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Abstract 

Canine degenerative myelopathy (DM) is a late onset neurodegenerative disease that 

primarily affects German Shepherd dog (GSD), though a number of other specific breeds 

are also affected. The underlying cause of the disorder remains elusive, though recent 

advances have implicated a mutation of superoxide dismutase 1 (Sod1) in the aetiology, 

also implying DM is a potential orthologue of human amyotrophic lateral sclerosis. The 

identification of the Sod1 mutation raise the index of suspicion for an individual animal, 

however it is not specifically diagnostic as a proportion of dogs homozygous for the Sod1 

mutation do not develop DM. Therefore, there is a clinical need for the development of 

specific biomarker(s) for DM to support genetic test. 

The aim of this study was to establish potential biomarkers for DM by exploring canine 

cerebrospinal fluid (CSF). A dual strategy was adopted; 1) Evaluation of potential ALS 

biomarkers in DM CSF, 2) Identification of novel biomarker(s) in DM CSF. The cases 

selected in this project had a presumptive diagnosis of DM and were homozygous for Sod1 

mutation. Preliminary characterisation by Western blot and mass spectrometry identified 

four protein candidates in DM CSF, comprised of cystatin C, transthyretin (dimeric and 

monomeric TTR), haptoglobin and clusterin. Since the validity of these putative 

biomarkers may be influenced by pre-analytical variables that may arise from the clinical 

environment, we therefore assessed the impact of three potential sample handling practices 

on these four proteins. The results from these experiments demonstrate that dimeric TTR 

and clusterin were affected by sample handling conditions. Therefore, an appropriate 

protocol for CSF sample handling was established. 

Western blot analyses indicated that clusterin is the most viable biomarker candidate for 

DM. Clusterin was significantly elevated in DM CSF when compared to a range of 

neurological conditions. The second potential candidate for DM biomarker is TTR, which 

is potentially reduced, an observation similar to those found in ALS CSF. The relationship 

of these proteins in the pathogenic mechanisms that underpin DM is unclear. However, 

based on observations on ALS, it is reasonable to speculate that their alterations are 

associated with a toxic gain of function of the mutant SOD1 protein. The successful 

characterisation of clusterin and TTR in DM CSF may therefore represent components of a 

panel of emerging biomarkers that may combine to distinguish DM in the clinic and 

provide further insights into the disease mechanisms.  
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RANTES regulated on activation, normal T cell expressed and secreted 

RFLP restriction fragment length polymorphism 

RNA ribonucleic acid 

ROS reactive oxygen species 

rpm revolutions per minute 

RT reverse-transcriptase/reverse transcription 

sALS sporadic amyotrophic lateral sclerosis 

SCD sub-acute combined degeneration 

SDO spinal dural ossification 

SDS sodium-dodecyl-sulphate 

SDS-PAGE SDS polyacrylamide gel electrophoresis 

SELDI surface-enhanced laser desorption/ionisation 

SETX senataxin gene 

SOD1 superoxide dismutase 1 gene (human) 

SOD1  superoxide dismutase 1  

Sod1  superoxide dismutase 1 gene (animal) 

SPG11 spastic paraplegia 11 gene 

T18S substitution of amino acid theorine to serine at 18th codon  

TAE Tris-acetate-EDTA 

TBE Tris-borate-EDTA 

TBS Tris-buffered saline 

TDP-43/TARDBP TAR-DNA binding protein 

TIMP-1 TIMP metallopeptidose inhibitor-1 

TIMP-2 TIMP metallopeptidose inhibitor-2 

TOF time-of-flight 

t-tau total tau 
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T-TBS Tris-buffered saline with Tween 20 

TTR transthyretin 

U unit  

UGSAH University of Glasgow Small Animal Hospital 

UK United Kingdom 

UMN upper motor neuron 

UPR unfolded protein response 

USA United States of America 

V voltage 

VAPB vesicle-associated membrane protein gene 

VDAC1 voltage-dependent anion channel 1 protein 

VDMB Veterinary Medical DataBases 

VDS Veterinary Diagnostic Services 

VGF neurosecretory protein VGF 

WT wild type 

xg centrifugal force in gravity 

α-TTP α-tocopherol transfer protein  

ε-EACA epsilon amino-caproic acid 
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1.1 Nosology of Canine Degenerative Myelopathy (DM)  

1.1.1 Establishment of Disease Characteristics 

The occurrence of chronic progressive ataxia in aging large breed dogs has been 

recognised for many years. The initial description of a cluster of clinical findings, 

consistent with what is now thought of as degenerative myelopathy (DM), was first 

described by Averill in 1973. DM was characterised as a syndrome of progressive pelvic 

limb ataxia with asymmetrical weakness, commonly affecting older German shepherd dogs 

(GSD) (Averill, 1973). DM had been formerly attributed to the effects of ossifying 

pachymeningitis or spinal dural ossification (SDO), although the original reference to this 

speculation is not found. SDO has been characterised by the presence of elliptical osseous 

plaques on the internal surface of the dura mater and is reported most frequently in large 

breed dogs that are middle aged or older (Hoerlein, 1978). These osseous dural plaques can 

occur at any location in the vertebral column but are most commonly found along the 

ventral surface of dura mater with higher prevalence at the cervical and lumbar segments 

of the spinal cord (Hoerlein, 1978). The plaques may coalesce to develop a hard tube, 

which had been speculated to relate with the abnormal gait and pelvic limb weakness seen 

in aging large breed dogs (Morgan, 1969). In one study, the occurrence of SDO was 

reported in 74 out of 114 dogs (65%) over two years of age, however, of the cases affected 

by SDO only 23% had chronic signs of abnormal gait and pelvic limb weakness. No 

positive relationship was established between SDO and the pelvic limb signs. The 

distribution of the lesion in dogs examined was greater from third cervical to first thoracic 

(C3-T1) and from first lumbar to sixth lumbar (L1-L6) spinal cord. Such lesions could 

potentially compress nerve roots, and most likely affect spinal nerves forming the brachial 

and lumbosacral plexuses rather than thoracolumbar spinal cord. This finding was 

supported by a pathology study of seven GSD, which concluded that the occurrence of 

SDO in dogs was not found to correlate with symptoms observed in GSD and 

histopathological changes in the spinal cord (Averill, 1973).  

The condition was referred as “Degenerative Myelopathy” (DM) based on the clinical and 

pathologic findings in aging GSDs (Averill, 1973). The pathological study of seven dogs 

revealed massive degeneration of axons and myelin with astrocytosis and astrogliosis, 

which occurred at various segments of the spinal cord, however no brain abnormalities 

were detected. The lesions were most extensive in mid thoracic region. There was no 
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consistent abnormality detected in nerve roots except in two dogs, in which there was the 

loss of individual axons and myelin sheath in thoracic dorsal nerve root. In addition, 

spondylosis, intervertebral disc protrusion and SDO were also described in several of the 

dogs examined, however localisation did not correlate with the clinical signs observed. The 

range of age of affected dogs in this study was 6 to 11 years old. The neurologic 

abnormalities were restricted to the pelvic limbs, with a variable degree of paraparesis and 

weakness, and increased patellar reflexes. Thoracic limb was unaffected in all dogs 

examined.  

Griffiths and Duncan subsequently published a report on DM in 1975, focusing on the 

correlation between clinical, electrophysiological and pathological features of the disease. 

In general, the findings in this study supported Averill’s findings, except the involvement 

of dorsal nerve root abnormalities was greater in subjects examined. Therefore, the term  

“Chronic Degenerative Radiculomyelopathy” (CDRM) was proposed (Griffiths and 

Duncan, 1975). Due to inconsistency of the dorsal root lesions in the subsequent study and 

the strong breed predisposition, the term “German Shepherd Dog Myelopathy” (GSDM) 

was later suggested (Braund and Vandevelde, 1978). In light of the various terms proposed 

for the disease, in this account, it will be referred to as DM.  

1.1.2 Breed Predisposition 

DM is commonly associated with large breed dogs and their crosses however it has been 

recognised to occur in older GSDs. The overall prevalence of DM was reported as 0.19% 

with specific GSD breed prevalence of 2.01% (Coates et al.  2007). DM  has also been 

reported in several other large breed dogs and their crosses including Irish Setter (Averill, 

1973), Collies, Rhodesian Ridgeback, Labrador (Griffiths and Duncan, 1975), Siberian 

Husky (Bichsel et al.  1983), Chesapeake Bay Retriever (Awano et al.  2009; Long et al.  

2009), Boxer (Awano et al.  2009; Miller et al.  2009) and recently Bernese Mountain dogs 

(Wininger et al.  2011). Affected small or medium sized breeds are uncommon however 

recent evidence has revealed a substantial number of DM-affected Pembroke Welsh Corgis 

(PWCs) with a breed prevalence of 0.58% (Coates et al.  2007; March et al.  2009). Other 

small breeds that have been reported with DM include Cavalier King Charles Spaniels 

(Hopkins, A., personal communication, 04 April 2012), Wire Fox Terriers (Coates et al.  

2007) and a miniature Poodle (Matthews and de Lahunta, 1985). The high prevalence of 

DM in specific breeds suggests the potential significance of a genetic factor in the 
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aetiology of DM (Coates et al.  2007). The breed-specific prevalence rates for degenerative 

myelopathy is summarised in Table 1-1. 

Breed 
 

Prevalence rates (%) 

German Shepherd Dog 
 

2.01 

Chesapeake Bay Retriever 
 

0.83 

Rhodesian Ridgeback 
 

0.74 

Irish Setter 
 

0.68 

Boxer 
 

0.59 

Pembroke Welsh Corgi 
 

0.58 

Collie 
 

0.38 

Mixed Breed 
 

0.15 

 

Table 1-1: The latest breed-specific prevalence rates for degenerative myelopathy in selected dog 

breeds.  

This information is adapted from Coates and colleagues (2007) based on the authors’ query to Veterinary 

Medical DataBases (VMDB) in 2000. The prevalence rates were calculated on the number of dogs presented 

to veterinary teaching hospitals in North America between 1 January 1990 and 31 December 1999. 

1.1.3 Age of Onset and Sex Predominance 

DM is traditionally associated with older dogs, yet, there is a substantial variation in the 

age of onset described from six months (Longhofer et al.  1990) to 15 years (Cherubini et 

al.  2008). There are a few reports of young GSDs affected by DM, however, the age of 

onset is usually five years or older, with a mean age of nine years in large breed dogs 

(Averill, 1973; Griffiths and Duncan, 1975; Johnston et al.  2000; Kathmann et al.  2006). 

In PWCs, reported mean age of onset is 11 years (Coates et al.  2007). 

There is no sex predilection for DM, however there may be a breed effect (Coates et al.  

2007). Male GSDs are overrepresented in the majority of the case studies (Averill, 1973; 

Griffiths and Duncan, 1975; Johnston et al.  2000), but in two studies describing PWCs, a 

predominance of affected females has been noted (Coates et al.  2007; March et al.  2009). 
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1.1.4 Aetiology and Pathogenesis 

A number of studies have considered potential aetiology, however, the underlying cause of 

DM has remained elusive until the recent breakthrough of a Sod1 mutation was discovered 

in DM (see 1.2, page 40). Prior to the genetic identification, DM had been associated with 

several aetiologies including nutritional deficiencies and auto-immune defects. 

As discussed in 1.1.1 (page 24), DM was previously ascribed to the occurrence of SDO, 

the multiple osseous plaques in the dura mater that were speculated to cause pressure on 

the nerve roots leading to the development of the paraparesis (Morgan, 1969). However, 

Morgan (1969) and Averill (1973) had demonstrated that the occurrence of SDO did not 

correlate with the pathological changes seen in paraparesic dogs and suggested SDO was 

likely to be incidental. Averill (1973) also discounted the idea of vascular insufficiency 

causing degenerative changes in the spinal cord based on the anatomical distribution of the 

lesions found in DM cases. The distribution of ischemic lesions is reflected by the location 

of the affected vessels and is related to focal and asymmetric abnormalities. The central 

artery of the spinal cord is most commonly affected, leading to severe necrosis of the gray 

matter columns that occasionally extends to the white matter. Neither of these lesions was 

found in the dogs examined in Averill’s study. In addition, the clinical onset of vascular 

problems is rather acute in nature and briefly progressive, which is not consistent with DM. 

In 1973, Averill explored the similarities of DM with the myelopathy associated vitamin 

B12 deficiency in humans, also known as sub-acute combined degeneration (SCD). 

Although differences between these conditions exist, they involve progressive and gradual 

degeneration of white matter in thoracic segments. In SCD, the patterns of the pathological 

features are usually patchy or multifocal instead of topographically continuous as 

described in DM. The neurologic manifestation of SCD is attributed to the defective 

methylation of methylmalonic acid (MMA) (Baik and Russell, 1999). The measurements 

of serum B12 levels in six DM-affected GSDs were sub-normal in three dogs (Williams et 

al.  1984). In the same study, Williams and others (1984) examined the association of 

hypovitaminosis B12 with the occurrence of small intestinal disease in the affected GSDs. 

Jejunal biopsies in the affected dogs demonstrated no histological changes, however 

marked enzyme elevations were detected in the jejunal mucosa. Overgrowth of bacteria 

was also observed in duodenal juice cultures of affected dogs (9.7x104/ml – 2.3x107/ml 

compared to controls >1.9x104/ml). Based on these findings, the authors speculated that 
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the enteropathy observed in DM-affected dogs might be responsible for the lesion 

development due to malabsorption of essential nutrients.  

An association between DM and vitamin E deficiency causing myelopathy in human has 

been described in the literature, which is known as ataxia associated vitamin E deficiency 

(AVED) (Muller, 1986). In human, AVED has been associated with mutations in the gene 

of α-tocopherol transfer protein (α-TTP), impairing the α-TTP functions, leading to failure 

in retaining α-tocopherol from dietary vitamin E (Ouahchi et al.  1995). The low α-

tocopherol levels in the blood lead to an accumulation of free radical oxygen that 

eventually contributes to the neuronal degeneration in the spinal cord, brain stem and 

peripheral nerves (Muller, 1986; Imounan et al.  2012). Williams and colleagues (1985) 

investigated the concentrations of serum α-tocopherol in healthy controls and DM-affected 

dogs. In their study, the serum levels of vitamin E in DM affected group (4.4±1.2mg/l) 

were slightly lower compared to controls (14.1±2.1mg/l), suggesting that the enteropathy 

they saw in the earlier study may have been responsible for the malabsorption of the α-

tocopherol and subsequently development of DM (Williams et al.  1985). Another study 

had measured the serum α-tocopherol concentrations in 25 affected GSDs and 46 

unaffected dogs (20 GSDs and 26 other breeds) (Johnston et al.  2001). The mean of the 

serum α-tocopherol levels in affected GSDs were significantly higher (46.4µmol/l) than the 

unaffected dogs (34.2µmol/l), however not significantly higher than unaffected GSDs 

(37.3µmol/l). Sequencing of the canine α-TTP cDNA revealed no differences in either 

nucleotide or predicted amino acid sequences (Fechner et al.  2003). In addition, no 

significant difference was found in the level of α-TTP mRNA in affected GSDs and 

controls. Therefore, these findings strongly suggest that abnormal α-TTP function is not a 

contributing factor to DM development. 

Griffiths and Duncan (1975) considered that DM pathology was indicative of a “dying-

back” disease or distal axonopathy. This was speculated due to the long nerve fibres in the 

large breed dogs that may increase the susceptibility to the dying-back degeneration 

(Griffiths and Duncan, 1975). Braund and Vandevelde (1978) argued that the distribution 

of DM lesions did not fit the classic dying-back pattern. The classic dying-back lesions are 

typically symmetrical and often occur due to secondary metabolic or toxic insults that 

interrupt axonal transport (Spencer and Schaumburg, 1978), which initially occurs in the 

distal or peripheral axonal portion and gradually spreads towards the proximal axonal 

portion (Cavanagh, 1964). However lesions in DM-affected dogs predominantly involve 
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asymmetrical white matter tract degeneration and are not restricted to particular nerve 

fibres as typically observed in dying-back process (Braund and Vandevelde, 1978; 

Johnston et al.  2000). In addition, the severity of the DM lesions in thoracic segments is 

suggestive of the selective vulnerability of the thoracic spinal cord (Braund and 

Vandevelde, 1978; Johnston et al.  2000).  

In 1980, a different research group considered the role of the immune system in DM 

(Waxman et al.  1980b). They evaluated the peripheral lymphocyte response to mitogens in 

seven DM-affected dogs and had indicated marked impairment in the proliferative 

response to thymus-dependant mitogens; concanavalin A (Con A) and phytohaemaglutinin 

P (PHA) by peripheral blood leukocytes. In contrast, lymph node and splenic leukocytes 

from affected dogs developed normal response to the thymus-dependant mitogens, which 

leads to speculation of an agent in the peripheral blood that was causing the suppression. In 

a follow-up investigation using the same affected GSD population, the impaired 

proliferative responses were associated with an aberrant suppressor cell in the peripheral 

blood that may be mediated by the release of prostaglandins (Waxman et al.  1980a). The 

authors speculated that the suppressor cells could be activated secondarily by the host 

leading to the autoimmune event in DM, however this hypothesis remains unproven.  

The hypothesis of an immune-mediated cause was further investigated, evaluating the 

distribution of immunoglobulin G (IgG) and complement component 3 (C3) in the spinal 

cords of five DM-affected dogs (Barclay and Haines, 1994). Immunohistochemistry 

analyses on spinal cord tissues from various regions were examined in six dogs including 

one normal dog. In this study, increased IgG and C3 staining were observed in DM-

affected dogs, associated with the areas of increased vascularisation proximal to the DM 

lesions. In addition, there were extra-vascular deposits of IgG and C3 along the peripheral 

edges of ventral and dorsal funiculi, which corresponded closely with the areas of myelin 

loss. These IgG and C3 depositions were also observed in regions without lesions or 

vascularisation. Spinal cord tissue from a normal dog demonstrated increased staining in 

the regions associated with blood vessels, however no specific staining was detected in 

other tissue areas (Barclay and Haines, 1994). This study has indicated the possibility of 

immune-mediated destruction in DM pathogenesis, however there is no conclusion on the 

specific antigens and whether the antigens that triggered the immune-mediated destruction 

were exogenous or endogenous remains undetermined.  
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DM has been speculated as a disease with a complex aetiology, potentially contributed to 

by several causes, however the high incidence of DM in a specific breed undoubtedly 

indicate a genetic basis. Braund and Vendevelde in 1978 were the first speculating the 

involvement of genetic factor in DM due to strong predisposition of GSD. This concept 

was not further pursued until an allele in the hypervariable region 2 (HVR2) of the DLA-

DRB1 was considered as a candidate gene based on speculation that DM was an orthologue 

of primary progressive multiple sclerosis (PPMS) (Clemmons et al.  2006). This allele 

*1101J of DLA-DRB1 was claimed to be homozygous in DM-affected GSDs and 

heterozygous in healthy GSDs (Clemmons et al.  2006). However, in another study, a full 

sequence analysis on the three homozygous GSDs failed to duplicate the previous 

genotyping results published by Clemmons and others (2006) and did not support the 

presence of allele *1101J in the affected GSDs (Clark et al.  2008). Therefore, the authors 

of this study concluded that the presence of mutant allele *01101J could not be used to 

predict DM.  

Coates and colleagues (2007) pursued the concept of a genetic basis on DM using pedigree 

information from affected-PWCs, demonstrating a strong familial relationship from one 

large family of PWCs with 27-affected individuals. The strong possibility that the 

aetiology of DM has a significant genetic component has driven collaborative studies, 

which have been recently rewarded. Significant progress in the understanding of the basis 

of DM has been made with the confirmation that a mutation in superoxide dismutase 

(Sod1) gene has been revealed in selected dog breeds affected with DM (Awano et al.  

2009). The result of this study also raises the possibility that DM is a potential animal 

model for amyotrophic lateral sclerosis (ALS) in man (see 1.4, page 50). Details of the 

involvement of the genetic cause in DM will be further discussed in 1.2, page 40.   

1.1.5 Pathological Features 

1.1.5.1 Spinal Cord Pathology 

Confirmation of a specific diagnosis remains at the level of histopathological examination 

of the spinal cord. No consistent gross lesions of the adnexal structures of the central 

nervous system (CNS) have been reported. Incidental lesions such as SDO and spondylosis 

are common however they do not associate specifically with the histopathological features 

reported in DM (Averill, 1973; Johnston et al.  2000).  
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The spinal cord pathology described in dogs affected by DM is consistent with a non-

inflammatory axonal degeneration and consequent demyelination (Averill, 1973; Griffiths 

and Duncan, 1975; Braund and Vandevelde, 1978; Coates and Wininger, 2010). Extensive 

degeneration of myelin and axons have been reported in ascending and descending tracts 

of the white matter with the presence of astrocytosis and astrogliosis (Averill, 1973; 

Griffiths and Duncan, 1975; Coates et al.  2007). Lesions are observed at all levels of the 

spinal cord but are most extensive in the middle to caudal thoracic region tapering cranially 

and caudally along the spinal cord (Griffiths and Duncan, 1975; Johnston et al.  2000). The 

degenerative changes are more prominent in lateral funiculus, particularly affecting the 

corticospinal and rubrospinal tracts. Lesions in dorsal funiculus tend to localise in the 

fasciculus gracilis. In addition, degenerative changes in ventral funiculus have been 

reported, which consistently found around the ventromedian fissue. There have been no 

consistent abnormalities found in dorsal nerve root (Johnston et al.  2000), although severe 

axonal degeneration and loss of myelin sheath in this region was described in early studies 

(Averill, 1973; Griffiths and Duncan, 1975). Macrophages are occasionally observed in 

areas of axonal and myelin debris, indicating myelin fragmentation and phagocytosis, 

which is suspected to be a secondary response to the degenerative process (Averill, 1973; 

Coates et al.  2007). Lesions in grey matter are usually mild, with astrogliosis and 

chromatolysis reported in the intermediate and dorsal grey matter (Clark’s column) of the 

caudal thoracic and lumbar spinal cord (Averill, 1973; Johnston et al.  2000). Such 

abnormalities in other areas of grey matter are rarely described (Griffiths and Duncan, 

1975; Johnston et al.  2000). 

Awano and others (2009) re-evaluated the spinal cord pathology based on the identification 

of a Sod1 mutation in DM-affected dogs (see 1.2, page 40). Immunostaining using an 

antibody against SOD1 protein has indicated the presence of SOD1 cytoplasmic inclusion 

bodies, characterised as well-defined dark clumps (Awano et al.  2009). In a recent study, 

double fluorescent-immunostaining of thoracolumbar spinal cords from DM-affected dogs 

has revealed co-localisation of protein disulphide isomerise (PDI) with SOD1 cytoplasmic 

inclusions (Long et al.  2012). These pathology findings were reported to be similar to 

those found in ALS patients and transgenic models expressing mutant human SOD1 (Atkin 

et al.  2008; Honjo et al.  2011). 
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1.1.5.2 Brain Pathology 

Early reports characterised the pathological features of DM highlighting neuronal and 

axonal degeneration restricted to the spinal cord (Averill, 1973; Griffiths and Duncan, 

1975). However, Johnston and others (2000) described previously unrecognised 

abnormalities in specific nuclei in the brain. Abnormalities were consistently detected in 

the red nucleus (origin of the rubrospinal tract), although the lesions were also described in 

the lateral vestibular, dentate and fastigial nuclei (Johnston et al.  2000). Within these 

nuclei, the abnormalities observed include chromatolysis, occasional neuronophagia and 

gliosis. Electron microscopy of the affected red nucleus revealed enlarged axons 

containing a high number of disorganised neurofilaments, loss of Nissl substance and 

clumping of numerous membranous organelles (Johnston et al.  2000). In addition, nerve 

fibres undergoing Wallerian degeneration were also detected within the red nucleus. 

1.1.5.3 Peripheral Nerve and Muscle Pathology 

 Lower motor neuron (LMN) signs in DM do not become evident until later in the disease 

progression (Coates et al.  2007; Coates and Wininger, 2010). Lesions at the dorsal nerve 

root have been reported however were found to be inconsistent between studies (Griffiths 

and Duncan, 1975; Johnston et al.  2000). Other pathological features of the peripheral 

nerve and muscle are rarely reported in DM as most of the affected dogs are euthanised 

before manifesting the LMN signs of the later stage. However, a recent study has 

documented neuromuscular abnormalities in DM manifesting LMN signs, demonstrating 

muscle atrophy consistent with denervation and demyelination of peripheral nerves 

(Shelton et al.  2012). Marked variability in myofibre size with large groups of atrophic 

fibres was detected in DM-affected Boxers with LMN paraplegia. Fibre loss and myelin 

ovoids were evident within the distal intramuscular nerve branches which were consistent 

with Wallerian degeneration. Extensive loss of nerve fibres and endoneurial fibrosis were 

also obvious in the peroneal nerve. At later disease stages, generalised muscle atrophy was 

prominent in affected PWCs with LMN tetraplegia and brain stem signs. These 

abnormalities usually were not found in early stages although a study on mild stage DM in 

the affected Boxers did demonstrate occasional, small groups of atrophic fibres in biceps 

femoris and gastrocnemius muscles (Shelton et al.  2012).  
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1.1.6 Clinical Spectrum 

The classification scheme of DM clinical signs, diagnostic methods and recommended 

management for DM cases are summarised in Figure 1-1. The details of the clinical sign of 

DM have been well documented (Averill, 1973; Griffiths and Duncan, 1975; Coates and 

Wininger, 2010). Non-painful, gradually progressive upper motor neuron (UMN) paresis 

with ataxia and weakness of pelvic limbs are the key features of DM. The onset is 

insidious with the predominant age of onset around six to nine years. Scuffing with the two 

middle toes of one or both pelvic limbs is commonly seen during early disease onset, 

which progresses to wearing and bleeding claws  (Johnston, 1998; Cherubini et al.  2008). 

Subsequently, they develop problems with climbing/going down the stairs, misjudged 

distances and hypermetria (Johnston et al.  2001). Both pelvic limbs are usually involved 

although asymmetry of signs is frequently reported. Pelvic limbs crossing during walking 

and swaying movement of the pelvis are also apparent at this stage (Lorenz and Kornegay, 

2004). Neurogenic muscle atrophy over the pelvic limbs and paresis occur with time that 

eventually leads to non-ambulatory paraparesis. Euthanasia is usually elective and related 

to disease progression, often as the circumstances develop to non-ambulatory paraparesis.  

Neuroanatomic localization in the early stage of the disease suggests lesion localisation 

between T3 and L3 of the spinal cord. On neurological examination, conscious 

proprioception including reflex stepping and sway tests were affected either uni- or 

bilateral depending on the severity of the disease (Griffiths and Duncan, 1975). Spinal 

reflexes testing are suggestive of UMN dysfunction. In many cases, patellar reflex is 

normal although exaggeration to clonic reflex may be seen in affected-dogs. LMN sign of 

patellar reflex (hyporeflexia) can be observed in some cases. However, this could also be 

related to normal age-dependent decline in patellar reflex magnitude (Coates and 

Wininger, 2010). Flexor or withdrawal reflex are normal, crossed extensor reflex may be 

present, and if it is present, is usually suggestive of chronic UMN dysfunction. During the 

latter stage of disease, signs of LMN disease such as flaccidity due to denervation, 

hyporeflexia of patella and withdrawal become more apparent. Dogs with advanced DM 

will exhibit LMN signs including severe, neurogenic muscular atrophy, hyporeflexia and 

flaccid weakness (Awano et al.  2009). Spinal reflex examination reveals hyporeflexia of 

patella, withdrawal and cranial tibial reflexes. The paresis also becomes more symmetric as 

the disease progresses, which eventually will ascend to the thoracic limb (Averill, 1973; 

Matthews and de Lahunta, 1985; Kathmann et al.  2006) and followed by tetraplegia as 

well as generalised muscle atrophy. Swallowing difficulty and inability to bark has also 
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been reported in PWC-affected cases (Coates et al.  2007). Urinary and fecal incontinence 

too has been reported in long-standing cases (Kathmann et al.  2006; Coates et al.  2007).  

The disease progression in affected dogs is not constant and clinical signs may have been 

stabilised before reaching the stage of acute deterioration (Figure 1-1). Most of the affected 

dogs will progress to non-ambulatory paraparesis within six to nine months from the onset 

of clinical signs and are usually euthanised at this stage (Coates and Wininger, 2010). The 

mean duration of clinical signs was reported to be longer in PWC-affected dogs with an 

average of 19 months (Coates et al.  2007; Awano et al.  2009; March et al.  2009). If the 

dog is not euthanised, the clinical signs will evolve to LMN paraplegia and muscle atrophy 

occurring between 9 and 18 months post onset. Involvement of thoracic limb will be 

apparent between 14 to 24 months followed by LMN tetraplegia and brainstem 

abnormalities within 24 to 36 months. The natural cause of death in DM is not determined 

as most of the dogs are euthanised when they become non ambulatory paraparetic, 

however respiratory difficulty may be observed at the end stage which could potentially 

lead to respiratory failure  (Vasquez, 2011). 

1.1.7 Clinical Diagnosis  

The specific diagnosis of DM in a clinical environment is challenging due to the spectrum 

of clinical signs that are common to many diseases and due to the lack of a specific 

diagnostic test. As DM predominately affects older dogs which are prone to orthopaedic 

and neurologic problems, the presence or potential presence of these other conditions may 

affect the interpretation of the neurological examination (Coates and Wininger, 2010). The 

most common neurological disorder of older large breed dogs is Hansen type II disc 

disease, although in the chondrodystrophic breed such as PWC, Hansen type I is more 

significant. Other differential diagnoses or conditions that may mimic DM include 

degenerative lumbosacral syndrome, spinal cord neoplasia, and degenerative joint disease 

(Cherubini et al.  2008; Coates and Wininger, 2010).  

Clinical diagnosis of DM relies on the history and clinical findings with supportive 

findings on investigation helping to eliminate other potential causes of the individual’s 

clinical problems. Routine haematology and biochemistry consistently reveal no 

abnormalities. Cerebrospinal fluid (CSF) analysis in DM affected dogs has been limited 

and has been used to exclude other CNS problems. CSF analysis is often unremarkable, 

though may demonstrate albuminocytological dissociation (Cherubini et al.  2008). 



Chapter 1 
 
 

 35

Magnetic resonance imaging (MRI) and computerised tomography (CT) scan are 

frequently inconclusive in diagnosing DM but effective in ruling out other CNS diseases 

(Cherubini et al.  2008). In the early stage of the disease, electrophysiological studies such 

as electromyography (EMG) and motor nerve conduction velocities (MNCV) have failed 

to detect abnormalities, implying the lack of involvement of peripheral nerves and motor 

fibres early on in the disease (Griffiths and Duncan, 1975). However, in the latter stages 

EMG in affected dogs has demonstrated multifocal spontaneous activity in the distal limb 

appendicular musculature (Awano et al.  2009; Coates and Wininger, 2010) with 

fibrillation potentials and sharp waves being most commonly recorded. The compound 

muscle potentials (M wave) in the tibial and ulnar nerves show temporal dispersion, 

decreases in amplitude and reduced velocities (Awano et al.  2009).  

1.1.7.1 Genetic Analysis  

A genetic cause has been speculated in the pathogenesis of DM based on the epidemiology 

of the disease, as discussed in 1.1.4, page 30 (Braund and Vandevelde, 1978; Coates et al.  

2007; Clark et al.  2008). This has been confirmed by a recent study using a genome wide 

mapping association, which revealed a point mutation in exon two of the canine Sod1 gene, 

predicting G to A nucleotide transition at 118th nucleotide (see 1.2, page 40). 

Homozygosity of the mutant allele in the Sod1 gene (118G>A) has been considered a risk 

factor for the development of DM (Awano et al.  2009; Vasquez, 2011).  

Genotype analysis based on this mutation has been developed and is commercially 

available as a diagnostic test for DM cases (Awano et al.  2009). The use of the Sod1 

genotyping test for DM in conjunction with clinical investigations has significantly 

increased the index of suspicion of DM and improves the disease prediction. However, 

although the Sod1 mutation is strongly associated with DM, this mutation is also found in a 

proportion of the asymptomatic dog population (Awano et al.  2009). Therefore Sod1 

genotyping against 118G>A mutation is not specifically diagnostic for DM.  

1.1.8 Attempts at Identifying a Biomarker to Assist  Clinical 

Diagnosis  

Successful characterisation of specific and reliable biomarkers for DM would assist the 

clinical diagnosis and improve the understanding of the disease mechanisms. In addition, 

such discoveries may aid in the development and evaluation of novel therapies for DM. 
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There are no specific biomarkers for DM to date, although a genetic marker has been 

recognised as a risk factor in DM (see 1.2, page 40). In this section, I summarise a number 

of other avenues that have been explored in DM.  

A study was performed to establish CT myelographic characteristics of the thoracolumbar 

spine in a group of dogs (eight dogs) that were clinically diagnosed as DM. Characteristics 

of the CT myelography that were observed in higher frequency than the clinically normal 

dogs included spinal stenosis, disc protrusion, focal attenuation of subarachnoid space, 

spinal cord deformity, small spinal cord and paraspinal muscle atrophy (Jones et al.  2005). 

However, these characteristics are not specific to DM and there is the possibility that these 

features are caused by chronic disc protrusion rather than DM. In addition, none of the 

affected dogs were examined histopathologically, and therefore association between CT 

myelography characteristics and definitive pathology was not determined.   

CSF analysis in DM affected dogs has been consistently unremarkable and is frequently 

used to eliminate other potential CNS problems. Several studies have evaluated selected 

CSF proteins as biomarker candidates for DM. A study using commercially available 

human MBP enzyme-linked immunosorbent assay (ELISA) had detected a significant 

elevation of myelin basic protein (MBP), a key myelin protein, in lumbar cistern CSF in 

DM-affected GSDs (3.13±0.46ng/ml) compared to CSF obtained from cisterna magna 

(0.70±0.06ng/ml) in DM-affected GSDs and from both cisterna and lumbar samples from 

control dogs (Oji et al.  2007). This observation suggested the presence of active 

demyelination lesion in DM that may occur secondarily to the axonal degeneration. The 

level of MBP in CSF has been a useful indicator for demyelinating disorders in human 

(Whitaker, 1998; Ohta and Ohta, 2002) and therefore may also prove to be valuable marker 

for DM. This study has indicated the potential utility of the human MBP ELISA as a 

supportive diagnostic tool for DM in the clinical environment, however further validation 

of MBP in DM and other canine neurological disorders is required as this protein may not 

be specific to DM.  

Coates and others (2007) characterised the clinicopathological findings of a familial DM in 

PWCs (see 1.1.4, page 30) at the same time measuring the concentrations of 8-isoprostane 

in DM-affected CSF, which is an oxidative metabolite that has been considered as a 

reliable and stable marker for oxidative stress in human neurological disorders (Greco et al.  

1999; Montine et al.  1999; Montuschi et al.  2004). There was no significant difference in 

the CSF level of 8-isoprostane between affected and normal dogs. However, the authors 
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have claimed that the CSF level of 8-isoprostane collected from cisterna magna may 

underestimate the effect of spinal cord damage and a significant result may be obtained if 

the protein concentrations were measured using lumbar cistern CSF (Coates et al.  2007). 

Previous studies have demonstrated the potential involvement of an autoimmune event in 

the pathogenesis of DM (1.1.4, page 29). Therefore, a study has measured the 

concentrations of total protein, IgG and total protein/IgG ratio on six DM-affected GSDs to 

determine whether there was evidence of intrathecal IgG synthesis that may support the 

altered immune response in DM. There was no significant difference in IgG or total protein 

concentrations detected between the affected and control groups (Kamishina et al.  2008). 

Isoelectric focusing (IEF) followed by immunofixation using canine CSF revealed the 

presence of oligoclonal bands in four DM-affected GSDs, which is indicative of  

intrathecal IgG synthesis in these cases. However, the significance of these bands was 

questionable since a similar band was also detected in two control samples, and therefore it 

is unlikely to be specific for DM. 

Following the establishment of genetic commonality in DM and ALS, a recent study has 

developed a motor unit number estimation (MUNE) technique (Vasquez, 2011), which is a 

common electrophysiology method that is used to monitor ALS progression (Boe et al.  

2007; Shefner et al.  2007). This technique was purposely developed to aid in the 

characterisation of advanced stage DM with chronic LMN signs. The preliminary ranges of 

MUNE in clinically normal dogs have been established. The longitudinal studies 

monitoring the lower motor neuron loss in DM-affected dogs is currently ongoing 

(personal communication, Coates. J.R, May 2012).  

1.1.9 Treatment 

To date, there is no specific therapeutic modality for specific treatment of DM nor has 

strong evidence of positive effects of proposed symptomatic treatment been presented. DM 

was hypothesised as a immune-mediated neurodegenerative disorder, therefore 

administration of immunosuppressive drugs had been suggested. Glucocorticoids, 

cyclophosphamide and azothioprine were used in DM cases, which were speculated to 

slow down the rate of deterioration in affected dogs, however none of these drugs was 

shown to have a positive effect on disease progression (Clemmons, 1992). An anti-protease 

agent, epsilon amino-caproic acid (ε-EACA) also had been claimed to help in slowing the 

degeneration process (Clemmons, 1992). However, evaluation of the long term efficacy of 
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ε-EACA and N-acetylcysteine in combination with exercise and vitamin B, C and E 

supplements in affected dogs did not yield promising benefit in either slowing nor 

improving the condition (Polizopolou et al.  2008).  

Physical rehabilitation or physiotherapy has been traditionally recommended in DM cases 

(Kathmann et al.  2006). Kathmann and colleagues (2006) investigated the effect of long 

term and intensive physiotherapy in 22 affected dogs, performed by the owners at the time 

when the presumptive diagnosis was made until the time of euthanasia. All owners had 

been given careful instructions on how to perform adequate physiotherapy and follow up 

information was obtained by telephone call. In this study, affected dogs that had received 

intensive physiotherapy (gait exercise 3-5 times/day, massage and passive joint movement 

3 times/daily, or daily hydrotherapy) had longer survival time (mean survival time = 255 

days) compared to dogs with moderate (gait exercise 3 times/day, hydrotherapy or massage 

once a week; mean survival time = 130 days) or no physiotherapy (mean survival time = 

55 days), suggesting conservative management may have been beneficial in improving the 

quality of life in the affected dogs although did not prevent the inevitable outcome.  



 

Figure 1-1: Diagrammatic representation of the clinical signs, complete diagnostic work

findings, and recommended palliative management in DM cases. 
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1.2 The Identification of 118G>A Superoxide Dismuta se 1 

(Sod1) Gene Mutation in DM: A Significant 

Breakthrough 

Many studies have investigated the potential aetiologies that may underlie the 

neurodegeneration in DM as discussed in 1.1.4 (page 27). High incidence of a disorder in a 

specific breed implies a genetic contribution to the aetiology of the disease (Nicholas, 

2003). However, this speculation in DM was not substantiated until a familial relationship 

was established in DM-affected PWCs, implying a significant association of DM with 

genetic cause (see 1.1.4, page 30) (Coates et al.  2007).  

