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Abstract

This work is concerned with the control of second order non-linear effects in
GaAs/AlGaAs multiple asymmetric quantum well waveguides using a novel quasi-phase-
matching technique with a view to performing ultrafast all-optical signal processing via the
cascaded second order effect at 1.55 um. Asymmetric quantum wells (AQW) have several
different tensor components associated with them in addition to the bulk GaAs/AlGaAs
non-linearity. All of these non-linearities are potentially modified by QW-intermixing, and
it is the study of these effects which constitutes the main subject matter of this thesis.

QW-intermixing was accomplished for several different multiple AQW structures
using impurity-free vacancy disordering (IFVD). Unphase-matched second harmonic
generation (SHG) experiments were subsequently performed with waveguides fabricated
from as-grown and intermixed AQW material. No conclusive evidence was found for the
existence of any AQW tensor components. This is consistent with recent calculations
which predict, that for the particular AQW structures studied, the AQW non-linearities are
negligible. Unphase-matched SHG was, however, observed which was attributable to the
large bulk GaAs/AlGaAs d,, coefficient. Furthermore, d;, was reduced by 17% on
intermixing. Since the quasi-phase-matching conversion efficiency is proportional to both
the square of the magnitude of the non-linearity and the square of the modulation depth, a
small but significant reduction in the large d,, coefficient such as this, could lead to useful

conversion efficiencies.

Selective-area IFVD was achieved using hydrogen plasma processing to inhibit
intermixing. Only partial suppression of the IFVD process was, however, achieved. The
spatial resolution of the selective-area process was measured for two different MQW
structures under different annealing conditions, and was found to be better than 2.2 pum.
The resolution of the IFVD process is therefore sufficiently good for the control of second
order non-linear interactions in GaAs/AlGaAs MQW waveguides.

Periodically-intermixed waveguides were fabricated for quasi-phase-matching.
These waveguides had measured losses ranging between 3.7 dB/cm and 18 dB/cm
depending on the intermixing period. Phase-matching was not, however, observed in these
devices. This may have been a consequence of one of several factors including, non-ideal
laser tuning characteristics, the use of inaccurate intermixing periods, and a negligible
modulation depth in d,4. Further work is therefore necessary to establish why phase-
matching was not achieved, and to improve the selective-area intermixing process. If these
difficulties can be overcome and, in addition, an AQW structure can be designed with
associated significant non-linearities, then SHG conversion efficiencies of several hundred
%/Wcm?2 may be possible.



Introduction

The original motivation for this work was the achievement of ultrafast all-optical
switching using the cascaded second order effect in AlGaAs at 1.55 um. However, the
phase-matching technology used for this work can also be applied for wavelength
conversion and for optical parametric oscillation. These applications are therefore
discussed below in addition to the subject of all-optical switching.

1.1 All-optical Switching

With the world-wide explosion in information technology over the last decade,
there has been an increasing demand for ultra-high bit rate telecommunication systems.
With the advent of the laser diode, and the development of optical fibres with a large
bandwidth capacity (a few tens of THz) and low propagation losses, mutligigahertz data
transmission has been achieved over long distances. However, the "bandwidth-bottleneck”
which occurs as a consequence of "slow" opto-electronic conversion at the receiver, limits
the bit rate of optical time division multiplexing (OTDM) systems. The demonstration of
ultrafast all-optical switching at 1.55 pm for demultiplexing (DEMUX) at ultrahigh bit
rates (> 100 Gb/s) has therefore been a universal goal.

All-optical switching (AOS) has been achieved using many different effects in a
wide variety of materials and device geometries. One of the most successful approaches in
recent years is based upon the SLALOM (semiconductor laser amplifier in a loop mirror)
device illustrated in Fig. 1.1 [1]. As may be seen from Fig. 1.1, a SLALOM essentially
consists of a fibre loop mirror incorporating a semiconductor laser amplifier (SLA) which
is offset from the centre position of the loop. If, for this device, the SLA is offset in time
from the loop centre by T/2 seconds, then the clockwise (cw) circulating data pulse will
arrive at the SLA at a time T seconds before the arrival of the counter-clockwise (ccw)
circulating pulse.

When no high intensity control pulses are coupled into the loop, the cw and ccw
pulses interfere at the input/output coupler and are reflected back to the data input arm of



the device. If, however, in the period of duration T seconds between the arrival of the cw
and ccw pulses at the SLA, a high intensity control pulse arrives at the SLA, the gain is
saturated very rapidly. Furthermore, since the gain recovers on a much slower time scale,
the cw and ccw pulses experience different gain and phase changes within the SLA. When
the difference between the phase changes experienced by the cw and ccw pulses is equal to
=, the interference at the input/output coupler switches the data pulse to the data output arm

of the device.

The application of the SLALOM as a fast all-optical demultiplexer has been
demonstrated by several groups [2,3,4]. Very high data rates of up to 160 Gb/s have been
demultiplexed down to rates of 10 Gb/s which can be processed electronically.
Furthermore, the control pulse power levels required for the DEMUX operation, are
compatible with existing semiconductor laser diode technology. The DEMUX of higher
data rates is, however, limited by the gain recovery time of the SLA.

T2

Control
Pulse

Input/Output
Coupler

Data g — Dt
In Out

Fig. 1.1 SLALOM all-optical time-division demultiplexer



An alternative approach to all-optical switching utilises ultrafast non-linear effects
in passive waveguide structures. For example, ultrafast all-optical switching was
demonstrated in a series of experiments with integrated AlGaAs devices in a variety of
different geometries using the intensity-dependent refractive index n, at photon energies
just below the half-band-gap [5,6,7]. Ultrafast operation of these devices was, however,
achieved at the expense of high switching powers so that typical peak powers of ~100 W
were required for switching.

All-optical switching using the cascaded second order effect was originally
proposed by Assanto et al. [8]. This effect relies on sum or difference frequency
conversion followed by the opposite process in which the original frequencies are
regenerated with an accompanying non-linear phase shift. The GaAs/AlGaAs material
system has a large second-order non-linear figure of merit which is approximately an order
of magnitude greater than that of LiNbOs. Ironside et al. [9] therefore proposed an AlGaAs
Mach-Zehnder interferometer (MZI) based on the cascaded second order effect with
predicted switching powers of ~1 W. Hutchings et al. [10] later proposed a dual-
wavelength AlGaAs MZI device with estimated switching powers of ~10 W. In the
AlGaAs material system, however, no really efficient phase-matching technique has been
demonstrated to date, so that cascaded second-order all-optical switching has only been
performed in LiNbOs3 devices [11,12]. In the two experiments of references [11] and [12],
birefringent type I phase-matching was achieved between the TM o and TE, o, modes
in Ti-diffused LiNbO3; channel waveguides using temperature tuning, where the
propagation direction was along the X axis of a Y-cut crystal. In the first experiment, Baek
et al. [11] demonstrated all-optical switching in a hybrid MZI with a 7:1 contrast ratio as a
result of the cascaded second order non-linearity. In the second experiment [12], all-optical
switching was demonstrated in an integrated non-linear directional coupler. In this case,
switching between the cross and bar branches of the coupler was achieved with a ratio of
1:5 and a throughput of 80%. For both of these experiments, however, swiiching was
accomplished via the relatively small d;; non-linearity, and the effective waveguide core

areas were not optimised. Peak powers of ~1000 W were therefore required for switching.

In conclusion, it should suffice to state that, if an efficient quasi-phase-matching
technique can be developed for GaAs/AlGaAs, with its large second-order non-linear
figure of merit, ultrafast all-optical switching using the cascaded second-order effect may
be feasible at powers of ~10 W.



1.2 Quasi-phase-matching for Wavelength Conversion
and Optical Parametric Oscillation

Wavelength conversion is important in its own right for the generation of coherent
blue light for high-density optical data storage, and for wavelength division multiplexing
(WDM) communication systems. To date, blue light generation has been achieved in both
periodically-poled LiNbO3; (PPLN) with conversion efficiencies of several hundred
%/Wcm? [13,14,15], and in ion-exchanged KTP with conversion efficiencies exceeding 50
%/Wcm? [16]. The GaAs/AlGaAs material system is, however, absorbing in the visible
and cannot be used for blue-light generation. Second harmonic generation (SHG) has,
however, been demonstrated in GaAs/AlGaAs in the near infra-red where conversion
efficiencies of 167 %/Wcm? were achieved using periodic domain inversion by wafer
bonding and re-growth [17]. New possibilities therefore exist for the simultaneous
conversion of tens of different wavelengths [18]. Such a technology clearly has very
beneficial implications for WDM networks.

Optical parametric oscillators (OPO) have also been realised using quasi-phase-
matching in both bulk PPLN [19], and in PPLN waveguides [20]. Such devices are widely
tuneable sources of coherent radiation from near to mid infra-red wavelengths. OPO's
fabricated from bulk PPLN pumped with 1.064 um pulsed Nd:YAG lasers, for example,
have been operated over the wavelength range 1.4 - 4 um, with tuning by temperature or
quasi-phase-matching period [21]. In addition, a cw doubly resonant PPLN OPO near 1.96
pum pumped directly with a commercial cw laser diode at 978 nm, has also been
demonstrated [20]. To date, optical parametric amplification has not been achieved in
GaAs/AlGaAs essentially because no efficient phase-matching technique exists for this
material system.

1.3 Thesis Outline

This work is concerned with the development of a novel quasi-phase-matching
technique for the control of second order non-linear effects in the GaAs/AlGaAs material
system. After a review of second order non-linear effects in Chapter 2, a novel domain-
disordering technique is described in Chapter 3. This technique involves the suppression of
the non-linear coefficients associated with multiple asymmetric quantum well (AQW)
waveguides. The algorithm used throughout this work for the numerical solution of
Schrodinger's equation in an arbitrary potential profile, is outlined in Chapter 4. This

-5.



algorithm is subsequently used in Chapter 5 for the design and characterisation of AQW
structures. Chapter 6 is concerned with the QW-intermixing technique used to suppress
both the bulk GaAs/AlGaAs d,, coefficient, and the AQW second-order susceptibility
tensor components. The experiments with AQW waveguides which are described in
Chapter 7, demonstrate that the unphase-matched second harmonic signal generated
through the bulk d,, coefficient is significantly reduced on QW-intermixing. In Chapter 8,
experiments with periodically-intermixed AQW waveguides for quasi-phase-matched SHG
are described. Finally, conclusions are drawn, and some further experiments are proposed

in a separate section.
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2

Second Order Non-linear Effects and All-
optical Switching

There are several different optical phenomena associated with a second order non-
linear medium: second harmonic generation, sum and difference frequency mixing,
parametric amplification and oscillation, optical rectification, and the linear electro-optic
effect. Throughout this work, we are only concerned with second harmonic generation
(which is the degenerate case of sum frequency mixing) and the opposite down-conversion
process from the second harmonic frequency to the fundamental frequency (which is a
special case of difference frequency mixing) and the application of these effects to all-
optical switching.

In this chapter we introduce the coupled wave equations which govern the
evolution of the second harmonic and fundamental fields, when a high intensity beam is
incident on a second order non-linear medium. The solutions of the equations are discussed
at some length with particular emphasis placed on the GaAs/AlGaAs material system and
in other common materials for near/mid-IR applications. In addition to second harmonic
generation (SHG), the cascaded second order process and its application for all-optical
switching is described. The concept of quasi-phase-matching (QPM) is also introduced for
the control of the power exchange between fundamental and second harmonic fields.
Finally, the advantages of guided wave interactions in a second order non-linear medium
are outlined and compared with SHG conversion efficiencies reported in the literature for
GaAs/AlGaAs, LiNbO; and KTP waveguide devices.

2.1 The Coupled Wave Equations for Uniform Plane
Waves in a Second Order Non-linear Medium

2.1.1 The Vector Coupled Wave Equations

In a non-linear medium which is also non-magnetic and non-conducting, the time-
independent vector wave equation, is given by:



2 2
()= (@) O b N o2pNL
VIE(w) = 7 E(0) - 10 P (0) @2.1)

where it has been assumed that there are no free charges present. In expression (2.1), E(w)
is the Fourier transform of the electric field vector E(t), PNL(m) is the Fourier transform
of the non-linear part of the polarisation vector PNL(1), n(w) is the refractive index of the
medium at the frequency w, c is the velocity of light in vacuum, and p, is the
permeability of free space. If we now assume that E(w) is a uniform travelling plane

waveform which propagates in the +z direction, we may write:
E(0) = E(0,z) = E(w,z) exp|ik(w)z] (2.2)

where ﬁ(m,z) is a complex envelope function which contains information about both the
amplitude and phase of the wave which is travelling in the +z direction, and
k(w)=n(w) ©/c is the wavevector from the solution of the wave equation (2.1) without
the non-linear polarisation term. Substituting expression (2.2) for E(w) into (2.1) we may

deduce:
g N
[a S, zik(m)%]e*p[ik(m)z] = -0 PN (w,2) @

In the slowly varying envelope approximation [1]:

3’E(w,z . oE(w,z
#—Z << 21k((n))——(aZ ) (2.4)
and (2.3) becomes
oE(w, z) 0 _NL ,
= P , - :
~ o), (0,z)exp|[-ik(w)z] (2.5)
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Expression (2.5) therefore governs the evolution of the complex envelopes of all the fields
present in the non-linear medium.

At this stage it is perhaps simpler to restrict our attention to the case of a second
order non-linear medium with only 2 monochromatic uniform plane waves at frequencies
o; and o, travelling in the +z direction so that the total electric field in the medium may

be expressed as:

E(0,2) = 1{Eq, (2)8(0 - 0)) + E_q, (2)5(0 + o)
(2.6)
+Eq,, (2)8(0 - 0,)+ E_o, (2)8(0 +, )]

Moreover, the most general case of sum frequency generation will be treated first
(0,0, > o) + 0, = o say, where ®, # ®,) before considering the special cases of

SHG (,» — 2w) and second harmonic down-conversion or SHD (2®,-® — o).

For the sum frequency generation process (0)1,(02 - mo) we have from (2.5):

0By (7) _ iwg

p?) - .
% " Ing e o (2)exp(-iky, 2) 2.7)

where the sum frequency component of the second order non-linear polarisation vector
Pﬁfg (z) is given by [1]:

Pg(), (z)= EOX(Z)(—(DO;(DI,O)Z )IE(,,1 (2)Eq, (2) (2.8a)

1e.

[PS) ()], =20 Zx{p(~000:01,02)[E, ()], [Ear ()] (2.80)
o n Ctﬁ WB ] o ®7y B A

In (2.8a) x(z)(—mo;ml,a)z) is the second order non-linear susceptibility tensor which

characterises the sum frequency generation response of the medium. In (2.8b) [ng), (z)] 18
vl

the Cartesian component (L = X, y or z) of the polarisation vector ng), (z) which is being
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evaluated, while ¥ signifies that the terms on the right hand side of (2.8b) need to be
af

summed over all permutations of aff where the subscripts o and B also denote Cartesian

components X, y or z. Now from (2.2), for o; 20 we have:

Eq,(2)=Eq, (2) exp(ikmj z) (2.92)
E_mj (z)= Ez,j (z)exp(—ikmj z) (2.9b)

where (2.9b) follows since for E(t,z) real we must have E_mj (z) = EZ,J. (z). Hence, from

(2.7), (2.8) and (2.9) we may deduce that

a]::coc (Z) _ i(l)6

oz 204, C

AP (~0gi01,0 |y (B, (2)expfi(ke, +kuz —Kog [z 210

Equation (2.10) describes the evolution of the sum frequency field envelope I:Dmcj (z) as a

function of the distance propagated through the second order non-linear medium. We now
consider 2 special cases of sum frequency generation: the frequency-degenerate process of
SHG (®,» — 2w) and the reverse non-degenerate process of SHD (2w,—® — @) which

also occurs.

(i) Second Harmonic Generation (0,0 — 20)

Although SHG is the degenerate case of sum frequency generation i.e.
(0, = ®,0; =0 - 0 +©, = 20) the second harmonic envelope evolution equation is not
simply derived from the sum frequency generation equation of (2.10) by writing
®; = w, = . Instead, due to the degeneracy of the frequencies w,; and ®,, (2.8) becomes:

2
P

(0]

(z) = Leox ) (~200;0,0)[E, (2)Eq () .11
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Consequently, the equation governing the propagation of the second harmonic field
envelope is given by:

IEje(z) _ _iw AD(20;0,0)E, (2)Eq (z)exp(iAkz) (2.12)
oz 2n2mc

where n,,, is the refractive index of the medium at the second harmonic frequency, and
Ak =2k, — Kk, is the wavevector mismatch parameter.

(ii) Second Harmonic Down-conversion (20,—® — ©)

Any second harmonic field generated in the second order non-linear medium can
subsequently undergo further frequency mixing with the original fundamental field leading
to second harmonic down-conversion. Unlike SHG however, the down-conversion process
(2m,—w — ) is a non-degenerate frequency conversion process. The equation describing

the evolution of the down-converted fundamental field is therefore derived by simply
substituting ®; = 2w, ®, = - and ®4; = ® into equation (2.10) to give:

dk,(2) __io

XD (020, ~0)|E o (2)Ex, (2) exp(-ikz) (2.13)
oz 2n,C

where n, is the refractive index of the medium at the fundamental frequency and, as for
the SHG case, Ak =2k, —K,,.

Expressions (2.12) and (2.13) are the vector coupled wave equations which govern
the exchange of power between the fundamental and second harmonic fields during
propagation through the second order non-linear medium. A detailed discussion of the
different solutions to these equations will however be deferred until later in this chapter.

2.1.2 Symmetry Properties of the Susceptibility Tensors %2 (-20:0,0) and
x(z)(-m;Zm,—m)

Although in general the number of x(z)(—mo;ml,mz) tensor elements required to

define the sum frequency generation response of a second order non-linear medium is 27,
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various symmetry properties exist which can be invoked under different conditions to
reduce the number of independent tensor elements. Initially, these symmetry properties
will be introduced for the most general case of sum frequency generation before examining
the consequences of the properties for the special cases of SHG and SHD.

(i) Intrinsic Permutation Symmetry

Intrinsic permutation symmetry is a universal tensor property which gives:
2
xﬁzﬁ(—mo ;Q1,0,) = xflga(—mo;mz,ml) (2.19)

i.e. we can permute pairs (o, ®, ) and (B,®,).

(ii) Overall Permutation Symmetry (Zero Absorption)

Provided no absorption occurs at any of the frequencies present (either applied or
generated) in the second order non-linear medium, overall permutation symmetry applies

[1]:

Xﬁp(““)o?ml’mz) = xfxzﬁ)a(—mc;mbml)

= Xfﬁﬂ(ml;"‘”o"%) = Xffp)p(mﬁmzv“mo) (2.15)

= xaap(mZ;ml’—mO‘) = Xf}i)a(wz;“wo’ml)

i.e. we can permute pairs ([, —0q), (o, @) and (B,0, ).

(iii) Kleinman Symmetry and the Contracted Susceptibility Tensor

In the low frequency limit when all the frequencies in the medium (either applied or
generated) are far below the resonant frequencies of the medium (i.e. the dispersion of the
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medium is negligible over the range of frequencies present), all the frequencies become
indistinguishable so that we may freely permute them:

X (~0301,0;) = X g (~0 5002, )

= Xip (01 =00, 02) = Xjiap (1300, ~00) (216

= Xﬁzp(wz;—mmml) = x,‘ﬁﬂ(wz:wl,—%)

This is known as Kleinman symmetry and when it applies we may use intrinsic
permutation symmetry to deduce that for the sum frequency generation process:

XLQB(—'(DG;O)I,(D2)=nga(-(l)c;(l)l,(l)z) (217)

(2.8) then becomes:

PSozc), (Z) = 2€0d("‘(l)o- ;0,09 )|Em1 (Z)Em2 (Z) (2 1 83)
1e.

2 — .
(Pﬁ,g )u =289 %}dum(_mc’mla(DZ JEa, ). (Eo, )B (2.18b)

or, more explicitly still:

B
[(2) 7 E E
gp%;x dyy dp; dis diy dis dyg ] (E:)y(E:)y
PP |=2e0|dy dyy dyy dyy dyps d 2\ 92y
(Pg)y d3; d3; daz daz djz dzz_ (Eml)Y(EmZ)Z+(Eml)z(Em2)Y
L\ ®0 /2 ] (Eml)X(sz)z+(Em1)z(Ew2)x
(o) o) (50 ().
(2.18¢)
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where d(-04;0,,0;) = 1P (~04;0,,0,) /2 is the contracted susceptibility tensor for the

sum frequency generation process. In (2.18) (ng), )u is the Cartesian component (L = X, y

or z) of the polarisation vector Pf,)zgr which is being evaluated, while the individual d
tensor coefficients, dp, are defined according to the integer subscripts i and m. The first
subscript . = 1, 2 or 3 depending on which Cartesian component of the polarisation vector
ng; X, y or z is being evaluated respectively. The second subscript m indicates the

Cartesian components o and B of the electric fields E, and Eg, respectively according

to the correspondences set out below:

(2.19)

In (2.18b) and (2.18c), the z dependence of the polarisation vector components and the
electric field components have been omitted for clarity. In addition, the frequency
arguments of the coefficients dum are omitted to emphasise, that in the low frequency
limit, the dispersion of the d tensor is negligible. From (2.18) it may therefore be seen that
the number of independent tensor elements required to define the sum frequency
generation response of the medium is reduced from 27 to 18 in the low frequency limit.

From the above arguments it may be seen that the contracted tensor notation should
only strictly be used in the low frequency limit. However, d coefficients are often still used
in the literature for non-degenerate frequency conversion when not operating in the low
frequency limit. The significance of the d coefficients in these circumstances is then simply

— (2)
that d, = ow/Z.

The implications of these various susceptibility tensor properties for the SHG and
SHD tensors x(z)(—Zm;m,m) and x(z)(—m;2m,—m) will now be examined.

(a) SHG Tensor 12 (-20;0,)

SHG is a frequency degenerate conversion process so that as a consequence of
intrinsic permutation symmetry alone we have:
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X (-20;0,0) = X3, (-20;0,0) (2.20)

and we may write (2.11) as

P2 (2) = £0d(-20;0,0)[Eq, (2)Eq (2) (221a)

i.e.

(PE2). = €0 2dum (200100, 0)(E, ), (Eo ) (2.21b)
[ of

or, more explicitly still:

x dyy dyp dyy dyy dys dg |
(P%) =go|dy dp dyy3 dyy dps dye

o (Ea);
) (Bo);

(2.21c)

2(E E
R
- @ Z ] o)y w),

where d(—2(o;(o,(o)=x(z)(—Zm;m,a))/2 and the notation for the d tensor element

subscripts is defined by (2.19) as before.

(b) SHD Tensor % (—w;2m,—-0)

Since, for the second harmonic down-conversion process, the frequencies @, = 2®
and o, = - are non-degenerate, we cannot use contracted susceptibility tensor notation

unless Kleinman symmetry applies. When Kleinman symmetry does apply however, we
may simply substitute ®; =20 and ®, = - into (2.18c¢) to give:
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] ) (Ez0), (E_a),
(PE"Z))x dy dp diz dyy dis di) izmiyzz_m;y
(P(z)) =2gg|dy; dyp dy3 dyy dys dy AT
@y d d d d d (EZm)y(E—m)z + (E2m )Z(E—w)y
(), O S B S B (Ey) (B, + (Ba), (Br),
) ) _(E2w )x (E-m)y + (EZm)y(E—m )XJ

(2.22)

Here, d(—(o;2(o,—co)=x(2)(—m;2(o,—(o)/2 and the notation for the d tensor element
subscripts is defined by (2.19) as before.

(iv) Crystal Symmetry

A final reduction in the number of independent x(z)(—2o);0), ®) tensor elements
may arise according to the particular crystal class to which the second order non-lincar
material belongs. GaAs, LiNbO3 and KTP, for example, are common second order non-
linear crystals for near and mid-IR applications with cubic class 43m, trigonal class 3m,
and orthorhombic class mm2 structures respectively. The contracted susceptibility tensor
for SHG in each of these crystal classes is listed below. (The supplementary relations
appearing on the right apply when Kleinman symmetry holds) [1]:

Cubic Class 43m (GaAs)

000d, 0 0
000 0 0 d,

Trigonal Class 3m (LiNbO3)

0 0 0 0 ds dy
d=[dy dypy 0 dis 0 0| {d5=dy (2.23b)
dy; d3; d3 O 0 0
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Orthorhombic Class mm2 (KTP)

0O 0 0 0 dis O
d;; ds; dy3 0 0 O

2.1.3 The Reality Condition and the Relation Between Up-conversion and Down-
conversion Tensor Elements in the Zero Absorption Regime

Kleinman symmetry does not apply for the common second order non-linear
materials GaAs/AlGaAs, LiNbO3 and KTP at near/mid-IR wavelengths. However, when
operating at photon energies such that no absorption occurs at any of the frequencies
present in the medium (either applied or generated), the up-conversion tensor element
X(2)(_2m;m,m) can be related to the down-conversion tensor element x(z)(—-(o;2m,—m).
To establish this relationship we may begin with the reality condition for the non-
degenerate sum frequency tensor ¥ 2 (~w4;0;,0,) where 0g = o, + o, [1]:

*

[X(z)(“”o;(ﬂbmz)] =X (0g; -0, -0,) (2.242)
1.€.
[Xfﬂﬁ(-wo;mumz)] = Xy (03 -0, ~02) (2.24b)

This intrinsic tensor property arises because the electric field E(t) and the polarisation
P(z)(t) are both real.

When none of the field frequencies in the medium approach any of the material
resonance frequencies (i.e. there is no absorption at @4, ®; or ®,), x(z)(—mc;ml,mz) is

itself real, and (2.24a) becomes:

1 (~0g:0,0,) =1 (0g;-0,.-0,) (2.25a)
ie.
Xﬁzs(‘%;mpmz) = Xﬁi[}(wo;_ml,"mz) (2.25b)
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Furthermore, for the case of zero absorption, overall permutation symmetry applies and
from sub-section 2.1.2 we have:

X0 (0100, ~5) = X (~0130, =) = X (- 013022, (2.26)

Hence, combining (2.25b) and (2.26) we obtain:

X,(ﬁp(—coc;(ol,coz) = Xfﬁﬂ(—ml (O, W, ) = X&Zgu(—(ol =05, 0 ) (2.27)

For the specific case of second harmonic down-conversion for which w4 =0, 0, =20,
and ®, = -, (2.27) implies that:

$2s (-:20,-0) = x {3 (20500,0) = 1}, (2000, 0) (2.28)

Equation (2.28) is very significant because it relates the second harmonic down conversion

tensor element xfﬁﬂ(—m;Za), —-), to the up-conversion tensor elements xﬁfgﬂ(—2w;m,m)

and xffgu(—2a);a),m) in the regime of zero absorption. Using (2.28) in the vector coupled

wave equation of (2.13) will then yield an equation in terms of up-conversion tensor
elements alone.

2.1.4 The Scalar Coupled Wave Equations in the Zero Absorption Regime

Defining €4, €; and e, to be unit vectors in the direction of the polarisation vector

Pﬁozg and the electric field vectors E,, and E,,, respectively, (2.8a) may be re-written as:
2 v
PE!)())-eO = Sox(z)(—mo;(ﬁl,mz)‘(Emlel)(Emzez) (229)

Taking the scalar product of both sides with e; we have

-20-



pgf; = 80[x(2)(—(1)0;0)1,0~)2 )|e1e2] -€sEy Eq, (2.302)

ie.

Pﬁff, = 80X(e%f)("mc?ml’“)2 )Ewl Eo, (2.30b)
where

ng)(_“)o;ml’(‘)Z) = gﬁxgp(—m&mpmz)(ec)u(el)a(ez )p (2.30¢)

Here, ng)(—(oo;(ol,mz) is an effective scalar non-linear susceptibility for the sum

frequency generation process which accounts for the particular orientations of the

polarisation vector PEDZ; and the electric field vectors E,, and E, .

In terms of effective scalar susceptibilities, the vector wave equations of (2.12) and
(2.13) then become:

A - ) (_repy R
0E 0 (z) _ 10 Xeff( 2m’m’m)[Em(z)]zexp(iAkZ) (2.31a)
oz N, ,C 2
and
aﬁ Z l(l) 5:2) —0)72(09_0) o i :
g)z( ) = e X ff( > )EZm(Z)Em(Z)eXP(_lAkZ) (2.31b)
where
13 (20;0,0)= Zﬁxfﬂg(—mmw)(ezm )u(ea))a(em)ﬁ (2.310)
po
and
1 (-w;20,-0) = ZBxﬁﬁ(—mﬂm,—m)(em)u(em)a(e_m)B (2.31d)
o
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It should be noted that for the scalar wave equations of (2.31) the field polarisations
are implicitly understood. For a [100]-grown GaAs/AlGaAs crystal cleaved along a (110)
plane, for example, it is relatively straightforward to show that, for ﬁm polarised in the

plane of the crystal, E,,, is vertically-polarised, and in the regime of zero absorption we

have:

X (20:0,0) _ xF(-0;20,-0)
2 2

=degr =dyq (2.32)

In deriving (2.32), use was made of the crystal symmetry relation of (2.23a) and the
relation between the up-conversion and down-conversion tensor elements of (2.28).

Similarly, for z-cut LiNbO3 and KTP, with a vertically-polarised fundamental field,
the second harmonic field is also vertically-polarised, and in the regime of zero absorption:

Y2 (-200.0) _1$(-020,-0)
2 2

=degr =da3 (2.33)

Hence, for these particular crystals and field polarisations in the zero absorption
regime, the equations of (2.31) may be written in the generic scalar wave equation form:

OE,,(z) _ io =2
2o g doge| B (2)] exp(iakz) (2.34a)
aan(Z) =10 4 0@ (2)exp(-iAks) (2.34b)
z n,c

The solutions of equations (2.34) may be broadly classified according to the value
of Ak: the more general case for Ak # 0 will be treated in Section 2.3 while the special
case of phase-matched SHG for which Ak =0 will be discussed in Section 2.4. Before
solving the equations however, the relevant material constants for GaAs/AlGaAs, LiNbOs
and KTP will be introduced in Section 2.2.
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2.2 GaAs/AlGaAs and Other Common Second Order
Non-linear Materials for Near and Mid-IR Applications

Second order non-linear optical effects constitute the main subject matter of this
work. In this section the relevant properties of the GaAs/AlGaAs material system shall
therefore be discussed. These will be compared with the corresponding properties of
LiNbO3; and KTP which are common materials for near and mid-IR applications. The
properties of these three materials are summarised in Table 2.1 where all dispersive
quantities are quoted for wavelengths at, or as close as possible, to the 1.55 um

communications wavelength of interest for our application.

Of all the data in Table 2.1 the relative magnitudes of the d coefficients for the
different materials are perhaps of most significance. The measured d;4 coefficient of GaAs
at 10.6 um is approximately 6 times greater than the largest d coefficient d33 of LiNbO; at
1.3 um, and 18 times greater than the largest d coefficient d33 of KTP at 1.064 um. Now,
the d coefficient in any material can, in turn, be translated into a figure of merit for second
order non-linear materials FoM(? given by:

2
FOM® = et (2.35)
Neplhe

The FOM'? defined in this way then reflects the degree of optical non-linearity of the
medium: the larger the FOM? | the shorter the interaction length and the lower the optical
intensities that are required in the medium to produce the same second order non-linear
effect. Figures of merit for GaAs, LiNbO; and KTP as defined by (2.35) are 943, 102 and
19 pm2/V2 respectively, indicating that GaAs is approximately an order of magnitude
"more non-linear" than LiNbO;, and some 50 times "more non-linear” than KTP.

Comparing the degree of non-linearity of these materials in this fashion is,
however, somewhat academic, since, in practice, the magnitude of all second order non-
linear effects is dependent on the efficiency of the particular phase-matching technique
employed for the control of the wavevector mismatch parameter Ak. The GaAs/AlGaAs
material system, for example, is non-birefringent so that conventional birefringent phase-
matching for efficient SHG is not possible. LiNbO3 and KTP are, in contrast, uniaxially
and biaxially birefringent respectively. Nevertheless, control of Ak for interactions
involving the largest d coefficient d33 in LiNbO; and KTP cannot be achieved by
birefringent techniques, because, to access dss3, requires that the interacting electric fields
are co-linearly polarised. In order to overcome these difficulties, an alternative phase-
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matching technique known as quasi-phase-matching may be employed. Any true
comparison of the second order non-linearities of the different materials must then account
for the efficiency of the specific quasi-phase-matching scheme adopted. A discussion of
the topic of quasi-phase-matching is however deferred until Section 2.5. Quasi-phase-
matched guided wave interactions are also discussed in Section 2.6.

Property GaAs/AlGaAs LiNbO3 KTP
Crystal Class 43m 3m mm?2
Transmission 0870<A<16pum | 0.4<A<S50pum | 035<A<45um

Window
Birefringence Non-birefringent Uniaxially Biaxially

Birefringent Birefringent
n, @ 1.55 pym 3.268992 2.13813b 1.81593¢
n2e @ 0.775 um 3.545532 2.17947b 1.84610¢
Intrinsic Ak (/m) at
1.55 pm 2.242 % 10° 0.335 108 0.244 x 10°
Ak = 3%, ~ )
d Coefficients dis d3;® dys=da;f
(pm/V) 189 @ 106 umd | 577 @2.12um | +1.4 @ 1.064 um
5.95 @ 1.06 um
doa=ds,f
dss3¢ +2.65 @ 1.064 pm
29.1 @ 2.12 um
31.8 @ 1.318 um dasf
334@ 1.15um | +10.7 @ 1.064 um
34.4 @ 1.06 um
degr (pm/V) 1892 31.8 +10.7i
FOM® (pm2/v2) 943 102 19

Table 2.1 Summary of the relevant properties of GaAs/AlGaAs, LiNbO3 and KTP for second order non-

linear interactions
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b n, for z-cut congruently melting LiNbO3. Ref. D. F. Nelson and R. M. Mikulyak, J. Appl. Phys. 45, 3688
(1974)

¢ ng for z-cut hydrothermally-grown KTP. Ref. J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6,
622 (1989)

4 Measured d;4 for GaAs at 10.6 um. Ref. J. J. Wynne and N. Bloembergen, Phys. Rev. 188, 1211 (1969)
¢ M. M. Choy and R. L. Byer, Phys. Rev. B 14, 1693 (1976)

f B. Boulanger, J. P. Feve, G. Mamier, B. Ménaert, and X. Cabirol, J. Opt. Soc. Am. B 11, 750 (1994)

8 deg =dj4 for a [110]-polarised fundamental field. Second harmonic is then generated in the [100]
direction

b d.¢ = d33 may be accessed by pumping with a [100]-polarised fundamental beam

i dgg = d33 may be accessed by pumping with a [100)-polarised fundamental beam

2.3 Second Order Non-linear Effects for a Non-zero
Wavevector Mismatch Parameter (Ak # 0)

For a non-zero wavevector mismatch parameter, Ak, the solutions of the coupled
wave equations of (2.34) describe several well-known second order non-linear phenomena
including unphase-matched SHG and the cascaded x®:x( process. In addition, the
coupled wave equations may be solved as a function of the wavevector mismatch
parameter in the vicinity of Ak=0 to determine the form of the SHG tuning curve. In this
section unphase-matched SHG, the cascaded %(:x(? interaction and SHG tuning curves
will be discussed primarily for GaAs/AlGaAs although reference will also be made to
LiNbO3; and KTP when appropriate. Although all of what follows appears in the literature
[2,3,4,5,6], a review which indicates the inter-relationships between the different solutions
of the coupled wave equations for a non-zero wavevector mismatch parameter, will prove
very useful.

The exact numerical solutions of the coupled wave equations appearing in the
literature are often presented for scaled versions of the coupled wave equations. Although
the exact solutions of these scaled equations are more general than the exact solutions of
the original unscaled equations, they often have no direct physical meaning. The exact
solutions of the unscaled equations will therefore be discussed in this section before briefly
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introducing the scaled equations and their solutions to demonstrate the feasibility of all-
optical switching via the cascaded y(?:x@ effect. It will be assumed throughout that Ak is
continuously variable and that all refractive indices and d.¢s coefficients are constant and
independent of Ak. Although no physical mechanism exists for the control of Ak in this
manner for either bulk GaAs/AlGaAs, or when attempting to employ the maximum d33
coefficients for LiNbO3 and KTP, it is instructive to proceed with this analysis before
introducing the concept of quasi-phase-matching for the control of Ak in Section 2.5.

2.3.1 Derivation of the Second Order Non-linear Fundamental Field Evolution
Equation

We begin by re-stating the equations of (2.34):

0Eje(2) _ 10 deﬁ[ém(z)]zexp(iAkz) (2.34a)
0z Ny ,C

oE o, - . .
acDZ(Z) = derrE0(2)E (z)exp(—iAkz) (2.34b)

Then, differentiating (2.34b) with respect to z and substituting from (2.34a) gives:

0’Ey(2) , .\ FEu(z) , 07l

®
9z2 0z ¢’n2n,,

[nefEa(@f - naofErn(ef Bl =0 236)

In the absence of absorption of any of the fields, we have energy conservation and the
Manley-Rowe relation applies [1]:

— D20 " T (2.37)

where I,(z) and I,,(z) are the fundamental and second harmonic field intensities

respectively defined by:
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. 2 _
Lin(2)= -;-eocnjm-|Ejm(z)| (j=12) (2.38)

For zero input second harmonic intensity (i.e. 15,(0) =0), we may then deduce that:

L26(2) =10(0) - 15(2) (2.392)
ie.
n20fB20(2) = n0([EaOf - [Eulz) ) (2.39)

Relation (2.39b) then allows us to express (2.36) in terms of the fundamental field
envelope E,(z) only:

Eo@)|

~

Eo(0)

PEal®) , ar‘sm<z>+rz[2

2

~1|E.(2)=0 2.40
Bz aZ } (l)(z) ( a)

where we have introduced the intensity-dependent quantity I' with dimensions of /m
defined by:

2 2
re= 80 der o) (2.40b)
€9CA° nghyg

From (2.40b) it should be noted that T'? is proportional to the usual figure of merit
FOM® for second order non-linear materials.

