorithm 9.3.9 employs scanning for each of the hash lists (line 2). If the voxel
size has been selected according to (9.3.9), then the total length of lists Y. |h [i]| =
O (n). Note that tc = 0 and the merge sort for each list takes O (|h [i]|log |h [i]]).
Further, >, |k [i]|log|h [i]| < nlogn, so that the total cost of sorting the partial
lists is O (nlogn). The fact that overlapping intervals can be hashed into several
distinct lists (Figure 9.3.5), results in the possibility of multiple intersection reports
for the same pair of intervals. The repeated reports ought to be suppressed, when
detecting the overlaps. This requires an additional computational effort, and hence
the spatial hashing has no advantage over scanning in one dimension. A convenient
way of avoiding the repeated reports will be detailed in Section 9.3.5.

Due to the action of the hashing function (9.3.7), an interval travelling over ad-
jacent voxels can be mapped into arbitrary entries of the hash table. The coherence
of hash lists is thus not preserved and the advantage of it cannot be taken.
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FIGURE 9.3.6. Intervals mapped into two-dimensional points and
the related priority-search tree structure.

9.3.2.4. Using priority search tree (dynamic). There exists a curious mapping
between the one-dimensional intervals and the two-dimensional points, making it
possible to apply the priority-search tree as the solver to the dynamic interval
overlap problem [184]. This is illustrated in Figure 9.3.6. Consider a set of intervals
[lo;, hi;], i = 1,2,...,n. It is easy to notice, that an interval [lo;, hi;] intersects
[lo;, hi;] if and only if

(9.3.10) hi; > le Nlo; < hij

Note symmetry with respect to ¢ and j. One can rewrite (9.3.10) as

(9.3.11) hi; > le N —lo; > —hij

which implies, that the change of coordinates

(9.3.12) { zi = hia { zoj = 10;

Yi = —lOi Yo; = —th
allows to formulate the interval intersection problem as the two-sided range query
Problem 9.1.13. The priority search tree, introduced in Section 9.1.7, solves Prob-
lem 9.1.13 and hence the dynamic interval intersection problem in optimal space
and time. The following three routines make use of (9.3.12) and employ intervals
related to d—projections of bounding boxes.

ALGORITHM 9.3.10. Pst_ 1D _Insert (t,d,b)
1 Pst_Insert (t,b.hi[d],—b.lo[d],b)
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ALGORITHM 9.3.11. Pst_ 1D _ Delete (t,d,b)
1 Pst_Delete (t,b.hi[d],—b.lo][d],b)

ALGORITHM 9.3.12. Pst 1D Query (t,d,b, 0, Report)
1 Pst_Query (t,b.lo[d],—b.hi[d],d, Report)

Having a priority search tree ¢, one can then insert and delete intervals in
O (logn) time (Algorithms 9.3.10 and 9.3.11). At any time it possible to find all
overlaps between a given interval and all intervals stored in ¢ in O (logn + k) time
(Algorithm 9.3.12).

9.3.3. 2D rectangle overlap. A static rectangle intersection algorithm is
outlined first. This will not be of direct use in the three-dimensional framework.
Nevertheless, it allows to visualise a general computational technique known as line
sweeping. A dynamic rectangle intersection problem is solved next. Four different
variants of the dynamic data structure are investigated for that purpose. They
are employed later in Section 9.3.6, where the sweeping algorithm is developed in
three-dimensions.

9.3.3.1. Line-sweep algorithm. Sweeping is one of the classical techniques in
computational geometry. Some exemplary developments related to general inter-
section problems in the plane include [24, 159, 63]. As already mentioned, Six
and Wood [192] give an O (nlogn + k) time and O (nlogn) space algorithm for
reporting k overlaps between n planar, axis-aligned rectangles. Few years later
McCreight [148] defined the priority search tree structure and reduced the space
complexity of the overlap detection algorithm to the optimal O (n).

Let an auxiliary tuple (b,t, z) store the bounding box pointer b, the type t €
{low, high}, and the coordinate x. Let u = (b,t, ) be called an endpoint. Let u,v
be of type (b,t,z), and the comparison of endpoints read

u<viffuz <vaeV(vz=v.zAubd<vb.d)
(9.3.13) u=viffur=v.x Aubd=1v.bd
u > v otherwise.

Let [ be a list all low and high endpoints of bounding boxes, that is a list made of
the compound tuples ((b,t,z),p,n). Consider the set of related boxes in the i x j
plane, where 1 < i # j < 3. McCreight’s approach can now be summarised in the
following

ArLGORITHM 9.3.13. Sweep 2D (1,1, j, tc, §, Report)
1 for u =1 while u # nil do

2 if u.d.t = low then u.d.x = u.d.b.lo[i]

3 else u.d.x = u.d.b.hi[i]

4 end for

5 iftc > 0 then List_Insertion_ Sort (1)

6 else List Merge Sort (1)

7 t=mnal

8 while l # nil

9 if l.d.t = low then

10 6.b=1.d.b

11 Pst_ 1D _ Query (¢, ,1.d.b, 8, Report)
12 Pst_ 1D _Insert (t,j,1.d.b)

13 else

14 Pst_1D_ Delete (t,j,1.d.b)

15 end if

16 l=1In
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FIGURE 9.3.7. An example of the line-sweep approach. Two rect-
angles intersect the sweep line. The middle, black rectangle will be
considered next and its overlaps with the green and purple rectan-
gles will be detected.

17 end while

In lines 1-4 above, the i—dimension aligned endpoints are updated to the cur-
rent values of the relevant box coordinates. Then, in lines 5 and 6, either the
insertion or the merge sorting is performed, where comparison (9.3.13) is in use.
An empty priority search tree is initialised in line 7. Next, a loop over all endpoints
is executed (lines 8-17). If the low endpoint is encountered, the priority search tree
is queried with the j—dimension aligned extent of a box. All intersections between
the box [.d.b and the boxes stored in t, whose j—dimension extents intersect those
of I.d.b, are reported (line 11). Then the interval is inserted into the tree (line
12). In case of the high endpoint, the interval is deleted from the tree (line 14).
Note, that it is assumed that the auxiliary pointer § has a vacant member pointer
0.b, which used in line 10, so that the Report callback knows about the pairs of
overlapping objects (being composed of 0.b and of the second argument of Report).

To bring up into the picture the actual line and the sweeping process, one should
imagine a few axis aligned rectangles scattered over a plane. Sweeping a vertical
line from the far left to the right allows to account for the rectangles currently being
intersected by the line. Obviously, all of them must overlap along the horizontal
direction. If one could now solve the interval overlap problem in the remaining,
vertical direction - that would eventually reveal all pairs of overlapping rectangles.
Now, it is enough to move the line from one endpoint to the other, as only at those
points status change happen. In Algorithm 9.3.13, the sweep-line is symbolically
represented by the current l.d.z coordinate (position of the vertical line), and by
the priority search tree ¢ (storing rectangles currently intersected by the line). If a
new rectangle is about to enter the line, one first looks for intersections along the
vertical direction - this happens during the tree query in line 11. The rectangle is
then simply inserted into the tree (line 12). As soon as its endpoint is reached (the
vertical plane does not intersect it any more), it is removed from the tree ¢ (line
14). Figure 9.3.7 gives an additional illustration.

The input list [ has length 2n and its sorting takes O (nlogn) time. The
time coherence can be exploited and the list sort can eventually take O (n) steps.
Nevertheless, the priority search tree insertions/deletions and queries for all 2n
endpoints can still respectively take O (nlogn) and O (nlogn + k) time in the worst
case. One can thus only expect reduction of the constant factor in the O (-) notation
in case of coherence. Optimistically however, if boxes are not too densely packed,
only a fraction of them will be stored in ¢ at a given moment. Then, in case of
coherence, the expected runtime would be O (nlogm + k), where m < n.
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9.3.3.2. Dynamic rectangle intersection. Like in Section 9.3.2.4, the objective
is to find a data structure facilitating insertions, deletions and queries correspond-
ing to the rectangle overlap problem. Optimally, insertions and deletions should
take O (logn) time, while the overlap queries should take O (logn + k) time. Un-
fortunately, to the best of our knowledge, such a structure has not yet been de-
scribed. It seems that the closest result is due to Mortensen [157], where an
O (nlogn/loglogn) space structure is proposed. However, it can only be applied
indirectly, as it solves the dynamic orthogonal segment intersection problem. Fur-
thermore, it is of purely theoretical interest, being too intricate for an implementa-
tion. To complement this example one should mention the paper by Samet [185],
reviewing various rectangle indexing techniques. None of them is fully dynamic in
the sense expected here. Also the so called box-trees, analysed by Agarwal et al.
[4] are not dynamic and have a rather pessimistic O (yv/n + k) query time. Facing
the lack of a suitable structure, it remains to resort to an approximation. Four
variants will be considered.

Two-dimensional hashing. The hashing function (9.3.7) from Section 9.3.2.3
needs to be redefined as

(9.3.14) f:Zx7Z—-{1,2,...,m}

where a suitable example could be f (i,5) = (¢ - ¢ xor j - d) (mod m), where ¢, d are
large primes [203]. Assume also that the data pointed by the box tuple member
b.d, has a spare pointer member b.d.m. Now the insertion/query routine can be
phrased as

ALGORITHM 9.3.14. Hash 2D _Insert (h, s, ko, k1,b, 0, Report)
1 ig=g(blolko],s), i1 = g(b.hilko],s)

2 Jo=yg (blO [kl] 75) y 1=g (th [kl] 55)

3  fori=iy whilei <i, do

4 for j = jo while j < jy do

5 flag =10

6 forl=nh|[f(i,j)] while!l # nil do

7 if l.d.b=>b then flag=1, | = nil
8 else if l.d.m # b N overlap (b,1.d, ko, k1) then
9 Report (8,b,1.d)

10 ldm=10

11 end if

12 l=Iln

13 end for

14 if flag =0 then

15 b.m = nil

16 List_Insert (h[f (,7)],b)

17 end if

18 j=J7+1

19 end for

20 t1=14+1

21 end for

In the first two lines of Algorithm 9.3.14 the voxel index ranges (ig,41) and
(jo,j1) are determined. The kg x ki-rectangle of box b is covered by the voxels
(4,4) € (i0,%1) X (jo,j1)- The double loop from lines 3,4 till 19, 21 iterates over all
indices from that covering. The hash list corresponding to each h[f (i,7)] is tra-
versed in lines 6-13. If the box was already stored in the list, the loop is terminated
and a flag set up (line 7). Note, that due to the way items are inserted into the list
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(Algorithm 9.1.4), b must have bean stored at the head element of the list. Hence,
lines 8-10 could not be executed if [.d.b = b. Otherwise, the rectangles stored in
the list are checked for not being marked (I.d.m # b), and eventually overlaps with
b are reported (line 8). Before the overlap report between b and [.d, the box stored
at [ is marked in line 9. Marking allows to avoid repeated reports, when the same
pairs of boxes occupy different hash lists. In case box b was not found in the current
hash list (line 14), it is inserted into the list (line 16). Just before that, its marker
pointer is set to nil (line 15), which ensures the correctness of marking. A much
simpler deletion algorithm is given below. No comments seem necessary.

ALGORITHM 9.3.15. Hash 2D Delete (h, s, ko, k1,b)
1 ig=g(blofko],s), i1 = g(b.hilko],s)

2 jO =g (blO [kl] 75) ; jl =49 (th [kl] 55)

3  fori=iy whilei <i, do

4 for j = jo while j < jy do
5 List_Delete (h[f (i,7)],b)
6 j=Jj+1

7 end for

8 1=14+1

9 end for

Two-dimensional hashing and priority search tree. This variant is similar to
the previous one in that respect, that it still utilises the two-dimensional hashing.
The difference is, that instead of the hash lists, the priority search trees are used
at the h[-] entries of the hash table. This allows for a more intelligent filtering of
overlaps (compared with Algorithm 9.3.14) and should improve efficiency for dense
data sets. More comments will follow in Section 9.3.3.3. As the priority search tree
query will be exploited, the following auxiliary callback needs to be defined.

ALGORITHM 9.3.16. Aux_ Pst Callback (a,b)

1 ifb.dm = a.b then return

2 else if b.hi|aui] < ablo[a.d] Vblo[a.d] > a.b.hi[a.i] then return
3 a.Report (a.d, a.b,b)

4 bdm=a.b

In the above « = (i,b,d, Report), where 1 < i < 3, b is a box pointer, § is a
callback data pointer, and Report is the external callback routine. Note that the
priority search tree callback used in Algorithm 9.1.23 naturally used two arguments,
while for reporting overlap pairs the callback in line 3 uses three arguments. These
are of course only technical details, of quite minor importance. We can now define
the suitable insertion/query routine.

ALGORITHM 9.3.17. Hash 2D Pst Insert (h,s, ko, k1,b,0, Report)

1 ig=g(blolko],s), i1 =g (b.hilko],s)

2 jo=g(blolki],s), j1=g(b.hi[ki],s)

3  fori =iy whilei <i, do

for j = jo while j < jy do

Pst 1D Query (h[f (4,7)], ko, b, (k1,b,d, Report) , Aux_Pst_Callback)
Pst 1D _Insert (h[f (i,7)], ko, b)
j=3+1

end for

1=14+1

10 end for

© 0 D G

For each (i,j) voxel covering the ko X ki rectangle of box b, the priority
search tree stored at the hash table element h[f (¢,7)] is first queried with the
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ko—aligned interval (line 5, the choice of kg is arbitrary). Then the interval is in-
serted into the tree (line 6). Note that the tuple (ki,b,d, Report) and the callback
Auzx_Pst _Callback are passed to the tree query routine in line 5. Then, if the
ko—dimension aligned intervals overlap, the auxiliary Algorithm 9.3.16 checks if
this is not a repeated report (line 1), followed by the overlap test in k;—dimension
(line 2). If the ky—dimensional intervals overlap and this is the first report, it is
further reported in line 3, which is followed by marking the box stored in the tree
(line 4), so that the repeated reports are avoided. Again, the deletion routine is
simple and requires no comments.

ALGORITHM 9.3.18. Hash 2D Pst_Delete (h,s, ko, k1,b)
1 ig=g(blolko],s), i1 =g (b.hilko],s)
2 jo=g(blolki],s), j1=g(b.hi[ki],s)
3 fori=1i9 whilei <i, do
4 for j = jo while j < jy do
5 Pst_1D_ Delete (h[f (i,7)], ko,b)
6 j=J3+1
7 end for
8 1=1+1
9 end for

One-dimensional hashing and priority search tree. The approach from the pre-
vious paragraph might still appear somewhat exaggerated. After all, the priority
search tree works optimally in one dimension and it does not seem to need the
additional granularity of the two-dimensional hashing. Hence, one can hash the
space along one dimension and use the tree along the other direction. The resul-
tant code is an obvious simplification of Algorithms 9.3.17 and 9.3.18. It is given
below without further comments.

ALGORITHM 9.3.19. Hash_1D_Pst_Insert (h, s, j, k, b, d, Report)

1 ig=g(blo[j],s), i1=yg(b-hi[j],s)

2 fori =iy while i <i; do

3 Pst 1D Query (h[f (1)],4,b, (k,b,d, Report), Aux _Pst Callback)
4 Pst 1D Insert (h[f (i)],4,0)

5 1=14+1

6 end for

ALGORITHM 9.3.20. Hash 1D Pst Delete (h,s,j,b)
1 ig=g(blo[j],s), i1=yg(b-hi[j],s)

2 fori=1ig whilei<i; do

3 Pst_1D_Delete (h[f (i)],7,b)

J =i+l

5 end for

Priority search tree only. It remains to employ the priority search tree as the
sole filtering strategy. This is obviously an abuse of its original purpose, although
it will be nevertheless interesting to investigate the efficiency of this approach along
with the previous ones. This however has to wait until Chapter 13. The suitable
insertion/query and deletion routines are now the simplifications of Algorithms
9.3.19 and 9.3.20. They read

ALGORITHM 9.3.21. Pst_ 2D Insert (t,j,k,b, 0, Report)
1 Pst 1D Query (t,4,b,(k,b,0, Report), Aux_Pst Callback)
2 Pst 1D _Insert (t,j,b)

ALGORITHM 9.3.22. Pst 2D Delete (t,7,b)
1 Pst 1D Delete (t,35,b)
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F1GURE 9.3.8. Four approximations of the dynamic rectangle in-
tersection structure.

Common interface. Let us define a tuple (h,t), where h is a hash table, and ¢
is a priority search tree. This will be briefly called the dynamic rectangle structure.
Assume that « € {H2D, H2DPST, HIDPST, PST2D} is a constant, and let v =
(h,t). It is convenient to define the following common interface for all four variants
of the dynamic rectangle structure. The four variants of the structure have been
visualised in Figure 9.3.8.

ALGORITHM 9.3.23. Dynrect_Insert (a, v, 8,1, j, b, §, Report)

1 if a = H2D then Hash_ 2D Insert (v.h,s,i,j,b,d, Report)

2 else if « = H2DPST then Hash 2D Pst Insert (v.h,s,i,75,b, 0, Report)
3 else if o = HIDPST then Hash_1D_Pst_ Insert (v.h,s,i,j,b, 0, Report)
4 else if a = PST2D then Pst_2D_Insert (v.t,i,j,b,d, Report)

ALGORITHM 9.3.24. Dynrect Delete (o, v, 8,1, 7, b)

1 if a = H2D then Hash 2D _Delete (v.h,s,i,7,b)

2 else if « = H2DPST then Hash 2D Pst Delete (v.h,s,i,7,b)
3 else if o = HIDPST then Hash_1D_Pst_Delete (v.h,s,1i,b)
4 else if a = PST2D then Pst_2D_Delete (v.t,i,b)

9.3.3.3. Analysis of the dynamic rectangle structure. It is not difficult to give
the quite pessimistic, worst case performance estimates of the dynamic rectangle
structure. Assuming that, among others, there is a hash table entry into which all
of the n boxes will be mapped, one can readily obtain the bounds listed in Table 1.
Nevertheless, upon a more careful study of relations between the shape of bodies,
the density of their packing and the voxel size, significantly more realistic bounds
can be obtained.

It should be noted, that the performance of the dynamic rectangle structure
ought to be invariant with respect to rigid rotations of space. This is why a uniform
voxel size s is employed along all spatial dimensions.
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H2D | H2DPST, HIDPST, PST2D

Insertion/query | O (n? + q) O (logn + q)
Deletion O (n) O (logn)
Space O (n) O (n)

TABLE 1. Worst case complezity of insertion/query and deletion
for the dynamic rectangle structure. The number of pairs that need
to be checked for intersections is ¢ = Q (k), which accounts for the
necessity of avoiding repeated reports (k is the actual number of
box intersections).

Recall the terminology introduced in Section 9.3.1. Let P = { Py, Pa, ..., P, } be
a set of objects, ¢; be the core of P;, and b; be the enclosing box of P;. Two ways
of calculating s will be investigated

N 1/d
(9.3.15) 5= (Z VO]S”)

=1

and

n ) /d
(9.3.16) 5= <Z %)
=1

where d is the dimension of space. The following fact is useful to start up.

LEMMA 9.3.25. Assume, that P is A—low-density. If o is the scale factor of
P, and each object in P has aspect ratio at most «, then the number of object
intersections is O (oAn), while the number of box intersections is k = O (aog/z)\n).

PRrROOF. There holds vol (b;) < ovol (b;). Let j = arg min; vol (b;). Each object
can be covered by at most O (o) translations of b;. Each such box can intersect
at most A objects and hence each object intersects at most O (cA) others. Taking
K, = O (cAn) in Theorem 9.3.2 gives k = O (ac®/2\n) .

O

Let a, 0, A\ < n be small constants. Then Lemma 9.3.25 implies that £k = O (n2)
intersections cannot occur. If the hash table has size m = O (n) and the hashing
function has property (9.1.3), the worst case complexity corresponds to the dense
cluster scenario, depicted in Figure 9.3.9.

Let us notice, that the axis aligned bounding box of object P; is always con-
tained within the enclosing box b;. Thus, arguing about the enclosing boxes is more
conservative than arguing about the bounding boxes.

FIGURE 9.3.9. A dense cluster.
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Take any d—dimensional s X s X ... X s cube u (L ball of radius s), such
that s > min, radius (b;). Then vol (b;) < os? and radius (b;) < o'/4s. Hence, all
of the boxes that can intersect u lay inside of the u—centred L., ball v of radius

(1+ 201/?) s. One can rewrite (9.3.15) as

(9.3.17) > ovol(bi)+ Y vol(b) =s'n

i€IN (v) jEOUT (v)
where
(9.3.18) IN (v) ={i:b; C v}
(9.3.19) oUT (u) =11,2,...,n} \ IN (u)

The following result will be of use.
LEMMA 9.3.26. There holds 3 _,c 1y (,) vol (b)) = O (aors?).

ProOF. Consider b; : i € IN (v). Let us split v regularly into sub-volumes
v; as long as there is no b;, such that radius(b;) > radius(v;). Each v; over-
laps A\; < X objects P;. Since vol(b;) < avol(¢;) and vol(c¢;) < vol(F;), there
follows EiEdIN(v) vol (bi) < @} i VoL (Fs) < a)2;vol(v) A; < vol(v)ad =
(1 + 201/d) stal =0 (aa)\sd). O

Obviously, the maximal number of elements of the index set IN (v) corresponds
to the worst case complexity. For any i € IN (v) and j € OUT (v) there holds
vol (b;) < ovol (b;), and thus

t times t times
(9.3.20) > vol(bj) <o Y wvol(by)
any jeOoUT(v) any ieIN(v)

or specifically

n—I l
(9.3.21) 1> vol (b)) <o (n—1)Y_ vol (b)

hence

n—I
(9.3.22) 3 vol (b)) < o—— > vol (bi)

JEOUT (v) i€IN (v)

where [ = [IN (v)| is the number of elements of TN (v). Due to Lemma 9.3.26, the
last inequality can be summarised as

LemMA 9.3.27. There holds 3, opp(,) vol(b;) = O (ao?Xs?) 2L where | =
[IN (v)].

Equation (9.3.17), together with Lemmas 9.3.26 and 9.3.27 state s'n = O (aoAs?)+
O (aoQAsd) "T_l In both Os the hidden constant is precisely 2%, which allows to
conclude that

ao?in
9.3.23 1 <
( ) = 24dn — ao )\ + ao?)
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H2D | H2DPST, HIDPST | PST2D
Insertion/query | O (a?6°A% +¢) | O (olog (ac®X) +¢q) | O (logn + q)
Deletion O (ad®)) O (olog (ac®))) O (logn)

TABLE 2. Refined complexity of insertion/query and deletion for
the dynamic rectangle structure. The number of pairs that need
to be checked for intersections is ¢ = € (k), which accounts for the
necessity of avoiding repeated reports (k is the actual number of
box intersections).

For n — oo the above results in

(9.3.24) 1 =0 (ac®))
The following overall estimates can be made.

THEOREM 9.3.28. Let P = {P1, P, ..., P,} be a set of objects, ¢; be the core
of P;, and b; be the enclosing boz of P;. Take s = (3., vol(b;) /n)l/d. Assume,
that P is A—low-density, o is the scale factor of P, and each object in P has aspect
ratio at most o. Then, the number of azis aligned bounding bozes intersecting an
arbitrary s X s X ... X s cube is | = O (040'2/\), while each box can intersect at most
r =0 (o) disjoint s X s X ... X s cubes.

PROOF. The [—estimate follows from the reasoning that led to (9.3.24), if

n

only one can show that (>," , vol (b;) /n)l/d > min,; radius (b;). But this implies
>y vol(b;) /n > min; vol (b;) and of course the average is greater or equal to the
minimum. The r—estimate follows from the fact that max;vol (b;) / min; vol (b;) = o
and s? > min; vol (b;).

In order to derive similar estimates, for the case when s is computed according
to formula (9.3.16), it is convenient to assume that min; vol (b;) = 1. There is no
loss of generality, as it only a change of gauge is involved. Then

(9.3.25) sn=_ vol (b;)"/* <> vol (b;)
=1 i=1

and one can go along similar lines as before, in order to show that [ = O (a02)\sd_1).
At the same time 1 < vol(b;) < o implies that 1 < radius(b;) < o4 and thus
s < o'/ Hencel =0 (a03_1/d)\). The r—estimate is not affected.

Table 2 summarises the refined complexity estimates. Characteristically, due
to the assumed density, all of the hashing based variants of the structure have
operation times independent of the number of rectangles. Of course, these are still
the worst case estimates, but this time expressed in terms of «, o and \. Intuitively
the operations that will take that long, correspond to the largest and most distorted
shapes. Due to its higher order presence, the scale factor o plays the dominant role.
In our case, of convex elements enclosed by boxes, the aspect ratio and density
will usually be small constants, and the efficiency will be related to the disparity
between the smallest and the largest element. In case of a uniform mesh, there
follows a?6°A? = O (1) and o log (ao?X) = O (1), which indicates high efficiency.

9.3.4. The reference approach. An excellent, fast and practical algorithm
for the box overlap problem was given by Zomorodian and Edelsbrunner [216]. In
fact, it is fast enough to serve as the reference approach, against which efficiency
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of the remaining developments is compared. As already mentioned, the core idea
of this approach has been given by Edelsbrunner and Overmars [67]. It is based
on solving the batched version of the box intersection problem, that is, querying
some data structure with all boxes simultaneously. This way, at any time, only
a part of the structure (being currently visited by the boxes) needs to be kept in
memory. The technique is called streaming, and allows to reduce space demands of
some otherwise unpractical structures.

Section 9.3.2.2 discusses an application of the segment tree (defined in Section
9.1.8) to the interval intersection problem. Basically a segment tree is build on a
set of intervals and the queried with the low endpoints of the intervals. Assuming I
to be the set of intervals and P to be the set of their low endpoints, one can apply
streaming in the following way

ALGORITHM 9.3.29. Stream_ 1D (I, P, lo, hi, §, Report)
if =0V P = then return
I,={iel:[lo,hi) Ci}

forie I, p€ P do Report (4,i,p)
mi =Approxzimate Median (P, h (P))
P ={peP:p<mi}

L ={iel\Ly:in[lo,mi) %0}
Stream_ 1D (I}, P;,lo, mi, §, Report)
P, ={peP:p>mi}

I, ={i €I\ I, :iN[mi,hi)#0}

10 Stream 1D (I, P.,mi, hi, §, Report)

© QD G WD~

In order to report all interval overlaps one calls Stream_ 1D (I, P, —00, >0, ...).
In the second line, the set I,,, of intervals stored at the current node of the segment
tree is constructed. Note, that the current nodal interval is [lo, hi), and I, is
composed of all members of I that contain it. A tree node is entered with the set of
points P belonging to the nodal interval, hence points from P belong to intervals
from I,,. That is, intervals from I,,, and intervals corresponding to the points from
P overlap. This is reported in line 3. The segment tree construction proceeds in line
4, where an approximate median of the point set is found. In [216] the algorithm
proposed by Clarkson et al. [44] is employed. It reads

ALcoriTHM 9.3.30. Approzimate Median (P, h)

1 if h=0 then return random (p € P)

2  return median-of-three (Approximate Median (P,h — 1),
3 Approximate_ Median (P,h — 1),
4 Approximate_ Median (P,h — 1))

so that a ternary random tree of height % is build recursively, where h(P) =
O (log|P]). Once the median ms has been computed, in line 4 of Algorithm 9.3.29,
points P; on the left from it and intervals [; overlapping [lo, mi) are selected (lines
5, 6). The left sub-tree is then build recursively in line 7. One can see, that the
recursion continues until I; # § and P, # 0 (line 1). Once the left sub-tree walk
is exhausted, the right sub-tree is analogously visited on the way back from the
left-recursion (lines 8-9). All this takes O (nlogn + k) time and O (n) space.
Assume now that the sets I of intervals and P of low endpoints correspond
to the d—projections of boxes from a set A. The one-dimensional streaming can
solve the interval intersection problem along any of d € {1,2,3} dimensions. The
basic insight allowing to solve the complete problem, is that the overlap reports in
line 3 of Algorithm 9.3.29 can be replaced by streaming segment trees along the
remaining directions. Hence the three-dimensional streaming would look like
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ALGORITHM 9.3.31. Stream_ 8D (I, P,lo, hi,d, §, Report)
1 ifI=0vP=0 then return
2 IL,={iel:]lo,hi) Ci}
3 ifd=1 then foric I, p€ P do Report(d,i,p)
4 else
5 Stream_ 8D (I, P, —00, 00,d — 1,0, Report)
6 Stream_ 8D (P, I,, —00,00,d — 1,0, Report)
Rewrite lines 4-10 of Algorithm 9.3.29

replacing “Stream_ 1D” with “Stream_3D”

14 end if

Calling Stream_ 8D(A, A, —00, 0,3, ...) accounts for all of the box overlaps in
0] (n log® n + k) time and O (n) space. It is implicitly assumed that for each call,
sets I, P correspond to the d—projections of boxes from A. As boxes related to
elements of I, and P overlap along the direction d, it remains to check whether
they overlap along the remaining directions. Hence, the d — 1 dimensional sub-trees
are traversed in lines 5, 6 (interval and point roles need to be exchanged in order
to account for all possible overlaps). Ounly if all of the sub-trees have been checked
(d = 1) the box overlaps are reported (line 3).