A significant breakthrough was achieved in the understanding of the genetic basis in DM, 

with implication of a mutation in Sod1 gene in affected dogs, which is comparable to the 

SOD1 mutations in human ALS (Awano et al.  2009). This mutation occurs at the 118th 

nucleotide that predicts G to A transition in exon two (118G>A), resulting in E40K 

missense mutation. Genome-wide association mapping in 38 affected and 17 control PWCs 

identified the strongest association in chromosome 31 (CFA31) containing the canine Sod1 

gene. Representatives of five DM-affected breeds; PWC, GSD, Boxer, Rhodesian 

Ridgeback, and Chesapeake Bay Retriever were sequenced for the mutant allele A in the 

Sod1 gene, and demonstrated a significant association between the DM phenotype and 

homozygosity of the A allele. Ninety-six percent (96 out of 100 dogs) with presumptive 

diagnosis of DM were confirmed as homozygotes (A/A), however the homozygous 

genotype was also detected in 34% of control dogs. Furthermore, the percentage of 

homozygote individuals was found to be higher within certain breeds of the control group; 

PWC (74%) and Boxer (67%) compared to GSD (25%), Rhodesian Ridgeback (15%) and 

Chesapeake Bay Retriever (39%). None of the control dogs displayed clinical 

characteristics of DM. Heterozygous genotype (A/G) was reported in 32% of the control 

group, however found in a very low percentage of the DM group (2%). These heterozygote 

individuals are potential carriers that can pass the mutant Sod1 gene to their offspring. 

Two-percent of the affected and 34% of control dogs were also confirmed to be harbouring 

the normal or wild type Sod1 gene (G/G). Immunohistochemical analysis using anti-SOD1 

antibody in seven DM-affected dogs revealed well-defined dark brown focal clumps in 

neuronal cell bodies which may be suggestive of SOD1 protein aggregates. No positive 

staining was observed in control dogs. The genotype-phenotype correlation in 
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heterozygotes is unclear however, immunohistochemical analysis on asymptomatic 

heterozygotes revealed diffuse light staining in the neuronal cell bodies, which may reflect 

a subclinical condition (Coates and Wininger, 2010). 

Subsequent to the identification of the Sod1 mutation in DM, a retrospective study 

investigating the prevalence of 118G>A Sod1 mutation in a referral population of GSD in 

United Kingdom, demonstrated that 76% of the affected GSDs and 24% of control GSDs 

were homozygous for the mutant A allele (Adams et al.  2010). The percentage of 

heterozygous population in this study was found to be higher, 33% compared to 2% in the 

previous study (Awano et al.  2009). GSDs with a wild type gene was reported as 14% and 

43% in affected and control GSDs respectively.  

The genetic observations in these studies match the characteristic of an incomplete 

penetrance and the disease is most likely to be inherited in an autosomal recessive manner 

(Awano et al.  2009). Most of the ALS cases associated with SOD1 mutations are inherited 

through autosomal dominance with high penetrance, however pedigrees with recessive 

traits with incomplete penetrance, D90A (aspartic acid to alanine) have been reported in 

some families (Andersen et al.  1996; Andersen, 2006). The D90A SOD1 mutation has 

been described to have a slower disease progression with initial onset involving the lower 

limbs, which is more likely to resemble the E40K missense mutation in DM (see 1.3.3, 

page 46).  

A genotyping analysis based on the presence of 118G>A Sod1 mutation has been 

developed by Professor Joan R. Coates and her group from University of Missouri, and is 

currently being used as a routine diagnostic analysis for DM and a screening test for 

selective breeding programmes. To date, more than 23,000 dogs have been genotyped for 

this mutation (Coates, J.R., personal communication, May 2012).  

1.2.1 Recent Identification of a Novel Sod1 (52A>T) Missense 

Mutation in a Bernese Mountain Dog Affected by DM 

In a very recent study, another Sod1 mutation has been identified in a Bernese Mountain 

dog (BMD) affected with DM (Wininger et al.  2011). Sequencing of Sod1 gene in this 

case has revealed a homozygosity of the mutant allele T at the 52nd nucleotide (52A>T) 

that predicts the substitution of amino acid threonine to serine at the 18th position in the 

amino acid sequence (T18S). Immunohistochemical staining against SOD1 protein 
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displayed consistent findings to those harbouring the 118G>A mutation (Awano et al.  

2009; Wininger et al.  2011). Although the appearance of SOD1-containing aggregates in 

this case is most likely considered to be related to the neurodegenerative process, a 

definitive conclusion can only be made after the relationship of 52A>T Sod1 mutation with 

the clinical and pathological findings is established.  

1.3 Amyotrophic Lateral Sclerosis (ALS) and SOD1 

Mutations    

1.3.1 Overview of ALS 

Amyotrophic lateral sclerosis or Charcot’s disease, is a devastating, fatal 

neurodegenerative disease, affecting approximately 1 to 3 per 100,000 individuals per year 

(Jackson and Bryan, 1998; Leigh, 2007). This disease was first described in 1874 by Jean-

Martin Charcot, and is characterised as late onset and progressive motor neuron disease 

resulting from degeneration of UMN and LMN systems (Rowland and Shneider, 2001). It 

is also reported that ALS is responsible for approximately 1 in 1000 deaths (Andersen, 

2006).  

ALS occurs in both sporadic and familial forms. Most ALS cases are classified as sporadic 

cases (sporadic ALS), while 5 to 10% are reported to be familial (familial ALS) (Battistini 

et al.  2010). Familial ALS cases are commonly inherited through an autosomal dominant 

pattern with high penetrance, however recessive pedigrees have been described in some 

families (Khoris et al.  2000; Hand et al.  2001). Mutations in the SOD1 gene are the most 

frequently identified cause of familial ALS and account for 20% of familial ALS cases 

(Rosen et al.  1993; Ticozzi et al.  2011). Other than the SOD1 gene mutation, TAR DNA 

binding protein (TARDBP) and fused in sarcoma/translocated in liposarcoma (FUS) have 

also recently been associated with familial ALS, each contributing  5% of total familial 

ALS cases (Ticozzi et al.  2011). Pathogenic mutations in seven other genes; amyotrophic 

lateral sclerosis 2 (ALS2), senataxin (SETX), spastic paraplegia 11 (SPG11), vesicle-

associated membrane protein B (VAPB), angiogenin (ANG), FIG4 homolog (FIG4) and 

optineurin (OPTN) account for less than 5% of total familial ALS cases (Ticozzi et al.  

2011). Whilst a genetic predisposition is described as a major risk factor in familial ALS, 

the aetiology of sporadic ALS remains elusive, although a genetic component has also 
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been attributed to a minority of sporadic ALS cases including SOD1 mutations, these 

accounts for 1-7% of sporadic ALS cases (Jackson et al.  1997; Gellera et al.  2001). 

In general, the average age of onset of ALS is between 55 to 65 years of age, although the 

average onset in familial ALS cases is a decade earlier (Leigh, 2007). Occurrence of ALS 

when age is less than 25 years is characterised as juvenile form (Ben et al.  1990). Men are 

more frequently affected than women with a male to female ratio of 3:2, although more 

recent data has indicated that the ratio is approaching 1:1 (Ticozzi et al.  2011). The classic 

clinical features of ALS include progressive muscle weakness and atrophy, eventual 

paralysis and death. Approximately, two third of patients with classic ALS have a spinal 

form of the disease with first symptoms related to asymmetric focal muscle weakness and 

wasting, which may start either in the upper or lower limb (Jackson and Bryan, 1998; 

Wijesekera and Leigh, 2009). Difficulty lifting the upper and lower limbs and clumsiness 

are the first signs noticed by patients. Cramps and fasciculation may precede weakness 

however these abnormalities are rarely noticed until the later stage of the disease. Spastic 

paresis develops gradually after the first symptoms, affecting manual dexterity and gait. In 

advanced stage ALS most patients develop bulbar signs (dysarthria and dysphagia) and 

eventually died due to respiratory failure. Disease duration from first onset until respiratory 

failure is between two to five years (mean 2.5 years), although some patients may have a 

longer disease duration up to 10 years or more (Cudkowicz et al.  1997; Ratovitski et al.  

1999). Urgency of micturition or even incontinence (Leigh, 2007) as well as cognitive 

impairment (Strong et al.  1996) although uncommon, may occur in a minority of ALS 

patients during the late stage of the disease. For patients with bulbar onset, the first 

symptom is always dysarthria followed by dysphagia within weeks or months (Leigh, 

2007). Cranial nerve abnormalities such as facial weakness and tongue atrophy may be 

observed in bulbar onset patients (Leigh, 2007; Wijesekera and Leigh, 2009). The limb 

abnormalities may develop simultaneously with the bulbar symptoms and mostly occur 

within one to two years after the first signs.  

The diagnosis of ALS largely depends on extensive patient history, recognition of clinical 

characteristics and supportive investigations (Wijesekera and Leigh, 2009). El-Escorial 

criteria for ALS were approved and have been revised over the years to improve early 

diagnosis and are currently being used as a standard method for diagnosing ALS (Brooks, 

1994; Brooks et al.  2000). Genetic screening has become part of the diagnostic protocol to 

determine the genetic risk in suspected ALS patients (Siddique et al.  1991) and is also 
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being utilised for presymptomatic testing in potential familial ALS individuals (Fanos et al.  

2004). However, in many cases diagnosis takes over a year following disease onset which 

represents one-third of the disease duration (Leigh, 2007). Such a delay in diagnosis is 

generated from misdiagnosis and difficulties in differentiating ALS from other related 

disorders with similar clinical characteristics (Leigh, 2007). Therefore, over the past few 

years, an intensive search for ALS biomarkers has been initiated, with particular interest in 

characterising an early diagnostic biomarker to support the diagnosis of ALS (Bowser et al.  

2006). Details on the development of biomarkers in ALS are described in 1.7, page 68. 

The major pathological features of ALS include degeneration and loss of motor neurons 

with astrocytic gliosis and the presence of various inclusion bodies in degenerating neurons 

and glial cells (Hirano, 1996). CNS pathology involves severe loss of pyramidal neurons 

(Betz’s cells) (Hammer, Jr. et al.  1979) in the primary motor cortex, diffuse degeneration 

of the motor pathways of the corticospinal tract in the lateral and anterior funiculi of the 

spinal cord (Tandan and Bradley, 1985) and degeneration of brain stem nuclei of cranial 

nerves V, VII, IX, X and XII (Jackson and Bryan, 1998). Astrogliosis is also a common 

pathological feature of ALS (Schiffer et al.  1996). Lesions are also described in the 

peripheral nervous system (PNS); primarily involving axonal degeneration and 

demyelination of ventral roots particularly in cervical and lumbar regions with milder 

lesions found in thoracic and sacral regions (Sobue et al.  1981). A reduction in the number 

of neurons in lumbar dorsal root ganglion have also been reported in a minority of ALS 

cases (Kawamura et al.  1981). Neurogenic atrophic changes in muscles such as pyknotic 

nuclei and fibre type grouping are also common in ALS patients (Fidzianska, 1976).  

An established hallmark of ALS is the presence of various inclusion bodies in degenerating 

neurones and surrounding reactive astrocytes (Barbeito et al.  2004). The most common 

and specific type of inclusion bodies is the ubiquitinated inclusions in brain and spinal 

cord, which can be seen in up to 95% of ALS cases (Leigh et al.  1988). These inclusion 

bodies are characterised as Lewy body-like inclusions and Skein-like inclusions (Hirano, 

1996). Lewy-body like hyaline inclusions (LBHIs) and astrocytic hyaline inclusions (Ast-

His) containing SOD1 antigen are more commonly seen in ALS patients with SOD1 

mutations (Kato et al.  2000). Hyaline conglomerate inclusions have also been reported in 

ALS cases, however this type of inclusion body is not specific compared to ubiquitin 

inclusions (Corbo and Hays, 1992). Additionally, Bunina bodies, which are cystatin C and 
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tranferrin containing inclusions, are also found in motor neuron cell bodies and are present 

in 70% to 100% of ALS cases (Wijesekera and Leigh, 2009). 

To date, there is no specific treatment available for ALS, however symptomatic and 

palliative treatments such as physiotherapy, ventilatory management and counselling have 

improved patients’ quality of life (Wijesekera and Leigh, 2009). Riluzole, a glutamate 

antagonist is the only drug available that has been approved by the Food and Drug 

Administration as being safe and effective for treating ALS (Rowland and Shneider, 2001; 

Simmons, 2005). Riluzole is described as reducing the deterioration in muscle strength by 

suppressing the excitatory activity of glutamate receptors in the ALS pathogenesis pathway 

and has been reported to improve the survival rate by 12 to 18 months (Cheah et al.  2010). 

However, the effect of riluzole cannot be sustained after 18 months of treatment and 

stopping the medication at the advance stage of the disease should be considered (Traynor 

et al.  2003). Other glutamate antagonists such as the branched-chain amino acids 

lamotrigine and dextromethorphan were also investigated but had no beneficial effects in 

the clinical trials (Miller, 1999; Demaerschalk and Strong, 2000).  

1.3.2 SOD1 Mutations in Familial ALS 

The majority of familial ALS cases are inherited by an autosomal dominant pattern 

(Mulder et al.  1986) with a minority of cases inheriting through a recessive gene 

(Andersen et al.  1996; Yang et al.  2001). A major breakthrough in the understanding of 

familial ALS mechanism was made in 1993 and involved the discovery of the 11 

pathogenic mutations in the SOD1 gene (Rosen et al.  1993). SOD1 is an antioxidant 

enzyme found mostly in the cytosol but also in the mitochondrial intermembrane space, 

nucleus and peroxisomes (Banci et al.  2008). The SOD1 gene is composed of five exons, 

which encode the 154 residue amino acid that is responsible for the catabolism of 

superoxide radicals to hydrogen peroxide and molecular oxygen (Bannister et al.  1991). 

The mature, correctly folded SOD1 is obtained through several post-translational 

modifications; copper and zinc ions binding, disulfide bond formation and dimerisation 

(Valentine et al.  2005). To date, more than 150 different SOD1 mutations have been 

reported (http://alsod.iop.kcl.ac.uk), with the majority being missense mutations (Ticozzi et 

al.  2011). These SOD1 mutations are distributed throughout the five exons, although 

larger numbers of mutations are found in exon four and five (Andersen, 2006; Ticozzi et 

al.  2011). The examples of missense mutations that produce distinct phenotypes are the 

A4V (alanine to valine at codon 4) and D90A (aspartic acid to alanine at codon 90) 
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(Pasinelli and Brown, 2006). The A4V is inherited through a dominant pattern and has 

been identified as the most common and aggressive form of the disease with a mean of 

survival of around one year (Deng et al.  1993). In contrast, the homozygous individuals of 

D90A have slower disease progression with a prolonged survival of more than a decade 

(see 1.3.3, page 46). With the exception of A4V, D90A and several other SOD1 mutations 

in familial ALS, the clinical features of other SOD1-linked ALS cases appear to be 

indistinguishable from ALS patients without a SOD1 mutation (Gros-Louis et al.  2006). 

1.3.3 Recessive Inheritance of D90A SOD1 Mutation in ALS 

Of the 150 SOD1 mutations that have been reported in familial ALS cases, only the D90A 

mutation has been associated with autosomal recessive inheritance, specifically in 

Scandinavia and Western European countries; however it has been shown to be dominantly 

inherited in other parts of the world (Andersen et al.  1995; Khoris et al.  2000; Jonsson et 

al.  2002). D90A SOD1 mutation has been reported to have a higher frequency in 

Scandinavia (1-2.5%) than elsewhere (<0.05%). A proportion of homozygous individuals 

who are symptom free have also been described (Andersen et al.  1995; Andersen et al.  

1996). The phenotype-genotype relationship is further complicated by reports of 

heterozygous individuals with the D90A mutation, displaying a dominant trait with classic 

signs of ALS and survival between two to five years (Andersen et al.  2001). In addition, a 

more recent study has reported a compound heterozygote of D90A with a novel SOD1 

mutation of D90N (aspartic acid to asparagine) (Hand et al.  2001). The authors in this 

study suggested that both mutations are required to develop the disease although 

speculation on D90N as a novel recessive mutation was proposed (Hand et al.  2001).  

Cases with D90A mutation display a very characteristic and uniform disease phenotype 

compared to other patients with dominantly inherited SOD1 mutations (Andersen et al.  

1996). The mean age of onset in homozygous D90A cases is 44 years, which is a decade 

earlier compared to classic ALS or sporadic ALS cases. There is no sex predilection 

detected in D90A patients. The onset of paraparesis is insidious and asymmetrical, and 

patients initially experience a pre-paretic phase with lower extremity stiffness, muscular 

cramps, clumsiness and general fatigue.  Pain in the lumbar area, buttocks, hips and/or 

limbs have been reported during the early stage of the disease (Andersen et al.  1995). The 

period of the pre-paretic phase is highly variable between patients, ranging from a few 

months to several years during which time the clinical and neurological investigations are 

reported to be normal (Andersen et al.  1996). This phase slowly deteriorates to the paretic 
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phase with a combination of UMN and LMN systems of the lower limbs, generalised 

muscle atrophy, fasciculations, spastic muscle tone and increased spinal reflexes have been 

reported as common features (Weber et al.  2000). The disease gradually progresses to 

upper limbs usually affecting the UMN system before manifesting LMN signs. Upper 

extremity involvement appears on average 4.1 years after the initial onset (Andersen et al.  

1996). The development of bulbar symptoms such as dysarthria and dysphagia is slightly 

varied between individuals with a mean of 5.4 years from the first disease onset (Andersen 

et al.  1996). Urgency of micturition and difficulty initiating urination are common in 

patients with advance stage of D90A mutation (Weber et al.  2000). Generalised muscle 

atrophy and tetraplegia may be observed before the patients die due to respiratory failure 

(Andersen et al.  1996). Inappropriate laughing and crying have been reported in some 

patients however no cognitive impairment has been observed.  Specific pathological 

characteristics have not been reported in human patients with the D90A mutation however 

it is speculated to be similar to other SOD1 mutations (Andersen et al.  1996).    

1.3.4 Proposed Underlying Mechanisms of SOD1 Mutations in 

ALS 

The mechanisms involved in the selective motor neuron degeneration caused by SOD1 

mutations in ALS remain unresolved, however, a plethora of hypotheses have been 

proposed (Ilieva et al.  2009; Rothstein, 2009). In this section, I summarise the current 

aspects of the pathogenesis of SOD1-linked ALS that may be particularly relevant to DM, 

including oxidative damage (Barber et al.  2006; Kabashi et al.  2007), protein misfolding 

and aggregation (Watanabe et al.  2001), mitochondrial dysfunction (Israelson et al.  2010) 

and non-cell autonomous motor neuron death. 

The SOD1 enzymes are directly associated with the cellular antioxidant defence 

mechanism that are involved in catalysing the toxic superoxide radicals (Bannister et al.  

1991). The global distribution of SOD1 mutations across all exons therefore intuitively 

suggests the loss of SOD1 function and hypothesises accumulation of free radicals and 

oxidative stress that eventually leads to motor neuron death in ALS (Deng et al.  1993). 

However, homozygote SOD1 knockout murine models reported in previous studies have 

failed to develop apparent motor neuron signs (Reaume et al.  1996; Ho et al.  1998), while 

transgenic murine models over-expressing mutant human SOD1 (G93A, G85R and H46R) 

do produce motor neuron degeneration and paralysis despite normal endogenous SOD1 
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activity (Gurney et al.  1994; Bruijn et al.  1997; Nagai et al.  2001). These observations 

lead to the proposition that motor neuron death in SOD1-linked ALS reflects acquired 

toxic properties of the mutant SOD1 protein rather than loss of function (Nagai et al.  

2001; Rothstein, 2009). However, despite strong evidence of the gain of toxic SOD1 

function in ALS pathogenesis, the hypothesis of the loss of function cannot be completely 

excluded (Turner and Talbot, 2008). More recent evidence has demonstrated that the SOD1 

knockouts display multisystem abnormalities (Ho et al.  1998; Imamura et al.  2006; 

Elchuri et al.  2005) including significant locomotor deficits associated with peripheral 

axonopathy  (Muller et al.  2006; Fischer and Glass, 2007). It remains unclear why SOD1 

knockouts do not display distinctive motor neuron signs in earlier studies, however such a 

response is potentially caused by compensatory mechanisms that are yet to be discovered 

(Turner and Talbot, 2008). 

The putative toxic gain of SOD1 protein mechanisms that induce motor neuron 

degeneration in ALS remains unknown, but may involve several complex interacting 

molecular pathways (Rothstein, 2009). The individual SOD1 mutations are scattered 

throughout the protein, which are predicted to interfere with different aspects of the protein 

structure depending on the location of the mutation (Valentine et al.  2005). This 

contributes to failure of the protein to fold properly leading to accumulation of misfolded 

SOD1 proteins and SOD1 aggregates or inclusion formation in motor neurons as observed 

in ALS patients (Bruijn et al.  1997; Watanabe et al.  2001). The accumulation of 

misfolded SOD1 protein subsequently activates the unfolded protein response (UPR), 

which is a quality control of cellular mechanisms that facilitate protein folding (Bento-

Abreu et al.  2010). A potential cascade involves the accumulation of misfolded SOD1 

within the ER, inducing ER stress. ER stress initiates the upregulation of a number of UPR 

enzymes and chaperones (e.g., PDI, BiP) as well as transcription factors (e.g., ATF6, 

XBPI) that alter protein translation rates (Atkin et al.  2006; Atkin et al.  2008). The 

clearance of misfolded SOD1 proteins can be mediated by the ubiquitin-proteosome 

pathway but there is evidence that this system may be disrupted in ALS (Urushitani et al.  

2002). Collectively, these events may lead to motor neuron death.  

Misfolded SOD1 proteins have been associated with mitochondrial perturbations by the 

aberrant deposition of the misfolded SOD1 proteins in the outer membrane of 

mitochondria (Vande et al.  2008). There is a clear implication that misfolded SOD1 

proteins could bind directly to the voltage-dependent anion channel 1 protein (VDAC1) 
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(Israelson et al.  2010), which is embedded in the outer mitochondrial membrane that 

regulates metabolite exchange (eg., adenosine triphosphate and adenine nucleotides) and 

the release of reactive oxygen species (ROS) between mitochondria and cytosol (Han et al.  

2003; Colombini, 2004). Therefore, the binding of misfolded SOD1-VDAC1 would 

disrupt the metabolite flux and the release of ROS from the mitochondria, leading to 

oxidative stress and mitochondrial dysfunction (Israelson et al.  2010). Such dysfunction 

can eventually induce morphological damage to mitochondria and activate apoptosis 

cascade events (Pedrini et al.  2010).  

In addition to the potential mechanisms described above there is evidence to support a non-

cell autonomous contribution to the viability of motor neurons in ALS (Ilieva et al.  2009). 

Transgenic mice expressing mutant SOD1 in motor neurons with wild type SOD1 in non-

neuronal cells are not sufficient to induce ALS, which clearly implies that the non-neuronal 

cells may substantially contribute to the disease initiation (Clement et al.  2003; Yamanaka 

et al.  2008). The exact mechanism of a non-cell autonomous affect in ALS has not been 

fully delineated although a hypothesis has been proposed on the formation of misfolded 

SOD1 aggregates in the neighbouring glial cells; astrocytes and microglia that could 

subsequently trigger a series of neurotoxic factors including inflammatory cytokines and 

ROS, which potentially exacerbates the damage to the motor neurons (Harraz et al.  2008; 

Ilieva et al.  2009). The involvement of other non-neuronal cells such as Schwann cells 

(Lobsiger et al.  2009) and T-lymphocytes (Beers et al.  2008; Chiu et al.  2008) have also 

been implicated in ALS onset and progression.  

The initial damage in ALS may take place within motor neurons however the involvement 

of non-neuronal cells may also directly contribute to the development of ALS pathology 

(Ilieva et al.  2009). Therefore, all proposed mechanisms, either loss or gain of function, 

are probably contributors to ALS pathogenesis through induction of damage within 

different cell types (Pasinelli and Brown, 2006; Turner and Talbot, 2008), although it 

remains to be established whether these mechanisms are involved in DM pathogenesis. 

The selective vulnerability of motor neurons in ALS with mutant SOD1 remains 

unexplained, although it may be related to the requirements needed to maintain long motor 

axons and the high energy demand of the cargo proteins involved in retro- and anterograde 

transport (Shaw and Eggett, 2000). Although the precise mechanisms remain unresolved, it 

is clear that motor neurons are very sensitive to oxidative stress and mitochondrial 
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dysfunction, and this may increase the vulnerability of these cells compared to others 

(Robberecht et al.  2000). 

1.4 ALS is a Potential Orthologue of DM 

The elucidation of disease mechanisms in ALS has relied heavily on transgenic animals 

expressing human SOD1 or other mutants to produce motor neuron disease that mimics 

many features of ALS (Bruijn et al.  1997; Deng et al.  2006; Jonsson et al.  2006). The use 

of transgenic animals in ALS research has provided significant insight into underlying 

disease mechanisms, while at the same time permitting the formulation of hypothesis 

testing and the safe evaluations of new therapeutic interventions prior to translation to 

human trials (Jonsson et al.  2006; Turner and Talbot, 2008).  However, several limitations 

have been recognised in transgenic animal models. Transgenic animals are artificially 

produced, which often requires a high level of gene expression that may itself induce the 

pathological phenotype (Battistini et al.  2010). Although the clinical signs and 

pathological characteristics observed in these transgenic models may be similar to the 

human form of ALS, the findings often have limited relevance to human ALS because of 

profound differences in inter-species physiology (Boido et al.  2012). The primitive 

nervous system and limited cognitive capacity of transgenic models may not truly reflect 

the nervous system complexity as described in humans, even though they represent a very 

useful tool to investigate ALS (Boido et al.  2012).  

The identification of E40K Sod1 mutation in DM has established a genetic link between 

DM and ALS, therefore implying DM as the first spontaneously occurring animal model of 

ALS (Awano et al.  2009). The clinical description of E40K Sod1 mutation is comparable 

to D90A SOD1 mutation (Vasquez, 2011). The pathologic features of DM that have been 

characterised to date to date are also comparable to those observed in ALS, including 

axonal degeneration with secondary demyelination and astrogliosis. Neurogenic muscle 

atrophy due peripheral nerve degeneration is also common to both DM and ALS. The 

cytoplasmic SOD1 aggregates and co-localisation of PDI have further highlighted the 

similarities of DM with ALS. In addition, the upregulation of UPR proteins; PDI, 

C/enhancer binding homologous protein (CHOP) and binding immunoglobulin protein 

(BiP or Grp78) were found to be significantly upregulated in DM spinal cords, indicating 

that ER stress is common to both ALS and DM (Long et al.  2012). This encouraging 
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progress in DM research has therefore strengthened the value of DM as an animal model of 

ALS.  

The development of a large animal model based on a spontaneous SOD1 mutation may 

serve as an ideal alternative for investigating pathophysiology, development of diagnostic 

tools as well as therapeutic interventions in both forms of ALS. The dog is more similar to 

human in terms of the structure and complexity of the nervous system (Boido et al.  2012). 

The pattern of clinical progression in DM is relatively homogenous in comparison with the 

phenotypic heterogeneity in ALS. Such advantage may facilitate the evaluations of specific 

biomarkers and therapies for ALS that could be conducted in a clinical population in an 

environment that mimics human trials (Coates and Wininger, 2010). The DM-affected 

dogs with E40K mutation could be used to investigate a comparable SOD1 mutation in 

ALS (D90A), for instance, to identify modifying loci and environmental influences that 

may contribute to exacerbation or amelioration of the disease severity in both mutations 

(Awano et al.  2009). The common euthanasia of DM-affected dogs in early stage disease 

may also provide valuable tissue material that is rarely available from ALS patients. Based 

on these grounds, further characterisation of DM as a potential ALS model is critically 

required and can be accomplished through collaboration between research groups 

investigating ALS and DM. 

The clinicopathological comparison between classic ALS, and DM is summarised in Table 

1-2. D90A is potentially a closely related SOD1 mutation with that described in DM and 

therefore the characteristics are also included for comparison. 



 
 

 

Table 1-2 : The clinic-pathological comparison between classic ALS, recessive D90A SOD1 mutation and DM. 

Disease Features 
 

Classic ALS (spinal form) 
 

Recessive D90A phenotype in 
familial ALS 

 

DM 
 

SOD1 Mutation 
 
     Mode of inheritance 

- 20% in familial ALS, 1-7% in 
sporadic ALS 

- Mostly autosomal dominant 
pattern with few exceptions 

- 1-2.5% in Scandinavia, less than 
0.05% elsewhere 

- Recessive inheritance with 
incomplete penetrance  

- Heterozygous D90A appears as 
dominant trait 

 

- 76-94% of DM-affected population 
harbouring E40K mutation 

- Recessive inheritance with 
incomplete penetrance 

- The genotype-phenotype correlation 
of E40K heterozygote has not been 
fully elucidated 

Signalment  and disease progression 
     The mean age of onset 
     The mean survival time 
     Sex predilection (male:female) 
     Clinical progression 
          

 
- 60 years 
- 2-5 years 
- 3:2 
- Average 2.5 years from first onset  
     to bulbar signs 

 
- 44 years 
- 13 years 
- 1:1 
- May vary from months to years 
- Average 4.1 years from first onset 

to upper limb involvement 
- Average 5.4 years post onset to 

bulbar symptoms 
 
 

 
- 9 years 
- 3 years (36 months) 
- 1:1  
- 6-9 months from first onset to non-

ambulatory paraparesis 
- LMN paraplegia within 9-18 

months post onset 
- Thoracic limb involvement to brain 

stem signs stage within 14-36 
months 

Clinical signs 
     Onset 
 
 
     First Symptoms      

 
- Insidious and asymmetrical, with 

first onset either in upper or lower 
limbs 

- Difficulty in lifting the upper or 
lower limbs 

- Stumbling or clumsiness 
- Muscle cramps and fasciculation 

are rarely noticed at this stage 

 
- Insidious and asymmetrical with 

first onset in the lower limbs 
 

- Muscle stiffness and cramps, 
clumsiness and general fatigue 

- Pain in lumbar or lower limb region 
 

 

 
- Insidious and asymmetrical, with 

first onset in pelvic limbs 
 

- Scuffing  
- Difficulty climbing/goind down the 

stairs 
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Disease Features 
 

Classic ALS (spinal form) 
 

Recessive D90A phenotype in 
familial ALS 

 

DM 
 

Clinical signs (cont’d) 
     Early stage 
 
      
 
 
 
 
 
 

 
- Mixture of UMN and LMN signs 

although patients with UMN 
dominance have been identified 

- Asymmetric spastic paresis, 
muscle atrophy in upper or lower 
limb 

- Muscle cramps and fasciculation 
are more prominent 

 
 
 

 
- Mixture of UMN and LMN signs 
- Asymmetrical, spastic paraparesis 

in lower limb 
- Muscle atrophy and fasciculations  
 
 

 
- Initially start with UMN followed 

by LMN signs 
- Worn and bleeding claws due to 

scuffing 
- Asymmetrical spastic paraparesis 

with general proprioceptive ataxia 
in pelvic limbs 

- Crossing limb and swaying 
movement of pelvis 

- Mild muscle atrophy in pelvic limb 
  

     Late stage - Bulbar signs; dysarthria followed 
by dysphagia 

- Facial weakness and tongue 
atrophy 

- Urgency in micturition/ 
incontinence and cognitive 
impairment are rare but have been 
reported 
 

- Ascend to upper limbs 
- Development of bulbar signs 
- Urgency of micturition or difficulty 

in urination is common 
- Generalised muscle atrophy and 

tetraplegia are common at death 
- No cognitive abnormalities 

- Ascends to thoracic limbs 
- Urinary and fecal incontinence are 

rare but have been reported 
- Bulbar signs; dysphagia and 

inability to bark 
- Generalised muscle atrophy and 

tetraplegia  

Cause of death - Respiratory failure due to 
respiratory muscle paralysis 

- Respiratory failure  - Euthanasia 
- Natural cause is not determined but 

respiratory difficulty may be 
observed at late stage 

 

Table 1-2 (cont’d): The clinic-pathological comparison between classic ALS, recessive D90A SOD1 mutation and DM. 
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Disease Features 
 

Classic ALS (spinal form) 
 

Recessive D90A phenotype in 
familial ALS 

 

DM 
 

Pathology 
     Central nervous system    
 
 
 
 
 
 

 
- Severe loss of Betz’s cells and 

pyramidal neurons  
- Diffuse degeneration of spinal cord 

and secondary demyelination, 
specifically in the corticospinal 
tract in the lateral and anterior 
funiculi 

- Astrogliosis 
- Degeneration of neurons in cranial 

nerves nuclei V,VII,IX,X.XII in 
brainstem 

- Various inclusion bodies including 
SOD1 containing inclusions found 
in neurons and astrocytes 

 
- Speculated to be similar with 

classic ALS 
- Lewy body-like hyaline inclusions 

or astrocytic hyaline inclusion 
containing SOD1 antigen 

 

 
- Massive axonal degeneration with 

secondary demyelination at the 
lateral funiculus and dorsal column 
of the middle to caudal thoracic 
region  

- Astrogliosis 
- Mild gliosis and chromatolysis in 

grey matter 
- Neuronal loss, chromatolysis and 

gliosis particularly in red nucleus of 
the brain 

- SOD1 containing inclusions in 
motor neuron cell bodies of the 
spinal cord 

     Peripheral nervous system 
 
 
 
 
 
 
 
      
 

- Axonal degeneration and 
demyelination of nerve fibres in 
ventral root particularly in cervical 
and lumbar region 

- Reduced number of neurons in 
dorsal root has been reported 
although sensory system is spared 
in most cases 

 Neurogenic atrophic changes in   
 mucles 

 

- Speculated to be similar with 
classic ALS 

 

- Nerve fibre loss, axonal 
degeneration and secondary 
demyelination in the dorsal root  

- Neurogenic atrophy changes in 
muscles 

Table 1-2 (cont’d): The clinic-pathological comparison between classic ALS, recessive D90A SOD1 mutation and DM. 
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1.5 An Introduction to Protein Biomarker Discovery 

1.5.1 General Concept 

A biomarker or biological marker is a characteristic that can be measured objectively and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention (Atkinson Junior et al.  2001). In a 

broad sense, the term “biomarker” is an index of a complex biological system that may be 

regarded as being cellular, biochemical, genetic, or a specific molecular alteration that 

gives rise to a parameter that can be measured in any biological media such as tissue, cells 

or body fluids (Garban et al.  2005). The concept of biomarkers have been applied in 

diagnostic medicine since 14th century or earlier, including the inspection of urine colour 

and sediment to detect urinary disease in human patients. Blood pressure, for instance is 

another example of an established biomarker, and has been used since 1901 to correlate  

elevated blood pressure and adverse cardiovascular outcomes (Desai et al.  2006). Since 

then the biomarker concept has evolved into a powerful approach that requires a 

combination of screening technologies that permits an understanding of underlying disease 

mechanisms at all levels. 

The classic model of biomarkers is summarised in Table 1-3 (Sahu et al.  2011). However, 

the concept of biomarkers has evolved over time and has been defined from various 

viewpoints. A recent interpretation of the word biomarker is that biomarker in reality is an 

umbrella coalescence term that covers a vast number of disciplines, including the use and 

development of –omics tools and technologies, monitoring drug discovery and 

development processes leading to a more full understanding of the prediction, regression, 

outcome, diagnosis and treatment of disease. As the definitions suggest, biomarkers can be 

classified in many ways depending on their specific characteristics (eg., biochemical or 

physiological), technology used (eg., imaging, genomic or proteomic) and clinical 

applications (eg., diagnostic or therapeutic).  
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Type Definition 
 

Type 0  
 
 
Type 1 
 
 
 
Type 2 

Natural history marker that correlates with known clinical indicators such as 
disease predisposition and severity 
 
Drug activity marker that reflects the response of therapeutic intervention, such 
as drug responses, optimization of doses regimes and monitoring of 
combination therapies. 
 
Surrogate marker that is intended to substitute for a clinical end point and 
expected to give a prediction on the clinical benefit 
 

Table 1-3: The classic model of biomarkers. 

Adapted by Sahu and Others (2011). 

The ultimate goal of biomarker discovery is to develop screening tests for the early 

detection of diseases where patients can be advised and effectively treated in the early 

phase of the disease (Thatcher and Caputo, 2008). Therefore, the application of a 

biomarker is significantly relevant in chronic cases that may require extensive clinical 

investigation and complicated diagnosis (Tumani et al.  2008). The development of a 

biomarker requires extensive research including the often prolonged step of biomarker 

validation, with the aim to provide an understanding of the disease mechanisms that can be 

used and translated into clinical research. An ideal biomarker should be highly specific and 

reliable, and should be acquired with minimal intrusion and harm to the patient. It should 

also be sensitive enough to cope with many variables in general populations such as gender 

and ethnic group (Atkinson Junior et al.  2001). In addition, the clinical material for the 

ideal biomarker should be obtainable in a reproducible manner and the technology required 

for analysis must be easily accessible.  

1.5.1.1 “Omics” Platforms for Biomarker Discovery 

Technologies for high throughput scanning for biomarker discovery or the so called 

‘omics’ revolution has evolved at a rapid pace, allowing systematic analysis of biomarkers 

in many diseases (Ghosh and Poisson, 2009). ‘Omics’ technology is characterised by a 

range of modern analytical instruments that have astonishing ability to identify and/or 

quantify biological molecules within a short period of time. Significant amounts of 

information from various biological media can be obtained, not just to improve diagnosis 

but also to provide a basis for understanding the mechanism of a number of physiological 

and pathological processes in a complex biological system (Casado-Vela et al.  2011). The 

global approach to ‘omics’ research that is being adopted in biomarker discovery can be 
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categorised into several subsets including genomics, proteomics, and metabolomics 

(Moore et al.  2007; Niedbala et al.  2009). It is anticipated that the use of these 

applications would escalate biomarker detection by allowing scientists to overcoming some 

important obstacles in biomarker research (Rolland et al.  2012; Truong et al.  2012). 

However the complexity of biological systems precludes progress in biomarker discovery 

and data generated by investigating individual components in isolation may be difficult to 

interpret. Therefore, in the past few years, biomarker-based research is geared towards an 

integrative approach of ‘omics’, and has been a preferable approach to generate more 

specific and sensitive biomarkers for diseases (Aggarwal and Lee, 2003; Robeson et al.  

2008).   

Genomics is the discipline of studying genomes in organisms, and concerns the structure, 

function, evolution and mapping of genomes (Fertig et al.  2012). The application of 

genomics in biomarker discovery has made substantial progress towards understanding the 

genetic linkage (such as mutations and polymorphisms) in diseases such as cancers 

(Garman et al.  2007; Dallol et al.  2012) and neurodegenerative disorders (Borovecki et al.  

2005; Weinberg and Wood, 2009), and has facilitated the development of specific 

diagnostics and therapeutics based on the genetic variations and disease predispositions. 

The technology of genomics spans a variety of methods used to investigate gene 

expression, transcript level profiling, gene sequencing, and DNA microarrays (Wilson et 

al.  2004; Niedbala et al.  2009). Emerging themes in genomic technologies also include 

whole genome sequencing, microRNA and epigenetics (Casado-Vela et al.  2011). 

