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Abstract 
The research presented in this thesis describes the realisation of single-mode extended 

cavity GaInNAs/GaAs lasers. The GaInNAs/GaAs material system has gained much 

attention recently, and has been cited as a possible replacement to the InGaAsP/InP 

material system due to its greater high temperature performance, which can lead to 

improved device efficiency and higher output power. Incorporating an extended 

cavity to an active laser device using selective area quantum well intermixing (QWI) 

can be extremely advantageous, since mirror degradation and modal instabilities at 

high output powers can be suppressed. 

Characterisation of the GaInNAs/GaAs material used in this project was 

performed by fabricating oxide stripe lasers. Analysis of the lasers yielded a value of 

720Alcm 2 for the threshold current density of a device with an infinitely long cavity. 

Values for internal efficiency and loss were also calculated to be 62.5% and 18cm-1 

respectively. Although the value for Jthcx)= 720A/cm2 is almost twice the value for JthOCl 

of similar GalnNAs material reported by the same growers, it would prove sufficient 

in demonstrating the concept of the project. 

The successful demonstration ofQWI on GaInNAs/GaAs material was achieved 

using the sputtered SiO:! intermixing technique. A differential wavelength shift of 

40nm was achieved, which would prove sufficient for monolithically integrating 

extended cavities with GaInNAs laser devices. 

Single-mode extended cavity GalnNAs lasers were realised using the sputtered 

Si02 QWI process. Only a small increase in the threshold current was measured 

between the extended cavity device and a standard device. From the change in the 

threshold current, the modal loss in the extended cavity section was calculated to be 

5cm -1, indicating successful integration of the extended cavity. 
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Chapter 1 

Introduction 

Semiconductor lasers have advanced tremendously since they were first demonstrated 

in the 1960's, and have been incorporated into our everyday life in applications 

ranging from CD players to medical apparatus. Due to the diversity of the lasers 

applications and uses, lasers have been designed and manufactured to be application 

specific, and therefore a great understanding of laser design, material and technology 

has been acquired. Nevertheless, significant improvements stilI need to be made to 

optoelectronic technology in terms of device integration. Optoelectronic integration 

technology is nowhere near as advanced as electronic integration technology, which 

allows millions of electronic components to be fabricated on a single chip. By 

enabling monolithic integration of many optoelectronic devices on a single chip, 

optoelectronic technology can reap similar benefits to that of integrated electronic 

technology, such as lower cost and size, with increased performance, functionality 

and manufacturability. Quantum well intermixing (QWI) has been recognised as a 

key technology in realising optoelectronic device integration, as it allows post-growth 

selective modification of the material bandgap. QWI has been researched extensively 

at Glasgow University for around the past 20 years, and has resulted in the 

development of a technique that is suitable for optoelectronic integration using III-V 

semiconductor materials. 



The market for semiconductor lasers has grown rapidly from 1995 to 2005, with the 

largest share of the market belonging to communications, due to the mass-consumer 

embrace of the internet. Within the communication laser market, high power lasers 

have become very sought after since they enable dramatic cost reduction and 

performance enhancements in communication systems. High power lasers emitting 

light around 1.3J.lm or 1.55J.lm can be used as light sources for low-loss fibre 

communication systems, as well as optical amplifier pump lasers. However, such 

devices have several limiting factors when operating at high powers, namely mirror 

degradation, mode instabilities and overheating. Much of the research presently 

conducted into high power lasers involves overcoming these limiting factors. 

At present, most of the lasers employed in communication systems are fabricated 

from the InGaAsP/InP material system. However, the poor temperature characteristics 

of this material limit the amount of power the devices can produce. Furthermore, such 

devices usually require thermoelectric coolers during operation, which increases the 

cost and size of the packaging. Recently. the GalnNAs/GaAs material system has 

gained much attention, and has been cited as a possible replacement to the 

InGaAsP/InP material system due to its greater high temperature performance. which 

can lead to improved device efficiency and higher output power. 

This thesis describes the research and development of single-mode extended cavity 

GalnNAs/GaAs ridge waveguide lasers for use in telecommunication systems. 

Incorporating an extended cavity to an active laser device using selective area QWI 

can be extremely advantageous. since mirror degradation and modal instabilities at 

high output powers can be suppressed. By developing such devices. a good 
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knowledge of the intermixing characteristics of the GalnNAs/GaAs material can also 

be gained, which is particularly useful information for device integration purposes. A 

summary of the following thesis chapters is given below. 

Chapter 2 - The GaInNAs material system 

A brief history of the GalnNAs/GaAs material system is outlined in this chapter, 

along with the possible advantages offered by using the GalnNAs/GaAs material 

instead of InGaAsPllnP material. A detailed examination of the growth and optical 

properties of the GaInNAs material is also given. Characterisation of the GaInNAs 

material is performed by investigating the performance of GalnNAs oxide stripe 

lasers. 

Chapter 3 - Quantum Well Intermixing 

This chapter gives a detailed description of Quantum Well Intermixing (QWI), and 

outlines the various methods used to achieve QWI, as well as the advantages and 

disadvantages of each method. A detailed account of the sputtered Si02 intermixing 

technique used in this research is also presented, as well as an in depth account of the 

intermixing experiments conducted on 1.3~m and 1.55~m GaInNAs material. 

Chapter 4 - Single Mode Ridge Waveguide Lasers 

An overview of ridge waveguide laser technology is presented in this chapter, with an 

emphasis on the design considerations required for single mode operation. A detailed 

account of the fabrication and characterisation of single-mode ridge waveguide laser 
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devices is also given. The concepts outlined in this chapter, can be combined with the 

technology described in Chapter 3 to realise the devices detailed in Chapter 5. 

Chapter 5 - Extended Cavity GalnNAs ridge waveguide lasers 

This chapter describes the concept of single-mode extended cavity lasers, highlighting 

the advantages such devices have over their standard counterparts. Furthermore, a 

detailed account of the limitations of standard high power lasers operating in a single 

mode is presented in order to emphasize the importance of extended cavity laser 

technology. The fabrication and characterisation of extended cavity GaInNAs lasers is 

also detailed, highlighting the potential of using such lasers for future telecom 

applications, as well as emphasizing the transferability of the QWI process developed 

at Glasgow University to the GaInNAs material system. 

Chapter 6 - Conclusions and Future Work 

Chapter 6 brings the conclusion to the research and also outlines possible future work. 

This research was a collaborative project with Intense Ltd. Intense is an 

optoelectronic solutions provider working with customers in the printing, telecoms 

and defence market sectors. Intense owns core intellectual property concerning 

optoelectronic integration and quantum well intermixing. 
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Chapter 2 

The GalnNAs material system 

2.1 Introduction 

Long wavelength semiconductor lasers emitting light at I .3 11m and I .551lm are highly 

desirable for use as light sources in optical fibre communication systems. Moreover, 

high power semiconductor lasers (>500mW) at slightly shorter wavelengths of 

1.241lm and 1.451lm are highly desirable as pump lasers for the optical amplifiers to 

be used in dense-wavelength division multiplexing architectures. The material system 

InGaAsPlInP is currently used for such applications, but the limitations of this 

material are well documented. The aim of this chapter is to introduce GalnNAs as a 

possible alternative material system, since it has a greater high temperature 

performance, which can lead to improved device efficiency and higher output power. 

Section 2.2 will discuss the brief history of GalnNAs, outlining its origin and basic 

advantages over the InGaAsP material system. The epitaxial growth of GalnNAs will 

be discussed in section 2.3, before examining the spectral properties of this material in 

section 2.4. The progress of GalnNAs edge-emitting lasers will be discussed in 

section 2.5 before taking a look at how this new material will provide a means of 

improving long-wavelength VeSEL's in section 2.6. GalnNAs lasers are 

characterised and evaluated in section 2.7. Section 2.8 will conclude the chapter. 
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2.2 History of GalnNAs 

Most long wavelength semiconductor lasers presently employed in fibre 

communication systems are based on the InGaAsP material system. However, as 

explained in chapter 1, the limitations of this material system are well known. The 

inability of InGaAsP to produce adequate power and temperature performance has led 

to an opening for GalnNAs as an alternative active-region material that can be grown 

on GaAs. 

The GalnNAs material system was first proposed in 1996 by Kondow et al (I). This 

proposal was far from obvious since it did not follow the general rules of other W-V 

ternary and quaternary alloys, which dictate that a smaller lattice constant increases 

the bandgap. Kondow proposed that the large electro-negativity of N and its small 

covalent radius would cause a strong negative bowing parameter. Therefore, by 

adding N to GaAs or InGaAs, the bandgap of the resulting crystal would dramatically 

decrease. By combining N and In, GalnNAs would produce a rapid decrease in 

bandgap to reach the long wavelength emission region with simultaneous control over 

the bandgap and lattice match to GaAs. Kondow also pointed out that by combining 

GalnNAs with GaAs or other wide-gap materials that can be grown on a GaAs 

substrate, a type-I band lineup is achieved and thus deep quantum wells can be 

grown, especially in the conduction band. Figure 2.1 shows the energy band line-up 

between GaAs and GaInNAs. The diagram also features the energy band line-up for 

the InGaAsP material. Comparison of the two band diagrams clearly shows that the 

well created in the conduction band for the nitride material is much deeper than for 

InGaAsP. Since carrier leakage from the GalnNAs wells to the barrier layers at high 
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temperature can be suppressed, the material is highly desirable for overcoming the 

poor temperature characteristics of conventional long wavelength laser diodes used 

for optical fibre communication systems. 

CD 

': A~~IOO_V 
InGaAsP InGaAsP 
Barrie r Layer Quantum ~II 

AEv == 150meV 
VB 

a) 

CD 

VB 

AEc == 570 me V 

GaAs 
Barrier GaInNAs 
Layer Quantum well 

----.,~r-4~Ev == 60meV 

b) 

Figure 2.1: Diagrams presenting the energy bands afmaterials in the l.3pm wavelength range. (a) 
diagram of the band lineup between a InO.IGao~s02P{I1/ Ino.3Gao]Aso.J104 barrier! well. (b) band 
lineup between a GaAsI Gall.7lno.3As(} 99NO.OJ barrier! weD. 

A schematic cross section of the first GalnNAs material structure grown by Kondow's 

group is shown in Figure 2.2. The material was grown by gas-source molecular beam 

epitaxy (GS-MBE) on a (lOO)-oriented n-GaAs substrate. The active layer consisted 

of a 7-nm-thick Gao7In03N0OO4As0996 compressively strained quantum well 

sandwiched between two 140-nm-thick GaAs unstrained waveguide layers. The 

cladding layers were each IAJ.lm Alo3Gao7As with a carrier density of 7 x 10 17 cm-3
• 

A p-GaAs contact layer with a carrier density 1 x 1019 cm-3 was formed to decrease 

the contact resistance. 
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p-GaAs contact layer 

o-AIGaAs c1addiog layer 

n-GaAs Buffer layer 

n-GaAs ubstrate 

GaAs waveguide (1.4/lm) 

GalnNAs active layer (7om) 

GaAs waveguide (1.4/W1) 

Figure 2.2: Schematic cross section of GalnNAs material grown by Kondow et al in 1995 

To demonstrate the potential of the material, Kondow fabricated oxide stripe lasers 

and VeSEL's from GaInNAs grown from gas-source MBE. A threshold current 

density Jth= L4kNcm2 (1) was obtained from an oxide stripe laser which had a cavity 

length and stripe width of lOOOf..lm and 20f..lm respectively_ This value was four times 

as large as that for a similar InGaAs laser diode. This poor value was blamed on 

insufficient crystallinity in the GalnNAs active layer. The emission wavelength of this 

device at l.IIth was measured as ~ L 18f..lm. Kondow claimed that by adding more N, 

the emission wavelength could be pushed out beyond] .3f..lm- In VeSEL's, the group 

successfully obtained lasing action under RT ew conditions by photo-pumping with 

a low threshold pump intensity and a lasing wavelength of 1.22f..lm, thus 

demonstrating that long wavelength VeSEL's can be directly integrated with high 

contrast DBR's in a single epitaxial growth (1). 

Since 1996, many research groups worldwide have embarked upon realising the full 

potential of GaInNAs. Initially, many devices were fabricated in order to establish 

optimum growth parameters such as growth temperature, in-situ annealing and alloy 

composition, in order to lower threshold current densities and increase emission 
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wavelength. This research has revealed several additional advantages over InGaAsP 

besides the improved temperature performance caused by the large conduction band 

offset. Firstly, since GalnNAs is grown on a GaAs substrate, intermediate layers of 

Al(xlG"<I-xAs or AlAs/GaAs superlattices can be incorporated into the material 

structure to minimise heterojunction voltage drops without requiring difficult control 

over both column ill and column V constituents in a quaternary layer, such as 

InGaAsP, to maintain lattice match. Secondly, compositional control and uniformity 

during the growth of GalnNAs is relatively easy compared to AslP control during the 

growth of InGaAsP (2,3), which will provide better yield and lower production costs. 

Thirdly, GalnNAs VeSEL's can incorporate the well developed GaAs/AlAs mirror 

technology as well as AlAs oxidation layers for current and optical aperture 

confinement, whilst maintaining lattice match. Fourthly, GalnNAs on GaAs can be 

monolithically integrated with GaAs high-speed electronics, which is essential for low 

cost, high-speed integrated electrical drivers for direct laser modulation in high speed 

networks (2). 

2.3 Epitaxial Growth of GaInNAs 

The growth of GalnNAs is presently performed by either molecular beam epitaxy 

(MBE), or metal organic chemical vapour deposition (MOeVD). Much research has 

been conducted to find which growth technique can be used to produce the best 

quality material with the lowest costs. 
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To date, MOCVD has been the dominant growth technique for communication lasers. 

This is because valved P crackers did not exist during the early development of InP 

based material systems, which meant early attempts to grow this material by MBE 

were dangerous due to the fire hazard caused when the system was opened and 

exposed to air. MOCVD had the chemical precursors and growth parameter control 

to grow InP based material, therefore it became the dominant growth technique. 

However, to form GalnNAs from its constituent alloys, InGaN and InGaAs, the 

growth temperature has to be much lower (typicalIy between 450 and 500°C) than for 

the growth of other quaternary material systems. This is due to the basic structure of 

InGaN and InGaAs. InGaN is a hexagonal (wurtzite) crystal, which is normally grown 

at relatively high temperatures, whereas InGaAs has a cubic (Zincblende) structure 

grown at relatively low temperatures, hence creating a miscibility gap in the alloys (4-

6). This means that if either or both N and growth temperature are increased, phase 

segregation can occur which breaks the material up into microscopic regions of 

InGaN and InGaAs. This low growth temperature requirement makes growth by 

MOCVD far more challenging. MOCVD growth of InGaN, for example, uses 

ammonia as a nitrogen source. Since InGaN is grown at a relatively high temperature, 

reasonable cracking of ammonia can occur, hence providing N during the growth 

process. However, when growing GalnNAs, the growth temperature is too low to 

achieve the same cracking of ammonia and arsine. New N sources with difficult 

precursor reactions and highly non-linear incorporation ratios are therefore required, 

which adds to the complication of the growth process in relation to work on earlier 

ill-V material growth. Using higher growth temperatures limit the amount ofN which 

can be incorporated into the alloy before micro-phase segregation occurs, which 
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makes it difficult to achieve the N compositions needed to reach the 1.3-1.55Jlm 

lasing wavelengths. 

GaInNAs has also been grown using elemental-source MBE. This process has proven 

to be very versatile by allowing growth at lower temperatures and giving the largest 

range of In and N compositions. Research carried out using MBE to grow GalnNAs 

has shown that the atomic sticking coefficient is near unity (4,5), which implies that 

the group-ill growth rate controls the N concentration and NI As fraction in the film. 

This control is critical because it governs both bandgap and lattice constant. 

Moreover, background impurities in GalnNAs material grown by MBE are very low 

compared to the same material grown by gas-source MBE or MOCVO, because of the 

high purity of all the starting source elements (4). These findings indicate that using 

elemental-source MBE to grow GalnNAs may have advantages over MOCVO in 

terms of yield, growth control and reproducibility (7). 

2.4 Spectral Properties of GalnNAs 

Increasing the wavelength ofGalnNAs has proven to be one of the greatest challenges 

facing the development of this material system. Since a low temperature is required 

during the growth of GalnNAs, many defects are generated in the material. Positron 

annihilation, deep level transient spectroscopy (OL TS), and the comparison of MBE 

and MOCVD growth have revealed a large number of N interstitia Is and gallium 

vacancies are created during the low temperature growth of GalnNAs. The most 

detailed study of defects in GainNAs has been performed by Ptak et al (7) at the 
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National Renewable Energy Laboratory. The group studies revealed that hydrogen 

and carbon impurities, as well as gallium vacancies, are introduced during MOCVD 

growth of GalnNAs. Although the impurities and vacancies have a detrimental effect 

on material quality, they were found not to be the limiting defect within the material. 

