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Abstract

The research work presented in this thesis is concerned with the development of a dynamic
power flow computer algorithm using Newton’s method. It addresses both the development
of a positive sequence dynamic power flow algorithm for the dynamic study of balanced power
systems and a fully-fledged three-phase dynamic power flow algorithm for the dynamic study
of power systems exhibiting a significant degree of either structural or operational unbalance.

As a prelude to the research work on dynamic power flows, a three-phase Newton-Raphson
power flow algorithm in rectangular co-ordinates with conventional HVDC power plant mod-
elling is presented in this thesis, emphasising the representation of converter control modes.
The solution approach takes advantage of the strong numerical convergence afforded by the
Newton-Raphson method to yield reliable numerical solutions for combined HVAC-HVDC
systems, where power plant and operational imbalances are explicitly taken into account.

The dynamic algorithm is particularly suited to carrying out long-term dynamic simula-
tions and voltage stability assessments. Dynamic model representations of the power plants
components and the load tap changing transformer are considered, and to widen the study
range of dynamic voltage phenomena using this method, extensions have been made to include
induction motor and polynomial load modelling features. Besides, reactive power compen-
sators that base their modus operandi on the switching of power electronic valves, such as the
HVDC-VSC and the STATCOM are taken into account. The dynamic power flow algorithm
has primarily been developed making use of the positive sequence and dq representations.
Extensions are made to developing a three-phase power flows dynamic algorithm.

Test cases for the various dynamic elements developed in this research are presented to
show the versatility of the models and simulation tool, including a trip cascading event leading
up to a wide-area voltage collapse. Comparisons with the output of a conventional transient
stability program carried out where appropriate.
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Chapter 1

Introduction

1.1 Overview

Electric power systems around the world are all of different sizes; each having its own

generation, mix transmission structure and load capacity to serve. Nevertheless, all of them

share similar construction and operating principles, with four main elements becoming, at

first sight, more visible, namely generating units, transmission lines, transformers and loads.

Control and protection equipment have a vital function to play and they also constitute essen-

tial elements of the electric power system. Arguably, from a dynamic viewpoint, generating

units and loads are the most important elements of the electric power system.

Electric power is generated mainly using synchronous machines, which are driven by

turbines of various kinds, such as steam, hydro, diesel, nuclear and internal combustion. The

generator voltages are in the range of 11 to 35 kV [Kundur, 1994]. The generating stations

may be far away from consumers centres and transmission lines make up the link between

distribution systems, where the loads are, and generating units. The transmission system

is said to be the backbone of any electric power system and operates at high voltage levels

(commonly, 230 kV-400 kV). Distribution voltage levels are typically in the range 4 kV - 34.5

kV. Industrial consumers are fed from primary feeders at these voltage levels; residential and
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commercial consumers are supplied from secondary distribution feeders where the voltage

levels are 400 volts for the three-phase fed customers and 230 for the single phase ones (UK

system). Figure 1.1 shows a one-line diagram with the basic elements of a power system.
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Figure 1.1: Basic elements of a power system.

The general perception is that transmission system used to be over-engineered but that

this is rapidly coming to an end, owing to financial and regulatory pressures which are thwart-

ing the network expansion plans of many utilities around the world. As a consequence, trans-

mission assets are being operated closer to their limits than ever before, a fact that weakens

the network and makes it prone to developing voltage collapse conditions. Essentially, the

limited supply of reactive power from synchronous generators and marked increases in system
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load are factors that contribute to increase the likelihood of voltage instabilities. If at a given

point in time and space, these adverse matters come together and the situation is not man-

aged appropriately, a local voltage instability may reach neighbouring equipment becoming

more widespread and leading to a voltage collapse. In extreme cases, the voltage collapse

may engulf the entire power system or a large geographical area encompassing neighbouring

systems; an instance know by the public at large as a ”blackout”. Owing to the high social

and economic costs that instances of voltage collapse carry, the power engineering community

has made the study of this phenomenon a high profile issue.

Based on recent experience, gained from carrying out very detailed post-mortum analyses

of a series of major operational disasters which took place in the Autumn of 2003, the

North American Electric Reliability Council (NERC) developed system and planning operator

standards for controlling and avoiding such undesirable situations. The key recommendations

of the NERC document are summarised as follows:

1. Generation and demand must balance continuously.

2. Reactive power supply and demand must balance to maintain scheduled voltages.

3. Monitor power flows transmission lines and other equipment to ensure that thermal

(heating) limits are not exceeded.

4. Keep the system in a stable condition.

5. Operate the system in such a way that it remains in a reliable condition even if a

contingency were to occur, such as the loss of a key generation or transmission facility.

6. Plan, design, and maintain the system in such a way that it operates reliably.

7. Prepare for emergencies.

Despite the techniques and methodologies available to keep blackouts and outages at
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bay, most practising engineers concur that the most practical way to prevent blackouts from

happening is to carry out comprehensive long-term voltage stability simulations.

Excessive imbalances in the phase voltages or currents of a three-phase power system have

always been a concern to power engineers. Moreover, a typical power system may contain

untransposed transmission lines and feeders, single and unbalanced three-phase static loads,

single and three-phase dynamic loads such as induction motors, co-generators, transformers,

capacitors banks and more advanced power electronics systems, such as FACTS devices. To

try to incorporate a suitable representation of the impact that excessive imbalances have in

the power system, a three-phase dynamic power flow algorithm which considers the complete

power system is developed in this research work.

The solution algorithm combines the differential equations that represent the network

dynamic with the algebraic equations that represent the static part, in such a way that

a simultaneous method becomes possible. The technique possesses the advantage of being

numerically stable. It is robust and capable of handling islanding and simultaneous faults. It

must be said that the conventional methods of power systems simulation (transient stability-

like algorithms) are known to incur problems when network islanding arises [Kundur, 1994,

Machowski et al., 1997]. Such key advantage of the dynamic simulator developed in this

research will be exploited to study blackouts and long-term dynamic assessments.

1.2 Objectives of the Project

The main objective of this PhD project is to conduct research on the dynamic modelling,

simulation and assessment long-term power system dynamics using the Newton-Raphson

method in rectangular co-ordinates.

A key aspect of paramount importance in this research is the development of new math-

ematical models and methods coded into software to carry out effective dynamic analyses of

power networks. The software is robust and flexible enough to solve power networks undergo-
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ing different circumstances, including steady-state operating conditions, electromechanical-

type transients and slow voltage oscillations.

On the main, this PhD thesis is developed within the broad context of voltage stability,

focusing on aspects of dynamic modelling of power plat components. These models are

suitably combined with those of conventional sources of reactive power such as synchronous

generators and those pertaining to a new bread of reactive power compensators that base

their modus operandi on the switching of power electronic valves, such as HVDC-VSC and

FACTS controllers. It describes fundamental concepts regarding power systems stability

analysis, time domain dynamics simulations of non-linear power systems in the combined

use of the positive sequence and dq representations. The software developed is aimed at the

study of long-term power systems dynamic when unfavourable conditions of the system are

present. The FACTS devices, including HVDC-VSC control, the load modelling and the

synchronous machines have been all selected and modelled to be amenable with the objective

of this research work.

It has been observed in practice that voltage collapse phenomena may evolve over time

scales that are several times the orders of magnitude of power systems phenomena studied

with well-established transient stability application methods, such as those looking at first

and second swing assessments. Hence, in order to ensure numerically stable solutions, even

when rather large integration time steps are used, which may become necessary in the kind

of studies that fall within the remit of this research; a simultaneous approach that uses

the implicit trapezoidal rule in conjunction with the Newton-Raphson method is applied

to carry out the time domain simulations. Again this contrast with the solution methods

used in conventional transient stability application programs where the time-dependent nodal

currents at the generator nodes are injected into a nodal impedance matrix.

The software developed in this research provides a flexible and robust test bed where the

impact of traditional and emerging power system controllers on long-term dynamic simula-

tions can be tested with ease.
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1.3 Contributions

The main contributions of the research work are summarised below:

• A complete methodology for a developing dynamic power flow algorithm using Newton’s

method in rectangular co-ordinates has been developed. A flexible digital computer

program has been written in MATLAB. This is a flexible simulation tool for the study

of dynamic reactive power assessments and voltage stability phenomena.

• A general framework of reference for the solution of unified dynamic power flow solutions

problems is presented.

• A dq model of the synchronous generator with saliency and flux decay has been imple-

mented within the dynamic power flow algorithm, to enable suitable representation of

the fast dynamic effects contributed by the synchronous generators.

• To widen the study range of dynamic voltage phenomena using the dynamic power flow

algorithm, induction motor modelling features have been developed. For completeness,

voltage and frequency dependant load models have also implemented.

• A discrete dynamic LTC transformer model suitable for the dynamic power flow algo-

rithm has also been developed, implemented and applied to assess its impact on the

voltage collapse phenomena.

• A Static Synchronous Compensator model which takes account of the dynamics of the

device is developed and suitably included into the dynamic power flow algorithm.

• The implementation of a High Voltage Direct Current link model based on voltage-

source converter is presented. In general, VSC-FACTS controllers are devices of great

flexibility and speed of response, which aid the power system response during both

normal and abnormal operation, as shown in this research.
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• A fully-fledged three-phase dynamic power flow algorithm using abc co-ordinates is

developed to study power networks with significant degree of unbalance.

• A comprehensive and robust three-phase power flow algorithm in rectangular co-ordinates

is developed.

• Conventional LCC-HVDC controllers with different control operating modes have been

introduced.

1.4 Outline of the thesis

This PhD thesis is organised in 8 chapters, including this introductory chapter, taking

the following structure.

Chapter 2 outlines the main concepts involved in power system stability, describing the

main kinds of stability and their importance in power systems planning and operation. A

global definition of the power system stability is given. In addition, the modelling and data

required to carry out voltage stability assessments are discussed. The all-important problem

of contingency analyses is brought into discussion. The justification for selecting a dynamic

modelling approach to study power system contingencies and related problems of voltage

stability is given. The integration method applied in this research to solve the differential

equations that characterise the electrical power systems is described.

Chapter 3 presents the theory of phase domain power flows using rectangular co-ordinates.

Starting from first principles, it derives the nodal power flows equations, the Jacobian matrix

entries and the linearised three-phase power flow equations. In order to expand the flexibility

representation of contemporary power systems, LCC-HVDC are modelled on a three-phase

basis. To make this representation more realistic, three different control strategies for LCC-

HVDC links are developed. Test cases of unbalanced multi-phase power networks are solved,

using different control modes.
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Chapter 4 focuses on the dynamic power flow algorithm using the Newton-Raphson

method in rectangular co-ordinates. The traditional power system elements and the con-

ventional synchronous machine representation with its classical controllers such as governor,

turbine, automatic voltage regulator and boiler are considered and suitably modelled within

the dynamic power flow algorithm. An advanced synchronous machine model which con-

siders the transient saliency and flux linkages in each axis of the synchronous machine is

implemented. A realistic tap changer transformer model for dynamic assessments taking due

account of the discrete nature of the transformer tap, is developed. The basic dynamic power

flow algorithm is discussed in a comprehensive manner in this chapter. A classical transient

stability study, validation results for the solution technique and some test cases are included.

Chapter 5 deals with power system load modelling. It stresses the importance of load

modelling in dynamic studies, and critically assesses the most popular static and dynamic

load models used in stability analyses. An induction motor load model and its inclusion into

the dynamic power flow algorithm, is put forward. Several case studies are presented using

different load representations. An assessment of the response of the static load models and

that of an induction motor model is presented.

Chapter 6 is dedicated to the modelling and simulation of FACTS devices based on

voltage source converters. The STATCOM and HVDC-VSC are single out for development

and their inclusion into the dynamic power flow algorithm. Several tests cases are solved,

where the control improvements in the power system response when the STATCOM and

HVDC controllers are used, is clearly shown.

Chapter 7 deals with the extension of the basic dynamic power flow algorithm into a full

three-phase dynamic power flow algorithm in ABC co-ordinates. The algorithm is suitably

applied to the dynamic assessments of unbalanced power systems. The dynamic load tap

changer and the static and dynamic load models are expressed in ABC co-ordinates and

implemented in the three-phase dynamic power flow algorithm.

Chapter 8 draws overall conclusions for this research work and suggests directions for
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future research work in this timely area of electric power systems.

1.5 Publications

During the process of this doctoral thesis and as part of it, the following publications

have been generated.

• F. Coffele, R. Garcia-Valle and E. Acha, ”The Inclusion of HVDC Control Modes in a

Three-Phase Newton-Raphson Power Flow Algorithm”. Paper presented at the IEEE

Power Tech Conference, Lausanne, Switzerland, July 2007.

• R. Garcia-Valle and E. Acha, ”The Incorporation of a Discrete, Dynamic LTC Trans-

former Model in a Dynamic Power Flow Algorithm”. Paper presented at the Power

and Energy Systems EuroPES Conference IASTED, Palma de Mallorca, Spain, August

2007.



Chapter 2

Dynamic Assessment

2.1 Introduction

The maintenance of stability between the rotating masses of all the synchronous generators

in the power network and system load is an essential requirement for the operation any

electrical power system. Within its limits, all the equipment in the network naturally tends

to operate in synchronism, and it is very important to understand where the limits lays and

how close to such limits the system can be pushed and still maintain normal operation.

Stability studies, such as small signal, transient rotor angle and voltage stability studies

are effective tools for the evaluation of power system performance under abnormal operating

conditions. Besides, the usefulness of these studies is in the design and implementation of

control strategies for the enhancement of the overall stability of the system.

To be able to carry out these studies, it becomes first necessary to use the adequate

mathematical models of synchronous machines, prime movers, voltage regulators and the

broad number of control systems involved in the dynamic operation of power systems. Thus,

the results derived from any stability simulation directly relies on the mathematical models

of each one of the devices taken into consideration.

This chapter deals with general aspects of power system stability. A background and lit-
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erature on the subject are presented to lay the ground for the description and classification of

power system stability phenomena, together with the modelling and data set required to carry

out voltage stability assessments are presented. The justification for the dynamic modelling,

simulation and analyses is presented towards the end of the chapter. The Chapter concludes

with a brief description of the trapezoidal method of integration. The integration method

applied to solve the differential equations that characterise the electrical power systems is

reported.

2.2 Background Review

Power systems around the world are being faced with great many challenges concerning

overall system security, reliability and stability issues because of the unprecedented increase

in electricity demand, limited transmission expansion, and the fact that new power plants

are not being built close to the population centers because of environmental, land availability

and economic constraints. Several major blackouts [US - Canada Power System Outage Task

Force, 2004,Knight, 2001], exemplify these issues rather well.

One of the most sever power failures in history was experienced in November 1965 in the

United Stated. This blackout lasted for about 19 hours, affecting millions of people.

The main technical reason behind the disturbance was the faulty setting of a relay and the

resulting tripping of one of five heavily loaded 230-kilovolts transmission lines [IEEE Power

Engineering Review, 1991].

After such a disaster the Federal Power Commission (FPC), which was the regulatory

body overseeing the American power system at the time, prepared a report for the president

of the USA, with a recommendations to create the Northeast Reliability Council (NERC)

and the New York Power Pool (NYPP). Both institutions have developed industry standards

for equipment testing and reserve generation capacity, as well as promoted the reliability of

bulk electric utility systems in North America.
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Notwithstanding all this effort, a new outage occurred in 1977 in New York city. The

new blackout was a consequence of a combination of natural phenomena, mal operation of

protective devices, inadequate presentation of data to system dispatchers and communication

difficulties [Corwin and Miles, 1998]. Such adverse combination of conditions led to a wide-

area voltage collapse in the Consolidated Edison system; the Consolidate Edison system is

one of the 8 members of the New york Power Pool (NYPP) and it supplies electricity to five

regions of New York city Manhattan, the Bronx, Brooklyn, Queen and Westchester Country.

Following on the steps of these two large blackouts, many others wide-area voltage col-

lapses have happened in the USA, fortunately the consequences were not as severe as the

previous two. Nevertheless, in the months of July and August of 1996, events turned for

the worst; the USA underwent another two large-scale blackouts. These system failures took

the industry by surprise since generation from the Pacific Northwest had been at its all time

peak.

For the case of the July’s blackout, the main reason was a flashover in a tree and near

a 345-kV line, the faulty operation of a ground unit of an analogue electronic relay, and a

voltage depression in the Southern Idaho system. All of this led to the new fatal blackout.

In August 1996, the generation capability and the power transfer from Canada to the

USA was at almost peak value but the weather was very warm. Over a period of time, the

power grid started to overload due to insufficient generation. This outage affected more that

4 million people in the USA and even in some parts of Mexico.

Within the last five years, a series of blackouts have struck many countries around the

world. A case in point is Italy, which is a country highly dependent on electricity supplies

from neighbouring countries. The blackout occurred due to branches of a tree falling on a

380-kV transmission line coming from neighbouring Switzerland, resulting the remaining lines

in corridor becoming overloaded. Furthermore, two transmission lines coming from France

came out of operation. Following these events, the whole of Italy suffered a power outage,

with the exception of the island of Sardinia [Commission de Régulation de L’énergie, 2004].
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Another recent, is the blackout that took place in London, where the system failure was

traced to a wrongly installed fuse at a key power station. [National Grid, 2003].

The latest most recent blackout took place, once more in the USA. This outage has

been attributed to the loss of generation in Cleveland power station which was, in turn,

due to the sequential loss of three overloaded 345-kV transmission lines in Ohio, South of

Cleveland. The unbalance between load and generation produced a cascading effect leading

to the blackout [US - Canada Power System Outage Task Force, 2004].

Other key aspects which are making the system more fragile, is the way in which the inter-

connected system is being operated, transferring power in large blocks from generation excess

areas to generation deficit points, thus leading to increased transmission congestion problems.

Power system operators are constantly dealing with the challenge of operating their systems

in a secure manner, while taking into account the uncertainty in demand and supply and the

availability of enough security margins. Thus, off-line system studies are performed to ensure

the overall system security ahead of time. In addition to the static application studies dealing

with the constrained optimal operation of the network, dynamic studies are also carried out.

These are mainly classified into voltage stability analysis and angle stability analysis, based

on short-, mid- and long-term stability studies. These dynamic studies are based on power

system models that are represented by differential-algebraic equations (DAEs); by necessity,

these mathematical models are based on approximate system representation and limited data,

since obtaining comprehensive and reliable data for a power system is a rather troublesome

task [Concordia and Ihara, 1982].

In spite of the many investigations into methods of assessing voltage stability such as,

Liapunov’s method, continuation power flows, extended equal-area criterion, bifurcation anal-

yses, a different way to approach this issue is the use of simultaneously solution techniques.

This method is numerically more stable than the traditionally solution algorithms, robust

and inherent capable of handling islanding and fault analyses [Gear, 1971b, Rafian et al.,

1987].
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This thesis studies various issues regarding off-line modelling of power system, i.e. long-

term stability analysis, which are associated with phenomena that may lead to significant

problems in power systems. The possibility of predicting the voltage collapse using these

system simultaneous solution technique combined with the Newton-Raphson method is ex-

plored, as the dynamic effect of the different system plant components, load modelling and

FACTS devices models on the unified frame-of-reference.

2.3 Literature Review

Over the years, various computational methods have been developed to carry out off-

line and on-line security assessments of the power system enabling prediction and corrective

actions of problematic dynamic system instances.

These tools have been developed to carry out more realistic dynamic reactive power system

margins and voltage collapse assessments. The existing computer programs use one of the

following approaches: Quasi-Static Simulation (QSS), Continuation Power Flows (CPF).

The QSS uses a suitable combination of detailed dynamic models and simplified steady state

models [Van Cutsem and Vournas, 1998]. The s-domain is used to access the problem of

voltage collapse from a dynamic perspective; carrying out sensitivity analyses to determine

the nature of the equilibrium point with data information obtained from a state estimator

[IEEE Power Engineering Society, 2002]. Continuation power flows takes the approach of

tracing the PV-curves to determine the critical equilibrium point [Qin et al., 2006].

In spite of the great numerical robustness, modelling capabilities and software flexibilities

of these application tools, they may not be able to take into account the full dynamics of

power system elements. Besides, these simulation approaches may not be able to incorporate

protection action, the long term dynamics response of the system after short-circuit events

and when islanding conditions. These factors are important issues to be considered when

carrying out voltage stability assessments.
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An alternative solution approach for the study of voltage phenomena based on full time

domain simulations is developed in this thesis. It is a unified framework where the power

flows representation of the network is combined with the dynamic models of the power system

to enable combined solutions at pre-defined discrete time steps using the Newton-Raphson

method. The result is a dynamic power flows algorithm where all dynamic components in

the power system are fully taken into account.

These off-line tools may be used by system operators to gain information on available

security margins and in taking proper corrective actions to overcome system problems.

2.4 Stability Evaluation

Power system stability is a term denoting a condition in which the various synchronous

machines of the system remain in synchronism with one another [Kimbark, 1948a]. The

IEEE/CIGRÉ joint Task Force on stability [IEEE/CIGRE Joint Task Force on Stability

Terms and Definitions, 2004] has defined the problem of power system stability as follows:

”Power system stability is the ability of an electric power system, for a given initial oper-

ating condition, to regain a state of operating equilibrium after being subjected to a physical

disturbance, with most system variables bounded so that practically the entire system remains

intact.”

Power system stability has always been recognized as an important issue for secure system

operation [IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, 2004], and

the many blackouts caused by system instability highlight the importance of the problem

[IEEE Power Engineering Review, 1991, Anderson et al., 2005]. As power systems have

evolved through continuing growth in voltage and power rating and interconnections have

sprawled, different forms of stability have emerged. Hence, a classification of the problem of

power system stability has become necessary. This is a key issue which needs to be clearly

understood to be able to properly design, operate and control an electrical power system.
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The current steady-state stability consensus is that power system stability can be classified

into steady-state stability, transient stability and dynamic stability.

2.4.1 Steady-state stability

During the normal operation of a power system, the total load is undergoing constant and

relatively small fluctuations, the generators adjusting to maintain the load at the specified

frequency. When the loading of a power system is greater than the normal working level, the

fluctuations become more significant. A limit is reached when the transfer of synchronism

power cannot increase and a further small increase in loading causes a loss in synchronism

between generators or groups of them. This point is known as the steady-state stability

limit. The power transfer between two machines varies, approximately, with terminal voltage

and the size of the angle between the voltages and inversely with the transfer impedance as

described in Eq. 2.1. This approximation is known as the power angle characteristic.

P ' V1V2

X
sinδ (2.1)

From Eq. 2.1, when the angle δ takes the value of zero there is no power transferred

between the associated elements. As soon as a power transferred conditions exists, the angle

is increased and after a certain angle, normally 90◦, an additional increment in angle will

produce a reduction in power transferred [Kundur, 1994]. Thus, there is a maximum steady-

state transfer capability between the involved elements. This condition is only valid when

there is no more than two elements, i.e. a synchronous generator and a static load. For

the case when more than two elements are considered, the power power transferred and

the angular deviation are a function of generation and load distribution. At this point, an

angular separation of 90 degrees between any two synchronous generators has no particular

significance [Stevenson Jr, 1982,Kundur, 1994].

The damping of a generator is also a very important factor in maintenance stability. When
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the damping is positive, transients due to load fluctuations die out; when it has a value equal

to zero, the machines could remain stable and when negative, the oscillations increase and

the angle between voltages eventually exceed the limit.

The addition of an automatic voltage regulator improves the stability of a synchronous

generator. By making excitation a function of the power output, the terminal voltage is

varies, which in turn varied the steady-state stability limit.

2.4.2 Transient stability

When a change in load occurs, the synchronous generator cannot respond immediately,

due to the inertia of its rotating parts. To identify if the system is stable after a disturbance

it is necessary to solve the generator’s swing equation. The system is unstable if the angle

of a synchronous generator or between any two of them tends to increase without limit. On

the other hand, if the angle reaches a maximum value and then decrease, the system may be

stable. There is a simple and direct method for assessing the stability of the system, but it

may only apply to systems of no more than generators. It is know as the equal-area stability

criterion [Kimbark, 1948a, Stevenson Jr, 1982] and does not require an explicit solution of

the generator’s swing equation. Some simplifying assumptions are:

• The mechanical power is constant

• The synchronous generator is represented by a voltage source of constant magnitude

behind a transient reactance.

The swing equation describes the synchronous generator rotor dynamics through a differ-

ential equation of the form:
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M
d2δ

dt2
= Pa (2.2)

Pa = Pm − Pe (2.3)

where

δ is the rotor angle.

M is the inertia constant.

Pa is the accelerating power.

Pm is the mechanical power.

Pe is the electrical power.

The key concept behind the equal-area criterion is illustrated in Fig. 2.1 where an unstable

and a stable condition are presented. In the unstable case, δ increases indefinitely with time

and the machine loses synchronism. In contrast, the stable case undergoes oscillations, which

eventually disappear because of damping. It is clear that in the stable case the gradient od

the δ-curve reaches a value of 0, i.e. dδ
dt = 0.

Stable

Unstable

0=
dt

dd

2
d

1
d

0
d

d

t

Figure 2.1: Stable and unstable system.

Therefore the stability is checked by monitoring the rotor speed deviation dδ
dt , with respect

to the synchronous speed, which must be zero at some point, this means that:
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∫ δ

δ0

Padδ = 0 (2.4)

This condition requires that, for stability, the area under the graph of accelerating power

Pa versus δ must be zero for some value of δ. Assuming the inertia of the synchronous machine

to be constant and a slight value of damping, the positive (or accelerating) area under the

graph must be identical to the negative (or decelerating) area [Nasar and Trutt, 1999].

A1 = A2 (2.5)

The method is illustrated with reference to Fig. 2.2. Point a, corresponding to δ0, the

initial steady-state operating point. At this position, the input power to the machine, Pi0, is

equal to the developed power Pe0. When a sudden increase of the input power Pi occurs due

to a large change in the network, the accelerating power, Pa, becomes positive and the rotor

moves towards point b. It is assumed that the machine is connected to a large power system

and there is also a constant field current which maintains the internal voltage constant. Thus,

the rotor accelerates and the power angle begins to increase, at point b, Pi = Pe and δ = δ0.