Although genomics are able to provide significant amounts of information on gene 

structure  and activity, the behaviour of gene products are difficult to predict, due to 

complex gene regulation processes at the level of translation (Dove, 1999). Unlike the 

relatively unchanging genome, the dynamic proteins in any particular cell change 

dramatically in response to the biological events such as post-translational modifications, 

aging, stress, as well as drug or pathologic responses (Cho, 2007). Thus, genomics 

information in isolation does not provide a complete profile of protein abundance and its 

structure and function.  

Proteomics is a field that promises to bridge the gap between genes and cellular activities, 

that has the capability to comprehensively examine protein expression, structural variation 

and protein-protein interaction (Wilkins et al.  1996). Proteomics approach has been 

applied in various areas of medicine, ranging from deciphering molecular pathogenesis of 
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disease to the identification of novel drug targets and the discovery of potential diagnostic 

biomarkers (Frank and Hargreaves, 2003; de Vera et al.  2006). The emergence of 

proteomic technologies is being driven by the development and integration of automated 

large-scale analytical instruments at the same time as the emergence of sophisticated 

bioinformatics approaches for analysing convoluted proteomics data (Tyers and Mann, 

2003; de Vera et al.  2006). Technologies employed in proteomic based investigations 

include the combination of protein separation tools and protein identification by high 

resolution mass spectrometry (see 1.5.3, page 61) (Aebersold and Mann, 2003; Cho, 2007).  

Another rapidly emerging ‘omics’ technology is metabolomics (Patti et al.  2012). 

Metabolomics involves the analysis of the profile of metabolites from a repertoire of cells 

(Frezza et al.  2011), specific tissues (Li et al.  2011), organs (Wishart, 2006) and 

biological fluids (Gieger et al.  2008; Suhre et al.  2010). The identities, concentrations and 

changes within these compounds result from complex interactions between gene and 

protein expression as well as the environment, and this information when collected in an 

integrative and comparative manner with genomics or proteomics is potentially useful. 

(Kaddurah-Daouk et al.  2008). Several platforms of metabolomic technology have been 

described in the literature and include nuclear magnetic resonance (NMR) spectroscopy, 

high-performance liquid chromatography and mass spectrometry based platforms 

(Kaddurah-Daouk et al.  2008; Patti et al.  2012). Furthermore, the high-throughput nature 

of metabolomics is particularly ideal in performing biomarker screening for diseases or for 

following drug efficacy and increases the ability to predict individual variation in drug 

response phenotypes (Coen et al.  2004; Lindon et al.  2004).   

1.5.1.2 Challenges and Limitations 

Despite high throughput technologies in developing biomarkers, the characterisation of a 

clinically useful biomarker is not straightforward and often requires an extensive period of 

research from initial discovery to subsequent validation (Niedbala et al.  2009). The 

restricted sourcing of clinical material due to ethical restrictions alongside quality of 

sample obtained are considered as central issues that cannot be overlooked and will 

ultimately affect the quality of biomarkers produced. This affirms the need for 

collaboration and continuous interaction between researcher and clinician. The biological 

stability of substances is also critical and requires thorough assessment if long-term storage 

is needed (Ferguson et al.  2007). Consistency when handling and processing the samples 

may therefore alleviate this problem (Pieragostinoa et al.  2010).  
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The validation process for biomarkers requires confirmation of precision in terms of the 

assay’s efficacy and reproducibility. Most importantly, the association of the biomarkers 

with clinical and pathological features of the specific diseases must be established. These 

requirements are complicated by the diversity and inherent inconsistencies in biological 

systems and by the differences between individuals, caused by the limitless variables from 

genetic background, environment, ethnic groups, diet, age and gender (Mayeux, 2004). 

These variables can create background ‘noise’ in biomarker identification and a failure in 

considering these factors may influence the validity of clinical studies. Fortunately, these 

variables can be selectively controlled in research and clinical trials, although the outcomes 

may not necessarily represent the global disease population.  

Reliability and reproducibility in biomarker investigations is also crucial in order to 

facilitate the validation process (Dougherty, 2012). A reliable biomarker must be capable 

of being reproducibly quantified in the independent laboratory by independent personnel. 

The lack of reproducibility has become one of the common problems in biomarker 

validation which can be contributed to lack of standardisation in multi-step protocols 

between personnel or laboratories (Silberring and Ciborowski, 2010) as well as equipment 

errors (de Vera et al.  2006). A well-organised manual for procedures outlining the details 

from sample collection to analysis and continuous interaction between laboratories may 

alleviate this problem. Concerns of the availability of samples and their replicates that 

accurately reflect the diseased and non-diseased groups have also been reported to affect 

the reproducibility of biomarker identification (Issaq et al.  2011). Although it is ideal to 

generate a large sample number for biomarker analysis driven by statistical power analysis, 

the predicted sample size is not always practical in a clinical environment. 

The biomarker discovery in medicine clearly exerts an enormous potential, however 

without proper planning of experimental design and sample management, the efforts and 

expectations may very easily hampered. The specific limitations described in this section 

are often underestimated and as a result, many potential biomarkers may not be validated 

and fail to reach the desired endpoint. 

1.5.2 Biological Fluids Vs. Tissue Material 

An important consideration in protein biomarker investigation includes the selection of an 

appropriate type of sample as well as the practicality of collecting the sample of interest 

(Muschik et al.  2008). Besides using the ‘gold standard’ samples obtained from a variety 
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of biological media including tissues or biological fluids, other factors such as having 

control material that is significantly different in respect of the disease of interest including  

an age-matched control group should be considered, although sometimes this is not 

achievable (Rifai et al.  2006). Investigative studies using tissues obtained from biopsy or 

post mortem afford the best opportunity of discovering novel biomarkers as it is not 

subjected to the dilution effect imposed on biological fluids, which may therefore require 

highly sensitive detection methods (Fang et al.  2009). However, selecting appropriate 

tissue samples for biomarker identification can be challenging as the distribution of the 

non- and diseased cells are typically heterogeneous and may complicate the data 

interpretation (Lahdesmaki et al.  2005). Fresh tissue specimens may not always be 

available, possibly due to the invasive nature of biopsy techniques, particularly involving 

CNS material (Dunckley et al.  2005). Tissue collection from post mortem is more 

practical however the variability of the patient’s agonal status may influence the specific 

biomarker parameters and reduced the sensitivity of biomarker detection (Perry et al.  

1982; Harish et al.  2011). This material also represents the end stage of the disease and 

therefore the proteome profiles could be further impacted by secondary pathogenic events. 

Furthermore, the establishment of a large enough archive of tissue may take years to 

accomplish (Dunckley et al.  2005).  

In general in the last decade biological fluids have garnered more attention in protein 

biomarker research due to their easy accessibility and availability compared to tissue 

material (Alrawashdeh and Crnogorac-Jurcevic, 2011). Biological fluids are dynamic 

components that largely reflect the physiological and pathological changes in the organ or 

tissues they come in contact with, and therefore may represent a rich source for biomarker 

discovery (Rifai et al.  2006; Alrawashdeh and Crnogorac-Jurcevic, 2011). Blood (serum 

and plasma) has been a common source and the most studied in protein biomarker 

discovery (Anderson and Anderson, 2002; Good et al.  2007), however other body fluids 

such as CSF (Kroksveen et al.  2010), urine (Wu et al.  2010; Coca and Parikh, 2008), 

saliva (Chiappelli et al.  2006; Kinney et al.  2011), ascitic fluid (Gortzak-Uzan et al.  

2008; Kashyap et al.  2010), bile and gastric juices (Deng et al.  2011), and tears (Zhou et 

al.  2009) have also been explored. The use of biological fluids in protein biomarker 

research also has a great potential in large scale investigation for developing diagnostic 

assays (Good et al.  2007). The method of collection is always low cost, either for single or 

multiple samples, at the same time as avoiding the risk of performing invasive tissue 
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biopsies in patients, although this is not entirely true for certain biological fluids such as 

bile and gastric juices (Alrawashdeh and Crnogorac-Jurcevic, 2011).  

Biomarker investigations in biological fluids come with their own set of challenges. The 

level of complexity of biological fluids is a significant limitation in biomarker discovery, 

since these biological media may consist of a complicated array of molecules such as 

lipids, proteins, and carbohydrate compound that may interfere or mask the analysis of 

molecules that are present in low concentration or near the limit of detection (de Vera et al.  

2006; Good et al.  2007; Thatcher and Caputo, 2008). Major abundant proteins such as 

albumin and immunoglobulin have also been described as ‘biological noise’ that can mask 

the low abundance molecules in biological fluids (Good et al.  2007). The depletion of 

these abundant proteins may improve the biomarker detection, however may also cause 

significant loss of proteins (Mayeux, 2004; De et al.  2010). The other limitation when 

dealing with biological fluids involves the pre-analytical variables, which can occur at any 

point from sample collection to the actual sample analysis (Ferguson et al.  2007). 

Therefore, regardless of the type of biological fluids employed, careful strategies on 

biomarker approach and sample management should be thoroughly assessed to improve 

the yield of quality biomarker.  

1.5.3 Proteomic Technologies  

The initial definition of ‘proteome’ analysis is the study of the entire protein complement 

expressed by a genome or by a cell or tissue type (Wasinger et al.  1995). Proteomics 

complements the study of genomes and transcript data, reflecting the true biochemical 

outcome of genetic information. Over the years, proteomics has evolved and become an 

advanced discipline that demands extensive investigations of proteins, from identification, 

quantity or abundance, posttranslational modification, binding molecules, and intracellular 

stability of proteins in complex biological systems (Doherty and Beynon, 2006). The 

proteomic approach has been widely used to identify biomarkers and understand the 

underlying disease mechanisms (Anderson and Anderson, 2002; Drabik et al.  2007; Issaq 

et al.  2011). Biological fluids have been preferably employed in protein biomarker 

research, with blood as a universal source for biomarkers, while the utility of CSF or urine 

may be restricted to the specific type of disease (Rifai et al.  2006).  

Classical proteomic work involves a protein separation step, which can be categorised as 

gel- and non-gel-based techniques (Westermeier and Marouga, 2005). Each of these 
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methods offers unique advantages but also suffers from substantial drawbacks. Therefore, 

the selection of the appropriate method is highly important prior to sample employment. 

The protein separation step is usually coupled with advanced mass spectrometry (MS) 

techniques, which has been a common denominator in proteomics that enables accurate 

protein identification in a given sample (Aebersold and Mann, 2003). In this section, we 

present a brief description of the basic proteomic technologies that are currently being used 

in biomarker projects.   

1.5.3.1 Protein Separation Techniques 

1.5.3.1.1 Gel-based Techniques 

The gel-based methods comprise one-dimensional electrophoresis (1-DGE) and two-

dimensional electrophoresis (2-DGE). The application of 1-DGE technique may be 

conventional, but highly valued and have been used for at least 40 years to fractionate or 

separate the protein components of a sample (Oledzka et al.  2012). The technique is 

simple, and does not require complex sample preparation. The 1-DGE provides direct 

comparison between protein profiles and can be subsequently stained with commercially 

available Coomassie blue and silver staining reagents that are compatible with advanced 

MS methods. However, the protein profiles in 1-DGE are only marginally quantifiable and 

separation based on protein molecular weight is limited to those proteins between 10 and 

250 kiloDalton (kDa).  

Two-DGE offers more specific protein separation and is a commonly employed technique, 

since the core equipment is not prohibitively expensive (compared to the non-gel-based 

technique) and does not require dedicated specialists to utilise the equipment. This method 

first separates proteins by isoelectric focusing, which is based on their net charge and is 

followed by separation on a second dimension on polyacrylamide gel, which separates the 

proteins based on their size (Monteoliva and Albar, 2004). The combination of size and 

charge are often unique to a particular protein and the ‘spots’ generated can be 

subsequently identified by MS. One of the biggest limitations of this technology is the 

reproducibility of the profiles generated by 2-DGE although this has been partially 

overcome with the availability of affordable precast gels and reagents. Further 

development of 2-DGE also includes difference gel electrophoresis (DiGE) that allows for 

pre-labelling of the proteins with spectrally distinct dyes. The mixed samples can then be 

analysed on the same gel and the degree of overlap or non-overlap of the protein spots can 

be assessed by scanning the gel at distinct wavelengths. This technique minimises the time 
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involved to conduct the analysis and may improve the quality of the result by minimising 

the risk of inter-gel variation compared to conventional 2-DGE (Kolkman et al.  2005; 

Westermeier et al.  2008a).  

1.5.3.1.2 Non-gel-based Techniques 

The non-gel based strategy involves coupling a pre-fractionation step to direct MS 

analysis. The techniques include liquid chromatography (LC) and capillary electrophoresis 

(CE) separation techniques (Monteoliva and Albar, 2004) that allow for pre-fractionation 

of the source material to generate a more manageable sample and allow optimal resolution 

by MS. LC fractionates proteins according to their specific properties, either protein charge 

by ion exchange chromatography (Makawita et al.  2011), size of protein using gel 

filtration technique (Tantipaiboonwong et al.  2005), hydrophobicity through reverse phase 

chromatography (Alley, Jr. et al.  2010) or binding of specific ligands, such as antibodies, 

using affinity chromatography (Yang et al.  2006). These pre-fractionation techniques are 

then capable of generating a refined protein population that can then be analysed by MS. 

However as in the 2-DGE method, LC also suffers from the issue of reproducibility 

(Washburn et al.  2003). Recent developments of two-dimensional liquid chromatography 

have recently been adopted in the separation of complex mixtures in diverse fields, where 

the protein fractionation is performed by a combination of two technologies such as ion 

exchange and reverse phase chromatography (so-called MudPIT) (Westermeier et al.  

2008b; Francois et al.  2009). With this set-up, more specific proteins can be identified in a 

fully automated manner with minimal handling of the sample (Tian et al.  2010).  

CE is another emerging technology that offers several advantages including fast separation 

and high resolution, enabling robust detection of potential biomarkers (Kolch et al.  2005).  

The CE separations are facilitated by the use of high voltages (10-30 kV), which may 

generate electro-osmotic and electrophoretic flow of buffer solutions and ionic species, 

respectively, within the capillary (Huck et al.  2012). CE has been shown to be a powerful 

separation method for intact proteins with a high efficiency in the identification of large 

proteins compared to conventional LC (Mischak et al.  2009; Desiderio et al.  2010). Over 

the years, various interfaces with MS technologies have been developed (Klampfl, 2006), 

which have enhanced the utility of CE. The advancement of sample preparation methods 

has also reduced the length of time taken and increased the sensitivity of this technique. 

The application of CE in biomarker discovery has increased during the last five years 

(Klampfl, 2006), resulting in a significant number of proteins being identified in a range of 
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biological fluids, particularly in urine (Zurbig et al.  2009; Mischak et al.  2010) and CSF 

(Wittke et al.  2005; Jahn et al.  2011).   

1.5.3.2 Protein Identification by Mass Spectrometry  

Analysis by MS is central to proteomic studies (Rifai et al.  2006; Yates et al.  2009). The 

development in MS technology and accompanying software has greatly enhanced the 

speed of analysis and data interpretation (Westermeier et al.  2008c). All MS technologies, 

regardless of type, ionisation source, performance characteristics, operate according to the 

same basic principle, which produces a mass spectra with an output plot of the mass-to-

charge (m/z) ratio of ions based upon their motion in an electric or magnetic field (Cho, 

2007; Yates et al.  2009). MS comprises three essential components, an ionisation source, a 

separation manifold and a detection system. In general, the molecules in the source 

material (proteins, peptides, metabolites) are ionised in the gas phase, subsequently 

separated according to their m/z ratio, and propelled towards the analyser by virtue of 

charge repulsion. The spectra recorded by the detector are stored using appropriate 

software and the identification of proteins is performed by an interrogation of search 

engines utilising available databases. A more detailed description on MS technologies is 

beyond the scope of this thesis however Table 1-4 provides a list of various ionisation 

sources in MS systems together with the types of mass analysers that are compatible with 

each system.   

Ionisation Source 
 

Mass Analysers 

Matrix assisted laser desorption/ionisation 
(MALDI) and  
Electrospray ionisation (ESI) 
 
 
 
Surface-enhanced laser desorption/ ionisation 
(SELDI) 
 

Time-of-flight (TOF)\ 
Quadrupole  
Ion trap 
OrbitrapTM 

Fourier transform ion cyclotron (FT-ICR) 
 
TOF 

Table 1-4: Type of ionisation sources and mass analysers in MS. 

 

MALDI coupled with TOF analyser has been a common analytical method for protein 

detection (Benagli et al.  2011). MALDI involves ionisation of protein compounds that 

have been incorporated in crystalline structure or matrix, which are then irradiated by laser 

energy at a certain wavelength (Westermeier et al.  2008c). The rapid laser heating causes 
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desorption and ionisation of the analytes into the gas phase that are subsequently 

accelerated to the analyser (Yates et al.  2009). The mass determination is based on the 

application of constant voltage and the velocity of an ion when it reaches the detector 

(Reinhardt and Lippolis, 2011). This instrument has a number of advantages including a 

relatively straightforward procedure while at the same time providing high sensitivity and 

resolution with a small sample volume (Reinhardt and Lippolis, 2011). However, the 

reproducibility of this system is strongly dependent on the sample preparation as it is 

highly sensitive to contaminants such as salts (Yates et al.  2009; Dubois et al.  2012).  

1.6 Cerebrospinal Fluid Protein Biomarkers:Advantag es 

and Practical Considerations 

1.6.1 CSF as an Ideal Biomarker Source for Chronic 

Neurodegenerative Disorders 

CSF is a clear, colourless fluid that is predominantly produced by choroid plexus (Redzic 

et al.  2005; Sakka et al.  2011). CSF circulates within the ventricles of the brain and 

subarachnoid space of the CNS system (Martins et al.  1972). For many decades, the 

primary function of CSF has been described as a “protective buoyancy jacket” of the CNS 

(Redzic et al.  2005), however there is more recent evidence of its specific role in 

modulating intracranial pressure and excretion of toxic by-products produced from brain 

metabolic processes (Di Terlizzi and Platt, 2006). In addition, CSF contains various 

proteins, electrolytes, enzymes, neuropeptides and other biochemical compounds and also 

has a filtration function allowing movement of water-soluble substances from brain 

parenchyma into the CSF (Di Terlizzi and Platt, 2006; Johanson et al.  2008).CSF contains 

high salt with a very low protein concentration, that is approximately 200 fold lower than 

in plasma (Ramstrom and Bergquist, 2007). In dogs and cats, the CSF protein 

concentration is approximately 500 fold lower than in plasma (10-40mg/dl compared to 5-

7g/dl) (Di Terlizzi and Platt, 2006). The main fraction of protein in CSF originates from 

blood, (eg., albumin) which constitutes 35-80% of the total protein in CSF (Reiber and 

Peter, 2001). Only 20% of CSF proteins are predominantly brain-derived (Reiber and 

Peter, 2001).  

CSF has been considered a promising source of biomarkers particularly for chronic 

neurodegenerative disorders (Tumani et al.  2008). The alteration of protein levels, post-
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translational modifications or turnover within the CSF may be reflected by different 

physiological and pathological conditions (Di Terlizzi and Platt, 2006; Tumani et al.  

2008). CSF proteins are also more likely to be unique and potentially CNS-specific, 

therefore fit the criteria of an ideal biomarker of chronic neurodegenerative disorders 

(Tumani et al.  2008). Over the past few years, several groups have characterised the 

human CSF proteome to establish CSF biomarkers for major human neurodegenerative 

diseases including Alzheimer’s disease (AD) (Finehout et al.  2007) and Parkinson’s 

disease (PD) (Van Dijk et al.  2010) and ALS (Ranganathan et al.  2005; Pasinetti et al.  

2006). Together, these studies have generated over 1500 CSF candidate proteins that are 

altered in CSF, although very few candidate proteins have been successfully translated into 

clinical practice (Abdi et al.  2006). An example of CSF biomarkers that have been well-

established and validated include amyloid beta1-42 (Aβ1-42), total-tau (t-tau) and 

phosphorylated-tau-181 (p-tau-181) proteins in AD (Humpel, 2011). The combination of 

these CSF biomarkers with supportive clinical findings has significantly increased the 

diagnosis of sporadic AD, which yields a combined sensitivity of 95% and a specificity of 

85% (Blennow, 2004; Marksteiner et al.  2007; Blennow et al.  2010). However the 

successful use of protein-based biomarkers for ALS has yet to be accomplished, although 

several candidate proteins have been identified as promising CSF biomarkers for ALS, 

which are further described in 1.7, page 68. 

1.6.2 Practical Considerations Pertaining to CSF Pr oteomics 

The sampling of CSF represents the most direct and convenient means to study the 

biochemical changes occurring in the CNS. However, the complexity and dynamic range 

of protein concentrations and protein heterogeneity in the CSF and the complexity of CSF 

as a biological fluid does create significant challenges to the existing proteomic 

technologies (Yuan and Desiderio, 2005). The combination of proper sample management, 

pre-analytical considerations as well as application of highly sensitive proteomics 

technology may facilitate the progress of the protein-based biomarker study towards 

success (Ferguson et al.  2007; Kroksveen et al.  2010).  

1.6.2.1 Common Issues Pertaining CSF 

Although CSF may be a valuable repository for potential biomarkers of CNS disorders, the 

availability of the relevant clinical material is limited and determined by clinical 

requirements. CSF sampling requires an invasive method of collection particularly in 
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lumbar collection compared to blood, saliva or urine samples (Di Terlizzi and Platt, 2009; 

Alrawashdeh and Crnogorac-Jurcevic, 2011). The CSF composition may be influenced by 

various biological variables including fluctuation of plasma composition, pathogenic 

processes, age and medications that can potentially give rise to an atypical biomarker 

signature (Zhang et al.  2005). Obtaining a sufficient volume of CSF (recommended 

volume between 1-2ml) for biomarker investigations is imperative (Teunissen et al.  2011), 

but is not always feasible, particularly from companion animals within the clinic 

environment. CSF has a very low protein concentration therefore a large volume of CSF 

may be required for biomarker analysis to achieve the minimum threshold of detection. In 

addition, CSF is easily contaminated by peripheral blood during sample procurement, 

which is more common in CSF lumbar collections. The iatrogenic blood contamination 

could dramatically alter the CSF protein profile and stability, subsequently confounding 

the CSF biomarker identification (You et al.  2005; Teunissen et al.  2009).  

CSF is known to have a high salt content (>150mmol/l) (Yuan and Desiderio, 2005). The 

high concentration of salt has the potential to reduce efficiency of protein separation in gel 

electrophoresis, as it carries endogenous charge, which then affects the protein migration in 

the ampholyte matrix (Yuan et al.  2002). The high content of salt may affect the ionisation 

in mass spectrometry, suppressing the peptides and protein signal (Drabik et al.  2007). 

The potential biomarker candidates in CSF may be secreted or recruited from CNS by the 

blood-brain barrier, and is likely to be present at very low concentrations (Wetterhall et al.  

2010). The detection of the low abundance proteins could be masked by more abundant 

proteins in CSF such as albumin (50-70%) and immunoglobulin (5-12%) (Reiber and 

Peter, 2001; Di Terlizzi and Platt, 2006). The employment of desalting and abundant 

protein depletion steps in CSF preparation protocols prior to proteomics has been proven to 

improve biomarker detection (Carrette et al.  2003; Khwaja et al.  2006). However, despite 

a vast range of commercially available kits for desalting and protein depletion available for 

CSF, poor protein recovery and variablity of efficacy of these preparation protocols 

remains a critical issue in CSF proteomics. 

1.6.2.2 Pre-analytical Variables in CSF 

In order to obtain reliable results and reduce the risk of detecting false biomarker 

candidates, proper sample handling is important to minimise the effect of pre-analytical 

variables on specific CSF proteins (Rosenling et al.  2009). The clinical or laboratory 

environment can be a potential source of limitless variables affecting the CSF proteome, 



Chapter 1 
 
 

 68

which may occur at any point from sample collection and laboratory storage, thus 

enhancing the risk of introducing poor quality samples into proteomic biomarker 

investigation (Ferguson et al.  2007). The net effect may introduce significant alterations 

on many CSF proteins and compromise data interpretation (Ranganathan et al.  2006). 

Therefore, identification and assessment of potential pre-analytical variables is imperative 

prior to CSF biomarker investigation and may accelerate biomarker detection and 

translation into clinical practice.  

CSF in companion animals can be obtained either from cisterna magna or lumbar cistern 

(Di Terlizzi and Platt, 2009). Therefore, there is potentially a gradient effect with the 

composition of CSF proteins influenced by the site of sampling, although this has not yet 

been systematically investigated (Ferguson et al.  2007). The impact of blood 

contamination of CSF may alter the CSF protein stability due to the presence of blood-

borne proteases (You et al.  2005). One of the most significant pre-analytical variables that 

can arise from clinical environment includes CSF handling and processing temperatures 

(Ferguson et al.  2007). CSF samples may be collected during non-operational hours and 

often temporarily stored either at room temperature or at 4°C for various lengths of time 

before being transferred into long-term storage (Bienzle et al.  2000; Fry et al.  2006). This 

handling practice may be ideal to preserve cellular morphology of CSF, however could 

potentially destabilize and alter the protein concentrations (Fry et al.  2006; Kaiser et al.  

2007). Frequent freeze-thawing of CSF samples could also cause protein aggregation and 

has been found to exert marked effects on protein profiles, and therefore should be avoided 

whenever possible (Rosenling et al.  2009). Many clinical proteomic studies are performed 

using CSF samples that have been stored over timescales varying from weeks to several 

years (Teunissen et al.  2009). Although it is a now a consensus that -80ºC storage is 

optimal for biological samples such as CSF, for the past several years -20ºC storage had 

been considered practical and economical. Studies have shown that the prolonged storage 

of CSF in -20ºC could result in a significant reduction of protein concentrations as well as 

abnormal protein cleavage or truncation (Carrette et al.  2005; Boccio et al.  2006).   

1.7 The Development of CSF Protein Biomarkers in AL S 

The current diagnostic criteria of ALS is solely based on clinical assessment and genetic 

testing (see 1.3.1, page 42), therefore, given the lack of diagnostic tests and limited 

understanding of ALS pathogenesis, many opportunities exist for developing protein 
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biomarkers for ALS. As a result, tremendous efforts have been made in the identification 

of CSF biomarkers in ALS, although many of them are yet to be validated for clinical trials 

(Ryberg and Bowser, 2008). The biomarker discovery in ALS aims to improve early 

disease detection since the majority of ALS cases are diagnosed on average a year after 

first onset (Leigh, 2007). In addition, the successful characterisation of ALS biomarkers 

may lead to early intervention with riluzole, which can prolong patients’ survival, as well 

as assisting in the identification of new therapeutic targets (see 1.3.1, page 45).  

Biomarker discovery in ALS is universal in nature and rarely targets specific ALS forms or 

phenotypes. It is plausible that the extreme heterogeneity of ALS in the context of 

aetiology (genetic and potentially environmental), disease onset, progression and 

molecular pathogenesis could confound the ability of clinicians and researchers to identify 

homogeneous ALS subgroups for biomarker studies (Ganesalingam and Bowser, 2010). 

The heterogeneity issue also emphasises the need for the identification of multiple 

biomarkers to facilitate diagnosis and monitor ALS progression (Ryberg and Bowser, 

2008).  

In this section, I aim to discuss the development of CSF biomarkers in ALS by proteomics, 

with emphasis on selective CSF proteins that have been described as potential candidates 

in ALS literature. To date, over 40 different CSF proteins have been investigated in ALS 

(Ryberg and Bowser, 2008). One of the large groups of proteins is hormone and growth 

factors, particularly hepatocyte growth factor (HGF) and a hormone regulating blood cell 

production, erythropoetin (EPO). HGF has been shown to be upregulated in two 

independent studies (Kern et al.  2001; Tsuboi et al.  2002), although it has also has been 

reported in other neurodegenerative diseases such as AD (Tsuboi et al.  2003) and PD 

(Salehi and Rajaei, 2010). The EPO levels, in CSF from ALS patients, has been reported to 

be significantly reduced, a situation that is recognised as unique for ALS (Brettschneider et 

al.  2006b; Brettschneider et al.  2007). Other proteins belonging to this group that have 

shown altered levels include FGF-2 (Johansson et al.  2003), GNDF (Grundstrom et al.  

2000) and PEDF (Kuncl et al.  2002).  

The second group of proteins involves interleukins and immune-related proteins, which 

include RANTES (regulated on activation, normal T cell expressed and secreted), Flt3 

(FMS-like tyrosine kinase 3) (Ilzecka, 2006) and MCP-1 (monocyte chemoattractant 

protein-1) proteins. These proteins have been reported to be upregulated in ALS patients’ 

CSF, however only MCP-1 protein has been considered a promising candidate for ALS 
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since the levels are consistently increased in ALS CSF between studies (Wilms et al.  

2003; Baron et al.  2005; Nagata et al.  2007).  

Several neuron-specific proteins, including tau protein, (Jimenez-Jimenez et al.  2005; 

Brettschneider et al.  2007), p-tau (Sjogren et al.  2002) and neurofilament (heavy and light 

subunits) (Norgren et al.  2003; Brettschneider et al.  2006a; Zetterberg et al.  2007) have 

been investigated in ALS CSF. Both neurofilament heavy and light subunits are reported to 

be significantly upregulated in several studies (Rosengren et al.  1996; Norgren et al.  

2003; Brettschneider et al.  2006a; Zetterberg et al.  2007). Although neurofilament 

proteins are not specific to ALS, the high level of these proteins is associated with rapid 

progression of ALS and may serve as a diagnostic and prognostic biomarker for ALS 

(Brettschneider et al.  2006a; Zetterberg et al.  2007). The assessment of t-tau and p-tau 

proteins in ALS patients’ CSF revealed conflicting results, with most studies reporting the 

levels being unchanged (Sjogren et al.  2002; Brettschneider et al.  2007).  

Biomarker evaluations on enzymes and enzyme inhibitors have been reported in ALS CSF. 

Cystatin C is down-regulated in ALS CSF (Tsuji-Akimoto et al.  2009) while in one study 

the assessment of SOD1 protein levels demonstrated a significant increase (Jacobsson et al.  

2001; Frutiger et al.  2008) but not in other investigations (Zetterstrom et al.  2011). Other 

proteins, such as TIMP metallopeptidase inhibitor-2 (TIMP-2), matrix metalloproteinase-2 

(MMP-2) (Lorenzl et al.  2003) and matrix metalloproteinase-9 (MMP-9) (Beuche et al.  

2000) are unaltered whereas TIMP metallopeptidase inhibitor-1 (TIMP-1) levels have 

shown conflicting result in different studies (Beuche et al.  2000; Lorenzl et al.  2003)   

A recent proteomic study of human CSF from ALS patients have characterised a panel of 

CSF biomarkers, which include cystatin C, transthyretin (TTR), and neuroendocrine 

protein 7B2 (Ranganathan et al.  2005). In another study, a neurosecretory protein VGF is 

also identified together with cystatin C (Pasinetti et al.  2006). The neuroendocrine 7B2 is 

reported to be elevated, while TTR and VGF are significantly reduced in ALS CSF. The 

observations of TTR and cystatin C reductions in CSF are consistent with several ALS 

studies, therefore have been described as highly potential candidates for ALS biomarkers 

(Ranganathan et al.  2005; Wilson, 2011). 
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1.8 The Clinical Impetus for the Development of a 

Biomarker in DM 

A definitive diagnosis of DM is complicated by the lack of diagnostic tests in the clinic, 

with patient management relying on the “best estimation” and the necessity for post 

mortem examination for confirmation (Coates and Wininger, 2010). There is also a lack of 

disease markers that can be used to objectively understand the progression of the disease 

which negatively impacts on clinical decision-making and development of treatment 

regimes. The establishment of a Sod1 mutation in DM has made significant advancement 

in delineating a genetic basis in DM at the same time as implying DM as a potential 

orthologue of ALS (see 1.2, page 40). In addition, the Sod1 mutation has been widely used 

as a genetic marker for DM, which has significantly improve DM prediction in the clinic 

(Awano et al.  2009). However, genetic screening against 118G>A Sod1 mutation in DM 

does not provide confirmative diagnosis in the clinic therefore there is a clinical need for 

the establishment of biomarkers for DM that can be used as a complementary, specific 

diagnostic test to support the diagnosis of DM.  

The extensive research and emerging publications on ALS have provided interesting 

insights and hypotheses that could be adopted in DM research (Coates and Wininger, 

2010). Biomarker studies in ALS have listed promising biomarker candidates that could be 

substantiated in the DM model. Therefore, the evaluation of relevant ALS biomarkers in 

canine DM is pertinent and may have a major impact in the diagnosis and future 

development of therapeutic targets in DM. The recent advancement in and increased 

availability of proteomic technologies could also facilitate the biomarker development in 

DM, offering a great promise of understanding the disease mechanism in DM. Based on a 

significant understanding of the genetic basis in DM and the accessibility of biomarker 

technology with an established collaboration between clinician and researchers, this 

objective has become a real possibility.  

1.9 Hypothesis and Aims of Research 

The main aim of this research is to establish potential CSF biomarkers for DM. We 

hypothesised that canine CSF is an appropriate biological material to identify potential 

protein biomarkers for DM that can be used to define the diseased population and increase 

confidence in clinical diagnosis when used in combination with Sod1 genotyping. The 
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Sod1 genotyping against 118G>A would be developed in this project and used as a 

supportive diagnostic tool for the selection of DM cases. The biomarker discovery in DM 

was approached initially by evaluating the utility of the selected ALS biomarkers in DM 

CSF, followed by the application of proteomic techniques to survey for other potential 

markers. In addition, the assessment of the potential pre-analytical factors that may arise in 

this project was also addressed.  

The background to each part of the project, specific aims and relevant studies are discussed 

in greater detail within each chapter. 
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2 General Materials and Methods 
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2.1 Overview 

The research design and methodologies are summarised in Figure 2-1. The clinical 

samples; CSF, blood in EDTA (ethylenediamine-tetraacetic acid) and plasma were 

collected in University of Glasgow Small Animal Hospital (UGSAH). Genomic DNA was 

extracted from EDTA blood and subsequently utilised for genotyping against 118G>A 

Sod1 mutation. CSF samples were utilised for biomarker investigation, which was 

conducted in two phases; 1) characterisation of selected ALS biomarkers in DM CSF by 

Western blot technique and 2) identification of novel CSF biomarkers in DM CSF by       

1-DGE and MALDI-TOF MS. Potential candidate proteins that were successfully 

demonstrated in DM CSF were used for selected stability characteristics, where the effects 

of CSF sample handlings were evaluated. The validation studies of CSF candidate proteins 

as DM biomarkers were performed by comparing the specific CSF protein levels in DM 

with a range of neurological conditions. For CSF proteins with perturbations associated 

with DM, further assessment of protein levels was conducted in plasma. The comparison 

of protein mRNA expression between controls and DM was performed by reverse-

transcriptase PCR (RT-PCR). In addition, the protein distribution in controls and DM 

spinal cord tissues were assessed by immunohistochemistry (IHC). The RT-PCR and IHC 

analyses were performed using archival tissue material. 

  

 

 

 

 



 

Figure 2-1: Research design and methodologies. : Research design and methodologies.  

Chapter 2 
 
 

75

 



Chapter 2 
 
 

 76

2.2 Case Selection 

2.2.1 Clinical Material 

Clinical material for this research was derived from cases undergoing routine clinical 

investigation at neurology service of the UGSAH. The collection of clinical material and 

routine clinical investigations for each case was performed by residents that were 

supervised by board-certified neurologists. All samples were collected with owner’s 

permission and written informed consent (Appendix 8.5.5) following explanation on the 

sample deposition for diagnostic services and the use of left-over excess.  A complete case 

history was obtained from the owner and referring veterinary surgeon and all relevant 

information gathered and documented by attending neurologists. A thorough physical 

examination was performed in all cases prior to a detailed neurological examination.  

2.2.2 Clinical Diagnosis 

2.2.2.1 Neurological Examination 

All cases received a complete neurological examination as detailed by Lorenz and others 

(2004). Evaluation of mentation and changes in behaviour was based on clinician 

assessment at the time of anamnesis in the context of historical information. The gait was 

evaluated for lameness, coordination and weakness. Clinical evaluation on the cranial 

nerves I-XII was carried out on every patient.  

Conscious proprioception and motor function were assessed by paw position, reflex 

stepping, hip sway test and wheel-barrowing (Griffiths and Duncan, 1975). To assess the 

reflex step, the paw of one limb is placed on a piece of paper, or similar material, and the 

paper drawn laterally, moving the paw with it. In a normal dog, this displacement of the 

limb results in a reflex step returning the limb to approximately the original position. Hip 

sway reaction is another proprioceptive test, it is carried out by holding the dog in the 

pelvic region and gently pushing the dog in an alternating lateral fashion. The reaction of a 

normal dog involves the development of ipsilateral muscle tone to maintain balance, 

whereas the abnormal dog may step laterally or potentially fall in the direction it is pushed. 

Spinal reflexes (patellar, limb withdrawal) were assessed in each limb, with the dog in 

lateral recumbency. Muscle tone was assessed by passive flexion and extension of the 

limb. Muscle bulk and symmetry were evaluated by palpation. Sensory perception as a test 



Chapter 2 
 
 

 77

of spinal cord function was assessed by application of stimuli to the pelvic limb paw. 

Bladder and bowel function were evaluated based on history and perineal reflex.  

Based on neurological findings, the lesion(s) were localised justifying further ancillary 

diagnostic tests in the hospital. 

2.2.2.2 Ancillary Tests 

All clinical samples were submitted to Veterinary Diagnostic Services (VDS) in University 

of Glasgow. Blood in EDTA was used for routine haematology whereas for biochemical 

analysis, blood was collected in an anti-coagulant tube containing heparin. Blood smear 

and complete blood count (CBC) were requested for each sample. A full biochemical  

profile on blood included alanine transferase (ALT), aspartate transaminase (AST), 

alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), urea, creatinine, total 

protein, albumin, globulin, albumin-globulin ratio, bilirubin, electrolytes, calcium, 

phosphate, cholesterol, triglyceride, and glucose. Serum samples were also collected for 

potential serology tests.  

CSF samples were collected routinely in conjunction with myelography or MRI procedures 

to assess potential involvement of the central nervous system. Assessment of the physical 

characteristics of the CSF was performed immediately after collection and the result was 

recorded. Total erythrocyte and leukocyte counts were performed using a haemocytometer 

slide. Microscopic examination of CSF cytospin was performed to determine the 

differential leukocyte count and to identify the presence of any type of pleocytosis or 

abnormal cells such as bacteria and neoplastic cells. Protein content of CSF was estimated 

by turbidimetric method using 3% sulfosalycylic acid (Cecil Instrument, UK).   

Following sample collection, diagnostic imaging procedures, either radiography, 

myelography, CT or MRI were carried out under general anaesthesia. The precise 

anaesthetic regime depended upon the procedure and individual patient requirements. 

