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Abstract
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It is well known that, in Western countries, people of all ages and both sexes are

becoming ‘fatter’ in general. In a ‘healthy’ population, we arbitrarily consider

cut-offs to be that 10% of people should be ‘overweight’ and 5% ‘obese’, as there

is limited evidence that these cut-off points are related to ill-health [1]. However,

we are seeing a dramatic rise in the numbers of people in each of these categories

[2, 3]. The mechanism behind weight gain is energy-imbalance. At energy-balance

for adults - i.e. where weight is expected to remain stable over time, we know that:

energy intake (EI) = energy expenditure (EE) (1)

This equation is far less straightforward than it first appears. The first impor-

tant issue is that EE has several different components (e.g. resting EE). The

second issue is to do with measurement - how do we measure energy intake and

energy expenditure? Another is down to physiological differences between people -

how do things vary between individuals and do they differ systematically between

males and females, adults and children? The above equation applies to adults, but

we know that children and adolescents actually require a positive imbalance for

healthy growth - what is not known is what degree of positive imbalance is healthy.

This thesis is particularly concerned with energy-balance and imbalance during

puberty, at which time the human body goes through extreme changes. We in-

vestigate how these changes are measured, and how energy-imbalance and the
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modelling thereof must change across this time. We will show that the propor-

tions of children who are overweight and obese are higher than we would expect;

commonly used models for body composition are not in agreement; commonly used

models for resting energy expenditure are not in agreement; children do not need

a high energy-imbalance for normal growth; and those girls with early menarche

are more likely to become overweight than their counterparts.
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Introduction, background and

outline
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1.1 Introduction

In recent years, prevalence of overweight and obesity has increased at an

astonishing rate. In 1980, it was estimated that 6% of adult men and 8%

of adult women were obese in the UK. Twenty-two years later, published

figures reported that these figures had risen to 23% and 25%, respectively

[3]. Perhaps even more worrying than the increasing trends in adult obe-

sity are those now emerging in childhood [7]. The potential consequences of

being overweight or obese are immense. On the individual level, overweight

adults are at risk of numerous co-morbidities including (but not limited to)

diabetes, coronary heart disease (CHD) and cancer, as well as mental health

difficulties such as depression and reduced self-esteem. On the population

level, these “side effects” of the obesity epidemic have serious economic im-

plications. Fry and Finley reported in 2005 that the total direct and indirect

annual costs of obesity in the EU were e31.8 bn [8].

With such a rising trend in obesity, more and more research is being car-

ried out into obesity-related health implications. It is now known that an

individual who is overweight or obese in childhood is at increased risk of

lifelong physical and mental health problems. For example, type 2 diabetes

has only been seen in UK children since the overweight proportion began its

steep increase [9]. Extremely worryingly, suicidal ideation has been shown

to be increased among overweight children as a result of reduced self-esteem,

depression and weight-related bullying [10].

2



Energy-balance occurs when

energy intake (EI) = energy expenditure (EE) (1.1)

Energy-imbalance occurs when the right-hand side of equation (1.1) does

not equal the right-hand side. This PhD project is concerned with modelling

energy-imbalance during adolescence. Energy-imbalance (where energy in-

take is not equal to energy expenditure) is known to lead to weight gain

when the imbalance is positive (more intake than expenditure) and weight

loss when the imbalance is negative. In today’s climate, it is known that,

while intake of energy dense foods is increasing, physical activity among

children is decreasing in favour of more sedentary activities such as watching

television or playing video games. In terms of energy-balance and weight

management with children, there is an additional issue as we know that chil-

dren need some degree of positive imbalance to allow normal growth and

development [11]. What is not known, however, is how much imbalance

is necessary and sufficient for such development. The study of obesity it-

self and of obesity prevention and cure is an enormous field with numerous

unanswered questions and unresolved issues. This is perhaps more true for

the study of childhood obesity than adult as a result of increasing trends in

childhood obesity emerging more recently. This thesis aims to draw together

and address a great many of the methodological questions in this field that

have arisen in the literature published in recent years. For example, how

do we measure the amount of fat a person has in his or her body? Then,

how much is too much? How should we define obesity? However, what has

3



become abundantly clear over the years working on this project is that many

questions cannot yet be answered with certainty. Many are, in-fact, confused

and complicated by conflicting sources in the literature.

Further questions arise when studying trends over adolescence. How should

we be defining puberty? What stages are involved in the pubertal process?

Are physical changes alone well enough defined to be confidently used in

modelling? Should we, in addition, be considering emotional or chemical

changes? What are the actual measurement methods of such changes? How

do puberty and pubertal effects on energy-imbalance compare between the

sexes? This list of potential issues is by no means exhaustive.
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1.2 Background

1.2.1 Body Composition

It is known that too much or too little fat mass can have serious adverse

effects on health for both adults and children alike [12, 13]. However, body

composition cannot be directly measured in living subjects, since the only

“direct” method of accurate measurement is chemical analysis of human ca-

davers [14]. For this reason, it is necessary to estimate body composition

using “indirect” methods.

1.2.1.1 Models of body composition

The traditional model of body composition is the two component model,

which states that the body comprises fat mass (FM) and fat-free mass (FFM).

This model is widely used in practice and has the advantage of being rela-

tively easy to work out and understand. However, the two component model

makes the assumption that protein, water and minerals exist in fixed propor-

tions in fat-free mass [15]. This assumption may not be valid, particularly

in children, due to changes in factors such as hydration during maturation

[16]. For this reason, researchers have developed models with more than two

components. The three component model takes into account variation in

either hydration or bone mineral content [17], by considering body composi-

tion to consist of either: (1) fat mass, total body water (TBW) and fat-free

dry mass or (2) fat mass, bone mineral mass (BMM) and lean soft tissue.

Further, these aspects of body composition can be combined into the four-
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component model comprising FM, TBW, BMM and dry fat-free soft mass

[18, 19]. Studies have been carried out to compare the accuracy of these mod-

els and have generally reported improved accuracy with both three and four

component models when compared to the two component model [18, 16, 19].

It has also been reported that, although the improvement may be minimal,

the four component model does provide improved accuracy over the three

component model [19]. Baumgartner et al. suggest that the four component

model should be used as the gold standard for measuring body composition

in adults [20].

1.2.1.2 Measures estimating body composition

There are various ways to estimate the body composition of individuals,

which may be useful in identifying people who are at risk of obesity and

associated co-morbidities. These measures range from height and weight in-

dices which can be calculated with little difficulty by most people, to far more

complicated methods and techniques which require complicated equipment

and highly-trained technicians. Some of these methods can be used to iden-

tify abdominal adiposity (fatness), which is known to be a major predictor of

heart disease [21, 22]. Others can, in conjunction with 2, 3 or 4 component

models, be used to estimate the proportion of each type of mass in the body.

The aims of this section are to introduce each method and discuss the “pros

and cons” of each in terms of tolerability, accuracy and accessibility.

6



1.2.1.2.1 Measures based on height and weight

Body “fatness”, estimated using calculations with height and weight, can

be used as a proxy indicator of body composition. These calculations have

the advantage that height and weight can be easily measured without any

particularly sophisticated or expensive equipment. Weight-for-height is a

standard that is generally used for children of between 2 and 5 years of age

(with weight-for-length being used for infants younger than 2 years old).

Tables and charts of z-scores and percentiles for boys and girls separately

are available from the World Health Organisation [23]. Poustie et al (2000)

found weight-for-height to be an unreliable measure of nutritional status in

children because of inter- and intra-examiner variation in measurement [24],

while Mei et al found no difference between weight-for-height and other mea-

sures of body composition [25].

Body Mass Index (BMI) (also referred to as Quetelet’s Index [26, 27]) is

widely used in a variety of scenarios, from individuals “watching their weight”

to clinical settings. BMI requires no complicated measurements, simply

weight and height, and is calculated from the following equations:

For metric measurements:

BMI =
(

weight(kg)
height(m)2

)
(1.2)
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For imperial measurements:

BMI =
(

weight(lbs)
height(in)2

)
× 703 (1.3)

Overweight and obesity in adults can be determined objectively from BMI

using generally-agreed guidelines. These guidelines do vary slightly from

source to source. Guidelines established by the World Health Organisation

(WHO) in 1997 and published in 2000 [28] are shown in Table 1.1.

BMI Classification
< 18.5 underweight
18.5 to 24.9 healthy weight
25.0 to 29.9 overweight (or “pre-obese”)
30.0 to 34.9 class I obesity
35.0 to 39.9 class II obesity
> 40.0 class III obesity

Table 1.1: WHO criteria for overweight and obesity in adults

Although BMI is relatively simple to calculate and use, its reliability is ques-

tionable because BMI doesn’t take into account proportions of FM and FFM

in the body. For any given volume, FFM is heavier than FM and, as a result,

people can be misclassified. For example, an athlete may be classified as over-

weight due to having a higher proportion of FFM than, and therefore being

heavier than, the general population. Additionally, there exist differences

in body composition as a result of age, gender and possibly race that are

not currently considered when interpreting BMI [27]. For example, a World

Health Organisation expert consultation on appropriate BMI for Asian pop-

ulations suggested that the acceptable range be narrowed to 18.5 kg
m2 - 23 kg

m2

[29].
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Determining the risk of overweight and obesity from BMI is not as straight-

forward for children as for adults. The BMI calculations are the same, as

shown above (equations (1.2) and (1.3)), but further calculations must be

carried out. One common method currently, in keeping with WHO guide-

lines, is to use BMI to calculate percentile rankings from gender-specific

BMI-for-age growth charts (for 2 - 20 years of age, available from the World

Health Organisation (WHO) ) [28]. These percentiles are then categorised

as follows:

Percentile Category
< 5th percentile Underweight
80th to < 95th percentile Overweight (“pre-obese”)
≥ 95th percentile Obese

Table 1.2: WHO criteria for overweight and obesity from gender-specific
BMI-for-age growth charts for children and adolescents

As an alternative to the WHO percentiles, BMI standard deviation scores

(SDS) for UK children can be relatively easily calculated using the LMS

method developed by Tim Cole in 1990 [30]. This method, described in de-

tail in section 2.2, adjusts BMI for height, sex and age, and allows BMI to

be expressed as an exact centile or age-and-sex specific SD score relative to a

reference population. It can also be used to calculate a standardised measure

of the difference between an individual’s BMI SD Score at two ages, using a

model published by Cole in 1997 [31].
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It appears that using BMI as a simple proxy or surrogate measure of body

composition presents fewer problems with children and adolescents than with

adults. The Centers for Disease Control and Prevention website tells us that

“BMI is a reliable indicator of body fatness for most children and teens” [32].

Additionally, Dietz and Bellizzi state that “the body mass index (BMI; in

kg/m2) offered a reasonable measure with which to assess fatness in children

and adolescents” [33]. Many researchers, however, disagree with these ideas,

and conclude that BMI is not the most effective method of determining body

composition [34]. While the issue of increased lean mass may not be such

a problem during the early stages of life, covariates such as age, gender and

race should be taken into consideration when interpreting BMI as a measure

of obesity-related health risk in children [26].

There do exist some alternatives to BMI, such as the Rohrer Index (RI):

RI = weight(kg)
height(m)3 (1.4)

As with BMI, the Rohrer Index is classified for children using RI-for-age

charts (although these do not appear to be publicly available). However,

while BMI is widely used in practice, RI does not appear to be. Mei et al

(2002) found that, of weight-for-height, BMI and RI, the latter was the least

reliable [25].
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Other widely used proxy indicators of adiposity in both adults and children

are measures based on circumference. These measures include the waist-to-

hip ratio, waist circumference, and the conicity index [35].

The waist-to-hip ratio (WHR) is calculated as

circumference of the waist
circumference of the hips

(1.5)

For adults, it is generally accepted that a ratio of below 0.8 is healthy for

women, and below 1.0 is healthy for men [36]. A ratio higher than these

may indicate that the individual concerned is at an increased risk of cardio-

vascular illness. Taylor et al (1998) found that WHR is not as effective at

assessing body composition as BMI [37], while some other researchers and

medical professionals consider WHR to be very useful in adults for determin-

ing risk of cardiovascular illness resulting from excess abdominal adiposity

[38]. Alternative (though not as widely used) ratios are waist-to-height and

waist-to-arm. WHR and other such ratios are not widely used to determine

adiposity in children.

Calculating waist circumference (WC) alone generally seems to be more ef-

fective as a gauge of truncal adiposity than WHR in adults [34] and has

also been accepted for use with children [35]. Chan et al [34] consider WC

to be a more effective measure of abdominal fat than both WHR and BMI

- with neither adding any significance to predictions abdominal fat from WC.
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Current guidelines for WC in adult men are increased risk at 94cm and sub-

stantially increased risk at 104cm. For women, increased risk is considered

to be 80cm with 88cm indicating substantially increased risk. However, it

seems unlikely that a man of height 200cm with a waist circumference of 94cm

would be at the same level of risk as a man of height 165cm with the same

waist measurement. For children, risk determined by waist circumference, as

with BMI, is determined using age-and-sex specific population percentiles.

In an editor’s note to a 2004 paper by Fernández et al [39], it is stated that

those children with WCs above the 90th percentile (adjusted for age, sex

and ethnicity) could be considered at significant risk for obesity-related co-

morbidities. However, there does not appear to be a widely accepted cut-off

point.

Developed by Dr. Margaret Ashwell, the Ashwell chart (suitable for both

male and female adults) [40, 41] adjusts waist circumference for height in

order to assess health risk from abdominal adiposity. Some research has

been carried out assessing the potential for similar charts for children and

adolescents [42] but these do not appear to be widely used in medical practice.

The conicity index [35, 43] uses waist circumference adjusted for height and

weight to determine body composition from the formula shown in equation

(1.6).

C = abdominal girth (m)

0.109
√

weight (kg)
height(m)

(1.6)
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Findings published by Taylor et al in 2000 show that the conicity index, too,

is not as effective as WC alone at highlighting the potential problems and

risks of overweight or obesity. [35]

The surrogate measures of body composition presented so far are relatively

straightforward to obtain and can be used by either skilled professionals in

a clinical setting or people at home (though individuals should be trained

to be able to get accurate height and weight measurements). However, the

interpretation on the individual level in terms of actual body composition

- that is, proportions of fat and fat-free mass in the body - is extremely

vague. While they provide some idea of whether or not an individual may be

relatively underweight or overweight, or at particular risk of cardiovascular

illness, they don’t give a precise measure of actual body fatness. It would

perhaps be sensible to make use of a combination of measures such as BMI

and WC where actual measures (to be discussed) of the distribution of body

fat itself are not available.

1.2.1.2.2 More complicated measures

A more complicated but highly accurate [44] method of measuring body com-

position is hydrodensitometry (also called hydrostatic or underwater weigh-

ing). Underwater weighing is considered to be one of the most accurate

methods for body composition analysis [45, 46]. This procedure is based on

Archimedes’ Principle of Displacement, and uses the two component (2C)

model of FM+FFM. As a result of bone and muscle being more dense than
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water, a person with a lot of FFM would, compared with someone of the

same height with less FFM, displace more water and therefore weigh more

and have a lower percentage body fat. On the other hand, fat is less dense

than water and so a large amount of FM will result in a lesser displacement

of water, indicative of a higher percent body fat [47]. However, hydrodensit-

ometry is a complicated procedure involving expensive equipment and may

not be suitable for children - Chan et all stated in 1998 that “Underwater

weighing is laborious to perform and it can be frightening for young children”

[48]. Additionally, this method does not give any information about the dis-

tribution of body fat (for example, specific abdominal adiposity), simply a

proportion for the whole body.

Air-displacement plethysmography (PM) works on a similar principle to hy-

drodensitometry, but with displacement of air rather than water. Various

studies have found air displacement plethysmography to be accurate in both

adults and children [49, 50, 16], with Fields and Goran stating in a 2000

study that “PM was the only technique that could accurately, precisely and

without bias determine FFM in 9- to 14- yr old children” [16]. This method

involves an individual, wearing tight-fitting clothing and with a swim hat on

in order to prevent pockets of air, sitting in a chamber with a fixed air vol-

ume. Body volume is measured from the air reduction in the chamber, and

body density and body fat are then determined from equations [51]. It has

been noted that this method is preferable to hydrodensitometry for children,

elderly and obese individuals [50] - as air is more easily tolerated than water!
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Body composition can also be estimated using X-rays. This method is known

as Dual Energy X-ray Absorptiometry (DEXA), and is becoming increasingly

popular in the field of body composition research. DEXA uses a three com-

ponent (3-C) model: fat mass, fat-free soft tissue, and bone mineral content

[52]. Although the process does involve some exposure to radiation from

x-rays, the University of Alberta’s Human Nutrition Research Unit reports

that the exposure for a whole body scan (both in adults and children) “is

1000 times less than the limit for trivial exposure, and is classified as a neg-

ligible individual dose according to the standards of the National Council

of Radiation Protection and Measurements” [53]. The same source states

that the radiation for a bone density scan is higher than a full body scan

and is “similar to the radiation exposure during one commercial flight across

Canada in adults, and is 1
6th of the radiation exposure during one commercial

flight across Canada for children.” Van loan and Mayclin [54] found DEXA

to be reliable, easy to use, and to give accurate values for the estimation of

FFM for both men and women. As with the methods previously discussed,

however, DEXA is not without disadvantages. Equipment is expensive and

the procedure must be carried out by highly trained staff. A study published

in 2005 found that DEXA was not suitable for subjects of greater than 140kg,

making it unsuitable for the very obese population [55]. It is also, as a result

of radiation exposure, unsuitable for women who are (or have any possibility

of being) pregnant.

DEXA is often referred to as a “gold standard”, but estimates of soft tis-

sue derived from DEXA, when validated against 3-C or 4-C models, have
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been shown to be of limited accuracy [56, 57]. Pending further studies into

the use of DEXA alongside an accurate determination of body volume (i.e.

from hydrodensitometry), DEXA cannot be considered to be a gold standard

method of determining body composition!

Magnetic resonance imaging (MRI) scanners can be used to determine body

composition by taking scans of the whole body. However, this involves highly

sophisticated and expensive equipment and trained operators. This method

of body composition analysis does not appear to be widely used.

Bioelectrical impedance analysis (BIA) is a method of determining the FFM

in the body by measuring the body’s reactance and resistance to electric

current. Full-body bioelectrical impedance should be carried out in a con-

trolled setting [58] and involves passing a small electrical current through

the body with the use of electrodes. Reactance and resistance is then mea-

sured and from these values, the proportion of water in the body can be

estimated. This is then used to estimate the amount of FFM in the body.

Models for both calculations (known as resistivity and hydration) often vary

between researchers, and are frequently being tested, updated and developed.

For the purposes of this project, we will make use of the following BIA models,

developed in Glasgow in 2008 [59, 60].

Z =
√

R2 + X2
i (1.7)
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where Z=impedance (ohm); R=resistance (ohm), Xi=reactance (ohm).

Children

TBW = 0.61 × height2

Z
− 0.63 (1.8)

FFM = TBW

h
(1.9)

FM = weight − FFM (1.10)

where h, the hydration constant, is given by:

BOY S : h = −0.000083 × age + 0.77 (1.11)

GIRLS : h = −0.0001667 × age + 0.794 (1.12)

Adults

TBW = 0.66 × height2

Z
(1.13)

FFM = TBW

0.732
(1.14)

FM = weight − FFM (1.15)

where TBW is total body water in litres, weight is in kilograms, height is

in centimetres and age is in months. It can be noted that, for adults, the

hydration constant does not change according to age or sex.

This is a useful approach but has not been widely used since its publication.

17



There are potential issues with, and limitations of, this approach, which is

based on a simplified model of the human shape as a cylinder. While the

method has been shown to be reliable in population studies, it is said to

have limited accuracy in individuals [61], and results can vary depending on

several factors including food intake before the measurement, hydration and

temperature. An important issue with these BIA models is that of spurious

correlation, described as the correlation that exists between ratios even if the

component variables of the ratios are uncorrelated. This problem is known to

occur when ratios are used as independent variables in linear regression [62].

By using height(cm)2

impedance
, it is possible that we are forcing correlation where none

exists. Nevertheless, we will continue to use the above model throughout this

project.

Kyle et al (2004) find that BIA is an accurate method of estimating body

fat when used in conjunction with appropriate population, age or pathology-

specific equations and established procedures [63]. It has also been shown

that BIA is easily tolerated by children [64, 18]. Chan et al, however, raise

some question about accuracy, stating that “Bioelectrical impedance had a

low correlation with total body fat and its use alone in estimating total body

fat is not recommended” [48]. There are various factors which are known to

result in the possibility of false impedance readings. These include under- or

over-hydration, recent exercise and temperature at the time of the readings.

There are also underlying assumptions of BIA which have not been thor-

oughly explored, “For example, traditional BIA methods employ a geometric

model that assumes the component of interest is homogeneous in compo-
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sition and uniform in cross-sectional area. The typical electrical pathways

used with BIA in humans fail to conform to such idealized conditions.” [58].

Note that, while BIA estimates FM and FFM in terms of body mass percent-

age, it does not determine particular areas of adiposity which may be vital

in detecting cardiovascular risk - these may be estimated using a simpler

method such as WHR.

A relatively recent development in “user-friendly” body composition esti-

mation is the body-fat analysing scale. This scale, which can be used by

individuals at home without trained personnel, uses methods similar to BIA

to calculate the percentage body fat of the user. The adiposity (largely in

the legs) is estimated, and this is used to estimate the percent body fat of

the user. This raises the question - how representative of the entire body

are the legs alone? Would this method be as accurate for a runner as for

the general public? Naturally, effectiveness of these scales may vary consid-

erably between both models and manufacturers. A 2000 study by Jebb et al

found that the results obtained from the Tanita body-fat analyser were not

significantly different from more traditional impedance techniques [65]. The

study did show, however, that this and other impedance techniques were not

as accurate at measuring body fat as other methods such as DEXA.

Skinfold measurements are a ‘simpler’ way of assessing body composition in

that they do not require expensive equipment or highly technical procedures.
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They do, however, require highly trained professionals. Skinfold calipers are

used by technicians, and body composition is then estimated from estab-

lished equations. It is very important that technicians are well trained in

precisely how and where to take skinfold measurements. This method of de-

termining body composition has been found to be accurate and reliable, but

there is a high possibility of error due to inter- and intra-examiner variation

[66]. There can also be differences in results due to the sex of the subject

or the site being measured, among other factors. Therefore, great care must

be taken when using skinfold measurements. A study by Cyrino et al in

2003 showed that maximised measurement error could be caused simply by

using different calipers [46]. Kravitz and Heyward [45] suggest use of strict

measurement guidelines for ensuring measurements are as accurate as pos-

sible. It should also be considered that skinfold measurements may not be

well tolerated, particularly by children, since subjects must remain as still as

possible while measurements are taken.

Of all the methods discussed, BMI is perhaps the simplest and a reason-

ably valid index of overweight and obesity regarding children. When more

detailed determination of body composition is required, DEXA appears at

least fairly precise compared to other measures and so could be considered

acceptable as a measurement of changes in body composition over time.
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In summary, no single method of body composition analysis is ideal for all sit-

uations, and few are suitable for large epidemiological and longitudinal stud-

ies. Each method should therefore be used with both caution and awareness

of limitations and potential inaccuracies.

1.2.1.3 From childhood to adulthood

Often, one will hear parents, when discussing children, dismiss potential

overweight by stating that children inevitably have ‘growth spurts’. It would

appear that people are generally unconcerned about childhood overweight

or obesity leading to similar or more serious problems in later life. It has

recently been reported by the Institute of Medicine that “growth spurts do

occur at several points throughout childhood and adolescence, but it cannot

be assumed that a child will lose his or her excess weight at those times”

[67]. The publication then goes on to report that those children who are at

a certain BMI percentile at age 4 can be expected to remain at a similar

BMI percentile throughout childhood. In other words, those children who

are overweight at 4 will most likely remain overweight throughout childhood.

Furthermore, an increasing number of studies are finding clear links between

childhood weight-related problems and similar adult problems. A 2008 review

by Singh et al considered more than 20 recent studies into such relationships,

and found that “all studies... reported increased risk for overweight or obese

youth to become overweight or obese in adulthood” [68].
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With the ever-increasing prevalence of overweight and obese adults threaten-

ing serious health problems in the UK such as the diabetes epidemic currently

seen in America [69], it seems clear that as well as tackling adult obesity with

diet and activity measures in adulthood, society should be working to tackle

it where it begins: in childhood and adolescence.
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1.2.2 Energy Expenditure

When one talks about energy in terms of human nutrition, one is generally

referring to the fuel that is used by the body for everything from sleeping

to running. This fuel, or energy, taken from food and used by the body

over the course of the day, is most commonly referred to in units called

kilocalories (also, and more commonly, called “Calories”). One kilocalorie,

or Calorie, contains 1000 calories, and can be described as the amount of heat

energy needed to raise the temperature of 1 kilogram of water by 1 degree

Celsius. An alternative, increasingly common way of expressing this energy

is in kilojoules. The relation between these units can be shown as follows:

1000 calories = 1 kilocalorie = 1 Calorie = 4184 joules = 4.184 kilojoules

Total energy expenditure (TEE) is the amount of energy used by a person

in the space of one day (often expressed as kcal/d), and can be broken down

into the following components:

• Resting energy expenditure (REE) (Also called Basal Metabolic Rate

(BMR) or Resting Metabolic Rate (RMR) under some circumstances)

• Diet-induced thermogenesis (DIT) (Also known as the thermic effect of

food (TEF))

• Physical activity (PA) thermogenesis

Ravussin stated, in 1992, that “The RMR generally accounts for ∼ 70% of

the daily energy expenditure in sedentary individuals. DIT is considered to
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be ∼ 10% of the daily energy expenditure. The energy cost of physical ac-

tivity is, of course, very variable and accounts for a variable amount of the

total daily energy expenditure” [70].

1.2.2.1 Measurement of Energy Expenditure

This section aims only to describe methods of calorimetry and an additional

method of measuring energy expenditure - doubly labelled water. Their uses

will be discussed in later sections.

1.2.2.1.1 Direct Calorimetry

Direct Calorimetry is a measure of the heat output from the body [71, 72,

73, 74] using a whole-body measurement. There are various forms of direct

calorimetry, including various forms of chamber calorimetry (convection, heat

sink and isothermal calorimetry) and suit calorimetry.

Direct calorimetry is usually performed in a whole body sealed chamber.

These chambers generally comprise a chair, table, bed, toilet and washing

facilities, radio, television and sometimes exercise equipment [75, 76], and

are intended to be as comfortable as possible for the subject.