At this moment, Pa is negative and δ finally reaches a maximum value δ2 or point c and then

swings backwards b. Hence, the rotor establishes to the point b, which is the new steady-state

stable operating point.

For the criterion for stability stability given by Eq. 2.5 and with reference to Fig. 2.2 it

can be stablished that

∫ δi

δ0

(Pi − Pmax sin δ) dδ =
∫ δ2

δ1

(Pmax sin δ − Pi) dδ (2.6)

In a multi-machine system a definite criterion for stability is not so easily defined. Fre-

quent drifts of generators do occur and whilst each machine considered individually would

be appeared to be unstable, the system as a whole is relatively stable [Kundur, 1994,Pavella
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Figure 2.2: Power angle characteristics.

and Murthy, 1995,Machowski et al., 1997].

Transient stability studies are usually performed for a frame time of a few seconds follow-

ing the disturbance. In the case of two machine systems, if the system first-swing is stable,

then stability is usually assured. For multi-machine systems, it is necessary to prolong the

study to ensure that interactions between synchronous generator swinging do not induce in-

stabilities in other generators during the second or third swing. By the end of the the third

swing, the amplitude of the oscillations are usually diminishing and if the system is still stable

there is little chance of later instability.

The problem of stability during the transient period is usually most acute when faults

occur in the electrical network. The most common fault is that of a single-phase being

short-circuited to ground, but the most onerous is normally a three-phase short-circuit.

When a fault occurs the transfer impedance rises instantaneously to a new value and the

power-angle curve changes. The generators accelerate because of power unbalance between

the mechanical and the electrical powers. Normally faults are cleared quickly by opening the

circuit breakers before the clearing critical time.
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2.4.3 Dynamic stability

When a system is working close to the stability limit even or when operating in a dynami-

cally stable region, small perturbations such as those normally experienced in a power-system,

may cause instability. This situation has become more pronounced recently as large blocks

of power are transmitted over very long distances. The model of the system for dynamic

stability studies must be very accurate and the software used for the study must include

components not normally modelled in software used for transient stability studies. In studies

of this type the simulation time is very long, lasting up to tens of minutes of time phenomena

representation.

If for any reason the transfer impedance between the synchronous generators and an

induction motor load increases, then a voltage reduction occurs which causes the motor to

slow down. This will cause an increment of current and reactive power flowing into the motors

and a further voltage decrement will follow. It is possible in a situation like this that the

voltage may collapse in the vicinity of the load. This is a voltage instability phenomena.

Stable operation of a power system depends on the ability to continuously match the

electrical output of generating units to the electrical load of the system. Dynamic stability

of power systems is a non-linear phenomenon which arises from the fact that generators are

operated in a parallel structure and during steady-state they are operated in synchronism.

The evaluation of a power systems’ ability to cope with large disturbances and to survive

transitions to normal or acceptable operating conditions it is termed transient stability assess-

ment. A transient period occurs when this equilibrium state is disturbed by a sudden change

in input, load, structure, or in a sequence of such changes; the system is transiently stable if

after a transient period, the system returns to a steady condition, maintaining synchronism.

If it does not, it is unstable and the system may be divided into disconnected subsystems,

which in turn may experience further instability.

During the dynamic stability, there is a very common scenery called outages of voltage
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collapse. This outages can be divided into two major groups, planned and unplanned outages.

The first ones are mainly related to the maintenance of equipment or upgrade of the

power network, whereas the latter ones are described by unscheduled events such as wrong

relay co-ordination scheme, unfavourable weather conditions or poor reactive power supply.

2.5 Off-line Functional Requirements

2.5.1 Modelling and data conditions

Experimentation with power system components is expensive and time consuming, there-

fore, simulations are a fast and economic method to conduct studies in order to analyse the

system performance and this type of devices. Power system elements should be designed to

endure overvoltages and faults. Due to the great electrical and mechanical stress that these

devices support during transient conditions, the design of these components relies on the

dynamic characteristics of these elements. Modelling and simulation are issues of paramount

importance in the design and operation of any power system.

Correct modelling selection, should bare in mind the time-scale for the problem at hand.

Fig. 2.3 shows the main areas for the power systems’ dynamic assessment [Arrillaga and

Watson, 2002]. In principle at least, it is possible to develop a simulation model which consider

all the dynamic phenomena, from the fast inductive/capacitive effects of the network, to the

slow effects associated with plant dispatch, but this would be a very hard task and it is not

done in practice.

Traditionally, power system engineers have used two main classes of programs for analyses

of bulk power systems performance: 1) power flows and 2) transient stability.

Historically, power and reactive power flow problems have been analysed using static

power flow programs. This approach was satisfactory since these problems have been governed

by essentially static or time-independent factors. Power flow analyses allows simulation of a

snapshot of time.
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Figure 2.3: Time frame of various transient phenomena.

Static analyses involve only the solution of algebraic equations and are therefore, compu-

tationally much more efficient than dynamic analyses. Static analyses are ideal for the bulk

of studies in which voltage stability limits for many pre-contingency and post-contingency

cases must be determined.

Dynamic issues, such as first swing transient stability problems have normally been ad-
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dressed using transient stability programs. These programs ordinarily include dynamic mod-

els of the synchronous machines with excitation systems, turbines and governors, as well as

other dynamic models, such as loads and fast acting devices. These component models and

the accompanying solution algorithms are suitable for analyses of phenomena from tens of

milliseconds up to several seconds.

With the evolution of modern, heavily compensated power systems, voltage stability has

emerged as the limiting consideration in many systems. The phenomenon of voltage collapse

is dynamic, yet frequently evolves very slowly, from the perspective of a transient stability

program. It has been argued that slower acting devices such as generator over excitation

limiters (OEL) and the characteristics of the system loads will contribute to the evolution

of a voltage collapse [IEEE Power Engineering Society, 2002,Sekine and Ohtsuki, 1990,Hill,

1993, Anrborg et al., 1998]. Power flow analysis will take into account all these effects, by

enforcement of their steady-state response, which is based on algebraic considerations. Con-

versely, transient stability analysis will typically assume that these phenomena are slow, and

corresponding variables will remain constant. In actual practice, neither of these assump-

tions can be relied upon, thus leaving voltage collapse in a no-mans-land between these two

analytical domains.

The recent emergence of a new class of computer simulation software provides utility

engineers with powerful tools for analysis of long-term dynamic phenomena. The ability to

perform long-term dynamic simulations with detailed dynamic modelling permits more accu-

rate assessment of critical power system problems than what it is possible with conventional

power flows and transient stability programs. However, time-domain simulations are time

consuming in terms of CPU and are essentially for post-mortem analyses and the coordina-

tion of protection and control. Therefore, the most effective approach for studying voltage

instability is to make use of an analytical technique which consider the full dynamics of an

electrical power network.

Conventional analytical tools, including power flows and transients stability programs may
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not be particularly well suited to the analyses of all voltage stability problems. Specifically,

long term dynamic simulations require good models of the slow dynamics associated with

voltage collapse and also the modelling of important slow acting controls and protective

devices. This modelling technique will give utility engineers the ability to conduct studies

that reflect the behaviour of the systems in a more realistic manner. Moreover, the interaction

of customer loads and system equipment such as generator protection, load tap-changer

transformer control and shunt compensation plays a key role in the progress of a voltage

collapse.

The dynamic nature of the aggregate system load, that is, the change in characteristics

between the transient and the long-term period, has important consequences for analyses

of voltage stability. Modelling of frequency dependence of the loads may therefore be as

important as voltage dependence. So then, load behaviour is a main part of long-term

dynamic modelling.

There is a strong relationship between the load modelling and the modelling of other

system components, in terms of the overall system response. High fidelity simulations are

dependent on good representation of all these elements.

2.5.2 Contingency analyses

A contingency consists of one or more events happening simultaneously or at different

instants of time, with each event resulting in a change in the state of one or more power

system elements. A contingency may be initiated by a small disturbance, which may be a

fault, or a switching action.

It is impractical and unnecessary to analyse in detail the impact of every conceivable

contingency. Generally, only a limited number of contingencies might impose a immediate

threat to voltage stability and these might be different from the ones impacting on transient

stability. It is required therefore to define a reliable list of contingencies and provide the

capability to screen and select those most likely to cause problems, so that they will be
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addressed in detail.

The following types of switching operations should be considered as a contingency:

• Breaker opening/closing,

• Generator tripping,

• Load shedding.

For contingency analyses, the dynamic simulation should be able to analyse both fast

and slow dynamics, preferably with automatic time step adjustment. Besides, it should con-

tain generator and governor dynamics, tap changing time delays and prime mover dynamics

mainly.

2.6 Dynamic Modelling Philosophy

Before it is possible to study the methods of solving the electrical power-system stability

problem, it is necessary to adequately define the elements of the system in such a manner

that a time solution is both feasible and practical.

Engineering judgement must be used to establish the approximations, which can safely

be made in order that the model behaves in a similar manner to the actual system. Some of

the approximations have self-cancelling effects and can be justified, while others can be made

only where it leads to a pessimistic result.

The approximations are necessary harder to avoid the expense of an over-elaborate model

which would require an unduly large programme using excessive computer storage and exe-

cution time.

Another reason for the approximations is that data on the elements of the power-system

is limited and the models should reflect this limitation.

The classical model of a synchronous machine is that of a fixed voltage magnitude behind a

reactance. This model was adequate for investigations of multi-machine stability performance
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before the advent of digital computers. It led to pessimistic results often indicated that the

system was unstable when in practice it maintained stability. Models of machines close to

large disturbances were made more accurate accounting for changes in the flux linkages in

the field winding. This together with the inclusion of automatic voltage regulators (AVR)

actions, improved results by a considered margin. When digital computers became available

it was possible to further improve the results by including damper winding and speed governor

models. To compensate for the increased accuracy of the generator models, the representation

of loads was also improved, moving on from the constant impedance representation to include

constant power and constant current types. Moreover, large induction motors were beginning

to be modelled in a similar fashion to synchronous machines.

If only steady-state performance of the networks is on interest, it is standard to model the

networks by a set of non-linear equations, corresponding to the active and reactive powers

injected at the nodes of the network. The set of equations that describe the system for stability

studies may be more involved, and may be divided into two groups. Differential equations

are used to describe the rotational motion of synchronous generators and induction motors,

the slowly changing voltages representing the internal characteristics of the machines, and

their controllers.

The electrical network responds very rapidly to changes and a good assumption is that

the response is instantaneous. Algebraic equations therefore describe the network very well

for the range of phenomena which are of concern in this research. These equations are

linearised around a base operating point determined by the system load powers and the

mechanical/electrical power contributed by the generators in the system.

Variables associated with the differential equations must be solved using a suitable inte-

gration method and may be referred to as integrable variables. Similarly variables associated

with the algebraic equations may be referred to as algebraic or non-integrable variables.

Combing the two sets of equations, yields an algebraic-differential initial described as:
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ẏ = F (y, x) (2.7)

0 = G (x, y) (2.8)

where x and y are vectors of integrable and non-integrable algebraic variables. The

starting conditions for the stability simulations are determined by using only the algebraic

set Eq. 2.8. This is followed by a combined solution of Eq. 2.7 and Eq. 2.8 as a function of

time, to be able to carry out the dynamic assessments.

In consequence, the objective of the dynamic assessment is to solve x and y as a function

of time.

Equation 2.7, comprises the differential equations of all synchronous generators and their

controllers. Since each generator is coupled to the power plants only through a single con-

necting bus of the network, Eq. 2.7 is a collection of separate subsets. Eq. 2.8 consists of

network equations and the stator equations of all synchronous generators transformed into

the network reference frame. The two set of equations are co-dependent so then the solution

technique should be a simultaneous one for high solution reliability. The open literature

offers a rich list of solution techniques [Kundur, 1994, Machowski et al., 1997, Pavella and

Murthy, 1995,Arrillaga, 1998,Van Cutsem and Vournas, 1998,Claudio A. Cañizares, 1995].

In power system research there are two main approaches proposed to carry out the solution

of Eq. 2.7 and Eq. 2.8 [Stott, 1979]. In the first approach the solution of the algebraic and

differential equations is carried out in an independent fashion, and it is termed partitioned

method. The other solution approach consists in solving the algebraic and differential equa-

tions at the same time. The differential equations are transformed into algebraic equations

and combined with the network algebraic equations. This approach is termed simultaneous

approach method. The most common way of solving the sets of Eq. 2.7 and Eq. 2.8 to

carry out power system dynamic assessments, is to use the partitioned method. This remark
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applies to both academic and commercial software alike. there are two notable exceptions,

where the simultaneous method is applied very elegantly [Rafian et al., 1987, Van Cutsem

and Vournas, 1998].

For instance, Van Cutsem [Van Cutsem and Vournas, 1998], developed a technique for

voltage stability using a simultaneously method. This technique approaches the problem by

modelling only the slow dynamics, while the fast dynamics are neglected, converting them

into algebraic equations, enabling quasi-static simulation (QSS), as referred to by the author.

The solution technique adopted for voltage stability assessment in this work is a simulta-

neous method, which is based mainly in the simultaneous solution of the differential-algebraic

equations (DAEs) [Gear, 1971b,Rafian et al., 1987].

As a first approach, a dynamic power flow algorithm using the trapezoidal rule and the

Newton-Raphson technique has been developed. Moreover, this algorithm has been extended

to the phase co-ordinates system to cover situation of natural imbalances in the power network

and also cases of unbalanced loading. In either case, the balanced of the unbalanced solution

approach, the differential equations are discretised and transformed into algebraic equations

ensuing that the discretised equations are in such a way that can be solved in conjunction

with the algebraic equations.

The most important power plant components which should be modelled dynamically

for dynamic voltage assessments are: the synchronous generators and their controls (AVR,

turbine-governor, boiler), dynamic loads, load tap-changers and phase-shifters, and FACTS

controllers, bring out a reliable simultaneously technique for voltage stability assessment.

Figure 2.4 depicts the general algorithm developed during this research project. It con-

tains four main blocks. The first one makes provisions for all the relevant data related to

the power network, such as generation, loads, load-tap changers and FACTS equipment. The

second block encompasses a list of faults and perturbations which are pre-defined during the

simulation study.

In the third block, the solution of static power flows in rectangular co-ordinates is carried
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DATABASE

Network, Generation, Loads,

LTC, FACTS controllers

Static Power Flow Calculations

Fault Data Conditions

Dynamic Power Flow Calculations

Figure 2.4: Software environment to carry out static and dynamic power flows calculations.

out. This block is further described in the following chapter. The last block describes the

dynamic power flow algorithm. Fig. 2.5 presents a more descriptive diagram of it. At this

flow diagram, the blocks where the differential equations are discretised using the trapezoidal

rule are established.

Besides, the dynamic assessment block presented in Fig. 2.5, block represented by Fig.
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Figure 2.5: Flow diagram for dynamic power flows studies.
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2.6 presents the Newton-Raphson algorithm for the dynamic process.

Calculated nodal powers

Calculated power for

VSC-FACTS devices

Calculate Jacobian elements

Extend Jacobian to incorporate the dynamic

effects from the Synchronous Generators,

Induction Motors, LTC and

VSC FACTS controlles

Check

convergence

YES

Calculate Mismatch

vector

Solve for state variable

corrections

Out of function

Update state variable vector

Advance iteration

= + 1k k

Static load

modelling features

NO

Figure 2.6: Newton-Raphson flow diagram for dynamic power flows calculations.
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2.7 The Trapezoidal Method

Prior to the advent of digital computers only a few methods of solving ordinary differential

equations (ODEs) were practical. Hand calculation precluded the use of complex formulae

and also made large system studies impossible.

Since then, numerical analyses has become very important, not only to the mathemati-

cians but also to the scientists and engineers. Each problem requires special consideration

in order to get the best available solution method. This is specially true in the solution of

ODEs where the choice of method can make the difference between good and bad results.

The stability of a method for the solution of ODEs is of great importance and has received

a great deal of attention [Gear, 1971b, Gear, 1971a, Lapidus and Seinfeld, 1971, Williams,

1972]. The implicit trapezoidal integration method has been used as a method of solving

the multi-machine transient stability problem [Dommel and Sato, 1972], and has gained

recognition as a very powerful method, having great advantages over the more traditional

methods such as Gauss, Gauss-Seidel, Runge-Kutta and Euler.

The trapezoidal method is derived from the general multi-step equation,

k∑

i=0

αi yn−i+1 + h
k∑

i=0

βi ẏn−i+1 = 0 (2.9)

where αi and βi are constant, and with k equal to unity it becomes a single step method.

The solution at the end of n + 1 steps is given by:

yn+1 = yn +
hn+1

2
(ẏn+1 + ẏn) (2.10)

This is implicit and requires an iterative solution. The solution can be made directly if

the derivative can be replaced by the differential equations, forming an algebraic equation.

The accuracy of the method may be determined by expanding each term in Eq. 2.9 by a

Taylor’s series. The lowest non-zero coefficient is for y
(3)
n and is − 1

12h3. Thus the trapezoidal
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method has second order accuracy and the true solution may be given as:

y(xn+1) = yn +
h

2

(
y

(1)
n+1 + y(1)

n

)
+ 0(h3) + εn+1 (2.11)

where εn+1 represents the round-off error at the n + 1th step.

The characteristic root of the method when applied to the ordinary differential equations

is,

ẏ = λy (2.12)

with y(0) = y0 is

z1 = (1− 2bn+1) (2.13)

where

bn+1 =
hn+1(

hn+1 − 2
λ

) (2.14)

If <(λ) < 0 then 0 ≤ bn+1 ≤ 1 and |z1| ≤ 1. The trapezoidal method is therefore A-stable.

This means that the method has an infinite stability boundary (unconditionally stable). The

trapezoidal method is linear and thus in a multi-variable problem, like the power system

stability problem, the method is sigma-stable (multi-variable version of A-stability). The

two are equivalent when the method is linear but may not be equivalent otherwise. Back

Euler and the trapezoidal method are sigma-stable, single step methods.

The great advantage of this method is that the solution of all the variables is simultane-

ous. With the more traditional methods, using explicit integration methods, interface errors

occurred due to the out of step solution of the two groups of variables in the problem.
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2.8 Summary

This chapter has outlined the issues of power system dynamics, emphasising current agree-

ment on the classification of power system stability phenomena and its importance in power

plants modelling development. The main tools available for voltage stability assessments

and their main drawbacks compared to the models and algorithms developed in this research

work.

Key concepts regarding dynamic stability studies, focusing on voltage stability assessment,

are described within the context of the current research project. The main requirements for

off-line analyses of electric power networks are assessed. Besides, the great importance of

equipment modelled for voltage stability simulation is remark.

The data modelling which is an issue of noteworthiness for voltage stability studies is

addressed. The definition of contingency for voltage stability studies and the significance of

slow and fast dynamics are described.

The modelling philosophy adopted to tackle the voltage stability problem is described.

The difference between this approach and the conventional techniques to solve the problem

are stated. Moreover, a clear explanation about the integration method used to discretised

the differential equations is introduced.



Chapter 3

Newton-Raphson Power Flow

Algorithm in abc Rectangular

Co-ordinates

3.1 Introduction

Modern system interconnections enable the safe exchange of electric power between re-

gions or countries, taking advantage of load diversity in time and space leading to a more

economical and environmental way of supplying electricity to consumers. The key advantages

of interconnected systems are [Arrillaga et al., 2007]:

1. the pooling of generation capability with the opportunity to utilise diverse primary

energy resources;

2. the creation of larger markets, which enable economies of scale to be realised in the

operation of power plants and in accommodating demand growth;

3. significant flexibility for the introduction of competition into electricity supply.
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Such advantages have been conventionally alighted by the use of additional AC lines

between the various interconnected systems, in order to reinforce the interconnections. Nev-

ertheless, with the increasing complexity of power systems and consumers’ appetite for elec-

tricity, the reliability of power supply has deteriorated, bringing about, as a consequence,

a great number of blackouts in various parts of the world [Knight, 2001]. Consequently,

strengthening the transmission system is vital to the reliability of block power interchanges

among interconnected power systems.

It is argued by HVDC enthusiasts that the probability to decrease blackouts and bottle-

necks in power systems can be substantially alleviated with the use of HVDC interconnection.

The thrust of this chapter is the development and modelling of three-phase power AC-DC

networks making use of the Newton-Raphson method in rectangular co-ordinates.

3.2 Power Flows Concepts

Power flows solutions is the most frequently performed kind of study in power systems

engineering. The power flow formulation is at the heart of power system analyses and is

closely associated with voltage stability analyses [Taylor, 1994].

The classical Newton [Tinney and Hart, 1967] and fast decoupled load flow [Stott and

Alsac, 1974] have been extensively used in power flow analyses for the last decades. The

steady-state conditions relating to transmission systems are obtained by assuming balanced

operation in most cases. However, the proposals and developments of algorithms for three-

phase power flows calculation for unbalanced power system conditions are increasing [Ar-

rillaga and Watson, 2001,Wilsun Xu and Dommel, 1991, Smith and Arrillaga, 1998, Zhang,

1996].

To solve the power flow problem, the most general and reliable algorithm is the Newton-

Raphson method. The basis of this iterative method relies on successive linearization of the

non-linear set of equations that represent the electrical power network using only the first
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term of the Taylor’s series expansion.

The Newton-Raphson method, as applied to the three-phase power flow problem in rect-

angular co-ordinates, is dealt with detail in this chapter.

The Newton-Raphson method in rectangular co-ordinates, as opposed to the one in polar

co-ordinates, is less well-known but it is equally effective and it goes on well with the method

of dynamic power flows which is the central focus of this thesis.

3.2.1 The power flow problem formulation

The main object of the power flow solution is to obtain the nodal phase voltages at all

buses of the network corresponding to specified system level of generation and load patterns.

In power flow analyses using rectangular co-ordinates, the nodal voltages are expressed as

a function of their real and imaginary parts. The complex voltages, expressed as real and

imaginary parts are the state variables rather than the magnitude and phase angles used in

the polar co-ordinate analyses.

As voltage magnitudes and angles are involved, it follows that for each bus, six indepen-

dent constraints are required in order to solve for the six unknowns. These constraints are

different for different types of buses. The two main types are load and generators buses, with

the slack bus being treated as a special case of the generator bus.

Despite the fact that the number of equations and variables involved in the solution of

power flows in rectangular co-ordinates is greater than in polar co-ordinates, when spar-

sity techniques are applied, such an increase in size is of little significance. Each iteration

carried out in rectangular co-ordinates analyses is faster than in polar co-ordinates because

no trigonometric operations are involved [Stagg and El-Abiad, 1968,Arrillaga and Watson,

2001].
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3.2.2 Power flow equations

The power balance equation for a three-phase transmission line component, as shown in

Fig. 3.1, can be written as,

Sa,b,c = P a,b,c + jQa,b,c = V a,b,c(Ia,b,c)∗ (3.1)

where

Sa,b,c is the complex power injected into the three-phase bus.

P a,b,c is the active power injected into the three-phase bus.

Qa,b,c is the reactive power injected into the three-phase bus.

V a,b,c is the voltage at the three-phase bus.

Ia,b,c is the current at the three-phase bus.

with a, b, c referring to the three phases of the system.

In rectangular co-ordinates analyses, the bus voltages and the admittances are expressed

as,
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Figure 3.1: Three-phase transmission line diagram.
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(3.3)

Separating the real and imaginary parts of Eq. 3.1, in expanded form, leads to nodal

active and reactive power expressions for phase ρ,

Pk
ρ = eρ

k

∑

i=k,m

∑
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(
Gρj

kie
j
i −Bρj

ki f
j
i

)
+ fρ
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j
i + Bρj

ki e
j
i

)
(3.4)

Qk
ρ = fρ
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∑
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(
Gρj
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j
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ki f
j
i

)
− eρ

k
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(
Gρj
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j
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j
i

)
(3.5)

where ρ is used to denote phases a, b and c. Expressions for the active and reactive power

injected at node m are similar in form with subscript m replacing k and viceversa.

3.2.3 The Jacobian matrix formation

The linearised three-phase power flow expression using rectangular co-ordinates is con-

structed using the real and imaginary parts of the voltage to form the Jacobian matrix and

the mismatch voltages vector.
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Each element of the Jacobian matrix in rectangular co-ordinates may take one of the

following forms:

∂P ρ1
k,m

∂eρ2
k,m

∂P ρ1
k,m

∂fρ2
k,m

∂Qρ1
k,m

∂eρ2
k,m

∂Qρ1
k,m

∂fρ2
k,m

(3.7)

where ρ1 and ρ2 refer to the a, b and c phases. Each one of the elements of Eq. 3.7 is a 3x3

matrix; with the matrix being symmetric if it represents a geometrically balanced network,

otherwise it becomes an asymmetric matrix.

Consider the ith transmission element connected between buses k and m in Eq. 3.6, for

which self and mutual Jacobian terms are given below.

For k 6= m
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For k = m, with ρ1 = ρ2
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For ρ1 6= ρ2
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where the current Iρ1
i,j is:
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The Jacobian matrix and mismatch vector are evaluated at each iteration. The generic

power mismatch equations at bus k are:

∆P ρ
k,m =

(
P ρ

k,m

)sp
−

(
P ρ

k,m

)cal,it
(3.21)

∆Qρ
k,m =

(
Qρ

k,m

)sp
−

(
Qρ

k,m

)cal,it
(3.22)

where
(
P ρ

k,m

)sp
and

(
Qρ

k,m

)sp
are the specified active and reactive power injections deter-

mined by the net amount of power generation and load connected to the bus, and
(
P ρ

k,m

)cal,it

and
(
Qρ

k,m

)cal,it
are the calculated active and reactive injections at the bus using the corre-

sponding nodal voltages, (eρ + jfρ)it. Normally, the nodal voltage for phase a is initialised

at one and zero for real and imaginary part, respectively, while phases b and c are initialised

at −1
2 − j

√
3

2 and −1
2 + j

√
3

2 respectively. At each iteration the nodal voltages are updated
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according to the following expression.