In [216] the authors notice that streaming the complete segment tree is still
too expensive. Although the O (n log® n + k) runtime seems satisfactory, the cost
of recursive construction of the tree bears prohibitively high constant factors. A
hybridisation technique based on one-dimensional scanning is proposed. Instead
of building the complete tree, once the amount of objects drops below some cutoff
value ¢, scanning is performed. Similarly, the tree construction is ceased at the
lowest d = 1 level. Instead, again scanning is employed. The hybrid approach
reads

ALGoRrITHM 9.3.32. Hybrid 8D (I, P, lo, hi,d,d, Report)
1 ifI=0vP=0 then return
2 ifd =1 then OneWayScan (I, P,d, 0, Report)
3 if |I| <cV|P| < c then TwoWayScan (I, P,d,d, Report)
4 else
5 I, ={iel:[lo,hi) Ci}
6 Hybrid_ 3D (1, P, —00,00,d — 1,8, Report)
7 Hybrid 3D (P, I,,,, —00,00,d — 1,8, Report)
Rewrite lines 4-10 of Algorithm 9.3.29
replacing “Stream_ 1D” with “Hybrid_ 3D”
15 end if

The procedure OneWayScan sorts intervals from I and points from P, and
scans the intervals with the points (along the dimension 1) reporting all encountered
overlaps (this happens at the lowest level of the tree, so that intersections of intervals
and points from [ and P indicate box overlaps). The procedure TwoWayScan also
sorts intervals from I and points from P along the dimension 1. It then performs a
scan concurrently interchanging the roles of points and intervals so that all possible
overlaps of intervals are discovered. For each such overlap, the remaining 2, ...,d
overlap checks need to be performed before a conclusive box overlap report can be
made.

9.3.5. Spatial hashing. Spatial hashing has been already discussed in detail
in Sections 9.3.2.3, 9.3.3.2 and 9.3.3.3. Hence, without repeating the basic char-
acteristics of this technique, it is sufficient to specify a data structure, compliant
with the interface suggested in Section 9.2. Let ¢ = (s,d, frq,n, cur, out) store the
size of voxel s, the dimension of scanning d (let d = 0 for a newly created ¢), the
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frequency frq > 1 of updates of s,d, the number of stored boxes n, the list of
currently stored boxes cur, and the list of boxes to be removed out. Let e be an
element pointer. The following simple insertion routine can be implemented.

ALGORITHM 9.3.33. Hash_ 3D Insert (q,e)
1 adj =nil, lo=hi=10,0,0]

2 List_Insert (q.cur,((e,ady),lo, hi))

3 gn=qn+1

4 return q.in

The first line initialises some auxiliary variables. In the second line the gq.cur
list appended by the bounding box of element e. Note, that the data field of the
bounding box stores the tuple (e,adj) comprising the element and an adjacency
list adj. The adjacency list stores pointers to bounding boxes overlapping the box
of e. The insertion routine returns the head of the list, which contains the newly
inserted data. The pointer to this list item is then backed up by the caller, and
reused for fast deletion. The deletion routine follows below.

ALGORITHM 9.3.34. Hash_8D_Delete (q,1)
1 List_Delete (q.cur,i)

2 List_Insert (q.out,i.d)

3 gqn=qn-—1

The pointer i above has been returned by the insertion Algorithm 9.3.33, and
hence it can be directly employed in the list deletion call (line 1). In the next line,
the bounding box pointer corresponding to the deleted data (i.d) is being inserted
into the g.out list. This will be further exploited during an update, where all of the
adjacent overlaps need to signalised as released. The update routine reads

ALGORITHM 9.3.35. Hash 3D Update (g, 9, Created, Released)
1 forv € q.out do
2 for w € v.d.d.adj do

3 Released (6,v.d.d.e,w.d.d.e)

4 List Delete Data (w.d.d.adj,v.d)
5 end for

6 end for

7 q.out =nil

8 forv e q.cur do
9 for w e v.d.d.adj do

10 if no-overlap (v.d,w.d) then

11 Released (6, v.d.d.e,w.d.d.e)

12 List_Delete_ Data (w.d.d.adj,v.d)
13 List_Delete_Data (v.d.d.adj, w.d)
14 end if

15 end for

16  update-box (v.d)

17 end for

18 if ¢.d =0V random(q.frq) =0 then

19  gqs= (Eveq.cur vol (b (v.d.d.e)) /qn)

20 g.d = argminge 1 2,3} |MAXy,weq.cur —IZIZIZ%}:J;%;EJ

21 end if

22 i=1{1,2,3}\qd, j ={1,2,3}\ {¢.d,i}, a = (i, 4,0, Created)
23 h =hash-table (¢.n)

24 forwv e q.cur do
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25 loic1,2,3y = g (v.dlo[i],q.5), hije(i,23y =g (v.d.hili],q.s)
26 fO’I‘ (i,j, k) S [101, .y hll] X [102, . hlz] X [103, . h23] do

27 List _Insert (h[f (i,4,k)],v.d)
28 end for
29 end for

30 fori=1 whilei < q.n do

31 One_Way_ Scan (h[i],q.d,0,a, Auz_Hash_Callback)
32 t=1+1

33 end for

The first seventeen lines of Algorithm 9.3.35 correspond to the released overlaps
search. In the first place (lines 1-6), all of the adjacent boxes pairs involving deleted
elements are reported as released. The search is continued through the remaining
adjacent pairs (lines 7-17), and if an overlap release is found between previously
intersecting boxes (line 10), it is reported and the adjacency lists are updated
accordingly (lines 11-13). By this occasion boxes extents are updated in order
to bound the moving elements (line 16). In line 18, it is checked whether the
spatial dimension ¢.d was initialised (by definition ¢.d = 0 initially), or if a random
number between 1 and ¢.frq has been drawn (the randomisation serves the purpose
of minimising constant factors of the algorithm, as frequent updates of ¢.s and ¢.d
are not necessary in practise). In any of those cases, the voxel size ¢.s is calculated
according to formula (9.3.15) and the spatial dimension ¢.d is selected. The choice of
q.d is such, that the q.d-dimensional scale factor of box related intervals is minimal.
According to the analysis given in Section 9.3.3.3, along this dimension the number
of voxels spanned by a single interval is minimal. In other words maximal hig —log,
computed in line 25, is minimised. This in turn is expected to increase the efficiency
of scanning (line 31). In the meantime a tuple « = (4, j, §, Created) is prepared in
line 22. Note that ¢, j are the remaining dimensions (different than ¢.d). An empty
hash table of size ¢.n is created in line 23. In the loop between lines 24 and 29,
functions (9.3.8) and

(9.3.26) f:ZxZxZ—-{1,2,..,qn}

are used in order to map the boxes into the hash table in the usual manner (Z
is the set of integers). The hashing function employed here reads f (¢,j,k) =
(i-axor j-bxork-c)(mod ¢g.n), where a,b,c are large primes |[203]|. Scanning
along the dth dimension is performed next (line 31) for all hash lists. The tempo-
ral coherence is switched off (note, that the hash lists are created anew for each
update).

Pairs of boxes overlapping along the dimension ¢.d are reported to the aux-
iliary Algorithm 9.3.36. There, the first two lines execute simple rejection tests
corresponding to the intersection along the remaining two dimensions. In line 3, it
is checked whether the two boxes have not been already adjacent (the update rou-
tine reports only newly created overlaps). If this is not the case, the newly created
box intersection is reported (line 4). If the report callback returns a positive code,
the overlap is recorder in the adjacency lists (lines 5, 6). This leaves some flexibility
to the user, who supplies the report callbacks (if the return value is semi-negative,
the box overlap will be rediscovered the next time). For example, one might like to
wait until a pair of elements whose boxes overlap becomes close enough, and leave
the job of suggesting this pair to the overlap update algorithm.

ALGORITHM 9.3.36. Aux_ Hash_ Callback («, a,b)
1 if a.hiad] < blola.i] V a.lo[a.i] > b.hi|a.i] then return
2 else if a.hia.j] < blola.j) Valola.j] > b.hi[a.j] then return
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| Hash_ 3D
Insertion 0 (1)
Deletion 0 (1)
Update | O (nlogn + q)
Space O (n)

TABLE 3. Complexity of insertion, deletion and update for the
three-dimensional hashing. The number of attempted overlap re-
ports is ¢ = Q(k), where k is the actual number of box intersec-
tions.

3 else if List Find_Data (a.d.adj,b) # nil then return
4 if a.Created (a.6,a.d.e,b.d.e) > 0 then

5 List_Insert (a.d.adj, b)

6 List _Insert (b.d.adj,a)

7 end if

The analysis of the above approach is quite straightforward. Space complexity
is O (n), as the assumed voxel size (Algorithm 9.3.35, line 19) guarantees that all
of the elements can be covered by O (n) voxels. Insertions and deletions obviously
take O (1) time. As to the update, the first seventeen lines of Algorithm 9.3.35 take
O (n + k) time, where k is the current number of box overlaps (there is O (k) items
in the adjacency lists). The lines 18-29 take O (n) time. Sorting hash lists inside of
the scan routine (line 31) takes

(9.3.27) Zmi log (m;) < Zmi log (n) = O (nlogn)

time, where m; is the length of ith hash list. The g overlap reports correspond to
the ¢ calls of the auxiliary Algorithm 9.3.36, which takes constant time, provided
the density of the element set is bounded (line 3, adjacency search). Repeated calls
to the auxiliary routine are possible, so that ¢ = Q (k). In total the update takes
O (nlogn + q) time, where ¢ = Q (k). All this is summarised in Table 3.

9.3.6. Plane-sweep approach. Three-dimensional sweeping is simply an ex-
tension of the two-dimensional approach outlined in Section 9.3.3.1. In the current

FIGURE 9.3.10. General idea of the three-dimensional plane sweeping.
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case, instead of using the sweep-line and the dynamic interval intersection structure,
a sweep-plane and a dynamic rectangle intersection structure are employed (Fig-
ure 9.3.10). This is why the dynamic rectangle structure was developed in Section
9.3.3.2. As the general idea should be already clear, it remains to specify a data
structure, compliant with the interface suggested in Section 9.2. Let an auxiliary
tuple (b,t,z) store the bounding box pointer b, the type ¢t € {low, high}, and the
coordinate z. Let u = (b,¢,z) be called an endpoint. Let w,v by of type (b,t, z),
and the comparison of endpoints read

u<viffuzr <vaV(vr=veAubd<vbd)
(9.3.28) u=viffu.rz =v.x Aubd=v.bd
u > v otherwise.

Let ¢ = (pts,alg, s,d, frq,n, cur,in, out) store respectively the list of endpoints pts,
the dynamic rectangle algorithm type alg € {H2D, H2DPST, H1DPST, PST2D},
the size s of the two-dimensional voxel, the dimension d of the axis orthogonal to
the sweep-plane (let d = 0 for a newly created q), the integer frequency frq > 1
of internal updates of s and d, the number of all stored boxes n, the list cur of
currently stored boxes, the list of newly inserted boxes in, and the list of recently
deleted boxes out. The element insertion routine reads

ALGORITHM 9.3.37. Sweep 3D _Insert (q,e)
b =(nil, [0,0,0],[0,0,0]), adj = nil

1= (b,low,0), h = (b, high,0)

b.d = (e,adj,l, h)

List_Insert (q.in,b)

qgn=qn-+1

6 return q.in

AN L~

A bounding box placeholder and an empty adjacency list are prepared in the
first line above. Two new endpoints are the created and linked with the box (line
2). Finally box data is pointed at the tuple (e, adj,l, h), composed of the element
pointer e, the list of boxes overlapping the bounding box of e, the low endpoint
pointer [, and the high endpoint pointer h. The box is inserted into the list in,
and the newly created list item is returned to the caller (in order to facilitate fast
deletion). The deletion routine follows below.

ALGORITHM 9.3.38. Sweep 3D _ Delete (q,1)
List_ Delete (q.cur,i)

List_Delete (q.pts,i.d.d.l)

List_Delete (q.pts,i.d.d.h)

List_Insert (q.out,i.d)

qgn=qn-—1

AN L~

The input pointer i corresponds to an element of the list g.cur (returned by
Algorithm 9.3.37). It is deleted from the list in the first line above. Next, in lines
2 and 3, the endpoint pointers stored at the data tuple of the bounding box i.d
are used to remove the endpoints from the list ¢q.pts. The list item is scheduled for
final deletion by placing in the g.out list (line 4). This will be further used in the
update routine, where the overlaps released due to the deletion will be reported.
The update routine can be summarised as follows

ALGORITHM 9.3.39. Sweep 3D Update (q,0, Created, Released)
Repeat lines 1-17 of Algorithm 9.3.35

18 t=mnil

19 for v € q.in do
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20  update-box (v.d)

21  List Insert (t,v.d.d.l)

22 List_ Insert (t,v.d.d.h)

23  List Insert (q.cur,v.d)

24 end for

25 q.in = nil

26 d=q.d

27 if d =0V random(q.frq) =0 then

28  d=Aux_ Sweep Direction (q.cur,q.n)

29 45 = (Soeqour 101 01a—aim (0-dd.e)) /g.0)
30 end if

31 for v € q.cur do

32  wddlax=wvdlolqd, vd.dhax=v.dhiqd]
33 end for

34 List_ Merge_Sort (t)

35 if q.d = d then List_Insertion_ Sort (q.pts)
36 else q.d = d, List_ Merge_Sort (q.pts)

37 u=q.pts, w=nil

38 while t # nil do

39  while u # nil ANu.d < t.d do

40 if w # u.p then w.n =u, u.p=w

41 wW=1u, U =un

42 end while

43 if w = nil then q.pts =t, t.p = nil

44 else if w #t.p thenwn=1t,tp=w

45 w=t,t=tn

46 end while

44 1={1,2,3}\d, 7 ={1,2,3}\ {d,i}, o = (4, Created)
45 h =hash-table (q.n), dr = (h,nil)

46 for u = q.pts while u # nil do

47  if u.d.t =low then

1/2

48 Dynrect_ Insert (q.alg,dr,q.s, i, j,u.d.b,a, Aux_Sweep Callback)
49 else

50 Dynrect_ Delete (q.alg,dr,q.s, i, j, u.d.b)

51 end if

52 U =un

58 end for

The first seventeen lines of Algorithm 9.3.39 are the same as in the case of three-
dimensional hashing. They correspond to the released overlap detection and has
been already commented on. In lines 18-24 the newly inserted boxes are updated
and the list ¢ of corresponding endpoints is created. The new boxes are transferred
to the list of current boxes (line 23), and their original list is emptied (line 25). The
sweep direction ¢.d and the size of a two-dimensional voxel g.s are updated in lines
26-30. This happens with a user specified probability of 1/q.frq as frequent updates
are not practical (configuration of boxes does not change much from one update to
another). It should be noted that b} 4—gim (-) denotes the two-dimensional enclosing
box in the plane orthogonal to the dth dimension (line 29). The coordinates in the
endpoints list ¢g.pts are updated in lines 31-33. Next, the list of newly created
endpoints is sorted (without coherence, line 34). The list of old endpoints ¢.pts
is sorted using coherence, if only the sweep dimension g.d has not just changed
(line 35). Otherwise, the merge sort is employed (line 36). Comparison (9.3.28)
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Sweep__ 3D
Insertion 0(1)
Deletion 0 (1)
Worst case update | O (n (logn + ) + mlogm + q)
Typical update O (Bn+q)
Space O (n)

TABLE 4. Complexity of insertion, deletion and update for the
three-dimensional sweeping. The number of attempted overlap re-
ports is ¢ = Q (k), where k is the actual number of box intersec-
tions. The coefficient § € {a205)\2,010g (aa2)\) ,logn} depends
on the variant of the employed dynamic rectangle structure. Inte-
ger m corresponds to the number of new element insertions, pre-
ceding the update.

is employed in sorting routines from lines 34-36. In lines 37-46 the two lists ¢ and
q.pts are merged in linear time (the ordering is preserved). In lines 44-53 the final
plane-sweep is performed. The dynamic rectangle structure is used in order to solve
the two-dimensional sub-problem (lines 48, 50). The user specified variant of the
algorithm is employed (q.alg). The auxiliary sweep callback is necessary in order
to filter out already adjacent box pairs. In the first line of Algorithm 9.3.40 the
adjacency based rejection test is performed. The callback routine follows exactly
the already discussed Algorithm 9.3.36.

ALGORITHM 9.3.40. Aux_Sweep Callback (o, a,b)

1 if List_ Find_ Data (a.d.adj, b) # nil then return
2 if a.Created («.0,a.d.e,b.d.e) > 0 then

3 List_Insert (a.d.adj,b)

4 List _Insert (b.d.adj,a)

5 end if

Some comments about the selection of the sweep dimension are in place here.
One could argue that the sweep should take place along the direction of the maximal
one-dimensional scale factor. This would minimise the scale factor in the remaining
two dimensions and hence improve the efficiency of the dynamic rectangle structure.
Nevertheless, it is easy to see that for a case as simple as a set of uniform cubes this
criterion is not conclusive. The one-dimensional scale factors are equal, although
one would preferably sweep along the most elongated dimension of the box set.
In result, a smaller number of objects would be stored in the dynamic rectangle
structure at any time. Hence, the number of unnecessary overlap checks would
decrease (the constant in the ¢ = Q (k) notation would be smaller). Algorithm
9.3.41 selects a dimension along which, on average, the largest number of boxes
can be packed. If the density of packing is bounded, this dimension is likely to be
orthogonal to the planes cutting through relatively small amount of boxes. Thus,
storing as few boxes as possible in the dynamic rectangle structure is encouraged.

ALGORITHM 9.3.41. Aux_Sweep Dimension (cur,n)
1 Yie{1,2,3) = MaXy weeur [V-d-hi [i] —w.d.lo]i]

2 Qie[123} = Dpeeur [V-A-hi[i] —v.d.loli] /n

3 d=arg maXe(1,2,3} [vi/ il

4 return d

Complexity of three-dimensional sweeping is summarised in Table 4. The worst
case update scenario happens when the dimension of sweeping is changed (e.g.



9.4. FINDING POINTS AND NORMALS 115

after the first run). This eventually happens with a user specified frequency, and
does not correspond to a typical run. Even though the m newly inserted boxes
always enforce the O (mlogm) sort of the endpoints, typically m < n and this
term can be neglected. Hence a typical update time is O (fn + ¢), where 8 €
{a2o5)\2,010g (a02)\) ,logn} and ¢ = Q (k). For a set of elements with a, o, A
being small constants this runtime quite tightly approximates the optimal O (n + k)
one.

9.4. Finding points and normals

Once a pair of elements likely to intersect has been identified, it remains to
extract the contact point and the normal direction. It has been quite arbitrarily
decided here, that a single oriented contact point results from an overlap of two
surface elements (Definition 9.2.1). This is motivated by two factors:

(1) The point and the normal direction derived from an overlap of two ele-
ments are well defined for nonsmooth geometry.

(2) We wish to use as few contact points as possible, but still be able to control
the accuracy of contact resolution by mesh refinement.

Two elements are in contact if their intersection is not empty. The intersec-
tion is d-dimensional, where d € {0,1,2,3}. Only the 3-dimensional, volumetric
intersection is considered. The remaining cases are cast into the volumetric one
through a simple regularisation. Assume, that two elements e; and eg overlap like
in Figure 9.4.1. Their intersection o = e; N eq is a convex polyhedron, with the
surface containing two parts do; Udos C do, where oy, C dey, and dox, = doN OBy.
For each part, one can compute the resultant normal

(9.4.1) ﬁk:/ nda
oy,

and the variation of normal

(9.4.2) i, = /8 (n — i)’ da

The final outward normal is the one with a smaller variation

FIGURE 9.4.1. A contact point x and a normal n extracted from
the intersection of two convex elements.
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(9.4.3) n(e; Neg) = Bk = arg min (||n,||)

([’
The contact point can be computed as the mass centre of the surface part with the

larger variation of normal (hence, it is a deeper submerged point of the two possibly
computed this way)

faok xda
faok da’

If elements e; and ez touch without an overlap, they are extended by a small margin:
er = e + B(0,€), where B (0,¢) is the zero centred ball of radius e. The epsilon
should be several orders of magnitude smaller than the shortest edge in ex. Note,
that Qo are piecewise flat, and hence the above evaluations are trivial.

It remains to discuss the computation of e; Nes. A simple, brute-force method
could be described as follows

(9.4.4) x(e1 Neg) = k = arg max (||n;||)

ALGORITHM 9.4.1. Simple Element_ Intersection (e, e2)

1 i=1,j=2

2 copy surface faces of ey into s for k € {1,2}
3  for each face f € s; do

4 for each half-plane h bounding e; do

5 trim f with h so that f = fNh

6 end do

7 end do

8 ifi=1theni=2, j=1, goto 3

9 return s U sy

Scraps of the faces in s1 U so form the boundary of the intersection (note, that
it might be empty). The method takes O (nm) time where n is the number of faces
in e; and m is the number of faces in e;. For shapes as simple as the elements
this might seem acceptable. However, this can only be verified by comparison with
a more elaborate method. In this respect, the method by Miiller and Preparata
[158] has been implemented. The basic idea relies on the polarity of convex sets
(cf. Rockafellar and Wets [183, p. 490]). For a convex set C' such that 0 € C, the
polar of C is the set

(9.4.5) C°={v:{v,x)<1forall x e C}

which is a convex and closet set. The bipolar of C' is the set

(9.4.6) C° = (C°)° ={x:(v,x) <1forall veC}

and C°° = C, when C is closed (which is assumed here). For two sets C' and D,
their intersection and sum respectively read

(9.4.7) CND={x:xe€Candx € D}

(9.4.8) CUD={x:xeCorxeD}

If both C' and D are convex, so is their intersection. Assume now, that 0 € C'N D
and let
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(9.4.9) E =co(C°UD°)

where
p p

(9.4.10) co A= {inxi:xieA,Aizo,ZAiszzo}
=0 =0

is the convez hull of a set. In particular, for any A € [0, 1] there holds

(9.4.11) Ave 4+ (1=X)vp € E for all vg € C° and vp € D°

The polar set of E can now be defined as

(9.4.12)
E°={x:(Avgc+ (1 =X vp,x)<1forall vge € C°,vp € D° X €[0,1]}

Summarising

Ave,x) + (1 =N (vp,x) < 1forall ve € C°and vp € D°
(ve,x) < 1lforallxeC
(9.4.13) (vp,x) < 1forallxe D

The first inequality in (9.4.13) can hold only, if the two remaining ones do as well.
Otherwise, one can always pick x € C, x ¢ D and for A = 0 obtain (vp,x) > 1.
Hence, E° is composed of points x € C'N D, or in other words

(9.4.14) CND=(co(C°UD)°

The last formula is the departure point for the algorithm given by Miiller and
Preparata [158]. There are however, two stumbling blocks on the way towards its
realisation. First of all, we have assumed that 0 € C'N D. In practise, this means
that one has to find a point belonging to the intersection (then it is easy to change
coordinates, so that it is 0). A technique for that had been discussed in [158],
although ten years later Gilbert et al. [73, 1988] proposed a more elegant and
simpler method (Section 9.4.1). The second obstacle is related to the computation
of the convex hull in (9.4.14). Miiller and Preparata reference an algorithm given
in [173]. Again, in our implementation a newer and simpler method by Barber et
al. [17] is employed (Section 9.4.2).

It might seem, like the actual polarisation of a set C — (C° is also computa-
tionally nontrivial. Fortunately, for polyhedral convex sets this is not so. For any
particular representation of a convex polyhedron C with n faces (an element in our
case), it is easy to compute a set of planes such that

(9.4.15) x€C«& (n;,x)<lforallie{l,2..n}

where n; are the face normals (not necessarily unit). From the analogy between
(9.4.5) and (9.4.15) it is clear, that normals n; correspond to the vertices of C° (at
most, convex combinations of normals fulfil (), A\;n;,x) < 1), so that

(9.4.16) C° =co{ny,ny,...n,}

We can now to bring up a data structure, convenient for both storing and
polarising convex polyhedrons. It was given in [158] under the name of the doubly
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In [f]

Il
le™ Jf|
o

FIGURE 9.4.2. A planar graph of some convex polyhedron C' and
an edge in the DCEL structure. On the right, the corresponding
edge in C° is given.

CEL_Poars

connected edge list (DCEL). A tuple describing the list element can be expressed
as (o,t,In,rn,le,re), where o is a pointer to the origin vertex of the edge, ¢ is a
pointer to the terminus vertex of the edge, In points to the normal of the face on
the left from the edge, rn points to the similar normal on the right, le points to the
next counter-clockwise edge around the origin, and re points to the next counter-
clockwise edge around the terminus. It is implicitly assumed, that the normals
stored in the data structure are such, that the condition (9.4.15) holds true. The
data structure is illustrated in Figure 9.4.2. Apart from its concise format, the
utility of the structure stems from the fact, that the polarisation procedure takes
the following simple form

ALGORITHM 9.4.2. DCEL Polarise (d, k)
1 fori=1 whilei <k do
2 o =d[i].o, t = d[i].t

3 d[i].o = d[i].ln, d[i].t = d[i].rn
4 dfi].ln =t, d[i]rn =0

5 1=1+1

6 end for

7 return d

where d[-] is a table of k edges of a polyhedron. In the above procedure the
edge pointers le and re in DCEL need not to be altered, although one needs to
keep in mind that le and re pointers correspond now to the next clockwise edges
around respectively the origin and the terminus (Figure 9.4.2). The algorithm for
computing an intersection between two elements can now be given as

ALGORITHM 9.4.3. Fast_Element_ Intersection (e, e2)

1 (p,q) =GJK (e1,e2)

if |p —ql| > 0 then return ()

3 assuming 0 = p, compute n;, i € {1,2,...,n+ m}, representing
e1 fori <n and ey forn <i<n-+m by (n;,;x) < (1+¢)

4 (d, k) =Quickhull ({n;})

5 return DCEL Polarise (d, k)

S

In the first line of Algorithm 9.4.3 the Gilbert-Johnson-Keerthi procedure is
used in order to compute a pair of closest points p € e1, ¢ € ea (Section 9.4.1).
If the distance between the elements is nonzero, an empty set is returned in the
next line. Otherwise, p = q and the coordinates are suitably changed, so that
the zero point 0 = p (line 3). The representation (9.4.15) is computed for both
elements, where (1 + €) is used on the right hand side, in order to account for the
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regularisation mentioned at the beginning of this section (GJK usually returns a
point on the boundary of the element intersection). The Quickhull routine takes
as an argument a set of vertices and returns the table of DCEL edges of their
convex hull (Section 9.4.2). All of the normals are passed as the argument, which
accounts for the union of the polar sets C° U D° in (9.4.14). Finally, the returned
hull is polarised in line 5, which corresponds to the outer-most operation of (9.4.14).
In practice, the runtime of Algorithm 9.4.3 is close to O (nlogn), where n is the
maximum of the sums of node and face counts in e; and ey. The exact theoretical
bound however needs yet to be done, as the complexity of the GJK algorithm has
not been thoroughly investigated in the literature (to our knowledge).

It ought to be stressed, that the fragments Joy of the surface of 0 = e; Ney
used in the evaluation of (9.4.1-9.4.4) should correspond only to the surface faces
of the elements. More precisely dop, = do N OBy, where By is the body whose
discretisation comprises e;. This way the inner faces of elements, that is those that
separate elements within a mesh, are not accounted for in the computations. The
filtering is easily implemented, although the details have been omitted so to avoid
an unnecessary clutter.