DL TS measurements highlighted a shallow electron trap and a deep recombination 

centre, which appear to become more active with increased N incorporation, as 

possible limiting defects. However, the structures of these defects are still unknown, 

and much work remains to see if they can be removed. 

An annealing step is normally employed to improve the quality of the material by 

reducing the number of non-radiative defects (9). The increase in PL of the material 

due to the annealing step is unfortunately accompanied by a significantly large blue 

shift, thus creating difficulty in reaching the wavelengths required for fibre 

communications whilst maintaining a high optical quality material. 

At first, the simultaneous increase in PL intensity and blue shift was thought to be 

caused by the same microscopic process, which occurred during annealing, but has 

since been strongly debated. Evidence suggests that the increase in the PL intensity 

could purely be a consequence of the removal of non-radiative defects. However, the 

origin of the blue shift has been shown to possibly originate from two entirely 

different processes. Firstly, Ga/In/N interdiffusion induced by thermal annealing 

raises the quantum-confined energies in the quantum well, thus creating a blue shift in 

emission wavelength. The level of interdiffusion occurring has been measured by 

SIMS and nuclear reaction analysis measurements (4), and suggest nitrogen out

diffusion from the QW is primarily responsible for the shift. Secondly, the blue shift 
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may also be caused by a change in the band configuration in the local atomic clusters. 

It has been found that GalnNAs is not perfectly random and is supposed to contain N

centred N-InzG(4.z (O~z~) clusters, therefore GaInNAs is not controlled by the 

macroscopic compositions x and y. Kim et al (8) suggested that the bandgap variation 

is due to a repulsion mechanism between the five energy levels of N-lnzG34-z and the 

alloy conduction band, which results in five different bandgaps for GalnNAs. The 

strength of interaction between the energy levels is increased as z is decreased. With a 

large z, N has mostly indium as its nearest neighbour, which is favourable for 

reducing local strain. When z is small, N has gallium as its predominant neighbour, 

which lowers cohesive bond energy. Minimising the sum of strain and bond energies 

gives a preferred bond configuration. Other researchers have found no diffusion in 

their X-ray analysis of GalnNAs and therefore attribute the blue shift solely to 

changes in the bond configuration (9). 

2.4.1 N-Incorporation 

In 1996, Kondow demonstrated the first GalnNAs lasers with an emission wavelength 

of 1.18J.1.m. He claimed that by increasing the N concentration, the GalnNAs emission 

wavelength could be pushed out to 1.3 J.l.m and beyond. However, research has since 

shown that introducing more N degrades the optical properties of the material due to 

N related non-radiative defects (II). This is often referred to as the "nitrogen 

penalty", which limits the amount ofN that can be incorporated into the material and 

thus limits the increase in emission wavelength. 
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In addition to the degradation in the spectral properties experienced by GalnNAs with 

increased N incorporation, research has also found an increase in temperature 

sensitivity (10). The cause of such behaviour has been attributed to the disappearance 

of the hole barriers with high N concentration (N) 3%). 

To obtain good device quality Gal_x Inx Ny As l_y material, it has been suggested that a 

minimum amount of N (y::;0.02) should be introduced since larger amounts can 

induce large alloy fluctuations, as well as significantly reducing material gain (II). 

Also, by adding more indium to the alloy, compressive strain in the quantum well can 

be maximised in order to obtain a maximum quantum well width. However using a 

small amount of N in a straight-forward GalnNAs/GaAs quantum well structure will 

not be able to reach the longer fibre communications wavelength of 1.55Ilm. 

2.4.2 Strain compensating layers 

A novel approach to overcoming the wavelength limit imposed on a simple 

GaInNAs/GaAs structure with a small amount ofN is to embed the quantum well in a 

CD 

GainNAs 

t t 
GaNAs 
SCL layers 

GaAs 

Figure 2.3: Schematic diagram of the conduction band minimum energy for GalnNAs materi[ 
GaNAs strain compensation layers. 
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GaNAs strain-compensating layer (SCL) or GaInNAs strain-mediating layer (SML) 

(12,13,14). Figure 2.3 shows the schematic diagram for the conduction band of 

GalnNAs material employing SCL's. These layers provide a strain compensated 

couple of the quantum wellibarrier pair since the barrier is under tensile strain while 

the quantum well is under compressive strain. Strain compensation allows the growth 

of wider quantum wells before strain relaxation occurs, hence increasing the emission 

wavelength (II). The PL measured from samples employing SCL or SML layers to 

increase the emission wavelength has been shown not to suffer much, in comparison 

to the PL measured from samples that have had N added in an attempt to increase the 

emission wavelength. Having barriers containing N may also have the effect of 

decreasing the out-diffusion of N from the quantum wells during the anneal step, 

which helps to reduce the resulting blue shift. Furthermore, barriers containing N have 

the effect of decreasing the ratio L1Ec/ L1Ev, therefore increasing the hole barrier L1Ev, 

which in turn reduces hole leakage and decreases the temperature sensitivity of the 

material. 

2.4.3 GaInNAs(Sb) 

A recent advance in the growth of GaInNAs, which helped increase the emission 

wavelength, is the addition of Sb during growth (15,16). Initially, Sb was thought 

only to act as a surfactant, helping to maintain the 20 layer-by-Iayer growth of the 

material with higher In and N concentrations, producing better quantum wells with 

smoother interfaces, as well as increasing the emission wavelength by postponing the 

20-to-30 growth. This increases the critical thickness of the quantum wells, thus 

allowing the growth of wider quantum wells. More recent work has shown that Sb is 
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actually being incorporated at levels of 6-7%, thus fonning a pentenary alloy 

GaInNAsSb. The role Sb plays in increasing the emission wavelength is still not 

obvious. The addition of Sb to the alloy may simply decrease the bandgap, but it has 

been noticed it also helps increase the N incorporation into the alloy. While the exact 

mechanism for this phenomena is not clear, it is clear that alloying Sb with GaInNAs 

is beneficial for increasing emission wavelength, as well as improving device 

perfonnance. 

2.5 High Power GaInNAs edge emitting lasers 

The need for low cost 1.3-1.55J.1m pump sources to operate at high temperature and 

produce high single-mode output powers has been the motivation for investigating 

new edge emitting laser. Livshits et al (17) were first to demonstrate high power 

1.3J.1m GalnNAs lasers by achieving 8W (CW) from a 100 x 2000J.1m2 broad area 

device operating at a chip temperature of lODe. As well as the encouraging output 

power, the lasers displayed no sign of catastrophic optical mirror damage (COMO) at 

a facet power density of 30mW/cm2
• Furthennore, lifetime tests carried out showed 

no degradation in the lasers perfonnance over 1000 hours at a constant power of 

1.5W, and a temperature of 35DC. 

Lowering the threshold current density and temperature sensitivity ofGaInNAs is also 

important in the development of high power lasers. Sirtce 1996, the threshold current 

density for GalnNAs devices has decreased quite considerably, with Infineon 

reporting one of the lowest values of Jth = 350 Alcm2 (6). On the other hand, high 
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temperature characteristics (To) of GalnNAs have not shown a similar improvement 

with results no better than they were several years ago. It would seem that To is not 

very high whatsoever for device quality GalnNAs. The temperature properties of 

1.31lm GalnNAs were studied by Tansu and Mawst(IO). He found To was 80K -

140K for nitride lasers. While this value for To is considerably better than 

InGaAsP/lnP (T <065 - 75K), it is still much less than To for 1.21lm Gao61no4As/GaAs 

quantum well lasers (T <0 160 -200K). The reason given for the difference in To in the 

two materials was that the injection efficiency was more temperature sensitive for 

GalnNAs, most probably due to the small ~Ev , which would lead to hole leakage at 

elevated temperatures. However, as mentioned in section 2.4.2, the temperature 

sensitivity may be decreased by adding a small amount of N to the barrier layers in 

the active region, thus decreasing the ratio ~EC!~Ev. Although taking such action may 

increase carrier confinement in the valence band well, it will decrease carrier capture 

in the conduction band well. Studies will have to be performed to find the optimum 

ratio ~Ec/~Ev, in order to establish a lowest threshold current density with the highest 

To. Furthermore, by adding a small amount of Sb into the GalnNAs quantum well, an 

increase in ~Ev can be obtained, which would also improve To. It is interesting to note 

at this point that the Infineon group incorporated N into the barrier layers for their low 

threshold current density devices. Once all of the technologies mentioned have been 

optimised, the challenge will be to use them simultaneously to realise a truly low 

threshold current, high power edge-emitting laser. If this challenge can be achieved, 

there is a strong possibility that GalnNAs edge-emitting lasers will replace existing 

InP based lasers in 1.3llm short-haul communication systems. 

17 



2.5.1 Beyond 1.3J1m 

In order for such lasers to be appropriate for C-band Raman pumps or non-linear 

optical sources in channel switching, the emission wavelength must be extended 

beyond I.4Jlm. A Raman amplifier pumped at 1.451lm will likely become a 

complement, or even a replacement to Er doped fibre amplifiers (EDFA's) in 

applications where amplifiers are far apart, provided Raman power is high enough 

(>20dBm). However, as discussed in section 2.4.1, increasing the wavelength of 

GainNAs to 1.451lm without sacrificing optical quality is not possible by alloying 

more N. or by embedding the quantum wells in SCL or SML layers. Results suggest 

that the upper wavelength limit for antimony-free GaInNAs is approximately 1.39Jlm, 

beyond which the material will degrade too much to be of use. The research group at 

Stanford have obtained the best results for 1.4llm GaInNAs high power lasers by 

achieving 320m W of output power from a 20 x 560Jlm2 device under pulsed operation 

conditions (18). However, the device had a high threshold current density, Jth = 

2.1 kNcm2
, as well as a strong temperature dependence, which suggests that GainNAs 

lasers beyond I.4Jlm may never be a feasible alternative to InGaAsP/lnP. The only 

plausible way of reaching the spectral range 1.4 - 1.6Jlm with reasonable performance 

characteristics may be to add Sb to GaInNAs. 

Fischer et al (19) were the first to report GaInNAs lasers working at 1.5Ilm. This 

result proved lasing could be obtained in nitride material above I.4Jlm, however, the 

threshold current density was extremely high at 50kA/cm2
• The increase in the 

wavelength was achieved by incorporating ~5% N into the quantum wells. this was 
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apparently difficult to achieve without causing micro-phase segregation and 

dislocations at the quantum well interfaces. As alloying more than 2% N composition 

in the QW is not considered beneficial to its spectral properties, adding Sb to the 

quantum well and N to the GaAs barrier layers is considered the most competent way 

of increasing the emission wavelength. Both of these technologies have been 

combined by the team at Stanford (20) to initially produce GainNAsSb lasers emitting 

at 1.461lm, and most recently at 1.51lm. In 2002, they produced ridge waveguide 

lasers with 51lm x 800llm ridges from material containing three GalnNAsSb quantum 

wells with GaNAsSb barriers. The threshold current density obtained was 2.8kAlcm2, 

which is certainly the lowest recorded threshold current density for nitride based 

lasers beyond 1.4llm yet this value is twice as high as the group's best 1.391lm 

devices. The slope efficiencies for 1.461lm devices were also twice as poor as the 

1.391lm devices. However, by improving their active layer growth techniques and 

device structure optimisation, they were able to produce 1.51lm lasers with a threshold 

current density of 1.06kA1cm2
, a To value of 10lK and 527mW of output power 

(pulsed) from a single facet. For these devices, GaNAs barriers were employed 

instead of GaNAsSb barriers because of the superior low temperature growth 

morphology, strain compensation and improved electron confinement. 

These results show that GaInNAsSb may indeed become a serious competitor to InP 

based lasers in the 1.4 -1.6/lm spectral range. However, GaInNAs is a relatively new 

material system, which still has a long distance to go before its performance is 

optimised. Improvements in growth techniques, coupled with optimised laser design, 

have led to large improvements in device performance to date. 
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2.6 GalnNAs Vertical Cavity Surface Emitting 

Lasers (VCSEL's) 

p-contact 

n~ontact 

Light Output 

~ __ --- 5 pairs of AIGaAs/AIOx 
top DBR 

... ...,;-- Confinement layers 

35 pairs of A IGaAs/ AlA s 
Bottom DBR 

Figure 2.4: Schematic diagram o/a 850nm VCSELjahricaledjor research al Glasgow 
University. Diagram provided by [Eddie 

Although work in this project primarily deals with edge-emitting lasers, it would be 

inappropriate not to mention vertical cavity surface emitting lasers (VCSEL's) role in 

the development of the GaInNAs active layer technology. To aid in this discussion, 

figure 2.4 shows a cross sectional diagram of an 850nm VeSEL. GaAs based 

VCSELS's dominate the high performance, short-haul communications and optical 

networking market. The reason for VC EL's dominance in this market is due to their 

low cost, ability to be easily coupled to fibre and uncomplicated fabrication of large 

arrays. Because of material limitations, VeSEL's have only been utilised fully at 

850nm and 980nm. Operating at this wavelength limits system performance due to the 

dispersion and loss experienced by the signal in silica fibres. Furthermore, by using 

such a short wavelength, the optical power has to be kept below the power limit for 

eye safety regulation. To create the next generation of high-bandwidth metro 
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communication systems, long wavelength VeSEL's, which can be directly 

modulated, operated un-cooled and fabricated at low cost will be required. 

The wavelengths 1.3J.1m and 1.55J.1m are accessible to InGaAsP/lnP, but unfortunately 

the materials used in this system have limited refractive index contrast, and therefore 

cannot form highly reflective distributed Bragg reflector (DBR) mirrors without 

employing many repetitions of thick material layers. Moreover, the thermal issues 

limiting the InGaAsPllnP active region, coupled with the low thermal and electrical 

conductivity of the DBR's, make it almost impossible to realize a long wavelength 

VeSEL that combines highly reflective mirrors with low thermal and electrical 

resistance. VeSEL technology is where the GainNAs material system will have a 

huge advantage over the InP based material systems. Many attempts have been made 

to produce veSEL's using the InGaAsP/lnP active region but with different 

approaches to DBR's, such as using metal mirrors, wafer-bonded AlAs/GaAs mirrors 

and dielectric mirrors (2). In spite of these attempts, the devices lacked the quality 

needed for their desired purpose. However, since the arrival of the GalnNAs/GaAs 

quantum well material, using this material in the active region in conjunction with the 

well-established DBR technology used by GaAs-based 850nm VeSEL's, seemed to 

provide the desired results. Improvement of GaInNAs VeSEL's follows the trend of 

improvement for GalnNAs edge-emitting lasers (II). This can be attributed to the 

improved growth techniques and optimisation of device design. 
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2.7 Semiconductor Laser Model 

Before discussing the characterisation of the fabricated GainNAs devices in section 

2.9, it is worthwhile reviewing the theory of semiconductor lasers. The main 

component of a semiconductor laser diode are shown in figure 2.5. The laser diode is 

basically a p-i-n formation where carriers from the p and n-type regions are injected 

into the intrinsic quantum well region, where radiative recombination of electronlhole 

pairs produce photons. Light produced in the quantum well is channelled in the 

waveguide. Upper and lower cladding layers of lower refractive index surround the 

active region thus ensuring the formation of the waveguide. Two partially reflecting 

mirrors create feedback for the system whilst allowing some light to emit from the 

facets as laser output. The optical mode in the waveguide interacts with the gain 

region enabling stimulated emission of radiation. The modal gain is determined by 

the gain of the quantum well and the overlap of the mode with the quantum well. The 

optical mode travels backwards and forwards along the length of the cavity during 

lasing. The gain provided by the quantum weJl to the optical mode is offset by the 

waveguide 

Partially 
reflecting 

mirror (R ,) 

Quanlum well 

Optical 
mode Current (1) p-contact 

13 er 

Currenl (f) n-conlact 

Figure 2.5: Side View sch ematic diagram of a s imple semiconduc tor laser 
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Figure 2.6: Diagram showing a typical L-I characteristic a/a laser. 

modal and mirror losses in the cavity. Figure 2.6 shows an illustration of a typical 

laser diode light-current (L-I) feature. As current injection is increased, the gain of the 

quantum well increases, until a point is reached where the losses are in equilibrium 

with laser gain. This point is known as the threshold current (lth). An increase in 

current beyond the threshold current wiII result in laser emission. 

By assuming the L-I plot is linear after threshold, the light power per facet (Pout) is 

given by Eq. 2.1. 