Although the second order non-linear fundamental field evolution equation of
(2.40) may be solved exactly using numerical methods, considerable insight may be gained
by first discussing the various approximate solutions which are valid in the limit of low
fundamental pump depletion.
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2.3.2 Approximate Solutions of the Second Order Non-linear Fundamental Field
Evolution Equation for Negligible Pump Depletion

For negligible pump depletion we may assume Ifim(z)izlﬁm(o)l and (2.40)

becomes:
2 > i A
IEo(?) | Ak %Eel® y P2k (2)=0 2.41)
0z oz

Equation (2.41) is a homogeneous linear differential equation and is therefore trivial to

solve yielding:
. R iAk 2
Ew(z)=Em(0)exp{—2—{—l+ 1+(-§£) H (2.42)

Further levels of approximation may now be made depending on the magnitude of
(2T/Ak)*:

@ [(2r/aK)*| <1

Ey(2) = Em(O)eXp{%k—B(%)z - %(%)4 4. ]z} (2.43)

(i) |(2r/aK)*| << 1

2
Ey(2) = ﬁm(O)exp[%-k—Z} (2.44)

(i) |(2r/ak)?| - 0

Eo(z) = E4(0) (2.45)
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To appreciate when the approximations of (2.44) and (2.45) are valid, we may
calculate the errors associated with them as functions of |(2F/Ak)2|. Listed in Table 2.2 are

the percentage errors associated with (2.44) and (2.45) for values of I(ZI“/Ak)zl of 0.1 and

0.01. From the respective errors it may be seen that the approximation of (2.44) may be
considered valid for |(2I“/Ak)2, < 0.1, while the approximation of (2.45) may be considered

valid for |(2I/Ak)*| < 0.01.

Exact Expression

Approximation of

Approximation of

’(2F/Ak)2| 1+(2I‘/Ak)2 (2.44): (2.45):
1+1(2r/Ak)? 1
0.1 1.04881 1.05 1
(Error = 0.113 %) (Error = 4.654 %)
0.01 1.00499 1.005 1
(Error = (Error = 0.497 %)

9.95x107* %)

Table 2.2 Errors associated with the approximations of equations (2.44) and (2.45)

The significance of the fundamental field envelope solutions of (2.44) and (2.45) will now

be discussed in turn.

(ii) The Fundamental Field Envelope Solution for Negligible Pump Depletion when
|(2F/ Ak)2| << 1 and the Effective Intensity-dependent Refractive Index

From inspection of (2.44) we see that for |(21“/Ak)2‘ <<1, Ey(z) is of the form:

Eo(z) = Eq(0)exp[iad™(z)]

where

-20 .
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Fzz
ADNL(z) = —= 2.46
(z) Ak (2.46b)

ie. for l(2F/Ak)2| << 1, as the fundamental field propagates through the second order non-

linear medium, it experiences an intensity-dependent non-linear phase change ADNL(z)
given by (2.46b) which is proportional to the figure of merit for second order non-linear
media FOM? as defined by (2.35). In other words, we can think of the second order non-

linear medium as an effective third order non-linear medium possessing an effective
intensity-dependent refractive index (nz)eff defined by:

20 (2) = 2 (n,) 1 1o 0)z (2.47)

It should be emphasised, however, that the refractive index of the second order non-linear

medium does not change with intensity and (“2)eff is inferred from the non-linear phase

change. Substituting for A®NL(z) from (2.46b) into (2.47) and re-arranging terms we
eventually obtain:

4 d? 1
(n2)eff= L | S (2.48a)

ie.
4

) 1
— .FOM® . — 2.48b
(n2).r €oCA Ak ( )

From the data of Table 2.1, we therefore expect the ratio of the (n,) . values of

GaAs:LiNbO3:KTP to be 943:102:19 for any given wavevector mismatch parameter Ak .

It should be obvious from (2.48) that for Ak small enough and I" correspondingly

small enough to guarantee ‘(2F/Ak)2| <<1, (n,),, can be as large as we like, and certainly

ff
many times the corresponding third order intensity-dependent index n, of the medium.
However, because A®N"(z) is proportional to T'2/Ak, for Ak small, although (nz),q may

be relatively large, the corresponding A®N"(z) must necessarily be small for the condition
|(2F/Ak)2| << 1 to be satisfied. In practice however, the non-linear phase change A(DNL(Z)
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is the important quantity which we would ideally like to be as large as possible. Any

meaningful comparison of an effective third order non-linearity arising through a second

order non-linear interaction and an actual third order non-linearity in the same medium
must therefore be conducted in terms of A®N"(z). Such a comparison must, however, be

postponed until the exact solutions to the scalar wave equations (which are valid for large

A®NL(z)) have been discussed in Section 2.3.3.

(iii) The Fundamental Field Envelope Solution for Negligible Pump Depletion when

|(21"/Ak)2| —5 0 and Unphase-matched SHG

Comparing (2.45) and (2.46a) for |(2F/Ak)2|—->0, it may be seen that

E,(z) = E,(0) and A®N:(z)~0. Under these conditions, the original coupled wave

equations of (2.34) may be simplified quite considerably:

E0) .10 g [£0(0)] expliske)
oz NpeC

dEy(2) _,
oz

By simple integration of (2.49a) we then obtain for Ak#0:

2i> dert[Eo(0)]] Sin(Akz)exp( —iAkz)

E =
2m(Z) Ny,C Ak 2 2

from which we may deduce:

Le(z) _ r in’ Akz
1,(0) ‘4(Ak)28“( )

where
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4r
Ak =2k, —ky, = T(nm —Nyg) (2.52)

as before. Equation (2.51) therefore describes the evolution of the second harmonic field
intensity in the limit as |(217Ak)2| — 0 (or equivalently in the limit as A® T (z) - 0).
From inspection of (2.51) it may be seen that I,,(z)/I,(0) is proportional to I'? and
therefore also proportional to the figure of merit FOM® . When Ak arises as a
consequence of intrinsic dispersion within the non-linear medium, (2.51) describes
unphase-matched SHG. Using the data from Table 2.1, we may calculate that in
Alg,Gag gAs for a fundamental wavelength of 1.55 pum and a fundamental input intensity
of 1x10'? W/m?, |(2F/Ak)2| =9.302x107° due to intrinsic dispersion. The normalised

second harmonic intensity I,,(z)/1,(0) as derived from (2.51) and the corresponding
normalised fundamental intensity I,(z)/I,(0) derived from the Manley-Rowe relation of
(2.39a) are then plotted for Alg,Gag gAs under these conditions in Fig. 2.1 as functions of
the distance propagated. In Fig. 2.1, z is expressed in terms of a characteristic length of the
medium known as the coherence length L. which is defined by L. =w/|Ak| and is
approximately equal to 1.401um for Alp2Gag gAs at 1.55 um. In Fig. 2.1, it may also be
seen that the oscillations in the conversion efficiency I,(z)/1,(0) have an amplitude of
less than 1x10™ and that 1,(z)/1,(0) correspondingly deviates from unity by less than
0.001% as expected when operating in the regime of low pump depletion for
[(2r/aK)?| 0.

To appreciate the physical significance of Fig. 2.1 and the definition of coherence
length given above, we may consider the non-linear medium for a non-zero phase

mismatch parameter Ak #0 such that I(ZI‘/Ak)z‘——)O. Then, a continuous wave
fundamental field travelling in the +z direction with a phase velocity c¢/n, will interact

with the non-linear medium to produce a second harmonic field which subsequently
propagates with a phase velocity ¢/n,, . This means that the second harmonic field
generated at any point along the direction of propagation will, in general, be out of phase
with the second harmonic field existing at the same point which was generated at an earlier
point along the direction of propagation. Due to the difference in phase velocities, the
second harmonic field will eventually become 180" out of phase with the second harmonic

polarisation being excited by the fundamental field after a distance equal to the coherence
length. If propagation continues, the second harmonic field intensity I,,(z) oscillates with

a period 2L, due to the continuous drift in phase between the second harmonic field and

the second harmonic polarisation (see Fig. 2.1). As a consequence of the Manley-Rowe
relation of (2.39a), the fundamental field intensity I,(z) correspondingly oscillates: the

-32.-



second harmonic field intensity grows at the expense of the fundamental field intensity and
vice versa so that there is a periodic exchange of power between the two fields.
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Fig. 2.1 Unphase-matched SHG in Alg 2Gag gAs for a fundamental wavelength of 1.55 um and an input
intensity of 1x10'2 W/m?2

When still operating in the regime of negligible pump depletion with
I(2F/Ak)2|—> 0, (2.44) may be re-arranged to express I,, (L)/I,(0) as a function of the

wavevector mismatch parameter Ak:

Le(L) _ 2,2 2(&)
1,(0) =I"“L®sinc > (2.53)

where L has been deliberately written in place of z to emphasise that we are now
considering propagation through a second order non-linear medium of fixed length L.
From (2.53) it may be seen that I,,(L)/I,(0) is still proportional to T'? and therefore to
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the usual figure of merit FOM®). The tuning curve resulting from (2.53) appears in Fig.
2.2 where the parameters used are for Alp2GapsAs at 1.55 um (see Table 2.1) and, in
addition, L = 4 mm and I,,(0) = 1x10® W/m2. From Fig. 2.2 it may be seen that the peak
in the conversion efficiency I,,(L)/I1,(0) is less than 2x10™* which is consistent with
the assumption of low fundamental pump depletion. When Ak — 0 however, the
assumption that |(2I‘/Ak)2| ~ 0 breaks down so that for small |Ak|, the tuning curve of Fig.

2.2 may be inaccurate. In fact, for |(21‘/Ak)2| =0.01, |Ak| =88 /m. Hence, Fig. 2.2 is not
strictly valid for [Ak|< 88 /m.

0.0002
0.00015 -
)
S 0.0001-
<
3
K
SE-05
0 D e, /\A
] 1 1 I l° 1 I 1 1
i 8§ 88 0 B % OEOEOE
Ak /m

Fig. 2.2 Tuning curve for second harmonic generation in the limit of negligible fundamental pump depletion
when |(2F/Ak)2| ~0 and correspondingly A®NL(z) =0

2.3.3 Exact Solutions of the Scalar Coupled Wave Equations for Ak=0

For significant fundamental pump depletion and correspondingly large non-linear
phase shifts of the fundamental field envelope, equations (2.34) must be solved exactly.
Although the equations may be solved analytically in terms of Jacobi elliptic functions [5],
they are solved here using the fourth order Runge-Kutta algorithm for numerical
integration. As mentioned earlier, scaling the coupled wave equations for extra generality
often results in the solutions being difficult to interpret in meaningful physical terms, and
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so the unscaled equations of (2.34) will be solved with realistic data for Alg,GaggAs at
1.55 um taken from Table 2.1. In Fig. 2.3 the normalised fundamental field intensity
I1,(z)/1,(0) is plotted along with the corresponding fundamental field non-linear phase
shift A®NE(z) as functions of the distance z propagated through the Al ;Gag sAs medium

for several different values of the wavevector mismatch parameter Ak. A wavelength of
1.55 um and an input intensity of I,(0)=1x 102 W/m? have also been assumed in each

case. Exact solutions of the normalised fundamental intensity 1,(L)/I,(0) and the non-
linear phase shift A®NC(L) are also plotted in Fig. 2.4 as functions of the input
fundamental field intensity I,(0) in Alp2Gao gAs at 1.55 um for several different Ak. For

the case of Fig. 2.4, the crystal length L is assumed to be 4 mm and the fundamental
throughput is written as I,(L)/I,,(0) to emphasise this fact.
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Ak =10/m

Fig. 2.3 Normalised fundamental field intensity I, (z)/I,(0) and the corresponding non-linear phase shift
ApNL (z) as functions of distance z propagated through Aly 2Gag gAs at 1.55 pm for several different

values of the wavevector mismatch parameter Ak when I,,(0)=1x 10'? W/m2.
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Fig. 2.4 Fundamental throughput 1(L)/I(0) and the corresponding non-linear phase shift AGN(L) as
functions of the input fundamental intensity 1,(0) in Alg 2Gag gAs at 1.55 um for several different values of

the wavevector mismatch parameter Ak whenL =4 mm.
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The curves of Figs. 2.3 and 2.4 display several interesting features:

(i) For a given Ak, the amplitude of the normalised fundamental field intensity
oscillates with both z and the input field intensity I,(0) - the smaller the Ak, the

deeper the modulation of the field intensity. Also, for an appropriate choice of crystal
length L or input intensity I,(0), unity transmission of the fundamental field is

obtained.

(i) The non-linear phase A®NE grows in a stepwise fashion with both z and 1,(0) for
small Ak. For larger Ak, the phase "plateau's" become shorter and the phase "steps"

become smaller until the non-linear phase becomes approximately linear in both z
and I,(0) in accordance with (2.46b).

The origin of the term "cascaded second order interaction" should be obvious from
Figs. 2.3 and 2.4: up-conversion to the second harmonic frequency is followed by down-
conversion back to the fundamental frequency with the net result that the fundamental field
experiences a non-linear phase shift.

Exact tuning curve solutions may also be calculated for fixed L and I(0). The

tuning curves of Figs. 2.5, 2.6 and 2.7 for example, correspond to input fundamental field
intensities of 1x10% W/m2, 1x10' W/m2, and 1x10'> W/m2 respectively for an
interaction length of 4 mm in Al ,Gag gAs.
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Fig. 2.5 Tuning curves for Alp2Gag gAs at 1.55 pm: fundamental throughput 1,(L)/I1,,(0) and the
corresponding non-linear phase shift AoNE (L) as functions of the wavevector mismatch parameter Ak for

an interaction length L = 4 mm and an input fundamental field intensity 1, (0)=1x 108 W/m?2.
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Fig. 2.6 Tuning curves for Alp2Gag gAs at 1.55 pm: fundamental throughput 14, (L)/I4,(0) and the
corresponding non-linear phase shift AQNL(L) as functions of the wavevector mismatch parameter Ak for

an interaction length L = 4 mm and an input fundamental field intensity I, (0)=1x 10! W/m?.
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Fig. 2.7 Tuning curves for Aly,Gag gAs at 1.55 um: fundamental throughput 14, (L)/I1,(0) and the
corresponding non-linear phase shift ApN- (L) as functions of the wavevector mismatch parameter Ak for

an interaction length L = 4 mm and an input fundamental field intensity I,,(0)=1x10'%2 W/m?2-
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From examination of these curves it may be seen that:
(i) A®NE(L)and Ak have the same sign

(i) For a given 1,(0), as |Ak| increases from zero, IA(DNL(L)' increases initially, reaches

a maximum, and then tails off towards zero as |Ak| — ee.

(iii) For large I,(0), we have high conversion efficiencies and large non-linear phase
shifts

(iv) For lower I,(0) and larger JAK]|, the exact tuning curve solutions for I,(L)/L,(0)
and A®NL(L) approach the approximate low pump depletion solutions defined by
(2.53) and (2.46b) respectively (The approximate solutions for I,(L)/I,(0) and
A®NL(L) in Fig. 2.7 when 1,(0)=1x10'> W/m2 however, hardly resemble the
exact solutions at all, simply because they are not strictly valid for the range of Ak
over which the graphs are plotted.)

It should also be noted that, although we chose I,(0) was chosen as the parameter

when plotting the tuning curves of Figs. 2.5 to 2.7, the length L could equally have been
chosen as the parameter with qualitatively similar results.

Finally, we return to a comparison of the non-linear phase shifts occurring as a
result of the cascaded (2:x(?) interaction with those occurring through a third order non-

linearity. From Figs. 2.5 to 2.7 it may be seen that the maximum non-linear phase shift
does not, in general, occur for a wavevector mismatch parameter Ak corresponding to
unity fundamental transmission I,,(L)/I,(0)=1. Although operating at such a Ak would
result in a maximum non-linear phase shift, we would also observe an effective loss in the
fundamental field due to up-conversion to the second harmonic field. A more suitable
operating point is therefore the smallest non-zero Ak for which the normalised
transmission I1,(L)/1,(0) first returns to unity. In Fig. 2.8 this operating wavevector
mismatch parameter Ak is plotted along with the associated non-lincar phase shift as
functions of the input fundamental intensity for a 4 mm long Al ;Gag gAs medium at 1.35
um. A series of all-optical switching experiments performed at or around 1.55 pm with
AlGaAs waveguide devices suggest that n, for Al 13Gag g2 As is approximately equal to
1x107"7 m2/W [7,8,9,10,11]. The non-linear phase change occurring as a consequence of
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such an n, is therefore plotted on the same set of axes as the %(2):x2) non-linear phase
change in Fig. 2.8. Clearly, the size of the non-linear phase change attainable with the
cascaded second order process in Alg2Gag gAs at 1.55 pm is over an order of magnitude
greater than the third order non-linear phase change in the same material for the interaction

length and the range of input fundamental intensity chosen. Any large non-linear phase
changes generated through the x(:¢(2) process are, however, critically wavelength-

dependent and this can pose considerable constraints when designing a realistic all-optical
switch device.

2000

1500

Throughput First Returns to Unity
1

500 4

Smallest Non-zero Ak (/m) for which Fundamental

Non-linear Phase Change x(z):x(z)

Non-linear Phase Change x(3)

A<bNL(L) (Units of nt) Corresponding to Smallest Non-zero Ak
for which Fundamental Throughput First Returns to Unity

A 3 ' T
S 8 8 S
(=4 [= (=4 (=]
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Fig. 2.8 A comparison of the non-linear phase changes attainable through the cascaded second order effect
and the third order Kerr effect in a 4 mm long Alg 7Gag gAs medium at 1,55 pm.
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2.3.4 The Cascaded Second Order Process for All-optical Switching

All-optical switching in a non-linear Mach-Zehnder interferometer with a push-pull
configuration [5] requires equal but opposite non-linear phase shifts of +#/2 and -n/2 in
the different arms. These non-linear phase shifts may be achieved for a sufficiently high
input fundamental intensity to the arms of the device provided that we arrange for equal
but opposite wavevector mismatch parameters +Ak and —Ak in the two arms respectively.
To calculate the input fundamental power required to induce these non-linear phase
changes via the cascaded x(z):x(z) effect, we now introduce a complete scaling of the
coupled wave equations following Hutchings et al. [6]. Under this scaling the coupled
wave equations of (2.34) become:

%l“’— = i¥2 exp(if) (2.54a)
_‘%*'Zoz = %, ¥ exp(-il) (2.54b)

where the dimensionless scaled parameters ¥, (j=1.2) and C are defined by:

W=t —. 2B (j=1,2) (2.55a)

¢ = Akz (2.55b)

Plotted in Fig. 2.9 are the exact numerical solutions of (2.54) as a function of the scaled
input fundamental intensity |\Pm(§=0)|2. These graphs were generated using the fourth-

order Runge-Kutta algorithm. From Fig. 2.9, it may be seen that when { =+2n, the
fundamental throughput returns to unity with an associated non-linear phase shift of + /2
for a scaled input fundamental intensity of |‘I’m(§=0)|2 ~0.64. (When {=-2m, the
fundamental throughput returns to unity with an associated non-linear phase shift of —n/2
for the same scaled input fundamental intensity.) For a 4 mm long sample of Aly,GaggAs
at 1.55 um, this scaled input fundamental intensity of I‘Pm(C = O)l2 = (.64 translates into an
absolute input fundamental intensity I,(0) of 13.4x10™> GW/cm2. If we further assume

an effective cross-sectional area of 10 pum? for the optical beam profile, 1,,(0)=13.4 x107
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GW/cm? translates into a switching power of 1.34 W. Switching in bulk LiNbO; and KTP
would, in contrast, require input fundamental powers of 12.4 W and 66.7 W respectively. It
should be re-iterated however, that these switching powers are not very realistic since no
perfect phase-matching mechanism exists in practice for GaAs/AlGaAs or for the largest
ds3 coefficients in LiNbO3; and KTP. A realistic GaAs/AlGaAs all-optical switch device is,
however, described in Chapter 3, and it's projected performance is compared with the
performance of existing all-optical switch devices fabricated from LiNbO3; and KTP.
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Fig. 2.9 Exact solutions of the scaled coupled wave equations of (2.54) for several different values of the

scaled parameter {, and the generation of a +m/2 non-linear phase change for unity fundamental

throughput.
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2.4 Phase-matched SHG (Ak=0)

When Ak =0 (and correspondingly L. — o), the second harmonic polarisation
and the second harmonic field are in phase everywhere, and a unidirectional power flow
occurs from the fundamental wave to the second harmonic wave. Initially, for small I" and
z, fundamental pump depletion can be neglected so that for Ak = 0 (2.53) gives:

Lo(z) _ 2,2
>0 =T (2.56)

where it has been assumed that the input second harmonic field intensity 1,,(0)=0 and I'

is defined by (2.40b) as before. Hence, the second harmonic field intensity initially grows
parabolically with distance z and is proportional to FoM®,

For higher input field intensities or for longer z, significant depletion of the pump
occurs and the second harmonic field intensity starts to saturate. In this regime, (2.56) is no
longer valid and an exact solution of the coupled wave equations of (2.34) is required. The
exact solutions when Ak =0 were originally derived by Armstrong et al. [12] and are

given by:
II_Z(:D(LOZS)- = tanh*(T'z) (2.57a)
iﬂ% — sech?(T’2) (2.57b)

Fig. 2.10 is a plot of the normalised intensities 1, (z)/1,(0) and I,(z)/1,(0) as defined
by (2.57) for the case of Alg2GapgAs at 1.55 um where an input fundamental field
intensity of I,(0)=1x10'> W/m? has been assumed. Plotted on the same set of axes is the
initial parabolic dependence of I,,(z)/I,(0) as derived from (2.56) which serves as an
approximation to the exact solution of (2.57a) for small z. From Fig. 2.10 it may be seen
that the second harmonic field grows monotonically with distance propagated at the
expense of the fundamental field, and that 100% conversion efficiency is theoretically
achievable for the case of uniform plane waves. In practice however, a laser beam has
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finite transverse dimensions and the maximum conversion efficiency is limited by
diffraction of the fundamental beam.
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Fig. 2.10 Phase-matched SHG in Alg 2Gap gAs at 1.55 um for an input fundamental field intensity
1, (0)=1x1012 W/m?.

2.5 Quasi-phase-matching for Control of the Wavevector
Mismatch Parameter Ak

Quasi-phase-matching (QPM) is a technique, originally conceived by Armstrong
and Bloembergen [12], which may be used for the control of the wavevector mismatch
parameter Ak in both non-birefringent media, and in media such as LiNbO3 and KTP in
which we wish to produce second order non-linear effects via the largest di3 coefficient
which requires that the interacting electric fields are all co-linearly polarised. All quasi-

phase-matching schemes involve the periodic modulation of the refractive index difference
(n,, —ng) and/or periodic modulation of the deg coefficient itself. In either case, the
wavevector mismatch parameter Akgpy Which results is given by:

AkQPM = k20) - 2k(0 -mK (m = 1, 3, 5, . ) (2583)
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where

_2rn (2.58b)

In (2.58), m is an odd integer, and A is the modulation period of the refractive index
difference and/or the d.s coefficient. Periodic modulation of the refractive index difference

for QPM is, however, inherently inefficient due to scattering losses associated with the
index changes. This work is therefore concerned with modulation of the d.¢ coefficient

for control of the wavevector mismatch parameter. Any simultaneous modulation of the
refractive index is then detrimental to the quasi-phase-matching efficiency.
For the special case of quasi-phase-matched SHG, Akgpy =0 and from (2.58) we

may deduce that:
A=2mL, (2.59)

where the coherence length L = n/|Ak| as usual. The integer m determines the order of the

QPM scheme: the higher the order, the longer the quasi-phase-matching period given by
(2.59) and the less efficient the conversion process becomes. The conversion efficiency
also depends on the depth of modulation in the non-linearity: for a modulation of the non-
linear coefficient between d 4 and deff' for example, it can be shown that, in the low

pump depletion regime (see Appendix B):

2

14

deff - deff

Lo(M-2mL;) _ 8z
I,(0) £ocA? nﬁ,nzm

272
1,(0)- 41\;1.CZLC (2.60)

where M is an integer greater or equal to zero. Writing dog ="Yd. Where [y| <1 we then

obtain:

2
ho(M2mLy) _ 872 delfi-of | o aMPLE 2.61)
I,(0) eOC}"2 n(20n2m ® n?
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Then, for z=M-2mL_, (2.61) becomes:

Lo(z=M-2mL,) 22

=T} — . 2.62
I1,(0) 1= m’n (262)

2

where T is given by (2.40b) as before. From (2.62) it may be seen that 1,,(z)/I,(0) is
proportional to both the figure of merit for second order non-linear materials, FOM? | and
the square of the modulation depth |1 —y|2. For convenience, a further parameter dgpy
may be defined as the dg coefficient of an equivalent homogeneous second order non-
linear medium in which perfect phase matching results in the same rate of parabolic growth
of the second harmonic conversion efficiency:

d|1-
dopm = L“H (2.63)

The conversion efficiency 1,,(z)/1,(0) is plotted in Fig. 2.11 as a function of
distance for several different QPM schemes in Alp2Gag gAs at 1.55 um for an input
fundamental intensity of 1x10'> W/m2. The various curves of Fig. 2.11 were generated

using the fourth-order Runge-Kutta algorithm for the numerical solution of the coupled
wave equations of (2.34) subject to different modulation schemes for the dg coefficient.

Of particular interest here, and perhaps the most commonly encountered in practice, are the
domain disordering (DD) and domain reversal (DR) schemes, which require that d is
periodically suppressed (i.e. deff’ =0 and y = 0), and periodically negated (i.e. deff, =
-d.g and y = -1) respectively. Plotted in Fig. 2.11, are the second harmonic conversion
efficiency curves for first order domain reversal (DR1), first order domain disordering
(DD1) and third order domain disordering (DD?3). In addition, the conversion efficiency
curves are plotted for the case of unphase-matched SHG for which Ak is large and
determined by the intrinsic dispersion of the Aly,Gag gAs medium (see Fig. 2.1, Section
2.3), and for the case of perfectly phase-matched SHG for which Ak =0 (see Fig. 2.10,
Section 2.4).

Considering the case of DRI first (i.e. ¥ =-1, m = 1), we see that the evolution of

the second harmonic field is the same as that for unphase-matched SHG over the first
coherence length L. so that the second harmonic field and the non-linear polarisation are

approaching antiphase as z approaches L. Reversing the d.¢ coefficient at z=L_ then

flips the phase of the non-linear polarisation so that the phase difference between the
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second harmonic field and the non-linear polarisation decreases again and power continues
to flow from the fundamental excitation field to the second harmonic field. By reversing
degr over alternate coherence lengths, a unidirectional power flow is achieved from the
fundamental field to the second harmonic field and quasi-parabolic growth of the second
harmonic conversion efficiency 1,,(z)/1,(0) results. Also plotted in Fig. 2.11, is the
relation of (2.62) for the case of DR1 (y =-1,m = 1):

L(z=M-2L;) 4r%7?
OB (2.64)
w

The second harmonic field evolution over the first coherence length for the DD1 scheme
(v =0, m = 1) also resembles that of unphase-matched SHG. To prevent power flow back

from the second harmonic field to the fundamental field during the second coherence
length in this case, the d.¢ coefficient of the medium is suppressed. To achieve a stepwise

quasi-parabolic growth of the second harmonic conversion efficiency then requires that
d.s is suppressed over alternate coherence lengths. From (2.62) it may be seen that for

DDI:

L,(z=M-2L.) T?%?
1,(0) n?

(2.65)

For a third order QPM scheme, the domain length Ly = A/2, is equal to 3L. From
Fig. 2.11 it may be seen that for DD3 (Y =0, m = 3), the second harmonic field evolution

follows the unphase-matched second harmonic field evolution over the first domain
(0<z<3L,). If d is subsequently suppressed over alternate domains, a stepwise quasi-

parabolic growth in the second harmonic conversion efficiency is obtained. From
consideration of (2.62) with y =0 and m = 3, it may be shown that:

Lo(z=M-6L;) T%z2
1,(0) 92

(2.66)

Although the different quasi-phase-matching schemes have been discussed for the
special case of SHG, they also generalise to second order processes for which Akgpy # 0.

For example, a quasi-phase-matched x(z):x(z) interaction in a medium in which d.¢ is

modulated with a period A, is equivalent to a x(z) :x(z) interaction in a homogeneous
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medium with a wavevector mismatch parameter Ak = Akgpy and a constant coefficient
dopMm-

The exact nature of the quasi-phase-matching technique used in practice differs
from material to material. In LiNbOs3 for example, domain reversal may be accomplished
through periodic indiffusion of Ti [13] or periodic poling with an electric field {14], while
in KTP, domain inversion is believed to occur as a result of ion-exchange achieved using
Rb/T1/Ba nitrate molten salt baths [15]. In the GaAs/AlGaAs system, domain inversion and
domain disordering schemes have been implemented but with limited success. Gordon et
al. [16] for example, demonstrated quasi-phase-mismatched SHG using domain reversal at
10.6 um in diffusion-bonded stacks of up to 9 layers of (110) and -(110) GaAs substrates.
Also, Janz et al. [17] demonstrated enhancements of between 30 and 40 in the SHG from
heterostructures composed of seven quasi-phase-matching periods in a reflection geometry.
For efficient quasi-phase-matching however, a coherent interaction is required which
involves hundreds or perhaps even thousands of domains with little or no scattering losses.
It is for this reason that QPM is used to control second order non-linear interactions along
waveguide devices as discussed in the next section.
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Fig. 2.11 Quasi-phase-matching of SHG in Alp 2Gag gAs at 1.55 pm for an input fundamental field intensity
of 1x10'% W/m?2
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2.6 Guided Wave Second Order Non-linear Effects

Throughout the foregoing sections of this chapter we have been considering the
propagation of uniform plane waves through a bulk second order non-linear medium. In
practice however, a laser beam has a finite transverse cross-section which varies during
propagation through a bulk medium due to diffraction. A tightly focused laser beam in a
bulk non-linear medium can, therefore, have a short effective interaction length. For
optimum focusing, the effective interaction length is equal to the length of the non-linear
medium and the phase-matched SHG efficiency is therefore just proportional to the crystal
length. This is in contrast to the uniform plane wave case for low fundamental pump
depletion when the phase-matched SHG intensity is proportional to the square of the
crystal length (see Section 2.4):

L(z) _ 2.2
= =Tz (2.56)
N

Waveguides are ideal for the production of non-linear optical effects because they
allow high intensities to be maintained over long interaction lengths. In a waveguide, the
field intensities are no longer uniform in space, but rather the fundamental and second
harmonic field profiles are determined by the waveguide mode profiles at ® and 2w
respectively. These mode profiles are invariant along the direction of propagation so that a
modified version of (2.56) should be used [18,19]:

P,, =NP3L2 (2.67)

where P, and P,, represent the power at the fundamental and second harmonic
frequencies respectively, and m is the conversion efficiency parameter defined by:

2
8752 iodiined 2
= : doge (X, X, ,y)dxd 2.68
n EOC}"znZ)effnzmeff _L_{o eff( Y)E,.m( y)&Zw(x Y) xdy ( )
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In (2.68), x and y are the transverse waveguide co-ordinates defined in Fig. 2.12 and
€(x,y) and &,,(x,y) are the transverse fundamental and second harmonic field profiles

respectively normalised to unity:

T T2 (oy)dxdy= | [E2q(xy)dxdy =1 (2.69)

—o0 —o0 —060 —00

d.s(x,y) also represents the transverse spatial distribution of the non-linearity. The

overlap integral term of (2.68) therefore reflects the fact that any second harmonic
generated by the fundamental mode in a region where the second harmonic is poorly

confined or the non-linearity is small, will not contribute significantly to the total second
harmonic power at the output of the waveguide. Furthermore, if d,g(x,y) is such that:

degr » XX <X <Xy, YY1 <Y<Y,
degr (X, ) = ' (2.70)
0, otherwise
then
2 2
n=lr__ bt p® 2.71a)

= 2.2
€0CA” NiesrNy efs

where
2

) X2 y2 2
F = [ dx [dy§g(x.y)E20 (XY (2.71b)
X1 y1

The factor 1/ F? has units of area and can therefore be thought of as an effective area
A, for the non-linear interaction:

1
o At (2.72)
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Therefore, the larger F?, the smaller A, the higher the effective intensity, and the
larger the conversion efficiency parameter n.

For quasi-phase-matched interactions, the non-linear coefficient dopy(x,y) should
be substituted for d.g(x,y), and the expression for the conversion efficiency parameter

becomes:

2

82 odiios
= ) 1 IdQPM(x’Y)g(zn(x’Y)§2m(x’Y)dXdy (2.73)
E0CA NopefrNogeff |-oo—oo

The conversion efficiency parameter n as defined by (2.68) or (2.73) is then
normally expressed in units of %/Wcm?2 and acts as a figure of merit for the SHG process
which is dependent on both the non-linear material and the particular phase-matching
scheme adopted.

| 0,20

e

W

Fig. 2.12 Co-ordinate definitions for the evaluation of the overlap integral terms of (2.68) and (2.73)

The other obvious difference between guided wave non-linear interactions and the
uniform plane wave interactions described in previous sections, is that the wavevector
mismatch parameter is now determined by the mode effective indices rather than the bulk
refractive indices. The intrinsic birefringence and modal dispersion of waveguides can then
open up new phase-matching possibilities. For example, in GaAs waveguides with a large
index step which support several higher order modes, the lowest-order fundamental
frequency mode can be matched to a higher even-order mode at the second harmonic
frequency [20]. The problem with such a scheme is, however, that the mode overlap
integral of (2.68) can be quite small, and the resulting SHG efficiency correspondingly
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low. Quasi-phase-matching in a guided-wave geometry can, however, overcome these
problems and has been the subject of much research activity in recent years. SHG
conversion efficiency parameters of up to 600 %/Wcm?2 have been achieved by first order
quasi-phase-matching in periodically poled LiNbO3; waveguides at 8§52 nm [14], while
efficiency parameters exceeding 100 %/Wcm?2 have been reported in ion-exchanged KTP
waveguides at 851 nm [15]. At the time of writing the largest reported SHG conversion
efficiency parameter in the GaAs/AlGaAs system is 167 %/Wcm? at 1542 nm, where
quasi-phase-matching was achieved by periodic domain inversion using wafer-bonding
and re-growth [21]. This conversion efficiency was, however, much lower than the
theoretically predicted efficiency due to large waveguide scattering losses caused by
corrugations in the guiding layer.

Suppression of the second order susceptibility in GaAs/AlGaAs for domain
disordering has also been successfully demonstrated by ion-beam induced amorphization
[22]. Waveguides fabricated from the amorphous material after annealing however,
exhibited losses as high as 30 dB/cm, and domain disordering by periodic suppression of
the non-linear susceptibility was not attempted. In Chapter 3 a novel domain disordering
technique is therefore described for the control of the wavevector mismatch parameter
Akqgpy in GaAs/AlGaAs asymmetric quantum well waveguides with a view to achieving

all-optical switching for a fundamental wavelength of 1.55 pm.
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3

Second Order Non-linear Effects In
GaAs/AlGaAs Asymmetric Quantum
Well Waveguides and All-optical
Switching

As mentioned at the end of the previous chapter, no efficient phase-matching
technique exists for II-V semiconductors. In the present work, we investigate a novel
approach to solving this problem. In particular, attention is focused on the study of second
order non-linear effects in GaAs/AlGaAs asymmetric quantum well (AQW) structures. Such
materials are of interest primarily because the AQWs have second order non-linear
susceptibility tensor components associated with them which may be potentially suppressed
by QW-intermixing. Thus, it should be possible to apply quantum well intermixing
techniques to periodically modulate the AQW non-linearities for quasi-phase-matching.

3.1 GaAs/AlGaAs AQW Second Order Non-
linearities

The AQW waveguide structures used in this work all incorporated either asymmetric
stepped QWs (ASQWs) or asymmetric coupled QWs (ACQWs) in the guiding layers. For
example, the B563 ASQW and B578 ACQW structures are depicted in Figs. 3.1 and 3.2
respectively. From Fig. 3.1, it can be seen that the ASQW structure is composed of two well
layers of different Al fractions (and different thicknesses in general) sandwiched between
two higher Al fraction barrier layers. This gives rise to a "step-like” potential profile in the
conduction and valence bands. From Fig. 3.2, it can be seen that the ACQW consists of two
well layers of different thicknesses but of the same composition separated by a thin barrier
layer.

GaAs/AlGaAs AQW structures have associated with them both bulk GaAs/AlGaAs
tensor components:
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1 =25 =12, (3.1)

and additional tensor components which exist only by virtue of the well asymmetry:

= @
x =25 (3.2b)
and

X(ZQ (3.2¢)

where the z direction is the direction of growth. The tensor components of (3.2) will be
referred to as the AQW tensor components to distinguish them from the bulk GaAs/AlGaAs
components of (3.1). The contracted susceptibility tensor for SHG in an AQW waveguide
structure is then given by:

0 0 0 dy ds 0
d=| 0 0 0 ds dy O (3.3)
dy; d3; dsz 0 0 dy,

The magnitudes of the AQW tensor components has been the subject of much debate
in the recent literature. The first calculations were performed by Khurgin [1], who predicted

lxﬁl = 3.6 pm/V for a detuning of 50 meV below the half-band-gap energy of an ACQW
structure with GaAs in the well layers and Alp 4Gag ¢As in the barriers. Khurgin later went

(2)
XXZX

value of approximately 12 pm/V at a detuning of 75 meV [2]. This structure

on to calculate as a function of the various ACQW layer thicknesses, and estimated a

2
e

had well layer thicknesses of 37.5 A and 13.5 A separated by a 7 A barrier layer. In the same

2 2 2
Xon x| and that xS
(2)

effectively zero. Harshman and Wang [3] have also reported a calculated value of [);5x

maximum

was much smaller than was

paper, Khurgin also estimated that

= 30
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pm/V for a detuning of 50 meV in a deep narrow ASQW structure. This structure had 15A-
thick GaAs and 25A-thick Alg3Gag 7As well layers sandwiched between Alg gsGag 1sAs
barriers.

(2)

The first measurements of lxm were performed by Janz et al. [4] for an

and [y
ACQW structure, and Qu et al. [5] for an ASQW structure. Janz et al. [4] inferred values of
() = 15 pv and 12

ACQW structure with GaAs well layers and AlgsGag sAs barrier layers. The well layers
were 38.5 A and 13 A thick, and were separated by 8.8 A barriers. These results were

=13 pm/V from a complicated set of measurements on an

however obtained at a wavelength corresponding to a photon energy some 130 meV above
the half-band-gap energy, so that a direct comparison with the predicted results of Khurgin
[2] for a very similar structure below half the band-gap is not very meaningful. In fact, Janz

et al. [4] believed that it was precisely because they were operating above the half-bang-gap

2
A

energy, that they measured comparable ‘x(z,z& and ’xf‘zzi values, rather than values of

2
1

=~ 13 pm/V and

as predicted by Khurgin [2]. In a very similar experiment, Qu et al. [5] estimated

s

<<

=11 pm/V for ASQW's with 50A-thick GaAs and 50A-thick

2
Xk
Alp 3Gag 7As well layers sandwiched between AlpgGag 2As barriers. Again, the comparable

(2)
X

energy.

x(zil values were attributed to operation at an energy above the 2® resonance

and

More recent calculations by Atanasov et al. [6] which account for exciton effects and
1~ 1000 pm/V for a

continuum states in a multiple ACQW structure, suggest that |y

x(zi)z value of = 5 pm/V is
predicted for a detuning of 30 - 40 meV. The multiple ACQW structure in this case consisted
of 22 A and 28 A GaAs well layers separated by 22 A and 38 A Alj sGag sAs barrier layers.
Using a band-structure model which incorporated valence band mixing effects, Kelaidis et

x2)| ~ 200 pm/V and x%)

values were calculated for a detuning of approximately 50 meV for several different ASQW

detuning of 10 - 20 meV below the half-band-gap energy, while a

al. [7] estimated ~ 50 - 100 pm/V. These tensor component

geometries.