9.4.1. Finding a common point. Gilbert, Johnson and Keerthi [73] gave
a very elegant and efficient method for finding a pair of points p € C and q € D,
such that ||p — q|| is minimal, where C and D are convex. The algorithm is only
outlined here, and it is noted that in the implementation the papers by Cameron
[35] and Van den Bergen [207] were also helpful. The basic insight here is, that
instead of looking for p € C' and q € D minimising ||p — q||, it might be more
convenient to look for v € C'— D minimising ||v||. The set C'— D is not explicitly
computed, but rather it is approximated by a series of simplices contained in it,
and located successively closer to the origin. The GJK algorithm can be specified
along the lines of [207] as follows

ALGORITHM 9.4.4. GJK (e1,es)

1 C = vertices-of (e1), D = vertices-of (e2)

2 W=0,u=0,v= any-point-from (C — D)
3 toofar =true

4 while toofar N ||v] #0

5 w =argmax {(—v,x) :x € C — D}

6 5= (v,w)/|vl

7 = max (1, 9)

8 toofar = ||v|| —u > ¢

9 if toofar then

10 v =argmin {||x]| : x € co(W U {w})}
11 W = smallest X C W U {w} such that v € co(X)
12 end if

13 end while

In the first line the sets of vertices C' and D are initialised. The set W is ini-
tialised as empty in the second line. It will store the simplex giving the conservative
(inner) approximation of C'— D. The parameter g = 0 will be used as a lower bound
for ||v|| in the termination condition. Vector v is initially chosen as arbitrary x —y,
where x € C and y € D. The loop in lines 4-13 iterates over the successive approx-
imations of the set W, which comprises at most four vertices (corresponding to a
point, a line, a triangle and a tetrahedron). Note that, C'— D could be computed
as a convex hull of all possible point differences x — y, where x € C' and y € D.
This however, would be rather inefficient. W stores few points of C'— D and hence
its convex hull is always an inner approximation of the set difference. At each stage
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k=0,W=0,6>0,u=20 k=1,W={wo},d <0, = o k=2W={wo,wi},0 >0,up=25

FIGURE 9.4.3. Three iterations of the GJK algorithm. The dashed
line passes through a vertex x maximising (—v,x) for a current
step.

of the algorithm, we can find a point v € con (W) such that ||v|| is minimal. If the
length ||v|| = 0 then 0 € C' — D and the two convex objects overlap. Otherwise, we
can ask how much our approximation of C'— D can be extended in the direction of
—v, taking us closer to the origin. The point w, extending the current set W along
—v, is computed in line 5. The next three lines deal with the termination condition.
It is clear, that the sequence of produced lengths ||v|| is monotonically decreasing.
After computing the new point w € C' — D, we can check whether it actually im-
proves upon v in terms of its proximity to the origin. The length of the projection
of w along v can only be smaller or equal to ||v||, hence ||v| — (v,w) /|v| > 0.
The parameter p = max (p, (v, w) / ||v||) provides then a monotonically increasing
lower bound for ||v]|. As soon as the difference ||v|| — 1 becomes small enough, the
algorithm is terminated (line 8). It should be noted, that application of y in the
termination condition is not really necessary for the polytope geometry. It was used
in [207] in order to facilitate termination for smooth convex sets. It is retained here
for the sake of generality. If the termination condition is not satisfied (line 9), it
remains to compute new v € WU{w} minimising ||v|| (line 10). The set W is then
reduced to the smallest simplex (point, line, triangle, or tetrahedron) containing v
(line 11). Three iterations of the algorithm has been summarised in Figure 9.4.3.

GJK wouldn’t probably be that successful, if not the recursive formula given in
[73], allowing to execute the last two steps in an efficient manner. Assuming that
W = {wq, w1, ..., wp, }, there of course holds

(9.4.17) v=> Nw;and A; >0, A =1
=0 =0

Because ||v|| is minimised, v is orthogonal to the affine hull of the smallest subset
X C W, such that v € con (X) (the affine hull of X is the set generated by some
Zjelx Ajw;, where Zjelx Aj = land Ix C {0,1,...,n}, hence it is the natural
extension of con (X) to the whole space). Let then X = {w; : i € Ix} with |Ix| < n,
and let equivalently X = {x¢, X1, ..., X;n } with m = |Ix|. At most, there are eleven
affine hulls of X (the complete space for X being the tetrahedron, four planes for
the triangular faces, and six lines for the edges). One needs to select the largest
subset X, for which the solution of (v,xo —x;) = 0 for j € {1,...,m}, results in
positive As. The recursive formula for computing As reads

(9.4.18) Ai =0 (X) /A (X)

where
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(9.4.19) AX) =D Ai(X)
i€lx
(9.4.20) N ({wi}) =1

Aj(XUfwi}) = > A0 (X) (Wi, we) — (wi, W)
i€lx
and j ¢ Ix, while k is a fixed index in I'x. The set X in line 11 of Algorithm 9.4.4
is selected in such a way, that A; (X)) > 0 for all i € Ix and A; (X U{w,}) <0 for
all j ¢ Ix. At the same time, v is computed as v = Zielx AiW;.
Upon termination, it remains to obtain the pair of closest points p € e; and
q € e2. When computing ws in the fifth line of Algorithm 9.4.4, one in fact stores
as well the points p; € e; and q; € es, such that w; = p; — q;. Once the algorithm
has terminated, the resulting pair of closest points is computed as

(9.4.21) p= Z AiPi, 9= Z Aid
i€lx i€lx

9.4.2. Computing the convex hull. Barber, Dobkin and Huhdanpaa [17]
described a fast multi-dimensional convex hull algorithm, extending the classical
Quickhull method [62, 34]. The algorithm starts with a single d—dimensional
simplex, constructed from the d+ 1 arbitrary points. The current convex polytope,
describing the convex hull, is composed of faces, edges and vertices. A vertex
is above a face, if it belongs to the positive half-space defined by the face plane
equation. Otherwise it is below the face. Reciprocal statement can be made about
a face being above or below a vertex. Each face f = (v, e) is composed of a list v
of unprocessed vertices placed above of the face, and a list e of edges bounding the
face. Each edge e = (o,t, f) comprises a pointer o to its origin vertex, a pointer ¢
to its terminus vertex, and a pointer f to the face, being the neighbour of a face g
storing e in its g.e list. The incident faces of an edge e are the face g and f, such
that e € g.e and f =e.f. Let a set of edges connected through common endpoints
be called a ridge. The following theorem by Griinbaum [79] hints a basic principle
behind incremental construction of convex hulls [17]

THEOREM 9.4.5. (Simplified beneath-beyond) Let H be a convex hull in R? and
let p be a point in R*\ H. Then f is a face of con(H Np) if and only if

1. f is a face of H and p is below f, or

2. f is not a face of H and its vertices are p and the vertices of an edge in H
with one incident face below p and the other incident face above p.

It is easy to see, that a convex hull can be constructed incrementally by taking
the initial simplex to be H, followed by inserting one point at a time and applying
the rules of the above theorem. Essentially, at each step, one detects the ridge of
edges satisfying property 2 of the theorem. If the ridge is an empty set, point p is
discarded. Otherwise, a cone of new faces is created, connecting the edges of the
ridge with p. All of the old faces located below p are then deleted from H. This is
summarised below.

ALGORITHM 9.4.6. Quickhull ({p;})
1 H = arbitrary-tetrahedron ({p;})
2 {pi} = {p:} \vertices-of (H)

3 for each p € {p;} do

4 for each face f € H



9.4. FINDING POINTS AND NORMALS 122

5 if p is above f then List_Insert (f.v,p)
6 end for also if p is above f
7 end for

8 for each face f € HA fov # nil do

9 p = furthest-point-from-face (f, f.v)

10 R = ridge-of-edges-with-property-2 (H, p)
11 V = faces-below-point (p)

12 G=0

18 for each edge e € R do

14 g = new-face (e, p)

15 G=GUg

16 end for

17  for eachteV do

18 for each q € t.v do

19 for each g € G do

20 if p is above g then List_Insert (g.v,p)
21 end for also if p is above g
22 end for

23 end for

24 H=H\V,H=HUG

25 end for

The novelty in the above algorithm, introduced by the authors of [17], is in
storing in each face f the list of vertices f.v located above it. The initial assignment
of the input points into the face lists f.v is done in lines 3-7. The loop between
lines 8-24 continues, until there are faces with nonempty vertex lists f.v # nil. For
each such face, an extreme vertex is chosen (line 9), maximising among all p € f.v
the distance from the face plane. Then the ridge R of edges having the property 2
of Theorem 9.4.5 is created (line 10). The so called wvisible set V', of faces located
below the point p is created next. For each edge e of the ridge R, a new triangular
face is created between p and e (lines 12-16). It should be noted, that one needs
to properly maintain the adjacency information at this stage, so that faces in G
and H \ V are correctly connected. In lines 17-23 the vertices stored in the face
lists t.v of t € V are reassigned to the face lists g.v of g € G. The visible V set
is deleted from H and the newly created cone of faces G is added to H in line 24.
The authors of [17] show, that under some balance conditions, the runtime of the
above algorithm is O (nlogn) in three dimensions, where n is the number of input
points.

9.4.3. No gaps? Traditionally, in computational contact analysis one often
resorts to the notion of a gap between two objects. The gap can be defined as a
signed scalar function, positive when two objects are apart, and semi-negative when
they are in contact. The contact point and the normal direction computed from
an intersection of two elements preclude an application of the gap function. This
is motivated by two major factors:

(1) No direct use of gaps would be made of in the current dynamic velocity-
based framework.

(2) Robust implementation of gaps is troublesome for assemblies of geomet-
rically rough bodies.

Nevertheless, the notion of gap will be necessary in order to derive unilateral con-
straints in the next chapter. Also, the quasi-static contact algorithm presented
therein will incorporate gaps. For these purposes, the gap function is defined as
follows
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(94.22)  g(t) = { m%nxﬁy Ix =yl :.x ce,y € 627 . when é.l Néex=10
miny (n,x —y) :y € deg,x € €1 Né otherwise

where in the second line, the normal n and the point x are given by (9.4.3) and

(9.4.4), while the k-index corresponds to the one defined in (9.4.3). The first line

describes the proximity of the two elements. The second one defines a negative

distance along n, from x towards the surface of the intersection &; Néy. This simple

strategy is sufficient for our purposes.

9.5. Literature

Contact detection! is among the basic problems of computational geometry. A
comprehensive introduction can be found in the survey work [104]. Some selected
papers will be discussed here in order to put the current development in context.
Section 9.5.1 enumerates papers describing general interface detection methods and
related techniques. Section 9.5.2 summarises several papers dealing with computing
distances and intersections between polytopes.

9.5.1. Collision detection. In an article on interface detection, Boyse [31]
only briefly mentions the object circumscribed spheres and boxes utilised to ac-
celerate the contact search. The focus is placed on pairwise intersection between
polyhedra, with an emphasis on interface detection between a moving object and
static obstacle. Detecting contact between a large number of objects is not cru-
cial, thus no special attention is payed to the bounding volumes. Nevertheless,
this is one of the earliest papers where the two-phase approach is suggested as an
obvious heuristic. Culley and Kempf [51] propose a collision detection algorithm
based on the velocity and distance bounds. Hayward [84] an algorithm for robotics
based on the recursive octree decomposition of manipulator workspace. In the sim-
ilar context of motion planning, Herman [89] describes another three-dimensional
octree based technique. Moore and Wilhelms [152] build an octree structure on
surface points and query it with bounding boxes of swept surface triangles. Pairs
of moving points and triangles, resulting from point in box containment test, are
further checked for collisions. Wu and Lee [212] use two-dimensional projections
of three-dimensional objects in order to solve collision detection between moving
robot arms. Baraff [16] hints bounding volumes as an enhancement of an initial
search for contact candidates. He comments however in greater detail on the role
of coherence in dynamic simulations. Typically geometric configuration of bodies
does not change considerably between consecutive time steps. The advantage of
that can be taken to accelerate both phases of interface detection. As discussed
by Baraff, surface entities involved in a contact can be cached and reused. In the
technical report [88] Heinstein et al. discuss a contact detection algorithm for
structural dynamics, based on the node to face projection method. Garcia-Alonso
et al. [72] discuss a voxel based method utilising additionally bounding boxes and
an O (n2) space “collision interest matrix” used for body-pairwise events, where n
is the number of bodies. A classical combination of broad and narrow phase algo-
rithms was proposed by Cohen et al. [48]. For the pairwise collision test between
convex polytopes the Lin-Canny [139] algorithm is employed. Closest feature of
two polytopes is cached and reused as an initial guess at the next time step (this
result in an expected constant runtime). Axis aligned bounding boxes are exploited
to enclose convex objects. The broad phase is based on scanning along the three
coordinate axes. The algorithm maintains three sorted lists of projected interval
endpoints. Assuming coherence, application of insertion sort for almost ordered

contact/collision /interface detection
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lists results in an expected linear runtime. Swaps of endpoints occurring during
the sort process are related to changes in overlap states. The amount of overlap
status changes is of quadratic order with respect to the number of boxes n. Orig-
inal implementation of the approach presented in [48] utilised an auxiliary O (n2)
storage for status change caching. Attaway et al. [15] present a parallel collision
detection framework for structural dynamics, based on the Recursive Coordinate
Bisection method by Berger and Bokhari [28]. Gottschalk et al. [75] describe the
object oriented binary tree structure, facilitating pairwise collision tests between
arbitrary bodies. Hubbard [95] describes a technique for approximating polyhe-
dra with spheres, and the related sphere-tree structure. Li and Chen [138] shown
how to use hierarchical data structures in an incremental way (exploiting time co-
herence). Kim et al. [117] give an event-driven algorithm for collisions between
moving spheres. Kitamura et al. [118] and Joukhadar [108] discuss collision detec-
tion between deformable polyhedra. Diekmann et al. [58] used space filling curves
technique to detect contacts in planar large deformation finite element simulations.
Perkins and Williams [169] discuss a sorting based interface detection scheme for
planar objects. Feng and Owen [68] presented a spatial tree structure for contact
detection, based on the kd—tree by Bentley [26]. Li et al. [137] presented a mesh-
free method based contact detection algorithm. Bruneel and De Rycke [33] give
another spatial tree based technique for a tool-obstacle contact problem. Zomoro-
dian and Edelsbrunner [216] present their fast algorithm for box intersection based
on streaming the segment trees, cutoffs and scanning. Luque et al. [143] use binary
space partition trees and scanning, combined with automated tree corrections im-
proving the work balance. Teschner et al. [203] discusses the spatial hashing based
approach for deformable animations. Again in the field of animation, Govindaraju
et al. [76] employ graphics hardware to speed up collision detection. James and
Pai [101] present an output-sensitive sphere tree for deformable objects. Wu et al.
[213] discuss a simple vertex to face contact resolution method. Chakraborty et
al. [38] present an interior point method based technique for computing distance
between convex implicit surfaces. Coming and Staadt [49] present an event-driven
sweep and prune approach for box overlap, improving upon the previous result by
Cohen et al. [48]. Han et al. [81] present a method for a planar collision detection
between superquadrics. Li et al. [136] present a box intersection scheme based on
coherent spatial sorting, similar to the scanning used by Cohen et al. [48], although
demanding only O (n) space due to the employed space subdivision. Fiinfzig et al.
[71] presented a hierarchical spherical distance field technique for pairwise collision
detection.

9.5.2. Polyhedra. Muller and Preparata [158] presented an algorithm for a
pairwise intersection of convex polyhedra, and adopted it further [174] to compute
intersection of half-spaces. A plane-sweep approach was employed by Hertel et al.
[90] to solve the convex intersection problem and other set-theoretic operations.
Meyer [149] discusses a technique for calculating distance between arbitrarily ro-
tated boxes. Gilbert et al. [73] specify the GJK algorithm for calculating distance
between convex polytopes. Sancheti and Keerthi [186] discuss some aspects of com-
plexity of convex proximity algorithms. An algorithm for computing an intersection
between an arbitrary and a convex polyhedron was given by Dobrindt et al. [59].
Quinlan [176] employs a sphere three structure and the GJK algorithm in order to
compute the distance between nonconvex polyhedrons. Barber et al. [17] specify
a fast algorithm for computing multi-dimensional convex hulls. Bhattacharya and
Sen [29] give a randomised planar convex hull algorithm. Cameron [35] describes
an enhanced version of the GJK algorithm with hill-climbing technique for speed-
ing up restarts. Mirtich [151] has presented a fast Voronoi region clipping based
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algorithm for finding distances between convex polyhedra. Levey et al. [134] com-
pared some convex distance computing algorithms and designed improved metrics
for an evaluation of their relative efficiency. Van den Bergen [207] presented an-
other optimised implementation of the GJK algorithm, and applied it to distance
computation between smooth convex sets. Kawachi and Suzuki [116] presented
a voxel-based distance computation scheme for nonconvex polyhedra. Vlack and
Tachi [208] presented a spatio-temporal implementation of the GJK scheme. Llanas
et al. [141] give a convex distance algorithm based on face representation. Dyllong
and Luther [61] implemented the interval arithmetic based version of GJK. Kavan
et al. [115] discuss fast approximation of planar convex hulls.



CHAPTER 10

The frictional contact problem

It is standard to discuss at similar occasions, firstly and separately, the contact
problem and the friction problem. The contact problem formulates motion of bodies
touching without penetrations, but also without resistance to their relative slip. The
friction problem introduces a simple slip resistance law. Both can be formulated in
the language of convez optimisation, which is why their exposition is often pursued
in the first place. As soon as the frictional contact problem is introduced, an
interaction between the slip and the interpenetration precludes direct analogy with
optimisation. This happens, because convexity in the problem structure is lost.
Nevertheless, the foregoing methods and vocabulary are still of use in the analysis
of this more realistic scenario. In the following sections, the three problems are
formulated within the adopted framework of local dynamics.

10.1. The contact problem

The gap function between a pair of elements e; and e; was defined in the
following way

_f mingy [x—y|l:x€éi,y€e when e;Neéx =10
(10.1.1) g ()= { miny (n,x —y) :y € deg,x € €1 Né otherwise

where in the second line, x and n are given by (9.4.4) and (9.4.3). The latter
formula defines also the k-index. The first line describes the proximity of the two
elements. The second one defines a negative distance along n, from x towards the
surface of the intersection é; N é; (Figure 10.1.1).

By using the methods specified in the previous chapter, for all bodies we can
identify pairs of potentially overlapping elements. Hence, at all times it is possible
to maintain a vector of gaps

(10.1.2) g(t) = | ga(t)

between all of the identified pairs. Bodies do not penetrate each other, if only

y X
X d y
n

Ficure 10.1.1. Gap according to definition (10.1.1).
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(10.1.3) g(t) >0forallt

where the inequality is understood in a component-wise manner. The time depen-
dence of the gap function resolves more directly as

(10.1.4) g(t)=g(a()

where q is the configuration of the multi-body system. In the current context we
do not consider “time dependent boundaries”, as these can always be realised by
prescribing some time dependent joints to selected bodies. From the gaps point of
view, only moving bodies are seen. This is why g = g (q), rather than g = g (q, ).

10.1.1. From gaps to velocity constraints. Gradient of the gap function
reads

_ [ =y /lIx=yll whenerne =0
(10.1.5) Vg = { n otherwise

where x, y and n were defined in (10.1.1). One can define a local base

(10.1.6) {a;} = {ar L Vg,ars 1L Vg,ay = Vg}

where {T'1,T72, N} indexing replaced {1,2,3}, and ar; X ars # 0 was assumed.
The gap velocity reads

(10.1.7) g = (Vg,x-y)
and the local velocity with respect to the base (10.1.6) follows as

(10.1.8) U={a} (x-y)
More generally, for a multi-body system, the vector of local velocities U for all
contact related local frames can be expressed in a familiar form

(10.1.9) U = Hu

where H is evaluated according to (7.1.9), and u is the generalised velocity of the
system. In the evaluation of H, one employs the referential images of x and y

. T - . . .
together with {a‘}" = {a;} !. For the moment, relation (10.1.9) is understood in
the time continuous, rather than discrete sense. From (10.1.9) one can extract the
gap velocity function in its vector form

(10.1.10) g =Hy,u

where Hy, denotes selection of the normal component rows of H. Hence, g is the
vector of the local normal velocities

(10.1.11) g=| Uan
Let us now define a set

_J ueTyQ:Usn >0 forgs(t) <0
(10.1.12) I'(qt) = { T4Q otherwise
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In his integration lemma, Moreau [153] shows that
LEMMA 10.1.1. If the inclusion
(10.1.13) ueTl(qt)

holds for almost every* t € [0,T) and the inequality (10.1.8) is verified for t = 0,
then the same inequality is verified for t € [0,T).

The proof relies on an assumption, that the configuration q is obtained from
the velocity u as a result of integration

(10.1.14) q(t):q(O)-i-/O u (s)ds

which for rigid rotations needs to be understood in a suitably generalised manner.
The rest of the proof can be summarised as follows. One assumes g (7) < 0,7 < T
and then looks for a contradiction. As ¢g(0) > 0 and g (¢) is continuous, it has to
pass by 0, say at time o, on its way towards ¢g(7) < 0. As ¢ > 0 holds almost
everywhere in [0,7), there follows g(r) = [’ gdt > 0 which gives the desired
contradiction. We have omitted technical assumptions related to the regularity of
the involved functions.

Taking the local velocity U point of view on the above lemma, the non-
penetration constraint can be summarised as follows

UeTE? if ¢g>0
(10.1.15) [Ur,Un] €TE*x Ry if g<0

where Ry = [0,00) is the semi-positive real half-line and the second line holds
almost everywhere in [0, 7). The local velocity is allowed to take arbitrary values,
when the gap between an element pair is positive. Otherwise, while the tangent
component Up remains arbitrary, the normal component Uy needs to be semi-
positive.

10.1.2. Moreau’s sweeping. A specific instance of a solution to the problem
posed by the differential inclusion (10.1.13) is the Moreau’s sweeping process. One
can define a set of all interpenetration free body positions as

(10.1.16) ® (1) ={acQ(t):gla) = 0}

where Q(t) is used to emphasise a possible presence of time dependent joints.
Imagine for example someone slowly sweeping a pool table top with a hand brush.
A pack of cigarettes left on the table is being pushed around slowly enough, so that
it freezes right after losing contact with the brush. For each position of the brush,
the pack of cigarettes could be placed anywhere within the table borders and away
from the brush. The set of those placements is the interior of ®, the position of
the pack is q and its velocity is u. The sort of behaviour just described, can be
achieved by selecting for each time ¢ an element u € I'(q,t), such that the norm
[[u]| is minimised. To describe it more consistently, it is temporarily convenient
to assume g = g(q,t) (i.e. account for the motion of the brush as a moving
boundary), rather than g = g(q) (i.e. consider the two-body system, where the
non-penetration and the imposed motion constraints are handled simultaneously).
If all g > 0 then u = 0 (the brush is away from the pack and hence the pack is left
at rest). If some of the gaps g, < 0, then the point q € 9® touches the boundary

Iy which one means t € [0,T) \ Z for sets Z such that f[o U= f[
be understood as an arbitrary sequence {t,} C [0,T)

o) W where Z can
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F1GURE 10.1.2. Normal cone Ng at q € 0®. Note that q + Ng
was plotted rather than Ng (which should be rooted at 0).

of ® (e.g. the brush is pushing the pack). According to (10.1.15), the condition is
now Uan = Vgga - U+ 09,/0t > 0, where Vqgo = HEN*. For g, < 0 there holds
then

(10.1.17) H, Nt 4 g /0t > 0

We have 9g,/0t = 0 if this is the gap between the pack and a table border, and
possibly g, /0t # 0 if this is the gap between the pack and the brush. According to
the assumed selection rule, one now wishes to find the smallest velocity satisfying
the above system of inequalities

(10.1.18) u = argmin |[u|| : Honsu + 990/t > 0

If all of the dg,/0t > 0 then the brush, although touching the pack, is about to
move away. Hence, the minimal u = 0, as the origin belongs to the set bounded
by (10.1.17). If there are some g/t < 0, then the brush is actively pushing
the pack. From the geometrical point of view, the system of inequalities (10.1.17)
describes a convex polyhedral set P, not containing the origin. A point u € P,
closest to the origin, can then be expressed as a linear combination of normals to
the hyperplanes not containing the origin. This is precisely

(10.1.19) u=> \Hly,
where
(10.1.20) Ao = —min (0,dga/0t) / [[HLy.[|* > 0

From the above it follows, that for g, = 0 the condition Vggq-u+0g/0t = 0 holds
as equality, so that the point q “catches up” with the boundary of ®. For q € 0®
formula (10.1.19) describes u as a semi-positive linear combination of vectors Vqga.
Any such combination forms a cone. It is convenient to generalise this notion for
all g. The normal cone of the set ® is defined as follows (Figure 10.1.2)

—> AVaq9asAa > 0,90 =0 when q € 0P
(10.1.21) Ng = ¢ {0} when q € interior (®)
] otherwise
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In [153] Moreau shows, that the velocity selection rule in the sweeping process can
be equivalently described as

(10.1.22) —u € Ny (q(t)) almost everywhere in [0,T)

This results from the fact, that u ¢ () for almost every t, which implies that Vg, -
u + 9g,/0t < 0 is not allowed to happen (i.e. A, are appropriately chosen in
(10.1.21), otherwise one could always pick u = 0 and soon end up with q ¢ ®
and hence u € ). We have then q € ®, which also follows from Lemma 10.1.1 as
—Ng) (q) €T (q,t). For q € interior (@) there follows u = 0 and the point stays
at rest. In the remaining case, g € 9® can hold for a sequence {t,} € [0,T), but
whenever q € 9® over [a,b] C [0,7T), there must almost everywhere in [a,b] hold
Va9a - u+9¢s/0t = 0, which leads to (10.1.19). There cannot be q € 9P over [a, b]
together with Vqgq-u+09g./0t > 0, because gq (q,b) = ga (q, a)—|—f: Jo (q,8)ds >
0 and q departs from the boundary.

Let us recapitulate. Assume that q € ® at ¢t = 0. We can sweep q with
set ® as soon as u = 0 if g > 0, or (10.1.19) is used when g, < 0. Formula
(10.1.14) is utilised to advance q. The sweeping process can be understood as
quasi-static pushing of g by the boundary of ®. In [155] Moreau detailed this idea
in the infinite-dimensional context. An introduction to Moreau’s sweeping with
applications to unilateral mechanics can be found in Kunze and Monteiro Marques
[129].

10.1.3. Velocity jumps. In order to preserve non-penetration, it is necessary
to admit jumps in the graph of the gap velocity ¢ (¢). This allows bodies to rebound,
while the graph of the gap can have sharp minima touching the horizontal axis. For
a given local frame, at each time ¢ one can define the left and the right velocity

(10.1.23) Uy (1) :1%1UN t—s), Ut :hﬁ)lUN (t+ s)

An impact corresponds to ¢ (t) = 0 and Uy < 0. To secure non-penetration, for
the right velocity there needs to hold U; > 0. The change of sign in the relative
velocity cannot output more energy than it consumes, and hence

(10.1.24) Uy =-nUxy

where 1 € [0,1] is called Newton’s coefficient of restitution. The extrema of the
above relation

(10.1.25) Uy =0and Uy = —Uy

correspond respectively to the ideally plastic and ideally elastic impacts. In the
former case, after an impact the material points move within the tangent plane
spanned by apr; and aps. In the latter one, they rebound without loss of the
kinetic energy Ej, = % |Ul®.

It is convenient to rephrase condition (10.1.15) as

Ut eTE? if ¢g>0
(10.1.26) [Ur,Uy] €TE* x Ry if g<0
which must hold everywhere in [0,T). While the above assures non-penetration, no

particular value is assigned to U;\;. For computational purposes it is convenient to
define the following auxiliary velocity
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10.1.27 Un = Uy +nmin (0,Uy
N N

The unilateral contact constraint can be spelt out again as

UTeTE? if ¢g>0
(10.1.28) [UL,Un] ETE* xRy if g<0
where for Uy = 0 the Newton’s restitution law (10.1.24) is recovered if Uy, < 0.

10.1.4. Back to the discrete case. In the time discretised context, for each
t we shall identify

(10.1.29) Ut =U""and U~ = U*
Because
(10.1.30) U™ =WR+B

conditions put on U'*" can be realised by an appropriate choice of R. We assume
lack of resistance with respect to the tangential motion

(10.1.31) Ry =0

In the absence of the free velocity B = 0, one can see that the above condition
and semi-positive definiteness of W imply that a positive normal reaction Ry > 0
causes a semi-positive normal velocity U]t\;Lh. In other words, a positive normal
reaction implies separation, while the negative one can pull a pair of material points
together. We do not consider adhesion and hence

(10.1.32) Ry >0

Consequently, a semi-positive reaction is needed in order to assure Uy > 0. This
allows to state conditions for the contact reaction R, analogous to (10.1.28)

R=0 if g>0
(10.1.33) [RT,RN] €e0Ox Ry if ¢g<o0

If an impact happens between ¢t and t + h, or an established contact persists over
[t,t + h], the normal reaction is used so to assure that Uy = 0. Note that when
Uy < 0 this results in Newton’s restitution, while when Uy = 0 then U]‘\'; = (0 follows
and the contact persists. Defining Uy = Uf\} +nmin (O, UJ\_,) is meant to be adjusted
to our way of detection and resolution of contact. An element overlap can persist
over a sequence of adjacent time moments ¢,t + h, ..., + nh, although an impact
corresponds only to the reversal of the velocity sign. It would be inappropriate to
use Uy = U; +nUy when Uy > 0, as then the condition Ux = 0 could imply
U]t < 0. In the next step that would lead to Uy < 0 and the velocity sign would
continue reversing as long as the overlap between the elements would hold. Using
(10.1.27) naturally prevents this scenario.

