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Abstract

This project aimed to develop an iz vitro model of spinal cord injury. A device was
developed that could, in conjunction with an existing myelinating culture system, aligned
axons into parallel rows and contain the soma to a predefined area; thus creating a
structure similar to the spinal cord. It was intended for the device to be simple to
produce and use, provide easy accesses to the axons for wounding and allow simple
measurement of axonal regrowth. An additional aim of the project was to develop a
method of cell wounding that was reproducible, precise and allowed observation of the

wounding process.

A series of ridges were created on PDMS devices, which were used to align the axons.
These ridges were 5 pm deep and 12.5, 25 or 50 pm wide. The 12.5 pm ridges aligned an
average of 54% of the axons within 10° of the axis parallel to the ridges. The 25 and 50
pm only managed to align 37% and 28% in this direction. Flat control devices aligned
16% of the axons in an equivalent direction, which corresponded to a random alignment.

From this it was concluded that 12.5 pm ridges should be used to align the axons.

Rows of 25 pm high, 20 pm diameter pillars were placed across the devices in an attempt
to contain cells to one side of the device. The pillars had gaps between them of 6, 8 or
10 pm. MG63 cells were used to test the pillars’ containment ability. It was found that
the cells could climb over the pillars and so multiple rows of pillars where created to
attempt to trap the cells. The multiple rows did not full contain the cells but it was
found that 5 rows with gaps sizes of 6 pm could slow the cells migration across the

devices.

It was found that the pillar rows were not necessary to contain the neuronal soma, as
they would not migrate far from their initial seeding area. However, the pillars had an
effect on the axons’ alignment. One, three and five rows of pillars reduced the alignment
to 40%, 24% and 28% respectively. It was hypothesised that the axons were using the

pillars as a “turning post”.



An automated method of wounding the cells was developed using a microscope and
micromanipulator. This method was trialled on layers of astrocytes and MG63s grown
on flat and grooved PDMS. Cutting astrocytes perpendicular to the grooves resulted in
wounds with an area five times larger than those caused by cutting parallel to the
grooves. Perpendicular wounds were also twice the area of those on flat PDMS. Similar
effects were seen on MG63s. It was hypothesised that the difference in wounds sizes was
due to the ridges causing the cells to make stronger mechanical connections

longitudinally with the grooves.
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|.I Project Overview

Damage to the central nervous system causes highly debilitative injuries to victims due to
the loss of motor control and sensory data from, potentially, large areas of the body. The
lack of growth factors and the formation of a scar consisting of densely packed glial cells
prevents severed spinal axons, whose cell bodies survive, from re-growing past the site of
injury, which can result in permanent damage to the spinal cord. According to The
National Spinal Cord Injury Statistics Centre, there are approximately 270,000 people
living with spinal cord injury (SCI) in the USA today, with roughly 12,000 new injuries
occurring each year (NSCISC, 2012).

Currently the most widely used method to SCl is to directly wound animals; this is both
time consuming and expensive. Large numbers of animals are also required to give
statistical significance to the data. Development of an i vitro model for SCI will, firstly,
reduce the number of animals required for studies as they will only be needed for the
harvesting of neuronal cells. Secondly, the animals used will not be exposed to the long-
term suffering caused by in vivo experiments of the kind needed. Finally, the complexity
of the experimental procedure will be reduced, as experiments will not be conducted on

whole organisms.

This project aims to development microfabricated device that will form part of an iz
vitro model of SCI and a method of inflicting reproducible wounds on cultures grown on
the device. The device will have to fulfil three roles: providing an environment conducive
to the growth of neurons, provide guidance cues to the axons so that they can be
patterned out on the device and, finally, contain the neurons’ soma to an area to prevent

them migrating around the device.
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|.2 Neuronal Cells