Many papers have also been published on the subject of second order non-linearities
in symmetrically-grown biased QW structures. Most notably, Fiore et al. [8] considered the
influence of continuum states for both 3 nm and 10 nm wide GaAs QWs sandwiched
between Alg 4Gap sAs barriers at energies close to the half-band-gap. They predict that the

continuum states above the well contribute to the xg component under bias and that the

QWs do not lead to an enhancement of this non-linearity by more than a few pm/V for
detunings of 50 meV. In their conclusions, Fiore et al. also argue that the AQW tensor
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component x(z) should be virtually non-existent. Fiore et al. later went on to measure the

Ix(xzz)x 2z

of 1.66 um (corresponding to a detuning of 73 meV from the half the band-gap) [9]. Using a
control sample which was identical to the MQW sample in every respect except that the
MQW layer was replaced with a thick GaAs layer, Fiore et al. were able to extract the AQW

22 = 25 v and )

and |x(zf& components in a biased GaAs/Alp 4Gag sAs MQW structure at a wavelength

= 0 pm/V. These measured tensor

12 >> G for

tensor components

component values are consistent with Khurgin's original prediction that >>

energies below the 2w resonance [1].

The most recent predictions of multiple AQW tensor components below half the
band-gap are due to Hutchings and Arnold [10]. They use pseudospin equations for a 3-level
system and a bandstructure model with 2 conduction and 5 valence sub-bands, to estimate

|X§212( , x(zf& and lxgl , as a function of the detuning for the B690 multiple ACQW and

B635 multiple ASQW structures which appear in Appendix A. At an operating wavelength
of 1.55 um, which represents detunings of = 70 meV and 90 meV for the B690 and B635

structures respectively, Hutchings and Arnold calculate the multiple AQW tensor
components of Table 3.1:

B690 B635
(ACQW) (ASQW)
Detuning at 1.55 pm (meV) 70 90
12 | (pr/v) 0.01 0.40
x| (Pm/V) 0.20 1.0
12 (pmrv) 0.08 0.25

Table 3.1 Approximate multiple AQW tensor component magnitudes at 1.55 pm predicted for the B690
ACQW and B635 ASQW structures by Hutchings and Amold [10]

Clearly, all of the multiple AQW tensor component magnitudes of Table 3.1 are considerably
smaller than those estimated previously in the literature for single AQWs with different
structures but for similar detunings. Furthermore, for a detuning of 1 meV, Hutchings and
Arnold estimate the tensor component magnitudes for the B690 and B635 structures listed in
Table 3.2. It should be emphasised however, that the B690 and B635 structures were not

- 65 -



optimised to maximise the AQW non-linearities, but, were rather designed with several
practical constraints in mind (see Chapter 5). A refinement of the AQW structures may
therefore yield non-linearities approaching the non-resonant component of bulk GaAs.

It is, in fact, possible to estimate the relative magnitude of the [x;,,| component in

different AQW structures, within the effective mass approximation. Simple arguments based

on the equations in [10] predict that, for a constant detuning, x(zz is proportional to the
product of 3 momentum matrix elements:
12| e <¢m1(z)|¢e1(l)><¢e1(Z)l‘lhd/dz|¢e2(Z))(¢e2(l |¢1h1(l)> (3.4

Here, ¢;(2), ¢.,(z), and ¢.,(z), are the first bound light hole, the first bound electron,
and the second bound electron envelope functions respectively, which are expressed as
functions of the depth z. Within the effective mass approximation, these may be estimated
from the solution of the 1D Schrédinger equation in the AQW potential profile of interest
(see Chapter 4). The momentum matrix element product of (3.4) then reflects the asymmetry
of the envelope functions which, in turn, is caused by the asymmetry of the QW potential.
This may be seen from inspection of Figs. 3.1 and 3.2 once again, in which the 1hl, el and
e2 envelope functions are shown for the B563 ASQW and B578 ACQW profiles
respectively. From these figures we notice that the envelope functions are indeed asymmetric
in that (¢e2 |¢1h1(2 )¢ 0. This is in contrast to the case of a symmetric QW, for which

<¢e2(Z)|¢1h1(Z)> 0 and lX
mass approximation relation of (3.4) is consistent with the Ix
(2)

Z1Z

is correspondingly zero. To demonstrate that the effective

results quoted in Table 3.2,

we have calculated asymmetry factors for the B690 and B635 structures. The ratio of

the B690 to the B635 asymmetry factors was found to be 0.57, which agrees very well with
2| values listed in Table 3.2.

the ratio of 0.55 calculated using the absolute
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B690 B635

(ACQW) (ASQW)
22 | (pmr/v) 3.5 0.6
22| (prorv) 1.0 1.0
22| (pm/V) 0.30 0.55

Table 3.2 Approximate maximum tensor component magnitudes for a 1 meV detuning for the B690

ACQW and B635 ASQW structures as calculated by Hutchings and Amold [10]
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3.2 Full Model for Second Order Non-linear Effects
in GaAs/AlGaAs Multiple Asymmetric Quantum
Well Waveguides

A full model of the second order non-linear effects in GaAs/AlGaAs AQW
waveguides must include interactions between all frequencies (either applied or generated)
and all the non-zero tensor components (both bulk and AQW) listed in Section 3.1. Rather
than combining all the non-zero tensor components into one effective scalar tensor coefficient
which is polarisation-dependent, it is more illuminating to retain the explicit dependence of
the polarisation vectors on the separate bulk and AQW tensor coefficients. Assuming that the
fundamental and second harmonic field vectors have a negligible component in the direction
of propagation (i.e. the weakly guiding approximation), 4 scalar wave equations are then
derived which describe the evolution of the fundamental and second harmonic fields in terms
of the TE and TM-polarised field components only. This set of scalar coupled wave
equations will be referred to as the "full model" for second order non-linear interactions in
AQW waveguides.

3.2.1 GaAs/AlGaAs Multiple AQW Ridge Waveguides

For the purposes of introducing the scalar coupled wave equations and the various
second order non-linear phenomena which they describe, z-propagating fields were assumed
in Chapter 2. In addition, when discussing guided-wave non-linear interactions, the
transverse co-ordinate definitions of Fig. 2.12 were adopted. All second order susceptibility
tensor components are, however, referenced with respect to the crystallographic axes. When
developing the full coupled wave equations for guided-wave interactions, the direction of
propagation and the transverse co-ordinate directions are therefore determined by the
orientation of the waveguide device with respect to the crystallographic axes. GaAs/AlGaAs
layers are normally grown in the [100] direction and cleave along (110) planes, so that the
orientation of a GaAs/AlGaAs waveguide device relative to the crystallographic axes may be
defined as shown in Fig. 3.3. From this figure it may be seen that TE-polarisced light has
electric field components in both the x and y crystallographic directions, while TM-polarised
light has only one electric field component in the z crystallographic direction.
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Fig. 3.3 The orientation of a GaAs/AlGaAs waveguide device with respect to the crystallographic axes

3.2.2 The Effective Mode Indices of a Multiple AQW Ridge Waveguide

To calculate the effective mode indices for an MQW ridge waveguide as required for
the development of a tensor model, the bulk equivalent refractive index for the MQW guiding
layer must first be determined. At photon energies well below the exciton resonance energy,
the polarisation-dependent bulk equivalent refractive indices for the MQW guiding layer are
given by [11]:

“"2{'E = (3.5a)

_ (3.5b)
)

Here n; and t; are the individual quantum well layer refractive indices and thicknesses

respectively, and the summations are performed over all layers within one period of the
MQW. Having determined a bulk equivalent refractive index for the MQW layer, the
effective indices for the MQW waveguide structure can be calculated using the effective
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index method, or other more sophisticated finite difference methods for the solution of the

vector electromagnetic wave equation.

3.2.3 The Coupled Wave Equations for Second Order Non-linear
Interactions in GaAs/AlGaAs AQW Waveguides

In this section, the coupled wave equations which govern the evolution of the fields
in GaAs/AlGaAs AQW waveguides are introduced. The equations are derived from plane
wave considerations and use waveguide mode effective indices. Zero absorption and zero
scattering losses are also assumed at both the fundamental and second harmonic frequencies.
It should be acknowledged that the model presented here was derived in its original form by
N. D. Whitbread.

The four scalar coupled wave equations which describe the evolution of the TE and
TM-polarised fundamental and second harmonic fields are given by (see Appendix C):
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a(ﬁ2m)TE _ im x
aY (20 )€

2 :
[X ) (~20;0,0) + X (~200;0 w)](E )TM(Ew)TE e"P[i((km)m *(Ko)rg "(kM)TE)Y]

(3.6a)
Nra)y, o
Y  2(nyg)py© 8
{[x<2) (~2030,0) + X2 (20500, 0)|(B. ) x0]i(2(k0 ) = (k) pyg) Y]
X2 (-20560,0)(Eo ), xBli(2(ko)yg = (K20 )y )Y]}
(3.6b)

{[X(z) (200, 0) + X0 (= Zm:m’w)](ﬁzm) (Eﬂ));ﬁ e"p[i((km)m =2k, )TE)Y] *

™

[szx( -20;0,®) + xxy)z( 20,0 (o)](Ezm)m(ﬁm);M exp[i((kZm)TE - (km)TM —(km)TE)Y]}

(3.60)

{[szx (20w, m)+Xxyz('zm;m’m)](EZw)TE(Em);.E exp[i((kZm)TE —(km)TE _(km)m)Y]

+X(z§l(‘2m;w’°’)(ﬁ2w)m(ﬁm);m e"p[i((kzﬂ))m - 2(k(°)TM)Y]}

(3.6d)
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In these equations, Y represents the direction of propagation as indicated in Fig. 3.3.
(é“’)ﬂz and (fim)m are the TE and TM-polarised fundamental field component amplitudes,

and (Ezw)TE and (Ez“’)m are the second harmonic field component amplitudes. (n,)
and (ng)

TE

v are the effective TE and TM mode indices at the fundamental frequency and

(13 )7 and (nye ), are the effective mode indices at the second harmonic frequency. The

different propagation constants are also defined by:

2
(kw)TE = (na))'rE '):E (3.7a)
2
(ko) = (Mo )y XE (3.7b)
2n ,
(kZm)TE = (n2u))TE ' X (3.7¢)
20
2
(K2 )y = (M20 ) -il (3.7d)
20

(i)

(ii)

From inspection of the 4 scalar wave equations of (3.6) we may conclude that:

For an input fundamental field with TE and TM components, a second harmonic field
is generated with both TE and TM components

For a TE-polarised input fundamental field, only TM-polarised second harmonic is
generated through the (x(zil+x%)z) term of (3.6b). This TM-polarised second

harmonic may subsequently mix with the original TE-polarised field through the

(X(j& +x§§)z) term of (3.6¢) to produce a TE-polarised fundamental component.

Therefore, when pumping with a TE-polarised fundamental field, only TM-polarised
second harmonic is generated as a consequence of both the AQW tensor component
X(zil and the bulk GaAs/AlGaAs tensor component x(z)

xyz*
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(iii) For a TM-polarised input fundamental field, only TM-polarised second harmonic is
P
generated, through the xg)z term of (3.6b). Subsequently, the TM-polarised second

harmonic field may undergo down-conversion through the xu) term of (3.6d) with

the production of a TM-polarised fundamental field. Therefore, when pumping with a
TM-polarised fundamental field, only TM-polarised second harmonic is generated as a
consequence of the AQW tensor component x( ) alone.

3.2.4 Evaluation of the Overlap Factors for Second Order Non-linear Effects
in GaAs/AlGaAs AQW Ridge Waveguides

The scalar wave equations of the previous section were derived from uniform planc
wave considerations and use effective mode indices. In any realistic device, however, it is
important to account for any spatial mismatch between the interacting field profiles and the
waveguide non-linearities. This requires the use of overlap factors which were introduced in
Section 2.6.

When studying second order effects in GaAs/AlGaAs AQW waveguides there are

two main polarisation configurations of interest : TM-polarised SHG with a TE-polariscd
fundamental beam ( TE,:TM, ), and TM-polarised SHG with a TM-polarised fundamental

beam (TM,,: TM, ). Recalling the full model of the previous section, it may be seen that,

for the TE,:TM,,, case, the contributing non-linearities are the bulk GaAs/AlGaAs x%),

non- hnearlty and the AQW szx non-linearity. However, for the structures considered here

xf‘yz >> xm (see Section 3.1), and x(zf& can be neglected. The conversion efficiency

parameter for the TE;:TM, , case is then given by:

82 d2 @)
= —4—xF 3.8
T gocA? nin,, M (3.8a)
where
2
Fio), = J dX [4Z-E2x (X, 2)Ep0(X.2) (3.8b)

— o0

and the co-ordinates used in expression (3.8b) are defined in Fig. 3.3.
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In the TM,:TM,, configuration, the AQW non-linearity x() is the only

contributing non-linearity, and the conversion efficiency parameter is given by:

2 2
n=t_ 5, 50 (3.9a)
£0cAZ nn,,

where
2
FO 2| T dX  [dZ- 27 (X, Z)E 50z (X, Z) (3.9b)

ZZZ
e MAQW

In (3.9b) the integration over Z is only performed over the multiple AQW guiding layer of
the waveguide where x( ) is non-zero.

Now, it may be recalled from Section 2.6. that the effective area for the non-linear
interaction is given by A g = 1/ F® 1t is therefore relatively straightforward to convert the
field solutions of the scalar wave equations of (3.6) for the TE :TM,,, and TM :TM,,
configurations into powers for a realistic device using the expressions of (3.8) and (3.9)
respectively.

3.3 QW Intermixing for the Suppression of the
GaAs/AlGaAs AQW Second Order Non-linearities

Quasi-phase-matching by domain disordering requires that the second order non-
linearities of interest are periodically suppressed. The underlying reason for the use of the
AQWs is therefore simply that the tensor elements associated with the QW asymmetry x(z)

XZX*

X(z ) and x(z) are potentially suppressed by QW intermixing. In addition, the "bulk" tensor

elements X(xy)z = x(z) = x(zi)y arising as a consequence of the non-centro-symmetric crystal

structure of the GaAs/AlGaAs material in the MQW layers are also potentially reduced by
QW intermixing.

At sufficiently high temperatures (see Chapter 6), Ga and Al atoms interdiffuse
within the multiple AQW layer, causing the heterointerfaces to become graded so that a
smeared or "intermixed" AQW potential profile results. In the limit, when intermixing 1s
complete, the AQW potential profile is completely destroyed and a bulk alloy remains.
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Therefore, as intermixing proceeds, the degree of asymmetry of the QW gradually reduces,
causing a reduction in the asymmetry of the electron and hole envelope functions which, in
turn, gives rise to a reduction in the magnitudes of the AQW non-linearities. To illustrate
these arguments, the partially intermixed conduction band and valence band potential profiles
are plotted, along with the corresponding el, e2 and 1h! envelope functions for the B563 and
B578 AQW structures in Figs. 3.4 and 3.5 respectively. These compare with the B563 and
B578 starting material structures of Figs. 3.1 and 3.2. From these figures it may be seen that
the potential profiles do indeed become more symmetric on intermixing. Correspondingly,
with respect to the position of the band-gap minimum for the intermixed structures, we see
that the el and lhl envelope functions resemble even functions of depth, while the e2
envelope functions resemble odd functions of depth. This means that <¢e2(2)|¢1h1(2)> is

reduced and from (3.2) we would expect xgl to be reduced. Also, because the other AQW
tensor components xﬁl and x(zf& only exist by virtue of the wavefunction asymmetry, we

would expect them to be similarly reduced on intermixing. Furthermore, the AQW non-linear

tensor elements xgzzl x(zﬂ and X(ZQ are resonant at the half-bandgap. Therefore, when

operating at a sub-half-bandgap photon energy Aw, the bandgap widening which occurs on
intermixing means that the detuning of #Aw below the half-bandgap will increase. This effect
will tend to further reduce the AQW non-linearities on intermixing.

It should also be emphasised that, like the AQW non-linearities, the "bulk" tensor
elements xSfQZ = xg,i)z = x(zi)y are resonant at the half-bandgap. When operating at sub-half-
bandgap energies, these large tensor elements are therefore also potentially reduced on
intermixing due to bandgap widening.

In conclusion, we assert that, if the AQW's of Figs. 3.1 and 3.2 are intermixed to
completion, x(zzu) and the other AQW non-linearities will be suppressed. In addition, the

large "bulk" non-linearities xg)z = x(yi)z = x(zi; associated with the GaAs/AlGaAs crystal

structure are also potentially reduced on intermixing. By periodically intermixing a multiple
AQW waveguide along its length, it is therefore possible, in theory, to achieve quasi-phasc-
matching for the control of guided-wave second order non-linear effects.
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Fig. 3.4 Partially intermixed B563 ASQW potential profile, and selected electron and hole envelope

functions
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Fig. 3.5 Partially intermixed B578 ACQW potential profile, and selected electron and hole envelope

functions
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3.4 A GaAs/AlGaAs Multiple AQW Integrated Non-
linear Mach-Zehnder All-optical Switch

The original motivation for this project was all-optical switching via the cascaded
second order effect in GaAs/AlGaAs multiple AQW waveguide devices. The ultimate
objective was, therefore, to realise an integrated non-linear Mach-Zehnder all-optical switch
device such as that depicted in Fig. 3.6 for operation at 1.55 um. Such a device was
originally conceived by Assanto et al. [12], while Ironside et al. [13] later used analytical
methods and realistic GaAs/AlGaAs material data to predict the device performance.

For this work, it was proposed that the waveguide arms of the device would be
fabricated from regions in which the MQW layer was periodically intermixed to achieve a
wavevector mismatch for the production of non-linear phase shifts via the x(z):x(z) effect.
Such a device may then be described as an intensity-dependent switch: with no high intensity
pump present at the input of the device, there are no non-linear phase changes induced in
either arm of the device (®=0) so that constructive interference occurs at the device output,
and the signal beam I;gna; 1S transmitted (Fig. 3.6a). In the OFF state however, as depicted
in Fig. 3.6b, a high intensity pump beam generates equal but opposite phase shifts of /2
in the arms of the device. This causes destructive interference and extinction of the signal at
the output of the device.

The intermixing periods required in the waveguide arms of the device and the
corresponding power levels required for switching may be estimated from the results of
Section 2.3.4. These calculations will be performed for ridge waveguides fabricated from the
B690 ACQW material (see Appendix A) with ribs of width 3 pm and an etch depth of 0.9
um. In addition, a TM,,: TM,, polarisation configuration will be assumed.
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Fig. 3.6 A GaAs/AlGaAs multiple AQW integrated non-linear Mach-Zehnder all-optical switch with
periodically intermixed waveguide arms for the generation of non-linear phase shifts at high intensities via the

cascaded second order effect (a) ON state (b) OFF state

Now, *r/2 phase shifts require AkgpyL =22x, which, in turn, requires:

2
[I(HZ(:)eff _n(oeff)_X]inl (3.10)

where the relations of (2.58) for first order quasi-phase-matching have been used. L is the

device length and A is the quasi-phase-matching period in either arm of the device. At 1.55
um, the TMo mode effective index ng.e=3.173982, and, at the second harmonic

frequency, the TM, o0 mode effective index n,.¢;=3.425296. From (3.10) we then have,
for a 1cm-long device, A; = 3.082841 um and A, = 3.084743 pm. Now, +n/2 phase
shifts require a scaled fundamental input intensity of I‘P m(c = O)l2 =(0.64 (see Section 2.3.4),
which translates into an absolute input fundamental intensity 1,,(z = 0) given by:
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0. 6480CA'2 . nz)eff * 9 eff
2 2
2dQPML

I,(z=0)= (3.11)

However, expression (3.11), neglects any spatial mismatch between the field mode profiles
and the AQW non-linearity. Introducing the overlap factor F(zi; as defined by (3.9b) to

account for this mismatch, then gives:

2d3pL? F2)

7z

P,(z=0)= (3.12)

where P, (z =0) is the input fundamental power. For the B690 rib waveguides at 1.55 pm

F(ZQ is approximately 1.456 x 10!! /m2 (see Appendix A). For ideal first-order domain
2

12)1=0.1

pm/V at 1.55 pm, dopm=0.0159 pm/V. Then, from (3.12), Py(z=0) = 19.1 MW i.. the

disordering, dgpy = 33/, so that for the B690 AQW structure with a predicted

switching power requirement in one waveguide arm is 19.1 MW. Therefore, 38.2 MW is

required at the input of the device to achieve switching! Clearly, such predicted switching

(2)
Z

powers are impractical, and the ACQW structure should be optimised for a larger |x,,

Another possibility 1s to operate in a TE ,:TM,, polarisation configuration and find
some way of modulating the large bulk GaAs/AlGaAs x(z) non-linearity. In fact, in Chapter

Xyz
7, it will be shown that QW-intermixing also gives rise to a significant modulation of the

large bulk xg)z component. Further, it may be recalled that the total non-linearity associated

with a multiple AQW waveguide structure in the TE:TM,, configuration is X%)ﬁ X(Lf&

Hence, if, for an optimised AQW structure, x(zf& is comparable to x%)z the total non-

linearity x&zy)z+ x(zil will be comparable to 2x§2y)z, and QW-intermixing should result in a
significant reduction of this large fotal non-linearity. The first-order quasi-phase-matching
efficiency attainable in this way might be comparable to that of first-order ideal domain
disordering in bulk GaAs/AlGaAs for which dgpy = 60.5 pm/V.

However, even for dopy = 60.5 pm/V, the push-pull device geometry of Fig. 3.6 is
impractical because the non-linearity modulation periods A, and A, required in the different
waveguide arms of the device for the TM:TM,,, configuration at 1.55 pm, are such that
A; — A, =2 nm. Controlling the modulation period with such accuracy is beyond the

capabilities of existing e-beam writer technology.
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A much more realistic all-optical switch device was proposed by Hutchings et al.
[14] and is illustrated in Fig. 3.7. This device has only one non-linear waveguide arm in
which a phase shift of © must be induced to achieve switching. Hutchings et al. [13] further
suggested that, for telecommunications applications, an all-optical switch of this type should
operate with non-degenerate frequencies ®; and @;, where ®; represents a low-intensity
signal beam, and @y is a high-intensity pump or control beam as indicated in Fig. 3.7. Such
a device would then operate via the non-degenerate cascaded second order effect which
involves the periodic exchange of power between the input fields at @; and w,, and the sum
frequency field at m;+w,, with an accompanying non-linear phase shift in the signal at ;. A
n phase shift in the non-linear arm of this device when operating in a TE,:TM,,

configuration requires a pump power P,(z =0) given by [13]:

2
0.388CA] - Nyoft  Moegr  Maefr
2d3pmL? - F)

xyz

Py(z=0)=

In (3.13), the subscripts indicate the frequency to which the relevant quantity corresponds.

For the same B690 waveguide rib geometry, and choosing A; = 1.55 um, the TE, mode
effective index n;¢ = 3.176010 and Fﬁfy)z = 1.632x 10" /m2. Furthermore, choosing Ny
= Ny and N3qg t0 be equal to the TM 09 mode effective index (i.e. nj g = 3.425296),

we have for L =1cm and dgpy = 60.5 pm/V, P,(z=0) = 700 mW. Such peak switching

power levels are obviously much more realistic. More importantly, these peak power levels
are compatible with existing Q-switched laser diode technology.

Do

Low-intensity
Signal at 4 - —

High-intensity
Pump at 0o

Fig. 3.7 A Mach-Zehnder dual-wavelength all-optical switch as proposed by Hutchings et al. [13].
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4

The Numerical Solution of the 1D
Schrodinger Equation for an
Arbitrary GaAs/AlGaAs Quantum
Well Structure

The operation of the integrated GaAs/AlGaAs multiple AQW all-optical switch
devices described in Section 3.4 relies upon the modification of the QW asymmetry (and
therefore of the envelope function asymmetry) by quantum well intermixing. During the
design and characterisation of such a device, it is important to be able to predict how the
AQW cigenenergies and envelope functions change as intermixing proceeds. In this chapter
we will therefore be concerned with the numerical solution of the 1D time-independent
Schrodinger equation in an arbitrary GaAs/AlGaAs QW structure before moving on to
discuss the solution for the special case of a GaAs/AlGaAs AQW structure. Modelling of the
intermixing process itself and the solution of Schrodinger's equation in a partially intermixed
GaAs/AlGaAs multiple AQW potential profile, is, however, postponed until Chapter 6. It
should also be emphasised at this stage that we will be working within the effective mass
approximation throughout, so that the 1D Schrodinger equation may be solved for the
electron and hole envelope functions.

Although sophisticated finite element techniques exist for the numerical solution of
Schrodinger's equation in an arbitrary potential profile within an arbitrary semiconductor
material system [1], we shall only discuss a few simple methods here which are applicable
for an arbitrary GaAs/AlGaAs quantum well structure: transfer matrix methods, finite
difference methods and shooting methods. Transfer matrix methods [2,3] are based upon
two key properties of the Schrodinger equation: in a constant or linear potential profile the
envelope functions may be expressed as the sum of exponential or Airy functions
respectively. By approximating an arbitrary smoothly-varying profile with piecewise
constant or piecewise linear functions (see Fig 4.1) and applying the appropriate boundary
conditions, a dispersion relation may then be deduced which involves exponential or Airy
functions respectively. Solving this dispersion relation yields the eigenenergies of the
arbitrary well system. Obviously, the accuracy of these numerical techniques improves as the
number of piecewise segments is increased (and the piecewise segment size is
correspondingly decreased), so that the approximate piecewise potential profiles approach
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the actual continuous profile. To determine the envelope functions from the eigenvalues, it is
necessary to calculate all the arbitrary constants of the system (2 for each piecewise constant
or piecewise linear section) before "patching” together the envelope function solutions in all
the different sections. Clearly, this method becomes cumbersome and inefficient for rapidly
varying potential profiles which can require up to several hundred piecewise segments to
guarantee that the approximate piecewise QW profile resembles the true QW profile to a high
enough degree of accuracy.

v(z)

Fig. 4.1 Arbitrary QW potential profile (a) piecewise constant approximation (potential and effective mass
values within each strip are defined by the corresponding values at the strip mid-points) (b) piecewise linear

approximation (the potential and the effective mass within each strip are linear functions of depth)

Finite difference methods for an arbitrary GaAs/AlGaAs potential profile, in contrast,
involve an initial estimate of the envelope function that is to be determined. This trial
envelope function is successively amended using a finite difference formula which
approximates the 1D Schrodinger equation until the trial envelope function converges to an
actual envelope function solution. The corresponding eigenenergy is then straightforwardly
obtained by substitution of the envelope function solution into the finite difference version of
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the 1D Schrédinger equation. From the foregoing description however, it is obvious that an
efficient finite difference solution depends on a good initial trial envelope function which will
result in convergence to the actual desired envelope function. Alternatively, shooting
methods have no convergence control problems and may be employed to calculate all the
eigenenergies and the envelope functions directly in increasing order i.e. from the
fundamental order up to the highest bound order. Davé for example, outlines a shooting
method which involves the repeated numerical integration of Schridinger's equation across
an arbitrary piecewise linear potential profile until the boundary conditions are satisfied at the
2 well/barrier interfaces [4]. There are however, several problems with Davé's original
algorithm which shall be highlighted in the following sections, where the algorithms used in
this work for the solution of the 1D Schriédinger equation in an arbitrary GaAs/AlGaAs QW
potential profile are described.

4.1 The 1D Schrodinger Equation in an Arbitrary
GaAs/AlGaAs QW Potential Profile

Any numerical technique for the solution of Schrodinger's equation in an arbitrary
potential profile, involves the evaluation of the envelope functions at discrete positions
z=ixAz(i=0, 1, 2, ... N) as indicated in Fig. 4.2 which represents an arbitrary
conduction band potential profile v as a function of the depth z.

v(z)

| r__* —>Az<—

0 Az Az 3Az NAz=W z

Fig. 4.2 Arbitrary QW potential profile (dashed lines indicate positions where envelope function is
evaluated)
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Within the effective mass approximation, the eigenenergies E and the envelope functions
u(z) of the bound electrons in such an arbitrary well profile are given by the solution of the

1D Schrodinger equation:

A2 d({ 1 du(z)
2 dz

dz\ m*(z) dz

)+ v(z)u(z) = Eu(z) (4.1)

where m*(z) is the depth-dependent effective mass of electrons in the well profile and is
assumed to be independent of energy. (Bound light hole and heavy hole energies and the
corresponding envelope functions are similarly determined from the solution of (4.1) using a
valence band potential profile v(z) and the appropriate light or heavy hole effective mass
m*(z).) It should be noted that equation (4.1) implicitly assumes that the well known
boundary conditions for probability current conservation at any GaAs/AlGaAs
heterointerface are satisfied:

uL(Zi) = uR(Zi) (4.2a)
1 1
1 i) = * I i 4,
) ) = oy ) 4.20)

where u’(z) = du(z)/dz. L subscripts indicate that the relevant quantities refer to the region
to the left of the interface at position z; =ix Az, while the R subscripts indicate that the

quantities refer to the region to the right hand side of the interface. In other words, the
envelope function u(z) and the probability current u’(z)/ m*(z) are continuous quantities.

Alternatively, we can approximate our arbitrary continuous potential profile with a
piecewise constant potential profile (see Fig. 4.1a). v(z) and m"*(z) are then constant within
a given piecewise segment so that u(z) and u’(z) are correspondingly continuous within a

given piecewise segment and (4.1) becomes:

~#* d%u(z)
IM*  dz?

where we have written m*(z)=M" and v(z)=V to emphasise that these quantities are

+ Vu(z) = Eu(z) (4.3)

constant. At the heterointerfaces between segments however, the boundary conditions of
(4.2) apply and u’(z) is discontinuous as illustrated in Fig. 4.3. Equation (4.3) is identical to
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the equation used by Davé who then proceeded to (incorrectly) assume piecewise linear
functions m*(z) and v(z). Under these circumstances (4.3) is not Hermitian and we must
employ (4.1) instead. Although approximating a continuous potential profile with a
piecewise constant function introduces errors, we will continue to develop a piecewise
constant model in addition to a continuous potential model. This is because, for the
piecewise constant model, the way in which we define the potential and the effective mass
within each strip to be equal to the corresponding values at the strip mid-points while
evaluating the envelope function at the strip interfaces, can have important consequences for
the solution of Schrodinger's equation in AQWs as discussed later in Section 4.4.

Envelope
Function

up =Rz

up(z) |
/+7 ug (2) | Envelf)pe
Function
| ‘ . * Gradient
T S VA N
| ' |
uR'(z)

) Actual
\/—\l‘ u () Continuous

Potential

Approximate MR
Piecewise V.
Constant iR

I
I
I
I Potential
I
I
|

Zj-} 4 Ziy1

Fig. 4.3 The boundary conditions of (4.2) at the heterointerface between segments in the piecewise constant
approximation. M:L and V; are the effective mass and the potential within the strip to the left of the

interface at z; while M:R and V; are the corresponding quantities in the strip on the right hand side of the

interface. The black dots represent discrete values of u(z) and u’(z) at the heterointerfaces
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For both the continuous potential model and the piecewise constant potential model,
constant potential barriers of height Vg, to the left of the arbitrary well and Vg to the right
of the well are assumed along with effective masses Mg, and M{;R respectively, as shown
in Fig. 4.2. Exponentially-decaying envelope function solutions ug; (z) and ugg(z) may
then be assumed in the left and right semi-infinite barrier layers respectively, and the
complete envelope function u(z) may be expressed in 3 parts:

ugy (z) = Ae™* z<0
u(z)= uw(z) 0<zsW (4.4a)
ugg(z) = Be 2 2 W

where
2M*, (Vg —E)
o =\[ BL . (4.4b)
and
M. (Veg —E)
B= Py, (4.4¢)

and uy(z) is that portion of the envelope function in the well region 0 <z<W which we

wish to evaluate at discrete intervals through integration of Schrodinger's equation using
corresponding discrete values of v(z) and m”(z). We now consider the shooting method

algorithms for the solution of Schridinger's equation in an arbitrary continuous potential and
an arbitrary piecewise constant potential in turn.
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4.2 The Shooting Method Algorithm in a Continuous
GaAs/AlGaAs Potential Profile

Defining the probability current by:

1 du(z)

c(z)= m‘(z)_dT (4.5)
we may write
d *
-3—(;2 =m (z)c(z) (4.62)
and from (4.1)
d
L8 - gapu(o (@.6b)
where

2
g(z)= F[V(Z)_ E] (4.6¢)

i.e. we have decomposed the second order differential equation of (4.1) into the 2 first order
coupled differential equations of (4.6). The definition of ¢(z) in (4.5) is also significant

because the boundary condition of (4.2b) which is implicitly assumed in (4.1) means that
c(z) defined in this way will be continuous. From knowledge of u(z) and c(z) at some

position z therefore, the fourth-order Runge-Kutta numerical integration algorithm may be
used to evaluate u(z+ Az) and c(z + Az) from (4.6) where Az is the depth increment.

The shooting method algorithm for the continuous potential profile case may
therefore be summarised in five basic steps:

(i) A trial eigenenergy is chosen in the vicinity of the actual eigenenergy of interest
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(ii) An arbitrary value is chosen for the constant A of (4.4), and the corresponding
envelope function value uw(0) and the current ¢y (0) at the left hand barrier are

calculated from consideration of the boundary conditions of (4.2):
uw (0)=A (4.7a)

cw(0)= ;I‘A (4.7b)

BL

(iii) Schrodinger's equation is integrated across the well using the fourth-order Runge-
Kutta algorithm as outlined above until we arrive at the right hand barrier.

(iv) In general, the boundary conditions of (4.2) are not satisfied at the right hand barrier
and a new trial eigenenergy must be chosen in such a way as to reduce the "mismatch"

of these boundary conditions.

(v) When the boundary condition mismatch at the right hand barrier is small enough, the
trial eigenvalue is approximately equal to the actual eigenvalue and we may consider
the corresponding trial envelope function to be equal to the actual envelope function.

The question now naturally arises as to which definition of the right hand barrier
boundary condition mismatch should be used. From consideration of (4.4) and the boundary
condition of (4.2a) at the right hand barrier we get:

uw (W) = ugr(W) (4.8)

Furthermore, applying the boundary condition of (4.2b) at the right hand barrier and using
(4.8) gives:

cw(W)=- MIIZR uw (W) (4.9)
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Which, upon re-arrangement yields:

« C (W)
=-M w 4.10

where uw (W) and cy (W) are obtained by numerical integration of equations (4.6) across
the well. We therefore have two independent expressions for B: (4.4c) and (4.10) which
must be equal before all the boundary conditions are satisfied and a bound solution is found.
It is the difference between these two B values (call it AR say) which Davé advocates for the
definition of the boundary condition mismatch which must be reduced to zero for a solution
by choosing successively better trial eigenenergy values E. However, defining the mismatch

in this way can have serious consequences for the search algorithm used to "home-in" on the
correct eigenvalue solution because, for certain trial eigenenergies E, uw (W) will be zero,

and a singularity will occur in the mismatch function AB(E). It is possible, however, to
define a superior boundary condition mismatch as a function of E by dividing the boundary
conditions of (4.2) as applied to the right hand barrier:

cw(W) _ car(W)
uw (W) upr(W) @1b

Upon re-arrangement this becomes:

6w(W)-uW(W)ELR(-W—)-0 4.12)

upg (W)
Now, from consideration of (4.4) in the right hand barrier we may deduce:

cgr(W) ___ B @.13)

uBR(W) - M;BR

and substituting this expression into (4.12) gives:
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cw(W)+ % uw(W)=0 (4.14)
Mgr

From (4.14) we may therefore define a new mismatch function:

Mismatch(E) = cw (W) + % uy (W) (4.15)
Mgr

where B is defined by (4.4c). Hence, by choosing estimates for E which continually reduce
Mismaich(E) defined in this way, we will eventually obtain Mismatch(E) =0 and equation
(4.14) will be satisfied. From the definition of Mismatch(E) of (4.15), it may also be seen
that neither of the quantities uw (W) or cw (W) which are obtained by integrating across the
well appear in a denominator term. Mismatch(E) is therefore a continuous function and as
such, represents a suitable goal function for any search algorithm. However, (4.14) was
derived by matching the ratio of the boundary conditions of (4.2) at the right hand barrier.
Therefore, on reducing Mismatch(E) to zero, it is still necessary to match
uw (W) =ugg(W) to ensure that both boundary conditions of (4.2) are simultaneously

satisfied at the right hand barrier. This is easily achieved by defining;
B = uy (W)e" (4.16)

which can be seen from consideration of (4.4) once again. Hence, having reduced
Mismatch(E) as defined by (4.15) to zero so that E is equal to the actual eigenenergy of
interest, the envelope function is completely determined: with reference to (4.4a), ug; (z) is
determined from our arbitrarily assumed value of A and from o as calculated from (4.4b),
uw (W) is the envelope function obtained by integrating Schrodinger's equation across the
well when E is equal to the eigenenergy and Mismatch(E) =0, and ugg(z) is completely
determined from B and P as calculated from (4.16) and (4.4c) respectively.

Finally, in order to determine all the bound eigenenergies and the corresponding
envelope functions within a given well profile (for the particle of interest), we need to say
something about the search algorithm employed. To find all the bound solutions, a trial
eigenenergy E is normally chosen which is equal to the minimum potential in the well and E
is incremented in small steps until an interval (El,Ez) containing a solution is identified (i.c.

Mismatch(El)-Mismatch(Ez) <0 ). A bisection search routine may then be executed 1o

"home-in" on the solution by choosing successively better E values which reduce the goal
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function Mismatch(E) to zero. On locating the solution, E may be incremented further in
search of a second bound level. Having found a second bound level the search may be
continued for a third bound level and so on. Clearly however, if E is incremented until it
exceeds the lower of the 2 barrier potentials Vg; or Vg without identifying a third solution
interval, we must conclude that a third bound level does not exist and that there are only 2
bound levels.