Convection direct calorimetry [71, 72] is carried out in a whole body sealed

chamber with thin walls. The chamber is enclosed in a water jacket in order
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to prevent the outside temperature from affecting the results of the calorime-

try. Sensors measure the temperature of the heat leaving the walls of the

chamber, and the difference between this and the room’s controlled temper-

ature is then the energy expenditure of the subject.

In contrast, the chamber used for heat sink calorimetry [71] has thick, well

insulated walls meaning that there is no need for a water jacket (though the

temperature outside the chamber should still be monitored). Air is extracted

from the chamber to a water-based heat exchanger which recirculates the air.

The heat loss is calculated as the rise in the water temperature.

The walls of the chamber used for isothermal calorimetry are lined with an

insulating layer which is in thermal equilibrium with the temperature of the

chamber and the temperature of the chamber walls. Then the temperature

gradient across the insulating layer is proportional to the heat loss from the

subject.

In 1972, Webb, Annis and Troutman [77] described a suit calorimeter which

“does not require a subject to stay quiet in order to achieve some sort of

thermal steady state”. The researchers report that the suit calorimeter al-

lows subjects to “move about, exercise, eat meals, and sleep, while heat loss,

heat production, and the other variables needed for energy-balance are mea-

sured continuously”. The suit consists of a water-cooled garment (a network

of small vinyl plastic tubing) which covers the entire body apart from the
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face and the soles of the feet. This garment is worn directly on the skin and

covered with several insulating layers of clothing (all closed with drawstrings

or Velcro to ensure no loss of air during movement). Additionally, subjects

are required to wear a facepiece to measure oxygen consumption. Water is

circulated around the suit and the heat given off by the subject is measured

from the increase in the temperature of the water.

The entire suit calorimeter increased a subject’s weight by 20.6lb (9.4kg).

Webb et al, however, found that this did not cause discomfort to subjects.

The additional weight did, however, increase the oxygen cost of activity. For

this reason, subjects also wore a facepiece which measured oxygen consump-

tion.

The suit calorimeter has been developed over the years by Webb and used

in various studies requiring the measurement of energy expenditure [77, 78,

75, 79]. In 1994, Hambræus et al [80] discussed the method, coming to the

conclusion that it was an accurate method of measuring energy expenditure

without requiring subjects to be contained in a sealed chamber.

Direct calorimetry, in all its possible forms, is an accurate and direct measure

of energy expenditure [71, 72, 73]. Murgatroyd in 1993 reported that direct

calorimetry is “potentially the most accurate measure of energy expenditure”

[72]. However, direct calorimetry equipment is extremely expensive and re-

quires highly trained technicians [73, 71]. Another disadvantage of direct
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calorimetry is that the heat transfer from food, drink, light and so on must

be accounted for [72] which can involve some lengthy measurements and

calculations. Finally, direct calorimetry presents an artificial environment

which is unlikely to yield the same results as free-living energy expenditure

measured by an alternative method.

1.2.2.1.2 Indirect Calorimetry

Indirect calorimetry measures heat output by measuring respiratory gases

[72]. The measurements of gases can then be converted to heat output. Indi-

rect calorimetry can be conducted either in a sealed chamber or by portable

methods.

In whole body indirect calorimetry, subjects are confined in a sealed cham-

ber providing as normal an environment as possible. The chambers comprise

a bed, chair, tv, shower and sometimes exercise equipment. Air flow into

the chamber is continuously monitored and controlled, meaning that gas ex-

change from the subject can be measured. This measurement is done by

extracting samples of the air from the room and measuring the gas within

the samples. [72].

This method does not require sophisticated mechanical engineering and is

still accurate. It is, however, very expensive and specialised, and an artificial

environment for the subjects.
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There are various methods of portable indirect calorimetry available today,

many of which are widely used in medical practice and research. These meth-

ods measure gaseous exchange using a mask, a mouthpiece or a hood.

• Douglas Bag: The Douglas bag is a gas-impermeable bag which is

carried on a subject’s back during the measurement period. The subject

wears a nose-clip either a mouthpiece or half mask. The bag collects the

air expired by the subject, which can then be analysed to determine the

gaseous exchange during the measurement time. This is then converted

to heat output (i.e. energy expenditure).

• Respirometer: In respirometry, the subject blows through a valve into a

machine which meters the expired air. Samples of this air are extracted

for gas analysis, allowing the gasses to be measured and a conversion

to heat output to be calculated.

• Ventilated hood: The subject wears a hood which allows air to be

drawn over his/her head while sitting or lying. The air is controlled

and monitored, allowing samples of the “used” air to be extracted and

analysed to determine the gaseous exchange of the subject. Ventilated

hood systems can be used in conjunction with Douglas bags to allow

use outside of a clinical environment. This method is suitable for all

age groups, including children. [72]

Portable methods of indirect calorimetry are more user-friendly than whole-

body measurements, although nose clips and masks may be uncomfortable
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for some. They are generally not useful for measurements over long periods

of time. However, for short-term measurements they are generally preferred

to whole-body techniques [72] and have been shown to be accurate when

compared with direct calorimetry [81].

1.2.2.1.3 Doubly Labelled Water

Doubly labelled water is a method of measuring free-living total energy ex-

penditure. A baseline urine sample is taken from the subject who then drinks

a weighted dose of an oxygen and hydrogen isotope. Oxygen and carbon

dioxide production can be calculated from the washout rate of both isotopes:

“The slope of the washout line representing *O is steeper than the washout

line representing *H, and the difference between the slopes represents CO2

production” [30].

Measurement of energy expenditure requires at least two post-dose samples

of body fluids for analysis, and can take up to 7 days for children and 14 for

adults [72, 82].

The doubly labelled water method is time consuming and does involve ex-

pensive isotopes, but has been shown to be accurate [72] and suitable for

people of all ages and all physical states.
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1.2.2.2 Resting energy expenditure (REE)

Resting Energy Expenditure (REE) is the minimum amount of energy that

the body requires when lying in physiological and mental rest. Approxi-

mately 65 - 70% of an individual’s total daily energy expenditure is REE

(unless that individual is extremely active, in which case this percentage is

likely to be as low as 40%) [83]. REE is determined mostly by body weight

and composition [84], with FFM being a much greater predictor of REE than

FM. REE is known to be variable as follows [83]:

• Infants and children have a high REE for their size, due to the energy

cost of growth.

• Males have a higher REE than females, because males generally have

a higher percentage of FFM than females.

• Young people have a higher REE than the elderly, because of the elderly

having less FFM than the young.

• REE can vary between individuals because of: medications, nutritional

state, illness and temperature [85].

When strict conditions are maintained and monitored in the hours preceding

the measurement of the energy expenditure, we will refer to the energy ex-

penditure as Basal or Resting Metabolic Rate (BMR or RMR). Otherwise,

we will use the term Resting Energy Expenditure (REE). REE will always

be slightly higher than BMR as a result of this difference.
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1.2.2.2.1 Measuring resting energy expenditure

Direct calorimetry measures energy expenditure as heat emission from the

body and therefore provides a direct and accurate measurement of energy

expenditure [81, 72]. In a 1995 review of measurement methods, Murgatroyd

et al report that direct calorimetry is “potentially the most accurate measure

of energy expenditure” [72]. Although direct calorimetry is considered to be

very precise, it does have disadvantages. One is the fact that the heat trans-

fer in food, lighting, etc must be accounted for, involving some complicated

measurements and models [72, 73]. For this reason, indirect calorimetry is

often preferred for measuring REE - it has been used as such from as far back

as the Harris and Benedict study of 1919 [86] to studies today, such as the

Avon Longitudinal Study of Parents and Children (ALSPAC) [87]. However,

although indirect calorimetry is generally preferred over direct calorimetry, it

remains a complicated and time consuming process, involving trained techni-

cians and specialised equipment [88]. For this reason, it is far more convenient

to be able to use prediction equations to estimate REE whenever possible.

Since these equations are simply predictions rather than measurements taken

under controlled conditions, they are estimates of REE rather than BMR.

A disadvantage which applies to any measurement recorded in a clinical

setting, including direct and indirect calorimetry, is that it is an artificial

environment. This means that subjects may behave differently outside of the

clinical setting (for example, people with eating disorders [72]) so calorimetry

measurements are unlikely to reflect real-life situations. For this reason, Seale
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et al report that “calorimetry is better suited for measuring changes in EE

for controlled experiments where treatment effects are being investigated.”

[81].

1.2.2.2.2 Models for resting energy expenditure (REE)

As discussed previously (section 1.2.2.1), it is difficult and expensive to mea-

sure REE directly so indirect methods have to be adopted. In his paper of

1915 [89], Benedict discusses various possible factors which may have an effect

on resting energy expenditure. After considering the possibility of a general

relationship between body weight (adults) or body surface area (adults and

children) and resting energy expenditure, he reported that:

We find here not the slightest evidence of a law governing the

relationship between the total body weight and the total heat

production.

It is clear that even with normal individuals a relationship be-

tween body surface and heat production which may be expressed

with any approximation to mathematical accuracy does not exist.

He did, however, accept that factors such as age and weight do have an influ-

ence on REE, but this relationship is not a simple one. Benedict concluded

that “body composition ... has a great influence upon the basal metabolism”,

which could be said to account for apparent effects of factors such as age.

In 1980, Cunningham [90] reported that “sex and age are factors influencing
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the body composition of an individual, but body composition is the principal

determinant of [REE]”, and proceeded to suggest a model for resting energy

expenditure based on lean body mass alone. Nielsen et al [91] report findings

that fat mass and fat-free mass (in addition to age) were both significant and

independent predictors of resting energy expenditure in both genders, from

a study comprising 253 adult subjects. In contradiction to Cunningham’s

suggestion of a model where the only explanatory variable is fat-free mass,

Nielson et al [91] reported that “expressing REE relative to FFM alone will

introduce errors when lean and obese populations are compared”, and sug-

gested a model including both fat mass and fat-free mass as explanatory

variables. Cunningham reports, however, that of FFM, age, height, sex and

body mass, FFM is the most predictive of REE, accounting for 70% of the

variability [90]. Nielsen et al consider various studies [92, 93, 90, 94] which

have found no justification for including fat mass in a model for resting en-

ergy expenditure. They suggest that inaccurate measurement may be the

reason for the findings, stating that “it is possible that less robust methods

for assessment of body composition and/or REE have confounded the ability

to find independent effects of FM on REE in some of these studies” [91].

Rather than models being based on body composition itself, prediction mod-

els for resting energy expenditure used in practice are generally dependent on

other explanatory variables - which are themselves commonly considered to

be predictors of body composition. Four years after Benedict published his

review of factors affecting metabolism [89], he co-wrote a publication with

J. Harris, introducing a set of prediction models for REE which have been
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used until very recently [86]. These models are shown in equations (1.16)

and (1.17) in section 1.2.2.2.2.

In the process of their research, Harris and Benedict appear to contradict

Benedict’s earlier findings regarding body surface area [89] by reporting

that there is, in fact, a strong relationship between body surface area and

metabolism. They found, in their 1919 study [86], body surface area to be

a far more reliable predictor of metabolic rate than body weight. However,

they did not include BSA in their final published models, stating that mea-

surement methods must be standardised before BSA could reliably be used in

BMR models. New methods for determining BSA have been developed since

the DuBois method used by Harris and Benedict, but as yet BSA does not

appear to be included in any resting energy expenditure prediction models.

In recent studies, many researchers have found that the Harris and Bene-

dict (HB) models overestimate REE in today’s population [93, 95, 96], with

Frankenfield et al stating that the HB equations systematically overestimate

BMR by ≥ 5% [95]. This does appear to be quite reasonable since body com-

position in the population has undoubtedly changed over the last 90 years.

Various studies more recently have resulted in different sets of BMR predic-

tion models [97, 98, 99, 100]. However, it should be noted that Frankenfield

et al [95] found that the margin of error achieved with the Harris-Benedict

equations has not been significantly improved in any of these later studies.
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Kaplan et al in 1995 [96] compared various sets of prediction equations with

REE measurements obtained from indirect calorimetry in a study consist-

ing of 102 children. They used paired t-tests to determine whether BMR

derived from the prediction equations was unbiased compared to that from

the indirect calorimetry method. They considered the HB equations, as well

as equations from the World Health Organisation [98] and two sets of equa-

tions from Schofield, one using weight and one using weight and height [97].

Their findings were that the Schofield equations with weight and height were

the best predictors of BMR (in kilocalories per day) in children, predict-

ing 100% ± 19% of REE (compared to 92% ± 25% for the HB equations

(1.16) and (1.17)). Rodriguez et al [101], using the Bland-Altman method

[102] to investigate the limits of agreement between several sets of predic-

tion equations (including Harris-Benedict, WHO and Schofield) and indirect

calorimetry measurements, also recommend the Schofield equations for use in

a mixed population of obese and non-obese children and adolescents. These

Schofield equations [101, 56, 97] are given in equations (1.18) to (1.21) in

section 1.2.2.2.2.

It is quite hard to believe, however, that parameters should change so sud-

denly and so completely as suggested by Schofield [97]. It is possible that

there is a strong linear relationship between weight and height for infants,

making the estimates of parameters in these models very unstable due to a

classical problem of collinearity.
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The set of equations which appear to be most commonly used today were

published by Henry in 2005 [100], and are known as the Oxford equations

(equations (1.34) to (1.37), section 1.2.2.2.2). These equations were devel-

oped by plotting weight and BMR (by indirect calorimetry) of 10552 people,

then considering the linear trendline.

While developing these equations, another new set of equations which in-

cluded height as an independent variable was considered. However, the study

reported “no significant advantage was afforded in predicting BMR with the

inclusion of height”[100].

Ramirez-Zea [103], in another validation of predictive equations for BMR in

adults, uses linear regression and concordance correlation analysis (a measure

of agreement), and concludes that the Oxford equations are accurate in men,

across a wide range of age and BMI. However, the study reported that none

of the proposed equations were appropriate for estimating BMR in women.

In conclusion, it appears that resting energy expenditure is influenced to

some extent by body composition. Therefore, it seems plausible that pre-

diction models should include some measure of this. Of course, there is

the possibility of the added complication that while factors such as height

and weight can be accurately and relatively easily measured, we rely com-

pletely upon estimates of body composition. However, considering the fact

that body composition can be (to some extent) predicted by anthropometric
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measurements, it seems reasonable that these measurements could be used

as proxies in the prediction of resting energy expenditure.

Equations (1.16) to (1.39) are some of the published linear prediction models

for REE in children involving anthropometric measures, where W is weight

(kg), H is height (m) and A is age (years).

Harris and Benedict (HB) [86]

Male, 15+ REE = 66.4270 + 13.7516 × W + 500.33 × H − 6.755 × A(1.16)

Female, 15+ REE = 655.0955 + 9.5634 × W + 184.96 × H − 4.6756 × A(1.17)

Schofield HW [97]

Male, 3-10 REE = 414.9 + 19.59 × W + 130.3 × H (1.18)

Male, 10-18 REE = 515.5 + 16.25 × W + 137.2 × H (1.19)

Female, 3-10 REE = 371.2 + 16.969 × W + 161.8 × H (1.20)

Female, 10-18 REE = 200.0 + 8.365 × W + 465.0 × H (1.21)

Schofield W [97]

Male, 3-10 REE = 505 + 22.7 × W (1.22)

Male, 10-18 REE = 693 + 13.4 × W (1.23)

Female, 3-10 REE = 486 + 20.3 × W (1.24)

Female, 10-18 REE = 659 + 17.7 × W (1.25)
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FAO/WHO/UNU [98]

Male, 3-10 REE = 495 + 22.7 × W (1.26)

Male, 10-18 REE = 746 + 12.2 × W (1.27)

Female, 3-10 REE = 499 + 22.5 × W (1.28)

Female, 10-18 REE = 651 + 17.5 × W (1.29)

Oxford HW [100]

Male, 3-10 REE = 306 + 15.1 × W + 74.2 × H (1.30)

Male, 10-18 REE = 299 + 15.6 × W + 266 × H (1.31)

Female, 3-10 REE = 349 + 15.9 × W + 210 × H (1.32)

Female, 10-18 REE = 462 + 9.4 × W + 249 × H (1.33)

Oxford W [100]

Male, 3-10 REE = 514 + 23.3 × W (1.34)

Male, 10-18 REE = 581 + 18.4 × W (1.35)

Female, 3-10 REE = 507 + 20.1 × W (1.36)

Female, 10-18 REE = 761 + 11.1 × W (1.37)
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Maffeis et al [99]

Male, 6-10 REE = 307.89 + 6.84 × W + 564.59 × H − 16.53 × A (1.38)

Female, 6-10 REE = 371.29 + 8.56 × W + 373.21 × H − 8.68 × A (1.39)

Several studies have examined the theory that resting energy expenditure

(and total energy expenditure) can be expressed as some power function of

body weight; i.e. REE ∝ massα where mass is body weight in kg. Over the

years, several studies have attempted to find the precise value of α. In the

1880s, Rubner [104] while studying the metabolism of dogs found this expo-

nent to be 2
3 . However, Max Kleiber, in 1932 [105], suggested that α = 0.74

and opted for the “3
4 rule” (now known as “Kleiber’s Law”) in a later publi-

cation [74]. It has been reported that this relationship can be applied to all

mammals, from mice to elephants.

The model formulated by Kleiber is:

REE (kcal / day) = 70 × mass0.75 [74, 106, 107]

A technical report published in 1989 reported that “although infants were

not included in Kleiber’s investigations, this equation has been applied to

infants... the exponent may be greater than 0.75 in infants, because of the

additional energy requirements for growth, or because of the higher metabolic

activity of adipose tissue in infants than in adults. The exponent tends to

fall as growth decreases in older children” [108].
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Several studies and reviews have considered this proportional relationship

with varying results. Some report that the exponent of 0.75 is valid for all

mammals [107, 106]. However, others have reported contradictory findings.

In a re-examination of Kleiber’s Law in 2001, Dodds, Rothman and Weitz

concluded “we find evidence that there may not be a single scaling law for

metabolic rate, and if it were to exist, we also find little compelling evidence

that the exponent should be α = 3/4” [109].

While we do know that resting energy expenditure is to some extent de-

pendent on weight, recent research has shown that fat-free mass is more

metabolically active than fat mass. It may be possible that if a scaling law

does exist, it should incorporate some measure of body composition, possibly

in addition to body weight.

An obvious extension of Kleiber’s model is

REE ∝ FMa + FFM b (1.40)

This model will be explored in chapter 5 using nonlinear modelling tech-

niques, as discussed in section 2.4.
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1.2.2.3 Diet-induced thermogenesis (DIT)

Diet-induced thermogenesis (DIT), also known as the thermic effect of food

(TEF), can be described as the amount of energy used (and therefore the

amount of heat produced) over and above the basal metabolic rate during

processes related to the digestion of food [110, 111]. Studies have reported

a significant level of intra-individual variation in diet-induced thermogenesis

[112]. DIT can be affected by many factors, including exposure to heat or

cold, nicotine, caffeine and alcohol [111, 113], medication, short- or long-

term illness [114, 115] and levels of physical activity [112]. Tataranni et al

[116] stated that diet-induced thermogenesis is “the most difficult to measure

and least reproducible component of daily energy expenditure”. Reed and

Hill state that it accounts for 3-10% of total daily energy expenditure [117],

while Westerterp reports this to be 5-15% of TEE [113] and Granata states

it to be 10% [118].

1.2.2.3.1 Measurement of diet-induced thermogenesis

There have been many studies involving measurement of diet-induced ther-

mogenesis. In the vast majority of these studies, basal metabolic rate is

measured (mostly using indirect calorimetry) and used as a baseline. After

subjects have consumed a meal of controlled energy content and nutritional

composition, energy expenditure is measured for a period of time. Diet-

induced thermogenesis is then calculated as the difference between postpran-

dial energy expenditure and basal metabolic rate [119, 120, 121].
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While studies generally do not dispute this procedure, one thing they consis-

tently differ on is the length of time for which the postprandial measurement

should be taken in order to get an accurate DIT result. Many studies have

used DIT measurement times of between 1 and 3 hours [122, 123, 124, 125].

A small number of studies take the measurement over longer periods of time.

For example, Nelson [84] and Laville [121] measured over 6 hours, D’Alessio

et al [126] over 8 hours and Steiniger [127] over 10 hours. A small num-

ber of studies have used 24-hour measurements, by taking the measured

fasting energy expenditure (adjusted for spontaneous physical activity) as a

baseline and subsequently measuring 24-hour energy expenditure under fed

conditions. DIT is then calculated as the difference between the two mea-

surements. Schutz, Bessard and Jéquier [122] in 1984 measured DIT over

24 hours and proposed that a measurement should be made over 15 hours.

Twelve years later, Reed and Hill in a study comprising 131 tests, concluded

that DIT “is a response lasting ≥6h in most people and [they] recommend

that measurements last ≥ 5h” [117].

1.2.2.3.2 Factors affecting diet-induced thermogenesis

There are several factors which may have an effect on diet-induced thermo-

genesis. One such factor is the age of the subject. Morgan and York [128]

and Schwartz et al [129] both reported a decrease of DIT with increasing

age. Visser et al [119] reported that this effect was only found in male sub-

jects and disappeared when body composition was taken into account, while
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Tataranni et al [116] reported that diet-induced thermogenesis was inversely

correlated with age for men only. Literature examining the effect of age on

diet-induced thermogenesis appears to be very sparse and inconclusive.

One factor which has been discussed a great deal more in published literature

is that of the energy content and the composition of meals. D’Alessio et al

[126] reported no relationship between DIT and nutritional composition but

a positive correlation between DIT and energy intake, a result also reported

by Kinabo two years later [130]. However, several researchers have reported

a clear effect of the nutritional content of meals upon diet-induced thermo-

genesis, with protein- and carbohydrate-rich meals resulting in a higher DIT

than fat-rich meals [131, 132, 120].

Another area which seems to be highly inconclusive is whether or not body

composition has an effect on DIT. Zahorska [133] in 1980 found a similar DIT

between obese and non-obese subjects in a study using body surface area to

determine body composition and indirect calorimetry to determine energy

expenditure. In their study using densitometry and indirect calorimetry,

D’Alessio et al [126] reported similar results. Maffeis et al, using skinfolds to

identify obesity, also reported no effect of body composition on diet-induced

thermogenesis, as did Das et al [134] in a more recent study, defining obesity

by BMI tertiles. Granata and Brandon [118], in a 2002 review, concluded

that there was no consensus for a link between obesity and DIT. However,

in discussing this article in a letter to the editor entitled simply “The ther-

mic effect of food is reduced in obesity”, de Jonge and Bray [135] state: “In
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conclusion, we agree with the authors that there is no consensus on whether

TEF is reduced in obese individuals... When multiple factors are looked at

simultaneously, however... the evidence for a reduction of TEF in obesity

becomes significantly stronger”. Many researchers have reported a similar

result, including Schutz et al [122], Schutz et al [123], Armellini et al [136]

and Bray et al [137]. The findings of each of these studies were that obese

subjects had a lower DIT than non-obese subjects. I am unable to find any

studies reporting the opposite effect of obesity on DIT. One possible reason

for the differences between study results may be the differing methods used

to define and determine body composition and obesity.

I have been able only to find one study resulting in a prediction equation

for diet-induced thermogenesis. This study, by D’Alessio et al in 1988 [126],

reported that the diet-induced thermogenesis of subjects could be predicted

almost entirely (R2 = 0.82) from the energy content of the meal by the

formula:

TEF = −1.16 + 0.082 × kcal

I am unable to find any subsequent references to this model in the very

widespread literature on the topic. However, it seems that with the large

potential that seems to have been widely demonstrated for DIT to be vari-

able, it is unlikely that a prediction model with only one predictor would

give reliable results outwith the study sample!
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1.2.2.4 Physical activity (PA)

Physical activity thermogenesis can be described in two parts:

1. Exercise thermogenesis

2. Non-exercise activity thermogenesis (NEAT)

Exercise thermogenesis generally describes the energy cost (i.e. heat gen-

erated) during periods of physical activity, whether intentional exercise or

that which occurs during day-to-day living - climbing stairs, for example.

Non-exercise activity thermogenesis encompasses the energy costs of every-

day living, including activities such as fidgeting, maintaining posture and

muscle contraction [71].

Very often, these are considered together, and are known simply as physical

activity thermogenesis. This is estimated to account for roughly 20% of daily

energy expenditure in “normal” human beings. In those who are more active

than “normal” (e.g. athletes), this percentage could be considerably higher

[83].

1.2.2.4.1 Physical activity and body composition

It is generally accepted that the energy expended during physical activity is

dependent upon the activity itself, but also upon the individual undertaking

that activity [138]. The idea of a possible connection between physical activ-
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ity and body composition has been around for many years. Most profession-

als in medicine today are likely to tell us that physical activity is important

when it comes to the prevention of obesity. However, the particular effect of

physical activity on this imbalance is under some debate. At the time of the

2003 Moore study [139], literature in the area was sparse. Today, although

there have been many more publications in the field of physical activity and

its effect on body composition, the literature available is, overall, inconclu-

sive. Moore et al [139] tell us that at the time of their research, studies were

generally cross-sectional rather than longitudinal and did not allow a signif-

icant period of follow-up on the subjects; their own study was longitudinal,

extending over a period of eight years. Since this 2003 publication, there

have been studies published with far longer follow up periods. For example,

the 2004 paper by Hancox et al [140] described a longitudinal study with 23

years follow-up.

Conclusions from different sources are conflicting. Some studies, including

Delany [141] and Goran et al [142], report no association between physical

activity and body composition. In contradiction to these findings, however,

many studies have reported some association between physical activity and

body composition. For example, Sallis et al [143], find that obese children

are less physically active than non-obese, and children who are more active

appear to develop less body fat over time than less active children.

In discussing studies involving television watching (i.e. lack of physical exer-

tion) and obesity, Anderson and Butcher [144] point out that different results
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may be explained by differences in the types of study: “These mixed findings,

though, tend to come from observational or prospective studies. More rigor-

ous experimental studies consistently find that reducing children’s television

watching lowers their BMI.”

One further criticism of studies in this field is that of small sample size. A

report published in 1995 by Maffeis et al [145] detailed their study which

involved, at the analysis stage, only 29 children (13 obese, 16 non-obese),

while Goran et al [142] in 1998 studied 75 children and the 2003 study by

Moore et al [139] involves only a slightly larger sample size of 103 - similar to

that of the original Framingham Children’s Study by LL Moore et al [146].