(eρ + jfρ)it+1 =
[(

eρ
k

)it +
(
∆eρ

k

)it
]

+ j
[(

fρ
k

)it +
(
∆fρ

k

)it
]

(3.23)

The process is repeated until the complex power mismatches are within a specified toler-

ance, e.g. 1e− 12.

3.2.4 Voltage controlled bus

In the Newton-Raphson method using rectangular co-ordinates, a nodal voltage magni-

tude mismatch equation is needed for each PV-type bus [Stagg and El-Abiad, 1968]. The

equation for a voltage-controlled bus become,

P ρ1
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nbus∑

m=1

[
eρ1
k

(
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)]
(3.24)

(
V ρ1

k

)2
=

(
eρ1
k

)2
+

(
fρ1

k

)2
(3.25)

Accordingly, new types of Jacobian elements are needed for the Jacobian matrix in rect-

angular co-ordinates where:

∂
(
V ρ1

k,m

)2

∂eρ2
k,m

(3.26)

and

∂
(
V ρ1

k,m

)2

∂fρ2
k,m

(3.27)

For the ith element connected to a PV-type bus, say k, the Jacobian elements are:
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Changes in voltage magnitude for the RV-type buses at iteration it are calculated as

follows:

∆
[(

V ρ
k

)2
]i

t =
[(

V ρ
k(scheduled)

)]i
t−

[(
V ρ

k

)2
]i

t (3.32)

At iteration it the reactive power at each voltage controlled bus is reviewed using Eq. 3.5

to calculate reactive power and to check its limits. If the source of reactive power exceeds the

limits the bus changes to a load bus with fixed reactive power, equal to the violated limit.

The process is repeated until complex power mismatches are within a specified tolerance,

e.g. 1e− 12.

Fig. 3.2 depicts the flow diagram for three-phase power flows using the Newton-Raphson

method in rectangular co-ordinates.

3.3 Power System Loads

Load modelling has a significant influence on power systems operation, simulation and

analyses. Usually, the power system loads are modelled as constant three-phase power sink,

which can be connected either in an star or delta arrangement [Chen and Dillon, 1974],
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Figure 3.2: Flow diagram for three-phase power flows using the Newton-Raphson method in rectan-
gular co-ordinates.
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Sρ
l = P ρ

l + jQρ
l (3.33)

where Pl and Ql are the active and reactive load powers; a, b and c are phases of the load

system represented by the superscript ρ.

However, this kind of model is inadequate for some power system studies such as dynamic

and voltage collapse studies.

Temporary the unbalance between the power generation and the power demand reduce

systems security margins and increase the risks unsafe operation. In order to reduce such risks,

system studies have to be carried out with more realistic models for all systems components,

including load models.

A very substantial part of the system load actually consists of induction motors. Hence,

if data is available induction motor modelling must be considered and carry out.

For power system analyses, the load is refer as the active and reactive power delivered to

specific buses of the network at subtransmission and distribution level.

In spite of the fact, that it very simple to model certain types of loads, usually it is very

difficult to find the exact composition of the load. In common practice, the load is modelled

as (a) constant power, (b) constant current and (c) constant impedance, and sometimes it is

modelled as a combination of (a), (b) and (c).

Normally the load power varies with respect to the voltage and frequency. The effect of

voltage angle on reactive load power is zero whilst its effect on the active load power is of a

transient nature which persists for less than a second [IEEE Working Group on Power Plant

Response to Load Changes, 1973].

The mathematical load model that includes the effect of the voltage magnitude may be

approximated by

S = P0

( |V |
|V0|

)n

+ jQ0

( |V |
|V0|

)m

(3.34)
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where

P0 is the active power at initial voltage.

Q0 is the reactive power at initial voltage.

V0 is initial voltage.

n and m are the rational coefficients representing the degree of dependency of active and

reactive power with voltage magnitude.

In Chapter 5, a more detailed description for the power loads is presented.

3.4 Numerical Evaluation of a Multiphase Power Network

The three-phase power flow algorithm using the Newton-Raphson method in rectangular

co-ordinates is used to solve a simple three-phase network, the nine-bus system shown at Fig.

3.3 [Anderson and Fouad, 1997].

Bus 1

Bus 2 Bus 3

Bus 4

Bus 5 Bus 6

Bus 7

Bus 8

Bus 9

Gen. 2 Gen. 3

Gen. 1

TRANF1

TRANF2 TRANF3

Figure 3.3: One-line schematic representation of the 3 generators 9 buses power system.

The three-phase loads are represented by their static load model.
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The unbalanced complex three-phase powers in per unit, connected at buses 5, 6 and 8

are shown in Table 3.4.

Table 3.1: Unbalanced complex power loads.
Phase a Phase b Phase c

S5 1.25 + j0.50 1.10 + j0.25 1.40 + j0.70
S6 0.75 + j0.45 0.90 + j0.30 1.10 + j0.15
S8 1.00 + j0.35 0.90 + j0.50 1.15 + j0.15

In this study the generator Bus 1 is taken as the compensator Bus (or slack Bus), its

specified voltage magnitude is 1.04 pu; generators Buses 2 and 3 located at Buses 2 and 3,

respectively, are nominated as voltage controlled buses (PV Buses) and their nodal voltage

magnitudes are both maintained at 1.0253 pu. Fig. 3.4 depicts the bus voltage profile

for unbalanced power loads conditions. It is observed in Fig. 3.4, that the lowest voltage

magnitude is at phase c of Bus 5, being 0.996 pu, and the highest voltage magnitude is for

phase b of Bus 4 being 1.0481 pu. It is clearly observed the unbalanced voltage response of

the system due to the unbalanced loading condition.
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Figure 3.4: Bus voltage magnitude for unbalanced loading conditions.
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In this study, by virtue of the strong convergence characteristics of the Newton-Raphson

method, the solutions were achieved in 6 iterations to a power mismatch tolerance of 1e−12.

3.5 HVDC Transmission Systems

Over many years, interest in HVDC technology for bulk power transmission, and other

more specialised applications, has remained strong. Further to the traditional HVDC tech-

nology, termed line commutated current (LCC), based on the use of conventional thyristors;

two other lines of development in HVDC technology have appeared, capacitor commutated

converters (CCC), which is an upgrading of the traditional technology, and voltage source

converters (VSC) with insulated gate bipolar transistor (IGBT) and pulse width modulation

(PWM) control. In each of these applications, manufacturers have taken maximum benefits

from the accelerated pace of power electronics technology. It is believed that in a few years

time, HVDC-VSC-based systems, will take over a large portion of the traditional HVDC mar-

ket. However, at present, bulk power DC transmission remains the realm of thyristor-based

HVDC technology [Carlsson, 2002].

The HVDC-LCC converter technology of today dates back to the mid 1970s, when thyris-

tor valves were taking over the mercury arc valves; but dramatics developments have taken

place in the reliability and in the performance of HVDC equipment and systems. An HVDC

link can be configured in many ways. In order of increasing complexity, the simplest is the

back-to-back interconnection in which the two converters are located in the same site and

there is no transmission line. The two units are identical and each can be used on the rectifi-

cation or inversion modes, as ordered by the system control. In the monopolar link, the two

converter stations are joined by a single conductor line, and earth or the sea is used as the

returning conductor, requiring two electrodes capable of carrying the full current. Next, the

bipolar link which consists of two monopolar systems combined, one at positive and the other

at negative polarity with respect to ground (middle). Each monopolar side can operate on its
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own with ground return, but if the two poles have equal currents, they cancel out each other’s

ground current to practically zero. In such cases, the ground path is used for limited periods

in emergency, when one pole is temporarily out of service. Other more complex configurations

are possible such as multiterminal links and series connections. The central components of

any HVDC-LCC converter are the thyristor valves, used to perform the conversion from AC

to DC and vice versa. The thyristor valves are made of highly pure monocrystalline silicon.

The high performance thyristors installed in HVDC plants today are characterized by silicon

wafer diameters of up to 125 mm, blocking voltages up to 8kV and current carrying capacities

of up to 4kA DC [Siemens AG Power Transmission and Distribution High Voltage Division,

2007].

The converter stations are connected to the AC busbars by means of converter trans-

former, which scale-down the voltage of the grid to the required entry voltage of the converter.

The converter transformer is equipped with an on-load tap changer.

A large inductance (smoothing reactor) is installed on the DC side current to prevent

resonance in the DC circuit, to reduce the ripple in the direct current and to limit telephone

interference. In addition, a DC filter is needed to reduce the level of harmonic currents in

the DC overhead line.

On the AC side, harmonics current are prevented from entering the AC network by using

AC filters, i.e. resonant circuits comprising capacitors, reactors and resistors. The reac-

tive power consumption of an HVDC converter is a function of active power, transformer

reactances and control angle. It increases with increasing active power. Full reactive power

compensation is a standard requirement in a converter station; with part of the reactive power

produced by filters and the rest by shunt capacitor banks or synchronous condensers when dy-

namic compensating is deemed necessary [Siemens AG Power Transmission and Distribution

High Voltage Division, 2007].
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3.5.1 Converter steady state modelling

The monopolar HVDC transmission system scheme, shown in Fig. 3.5, is used to explain

the model developed and its inclusion in a three-phase power flow using the full Newton-

Raphson method. The approach can easily be expanded to include some of the most common

HVDC configurations, such as bipolar HVDC systems.
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Figure 3.5: Monopolar HVDC system.

In the monopolar HVDC link, two converter stations are joined together by a line con-

ductor, and the earth (sea) is used as the return path, requiring two electrodes capable of

carrying the full current. In addition to the six pulse bridge, each converter station comprises

a three-phase tap changing transformer (LTC), as illustrated in Fig. 3.6, where Ak is the

LTC’s tap ratio.
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Figure 3.6: HVDC-LCC monopolar converter station.

Practical systems rarely have perfectly balanced loads, currents, voltages or impedances

in all three phases. In the unbalanced case, to analyse the HVDC-LCC converters, the

unbalanced three-phase voltages of the terminal buses are considered, Fig. 3.7.

To control the firing or extinction angles in a real system, where the voltages are not



3.5. HVDC Transmission Systems 53

Re

Im

V
ac

V
ab

V
bc

q
ca

q
ab
= 0q

bc

Figure 3.7: Asymmetric three-phase voltages.

symmetrical, there are two basically different control methods:

• Individual phase control,

• Equidistant firing control.

The first approach is used in the early HVDC-LCC converters. The firing instants are

determined individually for each valve, so a constant delay (or extinction) angle is maintained

for all the valves in steady state with respect to the voltage crossing.

Operating difficulties encountered in this method indicated that the distorted converter

current cause AC-voltage distortion which can influence the firing pulse spacing and often

reinforce the original distortion [Harker and Arrillaga, 1979,Arrillaga and Callaghan, 1991].

In theory, this situation can be improved by placing control filters between the AC system

and the control system, so as to attenuate the harmonics. However, the use of control

filters has disadvantages too, like the filter’s inherent phase error, which varies with system

frequency, and its inability to attenuate negative sequence fundamental voltages, the effect

of which is precisely to cause irregular firing-pulse spacing. Moreover, with filters included,

the control system will ignore the presence of harmonics on the AC voltages, whereas the
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valves will respond to the actual voltages reaching them, including harmonics [Rashid and

Maswood, 1988,Harker and Arrillaga, 1979,Arrillaga and Callaghan, 1991,Ainsworth, 1988].

The difficulties encountered with the individual phase control system encouraged the

development of an alternative control philosophy which could get away from the voltage

waveform dependence, the equidistant firing control system.

The basis of this control system for the rectifier is to find the voltage crossing for the

first phase and to define when it produces a short pulse to turn on the valve, adding the

firing control α. Then, the complete set of six pulses normally occurs at successive intervals

of 60◦, as shown in Fig. 3.8. Similarly the pulses for inverter operation of the converter are

obtained [Ainsworth, 1988,Arrillaga, 1998].

Figure 3.8: Unbalanced converter voltage waveform.

3.5.2 Three-Phase Power Equations

To derive the power flow Newton-Rapshon model, the three-phase power consumed by

the converters is written as a function of AC voltages and DC variables.
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P ρ
k = f

(
V a,b,c

k , θa,b,c
k , X

)
(3.35)

P ρ
m = f

(
V a,b,c

m , θa,b,c
m , X

)
(3.36)

where Pk and Pm are active powers at buses k and m, respectively; Vk and θk and Vm and

θm are the voltage magnitudes and phase angles, respectively, at the sending and receiving

buses k and m; ρ denotes the a, b, and c phases of the system. X represents, in generic form

at this stage, the DC variables.

The reactive powers are,

Qρ
k =

√
(Sρ

k)2 − (P ρ
k )2 =

√(
k1AkV

ρ
k Idc

)2

3
− (P ρ

k )2 (3.37)

Qρ
m =

√
(Sρ

m)2 − (P ρ
m)2 =

√
(k1AmV ρ

mIdc)
2

3
− (P ρ

m)2 (3.38)

where Sk, Sm and Qk, Qm are the complex and reactive powers at buses k and m respectively;

k1 is a constant associated with the commutation overlap, Ak and Am are the tap changers

positions at buses k and m, respectively; and Idc is the current in the dc-link. The full

derivation is given in Appendix A.

3.5.3 Linearised power equations

A three-phase power network with n-buses is described by 6×(n−1) non linear equations.

The inclusion of one HVDC link in the network model augments the number of equations by

six. The solution of the combined system of non-linear equations is carried out by iteration

using the full Newton-Raphson method.

The power through the dc-link can be controlled by varying the DC-voltages as indicated
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by the following two basic relations:

PdR = VdRIdc (3.39)

PdI = VdIIdc (3.40)

where PdR and PdI are the DC powers at the inverter and rectifier ends, respectively; and

VdR and VdI are the DC voltages, at the rectifier and inverter, respectively.

The DC-voltages can be controlled either with the transformers tap ratios or with the

converters control angles. At the rectifier, the control angle is the firing angle α; and at the

inverter, the control angle is the extinction angle, γ. An increase in the control angle gives

a decrease in DC-voltage, an increase in reactive power consumption (since the current will

lag the voltage) and an increase in harmonics generation. The latter is clearly undesirable

and there is thus some benefit in keeping the control angles at low values [Arrillaga, 1998].

There are several modes of operation in converter control. The first one, when the firing

angle α, the extinction angle γ, VdI and PdI are specified, is called control mode A. The

converter transformer taps are varied in order to meet these specifications. In control mode

B, the extinction angle γ, is kept at its lower limit at the inverter and the transformer taps

and the power PdI are specified. The power is controlled by varying the firing angle α at the

rectifier. The firing angle rather than the tap transformer is preferred for control, since the

tap changer control is too slow compared to the firing angle. In control mode C, α is fixed

to its minimum value and γ is regulated to maintain constant power.

If the current Idc is kept constant instead of the power PdI , three other control modes are

defined. In this paper only the mode A, B and C with constant power are addressed.

The Jacobian used in conventional power flows is suitably extended to take account of

the new elements contributed by the HVDC link. The set of linearised power flow equations

for the complete system is,
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where

∆P = [∆P ρ
1 , · · · ,∆P ρ

n ]t

∆Q = [∆Qρ
1, · · · ,∆Qρ

n]t

∆θ = [∆θρ
1, · · · , ∆θρ

n]t

∆V
V =

[
∆V ρ

1

V ρ
1

, · · · , ∆V ρ
n

V ρ
n

]t

∆P and ∆Q are the normal power mismatch equations, and ∆θ and ∆V
V are voltage

increments of phase angle and magnitude, respectively.

There are two additional state variables X1 and X2, (i.e. X1,2), and two power mismatch

equations introduced by the HVDC link,

∆PdR = P sch
dR − P cal

dR (3.42)

∆PdI = P sch
dI − P cal

dI (3.43)

P sch and P cal are the scheduled and calculated powers for the HVDC link.

The power mismatches for buses k and m, where the HVDC link is connected to become:
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∆Pk = PGk − PLk − PNk (θ, V )− PdR (Vk, Vm, X1,2) (3.44)

∆Pm = PGm − PLm − PNm (θ, V )− PdI (Vk, Vm, X1,2) (3.45)

∆Qk = QGk −QLk −QNk (θ, V )−QdR (Vk, Vm, X1,2) (3.46)

∆Qm = QGm −QLm −QNm (θ, V )−QdI (Vk, Vm, X1,2) (3.47)

where PGk, QGk and PGm and QGm represent the active and reactive powers injected by the

generator at buses k and m, respectively; PLk, QLk and PLm and QLm represent the active

and reactive powers drawn by the load at buses k and m, respectively;

The J11 matrix corresponding to the AC network at buses k and m
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(3.48)

is augmented with the partial derivatives of the active and reactive powers contributions

by the HVDC link.

Matrix J12 includes the partial derivatives of the three-phase powers P ρ
k,m and Qρ

m,n with

respect to the HVDC link state variables and J21 represents the partial derivatives of PdR and

PdI with respect to the three-phase voltage angles and magnitudes θρ
k,m and V ρ

k,m. Moreover,

J22 represents the self partial derivatives of the HVDC link.

3.5.4 Control mode A

In control mode A, the variables α, γ, VdI and PdI are specified, making it possible to

calculate the current Idc, the voltage VdI and the power PdR:



3.5. HVDC Transmission Systems 59

Idc =
PdI

VdI
(3.49)

VdR = VdI + RDCIdc (3.50)

PdR = VdRIdc (3.51)

The new state variables for this control mode are the tap changers, Ak and Am, with the

Jacobian elements J12, J21 and J22 having the following structure:
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
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It should be noted that a single tap changer is used to regulate voltage magnitude at all

three phases.

3.5.5 Control mode B

In control mode B, the variables ak, am, γ and PdI are specified and the new state variables

are the current Idc and the firing angle α. For this control mode, J21 has the same structure

as in control mode A. The other two terms of the Jacobian are:
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3.5.6 Control mode C

In control mode C, the variables ak, am, α and PdI are specified and the new state

variables are the current Idc and the extinction angle γ. Matrix J21 has the same structure

as in the previous control modes, whereas matrices J12 and J22 take the following structure,

J12 =
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It is important to remark that this is a three-phase formulation, and that all elements in

the above equations are vectors of order 3×1, except for J11 which are vectors of order 3×3

and J22 which are single terms.
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3.6 HVDC-LCC Numerical Evaluation

3.6.1 Test Case 1

To show the applicability of the proposed approach, the five-bus network depicted in Fig.

3.9 is used. All necessary data to carry out a balanced three-phase AC power flow is taken

from [Acha et al., 2004].
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Figure 3.9: Five-bus test network for three-phase balanced conditions.

The five-bus network is modified to include one HVDC link connected between Lake and

Main buses. In this contrived example, the AC network and HVDC converters are assumed

to work under three-phase balanced conditions. The HVDC link is made to operate in control

mode A.

The data used for the HVDC link is given at Table 3.2 and the three-phase nodal voltage

magnitudes and phase angles are given in Table 3.3. Notice that voltage values are given in

per unit and angles are given in degrees.

Table 3.4 shows the generated powers in the North and South buses, and the powers in

both the rectifier and the inverter, which are connected to Lake and Main, respectively. All
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Table 3.2: Data for the HVDC link.

Transformer reactances 0.051 pu
D.C. link resistance 0.10 pu

Firing angle for the rectifier 15 deg
Extinction angle for the inverter 18 deg

Transmitted power 0.4 pu per phase

Table 3.3: Bus voltages and generation results.

Bus name Phase A Phase B Phase C
Voltage Angle Voltage Angle Voltage Angle

North 1.060 0 1.060 -120 1.060 120
South 1.000 -1.8126 1.000 -121.8126 1.000 118.1874
Lake 0.9610 -5.5998 0.9610 -125.5998 0.9610 114.4002
Main 0.9634 -2.6911 0.9634 -122.6911 0.9634 117.3089
Elm 0.9648 -4.8845 0.9648 -124.8845 0.9648 115.1155

other active and reactive power flows are shown in Fig. 3.9, for phase A only.

Table 3.4: Powers from generator buses and HVDC converters.

HVDC converter Generator buses
Main Lake North South

P Q P Q P Q P Q

Phase A 0.40 0.1902 0.412 0.1772 1.333 1.02 0.20 -0.4053
Phase B 0.40 0.1902 0.412 0.1772 1.333 1.02 0.20 -0.4053
Phase C 0.40 0.1902 0.412 0.1772 1.333 1.02 0.20 -0.4053

3.6.2 Test Case 2

To show the wider applicability of this technique, the test system [Chow, 1982], which

consists of 68 nodes, 16 generators and 86 transmission lines, is used.

The system has been modified to include three HVDC links, each operating with a different
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operational control mode, as shown in Fig. 3.10 and described in Table 3.5.
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Figure 3.10: Modified 16 generators power network.

Table 3.5: HVDC link control modes.

Bus code from to Control mode
Link 1 bus 41 bus 42 C
Link 2 bus 1 bus 27 A
Link 3 bus 23 bus 24 B

Imbalances are introduced into the network by changing the active and reactive power

loads at the buses where the HVDC stations connect, by ±10% with respect to the balanced
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case. Phase A is subtracted 10%, Phase B is added 10% and Phase C is kept unchanged.

Tables 3.6, 3.7 and 3.8 show the unbalanced three-phase voltage profiles and the active

and reactive powers for each HVDC converter. The solution was achieved in 6 iterations to

a power mismatch tolerance of 1e−12.

Table 3.6: Parameters of Link 1.

Sending Node Receiving Node
A B C A B C

|V | 0.9941 0.9942 0.9941 0.9973 0.9976 0.9966
θ 47.1452 -71.7897 167.0982 18.8528 -102.6938 136.3634
P 0.4428 0.4401 0.4430 0.3940 0.4012 0.4048
Q 0.3255 0.3292 0.3253 0.3857 0.3784 0.3737

Table 3.7: Parameters of Link 2.

Sending Node Receiving Node
A B C A B C

|V | 0.9992 1.0015 1.0024 0.9845 1.0014 0.9899
θ -5.6705 -125.4563 114.6696 -6.6707 -124.6575 116.1454
P 0.3561 0.3566 0.3567 0.3342 0.3361 0.3297
Q 0.2196 0.2205 0.2211 0.2234 0.2329 0.2338

Table 3.8: Parameters of Link 3.

Sending Node Receiving Node
A B C A B C

|V | 1.0113 1.0142 1.0142 0.9696 0.9822 0.9749
θ 9.0899 -109.0112 131.4502 -6.1403 -124.4343 116.5493
P 0.6372 0.6295 0.6270 0.5354 0.5374 0.5272
Q 0.6252 0.6366 0.6391 0.5692 0.5812 0.5826

The three HVDC links are set to operate with different control schemes and the state

variables are Ak and Am (control mode A) for link 1; α and Idc (control mode B) for link 2;
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and γ and Idc (control mode C) for link 3.

Figures 3.11, 3.12 and 3.13 show the behaviour towards the convergence for each state

variable during the power flow solution.
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Figure 3.11: Tap position of link 2, Control Mode A.
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Figure 3.12: Firing and extinction angles of links 3 and 1, Control Mode B and C, respectively.

It should be noticed that the state variables Ak, Am and Idc have initial values of 1 per
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Figure 3.13: Direct current of links 1 and 3, Control Mode B and C, respectively.

unit, and upon convergence, settle to final values. For the remaining state variables, α and

γ, are given values of 15◦ and 18◦ degrees, respectively, which are typical specified control

angles [Smed, 1989,Arrillaga and Arnold, 1990].
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3.7 Summary

This chapter presents the theory and modelling to carry out three-phase power flows

analyses in rectangular co-ordinates making use of the Newton-Raphson method.

The problem formulation, the Jacobian formation and its power equations, in three-phase

rectangular co-ordinates making use of the Newton-Raphson method is mentioned.

The adopted technique posses the quadratic convergence capability given by the Newton-

Raphson method. Despite of the number of equations to solve the load flow problem in

rectangular co-ordinates are increased in comparison with the polar algorithm, the problem

can be alleviated using sparsity techniques.

Moreover, this chapter presents a three-phase power flow method to include conventional

HVDC link models where several control modes are applied. The approach takes advantage

of the strong convergence characteristics of the Newton-Raphson technique to ensure reliable

iterative solutions. A test case is presented for a large network including unbalanced loading

and three HVDC links; each operating with its own control mode.



Chapter 4

Dynamic Power Flows in

Rectangular Co-ordinates

4.1 Introduction

Power flows in a power network can be assessed very affectively by modelling the power

system as a set of non-linear algebraic equations corresponding to active and reactive nodal

injections, valid for a pre-defined set of system generation and load.

For dynamic power system assessments, the mathematical model which described the

dynamic plant components such as generators and their controls are represented by a set of

differential equations.

By suitable combination of both sets of equations the complete power system model,

aimed to at time response calculations of large-scale power networks, can be reduced to an

algebraic-differential problem of the form,

ẏ = F (y, x) (4.1)
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0 = G(x, y) (4.2)

where y and x are vectors of integrable and non-integrable algebraic variables. Generally,

F and G are non-linear vector functions and thus the non-integrable network variables cannot

be eliminated algebraically. Equations 4.1 and 4.2 must be solved simultaneously as a function

of time [Gear, 1971b,Stott, 1979,Hill and Mareels, 1990].

The objective of the unified framework is to solve y and x as a function of time. Equations

4.1, comprises the differential equations of all synchronous generators, since each generator

is coupled to the power plants only through the network, Eq. 4.1 is a collection of separate

subsets. Equations 4.2, consists of network equations and the stator equations of each ma-

chine, transformed into the network reference frame. This set of equations is independent so

then the solution technique must provide a simultaneous solution.

The Jacobian matrix, Eq. 4.3, takes into account the network elements and genera-

tors variables, whereupon the Jacobian from conventional power flows must be modified to

include the appropriate elements of the other components.