4.3 The Shooting Method Algorithm in a
GaAs/AlGaAs Approximate Piecewise Constant
Potential Profile

Proceeding in a similar fashion to the continuous potential profile case of the
previous section we may define:

du(z
d(z - (4.172)

and from (4.3) we get:

di(z) _
—, = ) (4.17b)
where
2M*
f(Z) = —;l'i—[v - E] (4 17C)

and M* and V are the (constant) effective mass and potential respectively. The original
second order differential equation of (4.3) has therefore been decomposed into the 2 coupled
first order differential equations of (4.17a) and (4.17b). However, equations (4.17) only
apply within a given piecewise element, and t(z) is not continuous at a heterointerface
between elements. Having integrated equations (4.17) across an element in discrete steps Az
using the fourth-order Runge-Kutta method therefore, it is necessary to exit from the Runge-
Kutta routine and explicitly enforce the boundary condition of (4.2b) at the heterointerface as
will be clear from inspection of Fig. 4.3. Integration may then be continued across the next
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element until the next heterointerface is reached and the boundary condition of (4.2b) must
be applied once again

Having implemented such an integration scheme, the shooting method algorithm for
the piecewise constant potential case is very similar to that outlined in Section 4.2 for the
continuous potential profile case. However, for the piecewise constant algorithm, the
boundary conditions at the left-hand barrier must be re-defined:

uw(0)=A (4.182)
and
M*
ty (0) =—RL A (4.18b)
Mg

Also, the right-hand barrier boundary condition mismatch function is a slightly modificd
version of (4.15):

Mismatch(E) = t‘;’/[(*w) + B uw (W) (4.19)
LN BR

And finally, for continuity of the envelope function at the right-hand barrier, B is just defined
as before by (4.16):

B = uy, (W)ePV (4.16)

4.4 The Solution of Schrodinger's Equation in a
GaAs/AlGaAs Asymmetric QW

For GaAs/AlGaAs asymmetric QWSs such as those depicted in Figs. 3.1 and 3.2,
discontinuities exist in the Al fraction (and therefore in the potential and the effective mass) at
the heterointerfaces within the well: for an ASQW there is only one such interface, while for
an ACQW there are two. Now, within the continuous potential profile model of Section 4.2,
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such discontinuities cannot be represented in an unambiguous way, as shall be explained for
the case of an ASQW with the aid of Fig. 4.4. It may be seen that an ASQW with a lower Al
fraction layer of width W is represented by a series of discrete Al fraction values at the strip
interface positions. For the continuous potential model these strip interface positions are also
the positions where we evaluate the envelope function values. At the discontinuity position
z=W however, it may be seen that the Al fraction can either be defined as AIW; or AIW,.
For the former definition of the Al fraction (Fig. 4.4a) the shooting algorithm "sees" a lower
Al fraction layer of width >W, while for the latter definition (Fig. 4.4b) the algorithm
"sees" a lower Al fraction layer of width <W. Intuitively the true eigenvalues of an ASQW
with an abrupt interface and a lower Al fraction layer of width exactly equal to Wy will lie
between the eigenvalues corresponding to the Al fraction profiles of Figs. 4.4a and 4.4b. In
the limit, therefore, as the number of strips increases to infinity and the strip width Az
reduces towards zero, we would expect this ambiguity in the definition of the Al fraction at
the discontinuity to disappear. To deduce just how many strips N are required to reducc the
error associated with the well profiles of Fig. 4.4 to a tolerable level however, we must look
to the piecewise constant model which is exact for the step-like potential profile of an
ASQW, and for which there is no ambiguity in the definition of W. Using conduction band
potential and electron effective mass data from Adachi's review paper [5], the first bound
electron energies for the ASQW structure of material B563 (see Appendix A) corresponding
to the Al fraction definitions depicted in Figs. 4.4a and 4.4b were found to be 68.043 meV
and 68.726 meV above the conduction band edge of GaAs respectively. These energies were
calculated by evaluating the envelope functions every 0.5A (ie. Az=0.5 A and the number
of strips N=200) and compare with an exact first bound electron energy of 68.156 meV
above the conduction band edge of GaAs as determined using the piecewise constant model
for the same Az = 0.5A. We therefore see that the error associated with the ambiguity in the
definition of the Al fraction for the continuous potential model is less than 1 meV for the
B563 structure when Az = 0.5A. Furthermore, none of the B563 interband transition
wavelengths for either of the two cases of Fig 4.4 differ from the exact transition
wavelengths calculated from the piecewise constant model by more than 1 nm and many of
the transition wavelengths differ by less than 0.1 nm when Az = 0.5A. We therefore
conclude that the errors associated with the Al fraction definition ambiguity for the B563
ASQW structure using the continuous model are insignificant for Az < 0.5A.

In general however, especially for deep narrow well regions, the errors associated
with the definition of the Al fraction for the continuous potential model may be appreciable,
so that the piecewise constant model is used to solve Schrodinger's equation in the
GaAs/AlGaAs ASQW and ACQW starting material profiles in all subsequent chapters.
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Fig. 4.4 Discrete representation of an asymmetric stepped QW Al fraction profile (a) Al fraction at z=W
defined equal to AIW] (b) Al fraction at z=W1 defined equal to AIW?.

On a final note, it should be stressed that for any continuous potential profile and, in
particular, for a partially intermixed potential profile, the piecewise constant model is only
approximate, and we would expect the continuous model to be more accurate than the
piecewise constant model. However, the discrete Al fraction profiles derived from
intermixing the starting material Al fraction profiles of Fig. 4.4 will be slightly different
leading to ambiguity in the eigenenergies and envelope functions of intermixed QW
structures. The piecewise constant model is therefore used throughout for the consistent and
unambiguous solution of Schrddinger's equation in all GaAs/AlGaAs starting material and
intermixed AQW potential profiles appearing in subsequent chapters. The accuracy of the
piecewise constant model results are then improved by simply increasing the number of
piecewise segments which is used to describe the Al fraction profile of interest.

4.5 The Calculation of Interband Transition
Wavelengths and Oscillator Strengths for QW
Structures

Having calculated the bound electron and hole levels and the corresponding envelope
functions in a QW potential, the interband transition wavelengths A, are given by:

_ hc
- q[ei +h;+ Eg(GaAs)]

A 4.17)
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In expression (4.17), h is Planck's constant, ¢ is the speed of light in a vacuum, q is the
electronic charge, e; is the energy of the i th bound electron level above the conduction band
edge of GaAs in eV, h; is the energy of the j th bound hole energy below the valence band

edge of GaAs in eV, and E,(GaAs) is the band-gap of GaAs in eV.

The relative interband oscillator strengths f. , and f, ,, for electron to light hole,

and electron to heavy hole interband transitions respectively, can be expressed in arbitrary
units by (4.18) [6]:

-%-che (Z)|¢1h(2)>|2 Polarisation 1 to layers

fe,lh = (4.18a)

%Kq)a(z)kj)lh(z))l2 Polarisation |l to layers

0 Polarisation L to layers

fenn = 2 . (4.18b)
%|<¢e(z)|¢hh(z)>| Polarisation |l to layers

In the expressions of (4.18), ¢.(z) and ¢,(z) are the normalised electron and holc

envelope functions given by:

ue,h(z)

~ 172
l: J uz,h(z)dl]

—o0

(4.19)

¢e,h(z) =

where u, ,(z) are the electron and hole envelope functions calculated using the Schridinger
solver routine described in the previous sections of this chapter.
The interband transition wavelengths and oscillator strengths quoted for the different

AQW structures appearing in all subsequent chapters were calculated using (4.17) and (4.18)
respectively. Effective mass and bandgap data from Adachi's review paper [5] were used

throughout.
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S

The Design and Characterisation of
GaAs/AlGaAs Multiple AQW
Waveguide Structures

Considerable effort was invested in the design and characterisation of the various
multiple AQW waveguide structures grown for this work, primarily because no SHG
attributable to any of the AQW tensor components was observed in waveguides fabricated
from the multiple ASQW QT613 material (see Chapter 7). To determine the reason for the
absence of the AQW non-linearities in this structure, it was necessary to examine the linear
optical properties. In the wake of the characterisation of the QT613 material, it was apparent
that the growth of such multiple AQW structures was relatively demanding and subsequent
multiple AQW designs were therefore amended to be tolerant to growth inaccuracies. All
structures grown subsequent to the QT613 material were also characterised using X-ray
diffraction, photoluminescence spectroscopy, and absorption spectroscopy, prior to
fabrication of waveguide devices for the study of second order non-linear optical effects.

Detailed nominal structures of all the AQW materials investigated in this work are
listed in Appendix A. Also listed are the corresponding interband transition wavelengths and
normalised oscillator strengths at both 77 K and room temperature. These were calculated
from the numerical solution of Schrddinger's equation in the effective mass approximation
using energy-independent electron and hole effective mass data from Adachi's review paper
[1] (see Chapter 4).

5.1 The Design of GaAs/AlGaAs Multiple AQW
Structures

5.1.1 General GaAs/AlGaAs Multiple AQW Design Criteria

Any practical GaAs/AlGaAs AQW design should take into account growth
inaccuracies in the Al fractions and thicknesses of the various QW layers. Current
GaAs/AlGaAs MBE and MOCVD growth technology is sufficiently advanced to allow
control of the Al fraction in a particular layer to within £10% of the nominal value, while
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individual layer thicknesses can often be controlled to within one or two monolayers. It is
with these tolerances in mind that the general design criteria for GaAs/AlGaAs multiple
AQWs will be discussed.

For an all-optical switch device such as that described in Section 3.4 which operates
via the cascaded second order effect, the most obvious design criterion is that the lowest
interband transition energy of the AQW must be significantly greater than twice the photon
energy of the fundamental field to avoid both linear absorption of the second harmonic field
and two-photon absorption of the fundamental field. More precisely, this requires that the
photon energy hc/A ,corresponding to the fundamental wavelength of operation A, must be

significantly below half the first bound electron to first bound heavy hole transition energy
el —hhl minus the corresponding fundamental excitonic binding energy E,,:

%<%[(e1—hhl)—Eex] (5.1

el and hhl were therefore obtained for the different GaAs/AlGaAs AQW structures by
solving Schrodinger's equation in the appropriate well profile as described in Chapter 4,
while the fundamental excitonic binding energy in a GaAs/AlGaAs QW is of the order of 10
meV [2].

Furthermore, from consideration of Section 3.1, it may be recalled that the second
order optical non-linearities associated with an AQW structure exist by virtue of the
asymmetric envelope functions associated with a first bound hole level and the lowest two
bound electron levels. In other words, the Al fraction profile of the QW design must be
asymmetric, and must support two bound electron levels in the presence of Al fraction and
layer thickness inaccuracies which may occur during growth. Furthermore, in the effective

mass approximation, the x(zil tensor component is proportional to the momentum matrix

element product (cp]hl(z)|¢el(z)><¢el(z)l—ihd/dz|¢e2(z)>(¢e2(z)|¢1h1(z)) which should

ideally be maximised during the design of an optimum AQW structure (see Section 3.1). (In
practice however, this matrix element product was not maximised due to the other AQW
design constraints discussed both in this section and the next section.) For the particular case
of an ASQW, this momentum matrix element product is only really significant (and hence the
ASQW optical non-linearities are only really significant), when the first bound electron level
resides below the step in the conduction band potential and the second bound electron level
resides above it. ASQW structures were therefore designed within these guidelines. To
check that a given design satisfied all of the above conditions, Schrodinger's equation was
solved using the algorithm described in Chapter 4.
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A further design constraint on the multiple AQW structures is that the QW barrier
layers must be sufficiently thick to ensure negligible coupling between neighbouring QWs.
For the multiple AQW structures used in this work, this requirement was somewhat
arbitrarily interpreted to mean that the second bound electron envelope function associated
with a given AQW should decay to 1% of its value at the well/barrier interface after a
distance equal to the barrier layer thickness. Again, to check that this condition was fulfilled
for a particular multiple AQW design, Schrédinger's equation was solved using the
numerical method discussed in the previous chapter.

Finally, all the epitaxial layers were nominally undoped to prevent the formation of
any built-in fields that could lead to shifting of the bound energy levels and the
accompanying distortion of the envelope functions through the quantum confined Stark
effect [3].

5.1.2 Design Criteria for Specific Multiple AQW Structures

All of the AQW structures used throughout this work were designed in accordance
with the general principles set out above with the exception of the QT613 ASQW structure

which was not designed to be tolerant to growth inaccuracies. Instead, the QT613 structurc

was designed for operation at 1.55 um in accordance with the calculations of Kelaidis ez al

[4]. These suggest that the ASQW tensor component x(zi)z is relatively insensitive to small

changes in layer compositions or thicknesses, provided the first and second bound electron
levels lie below and above the conduction band potential step respectively. Furthermore, the
QT613 ASQW structure, with three different Al fraction layers per period of the MQW, was
subject to an additional relatively severe constraint: the availability of only two Al cells
during growth meant that, while the two well layer Al fractions AIW1 and AIW? could be
chosen independently, the barrier layer Al fraction AIB was then completely determined
according to the relation:

[ aw, AW, Lo AW, AW,
AlB = (1—A1W1)+(1-A1Wz)]/[ +( ¥ (5.2)

Physically this constraint arises because the Al flux from a given cell cannot be altered during
growth of the MQW. This means that, with two Al cells, only three flow rates are possible
corresponding to one or other of the Al cell shutters open, or both of the Al cell shutters
open. For the QT613 structure AlW; =0.15 and AIW;, = 0.37 and from (5.2) we therefore
obtain AIB = 0.44.
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B563 and B578 were diagnostic multiple ASQW and multiple ACQW waveguide
structures respectively. These structures were both designed with GaAs layers in the wells to
allow characterisation by photoluminescence excitation spectroscopy (PLE) using a tuneable
Ti:sapphire laser in the wavelength range 700 - 850 nm i.e. the AQW siructures were
designed to guarantee that all first and second bound electron level to first and second bound
hole level interband transitions lay within the wavelength range 700 - 850 nm. This may be
seen from inspection of the calculated room temperature interband transition wavelengths for
the B563 and B578 nominal material structures which are listed in Appendix A.
Furthermore, since characterisation of an actual QW structure involves the experimental
determination of the QW parameters (layer thicknesses and compositions), choosing GaAs
as the lowest Al fraction QW layer for the B563 and BS78 structures meant that there was no
uncertainty associated with the composition of this layer, and that one of the QW variables
was effectively eliminated. Also, choosing GaAs as the lowest Al fraction for the B563
ASQW structure had the added advantage that the Al fractions in the higher Al fraction QW
layer and the barrier layer could be chosen independently during growth when using only
two Al cells.

Like the B563 ASQW structure, the B635 ASQW structure was designed with GaAs
in the lower Al fraction QW layer. Unlike the B563 structure however, the B635 structure
was designed for operation at 1.55 um. This required a thin (six monolayers) deeper well
region and high Al fractions of 0.4 and 0.6 in the shallower well region and in the barrier
layer respectively.

Finally, the B690 nominal material structure (which is the same for the B672 and
QT849A nominal material structures), is an ACQW structure designed for operation at 1.55
um with 20% AlGaAs in the well layers and 44% AlGaAs in the barrier layers.

In way of summary, all of the specific design criteria for the different material
structures discussed in this sub-section are listed in Table 5.1 along with the corresponding

momentum matrix element products (¢lh1(z)|¢e1(z)>(¢el(z)|—ih d/dz|¢ez(z)><q>e2(z)|¢lhl(z))

which reflect the magnitudes of the second order susceptibility tensor components xg; as
described in Section 3.1. These specific criteria were satisfied in addition to the general
design criteria of the previous section as will be apparent from the experimental

characterisation results of Section 5.3.
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Material Wavelength of |Specific Design Criteria Momentum
Operation Matrix
Element
Product
(a.u.)
QT613 1.55 um i. Structure not designed to be|  5.807 x10°
(ASQW) tolerant to growth inaccuracies
ii. During growth with two Al
cells, the barrier layer Al
fraction is determined by the
Al fractions in the two QW
layers
B563 |QW  structure|GaAs in the deeper QW layer| 4.421x10°
(ASQW) designed to allow|meant that Al fractions in
PLE in wavelength|shallower QW layer and
range 700 - 850 nm | barrier layers could be chosen
independently
B578 QW structure | GaAs in the QW layers 3.773 % 10°
(ACQW) designed to allow
PLE in wavelength
range 700 - 850 nm
B635 1.55 pm GaAs in the deeper QW layer| 1.048 x10’
(ASQW) meant that Al fractions in
shallower QW layer and
barrier layers could be chosen
independently
B690, B672 1.55 um Different Al fractions in well] 5.929 x10°
and QT849A and barrier layers chosen
(ACQW) independently

Table 5.1 Specific design criteria for the different AQW structures which were satisfied in addition to the
general AQW design criteria of Section 5.1.1 and the resulting momentum matrix element products which

reflect the relative magnitude of )

(2)

72
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5.2 The Design of Multiple AQW Waveguide
Structures

The multiple AQW waveguide epitaxial structures used throughout this work
consisted of, a lower cladding or isolation layer grown on top of the substrate, followed by,
the multiple AQW guiding layer, an upper cladding layer, and a thin GaAs protective cap
layer. Having finalised the AQW designs, the polarisation-dependent bulk equivalent
refractive indices for the multiple AQW guiding layer were estimated using (3.5). The
thickness of the multiple AQW layer was then considered to be variable during the
waveguide structure design according to the number of AQW periods selected. The
thicknesses of the GaAs protective cap layer and the upper cladding layer were
predetermined due to constraints imposed by the IFVD process used for QW intermixing
and, for the purposes of designing the waveguide structure, were assumed to be 0.1 pm and
0.8 um respectively (see Chapter 6). The waveguide structures for confinement of the optical
fields were subsequently designed according to several criteria which were the same for all
of the materials used during this work. These design criteria will therefore be illustrated by
considering the B690 multiple ACQW waveguide material structure throughout this section.

Firstly, and most importantly, the slab waveguide structures were designed to offer
sufficient confinement in the vertical direction so as to minimise leakage into the GaAs
substrate without supporting any higher order modes at the fundamental wavelength of
operation. The B690 multiple ACQW slab waveguide structure, for example, was designed
to be single-moded at 1.55 um and to have an evanescent field strength at the GaAs
substrate/lower cladding interface which was approximately 0.1% of the peak field strength
in the guiding layer. This may be seen from Figs. 5.1a and 5.1b which are plots of the
normalised horizontal and vertical electric field components for TE and TM-polarised input
fields respectively in the B690 waveguide structure. The mode profiles of Fig. 5.1 were
generated using a multilayer slab-solver routine and refractive index data based on the
modified Afromowitz model [S]. For the TE case, the normalised horizontal electric field
component was 0.0011 at the substrate/lower cladding interface, while for the TM case the
normalised vertical field component at the same interface was 0.0012.

The effective indices of all the supported TE and TM modes of the various multiple
AQW slab waveguide structures were calculated using refractive index data generated by the
modified Afromowitz model and are listed in Appendix A. It will be seen that, in
contradiction to the criteria discussed above, the B563 and B578 waveguide structures are
multi-moded at a wavelength of 1.7 um. By comparing the first order mode effective indices
at 1.7 um with the refractive indices in the cladding layers of these structures (also appearing

in Appendix A), it may be seen that these first order modes are, however, only very weakly
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guided at 1.7 pm. Furthermore, because of their AQW design, these materials were
absorbing at wavelengths shorter than approximately 1.66 um so that their waveguides were
designed for single-moded operation between 1.7 and 1.8 pum, using data generated from the
refractive index model proposed by Adachi [1]. From the data of Appendix A, however, it
would appear that, when using refractive index data generated by the modified Afromowitz
model (which we believe to be more accurate), these waveguides are multi-moded (although
only just) at 1.7 pm. Obviously at operating wavelengths longer than 1.7 um, the

waveguides will tend to become single-moded once again.

Since we are interested in second order non-linear optical effects in the multiple AQW
guiding layer, we must naturally also consider the confinement of any second harmonic field
that may be generated in the waveguide structure. For maximum conversion efficiency in a
2D ridge waveguide, the overlap integral factor between the normalised fundamental and
second harmonic mode profiles in the non-linear multiple AQW guiding layer should be
maximised as discussed in Section 2.6. An optimum ridge waveguide design may therefore
be determined by adjusting the various slab waveguide layer thicknesses and compositions
until the overlap factor is maximised. Rather than implementing such a rigorous waveguide
design algorithm, a quasi-optimum approach was adopted instead: the various slab
waveguide layer thicknesses and compositions were adjusted until symmetrical confinement
of the optical fields was achieved i.e. the peaks in the lowest order fundamental frequency
and second harmonic frequency modes were more or less coincident in the middle of the
multiple AQW guiding layer. This may be seen from inspection of Figs. 5.1 and 5.2, which
are plots of the lowest order fundamental frequency and second harmonic frequency modes
for the B690 material at 1.55 pm and 775 nm respectively. The overlap factor, and therefore
the power exchange process between the two guided fields in the multiple AQW layer,
should therefore be approximately optimised.

From a comparison of the B690 first order second harmonic frequency (775 nm)
mode profiles of Figs. 5.3 with the B690 lowest order fundamental frequency (1.55 pm)
mode profiles of Figs. 5.1, it may also be seen that the overlap factor between the lowest
order fundamental frequency mode and the first order second harmonic frequency mode is
minimised (i.e. the coupling between the modes via the non-linear interaction with the
multiple AQW layer is minimised). This is because, due to the confinement symmetry, the
lowest order fundamental frequency mode is essentially an even function of depth within the
non-linear multiple AQW guiding layer, while the first order second harmonic frequency
mode is essentially an odd function of depth.

Finally, it may be recalled from Section 5.1.1 that, to avoid any built-in field effects,
all of the epitaxial structures studied throughout this project were nominally undoped. It
should then also be pointed out, that by using such passive structures, free carrier absorption
is avoided and waveguide losses should be correspondingly reduced.
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Fig. 5.1 Normalised lowest order mode profiles at 1.55 pm for a B690 multiple ACQW slab waveguide
(a) TE-polarised input field (b) TM-polarised input field
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5.3 The Characterisation of GaAs/AlGaAs Multiple
AQW Waveguide Structures

It should be noted that the characterisation measurement results described next are not
presented in chronological order. Rather, they are presented in an order which was chosen in
hindsight to allow the most logical development of the arguments which lead to the
conclusions summarised in Section 5.3.6.

5.3.1 X-ray Diffraction

X-ray diffraction measurements were performed by the growers themselves on most
of the GaAs/AlGaAs multiple AQW waveguide structures analysed during this work. The
growers were also largely responsible for the interpretation of the X-ray diffraction rocking
curves. The deduction of the average Al fraction in the MQW layer and the period of the
MQW layer from typical rocking curve features will therefore be described in very simple

terms.

X-ray rocking curves are essentially plots of the X-ray radiation diffracted from the
surface of a wafer epitaxial structure as a function of the angle of incidence of the X-rays
which is varied by tilting or "rocking" the sample. Several large peaks are typically observed
for a GaAs/AlGaAs epitaxial structure at different rocking angles from which the Al fractions
of the different wafer layers may be derived. For the particular case of a GaAs/AlGaAs
MQW waveguide structure, rocking curve peaks may often be resolved which correspond o
the Al fractions in the upper and lower cladding layers, the GaAs substrate, and the average
Al fraction in the MQW guiding layer itself. Furthermore, from the angular separation of any
observable secondary or "satellite” peaks (which occur periodically as a function of the
rocking angle due to the periodic nature of the MQW) the MQW period itself may be
unambiguously determined.

Double crystal X-ray diffractometry results for all of the epitaxial structures examined
are summarised in Table 5.2. Clearly, the measured MQW periods for the QT613 and B672
structures agree with the nominal periods to within £10%. There is also good agreement
between the measured layer compositions and the nominal layer compositions in every case
except two: the layer compositions were not measured for the B690 structure as the X-ray
diffractometer was not operational in the period immediately following its growth, while, for
the B672 structure, the Al fractions in the cladding layers, and the average Al fraction in the
MQW guiding layer, are well in excess of the corresponding nominal values.
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Layer Al Fractions
Material MQW Lower MQW Upper
Period(A) |  (1a4ding Cladding
QT613 335 0.490 0.390 0.490
(MOCVD) (300) (0.49) (0.39) (0.49)
B563 - 0.420 0.213 0.330
(MBE) (230) (0.42) 0.21) (0.32)
B578 - 0.460 0.213 0.351
(MBE) (212) (0.44) (0.20) (0.34)
B635 - =(0.545* =~().47* ~().545*
(MBE) (187) (0.56) (0.47) (0.55)
B672 199 0.65 0.502 0.65
(MBE) (210) 0.47) (0.35) 0.47)
B690 - - - -
(MBE) (210) 0.47) (0.35) (0.47)
QT849A - 0.48 0.353 0.48
(MOCVD) (210) 0.47) (0.35) (0.47)

Table 5.2 X-ray diffraction results for different multiple AQW epitaxial waveguide structures (nominal

quantities are enclosed in brackets)

*Individual layer peaks could not be clearly resolved so that the Al fractions quoted are only approximate

5.3.2 Room Temperature Absorption

Although an absorption spectrum contains information about all the interband
transitions between the bound energy levels in a QW structure, the absorption measurement
(when performed in a transmission geometry) requires the removal of the GaAs substrate,
and is therefore both relatively time-consuming and destructive. In practice substrate removal
was accomplished by first mounting the sample epitaxial side down on a clean glass
microscope slide using index matching glue. The sample was then lapped to a thickness of
approximately 100 um prior to selective wet etching with a 19:1 hydrogen peroxide:ammonia
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solution which etched the GaAs substrate approximately 100 times faster than the underlying
epitaxial cladding layers. The wet etching was performed in several stages. After each stage,
the sample was examined under a microscope while illuminating it with a white light source
from below. Once the substrate layer had effectively been removed, "red" light was observed
to be transmitted through the sample, and no further etching was performed.

Prior to undertaking the absorption measurement itself, a quarter wavelength AR
coating of Al,O3 was sputtered onto the exposed surface of the sample to help suppress
Fabry-Perot oscillations which were observed to be superimposed on top of the multiple
AQW transmission spectra of interest and which occurred due to multiple reflection effects
within the thinned samples. Fig. 5.4 is a schematic diagram of the experimental set-up for
the absorption measurement which was performed in a transmission geometry:

White

Light -

Source

Sample
(Mounted on Glass Slide) Monochromator
(Tuning Automated )
Si Photodlode Chopper
Chopper
) Motor
Lock-in Controller

Amplifier
\j PC

Fig. 5.4 Schematic diagram of the experimental set-up for room temperature absorption measurements

(performed in a transmission geometry)

White light was focused onto the entrance slit of the monochromator. The tuning of the
monochromator was automated using a stepper motor interfaced to a PC, and light at the
selected wavelength from the exit slit of the monochromator was focused onto a Si
photodiode through a chopper wheel and the thinned sample itself. Lock-in detection was

used to monitor the intensity transmitted by the sample as a function of wavelength. The
lock-in amplifier was also interfaced to the PC and the transmission spectrum I,(A) was
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recorded over the interband transition wavelength range of interest. Subsequently, the
spectrum of the white light source I;(A) was recorded over the same wavelength range using

an identical set-up, but with the sample removed. The normalised transmission spectrum
I,(A)/1;(A) was then obtained by dividing the two recorded spectra. Since absorption
spectra generally appear more often in the literature and therefore tend to be more familiar
than transmission spectra, it is a simple matter to show that, when neglecting multiple
reflection effects within the sample and ignoring the presence of the glass slide, the
absorption coefficient o is given by:

a=4{2In(1 ~R)-In[L,(A)/L(A)]} (5.3)

In (5.3), d is the thickness of the thinned sample and R is the reflectance at the sample/air
interface. Plotting —ln[It(k)/Ii(k)] as a function of the wavelength A should therefore
result in a spectrum which is essentially an absorption spectrum expressed in arbitrary units.
The absorption spectra derived in this way for 6 out of 7 of the different multiple AQW
structures grown for this work appear in Figs. 5.5 to 5.10. The free electron to free hole
interband transition wavelengths indicated in the figures, and the corresponding normalised
oscillator strengths listed in the tables (which reflect the expected size of the edges in the
step-like absorption continuum and the size of the corresponding exciton absorption peaks
themselves in the effective mass approximation), were calculated for the nominal structurcs
at 300 K as described in Section 4.5.

Also marked in Figs. 5.5 to 5.10, are the room temperature peak photoluminescence
wavelengths, which will be discussed at some length in Section 5.3.5. It should be
emphasised that the interband transition wavelengths indicated were calculated for free
electron to free hole transitions and have not therefore been corrected to account for exciton
binding energies. From the experimental data presented by Koteles and Chi [1] and the
modelling results of Greene and Bajaj [6] for the fundamental heavy hole exciton binding
energy as a function of the well width for GaAs symmetric QW's with AlGaAs barriers, we
estimate the fundamental heavy hole exciton binding energies in all of the AQW structures to
be approximately 8 - 10 meV. These binding energies translate into wavelength differences
of approximately 3.2 - 4.0 nm for the AlGaAs AQW structures, QT613, B672, B690 and
QT849A (i.e. the AQW structures with no GaAs layers in the wells), which have their
fundamental exciton heavy hole exciton peaks around 700 nm. For the GaAs AQW
structures B563 and B578, however, with their fundamental heavy hole exciton peaks
around 800 nm, these binding energies correspond to a wavelength difference in the range
4.1 - 5.2 nm. We would therefore expect fundamental heavy hole exciton peaks to occur in
the absorption spectra of the AlGaAs AQW structures (QT613, B672, B690 and QT849A) at
wavelengths approximately 3 - 4 nm longer than the elhh1 predicted transition wavelengths
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indicated, while, for the GaAs AQW structures (B563 and B578), we would expect the
fundamental heavy hole exciton peaks to occur at wavelengths approximately 4 - 5 nm longer
than the predicted elhh1 transitions indicated.

Furthermore, it is well known that 3D exciton binding energies are inversely
proportional to the quantum number j squared [7]:

Ex(3D) =1/ (5.42)
while in the 2D limit they are inversely proportional to (j—1/ 2)2 [8]:
Ex(2D) = 1/(j-1/2)" (5.4b)

Hence, for the e2hh2 excitons, we might expect the fundamental heavy hole AQW exciton
binding energies quoted above to be reduced by a factor of between 4 and 2.25. Similarly,
for the e3hh3 excitons, the reduction factor is between 9 and 6.25. It may therefore be seen
that higher order heavy hole AQW exciton binding energies are likely to be no more than 2
meV, which is essentially negligible for the purposes of interpreting the AQW absorption

spectra.

With these considerations in mind, some general observations regarding the
absorption spectra of Figs. 5.5 to 5.10 will now be made before discussing the interpretation
of individual spectra. It is immediately obvious from the observed wavelengths of the most
prominent elhhl and ellh1 fundamental exciton peak features relative to the calculated elhhl
and ellh1 transition wavelengths for the AlGaAs AQW structures (QT613, B672, B690 and
QT849A), that the actual AQW structures would appear to offer more quantum confinement
to the el, hhl and 1h1 levels than the nominal structures. This could be the result of several
different growth inaccuracies: the actual QW layer thicknesses may be less than the
corresponding nominal layer thicknesses; the actual QWs may be deeper than the nominal
QWs; the Al fractions in the QW layers may all be proportionately higher than their nominal
values; or, all of the above may be true. However, judging from the X-ray diffraction results
of Table 5.2, the measured average MQW Al fractions agree very well with the nominal
average MQW Al fractions for all the AlGaAs AQW structures apart from B672 which had a
significantly higher average Al fraction in the MQW layer. The additional quantum
confinement observed in these structures is therefore attributed to the actual QW layers
grown being thinner than the nominal corresponding layers. Although the fundamental
exciton peaks for the GaAs AQW structures B563 and B578 of Figs. 5.6 and 5.7
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Fig. 5.5 QT613 room temperature absorption spectrum (transitions indicated calculated for the nominal

structure at 300 K) and the corresponding normalised interband transition oscillator strengths at 300 K for the

polarisation parallel to the layers
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Fig. 5.7 B578 room temperature absorption spectrum (transitions indicated calculated for the nominal
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Fig. 5.8 B672 room temperature absorption spectrum (transitions indicated calculated for the nominal
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structure at 300 K) and the corresponding normalised interband transition oscillator strengths at 300 K for the

polarisation parallel to the layers
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respectively, are better aligned with the calculated elhhl and ellh1 transition wavelengths,
once exciton binding energies have been taken into account, it is clear that for these
structures too, the observed fundamental exciton peaks occur at wavelengths which are
several nm shorter than expected for the nominal structures. The additional quantum
confinement observed for all the multiple AQW waveguide structures should not, however,
have any particularly detrimental consequences for SHG and the study of other second order
non-linear optical processes in these structures, provided that the asymmetry factor of (3.4),
and therefore X(ZQ are not reduced significantly as a result.

Despite the extra quantum confinement observed in practice, the transition
wavelengths calculated using the Schrodinger solver model of Chapter 4 allow ready
identification of the major features in all the absorption spectra except the QT613 ASQW
material spectrum. This spectrum does not appear to have any obvious features (ncither
continuum edges nor exciton peaks) corresponding to the e2hh2, e2lh2 and e2hh3
transitions, which are all relatively significant for the nominal structure (as may be seen from
the corresponding normalised oscillator strengths). One could argue, however, that the
pronounced edge at 625 nm and the "ledge” between approximately 615 nm and 623 nm
could be the result of the superposition of the different absorption features corresponding to
these 3 transitions, given that the actual ASQW structure offers more quantum confinement
than the nominal structure.

Alternatively, we may consider the possibility that, due to the extra quantum
confinement, the second bound electron level has been "squeezed" out of the well, which
would result in the extinction of the second order non-linear susceptibility tensor components
associated with the AQWs. Since e2 is relatively near the top of the well for the nominal
structure in the first instance, this may be a likely explanation. To further support this
argument, the calculated first and second bound electron levels el and e2 are plotted with
respect to the right-hand vertical axis of Fig. 5.11 as functions of the well width W for the
QT613 structure. In this figure, it has been assumed that the widths of the two different well
layers W, and W (W +W,=W) are decreased proportionately (i.e. W{/W is constant).
Also indicated on the graph, are the conduction band potentials corresponding to the two
different nominal Al compositions in the well layers, and the Al composition in the barrier
layers. In addition, the calculated elhhl interband transition wavelength is plotted with
respect to the left-hand vertical axis as a function of the well width. By further assuming an
elhhl exciton binding energy of 10 meV which translates into a wavelength difference of
approximately 4 nm (i.e. we neglect any variations in the exciton binding energy with well
width), the calculated elhh1 exciton peak wavelength is also plotted as a function of W. It
may then be seen that the elhhl exciton peak wavelength of 687 nm observed in the
absorption spectrum of Fig. 5.5, corresponds to a well width of approximately 60 A in Fig.
5.11, and that for this well width there is no second bound electron level in the well.
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We may find further credence in the hypothesis that e2 does not exist, by referring to
the nominal AQW structures in Appendix A. It may then be noticed that the QW barrier layer
thickness for the QT613 structure is 200 A, which compares with QW barrier layer
thicknesses of 120 - 130 A for the other AQW structures. We would therefore expect a more
pronounced QW barrier absorption edge for the case of the QT613 material relative to the
QW barrier absorption edges for the other AQW materials. By referring to the absorption
spectra of Figs. 5.6 to 5.10, it may be confirmed that there are no such distinctive edges
corresponding to the QW barriers in these other structures. This is consistent with the
supposition that the edge at 625 nm in the QT613 absorption spectrum of Fig. 5.5
corresponds to absorption in the thicker QW barriers for this structure. The absence of an e2
level would then also have the effect of accentuating this absorption edge still further so that
we conclude that no e2 level exists for the QT613 ASQW structure as a consequence of the
actual QW layers grown being too thin, and that the edge at 625 nm in the QT613 absorption
spectrum of Fig. 5.5 corresponds to absorption in the QW barriers.
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Fig. 5.11 Calculated first and second bound electron energies (right-hand vertical axis) and the
corresponding elhh1, and elhhl exciton, interband transition wavelengths (left-hand vertical axis) for the

nominal QT613 ASQW structure as a function of the total well width W,
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5.3.3 Transmission Electron Microscopy

Transmission electron microscopy (TEM) of some of the multiple AQW waveguide
structures was attempted for the unambiguous determination of all the epitaxial layer
thicknesses including the individual AQW layer thicknesses. TEM measurements are,
however, destructive and require difficult and extremely time consuming sample preparation,
so that after disintegration of a few samples, TEM measurements were abandoned. Although
complete characterisation of the various multiple AQW waveguide structures was not
possible without TEM results, the X-ray diffraction, and absorption measurement results
gave a good indication as to how closely the actual structure grown resembled the nominal

structure.

5.3.4 Photoluminescence Excitation Spectroscopy
(B563 and B578 Multiple AQW Structures Only)

As mentioned in the previous section, complete characterisation of the AQW
structures required destructive absorption and TEM measurements. An all-optical switch
device such as that described in Section 3.4 relies upon periodic intermixing of the multiple
AQW layer along the length of the waveguide device for the periodic suppression of the
AQW second order non-linearities. It would therefore be desirable to measurc non-
destructively in some way the reduction in the degree of QW asymmetry after the intermixing
stage. For this reason, photoluminescence excitation spectroscopy (PLE) measurements
were attempted on the B563 and B578 multiple AQW structures before and after QW
intermixing.

PLE is essentially an absorption measurement technique which involves the resonant
excitation of electron-holes pairs. These hot carriers rapidly thermalise and subsequently
recombine via the intrinsic photoluminescence (PL) transition (which is predominantly e1hhl
at temperatures of 77 K and higher, as discussed in the next section) with the spontaneous
emission of a photon. By monitoring the PL intensity at the elhhl wavelength as a function
of the excitation wavelength, a PLE spectrum is then obtained. At low enough temperatures
even weak "forbidden" interband transitions have been observed in PLE spectra [9] (i.e.
transitions such as those which occur in symmetric QWs between bound electron and hole
levels with quantum numbers je and jh respectively such that Aj = je - jh = 2p where p = %1
+2, 43, ...). (These "forbidden" symmetric QW transitions are also observable using
conventional destructive absorption measurement methods at temperatures < 3K [10].)