Conditions (10.1.28), (10.1.33) and the above discussion lead to the following
complementarity between the auxiliary normal velocity and the normal reaction

(10.1.34) Uy >0, Ry >0, UvRy =0

The above is sometimes referred to as the wvelocity Signorini condition (cf. Jean
[102]). Conditions (10.1.34) can be combined with the normal part of relation
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(10.1.30) and together form a linear complementary problem (in short an LCP) as
follows

(10.1.35) { UY" = WyvRy + By

UQN > 07 RaN > 07 UaNRaN =0

where Uﬁ\}Lh and other vectors with index N comprise only normal components,
and Wy is obtained from W by removing all tangential terms. Any pair U’j\;rh,
Ry verifying the above system together with Ry = 0, solve the discrete dynamic
contact problem. Whether the continuous contact problem is solved when h — 0
is a separate question. Signorini conditions (10.1.34) imply that the right velocity
Uth > 0 for all t + h. As Uy = limp,—o UL, in the limit condition (10.1.26) is
verified. If the left velocity Uy is negative only on a sequence of points {t,} C
[0,T), then condition (10.1.13) in the integration Lemma 10.1.1 does hold almost
everywhere. If Uf\} > 0, then the contact is released and due to the continuity
of the gap function, some time is needed before Uy < 0 can happen again. This
separates two impact events. If Uf\} = 0, then the gap function can remain zero or
grows as Uf\} > 0 for g = 0. Again, this separates two consecutive Uy < 0 events.
The above discussion is rather rough, and does not mention regularity assumptions.
Intuitively, “it should work” provided that (10.1.35) can be always solved and the
free velocity By (t) is not everywhere discontinuous. Fore a rigorous treatment we
refer the reader to the already mentioned references [155, 129].

10.1.5. From inequalities to equalities. We would like to use the uniform
notation C (U, R) = 0 for all constraints. This is not quite the case for the com-
plementary conditions (10.1.34), but it is not difficult to cast them into the form of
equality. The following variational inequality is equivalent to the complementarity
conditions (10.1.34)

(10.1.36) Ry€R, VSeR, Uv(S—Ryn)>0

where R, stands for the semi-positive real half-space. This can be checked by
inspection. Take any Ry > 0, then Uy (S — Ry) > 0 implies that Un = 0. Take
Un > 0, then there must hold Ry = 0. Finally, for Ry = 0 we have Uy > 0. The
inequality Uy (S — Ry) > 0 can be rewritten as

(10.1.37) (Rnv — (Rn — pUn)) (S —Rn) >0

for any p > 0. As Ry, S € R4 the above can be viewed as a definition of projection

(10.1.38) Ry = projg, (Ry — pUn)

of the vector Ry — pUp onto the convex set R, (Figure 10.1.3). The act of sub-
traction Ry — pUy requires a comment. Note, that components of the reaction R
are expressed with respect to the dual base a*, while the components of the veloc-
ity U are expressed with respect to the base a;. Thus operation R + U does not
make sense, unless one of the objects is brought to the base of the other one. For
example, the metric tensor A = {ai}T {a;} can be employed in order to compute
U; = Ai;U?. This follows from {a'} Uy, = {a;} Ul and {a;}" {a’} = 1. The
correction reads R + AU. Nevertheless, due to the definition of the base (10.1.6),
the metric tensor looks like
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B
A
~$0
F1GURE 10.1.3. Interpretation of formula (10.1.37) as projection.

Let C be a convex set. For all S € C' we have (A —B,S — A) > 0.
This implies that A = projs (B).

Aii Az 0
(10.1.39) A=1 A1 Az 0
0 0 1

and hence the normal component Uy = U™. The projection formula (10.1.38) is
then consistent. We can now state the contact law as

(10.1.40) C(U,R)=0
where

R if g>0
(10.1.41) C(U,R) = Rr

. = if <0
Ry — projg, (Ry — pUn) 9=

Additional comments about the above derivation can be found for example in Wosle
and Pfeiffer [210].

10.1.6. Non-smoothness. Projection in (10.1.41) is a nonsmooth function.
To picture that, let us consider a one dimensional simplification of the contact
problem

(10.1.42) { u=wrtb

7= projg, (r—u)

where p = 1 and n = 0 was assumed. The above system can be rewritten as

(10.1.43) c(r)=r—max(0,r(1—w)—>5)=0
which is a nonlinear equation the root of which is sought. One can see that for
r < b/ (1 —w) the root is » = 0 while in the remaining case r = —b/w. In the

former case u = b > 0, as b < 0 suppresses the root r = 0. In the latter case u = 0
and r > 0, which recovers the Signorini condition. The multi-dimensional version
of (10.1.43) reads

(10.1.44) Co (r) =rq —max | 0,74 (1 — Waa) — ba — Z Wagrg | =0
p#a
A series of plots of ¢ (r) for various values of b corresponds to a series of sections

of ¢, (r) for some fixed 73.,. This can be observed for the two-dimensional case in
Figure 10.1.4. What is also visible is the non-smoothness of the constraint graphs.
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Each surface plot splits into the part where ¢, (r) = 4, and into another one where
o (r) is an arbitrarily inclined half-plane. Both parts are connected in a continuous
manner along the line r,, — pu, = 0. This is where the non-smoothness occurs. In
situations when derivatives of C (U, R) need to be computed, one has to sort out
differentiation along r, — pu, = 0. This will be further commented on in the next
chapter.

c(r) =1 - max (0, r(1 - w) - b) cy(ry, rp) =1y - max (0, 1y (1 - Wy ) - by - wypry)

cy(ry, 1p)

c(r)
S)

oo \ L
[ T TR T}
~boo—
[=RV, RwiV N

FIGURE 10.1.4. Plots of the Signorini constraints (10.1.43) and
(10.1.44) for w = w11 = 05/ w12 = 03, b1 =0.

10.1.7. Existence of solutions. It is relevant to ask whether the solution for
(10.1.44) actually exists. As suggested by the contour line ¢; (r1,72) = 0 in Figure
10.1.4, each constraint contributes a curve composed of two straight half-lines. If
all such curves have a nonempty intersection, the solution exists. If the intersection
happens to be a point, the solution is unique. The half-line components are either
ro =0 or by + wegrg = 0, where the summation over 3 is assumed.

Let W be positive-definite. The matrix w is the principal sub-matrix of W,
obtained by removing all rows and columns involved in the tangential response
w = Wpyy. Constructed this way, w remains symmetric and positive definite
[200, p. 339]. Such W and w are sometimes called P-matrices or said to have
P-property. It is readily seen that this property assures the existence of a solution.
For the two extreme cases one has either all 7, = 0 (no contact) or the system
of equations b, + waprg = 0 is uniquely solved (all points in contact). In the
remaining cases some rocr = 0 and some emerge as a solution of b, + was7rs = 0,
where a, 3 ¢ I. The latter system can always be solved due to the P-property of
w. In order to show uniqueness, let us select the index set I of minimal size |I],
such that by + wegrg = 0 results in rg > 0 for all o, 8 ¢ I. Such I is unique and
can be empty. Then by definition, for each « € I and 8 ¢ I

_batwaprs _

10.1.45 o=
( ) r o

and since wqq > 0 (positive-definiteness), there follows ug = by + wapgrg > 0. If a
larger I with property by + waprg = 0=-rg > 0 for «, 8 ¢ I would be considered,
then by similar argument u, < 0 and complementarity wouldn’t hold. Hence the
uniqueness. This is in fact a classical result related to convex optimisation, or
solution of linear complementary problems (cf. Hintermiiller et al. [93]).

When W is only semi-positive definite, existence of a solution cannot be assured
for arbitrary b,. Luckily, as b, = Bony and B = HM~'b (cf. Chapter 7), a linear
dependency in H affects b in the same way as it does affect w. In other words the
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range of H is the same as the range of W and hence b, 4+ wqagrg = 0 is likely to be
solvable, because there cannot be any b, from outside of the range of w. This will
be also visible from the structure of the minimisation problem in Section 10.1.9.
Of course, a solution may fail to exist for a specific instance of time dependent
constraints. One can imagine a rigid block squeezed from two opposite directions,
so that the two constraints cannot be simultaneously fulfilled. This is a situation
when contradictory pair exists, b+wigrg = 0 and woprg—b = 0, where wig = Awgg
and A > 0. However, this case can be perceived as a “modelling error”.

10.1.8. Contact problem as root finding. Let us denote

(10.1.46) dn (UN,RN) = RNy — pUN

and call dy a normal predictor. We can rewrite the non-penetration constraint
(10.1.38) as

(10.1.47) CN (UN, RN) = RN — max (O, dN)

Gathering all the constraints into a vector operator and using local dynamics, we
can then state the following root finding problem

(10.1.48) Cn (Un,RN) = Olyy—wy yRy+By
or in short
(10.1.49) Cy(Ry)=0

An important feature of the operator Cy is its monotonicity. This means that for
all pairs A, B there holds

(10.1.50) (Cx (A) — Cy (B),A —B) >0

The above can be shown to hold as follows. Let Newton’s coefficient of restitution be
7 = 0. This does not obscure generality, while the predictor can now be expressed
as

(10.1.51) dy (RN) =Ry —pUpn (RN)

Operator Cy can be rewritten as

(10.1.52) Cy (Ry) = Ry — projy (dn (Ry))

where X is the positive orthant Ry x R4 X ... x Ry. It will be helpful to notice,
that

(10.1.53) [WNNA| < Az [|A]l
- 1
(10.1.54) (WynAA) > X [Ny

where A\, is the maximal eigenvalue of Wy . Estimate (10.1.53) holds, because
the I3 norm of a symmetric matrix is equal to its spectral radius. Estimate (10.1.54)
can also be derived from the spectral picture of the scalar product, and the fact that
Amin (W;ﬁv) = 1/Amaz (Wyn). In the following derivation it will be convenient
touse SRy = Riny — Roy and 60Uy = Uiy — Ugpy. It will be also useful to note
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(10.1.55) Uxny = WiynNOIRy

and to introduce the ratio 8 = [|6Up/|| / ||0Ry]|. From the semi-positive definiteness
of Wy, the Schwarz inequality [(x,y)| < ||x|||ly]| and (10.1.55), one can obtain
[6UN] |6RN]| = (0Un,6RN) > Amin |SRN|, and by using (10.1.53) conclude,
Amin < B < Anaz- The two extreme eigenvalues are both of W . The projection
onto a convex set is a contraction (cf. [183, p. 545]) and hence

Iprojx (dn (Rin)) — projx (dy (Ran))|I” <
ldy (Rin) —dn (Ron)|)® <
[6Ry — psUN|* <
1R ||* = 2p (W 0Un, 5UN) + p* [|0UN|* <
2
(1 -+ p262> loRN|* <
(10.1.56) [oRN| for p< 5
and
2 2
(10.1.57) mpin (1 — o3+ p262> =1- Xf <1- ;;”"

A more general derivation of (10.1.56) can be found in the paper by Laborde and
Renard [168]. Finally we can write

(Cy(A)-Cny(B),A-B) =
(A —projy (dn (A)) = B +projx (dy (B)),A—-B) =
(10.1.58) [|A — BJ|* — (projx (dn (A)) — projx (dy (B)),A=B) > 0

This proves monotonicity of Cy for p < AL Because of property (10.1.50),

a simple recursive scheme RK,H = projx (dny (R%)) converges to a fixed point,
being the root of Cy. Also, semi-positive definiteness of the Jacobian 0Cy/ORy
represents a useful fact, when Newton scheme is applied to the root finding problem
(10.1.49). In a more general sense, monotone mappings can sometime be identified
with generalised gradients of convex functions (cf. [183, p. 547] or [180]). In
this context, the root of (10.1.49) corresponds to a minimum of such function.
This argument can be sometimes used to argue about existence and uniqueness of
solutions.

10.1.9. Contact problem as minimisation. The discrete contact problem
can also be stated as the following convez program

min, L (u)
(10.1.59) T (0) >0
where L was defined as (7.0.3), and Uy is given in (10.1.27). The convexity of
U = {u:Usn (u) >0} results from the affine structure of the constraints. L is
strictly convex and it attains a unique minimum at the velocity of an unconstrained
motion (cf. Chapter 7). Hence, the existence of a solution for the constrained
problem relies solely on the constraints. An obvious necessary condition is that
U # 0. For U to become empty, it is enough to have a pair of contradictory
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constraints, similarly as in the example given in the last paragraph of Section
10.1.7. Assume, that this is not the case. A vector Ry = [..., Ran,...], where
Ron > 0 will be called a Kuhn-Tucker vector, if the infimum of the function

(10.1.60) f(u)=Lu) =Y RanUan ()

is equal to the optimal value of the convex program (10.1.59). If such vector exists
and is known, one can easily compute the solution. Since f (u) is strictly convex
(as a sum of L and some linear functions), its unconstrained minimisation will lead
to a unique point, being the solution of (10.1.59).

The Kuhn-Tucker vector, if it exists, naturally leads to the complementarity
conditions (10.1.34). This follows from the fact that by definition Ron > 0, Uy >0
and the minimum of f is equal to L (1) for some @ € U. As generally there holds
f < L, the only situation for which f = L is possible requires RonUsn = 0. The
linear complementary problem (10.1.35) can then be viewed as a summary of the
optimality conditions of the convex program (10.1.59). This is readily seen, as
Uy = WynyRpy + By is merely an algebraic transformation of Vf = 0.

By the definition of the normal cone (10.1.21) and because of the complemen-
tarity (10.1.34) shown in the previous paragraph, the optimality condition V f =0
can be expressed as

(10.1.61) —VL (1) € Ny ()

where the normal cone reads

— ERQNVUQN when u € oU
(10.1.62) Ny =< {0} when u € interior (/)
1] otherwise

Existence of the Kuhn-Tucker vector corresponds then to U having a boundary,
which seems to be trivially true for all kinds of &/. However, not all kinds of the
boundaries are equally “good”. Definition of Ny, is not precise in this respect. A
degeneracy corresponds to U being a single point, and hence OU = U. Of course
then U = {u}, comprises only the solution. At the same time, there is no restriction
on the direction of the gradient VL (a). If we admit for an instant U,y (u) to be
a general smooth functions, then the singleton {tu} can be obtained in a variety of
ways. For example two curves can touch just at this single point. For such a case
the corresponding gradients VU, span only a single line and hence VL (i) cannot
be, in general, expressed as their linear combination. The Kuhn-Tucker vector is
not guaranteed to exist, if the constraints are nonlinear and dU = U. In our case
however, the constraints are linear. An intersection of half-planes can be a point.
But then, their normals need to span the complete space. The Kuhn-Tucker vector
is then guaranteed to exist, if only U # (.

Let us summarise. The strict convexity of L, the fact that it admits a finite un-
constrained minimum, and the linearity of constraints ensure existence of a unique
solution to (10.1.59) whenever U # (). Presence of redundant constraints does not
alter this conclusion, as the “shape” of i/ is not changed. The only consequence
of redundancy is the non-uniqueness of the corresponding Kuhn-Tucker vector. A
through exposition of the related issues can be found in Rockafellar [182, pp. 273-
290]. The result corresponding to the linear constraints is given there in Corollary
28.2.2.
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10.1.10. Quasi-statics. In case of quasi-statics, we would like to exploit to
some extent complementarity between the gap function and the contact reaction.
That is

(10.1.63) g(t)>0, Ry(t)>0, g(t)Rn(t) =0

where the above is assumed to hold almost everywhere in a considered time interval
(so we do not need to worry, what Ry (t) means during impacts). In the view of
the implicit Euler scheme adopted in Section 5.3, the gap function discretisation
reads

10.1.64 tHh — gt 4 pULTh
g g N

The discretised gap-force complementarity can be rewritten as

(10.1.65) gt >0, Ry >0, ¢""Ry =0

The above relation can be divided by A resulting in

t t
(10.1.66) % + UM >0, Ry >0, (% + U;V+h) Ry =0
The following substitution
_ max (0, g*
(10.1.67) Uy = % UL

allows for (10.1.66) to be rewritten in a modified form

(10.1.68) Uy >0, Ry >0, UvRy =0

which bears the name of the quasi-inelastic shock law [102]. It is seen that (10.1.68)
corresponds to the gap complementarity (10.1.65), if the contact at ¢ is not estab-
lished. It is related to the velocity complementarity (10.1.34) with zero restitution
17 =0, in case of an established contact. The contact law (10.1.68) is adopted here
as it is numerically better behaved compared with (10.1.65). This is related to the
low deformability of the utilised kinematic models, for which cancellation of nega-
tive gaps might result in excessively high contact reactions. The discussion of the
previous sections applies without changes, once Uy defined according to (10.1.67)
is employed instead of the one defined in (10.1.27).

10.2. The friction problem

While the contact problem was derived from a purely kinematic idea of non-
penetration, the friction problem deals with the resistance with respect to the
tangential motion. As such, it needs to be stated in terms of forces, and eventually
linked with a kinematic effect of their action. A simple visualisation could comprise
a coin resting on a table top. A sufficiently small horizontal force applied to the
coin is not able to alter its position. Only after some threshold value is reached,
the coin will start moving. The motion will be opposed by the friction force. This
can be summarised as follows

|Rr| < F
(10.2.1) ||RT|| <F =Ur=0
||RT|| =F = 3)\20UT = —>\RT
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where F' the threshold value. The above relation is sometimes called Tresca’s
friction law. A distinctive feature and the core of simplification is in the lack of
coupling with the contact problem, as F' is assumed fixed and arbitrary. The above
relation is assumed to hold almost everywhere in a considered time interval. From
now on the time discretised case is considered only.

10.2.1. Retrieving the projection formula. As in Section 10.1.5, we shall
derive an equality form of relation (10.2.1). The Tresca friction law can be expressed
in form of the maximal dissipation principle

(10.2.2) Ry (t) € D(F), ¥Se D(F), (Up,S—Ry) >0

where D (F) is a two-dimensional O-centred disc of radius F', Ry is the tangential
reaction and Uy is the tangential relative velocity. In the above (-, -) stands for the
scalar product with respect to the local tangent coordinates. The norm in (10.2.1)
is related to the inner product through

(10.2.3) |Rz||” = (A7+Rr, Rr)

where contravariant components of R were obtained by inverting R; = Ainj
and using the structure of (10.1.39). The disk D (F) can then be deformed into a
skewed ellipse, which allows to account for an anisotropy. The friction force smaller
than F implies sticking, while sliding occurs for the tangential force of value F', and
with the direction opposite to the slip velocity. Equivalence of (10.2.2) and (10.2.1)
can be again verified by inspection. If |Rr| < F, then S — Ry is allowed to have
all possible direction in E2. Hence, Ur = 0. On the other hand if |Rz| = F,
then for (Up, S — Ry) > 0 to hold, Uy must be normal to the disk D (F) at point
—Ry. Hence, Ur = —ARy and A > 0. The inequality in (10.2.2) can be rewritten
as

(10.2.4) (A7:Rr — (A77Rr — pUr) , S —Rp) >0

where p > 0. In analogy with (10.1.37-10.1.38) and Figure 10.1.3 one can write

(10.2.5) Ry = Aprprojppy (AzpRe — pUr)

Having acknowledged the above possibility, we shall assume in the following, that
the local frame a; is always orthonormal, and hence A = I. The following, simplified
form of the projection formula will be further employed

(10.2.6) Ry = projpp (Rr — pUr)

In dynamic applications it might be of use sometimes to account for a “tangential
shock”, resulting in the velocity restitution rather then sticking. For such case
Moreau [154] proposed to replace Uy in (10.2.1-10.2.6) with a convex combination

_ 1 T
10.2.7 Upr=—Ul+—U,
(10.27) T
The sticking condition Up = 0 implies then U} = —7U, where 7 € [0,1] is the

tangential coefficient of restitution.
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10.2.2. Friction problem as root finding. Let us denote

(10.2.8) dT (UT, RT) = RT - pUT

and call dr a tangential predictor. Like in the work of Hiieber et al. [96] we can
rewrite the single point Tresca constraint (10.2.1) as

(10.2.9) CT (UT,RT) :max(F, ||dT||)RT—FdT =0

Gathering all the constraints into a vector operator and using local dynamics, we
can then state the following root finding problem

(10.2.10) Cr (Ur,Rr) = 0ly, —w, R 1B
or in short
(10.2.11) Cr (Rr) =

Operator Cr can be rewritten as

(10.2.12) Cr (Rr) = Rr — projy (dr (Rr))

where Y = D (F1) x D (F3) X ... x D (F,) is convex. By exactly the same argument
as for Cp in Section 10.1.8, Cp is monotone for p < /\L Similarly as before, this
hints, that the root finding problem (10.2.11) is well behaved.

10.2.3. Friction problem as minimisation. The discrete friction problem
can also be stated as the following convex program

ming L{z (R)

10.2.13
(10.2.13) IRz < Far Roy =0

where Lj; was defined in (7.0.16) and the normal reaction Ry = 0 was cancelled,
in order to preserve the decoupled character of friction and contact problems. As
the constraints are put on the forces, it is most convenient to utilise the dual
formulation with the local conjugate of L as the merit function. Lj; is convex,
although not strictly so, when H is not of full rank. Hence the minima, if they
exist, do not need to be unique. If we quite reasonably assume that all F, > 0,
then there is Ry € interior (Y'), where Y = D (Fy) x D (F3) x ... x D (F,). The
reasoning given in Section 10.1.59, and more rigorously Theorem 28.2 in [182, p.
277], ensure then the existence of the Kuhn-Tucker vector for the problem (10.2.13).
Note, that the elements of the Kuhn-Tucker vectors A, have been used in the
definition of the Tresca condition, when |Rar| = Fy then 3y, >0Uar = —AaRar.
Because U = VLj; (R), Tresca law (10.2.1) corresponds in fact to the optimality
conditions of the convex program (10.2.13). Assume that R is a solution. When
IRar|| < F, then Ur = 0, because the minimum is unconstrained. Otherwise
Uar = —A\oRar/ ||Rar]|| belongs to the normal cone Ny (Ry).

In summary, the solution is guaranteed to exist if all F, > 0. It is not unique,
when H is not of full rank. Of course here, as well as in Section 10.1.59, convexity
of the optimisation problems remains in direct relation with the monotonicity of
the corresponding root finding problems.



10.3. THE FRICTIONAL CONTACT PROBLEM 141

10.3. The frictional contact problem

This is the case where the analogies related to convexity break down. Unfor-
tunately, this is also the most realistic case. Constraints on the friction forces are
now described by the Coulomb law

|R7| < pRN
(10.3.1) ||RT|| <puRy =Ur=0
||RT|| = ILLRN = 3)\20UT = —-ARr

where p > 0 is the Coulomb’s coefficient of friction. As the normal reaction is
employed, the above conditions need to be stated together with the Signorini law

(10.3.2) Unv >0, Ry >0, UvRy =0

The frictional contact problem will be also called the Signorini-Coulomb problem.
As it was shown, the contact problem alone can be most naturally stated as con-
strained minimisation with respect to velocities. On the other hand, the friction
problem can be most naturally phrased as constrained minimisation with respect
to forces. In an attempt of merging these two, one fails to identify a single field,
be it primal or dual, optimisation problem for the Signorini-Coulomb law. This
is quite a shortcoming, both in theory and practice. This feature of the frictional
contact law is often referred to as lack of normality or as being non-associated.

10.3.1. Projection formulae. In the view of (10.1.38) and (10.2.6) the pro-
jection formulae for the frictional contact problem read

(10.3.3) { Ry = projg, (Ry — pUn)

Rr = projp(,ry) (Rr — pUr)

A single projection formulation is also possible. This might be beneficial in numer-
ical applications. The formula is due to De Saxcé and Feng [55] and is given here
for the sake of completeness. There follows

— 1 UT
(10.3.4) R = projo ) <R —r [ Un +p|[Ur|| D

where C' (u) is the friction cone

(10.3.5) C(p) ={R:[Rr| <pRy, Ry >0}
More will be said about (10.3.4) in Section 10.3.4.

10.3.2. Potentials, normality, monotonicity and association. It is com-
mon in mechanics to prescribe a relation between primal and dual variables, which
accounts for an observable physical phenomenon. Such relation is customarily called
a constitutive equation. An example was given in Section 4.1.2, where the Saint
Venant - Kirchhoff material was specified. There, a function ¥ was assumed to
exist such that

(10.3.6) P =0V (F) /OF

where P was a stress, and F was a deformation gradient. Whenever ¥ is a convex
function, its sum over a domain can be minimised (also in the presence of constraints
on F), which corresponds to the solvability of a static boundary value problem.
Convexity of ¥ allows also to derive a conjugate relation



10.3. THE FRICTIONAL CONTACT PROBLEM 142

<ﬂ{>’l>>> O

~
~

Ficurg 10.3.1. Monotonicity of convex functions. Closed con-
tours correspond to the level curves of a convex function.

(10.3.7) F =9v* (P) /OP

where U* is the Legendre-Fenchel transform of ¥ (cf. Chapter 7). Any of the above
relations can be at first discovered in a form of equality P=1 (F) or F=¢~! (15)
At a later point one can realise, that there exists a suitable potential ¥ (or ¥*),
with which 1 (or 1) is associated by being its gradient. This usually corresponds
to some symmetries in the structure of ». Whenever however such an identifi-
cation cannot be pursued, the constitutive relation ¢ needs to be registered as
non-associated. In other words, there does not exist a potential, whose gradient
1 might be. Looking at the same thing from the geometrical point of view, one
can see that Vf| _ - corresponds to a normal to the level curve f(x) = f (zo)
taken at the point zg. This is why, the above relations are said to comply with
normality. Hence in general, one does not need for ¥ to be convex in order to speak
about normality. In fact, convexity is also not necessary in order to speak about
association. However then, ¥ and U* are not any more conjugate in the sense of
being the Legendre-Fenchel transforms of each other. When convexity is present,
each level curve f (x) = a bounds a convex set S, = {z: f (z) < a}. For any two
arguments x and y, there holds either Sy) C Sy, or Spy € Sypw). Convexity
assures, that (Vf, — Vf,,z —y) > 0 because

(10.3.8) (Vipz—y) < f(x) = f(y) < (Vie,x—y)

This is equivalent to the monotonicity of the gradient mapping Vf. A graphical
interpretation is given in Figure 10.3.1. Whenever the constitutive function ¢ can
be identified with a gradient of a convex function, the monotonicity holds. This
condition is not necessary though, as ¥ can be monotone without corresponding to
a gradient (e.g. a non-symmetric positive semi-definite matrix).

In the absence of smoothness the above discussion remains valid, although some
technical amendments are necessary. For convex f, the notion of gradient V f at x
needs to be replaced by the subgradient x*, defined at x by

(10.3.9) f)>f(x)+ (" y—=x) forally

The subgradient z* corresponds then to the normal of a supporting plane of the
graph of f at z. The set of all subgradients bears the name of subdifferential. It is
defined at = as

(10.3.10) of ={z": f(y) > f(z)+ (=", y —z) for all y}

It is an example of a set valued mapping. When y € Sy, then f(y) < f ()
and hence (z*,y — x) < 0. This shows that the subdifferential is equivalent to the
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normal cone at x to the set Sy, quite like it was said in the vicinity of formulae
(10.1.21) or (10.1.62). One more tool is necessary, in order to define potentials
encompassing the contact and friction laws. The indicator function of a set S is
defined as follows

0 if z€8
oo if z¢8

Signorini law can now be then expressed as

(10.3.11) 5 (x]S) = {

(10.3.12) —Ry € 96 (Un|Ry)

(10.3.13) Uy € 86" (—Rn|RS)

and similar relations can be obtained for the Tresca law

(10.3.14) —Rr € 06* (-U—T7 D (F))

(10.3.15) Ur €dd (—RT,D(F))

Function §* (-, S) is the Legendre-Fenchel transform of § (-, S) and it is also called
the support function of the convex set S. We have

(10.3.16) 6" (%, 8) = sup {{z,2*) — 6 (x,5)} = sup (z,z")

T €S
One might like to note, that the support function was already employed in the
fifth line of Algorithm 9.4.4. Existence of nonsmooth, yet convex potentials for the
contact and friction problems additionally confirms their well-behavedness.

10.3.3. Lack of potential, normality, monotonicity and association.
One can show the lack of monotonicity of the frictional contact law. This implies,
that there does not exist a convex potential related to it. Let us first note, that
monotonicity of the pure friction law is related to the inequality

(10.3.17) (RL-R%,UL-U2) <0

which holds true for all pairs of Up and Ry verifying Tresca’s relation. In the infin-
itesimal sense, this implies dissipation of energy for all increments of the variables.
In order to obtain the > inequality, one should use —R instead, similarly like in
(10.3.14) and (10.3.15). This is merely a matter of convention. The important bit
is in preserving the particular kind of inequality for all pairs of variables verifying
an interface law. It is then enough to show, that one kind of inequality cannot hold,
in order to prove nonmonotonicity. This is simply done for the frictional contact
law. Let us take

(10.3.18) R} = aR7, |Ry|| =pRy, a>0

(10.3.19) UL =p5U2, 3>0
Then, there holds

(10.3.20) (R7 —R}, U7 —Up) = (1—a)(1-B)(R7,U7)
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FIGURE 10.3.2. Construction of a vector ¢ = [a,b]”, such that
—c € N¢(,) from a horizontala and b = tan («) ||a|.