∆P

∆Q

−−
∆F (ẏ)




=




| ∂P
∂e

∂P
∂f

Jacobian | ∂Q
∂e

∂Q
∂f

−− + −− −−
∂F (ẏ)

∂e
∂F (ẏ)

∂f | ∂F (ẏ)
∂y

∂F (ẏ)
∂y







∆e

∆f

−−
∆y




(4.3)

The important feature of the task in hand being the solution of a dynamic stability

analysis in combination with numerical techniques to get a simultaneous solution of coupled

differential and algebraic equations.



4.2. Synchronous Machine Model - Classical Representation 70

4.2 Synchronous Machine Model - Classical Representation

Synchronous generators are the most important and principal sources of electric energy

at any power system. The power system stability problem is mainly related keeping to inter-

connected synchronous machines in synchronism. However, power system dynamic problems

are basically those of the synchronous machines. There are many kinds of power system dy-

namics problems, like high or low frequency oscillations, large or small system disturbances,

and so on. Owing to the wide range of dynamic phenomena, several synchronous machine

models have been put forward in the open literature.

The mechanical equations of synchronous machines are well established [Weedy, 1967,

Elgerd, 1971, Stevenson Jr, 1982,Chapman, 1991], so they are only briefly outlined. Three

basic assumptions are made in deriving the equations:

1. Machine rotor speed does not vary greatly from synchronous speed.

2. Machine rotational losses due to windage and friction are neglected.

3. Mechanical power shaft is smooth; it means the power which comes from the shaft is

constant except for the action of a speed governor.

From the previous assumptions, in particular from the second one, the power of the

machine Pa is the difference between the shaft power Pm as supplied by the prime mover and

the electrical power Pe. The acceleration is thus:

σ =
Pa

Mg
=

Pm − Pe

Mg
(4.4)

where σ represents the acceleration of the machine, Mg is the angular momentum and

the powers are given in per unit.

It is convenient to choose a synchronously rotating reference to define the rotor angle δ.

Thus,
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d2δ

dt2
=

Pm − Pe

Mg
(4.5)

The angular momentum may be further defined by the inertia constant Mg which is

relatively constant regardless of the size of the machine.

Mg =
H

πf0
(4.6)

In the above equation f0 represents the system base frequency.

Eddy currents induced in the rotor iron or in the damping windings produce torques which

opposes the motion of the rotor relative to the synchronous speed. A deceleration power can

be introduced into the mechanical equation to account for this damping, leading to

d2δ

dt2
=

1
Mg

(
Pm − Pe −D

dδ

dt

)
(4.7)

This section describes a classical representation of the synchronous machines assuming

constant flux linkages in both axis and neglecting transient saliency. An internal voltage

behind the d-axis transient reactance is defined and its magnitude is assumed constant. This

model neglects the effects of damper circuits, it means the axis armature current Idq do not

fluctuate during the transient period.

In the approach used in this research, the Jacobian matrix of a conventional power flow

method [Stagg and El-Abiad, 1968] is expanded to include, in suitable form the network

dynamic equations. It is argued that the method is numerically stable, robust and inherently

capable of handling islanding and fault analyses [Rafian et al., 1987].

Bearing in mind the fact that the problem of stability involves the rotors of synchronous

machines, it is mandatory to use the swing equation of each machine in the system Eq. 4.7,

in the solution.

Equation 4.7 can be discomposed into two first order differential equations,
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ω̇ =
πf0

H
[Pm − Pe −D (ω − ω0)] (4.8)

δ̇ = ω − ω0 (4.9)

where

H is the inertia constant, MW*s/MVA.

Pm is the mechanical input power, pu.

Pe is the electrical output power, pu.

D is the damping coefficient, s/rad.

f0 is the synchronous frequency, Hz.

δ is the load angle, rad.

The classical derivation of the voltages and reactances which exists in a synchronous

machine are well established [Kimbark, 1948b, Concordia, 1951]. The electrical quantities

will be defined under the following assumptions:

1. All inductances are independent of the current.

2. Machine winding can be represented as constants.

3. Distributed windings may be represented as concentrated windings.

4. The machine is represented by a voltage behind the reactance.

5. There are no hysteresis losses in the iron.

6. The leakage reactance occurs only in the stator.

Using these assumptions the classical model for a synchronous machine is constructed.

With reference to Fig. 4.1, assuming balanced conditions, the algebraic equations that

describe generator voltage relations can be written by a set of equations based on direct and

quadrature axis parameters,
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Figure 4.1: Synchronous machine scheme.

Ea = V + raIa + jxdId + jxqIq (4.10)

Ia = Id + jIq (4.11)

where

V is the terminal voltage of phase a.

Ea is the excitation voltage.

ra is the armature resistance for phase a.

xd is the direct axis reactance.

xq is the quadrature axis reactance.

Id is the direct axis current.

Iq is the quadrature axis current.

Ia is the phase a current.

Another manner to calculate the voltage source behind the transient reactance where the

effects of saliency and changes in field flux linkages are neglected is,
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Ea = |E| (cos δE + j sin δE) (4.12)

4.3 Synchronous Machines Controllers

Power-generating plants consist of various components involved in energy conversion from

mechanical to electrical. The main elements involved in most dynamic voltage stability

analyses are the generators, voltage regulators, governors, turbines, boilers, and auxiliary

equipment.

This section illustrates suitable models for voltage stability assessment.

4.3.1 Governor

The governor is a frequency controller which plays an important role in power system

operations. It has three main functions which are:

1. To keep the generator speed as close as possible to its nominal value.

2. To guarantee a fast and automatic participation of the generator to any change in

generation, which is required in order to maintain a balanced generation-load in the

system.

3. To offer a way to adapt the active power production of the unit, via speed-changer

adjustments.

The governor adjusts the steam or water input to the turbine. To achieve this, it senses the

difference between the actual rotor speed and the angular frequency and adjusts accordingly

the turbine valve.

Figure 4.2 shows the block diagram adopted to represent the speed governing system for

steam generators. This is the simplified model proposed in [IEEE Committee Report, 1973].
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Figure 4.2: IEEE simplified speed governor model.

From Figure 4.2 we derive the following mathematical expression,

Ṗg =
∆P − Pg

T1
(4.13)

with,

∆ω =ω − ωo

∆P =PSET −K∆ω

where

K is the governor gain.

Pset is the power set point.

T1 is the governor time constant.

4.3.2 Turbine

All compound steam turbine systems utilize governor-controlled valves at the inlet to

the high pressure or in some cases very high pressure turbine to control steam flow. The

steam chest and inlet piping to the first turbine cylinder and reheaters and crossover piping

downstream all introduce delays between valves movement and change in steam flow. The
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main objective in modelling the steam system for stability studies is to consider these delays.

Flows into and out of any steam vessel are related by simple time constant.

Pressure changes at the entrance to the governor-controlled valves may also be important

in stability studies. Boiler controls are designed to regulate valve pressure, but the controlled

boiler response is not fast enough to compensate for pressure variations due to the movements

of governor-controlled valves.

For steam turbines the model is selected from the IEEE committee report [IEEE Com-

mittee Report, 1973].
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Figure 4.3: IEEE steam turbine model.

Figure 4.3 shows the block diagram of a cross compound, single reheat steam turbine

system. The mathematical equations corresponding to this diagram are,

˙PHP =
Pg − PHP

TCH
(4.14)

˙PIP =
PHP − PIP

TRH
(4.15)

˙PLP =
PIP − PLP

TCO
(4.16)

PM = PHP FHP + PIP FIP + PLP FLP (4.17)

From Figure 4.3 we have that,

PGOV is the output power of the control valve.
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TCH is the steam chest time constant (including the high-pressure (HP ) stage of the

turbine time constant).

TRH is the reheater time constant (including the intermediate-pressure (IP ) stage of the

turbine time constant).

TCO is the steam storage or cross-over time constant (including the low-pressure (LP )

stage of the turbine time constant).

FHP is the HP turbine power fraction.

FIP is the IP turbine power fraction.

FLP is the LP turbine power fraction.

PM1 and PM2 are the equivalent generator input mechanical powers.

4.3.3 Automatic voltage regulator

The basic function of an AVR is to provide direct current to the field winding of a

synchronous machine. In addition, the excitation system can provide a broad number of

control and protection functions necessary for the satisfactory performance of the machine

and the power system by means of the control of the field voltage. The protective functions

ensure that the capacity limits of both synchronous machine and excitation control system

will not be exceeded.

Several Automatic Voltage Regulator (AVR) models have been developed for transient

stability studies. The model adopted in this simulation tool, is the STA1 IEEE model [Energy

Development and Power Generating Committe of the PES, 2003, IEEE Committee Report,

1981].

The main objective of an AVR is to provide an effective control of the generator terminal

voltage and, hence, the enhancement of system stability.

From Figure 4.4, the following expressions are derived:
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˙Vm =
V − Vm

Tr
(4.18)

˙Vr1 =
Ka

(
Vref − Vm − Vr2 − Kf

Tf
Vf

)
− Vr1

Ta
(4.19)

˙Vr2 =−
Kf

Tf
Vf + Vr2

Tf
(4.20)

V̇f =− (Vf (1 + Se(Vf ))− Vr)
Te

(4.21)

where the ceiling function Se is defined as:

Se(Vf ) = Ae

(
eBe|Vf | − 1

)
(4.22)

where,

Vr max is the maximum regulator voltage, pu.

Vr min is the minimum regulator voltage, pu.

Ka is the amplifier gain, pu.

Ta is the amplifier time constant, sec.

Kf is the stabiliser gain, pu.

Tf is the stabiliser time constant, sec.
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Te is the field circuit time constant, sec.

Tr is the measurement time constant, sec.

Ae is the 1st ceiling coefficient.

Be is the 2nd ceiling coefficient.

4.3.4 Boiler

The boiler model presented here is a simple model which takes into account the slow plant

response. The equations that formulate the boiler storage, throttle pressure, and the change

in the flow of the steam into the steam chest according to the boiler response are:

∆ḊP =
SF −∆PHP

CB
(4.23)

∆PHP = PHP − (Pset − k3∆ω) (4.24)

˙PHP =
Pg + k1∆DP − PHP

TCH
(4.25)

where,

DP is the throttle pressure.

SF is the steam production.

k3 is the gain factor to regulate the effect of frequency deviation on boiler response.

Equation 4.25 will replace Eq. B.12 to allow the effects of pressure change in the boiler

an the steam flow into the turbine.

4.4 Synchronous Machine Model - Advanced Representation

In early stability studies calculations the generators were commonly represented by a

simple model, assuming constant flux linkages in each axis and neglecting transient saliency

[Stagg and El-Abiad, 1968]. In these simple models an internal voltage behind the d-axis
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transient reactance xd is determined and its magnitude is assumed constant.

Due to the inertia of the flux linkages, faster changes in the conditions external to the

synchronous machine are presented, and these changes are not reflected throughout the whole

of the model immediately.

In order to get a more realistic representation of the power system behaviour, it is essential

to consider transient saliency and the flux linkages in each axis of the synchronous machine.

Figure 4.5 depicts the phasor diagram of synchronous machine in the transient state.
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Figure 4.5: Phasor diagram of synchronous generator in the transient state.

Thus, the voltage behind synchronous reactance Ea, should be obtained with the voltages,

E′
d and E′

q. To obtain these voltages, it is necessary to obtain the voltages which will represent

the flux linkages of the rotor windings.

The differential equations that describe the variation in time of the rotor flux linkages

are:

Ė′
q =

Ea + (xd − x′d) Id −E′
q

T ′do

(4.26)

Ė′
d =

−E′
d −

(
xq − x′q

)
Iq

T ′qo

(4.27)
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where E′
q, E′

d and are obtained as follow,

E′
q − Vq = raIq − x′dId

E′
d − Vd = raId + x′qIq

If a more detailed synchronous machine model representation is required, then the sub-

transient synchronous machine model is used.

Ë′
q =

E′
q + (x′d − x′′d) Id −E′′

q

T ′′do

(4.28)

Ë′
d =

E′
d −

(
x′q − x′′q

)
Iq − E′′

d

T ′′qo

(4.29)

E′′
q − Vq = raIq − x′′dId (4.30)

E′′
d − Vd = raId + x′′qIq (4.31)

This sub-transient synchronous model is derived assuming that the transient time constant

are large compared to the sub-transients ones [Arrillaga and Arnold, 1990]. Figure 4.6 shows

the phasor diagram for this sub-transient condition.

4.5 Network Modelling

The basic form of the power flows equations for balanced three-phase power systems

involve the set of non-linear algebraic equations which represent the network under steady

state. The expressions for active and reactive powers used to form the term Jacobian, Eq.

4.3, for bus k are,
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Figure 4.6: Phasor diagram of synchronous generator in the sub-transient state.

Pk =ek

∑

m=1,n

(Gkmem −Bkmfm) + fk

∑

m=1,n

(Gkmfm + Bkmem) (4.32)

Qk =fk

∑

m=1,n

(Gkmem −Bkmfm)− ek

∑

m=1,n

(Gkmfm + Bkmem) (4.33)

where Pk and Qk are the active and reactive powers injected at bus k, ek and fk are the

voltage’s real and imaginary parts at bus k, Gkm and Bkm are the real and imaginary parts

of the nodal admittance relating buses k and m. It should be noted that k = m corresponds

to the self admittance of bus k. As shown below, each plant component of the power network

is represented by its own form of nodal admittance elements Gkk, Bkk, Gkm and Bkm.

4.6 Transmission Line Model

In power system studies it is common to represent a transmission line by its nominal π

circuit, shown in Fig. 4.7.

corresponding to a transmission line l of series impedance Zl and shunt admittance Yl. The

transmission line is connected between buses k and m, giving rise to the following transfer
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Figure 4.7: Transmission line representation.

admittance matrix:




Ykk Ykm

Ymk Ymm


 =




Z−1
l + Yl

2 −Z−1
l

−Z−1
l Z−1

l + Yl
2


 (4.34)

where Ykk = Ymm = Gkk +jBkk are the nodal self admittances at buses k and m, respectively,

and Ykm = Ymk = Gkm + jBkm are the mutual admittances between buses k and m and m and

k, respectively.

4.7 Dynamic Load Tap Changer and Phase Shifting Trans-

former Modelling

Power transformers are essentials plant components of the power system. In addition

to those that perform the basic functions of transforming an AC supply voltage into one or

more different AC voltages and providing electrical insulation between the supply voltage

and the user’s equipment, there are power transformers that are provided with an on-load

tap changing mechanism to regulate voltage magnitude at a specified point of the network or

to control the amount of active power that flows through the transformer. They are known

as tap-changing and phase-shifting transformers, respectively.

The nodal transfer admittance matrix of a tap-changing transformer of impedance Zl,

with the tap mechanism located on the primary side Tk, and connected between buses k and

m is as shown in Fig 4.8.
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Figure 4.8: Tap-changer transformer equivalent circuit.

The transfer admittance matrix for this equivalent circuit is:




Ykk Ykm

Ymk Ymm


 =




Z−1
l −TkZ

−1
l

−TkZ
−1
l T 2

k Z−1
l


 (4.35)

The tap’s dynamic is represented by the following first-order differential equation, accord-

ing to the block diagram of Fig. 4.9.

Ṫk =
1

HT

(√
e2
k + f2

k − V0

)
(4.36)

where HT is the tap’s servomotor inertia, ek and fk are the real and imaginary parts of

the voltage at the regulated bus, V0 is the target voltage magnitude.
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Figure 4.9: Dynamic load tap changer model.

As indicated in Fig. 4.10 the transformer tap is discrete, and it will be varying over the

time, according to the values of ek and fk, the tap step size ∆Tk and its pre-defined operating



4.8. Numerical Solution Technique 85

range.
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Figure 4.10: Discrete tap.

The nodal transfer admittance matrix of a phase-changing transformer of impedance Zl,

with the phase angle mechanism located on the primary side φk, and connected between

buses k and m, is:




Ykk Ykm

Ymk Ymm


 =




Z−1
l −Z−1

l (cosφk + j sinφk)

−Z−1
l (cosφk − j sinφk) T 2

k Z−1
l


 (4.37)

The tap’s dynamic is represented by the following first order differential equation:

φ̇k =
1

Hφ
(Pkm − P0) (4.38)

where Hφ is the phase shifter’s servomotor inertia, Pkm is the active power through the phase

shifter, P0 is the target active power.

4.8 Numerical Solution Technique

The set of algebraic and differential equations that describe each plant component of the

power network are interdependent and it has been suggested that their simultaneous calcu-
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lation provides for a more stable numerical solution [Rafian et al., 1987]. To this end, the

differential equations are transformed into algebraic equations and appended to the existing

set of algebraic equations for a unified solution. One way of ensuring a numerically stable

transformation is to use the implicit trapezoidal method, a technique known for giving reason-

ably accurate results even when relatively large integration time steps are selected [Kundur,

1994,Machowski et al., 1997].

The first step in the application of the trapezoidal method is to express the system

differential equations in the form of Eq. 4.2. To exemplify the procedure, the method is

applied to dynamic Eqs. 4.8 and 4.9:

ω(t) − ω(t−∆t) =
∆t

2

[
πf0

H

(
Pm − Pe(t) −D

(
ω(t) − ω0

))

+
πf0

H

(
Pm − Pe(t−∆t) −D

(
ω(t−∆t) − ω0

)) ]
(4.39)

δ(t) − δ(t−∆t) =
∆t

2

(
δ̇(t) + δ̇(t−∆t)

)
(4.40)

Substituting in Eq. 4.39 the expression of electrical power Pe, where the effects of saliency

and flux decay are considered, but assuming constant Pm, we have,
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ω(t) − ω(t−∆t) =
∆t

2

[(πf0

H
Pm

+(E′
d(t) − raId(t) + (X ′

q −Xl)Iq(t))Id(t)

+(E′
q(t) − raIq(t) + (X ′

d −Xl)Id(t))Iq(t)

−D
(
ω(t) − ω0

) )
+

πf0

H

(
Pm

+(E′
d(t−∆t) − raId(t−∆t) + (X ′

q −Xl)Iq(t−∆t))Id(t−∆t)

+(E′
q(t−∆t) − raIq(t−∆t) + (X ′

d −Xl)Id(t−∆t))Iq(t−∆t)

−D
(
ω(t−∆t) − ω0

) )]
(4.41)

Notice that in this equation only the transient effects have been represented, as opposed

to sub-transient ones, to keep the expression at a manageable level.

Re-arranging terms, leads to a more compact expression,

Fω = Fω(t) + Fω(t−∆t) + Cω = 0 (4.42)

Fδ = Fδ(t) + Fδ(t−∆t) + Cδ = 0 (4.43)

where

Fω(t) = ω(t) +
∆πf0

2H

(
Pe(t) + Dω(t)

)

Fω(t−∆t) = −ω(t−∆t) +
∆πf0

2H

(
Pe(t−∆t) + Dω(t−∆t)

)

Cω = −∆tπf0

H
(Pm + Dω0)
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Likewise, expression 4.42 is re-arranged,

Fδ(t) = δ(t) −
∆t

2
ω(t)

Fδ(t−∆t) = −δ(t−∆t) −
∆t

2
ω(t−∆t)

Cδ = 2πf0∆t

Equations 4.32 and 4.33, describing the active and reactive powers injected in the network

buses, are augmented to incorporate explicitly the active and reactive powers contributed by

all generators in the network. Hence, at generator buses only, including the slack bus,

Pk + Pe,l

Qk + Qe,l

(4.44)

for k = 1, ..., l, ..., nbus and l = 1, ..., ngen.

Equations 4.32, 4.33 and 4.44 for load buses and Eq. 4.42 to Eq. 4.44 for generator buses

form the necessary set with which to carry out dynamic power flow solutions of a power

system. One option to achieve this is to solve the equation set, which is non-linear, using

the Newton-Raphson method. Hence, the following linearised equation, around a base point,

provides the computing engine with which to carry out the solution by iteration:
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


∆P

∆Q

−−
Fω

Fδ

FE′
d

FE′
q

FE′′
d

FE′′
q




=




J11 | J12

−− + −−
J21 | J22







∆e

∆f

−−
∆ω

∆δ

∆E′
d

∆E′
q

∆E′′
d

∆E′′
q




(4.45)

where
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∆P = [∆P1, . . . ,∆Pn]t

∆Q = [∆Q1, . . . ,∆Qn]t

∆e = [∆e1, . . . , ∆en]t

∆f = [∆f1, . . . , ∆fn]t

∆ω = [∆ω1, . . . , ∆ωm]t

∆δ = [∆δ1, . . . ,∆ + δm]t

∆E′
d =

[
∆E′

d1
, . . . , ∆E′

dm

]t

∆E′
q =

[
∆E′

q1
, . . . ,∆E′

qm

]t

∆E′′
d =

[
∆E′′

d1
, . . . , ∆E′

dm

]t

∆E′′
q =

[
∆E′′

q1
, . . . ,∆E′

qm

]t

Fω = [Fω1 , . . . , Fωm ]t

Fδ = [Fδ1 , . . . , Fδm ]t

FE′d
=

[
FE′d1

, . . . , FE′dm

]t

FE′q =
[
FE′q1

, . . . , FE′qm

]t

FE′′d
=

[
FE′′d1

, . . . , FE′′dm

]t

FE′′q =
[
FE′′q1

, . . . , FE′′qm

]t
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J11 =




(
∂P1
∂e1

+ ∂Pe1
∂e1

) (
∂P1
∂f1

+ ∂Pe1
∂f1

)
· · · ∂P1

∂en

∂P1
∂fn(

∂Q1

∂e1
+ ∂Qe1

∂e1

) (
∂Q1

∂f1
+ ∂Qe1

∂f1

)
· · · ∂Q1

∂en

∂Q1

∂fn

...
...

. . .
...

...

∂Pn
∂e1

∂Pn
∂f1

· · · ∂Pn
∂en

∂Pn
∂fn

∂Qn

∂e1

∂Qn

∂e1
· · · ∂Qn

∂en

∂Qn

∂fn




J22 =




∂Fω1
∂ω1

∂Fω1
∂δ1

∂Fω1
∂E′d1

∂Fω1
∂E′q1

∂Fω1
∂E′′d1

∂Fω1
∂E′′q1

∂Fδ1
∂ω1

∂Fδ1
∂δ1

∂Fδ1
∂E′d1

∂Fδ1
∂E′q1

∂Fδ1
∂E′′d1

∂Fδ1
∂E′′q1

∂FE′
d1

∂ω1

∂FE′
d1

∂δ1

∂FE′
d1

∂E′d1

∂FE′
d1

∂E′q1

∂FE′
d1

∂E′′d1

∂FE′
d1

∂E′′q1
∂FE′q1
∂ω1

∂FE′q1
∂δ1

∂FE′q1
∂E′d1

∂FE′q1
∂E′q1

∂FE′q1
∂E′′d1

∂FE′q1
∂E′′q1

∂FE′′
d1

∂ω1

∂FE′′
d1

∂δ1

∂FE′′
d1

∂E′d1

∂FE′′
d1

∂E′q1

∂FE′′
d1

∂E′′d1

∂FE′′
d1

∂E′′q1
∂FE′′q1
∂ω1

∂FE′′q1
∂δ1

∂FE′′q1
∂E′d1

∂FE′′q1
∂E′q1

∂FE′′q1
∂E′′d1

∂FE′′q1
∂E′′q1




J12 =




∂P1
∂ω1

∂P1
∂δ1

∂P1
∂E′d1

∂P1
∂E′q1

∂P1
∂E′′d

∂P1
∂E′′q

∂Q1

∂ω1

∂Q1

∂δ1
∂Q1

∂E′d1

∂Q1

∂E′q1
∂Q1

∂E′′q
∂Q1

∂E′′q
...

...
...

...
...

...

0n 0n 0n 0n 0n 0n

0n 0n 0n 0n 0n 0n



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J21 =




∂Fω1
∂e1

∂Fω1
∂f1

· · · 0n 0n

∂Fδ1
∂e1

∂Fδ1
∂f1

· · · 0n 0n

∂FE′
d1

∂e1

∂FE′
d1

∂f1
· · · 0n 0n

∂FE′
d1

∂e1

∂FE′
d1

∂f1
· · · 0n 0n

∂FE′′
d1

∂e1

∂FE′′
d1

∂f1
· · · 0n 0n

∂FE′′q1
∂e1

∂FE′′q1
∂f1

· · · 0n 0n




J11 is a matrix of first order partial derivatives of the active and reactive power, P and

Q, with respect to nodal voltages, e,f . The active and reactive powers contributed by the

generators are taken into consideration in the Jacobian term, J11. J22 is a matrix of partial

derivatives of generators discretised functions of the form of Eq. 4.42 and Eq. 4.43, with

respect to generator state variables ω, δ, E′
d, E′

q, E′′
d and E′′

q . J12 is a matrix of first order

partial derivatives of active and reactive power at generator buses with respect to generator

state variables. J21 is a matrix of first order partial derivatives of generator discretised

functions of the form of Eq. 4.42 and Eq. 4.43, with respect to nodal voltages e,f .

Equation 4.45 may be seen as an extended Newton-Raphson power flow formulation in

rectangular coordinates, where the generating plant equations, in discretised form, are lin-

earised and solved together with the normal power flow equations, including those of the

slack bus generator. In the overall Jacobian, in addition to the entries corresponding to the

generating plant itself there are mutual terms corresponding to the interface between the

network and the generating plant.