For the AQW structures B563 and B578, it was therefore hoped that e2hhl and
e2lhl PLE transition features (which do not occur for symmetric QW's) would be
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observable and, that furthermore, these features would diminish in size after intermixing due
to the reduced QW asymmetry. Observing such transition features in the PLE spectra of the
B563 and B578 materials before and after intermixing under different conditions would
therefore have given an indication of the magnitude of the second order non-linear
susceptibility tensor components associated with the wells, and the efficiency with which the
intermixing process suppressed these non-linearities.

Fig. 5.12 is a schematic diagram of the experimental set-up used for the PLE
measurements. The excitation was provided by a Ti:sapphire laser with a standard short
wavelength mirror set which allowed tuning in the approximate range 700 - 850 nm. Light
from the Ti:sapphire laser was coupled into the input fibre of a 3 dB fibre coupler as shown.
The sample was fixed onto the end of the coupler output fibre using transparent glue and
immersed in liquid nitrogen. A small solid angle of the total PL emitted from the multiplc
AQW layers was then automatically collected by the fibre in which it propagated backwards
via the fibre coupler into the monochromator which was tuned to the elhhl intrinsic PL
wavelength. Lock-in detection with a cooled Ge photodiode was then used to measure the
PL signal intensity as a function of the excitation wavelength. As indicated in Fig. 5.12, the
Ti:sapphire power was also monitored to allow normalisation of the detected PL intensity so
eliminating the effects of variations in the Ti:sapphire power which occurred during tuning.

At room temperature (i.e. before the sample was immersed in the liquid nitrogen) no
meaningful features were observed in the normalised PLE spectrum for the B563 multiplc
ASQW structure. After immersion of the sample in liquid nitrogen however, the normaliscd
excitation spectrum of Fig. 5.13 was obtained. The arrows on this figure indicate the
positions of the interband transition wavelengths calculated for the nominal structure at 77K
before correction for the exciton binding energies, and the corresponding normalised
oscillator strengths (which reflect the size of the continuum absorption edges and the exciton
absorption peaks) are listed in the table below. Although the ellh1 exciton absorption peak is
clearly visible, it is difficult to convince oneself that there are any absorption features
corresponding to the other calculated transitions indicated. Certainly there is no real evidence
at this temperature of the e2hhl and e2lh1 transitions which must exist for the AQW tensor
components discussed in Section 3.1 to exist. We therefore conclude that PLE at 77 K using
the Ti:sapphire laser with the standard short mirror set tells us nothing about the asymmetry
of the QWs in the B563 structure. Given the complexity of the PLE measurement, and, duc
to restrictions on time and equipment, PLE was not attempted at liquid helium temperatures.
Furthermore, no PLE measurements were performed on the B578 sample, and, due to the
absence of a readily available source tuneable over the 600 - 700 nm range within the
department, no PLE measurements were attempted with the AlIGaAs AQW structures
(QT613, B635, B672, B690 and QT849A).
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5.3.5 Photoluminescence

Although the photoluminescence (PL) blueshift that occurs on intermixing a multiple
AQW sample tells us nothing directly about the changes in the QW asymmetry, we can infer
from it the degree of intermixing achieved after annealing the sample at high temperatures
(see Chapter 6). Since the PL measurement is also essentially non-destructive and requires
no sample preparation, it was the technique of choice for characterising intermixed multiple
AQW structures during this work.

Fig. 5.14 is a schematic diagram of the experimental PL set-up which is a simpler
version of the PLE set-up of Section 5.3.4.
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Fig. 5.14 Schematic diagram of the experimental PL set-up

An argon ion laser provided constant wavelength excitation at 514.5 nm. Light from the laser
was coupled into one of the fibre inputs of the 3 dB fibre coupler, as for the PLE
measurement, and the sample itself was fixed onto the end of the fibre output from the
coupler using transparent glue. PL emanating from the multiple AQW layers of the sample
was then automatically collected by the same fibre. The other fibre pig-tail from the 3 dB
coupler was connected to the monochromator. The PL spectrum of the sample was then
obtained by monitoring the PL signal intensity using a Ge photodiode with lock-in detection,
while scanning the monochromator wavelength using a stepper motor which was interfaced
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to the PC. The resulting PL spectra for the various AQW structures appear in Figs. 5.15 -
5.21 (the PL spectra at 77K were obtained by simply immersing the sample in liquid
nitrogen). The peak PL wavelengths and PL peak FWHM values are also recorded in Table
5.4 at both 300K and 77K along with the PL peak wavelengths calculated for the

corresponding nominal structures which are enclosed in brackets. In addition, both the
measured peak PL wavelength differences AL(meas) = A3pok (meas) — A, (meas) and the

corresponding calculated differences AA(calc) = gk (calc) — A7 (calc) are listed in the

table.
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Fig 5.15 QT613 normalised PL. spectra at (a) 77 K and (b) 300 K
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Fig. 5.17 B578 normalised PL spectra at (a) 77 K and (b) 300 K
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Fig. 5.19 B672 normalised PL spectra at (a) 77 K and (b) 300 K
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Fig. 5.20 B690 normalised PL spectra at (a) wafer centre (300 K) (b) 10 mm from wafer centre (300 K)
(c) 20 mm from wafer centre (300 K) (d) 20 mm from wafer centre (77 K)

- 131 -



1
(a) A (b)

0.8 - -
0.6 - -
0.4 — -
0.2 - -

0.8 - -

0.4 - -

0 T 1 T T 1 T T T T T
o © © ©o © © o o o ©o © e o o © o o o o o o
[=} -— o~ [ag} < L al N4 o~ o« (=3 w o o~ o0 N (=] - o~ o e vy
© OV 0 v 0w v v v Y v v ¢ v ¥ v K~ t~ &t~ &~ &~ 9+
Wavelength(nm) Wavelength(nm)

Fig. 5.21 QT849A normalised PL spectra at (a) edge of wafer opposite major flat (77 K) (b) edge of wafer
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300K 77K AA=
Material | Growth | PL Peak | FWHM | PL Peak | FWHM | A300k-A77k
Method | A (nm) | (meV) | A(nm) | (meV) (nm)
QT613 | MOCVD 695 28.2 660 22.8 35
(ASQW) (708.5) (672.6) (35.9)
B563 MBE 814.4 17.6 771.4 9.0 43
(ASQW) (817.8) (772.4) (45.4)
B578 MBE 817 20.4 768 8.4 49
(ACQW) (819.9) (774.3) (45.6)
B635 MBE - - 707 101.7 -
(ASQW) (709.4) (673.8)
B672 MBE 692 31.1 658 15.8 34
(ACQW) (710.2) (673.9) (36.3)
B690 MBE 708 58.1 670 16.6 38
(ACQW) (710.2) (673.9) (36.3)
QT849A | MOCVD | 698 - 35.4 664 - 19.3 31- 42+
(ACQW) 712 675 (36.3)
(710.2) (673.9)

Table 5.3 Summary of multiple AQW structure PL results at room temperature and 77 K (parameter values

enclosed in brackets are calculated values for the nominal structures)

*Variations in the PL peak wavelength were observed across this wafer
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The observed PL peak wavelengths have also been marked on the corresponding
absorption spectra of Figs. 5.5 - 5.10, and, for the AQW structures with only AlGaAs in the
well layers (QT613, B672, B690 and QT849A), the PL peak wavelength is considerably
longer than the e1hh! exciton wavelength. (For the QT849A material, variations in the layer
compositions and thicknesses in the region of the wafer from which both the absorption and
PL samples originated mean that the PL peak wavelength corresponding to the absorption
spectrum of Fig. 5.10 cannot be accurately established. The range of the PL peak
wavelengths observed is therefore indicated instead). For the AQW structures with GaAs in
the well layers (B563 and B578), in contrast, the PL peak wavelengths are 1 - 2 nm shorter
than the observed exciton peak wavelength. This is consistent with the fact that PL in these
structures is occurring via the intrinsic elhhl interband transition mechanism.

There are several possible reasons why the peak PL wavelengths observed for the
AlGaAs AQW structures do not occur within a few nm to the short wavelength side of the
corresponding observed elhhl exciton peaks in the absorption spectra. Firstly, differences
may exist in the MQW layer compositions or thicknesses between the absorption and PL
samples. For all of the MBE-grown structures, however, no variations were observed in the
PL peak wavelengths (see Fig. 5.20, for example, from which we notice that the room
temperature PL peak wavelength is virtually constant across the B690 wafer). Variations
were observed in the PL peak wavelength of the MOCVD-grown QT849A structure. These
variations are consistent with the flow of reactant gases during MOCVD growth which gives
rise to variations in the epitaxial structure, especially at the wafer edges adjacent to and
opposite the minor flat. As both the transmission sample corresponding to the absorption
spectrum of Fig. 5.10 and the PL sample corresponding to the room temperature PL
spectrum of Fig. 5.21d were both taken from the region adjacent to the minor flat, it is
difficult to make any conclusions regarding the position of the peak PL wavelength relative
to the observed elhhl exciton peak for this structure. For the only other MOCVD-grown
structure, the QT613 ASQW structure, both the PL and absorption samples were taken from
a position near the centre of the wafer where no fluctuations were observed in the PL peak
wavelength. We therefore conclude, that the observed differences in the elhh1 absorption
and PL wavelengths at room temperature for the MBE-grown structures and the MOCVD-
grown QT613 structure, cannot be attributed to variations in the epitaxial structures occurring
during growth.

Another possible explanation for the observed differences in the PL and elhhl
wavelengths in the AlGaAs AQW structures is that, at the higher excitation intensities
required to obtain a clear peak in the PL spectrum at room temperature, band-gap
renormalisation [9] and/or sample heating occurred, both of which would cause a red shift in
the PL wavelength. To examine this possibility we may refer to the results of Table 5.3 from
which we notice that AA(meas) is approximately equal to AA(calc) for the AlGaAs AQW
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structures QT613, B672 and B690. We therefore conclude that neither band-gap
renormalisation nor heating effects occurred at the higher excitation levels required to obtain
a PL spectrum at 300K.

Finally, it may be recalled that the observed peak PL/elhhl wavelength differences
were only observed for the AlGaAs AQW structures and not for the GaAs AQW structures.
This suggests that the discrepancy between the PL and elhhl absorption wavelengths may
be explained by the relative electron affinities of Ga and Al: Al has a higher electron affinity
and is therefore much more reactive than Ga so that the concentrations of impurities
incorporated into AlGaAs layers during growth are often orders of magnitude greater than
the impurity concentrations in GaAs layers. It is universally acknowledged that C is the main
unintentional impurity in nominally undoped MBE- and MOCVD-grown GaAs/AlGaAs
layers in which it forms shallow acceptor levels [11,12,13,14]. We may therefore
hypothesise that, in contrast to the GaAs AQW structures for which the dominant room
temperature PL transition was observed to be the intrinsic elhh1 transition, the dominant PL
recombination mechanism for the AIGaAs AQW structures is the free electron to C shallow
acceptor level transition, e1->C. From the modelling results of Masselink et al. [15] and the
experimental results of Miller et al. [16], we estimate that the C acceptor binding energics
Ec in the AlGaAs AQW structures relative to the first bound heavy hole sub-band edge are
between 30 and 40 meV. To estimate the expected energy separation of the e1->C transition

from the e1hh1 bound exciton transition we then simply subtract the exciton binding energy
Ex from the C acceptor binding energy i.e. if E,j- denotes the energy of the el->C

transition, and E.,;,x denotes the energy of the elhh1 bound exciton absorption feature,

then:

Ecimhix — Eeic =Ec —Ex (5.5)

Estimating the elhhl exciton binding energies to be between 8 and 10 meV for the AlGaAs
AQW structures as before, then yields:

20 meV < E¢c —Ex <32 meV (5.6a)

which, in terms of wavelengths is:

7.9 nm < AA < 12.6 nm (5.6b)
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ie. if e1->C is the dominant PL mechanism for the AlGaAs AQW structures, then we would
expect the PL peak wavelength to be between 7.9 and 12.6 nm longer than the elhhl exciton
peak wavelength. From inspection of the absorption spectra of Figs. 5.5, 5.8 and 5.9, we
see that this is indeed approximately the case, and we conclude that the identification of the
el->C transition as the room temperature PL. mechanism for the QT613, B672 and B690
structures is consistent with our experimental results.

Further evidence that the observed PL spectral peaks for the AlIGaAs AQW structures
are, in fact, due to extrinsic PL as a result of the e1->C transition may be found from
consideration of the PL spectra obtained for all the AQW structures (both AlGaAs and GaAs)
of Figs. 5.15 - 5.21 at both room temperature and 77K. Examining the PL spectra of the
AlGaAs AQW structures QT613, B672, B690 and QT849A first, (which we have
hypothesised are the result of an el->C transition) we notice that, in going from 77 K to 300
K, phonon broadening occurs which is more pronounced at shorter wavelengths resulting in
"shoulder-type" features for QT849A and even peak features for B690. The wavelength
separation of these features from the PL peak in both cases is consistent with their
identification as elhh1 transitions. Physically this behaviour arises because, after excitation
at 514.5 nm, the hot carriers rapidly thermalise so that the electrons relax to el while the
holes relax to hhl; at 77 K only a very small proportion of the (finite number of) C acceptors
will be ionised (since E- = 30 - 40 meV while kT = 6.6 meV) so that el->C transitions
dominate. At 300 K however, more of the C acceptors will be ionised so that spontaneous
emission begins to occur as a result of recombination from el->hh1 in addition to e!->C.

For the GaAs AQW structures B563 and B578 which exhibit intrinsic PL on
excitation (since the C concentration is orders of magnitude lower in the GaAs well layers of
these structures), an even more pronounced broadening towards shorter wavelengths may be
observed in the PL spectra of Figs. 5.16 and 5.17 respectively at 300 K. Now, it is well
known that any excitons present in QW structures are rapidly ionised at room temperature
due to collisions with LO phonons [17] and that the intrinsic PL recombination transition is
the elhhl free electron to free hole transition. There is also evidence to suggest that such
excitons are still ionised even at 77 K [18] when kT = 6.6 meV. Now, it may be recalled
that, for the B563 and B578 structures, the observed room temperature PL wavelength was
indeed approximately equal to the observed elhhl absorption wavelengths in Figs. 5.6 and
5.7 respectively. We may therefore attribute the significant shoulders on the shorter
wavelength side of the main peaks in the room temperature PL spectra of Figs. 5.16 and
5.17 to the ellhl recombination which occurs due to thermal population of the lhl level at
300 K. Furthermore, to appreciate why the short wavelength shoulders in the room
temperature PL spectra are more pronounced in general for the GaAs AQW structures B563
and B578 relative to the corresponding features for the AlGaAs AQW structures, we just
have to compare the calculated magnitudes of (ellh1-e1hhl) for the GaAs AQW structures
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with the C acceptor binding energies for the AlGaAs AQW structures: in the GaAs AQW
structures B563 and B578, (elhhl-ellhl) = 11 nm = 21 meV, while for the AlGaAs AQW
structures typically we might have E- = 30 - 40 meV [16,17]. Hence, at 300 K (kT = 26
meV) we would expect 1h1 for the GaAs structures to be thermally populated to a greater
extent than hh1l would be for the AlGaAs AQW structures. This results in correspondingly
larger ellh1 features on the shorter wavelength side of the room temperature PL spectra for
the GaAs structures compared with the elhh1 features on the shorter wavelength side of the
room temperature PL spectra for the AlGaAs structures.

Finally, we must make some comments on the FWHM values of the various PL
peaks observed at 77 K in Figs. 5.15 - 5.21. Firstly, the PL spectra observed for the
AlGaAs AQW structures were broader than PL spectra for the B563 and B578 GaAs AQW
structures due to Al inhomogeneities. Furthermore, the B635 ASQW exhibited the largest PL
FWHM at 77 K by far, for reasons which become immediately obvious when we examine
the ASQW structure in Appendix A : due to the deep (GaAs layer sandwiched between
AlgsGao 4As and Alg 4Gag eAs layers) narrow (6 monolayers = 17A) well regions,
variations as small as £1 monolayer in the GaAs layer thickness throughout the multiple
AQW result in large variations in the first bound electron and heavy hole levels. It is no
coincidence either, that the AQW structure exhibiting the next largest FWHM is the QT613
AQW structure which has relatively deep (Alp.15Gag gsAs layer sandwiched between
Alp.44Gag seAs and Alg37Gag 63As layers) narrow (30A) well regions. Any variations in

the Al 15GaggsAs layer thickness over the multiple AQW will therefore result in substantial
variations in the el energy and the C acceptor binding energy E.
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5.4 Conclusions

Asymmetric quantum well structures have several different tensor elements
associated with them by virtue of the asymmetry of the two first bound electron envelope
functions and a first bound hole function. The AQW layer thicknesses and compositions
must be carefully chosen to maximise these tensor elements. In addition, the AQWs should
be designed to ensure that the fundamental photon energy is below the half-bandgap (and the
second harmonic photon energy is below the bandgap) to avoid two-photon absorption of
the fundamental beam (and linear absorption of the second harmonic beam). The MQW layer
should also be designed to ensure negligible coupling between neighbouring wells. The
growth of asymmetric stepped QW structures with three different Al fractions using only two
Al cells can pose a further practical constraint on the layer compositions. Characlerisation
measurements have shown that the growth of AQW structures within all of these constraints
is relatively demanding. Therefore, with the exception of the QT613 ASQW structure, all of
the AQW structures were designed to satisfy the design constraints in the presence of growth

inaccuracies.

There are several important considerations for the design of waveguide epitaxial
structures for SHG, including single-moded operation at the fundamental wavelength,
minimum leakage to the substrate, and a maximum overlap factor for SHG. The waveguide
structures were therefore designed in accordance with these principles.

From absorption measurements, it was apparent that all of the AQW structures
studied (especially the structures with higher Al fractions in the AQW layers) provided more
quantum confinement than the nominal structures. This was attributed to the actual QW
layers being thinner than the nominal QW layers. In particular, there was no evidence of any
features in the absorption spectrum of the QT613 ASQW structure corresponding to
interband transitions from a second bound electron to a second bound hole level.
Calculations were therefore performed which showed that the e2 level was a relatively strong
function of the QW layer thicknesses and it was concluded that the QT613 QW layers were
so thin that no e2 level was supported in the wells. This conclusion is also consistent with
the failure to observe any unphase-matched SHG associated with the AQW tensor

component x(zzu) in waveguides fabricated from the QT613 material (see Chapter 7).

For the higher Al fraction AQW structures, (both MOCVD- and MBE-grown) the
observed PL peak wavelength was = 10 nm longer than the observed wavelength of the
elhhl exciton absorption peak. This was attributed to the incorporation of more carbon in
the higher Al fraction layers during growth and PL via the extrinsic el -> C transition. The
PL peak wavelength for the MBE-grown AQW structures with GaAs layers was, however,
consistent with intrinsic PL via the elhhl transition. Higher C concentrations in the higher
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Al fraction AQW structures should not have any particularly detrimental consequen.ces for
SHG in these structures.

The PL FWHM spectral widths for the different AQW structures studied were all
approximately less than 20 meV at 77 K indicating good growth uniformity across the MQW
layers in every case except the narrow ASQW B635 structure. The PL FWHM in the case of
the B635 structure was greater than 100 meV and this was attributed to monolayer
fluctuations in the thickness of the deep narrow well layers across the MQW. Consequently,
no further experiments were attempted with the B635 structure.

X-ray diffraction measurements indicated that the actual MQW periods and the
average Al fractions in the different waveguide epitaxial layers of the AQW structures studied
were approximately equal to those of the nominal structures with the exception of the B672
structure. Consequently no further experiments were performed with the B672 structure.

No additional information about the B563 or B578 AQW structures was gained from
PLE measurements at 77 K over the information obtained from room temperature absorption
measurements. The non-destructive nature of PLE was also outweighed by the considerable
complexity of the measurement and PLE experiments were accordingly abandoned.

TEM measurements for the determination of the AQW layer thicknesses werc also
abandoned due to the time-consuming destructive nature of the sample preparation process.

From all of the characterisation results, it would appear that the B563, B578, B690)
and QT849A AQW structures were the only AQW structures grown approximately to
specification. Quantum well intermixing and SHG experiments were thercfore performed
with these structures and these experiments are described in the following chapters.
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6

Impurity-free Vacancy Disordering
for the Control of GaAs/AlGaAs
AQW Second Order Non-linearities

From Chapter 2, it may be recalled that the control of second order non-lincar effects
using quasi-phase-matching requires that the second order non-linearity is periodically
modulated. As mentioned briefly in Section 3.3, the tensor elements x(z) ) “and x(z)

Xzx? XZXX’ 727

associated with AQW structures only exist due to the well asymmetry. GaAs/AlGaAs MQW

~ 2
structures also have associated tensor elements xgy)z = x(yi)z = xg; due to the non-centro-

symmeltric crystal structure of the bulk GaAs/AlGaAs material itself. All of the above tensor

elements (x(le, x(zf& x(zil ngy)z, x(yi)z, and x(zi;) are resonant at the half-bandgap.

Intermixing AQW structures causes both bandgap widening and a reduction in the
asymmetry. Therefore, for sub-half-bandgap operation, x&i’, X(Z) and x(2) are potentially

ZxXx?* 277

reduced due to a combination of bandgap widening and a reduction in the QW asymmetry,

while xf‘zy)z = xgi)z = X(zi; are potentially reduced due to bandgap widening alone. Quasi-

phase-matching may therefore be feasible by periodically intermixing a multiple AQW
waveguide structure along its length.

Several techniques exist for quantum well intermixing in the GaAs/AlGaAs material
system including impurity induced disordering (IID) and impurity-free vacancy disordering
(IFVD). IID involves implantation or diffusion of either an electrically-active impurity or a
neutral impurity into the epitaxial structure incorporating the MQW layer, followed by a high
temperature annealing stagei The presence of the dopant species leads to the formation of
group III vacancies or interstitials during annealing which subsequently migrate through the
crystal lattice to the MQW layer where they facilitate intermixing. However, to enhance the
intermixing process significantly (over and above the intermixing which occurs due to native
defects in the crystal lattice), the dopant concentrations must be in excess of = 10!8 cm-3.
For the case of electrically-active dopants, this results in high free carrier absorption losses in
waveguide devices, while for neutral impurity induced disordering, high waveguide losscs
are observed due to residual implantation damage [1]. IFVD, on the other hand, requires
only the deposition of a dielectric cap layer onto the surface of the epitaxial GaAs/AlGaAs
structure prior to annealing, and therefore circumvents the problems associated with IID.
During annealing, the dielectric cap is relatively impermeable to As, while Ga, in contrast,
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diffuses readily through the cap material. This generates group III vacancies at the
GaAs/dielectric interface which subsequently diffuse through the MQW layer where they

promote the intermixing process.

Silica is the most widely used IFVD dielectric cap material in practice [2,3,4,5]. This
is because Ga diffuses particularly well through SiO, resulting in enhanced Al-Ga
interdiffusion coefficients in the AlGaAs epitaxial structure which are over an order of
magnitude greater than the interdiffusion coefficients due to native-defect-induced
disordering for similar epitaxial structures at the same temperature [6,7]. The use of a Si0,
cap for IFVD then imposes certain constraints on the design of a waveguide epitaxial
structure which is comprised of an MQW guiding layer sandwiched between two cladding
layers and capped with a thin GaAs protective layer. Firstly, Guido ez al. [2] have shown
that, if the GaAs protective cap layer is too thin, a reaction occurs at the GaAs/SiO? interface
which effectively results in Si impurity-induced disordering of the epitaxial layers with its
inherent problems. To avoid these problems, Guido et al. advocate the growth of a GaAs
surface layer of a thickness approximately 2 1000 A, 50 that the later GaAs/AlGaAs multiple
AQW structures grown for this project all had 1000 A GaAs cap layers.

Another constraint on the waveguide epitaxial structure arises because choosing the
upper cladding layer to be too thick means that the spatial resolution of the selcctive area
IFVD process is likely to be reduced (see Section 6.3). The upper cladding layer should not,
however, be so thin that surface roughness results in significantly increased waveguide
losses or that ridge waveguide etch depth inaccuracies lead to undesirable waveguiding
behaviour such as mulitmoded operation. An upper cladding layer thickness of 0.8 pm was
therefore chosen for all the AQW waveguide structures used in this work as it was belicved
to represent the best compromise between the above effects.

6.1 Modelling the IFVD Process for Suppression of
the Multiple AQW Second Order Non-linearities

6.1.1 Modelling the Interdiffusion of Ga and Al in GaAs/AlGaAs MQW

Structures

To model the QW intermixing behaviour which occurs as a result of IFVD (which is
essentially a 1D phenomenon for thin epitaxial layers), it may be assumed that the Al-Ga
interdiffusion coefficient D is constant everywhere. Furthermore, it will be assumed that D is
independent of the initial Al fraction profile in the MQW layer. The Al fraction x as a
function of depth z and time t then obeys Fick's law:
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x(zt) o 02x(z,1)

ot 0z? (6.1)

For a given initial MQW Al fraction profile, x(z,0), (6.1) may be solved to yield the
intermixed Al fraction profile at any subsequent time t, x(z,t) subject to appropriate
boundary conditions. When modelling the intermixing of an entire MQW layer comprised of
several QW periods incorporated in a waveguide structure for example, a sensible
approximation would be to assume infinitely thick waveguide cladding layers. For the MQW
waveguide epitaxial structures of interest for this work however, with 50 wells or more in
each, this was not very appropriate. Intuitively however, the interdiffusion of Al and Ga
within a QW near the middle of such an MQW layer, will not be influenced to any great
extent by interdiffusion occurring at the outermost QW's. To a first approximation therefore,
when modelling the intermixing of a QW at the centre of such an MQW layer, the diffusion
equation of (6.1) may be solved for a 3-well system sandwiched between infinitely thick
barrier layers as illustrated in Fig. 6.1a. The intermixed central QW potential profile of the 3-
well system should then approximately resemble the intermixed profile of a QW at the centre
of an MQW layer with a much larger number of periods. To this end, the diffusion length
L4 is defined by:

Ld =\/6[— (62)

D is an increasing function of temperature, so that L, reflects the extent of interdiffusion i.c.
the more severe the anneal to which a GaAs/AlGaAs structure is subjected (the higher the
temperature and the longer the duration), the greater the diffusion length. The solution of
Fick's law for a single ASQW structure such as that depicted in Fig. 3.1 in terms of error
functions involving zand L is then given by (6.3) where the z co-ordinate origin is defined

in Fig. 6.1a [8,9]:

Z-(Wb/2)]r

X(Z,Ld) = Xp _%(Xb - Xl)'erf{ 2Ld

z—[(Wb/2)+W{}

+7(%2 - xl)‘erf{ 3L .

+1(xy - Xz)-erf{z—[(wb/zz)L:wl +W, }
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Here x,, X;, and x, are the Al fractions in the barriers, the deeper well layer and the
shallower well layer of the starting material ASQW structure respectively, and W,,, W, and
W, are the thicknesses of the barriers, the deeper well layer and the shallower well layer of
the starting material structure respectively. Similarly, for a single ACQW such as that
depicted in Fig. 3.2 we have:

X(z,La)=xp ~ 4 (x _xw).erf{il%ﬁ}
+1(x, - xw)-erf{z—[(wzt’l{j)+wl]}
~3(xp - xw).erf{z'[(wb/zz)szl ’.sz'} »
e -xw)-erf{l‘[(wb/2>+2VLV1 +W2+W33}
.

where x,, and x,, are the Al fractions in the barrier and well layers of the ACQW as-grown
structure and W,, W,, W,, and W are the thicknesses of the thicker barrier layers, the
thicker well layer, the thinner barrier layer, and the thinner well layer respectively. For the
case of a single symmetric well of width W, barrier layer thickness Wy,, and Al fractions of
x,, and x,, in the well and barrier layers respectively, we obtain a rather simpler expression
for x(z, Lg):

(Wb/z)}

Z—
x(z,Ld>=xh—%<xb-xw)-erf{_2_Ld_

z-[(Wy/2)+W] 6.5)

+5(%p —xw)-erf{ oL, }

Expressions (6.3) to (6.5) are then easily extended to yield the Al fraction profiles across an
MQW layer with an arbitrary number of periods. Figs. 6.2, 6.3 and 6.4 show the Al fraction
profiles thus obtained for 3 periods of the B563, B578 and B690 multiple AQW structures
respectively for several values of the diffusion length. The Al fraction profiles for 3 periods
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of the partially intermixed symmetric QW structures A776 and B579 are also shown in Figs.
6.5 and 6.6 respectively to allow a comparison of experimental intermixing results obtained
for these structures with intermixing results for the B563, B578 and B690 structures.
Finally, it should be mentioned that the diffusion equation was also solved for different 5-
well systems. In each case, it was found that the central well Al fraction profile was not
significantly different from the central well profile in the corresponding 3-well system
provided Lg < 50A. It was therefore concluded that, in so far as the central well profilc was
concemned, the 3-well approximation was valid for Lq < 504,

x(z Ld)

(a) ‘

x(O 0)

- x(ozoA r
| | | |
\/ | | |

x(z,Ld)

(b) 4

x(0.0]

- 7 l_x(;o; - = =" r - -

Fig. 6.1 Partially intermixed 3-well system (a) partially intermixed Al fraction profile of a 3-well system
with infinitely thick barriers (b) partially intermixed Al fraction profile assumed for solution of

Schrodinger's equation in central well with infinitely thick barriers
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6.1.2 The Peak PL Wavelength Blueshift of GaAs/AIGaAs MQW Structures
as a Measure of the Degree of Intermixing

From the central well profiles of Figs. 6.2 to 6.6 it is possible to make some general
comments about the intermixing process: initially, the bottom half of a QW is "squeezed",
while the upper half becomes wider; as intermixing continues, the minimum Al fraction in
the deepest well region begins to increase while the maximum Al fraction in the barrier layers
begins to fall, and, in the limit as L3 — oo, we would expect a bulk alloy to be formed with
a composition equal to the average composition of the starting material MQW layers. Since

we have assumed infinitely thick barriers for our 3-well model however, in the limit as
L4 — oo, a bulk alloy is obtained with a composition equal to that of the barrier layers.

Provided L, does not exceed 50 A, however, we believe the infinitely thick barrier
approximation remains valid for the central well profile in the 3-well system. The narrowing
at the bottom of the QWs and the increase in the minimum Al fraction both combine to push
the lowest bound electron level upwards (and the lowest bound hole levels correspondingly
downwards). The result is that the intrinsic PL bandgap widens i.e. the intrinsic PL peak
wavelength blueshifts. The intrinsic peak PL wavelength blueshift observed after anncaling a
sample at high temperature, therefore reflects the extent to which the MQW layer has been

intermixed.

For the B690 ACQW structure with Alg,Gag gAs in the well layers, it was
established in Chapter 6 that the dominant PL. mechanism was the extrinsic e1->C transition.
Therefore, in order to use the PL peak wavelength blueshift as a measure of the degree of

intermixing for this structure, we must estimate in some way the change in the e1->C
bandgap which occurs during intermixing. Now, if E),, denotes the energy of the elhhl
transition and E. ¢ denotes the energy of the el->C transition, then:

Eeic =Eeinn —Ec (6.6)

where E is the carbon acceptor binding energy.

From the experimental data of Miller et al. [10}], in conjunction with the modelling
results of Masselink ez al. [11], we estimate that, for a symmetric 100 A-wide GaAs QW

with Alg 3Gag 7As barriers (which we believe to offer a similar degree of 2D confinement to
the first bound heavy hole level as our AlGaAs AQW structures), Ec = 31 meV.

Furthermore, E for narrower GaAs symmetric wells with identical Alp3Gag7As barriers,
is no greater than 43 meV, while E¢ in bulk Alg3Gag7As (i.e. in a symmetric GaAs well of
zero width between Alg 3Gag 7As barriers) is approximately 32 meV. Therefore, if we
imagine a 100 A-wide symmetric GaAs well with Al 3Gag 7As barriers reducing in width
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without changing shape or depth, we would not expect E- to increase by more than
approximately 10 meV. Now, during the intermixing of the B690 ACQW structure, the
depth of the well begins to reduce, until, in the limit, a bulk alloy is formed with the average
as-grown MQW composition. The hh1 level therefore experiences progressively less 2D
confinement as intermixing proceeds, so that we might expect E- to increase by
significantly less during the intermixing of the B690 structure than it would during the
reduction of the width (without changes in the shape or depth) of our "equivalent" symmetric
QW. We conclude that, during intermixing of the B690 ACQW structure, E. varies by
significantly less than +10 meV and is therefore effectively constant. Furthermore, by
applying similar arguments, we also believe that E¢ is effectively constant for the A776
symmetric QW structure with Aly 14Gag gsAs in the wells. Then, denoting the energy of the
elhhl transition after intermixing of such structures by E;;.,;, and the energy of the e¢1->C
transition after intermixing by E;,¢, from (6.6) we have, for E constant:

eic —Eeic = Ecibnt — Eetnni (6.7)

i.e. the peak extrinsic PL wavelength blueshift obtained on intermixing the B690 ACQW and
the A776 symmetric QW structures is approximately equal to the peak intrinsic PL
wavelength blueshift. To calculate the expected PL blueshifts in the AlGaAs AQW structures
therefore, we need only estimate the intrinsic PL blueshifts in these structures.

There are many different examples in the literature of the calculation of intrinsic PL
blueshifts obtained on QW intermixing [6,2,3,12]. In the present work, Schridinger's
equation was solved across the central well of the partially-intermixed 3-well system of Fig.
6.1a, where infinitely thick QW barriers were assumed on either side of the intermixed
central well as illustrated in Fig. 6.1b. The peak PL wavelength blueshifts at both 300 K and
77 K as functions of L, calculated in this way, for the multiple AQW B563, B578 and
B690 nominal structures, appear in Figs. 6.7a, 6.8a and 6.9a respectively. In addition, the
peak PL wavelength blueshifts at 300 K and 77 K as functions of Ly calculated for the
symmetric QW structures A776 and B579, are also shown in Figs. 6.10 and 6.11

respectively.

From Figs. 6.7 - 6.11 and the corresponding Al fraction profiles of Figs. 6.2 - 6.6,
it is possible to make some general observations. Firstly, the deeper the starting material
QW's, the greater the saturated PL blueshift that can be obtained (the PL blueshifts of the
shallower MQW structures B690 and A776 saturate at approximately 40 - 50 nm and 60 nm
respectively while the PL blueshifts of the deeper B563, B578 and B579 structures all
saturate at approximately 80 nm). Also, the narrower the well layers (for a constant barrier
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thickness), the lower the diffusion length at which the PL blueshift becomes saturated (for
the B579 structure, the PL blueshift saturates for Ly = 20 - 30 A, while for the other

structures the PL blueshift saturates for Ly > 50 A). The latter observation essentially just

reflects the fact that a saturated PL blueshift is achieved more readily (i.e. using shorter
anneals at lower temperatures) for narrow QW structures (for a constant barrier thickness).
Clearly, from the foregoing observations, it does not make any sense to compare the degree
of intermixing achieved for different MQW structures in terms of the PL blueshift observed:;
rather, we should compare the degree of QW intermixing achieved in terms of diffusion
lengths, which may be inferred from the observed PL blueshifts using Figs. 6.7 to 6.11 for
the different MQW structures of interest here.
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6.1.3 The Second Order Non-linear Susceptibilities of GaAs/AlGaAs
Multiple AQW Structures as a Function of the Degree of Intermixing

It may be recalled from Section 3.1 that, for a constant detuning from the half-band-
gap, and when working within the effective mass approximation, the second order non-
linear susceptibility tensor component x(zil associated with GaAs/AlGaAs multiple AQW

structures, is proportional to the product of 3 momentum matrix elements:
xiﬁl oc <¢1b1(Z)|¢e1(z)><¢e1(l)|‘ih df dZ|¢e2(Z)><¢e2(z)l¢lh1(z)> (6.8)

Plotting this asymmetry factor as a function of Ly (i.e. as a function of the degree of QW
intermixing) relative to its value for the relevant starting material MQW structure, should then
reflect the magnitude of x(zil for a constant detuning as intermixing proceeds. This relative
asymmetry factor is therefore plotted as a function of Ly for the B563, B578 and B690
multiple AQW structures on the same set of axes as the calculated PL blueshifts in Figs.
6.7a, 6.8a and 6.9a respectively. From these graphs it may be seen that to suppress x(,fl

effectively requires that a diffusion length of approximately 30 A must be obtained on
intermixing. This corresponds to 77 K PL blueshifts of = 50 - 60 nm for the B563 and B578
multiple AQW structures, and a 77 K blueshift of = 30 nm for the B690 ACQW structure. It
should be emphasised, however, that when operating at a constant wavelength below the
half-band-gap of the as-grown MQW material, QW-intermixing also results in an increased
detuning from the half band-gap. This means that x(zi)z may be suppressed for a smaller

diffusion length, and therefore smaller PL blueshifts than those quoted above.

For completeness, all the bound electron levels for the multiple AQW structures are
also plotted in Figs. 6.7b, 6.8b, and 6.9b, to show that the electron level €2 remains bound
in all three cases for Ly < 40 A. The somewhat curious behaviour of the e3 level in the
B563 and B690 cases can be explained qualitatively as follows: during intermixing the top of
the QW's widen while the bottom of the wells are "squeezed", so that the energy of a bound
electron level near the top of the QW tends to decrease during intermixing while that of an
electron level near the bottom of the well tends to increase. This means that, as intermixing
continues, the electron levels tend to converge to an intermediate energy within the well and a
third electron level is supported. As the MQW is intermixed still further, however, the peak
barrier potentials on either side of each well begin to fall (as is seen from Figs. 6.2 - 6.4).
Eventually, the barriers fall so far that they "overtake" the e3 level and only the two original
bound electron levels el and e2 remain.
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6.2 Impurity-free Vacancy Disordering Experiments
and the Suppression of Multiple AQW Second Order
Non-linear Susceptibilities

In this section we shall be concerned with experimental quantum well intermixing
results for the B563, B578, B690 and QT849A multiple AQW structures, and for the B579
symmetric MQW structure, using IFVD under a variety of annealing conditions. In addition,
we shall discuss some intermixing results reported by Hamilton [13], for the A776
symmetric MQW structure. All of the samples were rinsed with standard solvents in an
ultrasonic bath for a few minutes prior to deposition of a 2000 A layer of either ¢-beam
evaporated or PECVD S$iO,. The samples were then placed epitaxial side down onto a Si
susceptor wafer in a rapid thermal processor, and annealed over a range of temperatures and
times. Figs. 6.12 - 6.16 show the resulting PL spectra at 77 K obtained for the B563, B578,
B690, QT849A and B579 MQW structures using the set-up described in Section 5.3.5. With
the exception of the very anomalous B578 PL spectrum for a 90 s anneal at 925 "C, it may
be seen that intermixing the MQW structures does not significantly broaden the PL peaks,
suggesting that the MQW is uniformly intermixed, and that the vacancy concentration is
relatively constant within the MQW layers. These results therefore validate the modelling
assumption of a constant Al-Ga interdiffusion coefficient in the MQW layer.