Neurons consist of three main parts: the soma, dendrites and the axon. The soma is the
cell body, which contains the nucleus and governs the majority of protein synthesis
within the neuron. The dendrites form a net of fibres that extend from the soma and
receive connections from other neurons and thus aiding in inter-cellular communication.
The axon is a long, thin fibre that extends from the soma, in humans these tend to be -1
wm thick and can be over a meter in length. The axon is used to form connections with
cells that are situated a long distance away from the soma, this is done through a form of
electrical signalling know as the action potential (Moore and Cole, 1960). Within most
invertebrates and some non-invertebrates an insulating layer known as myelin wraps the
axons. The myelin prevents signal leakage during the conduction of the action potential
and thus helps to speed the movement of the action potential down the axon. Myelin is
not produced by the neuron itself; one of two forms of glial cell synthesise the myelin and
ensheath the mature axon in it. The Schwann cells in the peripheral nervous system
(PNS) and the oligodendrocytes in the central nervous system (CNS) play this role. A

diagram of a human neuron is shown in Figure 1.

/ Dendrites

Axon Terminal \

Axon

Myelin Sheath
Nucleus

Figure 1: A typical human neuron, the axon would be ensheathed by Schwann cells in the PNS or
oligodendrocytes in the CNS. At the dendrite and soma, information is passed to the neuron. The
axon can then transmit any resultant signals to other cells via its terminal end. The connection

between the neuron and other cells are known as synapse.
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|.2.1 Axonal growth

During development neurons connect with distant neurons by the pathfinding of the
growth cone. The growth cone is a structure at the leading end of the axons that seeks
out guidance cues and directs the growth of the axon. It consists of two distinct types of
structure, the lamellipodia and the filopodia (Gordon-Weeks, 2008). These structures

are shown in Figure 2.

The filopodia are small, cylindrical projections from the leading edges of the growth
cone. Their main role is to seek out guidance cues and form bonds with the substrate,
know as focal adhesions, if a positive cue is found. They will usually retract if a negative
cue is found. Guidance cues can be either chemical or topographical in nature. Filopodia
are constantly extended and retracted from the lamellipodia and appear to be created by

rearrangement of the cells actin filaments.

Lamellapodium

Filopodia —=2

Figure 2: The growth cone of a neuron. The lamellipodium contains a mesh like area of actin
filaments. Filopodia project out from the lamellipodium as small finger-like structures. They seek out
guidance cues and form focal adhesions if a positive cue is found or will retract back into the
lamellipodium if a negative cue is found. There is an almost constant retrograde flow of actin within
the growth cone, which serve to drive the cone forward and assemble the axon behind it. Diagram

from (Purves, 2008).
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The lamellipodia is a large, flat structure that mainly consists of actin filaments. Whereas
the actin filaments with the filopodia are in an ordered, tubular structure, those within

the lamellipodia are arranged in a mesh like structure.

During extension of the growth cone there will be a retrograde flow of actin filaments
that is promoted by positive attractant cues. Microtubules will also be moved towards
the positive cue and assembled to form the cytoskeleton of the axons. These forward
movements of actin filaments and microtubules are the process by which the growth

cone moves.

1.2.2 Other cell types within the CNS

Neurons are not the only cell type present within the CNS, roughly half the brain is
made up of glial cells (Azevedo et al., 2009). Neuroglia cells were first described by
Virchow in 1846 (Virchow, 1846), their names translates as “neuron glue” as it was
originally thought their role was to maintain the structure of the brain and spinal cord.
There are five main types of neuroglia: astrocytes, oligodendrocytes, microglia,

ependymal cells and radial glia (Purves, 2008).

Oligodendrocytes are the myelin producing cell within the CNS. Unlike Schwann cells

in the PNS, oligodendrocytes can ensheath multiple axons at the same time.

Microglia are a type of macrophage that are tasked with providing immune defence
within the brain and spinal cord. Due to the blood-brain barrier, the CNS is separated
from the rest of the body’s immune system and so the microglia are the CNS’ main

defence against infection and general degeneration of neuronal and glial cells.
Ependymal cells form an epithelial membrane lining the CNS. These cells produce

cerebrospinal fluid (CSF) and help to circulate it throughout the CNS. Two of the CSF’s

roles are to provide mechanical protection to the brain and spinal cords against small
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jolts and impacts. It also helps to remove waste products from cells and flush it through

the blood-brain barrier.