Electrophysiology studies such as EMG and NCV were also conducted under general 

anaesthesia as necessary. The tentative diagnosis was achieved based on history, clinical 

signs and supportive clinical findings. These details were recorded in the UGSAH 

electronic patient record (EPR), which was easily accessible. Cases were monitored, 

through re-examination, on a regular basis throughout the course of their disease. 
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2.2.3 Collection of Clinical Material 

Whole blood (1-1.5ml) was harvested from jugular vein using 23G hypodermic needle 

attached to 5ml syringe. The hair over one jugular groove was clipped if necessary and the 

venipuncture site was aseptically prepared. The dog was restrained as appropriate with the 

head tipped back exposing the jugular groove. The vein was raised and the needle was 

inserted with the tip upwards. Blood was withdrawn by gentle suction and transferred into 

tubes containing EDTA. 

CSF collection in dog was performed under general anesthesia. The volume of CSF taken 

from each subject in this study varied according to the body weight of the dog. A range 

from 0.5 to 1.5ml was collected into a plain tube and was sent for routine investigation as 

described in 2.2.2.2, page 77. The hair on the region of interest was clipped and the area 

aseptically prepared. For CSF collection from cistern magna, the dog was placed in lateral 

recumbency and the head positioned at 90° angle to the neck. The occipital protuberance 

and the lateral wing of atlas were identified and used as landmarks. The hypodermic needle 

(21G for large dog, 23G for small dog) was inserted 90° to the halfway of an imaginary 

midline between the occipital protuberance and the atlas (C1). Drops of CSF were allowed 

to flow into a plain collection tube. CSF collection from lumbar cistern was performed 

between the L5 and L6 or L6 and L7 vertebral interspace. The dog was positioned in 

lateral recumbency. The midline was located by palpating the dorsal spinous processes and 

the wings of ilium. A spinal needle was used for lumbar cistern collection. The stylet was 

removed to collect CSF. The site of CSF collection and the storage time were recorded for 

each sample.  

All clinical samples were temporarily stored at -20°C before being transferred to 

laboratory storage at -80°C. The immediate storage at -80°C was not possible due to the 

distance of the hospital from the lab and the difficulty in predicting the exact time that 

cases would be examined or samples collected.   
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2.3 Protein Analysis 

2.3.1 Sample Preparation 

2.3.1.1 CSF 

Following the collection of CSF into sterile tubes, samples were transferred immediately to 

-20 °C for short term storage (3 days). CSF samples were then transferred to the 

laboratory, on ice, allowed to thaw then centrifuged at 1000xg for 10 minutes at 4°C to 

remove cellular debris. CSF supernatant was aliquoted into a fresh 1.5ml eppendorf tube. 

The supernatant and pellet fractions were stored separately at -80°C until required. . 

2.3.1.2 CNS Tissue Homogenates 

A range of CNS tissue homogenates from mouse, sheep, and dog served as controls and 

were compared to canine CSF. Brain tissue homogenates from mouse were provided by 

Dr. Mark McLaughlin from Applied Neurobiology Group, School of Veterinary Medicine, 

University of Glasgow. Canine brain tissue was obtained during post mortem by Dr. 

Pamela Johnston and snap frozen in liquid nitrogen before transfer to -80°C. Prior to tissue 

homogenisation, the homogenisation buffer (Appendix 8.2.1) supplemented with a 

protease inhibitor cocktail (Sigma Aldrich Ltd, UK) was pre-chilled on ice. 0.2-0.3g of 

brain tissue was transferred to the pre-chilled mortar with liquid nitrogen. The tissue was 

briefly powdered with mortar and pestle, transferred to a 15ml tube and homogenised for 

10 seconds in homogenisation buffer by 12 passes of an Ultra-Turrax T8 blender (IKA 

Labortechnick, USA) set at maximum speed. The homogenates were centrifuged at 

1000rpm for 15 minutes at 4°C to remove debris and the supernatants aliquoted in fresh 

1.5ml eppendorf tubes and stored at -80°C until required.  

2.3.2 Total Protein Measurement for Biomarker Analy ses 

The total protein content was determined with a BCA (bicinchinonic acid) based protein 

assay kit (Fisher Scientific, UK) using bovine serum albumin (BSA) as protein standard. 

This method is an adaptation of Lowry-based method (Smith et al.  1985), which is based 

on the principle that the peptide bonds in aromatic amino acids reduce copper 2+ ions to 

cupric ions (Cu+) at an alkaline pH that then generates a purple chromogen, that is 

proportional to the amount of protein at a specific absorbance of 562nm. 50µl of blank 

(ultrapure water) and each BSA standards; 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 (mg/ml) were 
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measured compared to 5µl from the unknown sample. Incubation of the protein mixture 

was conducted at 37°C for 30 minutes following addition of 1ml BCA reagents. The 

absorbance was read on a standard spectrophotometer (Cecil Instruments, UK). The details 

of BCA reagents are given in Appendix 8.2.2. The protein concentration was determined 

using a standard curve that was plotted based on the BSA standards (absorbance versus 

concentration in mg/ml) and taking the dilution factor into consideration. 

2.3.3 Acetone Precipitation 

Acetone precipitation was used in specific studies. CSF was desalted using acetone 

precipitation technique to remove albumin and to enrich any proteins of lower abundance. 

The volume of CSF containing a known amount of protein (typically 250µg) were mixed 

with 4X sample volume of 100% ice-cold acetone and incubated at -20°C overnight. The 

mixture was centrifuged at 13000rpm for 10 minutes. The pellet was washed twice with 

80% acetone and the centrifugation process repeated. The protein pellet was allowed to dry 

for five minutes at room temperature. Re-suspension of protein pellet was accomplished in 

ultrapure water at the desired concentration.  

2.3.4 Sample Denaturation and Loading  

The amount of protein was calculated based on the protein concentration determined in 

BCA protein assay. Samples were prepared to give an equivalent amount of protein in the 

same volume by mixing the appropriate volume of CSF with 3X sample denaturation 

buffer (Appendix 8.2.3) containing sodium-dodecyl-sulphate (SDS) and made up to a final 

volume with ultrapure water. Samples were subsequently denatured in water bath at 90°C 

for four minutes. This process linearises the protein and the association of SDS induces a 

negative charge on the proteins that facilitates migration towards the anode on a 

polyacrylamide gel. The samples were loaded onto precast polyacrylamide gels with size 

markers (3-188kDa, SeeBlue®, Invitrogen, UK) 

2.3.5 One-dimensional Gel Electrophoresis  

One-DGE separates the proteins based on their molecular weight. Precast polyacrylamide 

gels (10 or 12 well) were employed using 1.0mm thick, 4-12% Bis-Tris mini gel 

(NuPAGE® Novex®, Invitrogen, UK). Electrophoresis was performed using the Invitrogen 

minigel rig with commercially obtained 2-(N-morpholino) ethanesulfonic acid (MES) 



Chapter 2 
 
 

 81

buffer at 1:20 dilution with ultrapure water (Invitrogen, UK). Protein separation was 

achieved by applying an electrical field for one hour at 140V, 250mA. 

2.3.6 Gel Staining  

The gel was transferred into a tray and washed three times with ultrapure water. Two 

staining methods were employed; Coomassie blue (SimplyBlue™ SafeStain, Invitrogen, 

UK) which is compatible with MS analysis and the more sensitive silver staining kit 

(SilverXpress®, Invitrogen, UK). The stained gels were dried for one hour using a gel dryer 

(BioRad Life Sciences, UK). 

For the Coomassie blue stain, 20ml of solution was poured into the gel tray. The gel was 

agitated gently and stained for one hour.  De-staining with ultrapure water was carried out 

three or four times, allowing 30 minutes for each wash. Visualisation of proteins by the 

Coomassie blue system reflects strong non-covalent binding with the proteins, which is 

proportional to the amount of proteins in the specific band. 

Silver staining was performed using a commercially available kit as recommended by the 

manufacturers. Initially the gel was fixed with a solution of methanol and acetic acid in 

ultrapure water. Following fixation with methanol and acetic acid, the gel was incubated 

with sensitising agent, glutaraldehyde. Subsequently, the gel was impregnated with silver 

nitrate solution and developed by formaldehyde and citric acid solution. The basic 

mechanism involves formation of silver ions complexed with amino acid chains, which 

subsequently reduces into metallic silver by formaldehyde in an acidified environment, 

allowing the proteins to be visualised.  

2.3.7 Western Blot 

The Western blot technique is an antibody based technique that is widely used subsequent 

to 1-DGE to detect specific proteins. The proteins in the gel are transferred to 

nitrocellulose membrane through application of electric field for a specific period of time. 

The bands are visualised using a chemi-luminescence (ECL) substrate that causes 

oxidation of the horse radish peroxidise labelled antibody complex a process that emits 

light as the reaction decays to the ground state, and which is proportional to antibody 

binding. 
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Each Western blot analysis in this study was performed once, therefore the reproducibility 

of this technique in determining the specific protein levels were not assessed. Following 

electrophoresis, the gels were removed from their plastic plates, the wells were removed 

and the gels carefully placed onto nitrocellulose sheets that are supplied as a component of 

a dry blotting system from Invitrogen (iBlot®). Proteins were then transferred using this 

system as per manufacturer’s instructions. This is a rapid procedure which is highly 

efficient and a reproducible transfer occurs in seven minutes. To confirm that the transfer 

is successful, the blot was stained with 0.1% Ponceau S in 5% acetic acid (Appendix 

8.2.4), a water soluble stain which highlights the separated proteins and allows a visible 

inspection of loading. The nitrocellulose membrane was washed three times for 5 to 10 

minutes and blocked with 5% milk powder in 1X Tris-buffered saline containing Tween 20 

(1X T-TBS, Appendix 8.2.5) for one hour. The membrane was probed overnight at 4°C 

with primary antibody and subsequently incubated with horseradish peroxidase-linked 

(HRP) secondary antibody for one hour. The dilutions of primary and secondary antibodies 

were made in 5% milk powder in 1X T-TBS. The proteins identified in this project with 

their source of primary antibodies, range of dilutions and secondary antibody links are 

summarised in Table 2-1.  

Primary 
antibody 
 

Dilution Sample Secondary 
antibody 

Source 

Cystatin C 
 
TTR 
 
Clusterin 
 
 
Haptoglobin 
 
VGF 
 
7B2 

1:1000 
 
1:10,000 
 
1:50,000 
1:100,000 
 
1:1500 
 
1:200 
 
1:500 
 

CSF 
 
CSF 
 
CSF 
Plasma 
 
CSF 
 
CSF 
 
CSF 

HRP anti- rabbit 
 
HRP anti-rabbit 
 
HRP anti-goat 
 
 
HRP anti-goat 
 
HRP anti-goat 
 
HRP anti-rabbit 

US Biologicals, USA 
 
Sigma, UK 
 
Abcam, UK 
 
 
ReactivLab (Prof. P.D. Eckersall) 
 
Santa Cruz Biotechnology, UK 
 
Enzo Life Sciences, UK 

Table 2-1: The list of proteins identified in this project. 

Details on the source of primary antibodies, range of dilutions and secondary antibody links for Western blot 

were given in the table. 

2.3.7.1 ECL Detection and Signal Quantification 

For ECL detection, the nitrocellulose membrane was incubated with 1.5ml ECL working 

solution (Thermo Fisher Scientific, UK) for one minute. The membrane was removed from 
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ECL solution, dried with absorbent tissue to remove the excess liquid, and subsequently 

placed in a plastic sheet protector or clear plastic wrap. The membrane was exposed to 

hypersensitive film (Hyperfilm™ECL™, Amersham Biosciences, UK) at different time 

interval and the film was developed in an automated X-ray processor (Xograph Healthcare, 

UK).  

The immune-complex signals visualised on the hyperfilm was scanned and digitised 

(Epson, UK) for Scion Image NIH software. The software generates a plot profile of the 

grey levels that represents the relative density over the area of the band. The area under 

each peak was quantified and the values generated were expressed as optical densities that 

were subsequently recorderd for statistical analysis.  

2.3.8 In-gel Trypsin Digestion for Coomassie-staine d Proteins 

The gel bands of interest were identified from 1-DGE analysis and were excised for 

MALDI-TOF MS analysis. The excised gel bands were cut into several pieces and placed 

in 1.5ml eppendorf tubes. Gel pieces were washed for 45 minutes in 500µl of 100mM 

ammonium bicarbonate and the wash was discarded. Gel pieces were further washed in 

50% acetonitrile/100mM ammonium bicarbonate for another 45 minutes. The wash was 

again discarded. For reduction, 150µl of ammonium bicarbonate (100mM) and 10µl of 

DTT (45mM) were added into the gel pieces and incubated for 20 minutes at 60°C. After 

cooling to room temperature, 10µl of 100mM iodoacetamide was added and the mixture 

was incubated in the dark room for 30 minutes. Subsequently, the gel pieces were washed 

in 50% acetonitrile/100mM ammonium bicarbonate for 30 minutes. After the wash was 

discarded, 50µl of acetonitrile was added to dehydrate the gel pieces and incubated for 10 

minutes. Complete dehydration of gel pieces was completed in a vacuum centrifuge. To re-

hydrate the gel, a volume of 2µg/µl sequencing grade modified porcine trypsin (Promega, 

UK) in 25mM ammonium bicarbonate was added. The protein solution was left to digest 

overnight at 37°C. Once the digest was complete, the solution was centrifuged and the 

supernatant was removed and stored. Elution of the peptides from the supernatant was 

performed at room temperature initially in 5% formic acid and subsequently in 20µl of 

acetonitrile both for 20 minutes. The protein extract was briefly centrifuged and 

supernatant transferred and completely dried in a vacuum centrifuge. The dried samples 

were analysed using the MALDI-TOF mass spectrometer 4700 Proteomics Analyzer 

(Applied Biosystems, UK). The monoisotopic peptide mass fingerprinting data generated 

by MS were analysed using Mascot (Matrix Science, USA), which reports all significant 
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hits from the SwissProt database. Statistical confidence level of 95% was applied for 

protein identification. 

2.4 Nucleic Acid Handling  

2.4.1 Extraction of Genomic DNA (gDNA) 

gDNA was isolated from two different sources; blood (cases related to CSF biomarker 

analysis) and spleen (cases related to mRNA and immunohistochemistry). gDNA from 

100µl of whole blood sample was extracted using a commercially available kit (DNeasy® 

Blood and Tissue, Qiagen, UK) following manufacturer’s recommendations. Canine anti-

coagulated blood was mixed with proteinase K (600mAU/ml/reaction) and lysis buffer 

containing guanidine hydrochloride to digest proteins and release nucleic acids. The 

mixture was incubated at 56°C for 10 minutes, followed by the addition of 100% ethanol 

centrifuged through a spin column, washed twice using buffers containing ethanol and 

guanidine hydrochloride, eluted in 200µL elution buffer (10mM Tris-hydrochloric acid 

(Tris-HCl), 0.5mM EDTA, pH 9.0). All buffers were supplied by the kit manufacturer. 

For spleen gDNA, approximately 10mg of tissue was added to the lysis buffer and 

proteinase K, and incubated for two hours. Following lysis, the procedure was as for blood 

DNA extraction as described above. 

2.4.2  Extraction of RNA 

2.4.2.1 Spinal Cord Tissue Material  

All spinal cord tissues were collected during post mortem conducted by Dr. Pamela 

Johnston between the period of 1994 and 1998. Cases were originally from referred 

veterinary practices across United Kingdom. Spinal cord tissues had been snap frozen and 

stored in liquid nitrogen until required. RNA was extracted from T12 spinal cord. 

2.4.2.2 Extraction of RNA 

The extraction of RNA from tissue using RNAsol Bee is a modification of a one step 

procedure described by (Chomczynski and Sacchi, 1987) and was conducted following 

manufacturer’s recommendations (AMS Biotechnology, UK). RNAsol Bee contains a 

monophasic solution of guanidine hydrochloride and phenol chloroform. Guanidium 
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rapidly inactivates RNase and forms complexes with RNA and water, allowing RNA to be 

retained in the aqueous phase, while DNA and proteins separate in to the phenol or 

chloroform phase. 

500µl of RNAsol Bee was pre-chilled and added to prepared tissue powdered in liquid 

nitrogen, using a chilled pestle and mortar. The spinal cord tissue was homogenised by 

passing through hypodermic needles of decreasing size (23-14G) until the RNAsol Bee 

was clear. The mixture was aliquoted into a fresh 1.5ml tube. Chloroform was added to 

each sample, which were vortexed for 10 seconds and placed on ice for five minutes. The 

samples were centrifuged for five minutes at 13000rpm at 4°C. The upper aqueous phase 

was transferred to a fresh tube. An equal volume of 100% isopropanol was added to the 

aqueous phase and incubated for 10 minutes. The samples were centrifuged for 15 minutes 

at 13000rpm at 4°C and the upper aqueous phase was transferred to a fresh tube. An equal 

volume of 100% isopropanol was added and samples were centrifuged for 15 minutes at 

13000rpm at 4°C. The supernatant was discarded and an equal volume of 70% ethanol was 

added to each sample. Samples were vortexed and centrifuged for eight minutes at 

13000rpm at 4°C. The supernatant was again discarded and centrifugation step was 

repeated for two minutes and excess alcohol removed with a pipette and micro tip. The 

residual pellet was left to air dry for no more than 10 minutes and re-suspended using 

150µl PCR water. All extracted RNA was kept at -80°C until further analysis. 

2.4.3 Quantification of Nucleic Acids 

Quantification of nucleic acids was determined by ultra violet absorbance using a 

GeneQuant RNA/DNA calculator (Pharmacia Biotech, UK). Nucleic acids were diluted in 

ultrapure water; 1:2 dilution for gDNA, 1:10 dilution for RNA. Blank ultrapure water was 

also prepared. Samples were read at absorption of 260/280nm on GeneQuant (Pharmacia 

Biotech, UK). The assessment of the ratio at 260/280nm was used as an index of the purity 

of the nucleic acids and a typical ratio of 1.5 to 1.6 was observed for most of the samples 

which is acceptable. 

2.4.4 Agarose Gel Electrophoresis and Image Capture  

Routine analyses of gDNA, RNA and PCR products were performed in ethidium bromide 

stained agarose gel at a various concentrations (0.8% to assess the integrity of gDNA or 2-

2.5% to visualise RNA and small PCR products. Gels were prepared by heating a solution 
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of ultra pure electrophoresis grade agarose (Invitrogen, UK) in 1X Tris-acetate EDTA 

buffer (1X TAE, Appendix 8.3.1) in a microwave oven. The solubilised gel solution was 

cooled and 15µl ethidium bromide (1mg/ml) was added and the liquid gel poured into a gel 

rig with the appropriate size of comb. Samples were loaded with 3µl of DNA loading dye 

(Invitrogen, UK) and electrophoresed in 1X TAE at 70V for 30 minutes to check for 

nucleic acid integrity. Visualisation of DNA products was performed under ultraviolet light 

(GeneFlash, Syngene, UK). The gel images were photographed using UV image capture 

system (GeneFlash, Syngene, UK)    

2.5 Tissue Morphological Analysis 

All works presented in this section were carried out at the VDS, School of Veterinary 

Medicine with help from Mrs. Lynn Stevenson.  

2.5.1 Slide Coating  

Clean glass slides (Fisher Scientific, UK) were coated with mixture of 7ml of silane-based 

solution (Vectabond™, Vector Labs, UK) in 350ml of 100% acetone for five minutes. 

Elimination of excess reagent was undertaken by dipping the slides for 30 seconds in 

distilled water and subsequent drying overnight in an oven at 37°C. 

2.5.2 CNS Material and Paraffin Processing 

2.5.2.1 Fresh Spinal Cord Tissue Specimen  

The spinal cord was removed by routine procedure used in the post mortem. The fresh 

spinal cord tissues were immersion-fixed in 4% buffered neutral formaldehyde (Appendix 

8.4.1) for a minimum of 24 hours. The spinal cord was suspended and weighted to prevent 

curling during fixation. The spinal cord tissues were processed for paraffin wax embedding 

using the Tissue-Tek® VIP® (Sakura, USA) processor on a pre-set programme (Appendix 

8.4.3). Paraffin-embedded tissue sections were cut at 4µm thickness with a microtome 

(Shandon Finesse®, Thermo Scientific, UK) and mounted onto the silane-coated slides. 

The slides were dried at 60ºC for an hour and were baked at 37°C overnight. 

2.5.2.2 Archival Paraffin-embedded Blocks 

See 6.3.3.1, page 169. 
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2.5.3 Haematoxylin and Eosin (H&E) 

All sections were routinely stained with H&E for routine assessment of tissue morphology. 

Gill’s haematoxylin can be oxidised to hematein that forms a complex with a mordant that 

selectively stains chromatin. Sections were taken “down to water” by removing the 

paraffin wax in histoclear followed by 70% absolute alcohol and 70% methylated spirit 

before rinsing in water (Appendix 8.4.2). Following hydration, sections were immersed in 

Gill’s haematoxylin for five minutes and rinsed in water for 30 seconds. Sections were 

dipped for 10 seconds in 1% acid alcohol (1% HCl in methylated spirit) to eliminate excess 

haematoxylin and to enhance cellular differentiation. Following washing in running tap 

water, sections were blued in Scott’s tap water substitute (Appendix 8.4.4) and 

subsequently dipped in eosin for five minutes. Sections were dehydrated (Appendix 8.4.2) 

with 70% alcohol and 70% methylated spirit, cleared in Histoclear and mounted in DPX 

(Cellpath, UK). 

2.5.4 Immunohistochemistry  

See 6.3.3, page 169. 

2.5.5 Image Capture  

Images of the sections were captured by using Cell^D imaging system (Olympus Soft 

Imaging Solutions, Germany).  

2.6 Statistical Analysis 

In all studies, statistical analyses and graphs were analysed by using GraphPad Prism 4.0 

(GraphPad Software, USA). Statistical analysis was performed using non-parametric tests 

using either the Mann-Whitney U or Kruskal-Wallis analysis of variance (ANOVA) test 

with a significance level (α) set at 0.05. The choice of statistical method utilised in each 

study is discussed in more detail in the specific chapters.  
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3 The Development of a Genotyping Protocol to 

Identify a Point Mutation (118G>A) in the Canine 

Sod1 Gene  

 



  Chapter 3 
 
 

 89

3.1 Background 

The human superoxide dismutase 1 gene (SOD1) (Accession number: NG_008689.1), 

located on the long arm of chromosome 21q22.11, encodes the cystolic antioxidant enzyme 

SOD1 (Green et al.  2002). The gene consists of five exons, encoding 154 amino acids. 

The gene is ubiquitously expressed and the corresponding protein catalyses the dismutation 

of superoxide radicals to hydrogen peroxide and oxygen (Bannister et al.  1991; Stewart, 

2005). Mutations in SOD1 gene has been classically associated with familial ALS, 

accounting for 20% of total familial ALS cases (see 1.3.1, page 42).  

The canine Sod1 gene (Accession number: NC_006613.3), located at chromosome 31, 

shares 83% and 79% similarity at the nucleotide and amino acid respectively compared to 

human gene and protein (Green et al.  2002). A genetic study has established a point 

mutation in exon two of canine Sod1 gene (118G>A) in 96% of DM cases examined, 

resulting in glutamic acid to lysine (E40K) amino acid substitution (Awano et al.  2009), 

implying DM is potentially orthologous to ALS (see 1.2, page 40). In ALS, information on 

genetic status has enabled patients’ stratification which significantly enhances diagnosis 

and clarifies prognosis (Andersen et al.  1996; Andersen et al.  2003). A similar situation 

exists in DM where the discovery of a Sod1 mutation has made an important contribution 

in the context of genetic epidemiology in DM population and at the same time raises 

hypotheses on potential underlying mechanisms. Although this mutation is not specific to 

DM, this identification has significantly improved the clinical diagnosis and has been used 

as a genetic marker for DM. In this chapter, we intended to use genetic information from a 

previous study (Awano et al.  2009; Coates and Wininger, 2010) in conjunction with 

clinical findings to establish a homogenous disease group with a specific genotype that 

would strengthen the biomarker analysis. Therefore, we developed an “in-house” protocol 

using a restriction fragment length polymorphism assay (RFLP) based on the abolition of 

an enzyme restriction site in the mutant Sod1 gene. However, since there is a patent 

covering the use of this sequence, Professor Joan R. Coates from University of Missouri 

was informed prior to the development of our genotyping protocol. 

 



  Chapter 3 
 
 

 90

3.2 Aims 

The aims of the work presented in this chapter were to: 

1. Develop an “in-house” genotyping protocol based on the presence of the 118G>A 

mutation in canine Sod1 gene that would assist in DM case selection for biomarker 

analyses. 

2. Provide information on genotypic distribution in the population studied. 

3. Appraise the clinical information of DM-affected dogs with 118G>A Sod1 

mutation (DM homozygote). 

3.3 Materials and Methods 

3.3.1 Primer Design 

The canine sequence spanning the Sod1 mutation was interrogated for the presence or 

absence of specific restriction enzyme site(s) between the wild type Sod1 gene (WT) and 

mutant form of the canine Sod1 gene. The restriction enzyme site, HpyAV was identified 

in wild type but absent in the mutant gene (Figure 3-1) using NEBcutter V2.0 (Vincze et 

al.  2003). The forward (5-/ GCC TGT TGT GGT ATC AGG AAC CA-3/) and reverse (5/-

AGA GTC AAA AAC CGG C TT TGT GGA-3/) Sod1 primers (Eurofins, Germany) were 

designed to amplify this region, using an interactive web-based primer program algorithm, 

GeneFisher software version 1.2.2 (BiBiServe, Germany). These primers generate a 236 

base pair (bp) DNA fragment encompassing the point mutation and the diagnostic HpyAV 

restriction site. A Sod1 genotyping protocol to differentiate wild type (G/G), heterozygous 

(A/G) and homozygous (A/A) individuals using RFLP technique is summarised in Figure 

3-2.  
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Figure 3-1: Nucleotide sequences of A) wild type Sod1 gene containing the HpyAV restriction site and 

B) mutant Sod1 gene showing loss of the HpyAV site. 

 

 

 

 

 

 

 

 

 



 
 
 

 

Figure 3-2:  The schematic diagram of 

Interrogation of canine Sod

absent in the mutant form. Forward and reverse primers were designed to generate a 236bp DNA fragment 

harbouring the G>A mutation also containing 

absent in the mutant gene (Homo

agarose gel. HpyAV digestion

restriction site is absent in the mutant 

236bp. Heterozygous (Het

at 236bp, 204bp and 32bp.

 

:  The schematic diagram of Sod1 genotyping using RFLP technique.

Sod1 gene sequence in exon two revealed a HpyAV restriction enzyme site which is 

absent in the mutant form. Forward and reverse primers were designed to generate a 236bp DNA fragment 

harbouring the G>A mutation also containing HpyAV site that is present in the wild type (WT

tant gene (Homo). The digestion products can be visualised in ethidium bromide

AV digestion cuts the wild type gene into two DNA fragments; 236bp and 32bp. As the 

restriction site is absent in the mutant Sod1 gene, there is no digestion and a single band 

236bp. Heterozygous (Het) individuals express both wild type and mutant Sod

at 236bp, 204bp and 32bp. 
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1 genotyping using RFLP technique. 

AV restriction enzyme site which is 

absent in the mutant form. Forward and reverse primers were designed to generate a 236bp DNA fragment 

present in the wild type (WT) gene but 

). The digestion products can be visualised in ethidium bromide-stained 

cuts the wild type gene into two DNA fragments; 236bp and 32bp. As the 

a single band can be visualised at 

Sod1 genes revealing  three bands 
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3.3.2 gDNA Preparation 

Two different sources of gDNA were used; blood and spleen (see 2.4.1, page 84). All 

gDNA were quantified as described in 2.4.3 (page 85) and qualitatively assessed for 

degradation by electrophoresis using low percentage (0.8%) agarose gel (see 2.4.4, page 

85). 

3.3.3 Polymerase Chain Reaction (PCR) 

A total of volume of 25µl PCR reaction was prepared, comprising 12.5µl RedTaq® DNA 

polymerase buffer (Sigma-Aldrich Co, UK), 0.5µl of each primer (5pmol per reaction 

tube), and 200ng gDNA. Amplification conditions were 32 cycles (94°C for five minutes, 

94°C for one minute, 58°C for one minute, 72°C for one minute, 72°C for 10 minutes). 

The PCR products (2µl) were visualised using ethidium bromide (1mg/ml) stained agarose 

gel and quantified against the 100bp mass ladder for DNA (Quick-Load, New England 

Biolabs, UK). 

3.3.4 PCR Product Purification and Quantification 

Purification of PCR products (pooled triplicates) was according to manufacturer’s 

recommendations using the QIAquick® PCR purification kit (Qiagen, UK). In brief, after 

adding the DNA-binding buffer (guanidine hydrochloride and isopropanol) to the PCR 

sample, the mixture was transferred into a spin column and centrifuged at 13000rpm for 60 

seconds. The PCR product were washed twice and eluted in 30µl of elution buffer. The 

column was left standing for one minute at room temperature and centrifuged as described 

previously. The purified PCR products were electrophoresed using 2.5% agarose gel with 

inclusion of 100bp DNA marker. Quantification of purified PCR products for HpyAV 

digestion was calculated using ScionImage NIH in respect to a band in 100bp mass ladder. 

3.3.5 HpyAV Digestion 

Digestion of purified PCR products was performed with HpyAV (2U/µl) in a 25µl reaction 

mix comprising 100ng of PCR amplicon, 2.5µl of 10X BSA buffer, 2.5µl of 10X buffer 4 

(20mM Tris-acetate, 50mM potassium acetate, 10mM magnesium acetate, 1mM DTT at 

pH7.9), and incubated at 37°C for 30 minutes. In addition, an undigested control was 

included. The reaction was heat inactivated at 65°C for 15 minutes. The digestion products 

were analysed by 2.5% agarose gel electrophoresis (see 2.4.4, page 85) in 1XTris-borate 
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EDTA (1X TBE, Appendix 8.3.2). Gel images were captured as described in (see 2.4.4, 

page 85). 

3.3.6 Selection of DM Cases based on Clinical Findi ngs and 

Genetic Status 

The case materials for CSF biomarker study were sourced from neurology service, 

UGSAH. A complete physical and neurological examination was performed as detailed in 

2.2.2, page 76. The tentative diagnoses of cases for biomarker analysis were achieved by 

the presence of typical clinical signs i.e pelvic limb ataxia, and paresis with a loss of 

proprioception and the exclusion of other causes through further clinical investigations. At 

this stage, cases for inclusion in this study were selected on the basis of historical 

information and clinical examination which suggested a chronic neurodegenerative disease 

that affect the thoracolumbar spinal cord.  

All putative DM cases were subsequently genotyped with RFLP assay based on the 

abolition of HpyAV site in the mutant Sod1 gene. To eliminate variation in the group 

analysed, only cases that had been confirmed as homozygote were included in biomarker 

studies. Once the DM group was established, we also evaluated the clinical information 

including signalments, clinical signs and neurological findings. The results were tabulated 

and compared with previous studies. 

3.4 Results 

3.4.1 Genotyping Analysis based on 118G>A Sod1 Mutation in 

Cases Studied 

3.4.1.1 HpyAV Digestion of Spleen-derived gDNA 

Five cases from each non-neurological (N=5) and DM-affected (N=5) groups from our 

archive material were utilised to determine if the RFLP technique outlined in Figure 3-2 

could differentiate between the three potential Sod1 genotypes; wild type, heterozygous, 

and homozygous. Purified PCR products generated from spleen gDNA were analysed at a 

digestion time of 30 minutes (Figure 3-3A). The digestion profiles are presented in Figure 

3-3B. In putative DM cases (A1-A5), a single band (236bp) of equal size to the undigested 

sample (UD) was detected, which were consistent with homozygosity for the mutant allele. 
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Four control cases (C1-C4) demonstrated a profile of a doublet composed of a weak band 

at 236bp and a strong band at 204bp, which were consistent with the lack of mutation, 

albeit with evidence of partial digestion. One control case (C5) was consistent with the 

heterozygous profile, demonstrated by a doublet bands corresponding to 236bp and 204bp 

at equal intensities. It should be noted that the size migration of these bands compared to 

the 50bp marker was slightly higher than their predicted size and could be attributable to 

the different gel buffer used for the commercial marker compared to that used for the 

samples. 

As identifying a non-mutated allele was paramount to genotyping and with evidence of 

partial digestion, a titration experiment of the conditions was undertaken (Figure 3-5). 
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Figure 3-3: Digestion profiles of HpyAV on splenic DNA fragments at 30 minutes incubation 

A) Purified PCR products can be visualised at 236bp and display good integrity despite the weak signal 

observed in a DM sample (A2) B) Following 30 minutes digestion with HpyAV, all putative DM cases (A1-

A5) exhibit a single band at 236bp, co-migrating with undigested control (UD). This profile is consistent 

with homozygosity for the mutant allele. Double bands compose of a weak band at 236bp and a strong band 

at 204bp is observed in four control cases (C1-C4). The weak band in these control cases suggests partial 

digestion. A control sample (C5) exhibits two bands at almost equal intensities at 236bp and 204bp, which is 

consistent with heterozygosity. Note that the migration of size of these bands compared to the 50bp marker is 

slightly higher than their predicted size.  
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3.4.1.2 HpyAV Digestion of Blood-derived gDNA 

The genotyping analysis was performed in canine blood-derived DNA using the same 

protocol (Figure 3-4). Splenic samples representing the three different genotypes were used 

as reference control; C1 and C2 (wild type), A1 (homozygous) and C5 (heterozygous) 

(Figure 3-3). All purified PCR products derived from blood demonstrated a robust signal 

with good integrity through agarose gel analysis (Figure 3-4A). HpyAV digestion for 30 

minutes as for spleen PCR products gave similar profiles as demonstrated in Figure 3-4B. 

Unlike the partial digestion observed in control sample from spleen (C1 and C2), a single 

band (204bp) consistent with wild type profile was detected in B1 blood sample, indicating 

a complete digestion had occurred with 100ng of PCR product. This suggested that 30 

minutes incubation is optimum for blood-derived DNA. The heterozygous profile was 

detected in B3 blood sample, demonstrating two bands at almost equal intensities (236bp 

and 204bp) and therefore showing a clear-cut differentiation between partially digested 

DNA products as observed in spleen-derived DNA. Two blood samples (B2 and B4) 

demonstrated homozygous profile, which represented a single band with size 

corresponding to undigested sample (236bp). Sample B1, B2 and B3 were used as 

reference controls throughout the genotyping analyses. 
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Figure 3-4: Digestion conditions of HpyAV on gDNA fragments from blood at 30 minutes. 

A) The purified PCR products from four blood samples (B1-B4) were analysed on an agarose gel along with 

a 100bp DNA mass ladder., showing good integrity of PCR amplicons B) HpyAV enzyme digestion of PCR 

products from blood and spleen at 30 minutes incubation. Spleen PCR products, C1,C2 and C5 demonstrate a 

consistent genotype profiles with the previous experiment (Figure 3-3B). Complete digestion is observed in 

B1 blood sample which is consistent with wild type profile. Heterozygous profile; two bands with equal 

intensities around 236bp and 204bp) is detected in B3 blood sample which can be differentiated from 

partially digested profile from C1 sample.  B2 and B4 blood samples are consistent with homozygous profile, 

indicated by a single band at 236bp, which corresponds to the size of undigested control (UD).  
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3.4.1.3 HpyAV Titration Study  

The occurrence of partial digestion could complicate the differentiation between a genuine 

heterozygous case (50% wild type and 50% homozygous for mutant allele) and a partially 

digested sample from a wild type case. Mixtures of wild type and homozygous PCR 

products were generated to represent each of the genotypes: wild type (100% WT: 0% 

Homo), heterozygous (50% WT: 50% Homo), and homozygous (0% WT: 100% Homo). 

Intermediate ratios were also included; 75% WT: 25% Homo and 25% WT: 75% Homo. 

The result of HpyAV titration experiment is shown in Figure 3-5. The heterozygous 

genotype displayed two bands at equal intensities (236bp and 204bp) in a mixture 

containing 50% wild type and 50% homozygous. In 100% wild type mixture, a prominent 

band was observed at 204bp suggesting DNA fragments are completely digested whereas 

in 100% homozygous sample, a single band was observed at 236bp, which is comparable 

with undigested PCR product. This confirmed the hypothesis outlined in Figure 3-2. 
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Figure 3-5: HpyAV digestion of blood PCR products with different WT:Homo ratios. 

The HpyAV titration experiment was undertaken to differentiate a genuine heterozygous with partially 

digested DNA fragments in wild type profile. The mixture of wild type and homozygous PCR products at 

50% WT: 50% Homo demonstrates that the expression of heterozygous can be confirmed by the presence of 

two bands of equal intensities.   
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3.4.1.4 Prevalence of 118G>A Sod 1 Mutation in Clinical Cases 

Examined  

In total, 53 cases were genotyped using spleen and blood-derived DNA (Table 3-1), 

representing a range of clinical diagnoses, including DM. The distribution of three Sod1 

genotypes; wild type, heterozygous and homozygous is shown in Figure 3-6A. The 

percentage of wild type cases in the population analysed is 34.6% (N=18), whereas 

heterozygous cases displayed slightly higher percentage than wild type population which 

was 38.5% (N=21). Cases with homozygous profile accounts for 26.9% (N=14). The 

complete lists of dogs that were genotyped in this project are given in Appendix 8.1.1 and 

8.1.2. 

The distribution of three Sod1 genotypes in putative DM and control cases is summarised 

in Figure 3-6B and C. In DM cases, the homozygous population is 77.8% (N=14) which 

was greater than heterozygous, 22.2% (N=5). Analysis of the control group revealed that 

52.9% (N=18) of cases were wild type and 47.1% (N=16) were heterozygous. There were 

no homozygous cases in the control group. The ratios are as follows; putative DM group –  

0WT:4Het:14Homo, control group – 18WT:17Het:0Homo. 

Table 3-2 summarises the distribution of wild type, homozygous and heterozygous 

genotypes in different breeds. High numbers of homozygous cases were present in the 

GSD breed group (N=13), although this may be contributed by the large number of GSDs 

examined in this study. One Collie dog was also confirmed as a homozygote. The ratio 

between three genotypes in GSD is 8WT:10Het:13Homo. A high frequency of 

heterozygotes were observed in Boxer dogs, where the ratio of heterozygote to wild type 

was 3:1 (Het:WT). In addition, a high number of heterozygotes were detected (N=5) in the 

other breed (small breed and cross breed) category, however, no homozygous cases were 

identified in this group.   
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Figure 3-6: The distribution of wild type, heterozygous and homozygous in dog population studied. 

A) The distribution of three genotypes in cases examined revealed 34.6% wild type, 38.5% heterozygous and  

26.9% homozygous (18WT:21Het:14Homo). Heterozygote cases account for the highest percentage in this 

population. B) The distribution of three genotypes in putative DM group demonstrates high percentage of 

homozygous (77.8%) compared to heterozygous (22.2%) with a ratio of 1 Het:3.5 Homo.  There are no wild 

type cases identified in this group suggesting that homozygous genotype is highly associated with DM. C) In 

control group, wild type represents 52.9% of total cases whereas 47.1% of the cases are confirmed as 

heterozygotes. No homozygous genotype identified in control group.  
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Table 3-1: The distribution of wild type, heterozygous and homozygous from two DNA sources; blood 

and spleen. 