Even stronger evidence for uniform intermixing using the IFVD process is provided
by the room temperature absorption spectra of Figs. 6.17 and 6.18, which were obtained
from intermixed B563 and B578 samples respectively after annealing for 60 s at 950 °C. An
exciton absorption peak is still clearly visible in these figures which may be attributed to the
superposition of the elhhl and ellhl exciton absorption peaks (which are much closer in
energy for the intermixed structure). We further believe that the absorption features
corresponding to e2hh2 and e2lh2 are so close in energy to one another, and to the QW
barrier absorption edge, that they cannot be resolved at 300 K. Unlike PL, for which the
uppermost QW's contribute most to the observed spectrum, an absorption spectrum is
essentially an unbiased product of the absorption in all the MQW layers. This means that any
depth-dependent intermixing effects should be more evident from an absorption spectrum
than from a PL spectrum. The fact that a first bound electron to first bound hole exciton peak
is visible at all in Figs. 6.17 and 6.18, and is not significantly broader than either of the
elhhl or ellhl exciton peaks for the as-grown material, therefore re-enforces the fact that the
intermixing of the MQW layers is highly uniform.
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Fig. 6.12 B563 normalised PL spectra at 77K for several different anneal times and for anneal temperatures
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Next, the diffusion lengths achieved by IFVD for the different MQW structures are
compared when annealing at 900 °C for 90 s. The PL blueshifts obtained at 77 K for these
annealing conditions, and the corresponding diffusion lengths as inferred from Figs. 6.7 to
6.11, are listed in Table 6.1.

Material | PL Blueshift Ly SiO, GaAs Cap Upper
at77K A) Deposition | Thickness | Cladding Al
(nm) Method A) Fraction
B563 60 37 e-beam 100 0.32
(MBE)
B578 57 33 e-beam 100 0.34
(MBE)
B690 14 14 PECVD 1000 0.47
(MBE)
QT849A 2 4 PECVD 1000 0.47
(MOCVD)
A776 13* 12 PECVD 100 0.37
(MBE)
B579 48 13 PECVD 1000 0.4
(MBE)

Table 6.1 Experimental IFVD results for several different MQW materials after a 90 s anneal at 900 "C.
$i05 cap thickness in all cases was 2000 A.

* Reported by Hamilton [13]

From Table 6.1, it is obvious that the diffusion lengths obtained for the B563 and
B578 structures were significantly greater than the diffusion lengths obtained for the other
structures under the same conditions. To explain these observations, we need to consider
some of the relevant IFVD variables as identified by Ralston et al [3]. Firstly, we notice that
e-beam evaporated SiO; caps were used for the disordering of the B563 and B578
structures, while PECVD caps were used for the other structures. This suggests that the use
of e-beam evaporated SiO, caps may enhance the degree of disordering achieved. This is in
agreement with the results of Ralston et al., who attributed such effects to the more porous
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nature of the e-beam evaporated SiO,. From Table 6.1 it may also be seen that there is no
clear correlation between the diffusion lengths obtained and the thickness of the GaAs
protective cap layer. This suggests that there are effectively no Si IID effects occurring for
any of the structures.

Ralston et al. have also identified the epitaxial growth method and temperture as
important factors for the IFVD process. This is to be expected, since different growth
methods result in different native defect densities and different unintentional dopant
concentrations which can both contribute to different interdiffusion rates. In particular, it is
known, that higher concentrations of p-type impurities such as C which is present in the
higher Al fraction layers, can lead to a reduction in the vacancy concentration, and thus a
reduction in the degree of intermixing obtained [1]. The relatively low diffusion length of 4
A attained for the MOCVD-grown QT849A structure annealed at 900 °C for 90 s could,
therefore, be explained by a much lower equilibrium vacancy concentration.

It may also be recalled that the interdiffusion coefficient was assumed to be
independent of the Al fraction profile so that the diffusion length L, should be independent
of the material structure. This assumption may not, however, be strictly true. We could, for
example, speculate that, due to the greater strength of the Al-As bond relative to the Ga-As
bond, intermixing of higher Al fraction layers does not occur as readily as the intermixing of
lower Al fraction layers. This hypothesis is then consistent with the observation that lower
diffusion lengths were observed for the MQW structures with Al fractions of 0.4 or above in
the upper cladding layers or the QW layers as seen from Table 6.1.

It should, of course, be acknowledged that there are several other factors which
could affect the extent of quantum well intermixing occurring during the IFVD process, so
that many more columns could have been included in Table 6.1. In particular, the chemistry
of the SiO,/GaAs interface could be an important factor (see Section 6.3). On the basis of the
results presented here, we may therefore only tentatively ascribe the higher diffusion lengths
attained for the B563 and B578 structures to the use of more porous e-beam evaporated SiO;
caps, and/or the presence of lower Al fractions in the epitaxial layers of these materials.

The IFVD results of Figs. 6.12 to 6.15 have implications for the suppression of the
multiple AQW second order non-linear susceptibility tensor components. From the
conclusions of Section 6.1.3, it may be recalled that the effective suppression of the AQW
non-linearities requires PL blueshifts of approximately 50 - 60 nm for the B563 and B578
structures, and a PL blueshift of approximately 30 nm for the B690 structure (which is
nominally identical to the QT849A structure). From consideration of Figs. 6.12 to 6.15, it
may therefore be seen that appropriate annealing conditions for the effective suppression of
the AQW non-linearities are 90 s at 900 "C for the B563 and B578 structures, and 90 s at
950 °C for the B690 and QT849A structures.
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6.3 Selective Area IFVD Using Hydrogen Plasma
Processing for the Control of Multiple AQW Second
Order Non-linearities

It was shown in the previous section, that it is possible to achieve quantum well
intermixing using the IFVD process for the suppression of the AQW non-linearities over an
entire MQW epitaxial layer, and that the extent of QW intermixing is dependent on the anneal
conditions and several other factors. For efficient quasi-phase-matching and the control of
AQW second order effects, however, it is necessary to periodically suppress the AQW non-
linearities. In this section we will therefore be concerned with the suppression of quantum
well intermixing in selected areas using hydrogen plasma processing to modify the native
oxide layer at the GaAs epitaxial surface.

It is well known that the native oxide layer which forms on a GaAs surface exposed
to the atmosphere over a period of weeks, is a mixture of As,03 and Ga,03. Hamilton et al.
[14] have further demonstrated that the As,0Os in the native oxide layer may be reduced using
a hydrogen plasma to form Ga;O3 and the volatile product AsHs. For a sufficiently long
exposure to a hydrogen plasma at a high enough plasma power, a complete covering of
Ga,03 may result. Since GayOs is thought to be relatively impermeable to Ga atoms during
the annealing stage of the IFVD process, such an oxide layer should inhibit Ga vacancy
formation and suppress QW intermixing [14].

6.3.1 Selective Area IFVD Experiments with GaAs/AlGaAs Multiple AQW
Structures

To evaluate the effectiveness of hydrogen plasma processing for the suppression of
QW intermixing in selected areas, two IFVD experiments were performed with both the
B690 and the QT849A multiple AQW structures. For both experiments the samples were
cleaned using standard solvents in an ultrasonic bath and coated with 2000 A of PECVD
Si0,. Half of the SiO, was then stripped using buffered HF solution to expose the GaAs cap
surface underneath. In the first experiment, the samples were subjected to a hydrogen plasma
in a reactive ion-etching machine for 30 minutes under the conditions listed in Table 6.2
(which are approximately optimum [13]). In the second experiment (which was a control
experiment), the samples were not subjected to a hydrogen plasma.

- 169 -



Temperature 40 °C
Gas Flow Rate 20 sccm
Pressure 900 mT

RF Power 70W

DC Bias 80V
Time 30 mins.

Table 6.2 Optimum H plasma conditions used for the modification of the GaAs surface oxide layer

All of the samples were subsequently annealed in a rapid thermal processor at 950 “C for 90
s, and the PL results of Figs. 6.19 and Fig. 6.20 were obtained at 77 K. From the PL
blueshifts observed for the B690 material, it would appear that the hydrogen plasma
processing has indeed partially suppressed QW intermixing, resulting in a PL blueshift in the
SiO,-free region exposed to the plasma of only 8 nm (see Fig. 6.19b). This compares with a
PL blueshift of approximately 15 nm in the SiO,-free region of the corresponding control
sample due to native-defect-induced disordering (see Fig. 6.19a). Also, since the PL
blueshift of 22 nm obtained in the SiO,-covered region of the sample exposed to the H
plasma is almost identical to that observed in the SiO,-covered region of the control sample,
we conclude that the H plasma process does not inhibit the disordering process occurring in
the SiO,-capped areas.

For the QT849A structure however (Fig. 6.20), the hydrogen plasma processing
does not appear to have suppressed the native-defect-induced disordering occurring in the
Si0,-free region of the control sample to any significant degree. In light of thesc
observations, and due to time restrictions, no further experiments were performed with the
QT849A material.

To determine the consequences of the selective area QW intermixing results for
quasi-phase-matching with the B690 structure, we may refer to Fig. 6.9 once again. It may
be seen that the 77 K PL blueshifts of 8 nm and 22 nm obtained in the SiO,-free and SiO,-
covered areas of the sample exposed to the H plasma, correspond to relative asymmetry
factors of approximately 0.82 and 0.14 respectively. For ideal domain disordering, x(zil
should be modulated between its starting material value and zero, so that these relative
asymmetry factors compare with 1 and 0 for the ideal domain disordering case respectively.
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Fig. 6.19 B690 77 K PL spectra for the selective area IFVD process (a) without H plasma processing and
(b) with H plasma processing, prior to annealing at 950 "C for 90 s.
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6.3.2 The Spatial Resolution of Selective Area IFVD for the Control of
Multiple AQW Second Order Susceptibilities

During selective area intermixing using hydrogen plasma processing, Ga vacancies
created at the GaAs/SiO; interface, may diffuse in different directions. This will result in
lateral spreading of the Ga vacancy concentration and therefore of the Al-Ga interdiffusion
coefficient as illustrated in Fig. 6.21. If the extent of such lateral vacancy diffusion is too
great, and/or the lateral dimension of the surface area in which we wish to suppress QW
intermixing is too small, then clearly QW intermixing will occur everywhere and no as-
grown MQW regions will remain. In other words, the IFVD process has a limited spatial
resolution which may be defined as the lateral dimension of the smallest surface area under
which the as-grown MQW structure is preserved after annealing.

GaAs Cap
Upper Cladding
MQW

Lower Cladding

GaAs Substrate

SiO, GaAs

- Gay04 » AlGaAs

Fig. 6.21 Schematic diagram illustrating the lateral diffusion of Ga vacancies during the selective area

IFVD process

Obviously the spatial resolution is an important issue when periodically intermixing
multiple AQW structures for the control of second order non-linear effects using quasi-
phase-matching. For the B690 structure, for example, we estimate (see Chapter 8) that a
modulation period of 2.6 pum is required for first-order quasi-phase-matched SHG at a
fundamental wavelength of 1.55 pum. This means that the resolution of the selective area
IFVD process should correspondingly be better than 1.3 um.

Selective area IFVD resolution experiments were performed with both the B579 and
B690 structures. The test sample in each case was first cleaned and then coated with 200 nm
of PECVD SiO;. Subsequently, 2 mm by 2 mm areas were defined in the SiO, as shown in
Fig. 6.22. In every area, windows were opened in the SiO, to expose the GaAs surface
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underneath. The period of the window pattern in each area was 30 um, while the nominal

window width W was varied from W1 in the first area down to W6 in the last area. (W1 =
16.3 um, W2 = 11.1 pm, W3 = 6.3 pm, W4 = 4.0 um, W5 = 2.5 um, and W6 = 1.5 um
for the B579 sample. W1 = 17.3 ym, W2 = 11.5 um, W3 = 6.7 pm, W4 = 4.9 um, W5 =
2.6 um, and W6 = 2.2 um for the B690 sample.) Finally, there were also 2 control regions:

one in which the SiO; cap was completely removed, and the other in which the SiO, cap was

left intact. The samples were exposed to a hydrogen plasma under the conditions
summarised in Table 6.3 prior to annealing.

SiOz-covered

crrev v vess

i
|

Fig. 6.22 SiO, window patterns for selective area IFVD resolution tests

Temperature 40 °C
Gas Flow Rate 20 sccm
Pressure 900 mT

RF Power 80 W
Time 40 mins.

Table 6.3 Hydrogen plasma conditions for selective area IFVD resolution measurements

GaAs Cap

Si0,

Figs. 6.23 and 6.24 are the resulting 77 K PL spectra observed from the different areas of
the B579 and B690 resolution samples after annealing at 900 °C for 90 s, and 950 °C for 90
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s respectively. Also marked on these figures, are the actual measured window widths in the
different areas. We see that for both samples, a peak in the PL spectra is observed in every
region which corresponds to the peak PL wavelength in the SiO,-free intermixing-
suppressed region. More specifically, we see that an intermixing-suppressed PL peak is
observed for the B579 structure even for window widths as small as 1.5 um, while for the
B690 structure, an intermixing-suppressed PL peak persists for window widths down to 2.2
pm. This indicates that the spatial resolution of the selective area IFVD process using
hydrogen plasma processing is better than 1.5 um for the BS79 structure (annealed at 900 "C
for 90 s), and better than 2.2 um for the B690 structure (annealed at 950 °C for 90 s).
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Fig. 6.23 B579 IFVD resolution experiment PL spectra at 77 K
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For the case of the B579 structure, a pronounced PL peak corresponding to the
intermixed PL peak wavelength also appears gradually as the window width decreases. This
is to be expected because, as the window width is reduced, the fractional coverage of SiO,
increases (for a constant window patter period), and the fractional area of the MQW which is
intermixed increases. To explain the absence of any similarly conspicuous "QW-intermixed"
PL peaks for the B690 sample in the regions with smaller window widths, we must consider
the consequences of subjecting this sample to the more severe annealing schedule of 90 s at
950 °C. The PL blueshifts obtained in the intermixed (SiO; intact) and intermixing-
suppressed (SiO,-free) control regions for the B690 sample were 36 and 13 nm respectively,
and from Fig. 6.9 it may be seen that these PL blueshifts correspond to diffusion lengths of
approximately 37 and 13 A respectively. For the B579 sample, on the other hand, which
was subjected to a less severe anneal of 90 s at 900 °C, PL blueshifts of 48 and 14 nm werc
obtained in the intermixed (SiO; intact) and intermixing-suppressed (SiO,-{ree) control
regions respectively. From Fig. 6.11 it may be seen that these PL blueshifts correspond to
diffusion lengths of approximately 13 and 4 A respectively.

The intermixed Al fraction profiles for the B690 material corresponding to L = 37
A and Ly = 13 A have been plotted in Fig. 6.25, while the Al fraction profiles for the B579
material corresponding to Ly =13 Aand Ly =4 A are plotted in Fig. 6.26. Now, from the
L, = 37 A Al fraction profile for the B690 material of Fig. 6.25, it may be seen that the

maximum Al fraction, occurring on either side of the central well, is = 0.38. This
corresponds to a bandgap energy of = 1996 meV at 77 K. The PL wavelength detected from
the SiO,-covered (i.e. intermixed everywhere) control regions at 77 K was approximately
634 nm, which translates into an energy of 1956 meV. Recalling then, that the 77 K PL
transition for the B690 ACQW material with Aly ,Gag gAs in the well layers is the e1->C
transition, and, assuming a C acceptor binding energy of 30 meV in the shallow well, we
estimate the elhhl energy gap for this structure to be approximately 1986 meV. This means
that the el level is within = 6 meV of the conduction band QW barrier cnergy in the
intermixed control region of the B690 sample. Since kT = 6.6 meV at 77 K, we would
therefore expect any electrons residing in the 1 level (and holes residing in the hhl level) to
have sufficient thermal energy to "jump"” out of the shallow intermixed QWs for the B690
sample. During the measurement of the PL at 77 K from a region with narrow window
widths therefore, we can imagine the electrons beginning to thermalise after excitation into
the conduction band continuum. Any electrons relaxing into the deeper wells underneath the
windows in the SiO,, will rapidly thermalise to the el level where they remain for = 1 ns on
average before undergoing radiative recombination into the C acceptor level. Electrons that
relax into the el level in the shallower intermixed wells underneath the SiO; strips on the
other hand, will still have sufficient thermal energy to "jump” out of these wells and to relax
into another well at some later time. We can therefore imagine electrons "hopping” in and out
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of such shallow wells, until they eventually fall into one of the deeper wells underneath a
window in the SiO, where they relax to el and eventually undergo radiative recombination.
We would not therefore expect to see a strong "QW-intermixed" PL peak feature from the
areas of the B690 sample with narrow windows in the SiO; (and a correspondingly higher

fractional SiO; coverage).

For the B579 material, in contrast, with GaAs in the QW layers, the dominant PL
transition is the elhhl transition at 77 K, and we estimate that in the intermixed control
region, the difference in energy between the QW barrier bandgap and the elhh1 bandgap is
approximately 94 meV. During a PL. measurement at 77 K from a region of the BS79 sample
with narrow window widths in the SiO; therefore, any electrons thermalising into the
shallower wells underneath a SiO; strip will thermalise to el and remain trapped. Eventually,
they may recombine with holes in the hh1 level resulting in an intermixed PL peak. For the
B579 sample, we would therefore expect to see a "QW-intermixed” PL peak feature from a

region with narrow windows in the SiO;.

In summary, it has been established, that the spatial resolution of the selective arca
IFVD process using hydrogen plasma is better than 2.2 um for the B690 structurc.
However, first order quasi-phase-matched SHG in this structure requires the spatial
resolution of the selective area IFVD process to be approximately 1.3 um or better.
Therefore, although the actual resolution may have been significantly less than 2.2 um, we
have no way of confirming this without performing a more exhaustive set of resolution
experiments. We therefore conclude that the spatial resolution of the selective area IFVD
process for the B690 structure is only really good enough for third order quasi-phase-
matched SHG. Finally, for the B690 resolution sample (which was the best B690 resolution
sample measured), we estimate from Fig. 6.9, that the relative x(zzzi AQW non-linearity, is
approximately 0.48 and O in the intermixing-suppressed and QW-intermixed regions

respectively.
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6.4 Conclusions

Photoluminescence peak blueshifts have been observed on intermixing of multiple
AQW structures using the IFVD process. In each case the PL peak FWHM was not
significantly broadened by intermixing. This suggested that uniform intermixing of the
MQW layers had occurred. Furthermore, a first bound electron to first bound hole exciton
peak was observed in the absorption spectrum of intermixed AQW material, providing even
stronger evidence of uniform MQW intermixing. Such observations indicate that the vacancy
concentration is highly uniform across the MQW layer and that the Al-Ga interdiffusion
coefficient D may be assumed to be constant during annealing.

The 1D diffusion equation was solved for 3-well systems assuming D constant and
the Al fraction profiles of the AQW structures of interest were evaluated as a function of the
degree of intermixing, as represented by the diffusion length L4. Schrédinger's cquation
was subsequently solved in the intermixed AQW potential profiles to yield the PL transition
wavelengths as a function of L. It was therefore possible to infer the degree of intermixing
L, from the observed PL blueshift occurring on intermixing. In addition, the reductions in
the "asymmetry factors" of the AQWSs were evaluated as a function of Ly. It was therefore
also possible to infer the reduction in the asymmetry (and hence estimate the reduction in the
non-linear tensor elements associated with the asymmetric wells) from the observed PL
blueshift occurring on intermixing. Different diffusion lengths were inferred from the PL
blueshifts observed from the different AQW structures annealed under the same nominal
conditions. Most notably, larger values of L4 were obtained for MBE-grown AQW layers
with lower Al fractions, when e-beam evaporated SiO, caps were used. This may be
tentatively attributed to several factors including lower vacancy concentrations in the higher
Al fraction AQW structures due to higher C concentrations, the more porous nature of the -
beam evaporated SiO, compared with PECVD SiO, and different semiconductor surface
conditions. A more systematic study of these factors is therefore required to determine their
relative effect on the degree of intermixing.

The second harmonic conversion efficiency increases with the depth of the periodic
modulation in yx'®. It was therefore desirable to completely suppress quantum well
intermixing in selected areas while maximising the degree of intermixing in other areas.
Selective area intermixing using H plasma processing for intermixing suppression was not,
however, very successful. In fact no suppression of the IFVD process was observed using
the H plasma treatment for the MOCVD-grown QT849A material. Consequently, no
waveguide devices were fabricated from the QT849A material for SHG experiments. Partial
suppression of the IFVD process was however achieved with the B690 AQW matcrial and a
suppressed PL blueshift of 8 nm was obtained after H plasma processing. This compared

- 182 -



with a PL blueshift of 16 nm in a SiO»-free region of a B690 control sample which was not
exposed to a H plasma but was annealed in parallel with the sample exposed to the H
plasma. The suppression of the IFVD process after exposure of the B690 sample to the H
plasma is believed to be the result of the formation of a Ga;0s layer in the exposed regions
which is impervious to Ga atoms during annealing.

The spatial resolution of the selective area H plasma IFVD process for the B690
material was measured to be better than 2.2 pm for a 90 s anneal at 950 “C. This resolution
is certainly sufficient for third order quasi-phase-matching by domain disordering and is
possibly also sufficient for first order quasi-phase-matching.
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7

Experiments with GaAs/AlGaAs
Multiple AQW Starting Material and
QW-intermixed Ridge Waveguides

As discussed in previous chapters, to utilise a second order effect in GaAs/AlGaAs
requires quasi-phase-matching. In a multiple AQW waveguide this can be achicved by
periodic suppression of the non-linearity using QW-intermixing. Thus, if we can achicve
efficient quasi-phase-matched SHG in this way, it is also possible that, by tuning the input
wavelength away from phase-matching wavelength, a small quasi-phase-mismatch will be
produced, as required for the cascaded second order effect. In this respect, the achievement
of efficient SHG may be regarded as a precursor to the efficient production of non-linear
phase shifts via the x(z):x(z) effect. To achieve efficient quasi-phase-matched SHG, an
important initial objective is the demonstration of unphase-matched SHG in the starting
material, and the suppression of this unphase-matched SHG. Ridge waveguides were
therefore fabricated from QT613, B563, B578 and B690 starting materials, and from
QT613, B563, B578 and B690 QW-intermixed materials. Identical experiments were
performed with these devices in an attempt to observe unphase-matched SHG which was
attributable to the AQW non-linearities alone.

In this chapter, results will be presented which also show that the bulk GaAs/AlGaAs
component xg,)z is modified significantly on QW-intermixing, suggesting exciting ncw

possibilities for efficient quasi-phase-matching in the GaAs/AlGaAs material system.

7.1 The Design and Fabrication of Ridge
Waveguides for Unphase-matched SHG

In this section, the design and fabrication of ridge waveguides from B690 starting
material and B690 intermixed material will be described. The fabrication of samples based on
wafer structures QT613, B563 and B578 followed the same process.
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Ridge waveguides were fabricated from both the B690 starting material, and from the
B690 intermixed material. On annealing, a 77 K PL blueshift of 23 nm was observed as a
result of the intermixing process. From Fig. 6.9 it may be seen that a 77 K PL blueshift of
23 nm corresponds to a diffusion length of 22 A and we would therefore expect x(z) for the

2ZZ

QW-intermixed sample to be reduced to at least 10% of its starting material value. Rib
waveguides with a range of widths from 1 um - 10 um were formed by dry etching with
SiCls. The nominal etch depth was 0.9 um to guarantee reasonable confinement of the
lowest order modes at both the fundamental wavelength of 1.55 um and the second
harmonic wavelength of 775 nm. From a surface profile measurement, etch depths of 1.0
pm and 0.8 um were observed for the starting material and the intermixed samples
respectively. The waveguide samples were subsequently thinned and cleaved into 2 mm long

devices.

7.2 Waveguide Loss Measurements

Light from a narrow linewidth DFB laser diode source at 1.556 um was cnd-firc
coupled into the 2 mm-long B690 starting material and intermixed waveguides in turn.
Waveguides with 3 um rib widths were selected in each case, as calculations suggested that
such waveguides would be essentially single-moded at 1.556 um. The light transmitted by
the waveguides was focused onto the end of an optical fibre which was connected to an
optical spectrum analyser operating in "zero span” mode. In this mode, the analyser
displayed the optical power collected by the fibre as a function of time. The fibre end was
then carefully translated across the beam at the output of the waveguide until maximum
power was detected by the analyser. A cotton bud was soaked in liquid nitrogen and held in
close proximity to the waveguide sample to achieve cooling. During cooling of the
waveguide sample, Fabry-Perot oscillations were observed in the transmitted power T, due
to incremental changes in the waveguide length. The waveguide loss coefficient o was then
estimated from the visibility V =T 5, /Tin Of the transmission oscillations [1]:

o(dB/cm)= (7.1a)

e i

where
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(neff — 1)2
R — —————
(neff + 1)2 1)

and L is the waveguide length in cm.

The loss coefficients o for the B690 starting material and intermixed material
waveguides measured in this way were 20.9 dB/cm and 7.9 dB/cm respectively, and it may
be seen that the starting material waveguide losses were actually higher than the intermixed
waveguide losses. This was attributed to the fact that the starting material waveguides were
over-etched slightly as mentioned in Section 7.1. Nevertheless, the losses measured for the
QW-intermixed waveguide sample of 7.9 dB/cm are encouragingly low, especially when
compared with losses of 30 dB/cm measured at 1.06 um in waveguides which were
disordered by As*-implantation for the suppression of the bulk GaAs/AlGaAs non-linear
coefficient d,, and subsequently annealed [2].

7.3 Unphase-matched SHG Experiments

A schematic of the experimental set-up used for unphase-matched SHG
measurements is shown in Fig. 7.1. The KCl colour-centre laser was coupled-cavity mode-
locked and produced 660 fs pulses at a repetition rate of 82 MHz and a wavelength of 1.524
pum. The laser beam was chopped, linearly polarised and end-fire coupled into the waveguide
samples. The transmitted fundamental beam was end-fire coupled out of the waveguides
along with any generated second harmonic. The output polariser was adjusted to transmit
linearly-polarised TM field components at @ and 2w, and a portable monochromator was
used to separate the two frequency components. The second harmonic intensity was
monitored using lock-in detection with a photomultiplier tube (PMT). The PMT was only
sensitive over the spectral range 400 - 1100 nm.

The average fundamental output power and the second harmonic PMT signal were
measured as a function of the input fundamental power. Experiments were performed using
both the starting material and intermixed material waveguides, and for both TE and TM
configurations of the input polariser. The average fundamental output power was measured
before the output polariser with an aperture inserted in the optical path between the output
microscope objective of the end-fire rig and the power meter. Inserting the aperture in this
way, means that any light which had propagated in the slab regions either side of the
waveguide rib was blocked, and thus did not contribute to the measured output power.
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Fig. 7.1 Schematic diagram of the experimental set-up used for unphase-matched SHG experiments

7.4 Unphase-matched SHG Results and Discussion

Before presenting the unphase-matched SHG results, we should consider the
consequences of using pulsed laser radiation for the measurements. The FWHM spectral
range of the 660 fs mode-locked pulses from the colour-centre laser was 1521.2 nm -
1526.0 nm. Such a spread of wavelengths means that the unphase-matched SHG intensity as
a function of length will be different from the monochromatic case plotted in Fig. 2.1. From
Section 2.3.2 we know that for monochromatic uniform plane waves:

2 2
I2u)(L) _32n" deg I(0) SmZ( nL ) (7.2)

1,(0)  €4cA? n3n,, (Ak)? 2L,

For the case of unphase-matched SHG in a ridge waveguide this expression is modified to:

P2m(L) - 321’ dgff Pa)(o)s- 2( nL )XF(z) (7.3)

- £sin
Py(0)  €0CA" NgeprNypere (AK) 2L,

where P,(0) and P,,(L) are the fundamental and second harmonic powers at the

waveguide input and output respectively, and F? is the waveguide overlap factor
introduced in Section 2.6. Also AK = (Ngefr ~Nagere)- 47/A and L, = 7/Ak. From (7.3) it

can be seen that for a change in L/L_ of 2, there will be an oscillation of P, (L)/P4,(0)
through one period. Bearing this in mind, L/L, is plotted as a function of wavelength in
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Fig. 7.2 for a 2 mm-long B690 ridge waveguide with a rib width of 3 um and an etch depth
of 0.9 um. For this graph, the fundamental and the second harmonic fields were both
assumed to be propagating in the TMy, mode, and the refractive indices of the various
waveguide layers were calculated using the modified Afromowitz model [3]. From Fig. 7.2
it can be seen that L/L_ is a strongly decreasing function of wavelength between 1520 and
1530 nm, and, in fact, L/L_ varies by as much as 20 over the FWHM bandwidth of the
pulsed laser. For monochromatic light, P,,(L)/P,(0) will therefore undergo as many as 10
oscillations when the wavelength is varied over the observed bandwidth of the laser pulses.
Therefore any oscillations in the unphase-matched SHG as a function of length, will be
"washed-out” due to the wavelength spread of the laser pulses. This results in a constant
second harmonic power level along the waveguide (assuming negligible losses). Any small
change in the waveguide length during pulsed laser operation will not, therefore, result in a
significant change in the SHG at the output of the waveguide. This means that, for pulsed
laser operation, we would expect the same unphase-matched second harmonic power to be
produced at the output of 2 waveguides which are identical in every respect except that one
waveguide is a few pm longer than the other.
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Fig. 7.2 Waveguide length normalised to the SHG coherence length as a function of wavelength over the

pulsed laser spectral region
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For a refractive index variation, (such as that which may occur on MQW-
intermixing), non-oscillatory behaviour of the SHG as a function of length would also be
expected for pulsed laser operation. However, from (7.3) it can be seen that
P,,(L)/P,(0) < F(z)/(Ak)z. On intermixing, the band-gap widens and the detuning of the
second harmonic photon energy below the half-band-gap energy increases. This means that,
when operating below half the band-gap, the refractive index in the MQW layer n,, may
decrease on intermixing, while ng in the MQW is likely to remain approximately constant.
In fact, it has previously been reported that, even for a detuning of the photon energy from
the band-edge as small as 60 meV, the refractive index change occurring on intermixing
GaAs/AlGaAs MQW layers by impurity induced disordering is ~ 1%.4-5:6 Furthermore,
waveguide measurements show that the MQW layer index reduction occurring on
intermixing the same structures using IFVD is at least an order of magnitude less than the
index reduction obtained using IID.5 This means that for the non-phase-matched SHG
experiments with a detuning of the two-photon energy of ~ 100 meV below the e,hh; band-
edge, the reduction in the second harmonic effective index occurring on intermixing by
IFVD can be assumed to be less than 0.1%. The reduction in the fundamental effective index
can correspondingly be assumed to be considerably less than 0.1%. Such index changes do
not significantly affect the SHG overlap factor F? in ridge waveguides of the type studicd
here. Also, for ng.g constant and nyq.q reduced by 0.1%, (Ak)2 is reduced by a few
percent, and P, (L)/P,(0) is correspondingly larger by a few percent. Hence, for pulscd

laser operation, marginally more SHG might be expected from an intermixed waveguide
because of the reduction in n, ¢ alone (i.e. assuming the MQW waveguide non-lincaritics

are unchanged on intermixing).

In performing pulsed laser unphase-matched SHG experiments, Fabry-Perot effects
within the waveguide cavities should also be considered. A 1 ps pulse is ~100 pum-long in
GaAs/AlGaAs. Therefore, for a 2 mm - long waveguide sample we would not expect any
interference effects to occur. This means that any small difference in length of the starting
material and intermixed material waveguides will not effect the transmission of the
fundamental or second harmonic beams. Similarly, any differences between the waveguide
indices will not change the waveguide transmission significantly.

Before discussing the unphase-matched SHG results for the B690 waveguide
samples, the unphase-matched SHG results obtained for the other multiple AQW waveguide
structures QT613, B563 and B578 will be discussed. No unphase-matched TM-polarised
SHG was detected for QT613 starting material waveguides for a TM input polarisation when
operating at sub-half-band-gap wavelengths. From the conclusions at the end of Section
3.2.3, it may be recalled that, for a TM input polarisation, only TM-polarised second

. 2
harmonic is generated through the x(zzl tensor component alone. Due to the absence of any

SHG in the "TM,:TM,,, polarisation configuration”, we therefore conclude that no x(fi
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tensor component exists for the QT613 material. Furthermore, from the characterisation
results for the QT613 material of Section 5.3, we assert that no x(zi; tensor component exists
for the QT613 material because no second bound electron level was supported in the
conduction band of the QT613 asymmetric stepped QW's.

Unphase-matched SHG experiments were performed at 1.55 um with both B563 and
B578 waveguides. The B563 and B578 materials both had band-gaps around 815 nm (sec
Table 5.3), so that a fundamental wavelength of 1.55 um corresponds to a photon energy
above half the band-gap. As a consequence, two-photon absorption occurred and the
TE,:TE, and TM,:TM,, fundamental transmission characteristics for the two materials
(i.e. the output fundamental power as a function of the input fundamental power) were sub-
linear. From the degree of curvature in the transmission characteristics, it was possible to
deduce that the level of two-photon absorption was larger for a TE,, input than for a TM,,
input. This is to be expected, since a proportion of the second harmonic generated in cither
case is linearly absorbed, resulting in an effective increase in the two-photon absorption
observed. For the TE,:TM,,, configuration, the second harmonic is generated via the large

bulk GaAs/AlGaAs coefficient X' = X5oy = 380 pm/V, while for the TM,:TM,,

configuration, the second harmonic is generated via the much smaller AQW component X(,Q
= 0.1 pm/V. We would therefore expect more SHG to occur for the TE,:TM,,, case than
for the TM,,:TM,,, case, and the two-photon absorption to be correspondingly higher for
the TE,:TM,, case. The TE,:TE, and TM:TM,, transmission characteristics were
reduced for both the B563 and B578 intermixed waveguide samples due to increased
waveguide losses. In addition, the curvature of the transmission characteristics was reduced
on intermixing, indicating a reduction in both the two-photon absorption of the fundamental
and a reduction in the linear absorption of the second harmonic due to bandgap widening.

- The TE,:TM,, second harmonic characteristics for the B5S63 and B578 waveguides

appear in Figs. 7.3 and 7.4 respectively. From these figures it can be seen that morc SHG
was observed from the intermixed waveguides. To explain these observations it should be
emphasised that, when operating at photon energies above half the bandgap, the magnitude
of the SHG signal is determined not only by the size of the non-linear component, but also
by the linear absorption at the second harmonic frequency and the two-photon absorption at
the fundamental frequency. The results of Figs. 7.3 and 7.4 may therefore be explained in
terms of these competing effects: on intermixing, the relative reduction in the absorption of

the second harmonic beam is greater than the relative reduction in x%)z and a net increase in
the SHG signal results (see Section 7.4.1(iv) for a full discussion).

The TM,,:TM,,, second harmonic signals for the B563 and B578 waveguides were
both reduced on intermixing, suggesting a larger relative reduction of the x(ﬁz AQW

component than in the second harmonic absorption in both instances. However, from
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theory, xg)z is over three orders of magnitude greater than x(zi)z and it may be shown (see
Section 7.4.2) that, for a TM,:TM,,, configuration, a small field component in the
direction of propagation or any small misalignment of the polariser axes with respect to the
crystal axes can lead to the production of a significant second harmonic signal via the large

xfy)z component. This means that the reduction in the TM,:TM,, SHG on intermixing

could simply reflect a reduction in x&zy)z and it is therefore impossible to make any

conclusions relating to the change in x(zg on intermixing.

For the B690 material, a fundamental wavelength of 1.524 um corresponds to a
detuning of the photon energy below the half-band-gap of approximately 60 meV. We would
not therefore expect any linear absorption at the second harmonic frequency or any two-
photon absorption at the fundamental frequency to occur. The fundamental transmission
characteristics of the B690 waveguide samples for TE and TM input polarisations appear in
Figs. 7.5 and 7.6 respectively. Since these characteristics are both linear we conclude that no
two-photon absorption occurred in either the B690 starting material or intermixed
waveguides. It may also be seen that the coupling efficiencies for the QW-intermixed
waveguides are actually higher. This was attributed to higher losses in the starting matcrial
waveguides (see Section 7.2) due to a slight "over-etch" of the starting material wavcguide

ribs.

The B690 waveguide unphase-matched SHG plots of Figs. 7.7 and 7.8 were the
most significant results obtained during this work. Clearly, the TM-polarised SHG was
reduced on MQW-intermixing for both TE and TM input polarisations. For the TE input
polarisation, the TM-polarised SHG was scaled by a factor of 0.518 on intermixing, while
for the TM input polarisation, the TM-polarised SHG was scaled by a factor of (0.207 on
intermixing. A detailed discussion of these results is presented in the following sections.
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7.4.1 Unphase-matched SHG in B690 Waveguides for a TE,TM,,
Polarisation Configuration

For a TE,:TM,, polarisation configuration, the only contributing tensor
components for SHG are the bulk component xg)z and the AQW component X(zil (see
Section 3.2). The reduction in the unphase-matched TE,:TM,,, SHG observed in Fig. 7.7
for the intermixed waveguide relative to that for the starting material waveguide sample, may

be caused by a combination of several factors. These factors will now be discussed in turn.

(2)

(i) Reduction in the Overlap Factor F,,

Due to the shallower etch depth for the intermixed waveguide sample we would
- 2 .
expect a reduced SHG efficiency overlap factor ng)z as defined by (3.8b). For thc B690

waveguides with 3 pm-wide ribs, overlap factors F&zy)z of 1.844 x10" /m2 and 1.387 x 10"

/m2 were calculated at 1.524 pum for the starting material waveguide with an ctch depth of
1.0 um and the intermixed waveguide with an etch depth of 0.8 pm respectively. As a
consequence of the different etch depths alone, we would therefore expect the unphasc-
matched SHG power observed from the intermixed waveguide to be approximately 75.2%
of that from the starting material waveguide (all other parameters being equal) i.c.

’

(2)

xyz _
— - 0752 (7.4)

Xyz

’

where Fg)z denotes the overlap factor for the intermixed material waveguide.