It should be remarked that in Eq. 4.45 the mechanical power Pm contributed by the

boiler-turbine-governor set has been taken to remain constant, for the sake of simplifying

the equation. In practice, however, the boiler-turbine-governor set is an important dynamic

element in power systems long term dynamics and the linearised Eq. 4.45 should be suitably

expanded to accommodate an expression of the form:
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FPHP
= FPHP (t) + FPHP (t−∆t) + CPHP

= 0

FPIP
= FPIP (t) + FPIP (t−∆t) + CPIP

= 0

FPLP
= FPLP (t) + FPLP (t−∆t) + CPLP

= 0

FPgov = FPgov(t) + FPgov(t−∆t) + CPgov = 0

FDP = FDP (t) + FDP (t−∆t) + CDP = 0

FBC1 = FBC1(t) + FBC1(t−∆t) + CBC1 = 0

FBC2 = FBC2(t) + FBC2(t−∆t) + CBC2 = 0

FSF = FSF (t) + FSF (t−∆t) + CSF = 0

Pm = PHP FHP + PIP FIP + PLP PLP

where PHP is the equivalent power from the high pressure stage of the turbine, PIP is the

equivalent power from the intermediate pressure stage, PLP is the equivalent power from the

low pressure stage, Pgov is the equivalent input power to the turbine, BC1 is the fire intensity,

BC2 is an auxiliary variable, SF is the steam production, DP is the throttle pressure and

Pm is the mechanical power.

4.9 Time Domain Simulations

4.9.1 Validation

To validate the solution technique, a time domain simulation has been carried out and

compared with PSAT [Milano, 2007, Milano, 2005, Milano, 2006]. The test system used is

the nine-bus, three-machine power system depicted at Fig. 4.16 [Chow, 1982,Anderson and

Fouad, 1997].
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The synchronous generators are presented by their 4th order model with no controls, load

are modelled by their static representation and tap changing transformers are not considered.

The scenario considered for this study is a load change at Bus 8. A load of 10MW is

added at t = 1s, using a 10 pu resistive impedance. The simulation runs for five seconds.
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Figure 4.11: Bus voltage response to a load change.
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Figure 4.12: PSAT simulation - Bus voltage response to a load change.
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It should be noted from Fig. 4.11 and Fig. 4.12, that the system response at Bus 1, is

more damped than those at Buses 2 and 3. This is due to the fact that former buses are

closer to the perturbation point.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.6

0.8

1

1.2

1.4

1.6

1.8

time, sec

El
ec

tr
ic

al
 p

ow
er

 P
e,
 p

u

Gen
1

Gen
2

Gen
3

Figure 4.13: Electrical power deliver by generators.

Fig. 4.13 shows the electrical power delivered by the generators during the transient

simulation. Fig. 4.14 presents the machines angle differences. It is noted that the angular

differences of the machines are small, thus, the system will remain stable after the disturbance.

Fig. 4.15 shows the speed deviation for the synchronous generators.

4.9.2 A classical stability study

Even when the simultaneous solution technique adopted is particularly suited to carrying

out long-term assessments of voltage stability in power systems, it can also handle transient

stability analyses. So then, the solution technique is illustrated by solving the classical

transient stability study depicted at [Anderson and Fouad, 1997].

The nine-bus system [Chow, 1982,Anderson and Fouad, 1997], shown at Fig. 4.16, is used

to conduct this analyses.
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Figure 4.14: δi − δ1 response to the load change.
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Figure 4.15: Synchronous generators’ angular velocity.

The disturbance is initiated by a symmetric three-phase fault occurring near Bus 7 at the

end of line 5-7. The fault is cleared by opening line 5-7 through the breaker approximately

5 cycles after the fault occurred. It is assumed for this analyses that the base operating

frequency is 50 Hz.



4.9. Time Domain Simulations 97

Bus 1

Bus 2 Bus 3

Bus 4

Bus 5 Bus 6

Bus 7

Bus 8

Bus 9

Gen. 2 Gen. 3

Gen. 1

TRANF1

TRANF2 TRANF3

Figure 4.16: 3 Generators 9 buses power system.

For this stability assessment, synchronous generator are modelled by their classical rep-

resentation with no controls.

The variables plotted are the generator’s speed, ωi, generator’s rotor angle, δi, and the

buses voltage magnitude, |Vi|.
Figures 4.17-4.21 show the result for this dynamic assessment, with Fig. 4.17 showing

the voltage magnitude at the system buses. In Fig. 4.18 the response of the machine’s

rotor angle, δi, is presented. Fig. 4.19 gives the angle differences between machines, namely,

δ21 = δ2− δ1 and δ31 = δ3− δ1. This plot indicates that the system remains stable. This fact

is clearly indicated by the angular differences of the machines which are not divergent even

though their response is oscillatory.

Figure 4.20 shows the speed deviation for the synchronous generators, and Fig. 4.21

shows the voltage magnitude for the buses where the synchronous generators are connected

to.
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Figure 4.17: Bus voltage response to the fault.
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Figure 4.18: δi responses to the fault.

4.9.3 Test case 1

To demonstrate the applicability of the dynamic power flow algorithm, the load connected

at Bus 8 is increased by 50%. For this simulation, the boiler-turbine-governor set model is

included. The simulation period is 10 minutes.
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Figure 4.19: δij differences.

0 1 2 3 4 5 6 7 8 9 10
0.98

0.99

1   

1.01

1.02

1.03

time, sec

Sp
ee

d 
de

vi
at

io
n 

ω i
, 

ra
d

ω
1

ω
2

ω
3

Figure 4.20: Speed deviation ωi response to the fault.

Fig. 4.22 shows the system with a mechanical power Pm constant, continuous line, whereas

the dash line represents the mechanical power associated with the boiler-turbine-governor set

model.

As in the previous case the synchronous generators are modelled in detail by means of
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Figure 4.21: Voltage magnitude for generator buses.
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Figure 4.22: Synchronous generators’ mechanical power.

the subtransient model. Fig 4.23 shows the excitation voltage |Ef | for the case when the

boiler-turbine-governor set is considered. Fig 4.24 depicts the voltage magnitudes for the

systems’ buses.
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Figure 4.23: Synchronous generators’ excitation voltage.
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Figure 4.24: Bus voltage magnitude.

4.9.4 Test case 2

To assess the performance of the dynamic LTC transformer model, a separate test case

is carried out. A load increment in Bus 8 is used as the source of the perturbation. Fig. 4.25

shows the LTC performance following the perturbation. Dynamic tap-changers 2 and 3 are
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closer to the perturbation point and their action is more pronounced than the dynamic LTC

1 which is farther away; it is noted that after an initial drop, it returns to a value closer to

its pre-disturbance value.

Fig. 4.26 gives the voltage profiles at buses where the load tap changers are connected

to. When the load tap changer is active, ’ON’, given by the continuous line, and when the

load tap changer is inactive, ’OFF’, given by the dashed line.

In this test case, the dynamic load tap changer plays a very important role in improving

the voltage profile at these specific points of the system.

4.9.5 Test case 3

To show the wider applicability of the proposed approach, the New England system [Chow,

1982] depicted in Fig. 5.21, is used.

The system has been modified to include one tap-changing transformer between buses 40

and 3.

At first, transmission lines which connect Bus 17 with buses 27, 16 and 18 are tripped; as
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Figure 4.25: Dynamic Load Tap-Changer (DLTC) performance.
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Figure 4.26: Voltage magnitude at Buses 4, 7 and 9.

a consequence Bus 17 including its load, is isolated from the system, producing a voltage drop

at the majority of nodes. Next, the transmission line connecting buses 3 and 18 is taken out

of service, causing that node 18 and its load become separated from the system, bringing a

recovery of system voltages. This is followed by a tripping of the transmission line connecting

buses 3 to 4; an event that triggers a voltage collapse of the entire system.

Fig. 4.28 shows the voltage magnitudes in the remaining 37 buses of the system. Fig.

4.29 shows the discrete response of the tap-changer under abrupt voltage changes. It can be

seen that this device works in its pre-specified working range, which is from 0.90 to 1.10. The

tap changer performance can be observed in Fig. 4.29.

Fig. 4.30 shows the voltage profile at the bus where the voltage is controlled by the

tap-changer. As shown, the tap-changer transformer is able to control the voltage around its

specified value, 1 p.u., even when the system is undergoing unfavourable conditions.
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Figure 4.27: One-line New England test system diagram.
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Figure 4.30: Voltage magnitude at Bus 3.
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4.10 Summary

This chapter focuses on the dynamic model of generating plants. For the purpose of this

research, dynamic stability assessment, mathematical models of the classical synchronous

machine model and the advanced representation of it, with automatic voltage regulator,

turbine, speed-governor and boiler, in a balanced three-phase frame of reference have been

developed. A set of ordinary differential equations describing the components was obtained for

each generating plant component. In each case, the differential equations of each component

are transformed into an algebraic form taking advantage of the implicit trapezoidal rule.

The differential-algebraic model of the network has been coded in software to carry out time

domain analyses of power networks with combined dynamic and static elements. An implicit

trapezoidal integration method embedded with a Newton-Raphson iteration technique has

been selected to solve simultaneously, the differential and static system equations. The models

and the solution method have been proven capable of performing adequately the long-term

dynamic assessment of power systems. The trapezoidal rule is applied to discretise the

dynamic equations corresponding to all the synchronous generators’ variables and power

plant components.

Several network disturbances, such as tripping lines, load variations and balanced three-

phase faults have been studied using the developed algorithm. Where appropriate, the results

reported are compared with the output of PSAT [Milano, 2007,Milano, 2005,Milano, 2006], a

widely used transient stability simulation package within the academic community, yielding

satisfactory agreement.



Chapter 5

Power System Loads Modelling

5.1 Load Modelling Concepts

5.1.1 Introduction

Over the past several years, the increasing concern over voltage stability has lead to an

enormous effort in industry to develop acceptable techniques and tools for analysis of this

phenomena [Taylor, 1994,IEEE Power Engineering Society, 2002,Morison et al., 1993]. Since

voltage stability is characteristically different from other forms of stability, such as transient

stability or small signal stability, new analytical and modeling approaches were required.

Both steady-state (static) analyses methods (such as PV curves and modal analyses) and

dynamic analyses (such as time-domain simulation) have gained industry acceptance and are

now widely used.

An important step in the development of analyses methods involves identifying and de-

veloping models for system components, devices, and controls which are key to the voltage

stability phenomenon. These include such examples as the modelling of reactive capability of

generators including over-excitation limiters, Static Var Systems, automatic under-load tap-

changer transformers, automatically switched capacitors, and load-shedding schemes. In gen-
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eral, these can be considered deterministic modelling issues; the device structures/functions

are not explicitly time-varying and once known, can be modelled with a reasonable degree

of certainty. However, the driving force for voltage instability is usually the loads, which

can be considered highly statistical in nature and, therefore, much more of a challenge when

developing practical models which are generically applicable. Studies have shown that the

results of stability simulations can be drastically affected by variations in load models; this is

particularly true for voltage stability studies in which loads may be subjected to large varia-

tions in system voltages and in which short-term and long-term non-linear load characteristics

may come into play. While there has been significant attention given to load modelling in

industry [IEEE Load Task Force, 1993, IEEE Task Force on Load Representation, 1995,Xu

and Mansour, 1994,Hagajos and Danai, 1998], including numerous IEEE and CIGRE pub-

lications, for most engineers, it remains a challenge to properly develop load models which

can be used with confidence in practical day-to-day studies.

Power system engineers base decisions concerning system performance in large part on the

results of power flow and stability simulation studies. In performing power system analyses,

models must be developed for all relevant system components, including generating station,

transmission and distribution equipment and load devices.

Much attention has been given to models for generation and transmission/distribution

equipment as described in Chapter 4, and load representation has received a lack of attention

and continues to be an area of greater uncertainty.

Many studies have shown that load representation can have a significant impact on anal-

yses result [IEEE Load Task Force, 1993, IEEE Task Force on Load Representation, 1995].

Therefore, load modelling is of major importance and should be address and considered for

dynamic performance analyses.

For purposes of system studies, the term ”load” refers to the equivalent representation

of the aggregate effects of many individual load devices and the interconnecting distribution

and subtransmission systems that are not explicitly represented in the system model [IEEE
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Power Engineering Society, 2002].

Load characteristics affect the dynamic behaviour of a power system and the importance

of proper representation of loads in power system stability studies has long been recognized

[Concordia and Ihara, 1982].

Load modelling for dynamic performance analyses has been greatly advanced in the past

few years. A bibliographical review [IEEE Task Force on Load Representation, 1995] pub-

lished in 1995 contained 118 references on the subject. However, the representation of loads

for voltage stability analyses involves several aspects not required for conventional stabil-

ity studies. The modelling of these effects is not well-established and is still the subject of

ongoing investigation [IEEE Power Engineering Society, 2002].

For stability studies load representation is very common to be denoted by a load bus

which represents incandescent and fluorescent lamps, heaters, air conditioner, ovens, refrig-

erators, motors, arc furnaces and so on. Induction motors constitute a major portion of

the system load. The precise representation of load is difficult to estimate. Even when the

precise representation of load is known, there are many other factors like time (hour, day,

season), weather conditions and the state of the economy that prevent the load modelling in

power systems [Kundur, 1994]. Hence, load representation in stability studies is based on a

considerable amount of simplifications. The active and reactive power consumed by the load

could be represented by a simple mathematical model, and the load models can be divided

into two main categories:

a Static load model,

b Dynamic load model.
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5.2 Static Load Model

In transient stability studies simulations, loads are typically modelled as purely static,

(algebraic) functions according to their time responses to voltage and frequency variations in

the system.

The load model can be defined as a mathematical representation of the relation between

the active or reactive power (or the current injection) in a load bus and the complex voltage

of this same bus.

Regularly, static models were used in earlier attempts to model load elements. However,

to simplify the mathematical load expression frequency was considered constant, leading it

to a load expression where only the voltage dependency is considered.

5.2.1 Polynomial representation

Typically both active and reactive power loads are represented by quadratic polynomials

given by

P = P0

[
a0

( |V |
|V0|

)2

+ a1

( |V |
|V0|

)
+ a2

]
(5.1)

Q = Q0

[
b0

( |V |
|V0|

)2

+ b1

( |V |
|V0|

)
+ b2

]
(5.2)

where V0, P0 and Q0 are normally taken as initial operating conditions.

Fig. 5.1 shows this load model representation.

The load elements were divided into:

i Constant impedance ”Z”,

ii Constant current ”I” and

iii Constant power ”P”.
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Figure 5.1: Simple load representation as ZIP loads.

The coefficients a0,1,2 and b0,1,2 are fractions of the constant power, constant current and

constant impedance components in the active power loads. A constraint is imposed:

a0 + a1 + a2 = 1

b0 + b1 + b2 = 1

This load representation in not appropriate for cases involving large voltage variations.

5.2.2 Exponential representation

This load model has a voltage dependence of load characteristics and expresses the charac-

teristics of the load at any instant or time as algebraic functions of the bus voltage magnitude

at that moment [IEEE Load Task Force, 1993]. It is represented by,

P = Po

( |V |
|Vo|

)np

(5.3)

Q = Qo

( |V |
|Vo|

)nq

(5.4)

Note that by setting the exponents np and nq to 0, 1 or 2, the model represents con-
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stant power, constant current or constant impedance characteristics, respectively. Exponents

greater than 2 or less than 0 may be appropriate for some types of loads [IEEE Load Task

Force, 1993].

For constant power model, the voltage is invariant and allows loads to be represented

with a stiff voltage characteristic. The constant current model gives a load demand that

varies linearly with voltage np ≈ nq ≈ 1. This is a practical representation of the real power

demand as a mixture of resistance and motor devices. Finally, for constant impedance model,

the load power changes proportionally np ≈ nq ≈ 2. This model represents lighting loads

but it does not model stiff loads satisfactorily.

5.3 Frequency Load Model

For this load modelling, a static load model representation may includes frequency de-

pendance. This is usually represented by expressing either a polynomial or exponential load

model multiplied by a factor of the following form,

(1 + apf∆f)

where ∆f is the frequency deviation, given by,

(f − f0)

where f is the frequency of the bus voltage, f0 is the rated frequency.

The value of apf normally ranges from 0 to 3.0 for the active contribution and from −2.0

to 0 for the reactive power contribution [Concordia and Ihara, 1982].

Usually, the bus voltage frequency is not an inherent state variable of the system however,

it can be computed by taking the numerical derivative of the bus voltage angle.
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5.4 Dynamic Load Model

Despite the effort to get more accurate load models where the voltage/frequency depen-

dance is present [Hill, 1993, Anrborg et al., 1998], these models do not take into account

the dynamic of the load and are still being modelled as static loads. Thus, to modelled

the dynamic load behaviour in more detail where the voltage/frequency parameters and the

dynamic itself of any electrical power system could be represented, an induction motor load

representation is more than necessary.

In today’s power systems, the motors consume a large fraction of the electricity generated.

Hence, accurate modelling of these motors is required to capture the dynamics associated with

the motors.

There is wide-ranging agreement that load characteristics have a marked influence on

system stability, in general, and that induction motor loads play a dominate role during the

initial stages of a voltage instability occurrence [Sekine and Ohtsuki, 1990, Hill, 1993], in

particular.

5.4.1 Induction motor modelling

A simple and yet realistic model of the induction motor is used in the dynamic power

flows algorithm. It is based on the equivalent circuit shown in Fig. 5.2, and corresponds to

a single cage induction motor.
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Figure 5.2: Induction motor equivalent circuit.
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Where Rs and Xs are the resistance and reactance of the stator, respectively, Rc stands for

core loses, Xm represents the magnetizing reactance, Rr and Xr are the rotor’s resistance

and reactance, respectively, and s is the slip. The applied voltage of the induction machine

is Eim = Vimejθim , while Ia and Ib are the currents through stator and rotor, respectively.

The induction motor’s stator and magnetizing branch impedances may be lumped to-

gether with the impedances of the transmission network and only the rotor is taken to be the

dynamic element of it, with the air-gap line providing the interface between the two circuits.

Hence, the rotor model consists of a first order differential equation where the rotor slip s is

the state variable, and equations for active and reactive powers at the air-gap line are:

ṡ =
1

2Him

(
Pim

1− s
− Pag

)
(5.5)

Pag =
(

sRr

R2
r + s2X2

r

) (
e2
ag + f2

ag

)
(5.6)

Qag =
(

s2Xr

R2
r + s2X2

r

) (
e2
ag + f2

ag

)
(5.7)

where s = (ω0−ωr)/ω0, ω0 = 2πf is the synchronous speed, f is the base operating frequency,

ωr is the rotor speed, Him is the induction motor’s inertia constant, Pim is the mechanical

output power, Pag and Qag are the active and reactive powers at the air-gap line, eag and

fag are the real and imaginary components of the air-gap voltage, Rr and Xr are the rotor’s

resistance and reactance, respectively.

As already has been described at Section 4.8, the set of DAE describing each plant com-

ponent of the power network are interdependent and the simultaneous calculation provides

for a more stable numerical solution.

The same procedure applied at Chapter 4 is applied for the differential equation of the

induction motor, Eq. 5.5,
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s(t) − s(t−∆t) =
∆t

2

[
1

2Him

(
Pm

1− s(t)
− Pag(t)

)
+

1
2Him

(
Pm

1− s(t−∆t)
− Pag(t−∆t)

)]
(5.8)

in a compact way, it can be re-written as follow,

Fs = Fs(t) + Fs(t−∆t) + Cs = 0 (5.9)

where

Fs(t) = s(t) +
∆t

2

[
1

2Him

(
Pm

1− s(t)
− Pag(t)

)]

Fs(t−∆t) = −s(t−∆t) +
∆t

2

[
1

2Him

(
Pm

1− s(t−∆t)
− Pag(t−∆t)

)]

Cs = 0

Equations 4.32 and 4.33 describing the active and reactive powers injected in the network

buses reported at Section 4.5, are augmented to incorporate explicitly the active and reac-

tive powers contributed by all induction motors and generators in the network, respectively.

Hence, at generator buses and load buses with an induction motor load representation,

P(k) + Pe(genbus(l))

Q(k) + Qe(genbus(l))

(5.10)

P(m) + Pag(imbus(n))

Q(m) + Qag(imbus(n))

(5.11)
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for k=1,. . .,nbus and l=1,. . .,ngen, where genbus(l) is an array of generator-connected buses

and for m=1,. . .,nbus and n=1,. . .,nim, where imbus(n) is an array of induction motor-

connected buses.

When induction motors are considered, Eqs. 4.32, 4.33 and Eq. 4.44 for load buses,

Eq. 4.42 to Eq. 4.44 for generator buses and Equation 5.9 for induction motors form the

necessary set with which to carry out dynamic power flows solutions of a power system with

induction motor loads. To solve the equation set, the Newton-Raphson method may be used

to carry out the solution using a linearised system of equations. For this case, Eq. 4.45 must

be modified to include the dynamic effects of the induction motor, yielding to the following

linearised system of equations:




∆P

∆Q

−−
Fω

Fδ

FE′
d

FE′
q

FE′′
d

FE′′
q

−−
Fs




=




J11 | J12 | J13

−− + −− + −−
J21 | J22 | J23

−− + −− + −−
J31 | J32 | J33







∆e

∆f

−−
∆ω

∆δ

∆E′
d

∆E′
q

∆E′′
d

∆E′′
q

−−
∆s




(5.12)

where
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∆P = [∆Pg, . . . , ∆Pn]t

∆Q = [∆Qg, . . . , ∆Qn]t

∆e = [∆eg, . . . ,∆en]t

∆f = [∆fg, . . . ,∆fn]t

∆ω = [∆ωg, . . . ,∆ωr]
t

∆δ = [∆δg, . . . ,∆δr]
t

∆E′
d =

[
∆E′

dg
, . . . ,∆E′

dr

]t

∆E′
q =

[
∆E′

qg
, . . . , ∆E′

qr

]t

∆E′′
d =

[
∆E′′

dg
, . . . ,∆E′′

dr

]t

∆E′′
q =

[
∆E′′

qg
, . . . , ∆E′′

qr

]t

∆s = [∆sj , . . . , ∆sm]t

Fω =
[
Fωg , . . . , Fωr

]t

Fδ =
[
Fδg , . . . , Fδr

]t

FE′d
=

[
FE′dg

, . . . , FE′dr

]t

FE′q =
[
FE′qg

, . . . , FE′qr

]t

FE′′d
=

[
FE′′dg

, . . . , FE′′dr

]t

FE′′q =
[
FE′′qg

, . . . , FE′′qr

]t

Fs =
[
Fsj , . . . , Fsm

]t

with the various Jacobian entries defined as:



5.4. Dynamic Load Model 119

J11 =




(
∂Pg

∂eg
+ ∂Peg

∂eg

) (
∂Pg

∂fg
+ ∂Peg

∂fg

)
· · · ∂Pg

∂el

∂Pg

∂fl
· · · ∂Pg

∂em

∂Pg

∂fm(
∂Qg

∂eg
+ ∂Qeg

∂eg

) (
∂Qg

∂fg
+ ∂Qeg

∂fg

)
· · · ∂Pg

∂el

∂Pg

∂fl
· · · ∂Qg

∂em

∂Qg

∂fm

...
...

. . .
...

...
. . .

...
...

∂Pl
∂eg

∂Pl
∂fg

· · · ∂Pl
∂el

∂Pl
∂fl

· · · ∂Pl
∂em

∂Pl
∂fm

∂Ql
∂eg

∂Ql
∂fg

· · · ∂Pl
∂el

∂Pl
∂fl

· · · ∂Ql
∂em

∂Ql
∂fm

...
...

. . .
...

...
. . .

...
...

∂Pm
∂eg

∂Pm
∂fg

· · · ∂Pm
∂el

∂Pm
∂fl

· · ·
(

∂Pm
∂em

+ ∂Pem
∂em

) (
∂Pm
∂fm

+ ∂Pem
∂fm

)

∂Qm

∂eg

∂Qm

∂fg
· · · ∂Qm

∂el

∂Pm
∂fl

· · ·
(

∂Pm
∂em

+ ∂Pem
∂em

) (
∂Pm
∂fm

+ ∂Pem
∂fm

)




Entry J11 is essentially the Jacobian matrix of the conventional Newton-Raphson method

in rectangular coordinates but with the following extensions: (i) full contribution of the slack

bus is included; (ii) the Jacobian terms of the generator stator powers are added to the

self elements contributed by the network at generator buses (bus g in matrix J11, where

g = 1, . . . ,ngen); (iii) the Jacobian terms of the induction motor stator powers are added to

the self elements contributed by the network at induction motor buses (bus m in matrix J11,

where m = 1, . . . ,nim). It should be noted that in matrix J11, load buses with no induction

motor load are termed l.

J22 =




∂Fωg

∂ωg
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∂δg
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∂E′qg
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∂FE′qg

∂ωg
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∂FE′′
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∂FE′′
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∂FE′′
dg

∂E′′qg

∂FE′′qg

∂ωg

∂FE′′qg

∂δg

∂FE′′qg

∂E′dg

∂FE′′qg

∂E′qg

∂FE′′qg

∂E′′dg

∂FE′′qg

∂E′′qg



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J33 =
[

∂Fsim
∂sim

]

J12 =




∂Pg

∂ωg

∂Pg

∂δg

∂Pg

∂E′dg

∂Pg

∂E′qg

∂Pg

∂E′′dg

∂Pg

∂E′′qg

∂Qg

∂ωg

∂Qg

∂δg

∂Qg

∂E′dg

∂Qg

∂E′qg

∂Qg

∂E′′dg

∂Qg

∂E′′qg

...
...

...
...

...
...

0 0 0 0 0 0




J21 =




∂Fωg

∂eg

∂Fωg

∂fg
· · · 0

∂Fδg

∂eg

∂Fδg

∂fg
· · · 0

∂FE′
dg

∂eg

∂FE′
dg

∂fg
· · · 0

∂FE′qg

∂eg

∂FE′qg

∂fg
· · · 0

∂FE′′
dg

∂eg

∂FE′′
dg

∂fg
· · · 0

∂FE′′qg

∂eg

∂FE′′qg

∂fg
· · · 0




J23 =




∂Fω1
∂s1

· · · 0
∂Fδ1
∂s1

· · · 0
∂FE′

d1
∂s1

· · · 0
∂FE′q1

∂s1
· · · 0

∂FE′′
d1

∂s1
· · · 0

∂FE′′q1
∂s1

· · · 0



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J32 =
[

∂Fsim
∂ωg

∂Fsim
∂δg

∂Fsim
∂E′dg

∂Fsim
∂E′qg

∂Fsim
∂E′′dg

∂Fsim
∂E′′qg

]

J13 =




∂Pg

∂sim

∂Qg

∂sim

...