Eq.2.1.. ......... . 
dPfacel 

Pout == (l-Ith)-
dI 

The external quantum efficiency (TJext) for a laser device is defined as the number of 

photons out per electron in, and can be calculated from the gradient of a measured L-I 

characteristic, as shown by Eq 2.2. The equation is derived by converting the gradient 

measured from the L-I slope into an empirical number of photons per electron. The 

total power emitted from both laser facets is Ptotal, which will be double the value of 

Pout if we assume both mirrors have the same reflectivity. In Eq 2.2. q is the electronic 
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charge, h is Planck's constant, v is the frequency of emitted light, which can be 

calculated from the speed of light, c, and the light wavelength, A. 

- emitted photons ==!L. dP'o,al == 2. qJ.. d0aa, Eq 2.2 ............ llext - ---=----
injected electrons h v dI hc dI 

As light propagates through a distance (L) inside the cavity, it will be attenuated 

exponentially by the loss factor (a) of the material. Electrically pumping the device 

will amplify the light by a nominal gain factor (g). If P2 is the light power after 

propagating a distance L inside the cavity, and PI is the initial value for light power, 

P2 can be written in terms of PI as shown in Eq 2.3. 

Eq 2.3 ................... . P2 == Pl.exp.(g-a)L 

When the laser threshold is reached, the gain must be equal to the mode and mirror 

losses. By including the power reflectivity for both cavity mirrors, Rl and R2, the 

modal gain at threshold (gth) can be obtained, as shown by Eq 2.4. 

Eq.2.4 .................. . g ==a+ _I .In (_I J 
/h 2L RR 

I 2 

The internal quantum efficiency (llint) is another important consideration in laser 

analysis, and is defined as the ratio of photons created in the quantum well per 

electron injected. This gives a good indication of how well the material converts 

current into light internally. The light generated internally will suffer modal and 

mirror losses before being emitted. The mirror losses are related to the light output, 
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thus the ratio of mirror loss upon total loss gives the fraction of photons that can be 

emitted. This implies the external quantum efficiency can be expressed by Eq 2.5. 

Eq 2.5 .... T'Jext = 'lint· 
mirror loss 

lolalloss 

By rearranging Eq 2.5, we can obtain Eq 2.6. From Eq 2.6, it is apparent that by 

plotting a graph of l/TJext as a function of laser length (I) will produce a straight line 

which allows us to estimate values for TJint and a from the intercept and gradient 

respectively. 

Eq 2.6 .............. . 

The calculation method commonly used to evaluate the threshold current density for a 

quantum well structure was based on research by Mcilroy et al (21). The threshold 

current density (Jth) can be determined by relating the gain produced per quantum well 

to the current density per quantum well. If a multiple quantum well structure has nw 

wells, each with gain Ow, experiencing a modal overlap r w per well, the modal gain 

can be given by Eq 2.7 

Eq 2.7 .............. . 

The gain produced by a single quantum well as a function of applied current density 

can be approximated by Eq 2.8, assuming that the injected current density is split 

equally among the quantum wells. Go and Jo are the values of gain and current density 

respectively, obtained from a graph of gain per QW (Ow) as a function of threshold 
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current density per well (Jw) at the point which the ratio Gwllw is maximised, hence Ith 

is minimised. 

Eq 2.8 .......... . 

By substituting Eq 2.7 and 2.8 into Eq 2.4, and rearranging, Eq 2.9 can be attained for 

Eq 2.9 .... 

The threshold current density for an infinitely long cavity (JthOO) gives us important 

information about the material quality since it is free from mirror losses, and also 

from variations in facet reflectivity. By rewriting Eq 2.9 as Eq 2.10, JthOO can be 

extracted from the intercept of the plot ofln(lth) as a function of inverse length. 

Eq 2.10 ............. . 

2.8 GaInNAs Material Design 

In view of the fact that this project was to investigate the application of selective 

quantum well intermixing (QWI) to the GaInNAs material system, a wafer had to be 

obtained which not only intermixed reasonably, but also had good lasing 
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characteristics. A wafer that met both of the mentioned criteria was obtained from 

Tampere Optoelectronic Research Centre in Finland. The layer-by-layer structure of 

the material is shown in Table 2.1. 

Material Thickness Layer description 

p+ - GaAs 200nm Contact layer 

P-Alo6GaAs 1500nm p- cladding 

i- GaAs 176nm Undoped waveguide 

GaInNAs 6nm Quantum well 

i- GaAs 176nm Undoped waveguide 

n- Alo6GaAs 1500nm n- cladding 

n- GaAs 200nm Buffer layer 

n- GaAs - Substrate 

Table 2.1: Structure of GalnNAslGaAs material used during the project 

The laser structure was grown by MBE on an n-type GaAs (001) substrate. Gallium, 

indium and aluminium were supplied from standard Knudsen-type effusion furnaces. 

Arsenic (AS2) was supplied from a solid-source valved arsenic cracker whilst N was 

produced from a radio-frequency N plasma source. The layer growth was monitored 

by reflection high-energy electron diffraction (RHEED). The GalnNAs quantum well 

was grown at 460°C. 

The material was grown following a lengthy period of maintenance of the MBE 

system. The wafer was one of the first grown after the maintenance and was, as 

admitted by the growers, far from perfect, as more system calibration tests were 

needed. However, due to project time constraints, the wafer was sent in the hope that 

it would be good enough to prove the concept of the project. 
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On receiving the material, some simple annealing tests and photoluminescence (PL) 

measurements were performed to see if the optical quality of the material could be 

improved upon, and also to saturate any associated blueshift of the peak emission 

wavelength (see section 2.4). However, very little improvement was observed in the 

PL intensity for samples annealed over a range of temperatures, and for different 

lengths of time. It was therefore concluded that the active region of the material had 

been suitably annealed in-situ during the high temperature growth (680°C) of the p

cladding AIGaAs layer. 

2.9 GaInNAs Laser Results 

Simple oxide stripe lasers were fabricated to assess the material quality and 

performance. The analysis of the laser devices was performed using the theory 

featured in section 2.7. To test the lasers, a pulsed test setup featuring a box-car 

averaging system was used. An A vtech pulsed current source generating 400ns pulses 

at a 1 kHz repetition rate was used to supply current to the devices, which were 

mounted in a gold plated clip. Light was collected from one laser facet by a 

Germanium detector. The system was controlled by a PC running the Labview 

program. Light-current (L-I) characteristics were obtained from a number of devices 

of different cavity length. Figure 2.7 shows a typical L-I curve measured from a 

1000J.Lm x 75J.Lm GaInNAs oxide stripe laser device. The data provided by the L-I 

measurements were used to plot In(lth) as a function of I/(cavity length) in order to 

obtain a value for lthoo, which is the threshold current density for a device of infinite 

cavity length. This plot is shown in figure 2.8, and yields a value for l thoo = 720A/cm2
• 

The gradient of this plot was used to calculate the material gain Go= 2414cm ". 
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Figure 2.9 shows a plot of l/external quantum efficiency as a function of cavity 

length, from which values for internal efficiency (T]int) and loss (a) are determined to 

be 62.5% and 18cm-1 respectively. Although the value for Jthoo= 720A/cm2 is almost 

twice the value for Jth of similar GainNAs material reported by the same growers (13), 

it would prove sufficient in demonstrating the concept of the project. The higher than 

usual values for Jth and a could be attributed to the growth process, which had still to 

be properly calibrated, possibly introducing a higher than desired amount of non-

radiative recombination centres through material defects and impurities. 
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Figure 2.9: Plot of lIexternal quantum efficiency as afimction of cavity 
lengthfor 75pm oxide stripe lasers. 

0.14 

Figure 2.10 shows a plot of the lasing spectrum of the measured oxide stripe laser 

devices, showing the peak wavelength to be~ 1300nm. 
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To measure the temperature characteristics of the material, several devices were 

mounted on a temperature controlled peltier. The devices were again tested under 

pulsed operation over a range of temperatures between 20°C-90°C. The temperature 

coefficient, To, is generally used to quantifY how much the threshold current depends 

on temperature, and can be extracted from the plot of the threshold current as a 

function of temperature( To= IIGradient) ,as shown in figure 2.11. Note that devices 

with smaller values of To have a larger dependence on temperature. For this material, 

a value of To=80K was obtained, which is 20K lower than the To value reported for 

similar GalnNAs material produced by the same growers. Again, the smaller than 

desired value for To could be attributed to introducing a higher than desired amount of 

non-radiative recombination centres through material defects and impurities caused 

by the non-calibrated growth conditions. 
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2.10 Conclusion 

The GainNAs material system has experienced a sharp progress since it was first 

demonstrated in 1996. The intense interest in GalnNAs has been primarily due the 

inability of InGaAsP lasers to produce an adequate power and temperature 

performance, which is needed for Raman amplification at the telecommunication 

wavelengths. This chapter has given a brief history of the GainNAs material system, 

and has highlighted the advantages GainNAs may have over other material systems at 

the communication wavelengths, such as improved temperature performance and a 

relatively greater control of growth. With continued improvements to the material 
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system over the coming years, we may soon see GalnNAs replacing currently 

employed lasers in communication systems. With that in mind, it is worth exploring 

whether technologies currently used in other material systems, such as quantum well 

intermixing, can be employed by the GaInNAs material system. As this project was 

mainly concerned with incorporating quantum well intermixing into GalnNAs laser 

devices, obtaining material with decent lasing characteristics was essential. We 

obtained this with Tampere grown single quantum well GalnNAs material. 

Characterisation of the material was performed through the fabrication and testing of 

oxide stripe lasers. Although the results of these tests showed the material not to be of 

the quality the growers are capable of, it would still be sufficient to demonstrate the 

concept of the project. 

References 

1) M.Kondow, K.Uomi, A.Niwa, T.Kitatani, S.Watahiki and Y.Yazawa, 

"GalnNAs: A novel material for long wavelength range laser diodes with 

excellent high temperature performance", Jpn. J. Appl. Phys., Vol. 35, pp. 

1273-1275, 1996. 

2) J.S.Harris Jr "GalnNAs long wavelength lasers: progress and challenges", 

Semicond. Sci. Technol, Vol 17, pp 880-891, 2002. 

3) G.B.Stringfellow "Organometallic Vapor-phase epitaxy: Theory and practice" 

(Boston:Academic), p 123, 1989. 

4) S.G.Spruytte, M.C.Larson, W.Wampler, C.W. Coldren, H.E. Petersen, 

J S H rr·s "Nitrogen incorporation in group III-nitride-arsenide materials .. a I 

grown by elemental source molecular beam epitaxy", Journal of Crystal 

Growth 227-228, pp506-515, 2001. 

33 



5) J.C.Hannand, G.Ungaro, L.Largeau, and G.Le Roux "Comparison of nitrogen 

incorporation in molecular-beam epitaxy of GaAsN, GalnNAs and 

GaAsSbN", Applied Physics Letters, Vol 77, No 16, pp 2482-2484, Oct 2000. 

6) A.Yu.Egorov, O.Berklau, B.Borchert, S.llIek, D.Livshits, A.Rucki, 

M.Schuster, A. Kaschner, A. Hoffinan, G.Dumitras, M.C.Amann, H.Riechert, 

"Growth of high quality InGaAsN heterostructures and their laser application" 

Journal of Crystal Growth, 227-228, pp545-552, 200 I. 

7) AJ.Ptak, S.WJohnston, S.Kurtz, OJ.Friedman, W.K.Metzger "A comparison 

of MBE- and MOCVO- grown GaInNAs", Journal of Crystal Growth, 251, pp 

392-398, 2003. 

8) K.Kim and A.Zunger "Spatial correlations in GaInNAs alloys and their effects 

on band-gap enhancement and electron localization", Phys.Rev.Letters, Vol 

86, pp 2609-2612,2001. 

9) V.Gambin, V.Lordi, W.Ha, M.Wistey, T.Takizawa, K.Uno, S.Friedrich, 

J.Harris "Structural changes on annealing of MBE grown (Ga,In)(N,As) as 

measured by X-ray absorption fine structure", Journal of Crystal Growth, 251, 

pp 408-411, 2003. 

10) N.Tansu and LJ.Mawst, "The role of hole leakage in 1300nm InGaAsN 

quantum-well lasers", Applied Physics Letters, Vol 82, Number 10, pp 1500-

1502, March 2003. 

II) M.Pessa, C.S.Peng, TJouhti, E.M.Pavelescu, W.Li, S.Karirinne, H.Liu, 

O.Okhotnikov "Towards high-performance nitride lasers at l.3Jlm and 

beyond", lEE Proceedings - Optoelectronics, Vol 150, No.1, Feb 2003. 

12) E.M.Pavelescu, C.S.Peng, TJouhti, J.Konttinen, W.Li, M.Pessa "Effects of 

insertion of strain-mediating layers on luminescence properties of 1.3Jlm 

34 



GaInNAs/GaNAslGaAs quantum-well structures", Applied Physics Letters, 

Vol 80, No 17, April 2002. 

13) C.S.Peng, E.M.Pavelescu, TJouhti, J.Konttinen, I.M.Fodchuk, Y.Kyslovsky, 

M.Pessa, "Suppression of interfacial atomic diffusion in InGaNAs/GaAs 

heterostructures grown by molecular-beam epitaxy", Applied Physics Letters, 

Volume 80, No 25, June 2002. 

14) M.Kawaguchi, T.Miyamoto, E.Gouardes, S.Minobe, T.Kondo, F.Koyama, 

K.Iga "Photoluminescence and lasing characteristics of GaInNAs quantum 

wells using GaInAs intermediate layers", JpnJ.AppI.Phys, Vol 41, pp 1034-

1039,2002. 

15)X.Yang, MJJurkovic, J.B.Heroux, W. I. Wang "Low threshold 

InGaAsN/GaAs single quantum well lasers grown by molecular beam epitaxy 

using Sb surfactant", Electronics Letters, Vol 35, No 13, June 1999 

16) H.Shimizu, K.Kumada, S.Uchiyama, A.Kasukawa "High performance CW 

1.26J.1m GalnNAsSb-SQW ridge lasers", IEEE lSelected topics in Quantum 

Electronics, Vol 7, No 2, MarchiApril200J. 

17) D.A.Livshits, A.Y.Egorov, H.Riechert "8W continuous wave operation of 

InGaAsN lasers at J.3J.1m", Electronics Letters, Vol 36, No 16, Aug 2000. 

18) W.Ha, V.Gambin, M. Wistey, S.Bank, S.Kim, lS.Harris "Multiple-quantum 

well GalnNAs-GaNAs ridge waveguide laser diodes operating out to 1.4J.1m", 

IEEE Photonics Technology Letters, Vol 14, No.5,May 2002. 

19) M.O.Fischer, M.Reinhardt, A. Forchel "Room-temperature operation of 

GalnAsN-GaAs laser diodes in the 1.5J.1m range", IEEE Journal of selected 

topics in Quantum Electronics, Vo1.7, No.2, April 2001. 

35 



20) S.R.Bank, M.A. Wistey, H.B. Yuen, L.L.Goddard, J. S. Harris "Progress towards 

high power 1.5J.1m GalnNAsSb/GaAs lasers for Raman amplifiers", 2004 

Optical Fiber Communication Conference (OFC), Los Angeles, CA, Feb 

2004. 

21) P.W.A.McIllroy, A.Kurobe, Y.Uematsu "Analysis and application of 

Theoretical Gain Curves to the Design of Multi-Quantum-Well Lasers", IEEE 

Journal of Quantum Electronics, Vol 21, pp 1958-1963, December 1985. 

36 



Chapter 3 

Quantum Well Intermixing 

3.1 Introduction 

As discussed in chapter 1, optical fibre systems used in both long haul and metro 

networks are on the verge of another revolutionary development i.e. the integration of 

optical and electronic components into optoelectronic integrated circuits (OEIC's) or 

photonic integrated circuits (PIC's). Since the vast amount of optoelectronic devices 

now utilise quantum wells (QW's) in their active regions, quantum well intermixing 

(QWI) has emerged as a strong technique for fabricating OEIC's and PIC's. During 

the intermixing process, the bandgap energy of the QW structures is increased in 

selected regions by intermixing the wells with the barriers. This technology allows 

low-loss waveguides, modulators, lasers and detectors to be fabricated on the same 

chip. This chapter gives an overview of monolithic integration techniques and QWI 

technologies, before discussing the QWI technique applied to the GaInNAs QW 

system for this research. 