(ii) Angular Deviation of the Fundamental Polarisation from the TE Axis
(and the Second Harmonic Polarisation from the TM Axis)

During the unphase-matched SHG experiments in the TE,:TM,,, configuration, the

transmission axis of the output polariser was vertical with respect to the optical bench, and
the input polariser was adjusted for minimum transmission of the fundamental TE field after
the output polariser. For a small angular deviation 8 of the waveguide sample normal from
the vertical as indicated in Fig. 7.9, the fundamental and second harmonic field polarisations
would have been deviated by 8 from the TE and TM axes respectively. From uniform planc
wave considerations we may then deduce (see Appendix D):
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__I2£@)— =|c0s36—25in26c0s6 (7.5)
Izm(e = O)

where I,, denotes the output second harmonic intensity. In addition, the AQW tensor

(2

components are assumed to be negligible with respect to the bulk tensor component xxy),,_ in

line with the predictions of Hutchings and Arnold as discussed in Section 3.1. Fig. 7.10, is
a plot of 1,,(6)/1,,(8=0) as defined by (7.5). From this figure it may be seen that
1,,(8)/1,, (8 =0) is only a weakly decreasing function of 0 for 0<6<5°. Thus, any small

deviation in either the starting material or intermixed waveguide sample normals from the
vertical, will have a negligible effect on the TM-polarised SHG.

™ Eo

TE
Ey

Fig 7.9 Angular deviation of the horizontal and vertical field components with respect to the waveguide

axes for an angular deviation of the waveguide surface normal to the vertical

1 —
0.99 1
S 098
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3
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o -
) 0.97
<!
0.96 -
< - N gl < v

Angular Deviation of Fundamental from TE Axis (and Second Harmonic from TM Axis) (8")

Fig. 7.10 Normalised SHG intensity I5,(8)/154, (8 = 0) as a function of the angular deviation of the

fundamental field polarisation from the TE axis (and the second harmonic field polarisation from the TM axis)
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(iii) Reduction in x(:&
Given that the AQW tensor component for the B690 structure as predicted by
Hutchings and Arold (see Section 3.1) was only 0.2 pm/V at 1.55 um, as compared to

(2) - 380 pm/V, it seems reasonable to assume that any reduction of x(i) due to

XXyz ZXX
intermixing, will have a negligible effect on the TM-polarised SHG observed.

(2)

(iv) Reduction in Xxyz

From (i) to (iii) above, we conclude that the observed reduction in the TM-polarised
SHG for a TE-polarised fundamental from the intermixed waveguide sample is, in part, duc

to a reduction in the overlap factor Fg,)z but mostly due to a reduction in xizy), To extracl

the reduction in XSQZ from the observed reduction in the second harmonic signal for the

intermixed waveguide of Fig. 7.7, the following relation can be applied:

2
Xgr)z F) (7.6)

Py xyz

where P,,, denotes the output second harmonic power. This gives:

’

(2)

Xxyz| =0-83

2, 71.7)

’

(2)

Axyz denotes the bulk GaAs/AlGaAs non-linearity for the MQW-intermixed sample.

where

The implications of (7.7) are potentially very important: by intermixing the MQW layer a
significant reduction in the Jarge (380 pm/V) xg,)z tensor component is obtained, as required

for quasi-phase-matching. From the arguments regarding the pulsed operation of the laser
and the consequences for unphase-matched SHG, it may be recalled that, any reduction in
the effective index at the second harmonic wavelength that occurs on QW-intermixing will
lead to an increase in the unphase-matched SHG. Therefore, we may conclude that the

reduction in xf(z;,)z observed on intermixing is at least 17%.
To understand how this reduction in x&zy)z comes about, and to gain some insight into

. . 2 . e s
how an even larger reduction 1n x&y)z may be obtained, qualitative arguments can be used. At

photon energies close to the half-band-gap, both SHG and second harmonic absorption
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occur. These two competing processes are represented by the real and imaginary parts of

xg)z respectively. For GaAs, the real part of xﬁ"’y)z, Re{x&zy)z} rolls off towards its low

frequency value of 380 pm/V more slowly than the imaginary part Im{x%)z} rolls off
towards zero for decreasing photon energies below the half-band-gap energy E, /2 [7]. This
situation is depicted qualitatively in Fig. 7.11a. For low photon energies, SHG will

dominate over second harmonic absorption. As the photon energy increases, the second
harmonic power P, (%0) should increase initially as shown in Fig. 7.11b. For photon
energies fio closer to E, /2 (such that ho-E, /2 is approximately a few tens of meV),
some second harmonic absorption will occur, causing P, to increase more slowly. As Aw
increases still further, second harmonic absorption becomes the dominant effect, and
P, (hw) begins to fall with Aw. P, (fi®) must, therefore, have a maximum for some
photon energy hw,.

Now, the P, (Aw) curve for AlGaAs MQW layers should be qualitatively similar to
the bulk GaAs P, (hw) curve plotted in Fig. 7.11b, except that now the band-gap is
determined by the bound QW energy levels. Furthermore, by intermixing a MQW sample,
the band-gap shifts, so that E, /2 and the curve of Fig. 7.11b are effectively translated to
higher photon energies. A second curve labelled Py, (ho) may therefore be drawn for the

intermixed waveguides, which is qualitatively similar to that for the starting matcrial
waveguides, but shifted to higher energies as depicted in Fig. 7.11c.

It may be recalled that no two-photon absorption was observed in the B69() starting

material or intermixed waveguides. This implies that the photon energy of operation at 1.55
pm Awgego = 0.8 €V, is some way below hw, as indicated in Fig. 7.11c. Also, it may be

recalled that the unphase-matched second harmonic power P, (i) observed for the MQW-
intermixed B563 and B578 waveguides in a TE,:TM,, configuration was greater than
P, (o) for the corresponding starting material waveguides (see Figs. 7.3 and 7.4). This

may then also be explained qualitatively with reference to Fig. 7.11c: the photon energy of
operation figsg; ps7s fOr the B563 and B578 starting material devices was above E, /2 as

indicated in Fig. 7.11c, so that on QW-intermixing, an increase in P, (f®) is obtained.

When modulating xg‘;)z in this way for quasi-phase-matching, it would appear that

the ideal operating photon energy Aw for any material should be somewhere around hw,, for

the starting material. For such a detuning, limited second harmonic absorption will occur
resulting in a reduction in the effective mode index at the second harmonic frequency Ny .
on intermixing. To compensate for any such index changes when quasi-phasc-matching, it
would then be necessary to periodically intermix the waveguide material along the direction
of propagation with a non-unity mark to space ratio.
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Fig. 7.11 Schematic diagrams illustrating the modulation of the bulk tensor component x(z) by QW-
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intermixing
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7.4.2 Unphase-matched SHG in B690 Waveguides for a TM, TM,,
Polarisation Configuration

The reduction in the unphase-matched SHG observed in Fig. 7.8 fora TM,:TM,,
configuration may be attributed to several different factors:

(i) Reduction in the AQW Tensor Component x(z)

Z7ZZ

As mentioned in Section 7.1, due to the reduction in the QW asymmetry alone, it
might be expected that x(z‘g would be reduced by 90% for the B690 intermixed sample

relative to the starting material sample.

(ii) Reduction in the Overlap Factor ng

Overlap factors F$) of 1.636x10" /m2 and 1.255x10"! /m2 were estimated from
(3.9b) at 1.524 um, for the starting material waveguide with an etch depth of 1.0 pm, and
the intermixed waveguide with an etch depth of 0.8 um respectively. As a consequence of
the different etch depths therefore, we would expect the unphase-matched SHG power

observed from the QW-intermixed waveguide to be approximately 76.7% of that from the
starting material waveguide (all other parameters being equal) i.e.

F®)

222

2 . . .
where F(ZZ)Z denotes the overlap factor for the intermixed material waveguide.

(iii) Field Component in the Direction of Propagation

. . 2 . . .
The observed reduction in the bulk xiy)z coefficient can contribute to a reduction in
the unphase-matched SHG observed in the TM,:TMy,, configuration because, TM

waveguide modes have small but non-zero field components in the direction of propagation.

1&l>> )2

make a significant contribution to the total TM-polarised second harmonic field. Adopting the

co-ordinate definitions of Fig. 3.3 it can be shown (see Appendix E), that for a 1D slab
multiple AQW waveguide, the TM-polarised second harmonic power P, , for the
TM,,: TM,,, configuration obeys the relation:

>>

Since, in theory, , a small field component in the direction of propagation can
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Poz x‘ziiM IQ N EZ,(2)Esum(2)4z - X'y [E2y(2)Eemm(2)dz (7.9)
A —oo

Here, E,(z) is the lowest order TM-polarised fundamental mode, E,,(z) is the lowest
order TM-polarised second harmonic mode, and Ey(z) is the lowest order fundamental

mode profile of the field component in the direction of propagation. The first integration in
(7.9) is only performed over the multiple AQW (MAQW) layer since x(z) is zero outside

717

this layer. Writing

[ = JEL(2)Eyumm(z)dz (7.10a)
MAQW  MAQW

and
[ = [E y(2)E umm(z)dz (7.10b)
BULK —ce
we have:
2; ’ 2
2
A 1|
Pros _ MAQW BULK
Pz ’x(zil | -x | 710
MAQW BULK

where the prime notation denotes quantities corresponding to the QW-intermixed waveguide

sample. Then

2

’

2) @
Xz MAIQ . / | =Xy

’

2 .
Pz | Xom | / | =%, (7.12)
MAQW/ BULK

For the B690 multiple AQW material at a fundamental wavelength of 1.55 pum the effective
index method can be used to calculate (see Appendix E):
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/ =247 (7.13)
MAQW/ BULK

From Section 7.4.2(i) it may be recalled that, due to the reduction in QW asymmetry alone,
x(z) for the mtemuxed sample should be approxunately 10% of x(u) for the starting material

2 .
sample i.e. x( ) =0. lx(zzl. Further, assuming xﬁy)z =0.83)(§§,)Z (see Section 7.3.1) and

choosing xf‘y)z =380 pm/V and x(z) =0.1 pm/V, gives:

’

P,
—£0z_=().760 (7.14)

2wz

Finally, to account for the reduction in F( ) on intermixing we can apply a further scaling

factor:
, @
P_20)2_=O_760><Fz(7‘z) =0.583 (7.15)
PZa)z Fzzz -

This compares with the observed ratio Psz’/szz of 0.207 for the TM,:TM,,

configuration (see Fig. 7.8). Hence, it would appear that, within the accuracy of the

modelling assumptions used, and for the tensor coefficients assumed, the large reduction in
the TM,,:TM,,, unphase-matched SHG observed in Fig. 7.8, cannot be fully explained.

The effects of polarisation errors will therefore be considered in the next section.

(iv) Angular Deviation of the Fundamental and Second Harmonic
Polarisations from the TM Axis
During the unphase-matched SHG experiments using the TM,:TM,,,

configuration, the transmission axis of the output polariser was set to be vertical with respect
to the optical bench, and the input polariser was adjusted for maximum transmission of the
TM fundamental field after the output polariser. For an angular deviation of the waveguide
sample normal from the vertical of 8 as indicated in Fig. 7.12, an angular deviation of 8 for

both the fundamental and second harmonic fields from the TM axis would be expected.
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™ EpEr0

Fig 7.12 Angular deviation of the vertical field components with respect to the waveguide TM axis for an
angular deviation of the waveguide surface normal to the vertical

From uniform plane wave considerations (see Appendix F) it may be shown that:

E2m(6)o<3x(2) sin Ocose+x(2) cos’ 0 (7.16)

xyz

where E,, is the second harmonic field polarised in the direction with an angular deviation
of 0 from the TM axis as indicated in Fig. 7.12 and where the AQW tensor components
ngzl and X(z) are both assumed to be negligible with respect to x(z) . From (7.16) it may be

Xyz
seen, that if Xx2y)1>> x(ui then the term 3xg,)z sin? @cos is likely to be significant relative to
the X(zii cos> @ term for small 6. Hence, if, during the unphase-matched SHG experiments,

the starting material and intermixed waveguide samples were both mounted so that the
angular deviation of their surface normals from the vertical was 6, then:

Izm(e)
1,,(0 ‘ 3xxyzsm 209c0s8 +%'2) cos® 0 l

2
3xxyz sin ecos9+x(2) cos> 6|

(7.17)

where 1,, denotes the output second harmonic intensity and all primed quantitics

correspond to the intermixed sample. Assuming, as for Section 7.4.2(iii), that
x(z) =0.1x2 and xf‘y)z =0.83x). and, further, that %\2, =380 pm/V and x2) = 0.1

pm/V, I,,(6) /I2o) as defined by (7.17) is plotted in Fig. 7.13. From this graph, it can
be seen that a small equal angular deviation of 0 for both starting material and intermixed

waveguides, leads to an increase in Iy, 9) /120,(0). This is due to the contribution to

I,,(0) and 120,(6) from xgy)z and xgy)z respectively for 80. Clearly, the discrepancy
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between the observed value of sz' /sz = 0.207 and the value of PZmz, /szz = 0.760

calculated in Section 7.4.2(iii) cannot then be attributed to a small equal angular deviation of
8 for both the starting material and intermixed waveguides.

0.8
0.6 —
2
3
o
= 04+
2
3
)
0.2+
0 1 | T T
= - ™ N < )

Angular Deviation of Fundamental and Second Harmonic Polarisation Relative to TM Axis (8")

Fig. 7.13 Calculated reduction in SHG intensity 14,(8) / 1,,(8) on QW-intermixing as a function of

the angular deviation of both the starting material and QW-intermixed waveguide normals from the vertical

If, however, only one of the waveguide samples has a surface normal angular
deviation from the vertical of 6 then:

. 2 2
L(0) _ |3X%)z sin?0cos8+ %2 cos® el

1o(6=0) | Xior I

(7.18)

where the relation of (7.16) has been used. Fig. 7.14 is a plot of 1,,(8)/I,,(0=0) as
defined by (7.18). From this figure it may be seen that I,,(0)/1,,(0 =0) is a strongly

increasing function of 6. This is to be expected since x(zzz)z << xf‘zy)z for the B690 structure. If

the angular deviation for the starting material waveguide sample is denoted by 6, and the
angular deviation for the intermixed waveguide sample is denoted by €', then, for 6" <86,
L, (8") < L5, (8). More specifically, for 8’ only marginally smaller than 6, we would

expect significantly less unphase-matched SHG from the intermixed waveguide sample.
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In conclusion, we tentatively assert that, within the accuracy and assumptions of the
models, the reason why the reduction in the TM,:TM,, unphase-matched SHG observed

in practice was larger than that predicted from (7.15), was that the waveguide deviations 6
and 0’ were such that 6’ <8 and/or the AQW non-linearity x(z) was larger than its predicted

7z
value of 0.1 pm/V.
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Angular Deviation of Fundamental and Second Harmonic Polarisation Relative to TM Axis (8")

Fig. 7.14 Normalised SHG intensity 120,(9)/12(0(9 = 0) as a function of the angular deviation of the

fundamental and second harmonic field polarisations from the TM axis

7.5 Conclusions

In this chapter unphase-matched SHG conversion efficiencies and waveguide losses
were compared in waveguides fabricated from asymmetric QW materials, before and atter

intermixing. It should be emphasised that the x(zf& tensor component ( = x%)z ) exists by

virtue of the non-centro-symmetric crystal structure of bulk GaAs/AlGaAs, while the x(zii

tensor element exists only by virtue of quantum well asymmetry. Any second harmonic
generated in AQW waveguides via X(zx)y in the TE:TM,,, polarisation configuration does

not therefore depend on the QW asymmetry, and qualitatively similar TE ,:TM,, SHG
results would be expected with symmetric QWs with the same bandgap.
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For photon energies above the half-bandgap energy, the second harmonic signal
observed at the output of the waveguides for a TE,: TM,,, polarisation configuration is the

net result of the linear absorption at the second harmonic frequency and SHG via the x(z)

Zxy
component. On intermixing, bandgap widening occurs resulting in a reduction of both the

. . 2 . .
second harmonic absorption and x(zx)y. Hence, an increase or a decrease in the second

harmonic power at the output of the waveguides may be observed on intermixing, depending
on whether the relative reduction in the second harmonic absorption is greater or less than the
relative reduction in ¥{2) respectively. For the BS63 asymmetric stepped QW (ASQW) and

B578 asymmetric coupled QW (ACQW) starting material waveguides, unphase-matched
SHG experiments were performed at 1.55 pm, corresponding to a photon energy = 40 meV
above half the bandgap. Accordingly, sub-linear TE:TE fundamental transmission
characteristics were observed due to two-photon absorption. The curvature of thesc
characteristics decreased on intermixing, indicating a reduction in the two-photon absorption.
Since an increase in the TM-polarised second harmonic output power was also observed on
intermixing, it was concluded that the relative reduction in the second harmonic absorption

occurring on intermixing was larger than the relative reduction in x(zi)y

In contrast, the unphase-matched TE;:TM,, SHG experiments with the B690
waveguides were performed at a wavelength of 1.524 pm, corresponding to a detuning of
the photon energy of = 60 meV below half the bandgap. The TE,:TE, fundamental
transmission characteristics were correspondingly linear, indicating that there was no two-
photon absorption of the fundamental and therefore no linear absorption of the second
harmonic. Having accounted for a small reduction in the waveguide SHG overlap factor F
due to a slight over-etch of the starting material waveguide, the observed reduction in the

second harmonic signal was therefore attributed to a reduction in x(z) of at least 17%. Such

zxy
a reduction in x(zi; may be explained in terms of bandgap widening: x(zi)y is resonant at the

half-bandgap so that, when operating at a photon energy below the half-bandgap, the
blueshift in the band-edge occurring on intermixing results in a larger detuning of the half-
bandgap resonance energy from the fundamental photon energy. Thus the fact that the QWs
were asymmetric is immaterial to the reduction of x(zi)y on intermixing, and qualitatively

similar results would be expected with symmetric QW structures.

For the TM,:TM,,, unphase-matched SHG experiments with B563, B578 and
B690 waveguides it was not possible to make any conclusions regarding a possible
(2)

reduction in Y, on intermixing. This is because calculations have predicted that x(zi)y is

more than three orders of magnitude greater than x(zi)z so that a small field component in the

direction of propagation (such as that associated with a TM waveguide mode) or a slight
misalignment of the polariser axes with respect to the crystal axes could lead to a significant
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TM,,:TM,,, second harmonic output signal via x(zi)y The reduction in the TM,:TM,,,

second harmonic output signals observed on intermixing could therefore simply reflect the
reduction in the large x(,i; component.

Waveguide losses as low as 7.9 dB/cm were measured at 1.556 um (corresponding
to a sub-half-bandgap photon energy) in intermixed B690 ACQW waveguides using the
Fabry-Perot technique. Such losses are not prohibitively high. Therefore, given the observed

reduction in x(zi)y of 17% on intermixing, quasi-phase-matching by periodic quantum well

intermixing could lead to useful frequency conversion efficiencies. More specifically, a
periodic reduction in x(z,z& of 17% (i.e. y =0.17) translates into a first-order QPM cfficiency

factor of déPM / nfn n,, = 66 pm2/V2. This compares with an efficiency factor of
dZpm [ngny, = 39 pm?2/V? for ideal lossless first-order domain inversion (i.c. y = -1)

in LiNbO;. Furthermore, if optimised AQW structures can be designed with associated

significant x(zf& non-linearities, an even larger TE :TM,, effective non-linearity

XS(Zy)z +x(?) will result, with correspondingly higher QPM efficiency parameters,
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8

Periodically Intermixed
GaAs/AlGaAs Multiple AQW
Waveguides for Quasi-phase-matched

SHG Around 1.5 pm

As mentioned at the beginning of the last chapter, efficient quasi-phase-matching is
an important precursor for the production of non-linear phase shifts via the cascaded second
order effect. Also, efficient frequency conversion is important in its own right for
wavelength division multiplexing and optical parametric oscillator applications.

The results of the previous chapter have shown that QW-intermixing techniques can
be used to control the magnitude of the bulk GaAs/AlGaAs second order non-lincar
coefficient d,,, and, in addition, that they can potentially be used to control the magnitude of

AQW coefficients. In light of these promising results, waveguides were fabricated from
periodically-intermixed GaAs/AlGaAs AQW material for quasi-phase-matching. Experiments
with these devices will be described in the following sections. It should be acknowledged
that N. D. Whitbread designed the mask used in the fabrication of the periodically intermixed
waveguide devices, and that he further performed most of the fabrication himself.

8.1 The QW-intermixing Period for Quasi-phase-
matched SHG Around 1.5 um

From Section 2.5 it may be recalled that, the required modulation period of the non-
linearity for quasi-phase-matched SHG is given by:

A =2mLc (81)

where m is the order of the quasi-phase-matching scheme. Now , in a waveguide,
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A

L. = 8.2

€ 4Ang (8.2a)

where

An g = Ny geff ~ Noeft (8.2b)

Hence

L (8.3)
2An g

Equation (8.3) represents the condition for quasi-phase-matched SHG in a waveguide
device. For the particular case of periodically-intermixed MQW devices, A represents the
intermixing period required for quasi-phase-matched SHG. For a B690 ridge waveguide
with 3 pm-wide ribs and a 0.9 um etch depth, the nominal An,g for the TMy, modes was
found to be = 0.282193 for a fundamental wavelength of A = 1.5 pm, where all the layer
refractive indices were calculated using the modified Afromowitz model [1], and the MQW
layer refractive index was calculated from (3.5b). From (8.3) the period was then given by
A =2.657756 X m pm.

There are, however, large uncertainties associated with the calculation of the
refractive index nyqw of an AlGaAs MQW layer which is, in general, given by [2,3,4]:

npyow = Nrms X (8.4)

In equation (8.4), ngys is a weighted average term given by (3.5) and depends on the well
and barrier layer indices and thicknesses, and on the polarisation of the optical field. The
term ny arises through the Kramer's Kronig relation as a consequence of excitonic
absorption. However, for 100 A-wide GaAs wells sandwiched between 100 A Alg3Gag 7As
barriers, ny was estimated to be ~ 0.03 for a detuning of 30 meV below the elhhl energy
[5]). For the B690 ACQW structure at a fundamental wavelength of 1.5 um, the second
harmonic wavelength of 750 nm corresponds to a detuning of approximately 120 meV below
the e1hhl energy, and the ny contribution is likely to be significantly less than 0.03. Hence,

the major source of uncertainty when estimating the B690 MQW layer refractive index, is
likely to be the uncertainty in the individual QW layer indices used to calculate ngyg. For
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example, the refractive index of Alg2Gag gAs as a function of wavelength in the range 0.8 -
1.5 um calculated from three different models is plotted in Fig. 8.1. The three models used
are, the Adachi model [6], the Sellmeier model [7], and the modified Afromowitz model [1].
From Fig. 8.1, it can be seen that the refractive index varies by up to 0.05 between the
different models, and there is, therefore, a large uncertainty associated with the calculation of
Angg . Any quasi-phase-matching period calculated from (8.3) will then also have large
associated uncertainties.

Assuming a variation in Ang of Angg(nominal)+0.1, a photolithographic mask
was therefore designed with 30 grating periods ranging from approximately 5.8 - 12.4 um
for third order quasi-phase-matching. The individual grating periods were chosen so that by
tuning the laser over a range of 1.48 - 1.52 pm, the quasi-phase-matching condition of (8.3)
was satisfied for one of the 30 grating periods. More specifically, if, for An g (nominal)-0.1
< Angs < An (nominal)+0.1, the quasi-phase-matching condition was satisfied for one of
the grating periods at a wavelength of 1.52 pum, then it would also be satisfied for the next
closest grating period at 1.48 pum.

Adachi
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Fig. 8.1 The refractive index of Alg 2Gag gAs as a function of wavelength calculated from three different

models
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8.2 Fabrication of Periodically Intermixed
GaAs/AlGaAs Multiple AQW Ridge Waveguides for

Quasi-phase-matched SHG Around 1.5 um

Due to the large number of factors influencing the IFVD process for MQW-
intermixing (see Chapter 6), different PL blueshifts were often observed for the same
nominal IFVD process parameters. To circumvent these reproducibility problems,
periodically intermixed B690 waveguide samples were fabricated in parallel with periodically
intermixed B690 IFVD resolution samples using the selective area IFVD process described
in Chapter 6. The periodically intermixed waveguide sample corresponding to the IFVD
resolution sample which showed the greatest differential PL blueshift was then selected. The
PL blueshift results from the best IFVD resolution sample are those of Fig. 6.25. Recalling
the discussion at the end of Section 6.3.2, we would then expect the xgl non-linearity
relative to the starting material X(ZQ non-linearity to be approximately 0.48 and 0 in the
intermixing-suppressed and intermixed regions respectively. Furthermore, it was concluded
that the IFVD spatial resolution measured for this sample was better than 2.2 pm. This
indicates that periodic QW-intermixing is only guaranteed for periods of 4.4 um or greatcr.

Using SiCly for dry-etching, 3 um wide and 0.9 um deep waveguide ridges were
fabricated from periodically intermixed material with a third-order grating period. Fig. 8.2a
shows a scanning electron microscope (SEM) image of one of the rib waveguides. A
corrugated pattern can be seen on the surface to either side of the rib waveguide. This results
because the intermixed and non-intermixed regions etch at slightly different rates. From Fig.
8.2b, which shows the surface at the edge of the periodically intermixed region, it is possible
to establish that the "trenches" correspond to the intermixed regions. From a surface profile
measurement, the trench depth was found to be 0.1 um. Such an effective index grating
should not, have an appreciable effect on quasi-phase-matching.
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(a)

Fig. 8.2 SEM images of a B690 periodically-intermixed waveguide sample (a) in the vicinity of a

waveguide rib and (b) at the edge of the periodically-intermixed region

8.3 Periodically Intermixed Waveguide Losses

Using an identical experimental method to that outlined in Section 7.2, the waveguide
losses listed in Table 8.1 were measured for a 4 mm-long periodically-intermixed B690

waveguide sample at 1.556 um.

Intermixing Period (1m) o (dB/cm)
5.80 18.0
7.55 14.4
9.55 13.6
12.40 3.7

Table 8.1 B690 periodically-intermixed waveguide losses at 1.556 um
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Clearly, the losses increase with decreasing intermixing period, as might be expected due to
any small index variations and/or the introduction of more vacancies in the intermixed
regions. The losses compare very favourably with waveguide losses of 45 dB/cm measured
in periodically domain inverted AlGaAs waveguides at 771 nm [8].

8.4 SHG Experiments with Periodically Intermixed
GaAs/AlGaAs Multiple AQW Ridge Waveguides

Around 1.5 pm

Before making any reference to the experimental set-up used to test the periodically
intermixed waveguide devices, it will be helpful to address some issues relating to the
general operation of a KCl colour-centre laser. Pulsed laser radiation is generalily used for
non-linear optical experiments because of the higher peak power levels generated. In fact, for
pulsed operation, and for a weakly wavelength-dependent non-linearity, we would expect an
enhancement of ~ 1/f7 in the second harmonic average power detected, when compared with
cw operation for the same average fundamental power, where f is the pulsc repetition rate
and 1 is the pulsewidth.

For a strongly wavelength dependent non-linear interaction such as quasi-phase-
matched SHG, the situation is slightly different. To appreciate this, the tuning curves of
Figs. 8.3 and 8.4 were plotted for 2 mm-long periodically intermixed B690 waveguide
devices with 3 um rib widths and 0.9 um etch depths in the TM,:TM,, and TE:TM,,,
configurations respectively. These curves were generated using a computer program written
by N..D. Whitbread which used the fourth order Runge-Kutta algorithm to integrate the
scalar coupled wave equations of Section 3.2. Average input powers of 5 mW and an
effective cross-sectional area of 10 pm? were assumed in each case. For both Figs. 8.3 and
8.4, a third-order grating period was selected which satisfied the quasi-phase-matching
condition at 1.5 pm for the TM,,:TM,, case. The translation of the quasi-phase-matching
peak to shorter wavelengths for the TE,:TMy, case, simply reflects the fact that the lowest
order TE waveguide mode effective index at the fundamental wavelength TE ., is different

from the TM oo Mode effective index, and the quasi-phase-matching condition is therefore
satisfied at a different wavelength. In accordance with the resolution sample results, x(zf),

was assumed to be modulated by factors of 0.48 and O relative to its starting material value,
in the intermixing-suppressed and intermixed regions respectively for the TM,,: TM,,, case

of Fig. 8.3. In other words, for a starting material value of x(zzzl = 0.1 pm/V, X(yil was
assumed to be modulated between 0.048 pm/V and 0. For the TE,,: TM,, case of Fig. 8.4,
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it was assumed that xfy)z is the only significant contributing tensor component. Then,

assuming that xﬁfy)z in the intermixing-suppressed regions is equal to that in starting material

waveguides, and that xg)z in the intermixed regions is equal to that in waveguides fabricated

from material intermixed everywhere, we have from Chapter 7:

x(xzy)z (intermixed) = 0.83 XE;)Z (intermixing-suppressed) (8.5)

Further, assuming that x&zy)z in the intermixed regions is equal to the low frequency value of

380 pm/V, we estimate:

%2, (intermixed) = 380 pm/V (8.62)
X(xzy)z (intermixing-suppressed) = 458 pm/V (8.6b)

The tuning curve of Fig. 8.4 was generated using these xg‘zy)z tensor component values.

From the bandwidths of the tuning curves of Figs. 8.3 and 8.4, it is apparent that,
for cw laser operation, any mode-hopping by more than a few nm's would mean that the
phase-matching condition would be missed. When using pulsed laser radiation, however,
with a bandwidth of several nm's, it is more likely that an enhancement in the SHG signal
due to quasi-phase-matching will be observed in the presence of mode-hopping. Problems
with pulsed laser operation can arise, due to changes in the pulse shape which can occur
during tuning. Such pulse shape variations translate into peak power variations which, in
turn, can give rise to fluctuations in the second harmonic power. Such fluctuations will tend
to obscure any variations in the second harmonic power occurring due to quasi-phasc-
matching alone. The laser should therefore ideally be operated pulsed with a constant
pulseshape independent of wavelength. Alternatively, if the pulseshape cannot be maintained
constant, it may be monitored during tuning instead, to allow the deconvolution of the peak
power level as a function of wavelength.

For the quasi-phase-matched SHG experiments performed, no pulsed colour-centre
laser source was readily available, so that it was necessary to resort to cw operation.
Continuous, or near continuous, tuning and minimal mode-hopping were then very
important in order that any sharp quasi-phase-matched SHG enhancements should be
detected. The experimental set-up used for cw testing of the periodically intermixed
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waveguides is sketched in Fig. 8.5. The KCl colour-centre laser depicted in Fig. 8.5a was
pumped with a cw YLF laser with up to 2 W of power at 1.047 um. The YLF beam was
chopped to allow lock-in detection of fundamental and second harmonic signals during the
experiment. The colour-centre laser cavity had a "five-mirror configuration", with tuning
provided by an equilateral glass prism as shown in Fig. 8.5a. Tuning was achieved by finely
adjusting the rotation of the output coupler mirror about its vertical axis. A scanning Fabry-
Perot interferometer was then used to monitor the cw laser wavelength by inserting a gold
mirror into the optical path as indicated.

Light from the colour-centre laser was TE-polarised and end-fire coupled into the
waveguide as shown in Fig. 8.5b. The output polariser was crossed with the input polariser
so that it transmitted only TM-polarised light. A dielectric mirror which was highly reflective
at both the YLF wavelength, and across the fundamental wavelength tuning range of 1480 -
1520 nm, but not across the second harmonic wavelength range of 740 - 76() nm, was
inserted in the optical path in front of the photomultiplier tube (PMT). This mirror blocked all
power at the YLF wavelength (both in the beam and scattered), and all power in the
fundamental beam around 1.5 um. The PMT was also insensitive to wavelengths outside the
range 400 - 1100 nm, so that the PMT signal was a measure of the TM second harmonic
power generated. Lock-in detection with a time constant of 3 s was then uscd to monitor the
PMT signal as a function of wavelength for each of the 30 waveguides with difterent
intermixing periods in turn. Due to the condition of the KCl crystal, the maximum
unchopped cw power measured after the output coupler was 50 - 60 mW. The
corresponding unphase-matched second harmonic PMT signal was typically a few hundred
{LV at the centre of the laser tuning range near 1.5 um.

As mentioned earlier, due to time restrictions, and because a superior dispersive
element was not readily available, tuning was accomplished with a glass prism in the colour-
centre laser cavity, by rotating the output coupler mirror about its vertical axis. Tuning in this
way, was however, far from continuous, with lasing modes typically occurring 2 - 3 nm
apart in the range 1480 - 1520 nm. Furthermore, the lasing wavelength did not change with
translation of the output coupler along the optical path. This suggested the presence of a
second dispersive element (possibly the cryostat windows) in the laser cavity which was
giving rise to a "ripple” in the laser gain spectrum. Furthermore, mode-hopping between
two, or more, of the modes was observed on a sub-second timescale. The tuning technique
was even less satisfactory still, when one considers that on adjusting the output coupler, the
laser beam "wandered" i.e. the angular deviation of the beam varied during tuning. This had
quite serious consequences for the alignment of the various different optical components in
the optical path during tuning. Firstly, it was prohibitively time-consuming to use an isolator
with a small aperture during tuning. As a consequence, the power measured as a function of
wavelength with a Ge photodiode immediately before the input objective, was not
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proportional to the power measured as a function of wavelength with a power meter
immediately after the laser output coupler. This was attributed to the reflection of power from
the different elements in the optical path back into the laser cavity i.e. the laser output was
not independent of the elements in the optical path. This meant that monitoring the laser
power by changing the optical path in any way was pointless. Due to serious power
restrictions, "tapping-off" some on the input power and maximising the photodiode signal at
each wavelength, was also out of the question since the PMT signal was only a few hundred
1V at the centre of the laser tuning range. It was therefore resolved to proceed with the
measurements by monitoring only the second harmonic PMT signal as a function of
wavelength in the hope that any quasi-phase-matched enhancement in the SHG would be

very obvious.

For each wavelength, the second harmonic PMT signal was maximised through
optimisation of the waveguide coupling with an adjustment of the beam-steering mirror of
Fig. 8.5a just before the half-wave plate of Fig. 8.5b. The normalised TM-polarised second
harmonic PMT signals thus obtained as a function of wavelength for all 30 waveguides with
different intermixing periods in the range 5.8 - 12.4 um, were not very meaningful, and
have therefore been plotted in Appendix G. From these results, it may be seen that no
obvious quasi-phase-matched SHG peak was observed for any of the periodically intermixed
waveguides in the TE,:TM,, polarisation configuration. Furthermore, none of the
observed tuning curves appeared to be real, in that, repeating the tuning measurement for a
given device, did not result in the same tuning curve features. This suggests that the tuning
curves of Appendix G are simply the product of random effects such as noise, lascr power
fluctuations, mode-hopping, unphase-matched SHG oscillations, and Fabry-Perot effects. In
light of these observations, no experiments were performed in the TMy:TM,,

configuration.

There are several possible explanations for failing to observe a large quasi-phasc-
matched enhancement in the second harmonic signal. Firstly, from Fig. 8.4, it may be
recalled that the estimated bandwidth for third-order quasi-phase-matching in a 2 mm-long
device is 2 - 3 nm. Due to discontinuous tuning of the colour-centre laser, it might have been
the case that the quasi-phase-matched peak was located at a wavelength between two lasing
modes separated by 3 nm or more. Lasing in one of the modes either side of the quasi-phase-
matched peak, would not then have given rise to a spectacular enhancement in the second
harmonic signal. Another possibility is that, due to the mode-hopping observed, any quasi-
phase-matching enhancement in the SHG would only have occurred momentarily. Using
lock-in detection with a 3 s time constant, would then have meant that such instantaneous
"spikes” in the second harmonic PMT signal would not have been observable. Fluctuations
in the laser power too, would tend to have masked any SHG enhancement, especially when
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we consider that the second harmonic signal is proportional to the square of the fundamental

power.

The laser tuning range was also not very satisfactory in that tuning between 1480 and
1520 nm was not always possible. This was probably symptomatic of the reduced colour-
centre gain available due to the poor condition of the KCI crystal. Any quasi-phase-matched
SHG at one of the tuning range extremes may not, therefore, have given rise to a large
second harmonic PMT signal. It is also possible that the uncertainties in the effective
waveguide mode indices at the fundamental and second harmonic wavelengths, were larger
than assumed for the design of the mask for periodic intermixing. The quasi-phase-matching
condition would not then have been satisfied for any of the intermixing periods or laser

wavelengths used.

Finally, it should be recalled that for the IFVD resolution sample processed in parallcl
with the periodically-intermixed waveguide sample, MQW-intermixed and intermixing-
suppressed PL blueshifts of 36 and 13 nm were observed. This indicates that some band-gap
widening is likely to have occurred in both the MQW-intermixed and the intermixing-
suppressed regions of the waveguide sample. This would mean that only a small modulation

of the xgzy)z non-linearity may exist and that the corresponding quasi-phase-matched SHG

enhancement may not be very significant.

8.5 Conclusions

Periodically intermixed waveguides were fabricated from B690 ACQW material
using H plasma processing for the periodic suppression of the IFVD intermixing process.
Due to the uncertainty in the effective index difference at the fundamental and second
harmonic frequencies, ANgg = Nggrae — Degr . thirty different intermixing periods were

chosen to ensure that, for a variation of An by $0.1 from its nominal value, the phase-
matching condition would be satisfied for one of the intermixed waveguides during tuning of
the fundamental wavelength between 1480 and 1520 nm.

Waveguide losses measured at 1.556 um ranged from 3.7 dB/cm for an intermixing
period of 12.4 um up to 18 dB/cm for an intermixing period of 5.8 um. The losses were
thought to increase with decreasing intermixing period as a result of scattering losscs
associated with the additional interfaces between the intermixed and intermixing-suppressed
regions in the samples with shorter intermixing periods.

- 222 -



A serious experimental attempt was made to achieve quasi-phase-matched SHG in
the periodically intermixed waveguides using cw excitation from a KCl colour centre laser.
With an equilateral glass prism in the laser cavity, tuning was achieved between
approximately 1480 and 1520 nm by rotating the output coupler mirror. However, due to the
resulting angular deviation in the laser output beam during tuning, it was impractical to use
an isolator. This fact, in conjunction with a lack of power due to the poor condition of the
KCl crystal, meant that it was impossible to monitor the laser power during tuning. The
experimental SHG tuning curves were therefore obtained without deconvolving fluctuations
in the laser power during tuning, in the hope that any quasi-phase-matched SHG peak
features would be very obvious. However, the SHG signals measured as a function of
wavelength were not reproducible and were therefore probably the result of laser power
fluctuations, mode-hopping and Fabry-Perot effects which occurred during tuning. Any
minor QPM peak would then, of course, have been obscured by such effects.