Since « and (§ are not related, any sign in the above scalar product is possible.
Hence, the frictional contact law is not monotone. In connection with optimisation,
analogous observation can be made with respect to the normality. Assume, that
we would like to extend problem (10.2.13) to the following one

ming L (R)

(10.3.21) |Rar| < pRan, Ran >0

The constraints state, that the contact reactions belong to the friction cone (10.3.5).
When considering optimality conditions for the above problem, one can notice that
the velocity

(10.3.22) - { g; } ¢ Negy (R)

does not belong to the normal cone of the friction cone C (p). This is because, the
normal velocity restitution law “knows nothing” about the p-slope of the friction
cone. Fore example when Newton’s restitution coefficient is n = 0, then U is
parallel to the plane spanned by a;7 and ax7. In consequence, the gradient of —Lj;
cannot be expressed as a linear combination of gradients of the active constraints.
The Kuhn-Tucker vector does not exist and one cannot establish the first order
optimality conditions. Hence, the frictional contact problem cannot be perceived
as minimisation.

10.3.4. The Bipotential Method. A formal workaround for the lack of nor-
mality of the frictional contact law was proposed by De Saxcé and Feng [55]. Al-
though (10.3.22) cannot be helped, one can modify the left hand side, so that a
vector belonging to the normal cone (of the friction cone) is obtained. That is

(10.3.23) - { Ur

Un + 1| Uz
for which a simple geometrical explanation is given in Figure 10.3.2. It turns out,
that the above inclusion implies the frictional contact law. For Ry > 0 there must
hold Uy = 0 and then —Up € Npury) (Rr). For Ry = 0 the normal cone
Ny (R) is the polar cone C* of the friction cone C' (), marked in Figure 10.3.2.
In this case the geometrical construction allows any Uy > 0 which retrieves the
Signorini condition. For Ry = 0 no restriction is put on the magnitude of the
slip velocity ||[Ur||. Of course, by construction, the frictional contact law implies
inclusion (10.3.23), which establishes their equivalence.

} € Ne (R)
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Inclusion (10.3.23), although useful on its own, can be further shown to fit into
the framework of Implicit Standard Materials, proposed by the authors in [55]. As
discussed in the previous section, there does not exist a single-field convex potential,
whose gradient expresses the frictional contact law. The authors consider instead
bipotentials, that is functions implicitly handling a relation between dual variables.
By definition, a bipotential is

(10.3.24) X x X" — [—o0,400] : (z,2%) — b(z,z")

where b (-,2*) and b (x,-) are separately convex, lower semi-continuous?, and such
that for all z and z* there holds

(10.3.25) b(z,z*) > (x,z")

The above inequality allows to write

(10.3.26) x € Oyp=b (z,2%)

(10.3.27) x* € Oyb(z,z%)
which follows from (10.3.25) as

(10.3.28) b(z,y*) > b(x,z") + (x,y* — a™) for all y*

(10.3.29) b(y,z") > b(z,2*) + (y — x,2") for all y

Condition (10.3.25) is a generalisation of Fenchel’s inequality

(10.3.30) f@)+ " (x) > (z,2%)
which in turn is a consequence of f*(z*) = sup, {(z,z*) — f(z)}. Let U =
[Ur, UN}T. In [55] a bipotential for the frictional contact law is defined as

(10.3.31) b(U,R) =6 (~Un|R-) + 6 (R,C (1)) + uRy || -Ur||

and inclusion (10.3.23) is shown to be equivalent to

(10.3.32) -U cdrb(U,R)

This partially brings back the idea of normality. Nevertheless, it does not remove
difficulties related to the solution of the frictional contact problem.

10.3.5. Frictional contact as root finding. Similarly to the work of Hiieber
et al. [96] we can state the single point frictional contact operator as

max (udy, ||[dr||) Rr — pmax (0,dy) dr

(10.3.33) C(U,R) = [ Ry — max (0, dy)

where the components of the predictor

(10.3.34) d(U,R) = [ dr (Ur,Rr) }

dn (Un, RnN)

2A function f is lower semi-continuous if for all a sets {z : f (z) < a} are closed.
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F1GURE 10.3.3. Plots of the Signorini-Coulomb constraints for p =
1, n= 0, W” = 08, Wi;ﬁj = 0.4, BTl = BT2 = 0, BN = —2. The
coefficient of friction was p = 0.1 in the left picture, and p = 0.9
in the right one.

were defined in (10.1.46) and (10.2.8). As usual, the root finding problem C (R) = 0
can be stated by eliminating U = WR + B. This time however, not much can be
said about its structure. Some visualisation is possible, at most, for a single point
problem. The three scalar equations in C(R) = 0 describe some implicit surfaces
in the R-space. This is depicted in Figure 10.3.3. The inclined surface describes the
normal constraint Cy (R) = 0. The two nearly vertical (aligned with the Ry axis)
surfaces correspond to the components of the tangential constraint Cr (R) = 0.
The solution rests at the intersection point of all three surfaces. Small friction
coefficient in the left picture results in frictional slipping. Larger coefficient in the
right picture allows to pronounce the transition from the slip to the stick state.
The constraint surfaces are visibly curved, as the non-smooth transition bends
them along vertical lines. The solution point in the right picture is in the state of
sticking. Essentially, for problems with many contact points, one is interested in
finding intersection points like those in Figure 10.3.3.

Surely, operator C (R) is not monotone. This implies that there exist R;, Ro
such that

(10.3.35) <C (Rl) -C (Rg) ,R1 — R2> <0

Thus®, a linear expansion of C(R) can experience a negative definite Jacobian.
This is not a desirable feature from the point of view of a Newton scheme applied
to the solution of the root finding problem C(R) = 0. When C (R) is perceived
as a gradient of a general nonconvex function, finding C (R) = 0 can be regarded
as looking for a local extremum. A local minimum is preferred as a stable solution,
but the negative definiteness of the Jacobian can spoil the convergence. In such
case the scheme requires globalisation (line search) in order to avoid divergence or
convergence to a local maximum. A technique of this sort will be examined in the
next chapter.

SERRATA: In our paper [123], Section 4.1.3, there is an erroneous statement: “A simple
numerical experiment shows that for data from Figure 10.3.3, and force pairs generated randomly
on a unit ball the above inequality holds true in 30% of cases (u = 0.4).” This was wrongly
concluded due to a flawed code. In fact, for randomly generated force pairs and the values of p
largely exceeding 2/Amaz, a small percentage (up to 3%) of negative results (10.3.35) is obtained.
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10.3.6. The well-behaved juxtaposed simplification. What happens if
we juxtapose the contact problem and the friction problem operators? We have

_| Cr(R) | _| Rr—projy (dr (R))
(103.36) Cr (R) = [ Cx (R) } = { Ry — proj (dx (R)
where X is the positive orthant Ry x Ry x ... x Ry and Y = D (Fy) x D (F) X ... X
D (F,). The F index stands for the vector of all friction thresholds [..., F,,...]. By
exactly the same argument as in (10.1.56), one can show that the above operator
is monotone for p < 2/A\pqaz, where this time A4, is the maximal eigenvalue of
the complete operator W. Of course, finding R such that Cg (R) = 0, although
it might be easy, does not solve the frictional contact problem. Nevertheless, one
might try to do it repeatedly, while updating F to the most recent value of uR .
Convergence of such procedure will depend on the fact, whether from the global
point of view it can be perceived as a contraction. If so, it shall converge to a fixed
point F = Ry . The issue of convergence was studied by Stadler [195], where the
uniqueness of solution was shown for sufficiently small coefficient of friction (see
also [168]). All of the root finding schemes discussed in the next chapter can be
regarded as exploiting a contraction property of some operators. Nevertheless, it
will be customary to refer to the specified here procedure as the fized point method.

10.3.7. Can the frictional contact operator be monotone? Let us rewrite
(10.3.33) as

[ Cr®R) ] _ [ Rr—projy(dr (R))
(10.3.37) CR)= [ Cu (R) } - [ R;f_ﬁmj]i (dva (R))

where X is the positive orthant Ry x Ry x ... x Ry and Z = D (py (din),) ¥
D (p2 (dan)y) X ... X D (pin (dpn) ). By (2), we mean max (0,z). In analogy with
(10.1.58), C becomes monotone, if only the projection

(10.3.38) R = projz, x (d (R))

is a contraction. By Lemma 2 from [168], there holds

|

< Jdr (R1) = dr (Ro)|* + pias ldw (R1) — div (Ro)|

where fiq; = max, . One can now write

projz(ay (dr (R1)) — projz ) (dr (R2))H2 <

(10.3.39)

[[projzy x (d (R1)) — projzy x (d (R2))H2 <
(10.3.40)

< [d(R1) —d (Ro)|* + pi2,,, [|d (R1) — d (Ro)||*
and further, by the same argument as in (10.1.56), obtain

[[projzy x (d (R1)) — projzy x (d (R2))H2 <
(10.3.41)

< (14 t2s) (1 52200 + 026 Ry — Rl

Amaz

According to (10.1.57), the minimum over p of the second bracket above is bounded
by 1-)22 . /A2 and hence the condition (1 + /ﬁmz) (1 — A2 /2 ) < 1resolves

min/ “mazx min/ ‘mazx
as
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/\3711'71
(10-3-42) Hmaz < H W

The projection proj,, x () is a contraction and C (R) becomes monotone, only for
a sufficiently small coefficient of friction, where \A,,;, and A4, are the minimal
and the maximal eigenvalues of W. The above discussion shows, that the frictional
contact problem enjoys a unique solution, when condition (10.3.42) is satisfied.

10.4. Cohesion

In our framework cohesion can bond points of distinct bodies, similarly to a
glue. Tt can be used with respect to selected contact points, provided that they
were present at ¢t = 0. The situation is rather simple. For all contact points we can
write

(10.4.1) Usn >0, Ron +heo >0, Upn (Ran + heg) =0

where he, > 0 is an integral of the cohesion threshold over [¢,¢ + h]. This means
that the average normal contact force R,nx/h can be negative up to the absolute
level of ¢,. Only when this value is surpassed, the normal velocity is allowed to
become positive, resulting in decohesion. This needs to be followed by setting
co = 0 to indicate a brittle failure. Hence, the cohesion law should be completed
by a condition, executed after the solution for contact reactions is preformed. It
reads

(10.4.2) if co > 0N (Ran + heo) =0 then ¢, =0

which brings back the adhesion-less form of the Signorini formula. When ¢, > 0
the remaining formulae in the formulation of the root finding problem need to be
updated accordingly. Let us first denote

(10.4.3) Ron = Ron + heg
so that
(10.4.4) Uan >0, Ran >0, UsnRan =0

holds. If in all necessary formulae we could replace Rys with Rys, then global
picture would not be altered. This can be done by consequently applying the

change of coordinates (10.4.3). As Ron = Ran — hcq, there holds

(10.4.5) U=W.rRr +W,xn (RN - hC) +B

which can be rewritten as

(10.4.6) U=WR+B
(10.4.7) R = [.,Rar, Ran, ]

(10.4.8) B =B - W,xhc
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where the start * stands for all relevant indices, so that W,y comprises the 1 x
3 normal column blocks Wyg.n = [WQBTN,WaﬁNN]T. Owing to (10.4.4) and
(10.4.6), one can now solve the usual root finding problem, involving the projection
formulae having Ry replaced by Ry .

In order to avoid clutter in the notation, it is from now on assumed, that
the following sequence of steps is executed whenever solution for the constraints is
discussed

(10.4.9) Ry =Ry + he

(10.4.10) B=B - W.xhc

(10.4.11) C(WR+B,R)=0

(10.4.12) Ry = Ry — he

(10.4.13) for all o, if co, > 0 A (Ran + hco) = 0 then ¢, =0

This will be recalled, when the complete time stepping schemes are assembled in
Chapter 12. For the moment, let us forget about that. A comprehensive discussion
about incorporation of more sophisticated interface laws can be found in Jean et
al. [103].

10.5. Energetic consistency

Total energy of a multi-body system should not grow due to the incorporation
of contact and friction constraints. In particular, considering a dynamical system
without unbalanced forces (a rigid multi-body system with some initial velocity),
this statement needs to hold with respect to the kinetic energy. Similarly as in [42]
one can then write

(10.5.1) 2(Ef —E;)=(u"+u”) M(ut —u")

and use the momentum balance over an impact episode

(10.5.2) M (ut —u’)=H'R

in order to arrive at

2(Ef —E;) = (ut+u) H'R
= (Hu"+u),R)
(10.5.3) = (U"+U",R)

The last formula suggests, that if only Uz = a (UjTL + U;) and Uy = b (U;\r, + U;,)
were employed in the contact and friction constraints (10.1.34) and (10.3.1), dis-
sipativity could be assured (a,b > 0). This would correspond to the fully elastic
tangential shock for sticking contacts, and to the fully elastic normal impact for
Uy < 0. Such choice, with a = b = %, is in fact quite natural in the view of the
configuration update formula g'*" = g+ 1 (u’ + u’™"). This seems to be the basis
of the energetically consistent developments by Laursen and Chawla [202, 206].
Nevertheless, in the context of kinematic models with limited deformability, the
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fully elastic restitution is rather constraining. Here, one would like to use a variety
of restitution coefficients at different contact points, distinct for the normal and
tangential components. Unfortunately, for the simple Newton’s restitution model
energetic consistency can only be assured in few special situations. This, com-
bined with the inconsistencies related to the frictional effects, renders the adopted
contact-impact-friction framework only an illustrative tool. Having said that, let
us discuss some particular sources of the (in)consistency.

10.5.1. Contacts, ideally plastic impacts, and friction. By a contact we
mean a situation, where the gap function ¢ < 0 and Uy > 0. In this case, the
contact point should not be excluded from the formulation of the constraints. It is
well possible, that due to the kinematic interactions with other contact points, the
right velocity becomes negative U]t < 0. This should not be allowed. The contact
point is then preserved, and Uy = U]t + nmin (O, UZQ) = U;{,. On the other hand,
by an impact we mean, that g <0 and Uy < 0, and hence Un = Uf\} +nUpy. Only
ideally plastic impacts are considered here, where n = 0. Thus again, Uy = U;{,.
In this situation it is easy to show, that dissipativity always holds. We have

(10.5.4) Ut =WR+U"

and hence

(Ut +U~,R) = 2U* — WR,R) =
(10.5.5)
2(Uf,Rr) — (WR,R) +2 (UL, Ry)

The first scalar product <UJTF, RT> < 0, due to the friction law (10.3.1). The qua-
dratic form (WR, R) > 0, because W is semi-positive definite. Finally <U}'{,, RN> =
0, due to the Signorini condition (10.1.34). Thus, E;f — E, <0.

10.5.2. Frictionless impacts and contacts. We are assuming now Ry = 0.
Let S be the index set of a, where U, < 0 and thus U}y = —n,U_, (impacts).
Let P be the index set of a, where U_ > 0 and thus U]y > 0 (contacts). The
question is about the sign of <U?\} + U]_V,RN>. For a € P and U;N > 0 there
follows R,y = 0, and hence the corresponding term in the scalar product is zero.
It is fair to assume U;LN =0 for all & € P. Then

Uty =-nU_yforaes

For better illustration let 1, = n for all a. One can now write

_ 1—n)Us
(10.5.7) UL +Uy = [ (1=m) Usy ]
PN
L [ A+ U3
(10.5.8) Ry = -Wyk [ ( I}@ SN }
PN
Hence

(10.5.9) — (WL Uy, Uy) — 7 <W;,§V { U§N } ’ [ UgN ]>
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In the above, the right hand side difference can become negative. This is seen either
from the spectral picture of the scalar products?, or simply by noticing that subtrac-
tion from a quadratic form of some of its diagonal squares turns it into a saddle sur-
face. Hence, the energy growth is possible. On the other hand, for P = (), dissipativ-
ity is restored. This follows also from <U} + U;\,,RN> = <(1 -n) U;,,RN> <0,
as it was shown by Glocker [42]. One could then consider only impacts, defined by
Uy < 0. This however is not always suitable. For example, for flat surfaces in a
statically overdetermined contact, such assumption would lead to a noisy, spurious
rocking after the decay of bouncing, for some n < 1. This would result from succes-
sive switching off and on of some contact points, for which the value of Uy would
oscillate around zero, on the level of numerical tolerances. Processing a nonempty
set P stabilises this sort of behaviour. In the example from Section 13.4.3, the
energy growth does not happen, because there indeed P = (). An additional factor
easing off a possible energy growth is the square n? in (10.5.9), where n < 1.

10.5.3. Impacts, contacts and friction. Considering now also the frictional
effects Ry # 0, let us additionally assume that some unbalanced forces do exist.
In the context of the dynamic time stepping, we can write

(10.5.10) % (u+u )M(uf —u") = g (uh +u)f+ % (Ut +U",R)

which corresponds to

1
(10.5.11) AEy+ AE, = 5 (Ut +U",R)

where the conservative force f = —0F,/0q, and the fact that Aq = % (ut +u™)
were used. Taking the total energy £ = Ej + E,, one obtains AE, + AE, =
E*T — E~, and hence similarly as in the previous case

(10.5.12) 2(Ef-E7)=(U"+U",R)
Now
(10.5.13) U"=WR+B

rather than (10.5.4). Thus, derivation of kind (10.5.5) is no longer possible. One
can merely write

(UT+ U ,R) =

= (Uj,Rr) + (Upy, Rpwn) + (Up, Rr) + (-QUgy, Rsw)

where Q = diag (n,), and index sets S and P were already defined in the previous
section. On the right hand side above, the sum of first two scalar products is semi-
negative, due to the friction and contact conditions. The last scalar product is
positive. The one but the last can be positive, when <U‘TL7 U;> <0 (as U}L =—-\Rp
with A > 0). This corresponds to slip reversal. The amount of positive and negative
values in (10.5.14) is the matter of a particular setup. Nothing general can be said
about it, maybe with the exception of stating, that the inconsistency results from
our model and it should be corrected by developing a better one. It is relevant to

mention, that the quasi-static scheme from Section 5.3 remains consistent, as there
U~ = 0 by definition.

(10.5.14)

4An unpractical criterion for stability would be n? < min; a;/ max; bj, where a is the pro-

—1

T
jection of Uy, on the eigenbasis of W, and b is a similar projection of [Ug%, 0] .
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10.6. Literature

A review paper on dynamics of rigid bodies with friction and impacts was given
by Stewart [198]. Another general review, oriented more towards the event driven
strategies is due to Brogliato et al. [32]. A review paper on the formulation of
elastostatic frictional contact problems was also given by Mijar and Arora [150].
Monograph by Wriggers [211] gives a comprehensive summary of computational
techniques related to deformable contact problems.

The Contact Dynamics method developed by Moreau [156] and Jean [102] is
particularly convenient for kinematically modest finite deformation formulations,
where the dual form of the contact problem can be inexpensively utilised (e.g. as-
sembly of rigid bodies, for which an explicit inversion of the inertia operator is
computationally feasible). The main features of the method comprise the use of a
velocity level time stepping, the non-regularised treatment of frictional contact law,
and the block Gauss-Seidel relaxation utilised stepwise in order to resolve unilat-
eral constraints. The method was developed within the context of rigid and finite
element discretised continua. Applications range from granular flow [178], through
statics of masonry [40], to deep drawing simulations [109]. Contact Dynamics
belongs to a broader category of schemes dealing with the non-smooth dynami-
cal systems. For example, developments by Wosle and Pfeiffer [210] and Pfeiffer
et al. [170] utilise the same theoretical apparatus, although they differ in details
(accelerations are involved, Newton scheme is used rather than the Gauss-Seidel).

In the context of rigid multi-body simulations, Stewart and Trinkle [199] devel-
oped a time-stepping method based on an inelastic impact law and polyhedral lin-
earisation of the Coulomb friction cone. Their formulation does not allow violation
of interpenetration constraints, and the resulting linear complementary problem
(LCP) is guaranteed to posses solutions at all times. Pang et al. [165] developed
a linear programing technique to solve an uncoupled complementary problem re-
sulting from the planar formulation of a quasi-static evolution of rigid multi-body
systems. This work was later extended to three dimensions by Trinkle et al. [204],
where polyhedral discretisation of the friction cone (like in [199]) allowed to pre-
serve the original algebraic structure. Anitescu et al. [10] review several aspects
of time-stepping methods for rigid bodies. Anitescu and Potra [9] design a time-
stepping method for rigid multi-body systems with stiff forces. A linearly implicit
time integrator is used in combination with the LCP formulation of constraints.
The method is shown to be stable in the stiff limit, where a stiff force joining two
points acts as a joint constraint. Potra et al. [70] describe a second order, stiffly
stable linearly implicit time-stepping for rigid multi-body frictional contact prob-
lems. They employ an event prediction method, a Poisson restitution model and
an LCP formulation of the constraints. The second order convergence rate of the
method is exemplified on few examples (cf. Sections 13.4.4 and 13.4.5). Song et al.
[194] describe a linear complementarity based framework for compliant contacts,
and prove solvability of the so posed problem. Leine and Glocker [132] develop
a Coulomb-Contensou frictional law for rigid bodies, where the contact surface is
approximated by a disk, allowing to extract a torque-spin relation. The constitutive
law is applied in the contact of time-stepping methods, for an example of the tipple-
top toy. This work can be related to the one by Goyal et al. [77], where a similar
holistic approach to the motion of rigid, sliding bodies was undertaken. Glocker
[42] discusses differences between Newton’s and Poisson’s impact models. Leine et
al. [131] design a simple mechanical system named the Frictional Impact Oscil-
lator, and examine the occurence of Painlevé paradox for their setup. A number
of interesting conclusions is drawn, regarding the conditions under which frictional
hopping can happen. Stewart [197] gives a proof of convergence of a time-stepping
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algorithm similar to the one given in [199]. He also resolves a particular instance
of the Painlevé paradox.

In the context of deformable continua, an augmented Lagrangian formulation
of the frictional contact problem was developed by Alart and Curnier [7]. The
authors derive a linearisation of their formulation and apply Newton method as a
solution strategy. This formulations serves as a basis for many subsequent devel-
opments. For example, Heegaard and Curnier [85] discuss a suitable extension to
large slip problems, and Heege and Alart [86] develop a finite element for metal
forming applications. Jones and Papadopoulos [106] develop a heuristic method of
imposing stick and slip conditions based on a relaxed inflation of friction cone and a
control of slip reversal. Newton method is used as a solution strategy for some two-
dimensional examples. An anisotropic friction model is developed in the following
work by Jones and Papadopoulos [107]. Kane et al. [111] develop a formulation
of the frictionless contact problem by applying tools of nonsmooth analysis [43].
Their non-penetration condition based on volumetric overlap of finite elements is
similar to the one undertaken in the current work. The contact problem is formu-
lated as a generalised, non-smooth minimisation (indicator functions are used) and
the sequential quadratic programming scheme is employed as a solution strategy.
Pandolfi et al. [164] extend this framework into the frictional case and, in the
algorithmic sense, they maintain the variational (minimisation based) structure of
the formulation. The Bipotential formulation summarised in Section 10.3.4 was
initially introduced by De Saxe and Feng in [56].



CHAPTER 11

Solvers

The objective is to solve

(11.0.1) C(WR+B,R)=0

where all kinds of constraints are included. In the following, it will be at times
convenient to write C (R) = 0 instead of the above. Calculation of the constraint
reactions allows to advance the time step and step up a consecutive system of
constraint equations. Properties of C and several numerical techniques for solving
(11.0.1) will be discussed in the following sections.

11.1. Properties of C

Operator C inherits its properties after both, the individual constraints and W.
In the presence of the frictional contact constraints it is unavoidably nonmonotone.
This suggests the possibility of non-uniqueness of roots of C (R) = 0. A process of
looking for those can be further undermined by the lack of invertibility of C. This
remains in a direct relation with the invertibility of W. Finally, non-smoothness
of C plays a role whenever derivatives are to be computed. The nonmonotonicity
has already been discussed at some length. The invertibility and non-smoothness
require few additional comments.

11.1.1. Invertibility. In general, C (R) needs not to be invertible (more pre-
cisely locally invertible, that is, invertible for a sufficiently small neighbourhood of
each R). This is more of an issue for poorly deformable kinematics (like here),
although for FEM discretised models the problem practically disappears. The dis-
cussion on the invertibility of W (Section 7.1) remains valid, nevertheless one needs
to realise that C(R) ~ WR + B only for some specific situations (e.g. when all
contacts are sticky), so that invertibility of W does not directly translate into that
of C. In the further exposition we shall make a pragmatic assumption:

ASSUMPTION. In the context of Newton methods presented in Section 11.2, it
will be implicitly assumed that C (R) is locally invertible.

Hence, the Jacobian 9C (R) /OR (or its generalisation) will be by the assump-
tion non-singular. The linearisation based methods will be tested in combination
with pseudo-rigid kinematics. This renders our simplification easier to achieve. Ex-
tension of the methods from Section 11.2 to the case of non-invertible C (R) needs
to be registered as a matter of future research.

11.1.2. Semi-smoothness. It can be shown that C(R) is Lipschitz contin-
uwous, that is for all R; and R,

(11.1.1) [C(R1) = C(Ry)|| < K[[R1 — Ry

where K is a constant. One can use (10.3.41) and the triangle inequality in order
to show that. K depends on the maximal friction coefficient p, on the scaling

154
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parameter p, and on the maximal eigenvalue of W. As it was for example shown
in Section 10.1.6, C (R) is not smooth. The source of non-smoothness is due to the
max function employed in the projection formulae describing contact constraints.
Because of this feature, C (R) is not differentiable in the usual sense for all R. This
means that the Fréchet derivative DC, defined as

lim IC(R+h)—-C(R)—-DC(R)-h| _

11.1.2
( ) [h]—0 bl

0

does not exist for all R. In our setting, max (z,y) is not differentiable when z = y.
This corresponds to a surface S in R-space, implicitly defined by pdon = ||dar|| and
don =0, cf. (10.3.33). Intuitively, across S the contact and friction states change
(e.g. from stick to slip). Hence, one cannot describe DC by a single linear operator,
when R € S. Several generalisations of differentiability have been proposed in order
to work around similar difficulties [43, 39]. For convex functions, the subdifferential
defined in (10.3.10) is an example. C (R) however does not pertain to convexity,
as it was shown to be nonmonotone. For Lipschitz functions, Clarke [43, p. 70]
defines a generalised Jacobian

(11.1.3) 0C(R) =co lim DC(Ry)
R; € D¢

as the convex hull of all limits of Fréchet derivatives, where D¢ denotes the set of
points where C is differentiable (see also [39]). Qi and Sun [175] use the notion of
semi-smoothness in reference to (locally) Lipschitzian functions, for which the limit

(11.1.4) lim {Vg}
V eoCR+tg)
g—ht|0

exists for any h. The authors show, that for semismooth functions there holds

(11.1.5) Vh—C (R;h) =o(||[h]), V€ dC(R), h—0

(11.1.6) C(R+h) —C(R)-C (R;h)=o(|h]), h—0
where C' (R, h) is the directional derivative

(11.1.7) C (R;h) iy CBE) - C(R)

t10 t
and f(z) = o(g(z)), when lim f (x) /g (z) = 0 for z — 0. Assuming invertibility
of V€ OC(R) and uniform boundedness' of V=1 in the neighbourhood of R,
formulae (11.1.5) and (11.1.6) allow to show local super-linear convergence of the
following semi-smooth Newton scheme

(11.1.8) R*!' =RF —V,'C(R¥), V; € 9C (RY)

there exist a neighbourhood N (R) and a constant C, such that [lV=Y| < C for all V €
0C (S), where S € N (R)
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One might like to note, that in the above scheme some freedom is left as to the
choice of V4. In particular for Ry € S, one can choose the semi-smooth tangent
operator to be a limit of just one sequence (11.1.3), ranging through points of a
smooth patch adjacent to S in the neighbourhood of R. This freedom will be used
in Section 11.2, when defining active sets. Now, taking R* to be the solution of
C (R) = 0, we can write

[REH - R = [|R* - R* - V,"'C (RY)]| =
|-Vt [c (R - C(R") - €' (RRY —R") + C' (R RF —R*) - Vi (R — R*) |
<[l [c ®¥) - e @) - € ReR - R ||+
vt [ (RE - R - @ (R RE - R [ =
=o(|[R* —R"[)

Hence, by picking a starting point R for sufficiently close to R*, a super-linear
convergence can be achieved, as HR’“Jrl - R*H / HRk — R*H becomes arbitrarily
small. In practise, it is the major difficulty to find an appropriate starting point.
The Newton method presented Section 11.2, can be regarded as an instance of the
semi-smooth technique sketched above. A formal proof would have to show, that
C (R) is semi-smooth for R € S. It is smooth for the remaining part of the domain.
It seems clear, that similarly as for the augmented Lagrangian corresponding to a
convex program, shown to be semismooth in [175], one can pursue such exercise in
our case. On the other hand, the issue of a particular choice of the local convergence
theory, remains in a sense the matter of taste. For example, for similar class of
problems, Pang [166] applied the idea of B-differentiability. Although in that
development, existence of Fréchet derivative was assumed at R*, it did not prevent
a successful application of the method to frictional contact problems [41]. Also, a
generalisation of the local convergence theory was proposed by Chen et al. [39],
where the notion of slant differentiability was introduced. Among the useful features
of this approach, there is applicability in the infinite dimensional context, as well as
no need for the uniform boundedness of a linear operator generalising the Jacobian
in the vicinity of a solution point.