However, while these are larger than the Maffeis study, they may still be seen

as being fairly small! Sallis [143] had a sample size of 286 children, a study

from the National Heart, Lung and Blood Institute [147] recruited 2379, and

Berkey et al [148, 149] had a sample size of 11,887.

It could of course be suggested that there is a reverse causal effect at play.

For example, a paper published in 2005 by Norman et al [150] investigates

the effect of excess body mass in adolescents on their ability to perform sus-

tained exercise, concluding that overweight adolescents are “limited by the

increased cardiorespiratory effort required to move their larger body mass”

and “burdened by the metabolic cost of their excess mass”. It is therefore

clear the relationship between body composition and physical activity can-

not be as straightforward as a one-directional causal relationship. It would

be extremely difficult, if not impossible, to attempt to accurately investigate
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and describe the complex relationships involved within any reasonable time

frame.

1.2.2.4.2 Measuring activity and determining energy used

There are various methods which can be used to measure physical activity

and/or determine physical activity energy expenditure. In their 2001 review,

Sirard and Russell classified measures of physical activity thermogenesis into

three groups: subjective measures, secondary measures and primary mea-

sures (criterion standards). [151].

Self-report is a subjective method which has been in use for a number of

years. It can be immediate in the form of either an activity diary, or delayed,

as a recall of physical activity over a fixed period of time. In 1986, Washburn

reported that the practice of keeping an activity diary is inconvenient to the

participants, so “the delayed recall technique is the most practical and com-

monly used approach” [152] out of the two methods. Over the past twenty

years, studies have attempted to find whether or not self report is an accu-

rate way of determining physical activity. In 1993, Sallis et al [153] using a

test-retest method for analysis of accuracy, found that activity recalls were of

adequate reliability and validity in children as young as age 10-11 (note, how-

ever, that the total correlation for the total group was only 0.53). However,

many studies have shown that self report is actually inaccurate [152, 154],

especially for children. Ekelund et al, in 2001, reported that “The self-report
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methods rely on the subject’s ability to recall and report physical activity

and should be used with caution, especially in subjects younger than 15 yr

of age” [155]. In the same year, Trost suggested that this was because “many

children and adolescents have difficulty accurately recalling their past phys-

ical activity behavior” [156]. This method of determining physical activity

energy expenditure relies on two calculations - the first being a calculation of

the time spent on each activity, the second being a calculation of the energy

cost of each activity [157].

Regardless of whether or not people have problems with memory, self-report

remains a very subjective measure of physical activity. For this reason, stud-

ies have become more and more interested in validating the use of more

objective measures (primary or secondary).

One such “secondary measure” is heart rate (HR) monitoring. It has been

shown that, despite the inter-individual variations in heart rate, the heart

rate and oxygen uptake of an individual are generally linearly related dur-

ing exercise [158, 159]. Therefore, it seems logical to assume that heart rate

could be useful as a proxy measure for oxygen uptake (and therefore, energy

expenditure) during periods of physical activity, assuming that this linear

relationship is known for the individual. This has been shown to be the case

[160, 161]. It has been shown that while heart rate monitoring provides a

good estimate of energy expenditure during periods of high physical activity,

it is inaccurate during periods of low activity [159].
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The main disadvantages to heart rate monitoring as a method of determining

physical activity energy expenditure are (a) the need for the linear relation-

ship with oxygen uptake to be determined for each individual, and (b) the

delay in the response of the heart rate to activity changes [160]. The main

advantage is the fact that heart rate monitoring is relatively inexpensive and

noninvasive [158].

Another secondary method for determining physical activity energy expen-

diture is accelerometry. Accelerometers are activity sensors which can be

uniaxial or triaxial. The accelerometer is worn on the body, and assesses

postures and motions during the measurement period [162]. In 1999, West-

erterp reported that “there is no clear difference for correspondence between

indirect calorimetry and accelerometer counts” [163]. Triaxial accelerome-

try has been shown to be more accurate than heart rate monitoring [164] in

determining the energy expended during physical activity. In a study that

used multiple regression with various measures of physical activity including

heart rate monitoring and accelerometry, Eston et al [160] found that triax-

ial accelerometry was the best single predictor (R2 = 0.83 for accelerometry,

0.638 for HR) of oxygen uptake, and concluded that “a triaxial accelerome-

ter provides the best assessment of activity”. Ainslie, Reilly and Westerterp,

however, report that “not all activity is reflected in acceleration or deceler-

ation such as load carriage or on a gradient. This failure to record activity

leads to large errors in predicted EE, especially participants engaged in high-

intensity activity” [165].
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Another type of motion sensing which has been shown to have potential in the

field of physical activity energy expenditure measurement research is pedom-

etry, which counts steps by responding to vertical acceleration [165]. Eston

et al, while concluding that accelerometry was the single best assessment of

physical activity, also report that “pedometry offers potential for large pop-

ulation studies” [160]. Ainslie et al [165] recognise the main limitation of

pedometry, “they do not quantify stride length or total body displacement

and are therefore of very limited utility in predicted EE”, but do accept that

“if overall walking activity is the outcome to be assessed, the pedometer is a

useful and inexpensive instrument” [165].

While heart rate monitoring and accelerometry have been shown to be ac-

curate measures individually, researchers find cause for combining the two

methods. In the previously mentioned study of 1998, Eston et al [160] re-

ported that the best model for predicting physical activity thermogenesis was

one which included both triaxial accelerometry and HR monitoring. This

model had an R2 value of 0.85, which is only slightly larger than the model

with accelerometry alone.

A “primary measure” of physical activity energy output is indirect calorime-

try [151], which can be carried out either by fitting a calorimetry chamber

with exercise equipment, or by using a portable method of indirect calorime-

try with free-standing exercise equipment. While this has been shown to

produce accurate results, it should be noted that calorimetry does not repli-

cate real-life situations. For this reason, as well as that of the expense and

51



technicians required, indirect calorimetry is unlikely to be suitable for many

physical activity studies. It is, however, frequently used as a validation of

other methods such as heart rate monitoring and accelerometry.

Although doubly labelled water (see section 1.2.2.1.3) can not directly mea-

sure periods of activity themselves, Bar-Or et al [166] state that “If a measure-

ment of resting metabolic rate (RMR) is also performed, then an estimate of

activity energy expenditure may be obtained by difference (TEE − [RMR +

0.1 × TEE])”. (Note that here, 0.1 × TEE represents DIT.)

1.2.2.4.3 Activity as a level

Physical activity level (PAL) can be determined as a ratio, as shown in

equation (1.41).

PAL = total 24h energy expenditure
Basal metabolic rate

(1.41)

Using this equation, people can be classified, according to 1985 FAO/WHO/UNU

reference values [167] as follows in Table 1.3.

PAL value Description
< 1.2 Bed rested - most likely when in care of others
1.2 − 1.55 Low activity level - sedentary lifestyle
1.55 − 1.71 Medium activity level - occasionally active, typical office work
1.71 − 1.95 High activity level - some manual work and/or regular exercise
> 1.95 Very high activity level - a fair amount of manual work or exercise training

Table 1.3: Reference values for PAL (FAO / WHO / UNU 1985) (adults)
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1.2.2.4.4 Physical activity ratios for children

Energy expenditure for physical activity that has not been measured may, on

occasion, have to be estimated. In 1990, suggestions for estimating the energy

cost of activities in children were published in a report by the International

Dietary Energy Consultancy Group [168]. These guidelines are as follows:

1. If the child’s BMR is not known, calculate it with appro-

priate local formulas or with those of SCHOFIELD et al.

suggested by FAO/WHO/UNU.

2. For children, 15 years or older, apply to the child’s BMR the

same multiple or BMR determined for equivalent activities

in adults.

3. For children under 15 years of age:

(a) For sedentary activities (with little or no movement),

lying down, sitting or standing without displacement,

use a factor of 1.1, 1.2 or 1.4, respectively, for all children

under 15 years.

(b) For non-walking light activities, use a factor of 2.0 or 2.2

X BMR for ages 1.5-5.9 or 6.0-14.0 years, respectively.

(c) For walking at a normal pace on level ground and for

moderate activities, use a factor of 2.2 or 2.9 X BMR

for ages 1.5-5.9 or 6.0-14.9 years, respectively.
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(d) For heavier activities, apply to the child’s BMR the

multiple of BMR determined for equivalent activities

in adults, multiplied by 0.5, 0.65 or 0.8 for ages 1.5-5.9,

6.0-12.9 and 13.0-14.9 years, respectively.

These calculations will probably have a smaller error when used

to estimate the energy expenditure of a group or population of

children than of a single specific child.
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1.2.2.5 Measuring total energy expenditure

We know that total daily energy expenditure comprises the components:

resting energy expenditure, diet-induced thermogenesis and physical activity

thermogenesis. However, as a result of high variability and possible inac-

curacies in determination of these three components, it is likely that simply

“putting together” the three measured or calculated energy expenditures will

not yield an accurate calculation of total energy expenditure. Ravussin et

al, in 1986, reported that “daily human energy requirements calculated from

separate components of energy expenditure are inaccurate and usually in

poor agreement with measured energy intake” [94]. This could be a combi-

nation of poor measurement of energy expenditure and poor measurement of

energy intake. The doubly labelled water method of estimating total energy

expenditure avoids most of these concerns.

Direct and indirect calorimetry can be used to calculate accurate measures

of total daily energy expenditure. The subject would spend a period of 24

hours or more within a sealed calorimetry chamber as described in section

1.2.2.1. During this time, energy expenditure could be continuously mea-

sured. Portable methods of indirect calorimetry are not suitable for extended

periods of time, so would not be useful in determining total daily energy ex-

penditure.

Although whole body calorimetry does give very accurate results, it is not a

natural environment and is unlikely to reflect real life. Because of its ability
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to be used in free living conditions, doubly labelled water is considered the

gold standard in energy expenditure measurement [166, 165]. This method

of calculating total daily energy expenditure has the advantage of being suit-

able for all age groups and physical states of people [72]. However, it is an

expensive process, and requires measurement several times over a period of

up to two weeks in some cases. In 1997, Bratteby et al conducted a cohort

study into daily energy expenditure measurement methods in which 374 ado-

lescents participated [169]. The researchers report that “it was impossible to

measure total energy expenditure by the DLW method in the whole study

group on account of the great costs”.

As with physical activity energy expenditure, total daily energy expenditure

can be examined with the use of activity diaries, motion sensors or heart rate

monitoring.

The use of activity diaries would require the subject to account for every

minute of a 24-hour period of time. The time spent in various activities

could then by multiplied by the energy cost of those activities to calculate

the total energy cost of the day. Bratteby et al, in a study comprising 50

adolescents, reported in 1997 that “the activity diary... provides a close es-

timate of TEE in groups of adolescents, but is unsuitable for an individual

estimate” [170]. Westerterp reports that “A disadvantage of questionnaires

is the fact that subjects can easily overestimate or underestimate the time

spent in activities, and most questionnaires are not applicable for all subject

categories from children, people with and without jobs, to the elderly” [171].
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While heart rate monitoring may be used for calculating total daily energy

expenditure and has the advantage of being an objective measure com-

pared with the subjectivity of activity diaries, Bratteby et al point out

that “TEE estimation by HR monitoring requires, however, complex and

time-consuming individual calibration procedures which limit the use of this

method” [169]. It should be noted that the heart rate is affected at rest by

many more factors than simply physical activity [171] though these factors

do not affect the heart rate during periods of moderate to intense physical

activity [72]. Therefore, heart rate at rest may not be a reliable indicator of

energy expenditure.
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1.2.3 Energy Intake

1.2.3.1 Total energy intake

Energy intake (EI) comes entirely from the consumption of food and drink.

The energy in food can be measured using bomb calorimetry, a process which

relies on the principles of direct calorimetry (see section 1.2.2.1.1). Bomb

calorimetry directly measures the heat output as food is consumed com-

pletely.

When in energy-balance equilibrium (“zero energy-balance”), energy intake

must equal energy output. Therefore, assuming that a subject is in equi-

librium, daily energy intake can be measured by estimating daily energy

expenditure. However, this method is only valid while in equilibrium [172].

One method of determining the energy intake of individuals is self report.

This relies on subjects giving an honest account of their food consumption

over a period of at least 24 hours. Naturally, this presents some issues. It

could be quite likely that subjects will not remember to record everything,

or will estimate portion sizes incorrectly. Bandini found that self report was

unreliable for both obese and non-obese subjects when validated against TEE

measured by doubly labelled water, and concluded in 1990 that “dietary in-

take data cannot be used to assess the role of energy intake or expenditure

in the development of obesity” [172]. Using data from a Dutch health exam-

ination monitoring project comprising 2079 men and 1467 women, Braam et
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al [173] find that as men and women become more overweight, they have a

greater tendency to under-report energy intake. They also found that age af-

fects self report in both sexes, and smoking habits and education level affect

self report of energy intake in males only. Fisher et al [174], in a study of

children, found that heavier children were more likely to under-report energy

intake than ’normal-weight’ children. Macdiarmid and Blundell report that

“women are more likely to under-report than men, and under-reporting is

more common among overweight and obese individuals”. They then go on

to make the logical conclusion that ’positive health image’ foods are more

likely to be over-reported, while ’negative health image’ foods are more likely

to be under-reported. In 2007, Probst and Tapsell [175] conducted a study

of 147 subjects. They found that only 46.2% of the sample reported their

energy intake accurately. Of the remaining subjects, a higher proportion

under-reported than over-reported. The authors found, contrary to previous

studies, that there was no effect of age, gender or BMI, and concluded that

computerised dietary recall may yield more accurate results than face-to-face

assessment. In this study, Probst and Tapsell (seemingly arbitrarily) defined

under-report as EI
BMR

< 1.35 and over-report as EI
BMR

> 2.4

1.2.3.2 Importance of energy intake during early infancy

In 1981, a study by MS Kramer [176] recognised the potential of breastfeed-

ing as a method of protection against obesity in later life, concluding that

“breast-feeding does protect against later obesity” and attributing the con-

flicting results of previous studies to “insufficient attention to methodological
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standards”. The idea that breastfeeding, if not beneficial, is certainly not

detrimental in the fight against obesity is an idea which now appears to be

generally accepted throughout literature [177, 178, 179, 180] and life.

There are several possible reasons for this, as highlighted in a 2007 publica-

tion by Singhal and Lanigan [181]. The first possible explanation is that of

intake regulation. When breastfeeding, infants are to a greater extent in con-

trol of how much they take than those who are formula-fed. It is not known,

however, the extent to which this effect extends into adulthood. Next comes

the difference in nutritional quality between breast milk and formula milk,

also highlighted by Hoddinott, Tappin and Wright in 2008 [180]. One such

difference is the protein content present in each type of milk. High early

protein intake has been shown to be linked to later adiposity [182], and as

reported by Singhal and Lanigan [181], protein intake in formula-fed infants

can be up to 70% higher than that of infants who are breastfed. Hoddinott,

Tapin and Wright highlight the issue of the fundamental differences between

the types of feeding by stating that “formula milk is just a food, whereas

breast milk is a complex living nutritional fluid that contains antibodies, en-

zymes, and hormones, all of which have health benefits” [180]. Finally comes

the suggestion that growth acceleration in the early stages of life “may be

a key programming window” for body composition in later life [181]. It has

been shown that breast-fed babies have a lesser early growth acceleration

than those who are formula fed [183]. Settler et al in 2005 [184] suggested

that these first few weeks of post-natal life are crucial when it comes to the

determination of body composition in the years to follow.
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A few studies find that there is no effect of breastfeeding on protection

against later-life obesity. A study in 2004 by Bogen et al [185] considered a

sample of low-income black children and found no such effect. In the same

year, Grummer-Strawn and Zei [186] reported a protective effect among non-

Hispanic white children but a lack of such an effect among black or Hispanic

children. It seems, therefore, that ethnicity may be a confounding effect. It

is also known that socioeconomic factors are often confounded with breast-

feeding [187]. While authors may be keen to stress that breastfeeding may

indeed be beneficial in the battle against obesity, they are often just as keen

to point out that more research needs to be done to determine how much

of the effect is down to the breastfeeding itself, and how much is down to

confounding factors [188, 179].

Overall it appears clear that, though overweight and obesity are becoming

more and more apparent in today’s adults and children, those first few days of

life are potentially extremely important when it comes to making nutritional

considerations. Furthermore, when taking such considerations into account,

breastfeeding certainly does not hurt! A recent publication of reports by

the Institute of Medicine [67] recommends breastfeeding for all infants. As

Woodward-Lopez et al conclude: “Although the effect of breastfeeding may

be small compared to other factors, the promotion and support of breastfeed-

ing initiation and duration are a low-cost method of providing many health

benefits, one of which is likely to include reducing obesity risk in children”

[189].
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1.2.4 Energy (im)balance and body composition

Moore et al [139] report that “obesity is an imbalance in energy intake and

expenditure”, a claim that is widespread in the literature [190, 191, 192, 67].

While this sounds like a relatively simple idea in theory - to maintain weight

(under normal circumstances) what you do should be equal to what you eat

- it is far from simple in practice. The Institute of Medicine in 2005 reported

that “although ‘energy intake = energy expenditure’ looks like a fairly basic

equation, in reality it is extraordinarily complex when considering the multi-

tude of genetic, physiological, sociocultural, and environmental factors that

affect both sides of the energy-balance equation and the interrelationships

among these factors” [67].

Are increasing energy intake and decreasing energy expenditure equal con-

tributors in the ‘obesity epidemic’? Is one more important than the other

when it comes to improving body composition or preventing obesity from an

early age? In 2003, Labib published the ’take-home message’ that “Obesity is

increasing at alarming rates because of [1] a reduction in daily energy expen-

diture,... and [2] an increase in energy intake” [192]. While some researchers

place more (or indeed all) significance on energy intake [193, 194], there are

also those who place the emphasis on physical activity [195, 196, 197, 198].

A cross-sectional study published in 2000 by Atkin and Davis concluded that

dietary intake did not have an effect upon body composition in childhood,

but “energy expenditure, in particular physical activity, may have a greater

influence on body composition in early childhood” [195].
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Literature examining the link between total energy expenditure and body

composition appears to be contradictory and often inconclusive. In 1998,

Ravussin et al [199] concluded that “a low rate of energy expenditure may

contribute to the aggregation of obesity in families”, while other researchers

such as Goran et al in 1998 [142] have suggested that there was in fact no

significant relationship between TEE and body composition. Goran et al re-

ported that “the rate of change in fat mass relative to fat-free mass is highly

variable and is related to sex, initial fatness, and parental fatness, but is not

inversely related to any of the components of daily energy expenditure”. This

longitudinal study involved 75 white children, and the resting energy expen-

diture was measured by indirect calorimetry. Several studies have shown a

clear link between energy intake and body composition, but the degree of

the imbalance varies from researcher to researcher.
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1.2.5 Maturation: determining pubertal status

In any field of research involving young people, it is highly important to be

able to consider the effects of puberty (also referred to as sexual maturation

(SM)). Naturally, in order to do this, researchers must be able to determine

pubertal staging. Puberty is a process that cannot be defined as clearly as,

for example, age [200, 201]. In a 2006 review of assessment of pubertal status,

Dorn et al state that the measurement method should be appropriate for the

particular study, concluding that “in other words, we do not believe there is

a one-size-fits-all answer to the frequently posed question, “What is the best

way to measure puberty?” Instead, what is often required is a clarification

of the research questions being addressed by a study and the subsequent

components of maturation that are of greatest relevance and interest” [201].

A method of determining pubertal staging which has been widely used for

more than 40 years is the Tanner method [202, 203]. This method involves

comparing physical characteristics of adolescents to published photographs

or line drawings depicting various stages of puberty, and thus assigning the

adolescents to a pubertal stage. The Tanner stages range from 1 to 5 (prepu-

bertal to postpubertal) and detail the growth of pubic hair in both boys and

girls, genital development in boys and breast development in girls. Determin-

ing pubertal staging by this method can be done by physical examination,

self report or parental report. These methods naturally differ in reliability.

Various studies have shown that examination by health professionals is vital

in assessing pubertal stage while self report is far less accurate [204, 205, 206].
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Bonat et al, in 2002, determined that self-report of puberty was especially in-

appropriate for overweight adolescents [207]. While physical examination of

such features may be considered embarrassing for young people, it has been

reported that the key to obtaining participation in such examinations relies

upon “how comfortable the investigator is in explaining the research study

and the included physical exam, as well as how experienced and comfortable

the health care provider is in actually performing the exam. If one or both

of these aspects is missing, then the study may fail to obtain pubertal stag-

ing by physical examination” [201]. A 2000 study reported that self-report

and parental report of pubertal staging are sufficient “in instances in which

precise assessment of pubertal stage may not be necessary” [208].

Some researchers use different scales which were modelled on Tanner ratings.

In a longitudinal study, Buckler [209] used both the Tanner scale and a scale

ranging from 1 - 10. In this scale, the Tanner stages were multiplied by 2

so that, for example, Tanner stage 2 corresponded to new stage 4. However,

the scale adopted by Buckler allows for the inclusion of intermediate stages

which are not considered when using the Tanner system for determining pu-

bertal staging.

Age of menarche is a potential method of determining stage of puberty in

girls. It must, however, be acknowledged that this event does not occur at

the start of the pubertal process and so cannot be considered representative

of the onset of puberty [204]. When considering age at menarche, differing

criteria can present problems for researchers (as outlined by Brooks-Gunn,
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Peterson and Eichorn [210]). While one study may consider the cut-off for

late maturation to be age of menarche being 14, another may consider the

same cut-off to be 13.

In some longitudinal studies involving puberty, peak height velocity (PHV)

is used as a marker of pubertal status. PHV for an individual adolescent

can be determined from a height velocity curve. Buckler [209] found that

in boys, PHV was reached at an average of 1.7 years after the first sign of

pubertal onset while this figure was lower - at 1 year - in girls. It appears to

be generally accepted in literature that the average difference between the

age at the onset of puberty and the age of PHV is 2 years [211, 212].

Whatever method is used, it is important that precise detail is given. In

the 2006 review Dorn et al discussed the importance of stating the method

used: “in 79 articles it stated “pubertal development was assessed according

to Tanner” but no details were provided as to whether this Tanner staging

was determined by physical exam or by self-report.” [201].
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1.2.6 Summary

Literature on the subject of the effect of each component of the energy-

imbalance is, to date, conflicting and inconclusive. Until either proven con-

clusively or proven wrong, we should be aware of both energy intake and

physical activity in the fight against obesity!

One thing that is generally agreed in literature is that while healthy adults

should have an exact energy balance in order to maintain weight, this is not

in fact the case for children. The Institute of Medicine report that “growing

children, even those at a healthy body weight, must be in a slightly positive

energy-balance to satisfy the additional energy needs of tissue deposition for

normal growth” [67]. What does not seem to be known, however, are reason-

able limits within which this positive balance can be considered healthy, or

how and when the positive balance of childhood should decrease to the ideal

zero balance of adulthood.

It has become clear throughout the literature that the Tanner stages are con-

sidered to be extremely important in research over adolescence. While many

researchers use other methods of determining pubertal staging, they are of-

ten seen being used in conjunction with the Tanner diagrams. The method

appears to be highly reliable when carried out with a physical exam by a

trained examiner, but care should be taken regarding self-report of pubertal

staging by the Tanner method.
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Two crucial questions are now:

• What are the age effects that modify the relationships between energy-

imbalance and body composition?

• Is puberty a time when body composition is particularly sensitive to

energy-imbalance?
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1.3 Scope of research

When we set out on this piece of research in late 2006, we hoped to examine

the energy-balance equation (energy-intake = energy expenditure), break-

ing it down into individual components (energy intake (EI), resting energy

expenditure (REE), diet-induced thermogenesis (DIT) and physical activity

energy expenditure (PAEE)) and modelling each of these components, and

energy-balance itself, over the course of puberty.

However, it very quickly became apparent that the building blocks that would

form the foundations of such research were, at best, unstable.

Take, for example, REE. We identified seven different models for estimating

REE from anthropometric measurements. Using longitudinal data provided

to us by ALSPAC (see section 3.2 for details), we compared these mod-

els using a representative sample of British children - and found no two in

agreement. Had we gold standard REE data for these adolescents (i.e. by

calorimetry, see section 1.2.2.2.1), it would have been reasonable to attempt

to either validate existing models or develop our own. However, without

such data, the best we could do was to show that, since no two models are

in agreement, at most one of the seven is correct for the UK population of

young people.

After a preliminary review of the models and data available to us, we decided

on the following, revised scope of research.
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• Catalogue the methods and statistical models used to quantify body

composition, energy-balance and puberty, critiquing each component in

terms of its accuracy and practical application on both the population

and individual level.

• Utilising ALSPAC, a sample of around 14,000 British children consid-

ered to be representative of the wider population of British children,

approximate the prevalence of overweight and obesity in today’s society

and contrast this with expected levels.

• Obtain provisional results describing the complex relationship between

energy-balance and physical development during puberty and indicate

what further research would be required to set this modelling on a

firmer footing.
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1.4 Thesis Overview

Chapter 2 is a review and, where necessary, critique of the statistical meth-

ods used throughout this project.

Chapter 3 introduces each dataset that was used in the research, starting

with the Avon Longitudinal Study of Parents and Children (ALSPAC) - the

main data source - and moving on to describe each data source in turn. It

then concerns itself with ALSPAC and describes the subjects in this study

at each wave of the study using one method of body composition assessment

(Body Mass Index (BMI) standard deviation scores). Perhaps somewhat

unsurprisingly, this chapter concludes that higher proportions of children in

this study are overweight or obese (by this particular measurement method)

than would be desirable by established standards.

Chapter 4 uses the available data to compare two widely used methods of

body composition analysis - dual-energy x-ray absorptiometry (DEXA) and

bioelectrical impedance analysis (BIA). This chapter then goes on to look

at the possibility of developing new models for estimating body composition

from BIA. Results of this modelling are presented but should be treated with

extreme caution due to the lack of available data upon which to develop and

test models.

Chapter 5 reviews the many models in the literature for estimating rest-

ing energy expenditure (REE) from anthropometric measurements. It opens
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with an attempt to reproduce the models that were published in 1919 by

Harris and Benedict [86] - which are to this day used in medical practice.

This chapter then uses the ALSPAC data to estimate REE for several thou-

sand children using seven published models - and finds a disturbing lack of

agreement among models.

Chapter 6 begins by considering the ideal study in the field of body compo-

sition and energy-balance research. Longitudinal resting energy expenditure

and body composition data are simulated, with a view to showing, in the

absence of real data, how issues such as missing data may affect analysis.