The most likely explanation for the absence of a major QPM peak is that the
intermixing periods chosen were incorrect due to a larger than anticipated uncertainty in
An,¢ . This could have been, at least in part, caused by a change in An.g on intermixing.
Measured index data should therefore strictly be used to ensure the correct choice of QPM
period. Another possible explanation for failing to observe phase-matched SHG would be

that there was a negligible modulation in x(zi)y due to poor suppression of the IFVD process.

A superior selective-area intermixing process should therefore be developed. Discontinuous
laser tuning could also have meant that the QPM condition with its narrow bandwidth was
never satisfied at any of the limited number of different mode wavelengths. This problem
could have been circumvented if a pulsed colour centre laser system had been available for
the tuning experiments.
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Further Work and Conclusions

This work is concerned with the control of second order non-linearities in
GaAs/AlGaAs multiple asymmetric QW (AQW) waveguides using QW-intermixing for
domain-disordering.

From characterisation measurements, it is clear that the growth of GaAs/AlGaAs
multiple AQW epitaxial structures is relatively demanding. AQW structures were thereforc
designed to be "tolerant” to growth inaccuracies.

QW-intermixing was accomplished using the impurity free vacancy disordering
(IFVD) process. Intermixing was observed to occur more readily (i.e. shorter anneal times
and lower anneal temperatures were required to achieve the same degree of intermixing) in
AQW samples which were encapsulated with e-beam evaporated SiO; and which
incorporated lower Al fractions in the epitaxial layers. This may have been due to the
more porous nature of e-beam evaporated SiO; compared with PECVD SiO,, and/or lower
C impurity concentrations in the lower Al fraction AQW layers. Further experiments
should therefore be designed to quantify the influence of these two factors.

Unphase-matched second harmonic generation (SHG) experiments were performed
with both as-grown and intermixed GaAs/AlGaAs multiple AQW waveguides at the sub-
half-band-gap wavelength of 1.524 um. No conclusive evidence was found for the
existence of any AQW tensor components. These observations are consistent with recent
calculations which predict that the second order susceptibility tensor components x(z)

XxzXx’
(2)

xg& and y,,,. associated with the particular AQW structures tested, are negligible.

Unphase-matched SHG was, however, observed due to the large bulk GaAs/AlGaAs x(z)

Xyz

component. Furthermore, QW-intermixing resulted in an estimated reduction of xazyl by

17%. xg,)z is resonant at the half-band-gap, so that the observed reduction may be

attributed to the increased detuning of the band-edge from the two-photon energy which
occurs on QW-intermixing. Since the quasi-phase-matching conversion efficiency is
proportional to both the square of the magnitude of the non-linearity and the square of the

modulation depth, a small but significant reduction in the large x(sz non-linearity such as
2)

this, could lead to useful conversion efficiencies. Larger reductions in x(xyz,

potentially higher conversion efficiencies, may also be possible by re-designing the MQW
structure and/or operating at a wavelength closer to the half-band-gap.

and therefore

Quasi-phase-matching requires the periodic modulation of the MQW waveguide
non-linearities. Selective-area IFVD was therefore demonstrated using hydrogen plasma
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processing to inhibit QW-intermixing in selected-areas. However, only partial suppression
of the intermixing process was achieved in this way. Superior techniques for the
suppression of the IFVD process should therefore be developed for efficient domain
disordering. For example, it may be possible to grow a substantial Ga,Oj layer in selected
areas. Such an oxide layer may be almost completely impermeable to Ga atoms during
annealing and would therefore suppress the IFVD process. Alternatively, the properties of
the SiO, cap could be modified in selected areas to make it impermeable to Ga atoms
during annealing.

Experiments were performed to determine the spatial resolution of the selective-
area IFVD process. For an epitaxial waveguide structure with a MQW layer extending
from between approximately 1 and 2 um below the sample surface, the measured
resolution of the IFVD process was better than 2.2 um. This result is quite remarkable
since it implies that, during annealing, Ga vacancies diffuse downwards through the
epitaxial layers faster than they diffuse in a lateral direction. Furthermore, this result means
that the resolution of the IFVD process is sufficiently good for quasi-phase-matching in
GaAs/AlGaAs MQW waveguides.

Waveguides were fabricated in periodically-intermixed GaAs/AlGaAs MQW
material with measured losses which increased from 3.7 dB/cm up to 18.0 dB/cm as the
intermixing period was reduced from 12.4 to 5.8 um. These losses are not prohibitively
high. Furthermore, lower losses would be expected for an optimised waveguide design.
However, no TE,:TM,, quasi-phase-matched SHG was observed in the periodically-
intermixed waveguides. This could have been the result of several factors. For example,
laser mode-hopping and discontinuous tuning could have meant that the narrow bandwidth
phase-matching condition was not satisfied. Alternatively, because of the uncertainty in the
waveguide mode effective indices, the range of intermixing periods and wavelengths used
may not have been sufficiently extensive i.e. the phase-matching condition may not have
been satisfied for any of the intermixing periods and wavelengths used. Another possibility
is that, because the suppression of the QW-intermixing process in selected areas was not

very successful, the resulting periodic modulation in the bulk xﬁfy)z non-linearity may have

been negligible.

In summary, if a superior selective-area IFVD process can be developed, efficient
quasi-phase-matching may be possible through modulation of the large x%)z non-linearity.

If, in addition, an optimised AQW structure can be designed with an associated X(z)
ZXX

component which is comparable to x(z) then periodic modulation of the total non-

xyz’®
. . (2) , ,(2) . . )
linearity Xyxyz*Xzxx by QW-intermixing could result in conversion efficiencies of several

hundred %/Wcm?2,
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A

Material Data

All the interband transition wavelengths and oscillator strengths appearing in this
appendix were calculated using the algorithm of Chapter 4 for the solution of the 1D
Schrodinger equation, where all band-gap and effective mass data was taken from Adachi's
review paper [1]. Also, all waveguide mode effective indices were calculated using a
multilayer slab solver routine where all refractive index data was generated using the
modified Afromowitz model [2].

[1] S. Adachi, "GaAs, AlAs and Al;Ga; xAs: Material Parameters for Usc in Rescarch
and Device Applications", J. Appl. Phys. 58, R1 (1985)

[2] S. L. Hansen, "The Refractive Index Change in GaAs/AlGaAs Quantum Wells
Produced by Neutral Impurity Induced Disordering Using Boron and Fluorine", PhD
Thesis, University of Glasgow (1993), and M. A. Afromowitz, "Refractive Index of
Ga; 4Al;As", Solid State Commun. 18§, 59 (1974)
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QT613
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el ~ e2
1hl 694.06 657.53
1h2 670.15 636.03
hhl 712.02 673.62
hh2 683.20 647.77
hh3 676.97 642.17
hh4 669.22 635.19
77K
el e2
lhl 659.31 625.52
1h2 637.20 605.59
hhl 675.77 640.32
hh2 649.43 616.62
hh3 643.47 611.25
hh4 636.40 604.86
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QT613

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation |l to Layers el e2
lh1 0.1653707 0.0005397
1h2 0.0004135 0.1615342
hhl 0.4264055 0.0118124
hh2 0.0072404 (.0882657
hh3 0.0193096 (0.3089924
hh4 0.0167674 0.0492597

Polarisation L to Layers el e2
lhl 0.6614830 (0.0021587
1h2 0.0016539 0.6461369

77K

Polarisation |l to Layers el e2
1hl 0.1653831 0.0005350
1h2 0.0004127 0.1616902
hhl 0.4272135 0.0116156
hh2 0.0066001 0.0826719
hh3 0.0192914 0.3172912
hh4 0.0168341 0.0459772

Polarisation L to Layers el e2
lh1 0.6615325 0.0021401
1h2 0.0016508 0.6467608
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QTé613 . .
Individual Layer Refractive Indices and 1D Mode

Effective Indices at 1.55 pm

Refractive Index
at 1.55 pm
49% AlGaAs 3.146528
MQW(TE) 3.186440
MQW(TM) 3.185579
TE, 3.171787
™, 3.170719
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B563
(MBE)

100 A
0.8 um Upper Cladding
1.163 pm
50 wells MQW
51 barriers
3 um Lower Cladding
Substrate
Al%: 15 30

-—— e

L

55A 130 A

N.B. Substrate and all epitaxial layers nominally undoped
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GaAs Cap

32% AlGaAs

See below

42% AlGaAs

GaAs



B563
(Interband Transition Wavelengths in nm Calculated for
Nominal Structure)

300K
el e2
lhl 804.05 752.22
1h2 767.52 720.16
hhl 822.02 767.93
hh2 798.62 747.47
hh3 784.19 734.82
hh4 770.40 722.70
hh5 757.59 711.41
77K
el e2
lhl 759.99 712.81
1h2 726.77 683.50
hhl 776.26 727.10
hh2 755.18 708.58
hh3 741.84 696.82
hh4 729.54 685.95
hh5 717.89 675.65
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B563

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation || to Layers el e2
1hi 0.1662076 0.0002481
1h2 0.0002254 0.1648640
hh1 0.4327726 0.0251030
hh2 0.0071087 0.1322106
hh3 0.0390489 (0.2584565
hh4 0.0110560 0.0356384
hh5 0.0043107 0.0002163

Polarisation . to Layers el c2
lhl 0.6648302 0.0009923
1h2 0.0009014 ().6594560

77K

Polarisation |l to Layers el e2
lh1 0.1662101 0.0002487
1h2 0.0002266 0.1649224
hhl 0.4334495 0.0248636
hh2 0.0067697 0.1300553
hh3 0.0388747 0.2622342
hh4 0.0110614 0.0352286
hh5 0.0039086 0.0001641

Polarisation L to Layers el e2
lhi 0.6648404 0.0009948
1h2 0.0009064 0.6596895
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B563
Individual Layer Refractive Indices and 1D Mode

Effective Indices at 1.7 um

Refractive Index
at 1.7 um
32% AlGaAs 3.205496
42% AlGaAs 3.164963
MQW(TE) 3.259602
MQW(TM) 3.257551
TE, 3.231903
TE, 3.169682
™, 3.229178
™, 3.166841
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BS578

100 A GaAs Cap
0.8 um Upper Cladding 34% AlGaAs
1.073 um
50 wells MQW See below
51 barriers
3 pm Lower Cladding 44% AlGaAs
Substrate GaAs
Al%: 0 30 0 30
—_—— —_— — — T

50 A 2
I 12 A 130,&»

N.B. Substrate and all epitaxial layers nominally undoped
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B578
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el c2
lhl 806.33 756.42
1h2 769.74 724.13
hhl 824.09 772.03
hh2 805.44 755.64
hh3 799.22 750.17
hh4 767.77 722.39
77K
el e2
lhl 762.06 716.84
1h2 728.90 687.42
hhl 778.13 731.04
hh2 761.29 716.15
hh3 755.84 711.33
hh4 727.38 686.07
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B578

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation || to Layers el e2
lh1l 0.1662958 0.0001718
1h2 0.0001536 0.1644309
hh1 0.4319626 0.0292050
hh2 0.0338570 0.3808363
hh3 0.0059949 0.0011598
hh4 0.0167335 0.0076157

Polarisation L to Layers el e2
lhl 0.6651833 (.0006870
1h2 0.0006144 0.6577236

77K

Polarisation || to Layers el e2
l1hl 0.1662963 0.0001746
1h2 0.0001567 0.1645017
hhl 0.4325471 0.0291300
hh2 0.0333452 0.3826183
hh3 0.0059144 0.0013043
hhd 0.0166939 0.0066877

Polarisation L to Layers el e2
lh1 0.6651851 0.0006986
1h2 0.0006270 0.6580068
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B578
Individual Layer Refractive Indices and 1D Mode

Effective Indices at 1.7 um

Refractive Index
at 1.7 pm
34% AlGaAs 3.197279
44% AlGaAs 3.156941
MQW(TE) 3.263890
MQW(TM) 3.260911
TE, 3.231522
TE, 3.160220
™, 3.227795
™, 3.157899
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B635
(MBE)

1000 A GaAs Cap
0.8 pm Upper Cladding 55% AlGaAs
1.132 ym See bel
60 wells MQW ee below
61 barriers
3 pum Lower Cladding 56% AlGaAs
Substrate GaAs
Al%: 0 40 60

6 monolayers 70 A 100 A

-—>—pa - >

N.B. Substrate and all epitaxial layers nominally undoped
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B635
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el e2
lhi 682.86 638.23
1h2 652.84 611.93
hhl 717.46 668.35
hh2 667.06 624.40
hh3 659.70 617.95
hh4 649.70 609.17
hh5 637.81 598.70
77K
el e2
lhl 649.30 607.94
1h2 621.57 583.56
hhl 681.19 635.81
hh2 634.49 594.94
hh3 627.89 589.13
hh4 618.87 581.18
hhS 607.88 571.48
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B635

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation |l to Layers el e2
lhl 0.1645859 0.0013553
1h2 0.0012222 0.1636423
hh1 0.3995159 0.0228456
hh2 0.0453088 0.3966302
hh3 0.0099038 (0.0541338
hh4 0.0009876 0.0042700
hhS 0.0130802 0.0023593

Polarisation L to Layers el e
lhl 0.6583437 0.0054214
lh2 0.0048890 0.6545690)

77K

Polarisation |l to Layers el e2
lhl 0.1646004 0.0013380
1h2 0.0012078 0.1637170
hhl 0.4005378 0.0221214
hh2 0.0442095 0.3969386
hh3 0.0097172 0.0552689
hh4 0.0010998 (.0040314
hh5 0.0128861 0.0023288

Polarisation L to Layers el e2
lh1 0.6584017 0.0053519
1h2 0.0048313 0.6548681
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B635
Individual Layer Refractive Indices and 1D Mode

Effective Indices at 1.55 um

Refractive Index

at 1.55 pm

55% AlGaAs 3.121650
56% AlGaAs 3.117440
MQW(TE) 3.157492
MQW(TM) 3.153627
TE, 3.138070
™, 3.134654
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B690

1000 A GaAs Cap
0.8 pm Upper Cladding 47% AlGaAs
1.018 um
48 wells MQW See below
49 barriers
4 pm Lower Cladding 47% AlGaAs
Substrate GaAs
Al%: 20 4 20 44
- ™
9 monolayers
50 A 5 monolayers 120 A

-l

-

N.B. Substrate and all epitaxial layers nominally undoped
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B690, B672 and QT849A
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el e2
lhl 701.44 676.17
1h2 681.91 658.01
hhl 712.10 686.07
hh2 703.62 678.19
hh3 695.69 670.82
hh4 675.42 651.96
77K
el e2
lh1 665.92 642.89
1h2 648.12 626.29
hhl 675.67 651.98
hh2 667.94 644.78
hh3 660.80 638.12
hh4 642.23 620.78
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B690, B672 and QT849A
(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation |l to Layers el e2
lhl 0.1659271 0.0004045
1h2 0.0003667 0.1636148
hhl 0.4271049 0.0394425
hh2 0.0443522 (0.3839885
hh3 0.0001348 0.0107173
hh4 0.0147934 0.0108493

Polarisation L to Layers el e2
lhl 0.6637086 0.0016181
1h2 0.0014666 0.6544592

77K

Polarisation |l to Layers el e2
1h1 0.1659222 0.0004135
1h2 0.0003761 0.1637002
hhl 0.4276852 0.0392827
hh2 0.0437943 0.3852518
hh3 0.0001123 0.0108980
hh4 0.0150624 0.0094153

Polarisation L to Layers el e2
lh1 0.6636890 0.0016540
1h2 0.0015042 0.6548009
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B690, B672 and QT849A
Individual Layer Refractive Indices and 1D Mode

Effective Indices at 1.55 um

Refractive Index
at 1.55 um
47% AlGaAs 3.154717
MQW(TE) 3.204053
MQW(TM) 3.202569
TE, 3.179883
™, 3.178131
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B690, B672 and QT849A
2D Overlap Factors for Second Harmonic Generation at

1.55 pum in Waveguides with a Rib Width of 3 im and an
Etch Depth of 0.9 pm

™, TM,,
Overlap Factor TM w00 TM o1
F2) /m? (3.173982) (3.164927)
™00 1.455673x 10! 2.342599 x 101°
(3.425296)

T™ 3001 2.820805x 1077 6.660567 x 10™°
(3.422996)

T™, 410 6.406366 % 107 5.713705x10°
(3.392157)

TM,q11 7.387521x107"° 9.587967 x 107!
(3.387801)

TEu):TMZw
Overlap Factor TE o0 TE o1
2)

Fi2) /m? (3.176010) (3.168460)

™00 1.632129x 10" 4.570926 x 10°
(3.425296)

T™M 1001 3.024854 x 10* 7.779384 % 10°
(3.422996)

T™; 010 7.880680 % 107 1.038151x 108
(3.392157)

™01 1.431481x 10" 3.681508
(3.387801)

N.B. Quantities in brackets are the 2D mode effective indices for a fundamental

wavelength of 1.55 pm
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A776
(MBE)

100 A
0.8 um Upper Cladding
1.484 um
70 wells MQW
71 bamers
4 pm Lower Cladding
Substrate
Al%: 14 40
—— ﬂ —————
70 A 140 A

N.B. Substrate and all epitaxial layers nominally undoped
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GaAs Cap

37% AlGaAs

See below

37% AlGaAs

GaAs



A776
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el e2
lhl 740.73 693.62
1h2 705.96 663.04
hhl 751.79 703.31
hh2 740.75 693.64
hh3 723.72 678.68
hh4 703.95 661.27
77K
el e2
lhl 702.05 659.16
1h2 670.33 631.12
hhl 712.07 667.98
hh2 702.11 659.22
hh3 686.72 645.63
hh4 668.65 629.63
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A776

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

Polarisation |! to Layers el e2
Ihl 0.1663642 0.0000000
1h2 0.0000000 0.1619641
hhl 0.4756019 0.0000000
hh2 0.0000000 0.3677510
hh3 0.0126422 0.0000000
hh4 0.0000000 0.0816312

Polarisation L to Layers el e2
Il 0.6654566 0.0000000
Ihl 0.0000000 0.6478564

77K

Polarisation || to Layers el e2
Il 0.1663698 0.0000000
1h2 0.0000000 0.1621306
hh! 0.4759488 0.0000000
hh2 0.0000000 0.3712381
hh3 0.0123918 0.0000000
hh4 0.0000000 0.0765285

Polarisation L to Layers el e2
Ih 0.6654792 0.0000000
th2 0.0000000 0.6485222
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B579
(MBE)

1000 A GaAs Cap
08 um Upper Cladding 40% AlGaAs
1 0084 um

78 wells MQW See below
79 barriers

4 um Lower Cladding 40% AlGaAs

Substrate GaAs
Al 0 40
P — — — — — —
28 A 100 A
— e — >

N.B. Substratc and all epitaxial layers nominally undoped
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BS79
(Interband Transition Wavelengths in nm Calculated for

Nominal Structure)

300K
el
lhl 740.57
hhl 772.03
hh2 725.42
77K
el
1hl 702.36
hhl 731.05
hh2 688.76
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B5S79

(Interband Transition Oscillator Strengths in a.u.

Calculated for Nominal Structure)

300K

77K

Polarisation |l to Layers el
lhl 0.1660915
hhl 0.4384580
hh2 0.0000000
Polarisation L to Layers el
lhl 0.6643658
Polarisation Il to Layers el
lhl 0.1660928
hhl 0.4389244
hh2 0.0000000
Polarisation L to Layers el
lhl 0.6643711
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B

Quasi-phase-matching Conversion
Efficiency as a Function of the Non-
linearity Modulation Depth

In the limit of low pump depletion when Eq(2) = E4(0) and ADN(2) = 0, we

have from (2.49):

dE,u(2) _. .
e iK exp(iAkz) (B.1a)
where
w - 2
- ":z—wzdcff[Ea)(O)] (B.1b)
and

in )

Ak = ==(ny =N (B.1¢)

Now, for a quasi-phase-matching scheme with a modulation period in the non-linearity of
A =2mL_. the domain length L, may be defined according to:

to| >

(B.2)

[
3
=

Ly

For the Mth guasi-phase-matching period along the medium, we may define effective non-

linear coefficients of d g and deg over the first and second domains respectively as

illustrated 1n Fig. B.1:
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MA MA+L4 (M+DA z

- > >

First Domain Second Domain

Fig. B.1 The d coefficients in the Mth quasi-phase-matching period along a second order non-linear medium

Then, integrating (B.1a) over the first and second domains in the Mth QPM period gives
(B.3a) and (B.3b) respectively:

MA+Lgq MA+Lg

N{A dE,, =iK MjA exp(iAkz)dz (B.3a)
MA+Lg MA+Lg

N{A dE,, =iK’ MIA exp(iAkz)dz (B.3b)
where

’ 0) T 2
K== deit [Ea(0)] (B.3¢)

Evaluating (B.3a) and (B.3b) gives (B.4a) and (B.4b) respectively:

. . K .
Bpo(MA+Lg)=Eqy(MA)+ ZEexp(l.AkMA)- [exp(iAkL,) - 1] (B.4a)

Eoo[(M+1)A]=Eyo(MA+Lg)+ %exp(mkMA) :[exp(iAkA) - exp(iAkL,)|]  (B.4b)

Then, combining (B.4a) and (B.4b) we may relate ﬁzw[(M +1)A] 1o EZm(MA):

Eyo[(M+1)A] =By (MA) +

| (B.5)
g&p&ik_ky:\_){x[exp(md)-l]+K'[exp(mkA)—exp(iAdeﬂ}
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Now, A =2mL_ where m is the (odd) order of the QPM scheme. Hence,

exp(IAKMA ) = exp(iAkA) =1 (B.6)

Furthermore, since m is odd:

exp(iAkL,) = -1 (B.7)

Using (B.6) and (B.7), (B.5) then becomes:

o[ (M+1)A] = E(MA) --21%9 (B.8)

Hence, for E,,(0) =0, we have:

Ejo(MA)= MK -K) (B.9)
Ak

Or, in terms of the second harmonic field intensity:

L. (MA) = 2€4CN, - MEK - K7 B.10)

(Ak)?

Finally, substituting for K and K’ from (B.1b) and (B.3c) respectively, and writing
|Ak| = /L gives:

deff - deff

8n? 2w 4M2L2
' 1, (0)———=
8007\,2 n(20n2m (0) ") (B.11)

I,,(M-2mL.)=
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C

Derivation of the Full Scalar Wave

Equation Model for Second Order Non-
linear Effects in GaAs/AlGaAs AQW

Waveguides

When operating in the "sub-half-band-gap" spectral region, it may be assumed that

there is no absorption of the fundamental or second harmonic fields, and that the rclations
of (2.28) apply. The 4 scalar coupled wave equations which govern the evolution of the TE
and TM-polarised fundamental and second harmonic fields will now be derived. The up-

conversion process is treated first and expressions are derived for the second harmonic TE

and TM components of the polarisation vector. Next, the down-conversion process is
considered and the TE and TM components of the fundamental polarisation vector are
derived. Finally the polarisation vector components are combined to give the desired set of
coupled wave equations. For the general case, the input fundamental beam is polariscd
with both TE and TM electric field components, and by referring to Fig. 3.3 we may write:

Similarly, for the second harmonic fields:

(Bao), = (E20), =200

(EZm)Z = (E2w )TM
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(C.1a)

(C.1b)

(C.2a)

(C.2b)



Up-conversion

From (2.11), the second harmonic polarisation vector is given by:

PE)(2) = Legx (20,0, 0)|E (2)Eo (2)

(2.11)

Summing over all non-zero (bulk and AQW) tensor elements we may then deduce the

following second harmonic polarisation components:

Summing over all non-zero (bulk and AQW) tensor elements, the following second

harmonic polarisation components are obtained:

(P42, = 4eo[x ik (-20:0.0)(Eq), (Ba), +Xih(-20:0,0)(Eq), (Es),

+)(f(2y)z(-2(:);00,m)(Em)y(Em)Z + xf(zz)y(—Zm;m,m)(Em )Z(Em)y]

YA

(P12), =4eolxin (20:0.0)(Eq), (Ba), + X, (-2010.0)(E,),(E,)

+nyz( —20;0,0)(E ¢ )X(Em) +xyzx(—2co o,0)(E )z(Ew)x]

=% [x(z)( 20;0,0)(E ) gg,( -20;0,0)(E, )i

U (20,0,0)(Eq); + 13 (-20:0,0)(Eq), (Eo),

+x?) (<20:0,0)(E, )y(Ew)x]

zyx

Now
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(C.3a2)

(C.3b)

(C.3¢)

(C.4a)

(C.4b)



Using intrinsic permutation symmetry, and the symmetry relations of (3.1) and (3.2) we
may then deduce:

(P(zz)) e [x(z) zm;m,m)+xgzy)z(—Zm;m,m)](Em)TM(Ew)TE (C.52)

(2)) =1 {[X (20;0 o)+ ( 20;m (o)]
(C.5b)

X(z) (200, m)(Em );M}

Down-conversion

For the case of down-conversion the fundamental polarisation vector is given by
(2.8a) with @4 =0, ®; =20, and ®, =-0:

PP(2) = £gx P (~0;20,~0)[E;, (2)E_o (2) (2.82)

Summing over all non-zero tensor elements as for the up-conversion case, we may deduce
the fundamental polarisation components:

(Pﬁ,z))x = 80[)(5(223((—(022(0,—0))(520) )Z(E—m) (2) e (—O0; 20, "m)(Ezm) (E—m)z
(2) ) (C.6a)
S AAC m;Zm,-—m)(Ez,,,)y(E_m) +x§(z)y( -0;20,-0)(E,, )Z(E—w)y]

(Pg))y=eo[X(y2z)y(-m;2m,—(0)(Ezm)( —o), * X ~0:20,-0)(Ezo), (E-o),

) (C.6b)
12, (-0:20,-0)Ega), (E_w), + Xk (-0:20,-0)(Eq), (E_a), |

(P(z)) = 80[)(2“( ©;20,~0)(Ez0 ), (E-0), +X(z§')y (“m;zm’"m)(Em)y(E—w)y

2
+x(zzzz("(l);2(l),—0))(E2m)( o), +X(zil(—(032(0,“C0)(E2m)x(E*°’)y (€60
+X(Z§l(—m;Zm,—m)(Ezm)y(E—m)x]
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To convert these expressions containing elements of the down-conversion tensor
x(z)(—m;zm,—m), to an equivalent set of expressions containing elements of the up-

conversion tensor x(z)(—Zm;m,(o) only, we may apply the relations of (2.28) to obtain:

(P(2)) =€ [X(Z) ~20:0,0)(Eg ), (E-o), +12(- —20;0,0)(E;0), (E_q),

+X§,i)z(—20);0),0))(E2m) ( —-m) x(z)( 2m;m’m)(E2m)z(E—w)y]

(P(z)) =¢ [X ( =20;m, (D)(Ez(o) (E—o)) +nyz( —20;0, w)(E20))y(E—0))Z

+Xxyz(—20~) o, m)(EZO)) (E—(D) +Xzy3(( 20) , w)(E2(o) (E—m)x]

(P(z) —Eo[xg(zzi 20);(0,0))(5200) ( —m) +xyzy( 2m;m’w)(E2°’)y(E“”)y

i (-20:0,0)(Ez0), (B-a), + Xig) (-20:0,0)(Eso ), (E_y),

+X§1222( (—2(D§(D,(D)(E2m)y(E—w)x]

Proceeding as for the up-conversion case, we have:

) (p(z)) ( (2>)

(F) =1

()]

(C.7a)

(C.7b)

(C.7¢)

(C.8a)

(C.8b)

Then, using intrinsic permutation symmetry and the symmetry relations of (3.1) and (3.2),

we may deduce:
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(P2, = {220:0.0)+ X200, | sy -
TE (C.9a)
[x(z) (—20;0,m)+ X(z) (= 2m§m,m)](E2m)TE(E—m)m}
(PSDZ))TM =€ {[szx( 20,0, Cl))+ xxyz —-2(1);(1),0))](1520) )TE (E,m )TE
(C.9b)
U (20:0,0)(Esg )y (B )y, }
Now, applying the relation of (2.7) at both ® and 2w gives:
A . (2)
IE,(Y) _ _ie Py (Y) exp(-ikyy Y) (C.10a)
aY nz(DC 80
and
~ ) (2)
IE,(Y) _ _io Py’(Y) exp(-ik,Y) (C.10b)

Y  2n,c g

where Y denotes the distance travelled in the direction of propagation as indicated in Fig.
3.3. In terms of TE and TM vector components these equations become:

- . (2)
a(Eazi)TE B (n ‘“)’ c (PZ::))TE exP[—i(kw )TEY] (C.11a)
20/TE

S P expl-i(ky )y, Y] (C.11b)

. _ (2)
o e Bt
o/TE
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- ™ oxp[~i(k ey )y Y] (C.11d)

where (N )py and (ng)r,, are the TE and TM mode indices at the fundamental frequency

and (nq)g and (g )py are the effective mode indices at the second harmonic

frequency. The different propagation constants are also defined by:

(km)TE = (nm)TE ';E (C.12a)
[(b]
2 ,
(R ) = (M) ;:E (C.12b)
2n
(kZm)TE = (n2m)TE EVR (C.12¢)
20
27
(Koo )y = (nzm)m'-;;— (C.12d)

Finally, invoking the relations of (2.9) and substituting the relations of (C.5) and (C.9) into
equations (C.11) yields the 4 scalar coupled wave equations of (C.13) which constitute the
full model for second order non-linear interactions in GaAs/AlGaAs AQW waveguides:
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a(EZm)TE _ 10 %

oY (an)TEC

[Xﬁzzl(—Z(o;(o, )+ Xg)z (—2(0;0),0))](f5m )TM (Em )TE exp[i((km)m + (ko )TE - (k2 )TE )Y]

(C.13a)
a(éz(ﬂ)m _ i %
oY B 2(“20) )TM ¢
{200,018 20i0.0)|Eo ) expli(200)rg = (kz )y Y]
2 (2050,0)(Eo)expli(2(ka)y - (K20 )TM)Y]}
(C.13b)

{[X(zil (—20;0,w) + X&zy)z (—20)“0’0))](1%2«» )TM (Em);E exP[i((ka)TM ~2(ko)rg )Y] *

[Xizzl(—2co;m,co)+ Xg)z(—2w;w,<°)](ﬁzm)m(Em);M exp[i((kw)m = (Ko )y = (ko) )Y]}

(C.13¢)

a(fsm)m B im <
Y  2(ngy)p,C

{[Xg(zzl(—ho;m,(n) + Xg)z(‘zwﬂ’“’)](ﬁzm)m(ﬁm);E exp[i<(k2m)TE ~ (k) g - (km)TM)Y]

28201000 Ezo) 1 (B, entli{(kaw)iyg =20y Y]}

(C.13d)

- 265 -



D

SHG with an Angular Deviation of the
Fundamental and Second Harmonic
Polarisations from the TE and TM Axes
Respectively

Assuming an angular deviation of the waveguide sample surface normal to the
vertical as defined in Fig. D.1, and, further assuming an orientation of the crystallographic
axes as defined in Fig. D.2, we have:

_E,cos6 D.1)

—_—~
m
e
—
-
Il
—_—
el
€
~—
-
~)

(Em)z =—E,sin0 (D.2)

Neglecting all AQW tensor components, and assuming uniform plane waves, from

Appendix C we have:

(Ezw), = 2)(§(ZY)Z(EQ,)y(Em)Z = —\/_fxg?zEfn sin@cos0 (D.3)
(o), = 2Ximr (o), (Ba), = ~V2X 5 EG sinBeosd (D.4)
(Ezm), = 2X'my (Ea), (Ea), = XS5hE cos” D.5)

where we have used the relations of (D.1) and (D.2). Furthermore
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Ezo < 75 (E20), sin8+ 7 (Eze), 5in8 +(E;g), cosO

= xf(zy)ZEfo(cos3 9 —2sin? Bcos(-))

where we have used relations (D.3) - (D.5). Hence

120)(9)

lonc3 .2 2
_______lcos 0 - 2sin“ BcosO

TE

E

()

(D.6)

(D.7)

Fig. D.1 Angular deviation of the horizontal and vertical ficld components with respect to the waveguide

axes for an angular deviation of the waveguide surface normal to the vertical

z,Z

Direction of
Propagation

Y
_ v

TE

©®,20

Fig. D.2 The orientation of a GaAs/AlGaAs waveguide device with respect to the crystallographic axes
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E

SHG with a Field Component in the
Direction of Propagation for a TM
Waveguide Mode

A

Direction of
Propagation

.20

Fig. E.1 The orientation of a GaAs/AlGaAs waveguide device with respect to the crystallographic axes

For the co-ordinate definitions of Fig. E.1 we have:
Ewx = J5Eox =5 Eoy (E.1)

(E.2)

From uniform plane wave considerations we also have (see Appendix C):
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Ejq, = x(z) EZ X(Z) EZ + X(Z)EZ
+x(2) meEo)y + X(zzyZ(E Eox (E.3)

@ (B2, +Edy )+ X Ed + 2% E nEay

= Xzxx xyz

Now, for a TM mode, Ex = 0. Therefore substituting for E,, and Eyy from (E.1) and
(E.2) respectively into (E.3) with E,x =0 gives:

2 2 2
Enar = X 0B, + (X0~ X\h by (E.4)

Now, for xg)z >> X(ZXZ( we have the approximate relationship:

Epay = X OEL, - X\ Edy (E.5)

For a slab waveguide, all the quantities in (E.5) are depth dependent i.e. they are functions

of z:
Epun(2) = XD (2)EL, (2) - X2 (2)E 2y (2) (E.6)

In a slab waveguide, we must also remember that any second harmonic generated through
non-linear interactions in regions where it is not supported by the waveguide, will not
contribute to the second harmonic beam at the waveguide output. Performing an overlap
integration to account for this we may derive a relationship for the TM-polarised second
harmonic power Py, :

2

JdZ[x(z) (2)E2,(2) - 1 (2 )Ez)Y(Z)]XEzmm(Z) (E7)

P2coz

where Ezmm(z) has been used to denote the second harmonic TM mode profile in the
slab waveguide to distinguish it from the TM-polarised SHG distribution E,,(z) as

defined by (E.6).
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Now, from consideration of the time-independent Maxwell equations for the TM
mode of a slab waveguide it may be shown that within any waveguide layer [3]:

(E.8)

where B is the modal propagation constant i.e. Egy and dE,/dz are 90" out of phase.
Hence, E,y and E, are either in phase or in antiphase, and Efo y and Efo are in phase,
Z

and E.7 does not need to be ammended to take account of the phase relationship between
the different fields.

Then, assuming:

(2) (o 0, zoutsidle MAQW
Koz (2) = %2, 7 within MAQW (E.9)

and using (E.9) in (E.8) we have:

2

X(ZQMAIQ N Ean(2)Eumm(2)42 = Xy, [EGy (2B umm(2)dz (E.10)

P2coz o<

Using a multilayer effective index slab solver routine, the integral terms in (E.10) may be

evaluated for any given slab waveguide structure. For example, for the particular case of
the B690 material at 1.55 pum, the calculated mode profiles E,(z) and Ey(z) for the

TM 00 mode are plotted in Fig. E.2, where both plots have been normalised to the
maximum calculated E,(z) value. Ezmz(Z), Eon(z) and E, my(z) are also plotted for

the B690 material at 1.55 pum in Fig. E.3 from which we have calculated:

MAIQ I%VZDZ(Z)EZmTM(z)dz =2.917x10% (a.u.) (E.11)

and
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B2y (2)Esqmm(2)dz = 1181x10° (2.0.) (E.12)

(3] T. Tamir (ed.) with contributions from H. Kogelnik, "Guided-wave Optoelectronics”
2nd ed., Springer, Berlin and London, (1990)
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K

SHG with an Angular Deviation of the
Fundamental and Second Harmonic
Polarisations from the TM Axis

Assuming an angular deviation of the waveguide sample surface normal to the
vertical as defined in Fig. F.1, and, further assuming an orientation of the crystallographic
axes as defined in Fig. F.2, we have:

E,sin®
(Ea), =(Bo), =75 (F.1)

(Em)z = Eu) cosf (F2)

Neglecting the AQW tensor components xle and xg& and assuming uniform plane

waves, from Appendix C we have:

(Bzo), =240y (Eo), (Ea), = V2X5,ES sinBcosh (F.3)

(Ezo), = 2150 (Ea), (Ba), = V2XGEG sinBeosd (F.4)
2

(Eze )z o X(zi)z(Em)z + 2X(ziz/(E(o)x(Em)y = X(zzzlE(zo cos® 0 + X%)ZE(ZD sin? @ (F.5)

where we have used the relations of (F.1) and (F.2). Furthermore
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E,,, = VI’E(EZw)x sin@ + 7‘;—(E2m)y sin@ + (Ey, ), oS0

= [3)((2) sin?@cos0+ %2 cos® O]Eﬁ)

Xyz

where we have used relations (F.3) - (E.5).

™ EgEze

TE

(F.6)

Fig. F.1 Angular deviation of the vertical field components with respect to the waveguide axes for an angular

deviation of the waveguide surface normal to the vertical

YA
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Propagation

Y

TE

0,20

Fig. F.2 The orientation of a GaAs/AlGaAs waveguide device with respect to the crystallographic axes
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G

SHG Tuning Curves for Periodically-
intermixed B690 AlGaAs ACQW
Waveguides

The SHG tuning curves obtained for 2 mm-long periodically-intermixed B690
waveguide samples in the TE,: TMy, polarisation configuration are shown in Figs. G.1 o

G.6. The data plotted in these figures was obtained under cw conditions as described in

Section 8.4.

Absolute PMT signal scales are not shown in Figs. G.1 to G.6, but rather absolute
maximum PMT signal values are listed alongside each tuning curve to give an indication
of the signal magnitude during tuning. This was done deliberately to de-emphasise the
absolute magnitude of the PMT signals, since the fundamental input power was not
monitored during the tuning experiments i.e. different absolute PMT signal magnitudes
could simply reflect different fundamental input powers and are not, therefore, very

meaningful.
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Fig. G.1 TE,.TM;, SHG tuning curves obtained for 2 mm-long B690 waveguide samples with

intermixing periods of 5.80 - 645 um
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Fig. G.2 TE,:TMy, SHG tuning curves obtained for 2 mm-long B690 waveguide samples with

intermixing periods of 6.60 - 7.35 um
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Fig. G.3 TE,:TM;, SHG tuning curves obtained for 2 mm-long B690 waveguide samples with

intermixing periods of 7.55 - 8.35 um
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Fig. G.5 TE,:TM,, SHG tuning curves obtained for 2 mm-long B690 waveguide samples with
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