0




J31 =
[

∂Fsim
∂eg

∂Fsim
∂fg

· · · 0

]

In matrix entries J12, J21, J13 and J31 all zero terms are null vectors of suitable dimen-

sions required to pad out the various matrix entries. Notice also that if no induction motors

and generators share the same bus, matrix entries J23 and J32 are null entries.

In addition to the entries corresponding to the generating plant itself the Jacobian also

considers mutual terms corresponding to the interface between the network and the generating

plant.

5.5 Results

5.5.1 Test case 1

To validate the induction motor model, a time domain simulation has been carried out and

compared with a dynamic simulation where the load is represented by its voltage/frequency

dependence load model [Concordia and Ihara, 1982,IEEE Task Force on Load Representation,

1995].
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The test system used for the induction motor validation is depicted at Fig. 5.3.

2 3

Single-cage induction motor representation

s
R

s
X

r
R s

r
X

m
X

1

Figure 5.3: Single-cage induction motor representation.

To fully model the induction motor as depicted at Fig. 5.2, the induction motor’s stator

impedances, Rs + jXs, and the magnetizing branch, Xm are grouped with the impedances

of the transmission network and only the rotor is modelled according to Eq. 5.7. The core

resistance, Rc of Fig. 5.2 is neglected.

For validation purposes, the circuit delimited by the dashed line of Fig. 5.3, is replaced

by a load represented by its voltage/frequency dependance load model, as shown in Fig. 5.4.

There is the notion that the exponential representation with index equal to 1 may be used

to good effect to represent an induction motor load.

1 2

Load

Figure 5.4: Static load model representation.

The scenario considered for this study is a load aggregation at Bus 2. A load is added at

t = 0.05m, using a 0.25 pu resistive impedance. The simulation is carried out with a 200kW

induction machine [Pedra et al., 2005] described in Table 5.5.1. The simulation is run for five

minutes.

Fig. 5.5 shows the bus voltage profile for the induction motor load model and the volt-

age/frequency dependence load model at Bus 2.

Fig. 5.6 and 5.7 depict the active and reactive consumed powers at Bus 2, for the induction
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Table 5.1: Induction Motor Parameters
Rated output power, 500kW
Rated voltage, 400V
Rated frequency, 50Hz
Rs = 0.00360 pu Xs = 0.08179 pu
Rr = 0.00719 pu Xr = 0.08179 pu
Xm = 2.2940 pu
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Figure 5.5: Bus voltage magnitude at Bus 2.

motor load model and the voltage/frequency dependance load model.

As expected, the response between the induction motor model representation and the

voltage/frequency load model representation agree on well for the steady-state period but

they do so how to have a slightly different dynamic behaviour.

Fig. 5.8 and Fig. 5.9 show the slip performance, s and the voltage profile at the air-gap

line, Vag. 5.2. Fig. 5.10 shows the voltage frequency deviation at Bus 2.
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Figure 5.6: Active power injection at Bus 2.
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Figure 5.7: Reactive power injection at Bus 2.

5.5.2 Test case 2

The dynamic behaviour of the induction motor is assessed more fully. The test system

used is the nine-bus, three-machine power system depicted at Fig. 4.16 [Chow, 1982,Anderson

and Fouad, 1997].
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Figure 5.8: Air-gap voltage profile.
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Figure 5.9: Slip performance.

To demonstrate the applicability and versatility of the dynamic power flows tool and the

induction motor modelling, the loads of Buses 5 and 6 of Fig. 4.16 have been replaced for

two small industrial induction motors [Kundur, 1994]. The load connected at Bus 8 remains

as an static load. There is a 35% load increment of phase c at this bus at time 1 min. The
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Figure 5.10: Bus frequency deviation.

simulation is run for 10 minutes.

Figure 5.11 and Fig. 5.12 show active and reactive power consumed by the induction

motors, respectively.
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Figure 5.11: Active power consumption by the induction motors.

Fig. 5.13 depicts the slip performance for the induction motor during the transient sim-
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Figure 5.12: Reactive power consumption by the induction motors.

ulation.
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Figure 5.13: Slip performance.

Fig. 5.14 depicts the bus voltage magnitude at load-connected buses. The voltage magni-

tude at the induction motor-connected buses is also affected by the load variation perturbation

however, it drops less than at the affected bus, as is shown in Fig. 5.14. Due to load mod-
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ification, it brings about a generators’ field voltage Ef increment, as depicted at Fig. 5.15.

From Fig. 5.15, it can be said, that the synchronous generators connected at Buses 2 and 3

supply more energy than the one connected at Bus 1, due to the former ones being closer to

the perturbation point.
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Figure 5.14: Bus voltage magnitude at load-connected buses.
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Figure 5.15: Generators’ field voltage.
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5.5.3 Test case 3

The dynamic behaviour of the induction motor load is assessed further in this section, with

an induction motor with parameter data corresponding to a large industrial motor [Kundur,

1994], replacing the load connected at Bus 5. The perturbation consists in increasing the

torque of this induction motor by 25%. Figs. 5.16 and 5.17 show the active and reactive

powers drawn by the induction motor, where the former jumps from just over 1.3 pu in

steady-state to a new value of 1.66 pu, an increase of approximately 27%. Likewise, the

reactive power consumption goes from 0.39 pu to 0.46 pu, an increase of almost 18%.
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Figure 5.16: Active power consumption of the induction motor.

As shown in Fig. 5.18, the slip has an initial value of 8.1% and following the perturbation

it settles to a value of 10.75%. Fig 5.19 depicts the bus voltage magnitude for all buses. It it

shown, that after a bus voltage drop at all buses the system remains stable. Fig 5.20 shows

the angular velocity for the three generators.
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Figure 5.17: Reactive power consumption of the induction motor.
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Figure 5.18: Slip performance of the induction motor.

5.5.4 Test case 4

The dynamic power flows algorithm is used to analyse the dynamic response of the New

England test system [Chow, 1982], depicted in Fig. 5.21. It consists of 39 buses, 10 generators,

36 transmission lines and 10 transformers. Four distinct simulation studies are conducted in
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Figure 5.19: Bus voltage profile.
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Figure 5.20: Generators’ speed.

this section, each relating to a different kind of load representation, namely induction motor

and exponential load model with indices 0, 1 and 2, respectively. In each case, all loads are

assumed to be of the same kind. The aim is to carry out a series of planned outages which

have the effect of pushing the system into a state of voltage instability. At the simulation
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level, such outages lead to very low voltages at several nodes of the network, and it comes a

point during the simulation that the dynamic power flows algorithm fails to converge.
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Figure 5.21: One-line New England test system diagram.

The sequence of planned outage events is as follows: at time 0.05 s, transmission lines

connecting Bus N17 and buses N27, N16 and N18 are tripped; as a consequence of this,

Bus N17, including its load, becomes isolated from the system, producing voltage drops in

the majority of buses, as shown in Fig. 5.23. Later on, at time 0.1 s, the transmission line

connecting buses N3 and N18 is disconnected, causing Bus N18 and its load to separate from

the system, resulting in an overall recovery of system voltages, as shown in Fig. 5.23. This is

followed by the tripping of transmission line connecting buses N3 and N4, at time 0.15 s; an
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event which to a greater or lesser extent reduces voltages at all buses. This trend accentuates

with time and in several buses, when the system load is represented by induction motors, the

voltages drop below 0.93 p.u. at a time 0.25 s. Just after 0.42 s, the voltage at Bus N14, which

has shown to be the weakest bus, reaches a value of 0.85 p.u. and the dynamic power flows

algorithm can not reach convergence any longer. The results in Fig. 5.22 corresponds to the

case when all loads are assumed to be induction motors with parameter data corresponding

to a large industrial motor [Kundur, 1994].
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Figure 5.22: Bus voltage profile - Loads as induction motors.

In Fig. 5.23 it is shown how the overall system voltage perform when the load is expo-

nential with index 1. The simulation seems to be slightly more robust with the static load

representation with exponential index 1 than with the dynamic load representation; the sim-

ulation runs for almost 0.50 s but the downward trend of system voltage is very much in line

with that observed in Fig. 5.22 for the case of induction motor load. A more detailed assess-

ment is made with reference to Fig. 5.26, where nodal voltages are shown for Bus N14; the

weakest bus in the network. Four different results are shown, corresponding to the four kinds

of load representation used in the study. At this particular bus, the dynamic load voltage



5.5. Results 134

response exhibits the higher profile and this is followed by the static load representations with

exponential indices 0, 1 and 2, respectively. The load representation with exponential index

2 is too pessimistic and posses the biggest challenge to the dynamic power flow algorithm.

The solution is halted at just after 0.37 s. The load representation with exponential index 1

posses the least challenge to the algorithm but the nodal voltages are still well below those

of the induction motor and the static load representation with exponential index 0.
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Figure 5.23: Bus voltage profile - Loads with exponential indices equal to 1.

Moreover, the active and reactive power consumed by the induction motors are depicted

at Fig. 5.24 and 5.25, respectively.

For completeness, Fig. 5.28 shows the slip behaviour of the induction motor connected

to Bus N14 and Fig. 5.27 shows slip performance for all the induction motors. The figures

clearly shows that at time 0.15 s, following the tripping of transmission line N3-N4, the slip

for most of the induction motors exhibits a relatively large swing.
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Figure 5.24: Active power consumed by the induction motors.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time, sec

Ra
ct

iv
e 

po
we

r 
co

ns
um

pt
io

n,
 p

u

Figure 5.25: Reactive power consumed by the induction motors..
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Figure 5.26: Voltage magnitudes at N14.
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Figure 5.27: Slip performance.
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Figure 5.28: Slip performance.
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5.6 Summary

This chapter relies mainly, on the development, analyses and implementation of the loads’

behaviour in a dynamic power flow algorithm.

The dynamic power flows computer program has been extended to encompass static and

dynamic load modelling including induction motor loads, to enable the study of a wide range

of dynamic voltage phenomena in power systems. The upgraded software is well suited to

carrying out comprehensive studies of wide-area dynamic voltage collapse, as demonstrated by

numerical example. The overall method blends seamlessly the algebraic-differential equation

set which represent the power system by using repeated linearization and the trapezoidal rule,

resulting in a unified frame-of-reference with which to carry out reliable numerical solutions

using the Newton-Raphson method.

In a nutshell, this is a dynamic power flows algorithm which enables dynamic assessments

of the power system, with strong convergence characteristics and flexible network representa-

tion. Besides presenting a detailed description of how high-order synchronous generator and

induction motor models are incorporated into the dynamic power flows algorithm, the thrust

of this chapter is on system load modelling, and the responses of static load representations

are compared with those of induction motors, and general conclusions are drawn.



Chapter 6

Modelling of FACTS Controllers

6.1 Introduction

Voltage stability and control are increasingly becoming a limiting factor in the planning

and operation of power systems, mainly in weakly interconnected ones. However, for a num-

ber of economical and environmental reasons the construction of new transmission lines is

suffering delays. This has resulted in the need to maximise the use of existing transmission

facilities. During steady state operation, bus voltages must be controlled on a specified range.

A suitable voltage and reactive power control allows to obtain important benefits in the power

system operation, such as reduction of voltage gradients, efficient transmission capacity util-

isation and increase of stability margins. Applying various control equipment and methods,

the voltage control objectives in transmission system can be achieved. Some controllers work

on the basis of injecting a series voltage injection an others on injecting a shunt reactive

current at the point of connection with the power system. Following a disturbance, changes

in the system voltage take place and restoration to the reference values depends very much on

the dynamic response of the excitation systems and the other voltage controllers. In the last

decade commercial availability of Gate Turn-Off thyristor (GTO) devices with high power

handling capability, and the rapid progress of other power-semiconductor devices such as
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IGBT, have led to the development of controllable reactive power sources utilising electronic

switching converter technology [Nabavi-Niaki, 1996]. These technologies offer considerable

advantages over the existing ones such as static VAR compensators in terms of smaller foot-

prints and operational performance. GTOs and IGBTs enable the design of solid-state shunt

reactive compensation equipment based upon switching converter technology.

The advent of Flexible AC Transmission Systems (FACTS) has given rise to a new family

of power electronic equipment for controlling and optimising the performance of a power

system, e.g. STATCOM, SSSC and UPFC. The voltage-source converter (VSC) is widely

accepted to be the next generation of reactive power controller to the SVC, made up by

thyristor-switched capacitors (TSC) and thyristor controlled reactors (TCR).

Researchers are directing their efforts at the application of FACTS to enhance the eco-

nomic operational and the dynamic response of the power system. The major areas of dy-

namic applications are: voltage stability enhancement, damping torsional oscillations, power

system voltage control, and power system stability improvement. These applications re-

quire of suitable control schemes implementation (voltage magnitude and phase angle con-

trol) [Banerjee and Verghese, 2001,Kassakian et al., 1991, IEEE, 2000].

6.2 Static Synchronous Compensator (STATCOM)

The Static Synchronous Compensator (STATCOM) is a shunt connected reactive compen-

sator capable of generating or absorbing reactive power in a dynamic fashion. The STATCOM

possesses operating characteristics similar to those of the rotating synchronous compensator

but with no mechanical inertia. The STATCOM employs solid state power switching devices,

providing rapid controllability of the voltage magnitude.

The STATCOM contains a step-down transformer, with a leakage reactance, a GTO or

IGBT voltage source inverter (VSI), a DC capacitor and a control structure. The AC voltage

difference across the leakage reactance is regulated to produced reactive power exchange
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between the STATCOM and the power system, the objective being to regulate the AC voltage

at the bus bar in order to improve the voltage profile of the power system. Moreover, a

secondary damping function may be added to the STATCOM for damping power system

oscillations [IEEE, 2000]. The basic voltage-source inverter representation for reactive power

generation is shown schematically in Fig. 6.1.
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Figure 6.1: STATCOM one-line diagram.

The basic principle of STATCOM operation is as follows. The VSI generates a controllable

AC voltage source behind the leakage reactance. This voltage is compared with the AC

bus voltage system; when the AC bus voltage magnitude is above that of the VSI voltage

magnitude, the AC system sees the STATCOM as an equivalent inductor connected to its

terminals. Otherwise, if the VSI voltage magnitude is above that of the AC bus voltage

magnitude, the AC system sees the STATCOM as a capacitor. If the voltage magnitudes

are equal, the reactive power exchange is zero. If the STATCOM has a DC source or energy

storage device on its DC side, it can supply active power to the power system. This active

power exchange can be achieved by adjusting the phase angle of the STATCOM terminal
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and the phase angle of the AC power system. When the phase angle of the AC power system

leads the VSI phase angle, the STATCOM absorbs active power from the AC system; if the

phase angle of the AC power system lags the VSI phase angle, the STATCOM supplies active

power to AC system [Padiyar and Kulkarni, 1997,Lehn and Iravani, 1998,Lehn and Iravani,

2002]. Typical applications of the STATCOM are:

• Effective voltage regulation and control,

• Reduction of temporary overvoltages,

• Improvement of steady-state power transfer capacity

• Improvement of transient stability margin,

• Damping of power system oscillations,

• Damping of subsynchronous power system oscillations,

• Flicker control,

• Power quality improvement,

The voltage source converter is the building block of a STATCOM and other FACTS

devices. A simple two-level converter produces a square voltage waveform as it switches the

direct voltage source on and off. The basic objective of a VSC is to produce a sinusoidal

AC voltage with minimal harmonic distortion from a DC voltage. Three basic techniques

are used for reducing harmonics in the converter output voltage. Harmonic neutralisation

using magnetic coupling (multi-pulse converter configurations), harmonic reduction using

multi-level converter configurations and control.
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6.3 STATCOM Modelling

STATCOM is a FACTS controller that is used in power systems to regulate the line

voltage, enhance the power transmission capacity and extend the transient stability margin.

A STATCOM essentially a voltage-source converter aimed at proving reactive power support

for voltage control.

Assuming balanced, fundamental frequency voltages, the controller can be accurately

represented in stability studies using the voltage source model shown in Fig. 6.2 together

with the block diagram control law in Fig. 6.3.

STATCOM
V

s
X

j
m m m

V e f= +

-

+

STATCOM
I

Figure 6.2: STATCOM model.

The differential equation corresponding to this model can be written as follows:

˙VSTAT =
KSTAT (Vref − Vm)− Vr

TSTAT

(6.1)

where Vr is the STATCOM voltage target, Kr is the gain for the STATCOM, Vref is the

voltage reference, Tr is the control time constant, and Vm is the bus voltage magnitude where

the STATCOM is connected to.

The complex power equation for the STATCOM is derived by first establishing the STAT-

COM current, ISTAT ,
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Figure 6.3: STATCOM block diagram.

ISTAT =
[
(Vm − VSTAT )

(
−j

1
Xs

)]∗

SSTAT = VSTAT I∗STAT

SSTAT and VSTAT are the complex power and the voltage magnitude for the STATCOM

respectively, Vm is the bus voltage magnitude where the STATCOM is connected to, and Xs

is the transformer reactance.

Separating the real and imaginary parts of the complex power, we obtain the expression

for the STATCOM active and reactive powers:

PSTAT =
VSTAT (fm cos δSTAT − em sin δSTAT )

Xs
(6.2)

QSTAT =
VSTAT (em cos δSTAT + fm sin δSTAT )− V 2

STAT

Xs
(6.3)

The differential equation 6.1 is transformed into an algebraic equation by means of the

trapezoidal rule and appended to the existing set of algebraic equations representing the

network for a unified solution. This ensures a numerically stable transformation since the

implicit trapezoidal method, described at Section 2.7 is well known for giving reasonably

accurate results even when relatively large integration time steps are selected [Kundur, 1994,
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Machowski et al., 1997].

The trapezoidal method is applied to the differential Eq. 6.1 as follows,

VSTAT (t) − VSTAT (t−∆t) =

∆t

2 TSTAT

[
KSTAT

(
Vref − Vm(t)

)− VSTAT (t) +
(
Vref − Vm(t−∆t)

)− VSTAT (t−∆t)

]
(6.4)

Re-arranging terms, leads to a more compact expression,

FSTAT = FSTAT (t) + FSTAT (t−∆t) + CSTAT = 0

where

FSTAT (t) = VSTAT (t)

[
1− ∆t

2 TSTAT

]
− ∆t

2 TSTAT

KSTAT Vm(t)

FSTAT (t−∆t) = −VSTAT (t−∆t)

[
1− ∆t

2 TSTAT

]
− ∆t

2 TSTAT

KSTAT Vm(t−∆t)

CSTAT =
∆t

TSTAT

KSTAT Vref

Equation 6.2 and Eq. 6.3, describing the active and reactive powers contributions for the

STATCOM, are explicitly incorporated into the active and reactive powers injected in the

network buses and the powers contributed by all generators in the network:

Pk + Pe,l + PSTAT,m

Qk + Qe,l + QSTAT,m

(6.5)

for k = 1, . . . , l, . . . , nbus, l = 1, . . . , ngen and m = 1, . . . , nSTAT .
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6.4 Numerical Evaluation of Power Networks with STATCOM

Controller

6.4.1 Test case 1

In this section the STATCOM controller is used to improve the bus voltage profile and

the general performance of test networks.

The nine-bus, three-machine power system depicted on Fig. 4.16, is used as test case.

From a standard static power flow calculation, it is noted that the lowest voltage magni-

tude is at Bus 5. Hence, the STATCOM is placed at this node to improve the voltage at this

bus.

Table 6.4.1 shows the parameters of the STATCOM.

Table 6.1: STATCOM parameters
Transformer reactance, Xs 0.06

Reference Voltage 1.00
Control Gain, KSTAT 100
Time constant, TSTAT 0.10

The source of perturbation is a 50% load increase at Bus 8.

Figure 6.4 shows the voltage profile at Bus 5 for two different conditions. When no

STATCOM is connected, represented by a dashed line, and the condition when STATCOM

is connected, represented by the solid line.

It is observed that when no STATCOM is connected the bus voltage magnitude drops

until a value around 0.977 pu, whereas for the condition when the STATCOM is connected

the voltage magnitude has a sudden voltage drop at the time of the perturbation reaching a

value of around 0.993, but the fast response of the STATCOM controller improves the voltage

magnitude to the desired value condition.

Figure 6.5 and Fig. 6.6 depict the reactive power and the STATCOM injected voltage,
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Figure 6.4: Bus voltage response to a load change.

needed to improve the voltage at Bus 5.
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Figure 6.5: STATCOM voltage injection.

Priori to the disturbance, the reactive power injected by the STATCOM is null but once

the system is subjected to the load variation, the STATCOM starts injecting the necessary

amount of reactive power to control the voltage at the specified level, as shown in Fig. 6.6. A
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Figure 6.6: STATCOM reactive power injection.

similar situation arises with the voltage provided by the STATCOM, however, the STATCOM

voltage is close to 0.996 pu prior to the disturbance, and reaches a maximum value of around

1.003 pu during the transient period.

6.4.2 Test case 2

The dynamic behavior of the STATCOM is assessed further in this section.

The disturbance is initiated by a symmetric three-phase fault occurring near Bus 7, at the

end of line 5-7. The fault is cleared by opening line 5-7 through the breaker approximately

3 cycles after the fault occurred.

The dynamic voltage response is shown in Fig. 6.7, where large voltage swings follow the

fault clearance. Notice that the voltage drops below 0.6 pu at Bus 8 at time 1.6 min. To

improve the system response to this kind of faults, a STATCOM is connected at this bus,

and a vastly improved response is shown in Fig. 6.8.

As expected, the bus voltage profile for the complete system is improved by the inclusion

of the STATCOM device.
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Figure 6.7: Bus voltage profile for condition when NO STATCOM is placed.
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Figure 6.8: Bus voltage profile for condition when STATCOM is placed.

Figure 6.9 shows the reactive power injected by the STATCOM to improve the bus voltage

profile of the system and Fig. 6.10 depicts the magnitude of the STATCOM voltage injection.

Figure 6.11 depicts the current injection of the STATCOM. In a similar manner as for

the reactive power injection, prior to the three-phase fault, both the reactive power and
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Figure 6.9: Reactive power injection of the STATCOM.
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Figure 6.10: Voltage magnitude injection of the STATCOM.

current injected by the STATCOM are null, however once the fault occurs, the STATCOM

starts injecting the required amount of current and reactive power to control and improve

the voltage of the power network.
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Figure 6.11: STATCOM current absorbtion.

6.4.3 Test case 3

The New England test system [Chow, 1982], which consists of 39 buses, 10 generators,

36 transmission lines and 10 transformers depicted in Fig. 5.21 is used to further assess the

STATCOM controller.

The FACTS device is connected at Bus 14. Two perturbation are applied to the system

as follow. At time 1 min, the load connected at Bus 15 is increased by 15% of its nominal

value and one minute later, time 2 min, the transmission line connecting buses 14 and 15 is

tripped.

Figure 6.12 shows the bus voltage magnitude for the system when the perturbations are

applied.

Figure 6.13 depicts the voltage magnitude for Bus 14. The continuous line represents the

bus voltage magnitude when the STATCOM is connected, and the dashed line represents

the bus voltage magnitude when no STATCOM is connected. It is observed that when the

FACTS device is connected to the system, it improves the bus voltage magnitude of the whole

system and controls the voltage magnitude of Bus 14 around the value of 0.914 pu, whereas
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Figure 6.12: Bus voltage magnitude when STATCOM device is connected.

when no device is connected the voltage magnitude after the second perturbation reaches a

value of around 0.875 pu. Fig. 6.14 shows the voltage magnitude for the power network when

no STATCOM controller is placed.
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Figure 6.13: Voltage magnitude comparison at Bus 14.

Figure 6.14 shows the bus voltage magnitude for the power network when no STATCOM



6.4. Numerical Evaluation of Power Networks with STATCOM Controller 153

device is connected.
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Figure 6.14: Bus voltage magnitude when no STATCOM device is connected.

Figure 6.15 shows the reactive power injected by the STATCOM to improve the bus

voltage profile of the system and Fig. 6.16 depicts the magnitude of the STATCOM voltage

injection.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

time, min

ST
AT

C
O

M
 re

ac
tiv

e 
po

w
er

, p
u

Figure 6.15: Reactive power injected by the STATCOM.



6.5. High Voltage Direct Current (HVDC) 154

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

time, min

ST
AT

C
O

M
 v

ol
ta

ge
 in

je
ct

io
n,

 p
u

Figure 6.16: STATCOM voltage.

It is observed, that while the system remains stable, no reactive power injection by the

STATCOM is needed, however when the system is perturbed the FACTS device starts to

inject the necessary amount of reactive power to improve the bus voltage magnitude of the

system.

6.5 High Voltage Direct Current (HVDC)

Over many years, interest in HVDC technology for bulk power transmission, and asyn-

chronous interconnections has remained strong. Further to the traditional HVDC technology,

termed line commutated current (LCC), based on the use of conventional thyristors; two other

lines of development in HVDC technology have appeared, capacitor commutated converters

(CCC), which is an upgrade of the traditional technology, and voltage source converters

(VSC) with insulated gate bipolar transistor (IGBT) and pulse width modulation (PWM)

control. In each of these applications, manufactures have taken maximum benefits from the

accelerated pace of power electronics technology. It is believed that in a few years time,

HVDC-VSC-based systems, will take over a large portion of the traditional HVDC market.
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However at present, bulk power DC transmission remains the realm of thyristor-based HVDC

technology [Carlsson, 2002].

The advantage of HVDC in long distance transmission is that there is no need to charge

the distributed capacitance of the transmission line with alternating voltages, making it a

more efficient form of transmission. The drawback is that more expensive terminals at the

line ends are required.

The early power converters used mercury arc valves for the AC/DC/AC conversion pro-

cess. More reliable solid state valves, suitable power transmission applications, appeared in

the mid-seventies making the design of HVDC more flexible and responsive to the need of

bulk power transmission.

HVDC has a number of characteristics that makes it markedly different from ac-transmission.