Chapter 7 considers energy-balance as a whole and its difficulties when ap-

plied to youth, with an aim to beginning to determine roughly how much

positive energy-imbalance is necessary for healthy growth. Using estimates

of fat and fat-free mass gain over time, excess daily energy intake is presented

for the ALSPAC subjects. Results indicate that young subjects do not re-

quire a high imbalance for healthy growth.

Chapter 8 introduces and critiques measures of pubertal status within the

ALSPAC data. The consistency of self-reported data is examined and shown

to be, at best, extremely tentative. Following this, potential associations be-

tween pubertal status and body composition are examined using BMI stan-

dard deviation scores and an index of fat mass (FM). When considering the

results and conclusions of this chapter, we must be cautious as a result of

the limitations due to the self-reported nature of the data.
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Chapter 9 summarises the research as a whole, highlights the range of

limitations encountered, and identifies potential areas of future modelling on

this topic. This chapter finishes with a discussion of the ‘ideal study’ into

modelling energy-imbalance over puberty.
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Chapter 2

Review of statistical methods
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2.1 Chapter aims

Having reviewed the clinical issues in the field of energy-imbalance in Chapter

One, this chapter will introduce and discuss the statistical methods and

models that are used throughout this project.
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2.2 BMI for UK Children: LMS and the 1990

UK growth reference data

BMI (see equation (1.2)) as a proxy for body composition estimation in

children is used throughout this project in conjunction with age- and sex-

specific percentiles, standardised using the LMS method [30, 213]. Previ-

ously, smooth centile curves had been fitted to data, but with those came

the problem of whether a bump or a dip was a real feature of the data or

sampling error [213]. The LMS method deals with this by summarising the

distribution of BMI at each age by three uncorrelated curves: median (M),

coefficient of variation (S), plus a measure of skewness based on a power

transformation to achieve normality (L). At any given age, this method is

similar to the Box-Cox method for achieving the assumptions of linear mod-

elling [214].

To apply the LMS method to UK data, in order to provide UK reference

curves for BMI in childhood, data from eleven studies were combined [30].

These data covered the time frame 1978 to 1990 and included male and fe-

male participants from England, Scotland and Wales, aged between 0 and 23

years. Summary centiles were fitted to the data using the LMS method with

parameters estimated by penalised likelihood in order to smooth the curves

without the need to arbitrarily group covariates [213].
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Published from this was the UK 1990 reference, comprising values of L, M

and S for males and females at each age (in months) between 0 and 23 years

of age. These values can then be used to compute, for any UK child, a BMI

centile relative to the 1990 reference data as shown in equation (2.1), where

zα is the normal equivalent deviate for tail area α.

C100α(t) = M(t) [1 + L(t)S(t)zα]
1

L(t) (2.1)

This can then be rearranged to give the form of the BMI Standard Deviation

Scores (BMI SDS) as:

SDS =

[
BMI
M(t)

]L(t)
− 1

L(t)S(t)
(2.2)

where L(t), M(t) and S(t) are the values of L, M and S suitable for the child’s

age and sex (from 1990 growth reference data [30]).

These SD scores can then be classified as:

Percentile SDS Category
< 5th percentile ≤ -1.64 Underweight
85th to < 95th percentile 1.04 to <1.64 Overweight (“pre-obese”)
≥ 95th percentile ≥ 1.64 Obese

Table 2.1: Criteria for overweight and obesity from gender-specific BMI-for-
age standard deviation scores for children and adolescents

One important thing to remember is that the reference data use the ‘what

is’ scenario from 1990, but we must keep in mind that ‘what is’ is unlikely

to be ‘what is ideal’. This method of standardising BMI is widely used and
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adopted because it is relatively simple and intuitive, but it can be critiqued

from a statistical point of view. In 1992, Cole and Green reported that “A

key assumption of the LMS method is that after a suitable transformation,

the data are normally distributed... the main problem with the assumption

may be the presence of kurtosis, which the transformation does not adjust

for, but kurtosis tends to be less important than skewness as a contributor to

non-normality” [213]. Another possible criticism of the 1990 reference data is

that it is based on the population as it was 22 years ago, which is unlikely to

accurately represent the current UK population, far less the ideal population.

This method can be extended to find a standard deviation score for the

change between two BMI SDS for an individual (BMIi and BMIj) using

equation 2.3 [31]:

SDS(change) = ∆SDS − mean(∆SDS)
SD(∆SDS)

= ∆SDS√
2(1 − r)

(2.3)

where ∆SDS = SDSj − SDSi, j>i

and r = correlation between SDSi and SDSj for population of interest.
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2.3 Linear regression

The linear regression model assumes a linear relationship between the depen-

dent variable (yi) and the vector of independent variables (xi). The model

takes the form:

yi = xT
i β + ϵi, i = 1, ..., n (2.4)

where ϵi is an unobserved random variable that adds noise to the linear re-

lationship between the dependent and independent variables. The standard

assumptions of the linear model require the ei’s to have zero mean and con-

stant variance, σ2, and to be independent. When carrying out inferences on

parameters, it is often further assumed that each ei ∼ N(0, σ2).

In matrix notation:

y = Xβ + ϵi (2.5)

where the standard assumption is that X is an n × p matrix of full rank p

(n > p).

Ordinary least squares (OLS) estimates β, the vector of coefficients, by mi-

minising the sum of squared residuals. Let b be a candidate for β. Then the

sum of squared residuals is given by

S(b) =
∑

(yi − xT
i b)2 = (y − Xb)T (y − Xb) (2.6)

79



The minimum may be found by differentiating equation (2.6) with respect

to b and setting equal to 0 [215].

With the standard assumptions, XT X is invertible since it is a p x p matrix

with the same rank, p, as X itself. Therefore, the least squares estimate for

b is given by [216]:

b = (XT X)−1XT y (2.7)

In this project, linear regression will be carried out in several contexts, using

the R command lm, part of the stats package [6].
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2.4 Nonlinear least-squares estimation

As a generalisation of linear regression, consider the data {yi, xi1, ..., xip}n
i=1

and a nonlinear function f(·) relating the dependent variable to the indepen-

dent variables [217, 218]:

yi = f(β, x′
i) + ϵi (2.8)

where β is the vector of parameters β = (β1, β2, ..., βp) (n ≥ p).

As before, we aim to estimate β by minimising the sum of squared residuals,

where the sum of squared residuals [217] is

S(β) =
n∑

i=1
[yi − f(β, x′

i)]2 (2.9)

The minimum value of S(β) occurs when the gradient, ∂S(β)
∂β

, is 0 [219].

Since there are p parameters, there are p gradient equations:

∂S(β)
∂β

= −2
∑

[yi − f(β, x′
i)]

∂f((β, x′
i)

∂β
(2.10)

These gradient equations are functions of both the independent variables and

the parameters, and as such, have no closed solution. Instead, initial values

must be chosen for the parameters [217]. Then, the parameters are refined

iteratively:

βj ≈ βk+1
j = βk

j + ∆βj (2.11)
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where k is an iteration number, and ∆βj is known as the shift factor. A solu-

tion is obtained when βj converges to some value (i.e. ∆βj becomes smaller

than some prescribed threshold) [220].

(Note that the procedure may not converge very well for some functions and

that convergence is often greatly improved by choosing initial values close to

the best-fit values [220]).

The R command nls, part of the stats package, performs nonlinear least-

squares regression estimation using an iterative procedure to estimate β [6].
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2.5 Linear mixed models

The assumption with standard linear models of independent error terms does

not always hold. This may be because individuals are related, or measure-

ments are taken repeatedly on the same individuals. Linear mixed models

do not assume independence of errors and are therefore more suited to data

with such data. These models allow variation between people in the intercept

and/or slope(s) of a model.

The parameters in a linear mixed model may be classified into two types:

• fixed effects, associated with the average effect of the independent vari-

able(s) on the dependent variable,

• variance-covariance components associated with the covariance struc-

ture of the random effects and the error term.

A general linear mixed model may be expressed as [221, 222, 223]

yi = Xiβ + Zibi + ϵi (2.12)

bi ∼ Nq(0,ψ) (2.13)

ϵi ∼ Nni
(0,σ2∆i) (2.14)

where

• yi is the ni × 1 dependent variable vector for observations in the ith

group.
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• Xi is the ni × p model matrix for the fixed effects for observations in

group i.

• β is the p × 1 vector of fixed-effect coefficients.

• Zi is the ni × q model matrix for the random effects for observations in

group i.

• bi is the q × 1 vector of random-effect coefficients for group i.

• ϵi is the ni × 1 vector of errors for observations in group i.

• ψ is the q × q covariance matrix for the random effects.

• σ2∆i is the ni × ni covariance matrix for the errors in group i.

In this project, mixed models will be used to estimate parameters from the

longitudinal ALSPAC data. This will be carried out using the R command

lmer, from the lme4 package [224]. These parameters will then be used to

simulate longitudinal resting energy expenditure and body composition data.
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2.6 Assessing agreement

2.6.1 Intraclass correlation coefficient

The intraclass correlation coefficient (ICC) assesses rating reliability or agree-

ment by comparing the variability of different ratings of the same subject to

the total variation across all ratings and all subjects [225].

In this thesis, ICC will be used to assess agreement between pairs of linear

prediction models for REE, using a two-way mixed model. Under this model,

the subject effect is random and the ‘rater’ (model, here) effect is fixed. Note

that inferences from a two-way mixed model are confined to the particular

set of ‘raters’ used.

The two-way mixed effects intraclass correlation coefficient is calculated as

[226]:

ICC =
σ2

subj

σ2
subj + σ2

model + σ2
Err

(2.15)

where:

σ2
Err is mean square (error) from analysis of variance (ANOVA)

σ2
subj is mean square (subject) − mean square (error)

k

k is the number of models being compared

σ2
model is mean square (model) − mean square (error)

n

n is the number of cases
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The ICC can range from 0 to 1, with an ICC of exactly 1 representing

perfect agreement between the models, while values close to 0 represent poor

agreement. This measure of agreement gives a population measure, it does

not allow us to consider agreement between models on an individual basis.
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2.6.2 Bland-Altman diagrams

Bland-Altman diagrams [102, 227], also known as Tukey mean-difference

plots, are used to assess agreement between two methods or models estimat-

ing the same thing.

To produce a Bland-Altman plot, the mean of the two methods is plotted

against the difference between the two methods. Then the co-ordinates of

a given observation C with measurements C1 and C2 for methods 1 and 2,

respectively, are:

C(x, y) =
(

C1 + C2

2
, (C1 − C2)

)
(2.16)

95% limits of agreement, which are “only estimates of the values which apply

to the whole population” [102] are calculated as:

mean difference ± 1.96 × sd difference (2.17)

To show reasonable agreement, the points should be evenly spread between

the limits of agreement across the range of the mean differences. Other things

being equal, narrower limits on this plot show two models that are in closer

agreement than wider limits.
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2.7 Concordance analysis: Kruskal’s gamma

and Kendall’s tau

Kruskal’s gamma [228] and Kendall’s tau [229] are measures of association

for ordinal data. Both can vary from −1 to +1 and give an indication of the

strength and direction of association.

When one case has a higher value than another case on both variables, the

cases are said to form a “concordant” pair. When one case has a higher value

than another on one variable, but a lower value on another, the cases are said

to form a “discordant” pair. When the cases are equal on both variables, they

form a “tied” pair.

Gamma is calculated as:

γ = Nc − Nd

Nc + Nd

(2.18)

Where Nc is the number of concordant pairs and Nd is the number of discor-

dant pairs [230].

As can be seen from equation (2.18) above, Kruskal’s gamma ignores all

tied pairs. The reason for this is that concordance tells us about positive

association, discordance about negative association, but anything else sends

mixed messages or is uninformative. However, when data contain a lot of

ties, this should be taken into consideration. An alternative to Kruskal’s

gamma, which takes ties into consideration, is Kendall’s tau.
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Tau-b, used for square tables, is calculated as:

τb = Nc − Nd√
(Nc + Nd + Tx)(Nc + Nd + Ty)

(2.19)

where, Nc is the number of concordant pairs, Nd is the number of discordant

pairs, Tx is the number of pairs tied on the independent variable, X and Ty

is the number of pairs tied on the dependent variable, Y. [230]

Tau-c, used for non-square tables, is:

τc = Nc − Nd

0.5N2 [(m − 1) /m]
(2.20)

where N is the total number of cases and m is the minimum value of the

number of rows or the number of columns [230].

As mentioned above, Kruskal’s gamma may overestimate the strength of the

association. In a personal communication with Charles Blake of James Madi-

son University [231] in October 2010, it was recommended that if |gamma|-

|tau|>0.05, tau should be used, otherwise gamma is preferred. We have been

unable to find any other criteria for choosing between the two measures.
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2.8 Kaplan-Meier analysis

Kaplan-Meier analysis is used when data are ‘time-to-event’ (also known as

‘survival’ data). An individual is considered to have ‘survived’ to at least

time t if he or she has not had the event of interest by that time. In sur-

vival data, the time of the event may not be recorded for some individuals.

For those cases, the time of event is the time of their last record, and those

observations are ‘censored’. In this project, Kaplan-Meier will be used to ex-

amine the age at menarche. Therefore, the ‘event’ of interest will be reaching

menarche. Data may be censored if a child drops out of the ALSPAC study

before having reported an age of reaching menarche, or if the menarche age

has not been reported by the age 14 Growing and Changing questionnaires.

Kaplan-Meier analysis, also known as the product-limit method [232], is a

nonparametric method of estimating survival functions, used when there is

the presence of censored data.

The survival function (equation (2.21), below) (also known as the reliability

function) describes the proportion of individuals surviving beyond a given

time [233, 232].

S(t) = P (T > t) (2.21)

where t is a point in time, and T is survival time.

90



The Kaplan-Meier estimator, used to estimate the survival function, is de-

fined as [233]:

Ŝ(t) =


1, if t < t1

∏
t1≤t

[
1 − di

Yi

]
, if t1 ≤ t

(2.22)

where:

ti is the time of the first event,

di is the number of events at time ti,

Yi is the number of individuals at risk at time ti = the number of

survivors at time t minus the number of censored cases at time t.

The quantity di

Yi
estimates the conditional probability that an individual who

has not experienced the event of interest just prior to time ti experiences it

at time ti.

The Kaplan-Meier estimator is a step-down function with drops at the ob-

served event times. The magnitude of these drops depends on both the

number of events at time ti and the pattern of censored observations prior

to ti [233].

The point estimate of the median survival time is given by t where Ŝ(t) = 0.5.

A fuller description may be found in the 1958 paper Estimation from incom-

plete observations [232].
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2.9 Multiple imputation by chained equations

Missing data are a problem that can lead to inefficient analyses or biased

results [234]. Multiple imputation (MI), usually restricted to data that

are missing completely at random (MCAR) or missing at random (MAR)

[235, 236], is one method of handling missing data. In MI, m simulated ver-

sions of the dataset are generated (m ≥ 1) [237]. In each of the m datasets,

the values which were non-missing in the original data remain the same from

set-to-set, while the values that replace the missing data vary [238]. The

number of simulated datasets m is generally low: Schafer reports that “Un-

less rates of missing information are unusually high, there tends to be little

or no practical benefit to using more than five to ten imputations” [237].

This method, rather than creating a single imputed dataset, accounts for

the statistical uncertainty in the imputations [239]. One such imputation

method is multiple imputation by chained equations (MICE), also known as

fully conditional specification (FCS) [240] or sequential regression multiple

imputation (SRMI) [239], which involves specifying the imputation model

separately for each variable in the data using the other variables as predic-

tors [240].
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Let Yj, (with j = 1, ..., p) be one of p incomplete variables, where Y =

(Y1, ..., Yp). The observed and missing parts of Yj are denoted by Y obs
j

and Y miss
j , respectively. Then the observed and missing data in Y are

(Y obs
1 , ..., Y obs

p )and (Y miss
1 , ..., Y miss

p ). The hth imputed data set is denoted

as Y (h) where h = 1, ..., m.

Let Y−j = (Y1, ..., Yj−1, Yj+1, ..., Yp) denote the collection of variables in Y ex-

cluding Yj. Let the hypothetically complete data Y be a partially observed

random sample from the p-variate multivariate distribution P (Y |θ), and as-

sume that the multivariate distribution of Y is completely specified by the

vector of unknown parameters, θ.

MICE obtains the posterior distribution of θ by sampling iteratively from

the conditional distributions of the form

P (Y1|Y−1, θ1)
...

P (Yp|Y−p, θp)

(2.23)

Starting from a simple draw from the observed marginal distributions, the
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tth iteration of chained equations is a Gibbs sampler that successively draws

θ1∗(t) ∼ P (θ1|Y obs
1 , Y

(t−1)
2 , ..., Y (t−1)

p )

Y1∗(t) ∼ P (Y1|Y obs
1 , Y

(t−1)
2 , ..., Y (t−1)

p , θ1∗(t))
...

θp∗(t) ∼ P (θp|Y obs
p , Y

(t)
1 , ..., Y

(t)
p−1)

Yp∗(t) ∼ P (Yp|Y obs
p , Y

(t)
1 , ..., Y

(t)
p−1, θp∗(t))

(2.24)

where Y
(t)

j = (Y obs
j , Yj∗(t)) is the jth imputed variable at iteration t.

This procedure repeats until convergence, with the observed data and the

final set of imputed values constituting one complete dataset [239].

Analysis using standard estimating techniques is then carried out on each of

the m complete datasets, and results are pooled using pooling rules known

as “Rubin’s rules” [236, 238].

Multiple imputation can lead to nonsensical imputed data. Specifying pre-

dictive mean matching (PMM) as the imputation model may reduce this

risk. With PMM, an imputed observation takes on the value of one of a set

of observed values for cases similar in terms of other variables [234].

MICE procedures are very flexible [238], can be used in a broad range of set-

tings and, unless the fraction of missing information is unusually large, can
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lead to efficient inferences even when m is small [237]. However, care must

be taken when using these procedures. If there is not much information in

the observed data regarding the missing values, imputations will be highly

variable and likely to lead to errors in the analyses [239].

MICE is based on the assumption that the data are missing completely at

random (MCAR) or missing at random (MAR), and biased estimates may

be obtained if this assumption does not hold [239, 238]. In his 1999 paper,

Schafer reports that MI is not necessarily the best imputation method for

some problems, with alternatives such as maximum likelihood estimation be-

ing perhaps more efficient due to not involving simulation [237].

Multiple imputation will be used in the simulation section of this project,

when explore the effect of missing and imputed data on analysis. This will

be carried out using the R package mice [240] with predictive mean matching

(PMM).
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2.10 Chapter summary

This chapter has described the following methods and models that will be

used throughout this project:

• LMS and the 1990 growth reference data

• Linear regression

• Nonlinear least squares estimation

• Linear mixed models

• Intraclass correlation

• Bland-Altman diagrams

• Concordance analysis in ordinal tables

• Kaplan-Meier analysis

• Multiple imputation using chained equations
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Chapter 3

Datasets and investigation of

body mass index in the Avon

Longitudinal Survey of Parents

and Children
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3.1 Chapter aims

This chapter will begin by introducing the datasets that will be used through-

out the rest of this project and will then explore the distribution of BMI (after

accounting for age and sex) of children and adolescents in the UK using one

of these datasets, considered to be representative of this population. Analy-

sis will progress to investigate whether or not any increase seen in the weight

status is a result of smaller children ‘catching up’ with their counterparts

and whether or not ‘fatter’ children are likely to remain overweight or obese

as they progress into the early years of their adolescent lives.
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3.2 Datasets

All datasets were originally collected as part of research studies for which

ethical approval was granted by the appropriate ethics committees and have

been released to us for secondary use.

3.2.1 ALSPAC - main data sets

The Avon Longitudinal Study of Parents and Children (ALSPAC) [87], based

in Bristol, UK, provided the main dataset for this PhD project. ALSPAC,

also known as Children of the 90s, recruited more than 14,000 pregnant

women in the Avon area with estimated delivery dates between early 1991

and late 1992. The women and children have been followed up since enrol-

ment in the study, with detailed data having been collected at several points

through childhood and into adolescence.

Upon commencement of this project, anthropometric data from focus groups

was provided to us in the form of SPSS data files. Subject numbers and ages

are as follows in Table 3.1:
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Age (years)
Group Sex n min median max

Focus at 7 Male 3985 6.83 7.42 9.08
Female 3849 7.00 7.42 9.17

Focus at 9 Male 3629 8.75 9.83 11.67
Female 3685 8.83 9.83 11.67

Focus at 10 Male 3560 9.83 10.58 12.25
Female 3608 9.83 10.58 12.25

Focus at 11 Male 3966 10.67 11.75 13.5
Female 3399 10.42 11.75 13.58

Age 13 clinic Male 2878 12.50 13.83 15.08
Female 2960 12.58 13.83 15.17

Table 3.1: Subject numbers in ALSPAC focus data

(Note that the “Age 13 clinic” data were provided separately from the rest, along

with the puberty data at the end of the project).

3.2.2 ALSPAC - puberty questionnaires

At waves 8, 9, 10, 11, 13 and 14, respondents (with or without parental help)

completed a questionnaire about physical development. These data were provided

to us in the late stages of this project. Subject numbers and descriptive statistics

for the ages of the subjects at the time of completion are given in Table 3.2.
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Age (years)
“Wave” Sex n min median max

8 Male 2860 7.83 8.08 10.75
Female 3177 8.00 8.08 11.08

9 Male 3238 9.50 9.58 11.42
Female 3487 9.50 9.58 11.08

10 Male 3024 10.58 10.67 12.75
Female 3318 10.58 10.67 14.67

11 Male 2866 11.42 11.67 13.33
Female 3182 11.58 11.67 15.17

13 Male 2755 12.75 13.08 15.08
Female 3042 13.00 13.08 14.33

14 Male 2190 14.58 14.67 15.50
Female 2743 14.58 14.58 16.08

Table 3.2: Subject numbers in ALSPAC puberty questionnaires

3.2.3 ALSPAC - subsamples

At various points during the ALSPAC study, subsamples of ‘specialised’ data were

collected. We have made use of the following subsamples:

Age (years)
Subsample Sex n min median max

Isotopes Male 84 11.58 11.92 12.83
Female 92 11.50 11.83 12.75

Calorimetry Male 660 11.90 12.40 13.12
Female 816 11.90 12.38 13.08

Table 3.3: Subject numbers in ALSPAC subsamples

3.2.4 NHANES

The National Health and Nutrition Examination Survey (NHANES) is a nation-

wide USA study run by the Center for Disease Control (CDC). Data are collected

annually and provided publicly in two-yearly files on the CDC website [241]. Each
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“strand” of NHANES is cross-sectional and considered to be representative of the

American population. Subject numbers and ages can be seen in Table 3.4 (though

it should be noted that we made use of only age 18 years and below).

Age (years)
Year Sex n min median max

1999 - 2000 Male 4505 0.00 18.33 84.83
Female 4649 0.00 19.83 84.92

2001 - 2002 Male 5232 0.00 18.67 46.33
Female 5571 0.00 19.59 44.83

2003 - 2004 Male 4876 0.00 19.08 84.92
Female 5023 0.00 19.83 84.92

2005 - 2006 Male 5015 0.00 18.58 84.92
Female 5163 0.00 19.17 84.92

Table 3.4: Subject numbers in NHANES data

3.2.5 Body Composition Unit

The dataset referred to throughout this thesis as “BCU data” was provided cour-

tesy of Professor Dympna Gallagher of the Body Composition Unit, New York

Obesity Research Center, University of Colombia [242]. This dataset contained

data for subjects of varying races. We are unable to assume that any modelling of

body composition applies to all races. Therefore, most modelling undertaken with

the BCU data has been carried out on a subset consisting of only those subjects

whose race is recorded as Caucasian. Table 3.5 contains descriptive statistics for

these subjects.
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Age (years)
Data Sex n min median max

All races Male 684 5.17 12.00 20.17
Female 612 4.25 11.52 20.75

Caucasian Male 172 6.02 11.66 20.17
Female 145 4.25 11.71 20.56

Table 3.5: Subject numbers in BCU data

3.2.6 Harris and Benedict

In their 1919 book [86], Harris and Benedict published raw data pertaining to

the resting energy expenditure of subjects, as measured by a process known as

calorimetry (discussed in detail in chapter 2). These data are referred to in this

thesis as Harris-Benedict data, or HB data. The subjects in this study were aged

as follows:

Age (years)
Sex n min median max

Male 136 16.00 24.00 63.00
Female 103 15.00 25.00 74.00

Table 3.6: Subject numbers in HB data

3.2.7 Institute of Medicine

The Institute of Medicine (IOM) database1 is a Microsoft Excel 2003 spreadsheet

that brings together several studies on energy expenditure. For the purposes of this

project, we make use of the worksheets ‘0-2’, ‘2-8’, ‘9-18’ and ‘adults’, described

in Table 3.7
1previously available from http://www.iom.edu/?id=7302&redirect=0 (accessed Octo-

ber 2007)
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Group Male Female
n (mean age) n (mean age)

0 - 2 173 (0.80) 104 (0.78)
2 - 8 196 (5.53) 348 (6.63)
9 - 18 64 (11.91) 220 (11.80)
adults 276 (44.28) 262 (41.74)

Table 3.7: Subject numbers in IOM database

3.2.8 Fomon reference children

In 1982, Fomon published body composition data for the Reference Child [243],

from birth to ten years of age. We have made use of the Total Body Water (TBW)

data, i.e. TBW in the ‘ideal child’.
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3.3 BMI Standard Deviation Scores in ALSPAC

BMI as a proxy for body composition estimation in children should be used in

conjunction with age- and sex-specific percentiles, standardised using Cole’s 1990

LMS method [30], as described in section 2.2. Using this method, BMI SDS have

been calculated for the BMI data at the following waves of ALSPAC: 7, 9, 10, 11,

13 and 14. Note that the standard deviation score for an individual child will be

missing if any of age, height, weight or sex is missing for that individual. The

number of BMI SDS at each wave are shown in Table 3.8:

Wave Male Female
7 3946 3813
9 3593 3640
10 3527 3560
11 3341 3410
13 2037 2106
14 1814 1859

Table 3.8: Number of BMI SDS in ALSPAC data

Percentile plots of these BMI SDS are shown in Figure 3.1.
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Figure 3.1: Percentile plots of BMI SDS in ALSPAC data for boys and girls
at data collection waves 7 to 14

By definition, we would expect the upper (‘obese’) line to correspond to the 95th

percentile and the lower (‘overweight’) to correspond to the 85th percentile. This

is clearly not the case for the ALSPAC respondents. What we are seeing is that the

percentile corresponding to overweight is between the 60th and 80th, depending on

the wave in question - showing that the percentage of children who are overweight

in this sample is very high.