11.2. Newton method

We present a linearisation of the frictional contact problem, as it is the most
involving part of (11.0.1). Inclusion of other kinds of constraints corresponds merely
to a simple extension of the linear systems presented in the following. This will be
discussed at a later point. Operator (11.0.1) for the frictional contact problem can
be rewritten as

U=B+WR
(11.2.1) {cwﬁwﬂ
where

| Car (t.]:a;ROt)
(11.2.2) C(U’R) | Cun (UaaRa)

(11.2.3) CaT (Ua, Ra) = max (/J,daN, ||daT||) RaT — pmax (0, daN) daT
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(11.2.4) Cun (Ua,Ra) = R,N — max (O,daN)
(11.2.5) daT (Ua, Ra) = RaT - pUaT
(11.2.6) dan (Ua,Ra) = Ran — pUan

Similar formulation is a starting point of the development by Hiieber et al. [96].
There however, the finite element mortar discretisation provides the first relation
in (11.2.1). Contrary to the above, the formulation in [96] is stated in the standard
primal form, with displacements acting on the global tangent operator. The current
formulation is usually more suitable for kinematic models with a moderate amount
of freedom, as W and B can be inexpensively computed.

In order to approximately solve (11.2.1), the active set strategy and the fric-
tional Newton step proposed in [96] will be adopted. For the class of problems like
the unilateral contact alone, the primal-dual active set technique was shown to be
equivalent to the semismooth Newton method by Hintermiiller et al. [93], so that
the overall development can be regarded as a variant of the Newton algorithm.

11.2.1. Unilateral contact. The frictionless case is briefly examined. Find-
ing normal reactions reduces to a well behaved problem, the structure of which was
already discussed in Section 10.1.7. According to the reasoning presented therein,
once the index sets of zero and nonzero reactions are identified, the solution can be
obtained in one step. The two possible index sets will be denoted as active Ay and
inactive Z. Although their immediate identification is usually not possible, the
predictive formula (11.2.6) and the normal constraint (11.2.4) suggest the following
approximation

(11.2.7) AN:{OéZdaN ZO} INZ{Q}\AN

The primal-dual active set algorithm solves a series of reduced linear systems for
successive approximations of the above sets. This can be summarised as follows

ALGORITHM 11.2.1. UNIL

k=0

T = WR* + B — U

Ay ={a:doy =0} I§ ={a} \ A}

if k>0AAR = Alfv_l then stop

X=AK\N Y={AXT}UIk

6 |:WXX Waxy ] [ ORx ]k: [ ~Uy —Tx r
0 Iy 5Ry —Ry

7 RFL =RF +RF

§ Ukl =UF + WSRF + T*

9 k=k+1

10 goto 2

AN WO~

For the sake of consistency with the forthcoming frictional linearisation, the
incremental formulation is utilised above. An update of the residual TF in line 2 is
followed by the prediction of the active and inactive sets in line 3. From the comple-
mentarity considerations, it is seen that once the correct sets were predicted, they
are not changed in line 3. Thus, the termination criterion takes quite specific form
(line 4). In line 5 two index sets are created: X enumerating normal components in
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the active set, and ) enumerating all of the tangential components together with
the inactive normal ones. The linear system in line 6 follows from

(11.2.8) U* 4+ 6UF = W (R* + 6R*) + B

when considered with U*, +5U¥, = 0 for a € Ay and R¥ \, + Rk =0 for a € Iy,
as well as RE . + 6RF . = 0 for all a. The last four lines conclude the algorithm in
an obvious way. The above recipe can be optimised by eliminating all tangential
components.

11.2.2. Frictional tangents. As explained by Hiieber et al. [96], a numeri-
cally robust linearisation of the frictional constraint (11.2.3) requires some heuristic
modifications. The authors examine a number of such modifications, one of which
proves to be the most effective. Here, a brief derivation of the relevant formulae is
provided.

The basic technical step relies on the differentiation of the max function, as
the non-smoothness of the Euclidean norm in (11.2.3) will not play any role (the
term vanishes for sticking points and is nonzero otherwise). The generalised partial
derivative of the function f (z,y) = max (x,y) can be written as Gf, =1ifz >y
and Gf, = 0if z < y. Gf, is calculated analogously. As adopted in [175], at
any point the generalised derivative belongs to the set-valued gradient defined by
Clarke [43]. As a consequence, the partial derivatives at £ = y can be equal to
any number in the range [0,1]. Thus when comparing  and y, the equality can
be adopted on either side. From the algorithmic point of view this corresponds to
a nuance in the definition of the active and inactive sets, utility of which will be
commented on at a later point (Section 11.2.3). The active and inactive tangential
sets are defined as follows

(11.2.9) AT:{OAEAN : ||daT||—MdaN ZO} ZT:AN\.AT

Let us focus on a contact point with index «, and temporarily neglect the a-
indexing. The characteristic function xs = 1 if & € S and xs = 0 otherwise.
According to the above definitions the differential of the tangential constraint reads

Ger (0R,60U) = xa, %RT

(11.2.10) +xzr 1 (0RN — pdUN) Ry + max (udn, [|dr||) IR
—XAn (RN — pdUn) dr — pmax (0,dy) (R — pdUr)

and the tangential Newton step takes the form

(11.2.11) Gec, (6RF,6U%) = —Cr (RF,UF)
(11.2.12) (R¥! UM = (R*, U¥) + (6RF,6U%)
In case of frictional sticking (||dr|| < pdy), equation (11.2.11) simplifies to

U
dyy

U}

(11.2.13) §Up = — —=
dN

5RN - pU]]f] - Ulr}
Condition U¥ + §U% = 0 was utilised to derive the above (frictional linearisation
is considered on the active normal set). Using (11.2.12), formula (11.2.13) can be

rewritten as Ui}+1 = (1- R]]i,+1/d§“v) Uk, where it is seen that for a convergent
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sequence of iterates Ul}"’l — 0, as ’lev"’l — d?\,’ — 0. In the remaining case of
frictional slipping (||dr|| > pdy), equation (11.2.11) takes the following form

(11.2.14) RE + (I - MF) 6RE + pMFSUS = vhu (RY + 6Ry)

where I stands for the two-dimensional identity matrix, and

(11.2.15) MF = e* (I - F*)
(11.2.16) FF = Rk ® dj
pdi [l |
(11.2.17) ek = %
(11.2.18) vh = ij i

Equation (11.2.14) expresses a ray-wise Coulomb constraint along the predictor
direction V]%. Evidently, variations of the tangential reaction and velocity together
contribute to the fulfilment of the linearised constraint. Thus, the iterates of the
reaction Ri}“ do not necessarily belong to the friction cone before the convergence
tightens. The following modification

R @ dk
max (pdy, [RE()) [|dz

results in an approximate projection of R¥*1 onto the tangent to the current section
of the friction cone [96]. This results from the fact, that whenever R% and d% are
nearly aligned, together with HRTH > pd;, the matrix I — F* acts roughly as
a projection on the direction perpendicular to v%. Therefore, the modified M
filters out components parallel to vA. One can see, that when (11.2.19) is in power,
Rl} + 6R£} will approximately lay on the line perpendicular to vlfp and tangent
to the uRfVH section of the friction cone. This can be best observed in Figure
11.2.1. In practice then, the coefficients in relation (11.2.14) are computed with
(11.2.16) replaced by (11.2.19). The modification results in faster and more robust
convergence behaviour. This is because the iterates of R?H remain closer to the
friction cone, thus less significantly interact through the kinematic coupling in W.
This seems particularly helpful in the formulation admitting large rotations and
therefore stronger normal-tangential coupling.

It is appropriate to mention another modification investigated in [96]. The
authors regularise the operator I — MF in (11.2.14), so that it is always invertible
and positive definite. This is not pursued here, as it proved not to be consistently
beneficial in the numerical realisation. This might be due to the different way of
eliminating variables in the current development.

(11.2.19) Fr =

11.2.3. Complete algorithm. The normal active set strategy from Section
11.2.1 can now be combined with the tangential linearisation, in order to deliver a
complete Newton scheme for the frictional contact problem. As it was mentioned
in Section 10.3.5, the nonmonotone character of the adopted contact law results
in the need to globalise the Newton scheme. This is provided by means of the
nonmonotone line search technique by Grippo et al. [78]. The choice seems to be
more relevant to the nature of problem at hand. Nevertheless, the simple Armijo’s
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FiGUure 11.2.1. The Effect of the modification (11.2.19). The
circle radii are uRY, (solid), and pRY™ (dashed). On the left,

the unmodified iteration of the Newton step (11.2.11), (11.2.12)
is presented. The ellipsoid corresponds to the points of R% +
(I—M*) sRE + pMFS, where [|S| = [|§U%||. On the right, the
same iteration with (11.2.19) enabled results in the narrowed ellip-
soid, with one of its eigenvectors nearly orthogonal to dlfp. Thus,
RiTle is approximately placed on the tangent to the current section
of the friction cone.

[11] line search will also be investigated. This type of monotone globalisation was
applied by Christensen et al. [41] in the context of two dimensional linearly elastic
problems.

The sequence of iterates of contact reactions is generated according to

(11.2.20) RF = RF + ofoRF

where §RF is the search direction, and o € (0,1] is the step size. The search

direction results from the semismooth Newton step applied to the system (11.2.1).
Three ways of calculating SR* will be discussed. The first one results from the con-
sistent linearisation of (11.2.1). The normal active set strategy and the tangential
linearisation are combined as follows

ALGORITHM 11.2.2. NEWT
TF = WR* + B — U*
Ay = {adiy >0} I§ = {a} \ A}
A ={a:||dEp|| —pdky >0na e AR} Th = A%\ AR
solve QF6RF = IT* where
for a e I¥
QF =1 Q’;Q:O " = —RF
6 forac A B
ngzﬁN* = WQBN* H];N = _U§N - TfN

7 foracIk

QZQT* = [ WaaTT WaaNT + UgT/dZN ]

Q];BT* =Wagr. Ep=—(1+pUky/dky) Uk, —TE,
8 fO’I‘OéEAI%/\daN:O

QI(ZQT* = [ I o ] QI(ZBT* =0 HZT = _RZT
9 for‘aeA%/\daN >0

O ro=[ @=ME) + o MEWoorr pMEWaont — pivhiy |

QZBT* = PMlgzwaﬁT* HZT = NVQTRZN - RiT — pMET

a~+aT

A Lo o~
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The residual update in the first line above is followed by the selection of active
and inactive sets (lines 2, 3). The tangential sets are subsets of the normal active
one, A% = AXNZE. The increment §R* results from the solution of a linear system
in line 4. The system matrix 2 is composed of dense 3 x 3 blocks (2,3, and has the
same block-sparsity pattern as W. This is of use in the numerical realisation, as
the symbolic factorisation of {2 can be computed only once. The structure of rows
in line 5 results from the fact that RE*! = 0 is assumed on Z¥ for the full Newton
scheme (o = 1). Thus dRY = —RF* on the inactive normal set. The normal row
structure in line 62 results from the reasoning already presented in Section 11.2.1.
In short, it corresponds to the rows of

(11.2.21) U* 4+ 6UF = W (R* + 6R*) + B

written with the account of U(;“N + 0Uyun = 0 for o € Ay . In line 7, the coupling
(11.2.13) is utilised in order to eliminate the velocity increment §U¥.. from the
tangential rows of (11.2.21), with o € Z%. As the active sets were defined with
the equality inclusion >, one needs to deal with the active tangential case, corre-
sponding to the zero friction bound (line 8). This is a pragmatic choice motivated
by a faster communication during the solution process. In particular, considering a
structure composed of contacting bodies with a force applied to only one of them,
the above algorithm will assume the frictionless contact for all bodies not directly
adjacent to the one with the nonzero force. The next iteration will then start from
some nonzero reactions guess for all bodies connected in the contact graph (the
nonzero block pattern graph of W). If the sharp inequality > was utilised to define
the active sets, the nonzero contact forcing would have to gradually propagate ac-
cording to the immediate adjacency in the contact graph. Coming back to the line
8, it is seen that the zero tangential response is enforced for a € A% and dony = 0.
The remaining non-degenerate tangential case (dony > 0) is considered in line 9.
Here, the tangential rows of {2 are obtained by substituting 5Ul}, calculated from
(11.2.21) into the tangent relation (11.2.14). This way of eliminating variables is
motivated by the intention of preserving the impact of modification (11.2.19).

In fact, the descent directions provided by the algorithm NEWT are not among
the most effective, when calculated far from the solution. As a result of numer-
ical experiments aimed at improvement of the global convergence properties, the
following hybrid scheme has arisen

ALGORITHM 11.2.3. HYB
Tk = WR* + B — U*
Ay ={a:dyy 20} TN ={a}\ A}
A = {a:||dEp|| - uREy > 0} T5 = {a} \ A
solve QF6RF = IT* where
for a e ZJIS,
QF, =1 QF;=0 II*F = —RF
6 forac A B
QI(ZBN* = Wagn« HiN = iN - To]fN
7 for acZk
QZﬁT* = Wagrs HI(ZT = _UiT - TZT
8 forozeAifp/\daN:()
anT* - [ Io ] ngzﬁT* =0 H];T = _R];T

9 foraeA%/\daN>0

A W o~

Wy
*

2In the algorithms presented in this section the asterisk subscript replaces “all relevant

indices”, e.g. Qns = [ Qv Qnn |-
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aaT*

QZﬁT* = PMlgzwaﬁT* HZT = NVQTRZN - RiT - PMiTiT

Ok _ [ (I _ Mg) + pMﬁWaaTT ngwaaNT - MVQT }

Contrary to the previous case, the normal and tangential sets are independently
set in lines 2 and 3. Also, the bound employed in line 3 is not any more based on
the predictor d’;N, but owes to the currently computed normal reaction RQN. The
last difference with regard to the algorithm NEWT is the assumption of Uﬁ}l = 0 for
o€ Zé?, expressed in line 7. This means, that the strict linearisation of the inactive
tangential case is not pursued. The above scheme can be linked to the fixed point
technique, presented in the reference work [96]. The major inconsistency is in
using the full Newton linearisation for the slip contact, in line 9. In the fixed point
approach, the tangential slip relations are linearised according to the Tresca friction
model. The linearisation can be obtained from (11.2.14), by discarding the term
involving § R%; and employing a fixed normal bound by instead of d%,

(11.2.22) R% + (I - MF) 6RE + pM* UL = v uby
where in the intermediate formulae (11.2.16), (11.2.17), and (11.2.19) the normal

3 3

predictor d’fv is replaced by the fixed bound by. The fixed point approach is sum-
marised below

ALGORITHM 11.2.4. FIX
T = WRF + B — U*
Ay = {adiy >0} I§ = {a} \ A}
Ak = {a: ||dE || - pbay >0} Tk = {a} \ Ak
solve Q¥6RF = IT* where
for a e I¥
Q’;Q:I Q’;Q:O " = —RF
6 forac A B
QI(ZBN* = WozﬁN* HiN = _ULCN - To]fN
7 foracIk
QZﬁT* = Wagrs HZT = _UI(iT - TZT
8 forozeAifp/\daN:()
anT* = [ I o ] QZQT* =0 H];T = _R];T
9 forozeAifp/\daN >0
QzaT* = [ (I - MZ) + PMiwaaTT pMZWaaNT ]

ngzﬁT* = pMEWopr. Igr = pvirban — Rgp — pMgTor

A Lo o~

It is seen that the third line of the algorithm HYB is a special case of the
corresponding line of FIX, with b,y = R’;N. This corresponds to an update of the
friction bound in every iteration of the fixed point scheme. In practice, at least
in case of the current kinematic formulation, that frequent update of the friction
bound prevents convergence of the fixed point approach. This happens because
the tangential-normal coupling in line 9 results only from the problem kinematics.
Nevertheless, the Tresca regularisation usually results in a good global convergence
behaviour, provided the updates of b,y are sparse enough. The hybrid approach
provides then an intermediate case between the full Newton and the fixed point
methods. The poor convergence of the fixed point approach with the most frequent
update of normal bounds is remedied by the full linearisation of the tangential slip.
This heuristic attempt of synergy between the Newton and fixed point approaches
is to be numerically investigated in the next section.

One thing to be noted about all three algorithms is that they result in an
unsymmetric systems to be solved for §R*. This can be to some extent remedied
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by multiplying the two tangential rows given in lines 9 by the operator [pMZ] -
This introduces more symmetry into {2 and seems to be particularly advantageous
for the fixed point scheme, where the system matrix becomes gradually symmetric
with progressing convergence. On the other hand, the modification (11.2.19) does
not act any more on the entire row of Q. The experience shows that (at least within
the current formulation) this way of eliminating variables is not effective. Thus, it
will not be further investigated.

The above three schemes need to be embraced by some global criteria of advanc-
ing the iterations. In case of NEWT and HYB this will be provided by the mentioned
line search technique. The fixed point scheme, being generally better behaved in
terms of the global convergence, will only be wrapped into a suitable external loop
updating the normal bounds b, . All together, this can be stated as follows

AvrcoriTaMm 11.2.5. SCSOL (ALG,0,7,8,J,¢, K, ¢, L)

1 k=0

2 do

3 SRF = ALG ()

4 akF =1

5 while M (R* + o"6R*) > max  MF I — 2yaF ME

0<j<min(k,J)
ANk>0Aa*>3AALG # FIX do of = 0o

6 RF*1 = RF 4+ oF9R¥

7 UM =U* 4 o*WIRF 4 T*

8 err=|[|oRF|[/[|RE]

9 k=k+1

10 if ALG = FIX A err < e then
1 err =Ry —by||/[RY]]

12 by = R%

13 end if

14 if ALG #FIX A k> L then SCALE ({po},¢,L)
15 whileerr > e Nk < K

The argument ALG can be NEWT, HYB or FIX. The next three arguments o,, 3 €
(0,1) correspond to the line search step. The e describes numerical accuracy, K
bounds the maximal number of iterations, and .J is the length of memory buffer used
by the line search. The remaining arguments ¢, L > 1 are used for the purpose of
the penalty scaling and will be commented on later in this section. In the third line
above, the current increment of reactions is computed by ALG. The initial scaling
parameter o is set equal to 1 in the following line. The loop in line 5 corresponds
to the nonmonotone line search [78]. Note, that for J = 0 it is equivalent to the line
search of Armijo’s type [11]. Both approaches were originally designed for smooth
problems. The analysis suitable for the nonsmooth setting was provided by Ferris
and Lucidi [69]. The auxiliary merit function is defined as

(11.2.23) M(R) = ler (R,U)C (R, U)
2 U=WR+B

where (11.2.1) was utilised. The symbol M* refers to M (R*). If the minimisation

in line 5 is successful (iterations end before of < j), it is seen that a monotonic

decrease of the merit function is enforced for J = 0, while this is not necessarily

the case for J > 0. The acceptability criterion

(11.2.24) M (RF +a"RF) < max MM —2yaF MF

0<j<min(k,J)
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allows for the temporary growth of the merit function if only J > 0. At the same
time the solution point remains inside of the nested level sets R¥F € A¥ C AF~1

(11.2.25) AP = {R :M@R)<  max M (R’f—j)}

0<j<min(k,J)
The parameter J is then proportional to the allowed extent of the temporary growth
of the merit function. Grippo et al. [78] prove that this relaxation does not
hinder the global convergence, if only some conditions hold (roughly, the merit
function must be bounded below, and éR must be a descend direction). At the
same time, for the nonmonotone problems this may lead to a faster convergence, as
a convergent sequence of iterates does not have to correspond to a monotonically
decreasing sequence of function values. The threshold value g is used due to the
finite precision of numerical computations (the line search loop exits after a finite
number of steps). For this reason the line search cannot be fully robust in practice.
In the above algorithm, the line search technique is applied for £ > 0, which results
in o® = 1. This is a heuristic dictated by an observation, that usually it is more
effective to start globalisation from the iterate obtained by the pure Newton step
corresponding to an initial residual. In other words, it often happens that the
subsequent alphas are “large”, while if the line search was performed for £ = 0,
initial alphas often happen to be “small”. Finally, it is seen that the line search is
omitted for the fixed point scheme. The update of reactions and velocities follows
in lines 6, 7. Line 7 corresponds to the Newton step

(11.2.26) SU* = WoRF + T*

(11.2.27) T" = WR' + B - U*

thus the residual T#+! is always zero

(11.2.28) UM = U* + o*WORF + WR" + B - U* = WRF! 1 B

It is possible to modify UNIL, NEWT, HYB and FIX by replacing the computation of
T* by the update of velocity U¥ = WRF + B. This, combined with the removal
of line 7 from SCSOL still provides a feasible framework. Nevertheless, experience
shows that processing the residual is advantageous and results in smaller numbers
of iterations. From the lines 8-13 it is seen that in case of the fixed point method,
after each convergent run with a fixed normal bound, the bound is updated and
the relative error of this update replaces the error controlling the termination of
the algorithm. Note also, that scaling is not applied in case of the fixed point
scheme (line 14), as we are interested in testing the plainest possible version of this
approach.

Algorithms like the one above, where the tangent operator results from a non-
smooth, and to some extent combinatorial structure, are prone to cycling. By this
it is meant that for some parameter sets, the algorithm may get caught into a
cycle (here corresponding to a sequence of contact states) preventing further con-
vergence. In the context of frictional contact problems, this was mentioned by Alart
and Curnier [7], or DeSaxcé and Feng [55]. In general, cycling is more frequent
for stiff problems and its occurrence is related to the regularisation parameter p,
used in predictive formulae (11.2.5) and (11.2.6). This issue is more thoroughly
commented in [7]. In this work, initial values of p, are independently set for each
contact po, = 1/Amaz (Waa), where Ap,q, is the maximal eigenvalue of the diagonal
block matrix W,,. This corresponds to the monotonicity criteria of the diagonal
sub-problems of the simplified problem (10.3.36). In the course of solution, each
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change of the tangential contact state (from stick to slip or vice versa) is further
penalised by increasing p,. As the maximal value of p, ought to be bounded by
2/ Amaz (W) [7], only a finite number (bounded by L) of such increases is per-
formed, although an explicit estimate of Ayq (W) is not accounted for. In order
to avoid excessive number of heuristic parameters, L provides also the lower itera-
tions bound after which the scaling is applied. This strategy seems to be sufficient
in practice. The SCALE routine is summarised below (initial [, are assumed equal
Z€ero)

ALGORITHM 11.2.6. SCALE ({pa},¢,L)
1 for each o do

2 if lo <L A (stick — slip V slip — stick),, then
3 Pa = Ppa

4 loa=1la+1

5 end if

6 end for

It is relevant to ask why does not the line search procedure suffice to avoid
cycling. In Section 10.3.5 it was shown that the single contact point problem
behaves in a nonmonotone way. Using the unconstrained minimisation analogy,
one could say that the merit function corresponding to this simplest case possesses
a region of concavity. For problems with many contact points the corresponding
merit functions possess regions of concavity not only juxtaposed from the single
point problems, but also created through their kinematic interactions. In other
words the problem becomes highly nonlinear. Theoretically, enforcing a monotone
decrease of the merit function (J = 0) should guarantee a descent towards the
local minimum. In practise though, the line search loop is forced to end after a
relatively small number of steps (one is not interested in updating the solution with
a¥ close to the numerical zero). After an “unfinished” search the solution point may
jump to a neighbouring hill. This process may continue in a cyclic manner. The
nonmonotone line search (J > 0) only increases the probability of such scenario
(nevertheless, it is potentially beneficial otherwise).

11.2.4. Inclusion of joints. When joints are present, they correspond to ad-
ditional rows in the system QF§R* = II*. Joints are expressed as linear constraints
on selected components of local velocity. For example a constraint

(11.2.29) aUan +b=0

through linearisation

(11.2.30) a(UaN+5UaN)+b:0
and
(11.2.31) (UQN—F(SUQN) = Wyns (R+5R)+BQN

results in a row

b
(11.2.32) Won-0R*+ = —— —B,ny — W,.R¥
a

so that

(11.2.33) Qor = Won



11.4. LITERATURE 166

b
(11.2.34) I, = —— — B.y — Won. R

a
If there is no restriction on the motion in the tangent plane, two additional rows
ISRk, = —R*, can be added to the system, assuring Ri}l = 0. Alternatively,

(e

one can use Ny, = [0, Woann] and this way avoid processing of Ryr.

11.3. Gauss-Seidel method

One of the characteristic features of the Contact Dynamics Method is a block
Gauss-Seidel relaxation employed to solve (11.0.1). The method is rather robust
in practise, although its local convergence can be extremely slow. The advantage
is, that it converges regardless of the invertibility of W. An incomplete proof of
the convergence for the three-dimensional frictional contact problem was given by
Jourdan et al. [109] (where also a complete, two-dimensional proof can be found).
Let {Co} be the set of all individual constraints, prescribed as C,, (U,,Rq) = 0.
The Gauss-Seidel method can be summarised as follows

ALGORITHM 11.3.1. Gauss_Seidel (¢, K)

1 k=1

2 do

3 for all o do

5 solve C (W, RETT + B, RETY) =0
6 end for

7 e [RERH| /R

8 k=k+1

9 whileerr >e Nk < K

The paradigm of a Gauss-Seidel relaxation is clearly pronounced in the above.
A series of diagonal problems is solved in the internal loop from lines 3-6. As a
solution method in line 5, any of the schemes described in the previous section can
be used. The single diagonal problem is usually quite well behaved, and a semi-
smooth Newton method requires just few iterations (without line search) in order
to find a solution. A very simple convergence criterion is used in lines 7, 9. In the
literature specific to the Contact Dynamics Method, some more elaborate criteria
are mentioned [102, 177].

11.4. Literature

The Newton method under consideration in Section 11.2 stems from a broader
range of schemes for non-differentiable systems. General developments of this kind
were discussed by Pang [166] and Qi and Sun [175]. Global convergence of such
schemes was discussed by Han et al. [82], Ferris and Lucidi [69], or Dai [53]. In
the context of the mixed frictional contact formulation Alart and Curnier [7] dis-
cuss the generalised Newton method (GNM), which belongs to the same category.
An observation made in [7], about the practical robustuness of GNM applied to
frictionless problems, was later confirmed under the umbrella of the primal-dual
active set method [94]. The latter was shown to be equivalent to the semismooth
Newton method by Hintermiiller et al. [93]. In case of frictional problems, Chris-
tensen et al. [41] developed a linearisation along the lines of [166], and presented
two-dimensional linearly elastic examples. In three dimensions, the non-smooth
Newton scheme was recently applied by Jones and Papadopoulos [107] to solve
anisotropic frictional problems. The reference development for Section 11.2, Hiie-
ber et al. [96], discusses a multi-grid implementation of the fixed point Tresca



11.4. LITERATURE 167

approach and compares it with the semi-smooth Newton step employing a direct
solver. Barral et al. [19] describe a generalised Newton method applied to a planar
frictionless contact problem with Maxwell-Norton material. Zavarise and Wriggers
[214] obtain a super-linear method for the augmented Lagrangian formulation of
the frictionless contact problem. The first order update of Lagrange multipliers is
enhanced by a heuristic method of retrieving higher order information. The tech-
nique retains simplicity of the Uzawa-like algorithm, although its extensibility to
the Coulomb friction problem is not clear. Large multi-body contact problems were
not extensively studied within the context of Newton methods. Two-dimensional
frictionless developments involving the primal-dual active set approach can be found
in Ainsworth and Mihai [6], as well as in Hiieber and Wohlmuth [97].

Multi-body formulations, including friction and finite kinematics usually resort
to methods avoiding formation of global tangents. The Gauss-Seidel technique of
the Contact Dynamics method [156, 102] is a good example here. Jourdan et
al. [109] prove the convergence of the Gauss-Seidel scheme for two-dimensional
problems. The scheme is similar to other splitting-type techniques, relaying on
the fixed point ideas. In an elegant paper, Laborde and Renard [168] discuss a
number of fixed point strategies to the frictional contact problem. Their formula-
tion facilitates fast translation of results between finite dimensional and function
space settings. Bisegna et al. [30] discuss relaxation techniques for two dimensional
Signorini-Coulomb problems based on the dual formulation, and hence similar to
the Gauss-Seidel approach. This is a typical splitting technique, where the friction
and the contact problems are solved alternately. Another splitting based algorithm
is discussed by Haslinger et al. [83] and Dostal et al. [60]. As shown in [83], for this
type of approaches a fixed point exists for a sufficiently small friction coefficient.
A splitting type method was also used by Ainsworth and Mihai [5] in the context
of large, dynamic simulations of masonry. The primal-dual active set method was
applied in order to alternatively solve the friction and the contact problems. In
the context of the Gauss-Seidel method [109], Joli and Feng [105] developed lin-
earisation of the projection formula pertinent to the Bipotential Method [55], and
utilised it in a Newton method, solving the local diagonal sub-problems.

In [188] Sha et al. developed a linear complementary formulation of a de-
formable explicit frictional contact problem and applied a conjugate gradient method
as a solution strategy. A conjugate gradient method is also developed by Heinstein
and Laursen [87] and applied in the context of an incremental matrix-free formu-
lation. In the context of two-dimensional granular media simulations, Renouf and
Alart [177] develop a preconditioned conjugate-gradient solver, which is shown to
outperform the Gauss-Seidel method used in Contact Dynamics [102].