 

 

Table 3-2: The distribution of wild type, heterozygous and homozygous in DNA in a range of canine 

breeds. 

The ratio of wild type, heterozygous and homozygous genotype in GSD examined is 8WT:10Het:13Homo. 

One Collie dog was also confirmed as harbouring the homozygous genotype. High number of heterozygotes 

are observed in Boxers, where the ratio is 1WT:3Het. High number of heterozygotes (N=5) with no 

homozygotes are also identified in other breed group, which is comprised of small breed and cross breed 

dogs. 

Genotype 
 

Blood Spleen Total 

WT 
 
Het 
 
Homo 

14 
 

20 
 
9 

4 
 
1 
 
5 
 

18 
 

21 
 

14 
 

 43 10 53 
 

 BMD Collie Boxer GSD Doberman Retrievers Husky Other 
breed 

WT  1 1 8  3 1 4 
 

Het 1  3 10 1 1  5 
 

Homo  1  13     
 

Total 1 2 4 31 1 4 1 9 
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3.4.2 Refinement of DM Classification based on Sod1 Genotyping 

Prior to Sod1 genotyping, 18 putative DM cases were identified for this project, comprised 

of 17 GSDs and 1 Border Collie. Genotyping against 118G>A on these cases revealed 14 

homozygotes and 4 heterozygotes. All four heterozygous cases had a presumptive 

diagnosis of DM based on the clinical investigations, however these dogs were excluded 

from further study to minimise variation in DM group.  

Since the CSF and spinal cord tissue material were obtained from different sample archives 

and were collected at a different time, the clinical and neurologic findings are discussed 

and tabulated separately. The common presenting signs, the age of onset and whether there 

was any sex predisposition are of particular interest. The overall mean age of onset was 

8.5±2.1 years with no sex predisposition (M:F=1.1.3). 

3.4.2.1 CSF Biomarker Investigations 

At the beginning of the research, the total number of cases identified was 13 dogs, 

comprised of 12 GSDs and 1 Border Collie. Following Sod1 genotyping, nine dogs were 

confirmed to be homozygous for the mutant allele. Material derived from these cases were 

utilised in the biomarker analyses. Four of the dogs are confirmed as heterozygotes, 

therefore were excluded from further studies.  

Among these nine homozygote dogs, eight were GSD and one case was a Border Collie. 

None of these dogs were littermates. The ratio of affected males in this group was 2:1 to 

females. There was no record of an exact onset of clinical signs, however most owners 

were able to describe the duration of disease progression in general terms before first 

presentation at UGSAH (M±SD=18±9weeks). The mean age when first presented was 

eight years old (M±SD=8.5±1.9). Cases were most commonly presented to UGSAH when 

the ataxia and paraparesis had deteriorated to the point where they had precipitated 

significant owner concern leading to referral. The range in the development of clinical 

signs before first presentation was one to seven months. Only three dogs exhibit wearing 

and bleeding nails. All dogs displayed signs consistent with a non-painful pelvic limb 

ataxia, with weakness and various degree of paraparesis at the time of first presentation. 

Other problems reported by owners were difficulty ascending stairs, occasional collapse on 

the predominately affected side and bunny hopping. At the early stage of disease, eight 

cases out of nine exhibited asymmetric pelvic limb signs, 56% of dogs had right side more 
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prominently affected. Neither of the dogs demonstrated thoracic limb involvement or 

urinary incontinence. Case signalment is summarised in Table 3-3. 

Signalment 

 

Value 

Total number of dogs 

     GSD 

     Non-GSD 

Mean age when first presented 

Sex 

     Male (intact) 

     Male (neutered) 

     Female (intact) 

     Female (neutered) 

Duration of progression before first presented 

     Mean 

CSF protein concentration 

9 

8 

1 

8.5±1.9 yo 

 

1 

5 

0 

3 

 

18±9 weeks 

40.2±14mg/dl 

Table 3-3: The signalment findings in DM dogs examined for CSF biomarker study. 

 

The neurological examination findings at first presentation is summarised in Table 3-4. 

Normal mental status and cranial nerves were reported in all dogs. Slow or absent postural 

reactions were observed in all dogs, which were lateralised in the majority of cases. Spinal 

reflexes were normal, although reduced patella and withdrawal reflexes were seen in few 

cases. There were no remarkable abnormalities observed on routine haematology and 

biochemistry. The mean of CSF total protein in all dogs was 40.2mg/dl with SD of 

14mg/dl (reference range 10-40mg/dl). However CSF samples from two dogs were taken 

from lumbar cistern and both exhibited high CSF total protein, 60mg/dl and 58mg/dl 

(reference range for lumbar CSF <45mg/dl)(Di Terlizzi and Platt, 2009). Three of the dogs 

were found to have mild disc degeneration on MRI, however no significant spinal cord 

compression was detected. Two dogs also confirmed to have spondylosis at T11 to T12 

vertebral segment. None of dogs in this group was euthanised or died prior to the last 

follow-up. 

Only one dog received steroid therapy at the time sample was collected. Intensive 

physiotherapy and hydrotherapy were recommended to all owners. However, follow-up 
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was inconsistent and therefore accurate information regarding any further rate of 

deterioration was not obtained.  

Clinical Signs 

 

Number of 

Dogs 

Normal mental status and cranial nerves 

Symmetry of clinical signs 

     Right side more affected 

     Left side more affected 

     Right and left side equally affected 

Scuffed paws and worn nails 

Decreased muscle tone and muscle mass 

Ataxia 

Paraparesis 

Postural reactions 

     Slow 

     Absent 

Spinal reflexes 

     Normal reflexes 

     Reduced patella 

     Reduced withdrawal      

Concurrent conditions 

     Spondylosis 

     Mild disc degeneration 

Therapy 

     Steroid 

9 (100%) 

 

5 (56%) 

3 (33%) 

1 (11%) 

3 (33%) 

1 (11%) 

9 (100%) 

9 (100%) 

 

3 (33%) 

6 (67%) 

 

5 (56%) 

1 (11%) 

3 (33%) 

 

2 (22%) 

3 (33%) 

 

1 (11%) 

Table 3-4: The clinical signs and neurologic findings in dogs examined. 
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3.4.2.2 mRNA and IHC Analyses 

Five DM cases (three GSDs and two GSD crosses) were selected on the basis of 

histopathological diagnoses. All five cases were genotyped and confirmed as homozygotes 

(3.4.1.1, page 94). Since these materials were obtained a decade ago, the clinical 

information on these dogs was very limited except for the signalments. Therefore, 

information on neurologic findings was not obtained, though as these dogs had met the 

criteria of the previous study it can be assumed a clinical diagnosis of DM was appropriate. 

There is no sex predilection observed (ratio M:F=1:1.5). The mean age at first presentation 

is 8.3±2.5 (M±SD) years old, which consistent with dogs in CSF study (8.3±2.4).  

The summary of signalment findings were given in Table 3-5. 

Signalment 

 

Value 

Total number of dogs 

     GSD 

     GSD crosses 

Mean age when first presented 

Sex 

     Male (intact) 

     Male (neutered) 

     Female (intact) 

     Female (neutered) 

5 

3 

2 

8.3±2.4 yo 

 

2 

0 

0 

3 

Table 3-5: The signalment findings in dogs examined for mRNA and IHC studies. 
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3.5 Discussion 

Blood samples have been consistently proven to be a robust source of genetic material as it 

contains substantial quantities of high quality gDNA for diagnostic and research purposes 

(Hansen et al.  2007). For this study, we selected blood as the primary source of genetic 

material as it is frequently harvested in sufficient volume, however it may not be available 

for some cases. The collection of blood samples from client owned dogs is not permitted 

unless medically advised and can only be archived with the owner’s consent, therefore 

restricting the collection of blood from control or healthy subjects (Rincon et al.  2011). 

Tissue material for gDNA is also robust however more difficult to obtain. Recently, the use 

of alternative sources of gDNA from saliva (Mitsouras and Faulhaber, 2009; Yokoyama et 

al.  2010) and buccal swab (Oberbauer et al.  2003; Chang et al.  2007; Rincon et al.  2011) 

for research and diagnostic purposes has been described and may become a preferable 

choice for the owner. Therefore, in future, utilisation of these alternative sources for Sod1 

genotyping should be explored especially in large-scale studies involving DM.  

We have shown that RFLP assay using HpyAV enzyme digestion is robust and reliable in 

differentiating three distinct genotypes; wild type, homozygous and heterozygous. In total, 

53 cases from various breeds were genotyped in this study as summarised in Figure 3-6. 

The frequency of wild type and homozygous in control group is not consistent with the 

previous studies where both genotypes have been reported in both control and DM group 

(Awano et al.  2009; Adams et al.  2010). The distribution of homozygous in control group 

in the previous studies were 34% (Awano et al.  2009) and 24% (Adams et al.  2010), 

whereas wild type cases represented as 2% (Awano et al.  2009) and 14% (Adams et al.  

2010). Interestingly, the homozygous genotypes were only detected in putative DM cases 

(14/18 cases - 77.8%), with a high number of homozygous in affected GSD (N=13). 

Awano and colleagues (2009) have reported that 96% of DM-affected dogs (from five 

breeds) were homozygous for the mutant allele. Four out of five GSD in the same study 

were also confirmed as homozygotes (Awano et al.  2009). In addition, a Sod1 genotyping 

study on GSD population revealed that 76% of the DM-affected GSD were homozygotes 

(Adams et al.  2010). Based on these observations, the high frequency of mutant allele 

homozygosity in GSD may indicate the potential for high penetrance in this breed. There 

are no wild type dogs identified in the DM group and although heterozygous cases are 

observed, this is at a lower frequency (almost four times compared to homozygous 

genotype; 22.2%). The heterozygous profile in DM dogs was also observed in previous 
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studies, although lower frequencies were reported; 9% (GSD only) (Adams et al.  2010) 

and 2% (Awano et al.  2009). A high frequency of the heterozygous genotype is also 

detected in control group, which accounts for 47.1% compared to 32% (Awano et al.  

2009) and 33% (Adams et al.  2010) in previous studies. Heterozygotes have been 

described as the carriers of the mutant allele and can pass the mutant Sod1 gene to their 

offspring, however the actual genotype-phenotype correlation in heterozygous cases is 

unknown, although recent evidence has suggested that heterozygosity may reflect the 

subclinical condition of DM (Coates and Wininger, 2010). 

The clinical signs of DM have been recognised for many years and described by several 

authors (Averill, 1973; Griffiths and Duncan, 1975; Johnston et al.  2001; Coates and 

Wininger, 2010). The clinical characteristics of homozygous dogs affected with DM for 

both biomarker and tissue studies are documented in this chapter (see 3.4.2, page 104). 

Previous studies have reported a wide range of frequencies involving DM-affected GSD 

and its crosses, from 6.5% to 95.5% (Averill, 1973; Griffiths and Duncan, 1975; Kathmann 

et al.  2006; Awano et al.  2009). In this study, the occurrence of DM in GSD and its 

crosses was described at high frequency, which accounts for 83%. The occurrence of DM 

in the Collie breed and its crosses were reported in two studies; 13.6% (Averill, 1973) and 

6% (Kathmann et al.  2006). The mean age of onset in this study was reported as 8.5±2.1 

years which is consistent with previous studies that range from 8.2 to 9.3 years (Averill, 

1973; Griffiths and Duncan, 1975; Johnston, 1998; Kathmann et al.  2006). There was no 

significant sex predilection observed in affected GSDs, similar to those reported in 

previous studies (Averill, 1973; Johnston, 1998; Kathmann et al.  2006). The signalment 

and clinical findings of DM in this study correlates with the findings reported from earlier 

studies (Averill, 1973; Griffiths and Duncan, 1975; Johnston et al.  2000). The most 

common neurologic signs noticed at first presentation are ataxia and paraparesis.  

The mode of inheritance of Sod1 mutation in DM has not been fully elucidated, although 

evidence is indicative of a recessive trait, which requires both copies of the abnormal A 

allele to develop DM. The distribution of the three genotypes in control and putative DM 

cases also fits the characteristic of incomplete penetrance (Awano et al.  2009; Adams et 

al.  2010). In ALS, familial cases associated with SOD1 mutations are most commonly 

inherited through autosomal dominant mode with high penetrance (Cudkowicz et al.  1997; 

Andersen et al.  2003; Battistini et al.  2010). However, recessive traits with incomplete 

penetrance, D90A (see 1.3.3, page 46) have been reported in familial ALS (Andersen et al.  
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1996; Hand et al.  2001). The recessive trait of D90A is thought to be analogous to DM, 

which typically starts in the lower limbs and has a slower progression compared to other 

SOD1 mutant forms of ALS. Awano and others (2009) also speculated that homozygous 

dogs that are free from symptoms may develop DM when they are older, suggesting the 

age-related incomplete penetrance. Other possibilities that have been described include the 

involvement of modifier loci or non-genetic factors such as environmental effects that may 

influence the development of DM (Awano et al.  2009). Such hypotheses merit further 

investigation. Discovering other causative aetiologies in DM may provide further 

understanding of the disease pathophysiology and facilitate effective treatments and could 

potentially be implicated in the causation of ALS.  

Initially, all dogs which had clinical signs of DM were considered as potential candidates 

for inclusion in this study, however identification of their genetic status has led to further 

refinement of DM classification. The use of genotyping to classify DM cases has not 

resulted in a group that is apparently different to the accepted clinical picture. However, by 

using genotyping, the heterogeneity of the cases used for further studies has been reduced 

and a focus is given to a homogenous group with a potentially common aetiology.  
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4 The Characterisation of Putative ALS 

Biomarkers in DM CSF 
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4.1 Background  

DM has been recognised as a spontaneously occurring animal model of ALS based on the 

identification of Sod1 mutations in DM-affected dogs (Awano et al.  2009). In ALS, SOD1 

mutations are attributed to 5-10% of ALS cases with high variations in disease penetrance 

(Battistini et al.  2010), whilst the aetiology of the majority of ALS cases remains elusive 

(Wijesekera and Leigh, 2009). Such heterogeneity in the disease susceptibility and 

pathogenic mechanisms complicates the clinical diagnosis of ALS (Beghi et al.  2011). 

Therefore, there has been intense research efforts in the development of reliable 

biomarkers for ALS that are independent of genetics, aiming to improve the diagnosis of 

ALS (Ryberg and Bowser, 2008). To date, more than 40 CSF proteins have been evaluated 

for ALS biomarkers, including cystatin C, TTR, 7B2 and VGF (see 1.7, page 68). 

The most promising candidates described in the ALS literatures are cystatin C and TTR 

proteins (Ranganathan et al.  2005; Ryberg et al.  2010; Wilson et al.  2010). Cystatin C is 

a non-glycosylated protein that belongs to a protease inhibitor group, which is ubiquitously 

expressed in tissues and body fluids including CSF (Abrahamson et al.  1986; Abrahamson 

et al.  1990). This protein has been suggested to modulate the extracellular proteolysis 

activity through inhibition of cysteine peptidases such as cathepsin molecules, B, H, L and 

S (Abrahamson et al.  1990). Pertubations of TTR have also been described in ALS 

(Ranganathan et al.  2005). TTR (formerly known as pre-albumin protein), is a 

homotetrameric protein complex (molecular mass of 55kDa) linked by disulphide bridge 

formation (Foss et al.  2005). It is a non-glycosylated protein that is present in plasma and 

CSF, serves as a carrier of both thyroid hormones (T3 and T4) as well as vitamin A in 

complex with retinol-binding protein (Ingenbleek and Young, 1994; Schreiber and 

Richardson, 1997). The structure of TTR is complex and the expression of this protein may 

differ between species, it can also be influenced by in vitro conditions such as reducing 

agents (Foss et al.  2005). Recent studies have also reported alterations of 7B2 and VGF 

proteins in ALS CSF (Ranganathan et al.  2005; Pasinetti et al.  2006). These proteins are 

both localised in neuroendocrine tissue (Hahm et al.  1999; Westphal et al.  1999). 7B2 is a 

highly conserved protein, which is involved in the activation of the prohormone convertase 

2 (PC2) that drives the maturation of many polypeptide hormones and neuropeptides 

(Iguchi et al.  1984; Lee et al.  2006). VGF is a neuropeptide and a member of the 

secretogranin family of proteins, which is stored in the large dense core vesicles in 

neuroendocrine tissues and neuronal cells (Levi et al.  2004). The role of VGF is poorly 
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understood although it has been associated with the regulation of energy homeostasis, 

metabolism (Hahm et al.  1999; Salton et al.  2000) and synaptic plasticity (Alder et al.  

2003). 

Since biochemical changes in the CNS system are often reflected in the CSF, many studies 

have utilised CSF as a source of biomarker discovery for neurological diseases 

(Ranganathan et al.  2005; Tumani et al.  2009; Blennow et al.  2010). However, biomarker 

investigations can be compromised by various pre-analytical factors (eg., sample 

processing or storage) that may arise from clinical and laboratory environments (Ferguson 

et al.  2007). Within our institute, there is a significant geographical distance between the 

small animal hospital and the research facilities, therefore collection and handling of 

samples until storage is the responsibility of clinical and support staff. The development of 

a reliable protocol for this early stage of sample collection is important in the integrity of 

samples used for biomarker studies.  

4.2 Aims 

In this chapter, we present evaluation of the selected ALS putative biomarkers (TTR, 

cystatin C, 7B2 and VGF) in DM CSF. These candidate proteins were selected based on 

the recent publications on ALS biomarkers in CSF. The specific aims of the work 

presented in this chapter were to: 

1. Validate the cross-reactivity of commercial antibodies against putative ALS 

biomarkers; cystatin C, TTR, 7B2, and VGF in canine CSF. 

2. Assess the influence of potential sample handling practices on the candidate protein 

levels in canine CSF. 

3. Comparative evaluations of the candidate protein levels in DM and other 

neurological disorders CSF. 
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4.3 Materials and Methods 

4.3.1 Validation of Commercial Antibodies in Canine  CSF 

4.3.1.1 Sample Preparation 

CSF material for this experiment was taken from idiopathic epilepsy (IE) cases and 

compared with a range of tissue homogenates from dog and mouse. CSF supernatants (see 

2.3.1.1, page 79) were utilised for the experiment and the total protein concentration was 

determined for each CSF supernatant by BCA protein assay (see 2.3.2, page 79).  

4.3.1.2 One-DGE and Western Blot 

Twenty-five µg of protein was taken from CSF and brain tissue homogenates (mouse and 

dog), mixed with SDS buffer and denatured as detailed in 2.3.4, page 80. Protein samples 

were analysed by 1-DGE (see 2.3.5, page 80) and subsequently subjected to Western blot 

analysis (see 2.3.7, page 81). The details of commercial antibody for cystatin C, TTR, VGF 

and 7B2 are summarised in Table 2-1. 

4.3.1.3 Optimisation of Western Blot Analysis for T TR 

Initial Western blot analysis demonstrated that two TTR subunits are identified in canine 

CSF (Figure 4-1B). To identify the optimum protein amount and confirm the linear 

relationship between the protein content and signal detected by ECL a gradient of protein 

amounts (2.5µg, 5µg, 10µg, 20µg) of IE CSF were compared by Western blot for TTR. 

The signals generated from the ECL reaction were quantified for each subunit and arbitrary 

values were plotted in XY scatter graph. As both subunit bands have noticeably different 

intensities on Western blot, the image capture parameter (exposure time of blot to 

hypersensitive film) was also optimised for each band. 

For the other antibodies a standard 5µg protein amount was utilised for each Western blot. 
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4.3.2 Pre-Analytical Assessment: Influence of Sampl e Handling 

Regimes on the Candidate Protein Levels in Canine C SF 

4.3.2.1 Source of Material and Simulated Clinical C onditions 

Ten CSF samples from IE cases were utilised for this experiment (Appendix 8.1.3). All 

samples were derived from cisterna magna and immediately frozen at -20°C (3 days). CSF 

samples were defrosted on ice, centrifuged to precipitate cellular debris (see 2.3.1.1, page 

79), and the supernatants from each sample were divided into four 50µl aliquots. For each 

sample, one aliquot was immediately transferred to -80°C storage and used as the control 

aliquot. The other aliquots were allocated to one of three conditions described in Table 4-1. 

At the end of treatment the aliquots were returned to -80°C storage. 

Storage Scenarios 
 

In vitro conditions 

Storage in the fridge overnight 
 

4°C overnight (18 hours) 

Carried in the lab coat pocket for 4 hours 
 

37°C for 4 hours 

Samples sent by post or left on the bench 
over the weekend 
 

Room temperature for 48 hours 

Table 4-1: Simulated storage conditions from the clinical environment that may affect CSF proteins.  

 

The total protein in each aliquot was determined. Five-µg of protein from each aliquot was 

prepared for 1-DGE and Western blot analyses.  

The number of samples generated for each treatment exceeded the capacity of the gels 

(maximum sample number per gel=10 plus molecular weight markers), therefore samples 

were loaded onto paired gels which were run and processed for Western blotting 

simultaneously. Treated samples were loaded adjacent to its corresponding control. The 

level of immuno-complexes detected by ECL reagent was quantified as described in 

2.3.7.1, page 82. A subtle variation in the intensity of the ECL signal between the two gels 

was encountered in some experiments most likely attributable to the slight difference in 

exposure to the ECL solution and the time required towrap the nitrocellulose membrane 

and place into the X-ray cassette for exposure. Therefore we introduced a correction factor 

based on the mean value of the control samples of gel 1 and gel 2. This correction value 



  Chapter 4 
 
 

 116

was applied to all samples. Statistical comparisons between treatment and corresponding 

control groups were performed by Mann-Whitney U test (see 2.6, page 87).  

4.3.2.2 The Impact of a Reducing Agent on TTR Dimer  Formation 

The assessment of TTR stability across the range of selected conditions (Table 4-1) 

demonstrates a change in the dimer levels following four hours incubation at 37°C (Figure 

4-5). To investigate the mechanism that leads to the ratio change between TTR subunits, 

the effect of TTR dimerisation under reducing conditions was conducted.  

Six CSF from IE cases collected from cisterna magna were utilised for this experiment. 

CSF samples were defrosted on ice, centrifuged to precipitate cellular debris, and the 

supernatants from each sample were divided into three 50µl aliquots. For each sample, one 

aliquot was immediately transferred to -80°C storage as control. The other aliquots were 

incubated at 37°C for four hours with or without the presence of the reducing agent, 

dithiothreitol (1mM DTT). At the end of treatment the aliquots were returned to -80°C 

storage.  

Five-µg of protein mixed in SDS buffer was denatured and analysed by 1-DGE and 

Western blot analyses. A reference standard of CSF (randomly chosen from sample bank) 

was employed at 5µg in each gel to monitor handling variations in this multi-step process 

(eg., gel-gel variation, ECL exposure). The level of the immuno-complexes detected by 

ECL reagent was quantified and the density of protein signal was calculated relative to the 

reference standard and expressed as relative abundance. Statistical comparisons between 

treatment and corresponding control groups were performed by Kruskal-Wallis ANOVA 

followed by Dunn’s multiple comparison test (see 2.6, page 87). 

4.3.3 The Comparative Analyses of Candidate Protein s in DM and 

Other Neurological Disorders CSF 

The selection of DM cases for these experiments was based on the clinical diagnosis and 

the homozygosity of the mutant allele in Sod1 gene (see 3.4.2.1, page 104). Control cases 

represented by IE, meningoencephalitis (MEN) and chronic intervertebral disc (cIVDD) 

disease consisted of wild type and heterozygous individuals. Confirmation of diagnoses for 

these disease categories was determined by routine clinical diagnostics (see 2.2.2, page 

76). Samples from patients with acute disease were excluded from analysis (seizure <3 
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days, acute and rapidly progressive disc disease <48 hours). Any chronic disc cases that 

were previously diagnosed as DM were also eliminated from further studies.   

4.3.3.1 The Comparative Analyses of Candidate Prote ins in IE and DM 

CSF  

CSF supernatants were prepared and subsequently desalted using acetone precipitation 

technique (see 2.3.3, page 80). Five-µg of protein was utilised for 1-DGE and Western blot 

analyses. A reference CSF standard was employed at 5µg protein in each gel. The level of 

the immuno-complexes detected by ECL reagent was quantified and the density of protein 

signals was calculated relative to the reference standard and expressed as relative 

abundance. Vertical scatter graphs were plotted based on these values and statistically 

analysed by using Mann-Whitney U test.  

4.3.3.2 Age-related Influence on the CSF TTR Levels   

Human studies on TTR have implied a potential for age-related influence on TTR 

expression in CSF, although there were inconsistencies between studies (Serot et al.  1997; 

Chen et al.  2005). Therefore CSF TTR in IE and DM samples were examined for evidence 

of age-related changes. Correlation analysis for this study was performed using a non-

parametric, Spearman’s rank correlation coefficient in GraphPad Prism software version 

4.0.  

4.3.3.3 The Comparative Analysis Candidate Proteins  in the CSF of DM 

and Other Neurological Disorders 

Due to insufficient CSF material available for the desalting procedure, the 1-DGE and 

Western blot analyses for this study were carried out using CSF supernatant (non-

precipitated sample). 

Five-µg of protein was utilised for each sample. Since the number of CSF samples 

analysed exceeded the capacity of the gels, samples were loaded over four separate mini 

gels, which were run and processed for Western blotting simultaneously. A reference 

standard at two different concentrations, 5µg and 10µg was incorporated in each gel to 

assess potential handling variations. This consisted of a CSF sample of sufficient volume 

to generate multiple aliquots that could be incorporated over a series of gel runs. Samples 

from each neurological condition were loaded alternately, and this had no impact on the 
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relative signal observed between the different groups. The level of the immuno-complexes 

detected by ECL reagent was quantified and the levels of TTR calculated relative to the 

reference standard and expressed as relative abundance. Vertical scatter graphs were 

plotted based on the values quantified from Western blot and subsequently analysed by 

using Kruskal-Wallis ANOVA and Dunn’s multiple comparison test. 

4.4 Results 

4.4.1 Validation of Commercial Antibodies in Canine  CSF 

Figure 4-1 summarises the cross-reactivity of commercial antibodies in canine CSF and 

brain tissue homogenates. We tested two commercial antibodies for cystatin C, only one 

antibody (US Biologicals, USA) produced a robust signal in canine CSF. Cystatin C 

(~13kDa) was detected in mouse and canine brain tissue homogenates although the levels 

were weaker than the signal observed in canine CSF. Initial Western blot analysis had 

established that TTR was robust in canine CSF, however TTR could not be detected in 

either mouse or dog brain homogenates. Two TTR subunits were recognised in Western 

blot, the dimeric form at 28kDa and monomeric at 13kDa. The antibodies against 

neuroendocrine 7B2 protein failed to produce a signal in canine CSF, however one 

antibody produced a weak signal in mouse and dog brain homogenates. The commercial 

antibodies against VGF (data not shown) have failed to detect this protein in the canine 

CSF and brain tissue homogenates.  

4.4.1.1 Optimisation of TTR Signal for Western blot  Analysis 

Preliminary Western blot detected two TTR subunits in canine CSF (Figure 4-1B). The 

optimisation of Western blot on both TTR subunits was conducted in canine CSF to 

determine optimum protein signal for TTR quantification (Figure 4-2). Gross observation 

on signal levels at 2.5, 5, 10 and 20µg suggested that 5µg of protein revealed optimum 

signal for TTR dimer. However, signal saturation was observed in TTR monomer at 5µg, 

which was not ideal for quantification. Therefore the exposure time of blot on the 

hyperfilm was reduced to 20 seconds to achieve optimum signal for TTR monomer at 5µg. 

Although TTR monomer signal was found to be optimum at 2.5µg, signal variation 

between sample and technical error may be encountered when dealing with very small 

sample volumes therefore 5µg was used for standard Western blot for TTR. 
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Figure 4-1: The validation of the commercial antibodies in canine CSF and brain tissue homogenates.  

A) i) Antibody against cystatin C (Santa Cruz Biotechnology Inc) detects a strong protein signal in lysates 

(Ly) from cells transfected with cystatin C (Cys C) expressing plasmid but fail to detect cystatin C in canine 

CSF or brain tissue homogenates. ii) Antibody against cystatin C from US Biological detects the protein in 

the control cell lysates as well as brain homogenates from mouse and dog at 13kDa.  Strong signals in CSF 

are also observed (13kDa). B) Two bands corresponding to the TTR monomer (13kDa) and dimer (28kDa) 

are detected in canine CSF. However, there is lack of signal detected in brain tissue homogenates from 

mouse or dog. C) An antibody against 7B2 (Enzo Life Sciences) detects a protein band at the expected 

molecular weight (28kDa) in brain tissue homogenates from mouse and dog but fail to detect the protein in 

canine CSF. 
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Figure 4-2: The optimisation of TTR signals in Western blot using canine CSF. 

A) Western blot demonstrating that 5µg of protein is optimum for TTR dimer with one minute exposure by 

ECL reaction but not for TTR monomer. Signal of TTR monomer is optimum at 2.5µg, however we 

predicted that there may be variation observed in TTR dimer signal across canine CSF that could affect 

protein quantification. Therefore, 5µg was selected for standard Western blot analysis for both TTR subunits. 

Optimum signal for TTR monomer at 5µg is achieved at 20 seconds exposure to xray film. B) Optical density 

for both TTR subunits at 2.5, 5, 10, 20µg were quantified and plotted in XY scatter graph. The signal for both 

TTR subunits are under exponential phase until at 10µg, however the signals start to decrease at 20µg 

indicating saturation of protein signal.  
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4.4.2 Pre-Analytical Assessment: Influence of Sampl e Handling 

Regimes on the Candidate Protein Levels in Canine C SF  

4.4.2.1 Assessment of the Protein Profile by Silver  Staining 

The gross protein profile for each treatment group was visualised by silver staining and 

demonstrated a comparable pattern between control and treated samples (Figure 4-3). No 

sign of degradation was observed in CSF samples. Interestingly, one CSF sample in lane 5 

(control) and lane 6 (treated) displayed an additional low molecular weight protein band 

(>13kDa) that was not apparent in the other samples which may indicate some unique 

characteristic of this case. An intense band at 62kDa can also be observed in the treated 

sample in lane 14 in the 4°C group but not in the control aliquot and may be indicative of 

protein aggregation. This may have been caused by unintentional technical error that 

perhaps occurred due to the addition of an insufficient amount of denaturing buffer to this 

sample. 

4.4.2.2 Assessment of Cystatin C Levels Following T reatment 

The effect of three sample processing temperatures on the level of cystatin C is 

summarised in Figure 4-4. Cystatin C displayed a stable profile in that the signals were 

unaffected by storage at 4°C overnight, 37°C for 4 hours or prolonged exposure to ambient 

room temperature. The means and standard deviations for each control and treatment group 

are given in Table 4-2. 

4.4.2.3 Assessment of TTR Levels Following Treatmen t 

The effect of sample processing temperatures on the level of TTR dimer and monomer in 

canine CSF is shown in Figure 4-5 and Figure 4-6 respectively. The dimeric TTR levels 

between treated and control samples were significantly different. An elevation of dimeric 

levels was demonstrated in the 37°C for 4 hours (P<0.01) and room temperature (P<0.01) 

groups. The more abundant monomeric form of TTR was unaffected by all three 

conditions. Table 4-2 shows the summary of descriptive statistics for control and treatment 

group. 
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4.4.2.4 The Impact of a Reducing Agent on TTR Dimer  Formation 

The elevated level of dimeric TTR following incubation at 37°C was attenuated by pre-

treating CSF with the reducing agent DTT. The finding confirms that dimeric TTR 

formation at 37°C could be inhibited with the inclusion of DTT (P<0.05), and suggesting 

that the association of TTR structure is mediated through disulfide bonds (Figure 4-7). The 

numerical data for this experiment are presented in Table 4-3. 
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                 Protein 
Treatment 

Cystatin C 
 

TTR dimer 
 

TTR monomer 
 

Control 
4°C overnight 
 
Control 
37ºC for 4 hours  
 
Control 
RT for 48 hours  
 

10760±7057 
11388±6475 
 
10701±4207 
12373±3394 
 
10738±4057 
8749±3493 
 

9431±3288 
10400±3943 
 
9380±5966 
18792±8320** 
 
9422±4116 
15780±4127** 
 

6732±1800 
8462±2281 
 
11844±5404 
13043±4049 
 
11628±2483 
10738±3218 

Table 4-2: The cystatin C and TTR optical density values in pre-analytical assessment.  

Data presented as mean ± standard deviation and ** corresponds to P<0.01.  

 

 

Treatment TTR dimer 
 

P value 

aControl  
b37°C – 1mM DTT 
c37°C + 1mM DTT 

176.2±66.5 
225.3±82.1 
101.2±52.9 
 

ns 
ns 
*  (b vs. c) 

Table 4-3: The data for control and treated groups in TTR dimerisation experiment.  

Data displayed as mean ± standard deviation, values calculated in relative to reference standard. * is 

equivalent to P<0.05 and ns is not significant. 
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Figure 4-3: Assessment of the influence of sample handling regime on protein profile by silver staining. 

A)-C) Aliquots of treated (lane with even numbers) and untreated (lane with odd numbers) CSF were 

resolved on a 1-DGE with inclusion of protein marker (Mkr). The protein profiles were assessed by silver 

staining and are comparable across the different samples analysed. There is no gross impact on the protein 

profiles as a consequence of the three different treatment regimes. One CSF sample in lane 5 (control) and 6 

(treated) displays an additional protein band (~13kDa) which is consistent in all stained gels. In A) lane 14 

demonstrates an intense protein band at 62kDa, however this is not found in other gels. The specific proteins 

in the silver-stained gels were estimated by their corresponding molecular weight size. Hp – haptoglobin; 

CLU – clusterin. 
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Figure 4-4: The influence of three potential sample handling regimes on cystatin C stability.  

A) Cystatin C Western blot signals (N=10) for i) 4°C overnight, ii) 37°C, and iii) room temperature B) The 

protein optical densities were quantified, corrected for gel handling variations, expressed as arbitrary unit, 

and plotted in vertical scatter graph. Cystatin C protein levels are not altered under all conditions examined. 

Data presented as mean ± standard deviation. 

Lane with odd numbers - control CSF; Lane with even numbers - treated CSF 
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Figure 4-5: The influence of three potential sample handling regimes on TTR dimer stability.  

A) The Western blot signals (N=10) for TTR dimer for i) 4°C overnight, ii) 37°C, and  iii) room temperature. 

B) The protein optical densities were quantified, corrected for gel handling variations, expressed as arbitrary 

unit and plotted in vertical scatter plot. Statistical analysis demonstrated that CSF exposure to 37°C for 4 

hours and at room temperature for 48 hours result in a significant elevation in the TTR dimer complex but is 

not influenced by 4°C exposure. Data presented expressed as mean ± standard deviation and ** corresponds 

to P<0.01. 

Lane with odd numbers - control CSF; Lane with even numbers - treated CSF 
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Figure 4-6: The influence of three potential sample handling regimes on TTR monomer stability.  

A) The Western blot signals (N=10) for TTR monomer for i) 4°C overnight, ii) 37°C, and iii) room 

temperature. B) The protein optical densities were quantified, corrected, expressed as arbitrary unit, and 

plotted using vertical scatter plot. TTR monomer levels are not altered under all conditions examined. Data 

presented as mean ± standard deviation. 

Lane with odd numbers - control CSF; Lane with even numbers - treated CSF 
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Figure 4-7: The reducing agent DTT blocks the TTR dimer formation at 37°C. 

A) CSF samples were incubated at 37°C for 4 hours with or without DTT (1mM) and subsequently compared 

with immediately denatured controls (N=6 for each group). The protein profiles of controls, treated aliquots 

with or without DTT were assessed by silver staining. Gross observation on silver stained gels indicates no 

sign of protein degradation. B) The protein densities from Western blot were quantified and the vertical 

scatter graph was plotted based on the signal levels detected by ECL. Statistical analysis demonstrated that 

the presence of DTT in samples incubated at 37°C resulted in a significant reduction in TTR dimer levels 

compared to without DTT samples treated at 37°C. Data presented as mean ± standard deviation and * 

corresponds to P<0.05. 
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4.4.3 The Comparative Analyses of Candidate Protein s in DM and 

Other Neurological Disorders CSF 

Prior to Western blot analysis, all CSF aliquots used in gel-based analysis were assessed 

for signs of protein degradation (data not shown).  

All samples marked “X” were excluded in statistical analyses based on the selection 

criteria summarised in 4.3.3, page 116. CSF sample collected from lumbar cistern was 

marked as “L” and the protein value was indicated by a pink-coloured dot in the vertical 

scatter plot. The complete list of dogs included in each analysis is given in Appendix 8.1.1. 

4.4.3.1 Comparative Analysis of Cystatin C in IE an d DM CSF 

The relative concentrations of cystatin C in IE and DM CSF demonstrated no significant 

difference between groups (Figure 4-8). The means and degree of variations for this 

analysis are given in Table 4-4. 

4.4.3.2 Comparative Analysis of TTR in IE and DM CS F 

The relative concentrations of TTR dimer (Figure 4-9) and monomer (Figure 4-10) in DM 

were significantly reduced compared to IE CSF (TTR dimer, P<0.05, TTR monomer, 

P<0.01). The summary of means and standard deviations for this experiment are presented 

in Table 4-4. 

4.4.3.3 Age-related Influence on the CSF TTR Levels   

CSF TTR levels in both of IE and DM groups were examined for age-related changes. 

Correlation analysis revealed a weak negative relationship between TTR subunits levels 

and age, but the relationships were not statistically significant (Figure 4-11).  

4.4.3.4 Comparative Analysis of TTR in CSF from Var ious Neurological 

Disorders 

The comparative analysis of TTR dimer and monomer levels across the neurological 

conditions is shown in Figure 4-12 and Figure 4-13 respectively. Statistical analysis in both 

TTR subunits levels demonstrated no significant difference between disease groups. The 

numerical findings for this investigation are shown in Table 4-5. 
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                 Protein 
Group 

Cystatin C 
 

TTR dimer 
 

TTR monomer 

IE 
DM 
 

86.8±62.1 
107.6±50.8 
 

96.9±52.5 
48.2±12.5* 
 

149.2±43.4 
77.7±24.0** 
 

Table 4-4: The cystatin C and TTR levels in IE and DM CSF.  

The data presented as mean ± standard deviation, values calculated in relative to reference standard. * is 

P<0.05 and ** is P<0.01. 

 

                 Protein 
Group 

TTR dimer 
 

TTR monomer 
 

aIE 
bDM 
cMEN 
dcIVDD 
 

77.1±44.7 
84.3±35.6 
89.2±27.6 
91.0±61.1 
 

117.1±49.5 
127.7±25.5 
123.7±41.2 
151.3±71.7 

Table 4-5: The CSF TTR dimer and monomer values in various neurological disorders. 

Data displayed as mean ± standard deviation, values calculated in relative to reference standard.  

 



 
 
 

 

Figure 4-8: The comparative analysis of cystatin C in IE and DM CSF.