The most important are summarised below:

• Each station can be connected to AC networks that are not synchronised or do not

even have the same frequency.

• Power can be transmitted over very long distances with no need for compensation

equipment along the line.

• For comparable power densities, only two conductors are needed (or even one conductor

if the ground or the sea is used as return) for HVDC compared to the three conductors

required for AC transmission.

6.5.1 Voltage Source Converters - HVDC

A new type of HVDC transmission technology has recently been commercially developed.

By using components that can not only switch on the current but also switch it off, has made

it possible to build voltage source converters (VSC).

Since the direct current in a voltage source converter is able to flow in either direction,

the converter valves it is a requirement that the converter valves should have bidirectional
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properties. Thus, a VSC valve is made up of an asymmetric turn off device such as a GTO

with a parallel diode connected in anti-parallel.

The VSC-based system is self-commutated, it uses insulated-gate bipolar transistor (IGBT)

valves and solid-dielectric extruded HVDC cables. For economic and performance reasons,

voltage source converters are often preferred over current source converters for FACTS ap-

plications [Hingorani and Gyugyi, 1999].

HVDC-VSC transmission may be beneficial to the overall system performance in a number

of fronts. VSCs can rapidly control both active and reactive power independently from one

another, and the dynamic support of the ac voltage at each converter terminal improves

voltage stability, increasing the power transfer capability of the two ac systems [Bahrman

and Johnson, 2007].

The VSC-HVDC technology has the following additional advantages [Reed and Takeda,

2003]:

• Can be used to feed networks with no self generation capacity (black networks);

• Can operate with no communication link between stations;

• No change of voltage polarity when the power direction is reversed. This makes easier

to build multi-terminal schemes.

• It uses robust and inexpensive extruded cables for both land and sea applications;

• Small footprint converters that reduce space requirement.

Since ABB 1 introduced its voltage source converter DC-transmission system, named

”HVDC Light” in Hellsjön 1997, the rating has increased 100 times, currently standing at 330

MW in the Cross Sound cable connection. A number of projects have now been commissioned

[ABB, 2007,Cole et al., 2006] and are showing good operating experience.
1Asea Brown Boveri Ltd. (ABB Zurich)
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The transmission capacity and converters sizes of the VSC transmission are becoming

large enough to also play a role in system stability improvement. Different applications will

make good use of the high controllability of active and reactive power, considerably improving

system stability [Johansson et al., 2004].

Voltage collapse in another challenging power system application area which may be

beneficial from the VSC technology. Inadequate reactive power support from generators may

lead to voltage collapse, a situation that can be improved very considerably with the use of

VSC technology with its fast response.

One way in which VSC-HVDC technology, can improve the system voltage profile when

loads are continuously varied, is by stabilising the ac voltage. The VSC-HVDC may be used

to consume reactive power to maintain a specific ac voltage when the ac system is lightly

loaded. When the system load equals the ”natural load”, the ac transmission line neither

generates nor consumes reactive power. As the system load increases further, the VSC-HVDC

may be set to generate reactive power to support the ac system. By continuous reactive power

support from VSC-HVDCs, voltage stability margins are improved [Zhang et al., 2007].

6.6 VSC-HVDC Modelling

The HVDC model consists of two VSC stations, one operating as a rectifier and the other

as an inverter. Normally, the rectifier is use to control active power and the inverter is used

to control voltage magnitude. However, the converter stations should have control flexibility

and they could be set to exert no control. The two converter stations are joined together by

a dc line conductor or either back-to-back. Fig. 6.17 shows the application when the HVDC

is connected by a dc cable.

The HVDC model proposed here for dynamic power flows simulations is based on the

active power balance equation given by,
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Figure 6.17: HVDC-VSC transmission link diagram.

∆PHV DC = ∆Ps −∆Pr −∆Ploss (6.6)

Fig. 6.18 shows the HVDC control for the rectifier stage, where the following differential

equation is derived,

+

-

1

1
s

sT+
s

K
s

Pref
P

Figure 6.18: HVDC control block diagram for the rectifier stage.

Ṗs =
Ks (Pref − Ps)

Ts
(6.7)

where Ts is the rectifier time constant, Ks is the rectifier gain, and the reference power Pref

and rectifier sending power Ps are given by,

Pref = Ps

(
1 +

1
Ks

)
(6.8)

Ps =
Vs (fk cos δs − ek sin δs)

Xs
(6.9)
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where for Ps, Vs and δs are the rectifier shunt voltage magnitude and phase angle, respectively,

ek and fk are the real and imaginary part of the voltage at node k respectively, and Xs is

the rectifier shunt admittance.

In a similar case, Fig. 6.19 depicts the HVDC control for the inverter stage, giving the

following differential equation,

V̇r =
Kr (Vref − Vm)− Vr

Tr
(6.10)
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Figure 6.19: HVDC control block diagram for the inverter stage.

where Tr is the inverter time constant, Kr is the inverter gain, Vm is the voltage magnitude at

node m, Vref is the reference voltage and Vr is the shunt voltage magnitude at the receiving

node.

To get a better idea, Fig. 6.20 shows the equivalent diagram for the previous conditions.
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Figure 6.20: HVDC based VSC equivalent circuit.

It is important to remark, that for the rectifier stage the state variable is the rectifier

sending power Ps and for the inverter side the state variable is the shunt voltage magnitude
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Vr.

Finally Eq. 6.6 is redefined as,

FPHV DC(t) = FPs(t) − FPr(t) − FPloss(t) (6.11)

where FPS(t), FPr(t) and FPloss(t) are described as follow,

FPs(t) = −Ps

[
1 +

∆t

2Ts
(Ks + 1)

]
(6.12)

FPr(t) =
FVr(t) (fm cos δr − em sin δr)

Xr
(6.13)

FPloss(t) = 2
(

Rdc

Vs
2 Ps

)
FPs(t) (6.14)

and FVr(t) is defined as,

FVr(t) = −Vr

[
1 +

∆t

2Tr

]
− ∆t

2Tr
KrVm (6.15)

In a compact way,

FPHV DC(t) =
(

1− 2
Rdc

Vs
2 Ps

)
FPs(t) − FPr(t) (6.16)

6.7 Numerical Evaluation of Power Networks with VSC-HVDC

Controller

6.7.1 Test case 4

In this section the HVDC-VSC dynamic behavior is evaluated. As in previous cases, the

nine-bus, three-machine power system depicted at Fig. 4.16, is used.

In this test case, an HVDC-VSC is replaced with the transmission line connecting Bus 5
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and 7. It will be set to transfer 0.4 pu active power from Bus 5 to Bus 7. The rectifier is

set to regulate constant active power flow at its AC terminal, and the inverter is assumed to

exert no voltage control. The source of the perturbation is a load increment of 25% at Bus

8 at time 1 min. The simulation is carried out for 5 minutes.

Fig. 6.21 shows the voltage magnitude at all the buses, and Fig. 6.22 depicts the voltage

magnitude for the sending and receiving terminals of the HVDC. The continuous line, repre-

sents the voltage magnitude injected by the HVDC at the sending node, and the dashed line

shows the voltage magnitude injection at the receiving node.
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Figure 6.21: Bus voltage response of the power network.

Moreover, Fig. 6.23 shows the voltage magnitude at Bus 7, having a value of around

1.015 pu. It is observed that during the transient state, the voltage magnitude injected by

the HVDC-VSC terminal, depicted in Fig. 6.22, increases in order to support the voltage

magnitude at Bus 7.

The dc-link cable is assumed to contain losses, and it has a resistance value of 0.05 pu.

The amount of transferred power is set to 0.40, as depicted in Fig. 6.24, and the power at

the receiving end of the HVDC is 0.3934 pu. The transferred power to the receiving bus is
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Figure 6.22: Bus voltage magnitude at HVDC terminals.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1.0135

1.014

1.0145

1.015

1.0155

1.016

time, min

Bu
s 
vo
lt
ag
e 
ma
gn
it
ud
e,
 p
u

Figure 6.23: Bus voltage magnitude at Bus 7.

reduced due to the copper losses of the dc-link. It can be observed from the power result in

Fig. 6.24 that the power control in the rectifier is very effective in keeping the power at a

constant value of 0.4 pu.
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Figure 6.24: HVDC-VSC transferred power when dc link losses are considered.
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6.8 Summary

This chapter has addressed further developments on the dynamic power flow algorithm.

FACTS controllers based on voltage source converters have been developed and implemented

into the dynamic power flow algorithm. The main VSC-FACTS controllers described in this

chapter are the STATCOM and HVDC-VSC.

Several test cases have been presented. The STATCOM has been used to enhance the

voltage at a particular point of the network under both normal and abnormal operation,

such as a three-phase fault. Furthermore, this FACTS controller successfully improves the

voltage at the weakest bus of the system even when the power network is subjected to a

load perturbation. The HVDC-VSC has been set to active power transfer at the rectifier

end of the HVDC link, even in situation when a disturbance arises. The HVDC-VSC model

implemented is the dynamic power flow program has the flexibility of representing not only

point-to-point links but also back-to-back links.

Both VSC-FACTS devices enable a better performance of the whole system under un-

favourable conditions.



Chapter 7

Three-Phase Dynamic Power

Flows in abc Co-ordinates

7.1 Introduction

Worldwide, electrical power is generated, transmitted and distributed in a three-phase

fashion. Besides, the possibility of having excessive imbalances between the phase voltages or

currents in a three-phase system, has always been a concern to power engineers, due to their

detrimental effects on power system operation. In practice, typical power system contains

untransposed transmission lines and feeders, single and three-phase unbalanced static shunt

loads, single and three-phase dynamic loads such as induction motors and capacitors banks.

Generally, power systems are inherently unbalanced because of single-phase loads but also

because of the occurrence of asymmetrical spacings between line conductors [Zhang et al.,

2005].

When such transmission and load imbalances can no longer be assumed to be negligible,

positive sequence modelling and conventional power flows or power system dynamics sim-

ulations are not applicable. Instead, detailed three-phase models and solution techniques
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must be applied if accurate assessments are to be carried out during dynamic operation of

the power system, including the most relevant power plant components such as, synchronous

generators and power loads, modelled in phase.

To carry out comprehensive dynamic analyses of unbalanced transmission systems, it is

mandatory to have a three-phase dynamic power flow algorithm in abc co-ordinates. Likewise

its positive sequence counterpart presented in Chapter 4, for the solution of three-phase

balanced power systems, the three-phase dynamic power flows can be modelled as a set of

non-linear algebraic and differential equations representing the power network, rotating power

machinery and controls.

The different static and dynamic elements that comprise the electric power system are

modelled in the abc frame of reference to develop the three-phase dynamic power flow algo-

rithm in rectangular co-ordinates.

All the relevant power system elements for dynamic power flows analyses, have been

described in foregoing chapters; however the dynamic power flow modelling carried out has

been positive sequence analyses. Thus, the modelling needs to be extended, in such a way

that it is amenable to dynamic power flows studies in abc co-ordinates.

7.2 Power System Modelling

7.2.1 Three-phase synchronous machine modelling

The classical theory of synchronous machines for dq co-ordinates is well defined [Kimbark,

1948b,Concordia, 1951]. In this thesis, the mathematical theory presented is based on the

full dq0 co-ordinate system [Park, 1929].

The phase voltages and currents at the terminal of the synchronous generators are, re-

spectively:
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Va = Vt1sin(θ1)

Vb = Vt2sin(θ2 − 120)

Vc = Vt3sin(θ3 + 120)

(7.1)

and

Ia = It1sin(ψ1)

Ib = It2sin(ψ2 − 120)

Ic = It3sin(ψ3 + 120)

(7.2)

where

Vt is the bus voltage magnitude at bus terminals.

It is the bus voltage magnitude at bus terminals.

θ is defined as the voltage angle.

ψ is defined as the current angle.

Fig. 7.1 schematically describes a three-phase synchronous generator from a circuit theory

point of view.

The matrix transformation used to transform the abc phase variables into dq0 variables

is the following one [Park, 1929]:

[Tdq0] =
2
3




cos θ cos
(
θ − 2π

3

)
cos

(
θ + 2π

3

)

sin θ sin
(
θ − 2π

3

)
sin

(
θ + 2π

3

)

1
2

1
2

1
2




(7.3)

In generic form, including voltages and currents, the transformation operations used for

referring the stator quantities to the rotor side and viceversa are:
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Figure 7.1: Schematic synchronous machine representation.

[Fdq0] = [Tdq0] [Fabc] (7.4)

[Fabc] = [Tdq0]
−1 [Fdq0] (7.5)

Where Eq. 7.5 is referred as to the inverse transformation of Eq. 7.4.

The current component I0 is taken to produce no space field in the air-gap and, hence,

it does not affect the magnetizing rotational field [Kimbark, 1948b]. The two current com-

ponents that produce field are only the d and q components, hence, for the three-phase

synchronous generator implemented in the three-phase dynamic power flow algorithm, with

transient saliency and flux decay effects, the following equations are used:

|E| =
√

E2
d + E2

q (7.6)

δ = arctan
(

Va sin θa + I(ra sinψ + (xq − xl) cos ψ)
Va cos θa + I(ra cosψ − (xq − xl) sin ψ)

)
(7.7)

Where the voltage in phase a is taken to be the reference for calculating the internal
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voltage angle [Kundur, 1994].

7.2.2 Dynamic three-phase load tap changer model

Three-phase banks of transformers are made up of three single-phase transformers, where

the most common winding connections are: star-star, delta-delta and star-delta.

For star-star and delta-delta connected transformers, the relationship between the base

voltages and the nominal turns of the primary and secondary sides of the transformer keeps

equal for each phase [Kundur, 1994]. Nonetheless, for the star-delta transformer connection,

there is a factor of
√

3 involved because of the winding connection. Likewise, a 30◦ phase

shift must be considered between the line-to-line and line-to-neutral voltages.

The dynamic element of the three-phase load tap changer is described by the following

differential equation,

Ṫk =
1

HT

(√(
eρ
k

)2 +
(
fρ

k

)2 − V0

)
(7.8)

where HT is the tap’s servomotor inertia, ek and fk are the real and imaginary parts of the

voltage at the regulated bus, V0 is the target voltage magnitude and ρ is used to denote

phases a, b and c.

The dynamic three-phase load tap changer is discrete, and varies over time as a function

of nodal voltages eρ
k and fρ

k and the tap step size ∆Tk. Moreover, its pre-defined operating

range provide hard limits which can not be violated.

The differential equation that describes the dynamic behaviour of the three-phase load

tap changer is transformed into an algebraic equation and appended to the existing set of

algebraic equations for a unified solution. Thus, Eq. 7.8 is discretised as follows.
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FTk(t) − FTk(t−∆t) = Tk(t) +
∆t

2Ht

√(
eρ
k(t)

)2
+

(
fρ

k(t)

)2
− V0

+ Tk(t−∆t) +
∆t

2Ht

√(
eρ
k(t−∆t)

)2
+

(
fρ

k(t−∆t)

)2
− V0

(7.9)

in compact form, it can be re-written as follows,

FTk
= FTk(t) + FTk(t−∆t) + CTk

= 0 (7.10)

where

FTk(t) = Tk(t) −
∆t

2Ht

√(
eρ
k(t)

)2
+

(
fρ

k(t)

)2

FTk(t−∆t) = −Tk(t−∆t) −
∆t

2Ht

√(
eρ
k(t−∆t)

)2
+

(
fρ

k(t−∆t)

)2

CTk
=

∆tV0

Ht

It is important to mention that a single tap parameter Tk is used for the three-phases in

the three-phase primary winding.
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Figure 7.2: Dynamic load tap changer model.

The dynamic load tap changer model is depicted at Fig. 7.2, and Fig. 7.3 shows the

discrete tap representation for each phase.

The three-phase connection for a solidly grounded star-star winding transformer is de-
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Figure 7.3: Schematic representation of the discrete tap changer.

picted at Fig. 7.4 and its nodal matrix representation is,

I
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Y
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Figure 7.4: Star-star transformer connection.




IA

IB

IC

Ia

Ib

Ic




=




Ysc 0 0 −TkYsc 0 0

0 Ysc 0 0 −TkYsc 0

0 0 Ysc 0 0 −TkYsc

−TkYsc 0 0 T 2
k Ysc 0 0

0 −TkYsc 0 0 T 2
k Ysc 0

0 0 −TkYsc 0 0 T 2
k Ysc







VA

VB

VC

Va

Vb

Vc




(7.11)

In a similar manner, Fig. 7.5 and Fig. 7.6 depict the star-delta and delta-delta transformer
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connection, respectively.
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Figure 7.5: Star-delta transformer connection.
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Figure 7.6: Delta-delta transformer connection.

The corresponding nodal matrices for this connections are respectively,




IA

IB

IC

Ia

Ib

Ic




=
1
3




2Ysc −Ysc −Ysc −2TkYsc TkYsc TkYsc

−Ysc 2Ysc Ysc −TkYsc −2TkYsc TkYsc

−Ysc −Ysc 2Ysc TkYsc TkYsc −2TkYsc

−2TkYsc TkYsc TkYsc 2T 2
k Ysc −T 2

k Ysc T 2
k Ysc

TkYsc −2TkYsc TkYsc −T 2
k Ysc 2T 2

k Ysc −T 2
k Ysc

TkYsc TkYsc −2TkYsc −T 2
k Ysc −T 2

k Ysc 2T 2
k Ysc







VA

VB

VC

Va

Vb

Vc



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


IA

IB

IC

Ia

Ib

Ic




=




Ysc 0 0 −TkYsc/
√

3 TkYsc/
√

3 0

0 Ysc 0 0 −TkYsc

√
3 TkYsc/

√
3

0 0 Ysc TkYsc/
√

3 0 −TkYsc/
√

3

−TkYsc/
√

3 0 TkYsc/
√

3 2T 2
k Ysc/3 −T 2

k Ysc/3 T 2
k Ysc/3

TkYsc/
√

3 −TkYsc/
√

3 0 −T 2
k Ysc/3 2T 2

k Ysc/3 −T 2
k Ysc/3

0 TkYsc/
√

3 −TkYsc/
√

3 −T 2
k Ysc/3 −T 2

k Ysc/3 2T 2
k Ysc/3







VA

VB

VC

Va

Vb

Vc




where for the previous three-phase nodal matrices,

Ysc represents the transformer short-circuit admittance and Tk defines the tap ratio.

7.2.3 Three-phase power loads

By and large, three-phase power loads are heterogeneous and composed of all categories

of individual load devices.

If load components have abundant data and knowing the composition of it at any time of

interest on various points of the power system, then it is possible to combine the individual

component characteristics to obtain a valid analytical expression for load modelling at the

bus.

However, this is not always feasible for stability studies due to the lack of data. In that

case, comprise is that the load can be represented in algebraic form with a base power which

is a function of voltage either in polynomial or exponential form, with the exception of large

motor loads which should be represented in a more detailed manner.

Fig. 7.7 shows the schematic representation of a star-connected, three-phase load with

the star point solidly grounded. Fig. 7.8 depicts the schematic representation of a delta-

connected load.
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Figure 7.8: Delta-connected load representation.

Polynomial/exponential three-phase load model

A three-phase active and reactive power load may be described by a quadratic model

given by
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(7.12)

where V0, P0 and Q0 are the base voltage and powers of the system. µ and ν will normally

vary in the range of 0-2; Va, Vb and Vc are the three-phase nodal voltage magnitudes at the

load point. To represent a power load that to a large extent has a current characteristic, the

indices µ and ν are made equal to 1; this load representation varies linearly with voltage.

Furthermore, if the system power has the characteristics of an impedance then, µ and ν are

made equal to 2; for a constant power load, µ and ν are assumed to be 0.

The matrix expression form for both types of three-phase load connection, star and delta

are, respectively:




SLa/V 2
a 0 0

0 SLb/V 2
b 0

0 0 SLc/V 2
c




1
3




SLa/V 2
a + SLb/V 2

b −SLb/V 2
b −SLa/V 2

a

−SLb/V 2
b SLb/V 2

b + SLc/V 2
c −SLc/V 2

c

−SLa/V 2
a −SLc/V 2

c SLc/V 2
c + SLa/V 2

a




The three-phase model representation incorporates the voltage dependency of the load

and although it expresses such dependency by only algebraic relationship, such characteristic

makes the load model time dependant [IEEE Load Task Force, 1993].
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Three-phase induction motor modelling

The AC induction motor is a rotating electric machine designed to operate from a three-

phase source of alternating voltage. The stator has three winding displaced from one another

by 120◦. The most common type of induction motor has a squirrel cage rotor in which

aluminum bars are shorted together at both ends of the rotor with aluminium rings. When

a three-phase current flows through the three symmetrically placed windings, a sinusoidally

distributed air-gap flux generating the rotor current is produced. The interaction of the

sinusoidally distributed air gap flux and induced rotor currents produces a torque on the

rotor. The mechanical angular velocity of the rotor is lower than the angular velocity of the

flux wave in the air-gap by the so called slip.

The induction motor model combines the impedance and the magnetizing branch impedances

with the impedances of the three-phase transmission network and only the rotor is taken to

be the dynamic element of it, with the air-gap line providing the interface between the two

circuits. Thus, the rotor model consists of a first order differential equation where the induc-

tion motor slip s is the state variable, and the equations for three-phase active and reactive

powers at the air-gap line are:

ṡ =
1

2Him

(
Pim

1− s
− P ρ

ag

)
(7.13)

P ρ
ag =

(
sRr

R2
r + s2X2

r

) (
(eρ

ag)
2 + (fρ

ag)
2
)

(7.14)

Qρ
ag =

(
s2Xr

R2
r + s2X2

r

) (
(eρ

ag)
2 + (fρ

ag)
2
)

(7.15)

where Him is the induction motor’s inertia constant, Pim is the mechanical output power,

P ρ
ag and Qagρ are the three-phase active and reactive powers at the air-gap line, eρ

ag and fρ
ag

are the three-phase real and imaginary components of the air-gap voltage, Rr and Xr are the

rotor’s resistance and reactance, and the a, b and c phases of the load are represented by the
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superscript ρ.

The differential equation representing the slip s, Eq. 7.13, is discretised making use of

the trapezoidal method as follows:

s(t) − s(t−∆t) =
∆t

2

[
1

2Him

(
Pm

1− s(t)
− Pag(t)

)
+

1
2Him

(
Pm

1− s(t−∆t)
− Pag(t−∆t)

)]
(7.16)

Eq. 7.16 can be split into three algebraic equations separating the terms with respect to

t, ∆t and the constant parameters. Hence, it can be re-arranged as in the following way.

s(t) − s(t−∆t) =
∆t

2

[
1

2Him

(
Pm

1− s(t)
− Pag(t)

)
+

1
2Him

(
Pm

1− s(t−∆t)
− Pag(t−∆t)

)]
(7.17)

and in a more compact form,

Fs = Fs(t) + Fs(t−∆t) + Cs = 0 (7.18)

The three-phase active and reactive power injections at conventional buses are straight-

forwardly extended to include the three-phase active and reactive powers contributed by all

induction motors described by Eqs. 7.14 and 7.15 respectively. Hence, at load buses with

induction motors,
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P a
(m) + P a

ag(imbus(n))

P b
(m) + P b

ag(imbus(n))

P c
(m) + P c

ag(imbus(n))

Qa
(m) + Qa

ag(imbus(n))

Qb
(m) + Qb

ag(imbus(n))

Qc
(m) + Qc

ag(imbus(n))

(7.19)

for m=1,. . .,nbus and n=1,. . .,nim, where imbus(n) is an array of induction motor-connected

buses.

7.3 Dynamic Simulations of Three-Phase Power Networks

7.3.1 Test case 1

The nine-bus, three-machine power system depicted by the one-line schematic diagram

of Fig. 4.16, is adopted and extended to carry out three-phase dynamic power flows studies.

An unbalanced load perturbation is carried out. At minute 1 the load connected at Bus 6 is

reduced by 30, 25 and 20% of its initial value for phase a, b and c respectively. Later on at

minute 3, the load connected at Bus 8 is increased by 45, 50 and 55% of its original value

for phases a, b and c respectively. The simulation is run for ten minutes. The three-phase

power loads are represented by their static load model and the unbalanced values are given

at Table 7.1.

Fig. 7.10 shows the three-phase bus voltage magnitude for balanced load reduction of

25% at time 1 min and balanced load increment of 50% at minute 3. Fig. 7.9 depicts the

condition where unbalanced load conditions are carried out. For the balanced load condition,

the perturbation carried out is the same as for phase b of the unbalanced case. It is taken as
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Table 7.1: Final values for power loads.
Three phase power loads

Load Bus 6 Load Bus 8
Sa = 0.70 + j0.245 Sa = 1.305 + j0.435
Sb = 0.75 + j0.262 Sb = 1.350 + j0.450
Sc = 0.80 + j0.280 Sc = 1.395 + j0.465

the starting condition to compare the results for balanced and unbalanced conditions.
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Figure 7.9: Three-phase bus voltage magnitude under unbalanced loading conditions.

Figure 7.11 shows the voltage performance at Bus 5. It is appreciated from this figure

that the unbalanced conditions does not accentuates considerably the voltage profile, however,

there is a voltage difference between the balanced and unbalanced case. The continuous lines

represent the balanced load condition, and the dashed lines represent the unbalanced load

condition.

Fig. 7.12 and Fig. 7.14 depict the speed and the rotor angle deviation from the syn-
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Figure 7.10: Three-phase bus voltage magnitude under balanced loading conditions.

chronous generators for the unbalanced case, and Fig. 7.13 and Fig. 7.15 show the same

variables response under balanced conditions, respectively.

From the speed and angle deviation figures, it is appreciated that the unbalanced load

perturbation do not have an impact on the synchronous generator performance. For both

cases, the speed deviation reaches a value around 1.001 at time 3 min, and it settles down to

a value very close to the steady-state condition.