3.1.10ptoelectronic Integration Techniques 

The main objectives of optoelectronic integration are much the same as those of 

electronic integration: improving performance, reliability and functionality whilst 

simultaneously lowering the manufacturing cost. Combining lasers, modulators and 

detectors with low-loss waveguides on a single epitaxially grown substrate, for the 

fabrication of OEIC's, requires the definition of regions with different bandgap 

energies. The approaches to such integration can be divided into two categories: 

growth techniques and intermixing techniques. In order to fully understand the 
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advantages and disadvantages of each integration technique, we must look at the 

requirements that need to be met to realise practical PIC's 

3.1.2 Optoelectronic Integration Requirements 

Charbonneau et al (1) stated that for any OEIC or PIC to be practical, the 

optoelectronic integration technique used must fulfil several requirements: 

1) There must be a large, controllable bandgap energy difference between the 

various devices in the PIC. 

2) Loss in the integrated waveguide devices must be comparable to or lower than 

that present in the as-grown structure. 

3) The electrical properties of the various devices must suffer zero or 

insignificant deterioration due to the processing technique. 

4) There should be no significant adverse effects on the operating lifetimes of the 

various devices in the PIC, after processing. 

5) Any other process-initiated changes in the properties of the devices must be 

either neutral or advantageous to the PIC. 

3.1.3 Optoelectronic Integration Using Selective Area Growth 

Selective area growth (SAG) is a technique that enables control over the width of the 

quantum wells across a wafer during a single epitaxial step. Controlling the quantum 

well width allows lateral control over the bandgap. In this approach, the wafer is 

covered with a dielectric mask, which is then removed in small selected areas where 

growth is to take place. Growth cannot take place on the dielectric mask, which leads 

to an increase in the number of growth species available, which in tum enhances the 

growth rate in the regions not covered by the dielectric mask. The width of the mask 
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opening and the patterning of the mask therefore dictate the growth rate, and hence 

the width of the quantum wells. 

Integrated devices containing communication lasers, modulators linked with passive 

sections have been achieved using this growth technique, as well as multi-wavelength 

DBR lasers for wavelength division multiplexing (WDM) (2). Despite this, there are 

still several obstacles that need to be overcome by this technology in order to compete 

with future integration techniques. Firstly, when growing two regions of different 

bandgap, two different growth rates are involved. If the growth conditions are 

optimised for the higher growth rate, hence higher bandgap region, the material 

quality and composition of the lower bandgap region will become non-unifonn. 

Secondly, the interface between the two growth regions can be quite large (around 

I OO~m) which can limit device miniaturisation. 

3.1.4 Regrowth 

Monolithic integration can also be achieved by using a regrowth technique. Firstly, a 

wafer is grown containing the quantum well active region for all the devices. 

Secondly, areas where the active region is unwanted are etched and overgrown with 

the same upper cladding layer everywhere on the wafer. This ensures that a virtually 

constant optical waveguide propagation coefficient is maintained across the wafer. 

This approach does inflict limitations on device performance due to the poor interface 

between the original and regrown material. This poor interface is caused by material 

mismatch, as well as imperfections in etching and regrowth, which subsequently leads 

to poor device characteristics and low yield. Moreover, the additional etch and 

regrowth stages are expensive. Such factors render regrowth methods unsuitable in 

the development of optoelectronic integrated circuits. 
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3.2 Principle of QWI 

Quantum well intermixing permits post growth modification to the bandgap of QW 

material. During the intermixing process, atoms from the QW's move into the barriers 

and vice versa. This interdiffusion changes the composition of the wells and barriers, 
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Figure 3.1 : Dill!T<lJTI showing the effect ofQW1 on the AIo.5Gao.5As QW system 

which changes the profile of the QW, and results in associated changes to the bandgap 

energy and refractive index. To illustrate the principle of QWI, figure 3.1 shows the 

change experienced by the GaAs/AIGaAs QW system during intermixing. 

During intermixing, the QW becomes disordered, resulting in a smoother QW profile, 

which increases the bandgap energy of the intermixed well. 
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3.2.1 Discovery of QWI 

QWI was somewhat a surprise discovery for the research group at the University of 

Illinois in 1980. A detailed account of this discovery is given by Holonyak (3) and 

Laidig (4). Whilst performing research into AIAs-GaAs super-lattices (SL's) and 

quantum well heterostructures (QWH's), Holonyak instructed one of his graduate 

students (Laidig) to dope the SL by diffusing Zn into the structure. A ZnAs2 source 

was used to diffuse the Zn in a closed ampoule at a temperature of 575°C for 4 hours. 

After this process, the substrate was removed from the sample in order to observe the 

SL. From previous work, it was known that the SL's had a distinctly red colour, 

however, the sample appeared pale yellow after the Zn diffusion process. The average 

composition of the material had not changed, but the material had transformed from a 

structured SL layer form (red) into a bulk crystal form (yellow). To be certain that the 

Zn impurity was the cause of the result, the experiment was repeated under the same 

conditions, except only excess As was used in the sealed ampOUle. After this process, 

the SL region was observed to be red, confirming the role of Zn in the previous result. 

In order to show a direct comparison of the effect the impurity diffusion had against 

simple annealing, another sample containing the same SL structures was prepared 

with ShN4 masking stripes on the surface. After repeating the 575°C for 4 hour 

annealing using the ZnAs2 source in the sealed ampoule, stripes of red and yellow 

were observed on the sample regions that were masked and unmasked respectively. 

These results demonstrated the ability to selectively intermix QWH's and SL's, as 

well as the practical implications of the process, prompting the researchers to patent 

the discovery shortly afterwards. Since an impurity source was used to promote 

disordering, the technique was named impurity induced layer disordering (IlLO), or 

otherwise known as impurity induced disordering (110). 
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3.2.2 Disordering Mechanisms 

Heterostructure disordering requires point defects to assist the movement of atoms at 

elevated temperatures. Without such defects, the atoms would be unable to move 

around. In order to understand heterostructure disordering, it is helpful to be aware of 

the nature of the defects involved in the process. 

3.2.3 Point Defects 

The three main point defects found in III-V semiconductors are vacancies, interstitials 

and anti sites. Table 3.1 gives a short overview of point defects in GaAs, showing that 

each atom involved in the crystal structure has three possible associated point defects. 

Defect Description 

Vacancy Empty site in the crystal lattice. Group III and V vacancies 
are notated as V Ga and V As respectively. 

Interstitial Atom in the crystal lattice located in between lattice atoms. 
Group III and V interstitials are notated as IGa and lAs 

respectively. 

Antisite Ga atom located on an As site, AsGa, or an As atom located 
on a Ga site, GaAs. 

Table 3.1: Containing a short description of point defects associated with GaAs 

Point defects found in semiconductors can be divided into two categories: native 

defects and induced defects. Native defects occur during the growth of the 

semiconductor material whereas induced defects are created post-growth, most 

commonly by ion implantation, material doping or laser treatment. 
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3.2.4 Native Point Defects 

The key to controlling bandgap shifts via heterostructure disordering in III-V QW 

structures is to control the number of point defects in the crystal that are responsible 

for interdiffusion. Having too few point defects in the crystal will give insufficient 

interdiffusion, whereas having too many point defects can lead to immobile extended 

defects that will also hinder interdiffusion (5). During the growth of III-V QW 

structures, native point defects are created by variations in the crystal stoichiometry. 

Gebauer et al (6) investigated the control of native point defects during MBE growth 

of GaAs by using the fact that the crystal stoichiometry is dependant on the growth 

temperature. Gebauer et al measured the concentration of defects (V Ga) in the crystal 

following growth at temperatures between 200°C and 350°C. It was found that growth 

of low temperature (200°C) GaAs produced a crystal with defect concentrations of 

around IxlO l8cm3, which would be a suitable amount to enhance the interdiffusion 

rate of the group III atoms. By incorporating a low temperature cap layer on top of a 

AIGaAs/GaAs superlattice, Tsang et al (7) demonstrated an enhancement in 

compositional disordering during annealing. Furthermore, they found that the 

enhancement in interdiffusion was due to an increase in gallium vacancies. From 

these results it was clear that by growing a low temperature GaAs cap layer on top of 

a QW structure, and subsequently patterning and etching the layer, selective area 

disordering of the QW structures could be achieved. 
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3.2.5 Induced Defects 

Research into inducing point defects in QW structures has involved the scrutiny of 

many different methods. This section of the chapter will discuss the most common 

methods used. 

3.2.6 Impurity Induced Layer Disordering (IILD) 

As mentioned in section 3.2.1, Laidig et al (4) were the first to discover IILD by 

demonstrating heterostructure disordering using Zn as a dopant. Since then, many 

research groups have involved themselves in this intermixing technology. There have 

been many electrically active elements introduced to AIGaAs/GaAs QW structures 

that have proven to cause I1LD, such as Si, Ge, Se, Sand Sn as donors, and Zn, Be 

and Mg as acceptors (8). Laidig et al and VanVechten (9) each attempted to explain 

the mechanism behind IILD, however, subsequent experimental results were found 

not to be in accordance with these models. The problem with the models proposed by 

Laidig and Van Vechten were that they failed to accurately explain the effect of IILD 

on both group III and group V interdiffusion, and also failed to explain the effects of 

other dopants besides Zn. On inspection of the experimental data and the weaknesses 

of the proposed IILD models previously given, Tan and Gosele (10) proposed the 

Fermi-level effect as a means of explaining the phenomena. It was well known that 

the concentrations of point defects in silicon were dependant on the position of the 

Fermi-level, and hence on the concentration of dopants. Since such point defects are 

used as diffusion vehicles, the diffusivity of elements is dependent on the doping. 

Since the Fermi-level effect is a charge effect, it is the doping level and type of 

doping which are of primary importance. It is also noted that it is mainly the presence 

of the dopant that is important, not its diffusion in the crystal. For that reason, the 
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same effect should be observed if the same material is doped by a different dopant 

species to the same level and type. 

IILO has been effectively applied to various devices to take advantage of the bandgap 

widening effects. Suzuki et al (II) used IILO successfully to incorporate non

absorbing mirrors (NAM's) to high power lasers to suppress catastrophic optical 

mirror damage (COMO), while Deppe et al (12) employed IILO to realise buried 

heterostructure devices for improved current confinement. Although this process has 

proven successful in the mentioned cases, it is still far from ideal due to the high 

concentrations of electrically active dopants. For successful IILD, impurity 

concentrations in the order of I018/cm3 are required, which can lead to large free 

carrier absorption losses (>43dB) (13), and hence be severely detrimental to the 

devices. Furthermore, the change in device resistivity associated with the electrically 

active impurities can be detrimental to devices requiring good electrical isolation. 

3.2.7 Implantation Induced Disordering 

Another method that has been used to disorder QW structures is implantation induced 

disordering. The ion beam used in the implantation process damages the crystal, 

hence creating point defects, which can sequentially promote intermixing during 

annealing. Annealing the crystal after the damage process also seems to be adequate 

in restoring crystallinity (I). Early research into this disordering mechanism by 

Gavrilovic et al (14) revealed that any ion can be relatively effective in disordering an 

AIGaAs/GaAs QW heterostructure or AIAs/GaAs superlattice via damage induced 

disordering. This conclusion was drawn after using many different ions to promote 

crystal damage, including electrically active impurities ln, Si, and S, the lattice 
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constituent AI, and inert ion Kr. It was shown that all ions could effectively disorder 

the heterostructures, with the electrically active ions being the most effective due to 

the addition of the Fenni-Ievel effect. 

Charbonneau et al (1) stated that the number of point defects introduced to 

heterostructures during the implantation process depended on the following factors: 

I) dose or fluence (i.e.number of ions/cm2) 

2) masses of the ions (ion species) 

3) implantation angle 

4) ion energy 

5) ion flux or current density (A/cm2
) 

6) temperature of the substrate during implantation 

By taking all these factors into account, the implantation process can be used very 

accurately to induce an optimum amount of point defects for QW disordering. 

Furthennore, implantation induced damage can be suppressed in selected areas by 

using a suitably thick mask layer, such as 2j.1m Si02, thus alIowing selective area 

intennixing. 

O'Neill et al (IS) demonstrated the effectiveness of implantation induced disordering 

in the AIGaAslGaAs system using fluorine and boron, which are both electrically 

neutral at room temperature. Samples were implanted with either fluorine or boron, 

using a range of different implantation doses and energies. The samples were then 

annealed in a conventional furnace at temperatures up to 8900C to promote 

disordering. Large blue shifts in the PL of up to tOOmeY were observed. Further 

experiments by O'Neill et al (16) confinned the effectiveness of this disordering 
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technique to produce low loss waveguides by demonstrating a propagation loss of 

4.7d8/cm in AIGaAs/GaAs waveguides that had been disordered using fluorine. The 

dopant concentration for the implantation disordering (around JOI4cm·3) was much 

less than that of electrically active I1LD (typically around JO
I8cm-3

), hence the loss 

value was much lower than the approximate loss value of 43d8/cm associated with 

electrically active II LD (13). 

Implantation induced disordering has been employed by many research groups to 

produce an assortment of devices from different material systems. Charbonneau et al 

(I) produced lasers with a range of wavelengths on the same 1.5Jlm InP-based wafer 

using P implantation disordering. Different levels of intermixing were controlled 

using different thickness of Si02 mask layer to suppress implantation damage. Such 

devices are particularly relevant to WDM systems. Other devices fabricated using this 

disordering technique included low loss waveguides, modulators and 

superluminescent diodes. The disordering of InGaAs/ AIGaAs material using 

implantation of As ions was employed by Piva et al (] 7) to realise passive extended 

cavity sections to laser devices. Similarly, Hashimoto et al (18) used the implantation 

ofN ions to disorder GalnAs/GalnP material to form non absorbing mirrors (NAM's) 

on high power 980nm lasers. Although this process has proved successful in the 

discussed cases, carrier traps associated with the implanted species and residual 

damage from the implantation process can cause problems with device performance 

and lifetimes (13). Also, the equipment required to perform implantation is complex, 

as well as expensive. 
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3.2.8 Laser Induced Disordering 

Laser induced disordering (UD) is an intermixing technique which uses a laser beam 

to promote a shift in the bandgap edge of QW material. Initially the laser beam was 

used to melt the QW material to cause disordering, but more recently has been used to 

create defects in the QW region that can promote intermixing using a subsequent 

annealing step. LID was first demonstrated by Epler et aJ (19) by using a focussed Ar+ 

laser beam to selectively disorder localised regions on an AIGaAs/GaAs superlattice. 

The laser beam (A=488nm) was absorbed by the whole crystal and effectively melted 

the material, which afterwards recrystallised into nearly bulk form AIGaAs. A 

computer controlled scanning table was used in order to use the laser as a localised 

heat source capable of disordering the layers on a micron scale. However, the spatial 

resolution for this process is limited due to the conduction of heat within the material. 

Furthermore, the process requires high laser power densities in order to melt the 

material, and melting the material results in complete intermixing, which implies that 

the process cannot be used to create partial bandgap shifts (13). An alternative LID 

process was developed by McLean et aJ (20), in which the laser beam was only 

absorbed in the active region of the material by using an incident laser wavelength 

above the bandedge of the active region, but below the bandedge of the cladding 

layers. A 1064nm Nd:Y AG laser was used by McLean to generate heat in the 

InGaAsP/lnP active region, which caused intermixing between the wells and the 

barriers. PL measurements recorded a shift of 123meV between the intermixed and 

as-grown material, showing the potential for this process in the fabrication ofOEle's. 

This process was named photo-absorption induced disordering (PAID), and had the 

advantage of being an impurity free process that relied on native point defects to aid 

intermixing. McKee et al (21) successfully applied PAID to realise extended cavity 
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lasers, low loss waveguides, bandgap tuned lasers and electroabsorption modulators 

from InGaAsP/InP material. A more recent form of PAID, known as pulsed-PAID (P_ 

PAID), has been used to create point defects in the QW region of the material, which 

can then diffuse during annealing and promote QW disordering. Since there is no 

large generation of heat in this process, the spatial resolution of P-PAID is much 

better than that of other LID techniques. Although LID has many advantageous 

features such as being impurity free and having direct write capability, as well as 

potentially being able to do parallel processing, the techniques require some 

improvement before they can be appealing to industry. 

3.2.9 Impurity Free Vacancy Disordering (IFVD) 

Impurity free vacancy disordering (IFVD) is an intermixing technique that makes use 

ofa dielectric cap deposited on the top of the material structure to create vacancies on 

the group III lattice sites. In this technique, a dielectric cap layer, typically Si02, is 

deposited on the structure, which then undergoes a rapid thermal annealing (RTA) 

step. At elevated temperatures, some atomic species, such as Ga, become soluble and 

have a high diffusion coefficient in Si02. Therefore, during the annealing stage, Ga 

atoms dissolve into the Si02 cap layer leaving behind vacancies. These vacancies then 

diffuse down to the QW region to enhance disordering. The number ofGa atoms that 

diffuse into the cap layer is dependent on the thickness and porosity of the cap layer. 