Note that the data for waves 7-11 was provided separately from that for 13 and

14. As a result of this, there was a high degree of missingness between the two sets

of data. Taking this into consideration, we replicated Figure 3.1 using only those
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subjects for whom we had BMI SDS at EACH wave 7, 8, 9, 10, 11, 13 and 14. 281

males and 258 females met this condition. We found that the previous graph was

replicated almost exactly for these 539 subjects, suggesting that the missingness

did not have an effect on the overall pattern seen in the figure.

3.3.1 Examining the change in SD Scores over time

(waves 7 to 11)

Due to differences in the 13-14 year data and the 7-11 focus files, the rest of this

chapter will only consider wave 11 and earlier.

One area of interest in this project is examining the change in body composition

over time. To consider this with BMI SDS, we can use a method published by

Cole in 1997 [31] which gives a standard deviation score for the change between

two BMI SDS for an individual at time i and time j (BMIi and BMIj) using

equation 2.3 in section 2.2.

Plotting these differences for i = 7 and j = 11 gives an impression of the overall

difference in BMI SD Scores over these 4 years. This is shown in Figure 3.2. What

is apparent from these diagrams is the fact that although there are some SD Scores

at or below the zero line (indicating no change or a decrease in BMI SDS from

wave 7 to wave 11), there are considerably more individuals showing an increase

in BMI SDS between these two waves. This is evident for both boys more than

girls, although slightly more for boys.
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Figure 3.2: Plot of SDS for change in BMI SDS of ALSPAC participants
between waves 7 and 11

Repeated measures analysis of BMI SDS over time and between sexes has been

carried out using PASW v18 (previously known as SPSS, Statistical Package for

Social Sciences). The results of this analysis are graphically displayed in Figure

3.3.
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Figure 3.3: Repeated measures comparison of BMI standard deviation scores
for boys and girls in ALSPAC waves 7, 9, 10 and 11.

The P-value for the interaction of sex and time was < 0.001. It is clear from Figure

3.3 that the mean BMI SDS is greater than 0 for both boys and girls at all ages.

There is an increase over time for both boys and girls however it appears that the

trend lines diverge with age due to the increase of excess body mass in boys.
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3.3.2 Are children simply playing “catchup”?

It is possible that the increase in BMI SDS from wave 7 to 11 may be caused by

children who were underweight at 7 simply “catching up” with their peers by 11.

This could cause the SD for their change in BMI SDS between the two waves to

be high, but would result in them being a normal weight by 11. This is examined

graphically shown in Figure 3.4.

Figure 3.4: Comparison of ALSPAC BMI SDS at waves 7 and 11

If we were seeing a “catchup” effect, it would be reasonable to expect to see some

data points in the middle left-hand sections of these graphs. Although there are

some data points shown here, it is clear that this is not the case for the majority

of the sample. What is particularly striking in Figure 3.4 is the large number of

subjects who have been normal weight at wave 7 and have become overweight or

obese by wave 11. Similarly, there are a number of points indicating a high rate

of transition from overweight at 7 to obesity at 11.
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Another idea which comes across quite clearly from these figures is that of being

“stuck” in a particular state. For example, many who are overweight (or obese) at

7 are still overweight (or obese) at 11. This can be further shown with stochastic

transition matrices for each step in time. These matrices are shown in table 3.3.3

on the next page.

These matrices show the probability of being in any weight classification at a point

given the classification at an earlier point. The issue of being “stuck” in a particu-

lar state is obvious. For example, considering the boys 7→9, an obese boy at wave

7 has a 92% chance of being obese at wave 9. It therefore follows that if a child is

overweight or obese by the age of 7, it is extremely unlikely that he or she will be

at a healthy weight approximately four years later. Only 2.8% of those boys who

are obese at wave 7 were not overweight at wave 11.

3.3.3 Conclusions

This section has aimed to explore the trends of overweight and obesity in the

ALSPAC data. We have shown that the proportions of children who are classified

as overweight or obese in the ALSPAC sample are greater than those that we might

expect. We can also conclude from this analysis that children who are overweight

or obese pre-puberty are at an increased risk of being overweight or obese in early

adolescence.
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Boys Girls

7 → 9


9

N.O. Ov. Ob.
N.O. 0.879 0.092 0.029

7 Ov. 0.194 0.440 0.306
Ob. 0.023 0.057 0.920




9
N.O. Ov. Ob.

N.O. 0.886 0.093 0.021
7 Ov. 0.187 0.402 0.441

Ob. 0.004 0.152 0.884



7 → 10


10

N.O. Ov. Ob.
N.O. 0.851 0.110 0.049

7 Ov. 0.162 0.412 0.427
Ob. 0.031 0.067 0.901




10
N.O. Ov. Ob.

N.O. 0.875 0.101 0.024
7 Ov. 0.228 0.341 0.430

Ob. 0.017 0.138 0.845



7 → 11


11

N.O. Ov. Ob.
N.O. 0.827 0.116 0.058

7 Ov. 0.163 0.376 0.461
Ob. 0.028 0.065 0.907




11
N.O. Ov. Ob.

N.O. 0.846 0.112 0.042
7 Ov. 0.212 0.338 0.450

Ob. 0.045 0.122 0.833



9 → 10


10

N.O. Ov. Ob.
N.O. 0.941 0.054 0.005

9 Ov. 0.139 0.606 0.255
Ob. 0.007 0.088 0.905




10
N.O. Ov. Ob.

N.O. 0.959 0.04 0.010
9 Ov. 0.223 0.646 0.131

Ob. 0.007 0.114 0.878



9 → 11


11

N.O. Ov. Ob.
N.O. 0.902 0.084 0.014

9 Ov. 0.189 0.488 0.322
Ob. 0.009 0.115 0.876




11
N.O. Ov. Ob.

N.O. 0.921 0.069 0.010
9 Ov. 0.251 0.478 0.271

Ob. 0.015 0.167 0.818



10 → 11


11

N.O. Ov. Ob.
N.O. 0.936 0.059 0.005

10 Ov. 0.195 0.559 0.206
Ob. 0.006 0.114 0.880




11
N.O. Ov. Ob.

N.O. 0.935 0.062 0.003
10 Ov. 0.196 0.552 0.252

Ob. 0.005 0.134 0.861



Table 3.9: Transition matrices for weight classifications between ages 7 and
11 in ALSPAC
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3.4 Chapter summary

This chapter has shown that, in a sample representative of UK youth, consider-

ably higher proportions of children than expected are overweight or obese by 1990

growth standards - i.e. children today are, on the whole, heavier (considered to be

a proxy for fatness) than was considered ideal twenty years ago.

It was found that most children remain ‘stuck’ in a category of weight over time,

indicating that an overweight child is considerably more likely to grow into an

overweight adult than one of a healthy weight - a statistical finding that brings

with it immense clinical and public health consequences and must not be taken

lightly.
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Chapter 4

Analysis of body composition

models
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4.1 Chapter aims

This chapter will be concerned with methods of estimating how an individual’s to-

tal body mass breaks down into the two components of fat mass (FM) and fat-free

mass (FFM), with specific reference to children and adolescents.

Within the datasets used in this project, there are body composition estimates

from two methods: dual-xray energy absorptiometry (DEXA) and bioelectrical

impedance (BIA). These methods, as discussed earlier in Chapter 2, are non-

invasive and are far better tolerated by children than a method known to be more

accurate, which involves complete submersion in water (hydrodensitometry).

Initial analysis will compare FM (or FFM) estimates from DEXA and BIA for

the same individuals. As a consequence of the nature of our datasets, where the

results do not agree, it will not be possible to determine which is most accurate.

The chapter will then be concerned specifically with BIA and will tentatively de-

termine whether or not it is possible, with the data that we have and the statistical

methods that are widely used in this field, to develop more accurate models for

estimating the body composition of children using this straightforward and non-

invasive procedure.
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4.2 Body Composition

While BMI SDS for children and adolescents is perhaps more reliable than for

adults (see section 1.2.1.2.1), it does have some potential shortcomings. Firstly,

standards for overweight and obesity in childhood were established almost twenty

years ago and therefore may not be applicable to today’s population. Secondly,

BMI does not give any approximation of fat mass or fat-free mass in the body.

At best, BMI can only be considered to be a rough proxy for body composition

assessment. As discussed in section 1.2.1.2.2, two methods of body composition

estimation are bioelectrical impedance (BIA) and dual-energy x-ray absorptiom-

etry (DEXA). While these methods are more accessible than the gold standard

(hydrostatic weighting), they are known to currently be inaccurate.

4.2.1 DEXA and BIA: a comparison

Using the ALSPAC focus at 11 dataset, we can compare the two methods of

body composition assessment. Bland-Altman [102] diagrams shown in Figure 4.1

indicate that BIA estimates of FM are higher than those from DEXA. See section

2.6.2 for a description of the Bland-Altman method. It is important, to keep in

mind that neither BIA nor DEXA can be considered to be the gold standard.
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Figure 4.1: Bland-Altman diagrams for BIA and DEXA estimates of FM in
the ALSPAC 11-year data

Unfortunately, as we have no gold standard measure of fat or fat-free mass, we are

unable to attempt any modelling of DEXA. We can merely conclude at this stage

that DEXA and BIA are not in agreement. We do, however, have total body water

measured by isotope dilution, which is the gold standard, for a small subsample

of ALSPAC participants. This enables us to consider modelling of the resistivity

aspect of bioelectrical impedance.
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4.2.2 Modelling with impedance

4.2.2.1 Resistivity

The resistivity model used for children and adolescents in this project is shown in

equation (1.8) in section 1.2.1.2.2. This section aims to use the data available to

us to validate the form of this model and develop it if possible.

We have gold standard TBW measured in two of the available datasets:

• ALSPAC isotope dilution subsample: n=176, age 11.5 years to 12.83 years

• New York Body Composition Unit data: n=1296, age 4.25 to 20.75 years

We begin our resistivity modelling using the BCU dataset since the larger sample

size allows for considerably higher power compared to the ALSPAC subsample.

Additionally, the BCU data includes race as a factor while the ALSPAC subsam-

ple is almost entirely Caucasian. Initially we will use only the Caucasian subjects

(n=317) with racial effects being considered at a later stage.

As we begin our analysis, a question of interest is: does resistivity differ between

the sexes? From Figure 4.2, it is unclear whether or not any difference between

the slopes is statistically significant.
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Figure 4.2: Interaction plot for sex effect on resistivity in BCU data

After removal of the non-significant interaction term, the ANCOVA P-value of

0.053 for sex is only marginally nonsignificant at the 5% level. Since inclusion of

the sex term in a linear model does not increase the variation explained by that

model, it is reasonable to omit the sex term and assume that resistivity does not

significantly differ between the sexes.
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The linear model obtained, which explains 94.4% of the variability in measured

TBW is:

ˆTBW = 0.634 × height2

Z
+ 1.232 (4.1)

The 95% confidence interval for the slope is (0.617, 0.651) and for the intercept is

(0.552, 1.913).

The similarities between this model and the previously published model (see sec-

tion 1.2.1.2.2 are clear. However, diagnostic plots (see Figure A.1 in Appendix A)

for the model show clear violation of the assumption of homoscedasticity.

In an attempt to correct for this, we use the following variance-stabilising trans-

formation (log-log model):

ln(TBW ) = α + β × ln

(
height2

Z

)
(4.2)

ANCOVA for the transformed model shows, with a P-value of 0.066, no need to

model the sexes separately.

The transformed model is as follows:

ˆTBW = 0.758 ×
(

height2

Z

)0.964

(4.3)

Diagnostic plots (see Figure A.2) now show no violation of assumptions.
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4.2.2.2 Resistivity and maturation in the BCU data

The BCU data allows us to consider the part that maturation plays in resistivity.

There are two potentially useful variables: age and Tanner stage. It should be

noted at this point that we have been unable to ascertain how and by whom Tan-

ner stage was determined in the BCU data, therefore we can consider this analysis

to be at best a tentative glance at pubertal effects.

Firstly, we plot residuals from the log-log model (equations (4.2) and (4.3)) against

Tanner stage. While an individual effect of sex has been ruled out, it is possi-

ble that significant interactions exist. For this reason, the plots of residuals are

grouped by sex. These plots are shown in Figures 4.3 and 4.4, respectively.

Figure 4.3: Residuals from log-log resistivity model against age of subjects
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Figure 4.4: Residuals from log-log resistivity model against Tanner stage

It appears as though there does exist some effect of both age and Tanner, while

any effect of sex is likely to be non-significant.

A scatterplot of residuals against age grouped by Tanner stage (see Figure 4.5)

suggests that there is collinearity between the variables.
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Figure 4.5: Residuals from log-log resistivity model against age grouped by
Tanner stage

In order to determine which (if either) variable should be included in our model,

we extend our model to include age as a covariate and Tanner stage and sex as

fixed factors. We start with the most complicated model including all sensible

interactions. Terms are eliminated one-by-one from the model (starting of course

with the highest-order terms) according to the P-values. This process is stopped

when all remaining terms have statistically significant P-values at the 5% level.
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The final model from this process is:

ln(TBW ) = −0.129 + 0.893 × ln

(
ht2

Z

)
+ 0.001 × age(m) (4.4)

Diagnostic plots, shown in Figure A.3 on page 284 show no violation of modelling

assumptions.

To compare this model with that not including an age term, we consider R2 and s

for each model. The model including age has a slightly higher R2 (0.951 vs. 0.949)

and a slightly lower s (0.084 vs. 0.085) than the simpler model. While the improve-

ments are very slight, we are justified in continuing with the age model since age

is reasonable to measure! A plot of residuals from this new model against Tanner

stage in the BCU dataset (see Figure 4.6) reveals that although there might be an

effect of maturation that is unexplained by age, this effect is very slight for male

subjects on average, and practically non-existent on average for female subjects.
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Figure 4.6: Residuals from log-log resistivity model including age as an in-
dependent variable by Tanner stage
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4.2.2.3 Checking the form of the model with the ALSPAC data

While we don’t have Tanner stage in the ALSPAC isotopes subsample1, we do

have age and can therefore attempt to verify the form of the model previously

obtained. We begin with the following general linear model:

TBWiso ∼ sex + age(m) + ln

(
ht2

Z

)
+ sex × age(m) + sex × ln

(
ht2

Z

)
(4.5)

Modelling, we find no significant interactions. Looking at main effects, we have

the following P-values:

Intercept: 0.117; ln

(
ht2

Z

)
: < 0.001; age: 0.051

It should be noted here that although the age term is marginally nonsignificant,

the ALSPAC subsample subjects were all aged roughly 11 years (mean ± sd =

11.89 ± 0.21) so it is tricky to interpret this P-value.

We can therefore assume that the ALSPAC isotopes subsample yields a model of

a similar form as that developed using the BCU data. Ideally, we would have the

means to show that there is no significant Tanner effect over and above the age

effect, but this is unfortunately not possible using the ALSPAC data.

1Tanner staging data were provided near the end of this project. However, we have not
used it in conjunction with this subsample because it was obtained by means of self-report
(postal questionnaire) at a different time point from the clinic.
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4.2.2.4 Calibrating TBW models for use with ALSPAC data

From the Bland-Altman diagram shown in Figure 4.7, our newly developed model

for TBW with ht2/Z and age over-estimates TBW in the ALSPAC subsample by

approximately 2.33 litres on average.

Figure 4.7: Bland-Altman diagram of actual TBW in ALSPAC subsample
and TBW estimated from “age model”

It is likely that the systematic difference between actual and estimated TBW is due

to differing impedance equipment between the two samples. While the equipment

used in the ALSPAC clinics is known (Tanita hand-to-foot), that used in the BCU

study is not. It is therefore essential, in order to be able to use the new models

in conjunction with the ALSPAC data, to attempt to calibrate the TBW model
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using the measured TBW in the subsample. This calibration is carried out on the

log scale since this is the scale on which the model was developed. As calibration

relies on the independent variable having as little error as possible, gold standard

TBW by isotopes is used as the independent variable in this exercise. I.e:

ln(TBWnew) = α + β × ln(TBW ) (4.6)

After performing this calibration and re-arranging the model, we have the following

adjustment to allow us to apply the previously developed resistivity model to the

ALSPAC data:

ln(TBW ) = −0.59 + 1.15 × ln(TBWnew) (4.7)

where TBWnew is given in equation (4.4). This gives:

ln(TBW ) = −0.74 + 1.03 ×
(

ht2

Z

)
+ 0.001 × age (4.8)

4.2.2.5 Hydration

Having reached a model with which to estimate total body water, we need a model

for hydration in order to get estimates of FFM in the body. We do not have any

gold standard FFM measurements in any available dataset, making the task of

accurately modelling hydration impossible. The current models in use for subjects

younger than 18 years old are shown in equations (1.11) and (1.12) in section

1.2.1.2.2. However, those models are not equal to the “adult” hydration value of

0.732 until ages 31 and 38, for males and females, respectively.
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In a 1982 paper, Fomon et al [243] published hydration values of the “reference

child” from birth to 10 years of age. Figure 4.8 shows these reported values.

Figure 4.8: Hydration values of the ‘ideal’ male and female children

This graph raises a number of points:

• It is clear that the reference child hydration does not follow linear models

• It is possible that the values are already beginning to converge to a limit

(possible adult value) far earlier than age 18

• This limit may be considerably higher than 0.732, and could differ between

the sexes

• Girls seem to be maturing, in terms of hydration, earlier than boys
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It could be said that infants, who are known to have much higher hydration than

their older counterparts, would heavily influence any modelling carried out on

these data.

Using only those “subjects” of age 24 months and above, we attempt to fit a

model to the reference child hydration using curve estimation. Note that age is

in months. We obtain the following models (equations (4.9) and (4.10) shown

graphically in Figure 4.9):

BOYS:

h = 0.7969 − (0.0007910 × age) +
(
0.00000580 × age2

)
−
(
0.00000002 × age3

)
(4.9)

GIRLS:

h = 0.7896 − (0.0004104 × age) +
(
0.00000398 × age2

)
−
(
0.00000002 × age3

)
(4.10)
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Figure 4.9: Cubic models for hydration on age: male and female reference
children aged 24 months and above

In conjunction with the resistivity model (equation (4.8)), these new hydration

models could potentially be used to estimate body composition in the larger

ALSPAC datasets.

4.2.2.6 Applying new models to ALSPAC data

Figures 4.11 and 4.10 for boys and girls, respectively, show the difference (published

- new) in FM from the two sets of impedance models applied to the ALSPAC data.

It is clear that for both sexes, particularly for younger children, estimations from

the two models are similar, but difference increases on the whole as age increases.
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Figure 4.10: Difference in FM (kg) estimated from published and new BIA
models for ALSPAC boys aged (a) 7, (b) 9, (c) 10 and (d) 11
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Figure 4.11: Difference in FM (kg) estimated from published and new BIA
models for ALSPAC girls aged (a) 7, (b) 9, (c) 10 and (d) 11
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4.2.3 Over-estimation of FM

A known problem with BIA is that, using current models, FFM is likely to be

over-estimated for those subjects with impedance values at the low end of the

scale. Since FM is the residual from weight and FFM, this problem results for

some individuals in inaccurate FM estimations, including negative estimations.

The number of negative FM estimations in the ALSPAC data is small, but must

be noted regardless as it makes it clear that these models cannot be considered to

be accurate on the individual level. Table 4.1 shows the number and percentage

of such estimations in the ALSPAC data, using both the published BIA models

and those developed in this chapter.

Sex Wave n (%) n (%)

M

7 11 (0.28%) 9 (0.23%)
9 11 (0.31%) 29 (0.81%)
10 7 (0.20%) 7 (0.20%)
11 7 (0.21%) 66 (1.98%)

F

7 0 (0.00%) 0 (0.00%)
9 1 (0.03%) 1 (0.03%)
10 2 (0.06%) 4 (0.11%)
11 2 (0.06%) 5 (0.15%)

Table 4.1: Occurrence (n (%)) of negative FM results using two sets of BIA
models with the ALSPAC data

While the new models over-estimate FFM for more subjects than the Glasgow

models, this is not to say that they are, on a population level, less accurate. It

must be noted that these new models suffer due to having been developed without:

• knowledge of impedance equipment in the BCU data

• gold standard body composition data (hydrodensitometry)

• accurate hydration data - it is unreasonable to assume that children today
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are physiologically similar to Fomon’s Reference Children of 1982. This

requires significant further research as hydration currently involves several

as-yet unproven assumptions

This chapter has highlighted data collection issues that must be addressed, car-

ried out and brought together in order to replicate this analysis in future with

results that will be, hopefully, meaningful, accurate and applicable to the current

population.
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4.3 Chapter summary

The opening analysis of this chapter has uncovered a startling and highly impor-

tant fact: two widely used methods of estimating body composition do not give

equivalent results. Unfortunately, with no gold standard data to work with, we

were unable to validate either method, with its current underlying models - we can

simply conclude that at most one method has been accurate in estimating the FM

and FFM of children on the population level when applied to the ALSPAC sample.

The rest of this chapter isolated BIA with an aim to critiquing and potentially

developing the models used to determine FM and FFM from BIA data. The first

conclusion reached was that BIA cannot be said to be accurate on the individual

level - which, given the desire in this project to investigate energy balance on a

subject-by-subject basis, is disappointing. De-constructing the current models it

was found that hydration values for children (dependent on age) do not meet the

constant adult value until the mid 30s. It is also apparent that while hydration

is considered to be equal for male and female adults, these values may actually

differ, with female FFM comprising more water than that of males. These conclu-

sions are extremely tentative and cannot be furthered until more suitable data are

collected for the purpose.

While attempts to further the modelling in this chapter were, on the whole, un-

successful, they did serve to identify areas in which current research is insufficient,

with the potential to guide further research in the future.
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Chapter 5

Analysis of resting energy

expenditure models
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5.1 Chapter aims

Chapter 5 centres around resting energy expenditure (REE). When reviewing lit-

erature (Chapter One), several sets of models for estimating REE from anthro-

pometric measurements in children were identified. What was apparent from the

literature was that no one model has yet been identified as clearly superior and

several are in current use in research and clinical practice. One of these sets of

models was developed and published, with the supporting data, in 1919 by Harris

and Benedict and the initial aim of this chapter will be to replicate their analysis

with modern day software (such as the statistical software packages R and SPSS)

with a view to determining whether or not the form of their models was the most

ideal given the data they had.

The analysis will then move from this to applying each REE model in turn to the

ALSPAC data in order to determine if they are in agreement with one another.

Unfortunately, as with Chapter Four, it will not be possible at this stage to val-

idate any model or models absolutely, since no ‘gold standard’ results are available.

Following on from this, modelling of REE using different variables and statistical

techniques will be attempted - with a view not to developing new models for use but

rather to exploring different possibilities for how research into REE in childhood

and adolescents might proceed.
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5.2 REE in Harris-Benedict Study

The Harris and Benedict models (equations (1.16) and (1.17)) [86] for REE are

frequently used today in both research and clinical practice, but were published

over 90 years ago. In addition to the concern that what applied to the population

in the early 20th century may not apply to the population today, there is also the

fact and therefore potential issue of methodology having changed to some extent

since 1919. The aim of this section is to attempt to validate the models shown

above, making use of modern methods and statistical computing facilities. Here,

we apply the original and any further models only to the original 1919 data. This

analysis is not intended to validate these models with respect to today’s population.

The publication by Harris and Benedict gives data on 136 males and 103 females.

These data have been input to SPSS v 15.0 and R v 2.6.0 for analysis. Due to the

significance of sex as an interaction term, we will treat males and females sepa-

rately.

As a subjective initial analysis of these data, we considered correlation matrices

and scatterplot matrices of all variables, for both males and females. We found

that potential all independent variables have some relationship with the dependent

variable (REE) for both males and females, though relationships for females are

generally quite weak. There may be some issue of multicollinearity, particularly

between body surface area (BSA) and weight.
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Upon analysing these data using multiple linear regression, we obtain the following

prediction equations. Note that this is simply an attempt to reproduce the analysis

by Harris and Benedict.

REE(male) = 67.307 + 13.750 × W (kg) + 499.816 × H(m) − 6.748 × age(y) (5.1)

REE(female) = 659.7920 + 9.6873 × W (kg) + 176.3872 × H(m) − 4.6278 × age(y)

(5.2)

These parameter estimates are essentially the same as those obtained by Harris and

Benedict. The small differences are likely due to modern computational accuracy.

These models have adjusted R2 values of 0.7478 and 0.5121 respectively, and s

values of 103.153 and 108.923 respectively. Checking diagnostics, as shown in Fig-

ure A.4 reveals that the assumption of normality of residuals may be questionable.

Considering the coefficients of the parameters obtained in this analysis, we see that

the parameter Height is not significant for females (Table 5.1) and the intercept is

not significant for either sex.

Male Female
Coefficient P-value Coefficient P-value

Intercept 67.3070 0.763 659.7320 0.056
Weight 13.7500 < 0.001 9.6873 < 0.001
Height 199.8160 < 0.001 176.8372 0.422
Age -6.7480 < 0.001 -4.6278 < 0.001

Table 5.1: Parameters and associated P-values from linear regressions of REE
on age, height and weight using the HB data
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Re-fitting the models without the intercept gives the following predictive equations

for REE, with standard errors of the estimates for males and females of 102.800

and 110.410 respectively:

REE(male) = 13.638 × W (kg) + 541.590 × H(m) − 6.669 × age(y) (5.3)

REE(female) = 9.359 × W (kg) + 596.204 × H(m) − 4.678 × age(y) (5.4)

Note that there appears to be little change in the coefficients for weight or age,

while the lack of significance previously seen for height in females is now resolved.

Why, though, height should be so sensitive to the presence or absence of the in-

tercept, is unknown. All parameters are now significant.

Since we know that body composition is an important factor in determining resting

energy expenditure, it seems logical that there should be some proxy measure of

body composition included in a prediction equation. However, while considering

only the data from the Harris-Benedict publication [86], we have limited access to

such measures. we have therefore performed Stepwise regression (in an attempt to

combat multicollinearity) including the variables BSA and BMI (calculated from

height and weight), both potential proxies for body composition. The result of

this modelling (steps not shown) was the following models for REE:

REE(male) = 421.992 − 446.243 × H(m) − 6.679 × age(y) + 1226.603 × BSA(m2)

(5.5)

REE(female) = −6.524 × age(y) + 1025.764 × BSA(m2) (5.6)
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This suggests that when body surface area is accounted for in a model, there is

no need to include a representation of body mass index. This could be due to

multicollinearity, with the correlations between BMI and BSA in the 1919 data

being 0.623 (males) and 0.845 (females). Note that the variability explained by

these models (0.7478 and 0.5121 respectively) is roughly equal to that explained

by models (5.1) and (5.2).