A) The cystatin C signals obtained from Western blot analysis in IE 

scatter graph was plotted to show the data distribution. Statistical analysis demonstrated no significant 

difference in cystatin C levels between IE 

statistical analysis. Sample marked “L” was

sample is represented as pink

deviation. 

 

 

 

 

: The comparative analysis of cystatin C in IE and DM CSF. 

signals obtained from Western blot analysis in IE (N=7) and DM 

scatter graph was plotted to show the data distribution. Statistical analysis demonstrated no significant 

n cystatin C levels between IE and DM groups. Samples marked

l analysis. Sample marked “L” was collected from lumbar CSF and the protein value from this 

sample is represented as pink-coloured dot in the vertical scatter graph. Data presented
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and DM (N=6) cases. B) Vertical 

scatter graph was plotted to show the data distribution. Statistical analysis demonstrated no significant 

ples marked “X” were excluded from 

collected from lumbar CSF and the protein value from this 

Data presented as mean ± standard 
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Figure 4-9: The comparative analysis of TTR dimer in IE and DM CSF 

A) TTR dimer signals obtained from Western blot analysis. B) Vertical scatter graph was plotted to show the 

data distribution. Statistical analysis revealed significant reductions in TTR dimer levels between IE (N=9) 

and DM (N=7) groups. Samples marked “X” were excluded from statistical analysis. Sample marked “L” 

was collected from lumbar CSF and the protein value from this sample is represented as pink-coloured dot in 

the vertical scatter graph. Data presented as mean ± standard deviation and * corresponds to P<0.05. 
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Figure 4-10: The comparative analysis of TTR monomer in IE and DM CSF. 

A) TTR monomer signals obtained from Western blot analysis. B) Vertical scatter graph was plotted to show 

the data distribution. Statistical analysis demonstrated significant reductions of TTR monomer levels between 

IE (N=9) and DM (N=7) groups. Samples marked “X” were excluded from statistical analysis. Sample 

marked “L” was collected from lumbar CSF and the protein value from this sample is represented as pink-

coloured dot in the vertical scatter graph. Data presented as mean ± standard deviation and ** corresponds to 

P<0.01. 
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Figure 4-11: The correlation analysis of TTR subunits levels versus age. 

A) Correlation analysis of TTR dimer versus age. B) Correlation analysis of TTR monomer versus age. 

There are no significant relationships between the TTR subunits levels and the age of the cases analysed. 

Protein values indicated by pink-coloured dots represent lumbar CSF. 
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Figure 4-12: The comparative analysis of TTR dimer in various neurological disorders CSF. 

A) TTR dimer signals obtained from Western blot analysis. B) Signals were quantified and values were 

plotted in vertical scatter plot. Statistical comparison between four disease groups; IE (N=7), DM (N=4), 

MEN (N=8), and cIVDD (N=4) demonstrate no significant difference. Samples marked “X” were excluded 

from statistical analysis. Sample marked “L” was collected from lumbar CSF and the protein value from this 

sample is represented as pink-coloured dots in the vertical scatter graph. Data presented as mean ± standard 

deviation. 
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Figure 4-13: The comparative analysis of TTR monomer in various neurological disorders CSF. 

A) TTR monomer signals obtained from Western blot analysis. B) Signals were quantified and values were 

plotted in vertical scatter plot. Statistical comparison between four disease groups; IE (N=7), DM (N=4), 

MEN (N=8), and cIVDD (N=4) demonstrate no significant difference.  Samples marked “X” were excluded 

from statistical analysis. Sample marked “L” was collected from lumbar CSF and the protein value from this 

sample is represented as pink-coloured dots in the vertical scatter graph. Data presented as mean ± standard 

deviation. 
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4.5 Discussion 

In this chapter we evaluated the putative ALS biomarkers in DM CSF to determine their 

potential utility as DM biomarkers. The first step in this study was to validate the 

commercial antibodies against ALS-associated biomarkers in canine CSF. The preliminary 

findings of Western blot demonstrated that some antibodies detected the appropriate 

proteins in canine CSF and were therefore suitable for further study. The discrepancy in 

the cross-reactivity of these antibodies in canine CSF is expected since most of the 

commercial antibodies are likely to be tested on murine or human biological samples and 

to a lesser extent on other species. Four candidate proteins of ALS were evaluated by 

Western blot, however only cystatin C and TTR have displayed robust signals in canine 

CSF. Characterisation of 7B2 and VGF proteins in canine CSF were unsuccessful even 

after testing a range of antibodies obtained from different sources. 7B2 protein was 

detected in both mouse and dog brain tissue homogenates, which may reflect its high 

concentrations in the brain tissue compared to CSF as observed in previous studies (Iguchi 

et al.  1985; Iguchi et al.  1987). Interrogation of genomic sequences in public database 

(PubMed, NCBI, USA) revealed human 7B2 (Accession: NP_003020.3) to be 92% 

homologous with canine 7B2 protein (Accession: XM_535423). The failure to identify 

7B2 protein in canine CSF could be due to low 7B2 abundance in canine CSF but not due 

to epitope specificity. Assessment of VGF to predict species divergence between human 

and dog has been limited by a paucity of published data. The lack of signal detection for 

VGF by Western blot in canine CSF may be contributed by the lack of specificity of 

commercial antibodies. 

4.5.1 Cystatin C 

Preliminary Western blot demonstrated that cystatin C was robust in canine CSF with an 

estimated molecular weight around 13kDa. The unsuccessful identification of cystatin C at 

the initial stage using a monoclonal antibody (Enzo Life Sciences, UK) might be a 

consequence of the lack of a recognisable epitope. It is common for monoclonal antibodies 

to be able to detect only one epitope in an antigen, which reduces its cross-reactivity and is 

an issue to be considered when extrapolating observations between species. Therefore 

polyclonal antibodies were used for validation of cystatin C and other proteins in canine 

CSF.  
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Investigation of protein biomarkers may be affected by various pre-analytical factors that 

can arise from the clinical and laboratory environments (Ferguson et al.  2007; 

Pieragostinoa et al.  2010). In this study the geographical distance between the small 

animal hospital and the laboratory could potentially compromise the reliability of samples 

subjected to biomarker analyses. Therefore the assessment of the impact of three potential 

sample handling practices on the cystatin C levels in canine CSF was conducted prior to 

comparative analysis. Our study has demonstrated that cystatin C in canine CSF was not 

altered by prolonged CSF storage at 4°C or 37°C or even with long exposure of CSF at 

ambient temperature. There is no report available on the effect of short term storage of 

CSF on cystatin C, however cystatin C has been reported to be stable when CSF was stored 

at -20°C for three months (Carrette et al. 2005). The prolonged storage of CSF beyond the 

three months period however demonstrated a truncated cystatin C form (Carrette et al.  

2005; Boccio et al.  2006). Another study on urinary cystatin C in human has indicated that 

cystatin C was clearly stable at -20°C and 4°C for 7 days, and at 20°C for 48 hours 

(Herget-Rosenthal et al.  2004). However urinary cystatin C appeared to be significantly 

reduced after 72 hours at 20°C. The same study also shown that cystatin C was not 

influenced by three freezing and thawing cycles (Herget-Rosenthal et al.  2004). Although 

cystatin C is shown to be stable across the storage conditions of canine CSF, evidence in 

the literature does highlight the importance of the optimal storage at -80°C to avoid 

complication in cystatin C biomarker analysis.  

In ALS, a significant reduction of cystatin C levels is reported in CSF of ALS patients and 

is recognised as one of the most promising biomarkers of ALS (Ranganathan et al.  2005; 

Pasinetti et al.  2006; Ryberg et al.  2010; Wilson et al.  2010). The down-regulation of 

cystatin C in ALS CSF also has been correlated with disease duration in patients with 

spinal onset of ALS (Ryberg et al.  2010). The causative mechanism leading to the 

reduction of cystatin C in ALS has not been defined, however evidence has shown that 

reduction of this protein may enhance protein degradation and prevent cellular repair 

(Nakanishi, 2003; Olsson et al.  2004). However comparative analysis of cystatin C levels 

between IE and DM groups in this study has demonstrated no significant difference and 

therefore it is not a strong contender as a DM biomarker. 

4.5.2 TTR 

TTR in CSF exists predominantly in its monomeric form (13.8kDa) (Dickson et al.  1986; 

Schreiber et al.  1990; Zheng et al.  1999), although a higher molecular weight of TTR 
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known as the dimeric form can also be found (Chen et al.  2005; Foss et al.  2005). TTR 

primarily originates from the liver, however in CSF TTR is present in high concentrations 

and is exclusively produced by the choroid plexus (Ingenbleek and Young, 1994). In CNS 

tissue TTR is expressed in low concentrations and is transported to the CNS parenchyma 

from blood and CSF (Chanoine et al.  1992). The preliminary Western blot revealed both 

TTR monomer and dimer subunits in canine CSF at 13kDa and 28kDa respectively. We 

also confirmed that TTR monomer was found in greater concentration than TTR dimer in 

canine CSF with a monomer to dimer ratio of 5:1. The high concentration of TTR 

monomer in this study is consistent with previous TTR studies in dogs ((Forterre et al.  

2006; Piechotta et al.  2012), rat (Schreiber et al.  1990) and sheep (Marchi et al.  2003), 

although slight variation in terms of molecular weight may be observed depending on the 

species and the type of antibody used in the laboratory (Chen et al.  2005). TTR was not 

detected in mouse or dog brain homogenates, however, this could be due to the low TTR 

expression in CNS tissue (Stein and Johnson, 2002; Ranganathan et al.  2005).  

The stability of both TTR subunits was assessed. We initially hypothesised that prolonged 

storage of CSF at high temperatures (4°C, 37°C, room temperature) may cause a 

significant reduction of TTR due to protein degradation. However an unexpected 

increment pattern was observed in the level of dimeric TTR in canine CSF at 37°C and at 

room temperature. TTR monomer levels were unaffected by these conditions however, due 

to the relativity high concentration of monomeric TTR in canine CSF, we speculated that 

the predicted concomitant reduction in the monomeric pool may not be obvious. This is 

shown by the minor reduction in monomeric TTR that would imply a spontaneous 

dimerisation event. To our knowledge there are no current reports on the effect of short 

term storage on TTR in CSF, although it has been reported that serum TTR was 

significantly reduced following sample storage at -20°C for three months (Pieragostinoa et 

al.  2010). A report on CSF TTR has indicated that this protein is sensitive to repeated 

freeze-thawing cycles (5-10 times) (Rosenling et al.  2009).  

The elevation of TTR dimeric levels following 37°C and room temperature treatments may 

be a consequence of de novo synthesis although this is unlikely as all samples were taken 

from the same route and condition. Therefore we speculated that under these conditions 

there is an association between monomeric subunits that form into dimeric complexes and 

that this may occur due to disulphide bridge formation between monomers (Redondo et al.  

2000; Foss et al.  2005).  1-DGE and Western blot analysis of treated CSF at 37°C in the 
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presence of 1mM DTT (a disulphide reducing agent) resulted in a significant reduction 

(50%) of TTR dimer signals compared non-DTT samples confirming that disulphide bonds 

are tethering the monomeric subunits together.  In this experiment we have indicated that 

the increased TTR dimerisation is induced by monomer interactions that subsequently lead 

to the TTR dimer elevation in CSF under 37°C and at room temperature conditions.  

Significant reductions of TTR dimer (49%) and monomer (52%) were detected in DM 

CSF. These findings are consistent the CSF TTR levels observed in the previous ALS 

studies (Ranganathan et al.  2005; Kolarcik et al.  2007; Ryberg et al.  2010). Therefore, it 

is possible that the reduction of TTR observed in DM CSF may reflect common pathways 

with ALS. The mechanism of TTR reduction in CSF has not been fully elucidated however 

recent studies have identified alterations in post-translational modification of TTR in ALS 

CSF that may contribute to the significant reduction of TTR levels (Kolarcik et al.  2007; 

Ryberg et al.  2010). Besides its function as the carrier of thyroid hormones, TTR can act 

as a chaperone that has the ability to bind or sequester abnormal proteins such as Aβ 

peptide (Tsuzuki et al.  2000). In addition, TTR also regulates the retinoid signalling 

pathway, which is involved in neuroplasticity and regeneration (Mey and McCaffery, 

2004). Therefore a reduction of TTR levels may lead to inadequate sequestration of 

abnormal proteins, impairment of signalling and a decrease in the regenerative capacity 

during CNS tissue injury, which eventually contributes to lesion development in ALS 

(Kolarcik et al.  2007).  

Speculations that TTR levels in CSF may reduce with age was proposed based on the 

morphological and functional changes of choroid plexus in relation to the ageing process 

(Serot et al.  2003). A reduction in choroid plexus function corresponding to increased age 

has been reported (Preston, 2001). In addition, a study of TTR in old sheep demonstrated a 

significant reduction of CSF TTR levels (Chen et al.  2005), while previous studies of TTR 

in human CSF have shown inconsistent results (Zheng et al.  2001; Kleine et al.  1993; 

Serot et al.  1997; Kunicki et al.  1998). Since DM is characterised as a late onset condition 

it is imperative to determine whether the age factor has an impact on the TTR observation 

in DM CSF. The correlation analysis of both TTR subunit levels revealed no significant 

relationship with age in the cases analysed, therefore we are confident that the significant 

differences of the TTR levels between IE and DM groups is disease-specific. 

Further comparative analysis of CSF TTR in various neurological disorders revealed no 

significant findings, which is inconsistent with the preliminary analysis of TTR in IE and 
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DM CSF. This comparative analysis of TTR across selected neurological conditions was 

conducted using CSF supernatant instead of precipitated CSF, thus, it is conceivable that 

differences in sample preparation could affect the protein profile detected by Western blot. 

Acetone precipitation is a recommended desalting protocol that is efficient in the removal 

of high salt and albumin contents that may reduce the efficiency of separation or migration 

of protein during gel electrophoresis (Yuan et al.  2002). This desalting technique was 

initially optimised in this study for advance protein separation protocol (2-DGE), however 

this technique was abandoned at the later stage of the project due to the high requirement 

of sample volume and failure in optimising 2-DGE protocol in canine CSF (Appendix 

8.5.1). Series of 1-DGE analyses on CSF supernatants have demonstrated clean and robust 

protein profiles in polyacrylamide gel and Western blot, implying that desalting procedure 

may not be critical in 1-DGE protein separation. There were also no differences observed 

in the molecular weight size of both TTR subunits.  

We proposed that TTR is a potential candidate protein for DM biomarker, however further 

evaluation of TTR in a large scale DM population is required to determine the specificity 

of this protein as a clinical biomarker for DM. This objective will be accomplished once 

the clinical material becomes available in future.  
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5 The Characterisation of Novel CSF Biomarkers 

in DM
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5.1 Background  

The search for novel protein biomarkers for human diseases is being actively pursued by 

researchers from many disciplines since biomarkers have the potential to inform on 

diagnosis, disease progression and underlying pathological mechanisms (Ryberg and 

Bowser, 2008; Perrin et al.  2011). Collectively, this information may enhance the 

likelihood of the development of therapeutic agents where their effectiveness may also be 

monitored with appropriate biomarker assessment (Abdi et al.  2006; Yoon and Sin, 2011). 

Proteomic studies have generated complementary datasets to genomics that could be used 

simultaneously to provide further understanding of biological systems (Tyers and Mann, 

2003). In this project the identification of novel protein biomarkers in DM CSF using a 

proteomic approach will not only provide additional information on the DM pathogenesis 

but may also complement the Sod1 genotyping to achieve specific diagnosis in the clinic. 

Two strategies; 1-DGE and 2-DGE techniques were initially adopted and progressed in 

parallel, however initial assessment of 2-DGE system in canine CSF revealed 

unsatisfactory protein separation (see Appendix 8.5.1). Preliminary results of 1-DGE 

demonstrated robust data therefore a combination of 1-DGE and MALDI-TOF MS was 

employed for novel biomarker identification.  

5.2 Aims 

In this chapter, we aimed to identify and characterise the novel biomarkers in DM CSF 

through a gel-based technique, 1-DGE coupled with MALDI-TOF MS. The specific aims 

of work presented in this chapter were to: 

1. Identify potential biomarkers in DM CSF through high throughput MALDI-TOF 

MS. 

2. Validate the cross-reactivity of commercial antibodies against novel candidate 

proteins in canine CSF. 

3. Assess the influence of potential sample handling practices on the candidate 

protein levels in canine CSF. 
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4. Perform comparative evaluations of the candidate protein levels in DM and other 

neurological disorders CSF. 

5.3 Materials and Methods 

5.3.1 Identification of Potential Biomarkers in DM CSF through 

MALDI-TOF MS 

CSF samples from IE and DM homozygotes were defrosted on ice and centrifuged to 

remove cellular debris (see 2.3.1.1, page 79). CSF supernatants were desalted using 

acetone precipitation technique (see 2.3.3, page 80) and prepared and analysed for 1-DGE 

(see 2.3.5, page 80). The gel was stained with Coomassie blue (see 2.3.6, page 81) and the 

protein profiles were assessed. The band of interest was excised, transferred to 1.5ml 

eppendorf tube and transported at room temperature to the proteomic facility in University 

of Glasgow (under directorship of Dr. Richard Burchmore). The gel was cut into several 

pieces and subjected to trypsin enzyme digestion for MALDI-TOF MS analysis (see 2.3.8, 

page 83).  

5.3.2 Validation of Commercial Antibodies in Canine  CSF 

Validation of commercial antibodies against novel candidate proteins was performed using 

CSF supernatants and compared with dog and mouse brain tissue homogenates using 

Western blots as described in 4.3.1, page 114. The details of commercial antibodies for the 

proteins identified by MS (clusterin and haptoglobin) is summarised in Table 2-1. 

5.3.3 Pre-Analytical Assessment: Influence of Sampl e Handling 

Regimes on Candidate Protein Levels in Canine CSF 

The candidate proteins identified in MALDI-TOF MS were subjected to three potential 

CSF sample handling regimes modelled in the laboratory; 4°C for 18 hours, 37°C for four 

hours and room temperature for 48 hours (see 4.3.2, page 115). Five-µg of protein from 

CSF supernatant was utilised for this assessment and experiments were executed as 

detailed in 4.3.2.1, page 115. Following 1-DGE  (see 2.3.5, page 80) Western blot analyses 

(see 2.3.7, page 81) the protein signal was quantified (see 2.3.7.1, page 82), corrected for 

gel handling variations and plotted using vertical scatter plot in arbitrary units. Statistical 
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comparison between treatments and corresponding controls was achieved using a non-

parametric, Mann-Whitney U test (see 2.6, page 87).  

5.3.4 The Comparative Analyses of Candidate Protein s in DM and 

Other Neurological Disorders CSF 

The case selection for each disease group; IE, DM, MEN and cIVDD was achieved based 

on the clinical diagnosis and the Sod1 genotyping as detailed in 4.3.3, page 116.  

5.3.4.1 Investigations of Candidate Proteins Levels  in IE and DM CSF 

Five-µg of protein from CSF supernatants were utilised for 1-DGE and Western blot 

analyses. A reference standard was employed at 5µg in each gel. The level of immune-

complexes was quantified and the relative concentrations of the proteins were calculated 

relative to the reference standard and expressed as relative abundance. Vertical scatter plot 

was plotted based on the values quantified and statistically compared using Mann-Whitney 

U test.  

5.3.4.2 The Comparative Analysis of Candidate Prote in Levels in DM 

and Other Neurological Disorders CSF 

Five-µg of protein from CSF supernatants of IE, DM, MEN and cIVDD were utilised for 

1-DGE and Western blot analyses. The experiment was executed as detailed in 4.3.3.3, 

page 117. 

5.3.4.3 Age-related Influence on CSF Clusterin Leve ls  

The upregulation of clusterin has been implicated in several neurodegenerative conditions 

mostly related to advanced aging (Sasaki et al.  2002; Calero et al.  2005). Therefore, the 

relationships of CSF clusterin levels with age were examined to exclude age-related 

changes as a potential variable. Correlation analysis was conducted on cases analysed in 

5.3.4.2 using a non parametric, Spearman’s rank correlation co-efficient (see 4.3.3.2, page 

117). 
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5.4 Results 

5.4.1 Identification of Potential Biomarkers in DM CSF through 

MALDI-TOF MS 

The 1-DGE analysis of IE (N=4) and DM homozygotes CSF (N=4) is demonstrated in 

Figure 5-1. The comparison of protein profile between these two groups revealed a 

differentially expressed protein band estimated at 38kDa, which was consistently present in 

all DM samples and almost undetectable in IE CSF. The IE sample marked in lanes 5 and 7 

displayed low protein sample which may be explained by protein loss during acetone 

precipitation or technical error during sample loading.  

The upper and lower bands from a DM sample in lane 4 were excised and sent for 

MALDI-TOF analysis. Identification of the upper band revealed clusterin and 

apolipoprotein E proteins. In the lower band, clusterin was detected with haptoglobin 

protein. The information obtained from MASCOT peptide database is summarised in Table 

5-1. 
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Figure 5-1: The 1-DGE analysis of IE and DM CSF. 

One-DGE analysis of IE (N=4) and DM CSF (N=4) followed by Coomassie staining revealed an additional 

protein band at approximately 38kDa, which was consistently visible in DM CSF (as shown by black arrow), 

but present at a far lower intensity in the IE cases. Two bands, an upper (red arrow) and lower (black arrow) 

from a DM sample (lane 4), were excised and sent for MALDI-TOF analysis. Note the comparatively low 

densities of staining in lane 5 and 7 (IE). 

 

Band  Mass Peptide matched 
 

Protein Score Protein 

Upper band 
 
 
Lower band 

35332 
51757 

 
36434 
51757 

2 
2 
 
3 
2 

123 
115 

 
151 
90 

Canine apolipoprotein E 
Canine clusterin 
 
Canine haptoglobin 
Canine clusterin 
 

Table 5-1: Proteins identified by MASCOT peptide database after in-gel trypsin digestion of protein 

bands from 1-DGE analysis. A protein score of more than 50 is considered a good identification. 
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5.4.2 Validation of Commercial Antibodies in Canine  CSF 

Antibodies against haptoglobin and clusterin were tested for their compatibility with 

canine CSF. Each antibody displayed a robust cross-reactivity with canine CSF (Figure 

5-2). Western blot on haptoglobin revealed a single band estimated at 38kDa in canine 

CSF. Robust cross-reactivity was also observed in canine CNS tissue homogenates but not 

in murine brain tissue homogenates. Clusterin protein was found around 38kDa in Western 

blot, which was extremely robust in canine CSF but demonstrated only a weak signal in 

canine brain tissue homogenate even at 50µg of protein. Clusterin was not detected in 

mouse CNS tissue.   

 

 

Figure 5-2: The validation of commercial antibodies of haptoglobin and clusterin in canine CSF using 

Western blot. 

A) Haptoglobin: A robust signal at 38kDa is observed for canine CSF and brain tissue homogenate but not 

detected in mouse brain tissue. B) Clusterin: A robust signal at 38kDa is observed in canine CSF. A weak 

signal is detected in canine brain tissue but not in mouse brain tissue. 
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5.4.3 Pre-Analytical Assessment: Influence of Sampl e Handling 

Regimes on the Candidate Protein Levels in Canine C SF 

The stability of haptoglobin and clusterin was assessed according to the protocols 

established for candidate proteins as described in 4.3.2, page 115. The protein profiles in 1-

DGE was visualised by silver staining and revealed a consistent pattern between control 

and untreated samples (Figure 4-3). There was no sign of degradation observed. Aliquots 

from the samples generated during this study were stored and analysed for the novel 

protein described in this chapter. All samples marked “X” were excluded from statistical 

analyses due to the unquantifiable signals in Western blots. The complete list of dogs 

included in each analysis is given in Appendix 8.1.3. 

5.4.3.1 Assessment of Haptoglobin Levels Following Treatment in 

Canine CSF 

The effects of the three CSF sample handling practices on the levels of haptoglobin is 

summarised in Figure 5-3. The haptoglobin signals in lanes 7, 8, 15, and 16 were 

undetectable. This observation was consistent across treatment groups and therefore 

excluded from subsequent statistical analysis. One CSF sample in lane 5 in the 37°C group 

was also undetectable and excluded, which could be contributed by technical error while 

loading the samples. Statistical comparison of the levels of haptoglobin in various storage 

conditions did not differ statistically between treatment and corresponding control groups. 

Table 5-2 shows the means and standard deviations for each control and treatment group. 

5.4.3.2 Assessment of Clusterin Levels Following Tr eatment in Canine 

CSF 

The effects of the three CSF sample handling practices on the levels of clusterin is 

summarised in Figure 5-4. The clusterin signals in lanes 1, 2, 3, and 4 were consistently 

undetectable in all treatment groups and therefore excluded from statistical analysis. 

Clusterin intensity was unaffected by either 4°C or 37°C conditions but was significantly 

reduced (P<0.05) when the samples were incubated at room temperature for 48 hours. The 

numerical data for each control and treatment group are presented in Table 5-2. 
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                 Protein 
Treatment 

Haptoglobin 
 

Clusterin 
 

Control 
4°C overnight 
 
Control 
37ºC for 4 hours 
 
Control 
RT for 48 hours 

8151±3223 
9234±3315 
 
7812±5295 
7490±5785 
 
8295±2233 
8866±3034 
 

12567±5156 
10400±3943 
 
16339±6450 
20881±9795 
 
19779±6391 
9258±7069* 

Table 5-2: The optical density values for haptoglobin and clusterin in pre-analytical assessment. 

Data presented as mean ± standard deviation and * corresponds to P<0.05.  
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Figure 5-3: The influence of sample handling regimes on haptoglobin stability.  

A) The haptoglobin Western blot signals for i) 4°C overnight ii) 37°C for 4 hours and  iii) room temperature 

B) The optical densities were quantified, corrected for gel handling variations, expressed as arbitrary units, 

and plotted using vertical scatter plot. Haptoglobin levels are not altered under all conditions examined. 

Samples marked “X” were excluded from statistical analysis. Data presented as mean ± standard deviation. 

Lane with odd numbers - control CSF; Lane with even numbers - treated CSF 
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Figure 5-4: The influence of sample handling regimes on clusterin stability.  

A) The clusterin Western blot signals (N=8) for i) 4°C overnight ii) 37°C for 4 hours and iii) room 

temperature. B) The protein optical densities were quantified, corrected for gel handling variations, expressed 

as arbitrary units and plotted using vertical scatter plot. Clusterin levels were not altered under 4°C and 37°C 

conditions, but appeared significantly reduced when treated at room temperature. Samples marked “X” were 

excluded from statistical analysis. Data presented as mean ± standard deviation, * represents P<0.05. 

Lane with odd numbers - control CSF; Lane with even numbers - treated CSF 
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5.4.4 The Comparative Analyses of Candidate Protein s in DM and 

Other Neurological Disorders CSF 

All CSF samples utilised for comparative Western blot analysis were checked for signs of 

protein degradation (data not shown).  

Samples marked “X” were excluded based on the criteria outlined in 4.3.3, page 116. CSF 

sample collected from lumbar cistern was marked as “L” and the protein value was 

indicated by pink-coloured dot in the vertical scatter plot. Samples marked “Xs” were 

unable to be quantified, therefore were also excluded from further analysis. 

5.4.4.1 The Comparative Analysis of Haptoglobin in IE and DM CSF 

The quantification of haptoglobin levels in IE and DM revealed no significant differences 

between groups (Figure 5-5). CSF samples that had been treated with prednisolone at the 

point of CSF sample collection were excluded (marked with asterisk) as it is widely known 

that prednisolone administration can alter the haptoglobin levels (Willams et al.  1961; 

McConkey et al.  1979). The means and standard deviations for this experiment are given 

in Table 5-3. 

5.4.4.2 The Comparative Analysis of Clusterin in IE  and DM CSF 

The relative concentrations of clusterin (Figure 5-6) revealed significantly increased 

clusterin in DM compared to IE group (P<0.001). The descriptive statistics for this 

analysis are presented in Table 5-3. 

5.4.4.3 The Comparative Analysis of Clusterin in CS F from Selected 

Neurological Disorders 

Results for the comparative study of clusterin in a range of neurological disorders are 

displayed in Figure 5-7. CSF clusterin was significantly elevated in DM compared to IE 

(P<0.001), which was consistent with the previous finding. In addition, CSF clusterin 

levels in DM were significantly elevated compared to MEN group (P<0.05). A similar 

pattern of CSF clusterin elevations was also observed in cIVDD cases (P<0.01) compared 

to IE cases. Although there was no significant difference detected in CSF clusterin levels 

between DM and cIVDD groups, the levels of clusterin was elevated by 20% in DM CSF 

compared to cIVDD cases. The numerical data is shown in Table 5-4. 
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5.4.4.4 Age-related Influence on the CSF Clusterin Levels  

Spearman’s rank correlation analysis revealed a weak, positive relationship between CSF 

clusterin levels and age in various neurological cases, however the relationships were not 

statistically significant (Figure 5-8).  

 

                 Protein 
Group 

Haptoglobin 
 

Clusterin 
 

IE 
DM 
 

32.8±23.5 
69.9±49.5 
 

59.9±38.7 
202.1±27.1*** 
 

Table 5-3: The haptoglobin and clusterin levels in IE and DM CSF 

Data presented as mean ± standard deviations, values calculated in relative to reference standard. *** 

equivalents to P<0.001. 

 

                 Protein 
Group 

Clusterin 
 

P value 

aIE 
bDM 
cMEN 
dcIVDD 
 

27.9±34.1 
171.0±32.0 
93.2±46.5 
136.0±51.4 
 

P<0.001** (a vs. b) 
P<0.05* (a vs. c) 
P<0.01** (a vs. d) 
P<0.05* (b vs. c) 
 

Table 5-4: The CSF clusterin levels in various neurological disorders. 

Data presented as mean ± standard deviations, values calculated in relative to reference standard. * represents 

P<0.05, ** is P<0.01, *** is equivalent to P<0.001. 
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Figure 5-5: The comparative analysis of haptoglobin in IE and DM CSF. 

A) The haptoglobin levels of IE (N=8) and DM (N=5) in Western blot analysis B) Vertical scattered graph 

was plotted to show the data distribution, revealed no significant difference in the means between groups. 

Case marked by asterisk (*) had been treated with prednisolone and was excluded from statistical analysis. 

Samples marked “X” and “Xs” were also excluded from statistical analysis. Data presented as mean ± 

standard deviation. 
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Figure 5-6: The comparative analysis of clusterin in IE and DM CSF 

A) The clusterin levels of IE (N=9) and DM (N=7) in Western blot analysis B) Vertical scattered graph was 

plotted to show the data distribution and revealed significant elevation of clusterin in between IE and DM 

groups (P<0.001). Samples marked “X” were excluded from statistical analysis. Sample marked “L” was 

collected from lumbar CSF and the protein value from this sample is represented as pink-coloured dot in the 

vertical scatter graph. Data presented as mean ± standard deviation. *** represents P<0.001. 
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Figure 5-7: The comparative analysis of clusterin CSF in various neurological disorders. 

A) Clusterin signals obtained from Western blot analyses. B) Signals were quantified and plotted in vertical 

scatter plot. Clusterin is elevated in DM (N=4) and cIVDD (N=4) compared to IE (N=7) (DM vs. IE, 

p<0.001; cIVDD vs. IE, p<0.01) and meningitis (N=8) (DM vs. meningitis, p<0.05; cIVDD vs. meningitis, 

p>0.05). There is no significant difference in CSF clusterin between DM and cIVDD. Samples marked “X” 

were excluded from statistical analysis. Sample marked “L” was collected from lumbar CSF and the protein 

value from this sample is represented as pink-coloured dots in the vertical scatter graph. Data presented as 

mean ± standard deviation. * represents P<0.05, ** is P<0.01, *** is equivalent to P<0.001. 
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Figure 5-8: The data distribution of CSF clusterin levels in various neurological disorders. 

The correlation analysis of CSF clusterin levels versus age demonstrate weak but positive relationship, 

however no significant relationship was detected. Protein values indicated by pink-coloured dots represent 

lumbar CSF. 
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5.5 Discussion 

A combination of MALDI mass spectrometry coupled with TOF was employed in this 

study to identify proteins that are present within bands visualised on 1-DGE analysis. 

Haptoglobin and clusterin proteins were identified by MALDI-TOF MS analysis as major 

components of a visible band that appeared to be differentially expressed in DM CSF. The 

validation of haptoglobin and clusterin in canine CSF was performed by Western blot 

analyses using commercial antibodies. The cross-reactivity analyses of canine CSF was 

performed in tandem with tissue homogenates to assess species cross-reactivity and the 

migration characteristics in the different biological material.  

5.5.1 Haptoglobin 

Haptoglobin signals in canine CSF and dog brain homogenates were robust, (38kDa), 

however were not detectable in mouse brain tissue. The haptoglobin antibody was raised 

against canine haptoglobin, therefore it is most likely that the lack of cross-reactivity in 

mouse brain tissue is due to differences in sequence homology between canine and mouse 

haptoglobin. Biomarker specificity requires a clear demonstration that they are unaffected 

by circumstances related to sample collection and handling. An assessment of the 

haptoglobin protein stability was conducted using aliquots of IE CSF that had been 

generated in the previous study described in chapter 4. Haptoglobin appeared to be 

unaffected by any of the treatment regimes and to our knowledge the stability of this 

protein in CSF has not been previously reported at 4ºC, 37ºC or room temperature, 

although this protein is stable in saliva stored at -20 °C for 120 day (Gutierrez et al.  2011). 

Analysis of the effects of multiple freeze-thawing cycles on saliva haptoglobin has 

demonstrated an increment in haptoglobin concentrations (Gutierrez et al.  2011).  

Haptoglobin is a major plasma glycoprotein synthesised in the liver and is present in most 

body fluids including CSF (Wang et al.  2001). In addition, haptoglobin is an acute phase 

protein, the levels of which are regulated by inflammatory processes, it has therefore 

generally been used as an indicator of infection, inflammation and trauma (Kushner and 

Rzewnicki, 1994). An elevation of CSF haptoglobin was observed in Huntington’s disease, 

which could have been triggered as a compensatory mechanisms to pathogenic processes 

in Huntington’s disease (Huang et al.  2011). The reduction of haptoglobin levels in human 

CSF has also been associated with Alzheimer’s disease (Jung et al.  2008) although its 
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biological mechanism in this disease are unclear. To date no report has been found on CSF 

haptoglobin in ALS. The comparison of haptoglobin levels in IE and DM CSF by Western 

blot found that level differences between these groups were not statistically significant, 

even after the elimination of prednisolone therapy and exclusion of DM-affected 

heterozygotes as sources of variations. The lack of haptoglobin signals was also noted in 

few CSF samples, however this could be due to the low concentration of haptoglobin in 

CSF (reference ranges in human 0.06±0.009mg/dl compared to plasma 133.6±26.9mg/dl) 

(Chang et al.  2013). At this point, there is no indication that CSF haptoglobin is a 

biomarker of DM. 

5.5.2 Clusterin 

The characterisation of clusterin in canine CSF revealed robust protein signals, implying 

this protein is abundant in canine CSF, thus increasing the practicality of exploring 

clusterin as a potential biomarker for DM. Clusterin, also known as apolipoprotein J 

protein, is ubiquitously secreted in mammalian tissues and body fluids and is represented 

as α and β chains linked by disulphide bridges (Jones and Jomary, 2002). In our study, 

clusterin protein is detected in high levels in canine CSF at 38kDa, which has been 

confirmed as the β chain of clusterin through comparison of the protein sequences 

(Accession number: NP_001003370.1) with sequence information provided by the 

antibody’s manufacturer. Clusterin has demonstrated weak signals in canine brain tissue 

homogenate, which may be suggestive of the low abundance of clusterin in canine brain, 

although it is later discovered in this project that clusterin is highly expressed in canine 

spinal cord tissue (see 6.4.3.3, page 177). In mouse brain tissue, clusterin is not detectable, 

which may be due to a lack of specificity of the commercial antibody.  

In the pre-analytical study, clusterin in canine CSF was observed to be stable in 4°C and 

37°C conditions. However, the prolonged exposure of CSF to room temperature for 48 

hours resulted in a significant reduction in the levels of CSF clusterin. This reduction is 

potentially caused by the clusterin degradation or truncation into peptide fragments that 

could not be detected by the antibody however such degradation profiles can be 

characterised by high-throughput MS technologies (Carrette et al.  2005; Pieragostinoa et 

al.  2010). To our knowledge this is the first study to have assessed the stability of clusterin 

in CSF, although other types of apolipoprotein, (apolipoprotein E) have been reported to be 

stable in CSF at room temperature for 17 hours (Hesse et al.  2000). On the basis of these 

findings, it can be concluded that it in order to avoid misinterpretation of Western blot data 
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due to inappropriate sample handling, an appropriate protocol for sample collection and 

rapid storage should be adopted (further details in 7.1, page 190).  

The preliminary Western blot of clusterin levels demonstrated a significant elevation of 

clusterin in DM CSF compared to the IE CSF. Clusterin is a heavily glycosylated protein 

with the capability to bind a range of molecules in different biological processes 

(Rosenberg and Silkensen, 1995; Jones and Jomary, 2002). Clusterin has been widely 

implicated in human neurodegenerative diseases including AD (Calero et al.  2005), PD 

(Sasaki et al.  2002) and ALS (Grewal et al.  1999). In Alzheimer’s disease, evidence has 

highlighted the involvement of clusterin in the clearance and/or aggregation of Aβ in 

Alzheimer’s pathway (Nuutinen et al.  2009). Clusterin has been found to be highly 

expressed in Alzheimer’s brain tissue (Lidstrom et al.  1998) however the CSF clusterin 

levels in Azheimer’s patients revealed conflicting results either increased (Sihlbom et al.  

2008) or unchanged (Lidstrom et al.  2001). However the levels of the deglycosylated form 

of clusterin in Alzheimer’s CSF has revealed a significant increment by 70% compared to 

native form, therefore implying that glycosylation may influence accurate quantification of 

clusterin. Clusterin has also been elevated in PD CSF (Prikrylova et al.  2010; Maarouf et 

al.  2012), particularly in patients with a disease duration less than two years (Prikrylova et 

al.  2010). There are no reports of CSF clusterin in ALS, although increased clusterin 

mRNA expression was detected in sporadic ALS patients in areas undergoing 

neurodegeneration (see detail 6.5, page 184) (Grewal et al.  1999). 