The dependence on the cap layer thickness has been ascribed to the outdiffusion 

species reaching its solubility limit in the dielectric cap (Ooi et al (22», therefore a 

thicker cap layer will allow more solubility. 
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IFVD was first demonstrated by Deppe et al (23), within the AIGaAs/GaAs material 

system. By utilizing a Si02 cap layer as a defect source and a ShN4 masking layer, 

both chemical vapour deposited (CVO), a differential PL shift of 90meV was 

obtained following an anneal of 850°C for 6h. Since that time, research has found 

ShN4 to be unsuitable as a masking cap layer since it is very rarely pure, and usually 

contains a considerable amount of Si02 (13). A considerable amount of Si02 in the 

SbN4 layer can be enough to promote disordering of the quantum wells covered by 

the layer, albeit to a smaller degree than the quantum wells covered by Si02• Still, the 

differential shift in PL wavelength between the areas chosen for disordering and those 

not chosen for disordering is reduced. Furthermore, SbN4 layers have a highly 

strained interface with the QW material, which when heated can cause large 

differential strain effects to occur, which can create defects, and promote disordering 

beneath the cap. 

An alternative to the ShN4 cap layer that has been proved to effectively inhibit 

disordering is SrF2• Beauvais et al (24) used the SrF2 cap layer to suppress disordering 

is GaAs/ AIGaAs heterostructures, however, it was found that the caps suffered 

substantial damage during the annealing stage, which made them difficult to remove. 

Even so, this masking layer has been used alongside Si02 in the IFVD process to 

produce promising results. Gontijo et al (25) used the Si02/SrF2 method to fabricate 

ridge waveguide lasers with disordered (passive) extended cavities from 

GaAsi AIGaAs. The disordered passive sections had a measured loss value of 

3.6dB/cm, which visibly demonstrated the ability to use this process for fabrication of 

low loss waveguides. Ooi et al (22) used the Si02/SrF2 process to realise multiple 

wavelength laser arrays and multi-channel wavelength division multiplexers from 
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GaAsl AIGaAs. The bandgap tuning of the lasers was performed by varying the SrF2 

layer coverage in selected areas, with areas having most coverage experiencing the 

least amount of disordering. This technique allowed the fabrication of lasers with 

different wavelengths on the same chip. 

Since there are no impurities involved In IFVD, the electrical properties of the 

material remain largely unaltered. Furthermore, free carrier losses associated with 

electrical dopants are not applicable to this process, making it possible to fabricate 

long lengths of low attenuation passive waveguides, which are required by OEIC's. 

The process also avoids the problems associated with implantation techniques, such as 

residual damage and changes in material resistivity. Most importantly, IFVD is simple 

and inexpensive, as well as relatively easy to control and reproduce. 

3.3 Intermixing research at Glasgow University 

Research on intermixing at Glasgow University was started by John Marsh around 

1987. Early research involved implantation induced disordering of GaAs/AIGaAs, 

GalnAsiAlGaInAs and GaInAs/GalnAsP material systems using fluorine and boron 

as the implantation species. Since then, several different intermixing technologies 

have been investigated, such as photoabsorption induced disordering (PAID) as well 

as its successor pulsed-PAID (P-PAID). IFVD studies using Si02/SbN4 and Si02/SrF2 

were conducted during the mid-nineties. However, since the late nineties the focus in 

research has been diverted to an intermixing process that involves a sputtered Si02 

cap layer. 
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3.3.1 Sputtered Si02 Intermixing Process 

In an attempt to overcome problems associated with PECVD Si02 cap layers, 

researchers tried using sputtered Si02 cap layers as an alternative. This led to the 

discovery of the sputtered Si02 intermixing process. During this process, a layer of 

sputtered Si02 is deposited onto the surface of the sample, which is then annealed at 

high temperature to promote intermixing in the QW region beneath. McDougall et al 

(26) reported the intermixing of several material systems using the sputtered Si02 

process. The sputtering of the Si02 cap layer was performed using a Nordiko RF 

sputterer. Areas in which intermixing was to be suppressed were masked with 

PECVD Si02, whereas areas in which intermixing was to be promoted were covered 

with sputtered Si02• This patterning of dielectric coatings on the sample allowed 

selective area control of the intermixing technique. Early investigations into the 

disordering mechanism seemed consistent with the idea of point defect generation at 

the material surface caused by the energetic bombardment on the surface during the 

deposition of Si02, followed by the subsequent diffusion of the defects into the OW 

region during an annealing step, causing the OW's and barriers to intermix. The 

deposition process was thought to be responsible for breaking atomic bonds on the 

material surface, thus creating vacancies and interstitials. 

An increase in research into the intermixing mechanism followed from the formation 

of a Glasgow University spin-off company Intense Photonics Ltd, due to its 

commercial importance. From this research, it appears that the disordering mechanism 

is an intricate result of several factors. The initial understanding of damage caused to 

the material surface during the deposition of sputtered Si02 promoting point defects is 

thought to be partly responsible for intermixing, following an annealing step. 
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Furthermore, the IFVD intermixing mechanism is also thought to be somewhat 

accountable since the sputtered Si02 allows improved in-diffusion of atomic species 

with respect to PECVD Si02, thus enhancing intermixing. In addition, from close 

inspection of the sputtered Si02 cap layer composition, it was revealed that it 

contained a small quantity of Cu impurities, which was also found to enhance 

intermixing. Because of the small amount of Cu impurities involved, the free-carrier 

losses associated with impurity induced layer disordering (IlLD) are circumvented. 

The sputtered Si02 intermixing process is still being investigated in order to fully 

understand the mechanism. However, the process has already been used to realise a 

number of devices. McDougall et al (26) used the sputtered Si02 process to fabricate 

bandgap tuned lasers, extended cavity lasers and multimode interference couplers 

from InGaAsilnGaAIAs and InGaAs/lnGaAsP material, whilst Bubke et al (27) 

demonstrated low loss intermixed waveguides (-6dB/cm) using InGaAs/lnGaAIAs 

material, thus demonstrating the potential of the intermixing technique for monolithic 

integration. 

3.3.2 Sputtered Si02 QWI process 

For the sputtered Si02 intermixing process to be useful, the designation of areas 

where intermixing was to occur, and where intermixing was not to occur is necessary. 

From work performed by McDougall et al (26) and Liu et al (28), it was found that 

200nm PECVD Si02 was insufficient for suppressing intermixing during this process, 

however a 500nm thick PECVD Si02 layer was found to be suitable. Areas 

designated for intermixing could therefore be selected by opening regions in the 

500nm PECVD Si02 cap layer, then depositing sputtered Si02. Fig 3 illustrates the 
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step process for selective area intermixing using the sputtered Si02 process. The first 

step in the process is to deposit 500nm PECVD Si02 onto the QW sample. From 

there, photolithography can be used to expose the regions of PECVD Si02 that are to 

be etched. After etching the PECVD Si02 layer using HF acid, regions of the 

semiconductor surface are left exposed. Si02 is then sputtered over the whole sample. 

A subsequent annealing step allows intermixing in the QW's below the selected 

1) 500nm PECVD Si02 

deposition 

SOOnm PECVD Si02 

QW's 

2) Spin-on I.811m photoresist 

3) Photolithography 

4) HF i02 Etch 

5) Removal of resist 

I 

6) Sputter Si02 and 
annealing step 

I 
I 

Intermixed 
L...-____ --J ~W's 

7) Removal of 
remaining Si02 

using HF 

Fig 3.2: Diagram showing the step-by-step process of the sputtered SiD] intermixing 
technique 

regions. Intermixing i suppressed in the QW's beneath the PECVD Si02 mask layer. 

Finally, all remaining i02 can then be removed using HF acid. 
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3.3.3 GalnNAs intermixing 

Research into QWI technology using the GaInNAs/GaAs material system has been 

limited to date. However, due to the inherent blue shift in the PL intensity peak 

associated with annealed GaInNAs (chapter 2, section 2.4), a great deal of research 

has focussed on the interdiffusion mechanisms involved. Research teams worldwide 

fail to have a common explanation for the cause of the PL blue shift. Explanations 

such as group III interdiffusion between the wells and barriers, nitrogen out-diffusion 

from the QW, and changes in bond configurations within the material, have all been 

suggested as possible causes for the bandgap shift. The inadvertent study of 

interdiffusion in GalnNAs was performed by Peng et al (2002) (3\) whilst developing 

diffusion suppressing layers (DSL's). The DSL's were thin (2 to 3nm) GaInNAs 

layers with In and N concentrations much lower than that of the QW, which could be 

inserted at the interface of the well and barrier. These layers act as a strain mediators 

between the compressively strained QW's and the tensile strained barriers, which in 

tum can allow the growth of wider QW's. X-ray diffraction studies revealed 

decreased group III interdiffusion in material containing DSL's, which suggest that 

strain at the interface between the QW and the barriers plays an important role in the 

group III interdiffusion. Furthermore, it was also found that by adding a small amount 

of N to an InGaAs QW surrounded by GaAs barriers increased the Group III 

interdiffusion, which could also be due to the increase in strain. 

Macaluso et al (29) are the only team to have studied selective QWI on GaInNAs 

material. Using the sputtered Si02 intermixing process detailed in section 3.8, 

controlled differential bandgap shifts of over 200nm were obtained from 

GaInNAs/GaAs MQW structures, which had been annealed to "saturate" the inherent 
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blue shift beforehand. Secondary Ion Mass Spectrometry (SIMS) analysis revealed 

that the intermixing mechanism was the result ofln and Ga interdiffusion between the 

QW's and the barriers. 

3.4 GaInNAs Intermixing Results 

Intermixing experiments were performed using the method detailed in section 3.3.2. 

From earlier work performed in the department by Walker et al (30), it was found that 

50nm thick layers of sputtered Si02 produced suitably reliable bandgap shifts, with 

500nm thick layers of PECVD Si02 found suitable for inhibiting intermixing. The 

sputtered Si02 deposition process was kept constant for the duration of the project. 

Since intermixing is primarily a diffusion process, the anneal temperature and anneal 

time are the two most important control parameters. Samples covered with sputtered 

Si02 and PECVD Si02 were annealed simultaneously in a rapid thermal annealer 

(RTA). To control the experiment, only the anneal temperature was varied, with the 

anneal time remaining constant (lmin). The annealing was performed under a 

nitrogen atmosphere with the samples placed p-side down onto the RTA's Si 

susceptor. A piece of Si was also placed on top of the sample to inhibit desorption. 

The samples were typically annealed at temperatures ranging between 650°C-900°C. 

To measure the differential wavelength shift between the samples, a 

photoluminescence (PL) setup was used. The PL spectra of the samples were 

measured by attaching the samples to the end of an optical fibre using an acetone/glue 

mixture. The sample was then immersed in liquid nitrogen to reduce its temperature to 

17K in order to reduce phonon scattering effects and hence provide an improved PL 

signa\. Optical excitation of the samples was performed using an Nd:Y AG laser 
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emitting at 1064nm. The PL spectrum emitted by the samples following optical 

excitation was measured using a monochromator and a cooled Ge detector (77K). 

3.4.1 Tampere 1.3,...m GaInNAs laser material intermixing results 

Figure 3.3 shows the differential shift of the PL spectra for GalnNAs/GaAs samples 

using the sputtered Si02 selective area intermixing technique (see chapter 2, Table 2.1 

for material structure). Annealing the samples at 850°C for 60s provided a 40nm 

differential wavelength shift. From work previously performed in the department by 

Walker et al (30) it was found that a 40nm differential shift was sufficient for 

producing low loss passive intermixed waveguides. 

-::; 
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Photoluminescence @ 17K 
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Annealed at 850°C for 60s 
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Figure 3.3: Photoluminescence spectra ofTampere /.3 pm Galn~As laser material. A. 
differential shift of40nm is obtained between samples covered wllh 50nm sputtered SID] and 
200nm PECVD SiD]. Both samples annealed simultaneously at 850°C for 60s, 
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Figure 3.4 shows the PL peak wavelength shift as a function of the anneal 

temperature. From this plot, it can be seen that the samples capped with 50nm 

sputtered Si02 start to intermix above an anneal temperature of 750°C, whereas the 

samples capped with 200nm PECVD Si02 suppress intermixing for the full range of 

temperatures investigated. This plot allows the selection of a suitable anneal 

temperature that can be used in the intermixing process to integrate low loss passive 

waveguide sections with active laser sections. The ideal condition for intermixing 

would be to obtain as large a differential shift as possible without intermixing or 

degrading the active laser section. By annealing the samples at 850°C for 60s, a 

differential wavelength shift of 40run is obtained without causing the active section to 

intermix. 
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Figure 3.4: Plot o/peak PL wavelength shifi as afonclion o/anneal 
temperature. 
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3.4.2 Intense Intermixing of Tampere 1.31lm GaInNAs material 

Intermixing experiments were also performed on the Tampere 1.3llm GalnNAs 

material at Intense Ltd. Since Intense use the intermixing process for commercial 

purposes, much of their efforts have involved optimising the intermixing process, 

particularly the quality of the sputtered Si02 film in order to achieve better control of 

the process. Figure 3.5 shows the differential shift of the PL spectra for 

GalnNAs/GaAs samples using the sputtered Si02 selective area intermixing 

technique. Annealing the samples at 750°C for 60s provided a 70nm differential shift. 

PL at77K 

Tampere GalnNAs 

Annealed at 750·C for 60s - Studies performed at Intense Photonics 
::i 
I'Ii ->
~ 
Ifj 
c: 
~ 
c: 
~ --IP Sputtered SiO, 
C) --IP PEeve 510, 
:J 

1060 1080 1100 1120 1140 1160 1180 1200 1220 1240 1260 

Wavelength (nm) 

Figure 3.5: Plot of the PI peak intensity as afunction ofwavelengthjor Tampere GalnNAs 
samples capped wiJh 200nm PECVD SiD] and 50nm sputtered SiDl at intense Photonics Ltd. 

The samples were annealed simultaneously al 750
o
Cjor 60s. 

Figure 3.6 shows the PL peak wavelength shift as a function of the anneal 

temperature. From this plot, it can be seen that the samples capped with 50nm 

sputtered i02 tart to intermi above an anneal temperature of 700°C, whereas the 

samples capped with 200nm PECVD Si02 suppress intermixing up to an anneal 

temperature of 800°C, after which, intermixing starts to occur, presumably due to 

IFVD taking place. Furthermore, it can be seen that a very large differential 
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wavelength shift of -170nm is obtained after annealing the samples at 800°C for 60s, 

which is much larger than the differential shift obtained at Glasgow University for the 

same material. Due to the commercial sensitivity of Intense Ltd intermixing process, 

details of the intermixing process are very limited. However, these results 

demonstrate the potential of using the sputtered Si02 intermixing process on 

GaJnNAs laser material for commercial purposes. 
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Figure 3.6: Plot a/peak PL wavelength shift as afonclion a/anneal temperature. Experiment 
performed at Intense Photonics Ltd 

3.4.3 Intermixing of Sheffield 1.55J1m GaloNAs laser material 

The sputtered Si02 intermixing experiments were also performed at Glasgow 

University on a prototype 1.55flm GaInNAs material grown by Sheffield University. 

The material tructure is detailed in Table 3.2. Samples of the 1.55flm laser structure 

were capped with either 50nm sputtered Si02 or 200nm PECVD Si02, and annealed 
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Material Thickness Layer description 

p+ - GaAs 300nm Contact layer 

P - AI0.6GaAs 2250nm p- cladding 
i- GaAs 50nm Undoped waveguide 

Inoo23GaAsNo.Ol 52nm Barrier 

Ino.38GaAsNo026 6nm Quantum well 

InO.023GaAsNoOl 52nm Barrier 

Ino.38GaAsNo026 6nm Quantum well 

InO.023GaAsNo.Ol 52nm Barrier 

Ino.38GaAsNo 026 6nm Quantum well 

Ino023GaAsNoOl 52nm Barrier 

i- GaAs 50nm Undoped waveguide 

n- Alo.6GaAs 2250nm n- cladding 

n- GaAs - Substrate 

Table 3.2: Structure of the J.551Jrn GalnNAslGaAs material used during the pr~ject 

at temperatures between 650°C and 850°e. Figure 3.7 shows a plot of the PL shift as a 

function of anneal temperature. The samples annealed with the PECVD Si02 cap 

showed negligible shifts up to annealing temperatures of 800°e. However, the 

samples capped with the sputtered Si02 exhibited blueshifts at 750°e. A differential 

shift of 93nm was measured at 800°e. This was the first report of selective 

intermixing on GaInNAs quantum wells emitting at 1.55~m. 
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3.5 Conclusion 

This chapter has given an overview of QWI, explaining the history of QWl, and 

detailing the techniques used to achieve intermixing. The sputtered Si02 intermixing 

technique that was developed at Glasgow University was detailed, as well as its 

possible applications. Since this project is primarily concerned with applying the 

sputtered Si02 intermixing technique to GalnNAs in order to monolithically integrate 

low loss passive sections with active laser sections, intermixing experiments were 

conducted to confirm the possibility of using the process on GainNAs material. 