Figure 7.16 depicts the angle differences between generators namely, δ21 = δ2 − δ1 and

δ31 = δ3 − δ1. After the first load perturbation at time 1 min the angular differences start

to decay, and later on at time 3 min, when the second load perturbation takes place, the

angular differences still go further down and oscillate for around 2 minutes then becoming

stable for the remaining simulation time.
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Figure 7.11: Three-phase voltage magnitude at Bus 5 under balanced and unbalanced loading condi-
tions.
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Figure 7.12: Synchronous generators speed deviation under unbalanced loading conditions.

7.3.2 Test case 2

To show the flexibility of the three-phase dynamic power flows algorithm, a series fault

involving one phase of a transmission line opening is carried out. As in the previous test
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Figure 7.13: Synchronous generators speed deviation under balanced loading conditions.
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Figure 7.14: Rotor angle deviation under unbalanced loading conditions.

case, the three-machine nine-bus power system is used to carry out the study. The phase

a of the transmission line which connects buses 5 and 7 is disconnected at time 1 min; as

a consequence of this action the bus voltage magnitude of phase a of the system is reduced

considerably compared to the voltages in phases b and c. Fig. 7.17 depicts the bus voltage
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Figure 7.15: Rotor angle deviation under balanced loading conditions.
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Figure 7.16: Rotor angle differences under unbalanced loading conditions.

magnitude of the system under this condition.

It should be noted that although phases b and c of the transmission line remain connected

their behaviour is markedly influenced by the tripping of phase a as depicted in Fig. 7.17.

From Fig. 7.17 it is appreciated that at the time the phase a of the transmission line
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Figure 7.17: Bus voltage magnitude under unbalanced condition.

connecting buses 5 and 7 is tripped, the voltage magnitude has a considerable decrement in

comparison with the voltage magnitude for phases b and c. The most severe case for the bus

voltage magnitude of phase a of Fig. 7.17, is for the voltage magnitude at Bus 6. It reaches a

value close to 0.96 pu, whereas for phases b and c the voltage magnitude get a value around

1.02 pu. In general, the voltage magnitude for phase a suffers a decrement while for phases

b and c the voltage magnitudes have a slight increment.

Figures 7.18 and 7.19 show the angle differences between generators for the unbalance

and balanced simulation case respectively. For both test cases, the angular differences of the

machines are not larger enough to produce instability, notwithstanding that their response is

oscillatory just after the perturbation but it settles to a new steady-state value.

From Figs. 7.18, 7.19 for rotor angle deviation and Figs. 7.20, 7.21 for generators speed

deviation respectively, it is observed that the unbalanced perturbation applied to the power

network does affect the synchronous generators response when compared with the balanced

assessment. The case when the whole transmission line is tripped, which is a balanced

case, the bus voltage magnitude has a more unfavourable response, since this a more severe
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Figure 7.18: Angle differences under unbalanced condition.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time, min

A
ng

le
 d

iff
er

en
ce

s,
 ra

d

δ
2
 − δ

1

δ
3
 − δ

1

Figure 7.19: Angle differences under balanced condition.

perturbation than just the tripping of one phase of the transmission line. Fig. 7.22 shows

the bus voltage magnitude for the tripping of the whole transmission line.

It is observed in Figs. 7.20 and 7.21 that the maximum speed deviation is 1.001 pu at

time 3 min and then it drops sharply to a value of around 1.00017 pu.
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Figure 7.20: Rotor speed deviation under unbalanced condition.
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Figure 7.21: Rotor speed deviation under balanced condition.

7.3.3 Test case 3

The dynamic behaviour of the three-phase load tap changer transformer is assessed in

this section.

A load increment of 20% for phase b of Bus 5 is applied at time 1 min, and later on at



7.3. Dynamic Simulations of Three-Phase Power Networks 187

0 1 2 3 4 5 6 7 8 9 10
0.94

0.96

0.98

1

1.02

1.04

time, min

Bu
s 
vo
lt
ag
e 
ma
gn
it
ud
e,
 p
u

Figure 7.22: Bus voltage magnitude for phase a under balanced condition.

time 2 min, the load connected at phase a of the same bus is increased further by 25%. The

evaluation time is 10 min.

Figures 7.23, 7.24 and 7.25 show the voltage magnitude for phases a, b and c for the

voltage-controlled buses, respectively.
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Figure 7.23: Phase a of the bus voltage magnitude for voltage-controlled buses.
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Figure 7.24: Phase b of the bus voltage magnitude for voltage-controlled buses.
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Figure 7.25: Phase c of the bus voltage magnitude for voltage-controlled buses.

It is observed in Figs. 7.23 and 7.25 that the voltage magnitude at these points is very

well controlled when the first perturbation takes place; furthermore after the second load

perturbation takes action, the dynamic load tap changer still controlling the voltage magni-

tude within a reasonable level. Fig. 7.27 depicts the field voltage magnitude for synchronous
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Figure 7.26: Dynamic load tap changer performance.

generators and Fig. 7.26 depicts the dynamic load tap changer performance. It is noticed

from this figure that the tap ratio Tk is no longer 1 : 1 but that it varies according to system

requirements for voltage control purposes.
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Figure 7.27: Field voltage magnitude for synchronous generators .



7.3. Dynamic Simulations of Three-Phase Power Networks 190

7.3.4 Test case 4

At this section the three-phase induction motor behaviour is analysed. The same power

network used in the last test case is applied to carry out this assessment.

To demonstrate the applicability and versatility of the dynamic power flows tool and the

induction motor modelling, the loads of buses 5 and 6 of Fig. 4.16 have been replaced for

two large industrial induction motors [Kundur, 1994]. The load connected at Bus 8 remains

as an static load. There is a 20% increment of the load of one phase connected to this bus,

at time 1 min. The simulation is run for 10 minutes.

Figures 7.28 and 7.29 and Figs. 7.30 and 7.31 the show three-phase active and reactive

power consumed by the induction motors at buses 5 and 6, respectively.
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Figure 7.28: Three-phase active power consumption by the induction motor connected at Bus 5.

As expected, the three-phase active and reactive powers consumptions of the induction

motors are affected by the imbalances. The powers for phases a and b are similar but not

for phase c. The voltage magnitude at the induction motor-connected buses is also affected

by the load increments and they show a similar behaviour as the consumed powers, as show

in Fig. 7.33. The continuous lines represent the voltage magnitude for the induction motor
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Figure 7.29: Three-phase active power consumption by the induction motor connected at Bus 6.
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Figure 7.30: Three-phase reactive power consumption by the induction motor connected at Bus 5.

connected at Bus 6 and the dashed lines represent the voltage magnitude for induction motor

connected at Bus 6. Figs. 7.33(a), 7.33(b) and 7.33(c) depict the voltage magnitude for phase

a , b and c respectively.

Fig. 7.32 depicts the slip performance for the induction motor during the transient sim-
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Figure 7.31: Three-phase reactive power consumption by the induction motor connected at Bus 6.
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Figure 7.32: Slip performance for three-phase induction motor.
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Figure 7.33: Voltage magnitude for induction motor-connected buses.
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7.4 Summary

This chapter focuses on the three-phase approach in rectangular co-ordinates for the

dynamic assessment of power systems.

The dynamic power flows computer program has been extended to carry out three-phase

analyses. Likewise, it encompass the three-phase synchronous generator modelled, static and

dynamic three-phase load modelling including induction motor load, the dynamic three-phase

load tap changer and the unbalanced perturbations to the system to enable the study of a

wide range of dynamic phenomena in abc co-ordinates of power systems.

The three-phase dynamic model of generating plants is addressed. For the purpose of

this research, dynamic stability assessment, mathematical models of the synchronous ma-

chine with automatic voltage regulator, turbine, speed-governor and boiler, in the abc frame

of reference have been developed. A set of ordinary differential equations describing the

components are obtained for each generating plant component.

To a large extent the method merges simultaneously the algebraic-differential equation

set which represent the power system in abc co-ordinates by using repeated linearization and

the trapezoidal rule, resulting in a unified frame-of-reference with which to carry out reliable

numerical solutions using the Newton-Raphson method for three-phase dynamic simulations

of power systems.



Chapter 8

Conclusions

The dynamic assessment of electrical power systems using the Newton-Raphson method

represents the main concern in this research work. The goal is to develop suitable dy-

namic models of power plant components, such as synchronous generators, power loads,

VSC-FACTS controllers, and to assess their interaction with the electrical power network.

The solution technique makes use of a simultaneous solution approach which allows for

models of rotor saliency, flux decay, non-linear loads and a wide range of control actions to

be incorporated within a unified framework. This method is particulary suitable for carrying

out long-range dynamic assessments, which is one of the key points of concern of this thesis.

This contrast with more traditional solution techniques, namely, partitioned methods, which

are primarily aimed at covering short-range simulation studies.

This research work may be seen to consist of three main parts, which are: (i) Steady-state

power flows analysis in phase domain co-ordinates, including LCC-HVDC converters with

various control modes; (ii) dynamic power flows using a simultaneous solution technique,

including electro-mechanical controlled power plant components and VSC-FACTS devices

representation; (iii) and three-phase dynamic power flows for carrying out dynamic stability

assessments of unbalanced power systems.
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From the dynamic simulation studies carried out, it has been observed that inclusion of

the load tap-changer transformer has the capability of enhancing system voltage stability. It

has also been assessed via modelling and simulation, that the voltage dependency of loads is a

matter of great importance in long-term dynamic phenomena and that the load models should

reflect such dependency correctly when carrying out long-term dynamic studies. Indeed,

the studies carried out show that the most realistic way of load modelling representation

during voltage stability assessments is when induction motor loads are modelled explicitly as

induction motors and not by static polynomial loads with voltage exponent 1.

The inclusion of VSC-FACTS controllers have shown to contribute effectively to providing

dynamic voltage support during steady-state operation, and to enhance power system stabil-

ity under unfavourable conditions. They have a faster response speeds than those provided

by electromechanical devices.

Quantifiable outcome of this research, are software environments for carrying out com-

prehensive dynamic power flows studies in both positive sequence and in abc co-ordinates.

Using the generated software, detailed simulations have been carried out in order to assess

the dynamic impact of various power plant components on the electrical power network.

Dynamic modelling of the system is amenable to its better understanding, particularly

when it undergoes unfavourable conditions.

It is worth adding that with the ever-increasing power of computers, the development

of real-time simulators for dispatching and security monitoring issues are finding increasing

favour, and that simulation tools using the same philosophy as that applied in this research

work may be used as the core of an on-line dynamic security assessment application system.

8.1 Future work

Alongside the developed mathematical models for VSC-FACTS devices and its inclusion

into the simultaneous method for carrying out dynamic stability assessments for electrical
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power networks, more work needs to be done for including models of additional power elec-

tronics controllers such as the UPFC and the TCSC. Modelling of embedded generation tech-

nologies should be considered for its incorporation into the dynamic power flow algorithm,

including wind farms.
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Appendix A

HVDC Power Equations

A standard six-pulse converter bridge depicted in Fig. A.1 is used to derive the mathe-

matical model for the three-phase HVDC station.

L
s

X
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X
c

X
b

e
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e
c

e
b V
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+

_

Figure A.1: Six pulse converter station.

The three-phase supply voltages to the converter transformer va, vb and vc are taken to be

unbalanced but sinusoidal, as shown in Fig. A.2. The commutation is assumed to be delayed

by an angle α with equidistant firing angle control [Arrillaga, 1998], i.e. firing instants occur

at successive intervals of 60◦ following the first voltage crossing.

From Fig. A.2, the rectified voltage VdR is obtained by integration,

VdR =
1
π

∫ α π
3

α
[−vca(θ)] dθ +

1
π

∫ α+ 2π
3

α+π
3

[
vbc(θ)

]
dθ +

1
π

∫ α+π

α+ 2π
3

[
−vab(θ)

]
dθ (A.1)
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Figure A.2: Unbalanced converter voltage waveform.

The voltage VdR is made up of three terms,

VdR = V a
dR + V b

dR + V c
dR (A.2)

where

V a
dR =

A
√

2V ab

π

[
cos

(
α +

π

3

)
− cos

(
α +

2π

3

)]
(A.3)

V b
dR =

A
√

2V bc

π

[
cos

(
α + θbc − π

)
− cos

(
α + θbc − 2π

3

)]
(A.4)

V c
dR =

A
√

2V ca

π

[
cos

(
α + θca − π

3

)
− cos (α + θca)

]
(A.5)

giving

V ρ
dR

Ak

√
2V ρ

k

π
cos (α + Aρ) (A.6)
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where

Aa = θab = 0

Ab = θbc − 4π
3

Ac = θca − 2π
3

A similar expression is developed for the inverter,

V ρ
dI =

Am

√
2V ρ

m

π
cos (γ + Bρ) (A.7)

where

Ba = ϕab = 0

Bb = ϕbc − 4π
3

Bc = ϕca − 2π
3

Taking into account the voltage drop ∆V , the DC voltages of the rectifier and the inverter

are:

V ρ
dR =

Ak

√
2V ρ

k

π
cos (α + Aρ)−∆V (A.8)

V ρ
dI =

Am

√
2V ρ

m

π
cos (γ + Bρ)−∆V (A.9)

where ∆V is defined as,

∆V =
XcId

π
(A.10)

The powers of the inverter and the rectifier are given by the following expressions,
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PdR = VdRId =
∑

ρ=a,b,c

V ρ
dRId (A.11)

PdI = VdIId =
∑

ρ=a,b,c

V ρ
dIId (A.12)

The relations between the currents on the primary side of the three-phase transformers

and the direct current Id, are given by,

Iρ
k = Akk

√
6

π
Id = AkkId

Iρ
m = Amk

√
6

π
Id = AmkId

(A.13)

where k is a constant associated with commutation overlap. For power flow analysis, it

can be taken to be k = 0.995 [Arrillaga and Arnold, 1990].

The apparent powers are given by,

Sρ
k =

V ρ
k Iρ

k√
3

=
k1AkV

ρ
k Id√

3
(A.14)

Sρ
m =

V ρ
mIρ

m√
3

=
k1AmV ρ

mId√
3

(A.15)

where

k1 =
√

6
π k



Appendix B

Jacobian Matrix Elements

B.1 Jacobian Elements - Partial Derivatives

The Jacobian matrix elements corresponding to the discretised differential equations for

the transient synchronous generators model are described as follow.

The non-zero partial derivatives corresponding to the function Fω(t) are:

∂Fω(t)

∂ω
= 1 + KD (B.1)

∂Fω(t)

∂δ
= 2Kx′qIrIm sin 2δ − 2Kx′dIrIm sin 2δ + KE′

qIm cos δ

−Kx′dI
2
r cos 2δ + KE′

dIm sin δ −KE′
qIr sin δ

+KE′
dIr cos δ + KX ′

qI
2
r cos 2δ −Kx′qI

2
m cos δ + Kx′dI

2
m cos 2δ (B.2)

∂Fω(t)

∂E′
d

= K (Ir sin δ − Im cos δ) (B.3)

∂Fω(t)

∂E′
q

= K (Ir cos δ + Im sin δ) (B.4)
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The non-zero partial derivatives corresponding to the function Fδ(t) are:

∂Fδ(t)

∂ω
= −dt

2
(B.5)

∂Fδ(t)

∂δ
= 1 (B.6)

The non-zero partial derivatives corresponding to the function FE′
d(t)

are:

∂FE′d(t)

∂δ
=

1
2dtT ′q

(
x′q − xq

)− Ir sin δ + Im cos δ (B.7)

∂FE′d(t)

∂E′
d

= 1 +
1

2dtT ′q
(B.8)

The non-zero partial derivatives corresponding to the function FE′
q(t)

are:

∂FE′q(t)

∂δ
= − 1

2dtT ′d

(
x′d − xd

)
+ Ir cos δ + Im sin δ (B.9)

∂FE′q(t)

∂E′
q

= 1 +
1

2dtT ′d
(B.10)

The Jacobian matrix elements corresponding to the discretised differential equations for

power plant components are described as follow.

B.2 Discretised State Variables

The armature resistance and damping coefficient of generator are considered so, the gen-

erator power output is therefore of the form,

Pe =
ra |E|2
r2
a + x2

d

− |E| [ra (e cos δ + f sin δ) + xd (f cos δ + e sin δ)]
r2
a + x2

d

(B.11)
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The application of the trapezoidal rule to Eq.4.6 and Eq.4.9 are described as follows.

The electromechanical differential equation for the speed is ω̇ = πfo

H [Pm − Pe −D (ω − ωo)]

so, the application of the trapezoidal rule to this Equation is,

ωt = ωt−∆t +
∆t

2
(
ω̇(t) + ω̇(t−∆t)

)
(B.12)

Ft(ω) + Ft−∆t(ω) + Cte = 0 (B.13)

then,

Ft−∆t (ω) = −ωt−∆t−∆t

2

{
πf0

H

[
(
PHP (t−∆t)FHP + PIP (t−∆t)FIP + PLP (t−∆t)FLP

)− ra

∣∣E(t−∆t)

∣∣2
r2
a + x2

d

+

∣∣E(t−∆t)

∣∣ [−ra

(
e(t−∆t) cos δ(t−∆t) + f(t−∆t) sin δ(t−∆t)

)

r2
a + x2

d

+

xd

(−f(t−∆t) cos δ(t−∆t) + e(t−∆t) sin δ(t−∆t)

)]

r2
a + x2

d

−D(ω(t−∆t))

]}
(B.14)

Ft (ω) = ωt − ∆t

2

{
πf0

H

[
(
PHP (t)FHP + PIP (t)FIP + PLP (t)FLP

)− ra

∣∣E(t)

∣∣2
r2
a + x2

d

+

∣∣E(t)

∣∣ [−ra

(
e(t) cos δ(t) + f(t) sin δ(t)

)
+ xd

(−f(t) cos δ(t) + e(t) sin δ(t)

)]

r2
a + x2

d

−D(ω(t))

]}
(B.15)

Cte = −∆tπf0

H
(Dωo) (B.16)
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A similar process is applied to Eq. 4.9, for this Equation we have that,

δ(t) − δ(t−∆t) −
∆t

2

(
δ̇(t) + δ̇(t−∆t)

)
= 0 (B.17)

where,

Ft−∆t (δ) = −δ(t−∆t) −
∆t

2
ω(t−∆t) (B.18)

Ft (δ) = δ(t) −
∆t

2
ω(t) (B.19)

C2 = 2πf0∆t (B.20)

For Pg, we have,

F (Pg) = Ft (Pg) + Ft−∆t (Pg) + Cte (B.21)

Pg(t) − Pg(t−∆t) −
∆t

2

(
Ṗg(t) + Ṗg(t−∆t)

)
= 0 (B.22)

Pg(t) − Pg(t−∆t) −
∆t

2

{
1
T3

(
Pset(t) − P1(t) − Pg(t)

)
+

1
T3

(
Pset(t) − P1(t) − Pg(t)

)}
(B.23)

Ft−∆t (Pg) = −Pg(t−∆t) −
∆t

2

{
1
T3

(−P1(t−∆t) − Pg(t−∆t)

)}
(B.24)

Ft (Pg) = Pg(t) −
∆t

2

{
1
T3

(−P1(t) − Pg(t)

)}
(B.25)
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Cte = −∆tPset

T3
(B.26)

The discretisation for these elements is like,

F (E) = Ft (E) + Ft−∆t (E) + Cte (B.27)

E(t) −E(t−∆t) −
∆t

2

(
Ė1(t) + Ė1(t−∆t)

)
= 0 (B.28)

E(t) − E(t−∆t) −
∆t

2




KAVref −KA

√
(e2

(t) + f2
(t))−E(t)

T ′d0




−∆t

2




KAVref −KA

√
(e2

(t−∆t) + f2
(t−∆t))− E(t−∆t)

T ′d0


 = 0 (B.29)

Ft (E) = E(t) −
∆t

2



−KA

√
(e2

(t) + f2
(t))− E(t)

T ′d0


 (B.30)

Ft−∆t(E) = −E(t−∆t) −
∆t

2



−KA

√
(e2

(t−∆t) + f2
(t−∆t))− E(t−∆t)

T ′d0


 (B.31)

Cte = −∆t

(
VrefKA

T ′d0

)
(B.32)

The same process is applied to the remaining state variables of the system.



Appendix C

Power Networks Test Data

Following the data for the power system test networks used are depicted. All data is given

in per unit on a 100 MW and 400 kV base values of active power and voltage respectively.

Table C.1: Transmission line parameters: Five-bus test system
Bus code Impedance Line charging

North South 0.02+ j0.06 0.00+ j0.06
North Lake 0.08+ j0.24 0.00+ j0.05
South Lake 0.06+ j0.18 0.00+ j0.04
South Main 0.06+ j0.18 0.00+ j0.04
South Elm 0.04+ j0.12 0.00+ j0.03
Lake Main 0.01+ j0.03 0.00+ j0.02
Main Elm 0.08+ j0.24 0.00+ j0.05

Table C.2: Generation: Five-bus test system
Bus code MW MVAR MVAR limits Voltage magnitude
North* – – – 1.06
South 40 0 ±300 1.00

* Slack bus
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Table C.3: Power loads: Five-bus test system
Bus code MW MVAR

South 40 0
South 45 15
South 40 5
South 60 10

Table C.4: Power transformers: New England system
Bus code Rs Xs Tv Uv

2 30 0.00 0.0181 1.025 1
6 31 0.00 0.025 1.07 1
10 32 0.00 0.020 1.07 1
12 11 0.0016 0.0435 1.006 1
12 13 0.0016 0.0435 1.006 1
19 20 0.0007 0.0138 1.06 1
19 33 0.0007 0.0142 1.07 1
20 34 0.0009 0.0180 1.009 1
22 35 0.0 0.0143 1.025 1
23 36 0.0005 0.0272 1.00 1
25 37 0.0006 0.0232 1.025 1
29 38 0.0008 0.0156 1.025 1
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Table C.5: Transmission line parameters: New England system
Bus code Impedance Line charging
1 2 0.035+ j0.041 0.00+ j0.69
1 39 0.010+ j0.025 0.00+ j0.75
2 3 0.013+ j0.013 0.00+ j0.25
2 25 0.0070+ j0.0086 0.00+ j0.140
3 4 0.0013+ j0.0213 0.00+ j0.2214
3 18 0.0011+ j0.0133 0.00+ j0.2138
4 5 0.0008+ j0.0128 0.00+ j0.1342
4 14 0.0008+ j0.0129 0.00+ j0.1382
5 6 0.0002+ j0.0026 0.00+ j0.434
5 8 0.0008+ j0.0112 0.00+ j0.1476
6 7 0.0006+ j0.0092 0.00+ j0.1130
6 11 0.0007+ j0.0082 0.00+ j0.1389
7 8 0.0004+ j0.0046 0.00+ j0.0780
8 9 0.0023+ j0.0363 0.00+ j0.3804
9 39 0.0010+ j0.0250 0.00+ j1.200
10 11 0.0004+ j0.0043 0.00+ j0.0729
10 13 0.0004+ j0.0043 0.00+ j0.0729
13 14 0.0009+ j0.0101 0.00+ j0.1725
14 15 0.0018+ j0.0217 0.00+ j0.3660
15 16 0.0009+ j0.0094 0.00+ j0.1710
16 17 0.0007+ j0.0089 0.00+ j0.1342
16 19 0.0016+ j0.0195 0.00+ j0.3040
16 21 0.0008+ j0.0135 0.00+ j0.2548
16 24 0.0003+ j0.0059 0.00+ j0.0680
17 18 0.0007+ j0.0082 0.00+ j0.1319
17 27 0.0013+ j0.0173 0.00+ j0.3216
21 22 0.0008+ j0.0140 0.00+ j0.2565
22 23 0.0006+ j0.0096 0.00+ j0.1845
23 24 0.0022+ j0.0350 0.00+ j0.3610
25 26 0.0032+ j0.0323 0.00+ j0.5130
26 27 0.0014+ j0.0147 0.00+ j0.2396
26 28 0.0043+ j0.0474 0.00+ j0.7802
26 29 0.0057+ j0.0625 0.00+ j1.0290
28 29 0.0014+ j0.0151 0.00+ j0.2490
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Table C.6: Generation: New England system
Bus code MW MVAR MVAR limits Voltage magnitude

39* – – – 1.0300
30 250 0.0 ±250 1.0475
31 573.2 0.0 ±300 0.9520
32 650 0.0 ±300 0.9831
33 632 0.0 ±250 0.9972
34 508 0.0 ±250 1.0123
35 650 0.0 ±300 1.0493
36 560 0.0 ±200 1.0635
37 540 0.0 ±300 1.0278
38 830 0.0 ±400 1.0265

Table C.7: Power loads: New England system
Bus code MW MVAR

3 322 2.40
4 500 184
7 233 84
8 522 176
12 8.5 88
15 320 153
16 329.4 32.3
18 158 30
20 680 103
21 274 115
23 247.5 84.6
24 308.6 −92.2
25 224 47.2
26 139 17
27 281 75.5
28 206 27.6
29 283.5 26.9
31 9.12 4.6
39 1104 250
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Table C.8: Transmission line parameters: Three-generators, nine-bus system
Bus code Impedance Line charging
4 5 0.010+ j0.0850 0.00+ j0.176
4 6 0.017+ j0.0920 0.00+ j0.158
5 7 0.032+ j0.0161 0.00+ j0.306
6 9 0.039+ j0.0170 0.00+ j0.358
7 8 0.0085+ j0.0720 0.00+ j0.149
8 9 0.0119+ j0.1008 0.00+ j0.209

Table C.9: Generation: Three-generators, nine-bus system
Bus code MW MVAR MVAR limits Voltage magnitude

1* – – – 1.040
2 163 0.0 ±250 1.0253
3 85 0.0 ±250 1.0253

Table C.10: Power loads: Three-generators, nine-bus system
Bus code MW MVAR

5 125 50
6 90 30
8 100 35

Table C.11: Power transformers: Three-generators, nine-bus system
Bus code Rs Xs Tv Uv

1 4 0.00 0.0576 1.040 1
2 7 0.00 0.0625 1.0253 1
3 9 0.00 0.0586 1.0253 1