5.2.1 Conclusions

We should note that the models for males appear to consistently explain around

23% more of the variation in REE than those for females. This is, perhaps, to be

expected because a key element of REE is fat-free mass - which generally occurs

in higher proportions in males than in females, and Harris and Benedict had no

direct measure of body composition.

During this analysis, it became clear that the most stable independent variable

was age - with parameters remaining relatively unchanged and always highly sig-

nificant. This suggests that age should always be included somehow in any resting

energy expenditure model for adults. However, it seems unlikely that this should

be done by developing different models for different age groups (as has been done

in many of the models listed in section 1.2.2.2.2), since the other parameters are

unlikely to change so dramatically at a specific age (unless age to be considered

to be a marker for body composition - in which case, the relationship between age

and body composition must be far better understood than at present)!

142



The aim of this analysis was to be able to validate the models originally developed

by Harris and Benedict in 1919, using more modern approaches than would have

been available to the authors at the time of the original study. The aim appears

to be fulfilled for the data given in the original publication, although it is unlikely

that these models will apply to today’s population.
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5.3 REE in ALSPAC data

5.3.1 Introduction

We will now attempt to apply the linear models for REE identified from the lit-

erature (section 1.2.2.2.2) to the ALSPAC “Children of the 90s” data - not with

an aim to deciding on the correct model, but with the intention of comparing each

model to each of the others. Although the Harris-Benedict models were developed

on a sample all aged 15 years and over, we include for completeness these models

in our analysis of children.

Note that The Oxford HW equation for boys aged 3-10 (equation 1.30) as given by

Henry [100] may not be accurate in the original paper. This is based on the fact

that, when applied to the data, the values for this model are considerably lower

than all other models, while Henry stated that there was no significant difference

between this and the Oxford H model. To date, attempts to establish contact with

the author have been unsuccessful.

5.3.2 Applying models to ALSPAC data

Each REE model has been applied to the focus groups 7 and 11, categorised

by sex, with descriptive statistics given in Tables 5.2 and 5.3. There are clear

discrepancies between models. For example, there is a mean difference of almost

200 kcal/d between the WHO and Maffeis models for girls in age 7 group. There

are differences between the sexes: the mean resting energy expenditure given by

the Schofield HW model is higher for boys than for girls in the focus at 11 group

by over 100 kcal / d. This is perhaps to be expected, since males are believed
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to have a higher REE than females. However females at 11 have a considerably

higher mean REE than boys in two of the three models that are dependent only

upon weight.

Sex Model n min max mean sd

Male

HB 3946 782 1395 1000 80.8
Schofield HW 3946 864 1576 1082 90.1
Schofield W 3947 859 1640 1088 98.5
WHO 3947 849 1630 1078 98.5
Oxford HW 3946 623 1165 787 68.4
Oxford W 3947 877 1679 1112 101
Maffeis 3946 899 1304 1071 55.1

Female

HB 3813 963 1517 1098 52.7
Schofield HW 3813 791 1736 1011 86.8
Schofield W 3813 770 1850 1009 96.4
WHO 3813 814 2011 1079 106.9
Oxford HW 3813 808 1709 1021 83.7
Oxford W 3813 788 1858 1025 95.5
Maffeis 3813 848 1396 994 56.2

Table 5.2: Descriptive statistics of REE (kcal/day) from 7 published linear
prediction models when applied to the ALSPAC Focus at 7 data

Sex Model n min max mean sd

Male

HB 3341 944 2203 1325 160.3
Schofield HW 3341 1068 2391 1415 165.8
Schofield W 3345 1004 2054 1265 131.2
WHO 3345 1029 1986 1267 119.5
Oxford HW 3341 1001 2320 1364 166.0
Oxford W 3345 1008 2450 1367 180.2
Maffeis 3341 987 1756 1253 97.9

Female

HB 3410 1054 1921 1307 108.4
Schofield HW 3410 984 1869 1278 111.9
Schofield W 3413 1059 2525 1450 183.9
WHO 3413 1047 2496 1433 181.8
Oxford HW 3410 993 1874 1259 110.3
Oxford W 3413 1102 1931 1257 115.3
Maffeis 3410 942 1803 1217 108.3

Table 5.3: Descriptive statistics of REE (kcal/day) from 7 published linear
prediction models when applied to the ALSPAC Focus at 11 data
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Another point which may be seen from this table is the discrepancy between the

Harris-Benedict model and the other models at wave 7. The Harris-Benedict model

gives a considerably lower REE for boys and a considerably higher REE for girls.

We should note, again, that this model was not developed on children - suggesting

that we do indeed require separate models for different periods of life and growth!

5.3.3 Testing for differences between models

Paired t-tests have been used to formally consider any significant mean differences

between predictions obtained from different models (Tables 5.4 and 5.5), where

all confidence intervals are given in kcal/d. All P-values for the correlation coeffi-

cients and the t-tests were < 0.001 for both focus groups. Note that - due to an

overlap in samples - the standard deviation for the difference between Schofield W

and WHO was 0.000 for the boys in the focus at 7 group, so no t-test could be

performed. The performed t-tests clearly show that no two models are statistically

similar at either age or for either sex. While some methods differ by a great deal

and others considerably less, all differences were statistically significant at the 5%

level.
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Table 5.4: Mean differences in REE (kcal/day) between models and 95%
confidence intervals (model 1 minus model 2): Focus at 7 data
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Table 5.5: Mean differences in REE (kcal/day) between models and 95%
confidence intervals (model 1 minus model 2): Focus at 11 data

148



5.3.4 Checking the agreement between models

We consider pairwise intraclass correlations (ICC), with a two-way mixed model,

checking for absolute agreement between models (for the groups focus at 7 and

focus at 11) as shown in Tables 5.6 and 5.7.

HB Sch HW Sch W WHO Ox HW Ox W

Boys

Schofield HW 0.668
Schofield W 0.645 0.993

WHO 0.693 0.994 0.995
Oxford HW 0.193 0.124 0.128 0.136

Oxford W 0.540 0.945 0.971 0.944 0.115
Maffeis 0.597 0.832 0.772 0.786 0.080 0.690

HB Sch HW Sch W WHO Ox HW Ox W

Girls

Schofield HW 0.510
Schofield W 0.503 0.992

WHO 0.765 0.786 0.806
Oxford HW 0.563 0.991 0.976 0.821

Oxford W 0.578 0.981 0.986 0.871 0.986
Maffeis 0.351 0.837 0.826 0.534 0.850 0.784

Table 5.6: Intraclass correlations between pairs of estimated REE (kcal/day)
from different models in the ALSPAC Focus at 7 data

HB Sch HW Sch W WHO Ox HW Ox W

Boys

Schofield HW 0.860
Schofield W 0.892 0.647

WHO 0.871 0.621 0.996
Oxford HW 0.968 0.954 0.795 0.770

Oxford W 0.951 0.958 0.788 0.760 0.993
Maffeis 0.768 0.494 0.908 0.926 0.640 0.611

HB Sch HW Sch W WHO Ox HW Ox W

Girls

Schofield HW 0.955
Schofield W 0.603 0.527

WHO 0.648 0.568 0.996
Oxford HW 0.910 0.980 0.488 0.527

Oxford W 0.902 0.956 0.503 0.542 0.991
Maffeis 0.738 0.866 0.392 0.423 0.929 0.920

Table 5.7: Intraclass correlations between pairs of estimated REE (kcal/day)
from different models in the ALSPAC Focus at 11 data
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For a description of ICC, see section 2.6.1. These correlations give a general mea-

sure of agreement between models. We can see that, at age 7, the Oxford HW

model is not in agreement with any other model for the boys. This may be because

of the possible error in the formula that was identified earlier in this thesis. What

is clear here is that the HB models are in poor agreement with the other models

at age 7, and better at age 11. This may be because the HB models were not

developed on children. Among the other models, for both boys and girls at both

ages, the agreement seems, in general, to be reasonable.

Pairwise agreement between models can also be examined using Bland-Altman

diagrams [102] (See section 2.6.2 for a description of this method). These have

been produced for both boys and girls at each of the focus groups 7 and 11 and

appear to show a consistent lack of agreement, shown by an increasing or decreasing

pattern, between the models. A selection of these Bland-Altman diagrams (for

boys at wave 7) are shown in Figure 5.1. From these plots, we can see the individual

discrepancies between the models that are not shown in the intraclass correlations.

In general, the higher the average REE, the higher the discrepancy between the

models. Here, the Bland-Altman diagrams are far more informative in terms of

assessing agreement between models than the intraclass correlations.
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Figure 5.1: A selection of Bland-Altman diagrams assessing agreement be-
tween REE (kcal/day) estimated from different published models applied to
the ALSPAC data
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5.3.5 Conclusions

This analysis has attempted neither to separate “correct” models from “incorrect”

models, nor to mark any one set of models as a gold standard for use today.

Rather, the aim was to determine how closely each published model agreed with

each of the others when applied to data outwith that of the original studies. From

the results presented throughout this section, it is abundantly clear that no two

models are in agreement.

We can conclude, therefore, that at most one model can be correct. This is not,

however, to say that there is one correct model!
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5.4 Looking for a scaling relationship

As discussed in the review of relevant literature, the model REE ∝ M0.75 has

been suggested [74] and shown to be relatively accurate for all adult mammals.

5.4.1 Harris - Benedict data

Re-analysing the Harris and Benedict data [86], we investigate whether there is an

appropriate scaling relationship for this specific sample.

We find the following relationships (equations (5.7) and (5.8)) when performing

simple linear regressions with the natural logs of REE and weight:

Male REE = 117.9 × Weight0.631 (5.7)

Female REE = 292.9 × Weight0.379 (5.8)

These models had R2 values of 64.0 and 38.7 for males and females, respectively.

Of course, residual plots for these models must be considered. As well as plotting

residuals against fitted values, we will also examine plots of residuals against age

in order to determine whether or not age may be useful as a proxy measure of

body composition where more accurate measures are not available. Diagnostic

plots (not shown) for these models show that the models fit the data very well but

as shown in Figure 5.2, plots of residuals against age, but there is a clear effect of

age that we have not accounted for - and that may be useful in representing body

composition in models.
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Figure 5.2: Residuals from REE scale models (equations 5.7 and 5.8) applied
to the HB data
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5.4.2 Institute of Medicine Database

The database from the Institute of Medicine brings together data from several

reputable published sources into one dataset with anthropometric and energy ex-

penditure data for several age groups of both males and females. Unfortunately,

the database does not include detailed data on body composition. However, with

the data available, it is possible to investigate whether or not there is a scaling

relationship between REE and weight for each age group within each sex. Addi-

tionally, we consider the data for each sex combining all ages (excluding 0-2 years).

The models found by the regression on the natural logs are summarised in Table

5.8.

Sex Age group Model (REE (kcal/d)=) R2

Male

0 - 2 127.7 × Weight0.567 33.4
2 - 8 200.3 × Weight0.539 33.8
9 - 18 109.9 × Weight0.684 77.6
Adult 79.0 × Weight0.711 27.3
2+ 395.4 × Weight0.296 63.4

Female

0 - 2 101.5 × Weight0.681 33.4
2 - 8 278.7 × Weight0.410 51.0
9 - 18 368.7 × Weight0.326 44.4
Adult 108.9 × Weight0.607 27.6
2+ 314.2 × Weight0.390 81.9

Table 5.8: Models produced for expressing REE (kcal/day) proportional to
a power of body mass using the IOM data

The differences between the constants and exponents can be shown graphically as

follows in Figure 5.3.
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Figure 5.3: Comparisons of constants, exponents and R-squared for scale
models within IOM data

Residuals vs. fitted values plots (not shown) revealed no violation of modelling

assumptions for this data.
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5.5 Modelling REE based on FM and FFM

5.5.1 Linear models

For a subsample of 246 ALSPAC participants (110 male, 136 female) with a mean

age of 12.41, we have REE provided in two measures: oxygen uptake, and a con-

version from this to energy expenditure calculated using the Weir formula [244]

which is considered to be the gold standard conversion equation and is widely used

in current research. For each subject, we have measurements taken at various dif-

ferent levels of activity and we isolate the data for the “lying”. Since we have

no information regarding the procedures preceding measurement, we attempt to

model resting energy expenditure rather than basal metabolic rate. We also have

DEXA measurements of fat mass (FM), lean mass (LM) and bone mass (BM)

previously recorded at the ALSPAC Focus at 11 group. FFM is considered to be

equal to BM+LM. In order to make some of the REE data , we impute body com-

position measurements for the subsample by calculating the proportion of body

weight given by both FM and FFM at the time of the DEXA measurements for

each subject, and applying these proportions to the corresponding body weights

in the later subsample.

5.5.1.1 Exploratory analysis

Plotting measured REE against age (for boys and girls separately) as shown in Fig-

ure 5.4, we see that there are some considerably high REE values for both sexes.

We also see a general increase in REE over time, which appears to be stronger for

the girls than for the boys.
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Figure 5.4: Scatterplot of age (years) and REE (kcal/d) in a subsample of
ALSPAC participants

Comparing the weights, fat and fat-free masses and BMI SDS for the two samples

(using imputed FM and FFM for the later sample), we found that each variable

increased for all subjects between the Focus at 11 group and the subsample mea-

surements approximately one year later.
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5.5.1.2 Formal analysis

Butte et al [245] give equations for calculating REE for boys and girls based on

their Tanner stage. We assume the Tanner stage of the subsample respondents to

be, on average, 2 (given the ages). Therefore, the Butte equations for these data

would be:

BOYS:

REE(kcal/d) = (37.9 × FFM) + (6.45 × FM) (5.9)

GIRLS:

REE(kcal/d) = (40.2 × FFM) + (6.45 × FM) (5.10)

We attempted to generate our own models using the method of linear least squares

regression, but found clear violations of the modelling assumptions for both sexes.

The models were:

BOYS:

REE(kcal/d) = (55.79 × FFM) + (15.10 × FM) (5.11)

GIRLS:

REE(kcal/d) = (56.323 × FFM) + (6.398 × FM) (5.12)

Using the Butte equations ((5.9) and (5.10)), we can estimate the REE for the

subsample. This can then be compared to the estimated REE from our own mod-

els (despite violation of assumptions), and the actual measured values from the

subsample. Means and standard deviations are shown in Table 5.9, and boxplots

in Figures 5.5 and 5.6.
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Sex n Result from Mean REE sd

Boys 110
Measured 1963.6 490.1
Ours 1946.4 316.7
Butte 1280.5 194.5

Girls 136
Measured 1807.0 473.0
Ours 1805.9 266.1
Butte 1312.5 197.0

Table 5.9: Descriptive statistics for REE (kcal/day) produced from 3 linear
models using FM and FFM in a subsample of ALSPAC participants

Figure 5.5: Boxplots of REE (kcal/day) produced from 3 linear models using
FM and FFM in a subsample of ALSPAC boys
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Figure 5.6: Boxplots of REE (kcal/day) produced from 3 linear models using
FM and FFM in a subsample of ALSPAC girls

It seems from the statistics and boxplots that there are significant differences

between our model and the Butte model, and between the actual measurements

and the Butte model. It should also be noted that in both our model and the

measured REE values, there are some considerably high results. Realistically,

would a child of age 12 have a resting energy expenditure as high as 2000 to 3000

kcal per day?

5.5.2 Nonlinear models

Using R’s nonlinear least squares function [6] function, as described in section 2.4,

we can fit a nonlinear model to our data. The model we are aiming to fit is:
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REE = β0FMβ1 + β2FFMβ3 (5.13)

The arbitrarily chosen starting values for this model are a=300, b=1, c=300, d=1.

The number of iterations to convergence was 9 for the boys and 26 for the girls.

We get the following equations for boys and girls separately (again, there was an

issue with modelling assumptions):

BOYS:

REE(kcal/d) = (360.1741 × FM0.3436) + (199.5909 × FFM0.5142) (5.14)

GIRLS:

REE(kcal/d) = (169.1893 × FM0.2798) + (32.2767 × FFM1.1159) (5.15)

Table 5.10 and Figures 5.7 and 5.8 summarise the estimated REE values for each

sex using these models as well as previous models.
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Sex n Result from Mean REE sd

Boys 110

Measured 1963.6 490.1
Ours 1946.4 316.7
Ours (Nonlinear) 1963.6 231.3
Butte 1280.5 194.5

Girls 136

Measured 1807.0 473.0
Ours 1805.9 266.1
Ours (nonlinear) 1807.2 258.8
Butte 1312.5 197.0

Table 5.10: Descriptive statistics for REE (kcal/day) produced from linear
and nonlinear models using FM and FFM in a subsample of ALSPAC par-
ticipants

Figure 5.7: Boxplots of REE (kcal/day) produced from linear and nonlinear
models using FM and FFM in a subsample of ALSPAC boys
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Figure 5.8: Boxplots of REE (kcal/day) produced from linear and nonlinear
models using FM and FFM in a subsample of ALSPAC girls
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Leaving aside the issue of modelling assumptions for now, we can compare the

models obtained in this section (summarised on page 163) using Bland-Altman di-

agrams [102] to assess agreement, or lack thereof, among models. These are shown

in Figures 5.9 and 5.10 for boys and girls, respectively.

Figure 5.9: Bland-Altman plots for assessing the agreement between REE as
measured by ALSPAC and REE as estimated from our models - ALSPAC
subsample (boys)
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Figure 5.10: Bland-Altman plots for assessing the agreement between REE
as measured by ALSPAC and REE as estimated from our models - ALSPAC
subsample (girls)
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5.5.3 Modelling REE with another dataset

The dataset used in this analysis was provided by Professor Jonathan Wells of

the Institute of Child Health in London, in the spring of 2008. Resting energy

expenditure measured by calorimetry (kcal/d) and body composition (fat mass

and fat-free mass as determined by DEXA) are included for 16 boys and 14 girls

of ages 8.1 - 12.1 years (mean = 9.7, sd = 1.3) and 8.2 - 12.4 years (mean = 10.1,

sd = 1.4), respectively.

5.5.4 Linear models

We began by investigating separate linear models of REE on FM and FFM for

each sex, which gave the following:

REE(boys) = 55.378 × FFM − 13.845 × FM (5.16)

REE(girls) = 46.098 × FFM + 6.028 × FM (5.17)

However, it should be noted that sample size, and therefore statistical power, is

extremely low, rendering these models tentative at best. In order to both increase

power and investigate whether or not sex is a statistically significant covariate

when it comes to these pre- or early-pubescent children (no data are available

on pubertal staging), we combine the data for both sexes to consider ANCOVA

models, treating sex as a covariate and FM and FFM as independent variables. As

there is no biological realism in investigating an interaction between FM and FFM,

the three way interaction will not be considered. Therefore, the first ANCOVA
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model considered will be:

REE ∼ sex + FM + FFM + sex ∗ FM + sex ∗ FFM (5.18)

This model returns a F-statistic of 15.05 on 5 and 21 degrees of freedom, with

P-values for the interactions of 0.98180 (sex ∗ FM) and 0.52376 (sex ∗ FFM).

Since the two-way interactions are non-significant, we remove the one with the

least significance (sex ∗ FM) and re-fit the ANCOVA model as:

REE ∼ sex + FM + FFM + sex ∗ FFM (5.19)

This model returns an F-statistic of 19.23 on 4 and 22 degrees of freedom, and

a P-value for the interaction of 0.534, showing no statistical significance at any

reasonable level. As a result, we are able to remove this term and fit a model with

just the main effects:

REE = sex + FM + FFM (5.20)

This procedure returns a marginally nonsignificant P-value for sex (0.52). However,

removing the term sex from the model lowers the adjusted R2 from 0.744 to 0.712,

suggesting that since sex isn’t difficult or expensive to determine, it should perhaps

remain in the model. Diagnostics for this model, as shown in Figure A.5 on

page 285, show that there may be problems with the assumptions of modelling -

particularly normality of residuals.
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5.5.5 Nonlinear models

We went on to investigate nonlinear modelling of the BMR data provided by Pro-

fessor Wells. We came across some initial problems with running the iterative

model. To overcome these difficulties, it was necessary to increase the number of

iterations used in the procedure from 50 to 150.

The model we are aiming to fit with this procedure is:

REE = β0FMβ1 + β2FFMβ3 (5.21)

This results in the following equations for boys and girls:

BOYS:

REE(kcal/d) = (99.6 × FM0.34) + (141.5 × FFM0.66) (5.22)

GIRLS:

REE(kcal/d) = (1034 × FM0.005) + (0.176 × FFM2.774) (5.23)

Considering the exponents in these models, we notice that the girls’ exponents are

not remotely similar to anything we have already seen or would in fact expect from

this modelling.

We investigate the variance covariance matrices of these models, finding the fol-

lowing eigenvalues:

169



BOYS: 6496528.00, 5856.39, 0.06, 0.00005

GIRLS: 34276.68, 0.93, 0.0003, 0.000003

From these eigenvalues, we can assess the stability of the parameter estimates. If

the condition number (the ratio of the largest to the smallest eigenvalue) is small,

we may be confident in the stability of the estimates. A large condition number

implies that any small change in the data could drastically alter parameter esti-

mates. For these models, it is clear that the condition numbers for both boys and

girls are extremely large, showing numerically very unstable models. This may be

down to the small sample size. We can therefore not continue with this modelling.
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5.6 Chapter summary

This chapter opened by exploring the data published by Harris and Benedict in

1919, which they used to develop models for estimating resting energy expenditure

(REE) from anthropometric measurements.

The findings of this section were that despite the lack of techniques and equip-

ment that would have been available many years ago, the best models that can

be derived today from the published data are in-fact the same models that were

originally published. It must be kept in mind, however, that these models were

developed almost a century ago and therefore on a different population, yet are

still in use to this day. It must also be kept in mind that while these models

were developed using adult subjects, they are currently used to estimate REE in

younger subjects.

Following on from this, seven sets of models for estimating REE from anthropo-

metric measurements were applied to the ALSPAC datasets, showing that no two

models are in agreement on the individual level. It was not possible to progress

to marking any model as correct, however, due to the lack of gold standard data

collected by ALSPAC.

The final part of this chapter considered alternative possibilities for REE mod-

elling, including modelling based on body composition.. However, until the issues

raised in Chapter 4 have been addressed - that is, until we have accurate methods

of estimating body composition - it will not be possible to develop reliable models

using such variables as predictors.
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Chapter 6

The ideal study and a

simulation of resting energy

expenditure
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6.1 Chapter aims

Chapter 6 will begin by describing an ‘ideal study’ in body composition and resting

energy expenditure research. Following on from this, longitudinal resting energy

expenditure and body composition data will be simulated, in a manner which

generates reasonably realistic data, for several thousand children between the ages

of 7 and 10 years. The chapter will focus mainly on potential issues with real-life

data, such as sample size and missing data.
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6.2 The ideal study

In attempting to design the ideal study with which to model energy-imbalance

over puberty, it quickly becomes clear that such a study, despite the potential of

unlimited resources, is virtually an impossibility.

The guiding principle of such a study in this field would be that every aspect of the

energy-balance equation (equation (1.1)) is measured directly and professionally

rather than having to rely on the indirect estimates based on the statistically du-

bious models that are often used in practice. This, however, is rendered impossible

by ethics and by the very nature of energy measurements - it is near impossible

and highly unethical for anybody, particularly a research group, to have complete

control over, or accurate knowledge of, the energy intake of children for any useful

length of time. Unable to control accurately measure individual aspects of the

energy-balance equation (equation (1.1) in section 1.1), we must settle for indirect

estimates, particularly in terms of physical activity energy expenditure and energy

intake. While it may be possible to improve upon these estimates with statistical

modelling, significant residual error will unfortunately remain a feature of energy-

balance research. Knowing, therefore, that the ideal study is an impossibility, we

must then consider how to limit the error and yield reasonably accurate results,

i.e. by considering the design and implementation of the best possible study.

One of the first things that should be considered when designing this study is who

will be studied, for how long and by whom. We know that energy-balance differs

over time and between the sexes, therefore the best study should be longitudinal

in design with a male and female sample. In order to allow researchers insight into
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pre-, peri- and post-pubertal processes, it is suggested that the participants are

followed up from pregnancy until early to mid 20s.

It must be understood that a study of such a nature brings with it very large

potential for dropout over time, resulting in missing data. While there do exist

imputation methods for dealing with missing data, such as multiple imputation (see

section 2.9), these methods rely on missing data being missing at random - which

may not be the case for such data. The sample must therefore be large enough to

ensure that statistical analyses retain adequate power after such dropout, though

of course it should be noted that no-one can ever be sure that the complete cases

are representative of the target population.

The aim of this study is to examine energy-balance in healthy UK adolescents.

Therefore, any child with health concerns that may influence energy-balance should

be excluded. In order to ensure a sample that is representative of the UK popula-

tion today, participants should be of an ethnic and socio-economic mix. This raises

further problems in that certain groups may be under-represented. It may therefore

be necessary to over-sample from specific areas to ensure adequate representation

of each sub-group from the population. It is likely that certain sub-groups of the

population, possibly those from lower socioeconomic classes, will drop out more

quickly or in larger numbers, which is another reason for over-sampling from such

groups in the first place. Some adjustment of the final analysis, on a post-hoc

stratification basis, might then be necessary.

While, as previously discussed, residual error in this field of research is inevitable,

this error can be limited by ensuring that measurements are as accurate as possible.
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As little as possible should be self-reported, as it has been shown that self-reported

data are not consistent [172]. All variables should therefore be determined or mea-

sured according to agreed protocol by staff trained to a consistently high standard.

All sites involved in any form of data collection must have identical equipment and

reporting procedures must be standardised across such sites.

Anthropometric measures should be taken by trained staff at every occasion when

the children are seen. These measures should include height, weight and possibly

circumferences (waist / hip). To reduce measurement error, if possible, the same

member of staff should perform all these measurements on a given child over the

course of the study. These anthropometric measures would allow BMI standard

deviation scores to be calculated in order to study the distribution of childhood

body composition. BMI SDS should be calculated according to the 1990 growth

reference data[30], in the absence of a more recent reference, using the LMS method

as described in section 2.2.