Radial glia’s main role is in the development of the CNS. They are progenitor cells for
neurons and also provide immature neurons with guidance cues. In the mature brain

these cells aid in communication between neurons.

Astrocytes are a versatile, star shaped cells that play a wide variety of roles within the
CNS. They provide support to neurons by expressing factors such as glial cell derived
neurotrophic factor (GDNF) and basic fibroblast growth factor (BFGF). They also
transport glucose from the vascular system to neurons that are not directly in contact.
Astrocytes play a key role in injury response within the CNS, this is discussed in the
section below. In conjunction with oligodendrocytes, astrocytes form a functional
syncytium that allows calcium signals to be passed over a wide area (Nagy and Rash,
2003, Newman, 2001). The syncytium also allows provides a means of clearing excess
potassium from around neurons, allowing them to operate correctly. Astrocytes will
uptake potassium and pass it through gap junctions to other astrocytes, which are in an

area with a lesser potassium concentration, to be released (Walz, 2000).

The syncytium is created by the astocytes forming gap junctions with each other and the
oligodendrocytes, these junctions allow the passing of ions and metabolites from cell to
cell. The main components of the gap junctions in astrocytes are the connexin proteins,
Cx26, Cx30, Cx43 (Nagy et al., 2004, Olk et al., 2009). The connexins are not the only
proteins that govern cell-cell interaction and attachment within astrocytes. Neural
cadherin (Tomaselli et al., 1988), also know as CDH2, along with a- & B-catenin
(Nelson, 2008) form the cadherin adhesion complex which regulates astrocyte cell-cell
adhesion. CDH2 in astrocytes is also know to play an important role in the outgrowth of
processes from neurons (Tomaselli et al., 1988). Astrocyte adhesion to the extracellular
matrix and migration are governed by the integrins avp5 and avpB5 respectively (Milner
et al., 1999). Integrins, specifically the B1 subunit, are also known to be integral to

astrocytes’ reponce to wounding (Peng et al., 2008).
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|.3 Neuronal Injury and Regeneration

The nervous system within the human body can be slit into two distinct regions, the
central nervous system (CNS) and the peripheral nervous system (PNS). The CNS
consists of the brain and spinal cord while the PNS incorporates the outlying neurons,
which allow the transfer of sensory and motor data to and from the CNS. There are two
categories of injury, primary and secondary. Primary injury is damage that is a direct
result of the wound inflicted, such as the death of severed axons. Secondary injury covers
all degenerative process that follow on from primary damage, such as the retraction of
healthy axons away from the wound site. As injury to the brain is an extremely complex
issue and beyond the scope of this project, we will just concern ourselves with the injury
and repair of the PNS and spinal cord. As response to injury varies across species (Kaslin

et al., 2008, Tsonis, 2000), all following uses of PNS and CNS refer to those of

mammals in general or of humans in particular.

|.3.1 Basic injury response and regeneration in the PNS

One factor that sets the PNS apart from the CNS is its response to injury and its ability
to regenerate severed axons. After an injury is inflicted on the PNS the following
reactions will occur (Levison, 2008, Reid and Roberts, 2005). Shortly after injury the
distal end of a severed axon will die and begin to degenerate. Macrophages will then
infiltrate the wound site and, with the aid of Schwann cells (Stoll et al., 1989), start to
remove the myelin debris from the distal stump. During this process the outer layer of
the nerve fibres, know as the neurolemma, is left intact. After the debris has been
removed the Schwann cells begin to line the interior of the neurolemma and secrete
growth factors. Some axonal sprouts from the proximal end of the injury, which are
attracted by the growth factors, will eventually link up with the neurolemma and use it
as an additional guidance cue. Finally the Schwann cells re-myelinate the axons. A

diagram of this process is shown in Figure 3.