The levels of clusterin in DM CSF were consistently elevated compared to other 

neurological disorders; IE and MEN cases. Clusterin is also moderately elevated in cIVDD 

CSF, suggesting that elevation of clusterin in CSF may not be unique to DM. However, 

CSF clusterin in DM is elevated by 20% compared to cIVDD CSF that may imply 

clusterin as a potential biomarker for DM, possibly associated with neuronal dysfunction 

and death. These findings also highlight the need for the identification of multiple 

biomarkers in DM to improve clinical diagnosis. In addition, since clusterin levels in 

canine CSF are elevated in aging associated disorders; DM and cIVDD, it is imperative to 

evaluate the age-related influence on clusterin in the cases analysed. The correlation 

analysis of CSF clusterin levels in various neurological disorders revealed no significant 

relationship with age, therefore increases its potential as a putative DM biomarker. There is 

also no clear association has been reported on CSF clusterin levels and age in human 

although one study has reported a significant increase of clusterin expression in human 
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pituitary gland due to aging (Ishikawa et al.  2006).  Additional characterisation of 

clusterin and the proposed underlying mechanisms leading to the clusterin elevation and 

neurodegeneration in DM are further discussed in chapter 6 (see 6.5, page 183).  
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6 CSF Clusterin as a Potential Biomarker of DM 

 

 



  Chapter 6 
 
 

 164

6.1 Background 

Clusterin, also known as apolipoprotein J, was originally identified in ram rete testis, and 

named after its ability to form protein clusters within a variety of cell types (Blaschuk et al.  

1983). Canine clusterin protein is encoded by full length mRNA (Acession number: 

NM_001003370.1), containing 445 amino acids (Accession number: NP_001003370.1). 

Two forms of clusterin have been described, a nuclear and a secreted form (Calero et al.  

2005). The nuclear form of clusterin (50-53kDa) is normally expressed at very low levels 

and translated by shorter mRNA through alternative splicing mechanism (Calero et al.  

2005). The precursor polypeptide for the secreted form is approximately 80kDa, which is 

cleaved at the N-terminal signal peptide that can be dissociated in two 40kDa chains under 

reducing conditions (Blaschuk et al.  1983). These subunits are linked together by five 

disulfide bridges with six glycosylation sites (Calero et al.  2005). Clusterin is widely 

expressed in mammalian tissue including nervous tissue such as the choroid plexus 

(Aronow et al.  1993), brain (Oda et al.  1994), spinal cord (Danik et al.  1993). At the 

cellular level, clusterin has been shown to be present in astrocytes and neurons (Pasinetti et 

al.  1994; Xu et al.  2000). It is also abundantly secreted in nearly all body fluids, including 

plasma (De Silva et al.  1990), serum (Kapron et al.  1997), urine (Aronow et al.  1993) and 

CSF (Nilselid et al.  2006). Clusterin has been implicated in a number of diverse biological 

processes, including cell-cell interactions (Fritz et al.  1983; Silkensen et al.  1995), cellular 

stress responses (Rosenberg and Silkensen, 1995; Michel et al.  1997), sperm maturation 

(Sylvester et al.  1991), apoptosis (Buttyan et al.  1989; Viard et al.  1999)  complement 

inhibition (Murphy et al.  1988), lipid transport (De Silva et al.  1990), tissue remodelling 

and membrane recycling (Danik et al.  1991), cellular debris clearance (Bartl et al.  2001) 

and extracellular matrix degradation through membrane-type 6 matrix metalloproteinase 

(Matsuda et al.  2003).  

Clusterin has been implicated in various diseases ranging from reproductive cancers, 

cardiovascular and neurodegenerative diseases (McLaughlin et al.  2000; Moretti et al.  

2007; Nuutinen et al.  2009). In veterinary medicine, clusterin has been characterised in the 

reproductive system and urinary tract (Ibrahim et al.  1999; Garcia-Martinez et al.  2012). 

A recent proteomic study has also identified serum clusterin in canine lymphoma (Atherton 

et al.  2013). Clusterin in this study is found to be robust in canine CSF and markedly 

elevated in DM CSF (see 5.4.4.3, page 153). This chapter therefore further describes the 
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expression of clusterin in DM through the examination of spinal cord tissue and plasma 

that may be the possible origin of clusterin in CSF.  

6.2 Aims 

The aim of the work presented in this chapter was to further evaluate clusterin as a 

potential CSF biomarker in DM and to establish whether its origin can explain the clusterin 

elevation in DM CSF. The specific aims were to: 

1. Perform comparative evaluations of the plasma clusterin levels in IE and DM by 

Western blot 

2. Compare clusterin mRNA expression in spinal cord in control and DM 

homozygotes by RT-PCR. 

3. Characterise and compare clusterin distribution in control and DM spinal cord 

tissues by IHC. 

6.3 Materials and Methods 

6.3.1 The Comparative Analysis of Clusterin in IE a nd DM Plasma 

6.3.1.1 Preparation of Plasma Samples 

The extraction of plasma was performed using EDTA blood that was kept in -80°C. The 

blood samples were thawed on ice, and subsequently centrifuged at 1500rpm for 10 

minutes. Plasma supernatants were transferred into fresh 1.5ml eppendorf tube and were 

diluted at 1:20 with ultrapure water. The total protein concentrations for these plasma 

samples were not determined due to the high content of haemoglobin. Three-µl of diluted 

plasma was prepared and denatured (see 2.3.4, page 80) for 1-DGE as described in 2.3.5, 

page 80. Five-µg of protein from DM CSF sample was also included for comparison. 

6.3.1.2 Polyacrylamide Gel Preparation (Large Forma t) 

Two large format, hand-poured gels (16cm X 13cm) were used in this study. Resolving gel 

at 12.5% was prepared from a stock of acrylamide:bisacrylamide (ratio 37:1, Sigma, UK) 
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mixed in resolving gel master-mix containing 1.5M Tris pH8.8, 10%SDS, 10% ammonium 

persulphate, TEMED, (Appendix 8.2.6). Forty-ml of the gel solution was added into the 

gel cassettes, followed by the addition of 500µl of 0.1% SDS solution on the top of 

resolving gel to prevent oxidation at the surface of the polyacrylamide gel. The resolving 

gel was allowed to polymerise for two hours. The 0.1% SDS was discarded and 

subsequently, 4% (10ml) of stacking gel solution (Appendix 8.2.6) was added to the 

polymerised gel. A 20-well comb was inserted and the stacker was allowed to polymerise 

for one hour. Once the stacker was polymerised, the comb was removed and the wells were 

rinsed with 0.01% SDS solution. The gel cassettes were placed in the gel rig and 

subsequently filled with 1X running buffer containing 25mM Tris, 192mM glycine, 0.1% 

SDS, pH8.3 (Appendix 8.2.8). The protein samples were loaded into the wells and 

electrophoresed for five hours at 250mA.  

The gel was removed from the gel cassettes. The first gel was washed with ultrapure water 

for 10 minutes and stained with silver stain as detailed previously in 2.3.6, page 81. The 

second gel was processed for Western blot. 

6.3.1.3 Electrophoretic Transfer and Western Blot A nalysis 

The electrophoretic semi-dry transfer was performed based on Towbin method (Towbin et 

al.  1979). Preparation of cathode and anode buffers for semi-dry electrophoretic transfer is 

described in Appendix 8.2.7. The gel was briefly rinsed with ultrapure water for five 

minutes and then equilibrated in Towbin cathode buffer under gentle agitation for five to 

10 minutes. A transfer stack was prepared; 1) filter papers that were pre-soaked in anode 

buffer (bottom electrode), 2) nitrocellulose membrane (Millipore, UK), pre-soaked in 

anode 2 buffer, 3) polyacrylamide pre-soaked in cathode buffer, and 4) filter papers that 

were pre-soaked in cathode (top electrode). The protein was transferred to nitrocellulose 

membrane using a semi-dry blotter system (Bio-Rad, UK) for two hours at 250mA.  

The membrane was stained with Ponceau S (see 2.3.7, page 81) to check for protein 

loading and subsequently washed with 1X T-TBS buffer (Appendix 8.2.5). The membrane 

was blocked overnight at 4°C with 5% milk powder in 1X T-TBS buffer. The membrane 

was washed three times with 1X T-TBS (5 minutes/wash) and  incubated with anti-

clusterin antibody at 1:100,000 dilution (see Table 2-1) in 5% milk powder in 1X T-TBS. 

Following incubation with secondary antibody, the membrane was exposed to Hyperfilm 
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and immuno-complex signal detected by ECL reagent were quantified as described in 

2.3.7.1, page 82. 

Vertical scatter graph was plotted based on these arbitrary values. Statistical comparison of 

the data between IE and DM group was conducted using Mann Whitney U statistical 

analysis (see 2.6, page 87). 

6.3.2 The Comparative Assessment of Clusterin mRNA Levels in 

Control and DM Cases 

6.3.2.1 CNS Material for RNA Extraction   

The RNA extraction was conducted in control and DM homozygotes using T12 spinal cord 

as detailed in 2.4.2, page 84. The diagnoses of each DM and control case had been 

confirmed in a previous study (Johnston, 1998). The selection of DM material was 

achieved by routine clinical diagnostics, histopathological examination and the 

homozygosity of the mutant allele in Sod1 gene (see 3.4.1.1, page 94). Controls were 

sourced from non-neurological cases with a wild type Sod1 gene profile. The complete list 

of dogs included in this analysis is given in Appendix 8.1.2. Blood and CSF samples were 

not available for these cases. 

Following RNA extraction, the RNA yield was quantified (see 2.4.3, page 85) and the 

quality of RNA was assessed by 2% of ethidium bromide stained agarose gel (see 2.4.4, 

page 85).  

6.3.2.2 cDNA Generation from total RNA 

Since RNA is fragile and more easily degraded than DNA, the measurement of mRNA 

levels was achieved through synthesis of cDNA using a method known as reverse 

transcription (RT reaction) and amplification of cDNA by RT-PCR. cDNA synthesis was 

performed with the presence of reverse transcriptase enzyme, where the RNA is reverse 

transcribed into cDNA that are complementary to mRNA transcript, which later can be 

used as template for RT-PCR.  

Single strand cDNA was synthesised from total RNA by reverse transcriptase reaction 

using reagents supplied by Invitrogen (UK).  Two-µg of total RNA was incubated at 65°C 
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for five minutes and the RNA quickly chilled on ice. This step is to denature any secondary 

structures that might disrupt the transcription as well as linearising the RNA. The reverse-

transcriptase (RT) was carried out by adding a mixture of 5X RT buffer at pH 8.3 (250mM 

Tris-HCI, 375mM potassium chloride, 15mM magnesium chloride ), 0.1mM DTT, 20mM  

each of dNTP (dATP, dGTP, dTTP, dCTP), random primers, 20 units RNAse inhibitor, 

and 200 units RT enzyme to the sample tube. The reactions were incubated at a sequence 

of temperatures which have been established in our group to yield efficient cDNA 

production; 37°C for 30 minutes, 42°C for 1 hour, and 72°C for 15 minutes. The re-

suspension of cDNA was carried out by adding ultrapure water to give a final volume of 

100µl.  

6.3.2.3 Primer Design  

The forward (5’-GCC CTT CTT TGA CAT GAT ACA CCA-3’) and reverse (5’-TGC 

TTC TGG GAT CAT CAC CGT GA-3’) primers (Eurofins, Germany) for PCR were 

designed using an interactive web-based primer program, GeneFisher software version 

1.2.2 (BiBiServe, Germany). These primers were used to amplify sequences based on the 

canine clusterin mRNA sequence (NM_001003370.1) which was obtained from the online 

public database. The amplification of cDNA by RT-PCR would specifically generate a 

product with 500 base pairs nucleotide.  

6.3.2.4 Standardisation of cDNA Utilising Housekeep ing Genes 

A housekeeping gene, cyclophilin was utilised as an internal standard. The forward (5’- 

ACC CCA CCG TGT TCT TCG AC-3’) and reverse (5’- CAT-TTG-CCA-TGG-ACA-

AGA-TG-3’) primers were obtained from a previous study (Danielson et al.  1988). The 

cyclophilin message was used as a reference standard control as the levels of message in 

tissues are expressed constantly and are not altered under experimental conditions. The 

PCR was set up using a pre-setting RT-PCR programme; 34 cycles, 94°C for 2 minutes, 

94°C for 30 seconds minute, 58°C for 30 seconds, 72°C for 2 minutes, 72°C for 5 minutes. 

Four-µl of RT-PCR products were visualised using 2.5% ethidium bromide stained agarose 

gel and were examined under ultra violet light (GeneFlash, Syngene, USA). The signals 

were quantified using Scion Image NIH.  
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6.3.2.5 RT-PCR 

Four-µl of cDNA was utilised for RT-PCR using the same programme as with cyclophilin 

(see 6.3.2.4, above) with the addition of 2.5µl DNA RedTaq® ReadyMix™ buffer (Sigma-

Aldrich, UK), 0.5µl of each primer (10pmol/ul) and ultrapure water. The visualisation and 

quantification of RT-PCR products was achieved as described in 6.3.2.4. The data 

normalisation was performed through the comparison of the cyclophilin signals with RT-

PCR products generated from clusterin cDNA. The normalised values, which reflect the 

clusterin mRNA levels, were analysed using Mann Whitney U test to determine if there 

was any difference in mRNA expression between control and DM group. 

6.3.3 IHC Analysis of Clusterin in Controls and DM Spinal Cords 

6.3.3.1 Archival Paraffin-embedded Blocks 

Archival paraffin-embedded blocks were utilised for IHC analyses. Spinal cord tissues for 

paraffin blocks were sourced from the same cases in 6.3.2.1, page 167 processed and 

embedded in paraffin wax for a previous PhD study (Johnston, 1998). However, since 

these paraffin embedded tissue blocks were prepared for a microtome that is no longer 

available, all blocks had to be re-processed and re-embedded with paraffin wax. Paraffin 

blocks were melted down and run through the wax cleaning cycle on a preset programme 

of 27 minutes on an automated tissue processor machine (Thermo Fisher Scientific, UK). 

The blocks were then re-embedded on the Tissue-Tek® VIP® (Sakura, USA) (Appendix 

8.4.3). The re-processed paraffin blocks were cut at 4µm thickness with a microtome 

(Shandon Finesse®, Thermo Scientific, UK) and mounted onto the silane-coated slides (see 

2.5.1, page 86). The slides were dried at 60ºC for an hour and were baked at 37°C 

overnight.  

Since the spinal cord material for immunohistochemistry was sourced from an archive of 

paraffin blocks, fresh tissue specimens of spinal cord from T12 spinal cord was also 

included and utilised as quality control (see 2.5.2.1, page 86). The spinal cord tissues were 

derived from a five year old, female, miniature Schnauzer that was euthanised due to acute 

paraplegia. The histopathological diagnosis of this case was hemorrhagic myelomalacia. 

The fresh spinal cord tissues were fixed and processed for paraffin wax embedding as 

described in 2.5.2.1, page 86. This tissue material will be referred to as “reference 

standard”. 
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6.3.3.2 Assessment of Tissue Morphology by H&E Stai ning  

Following paraffin re-embedding of the archival tissues, all archival sections from T12 

spinal cord were routinely stained with H&E to assess the overall tissue morphology (see 

2.5.3, page 87). A reference standard was also included.    

6.3.3.3 Optimisation of Clusterin Antibody for IHC 

The optimisation of clusterin antibody (Abcam, UK) for IHC was performed using 

paraffin-embedded sections prepared from the reference standard.  

The optimisation of clusterin IHC was conducted using a commercial kit, Envision+™  

System HRP (Dako Cytomation, UK) in a range of dilutions; 1:500, 1:1000, 1:2000, 

1:4000, 1:8000, 1:16,000, 1:32,000 and 1:64,000. This system is extremely sensitive and 

based on the conventional peroxidase anti peroxidase system. Negative controls were 

prepared as appropriate with Dako universal diluent, in lieu of primary antibodies. Sections 

were initially dewaxed in histoclear, hydrated with 70% absolute alcohol, 70% methylated 

spirit and subsequently rinsed in water (Appendix 8.4.2). Antigen unmasking was 

performed using 10mM sodium citrate buffer pH6.0 (Appendix 8.4.5), in automated 

pressure cooked (Menarini Access Retrieval unit, Menarini Diagnostics, UK) for 1 minute 

40 seconds at 125°C. The endogenous peroxidase activity was quenched by covering 

sections with 150µl peroxidase blocking solution (Dako Cytomation, UK) for five minutes 

and then washed with 1X TBS, pH7.5 (Appendix 8.4.6). Sections were then incubated with 

the primary antibody diluted in universal diluent containing 50mM Tris-HCl buffer with 

1% BSA for one hour. The slides were washed twice with TBS buffer followed by addition 

of secondary antibody (rabbit anti goat) diluted in universal diluent buffer. After two 

washes, HRP conjugated antibody was added to the slides and incubated for 30 minutes. 

The sections were incubated twice for five minutes with 3,3’-Diaminobenzidine (DAB) 

chromogen, which produces brown coloured deposit in positive staining. Sections were 

washed in running water and counterstained in Gills haematoxylin. Following 

counterstaining, sections were blued in Scots tap water, dehydrated with 70% methylated 

spirit and 70% alcohol, cleared in Histoclear and mounted in distyrene plasticizer xylene 

(DPX).  
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6.3.3.4 Comparative IHC Analysis of Clusterin in Co ntrol and DM  

The IHC comparison of clusterin was performed in archival sections from controls and 

DM homozygotes. Details on controls and DM cases included in the IHC study are given 

in (Appendix 8.1.2). Blocks were cut at 4µm, and stained with clusterin antibody at the 

pre-determined dilution as described previously (see 6.3.3.3, page 170). A reference 

standard section was also included in this experiment. Negative control was included by 

omitting the primary antibody. All sections were blindly assessed by the author and an 

independent reviewer who has experience in histological studies. Since quantitative 

analysis is not practical due to time limitation, a scoring system was devised to allow a 

more objective assessment between controls and DM (see Table 6-1). Vertical graphs were 

plotted and data was analysed using Mann Whitney U test. 

Score Grade Intensity of clusterin staining in neurons 
 

0 
 
1 
 
 
2 
 
 
 
3 
 
 
4 
 
 
5 

None 
 
Very light 
 
 
Light 
 
 
 
Moderate 
 
 
High 
 
 
Very high 

No positive staining 
 
Very light positive staining in most cell bodies, which difficult 
to differentiate from the background 
 
Light brown staining in most cell bodies, but easily distinguish 
from the background. Punctate pattern is difficult to 
differentiate. 
 
Moderate positive staining. Punctate pattern is clearly visible 
in some cell bodies 
 
Dark positive staining with punctate pattern scattered in the 
many cell bodies 
 
Very intense positive staining. Punctate pattern is clearly 
visible in all cell bodies 
 

Table 6-1: Parameter used for scoring clusterin IHC analysis. 

 

6.3.3.5 Neuron-specific Enolase Staining 

Neuron specific enolase (NSE) is a glycolytic enzyme that presents in central and 

peripheral neurons as well as neuroendocrine cells, therefore it serves as a neuronal marker 

in IHC. NSE staining was conducted on each control and DM section to evaluate the 

density and distribution of the neurons and neuronal cell bodies. Positive staining is 

identified as brown with more intense staining usually localised in neuronal cell bodies. All 



  Chapter 6 
 
 

 172

sections were stained with mouse monoclonal anti NSE (Dako Cytomation, UK) at 1:1000 

dilution and subsequently with HRP rabbit anti mouse secondary at 1:100 dilution using 

the protocol described in (see 6.3.3.3, page 170).   

6.4 Results 

6.4.1 The Comparative Analysis of Clusterin in IE a nd DM Plasma 

All DM-affected dogs with a heterozygous genotype were excluded from statistical 

analysis (marked as “X”). The assessment of the protein profile using silver staining 

displayed comparable protein content, suggesting good sample loading. There was no 

evidence of gross protein degradation (Figure 6-1A). Western blot analysis of IE and DM 

plasma had shown that the molecular weight size of clusterin in plasma was comparable 

with CSF clusterin at 38kDa (lane 1). A proportion of DM cases (3/5) demonstrated a gel 

shift which may indicate a post translational modification (see Figure 6-1B) however this 

gel shift was also observed in an IE and a heterozygous case (marked by black arrow). 

Statistical analysis comparing IE and DM homozygotes demonstrated no significant 

difference in the protein level (M±SD for IE=98790±5561; M±SD for DM=10441±5139). 
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Figure 6-1: The assessment of plasma clusterin levels in IE and DM. 

A) The global protein content across all samples in the silver stained gel is comparable with no obvious signs 

of gross protein degradation in any of the plasma samples. B) The band observed at 38kDa in the plasma 

samples has a similar migration distance to clusterin which has also a similar molecular weight with CSF 

clusterin (lane 1). Three out of five DM homozygotes display a gel shift of clusterin indicating post- 

translational modification (ptm), although a sample from IE and a DM heterozygous (as shown by black 

arrow)  also exhibit a gel shift. C) Plasma clusterin signals were plotted in vertical scatter plot, expressed in 

arbitrary units. Statistical analysis between IE (N=9) and DM (N=5) reveal no significant difference. All DM 

heterozygote cases (marked as “X”) were excluded from statistical analysis. Data presented as mean ± 

standard deviation. 
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6.4.2 The Comparative Assessment of Clusterin mRNA Levels in 

Control and DM Cases 

The expression of clusterin mRNA in control and DM spinal cords was determined by RT-

PCR using cDNA as a template. The RT-PCR signals were quantified and expressed in 

arbitrary units. The signals for cyclophilin and RT-PCR products were robust (Figure 

6-2A). The RT-PCR signals from clusterin were normalised by expressing them as a 

density relative to cyclophilin, which serves as a reference standard based on its role as a 

house-keeping gene. Vertical scatter graph was plotted and demonstrated that the mean 

clusterin mRNA level was elevated by 42% in DM (M±SD=1.87±0.33) compared to 

control cases (M±SD=1.123±0.30), a difference bordering on statistical significance 

(P=0.05).  
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Figure 6-2: The comparison of clusterin mRNA levels in control and DM spinal cords. 

A) The RT-PCR amplification of cyclophilin and clusterin cDNA in ethidium bromide stained agarose gels 

(2%) demonstrate robust signals for quantification. B) The signals for clusterin mRNA were normalised 

relative to cyclophilin signals (cyclophilin:clusterin) and plotted in vertical scatter graph. The statistical 

analysis revealed no significant difference between two groups (exact P value=0.05), however the mean of 

clusterin mRNA in DM group (N=4) was found to be elevated by 42% compared to control group (N=4). 

Data presented as mean ± standard deviation. 
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6.4.3 IHC Analysis of Clusterin in Controls and DM Spinal Cords 

6.4.3.1  Assessment of Tissue Morphology by H&E Sta ining  

The diagnoses for each case were determined in a previous study that was conducted in 

1998. Therefore, the histopathological examinations were repeated on the re-processed 

sections stained with H&E. All sections were blindly assessed and the diagnosis of each 

case was confirmed by a veterinary pathologist, Dr. Pamela Johnston. In addition, the H&E 

staining was conducted to ensure that tissue morphology in archival material was not 

affected by the paraffin re-embedding with particular attention given to the morphology of 

neuronal cell bodies in the gray matter (Figure 6-3). The H&E staining in the archival 

sections were compared with a reference standard (Figure 6-3A and B). The paraffin re-

embedding had minimal effect on the shape of the spinal cord, although slight distortion in 

spinal cord and gray matter was observed in a section from archival control (Figure 6-3C). 

At a higher magnification (10X) of the ventral horn area, the neuronal cell bodies in 

archival sections were large and intact.  

6.4.3.2 Optimisation of Clusterin Antibody for IHC 

Optimisation of IHC was performed using serial dilutions of the clusterin antibody and is 

demonstrated in Figure 6-4. This analysis was performed using sections obtained from the 

reference standard. Positive immuno-reaction was visualised with chromogen substrate 

DAB which produces brown staining. The highest concentration of 1:250 gave extremely 

high background staining in white and gray matter although it appeared that the dark 

brown staining was localised to neuronal cell bodies. Background staining in the gray 

matter was reduced at 1:4000 but still intense. Optimal staining was observed at 1:8000 

dilution, where the positive brown staining was clearly localised in the neuronal cell bodies 

with minimal background staining in white and gray matter. This dilution was selected as 

the optimal dilution for this antibody. The positive brown staining had become faint at 

1:32,000 and completely disappeared at 1:64,000 dilution.  

When these conditions were applied to an archival section very light positive staining 

localised in the neuronal cell bodies could be seen (Figure 6-5B). Therefore 1:8000 

antibody dilution was determined suboptimum for these archival materials, which could 

reflect the duration of tissue fixation and paraffin re-processing (Figure 6-5). A higher 

concentration was therefore selected for the archival sections. At 1:4000 dilution, minimal 
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background staining was identified and the positive staining was specifically detected in 

the neuronal cell bodies, recognised as dark and punctate appearance within the neuronal 

cell bodies. Therefore, 1:4000 dilution was used for archival spinal cord sections. 

6.4.3.3 Comparative IHC analysis of Clusterin in Ar chival Control and 

DM Sections  

Comparative IHC analysis of clusterin was carried out in the re-processed archival sections 

to evaluate the clusterin distribution in control and DM homozygotes (Figure 6-6A and C). 

Clusterin IHC demonstrated strong immuno-reactivity in both control and DM cases, 

consistently recognised as dark stain with a punctate pattern within the neuronal cytoplasm 

that may reflect aggregates containing the clusterin epitope (Figure 6-6E). Subjective 

assessment using a scoring system (Table 6-1) of the staining pattern consistently found 

that the positive staining was strictly confined within neuronal cell bodies, however there 

was no significant difference detected in staining intensity between control and DM groups 

(Figure 6-7).  

NSE staining in archival and recently processed tissue demonstrates that the positive 

staining was identified throughout the white and gray matter although more intense 

staining was found localised in the neuronal cell bodies (Figure 6-6B and D). This 

confirms the localisation of clusterin in the neuronal cell bodies. However, since the 

sections for NSE staining were not obtained adjacent to sections for clusterin IHC, the 

distribution of the neurons were not identical.  



 
 
 

 

Figure 6-3: The cross-sections of T12 spinal cord stained with H&E.

A) Reference standard at 1.25X magnification. B) Reference standard at 10X magnification. C) Archival 

control section at 1.25X magnification. D) Archi

section at 1.25X magnification. F) Archival DM section at 10X magnification.

At 1.25X magnification, the overall shape of the spinal cord in C) and E) archival control and DM sections 

are minimally affected by the re

and the gray matter in C) compared to the  reference standard in A). 10X magnification of the ventral horn 

area in archival sections; D) and F) demonstrate the la

The ventral horn area is indicated by box in section A), C) and E).

 

sections of T12 spinal cord stained with H&E. 

A) Reference standard at 1.25X magnification. B) Reference standard at 10X magnification. C) Archival 

control section at 1.25X magnification. D) Archival control section at 10X magnification. E) Archival DM 

section at 1.25X magnification. F) Archival DM section at 10X magnification. 

At 1.25X magnification, the overall shape of the spinal cord in C) and E) archival control and DM sections 

ffected by the re-processing, although slight distortion is observed on the spinal cord shape 

and the gray matter in C) compared to the  reference standard in A). 10X magnification of the ventral horn 

area in archival sections; D) and F) demonstrate the large and intact neuronal cell bodies (marked by arrow). 

The ventral horn area is indicated by box in section A), C) and E). 
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A) Reference standard at 1.25X magnification. B) Reference standard at 10X magnification. C) Archival 

val control section at 10X magnification. E) Archival DM 

 

At 1.25X magnification, the overall shape of the spinal cord in C) and E) archival control and DM sections 

processing, although slight distortion is observed on the spinal cord shape 

and the gray matter in C) compared to the  reference standard in A). 10X magnification of the ventral horn 

rge and intact neuronal cell bodies (marked by arrow). 



 
 
 

 

Figure 6-4: The dilution optimisation of clusterin antibody for IHC. 

A) - I) IHC analysis on T12 spinal cord sections prepared from fresh fixed tissue/reference standard 

demonstrates the staining pattern over serial dilutions of the clusterin antibody, from 1:250 to 1:64,000 

dilution. Extremely high background staining is o

dilution. Even at highest concentration, the dark brown staining is seems to localise in the neuronal cell 

bodies (as shown by arrow). Moderate background staining remains at 1:4000 dilution. The p

staining in neuronal cell bodies can be clearly differentiated in this section (E). The optimum dilution is 

determined to be 1:8000 dilution, with a significantly reduced background. Note that the positive staining 

still can be observed at 1:

absence of the primary antibody on a section which was processed at the same time. All the images were 

captured from ventral horn area at 10X magnification. 

 

: The dilution optimisation of clusterin antibody for IHC.  

I) IHC analysis on T12 spinal cord sections prepared from fresh fixed tissue/reference standard 

demonstrates the staining pattern over serial dilutions of the clusterin antibody, from 1:250 to 1:64,000 

dilution. Extremely high background staining is observed throughout the white and gray matters at 1:250 (A) 

dilution. Even at highest concentration, the dark brown staining is seems to localise in the neuronal cell 

bodies (as shown by arrow). Moderate background staining remains at 1:4000 dilution. The p

staining in neuronal cell bodies can be clearly differentiated in this section (E). The optimum dilution is 

determined to be 1:8000 dilution, with a significantly reduced background. Note that the positive staining 

still can be observed at 1:16000 and 1:32000 dilution. J) represents the negative staining obtained in the 

absence of the primary antibody on a section which was processed at the same time. All the images were 

captured from ventral horn area at 10X magnification.  
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I) IHC analysis on T12 spinal cord sections prepared from fresh fixed tissue/reference standard 

demonstrates the staining pattern over serial dilutions of the clusterin antibody, from 1:250 to 1:64,000 

bserved throughout the white and gray matters at 1:250 (A) 

dilution. Even at highest concentration, the dark brown staining is seems to localise in the neuronal cell 

bodies (as shown by arrow). Moderate background staining remains at 1:4000 dilution. The positive brown 

staining in neuronal cell bodies can be clearly differentiated in this section (E). The optimum dilution is 

determined to be 1:8000 dilution, with a significantly reduced background. Note that the positive staining 

16000 and 1:32000 dilution. J) represents the negative staining obtained in the 

absence of the primary antibody on a section which was processed at the same time. All the images were 



 
 
 

 

Figure 6-5: IHC analysis of clusterin at 1:8000 dilution is suboptimal for re

sections.  

A) The optimum dilution in T12 spinal cord section prepared from reference standard was determined at 

1:8000 dilution. Positive brown staining is found to be localised within neuronal cytoplasm. Minimal 

background staining is detected throughout the white and gray matters. B) Dilution at 1:8000 demonstrated 

very light positive staining within neuronal cell bodies in on

differentiated from the background. C) Dilution at 1:4000 was determined as optimal for re

archival sections with minimal background staining detected. The positive staining is clearly seen in neuro

cell bodies, visualised as dark and punctate appearance within the neuronal cell bodies. Images were captured 

from ventral horn area at 10X magnification. Neuronal cell bodies were indicated by arrow.

 

 

 

: IHC analysis of clusterin at 1:8000 dilution is suboptimal for re

A) The optimum dilution in T12 spinal cord section prepared from reference standard was determined at 

on. Positive brown staining is found to be localised within neuronal cytoplasm. Minimal 

background staining is detected throughout the white and gray matters. B) Dilution at 1:8000 demonstrated 

very light positive staining within neuronal cell bodies in one of the archival control section, which barely 

differentiated from the background. C) Dilution at 1:4000 was determined as optimal for re

archival sections with minimal background staining detected. The positive staining is clearly seen in neuro

cell bodies, visualised as dark and punctate appearance within the neuronal cell bodies. Images were captured 

from ventral horn area at 10X magnification. Neuronal cell bodies were indicated by arrow.
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: IHC analysis of clusterin at 1:8000 dilution is suboptimal for re-processed archival 

A) The optimum dilution in T12 spinal cord section prepared from reference standard was determined at 

on. Positive brown staining is found to be localised within neuronal cytoplasm. Minimal 

background staining is detected throughout the white and gray matters. B) Dilution at 1:8000 demonstrated 

e of the archival control section, which barely 

differentiated from the background. C) Dilution at 1:4000 was determined as optimal for re-processed 

archival sections with minimal background staining detected. The positive staining is clearly seen in neuronal 

cell bodies, visualised as dark and punctate appearance within the neuronal cell bodies. Images were captured 

from ventral horn area at 10X magnification. Neuronal cell bodies were indicated by arrow. 



 
 
 

 

Figure 6-6: The clusterin and NSE staining in archival control and DM spinal cords.

A) Clusterin and B) NSE staining in T12 spinal cord section from archival control. C) Clusterin and D) NSE 

staining in T12 spinal cord section from archival DM. E) Higher 

ventral horn area, clearly demonstrating the dark, punctate staining pattern in neuronal cytoplasm. F) NSE 

staining from horse celiac ganglion section shows positive staining in neuronal cell bodies, therefore serves 

as internal control for NSE. Neuronal cell bodies were marked with arrow (courtesy slide and image from Dr. 

Pamela Johnston). 

 

 

 

 

: The clusterin and NSE staining in archival control and DM spinal cords.

A) Clusterin and B) NSE staining in T12 spinal cord section from archival control. C) Clusterin and D) NSE 

staining in T12 spinal cord section from archival DM. E) Higher magnification of C) at 20X, taken from 

ventral horn area, clearly demonstrating the dark, punctate staining pattern in neuronal cytoplasm. F) NSE 

staining from horse celiac ganglion section shows positive staining in neuronal cell bodies, therefore serves 

as internal control for NSE. Neuronal cell bodies were marked with arrow (courtesy slide and image from Dr. 
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: The clusterin and NSE staining in archival control and DM spinal cords. 

A) Clusterin and B) NSE staining in T12 spinal cord section from archival control. C) Clusterin and D) NSE 

magnification of C) at 20X, taken from 

ventral horn area, clearly demonstrating the dark, punctate staining pattern in neuronal cytoplasm. F) NSE 

staining from horse celiac ganglion section shows positive staining in neuronal cell bodies, therefore serves 

as internal control for NSE. Neuronal cell bodies were marked with arrow (courtesy slide and image from Dr. 
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Figure 6-7: The qualitative assessment of clusterin IHC in control and DM cases. 

The staining intensity of clusterin in neuronal cell bodies based on a scoring system did not reveal significant 

difference between control (N=4) and DM (N=5) groups. Data presented as mean ± standard deviation. 
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6.5 Discussion 

Clusterin is a ubiquitous and highly conserved glycoprotein, expressed by a wide range of 

tissues and biological fluids (Jones and Jomary, 2002). It is a heavily glycosylated protein, 

containing six glycosylated sites each of which can bind a variety of ligands, which is the 

mechanism underpinning the diversity of clusterin in cellular activities (Calero et al.  

2005). Clusterin has also been proposed to act as a chaperone molecule involved in the 

regulation of extracellular protein folding (Nuutinen et al.  2009; Wyatt et al.  2009). In 

addition, there is strong evidence that clusterin can have a protective role during oxidative 

stress (Calero et al.  2005; Carnevali et al.  2006). The clusterin protective role is 

potentially mediated by its chaperone function by facilitating the clearance of misfolded 

proteins due to the damage induced by altered cellular oxidation status (Poon et al.  2002; 

Wyatt et al.  2011). Consequently, this may have contributed to the upregulation of 

clusterin as a response to oxidative damage in DM (Strocchi et al.  2006). However, under 

chronic stress, it has been reported that clusterin may deviate from its protective function 

and could potentially promote or enhance protein aggregation (Poon et al.  2002).  

In this chapter, we have investigated the potential origin of elevated clusterin in DM CSF 

(see 5.4.4.3, page 153). Thirty-five to eighty percent of the CSF proteins are blood-derived, 

and are transported from the blood vessels to the CSF pathways through the blood-CSF-

barrier (Reiber and Peter, 2001). Therefore it is tempting to speculate that elevation of 

clusterin in CSF could be a consequence of clusterin elevation in blood. The protein may 

enter the systemic circulation then accumulate in the CSF following transport across the 

blood-CSF-barrier (Figure 6-8A). The characterisation of clusterin by Western blot in this 

study has confirmed that clusterin is highly abundant in plasma, expressed as the β-chain 

heterodimeric form with a molecular weight size of 38kDa that is comparable in canine 

CSF. Clusterin levels in plasma have not been investigated in ALS. However, clusterin 

elevation in plasma has been reported in AD (Nilselid et al.  2006; Schrijvers et al.  2011), 

and is described to be associated with the risk, severity and progression in Alzheimer’s 

patients. In this study, the plasma clusterin levels in IE and DM was not significantly 

different, which makes it unlikely to be the source of elevated clusterin in DM CSF. 

An interesting observation of the plasma clusterin is the gel shift detected in 60% (3/5 

cases) of DM homozygotes. This observation is suggestive of post-translational 

modification (PTM). Post-translational modification of proteins are covalent processing 
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events that can modulate the protein properties, for example by proteolytic cleavage or by 

the addition or removal of a modifying group to one or more amino acid residues (Seo and 

Lee, 2004). Under normal physiological conditions these chemical modifications of 

proteins normally occur after the protein translation step however they may be triggered as 

a result of pathological processes (Li et al.  2010). The causative mechanisms that lead to a 

pathogenic PTM is not well understood, however recent evidence has indicated that 

oxidative stress could induce PTM, which may lead to the alteration of protein function 

(Trougakos and Gonos, 2009; Kishimoto et al.  2011; Xiang et al.  2013). However, given 

that the CSF clusterin did not demonstrate PTM, the significance of the clusterin gel shift 

in plasma samples remains obscure. 

It can also be speculated that the elevation of CSF clusterin observed in DM may be due to 

increased clusterin gene transcription in DM motor neurons in thoracolumbar spinal cord, 

with a concomitant increase in clusterin protein synthesis, which is potentially secreted 

and/or translocated from the spinal cord parenchyma into the CSF in the subarachnoid 

space (Figure 6-8B). The movement of molecules between the spinal cord parenchyma and 

CSF is complex and remains speculative (Brodbelt and Stoodley, 2007). There is evidence 

of a potential CSF flow into the spinal cord parenchyma through the Virchow-Robin space, 

and conversely from the parenchyma into the CSF (Stoodley et al.  1996). This may 

explain how clusterin from motor neurons can accumulate in the CSF. This outflow 

mechanism is potentially regulated by glia limitans (Engelhardt, 2010). 

mRNA expression is informative in predicting protein expression levels in relation to gene 

function (Guo et al.  2008). The expression of clusterin mRNA has been described in 

almost all mammalian tissue (Calero et al.  2005) including CNS (Nuutinen et al.  2009; 

Charnay et al.  2012) and therefore expression of clusterin mRNA in spinal cord is a 

reasonable expectation. The quantification of clusterin mRNA in DM spinal cord in this 

study demonstrated a 42% increment compared to controls, implying that CSF clusterin 

elevation may be derived from spinal cord parenchyma. There is one report investigating 

clusterin in ALS, to determine if an inflammatory mechanism contributes to the potential 

aetiology in sporadic ALS. The quantification of clusterin and C1qB (a complement 

protein in the inflammatory cascade) mRNA from the frontal cortex of sporadic ALS cases 

demonstrated 40% elevation in ALS relative to control (Grewal et al.  1999). In situ 

hybridisation also demonstrated that clusterin mRNA was increased in anterior gray horn 

spinal cord of sporadic ALS patients, an area that is severely affected by 
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neurodegeneration (Grewal et al.  1999). These findings may suggest the involvement of 

inflammatory process in sporadic ALS. In contrast, inflammatory mechanisms observed in 

DM are described as a secondary response to the neurodegenerative process (Johnston et 

al.  2000; Coates and Wininger, 2010). An alternative proposal of ALS pathomechanisms 

involves the oxidative stress due to the SOD1 mutations, which could lead to the death of 

motor neurons (Nagai et al.  2001; Rothstein, 2009). Clusterin itself has been implicated in 

the oxidative stress pathway, which has been described to have a protective role against an 

abnormal redox environment (Carnevali et al.  2006). Over-expression of clusterin mRNA 

was detected in neuronal and glial cells from rat brain that had been subjected to oxidative 

stress (Strocchi et al.  1999; Strocchi et al.  2006). Therefore, it is hypothesised that the 

elevation of clusterin mRNA in DM may result as a response to oxidative stress. 