Suitably large differential wavelengths shifts were obtained from 1.31lm and 1.551lm 

GaIn As material. 
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Chapter 4 

Single Mode Ridge Waveguide Lasers 

4.1 Introduction 

Single mode ridge waveguide lasers are highly desirable for applications that require 

efficient coupling of the laser beam to an optical fibre. However, obtaining single 

mode operation from an edge-emitting laser is far from trivial. This chapter outlines 

the main issues involved in achieving single mode laser operation by focussing on the 

design, fabrication and characterisation of single mode edge emitting lasers. Single 

mode operation in semiconductor lasers and single mode waveguiding regimes are 

discussed in section 4.2. The design and simulation of single mode ridge waveguide 

lasers are featured within section 4.3, after which a detailed account of the fabrication 

process used during this research is given in section 4.4. Section 4.5 discusses the 

results obtained from the single mode laser devices fabricated during the project. 

Section 4.6 concludes the chapter. 

4.2 Single mode laser operation 

As discussed in chapter I, single mode edge-emitting lasers are essential for 

applications that require efficient coupling of the laser beam to an optical fibre. 

Achieving single mode output from an edge-emitting laser requires careful 

consideration of the material and device design, in order to maintain single mode 

operation in both the vertical and lateral directions. Confinement of the optical mode 

in the vertical direction is achieved by the discontinuity in the refractive index 
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between the cladding layers and the active region in heterostructure lasers. Since 

epitaxial growth allows accurate control over layer refractive index (via composition) 

and thickness, the waveguide can be designed to support only the fundamental mode. 

Moreover, the typically central location of the QW's in the core waveguide ensures 

that the fundamental mode receives significantly greater modal gain than higher order 

modes, which also assists single mode operation. Modal confinement in the lateral 

direction can be achieved by three different guiding methods: gain guiding, index 

guiding, or combined gain and index guiding. 

4.2.1 Gain guiding lasers 

In gain-guided lasers, the current injection is limited to a narrow stripe along the 

cavity length providing a narrow region of optical gain in the lateral direction. 

Waveguiding of light occurs in this region of high gain. Away from this region, light 

will experience a high amount of loss and will not be guided. Due to their relatively 

simple fabrication process, gain-guided lasers were investigated in the early 

development of edge emitting lasers. However, it was thereafter realised that gain

guided lasers were not without their problems. Research conducted on gain-guided 

lasers revealed a strong dependence between the optical mode, gain, refractive index, 

and carrier density, which can lead to hole burning and filamentation effects at high 

current injection levels, which in tum can cause lateral mode instabilities and 

excitation of higher order waveguide modes (1,2). These problems prevent gain

guided lasers from being useful for achieving high power single mode operation. 
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4.2.2 Index guiding lasers 

Index-guided lasers use a change of refractive index in the lateral direction to guide 

the optical mode. The change in refractive index can be achieved by lateral changes in 

material or doping. An example of a device with an index guiding system is the buried 

heterostructure laser. To fabricate such a device, a ridge structure is etched into the 

material, etching all the way through the active region. Following the etch process, a 

new material of lower refractive index is grown around the ridge, thus forming a 

rectangular dielectric waveguide. By careful choice of the device dimensions and 

materials (i.e. refractive index), maximum preference to single-mode operation can be 

achieved. As lateral mode confinement in index-guided lasers does not vary with 

current injection, variations of gain in the device should not have detrimental effects 

on the guided mode, therefore circumventing the gain associated problems 

experienced by the guided mode in gain-guided lasers. However, by employing strong 

index guiding for device fabrication, a very narrow waveguide is required to ensure 

single-mode operation, which is difficult to fabricate, as well as difficult to inject 

current into. Moreover, an undesirable regrowth stage is required to realise index

guided devices, which adds further to the difficulty of the fabrication. 

4.2.3 Ridge Waveguide lasers 

Some index-guiding can be induced in gain-guided lasers by making the upper 

cladding layer non-uniform. The ridge waveguide laser (RWL) shown in figure 4.1 is 

an example of such a device. The guiding mechanisms involved in a R WL are 

generally quite complex, and can exhibit varying degrees of gain or index guiding, 

depending on the choice of the device parameters. Since RWL's operate in the 

waveguiding regime between that of gain-guiding devices and strong index-guided 
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Fig 4.1: Diagram of typical ridge waveguide laser. 

devices, the problems a sociated with both guiding systems can be alleviated to a 

certain extent, allowing laser devices to be easily fabricated that can achieve stable 

lateral mode operation at reasonable injection levels. Because of the ease of 

fabrication, RWL's are employed in this research. Furthermore, RWL's are suitable 

structures to be used in conjunction with quantum well intermixing, allowing the 

integration of active and passive waveguide, where both waveguides use the same 

guiding mechanism. This en ures minimum disruption to the mode profile in passing 

from the active to the pa ive waveguide sections and vice versa. 
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4.3 Design of Single mode ridge waveguide lasers 

As mentioned briefly in ection 4.2, the guiding mechanism of a RWL depends on the 

choice of the device parameters. Firstly, to achieve waveguiding in the lateral 

direction, a ridge is etched into the upper cladding layer of the material. The effective 

index beneath the etched region is lower than that beneath the ridge, thus creating the 

index step required to guide the optical mode in the lateral direction. ingle mode 

operation in the lateral direction depends on the ridge width and the thickness of 

remaining upper cladding. As the thickness of the remaining upper cladding layer 

becomes smaller, the lateral index step increases, thus requiring a narrower ridge 

width to ensure single mode operation is maintained. Tn the vertical direction, 

waveguiding is achieved by the index step between the active core region and the 

cladding layers. Figure 4.2 outlines the parameters involved in modelling a ridge 

waveguide. Because of the mathematical difficulty involved in solving the wave 

equation for such structures, a computer program was used to model the device. The 

modelling of the ridge waveguide was performed using a program called 

FIMMWAVE. 
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Figure 4.2: Diagram showing the ridge waveguide structure modelled using 
FlMMWAI 'E 
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The program requires information on the layer thickness and refractive index, as well 

as ridge width and upper cladding etch depth. From the information provided, the 

program can simulate the modal profile, and establish whether only the fundamental 

mode is supported by the waveguide. The waveguide structure and parameters 

displayed in figure 4.2 were modelled for this research. The value of refractive index 

for each layer in the material were calculated using programs based on papers by 

Adachi (3) and Marple (4). The QW's were not included in the model since the modal 

overlap with these layers is very small and would have little effect on the 

waveguiding characteristics. Different values for ridge width and thickness of 

remaining upper cladding were selected and simulated to achieve single mode 

operation. Figure 4.3 shows the results of several simulations. As it is important to 

have a strong index guiding mechanism, the lateral index step must be as large as 

possible. This can be achieved by decreasing the thickness of remaining upper 

cladding in the etched regions. However, decreasing the thickness of remaining upper 

cladding can result in the ridge waveguide structure supporting higher order modes, as 

shown in figure 4.3a. To combat such behaviour, the ridge width would need to be 

decreased to support only single mode operation. Though this solution may appear 

theoretically sound, on the practical side, decreasing the ridge width is undesirable 

due to tolerances imposed on the fabrication of such structures, making ridge 

structures of less than 2/lm width difficult to fabricate. For this reason, a ridge width 

of approximately 3J.1m was chosen, with the corresponding thickness of remaining 

upper cladding left (200nm) to ensure single mode operation under a suitably strong 

index waveguiding regime. The simulation of this structure is shown in figure 4.3c, 

with the simulated far-field profile for this structure shown in figure 4.4. Both of these 

results clearly show single-mode operation. 
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Figure 4.3: Diagram showing the results of various simulations pelformed using FlMMWAVE. 
a) Simulation result of a 311m ridge with JOOnm of upper cladding remaining. The deeper etch 

depth results in multi-mode operation. b) Simulation result of a 4fJm ridge with 200nm ofupper 
cladding remaining. The wider ridge width clearly allows mulli-mode operation. c) Simulation 
result of a 311m ridge with 200nm remaining upper cladding. This structure clearly shows single 
mode operation. . 
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Figure 4.4: Simulated lateral far-field profile of the optical mode from 
the waveguide shown infigure 4.3c. 

4.4 Fabrication 

This section outlines the fabrication steps required to realise single mode ridge 

waveguide lasers from GaJnNAs/GaAs material. The more complex extended cavity 

laser devices featured in Chapter 5 also use this basic fabrication process, with the 

addition ofQWI steps. 

To aid understanding of the fabrication process, Figure 4.5 shows the step-by-step 

process used. The first stage of the process involves cleaving a suitably sized sample 

from the given wafer. For the devices fabricated in this research, samples of size 

12mm x IOmm were typically u ed. The ample is then cleaned using acetone (5mins 

in ultra onic bath), methanol (5mins in ultrasonic bath), followed by a rinse in rever e 

osmo i (R.O.) water for 5mins. The sample is then blow-dried using a nitrogen 

airgun and inspected under a microscope to ensure that a suitable level of cleanliness 

has been achieved in order to continue the fabrication process. 
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J) Deposit 200nm PECVD Sial onto 
clean sample 

2) Definition of the Sial stripe pattern 

Waveguide Core~1iiiii.~--

using standard photolithography and I~ _ 
dry etch process 

3) Formation of the ridge by dry 
etching the GaAsiAIGaAs upper I~_ 

cladding 

4) Removal of the SiOl etch mask using 
an HF acid wet etch I~ _ 

5) Deposit 200nm PECVD Sial onto the 
ridge sample I~ _ 

6) Definition of the current window using a 
standard photolithography and dry etch I~ _ 
process 

7) Deposition of p- and n-type contacts 
following the thinning of the sample I~_.-

Fig 4.5: Diagram outlining the step p rocess used to fabricated ridge waveguide lasers 
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In order to etch ridges onto the sample, a suitable etch mask is necessary. Using 

photoresist as an etch mask is possible, however deterioration of this mask can occur 

during the reactive ion etching (RIE) stage used to etch GaAsl AIGaAs, and cause 

detrimental coarseness of the ridges. A Si02 etch mask has been proven to 

successfully endure the RIE process, and is therefore preferentially used as the etch 

mask in the fabrication of ridge waveguides. The Si02 etch mask is deposited over 

the entire sample using plasma enhanced chemical vapour deposition (PECVD), to a 

thickness of around 200nm. Photolithography is then used to define the ridge stripes. 

Shipley S 1818 photoresist is deposited onto the sample, which is spun at 4000rpm for 

30secs on a spinner to achieve a photoresist thickness of around 1.8J.lm. The sample is 

then baked for 30mins at 90°C. Exposure of the photoresist is performed using a Karl 

Suss MA6 mask aligner with a UV radiation source. The mask used in conjunction 

with the MA6 mask aligner to pattern the ridge stripes was produced within Glasgow 

University using electron beam lithography (EBL). After the sample is exposed, the 

pattern is developed using Shipley developer solution, leaving stripes of photoresist. 

The stripes are then transferred into the Si02 mask by CHF3 RIE using an Oxford 

instruments BP80 machine. Since the CHF3 RIE process etches Si02 at a considerably 

greater rate than it etches GaAs, a slight over-etch is employed to ensure the complete 

removal of Si02, without appreciably etching the GaAs layer beneath. Following the 

Si02 etch, the remaining resist is removed using acetone, leaving the Si02 ridge 

stripes on the sample surface. The remaining Si02 ridge stripes act as an etch mask for 

the subsequent GaAs/AIGaAs etch stage, which is achieved using a standard SiCI4 

RIE process performed by an Oxford Instruments System 100 machine. Since the 

thickness of remaining upper cladding has a large influence on the single mode 

operation of the ridge waveguide, laser interferometry is employed within the System 

77 



100 machine to ensure an etch accuracy of within 50nm is reached (5). Afterwards, 

the Si02 mask stripes are removed using HF acid etch. The next stage in the 

fabrication is to create an opening on top of the ridge through which current can flow. 

This is achieved by depositing a 200nm PECYD Si02 layer over the sample, which 

covers the entire ridge, followed by a photolithography step to define a window on 

top of the ridge. The photoresist pattern is then etched into the 200nm PECYD SiO~ 

layer using the CHF3 RIE process. The remaining photoresist is then removed using 

acetone. The remaining PECYD Si02 provides sufficient electrical isolation at the 

ridge sidewalls and other etched regions. With the current injection window opened, 

the p-type metal contact can be deposited. To make sure there are no unfavourable 

native oxides on the sample surface before the contact deposition, the sample is 

deoxidised by placing it in a solution of 4: I H20!HCI acid for 30s. Following 

deoxidation, the sample is loaded into an e-beam evaporator, within which it has the 

following metal layers sequentially evaporated: Ti (33nm)! Pd (33nm)! Au (240nm). 

This evaporation process provides poor coverage of the ridge sidewalls, which can 

seriously impede current injection into the device. Because of this, a further 

metallisation stage (NiCr (15nm)! Au (IOOnm» is performed in an e-beam evaporator 

at an angle of 45° from two opposite directions to ensure full coverage of both the 

sidewalls. After the p-type contact evaporation, the sample is thinned to make the 

sample easier to cleave into individual devices, as well as decrease the substrate 

resistance. The sample is mounted on a glass coverslip with photoresist p-side down, 

before being mounted onto a metal chuck using wax. The glass coverslip is used to 

prevent the sample from coming into contact with the wax during this process, as wax 

is difficult to remove. The sample is then ground down by using a glass plate and 

alumina grit, until a measured thickness of between 150llm and 200llm is reached. 
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Following this process, the sample can be removed from the coverslip using acetone 

and thoroughly cleaned. Before the n-type contact is deposited, the sample must once 

again be deoxidi ed using the 4: I H20IHCI acid solution. Resembling the p-contact 

process, the n-contact is deposited using an e-beam evaporator, which equentially 

deposits the following metals: Au(llnm)/Ge(llnm)/Au(llnm)/Ni(14nm) 

/Au(240run). Once the n-contact process has been completed, the sample i annealed 

at 360°C for 60 in a rapid thermal annealer, in order to form the ohmic contacts. 

Individual laser devices can then be cleaved from the sample, with special attention 

being paid to the cleaved facets, to ensure the creation of good quality mirrors. 

4.5 GaInNAs Ridge Waveguide Laser Results 

The canning electron microscope (SEM) image of a fabricated GainNAs ridge 

waveguide laser i hown in figure 4.6. These devices were fabricated simultaneously 

on the same laser chip a the extended cavity devices featured in Chapter 5. 
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ge 

Waveguide 

ubstrate 

Figure 4.6: EM image ola Gain As ridge waveguide laser 
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As intended, the ridge is approximately 31lm wide, with a remaining upper cladding 

thickness between lS0-200nm. These device dimensions are close to those used to 

simulate the modal properties of the device in section 4.3, and should therefore be 

sufficient for supporting single mode operation. 

A pulsed test setup featuring a box-car averaging system was used to measure the 

light-current (L-I) characteristics of the laser. An Avtech pulsed current source 

generating 400ns pulses at a 1 kHz repetition rate was used to supply current to the 

devices, which were mounted in a gold plated clip. Light was collected from one laser 

facet by a Germanium detector. Figure 4.7 shows the L-I characteristic of the 1000llm 

long GalnNAs ridge waveguide laser featured in figure 4.6. From this plot, a 

threshold current of 300mA and an external quantum efficiency of ~ J 4% are 

obtained. 
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Figure 4.7" Light current (L-I) characteristic o/a 3pmx lOOOpm GalnNAs ridge waveguide laser. 
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As explained in Chapter 2, section 2.7.1 , the lasing characteristics for this material are 

far poorer than similar GaJnNAs material grown previously by the same growers (6). 

However, since the project concerns relative comparison of intermixed and non-

intennixed laser devices, these results will be sufficient to prove the concept of device 

integration using GalnNAs material. 

The lasing spectrum of the device operating above threshold is shown in figure 4.8, 

indicating that the laser emission wavelength lies in the region of 1295-1300nm. 