For rigid bodies, Stewart and Trinkle [199] use polyhedral approximation of
the friction cone and develop a linear complementary (LCP) formulation solvable
by Lemke’s method [133]. A number of following developments in rigid multi-body
dynamics involves similar LCP approach [10, 194, 70]. An interesting and efficient
simplification of the rigid multi-body frictional contact problem was developed by
Kaufman et al. [114] and applied in the field of computer animation.



CHAPTER 12

Implementation

The framework described in the foregoing chapters has been implemented as a
computer program named Solfec. The dynamic and the quasi-static time-steppings
underlying this implementation have been summarised below.

ArLGORITHM 12.0.1. Solfec_ Dynamic (h,T)
1 fort=0 whilet <T do
2 a't* = half-step (q',ut)

{Co}° = update-contacts (q“‘%)

{C.}Y = update-joints (q“r%)

3
4
5 (H,W,B) = compute-operators ({Ca}C U {Ca}j)
6 solve C(WR + B,R)

7 utth =ut + MAftE 4 MOTHTR

8 q'™" = half-step (q”%,ut*h)

9 t=t+h

10 end for

The time step is h and the duration of simulation is 7" are the arguments of
Algorithm 12.0.1. In the second line, the mid-step configuration qt+% is obtained
by performing a half-step, according to (5.1.1) for the linear and deformable motion,
and according to (5.2.9) for rigid rotations. Based on the mid-step configuration, a
contact detection algorithm is executed in the third line. This could be any of the
methods presented in Sections 9.3.4, 9.3.5 or 9.3.6, combined with an extraction
of local frames as described in Section 9.4. The contact update involves deletions
of local frames for element pairs whose overlap has ceased. It involves as well an
update of all local frames related to the new and to the old contact points. In the
fourth line, the local frames corresponding to joints are updated. The operators
describing local dynamics are computed in line 5, as described in Section 7.1. The
constraint equations are solved next (line 6), where one of the methods described
in Chapter 11 is employed. It is recalled, that steps (10.4.9-10.4.13) need to be
executed in order to account for cohesion. The velocity update follows next, and
it is accompanied by the final update of configuration in line 8. For linear and
deformable motion q'*" is obtained according to (5.1.3). For rigid rotations the
final configuration is computed with (5.2.13) or (5.2.16).

ALGORITHM 12.0.2. Solfec Static (h,T, K,r)
1 fort=0 whilet <T do

2 {Co}° = update-contacts (q')

3 M = scale-inertia (h,4.0,{B;})
4 di=q', k=1,V =00

5 do

6 {C.}* = update-gaps (q'*")
7 {Co} = update-joints (q't")

168
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8 (H,W,B) = compute-operators ({Ca}C U {CQ}J)
9 solve C(WR + B,R)

10 u ™ = A='hf (t+ h,q") + AT'THTR

11 q,t" = step (g, ut*")

12 E* = kinetic-energy-of-mass-centres ({B;})

13 if k =2 then V = maz (log (E'/E?) ,0)

14 k=k+1

15 while k < K Nlog (EF—1/E¥) > rV

16 t=t+h

17 end for

The quasi-static Algorithm 12.0.2 takes as its arguments the time step h, the
duration 7', a dynamic relaxation iterations bound K, and a kinetic energy drop
rate factor r. There are two loops in the algorithm, between lines 1-17 and between
lines 5-15. The external loop advances the artificial time, while the internal one
attempts to find a steady state solution for each instant of time. Contacts are
detected and update in the external loop, in line 2. This task is relatively costly
and hence we do not wish to run it too frequently. Instead, in the inner loop (line 6),
only contact gaps are updated, according to formula (10.1.1). Another motivation
behind the sparser updates of contacts, is to avoid “noise” in the dynamic relaxation
loop 5-15. This would be introduced due to the small changes of contact frames
occurring after the configuration updates in line 11. In line 3, the inertia operators
of individual bodies are scaled in order to assure a uniform damping of the implicit
Euler scheme. Such scaling has been described in Section 5.3. In our routine the
maximal eigenvalue of MK is scaled in order to assure A\y,q.h = 4 for each
pseudo-rigid body. Once the gaps have been updated (line 6), the update of local
frames related to the equality constraints follows in line 7. The local dynamics
operators are computed in line 8 and the solution of the constraint equations follows
in the next line (note, that (10.4.9-10.4.13) is executed in the presence of cohesion).
The velocity update is performed next (line 10). It should stressed, that the time
is fixed here to t + h, so that the time-dependent loadings (or constraints) do
not change in the internal loop. The configuration update follows in line 11. For
pseudo-rigid bodies the formula q?jh = qzt}i + hutth is executed, while a general
step update in line 11 hints the possibility of an analogous update for rigid bodies
A?Lh = A?j exp [hﬂt"’h}. The kinetic energy of mass centres is computed next.
The rate of decay of the energy is used as a termination criterion for the inner
loop (together with the bound on the maximal number of iterations K). If the
energy is decreasing, the initial slope of its drop is used as a reference value V. On
the other hand, if the energy grows, then V = 0 and the inner loop terminates.
The logarithmic scale is employed in order to conveniently account for the drop
spanning several orders of magnitude. The rate of the energy drop is used, because
the graph of the kinetic energy usually resembles Figure 12.0.1. Naturally, the local
convergence of our simplified relaxation method cannot be fast, as the necessary
linearisations have been skipped.

k

FIGURE 12.0.1. A typical decay of kinetic energy for the dynamic
relaxation loop.



CHAPTER 13

Examples

13.1. Rigid rotations

Schemes (5.2.9-5.2.16) from Chapter 5 are further compared with LIEMID[EA]
by Krysl [126] and the explicit method by Simo and Wong [100].

13.1.1. Unstable rotation. This example is referred to after Simo and Wong
[100]. The example is based on the fact that rigid rotation is stable only about the
axes of minimum and maximum moment of inertia (Arnold [13], Chapter 29.2).
Small perturbation of rotation around the axis of intermediate moment of inertia
leads to unstable oscillation. The initial rotation is identity, the initial angular
velocity is zero, and the referential inertia tensor is J = diag[5, 10, 1]. The spatial
torque reads

20,0, 0] for 0<t<2
t(t)=1{ [0,1/(5h),0] for 2<t<2+h
[0,0,0] for 24+h<t

so that an impulse inverse proportional to the time step is delivered at ¢ = 2. Due
to the dependence of torque on the time step, the convergence rate can be only
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FIGURE 13.1.1. Unstable rotation. Magnitude of the incremental
rotation vector for a range of time steps.
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FIGURE 13.1.2. Unstable rotation. Kinetic energy for h = 27°
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F1GURE 13.1.3. Unstable rotation. Components of the angular ve-
locity in body frame. The W [*] components have been obtained
with the explicit scheme by Simo and Wong and A = 0.001. The
W [1] components have been obtained with NEW1 and h = 0.01.
Components W [2] correspond to the largest step, for which a qual-
itatively correct result was obtained with NEW2 (h = 0.0019).
Components W [3] correspond to the similar result obtained with
NEW3 (h = 0.05).

linear for this example. Nevertheless the convergence analysis is included, as this
example seems particularly appealing in the context of contact/impact analysis.

Figure 13.1.1 compares magnitudes of the incremental rotation vector at the
range of time steps from h = 27° to h = 278, The characteristic drift properties of
the new scheme are clearly visible here. It is seen that the positive drift of NEW1
is smaller than the negative drift of NEW2. At the same time NEW3 gives the best
qualitative match with the results obtained with LIEMID[EA].

Figure 13.1.2 illustrates the characteristic energy behaviour at h = 275 and
h = 278, The energy drift of NEW1 and NEW2 is much smaller in comparison
with the one experienced by the explicit scheme by Simo and Wong [100] at the
larger time step. For the smaller time step all algorithms deliver the solution
without a visible drift.

Figure 13.1.3 shows the characteristic profile of the body-frame angular velocity.
High accuracy of the body-frame variables obtained with NEW1 is confirmed, as
the solution obtained with this algorithm at A = 0.01 coincides with the reference
solution obtained with the explicit scheme by Simo and Wong at h = 0.001. It is
also visible that the relative accuracy of NEW2 is smaller, as the first qualitatively
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F1GURE 13.1.4. Unstable rotation. Convergence of the body-
frame angular momentum IT = JW (left), and the rotation opera-
tor R (right). The reference solutions ITx and R+ have been com-
puted with the explicit scheme by Simo and Wong and h = 2722
at time ¢ = 10. The solutions II (k) and R (h) were computed for
time steps h € {275,276, 2715}

correct result has been obtained at h ~ 0.0019. NEW3 still gives a qualitatively
acceptable result at h = 0.05.

Figure 13.1.4 illustrates the convergence behaviour. It is noteworthy that the
spatial torque formula had to be modified so that the interval 2 <t < 2+ 0.9h was
considered for the disturbance impulse. Without this modification LIEMID[EA]
consistently delivered very poor results, which is related to the fact that this scheme
calculates the torque at the ends of the time interval. Again it can be seen that
NEW1, NEW3 and LIEMID[EA] perform similarly in terms of the absolute error
in the referential angular momentum II, although NEW1 and NEW3 seem much
more accurate with respect to the computation of the rotation operator R. The
reference solution was computed in this case with the explicit scheme by Simo and
Wong with h = 2722 at time t = 10.

13.1.2. Heavy top. This is the second example referred to after Simo and
Wong [100]. The heavy symmetrical top is spinning around the fixed base point.
In this example the applied torque depends on the configuration, introducing addi-
tional source of nonlinearity. The top of mass M and axis of symmetry Eg3 rotates
in the uniform gravitational field —ges. The spatial torque reads

t:—Mgrxe3 r = IRE3 = R;3, iE{1,2,3}

where the assumed values are M = 20, g = 1, 1 = 1. As Krysl points out [126], the
heavy top model conserves the Hamiltonian

1
H:§7r-j_l7r—|—Mge3-r

where 7 = jw is the spatial angular momentum, j = RJRT” is the spatial tensor
of inertia, and w = RW is the spatial angular velocity. In this example the initial
rotation is R (0) = exp[0.3,0,0], the initial angular velocity is W (0) = [0, 0, 50]
and the spatial torque reads t (t) = 20 [~ Ra3 (¢), R13 () ,0].

Figure 13.1.5 illustrates the Hamiltonian history computed with the large time
step h = 27° (nearly 7/2 of rotation increment per step) and the history computed
with the smaller step h = 278 (10 deg rotation increment). The characteristic drift
behaviour is visible for the large step, while after the decrease of the time step
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FIGURE 13.1.6. Heavy top. Convergence of the body-frame an-
gular momentum II = JW (left), and the rotation operator R
(right). The reference solutions ITx and Rx have been computed
with LIEMID|EA| and h = 2720 at time ¢t = 10. The solutions
IT(h) and R (h) were computed for time steps h €

{275,276, ..,2715].

by the factor of eight, the drift becomes negligible for NEW1 and NEW2. NEW3
behaves stably, although the negative oscillations are clearly pronounced.

Figure 13.1.6 illustrates the convergence behaviour. The reference solution was
computed with LIEMID[EA] and h = 2720 at time ¢t = 10. LIEMID|[EA] also
clearly outperforms other schemes. All of the proposed algorithms are positioned
in between of the explicit approach by Simo and Wong and LIEMID[EA|. NEW2
and NEW3 behave alike and are more accurate in comparison with NEW1.

13.1.3. Rotating plate. In the last example the pendulum comprising a light
rectangular plate and a weightless rigid rod is considered (Figure 13.1.7). The plate
has dimensions 0.2 x 0.2 x 0.01 and the length of the rod is | = v/0.1. In the initial
configuration, the rod is fixed to the mass centre of the side wall of the plate at one
end. The other end rests at a spatial point placed at distance h = 0.3 above the
mass centre of the plate. The configuration of the plate is q = [R, X], where X is the
spatial placement of the mass centre. The initial configuration reads q (0) = [I, 0],
and the initial angular velocity is W (0) = [0,0,50]. The initial linear velocity is
zero. The mass density is p = 1 and the the uniform gravitational field is —ges,
where g = 9.81.

Figure 13.1.8 illustrates the history of the kinetic energy computed over the
time interval [0,10] with the time step h = 2710 (||¥|| < 10deg). It is seen that
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FiGure 13.1.7. Rotating plate. Rectangular plate with the initial
angular velocity W (0) is constrained by the rigid rod fixed to the
centre of the side wall. The other end of the rod rests at a spatial
point passing trough the axis collinear with W (0) and coincident
with the mass centre of the plate.
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FiGure 13.1.8. Rotating plate. Kinetic energy computed with
h = 2710 by the three proposed algorithms (left), and a closer look
at the kinetic energy computed with NEW2 (right).
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FIGURE 13.1.9. Rotating plate. The linear (left) and the angular
(right) velocities over the time interval [0, 1], computed with NEW2
at the time step h = 2710,

an interaction between the drift of the spatial angular momentum and the imposed
constraint results in the considerable loss of energy for NEW1. The momentum
conserving schemes NEW2 and NEW 3 pursue the analysis without a visible dissi-
pation.

NEW2 was utilised in order to obtain the time histories of the linear and the
angular velocities in Figure 13.1.9. Fast rotation around the vertical axis stabilises
the plate so that the mass centre oscillates around its initial position.



13.2. CONTACT SEARCH

175

10 T T T 6 T T T
fNEWL + NEW1
INEW2 — NEW2 /
1 NEW3 ¥ A 9 55 NEW3 /
A _ *
01FfF . i 5 5¢
— 001 1 8§ a5} .
= — = LK
' L * ] =3 L ¥
g oo < 4 *
=x - &
5 le-04 b e i L 35¢
= =
Yoteos b ] T 3l
Q
]

1e-06 1 @ 25}

1e-07 ¢ 1 2r —ttt—

1e-08 ) . . 15 . . .

1e-06 1e-05 1le-04 0.001 0.01 1e-06 1e-05 le-04 0.001 0.01
Time step h Time step h

Ficure 13.1.10. Rotating plate. Absolute error of the configura-
tion q = [R,X] (left), and the convergence rate (right). The ref-
erence solution g+ has been computed with NEW3 and h = 2722
at time ¢ = 1. The solution q(h) was computed for time steps
he {278,279 ., 2718}

Figure 13.1.10 illustrates the convergence. The reference solution g+ was com-
puted with NEW3 and h = 2722 at time ¢t = 1. The solution q (h) was computed
for time steps h € {278, 279 .., 2’18}. The momentum drift of NEW1 reduces its
accuracy to the first order for the considered instance of the constrained motion.
NEW2 and NEW3 maintain the second order accuracy. Clearly, NEW3 is the most
accurate scheme.

13.2. Contact search

We illustrate performance of the broad phase algorithms for the pairwise overlap
detection between the axis aligned bounding boxes. Three kinds of box test sets
are used in the evaluation. A 2 x 2 x 2 cube is filled with: a randomly generated
box set, a set of adjacently packed boxes, and a set of spherically distributed boxes.
These are illustrated in Figure 13.2.1. All boxes are of a cubical shape. Their size
is chosen, so that each box has on average 10 overlaps with other boxes in all of
the test sets.

Figures 13.2.2, 13.2.3 and 13.2.4 illustrate the runtimes' for sizes of test sets
ranging from 10* to 10°. Clearly, the plane-sweep algorithm using only the pri-
ority search tree as a dynamic rectangle structure performs very poorly (SWEEP-
PST2D). This is because the priority tree is essentially one dimensional. The hybrid
approach by Zomorodian and Edelsbrunner [216] performs extremely well in most
of the cases. It consistently outperforms the algorithms proposed in Chapter 9 for

11.7GHz CPU with 1GB of RAM

FIGURE 13.2.1. Examples of three classes of testing sets: random,
adjacent, and spherical distributions of bounding boxes.
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FIGURE 13.2.4. Sphere distribution. Without (left) and with
(right) time-coherence.

random and spherical box distributions. Without surprise, the algorithms based
on spatial hashing perform well for the uniform distribution of adjacent boxes. It
should be noted, that the simple combination of sweeping and two dimensional hash-
ing performs best among the proposed schemes (SWEEP-H2D). The second is the
sweeping combined with the dynamic rectangle structure based on one-dimensional
hashing and the priority search tree (SWEEP-H1DPST). This structure most logi-
cally uses strengths of hashing and the combinatorial filtering property of the binary
tree. It can also be noticed, that the time-coherence (linear time sorting along the
sweep dimension) has only a minor effect on the performance. This suggests that
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the constant factors in our implementation are high. A need for optimisations is
hinted.
Figures 13.2.5, 13.2.5 and 13.2.7 illustrate the runtimes for the sizes of sets
below 10%. Also here SWEEP-H2D performs best among the proposed algorithms.
Nevertheless, HYBRID remains the overall winner. In general this preliminary com-
parison suggests that more care should be put into the implementation of SWEEP-
H2D, while the other approaches can be well abandoned. Eventually, SWEEP-
H1DPST might still be of interest, when disparity of box sizes and aspects ratios
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FI1GURE 13.3.1. The cube, wall and dome assemblies, all resting on
a rigid foundation. Cube units have dimensions 0.1 x 0.1 x 0.1m,
and are subjected to gravity of (2,2,—10)m/s?>. Wall units are
of dimensions 0.2 x 0.2 x 0.1m, and are subjected to gravity of
(0,0,—10)m/s?, along with the upper bar load of (0,0, —30)kN.
The inner radius of dome is 10m, and the thickness is 0.6 m. It
deforms under the gravity of (0,0,—10)m/s?. The lower left cor-
ner of the wall is restrained by a rigid cubic obstacle. Material
properties are 15.5 GPa for Young modulus, 0.2 for Poisson ratio,
and 2200 kg/m? for the density.

is included. Further investigation is necessary before a definite conclusion can be
reached.

13.3. Newton solvers

Three examples are studied for three sizes of assemblies and a range of friction
coefficients. The two-dimensional wall example corresponds to the experimental
setup by Lourenco et al. [142]. The three-dimensional cube, and the dome examples
have been selected to picture convergence for various geometrical placements of
contact points. The focus is on the numerical properties of SCSOL, rather then on the
mechanical response of test examples. Assembly geometries, loading conditions and
material properties are given in Figure 13.3.1. Pseudo-rigid cuboids are employed
as the individual bodies, and hence a single contact point is established between
each pair of adjacent bricks.

The time stepping from Section 5.3 is employed. As a quasi-static response
is considered, inertia properties were scaled in order to impose uniform numerical
damping. For the implicit Euler scheme, a reasonable amount of damping can be
obtained for Ak > 4, where ) is a selected eigenvalue of M~'K, h is the time step,
and K is the current stiffness tangent [98]. Here h = 1 was assumed, and inertia
tensors Eg were scaled, so that A0 (M_lK) = 4 for all bodies.

Table 1 summarises numbers of bodies, contact points, and condition num-
bers of respective W operators. Assemblies of variable size preserve geometrical
features described in Figure 13.3.1. The condition numbers were obtained with
dgscon routine of the sparse factorisation package SuperLU [57], which was also
employed as the linear solver. The condition numbers are high, yet far from singu-
lar. Nevertheless, for the wall example the ill-conditioning of W significantly grows
with the structure size. This corresponds to the discussion presented in Section
7.1. Conditioning of W does not directly correlate to that of Q. In fact @ = W
only if all contact points are in the frictional stick state. In most cases Q@ # W and
Q ought to be assembled with some care. As W corresponds to the inverse of a
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TABLE 1. Numbers of bodies, contact points, and condition num-

bers of W.
Example | Bodies | Contacts | W conditioning
CUBE1 27 63 2E+7
CUBE2 125 325 SE+7
CUBE3 343 931 9E+-7
WALL1 56 147 3E+6
WALL2 162 451 4E+7
WALLS3 338 963 2E+8
DOME1 60 120 TE+5
DOME2 220 440 2E+6
DOMES3 480 960 S8E+6

TABLE 2. Parameters of SCSOL used in the performance study.

o | v 16} J € K | ¢ |L
0.9]0.1(0.034|0or 10| 1E-10 | 1000 | 10 | 6

stiffness matrix, its entries are likely to be quite small (O (10~%) for example). The
linearised constraints though, are usually of the order O (1). For this reason, to pre-
vent ill-conditioning, system rows corresponding to those constraints are scaled by
the relevant diagonal entries of W. For example a row ...010... R = 1II; is replaced
by ...0W;; 0...R = W1II;. Generally, scaling is applied to system rows defined in
lines 5, 8, and 9 of NEWT, HYB, and FIX. As a result, the condition numbers of {2 are
comparable to those of W, provided the scaling of the regularisation parameter p,,
is not excessive (routine SCALE).

The input parameters of SCSOL are summarised in Table 2. Both the monotone
(J = 0) and nonmonotone (J = 10) variants were investigated. The set of tested
friction coefficients was u € {O, %, %, 1}. For each discretisation (Table 1), one
hundred incremental runs of the time stepping were performed. In all test cases the
zero initial guess was used for R and U for the first run of SCSOL. The consecutive
runs started from the previous solution. To report averages of entities spanning
several orders of magnitude, the following procedure was applied

3

n
(13.3.1) average = exp (Z log (value;) /n)

i=1
where n is either the total number of system solutions (when reporting the condi-
tioning of ) or the total number of convergent runs (when reporting the average
final value of the merit function M). In the following, instead of referring to SCSOL
with a particular argument ALG, a direct reference to NEWT, HYB or FIX is sometimes
made. The monotone (Armijo’s type, J = 0) line search based algorithms are de-
noted by NEWT(A) and HYB(A), while the nonmonotone (Grippo’s type, J = 10)
line search based ones are denoted by NEWT (G), HYB(G).

For the frictionless problems SCSOL reduces to UNIL, regardless of the argument
ALG. Results for this case are presented in Table 3. For all examples numbers of
iterations are smaller than five. It is also seen that the system matrices are rather
well behaved. This case can be tackled very efficiently.
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crements). Note that statistics on line searches and scaling are
not applicable to FIX and therefore omitted. NEWT(A) and
HYB(A) correspond to the monotone (Armijo’s) line search, while
NEWT(G) and HYB(G) to the nonmonotone (Grippo’s) line

search.
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TABLE 3. Results for the frictionless case, = 0.

Maximal number of iterations 5
Average conditioning of €2 2E+3
Average final value of M 1E-23

Aggregate statistics for all frictional computations with u € {%, %, 1} have been
summarised in Figure 13.3.2. The reported average values correspond to the 2700
runs of SCSOL (nine examples, three friction levels, hundred increments), while the
reported average mazimal values correspond to the averages of the 27 maxima (nine
examples, three friction levels) taken over the hundred increments. As the maximal
values usually correspond to the first run of SCSOL (starting from the zero initial
guess), the average maxima give an estimate of the worst case performance.

In Figure 13.3.2 (j) it is seen, that while NEWT and FIX often failed to converge
within the prescribed 1000 iterations, HYB is the only scheme which succeeded in
all cases. It must be stated though, that while the failures of the full Newton
approach correspond to the divergence (unbounded growth of the auxiliary merit
function), those of the fixed point method correspond to the insufficient number
of converging iterations. At the same time the full Newton method is more prone
to divergence, when combined with the nonmonotone line search. This is because
the minimisation along a given direction is not always successful (6 > 0), and an
unbounded growth of the auxiliary merit function (11.2.23) is thus possible. In the
nonmonotone search case, a number of such failed minimisations can be stored and
the maximal of them used as the reference value in the line search loop, resulting
in a greater probability of divergence.

Comparison of the average iteration numbers in Figure 13.3.2 (a) shows that
the hybrid approach inherits good local convergence properties of the full Newton
scheme - the numbers of iterations are similar for both approaches (less then 5).
At the same time the fixed point method needs considerably more iterations to
converge (25 on average). In Figure 13.3.2 (b) it is seen that the average worst case
performance of HYB compares favourably with the competitors. The nonmonotone
version of the line search results in slightly smaller numbers of iterations for the
hybrid approach, while it is quite on the contrary for the full Newton scheme (cf.
comments in the previous paragraph). It should be noted, that the number of
iterations for the fixed point scheme was found to be clearly related to the problem
size (although it cannot be deduced from the presented figures).

In Figures 13.3.2 (c), (d) it can be seen that the nonmonotone line search
consistently results in a smaller average numbers of line searches, when compared
to the Armijo’s type line search.

In terms of the system conditioning, it is seen in Figure 13.3.2 (e) that the
hybrid linearisation inherits good properties of the fixed point scheme. The high
worst case averages in Figure 13.3.2 (f) correspond to the nearly singular systems
occurring towards the end of the first solver run. This issue does not represent
a significant numerical difficulty, as SuperLU is capable of tackling ill-conditioned
problems. The ill conditioning of systems produced by HYB is milder, compared to
those resulting from NEWT.

Figure 13.3.2 (g) shows that the hybrid scheme on average results in the small-
est final values of the auxiliary merit function. This is in relation with the amount
of penalty scaling, presented in Figure 13.3.2 (h), which is smaller for the hybrid
method (the penalty scaling percentage equals, for one solver run, to the percent-
age of regularisation parameters p, affected by the routine SCALE). Similarly, the
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penalty scaling is related to the average worst case system conditioning presented
in Figure 13.3.2 (f).

It is seen in Figure 13.3.2 (i), that the full Newton scheme generated roughly
ten times more negative definite systems, compared with the hybrid method (which
produced less then 0.5% of them). Using the unconstrained minimisation analogy,
one could say that the full Newton method visits the tops of the hills more frequently
then the hybrid scheme. This might to some extent explain its poor robustness.

In conclusion, the full Newton scheme (NEWT) appears to be unreliable in our
setting, although it performs pretty well, whenever convergent. The fixed point
method (FIX) performs robustly, and usually deals with well conditioned systems.
Nevertheless it does fail to converge within a thousand iterations for relatively ele-
mentary test examples. The hybrid linearisation (HYB) nearly consistently delivers
the best performance, especially when combined with the nonmonotone line search.

13.4. Some benchmarks

Several benchmarks are presented. The purpose is to validate the implementa-
tion on few simple, documented examples.

13.4.1. Pendulum.

Reference: W. Rubinowicz, W. Krolikowski, Mechanika teoretyczna (Theoretical
mechanics), Paristwowe Wydawnictwo Naukowe, Warszawa, 1998, pp. 91-99.
Summary: A mathematical pendulum composed of a mass point and a weight-
less rod swings with a large amplitude. Pendulum period, energy conservation,
constraint satisfaction and convergence are examined.
Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

The period of an oscillatory mathematical pendulum reads

! 1\? 1-3 1-3-5
13.4.1 = — = 2 — ") k? 24
w1 () e (1) (52

where

emaz
(13.4.2) k = sin ( 5 >

and [ is the length of the pendulum, g3 is the vertical component of the gravity
acceleration and 6,4, is the maximal tilt angle of the pendulum. Let us assume
the initial velocity of the pendulum to be zero. Thus 0,4, = 0 (0). Taking the rest
configuration position of the mass point x = [0,0,0] and considering the swing in
the = — z plane, the initial position of the pendulum reads

Usin (Opmaz)
(13.4.3) x(0) = 0
1(1—cos(0maz))
Without the initial kinetic energy (Ej (0) = 0), the energy conservation requires
that

(13.4.4) By (t) + E, (t) = E, (0)
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FiGURE 13.4.1. Energy balance over one period of the pendulum
(red line corresponds to the total energy).

where

(13.4.5) E, (0) = mgss (0)

and m is the scalar mass.

Input parameters

Length (m) =1
Mass (kg) m=1
Initial angle 6 (0) = 0,42 (rad) Omaz = /2
Gravity acceleration (m/s2) g = [O, 0, —7T2}

The gravity acceleration gs has been chosen so that for 6,,,, = 0deg there holds
T = 2s.

Results

The table below summarises the results for the time step A = 0.001. It is seen
that the solution is accurate and stable, regardless of the duration of the numerical
simulation.

Target | Solfec | Ratio

Pendulum period - 1 swing (s) 2.36068 | 2.63000 | 0.9997
Pendulum length - 1 swing (m) 1.0 1.0 1.0
Total energy - 1 swing (J) 2 9.86960 | 1.0
Pendulum period - 1000 swings (s) | 2360.68 | 2360.68 1.0
Pendulum length - 1000 swings (m) 1.0 1.0 1.0
Total energy - 1000 swings (J) 2 9.86960 | 1.0

Figure 13.4.1 illustrates the energy balance over one period of the pendulum.
The potential and kinetic energies sum up to 72. Figure 13.4.2 shows oscillatory
but stable behaviour of the equality constraint (the length of the rigid rod). Figure
13.4.3 confirms the second order convergence in the presence of equality constraints
(the reference solution g has been computed at time ¢t = 1.0 with h = 2720).
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FIGURE 13.4.2. Length of the pendulum over the time of four
periods, computed for several time steps h € {0.001,0.005,0.025}.
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F1GURE 13.4.3. The convergence rate ~ 4 confirms the second
order accuracy in the presence of equality constraints.