To develop accurate models of body composition, an accurate method of deter-

mining the proportions of FM and FFM in the body would be needed, along with

data from those methods for which we would like to develop models. While it

is known that hydrodensitometry, a very accurate method of determining body

composition, is perhaps not well tolerated by children, it has been suggested (see

section 1.2.1.2.2) that air-displacement plethysmography is both accurate and safe

for use with children. It would therefore be desirable to have the ‘best possible’

estimates of FM and FFM, determined using air-displacement plethysmography,

taken as close as possible to carrying out BIA and DEXA scans. This would allow

models for determining body composition from either BIA or DEXA, or both, to

176



be developed in conjunction with the best possible estimates of FM and FFM. It

is important that these measurements are taken at regular intervals as children

grow, to allow the effect of age to be modelled. Ideally, the data should be split

into two datasets: one on which to develop models, and another on which to test

such models.

In order to develop models for REE, as close as possible to anthropometric mea-

surements and AP estimates of body composition being recorded, REE should be

measured using calorimetry (as described in section 1.2.2.2.1). Physical activity

energy expenditure cannot be directly measured - the best method of obtaining

information on physical activity would be to have children wear accelerometers.

This could be done for a period of time as close as possible to the REE and body

composition measurements being taken. Penpraze et al. in 2006 recommend the

use of accelerometry for 7 days, and for 10 hours on each day [246]. Energy in-

take, too, cannot be directly measured. Intake diaries could be used - however, it

must be kept in mind that self-reported energy intake data are subject to error for

reasons described in section 1.2.3.1.

This project was concerned with the study of energy-balance and body composi-

tion over puberty. Therefore, the ideal study in this field should include estimates

of pubertal staging. For both sexes, Tanner stage (see section 1.2.5) should be

recorded by clinicians. It has been shown that if clinicians are well trained and

able to put the child at ease, the child is more likely to be comfortable with the

process [201]. Age of menarche should be recorded for the girls. It is not possi-

ble to record this with certainty, as it must be self-reported. One possibility for

limiting inaccuracies could be that at each clinic, girls could be asked if they have
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had their first period yet. This would give interval censored estimates which may

be more accurate than asking girls to recall their age of menarche at a much later

point.

Along the course of the study, it may be of interest to take other measures, includ-

ing measures from parents. These may include height and weight in order to assess

the weight status of the parents and study relationships with the body composi-

tion of offspring. Unless height and weight are recorded in medical records before

pregnancy, pre-pregnancy measurements would be self-reported and subject to rec-

ollection bias, and therefore not recommended. Once parents are recruited into

the study, these measurements should be periodically taken by trained clinicians.

It would not be necessary to take parental measures as often as child measures.

Socio-economic status should also be recorded, as it may be of interest to study

links between this and childhood body composition.
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6.3 Simulation

A fundamental problem with research into energy-balance and body composition is

the lack of real data, for example, the absence of gold standard body composition

data. In the absence of real data, synthetic data may be used to illustrate how

real data could be analysed. This would allow the effect of real-data issues, such

as missing data, to be explored. The conclusions from such a simulation study

may then influence practices in future research.

6.3.1 Generation of cross-sectional data

Using ALSPAC data at each of waves 7, 9 and 10, models for height based on age,

and weight based on height and age were produced. These independent variables

were chosen because they were measured in the ALSPAC data.

In the first simulation, cross-sectional data were generated for 10,000 male and

10,000 female subjects of each age 7, 8, 9 and 10. For each subject, height was

generated as

heighti
iid∼ N(µ, σ2) (6.1)

For ages 7, 9 and 10, the parameter values used in this simulation are based on

those from the ALSPAC models at the same ages. For age 8, parameters were

chosen to produce data that lay between age 7 data and age 9 data. Different

parameters were used to generate heights for boys and girls, as shown in Table

6.1. Weight was then generated from the formula
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weighti = β0 + β1 × heighti + height2
i × ei (6.2)

with ei
iid∼ N(0, 1.52) and parameters (again, derived from measured data) as shown

in Table 6.2. Note that height is in metres and weight is in kilograms.

Age µ σ2

Boys

7 1.280 0.054
8 1.344 0.057
9 1.393 0.061

10 1.457 0.064

Girls

7 1.253 0.054
8 1.315 0.060
9 1.386 0.065

10 1.435 0.070

Table 6.1: Parameter values used in the simulation of height data

Age β0 β1

Boys

7 -45.552 58.083
8 -62.000 70.000
9 -75.420 78.552
10 -82.589 83.557

Girls

7 -49.925 60.467
8 -65.000 72.000
9 -79.478 82.220
10 -58.101 85.827

Table 6.2: Parameter values used in the simulation of weight data

From these synthetic data, FFM was generated as:

FFMi = γ0 + γ1 × heighti (6.3)

with Gaussian noise added.
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The parameters used to generate FFM were found from ALSPAC data along with

models for determining body composition from bioelectrical impedance (see section

1.2.1.2.2). These parameters are shown in Table 6.3. FM can then be considered

to be the difference between weight and FFM.

Age γ0 γ1 σ2

Boys

7 -37.95 46.84 2.00
8 -44.51 49.96 2.00
9 -57.49 59.41 2.00
10 -64.85 63.03 2.00

Girls

7 -29.58 38.36 2.00
8 -37.72 43.98 2.00
9 -49.42 52.80 2.00
10 -58.78 58.95 2.00

Table 6.3: Intercept (γ0) and slope (γ1) parameters used in the simulation of
FFM data

As identified in section 4.2.3, the BIA models can result in negative values of FM.

It could therefore be expected that any subsequent modelling with data generated

from these models may have a similar problem. In order to limit this risk, ALSPAC

cases with negative FM values were excluded when equation (6.3) was modelled.

Investigation of the data simulated from this model revealed 47 (0.12%) negative

values of FM out of 40,000 (10,000 at each age) for boys and 16 (<0.01%) out of

40,000 for girls.

Resting energy expenditure was simulated based on the Harris and Benedict mod-

els (see equations (1.16) and (1.17) in section 1.2.2.2.2) with Gaussian noise added

as follows:
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Boys

reei ∼ N((66.4270+13.7516×weighti+500.33×heighti−6.755×agei), σ2
B) (6.4)

Girls

reei ∼ N((655.0955+9.5634×weighti+184.96×heighti−4.6756×agei), σ2
G) (6.5)

where the values for σ2
B and σ2

G are shown in Table 6.4. These values were chosen

by examining plots of REE as calculated from the simulated data using equations

(6.4) and (6.5) with different values of σ2
B and σ2

G, and selecting values that re-

sulted in ‘plausible’ data.

Age σ2
B σ2

G

7 302 252

8 402 252

9 402 252

10 402 252

Table 6.4: Variances used to add Gaussian noise to simulated REE by gender
and age

From equations (6.4) and (6.5), along with the parameters given in Table 6.1 and

Table 6.2, it is possible to calculate the resulting expected values of REE for each

sex and age. These are shown in Table 6.5.
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Age Boys Girls
7 1055.531 1101.241
8 1125.982 1144.755
9 1170.186 1200.077
10 1266.282 1237.747

Table 6.5: Expected values of REE (kcal/day) by age and gender

These expected values are reasonably similar to the mean values of REE predicted

for children of these ages, using the Harris and Benedict models, in the ALSPAC

data (see Table 5.3 in section 5.3.2).

The purpose of the cross-sectional simulation was to be confident that the models

used to generate data would yield plausible results, before simulating longitudinal

data. Plots of the ALSPAC data and the simulated data reveal that the simulated

data are certainly not implausible. For one example of such a plot, see Figure 6.1.
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Weight of girls aged 10 in (a) ALSPAC data and (b) simulated data

Figure 6.1: Measured height (cm) from ALSPAC data and simulated height
(cm) for girls aged 10

The models discussed in this section will now be used to generate longitudinal

data.
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6.3.2 Generation of longitudinal data

In a second simulation study, longitudinal height data were created for both boys

and girls from a linear mixed effects model produced from the ALSPAC data with

height as the dependent variable and age as the independent variable. These data

were created for children of ages 7, 8, 9 and 10. Heights were generated based on

the linear mixed effects (random coefficient) regression model:

Heightij = B0 + B1 × Ageij + b0ij + b1ij × Ageij + ei (6.6)

for the ith child at the jth age. The coefficient and error terms are independent

for both boys and girls, and ei ∼ N(0, σ2).

The data were created using the following parameters:

Boys

b =

b0

b1

 ∼ N


0

0

 ,

15.09 −0.71

−0.71 0.23




Girls

b =

b0

b1

 ∼ N


0

0

 ,

26.10 −0.52

−0.52 0.51




where

• n is number of subjects,

• p is number of time points,

• ei (1.08 for boys, 1.26 for girls) is the variance of the error,

• B0 (93.7 for boys, 90.2 for girls) is the fixed intercept effect (average group

185



intercept),

• B1 (5.7 for boys, 6.0 for girls) is the fixed slope effect (average group slope),

• Var(b0) (15.09 for boys, 26.10 for girls) is the variance of individual inter-

cepts,

• Var(b1) (0.23 for boys, 0.51 for girls) is the variance of individual slopes,

Upon examining the simulated data, it was found that, for some children, height

decreased over time. Rejection sampling was therefore used to ensure monotonic-

ity. 10000 cases for girls and 10000 cases for boys were generated.

From these heights along with age (where age is 7, 8, 9 or 10), weight was created

using the models described in Table 6.2. From these variables, FM, FFM and

REE were simulated as described in section 6.3.1. The resulting REE is shown in

Figure 6.2.
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Figure 6.2: Simulated REE (kcal / day) for ages 7, 8, 9 and 10 for (a) boys
and (b) girls

Linear mixed models were fitted to the simulated data with REE as the dependent

variable, FFM and age as fixed effects and subject as a random effect. A random

intercepts model was used. Resulting models were as follows:

Boys

REEi = 345.570 + 25.315 × FFMi + 22.996 × agei (6.7)

with the variance component estimate of the intercept being 4307.1.
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Girls

REEi = 776.893 + 17.897 × FMi − 0.047 × agei (6.8)

with the variance component estimate of the intercept being 2016.2.

Fitted values from these models are compared to the simulated REE in Figure 6.3.

This figure shows that the fitted model for REE is in reasonable agreement with

the (simulated) REE.

Figure 6.3: Plot of simulated and fitted values of REE (kcal/day) for (a)
boys and (b) girls
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6.3.3 The effect of real-life data problems

6.3.3.1 Sample size

100 samples of data were simulated for both boys and girls using the method

described in section 6.3.2. For each sample, at each age 7, 8, 9 and 10, the

following linear model was fitted:

REEi = α + β × FFMi (6.9)

Let the mean REE estimated for age j (j = 7, ..., 10) from simulated sample k

(k = 1, ..., 100) be REEkj . The mean square error can be calculated from the

expected values of REE given in table 6.5 as:

MSE(REEj) =
∑100

k=1(REEkj − E(REEj))2

100
(6.10)

This was calculated for 100 samples of each size: 50, 100, 200, 300, 400, 500, 1000,

2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000, for both boys and girls.

Results are given in Figure 6.4 and Figure 6.5 for boys and girls, respectively. The

sample size shown on these graphs has been restricted to [0,3000] to allow us to

focus the smaller sample sizes.
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Figure 6.4: MSE of REEj (j = 7, ..., 10) from linear model for boys aged (a)
7, (b) 8, (c) 9 and (d) 10
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Figure 6.5: MSE of REEj (j = 7, ..., 10) from linear model for girls aged (a)
7, (b) 8, (c) 9 and (d) 10

These plots appear to suggest that, with complete data, a sample size of around

n = 1000 is required to reduce the MSE in such modelling to an acceptable level.
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From Tables 6.1 and 6.2, along with the linear functions used to simulate FFM

(equation 6.3) and REE (equations 6.4 and 6.5), the true values of α and β for the

relationship shown in equation (6.9) were calculated. These are shown in Table

6.6.

Age Boys Girls
α β α β

7 445.237 27.734 733.452 19.897
8 463.373 29.823 745.189 19.861
9 497.952 26.604 762.023 18.395

10 560.146 26.168 797.342 17.061

Table 6.6: True values of α and β from equation (6.9) by age and gender

It is of interest to determine whether or not sample size has a significant effect on

results. With the sample size varied between 50 and 10000 cases as before, we can

determine what percentage (of 100 samples of each sample size) of linear model

95% confidence intervals contain the true values shown in Table 6.6. Results are

shown in Figure 6.6 for boys and Figure 6.7 for girls.
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Figure 6.6: Percentage of 95% confidence intervals containing true values of
α and β for boys aged (a) 7, (b) 8, (c) 9 and (d) 10
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Figure 6.7: Percentage of 95% confidence intervals containing true values of
α and β for girls aged (a) 7, (b) 8, (c) 9 and (d) 10

By the very definition of 95% confidence intervals, regardless of sample size, on

average 95% of the confidence intervals should contain the true value. Indeed this

is what we appear to see: for some of these samples, coverage probability is lower

than 95%, for others higher - even at small sample sizes. It is possible that any

pattern here is obscured by the relatively small number of simulations (100).
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Another method of assessing the accuracy of models is the MSE. The MSEs of the

parameters in equation (6.9) are calculated as:

MSE(α̂j) =
∑100

k=1(α̂kj − αj)2

100
(6.11)

MSE(β̂j) =
∑100

k=1(β̂kj − βj)2

100
(6.12)

where each α̂kj and β̂kj are parameter estimates for the model shown in equation

(6.9) when fitted to the kth simulated sample (k = 1, ..., 100) at age j (j=7,...,10),

and the true values of αj and βj are as shown in Table 6.6. These MSEs have been

calculated for each sample size of 50, 100, 200, 300, 400, 500, 1000, 2000, 3000,

4000, 5000, 6000, 7000, 8000, 9000 and 10000. Figures 6.8 and 6.9 show the mean

square error of α̂j and β̂j , respectively, for boys as the sample size changes. As

before, the sample size shown on these graphs has been restricted to [0,3000] to

allow us to better consider the smaller sample sizes.
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Figure 6.8: MSE of α̂j in linear REE model for various sample sizes for boys
aged (a) 7, (b) 8, (b) 9 and (d) 10
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Figure 6.9: MSE of β̂j in linear REE model for various sample sizes for boys
aged (a) 7, (b) 8, (c) 9 and (d) 10

A very similar picture was seen for the MSEs of both parameters for girls (not

shown). These plots indicate that acceptable MSE can be achieved with quite a

small sample size (n around 1000), as long as each observation is complete. How-

ever, the complete data generated here are not representative of real-world data

where, of course, observations may be missing values for individual variables.
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6.3.3.2 Missing data

In order to investigate the effect of missing data points on the analysis, samples

were simulated, using the method described in section 6.3.2, with between 10%

and 90% of observations randomly removed from FFM and REE. For each number

of points removed, 100 samples were simulated.

It may be possible that, in large studies, complete data may be obtained for a

much smaller sample of cases. This data could then be used to develop models to

predict variables, and these models used to impute the missing values in the larger

sample. To investigate the effect of this type of imputation, the following model

was developed on two complete samples of size n = 50 (one for boys, one for girls):

FFMi = α + β1 × heighti + β2 × weighti (6.13)

These models were then applied to the cases in the full samples (n = 10000) where

FFM was missing. This method will be referred to throughout this chapter as

‘OLS imputation’.

As discussed in section 2.9, multiple imputation by chained equations (MICE) is

another method of imputing missing data, assuming the data are missing com-

pletely at random (MCAR) or missing at random (MAR).
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The assumption of random missingness can be subjectively checked using margin

plots, a feature of R’s “VIM” package [247]. Details can be found in the description

of MICE in the Journal of Statistical Software [240]. It should be noted that this

is a subjective check, rather than a definitive result. One example of such a plot

for this simulation, for age 7 data, is shown in Figure 6.10. For each variable, the

outer boxplot represents the marginal distribution of the variable for the complete

cases. The inner boxplot represents the distribution of the variable for cases who

have a missing value in the other variable. If these distributions are similar, as seen

in Figure 6.10, it is likely (though not guaranteed!) that the assumption holds.

Figure 6.10: Margin plot to check the assumption of random missingness in
the age 7 simulated data
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MICE has been implemented for the simulated data with varying amounts of

missing data, using 5 iterations and 5 imputed datasets per imputation. The im-

putation model used was predictive mean matching (PMM). Only missing values

in the independent variable (FFM) were imputed, missing values in the dependent

variable (REE) were not imputed at any point.

Mean square error, as shown in equations (6.11) and (6.12), was calculated from

100 samples of each amount of missing data - first with a complete case analysis,

then with data imputed using each of OLS imputation and MICE. These results,

presented only for boys, are shown in Figures 6.11 and 6.12 for α̂j and β̂j , respec-

tively. Similar results were found for girls.
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Figure 6.11: MSE of α̂j (j = 7, ..., 10) in linear REE model for various
amounts of missing data for boys aged (a) 7, (b) 8, (c) 9 and (d) 10 (with
missing and imputed data)
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Figure 6.12: MSE of β̂j (j = 7, ..., 10) in linear REE model for various
amounts of missing data for boys aged (a) 7, (b) 8, (c) 9 and (d) 10 (with
missing and imputed data)

From these plots, it is clear that, with a complete-case analysis, MSE increases

as the percentage of missing data increases. Both methods of imputation resulted

in greatly improved parameter estimates (compared to complete-case analysis) for
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large amounts of missing data, while the improvement for a small fraction of miss-

ing data was slight (as MSE for the complete-case analysis was low with these

datasets).

Each method of imputation has advantages and disadvantages - the OLS method

takes far less computational time than MICE, particularly as the fraction of miss-

ing data increases, but results in a lesser improvement of estimates. It must also

be kept in mind that if a smaller, complete-case sample of data does exist, it is

likely to be a biased sample. On the other hand, MICE is considerably slower as

it involves MCMC simulation (between several hours and several days, depending

on the sample size and fraction of missing data, compared to mere seconds for the

OLS method) but results in improved parameter estimates and is widely regarded

as one of the best tools for dealing with missing data [239, 248, 249, 237]. Each of

these things, along with careful consideration of the methods’ assumptions (and, in

the case of the OLS method, the availability or lack thereof of a smaller, complete

sample), should play a part in deciding how to deal with missing data.
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6.4 Chapter summary

This chapter began by exploring, using parameters estimated from the ALSPAC

data, relationships between age, height, weight, REE, FM and FFM in children

aged 7 - 10, with a view to generating longitudinal data that are reasonably realis-

tic. Firstly, cross-sectional data were generated, in order to check the reasonability

of the data generated by these models.

Longitudinal height data were then created from a linear mixed effects model for

10,000 boys and 10,000 girls at each age 7, 8, 9 and 10, and the models for REE

and body composition were applied to these data (ensuring as much as possible

that, at each stage, the data generated were reasonable). These data were simu-

lated 100 times as complete datasets.

To allow consideration of real-world data problems, the sample size was reduced

by varying amounts, and 100 datasets of each sample size were generated for both

boys and girls. Finally in the data creation process, varying amounts of data

were randomly removed from the dependent and independent variables of a linear

model, with a view to exploring techniques for dealing with missing data.

This chapter has shown that it is possible to generate reasonably realistic longitu-

dinal data in the field of resting energy expenditure and body composition, using

a combination of published models and models developed from measured data.

204



The effect of sample size was considered, and it was shown that reasonably low

modelling error could be achieved with a sample size of around n = 1000 (of each

sex), assuming data are complete.

In considering real-data issues, it was shown that with complete data, as sample

size increases, error in parameter estimates is greatly reduced. Sample sizes up to

n = 10, 000 were considered, but there was little improvement in MSE observed

with n = 10, 000 compared to that observed when n = 2, 000.

Finally, looking at missing data, this chapter has demonstrated that as the fraction

of missing data increases, so does error in parameter estimates. Two methods of

dealing with missing data were considered:

• imputing the independent variable(s) using a linear regression model devel-

oped on a much smaller, complete dataset

• imputing the independent variable(s) using multiple imputation by chained

equations, assuming that the data are missing at random.

Both methods resulted in a considerable improvement in parameter estimates, par-

ticularly when the fraction of missing data was large. Of course, these methods

are not the only methods of imputation available to researchers. When deciding

how to deal with missing data, consideration must be given to the complexity and

computational time of each possible method, along with the underlying assump-

tions.
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Chapter 7

Quantifying energy-imbalance
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7.1 Chapter aims

One of the original aims of this project was to model energy-imbalance over time

and subsequently determine whether ALSPAC participants could be categorised

by a small or large degree of energy-imbalance over the transition into puberty.

Without direct measurements or reasonable estimates of the components of the

energy-balance equation, it will not be possible to directly determine this with

accuracy. However, as a consequence of positive energy-imbalance resulting in

weight gain, when we have estimates of FM and FFM gain over time, as well as

of the energy cost of depositing each type of mass, it is possible to retrospectively

estimate the degree of energy-imbalance that has occurred over the time period.

While BIA, with its current underlying models (as detailed in section 1.2.1.2.2),

was critiqued in Chapter 4 as being inaccurate on the individual level, it should

be noted that these models are the best available published models at this time.

As such, for the purposes of this chapter, these models and the arising body com-

position estimates will be considered to be reasonable on the population level.

This chapter will therefore use these estimates of FM and FFM derived from BIA

for the ALSPAC participants at focus groups 9 and 11, with an aim to determining

the magnitude of energy-imbalance over this period and estimating the average

daily energy-imbalance required between ages 9 and 11 for children to get to (or

remain at) a healthy weight at age 11 according to BMI SDS.
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7.2 Quantifying energy-imbalance retrospec-

tively

During infancy, childhood and adolescence, people must gain some weight - this

is a natural and normal part of maturation towards adulthood. However, with

more and more children becoming overweight or obese, it is clear that many of

today’s children are gaining more weight than is necessary for normal growth. It

is therefore of interest to develop ways of being able to determine what degree of

energy-imbalance is ‘just right’ for healthy growth. In keeping with the rest of this

project, we will consider boys and girls separately.

In order to directly measure the degree of energy-imbalance over a time period,

we would require data on almost every component of energy-balance to have been

collected very routinely throughout that period, namely: resting energy expendi-

ture, physical activity energy expenditure and energy intake. This has not been

done and is unlikely to be done - it is almost impossible and highly unethical to

have complete control over a child’s energy intake for a sustained period of time,

for example.

In the absence of this data, we must work retrospectively. From impedance data,

we are able to calculate FM and FFM estimates for each child. This chapter will

consider waves 9 and 11. Therefore, we can estimate the gain over the roughly

two-year period for each child in terms of both FM and FFM. In 1995, Westerterp

published the energy costs of storing each type of mass 1 [250], allowing us, from

the FM and FFM estimates, to estimate roughly how much energy-imbalance oc-
19076 kcal / kg for FM and 1433 kcal / kg for FFM
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curred over the time period for each child. Additionally, since we can calculate the

number of days between focus visits 9 and 11 for each child, we can estimate the

average imbalance per day over this period. With the ability to calculate age- and

sex-specific BMI SDS for the participants at both time periods, we can estimate

the energy-imbalance required for transition from one degree of fatness to another

- for example, the amount of calories needed for a child who is overweight at 9 to

be at a healthy weight at 11.

In this analysis, we consider only those subjects for whom we have impedance data

at both waves 9 and 11. Further to this, we exclude any subject for whom the

current BIA models give a negative value of FM (as discussed in section 4.2.3).

Therefore, subject numbers for this section are: 2979 boys and 3072 girls.

We first explore this data in order to determine how the ‘fatness’ of these children

changed over time with BMI SDS as an estimation of fatness. Recall the cut-off

points for ‘fatness’ classification as shown in Table 2.1 in section 2.2. Table 7.1

indicates that children remain, for the most part, ‘stuck’ in one category of fatness.

Certainly, very few subjects transition by two categories - that is, for example, very

few normal weight children at 9 have become obese by 11 and very few who were

obese at 9 have become normal weight by 11.
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Status at 9
Sex Status at 11 Underweight Normal weight Overweight Obese

Boys

Underweight 70 34 0 0
Normal weight 24 1897 61 4

Overweight 0 190 160 45
Obese 0 32 106 356

Girls

Underweight 79 75 0 0
Normal weight 31 1937 97 5

Overweight 0 158 186 63
Obese 0 23 107 311

Table 7.1: Transition of ‘fatness’ in ALSPAC ages 9 to 11 (only those subjects
for whom we have impedance at both 9 and 11)

This message is not a new one to this thesis (it was uncovered earlier with the full

sample, see section 3.3.3) but is nonetheless important enough to be re-stated. It

would appear that the key to young people progressing through adolescence at a

healthy weight is for them to be at a healthy weight prior to their adolescent years.

Incorporating estimated daily energy-imbalance, as described above, with this

change in BMI SDS over time tells a very interesting tale indeed. It is common to

hear parents say ‘he / she is a growing boy / girl’ while handing out calorie-laden

snacks, justifying the unhealthy treats with the fact that the child needs extra

energy to grow. Without in-depth research and public education, this misconcep-

tion may not be the fault of the parents but, as Figure 7.1 and 7.2 show, is in

fact incorrect and therefore potentially damaging to the long-term health of the

children.
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Figure 7.1: Average daily energy imbalance (kcal/day) between ages 9 and
11 against BMI SDS at 9, grouped by BMI SDS at 11, ALSPAC boys

Figure 7.2: Average daily energy imbalance (kcal/day) between ages 9 and
11 against BMI SDS at 9, grouped by BMI SDS at 11, ALSPAC girls
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Figures 7.1 and 7.2 raise some very interesting points:

• Looking at those who are ‘above average’ but not overweight at 9 (i.e. SDS

between 0 and 1.04), it is clear that as BMI SDS tends towards overweight,

the degree of average daily energy-imbalance resulting in remaining healthy

at 11 decreases considerably. A boy with a standardised BMI just above

average would appear to remain healthy with an imbalance of up to 150

kcal/day on average over this period (though presumably those with an

intake at the high end would be closer to overweight than average at 11)

while those boys with an SDS of 1 at 9 - still in the healthy bracket - are

likely to become overweight by 11 with an average daily imbalance of just

50 kcal/day.

• Some children, both boys and girls, with the highest BMI SDS at 9 and the

highest average daily energy-imbalance appear to be overweight rather than

obese at age 11. This is a surprising result and could possibly be explained by

the additional energy cost of daily life when obese. It is intriguing though

why this should be the case when others, with a lower energy-imbalance,

remain obese.

7.2.1 How much imbalance is healthy?

A key question of this research is: how much energy-imbalance is required in order

for children to remain in - or get to - a healthy weight as they enter puberty? Table

7.2 shows the average daily imbalance for those children at each weight status at

9 and at a healthy weight at 11. Note that due to small sample sizes in some com-

binations (obese at 9 and normal weight at 11, for example), the point estimates

and confidence intervals have resulted from nonparametric one-sample tests and
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are therefore estimates of the medians. With only 9 subjects in total having been

obese at 9 and healthy weight at 11, the estimates for these groups are extremely

tentative but are included for completeness.