Figure 4.9.a) shows the far-field beam profile of the laser. The far-fie ld lateral beam 

profile was also measured using the pulsed test setup. The laser clip was mounted on a 

computer controlled rotational stage, at the centre of rotation, and the photodiode 

detector was placed around IOcm away from the device facet with a narrow sl it 

immediately in front of it. 
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Figure 4.8: Lasing spectrum ola GalnNAs ridge waveguide laser 
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By rotating the la er device acros the fixed detector/slit combination, the beam 

profile could be determined. From figure 4.9.a) it can be clearly seen that the laser is 

operating in a ingle lateral mode, and is in good agreement with the far-field 

simulation conducted in section 4.3. A near-field measurement was also performed in 

order to confirm ingle mode operation in both the lateral and vertical directions. The 

near-field image was captured by focussing a 40x microscope lens onto the facet of 

the ridge waveguide laser during operation. The beam image was then collected by a 

Hamamat u camera, which sub equently sent the image to a computer using image 

capture software. Figure 4.9.b) shows the beam image captured, showing single mode 

operation in both the lateral and vertical directions. 
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Figure 4.9: a) Lateralfor-field beamprojile and b) near-field image ofa GalnNAs 

ridge waveguide Joser. 

It is worth mentioning that the threshold current density of the ridge waveguide la er 

(R WL's) was con id rabl larger than that of the I OOO~m oxide stripe laser (OSL' ). 

Thi finding prompted an in e tigation into the cau e of the degradation in the 

performance of the R WL' . The only major difference in the fabrication process 
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between the OSL's and the RWL s was the addition of the annealing process to the 

RWL fabrication, and therefore the annealing step was investigated fo remost. As 

shown in figure 4.10, the PL intensity of GalnNAs samples capped with PECVD Si02 

was measured at Intense. Interestingly, the PL intensity more than doubled in the 

GalnNAs samples annealed at 750°C for 60s. However, the PL intensity decreased by 

a factor of 4 in the GainNAs samples annealed at 850°C for 60s. Since the R WL's and 

the extended cavity lasers (ECL's) were fabricated simultaneously on the same chip 

(see chapter 5, ection 5.5), the material was annealed at 850°C for 60s in order to 

create intermixed sections for the ECL's, thus explaining the degradation in threshold 

current density between the RWL's and the OSL's. The degradation itself cou ld be 

attributed to the activation of non-radiative defects caused by the high temperature 
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anneal required in the intermixing process. Although this seems like a problem fo r 

incorporating the quantum well intermixing process at Glasgow University to the 

83 



GainNAs material. the superior intermixing process used by Intense enabled 

intermixing to occur in this material at much lower temperatures (chapter 3. section 

3.4.2) • thus alleviating the problem of device degradation with high anneal 

temperatures. By carefully choosing the annealing conditions for the Intense 

intermixing process, it may be possible to simultaneously create low-loss intermixed 

passive sections whilst improving the optical quality of the active sections in 

GaInNAs laser devices. 

4.6 Conclusion 

Single mode edge-emitting lasers are essential for applications that require efficient 

coupling of the laser beam to an optical fibre. Achieving single mode output from an 

edge-emitting laser requires careful consideration of the material and device design. 

Gain-guided devices are not suitable for single mode operation since they suffer from 

poor lateral mode stability. Index-guided devices have excellent single-mode 

characteristics, but require a very narrow waveguide, as well as an undesirable 

regrowth step. thus adding complexity to the fabrication. Ridge waveguide lasers 

(RWL's) are the preferred device structure for edge emitting single mode lasers since 

they operate in the waveguiding regime between that of gain-guided devices and 

strong index-guided devices, and therefore alleviate problems associated with both 

guiding systems. The design and fabrication of GalnNAs/GaAs RWL's has been 

summarised in this chapter. The light-current characteristics of the devices were 

measured, showing good laser operation. Near and far-field measurements confirmed 

single-mode operation in both the vertical and lateral directions. These results were 

shown to be in good agreement with the simulations performed. 
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Chapter 5 

Extended Cavity GaInNAs Ridge 
Waveguide Lasers 

5.1 Introduction 

Single mode laser operation under high drive current is limited mainly by facet 

degradation. By incorporating a passive extended cavity to the output facet of such 

devices, the factors that limit the single mode operation at high power can be 

suppressed. This chapter describes the incorporation of extended cavities to the 

GaInNAs ridge waveguide lasers described in chapter 4, using the sputtered Si02 

QWI technique mentioned in chapter 3. Fig 5. t shows a schematic diagram of the 

extended cavity laser device investigated for this research. Section 5.2 discusses the 

limiting factors of high power single mode laser operation, and an overview of the 

suppression of such limiting factors is detailed in section 5.3. Extended cavity lasers 

are introduced in section 5.4. The design and fabrication of the extended cavity lasers 

investigated is described in section 5.5. The results and discussion are explained in 

section 5.6, before the conclusion in section 5.7. 

86 



P-contact 

Upper Cladding 

Wave~ide region 

containingGaln As QW's 

200nm i02 

isolat ion layer 

Lower cladding 
N-contact 

I OO~m intermixed 
non-ab orbing mirror 
section 

GtAs ubstrate 

I OOO~m non
intennixed active 
ection 

IOOO/lm intermixed 
extended cavity passive 
section 

Figure 5.1: Schematic diagram of a 3 pm ridge waveguide laser with an intermixed 
extended cavity passive section and non-absorbing mirror section. 

5.2 High Power Single Mode Laser limitations 

In order to fully under tand the functionality of the extended cavity laser, thi section 

will addre in detail the main factors that cause detriment to high power single mode 

lasers. 

5.2.1 Catastrophic Optical Mirror Damage (COMD) 

Catastrophic optical mirror damage (COMD) occurs when heating at the la er facet 

becomes too high and cau es the facet to melt. The melting of the facet causes the 

laser feedback system to be di rupted, which in turn cause the device to 
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catastrophically fail. The mirror degradation mechanisms that will eventually lead to 

COMO were investigated and described by Fukuda et al (I), Tang et al (2), and 

Puchert et al (3). The formation of feedback mirrors by cleaving breaks the bonds 

between atoms in the crystal, typically leaving loose dangling bonds at the facet. Such 

loose bonds and atoms can act as non-radiative recombination centres that can absorb 

photons and create electron-hole pairs. The electron-hole pairs can then undergo non

radiative surface recombination, which results in localised heating at the facet. As the 

heat increases at the facet region of the laser device, the bandgap at this region 

decreases, enabling further absorption of photons in the facet region. This positive 

feedback system eventually causes an increasing thermal "runaway" effect, which 

terminates with COMO. 

Facet oxidation is also a source of non-radiative recombination centres, which further 

promote the mirror degradation mechanism. The loose bonds and atoms that are 

exposed following cleaving are subject to water vapour and other oxidising agents 

contained in the air, thus promoting facet oxidation. The facet oxides can absorb 

photons, which leads to localised heating at the facet region. The localised heating at 

the facet not only reduces the bandgap in this area, but also promotes further 

oxidation to occur at the facet. This causes more non-radiative recombination centres 

on the facet, which can in tum cause greater absorption of photons, and enhance 

heating at the facet. It is clear that this process is also a positive feedback mechanism 

that contributes to mirror degradation. The problems caused by facet oxidation are 

more significant for lasers containing AIGaAs. Tang et al (2) investigated mirror 

degradation in AIGaAs ridge waveguide lasers, and provided useful information about 
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Ligbt Absorption at facet 

Catastrophic Optical Mirror Damage 
(COM D) 

Fig 5.2: Diagram showing the positivejeedback loop effict offacet degradation 
mechanisms. The positivejeedback loops will lead to thermal runaway and ultimately 
COMD. 

how the atmosphere in which the laser is operating plays an important role in the 

mirror degradation process. It was found that lasers operating in air tend to have faster 

mirror degradation than the same lasers operating in a helium or nitrogen atmosphere. 

This behaviour was attributed to facet oxidation occurring when operated in air, hence 

promoting facet heating. Tu et al (4) increased the COMD level of similar AIGaAs 

lasers by cleaving the devices and depositing facet coatings under vacuum conditions. 

This process suppressed facet oxidation and showed that reducing facet oxidation can 

reduce the amount of mirror degradation in a device during lasing, and therefore can 

increase the COMO level for the laser. 
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Experimental results obtained by Tang et al (2), suggests that the mirror degradation 

regime occurs in two stages. Firstly, as the laser begins operating, a gradual linear 

increase in facet temperature is measured. This behaviour has been attributed to the 

gradual shrinkage of the bandgap at the facet region due to non-radiative surface 

recombination of carriers. The gradual linear increase in temperature at the facet 

continues until a critical temperature is reached, at which point the positive feedback 

cycle that results in thennal runaway is initiated. The non-linear facet temperature 

increase during this second stage eventually results in COMO. 

The facet degradation regime described also has a large impact on the device lifetime, 

and hence reliability within practical applications. The ageing and lifetime of 980nm 

strained InGaAs lasers were studied by Hashimoto et al (5) and Fukuda et al (1). Both 

research groups used a stress-strength model to explain the lifetime characteristics of 

the devices under study. In this model (shown in fig 5.3), the critical power level 

(CPL) of the la er is the measure of the lasers strength. The CPL is the minimum 

power level required for a device to undergo instantaneous COMD at the first moment 

of operation (t = Os). The output power level of the device is termed stress. For 

devices operating at power levels below the CPL, the device ageing process will be 

initiated, causing the CPL to gradually decrease. COMD will occur at the point where 

the CPL becomes lower than the output power level of the laser i.e. the stress in the 

device becomes greater than the strength. The rate of the decrea e in CPL with respect 

to ageing time of the device depends on the power level of the device, with higher 

power devices suffering from the earlier onset of COMD due to the high stress level 

and rapidly degrading trength. For lower output laser devices, the stress level is 
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lower, and the strength degrades less rapidly, therefore increasing the lifetime of the 

device. 
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Figure 5.3: A stress-strength modelfor COMD occurrence in an edge-emitting laser. The stress 
levels indicate the output power under ageing, and the strength plot relates to the endurance level 
of the device against COMD. 

5.3 COMD suppression techniques 

Many methods have been devised to suppress COMD in laser devices. Most of these 

facet degradation methods involve either the reduction of non-radiative surface states 

at the facet, or the reduction of light absorption at the facet. The three most common 

methods employed are described in this section. 
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5.3.1. Defect Reduction Using Facet Passivation and Dielectric 

coatings 

Dielectric coatings are applied to nearly all laser devices produced in industry. Since 

light reflected back from the mirror contributes to the degradation process, anti

reflection (AR) coatings are used to reduce the amount of back-reflected light, and 

hence reduce its contribution to the mirror degradation process. However, by reducing 

the reflectivity of the mirror, an undesirable increase in the threshold current IS 

attained, prompting the use of a high-reflection (HR) coating on the opposing facet. 

As discussed in section 5.2.1, cleaving devices in air can cause oxidation to occur at 

the facet, especially in AIGaAs containing lasers, causing surface defect states that 

can absorb light at the facet, causing localised heating. Although AR coatings can 

reduce mirror degradation by reducing back-reflected light, AR coatings usually 

contain oxygen (e.g. Si02 and Ab03), which can oxidise the facet. Because of this, a 

thin (~30A) passivation layer, typically Si or ZnSe, is deposited on the facet prior to 

ARlHR coating deposition. Although the thin passivation layer prevents the AR/HR 

coatings oxidising the facet, the initial surface states on the facet caused by oxidation 

following cleaving in air still exist, and can promote mirror degradation. This problem 

prompted IBM (Zurich), now part of Bookham Technology, to develop a process in 

which the cleaving and deposition of the thin passivation layer is performed under 

ultra-high vacuum (UHV). By cleaving devices under UHV, the possibility of surface 

oxidation occurring prior to facet passivation is reduced. 
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The cleaving and passivation under UHV process has shown to be a very capable 

technology for producing reliable high power laser devices. Tu et al (4) demonstrated 

the process on single mode AlGaAs/GaAs lasers operating at A= 860nm. The devices 

were cleaved under UHV conditions. The facets were then passivated with Si, and 

subsequently deposited with Si02 and Ab03 to form HR and AR coatings 

respectively. It is worthwhile to note that the whole process was performed in a multi

chamber UHV system. The devices treated under UHV conditions were compared 

with standard devices that had been cleaved in air and coated with the same AR/HR 

coatings. The standard devices failed from COMD at an output power of around 

220mW, while the devices processed under UHV did not suffer COMD for an output 

power of g70m W (which was the highest power achievable with the current supply 

used in the experiments (O-500mA range». This clearly shows the improvement 

achieved by using the UHV process to suppress facet oxidation, and prevent surface 

contamination, which both promote facet degradation. 

Although the cleaving and passivation under UHV process has been shown to be very 

capable technology for producing reliable high power laser devices, the process is 

quite complex and expensive, and thus reduces productivity. A promising alternative 

to the UHV process has recently been researched and perfected by Com lase, with 

patents pending (Silfvenius et al (6». In this process, native-nitride ion beam epitaxy 

(N2_IBE) is used to remove oxides and other contaminants from the facet surface, as 

·well as to generally smooth the facet surface. By using the correct parameters for the 

N2_IBE process (i.e. ion beam energy, ion beam density, exposure time and 

composition of the background gas mixture) the nitrogen ions can also bond with the 

exposed group III atoms at the facet surface, and eliminate dangling bonds by creating 
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chemically stable nitrides. If the facets of the treated devices are thereafter exposed to 

air or moisture, or coated with ARlHR coatings containing oxygen, there are no group 

III atoms or dangling bonds to combine with, thus facet oxidation cannot take place. 

Since the N2_IBE process does not require a capital-intensive UHV cleaving system, 

costs for eliminating facet oxidation are reduced. Furthermore, optical coatings can be 

produced in the same load-locked vacuum chamber as used for the N2_IBE process, 

thus reducing process complexity, device handling and production time. Single mode 

InGaAIAs lasers operating at ')...= 806nm tested under pulsed conditions displayed an 

increase in the COMO threshold by around 46% following the N2-IBE process. 

Lifetime tests performed on the lasers operating at a constant power density of 

15mWIIlm showed an average degradation rate of 0.1 %/IOOOh for the lasers treated 

by N2 -IBE, compared to an average 46%/1000h for standard devices. These results 

clearly show the benefits of employing the N2-IBE process, which may become a 

main rival to the UHV cleaving/passivation process, and NAM technologies. 

5.3.2. Non-Absorbing Mirrors (NAM's) 

From inspection of figure 5.2, it can be seen that light absorption and current 

concentration at the facet increases facet heating and mirror degradation. By 

employing non-absorbing mirrors (NAM's) at the facet regions, the mirror 

degradation caused by both light absorption and current concentration can be 

suppressed (7). NAM's are formed by widening the bandgap of the material at the 

facet region using QWI. The widened bandgap at the facet prevents incident photons 

from being absorbed and causing further heating, hence reducing mirror degradation. 
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The problem of current concentration at the facet is easily suppressed by simply not 

allowing current injection in the NAM region. This is commonly achieved by using a 

contact pattern and subsequent lift-off stage during fabrication to define active and 

non-active regions. The concept of NAM's is illustrated in figure 5.4. A simple 

bandgap diagram of a standard laser is shown in figure 5.4.a. Since the whole of the 

standard laser cavity is injected with current, there is a high carrier density in the facet 

region, thus causing a large amount of non-radiative recombination via surface states 

on the laser facet, which in tum causes a large amount of facet heating and 

degradation. Figure 5.4.b shows a simple bandgap diagram of a laser incorporating 

NAM's. Since the facet region of the laser with NAM's are not injected with current, 

non-radiative recombination via surface states on the laser facet is dramatically 

reduced, causing less facet heating and degradation. Futhermore, the increased 

bandgap in the NAM region makes the region transparent to light emitted from the 

lasers active region, thus reducing the light absorption which also contributes to 

heating at the laser facet. 

NAM's have previously been incorporated into single-mode 980nm InGaAs/GaAs 

laser material using the sputtered Si02 intermixing process by Walker et al (7). In this 

work, NAM's were shown to sufficiently suppress the onset of COMD when 

compared to standard lasers. 
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Figure 5.4: Simple diagram iI/us/rating the concept of non-absorbing mirrors (NA M 's). 
a) Simple band diagram of a standard laser device b) band diagram of a laser device with a 

NAM incorporated to the facet region. 

5.3.3 Large Optical Cavities (LOC's) 

COMD is al 0 determined by the optical power density at the facet. ince COMD is 

known to be generated by the loop reaction between light absorption and active layer 

heating at the facets where the optical power density and the density of defects tates 

at the facet are high, a higher optical power density wi ll cause a higher amount of 

locali sed heating, due to increased non-radiative recombination over a fixed area of 
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the facet (I). The COMD level can therefore be raised by increasing the laser beam 

spot size at the facet, hence decreasing optical power density (8). To maximise the 

laser beam spot size of a single mode laser device, the optical mode must be increased 

in both the vertical and lateral directions. The size of the laser beam spot in the 

vertical direction is determined by the refractive index step between the waveguide 

and the cladding layers. In the lateral direction, the laser spot size is determined by the 

effective refractive index step created by etching a ridge waveguide into the upper 

cladding of the material, where the ridge width and etch depth control the size of the 

beam. By careful choice of growth and fabrication parameters, the waveguide in the 

vertical and lateral directions can be increased in order to spread the laser beam spot 

over a larger area, thus decreasing the optical power density at the facet. However, 

care must be taken to make sure the waveguide only supports the fundamental mode 

in each direction. 