The process of axon degeneration and myelin clearance is know as Wallerian

degeneration, named after Augustus Volney Waller who first observed the process in
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1850. In the PNS Wallerian degeneration takes around one to two weeks. Re-growth of
the axon can be at speeds of up to 1 mm per day. However, it can take years for full
sensation and motor control to be restored to affected areas because of the distances
involved and the fact that not all re-growing axons will be able to link up with an intact
neurolemma. In addition, some neurons will not innervate their original target, this leads

to an increased recovery time as the brain must adapted to this ‘rewiring’.
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Figure 3: Stages of regeneration in the PNS. During the first stage of recovery macrophages and
Schwann cells will clear away the axonal and myelin debris left after the injury. After debris clearance,
the neurolemma will be left intact and Schwann cells will begin to line it and secrete growth factors.
The re-growing axons will link up with the neurolemma and use it for further guidance. Finally the

axons will be remylinated.
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1.3.2 Basic injury response in the CNS

Due to the difference in the types of cells found within the CNS and their extracellular
environment, the response to injury is quite different from the PNS. The following will

occur after damage occurs to the spinal cord (Norenberg et al., 2004).

The initial response is similar to that of the PNS, firstly the distal end of the severed
axon will die off and some macrophages will move in to begin clearing debris. However,
the entry of additional macrophages to the wound area is somewhat slower than in the
PNS, the reasons for this are discussed in the section below. Astrocytes will also begin to
gather around the wound site and start synthesising intermediate filaments such as glial
fibrillary acidic protein (GFAP). The wound site eventually becomes swamped by large
amounts of astrocytes which have swollen in size, know as hypertrophy, and attached to
each other with tight junctions; this dense mass is known as the glial scar (Silver and
Miller, 2004). A fluid filled cyst, know as a syrinx, can also form at the site of injury,
which creates a further physical barrier. Regenerating axons are unable to penetrate the
glial scar or syrinx and so there is a permanent loss of motor control and sensory data
from all areas distal of the scar. A diagram of this process is shown in Figure 4. Within
the CNS, the time scale of the equivalent of Wallerian degeneration can be measured in

months or years, if it occurs at all.

|.3.3 Reasons for the CNS’s inability to regenerate

In their review paper Vargas and Barres (Vargas and Barres, 2007) discuss the reasons for
the differences between the PNS” and CNS’ responses to injury. Some of the causes of

these differences are summarised below.

There are several myelin-associated inhibitors of axonal regeneration (He and Koprivica,
2004). These include MAG, OMgp, Nogo-A and Sema 4D. MAG, OMgp and Nogo-A
are know to act through the NgR receptor on the neuron’s growth cone. Sema 4D is

thought to act through the growth cone receptor protein Plexin B1. It is clear that the
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clearance of myelin, and hence the removal of these inhibitors, is an important factor in

axonal regeneration.

ms= Axon/Axon Fragment §=z_ Axon Sprouts ([} Myelin Sheath = Myelin Debris

Astrocyte - Oligodendrocyte @ Microglia

Figure 4: Response to injury in the CNS. After injury to the CNS there is a small influx of macrophages to
the wound site, which will begin to clear the myelin debris. Astrocytes will also enter the area and begin to
synthesise GFAP. A large mass of hypertrophic astrocytes and polymerised GFAP will clog the wound site
and form what is know as the glial scar, outlined here by the red dashed box. Regenerating axons are unable

to penetrate this scar and so damage to the CNS will be permanent.

One of the key differences between the PNS and the CNS is the presence of Schwann cells
within the PNS, which respond to axonal injury in several ways: Within 48 hours of injury the
Schwann cells in contact with an injured axon will cease production of myelin and begin to
separate its myelin sheath from the axon. The cell will then begin to degrade its own myelin

and phagocytose extra-cellular myelin debris.
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The Schwann cells do not act alone in the clearance of myelin debris. After an injury is
inflicted upon the PNS, Schwann cells will begin to produce a variety of factors, such as
leukemia inhibitor factor (LIF) and macrophage chemoattractant protein-1 (MCP-1), to
attract macrophages to the site of injury. Once macrophages arrive at the wound site, the
Schwann cells will move myelin debris into the extra-cellular space so that it can undergo

phagocytosis by the macrophages.

It is also of note that Schwann cells will begin to proliferate after an injury occurs thus
providing further help in myelin clearance and creating a sufficient supply of cells for
remyelination to occur. However, it is