13.4.2. Sphere impacting a plate.

Reference: The solution is self-evident.
Summary: A sphere impacts a plate. Newton impact law is validated for several
values of the restitution parameter 7 and a single-point contact.

Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

Sphere of radius r and with the initial velocity v, impacts the horizontal fric-
tionless surface (Figure 13.4.4). Single contact point is established. The pre- and
post-impact velocities are related through the Newton’s law

13.4.6 v = —nuo
( ) B nv,

FIGURE 13.4.4. Sphere in the initial configuration.
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thus for n = 1 the total energy is conserved while for n < 1 the energy is dissipated.
In the initial configuration the sphere is about to hit the plate, so that v, (0) = v,
for the first impact.

Input parameters

Sphere radius (m) r=0.1

Sphere mass (kg) m=1

Initial velocity v (0) =[0,0, —4]
Gravity acceleration (m/s?) g =[0,0,—10]
Velocity restitution n € {0,0.25,0.5,0.75,1}
Coulomb friction coefficient nw=20

Results

Figure 13.4.5 illustrates the energy balance over the time interval [0,2.4] for
the ideally elastic impact, n = 1. It is seen that the total energy is conserved, while
three consecutive impacts take place. In Figure 13.4.6 the velocity component v,
is depicted for five restitution coefficients ranging from the ideally elastic to the
ideally plastic one. The plots start from v} following the initial impact and thus
the values 4,3,2,1,0 correspond to the restitution coefficients 1,0.75,0.5,0.25, 0.
For the consecutive impacts the post-impact velocities are appropriately decreased
and eventually vanish, when the time between the two consecutive impacts becomes
of the order of the time step.

Energy
IS

0 0.5 1 15 2 25
Time

F1GURE 13.4.5. Energy balance for the ideally elastic impact n =
1, computed with the time step A = 0.001.

n=100 —
n=075
: =050 e
n=025
“F n=0.00
s 1f
=
g o \
°
S at
26
al
4 ‘ ‘ ‘
0 05 . s : )

Time t

FIGURE 13.4.6. The velocity component v, plots for restitution
coefficients n € {0,0.25,0.5,0.75, 1}, computed with the time step
h = 0.001.
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13.4.3. Cube impacting a plate.

Reference: The solution is self-evident.
Summary: A cube impacts a plate. Newton impact law is validated for several
values of the restitution parameter  and a multi-point contact.

Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

dimensions a x b X h replacing the sphere (Figure 13.4.7). Again, in the initial con-
figuration the cube is about to hit the plate, so that v, (0) = v, for the first impact.
Due to the discretisation of the geometry four contact points are established.

This example mimics the previous one (Example 13.4.2), with the cube of

Input parameters

Cube dimensions (m) axbxh=0.1x0.1x0.1
Cube density (kg/m?) p =125
Initial velocity v (0) =[0,0, —4]
Gravity acceleration (m/s?) g =1[0,0,—10]
Velocity restitution n € {0,0.25,0.5,0.75,1}
Coulomb friction coefficient nw=20

Results

The mass density has been selected such that the cube example should behave
exactly as Example 13.4.2. It is seen that Figures 13.4.5 and 13.4.8 are identical.
The same can be said about Figures 13.4.6 and 13.4.9. All the comments from
Example 13.4.2 apply here.

FI1GURE 13.4.7. Cube in the initial configuration.
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F1GURE 13.4.8. Energy balance for the ideally elastic impact n =
1, computed with the time step A = 0.001.
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FIGURE 13.4.9. The velocity component v, plots for restitution
coefficients n € {0,0.25,0.5,0.75, 1}, computed with the time step
h =0.001.

13.4.4. Double pendulum impacting a rigid wall.

Reference: Florian A. Potra, Mihai Anitescu, Bogdan Gavrea, Jeff Trinkle. A
linearly implicit trapezoidal method for integrating stiff multibody dynamics with
contact, joints, and friction. International Journal for Numerical Methods in Engi-
neering, vol. 66, pp. 1079-1124, 2006.

Summary: A double pendulum composed of two mass points connected by weight-
less rods impacts a rigid wall. Position and energy plots are compared against those
available in the source paper.

Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

The reference [70] uses the Poisson impact model, while Solfec uses the Newton
model. Both models are equivalent in case of frictionless impact if all restitution
coefficients are identical [42]. This is the case in the example, thus the comparison
is feasible. As Solfec does not handle contacts between objects with zero volume,
mass points were approximated by spheres and the distance between the wall and
the rest configuration of the pendulum was shifted by the sphere radius.

FIGURE 13.4.10. Double pendulum in the initial configuration.
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FiGure 13.4.11. Comparison the total energy plots versus time.
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FIGURE 13.4.12. Comparison of the z-coordinate plots (z; (t)
stands for the i-th mass point z-coordinate).
Input parameters
Mass (kg) mp =mg =1
Length (m) lh=1lb=1
Point x¢ (m) xo = [0,0,2]

Point x; (m) x1 = [sin (5),0,2 — cos (3)]

Point x2 (m) X2 = [sin (%) +sin (£),0,2 —cos (5) — cos (Z)]
Initial velocities (m/s) all zero

Gravity acceleration (m/s?) g =10,0,-9.81]

Velocity restitution e=0.1

Coulomb friction coefficient nw=20

Results

Simulation over the time interval [0,2.5] was performed with the time step
h = 0.001. As the reference [70] does not specify numerical values of the results,
only a visual comparison of the total energy and the z-coordinate histories of the

mass points is available.

exactly overlap when processed in a graphical software.

The figures are juxtaposed for clarity, although they
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13.4.5. Block sliding on a frictional table.

Reference: Florian A. Potra, Mihai Anitescu, Bogdan Gavrea, Jeff Trinkle. A
linearly implicit trapezoidal method for integrating stiff multibody dynamics with
contact, joints, and friction. International Journal for Numerical Methods in Engi-
neering, vol. 66, pp. 1079-1124, 2006.

Summary: A block subjected to a sinusoidal force slips over a frictional surface.
Position and velocity plots are compared against those available in the source paper.
Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

The block has been discretised into four hexahedral elements, thus four contact
points result from the element to element contact model implemented in Solfec. An
equivalent three-dimensional model is used in Solfec as the reference [70] uses a
two-dimensional set-up. The external force acting on the mass centre of the cube

reads
(13.4.7) f(t) =[8cos(t),0,0]

Input parameters

Block density (kg/m?) p=111.1(1)
Block dimensions (m) axbxh=0.3x0.3x0.1
Initial velocities (m/s) all zero
Gravity acceleration (m/s?) g =1[0,0,—-9.81]
Velocity restitution e=0
Coulomb friction coefficient n=038

Results

Simulation over the time interval [0,10] was performed with the time step
h = 0.001. As the reference [70] does not specify numerical values of the results,
only a visual comparison of the v, velocity component and the x-coordinate histories
of the mass centre is available. The figures are juxtaposed for clarity, although they
exactly overlap when processed in a graphical software.

F1GURE 13.4.13. Block sliding on top of a frictional surface - ini-
tial configuration with four contact points.
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FIGURE 13.4.14. Comparison of the v, velocity component plots
of the block mass centre.
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Ficure 13.4.15. Comparison of the z-coordinate plots of the
block mass centre.

13.4.6. Newton’s cradle.

Reference: F. Herrmann, P. Schmaélzle. A simple explanation of a well-known
collision experiment, Am. J. Phys. 49, 761 (1981).

Summary: Newton’s cradle is modelled by five interacting pendulums. Ideally
elastic impact (n = 1) is assumed.
Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

As shown in the reference, it is not possible to explain the behaviour of New-
ton’s cradle solely by the principles of energy and momentum conservation. If the
number of balls is larger then two, it is the dispersion-free propagation of an elastic
wave which results in the characteristic behaviour of the cradle. Thus, in general,
Newton’s cradle is not compatible with rigid kinematics. This implies that con-
sidering all impacts at the same time results in a multiplicity of solutions. It is
not guaranteed that a physically plausible solution will be selected by the numer-
ical scheme. A simple workaround is to separate the balls by a small distance,
and therefore algorithmically enforce the wave propagation effect. This approach
is undertaken here.

Input parameters
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FIGURE 13.4.16. Newton’s cradle in the initial configuration.

Mass density (kg/m®) p = 1000
Ball radius (m) r =0.05
Pendulum length (m) =05
Pendulum separation (m) u=10"10
Initial angle (rad) Omaz = /8
Initial velocities (m/s) all zero
Gravity acceleration (m/s?) | g = (0,0, —9.81]
Velocity restitution e=1
Coulomb friction coefficient nw=20
Results

Conservation of energy requires that

4
Eior (t) = Epot (0) = p - §7TT3 lgs] - 1 (1 — cos (Omasz)) = 0.195497

Upon full energy restitution the cradle behaves essentially as a single pendulum.
Thus formula (13.4.1) can be used in order to calculate the period of the cradle.
Table below summarises (among others) numerically computed periods for succes-
sively smaller time steps. It is evident that the convergence rate is linear. This
is an algorithmic feature of the scheme implemented in Solfec in the presence of
unilateral constraints (impacts, stick-slip transitions). It is also seen that the to-
tal energy is conserved exactly - regardless of the time step (note that only linear
motion is present).

Target Solfec Ratio

Cradle period T, h = 0.01 (s) 1.432297 | 1.500000 | 1.05
Cradle period T, h = 0.001 (s) 1.432297 | 1.438000 | 1.004
Cradle period T, h = 0.0001 (s) 1.432297 | 1.433000 | 1.0005

Total energy at t = 107, h =0.01 (J) | 0.195497 | 0.195497 1.0
Total energy at t = 107, h = 0.001 (J) | 0.195497 | 0.195497 1.0
Total energy at ¢t = 10T, h = 0.0001 (J) | 0.195497 | 0.195497 1.0
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FIGURE 13.4.17. Energy balance over two periods of the cradle.

FIGURE 13.4.18. Sixteen frames of the simulation over the com-
plete period. The sequence proceeds from left to right, top to
bottom.

13.4.7. Masonry arch.

Reference: Gilbert, M. and Casapulla, C. and Ahmed, H. M., Limit analysis
of masonry block structures with non-associative frictional joints using linear pro-
gramming, Computers and Structures, vol. 84, pp. 873-887, 2006.

Summary: A semicircular arch is subjected to the uniform gravitational field.
The dynamic stability of the arch is investigated for varying ratios of the thickness
to centreline radius h/r. The results are compared against the available findings
based on the limit-state analysis.
Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

Gilbert et al. [74] present a numerical solution to the classical problem of the
stability of a semicircular arch under gravity load. The analysis provided in [74]
spans friction coefficients from the interval [0.2, 0.8] and identifies three geometrical
failure modes (Figure 13.4.22). The classical analysis provided by Heyman [92] as-
sumes no frictional slip, and therefore covers only one case of mechanism formation
(mode T - typical for large friction). Several factors need to be taken into account
when considering reproduction of the results presented in Figure 13.4.22:
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FIGURE 13.4.19. The three-dimensional arch model in Solfec.
Each of the 27 blocks is composed of 6 elements: two along the
width w, and three along the thickness h. Thus six contact points
are established initially between a pair of blocks.

(1) A linear programming based limit-state formulation is employed in [74],
whereas the dynamic contact algorithm is used in Solfec.

(2) The analysis provided in [74] is two-dimensional, whereas Solfec deals
with a three-dimensional model.

(3) A node to face contact model is employed in [74], whereas the face to
face (or more generally element to element) contact model is employed in

Solfec.

Due to the modelling differences (inertial effects, contact resolution) it is reasonable
to accept a margin of discrepancy between the results obtained by both methods.
The dynamic stability analysis will be based on the observation of the kinetic energy
histories, calculated for arches with thicknesses varying around the documented in
[74] stability limits. Figure 13.4.19 summarises the geometry and discretisation
adopted in the Solfec model. In order to geometrically capture the hinging effect
from the first moments of simulation, the subdivision along the block thickness
comprises two narrow elements at the extrados and intrados of the arch.

Input parameters

Under the assumptions discussed by Heyman [92], formation of a failure mech-
anism is of purely geometrical nature. Therefore the material parameters can be
chosen arbitrary (none have been reported in [74]). The table below summarises
the assumed parameters.

Mass density (kg/m®) p=1
Centreline radius (m) r =10
Arch width (m) w=25
Number of blocks {27,15}
Initial velocities (m/s) all zero
Gravity acceleration (m/s?) | g =[0,0,—9.81]
Velocity restitution n=20
Time step 0.001

Results
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The critical thickness to radius ratios h/r, computed for the expected mode-I
and mode-II failures have been summarised in the table below. The number of
blocks was 27, similarly like in [74]. Taking the mentioned modelling differences, it
can be concluded that the results obtained with Solfec remain within an acceptable
margin of accuracy.

Target | Solfec | Ratio
Critical ratio h/r, p. = 0.4 | 0.1070 | 0.1082 | 1.011
Critical ratio h/r, p = 0.311 | 0.1955 | 0.1965 | 1.005

Figures 13.4.20 and 13.4.21 illustrate the kinetic energy histories corresponding
to the values reported in the table. The initial growth of the energy results from
the fact, the contact forces are all zero at ¢ = 0. Hence, the structure undergoes a
dynamic process, purposely started in the vicinity of a steady state solution. The
slight overestimation of the critical thickness results in part from the inertial effects
related to the dynamic process. Also, as the element to element contact model is
used, the locations of contact forces are shifted away by a small distance from the
external surfaces of the arch. This decreases the effective thickness, and has an
additional influence on the overestimation of the critical ratio.
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F1GURE 13.4.20. Kinetic energy histories for p = 0.4 and four
different ratios h/r.
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F1GURE 13.4.21. Kinetic energy histories for ¢ = 0.311 and four
different ratios h/r.
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Figure 13.4.22 illustrates the results computed for an arch comprising 15 blocks.
A friction-cohesion map of critical thickness values h (u, ¢) was obtained on a 10 x 10
grid of p X ¢, that is frictionxcohesion. It is in the first place clear, that the three
failure modes reported in Gilbert et al. [74] have been well reproduced for the zero
cohesion case. The influence of cohesion results in a decrease of the critical arch
thickness.
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FIGURE 13.4.22. Friction-cohesion map of the critical arch thick-
ness h and the three characteristic failure modes for the zero co-
hesion case.

13.4.8. Box-kite push until lockup.

Reference: Reports C6508/TR /0006 and 5014549/06/34/0 provided by Atkins.
Summary: Two layers of flat, nonconvex, acrylic bricks are fitted into a 3 x 3
pattern. The middle bricks are cracked and oriented at various angles. Shear
and separation loads are applied to the top brick halves. The relative shear and
separation displacements at lockup are reported.
Kinematics/Analysis/Solver: Rigid/Dynamic/Gauss-Seidel

Acrylic bricks were assembled into a 3 x 3 two-layer pattern embraced by a
wooden frame (Figure 13.4.23). The middle two bricks were cracked independently
at various angles (Figure 13.4.24). A hand load was applied to the two top brick
halves and the maximal lockup displacements were reported. A model of the box-
kite prepared in Solfec was used to cross-examine an FEM model used by Atkins.
The mechanical model comprised:

e ideally plastic impacts (in order to approximate quasi-static conditions of
the experiment)
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FiGURE 13.4.23. The box-kite assembly of bricks as modelled in Solfec.

e boundary conditions induced solely by contact (no explicit restrictions on
displacements and rotations)

e shear and separation loads applied directly to the mass centres of the two
top brick halves (no load-induced rotation)

The difficulty in reproducing the experimental results was twofold:

(1) The force was manually applied during the experiment, an exact manner
of which was unknown.

(2) The way in which the shear and separation displacements were measured
was also unknown.

The first difficulty was resolved by applying the force to the mass centres of the
two top brick halves. This is equivalent to any force system whose resultant torque
is zero and hence inducing only a linear motion. Any rotations happen solely
due to the contact interactions. The second difficulty has been approached by
measuring the relative displacement for a variety of control points. As illustrated
in Figure 13.4.25, the strategy is to pick two arbitrary points A and B and allow
them be convected by the motion of the respective top brick halves. The relative
displacement is measured along the fixed directions of the action of the applied
forces. Only one set of results, corresponding to the selection of mass centres as
the control points is summarised further.
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FIGURE 13.4.24. Example of cracked middle bricks from the top
and bottom layers.
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FiGURE 13.4.25. The two top brick halves and an exemplary shear
displacement measurement.

Input parameters

Mass density (kg/m?) p € {10,1150}
Initial velocities (m/s) all zero
Gravity acceleration (m/s?) g =1[0,0,—10]
Velocity restitution n=20

Time step h =0.001
Friction [ €{0,0.3,0.5,0.8)

The smaller mass density p = 10 is used in frictionless calculations (this irrel-
evant from the results standpoint, but it speeds up solution for contact reactions).
When the effect of friction is investigated, the density p = 1150 typical for the
acrylic glass is assumed (we wish those results to be easier to imagine).

Results

Figure 13.4.26 summarises the initial set of contacts. There are no horizontal
normals in the figure, because all of the bricks are separated by a small clearance. In
the experiment, two clearance sizes were considered. Without getting into details,
these will be further called the large and the small clearance. Various orienta-
tions of crack angles correspond to different test cases, specifically numbered in the
referenced reports. As there would be not much gain from specifying the angles,
without giving other detailed information, we do not attempt to do that. It is
enough to say that the numbering convention is of the kind 31N or 317, where the
N and T letters correspond to the separation and shear tests. The current example
should then be regarded only as a qualitative demonstration of the computational
framework.

Figures 13.4.27 and 13.4.28 compare the experimental, FEM (Atkins) and Solfec
results. Both, in Solfec and FEM computations zero friction was assumed. Two
largest discrepancies happen for cases 31 and 44. Case 31 undergoes a complete
separation. Case 44 opens too wide in shear. Similarly, for the small clearance,
case 48 opens too wide in separation, while case 61 opens too wide in shear. In the
remaining cases we are somewhat closer to the experiment, when compared with
FEM (small clearance, Figure 13.4.28).
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FiGURE 13.4.27. Large clearance. Experiment, FEM and Solfec.
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In order to verify the role of friction, the case 31N has been given a closer
look. The assumed material parameters were p = 1150 for the mass density and
€ {0.0,0.3,0.5,0.8} for friction. Case 31 separates fully in the frictionless case,
and the purpose here is to investigate whether frictional effects can affect this result
(which might have happened during the experiment). The load of value 150N is
ramped over the time interval [0, 1, 2] (Figure 13.4.29). Separation is large, although
the effect of friction is clear. The increased load of 250N was again applied the
time interval [0,1,2]. This corresponds to lifting up 50kg, although here the left
and the right hand apply the load in opposite directions. Figure 13.4.30 shows that
the separation is now much closer to the frictionless case. Nevertheless, the effect
of friction is still visible.
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F1GURE 13.4.29. Case 31N computed with variable friction coef-
ficient and ramped load of 150N ramped over [0, 1, 2] seconds.
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FiGURE 13.4.30. Case 31N computed with variable friction coef-
ficient and ramped load of 250N ramped over [0, 1, 2] seconds.
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13.4.9. Lourenco’s wall.

Reference: Lourenco, P. B. and Oliveira, D. V. and Roca, P. and Orduna, A.,
Dry joint stone masonry walls subjected to in-plane combined loading, Journal of
Structural Engineering, vol. 131, pp. 1665-1673, 2005.

Summary: A dry masonry wall undergoes a combined loading. After an initial
phase of vertical loading, a horizontal loading is applied and the load-displacement
path is recorded.

Kinematics/Analysis/Solver: Pseudo-Rigid/Quasi-Static/Hybrid-Newton

The quasi-static time stepping is verified against the experimental data by
Lourenco et al. [142]. A series of dry joint stone planar masonry wall tests were
performed under combined loading. The scheme of the experimental setup is pre-
sented in Figure 13.4.31. The wall is first loaded with the vertical force, followed by
a displacement controlled horizontal loading. Plots of the horizontal displacement
versus the horizontal force were obtained under constant vertical loading of 30kN.
In experiments, a high strength mortar was used on the upper and lower layers of
stones in order to correct roughness of contact surfaces. Due to the existence of the
rigid obstacle in the lower left corner, no cohesion at the lower layer was assumed in
the numerical model. At the upper layer, a small value of cohesion of ¢ = 0.3MPa
was assumed.

Two cases of the load control (5N /s and 1N/s) and two cases of the displacement
control were computed (0.1mm/s and 0.02mm/s). In case of the load control the
reported horizontal force is the sum of frictional contact forces acting on the lower
surface of the concrete slab, while the displacement is measured at the centre point
of the surface. The displacement control was obtained by placing a dummy contact
point where the horizontal force should be applied. At this point a prescribed
velocity was applied and the resulting contact force and displacement were reported.
The following scaling of the control point velocity was used s(t) = le—5t/(1+1e—5t)
in order to obtain smooth transition from the initial state. Thus as a result, the
control velocity was growing with time according to the formula vpnorizontal (t) =
v;$ (t), where v; € {0.1mm/s, 0.02mm/s}. This transition proved to be necessary
in order to avoid abrupt changes of solution at the initial stage of displacement
loading.

Input parameters

Venical
Load

Honzontal
Reinforced Concrete Besm <:I Load

T —
|
L

100 +—+— 100
[
W

\

N
3
2

T
I

77077 77 0777 777
Reaction Slab

_ e ——

FIGURE 13.4.31. Wall geometry and loading (Lourenco et al. [142]).
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Young’s modulus (GPa) E =155
Poisson’s ratio v=20.2
Coulomb friction u=0.62
Cohesion (M Pa) c=0.3
Time step (s) h=1
Mass scaling Amazh = 4
Dynamic relaxation termination ratio r=20.1
Dynamic relaxation iterations bound K =100
Load control velocities (N/s) {5,1}
Displacement control velocities (mm/s) | {0.1,0.02}
Vertical load (kN) 30
Maximum stepwise displacement (mm) | 0lpaz =1

Results

Firgure 13.4.32 shows the maxium compressive components of Cauchy stress for
the horizontal displacement of 15mm. At this stage a damage mechanism was fully
formed in the experimental setup. It can be seen that numerical simulations are
capable of reproducing the characteristic shear and rocking failure, for which the
lower triangular part of the wall is unloading (subjected only to the gravitational
loading). Sensitivity of the results with respect to the control mechanism is visi-
ble, as the range of compressive stresses differs for the force and the displacement
controlled cases.

Poor performance of the pseudo-rigid bodies in the elastic part of the displa-
cement-force graphs (Figures 13.4.33, 13.4.34) is no surprise. Assumption of uni-
form deformations results in a very stiff behaviour, and this cannot be helped
without a higher order kinematics. The nonlinear part of graphs displays clearly a
rate-dependence of the numerical model. While this is in some accordance with the
physical reality and numerically corresponds to the inertial terms being involved
in the transfer of contact forces, no rate-dependent components exist in the under-
lying formulation. For the displacement control case this can be explained by the

t=17272s -83le01 [l M -1.13e-02 COMP [MPa] t=8226s 820e-01 [l J -9.01e-03 COMP [MPa]

FiGURE 13.4.32. Maximum compressive Cauchy stress for hori-
zontal displacement equal 15mm. On the left the force control was
applied at a rate 1N/s. On the right displacement control was
applied at a rate 0.02mm/s. Bricks below the threshold of 1% of
the maximum compressive stress value are not coloured.
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25 T T

1N/s
5NI/s
experiment 1
experiment 2

Horizontal force [kN]

0 i 1 1 1 1
0 3 6 9 12 15
Horizontal displacement [mm]

F1aure 13.4.33. Force controlled horizontal displacement versus
horizontal force load paths.

Horizontal force [kN]

0 L L L L
0 3 6 9 12 15
Horizontal displacement [mm]

FI1GURE 13.4.34. Displacement controlled horizontal displacement
versus horizontal force load paths.

fact, that assuming a specific velocity at a control point enforces a specific distance
which the point travels across the time step. With a fixed time step, a large enforced
displacement results in a large value of the control reaction, which instantaneously
propagates through the structure, rendering its answer stiffer. In the case of the
load control a larger stepwise increment of the horizontal force results in higher
velocity, which propagates instantaneously with the same effect. It is the question
for a further research, whether and how this kind of effect can be excluded in the
context of a non-regularised quasi-static multi-body formulation.



CHAPTER 14

Conclusions

There is a number of issues which need to be addressed, in order to complete
the presented framework:

(1)

Energetic inconsistency, pointed out in Section 10.5, needs to be resolved.
Only the ideally plastic impact model can be applied with some confidence,
whenever such simplification is acceptable. This was the case in Section
13.4.8. Most conveniently, for deformable kinematics, one can use the
average velocity U = £ (U* + U") in the formulation of frictional contact
constraints. For rigid bodies however, a more versatile solution is needed.
Perhaps, it will be necessary to use a two-phase approach, combined with
Poisson’s impact model, as it was done in [8, 70].

In the context of rigid kinematics, a rigorous treatment of multiple impacts
has to be worked out. The lack of a rational incorporation of the shock
propagation effects represents a serious drawback. This is still an active
research topic. Recent development by Liu et al. [140] deals with the
frictionless case and seems to be a good starting point in this respect.
The hybrid Newton technique from Section 11.2 needs to be extended in
order to cope with singular problems. Only then it can become useful
in the context of rigid kinematics. Apart from the rigid case, of equal
importance is an inclusion of the finite element discretised kinematics. It
remains a matter of future research to investigate whether the proposed
hybrid linearisation performs for these classical approaches as well as it
does in the pseudo-rigid setting.

Convergence of the complete time-stepping remains to be shown. Quite
likely, on the way towards such a proof, some changes to the overall design
will be necessary. However, this should not hinder the practical utility of
the numerical tool already at hand.

Theoretical estimates of complexity of the dynamic rectangle structure
from Section 9.3.3.3 need to be experimentally verified. Also in the con-
text of contact detection, implementation of the fast intersection Algo-
rithm 9.4.3 needs to be completed and compared against the simpler ap-
proach from Algorithm 9.4.1. For the moment, only Algorithm 9.4.1 was
employed in all of the presented examples involving contact.

On the presentation side, it would be useful to draw a link between the
equality form of contact and friction constraints and the augmented La-
grangian method by Hestenes, Powell and Rockafellar [91, 172, 181].
This would shed additional light on the origins of the predictor d =R—pU.

The pseudo-rigid continuum model by Cohen and Muncaster [46] was exempli-
fied only in the context of quasi-statics. Integration of an unconstrained dynamic
motion merely confirms conservation properties of the time stepping scheme (5.1.1-
5.1.3). While the single impact behaviour was already studied in [193, 113, 112],
it might be interesting to investigate application of the pseudo-rigid model as a
simple workaround to the lack of a practical multiple-impact resolution for rigid

203
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kinematics. Some early dynamic examples were given in [121]. The practical limi-
tation is in the necessity of using an extremely small time step, for realistic values
of the material parameters. This, combined with the need for the solution of an
implicit nonlinear problem at every time step, renders this approach rather unfea-
sible for large and dense multi-body problems. On the other hand, only for such
problems the simplified deformability can be eventually accepted. An interesting
improvement here would be to time-homogenise contact variables, and hence solve
the frictional contact problem only every n steps. In the quasi-static context, the
pseudo-rigid model proved useful and allowed to test contact solvers on the pro-
totype of a finite-kinematics, multi-body framework (cf. Section 13.3). From this
point of view, the model can be regarded as a good stress post-processor, although
its elastic response is too stiff (cf. Section 13.4.9). In practise, it might be more con-
venient to use few finite elements instead of a single pseudo-rigid body - especially
in the situations, where large rotations are not essential.

The hybrid Newton solver from Section 11.2 shows promise in dealing with the
frictional contact problem. Apart from the already mentioned refinement, facili-
tating application to over-determined systems, one can also think about a parallel
implementation of this approach. A direct linear solver could be replaced by an iter-
ative one, preconditioned with positive-definite tangents resulting from the Tresca
formulation. An implementation of the framework presented here has already been
partly parallelised [122]. Nevertheless, this effort stumbled on the difficulty with
an effective, distributed memory implementation of the Gauss-Seidel solver. This
motivated developments of Section 11.2.

As a more accomplished fact, one should mention the time stepping schemes
from Section 5.2.2. NEW2 and NEW3 do have some good properties. For several
reasons NEW2 appears to be well suited for the short to moderate term analysis of
constrained systems. As it was shown, the exact conservation of the angular mo-
mentum may occur necessary in order to maintain accuracy (Example 13.1.3). At
the same time, the amount of the energy loss is often acceptable for the incremen-
tal rotations of magnitudes dictated by an accurate integration of the constrained
motion. Additionally, the dissipative behaviour of NEW2 seems advantageous in
the context of an explicit multi-body contact analysis, where the episodes of exces-
sively high contact reactions should not render the analysis unstable. For longer
term analysis or for the cases where a higher accuracy is required, NEW3 comes
quite handy, with only a moderate increase of the computational cost and still
offering all of the advantages of NEW2.
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