5.4 Extended Cavity lasers 

Extended cavity lasers work on the same principle as non-absorbing mirrors 

(NAM's), where the bandgap of the material is widened at the facet region using 

quantum well intermixing. However, extended cavities are generally longer (>500/lm) 

than NAM regions. Like NAM's, extended cavities also suppress COMD, but have 

the further advantage of being able to filter out the unwanted higher order optical 

modes that can occur at high drive currents. This is an attractive feature for use in 

high power lasers where LOC's have been employed to enhance the power 

performance (see section 5.3.3). By widening the optical cavity in the vertical and 
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lateral directions for a single mode laser, the optical cavity parameters become closer 

to those which can support higher order optical modes. Therefore, any increase in the 

refractive index in the core of the waveguide beneath the ridge structure, caused by a 

high drive current, could easily swing the optical cavity parameters from a single

mode regime to an undesirable multi-mode regime. However, since the extended 

cavity is not injected with current during laser operation, the optical cavity parameters 

remain unchanged in this section, therefore making it physically impossible for higher 

order modes produced in the active section to propagate the length of the extended 

cavity section. Since the higher order optical modes are not guided by the extended 

cavity, they will be "filtered" out as they move through the extended cavity section, 

and will not be fed back into the active cavity. This process assists stable single-mode 

operation. 

Broad oxide stripe InGaAIP/lnGaP lasers with monolithically intermixed passive 

waveguides on either side of the active laser section have previously been shown to 

lead to significant improvements in the near and far-field patterns (9, 10). The 

intermixing in the study was performed using the sputtered Si02 process. The 

improvement in the beam characteristics was supposedly due to suppression of 

filamentation by the diffraction of higher-order transverse modes within the slab 

waveguides. 
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5.5 Fabrication of extended cavity lasers 

By applying the sputtered SiOz intermixing process described in chapter 3 to the ridge 

waveguide laser technology outlined in chapter 4, extended cavity lasers can be 

realised. To define intermixed passive regions on the GalnNAs sample, standard 

photolithography was used. However, since it is not clear where the intermixed 

sections are on the sample after performing the intermixing step, alignment markers 

were required to ensure proper alignment of the ridges and contacts during subsequent 

photolithography steps. The alignment markers were etched into the sample before the 

intermixing process using SiCI4 RIE. The sample was then intermixed using the 

process described in chapter 3, section 3.3.2. Following the intermixing step, all the 

SiOz was removed from the sample surface. Ridge waveguides were then formed on 

the sample using the process outlined in chapter 4, section 4.5. Howe~r, before the 

p-contact layer was deposited, an additional photolithography step was used to form a 

contact pattern on the sample surface. The contact pattern enabled the "lift-off" of the 

p-contact in selected regions (i.e. the intermixed regions), and ensured that no current 

was injected into the facet regions ofthe devices. 

The layout of the processed sample is shown in fig 5.5.a. In order to compare 

extended cavity lasers with standard ridge waveguide lasers, both sets of devices were 

fabricated simultaneously on the same chip. Furthermore, intermixed ridge waveguide 

lasers, also known as bandgap shifted lasers, were fabricated on the same chip in 

order to establish how successful the intermixing step was. A photograph of a 

fabricated extended cavity laser is featured in figure 5.5.b. 
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Figure 5. 5. a) Schematic diagram of the device layout on the 12mm x JOmm GalnNAs laser chip. 

b) Photograph of a fabricated extended cavity GalnNAs laser. 
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5.6 Results and discussion 

A pulsed test setup featuring a box-car averaging system was used to measure the 

light-current (L-I) characteristics of the lasers. An Avtech pulsed current source 

generating 400ns pulses at a I kHz repetition rate was used to supply current to the 

devices, which were mounted in a gold clip. Light was collected from one laser facet 

by a Germanium detector. Figure 5.6 shows the light-current characteristics of a I mm 

long all-active laser (AAL) along with that of an extended cavity laser (EeL) with a 

1 nun long active section and a 1 mm long passive section. 

20 

15 

Tampere 1.311m GainNAs laser material 
Comparison of a 1I..a ctive laser (AAl) and 
Extended cavity laser (ECl) 

Extended cavity laser 

o ~--__ --__ ----~~~---r---.----~--'---~ 

0.0 0.2 0.4 0.6 0.8 

Current (A) 

Figure 5.6: The light-current characteristics of a J mm long all-active laser and an extended 
cavity laser wilh a / mm long aclwe section and a I mm long passive section 

There was a mall increase in the threshold current and a slight decrease in the slope 

efficiency of the E L compared to the AAL. From the change in the threshold 

current, it was pos ible to calculate the modal loss in the passive section using 

equation 5.1, 
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Equation 5.1 ..... . ]"('1 ( a L J -" -' =exp p p 

14A' nf". go La 

where up is the modal loss in the passive section, n is the number of quantum wells, 

r w is the modal overlap with the quantum wells , and go is the gain saturation 

parameter. Lp and La are the lengths of the passive and active cavity respectively. The 

threshold current of the AAL and EeL are represented by IAAL and IEeL respectively. 

The equation 5.1 assumes a zero reflection at the active/passive boundary, and that the 

logarithmic gain/current density relationship for quantum wells is effective (9, II). 

Using the FIMMW AVE program featured in chapter 4, section 4.4, the value for the 

modal overlap with the quantum well was calculated to be r w= 0.0163. The gain 

saturation parameter go= 24l4cm,I was calculated in chapter 2. Using these values the 

material parameter nr w~ was calculated to be 39.3cm'l. The estimated passive 

section modal loss was therefore calculated to be 5cm'l. Bearing in mind the value 

calculated for modal loss in the active devices (u= 18cm'l) in chapter 2, these results 

clearly indicate a significant reduction in the modal loss in the extended cavity region 

due to the sputtered Si02 intermixing process. Figure 5.7.a and 5.7.b show the lasing 

spectra of the AAL and EeL respectively. The lasing spectra were measured using a 

threshold current of approximately 1.3-1.6Ith. Evidently, there are no significant 

differences between the spectra of the AAL and the EeL. A comparison of the near-

field and far-field characteristics of a standard and extended cavity laser was also 

performed, confirming no significant differences. These results demonstrate the 

ability to incorporate the sputtered Si02 intermixing technology to GalnNAs/GaAs 

quantum well laser devices without significantly degrading the device performance. 
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5.6.1 Wavelength-tuned lasers 

Wavelength-tuned laser devices were also formed during the fabrication of the 

extended cavity lasers. These devices have potential applications in wavelength-

division multiplexing (WDM) systems as multi-wavelength light sources, and as 

photo detectors (9). By fabricating such devices alongside extended cavity laser , we 

obtain the means to study the effect the intermixing process has on the optical and 

electrical properties of processed material, as well as a usefu I way to measure the 

differential wavelength shift between active and passive sections. Figure 5.8 shows a 

comparison of the light-current characteristics between a standard all-active laser and 

a wavelength-tuned laser. A large increase in threshold current was observed for the 

wavelength-tuned laser compared with the standard device. This result would suggest 

that the modal loss within the wavelength-tuned laser has increased, most likely due 

to an increased concentration of point defects within the waveguide region following 

the interm ixing process. 
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The small decrease in the slope efficiency of the wavelength tuned la er can be 

attributed to a decrease in the internal quantum efficiency, caused by the change in the 

shape and barrier height of the quantum well following the intermixing step. A 

decrease in the internal quantum efficiency would also have the effect of increasing 

the threshold current of the device. 

Figure 5.9 shows a comparison of the lasing spectra between the standard and 

wavelength-tuned lasers. A 25nm blue-shift was observed for the wavelength-tuned 

laser. This result shows that the differential shift obtained during fabrication was not 

as successful as the differential shift previously obtained during intermixing 

experiments (see chapter 3, section 3.4.1), indicating that there may be inconsistencie 

with the intermixing process at Glasgow University, such as unwanted variation in the 
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Figure 5.9: Plot showing the comparison oJthe lasing spectraJrom standard 
and bandgap shifted GalnNAs ridge waveguide lasers 
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anneal temperature or sputtered Si02 film composition. However, even with this 

smaller degree of intermixing, extended cavity lasers were still realised, showing that 

a 25nm differential wavelength shift between active and passive sections is sufficient 

to fabricate such devices. With further improvements to the intermixing process, 

larger differential wavelength shifts will be obtainable, and will reduce the loss in the 

intermixed passive sections even further. The undesirable deterioration of the optical 

and electrical properties of the material after intermixing may also be minimised with 

future development. Even so, the differential wavelength shifts required to realise 

light sources for WDM systems are considerably smaller than 25nm, and hence may 

not incur the same level of deterioration. 

5.7 Conclusion 

This chapter successfully demonstrated monolithically integrated GainNAs devices 

using the sputtered Si02 intermixing technology. This intermixing technology is 

particularly attractive for monolithic integration due to its relative simplicity, low 

optical loss and low impurity concentration. An extended cavity GaInNAs ridge 

waveguide laser was fabricated and compared with a standard GaInNAs ridge 

waveguide laser. No significant differences were observed between the light-current 

and beam characteristics of the devices, indicating the successful incorporation of a 

low loss passive extended cavity section. Calculations confirmed a significant 

reduction for the modal loss in the intermixed extended cavity passive section. These 

results demonstrate the abi lity to incorporate an extended cavity section using the 

sputtered SiOz intermixing technology to GalnNAs/GaAs quantum well laser material 

without causing significant detrimental effects to the device performance. 

Wavelength-tuned GainNAs lasers were also fabricated and compared against 
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standard lasers. These devices have potential applications in wavelength-division 

multiplexing (WDM) systems as multi-wavelength light sources, and as photo 

detectors. The differential wavelength shift obtained between the emission spectra of 

the devices demonstrated the potential of wavelength tuning GalnNAs material using 

the sputtered Si02 intermixing process. 
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Chapter 6 

Conclusions and Future work 

This thesis has detailed the realisation of single-mode extended cavity GalnNAs 

lasers through the monolithic integration of passive sections using quantum well 

intermixing. In order to realise such devices, several independent technologies had to 

be investigated and integrated. Chapter 2 highlighted the advantageous features of the 

GaInNAs material system, such as improved temperature performance and greater 

control of growth when compared with other material systems at the communication 

wavelengths. GaInNAs material obtained from Tampere was characterised through 

the fabrication and testing of oxide stripe lasers. The results of the tests showed the 

material to be of sufficient quality to be able to prove the concept of the project. As 

well as requiring sufficiently good lasing characteristics from the GaInNAs material, 

it was required that the material also had controllable quantum well intermixing 

characteristics, in order to incorporate a low loss extended cavity passive section onto 

a GalnNAs laser device. Chapter 3 presented a brief history of quantum well 

intermixing, highlighting its ability to monolithically integrate optoelectronic devices 

on the same chip, and detailing the techniques used to achieve intermixing, with 

particular attention being paid to the sputtered Si02 intermixing process used in this 

project. Intermixing experiments were performed to confirm the possibility of using 

the sputtered Si02 intermixing process on GalnNAs laser material. Suitably large 

differential wavelength shifts were obtained from 1.3/lm and 1.55/lm GalnNAs 
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material, which added strength to the possibility of using the sputtered Si02 

intermixing process to create extended cavity devices from GalnNAs material. The 

design considerations and fabrication of single mode lasers were discussed in Chapter 

4. Computer simulations of the laser design were performed to establish appropriate 

device parameters for single mode operation. Single mode lasers were then fabricated 

from GaInNAs material and the light-current characteristics of the devices were 

measured, showing good laser operation. Near and far-field measurements confirmed 

single-mode operation in both the vertical and lateral directions. These results were 

shown to be in good agreement with the simulations performed. Chapter 5 discussed 

the limiting factors involved in the high power operation of edge emitting lasers, and 

highlighted the most successful techniques used to overcome such limitations. Non

absorbing mirrors (NAM's) and extended cavities were proposed as effective 

technologies for overcoming high power device limitations. By combining the single 

mode laser technology described in chapter 4 with the intermixing technology in 

chapter 3, single mode extended cavity GaInNAs lasers were realised. An extended 

cavity GainNAs ridge waveguide laser was fabricated and compared with a standard 

GaInNAs ridge waveguide laser. There were no significant differences observed 

between the light-current and beam characteristics of the devices, which indicated the 

successful incorporation of a low loss passive extended cavity section. Calculations 

confirmed a significant reduction for the modal loss in the intermixed extended cavity 

passive section. These results demonstrate the ability to incorporate an extended 

cavity section using the sputtered Si02 intermixing technology to GalnNAs/GaAs 

quantum well laser material without causing considerable harmful effects to the 

device performance. Wavelength-tuned GalnNAs lasers were also fabricated and 

compared against standard lasers. These devices could potentially be employed in 
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wavelength-division multiplexing (WOM) systems as multi-wavelength light sources. 

The differential wavelength shift obtained between the emission spectra of the devices 

displayed the potential of wavelength tuning GaInNAs material using the sputtered 

Si02 intennixing process. 

This research has created several openings for future work. Although the 

incorporation of extended cavities to laser facet regions has previously been shown to 

suppress catastrophic optical mirror damage (COMO) in single-mode laser devices, 

and to improve the beam quality of broad area lasers, it would be useful to prove both 

of these benefits in single-mode extended cavity GaInNAs lasers. By testing the 

extended cavity lasers using high drive currents, the high power capabilities of the 

extended cavity lasers would be established. Operating the lasers at high drive 

currents should activate COMO, causing the devices to fail. If the devices were 

fabricated in a bar. the extended cavities could then be easily cleaved off. leaving 

standard ridge waveguide lasers (RWL 's) with newly fonned mirrors. These devices 

could be tested under high drive currents to investigate the power level at which 

COMO is activated. and compared with the power level required to activate COMO in 

the extended cavity devices, thus detennining whether adding extended cavities to 

GalnNAs lasers helps suppress COMO. In a similar way, the proposed improvement 

in the beam quality by using extended cavities can be investigated. Extended cavity 

laser devices which function just inside the boundary between single mode and 

multimode operation can be designed and fabricated. By doing so, the devices may 

switch from single-mode operation to multi-mode at a moderately high drive current 

due to changes in the refractive index in the waveguide region. By studying the near 

and far-field images of the output beams produced at different power levels, then 
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cleaving off the extended cavities. a comparison of the beam characteristics can be 

performed between standard and extended cavity devices. 

Another future route for research could involve the addition of high quality LRlHR 

facet coatings to GainNAs lasers to further suppress COMD, as well as to improve 

device efficiency. Moreover. careful material design and fabrication of an extended 

cavity wh ich is tapered at the device facet could be utilised to increase the area of the 

optical mode at the facet. thus also increasing the output power level at which COMD 

activates. 

The demonstration of quantum well intermixing using GaInNAs material in this 

project opens up the possibility of fabricating more advanced monolithically 

integrated devices on the same laser chip. Furthermore, GaInNAs can be used to 

fabricate other important devices that require selective quantum well intermixing, 

such as buried heterostructure devices and multi-mode interference (MMI) coupler 

laser arrays. 

The GainNAs material has still a long way to go before it reaches the maturity of the 

InGaAsP and InGaAIAs material systems. There may still be significant 

improvements made to the growth of the material that would lead to improvement at a 

device level. Until then. it would be unfair to compare the performance of GaInNAs 

devices with those tabricated from different material systems, and leaves open the 

debate of whether GalnNAs will ever reach the level required to become the material 

system of choice for communication systems applications. At the same time, 

GainNAs material will have to compete against other promising material 
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technologies. such as quantum dot material. As discussed in chapter 2, VeSEL 

technology is where the GalnNAs material system will have a huge advantage over 

the InP based material systems. InP based VeSEL's cannot form highly reflective 

distributed Bragg reflector (DBR) mirrors without employing many repetitions of 

thick material layers. Moreover. the thermal issues limiting the InGaAsP/lnP active 

region. coupled with the low thennal and electrical conductivity of the DBR's, make 

it almost impossible to realize a long wavelength VeSEL that combines highly 

reflective mirrors with low thermal and electrical resistance. GalnNAs veSEL's can 

easily incorporate the well-established DBR technology used by GaAs-based 850nm 

veSEL's. 
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