The characterisation of clusterin expression in neuronal and supporting glial cells has been 

described in several studies (Harr et al.  1996; Lidstrom et al.  1998; Sasaki et al.  2002; 

Charnay et al.  2012). In normal CNS tissues clusterin is ubiquitously expressed with 

strong expression in the pontobulbar and spinal cord motor nuclei, and distributed in the 

neuronal cytoplasm (Charnay et al.  2012). In addition, strong expression of clusterin has 

been detected in dorsal root ganglia (Charnay et al.  2012), astrocytes (Charnay et al.  

2008) and the ependymal cell layer of the choroid plexus (Aronow et al.  1993). In this 

study, strong clusterin immuno-reactivity has been detected in the motor neurons of T12 

spinal cord in both archival DM and control cases. The signal is characterised by a 

punctate granular pattern that is mainly localised to the neuronal cytoplasm, which is also 

consistent with the previous studies (White et al.  2001; Charnay et al.  2012). The 

subjective assessment of the staining intensity by IHC between archival control and DM 

groups found no significant difference. These findings are not consistent with the 

observation of increased clusterin mRNA in T12 spinal cord in DM, however the use of 

clusterin mRNA expression pattern to predict clusterin protein level is informative but not 

definitive since alteration of protein level does not always correlate with the mRNA 

expression (Al-Saktawi et al.  2003). Additionally, it is acknowledged that IHC, 

particularly when using chromogen detection, is a qualitative but not quantitative analytical 

technique.  

Since it is reasonable to assume that the Sod1 mutation results in oxidative stress, the 

elevated CSF clusterin in DM may be induced as a response to this toxic event. We have 

investigated a number of possible routes that could account for the elevated CSF clusterin 



  Chapter 6 
 
 

 186

in DM. The elevation of clusterin in DM CSF may reflect the expression of clusterin in the 

spinal cord parenchyma. Although increased staining of clusterin protein is not observed in 

DM spinal cord tissue, clusterin expression may be controlled by complex regulatory 

mechanisms and therefore may not necessarily correlate with the mRNA expression. In 

addition, it is also possible that clusterin could be directly secreted into the CSF via 

ependymal cells of the choroid plexus, perhaps also as a response to oxidative stress in 

DM. The findings from this study have indicated the potential role of clusterin in DM 

pathogenesis however this proposal would require further study to investigate this 

possibility.  
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Figure 6-8: The potential underlying mechanisms lead to CSF clusterin elevation in DM 

A) Diagram illustrating the blood, CSF and brain interfaces. CSF clusterin elevation may reflect the changes 

in the blood clusterin levels. This protein may leave the blood vessels and enter the CSF pathways through 

the tight junctions between the ependymal cells of choroid plexus. B) Compartment model of CSF and spinal 

cord parenchyma interfaces. Increased clusterin mRNA expression with a concomitant increase of clusterin 

distribution in DM motor neurons may lead to the CSF clusterin elevation. The potential mechanism involves 

the movement of clusterin from motor neuron into subarachnoid space via Virchow-Robin space. Clusterin is 

subsequently disseminated throughout the CSF pathway.  
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7 General Discussion and Future Directions 
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7.1 General Discussion 

Degenerative myelopathy is a spontaneously occurring, adult-onset, progressive 

neurodegenerative condition that has been recognised as a clinicopathological entity for 

many years. The condition is particularly prevalent in GSD, however a number of other 

specific breeds are also affected (see 1.1.2, page 25). Although the clinical and 

pathological characteristics are well-defined, the limited understanding of the underlying 

aetiology as well as the lack of a specific diagnostic test has led to complications in making 

diagnoses and tailoring management in DM. The confirmation of diagnosis remains at the 

level of histopathological examination. In addition, the clinical presentation of DM can 

mimic many acquired spinal cord diseases that may also co-exist with DM, confounding 

diagnosis. Numerous hypotheses on the potential aetiology have been explored however 

the high incidence of DM in specific breeds implies a genetic contribution in DM.  

The speculation of a genetic basis of DM has recently been substantiated (Awano et al.  

2009). A genetic study has established that the occurrence of DM is strongly associated 

with a mutation in Sod1 gene (118G>A or E40K) at the same time implying DM is 

potentially orthologous to ALS (Ticozzi et al.  2011). The E40K Sod1 mutation has been 

recognised as a major risk factor in developing DM, however it does not appear to be 

specific to DM as the mutation is also seen in a proportion of the non-affected individuals 

(Awano et al.  2009). In addition, a recent report has identified a novel Sod1 mutation 

(52A>T) in an affected BMD (Wininger et al.  2011), implying that there is a potential 

emergence of the new mutation in DM. It is clear that additional indices such as clinical 

biomarkers are required to specifically differentiate DM from other neurological diseases 

in the clinic, as well as potentially providing new insights into disease mechanisms. The 

successful development of DM biomarkers as an adjunct assay that are complementary to 

genetic marker and current diagnostic methods used in DM would be of substantial value 

to owners and clinicians. 

The main aim of this research is to establish a potential biomarker for DM to facilitate 

clinical diagnosis. In this study, CSF was selected as an appropriate source for DM 

biomarker as it is in direct contact with the affected system and can reflect the biochemical 

changes in any ongoing pathological process of DM. CSF material is also routinely 

collected for diagnostic purposes, therefore has become a feasible choice for DM 

biomarker investigations. Since DM has been considered a spontaneously occurring animal 
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model of ALS, we evaluated selected promising biomarker candidates of ALS in DM CSF; 

TTR, cystatin C, 7B2 and VGF proteins. This research was also driven by the rapid 

advancement and the easy accessibility of the proteomic technologies. The 2-DGE protocol 

was initially considered as a convenient proteomic strategy however optimisation of 2-

DGE protocols in canine CSF have failed to achieve acceptable protein separation and 

good gel resolution. Thus the identification of a novel CSF biomarker in DM was 

accomplished using a conventional 1-DGE followed by MS techniques, which has led to 

the significant discovery in this project.  

In this study, we have confirmed that canine CSF is a promising source of biomarkers for 

canine neurological disorders. However, a standardised protocol for CSF handling should 

be established to minimise the impact of the pre-analytical factors (Ferguson et al.  2007; 

Teunissen et al.  2011). The relatively distant geographical locations of the small animal 

hospital and the laboratory have been recognised as having the potential to introduce pre-

analytical variables that could compromise biomarker investigation as organisational 

requirements mean that research staff are not readily able to be present at the time of 

clinical investigation to manage samples and storage of samples for a period in the clinic is 

likely to be required. A standard protocol was implemented where the CSF samples were 

temporarily stored at -20°C (for a maximum 3 days), thawed in ice before centrifugation 

and then transferred to -80°C for long term storage. This protocol is more convenient in a 

busy hospital and laboratory with a limited number of technical support staff, however it is 

strongly suggested that sample transfer to -80ºC should be prioritised whenever possible 

(Teunissen et al.  2011). Recent evidence has shown that CSF is stable when stored at  -

20ºC for a short period of time, however storage of CSF at -20ºC for three months and 

beyond has clearly demonstrated alterations in CSF protein concentrations (eg., cystatin 

C)(Carrette et al.  2005; Boccio et al.  2006). A potential drawback of our protocol is that 

the CSF centrifugation step can only be performed after CSF storage at -20°C. CSF 

centrifugation is strongly recommended prior to first time freezing to prevent the release of 

cellular proteins due to cell rupture as a result of freeze-thaw cycle that could potentially 

influence the composition of CSF proteome (Bjerke et al.  2010). It is acknowledged that 

omitting the centrifugation step prior to -20°C storage may affect the specific CSF protein 

levels particularly in inflammatory conditions, however since DM and other controls 

demonstrated relatively low cellular concentrations, we speculated that the impact of cell 

rupture on the specific CSF protein levels investigated in this study would be minimal.  
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Another pre-analytical factor that may arise from the clinical or laboratory environment is 

the sample handling temperature (Schoonenboom et al.  2005; Ferguson et al.  2007). The 

time delay between the collection procedure and -20ºC or -80ºC storage has been reported 

as a critical variable affecting biomarker investigations (Ferguson et al.  2007). Thus, the 

effect of three potential CSF handling practices (4ºC, 37ºC and room temperature) on four 

specific proteins was conducted in canine CSF. These are all conditions that are recognised 

in a busy emergency unit and have been investigated to some degree in human CSF 

(Boccio et al.  2006; Ranganathan et al.  2005; Kaiser et al.  2007). Four candidate proteins 

were selected based on preliminary characterisation by Western blot and MALDI-TOF 

MS; TTR, cystatin C, haptoglobin and clusterin. Our findings have confirmed that CSF 

proteins are differentially affected by CSF handling, specifically dimeric TTR and clusterin 

levels at 37ºC and room temperature (Appendix 8.5.2). Although CSF proteins have 

proved to be stable at 4°C overnight we strongly recommend that CSF should be 

immediately stored at -20ºC or -80ºC, unless examination of CSF cells is required. 

Immediate CSF centrifugation should also be considered when pursuing biomarker 

analysis involving samples with a high cellular content (eg., neuroinflammatory cases). 

Storage at 37ºC and room temperature even for a short period should be avoided however 

recent reports have demonstrated that room temperature storage for two hours did not alter 

the protein levels (Teunissen et al.  2011; Vanderstichele et al.  2012). Posting CSF 

samples is only advised if dry ice is available for packing and should be carried out early in 

the week to avoid the possibility of delayed storage at -80°C (Teunissen et al.  2009). The 

findings from this experiment have assisted CSF sample collection in this project, which 

was achieved through co-ordinated interaction between the clinical and research staff, with 

a mutual understanding of the significance of the sample handling protocols. Based on the 

observations we and others have described, a standard unifying procedure for collection 

and storage of canine CSF for biomarker investigations has been established (Appendix 

8.5.3). 

The lack of a specific diagnostic test and the paucity of biological material for 

histopathological confirmation have severely limited the progress of DM research. Prior to 

the establishment of the genetic basis for DM, the inclusion criteria for DM investigations 

have relied completely on anamnesis and supportive clinical findings. Use of this 

potentially heterogeneous population as a basis for the study of DM contributed to the slow 

progress towards elucidating the aetiology of DM. In this study, we have developed the 

Sod1 genotyping, which has allowed DM stratification on the basis of a specific genotype 
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and biomarker evaluation in a homogenous group. Heterogeneity in a disease has been 

recognised as a variable that could complicate biomarker identification (De et al.  2011; 

Laifenfeld et al.  2012). Stratification of patients into a homogeneous subtype has been a 

natural strategy for biomarker research and has proved to increase the specificity and 

reliability of clinical biomarkers (Adewale et al.  2008). In DM the lack of understanding 

of heterozygous inheritance may introduce a significant variation in the affected group. 

Therefore heterozygous individuals with a presumptive diagnosis of DM were excluded 

from further studies at this point.  

The establishment of homogeneous control groups with specific genotype could not be 

accomplished due to limited clinical material and high number of heterozygotes identified 

in this study. As a result, the control group is a mixture of wild type and heterozygous 

individuals. This may not be ideal for disease comparison however the heterozygous 

controls were strictly selected from a dog population that had not shown typical signs and 

clinical progression of DM. DM is considered as an age-related neurological disorder, 

therefore ideally cases selected for the control group would be age matched cases as well 

as genotyped. Inclusion of age matched control cases may enhance the detection of subtle 

and specific changes between DM and other co-existing disorders at the same time 

eliminate age as a confounding variable. However, obtaining an age matched control group 

is a major challenge in clinical research (Hulley et al.  2007). In this study, the 

establishment of age-matched control group could not be accomplished due to the lack of 

clinical material from aged dogs presented in the UGSAH, although a small number of 

cIVDD cases were included in the disease comparison. The lack of age matched controls is 

also due to the ethical restrictions pertaining to collection of clinical samples from healthy 

dogs. In this study, an alternative option was adopted by having additional sets of control 

groups with a younger mean of age such as IE and MEN cases (Appendix 8.5.4). These 

groups do not present any clinico-pathological features that are associated with DM. IE 

patients were considered as an ideal set of controls in this study since this group has closest 

biochemical characteristics to ‘healthy’ individuals, albeit the young age of onset.  

Correlation analyses were also performed between altered CSF proteins with age, which 

demonstrated no significant relationships. These analyses are important to determine age-

related changes on the specific protein levels since there was lack of age-matched controls 

for biomarker analyses. 
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The inclusion of the lumbar CSF samples (N=3) in this study has also been identified as a 

potential variable that may influence the specific protein levels in canine CSF. In this 

study, the CSF samples obtained from lumbar cistern tend to display higher protein 

intensities compared to cisterna magna CSF. However, exclusion of these lumbar samples 

and re-assessment of the statistical analyses did not influence the protein changes in the 

specific studies.  

The characterisation of ALS-associated proteins in DM CSF has proven that these potential 

ALS biomarkers can be translated to the DM model, although there is a limitation 

pertaining to the availability of commercial antibodies for canine material. The outcome 

achieved in this study has provided potential overlapping molecular features between ALS 

and DM, substantiating DM as a model for ALS. Additionally we have also demonstrated 

that the application of proteomic technologies, such as MALDI-TOF MS can be optimised 

in canine CSF, which has facilitated in the identification of a novel biomarker in this 

project. With the continuing collaboration established in this project and the rapid 

advancement of proteomic technologies, we contemplate that the biomarker development 

in DM will become more feasible in future. 

CSF biomarker analyses have demonstrated that TTR and clusterin are potential candidates 

as DM biomarkers. The significant reduction of TTR dimeric levels was observed in DM 

CSF, which is similarly demonstrated in ALS CSF (Ranganathan et al.  2005; Ryberg et al.  

2010). Although this observation was not consistent in the subsequent comparative 

analysis, further characterisation of TTR in DM may hold great promise, not only as a 

specific biomarker but may also foster the delineation of the pathogenic pathways in DM. 

Though a significant clusterin elevation was observed in DM CSF this was not specific to 

DM as a similar pattern was also detected in cIVDD CSF, although we demonstrated that 

clusterin is elevated by 20% in DM compared to cIVDD CSF. These findings strongly 

support the biomarker observations in human that a panel of biomarkers rather than a 

single biomarker is required to achieve high specificity for diagnosis confirmation 

(Tainsky, 2009).  

The need for a panel of biomarkers in DM also implies the potential involvement of a 

complex underlying pathogenesis in DM. In SOD1-linked ALS, it has been shown that 

motor neuron death is potentially mediated by oxidative stress through mutation-induced 

structural changes of SOD1 enzymes (Beckman et al.  1993; Pasinelli and Brown, 2006). 

The discovery of a Sod1 mutation in DM is therefore exciting given the hypothesis of the 
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oxidative stress in SOD1-linked ALS. The consistent presence of SOD1 cytoplasmic 

inclusion bodies in the spinal cord of Sod1-linked DM cases has suggested a possible 

contribution of oxidative damage in DM pathogenesis. The results on clusterin in this study 

have provided further evidence supporting the occurrence of oxidative stress leading to 

motor neuron death in DM. We speculated that the elevation of clusterin in CSF may 

reflect a response to the oxidative stress event. The secretion of clusterin may be activated 

directly by ependymal cells of choroid plexus or spinal cord parenchyma to provide 

protection to neuronal cells against oxidative damage. However, the clusterin function may 

be impeded or modified during the advanced stage of disease, which could impair the 

proteosome system and promote protein aggregation that is toxic to motor neurones. The 

involvement of TTR in the oxidative stress pathway remains unknown, although there is a 

report that has established a connection of oxidative stress and TTR in Alzheimer’s disease 

(Gustaw et al.  2009). Interaction of clusterin with TTR has also been described through 

inhibition of TTR-associated amyloid formation by clusterin in TTR amyloidosis (Lee et 

al.  2009). Therefore, there is a possibility that these two proteins; clusterin and TTR could 

have a biochemical link in DM pathogenesis. Alternatively, it is also possible that TTR 

may have a different role in DM pathogenesis.  

In conclusion, the realisation of this research has provided a significant contribution to the 

establishment of potential biomarkers for DM as well as generating evidence on the 

potential underlying mechanisms in DM. Clusterin and TTR may represent components in 

a panel of emerging biomarkers that may combine to distinguish DM in the clinic. 

Although these biomarkers may require an extensive validation process prior to their 

translation into clinical practice, the successful translation of reliable and effective 

biomarkers for DM would enhance diagnosis and subsequently address the issue of 

therapeutic intervention. However, one has to remember that the use of DM biomarkers 

alone may not be sufficient to provide a specific diagnosis. Therefore, it is also pertinent to 

propose that the biomarker information is only clinically meaningful when used in 

conjunction with current diagnostic methods.  

7.2 Future Directions  

In this dissertation I have shown that canine CSF is an appropriate source of biomarkers 

for chronic neurodegenerative disorders such as DM, provided that the sample reliability is 

not compromised by pre-analytical factors. Due to the limited clinical material the 
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biomarker evaluations of clusterin and TTR in this study were performed on a small DM 

population. Therefore, further validation of these candidate proteins in a large-scale DM 

population would be of interest as samples become available. This will be achieved 

through multi-centred studies using common clinical criteria with mutual agreement of 

standard sample handling protocols. In addition, since there are no clinical differences 

observed between Sod1 genotypes in affected dogs, it is our intention to evaluate the 

candidate CSF proteins established from this study in affected individuals with wild type 

or heterozygous genotypes.  

Future work will focus on the characterisation of additional novel candidate proteins (eg., 

apolipoprotein E) as DM biomarker by proteomic approach. Alternative sources of body 

fluids such as blood (serum and plasma) or urine will also be considered for future 

biomarker investigations in DM, although CSF will remain the most preferable source of 

biomarker. Steps that have been taken to accomplish this objective include the 

establishment of collaboration with the CSF proteomic experts in the University of Rome, 

who specialise in the linear model of MALDI-TOF MS. Exchanges of clinical material 

between groups have been achieved recently and the optimisation of this technique on 

canine CSF is currently ongoing. Further characterisation of TTR in DM CSF (eg., PTM) 

will also be accomplished using the linear model MS technique. This experiment could 

further substantiate the hypothesis of DM as a naturally occurring model of ALS. In 

addition, the collaboration with the proteomic group in the University of Glasgow has been 

established to address the issues with 2-DGE protocol in canine CSF.   

For several years, our group has been investigating the nature of the pathology in DM. In 

ALS SOD1 mutations have been linked to oxidative stress contributing to motor neuron 

death, potentially mediated through altered conformation and biochemical properties of 

SOD1 enzymes. We continue to explore the impact of the Sod1 mutation (118G>A) in 

DM, wether this mutation induces a misfolded sod1 conformation that can subsequently 

lead to formation of aggregates and disruption of mitochondria. These projects are being 

undertaken in collaboration with ALS experts; Professor N. Cashman (University of 

British Columbia) and Professor P.J. Shaw (University of Sheffield). Our findings on 

clusterin in DM would also appear to support the involvement of oxidative stress in DM. 

Similar in vitro system will be used to investigate the clusterin expression in mutant Sod1 

transfected cells under oxidative stress condition (e.g., pre-treating cells with hydrogen 

peroxide).  
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Further assessment of the potential areas described in this section may facilitate the future 

development of DM biomarkers and at the same time could assist the biomarker translation 

into clinical practice. Novel hypotheses on the potential pathogenic mechanisms in DM 

have also been identified in this project. Further investigation of the questions raised in this 

study may highlight the commonality between ALS and DM, which will be of mutual 

benefit to both research communities.  
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8 Appendices 

 



 

 

8.1 List of Cases Included in This Project 

8.1.1 CSF Biomarker Study 

No Case ID Breed 
Age 

(y,m) Sex Diag. Sod1 
CYS 

C TTR Hp 
 

CLU 
 

Remarks 

       4.4.3.1 4.4.3.2 
 

4.4.3.4 5.4.4.1 
 

5.4.4.2 
 

5.4.4.3 6.4.1 
 

1 213652 GSD 0,7 M 
AR. 
CYST HET   

 
 

  
 

 

2 205302 
 
GSD 8,10 M DISC HET    

 
 

  
 

 

 
3 210822 CKCS 9 MN DISC HET   

● 
 

 ● 
 

 

4 222048 
LABRADOR 
RETRIEVER 8,5 M DISC WT   

● 
 

 ● 
 

 
L (45mg/dl) 

5 222730 GSD 6,6 M DISC WT X X 
 

X X 
  

X  
 

▲ 

6 224382 GSD 7,11 F DISC HET   
 
●  

  
●  

 

7 227633 BMD 9,11 MN DISC HET    
 
●  

  
●  

 

8 227843 GOLDEN RETRIEVER 10,5 M DISC WT    
 

X  
  

X  
 
Acute disc 

9 227934 GSD 8 M DISC WT    
 

X  
  

X 
  

▲ 

10 XN4830 GSD  8  M DISC HET X X 
 

X Xs 
 

X 
 

X X 
 

▲ 

11 211948 GSD 0,7 M DM HET  X 
 
 Xs 

 
X 

 
 X 

 

12 
212078 GSD 7,4 MN DM HOMO ● ● 

 
● ● 

 
● 

 
● ● 
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No Case ID Breed 
Age 

(y,m) Sex Diag. Sod1 
CYS 

C TTR  Hp 
 

CLU 
 

Remarks 

       4.4.3.1 4.4.3.2 
 

4.4.3.4 5.4.4.1 
 

5.4.4.2 
 

5.4.4.3 6.4.1 
 

13 212265 GSD 9 MN DM HOMO   
 
●  

 
● 

 
● ● 

 
L (58mg/dl) 

14 213295 GSD 8,4 MN DM HET   
 

X  
 

X 
 

X X 
 

15 213587 GSD 7 M DM HET   
 

X  
 
 

 
X X 

 

16 213934 GSD 8 FN DM HOMO ● ● 
 
 XS 

 
● 

 
 ● 

 

 
17 214784 GSD 9 M DM HOMO ● ● 

 
● 

 
● 

 
 

 

18 221994 GSD 7 FN DM HOMO ● ● 
 

X 
 
● 

 
 

L (60mg/dl) 
 *, ■, ♠ 

19 222937 GSD 6 M DM HOMO ● ● 
 
● ● 

 
● 

 
● ● 

 

 
20 224053 GSD 13 MN DM HOMO ● ● 

 
● 

  
 

 

 
21 224481 GSD 8,7 FN DM HOMO  ● 

 
 

  
 

 
■, ♠ 

22 227716 BORDER COLLIE 9 MN DM HOMO    
 
● ● 

 
● 

 
● ● 

 
■ 

 
23 211392 GSD 5 M IE WT ● ● 

 
● 

 
● 

 
● 

 

24 211763 SIBERIAN HUSKY 3,9 MN IE WT ● ● 
 
● ● 

  
●  

 

 
25 212083 GSD 3,1 F IE WT ● ● 

 
● 

  
 

 

 
26 212405 BOXER 3 M IE HET ● ● 

 
● 

  
 

 

27 212451 YORKSHIRE TERRIER 1 M IE HET  ● 
 
● ● 

 
● 

 
● ● 

 

28 212588 BOXER 0,6 M IE WT X X 
 

X X 
 

X 
 

X X 
 

Seizure<3d 
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No Case ID Breed 
Age 

(y,m) Sex Diag. Sod1 
CYS 

C TTR Hp 
 

CLU 
 

Remarks 

       4.4.3.1 4.4.3.2 
 

4.4.3.4 5.4.4.1 
 

5.4.4.2 
 

5.4.4.3 6.4.1 
 

 
29 212855 GSD 7,4 M IE HET ● ● 

 
● 

 
● 

 
● 

 

30 214514 DOBERMAN 4 M IE HET   
 
●  

 
● 

 
● ● 

 

31 222373 
 
BORDERCOLLIE 2 M IE WT ● ● 

 
● 

 
● 

 
 

 

32 222557 GIANT SCHNAUZER 2 M IE WT ● ● 
 
● XS 

 
● 

 
● ● 

 

33 224899 COLLIE 8,2 MN IE HET   
 
●  

 
● 

 
● ● 

 

34 227606 X BREED 9 MN IE WT   ● 
 
● ● 

 
● 

 
● ● 

 

35 227698 GSD 3,6 MN IE WT    
 
●  

 
● 

 
● ● 

 

 
36 211490 BOXER 1,3 F MEN HET   ●  

 
●  

 

 
37 212596 BOXER 4,7 MN MEN HET   ●  

 
●  

 

 
38 212999 PUG 1 M MEN HET    ●  

 
●  

 

 
39 214108 MALTESE 5 M MEN HET  

 
●  

 
● 

  

 
40 214628 BOSTON TERRIER 2 M MEN HET    ●  

 
● 

  

 
41 214854 LABRADOR 5 FN MEN HET  

 
●  

 
● 

  

42 214885 WHWT 8 FN MEN WT    ●  

 

● 
 
 

 

 
43 215185 BICHON FRISE 9 MN MEN WT    ●  

 
●  
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Table 8-1: Signalment for all dogs included in CSF biomarker study. 

Following abbreviations are used; German Shepherd Dog (GSD), Cavalier King Charles Spaniel (CKCS), Bernese Mountain Dog (BMD), X breed (cross-breed) male (M), female (F), 

neutered (N), idiopathic epilepsy (IE), degenerative myelopathy (DM), meningitis (MEN), type II disc disease (DISC), wild type or normal Sod1 gene (WT), heterozygous (HET), 

homozygous for mutant A allele (HOMO),  cystatin C (CYS C), transthyretin (TTR), haptoglobin (Hp), clusterin (CLU), lumbar CSF (L).  

Following symbols are used; cases treated with prednisolone at the time CSF was collected (*), diagnosed with mild disc degeneration (■), had been previously diagnosed with DM 

(▲), diagnosed with mild spondylosis (♠). Cases that marked “X” were excluded from further studies based on the criteria outlined in 4.3.3, page 116. CSF samples marked “XS” were 

excluded due to the lack of signal in Western blots. 
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8.1.2 mRNA and IHC Studies  

No. 
Case 
No. 

Control/ 
Affected Breed Age Sex 

 
Diag. 

SC 
Section Sod1 mRNA IHC 

44 129239 CONTROL 
FLAT-COATED 
RETRIEVER 8 FN 

 
MH T13 WT ● ● 

 
45 8B95 CONTROL GSD     

 
NND T13 WT ● ● 

 
46 129238 CONTROL GSD 8 M 

 
NND T12 WT ● ● 

 
47 129237 CONTROL GSD 8 M 

 
MCT T13 WT ● ● 

 
48 127761 CONTROL GSD 3   

 
AF T13 HET   

 
49 129202 AFFECTED GSD 10 FN 

 
DM T12 HOMO ● ● 

 
50 128291 AFFECTED GSD 8 FN 

 
DM T12 HOMO ● ● 

 
51 129800 AFFECTED GSD 9 M 

 
DM T12 HOMO ● ● 

 
52 129966 AFFECTED GSD 9 M 

 
DM T12 HOMO ● ● 

 
53 126438 AFFECTED GSD 12 FN 

 
DM T12 HOMO  ● 

Table 8-2: Signalment for all dogs included in mRNA and immunohistochemistry (IHC) study.  

Following abbreviations were used; malignant histiocytosis (MH), non-neurological disorders (NND), mast 

cell tumour (MCT), anal furunculosis (AF).  

8.1.3 Pre-analytical Assessment 

No. Case No. 
 

Breed 
Age 

(y,m) Sex 
 

Diag. 

1 211392 
 
GSD 5 M 

 
IE 

2 212083 
 
GSD 3,1 F 

 
IE 

3 212364 
 
WEIMARANER 7,4 M 

 
IE 

4 220204 
 
X BREED 4 M 

 
IE 

5 222373 BORDER COLLIE 2 M 
 
IE 

6 222557 GIANT SCHNAUZER 2 M 
 
IE 

7 222706 
 
COCKER SPANIEL 0,3 F 

 
IE 

8 223485 
 
BORDER TERRIER 6 MN 

 
IE 

9 223800 
 
X BREED 4 FN 

 
IE 

10 224372 
 
BORDER COLLIE 7,3 MN 

 
IE 

Table 8-3: Signalment for IE cases for pre-analytical assessment. 
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8.2 Protein Analysis 

8.2.1 Tissue Homogenisation Buffer 

Amount 
 

Chemical 

1ml 
1ml 
20µl 
5µl 
5µl 
5µl 
5µl 
100µl 
100µl 
100µl 
40µl 
 

10% triton X-100 
10X TBS pH7,4 
0.5M EDTA 
1M DTT 
10mg/ml aprotinin 
10mg/ml leupeptin 
10mg/ml trypsin inhibitor 
100mM benzamidine 
250mM sodium orthovanadate 
100mM sodium pyrophosphate 
250mM PMSF 

 
 

8.2.2 BCA Reagents 

Reagent 
 

Chemical 

Reagent A 
 
 
 
Reagent B 

Sodium carbonate 
Sodium bicarbonate 
Bicinchinonic acid 
Sodium tartrate in 0.1M sodium hydroxide 
4% cupric sulphate 

The mixture ratio of reagent A and B is 50:1. 
 
 

8.2.3 Sample Denaturation Buffer (3X) 

Amount 
 

Chemical 

0.187M 
6% 
30% 
0.006% 
40mM 

Tris pH 6.8 
SDS 
Glycerol 
Bromophenol blue 
DTT 
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8.2.4 Ponceau S 

Amount 
 

Chemical 

1g 
50ml 

Ponceau S 
Acetic acid 
 

Dissolve in 1l of distilled water. 

8.2.5 T-TBS (10X) 

Amount 
 

Chemical 

60.2g 
87.6g  
10ml 

Tris-base 
Sodium Chloride (NaCl) 
Tween 20 
 

Dissolve in 700ml distilled water. Adjust pH to 7.4 with 1M hydrochloric acid (HCl) and 
make the volume up to 1l.  
 
 

8.2.6 Hand-poured SDS-PAGE Gel 

Chemical 
 

12.5% Stacker (4%) 

Acrylamide:bisacrylamide at ratio 37:1 
1.5M Tris pH8.8 
0.5M Tris pH6.8 
10%SDS 
10% ammonium persulphate 
Ultrapure water 
TEMED 
 

16.6ml 
10.0ml 
 
400µl 
300µl 
12.8ml 
20µl 

1.76ml 
 
1.64ml 
60µl 
150µl 
8.0ml 
18µl 

Volumes for 20 well, large format 1-DGE (16cm x 13cm) with 4% stacker. 
 
 

8.2.7 Towbin Transfer Buffer  

8.2.7.1 Anode 1 

Amount 
 

Chemical 

36g 
74ml 
 

Tris 
Methanol 
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8.2.7.2 Anode 2 

Amount 
 

Chemical 

3g 
75ml 
 

Tris 
Methanol 

 

8.2.7.3 Cathode 

Amount 
 

Chemical 

3g 
3g 
74ml 
 

Glycine 
Tris 
Methanol 

For all buffers, make up until 1l with distilled water and stored at 4°C. 
 
 

8.2.8 SDS-PAGE Running Buffer for Hand-poured Gel ( 10X) 

Amount 
 

Chemical 

144g 
30.3g 
10g 
 

Glycine 
Tris 
SDS 
 

Add the glycine to 700ml of distilled water, once dissolved add Tris and SDS and finally 
made up the volume of 1l with distilled water. 
 
 

8.3 Nucleic Acid Analysis  

8.3.1 Tris-acetate-EDTA buffer (1X TAE) 

Amount 
 

Chemical 

4.8g 
1.1ml 
2ml 

Tris-base 
Acetic acid 
0.5M EDTA 
 

Volume made up to 1l. 
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8.3.2 Tris-borate-EDTA (1X TBE) 

Amount 
 

Chemical 

10.8g 
5.5g 
2ml 

Tris-base 
Boric acid 
0.5M EDTA 
 

Add the following reagents into 800ml of distilled water and adjust to make up final 
volume of 1l. 
 

8.4 Tissue Morphological Analysis 

8.4.1 Buffered Neutral Formaldehyde (4%) 

Amount 
 

Chemical 

100ml 
900ml 
4g 
8g 
 

40% formaldehyde 
Tap water 
Sodium dihydrogen orthophosphate 
Dipotassium hydrogen orthophosphate 

 
 

8.4.2 Dewaxing and Dehydrating Sections 

Step 
 

Reagent Duration 

Dewaxing 
 
 
 
 
 
Dehydrating 

Histoclear 
70% alcohol 
70% alcohol 
70% methylated spirit 
Water 
 
70% methylated spirit 
70% alcohol 
70% alcohol 
Histoclear 
Histoclear 
Histoclear 

2 minutes 
2 minutes 
2 minutes 
2 minutes 
5 minutes 
 
2 minutes 
2 minutes 
2 minutes 
10 seconds 
10 seconds 
10 seconds 
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8.4.3 Processing Schedule for Nervous Tissue  

Programme 1 : Brain  
Duration : 44 hours 

Station 
 

Content 
 

Duration 
 

1 70% alcohol 2 hours 
2 95% alcohol 3 hours 
3 Absolute alcohol 3 hours 
4 Absolute alcohol 3 hours 
5 Absolute alcohol 5 hours 
6 Absolute alcohol 5 hours 
7 Absolute alcohol 2 hours 
8 Absolute alcohol/xylene 4 hours 
9 Xylene 2 hours 
10 Xylene 4 hours 
11 Wax 2 hours 
12 Wax 3 hours 
13 Wax 3 hours 
14 Wax 4 hours 

 

8.4.4 Scott’s Tap Water Substitute (STWS) 

Amount 
 

Chemical 

8.25g 
50g 
2500ml 
2 crystals 
 

Sodium bicarbonate 
Magnesium sulphate 
Tap water 
Thymol 
 

Total volume for 2.5l. 
 
 

8.4.5 Sodium Citrate Buffer pH6.0 

Amount 
 

Chemical 

2.94g 
1000ml 
 

Tri-sodium citrate 
Distilled water 
 

Total volume for 1l. Adjust to pH6.0 with 1M HCl 
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8.4.6 1X TBS 

Amount 
 

Chemical 

12.2g 
8.7.6g  

Tris-base 
NaCl 
 

Dissolve Tris and NaCl in 800 ml ddH2O. Adjust pH to 7.5 with 1 M HCl and make 
volume up to 1lwith ddH2O. 
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8.5 Additional Information 

8.5.1 Two-DGE Analyses in Canine CSF and Brain Tiss ue 

The application of 2-DGE to resolve the proteome of canine CSF was explored in tandem 

with a dog brain homogenate sample. The resolution of canine CSF by this method can be 

difficult to achieve due to the high salt content and the presence of high abundant proteins 

such as albumin. In an attempt to overcome these technical issues, CSF samples were 

acetone precipitated to remove the salt content and the results are shown in Fig 8.1 (A and 

B). The while the resolution obtained for the brain sample was satisfactory, the profile 

obtained with CSF was poor showing a horizontal streak within the area corresponding to 

albumin. The impact of removing albumin from using the commercially available kit 

ProteoExtract was investigated by 1-DGE and found to significantly reducte the overall 

protein content without selectively enhancing the less abundant proteins. A further attempt 

to selectively reduce albumin and enrich the lower molecular weight proteins and peptides 

was investigated using a combination of ProteoExtract and the ZipTip C18 resin which can 

desalt samples and enrich proteins and peptides that are less than 50kDa. 1-DGE 

demonstrated that while the overall protein content was diminished, there was no 

significant enrichment in the lower molecular weight proteins. Based on the poor 

resolution by 2-DGE and the low recovery of less abundant proteins using albumin 

depletion reagents, it was concluded that this approach would be unlikely to yield reliable 

and repeatable information of potential biomarkers in CSF. 

 



Appendices 

 210

 

Figure 8-1: Attempts to optimise the 2-DGE protocols in canine CSF and canine brain tissue 

homogenates. 

2-DGE analsysis of actetone precipitated brain extract displayed a sharp resolution of several protein spots 

across the IEF with pH range of 3-11 (A) while CSF appeared as unresolved horizontal smear (B). Albumin 

depletion of CSF using ProteoExtract (B) reduced the global protein profile (N) but there was no significant 

difference between the column wash (W) and the eluted fraction (E). The eluted fraction was also subjected 

to ZipTip purification (P+Z) but there did not appear to be difference in the profiles before and after ZipTip 

treatment.    
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8.5.2 Pre-Analytical Assessment: Summary of Finding s 

 CLU Hp Cystatin C TTR 
dimer 

TTR 
monomer 

4 °C for 18 hours 
 

- - - - - 

37 °C for 4 hours - - - 50% ↑(**) - 
 

RT for 48 hours 53% ↓(*) - - 40% ↑(**) 
 

- 

Table 8-4: The tabulated result of selected CSF proteins stability in canine CSF 
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8.5.3 Recommendations for CSF Collection for Biomar ker Study 

Item 
No. 

Procedure Ideal Situation/Recommendations 

 1 
 
 
 

Site of sampling 
     Cisterna magna vs. 
      lumbar cistern      
 
         
 
 

� Either route is preferable, but ideally, analysis 
should be done using samples collected from one 
site of sampling 

� If this is not possible, the gradient effect of 
protein between cisterna magna and lumbar 
cistern must be taken into consideration.  

2 CSF handling 
     Preferred volume 
 
     Blood contamination 
      
     Collection tube 
 
     Documentation 
 
 
 
 
     Temporary storage 

• 4°C 
• -20°C 
• Room temperature 

 
 

     Transport conditions 
 

 
� 1ml for sample banking. Always paired with 

blood, serum or urine samples.  
� Excluded if visible or exceeding 500RBC/µl  
 
� Propylene tube without anticoagulant  
 
� Date of collection, case ID, site of sampling, 

visible blood contamination or RBC count, time 
delay between collection and freezing, drugs 
administration, eg., prednisolone. 

 
 
� Not recommended  
� Less than 3 months  
� Not recommended  
 
 
� In dry ice during early week  
 

3 CSF processing        
     Centrifugation 
 
     Aliquots  
 
     Freeze-thaw cycles 
 

 
� 1000rpm for 10 minutes ideally at 4°C however 

at room temperature is acceptable. 
� A minimum of two aliquots, and split between    

-80°C freezers (if applicable) 
� Limit the repeated cycles to 1-2 cycles  
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8.5.4 The Age Comparison in DM and Control Groups i n CSF 

Biomarker Studies 

Group 
 

M±SD in years 
 

N 
 

IE 4.3±2.6 12 

DM 8.5±1.9 14   

MEN 4.1±3.1 8 

cIVDD 8.8±0.8 4 

Table 8-5: The age comparison in DM and control groups in CSF biomarker studies. 
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8.5.5 Owner’s Consent Form 
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