Imbalance required for healthy weight at 11
Status at 9 Sex n Median 95% CI

Underweight Boys 24 34.9 (27.4, 40.7)
Girls 31 45.7 (35.8, 55.9)

Healthy weight Boys 1897 38.3 (37.1, 39.6)
Girls 1937 45.2 (43.9, 46.5)

Overweight Boys 61 11.9 (3.3, 20.0)
Girls 97 27.2 (21.0, 33.5)

Obese Boys 4 -15.2 (-142.5, 21.1)
Girls 5 -31.4 (-93.2, -9.9)

Table 7.2: Median energy-imbalance (kcal/day) required to transition from
each ‘fatness’ stage at 9 to healthy weight at 11.

Table 7.2 is, in conjunction with Figures 7.1 and 7.2, is very eye-opening. We can

see, for example, that the estimated median energy-imbalance for maintaining a

healthy weight in the early stages of puberty is 37 to 40 kcal per day on average

for boys over the two year period and 44 to 47 kcal per day on average for girls.

This is a tiny amount, especially when we consider the energy content of snacks

aimed at children.

7.2.2 How much is too much?

In addition to knowing how much imbalance leads 9 year olds to a healthy weight

at 11, it is also of interest to know how much imbalance is associated with being

normal weight at 9 years old and overweight at 11 years old. This is shown, by

means of nonparametric one-sample tests for consistency with the previous section,

in Table 7.3.
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Imbalance resulting in overweight at 11
Sex n Median 95% CI
Boys 190 93.0 (88.5, 97.4)
Girls 158 96.3 (91.4, 101.6)

Table 7.3: Median energy-imbalance (kcal/day) resulting in transition from
healthy weight at 9 to overweight at 11.

Similarly to Table 7.2, Table 7.3 is perhaps very surprising, suggesting that normal-

weight 9-year olds who eat around 90 - 100 kcal more than they expend per day,

on average, are likely to become overweight by age 11.

7.3 An important take-home message

In an age when children are constantly faced with high-energy and easily available

foods, often coupled with the fallacy that growing children require a very high

degree of energy-imbalance for growth it is very important to bring the message

uncovered in this chapter to the attention of the public:

According to this research, healthy pre- or early-pubertal children, in order to

remain healthy, require less than 50 kcal per day, on average, of ‘excess’ energy.

An excess of 100 kcal per day- less than they would get from, for example, a small

packet of crisps or similar snack - is likely to lead to that child becoming overweight

before their teenage years and at significantly increased risk of adult obesity and

co-morbidities such as diabetes and cardiovascular disease.
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7.4 Chapter summary

This chapter has retrospectively explored energy-imbalance, as indicated by weight

gain over time, and its relationship with fatness, as indicated by age- and sex-

standardised BMI, in ALSPAC participants over the ages 9 to 11.

The overwhelming result from this chapter has been that while most children do

require a positive energy imbalance over this time period, the reality seems to be

that the required imbalance is relatively small.

It is estimated in this chapter that a 9 year boy of healthy weight is likely to be

of a healthy weight at age 11 with an average daily energy-imbalance of just 37 -

40 kcals/day over those two years (for girls the estimation is 44 - 47 kcals/day),

while a child who is overweight at 9 requires an imbalance of 30 or fewer kcals/day

to be at a healthy weight by age 11. Conversely, a healthy weight 9 year old who

consumes 100 kcals/day (or fewer as BMI SDS tends towards overweight) more

than he or she expends is at risk of being overweight by 11.

In an age and culture where energy-dense foods are very readily available, seden-

tary activities replace exercise and a common opinion is that children require a

moderate to high energy-imbalance to grow, the results presented in this chapter

are both startling and highly important. Given that entering puberty overweight

or obese is known to be potentially detrimental to long-term physical and men-

tal health, people must become more aware that pre- or early- pubescent children

do not, unless very active, require a high energy intake for normal, healthy growth.
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Chapter 8

Modelling during puberty
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8.1 Chapter aims

In the late stages of this project, data from ALSPAC’s ‘Growing and Changing’

questionnaires was made available. This chapter begins by exploring the distri-

bution of the pubertal status measures (Tanner stage and age of first menstrual

period) at each questionnaire ‘wave’ (corresponding roughly to ages 9, 10, 11, 13

and 14). In addition to the distribution of the pubertal staging, this chapter will

consider the consistency of these measurements over time, since all of the data in

these questionnaires was self-reported.

Following on from this, the main focus of this chapter will be to investigate any

associations arising between self-reported pubertal stage and body composition.

Without gold-standard measures, the estimates of body composition used in this

chapter will be:

• BMI standard deviation scores,

• Fat mass index, calculated from FM and height.
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8.2 Measures of pubertal stage in ALSPAC

At each wave (9, 10, 11, 13 and 14), ALSPAC respondents were asked, separately

from ‘focus’ visits, to complete and return a postal questionnaire entitled ‘Growing

and Changing’ [251]. We were granted access to some of these data in the late

stages of this project. It should be noted that, as a consequence of how it was

collected, ALL variables were self-reported - a feature to be critiqued later in this

chapter (from p 224). In particular, we are interested in working with two variables

from these questionnaires: Tanner stage and age of menarche.

8.2.1 Tanner stage

One measure of pubertal status is self- (or parentally-) reported Tanner stage, as

discussed briefly in section 1.2.5.

The Tanner stages (as described in the ALSPAC SPSS labels) are as follows:

Boys

• Stage 1: About the same as when younger

• Stage 2: Penis + testes bit bigger, scrotum dropped + changed

• Stage 3: Penis longer, testes grown + dropped lower

• Stage 4: Penis longer + wider + bigger head, scrotum darker + bigger

• Stage 5: Size and shape of mans
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Girls

• Stage 1 Nipple is raised a little, rest of breast still flat

• Stage 2 Breast bud stage - small breast mound, larger areola

• Stage 3 Larger areola and breast. Areola not sticking out

• Stage 4 Areola and nipple form mound above breast

• Stage 5 Mature adult stage - only nipple sticks out

It should be noted at this stage than Tanner staging may be misleading. For ex-

ample, Tanner staging for females considers the size and shape of the breasts. It

is known that this is highly variable in fully mature adults, so of course must be

variable in adolescents. This is not reflected in Tanner staging. Therefore, it is

useful to consider other measures of pubertal staging in conjunction with Tanner,

when available (such as age of menarche). Indeed, as discussed in Chapter One,

Tanner stage is considered by some to be a poor method of ‘measuring’ maturity,

which is, of course a latent variable. It is understood that other measures of puber-

tal staging were recorded in ALSPAC, but we were not granted access to these data.

We first look at the number of respondents reporting to be in each Tanner stage

at each wave of questionnaires, as shown in Tables 8.1 and 8.2.
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BOYS Wave
Tanner 9 10 11 13 14

1 783 (24.9%) 584 (20.2%) 262 (09.9%) 72 (03.1%) 19 (01.0%)
2 1162 (36.9%) 1034 (35.8%) 753 (28.5%) 304 (13.2%) 86 (04.5%)
3 846 (26.9%) 874 (30.2%) 980 (37.1%) 700 (30.4%) 335 (17.6%)
4 215 (06.8%) 262 (09.1%) 463 (17.5%) 784 (34.1%) 965 (50.8%)
5 8 (00.3%) 12 (00.4%) 43 (01.6%) 193 (08.4%) 494 (26.0%)

Not sure 133 (04.2%) 124 (04.3%) 142 (05.3%) 248 (10.8%) n/a
n 3147 2890 2643 2301 1899

Missing 4172 4429 4676 5018 5420
Total 7319 7319 7319 7319 7319

Table 8.1: Tanner stage by data collection wave, ALSPAC boys n (%)

GIRLS Wave
Tanner 9 10 11 13 14

1 2134 (61.8%) 1320 (40.2%) 398 (12.7%) 50 (01.7%) 3 (00.1%)
2 1097 (31.8%) 1188 (36.2%) 1048 (33.4%) 294 (09.9%) 39 (01.5%)
3 182 (05.3%) 680 (19.2%) 1131 (36.1%) 1010 (34.0%) 457 (17.1%)
4 24 (00.7%) 132 (04.0%) 469 (15.0%) 1145 (38.6%) 1475 (55.3%)
5 2 (00.1%) 7 (00.2%) 65 (02.1%) 387 (13.0%) 695 (26.0%)

Not sure 13 (00.4%) 6 (00.2%) 26 (00.8%) 83 (02.8%) n/a
n 3452 3283 3137 2969 2669

Missing 3375 3544 3690 3858 4158
Total 6827 6827 6827 6827 6827

Table 8.2: Tanner stage by data collection wave, ALSPAC girls n (%)

It should be noted that there is a high level of drop-out, among both sexes, as can

be seen from the previous tables. It seems as though, while more boys than girls

are reporting higher Tanner stages at an early age, girls tend to reach full maturity

earlier than boys. By wave 14, boys appear to be “catching up” with girls, though

a slightly higher percentage of boys at wave 14 still report themselves to be at

Tanner stage 1 than girls at the same wave.
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Due to the small numbers of respondents in some combinations of wave and Tanner

stage, we have grouped Tanner stage for most of the formal analysis in this chapter

as: ‘1 or 2’, ‘3’ and ‘4 or 5’.

8.2.2 Age of menarche

Each year, girls (and / or their parents) were asked whether or not the respondent

had had her menstrual period yet. Results were as shown in Table 8.3.

Period yet?
Wave Yes No n Missing

9 17 (00.5%) 3440 (99.5%) 3457 3370
10 76 (02.3%) 3220 (97.7%) 3296 3531
11 507 (16.1%) 2649 (83.9%) 3156 3671
13 1878 (62.0%) 1151 (38.0%) 3029 3798
14 2595 (95.0%) 136 (05.0%) 2731 4096

Table 8.3: Occurrence of menstrual period at each ALSPAC questionnaire
wave, n (%)

The first feature to be noted is that less respondents answered this question than

the ones about Tanner stage at each wave. Secondly, at wave 14, 4.9% (136) of the

respondents claim to have not yet started menstrual periods. It may be interesting

to look at the distribution of Tanner stages (where reported) among only those

subjects. This is shown in Table 8.4.
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Tanner n (%)
1 1 (00.7%)
2 20 (14.7%)
3 62 (45.6%)
4 47 (34.6%)
5 3 (02.2%)

Not stated 3 (02.2%)

Table 8.4: Distribution of Tanner stage among those ALSPAC participants
who had not reached menarche by wave 14 (n=136)

We can see that, despite not having started menstrual periods, 50% of these sub-

jects claim to be in the later stages of physical puberty by wave 14. This suggests

that when considering maturity, we should perhaps use a measure of “menarche

age” in addition to Tanner staging for girls.

It should be noted that the menarche data were censored - not all girls had reached

menarche by the last time they submitted a questionnaire response (whether at

wave 14 or earlier). In order to get a measure of how censored the menarche

data were, we look at a Kaplan-Meier survival curve. Where respondents have

not reached menarche by wave 14, the age variable is the last recorded age and

data are censored, otherwise age is the reported age of menarche. There was age

at menarche at at least one wave for 3010 of the 4440 respondents for whom age

was available. The survival plot is shown in Figure 8.1, where ‘survival’ is NOT

having reached menarche - and is consistent with the data. For a description of

the Kaplan-Meier method, see section 2.8.
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Figure 8.1: Kaplan-Meier plot of self-reported age of menarche in the
ALSPAC Growing and Changing questionnaires

From Figure 8.1 we can see that 32.2% of observations were censored. The median

age of menarche given by the Kaplan Meier estimator is 12.92 years (95% CI (12.88,

12.96)).
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8.3 Consistency of self-reported data

Both literature and common sense tell us that postal questionnaires, i.e. self-

reported data, may not result in entirely accurate data. This could present some

problems in interpreting results - there is a significant possibility, for example,

that ‘plumper’ respondents think they are at a more advanced Tanner stage than

they actually are, while under-reporting weight! In this section, we explore the

consistency of self-reported data in ALSPAC.

8.3.1 Who completed questionnaire? Association with

Tanner stage response

It is important to consider who reported these Tanner stages. Up to and including

wave 13, the question “Questionnaire completed by...?” was given, and possible

answers have (for the purposes of this research) been grouped into:

• ‘Child not involved’ (parent / other / parent and other)

• ‘Child and other’ (parent and child / parent, child and other / child and

other)

• ‘Child only’

Results are summarised in Tables 8.5 and 8.6.

224



BOYS Wave
9 10 11 13

Child not involved 2317 (74.5%) 2040 (70.4%) 1434 (52.4%) 1194 (45.2%)
Child and other 680 (21.9%) 713 (24.6%) 779 (28.5%) 695 (26.3%)

Child only 113 (03.6%) 146 (05.0%) 552 (19.1%) 750 (28.4%)
n 3110 2899 2735 2639

Missing 4209 4420 4584 4860
Total 7319 7319 7319 7319

Table 8.5: Who completed the ALSPAC Growing and Changing question-
naire (boys)

GIRLS Wave
9 10 11 13

Child not involved 2638 (76.2%) 2423 (73.6%) 1803 (57.1%) 1616 (53.8%)
Child and other 747 (21.6%) 794 (24.1%) 969 (30.7%) 765 (25.5%)

Child only 78 (02.3%) 75 (02.3%) 388 (12.3%) 624 (20.8%)
n 3463 3292 3160 3005

Missing 3364 3535 3667 3822
Total 6827 6827 6827 6827

Table 8.6: Who completed the ALSPAC Growing and Changing question-
naire (girls)

It is clear that, as a child ages, responsibility for assessing pubertal stage moves

away from the parent and towards the child. Between waves 9 and 13, though,

the majority of the respondents answered the questionnaire along with a parent.

At wave 14, the respondents were simply asked whether they had had help to

complete the questionnaire, to which 11.1% of boys and 14.6% of girls answered

“yes”.

Having found these differences, concordance was tested for who completed the

questionnaire and grouped Tanner stage using Goodman and Kruskall’s gamma

or Kendall’s tau. Both statistics were computed for each ordinal table. Where

Kendall’s tau is reported, we use tau-b for waves 8-13 and tau-c for wave 14. For
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a description of these methods, see section 2.7. Using a condition from Charles

Blake of James Madison University [231] (discussed in personal correspondence

in October 2010): if |gamma|-|tau|>0.05, tau is preferred (as gamma is therefore

assumed to have overestimated the strength of the association), otherwise gamma

is preferred. Both statistics are reported in Table 8.7, with ‘preferred’ statistics

highlighted in bold type.

Sex Wave Gamma Tau P-value

Boys

9 0.199 0.106 <0.001
10 0.235 0.133 <0.001
11 0.185 0.124 <0.001
13 -0.073 -0.051 0.007
14 -0.041 -0.010 0.529

Girls

9 0.252 0.117 <0.001
10 0.194 0.102 <0.001
11 0.083 0.053 <0.001
13 0.064 0.041 0.008
14 0.051 0.015 0.293

Table 8.7: Concordance analysis of the association in ALSPAC Growing and
Changing questionnaires between reported Tanner stage and who completed
the questionnaire

When initially analysing these data, we also looked at χ2 tests of association

between Tanner stage and who completed the questionnaire. However, we have

reported only the concordance analysis because Gamma and tau are potentially

more conservative than χ2, and report both strength and direction of association

(as opposed to simply significance). Additionally, Gamma and tau are more pow-

erful than χ2 in this instance because they utilise the fact that the data are ordinal,

while χ2 doesn’t. From the table of statistics, we see that the where the association

is significant, tables are always concordant (Tanner stage higher as children have

more input), the association is not significant for either sex at wave 14, and where

it is significant, it is usually very weak.
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8.3.2 Tracking reported Tanner stage over time

One potential concern with self-reported pubertal staging is that an individual

may report him/herself at one Tanner stage at wave i, and at a lower stage in

wave j, for i < j.

Exploring this concern with the reported Tanner stages in ALSPAC, we have

focused on differences between consecutive waves. The numbers of respondents

whose Tanner stage was reported as lower than the previous wave are shown in

Table 8.8. For most of these subjects, the decrease was by only one stage. However,

there were a small number with a larger decrease - for example, males reported as

being at Tanner stage 4 at wave 13 and Tanner stage 1 at wave 14.

Wave i Wave j Boys Girls
9 10 291 66

10 11 218 37
11 13 101 29
13 14 139 135

Table 8.8: Count of ALSPAC respondents with a lower reported Tanner stage
at questionnaire wave j than at wave i (i < j)

We have looked, for each of the respondents in the above table, at who completed

the questionnaire at each of the to ages (parent and other, child and other, child

alone). We found that, in most cases, the questionnaire was completed by the same

person or people in both years. This raises a serious issue of lack of consistency of

self-report over time.
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8.3.3 Consistency of reported age of menarche at dif-

ferent ages

We suspect that as someone gets further in age from her first menstrual period, her

recollection of when it occurred is likely to become more inaccurate. For example,

the youngest age of menarche stated was 7 years and 3 months, this response was

given (without parental help) at the ‘age 14’ wave of questionnaires. It should be

noted, however, that this respondent did not give a response at waves 9 - 11, and

had given the response (with parental help) to be 12 years and 2 months when

asked at wave 13.

Paired-samples t-tests were used to check the consistency of the reported age of

menarche over time reported by the same individual at waves 9, 10, 11, 13 and 14.

These tests are shown in Table 8.9, with statistically significantly different pairs in

bold type. Bland-Altman [102] limits of agreement for these significantly different

pairs of menarche responses have been calculated as: mean difference ± 1.96 ×

sd difference
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Table 8.9: Paired t-tests for the differences in age menarche as reported in
the ALSPAC Growing and Changing questionnaire at multiple time points

Although the mean differences from the paired t-tests are small, the limits of agree-

ment are wide. This suggests that while the mean difference in reported age of

menarche at different times is small on a population basis, there is potential for

large differences on an individual level. In further analyses with the menarche

data, since we suspect that a self-report is more likely to be accurate closer to the

occurrence of the first menstrual period than later, we will use the first reported

age of menarche for each respondent.

We therefore have “age of first menstrual period” for 3010 respondents, with de-

scriptive statistics as shown in Table 8.10 (note that the mean in this table was

obtained using uncensored data only). It is important to note that these data are

censored - not all respondents had had their first period by wave 14.
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N Min Median Max Mean SD
3010 7.58 12.92 15.00 13.00 1.08

Table 8.10: Descriptive statistics of age of menarche in the ALSPAC Growing
and Changing questionnaires

8.3.4 Association between time after menarche and

Tanner stage

Time after menarche is calculated for each girl as reported menarche age subtracted

from age when completing the postal questionnaire, for waves 9, 10, 11, 13 and

14, summarised in Table 8.11. While time after menarche clearly cannot be used

for all girls in clinical practice, it can, as a retrospective measure, be used to

explore relationships between pubertal staging techniques, and (later), to study

the development of body composition over maturation.

Wave N Min Median Max Mean SD
9 2422 -5.17 -2.92 2.08 -2.86 1.08
10 2376 -4.08 -1.83 3.08 -1.79 1.07
11 2376 -3.17 -0.83 3.33 -0.79 1.07
13 2490 -1.67 0.58 5.50 0.62 1.04
14 2431 0.00 2.00 7.08 2.07 1.08

Table 8.11: Descriptive statistics for the years between reported age of menar-
che and completing the ALSPAC Growing and Changing questionnaire

Figure 8.2 shows time after menarche plotted for each Tanner stage (ungrouped)

at waves 9, 10, 11 and 13.
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Figure 8.2: Difference in years between reported age of menarche and com-
pletion of each ALSPAC Growing and Changing questionnaire, grouped by
Tanner stage

It is obvious from this graph that there is a positive (non-causal) relationship

between Tanner stage and time after menarche. It seems possible, therefore, that
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these methods of assessing maturation are in reasonable agreement on a population

basis. However, we see a very different story on the individual level. Individual

7779, for example, reported Tanner stage 2 at wave 13 despite her first menstrual

period reportedly having been more than 4 years previous.

8.3.5 Conclusions about self-reported data

The previous subsections clearly highlight an important issue - one which is widely

discussed in literature (see section 1.2.5) - the potential of inconsistency with self-

reported data. We have found that Tanner staging is not consistent when reported

by the same person at different times, and there is a significant association between

who reported the Tanner stage and the Tanner stage itself. We have also found

that reported age of menarche changes considerably as girls age.

Therefore, while we will continue to use the self-reported data in the absence of

an alternative, we must treat any results and conclusions from the remainder of

this chapter with extreme caution.
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8.4 Investigating the association between pu-

bertal status and body composition

8.4.1 Tanner stage and BMI standard deviation scores

Using the pubertal staging data along with the BMI SDS calculated using the LMS

method1 [30], we were able to perform one-way ANOVAs to determine whether

there appeared to be any association between pubertal status at a given wave and

BMI standard deviation score (at the same wave). Again, we do need to remember

that these data are self-reported.

Figure 8.3 displays BMI SDS against Tanner stage for boys and girls, respectively,

with P-values from a standard one-way ANOVA added.

1Please note that the BMI SDS used in this section differ slightly from those used
earlier in the project. This is because those used in this section have been calculated from
the BMI as stated in the puberty dataset, while the others were calculated from the BMI
in the focus files.
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Figure 8.3: Coded Tanner stage vs BMI SDS in ALSPAC waves 9 to 13
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From Figure 8.3, there is evidence of a significant association between Tanner stage

and BMI Standard Deviation Score, the direction of the association is positive. It

is important to note that we are not implying causation.

8.4.2 Tanner stage and fat mass (fat index) from bio-

electrical impedance

Fat mass (FM) was calculated at each wave from bioelectrical impedance using

the published model which was described in section 1.2.1.2.2. Percentage FM is

calculated from the FM obtained from this model along with the recorded weight.

We have used this model, while it is not completely accurate, as it is the best

available published model for BIA.

As before, applying these models to the ALSPAC data resulted in a small number

of negative values for FM. For the purposes of this analysis, any subject with a

negative FM result at any age has been excluded.

Descriptive statistics for %FM are shown in Table 8.12.

Sex Wave N Min Median Max Mean SD

Boys

9 2396 1.20 24.78 58.47 25.90 9.44
10 2326 0.80 26.78 56.83 27.26 9.40
11 2216 0.66 26.95 58.60 27.61 9.66
13 1899 0.41 20.72 52.48 21.34 10.08

Girls

9 2237 0.12 26.63 53.05 26.05 9.68
10 2191 2.39 27.53 58.02 27.68 9.40
11 2113 0.72 27.23 59.21 27.65 10.09
13 1966 4.21 34.19 58.68 33.74 8.79

Table 8.12: Descriptive statistics for percentage fat mass from BIA calculated
for both boys and girls from each wave of ALSPAC puberty data
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One very interesting point to note is that the percentage FM rises between waves

9 and 10, remains relatively unchanged at wave 11, then rises wave 13 for girls and

decreases for boys.

JCK Wells [252] recommends adjusting mass for height as:

FMindex = FM
height2 (8.1)

Figure 8.4 displays FMindex against Tanner stage for boys and girls, respectively.

One-way ANOVAs have been computed to assess association between FMindex and

Tanner stage. P-values for these tests have been added to the graphs.
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Figure 8.4: Coded Tanner stage vs FMindex in ALSPAC waves 9 to 13, with
P-values

There is not significant evidence of association between %FM (from BIA) and

Tanner stage for boys at waves 7 to 11, while the association is significant and

positive at all waves for girls. At wave 13, the significant relationships for males

and females are in opposing directions. Again, we do not imply causation.

Comparing this graph with that for BMI SDS and Tanner stage (Figure 8.3), the

relationships between puberty and fat mass are much more obvious at wave 13

than any relationship between puberty and BMI SDS!
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We cannot test the association after wave 13, due to impedance data not being

available.

8.4.3 Time after menarche and BMI SDS

Having already considered the potential association between Tanner stage and BMI

SDS, it is of interest to consider whether there is a similar relationship between

time after menarche and BMI SDS. This has been assessed using least squares

linear regression (Figure 8.5)
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Figure 8.5: BMI SDS by age after menarche for ALSPAC questionnaire waves
9 to 14 (least-squares regression line superimposed)

It is clear that there is a non-causal positive association between BMI SDS and

time after menarche at every wave. The slopes are positive and significantly dif-

ferent from zero. Additionally, the intercept decreases with time. This shows that

the earlier menarche occurs, the higher BMI is on average.
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This will be considered using the wave 14 data, where the average age of the sub-

jects is 14.68.

We know that a BMI SDS of 1.04 is the cutoff for overweight, and 1.64 for obesity.

The linear prediction model for age 14 is:

SDS = −0.59 + 0.35 × τj (8.2)

where τj is time after menarche corresponding to a BMI SDS of j.

Substituting SDS of 1.04 and 1.64 into this equation gives 1.04 = −0.59+0.35×τ1.04

and 1.64 = −0.59 + 0.35 × τ1.64, resulting in τ1.04 = 4.616 and τ1.64 = 6.321. This

suggests that, at the wave 14 questionnaire, reaching menarche 4.6 years previous

is likely to be associated with overweight, and 6.3 years previous is likely to be

associated with obesity. Again, we are not implying causation.

However, while the relationships are significant, they are extremely weak (explain-

ing no more than 7% of the variance in BMI SDS) - suggesting that there may be

issues with interpreting these relationships on the individual level.
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8.4.4 Time after menarche and fat mass index

We now consider the potential association between time after menarche and FM

index (as defined in equation (8.1)) where FM has been estimated from bioelectrical

impedance. It is important to note that while the impedance measurements were

taken at a clinic, the puberty questionnaire was issued at a different point in the

year. As with BMI SDS, association has been assessed by way of linear regression,

shown in Figure 8.6.

Figure 8.6: FMindex by age after menarche for waves ALSPAC questionnaire
9 to 13 (least-squares regression line superimposed)

It is clear from these graphs and hypothesis tests that there is an association be-

tween FM index and time after menarche at waves 10-13, but not at age 9. As

before, we are not claiming a causal relationship, merely association. For each
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wave 10, 11 and 13, the (non-causal) association is positive - as age after menar-

che increases, FM index also increases. Again, while significant, relationships are

weak - therefore, care should be taken when interpreting such relationships on the

individual level at this stage.

Also obvious is the increase in the slopes over time. All slopes other than FM

index at wave 9 are statistically significant at the 5% level.

At this point, it is important to again acknowledge the censored nature of the

data, as the censoring of Time After Menarche must affect the analysis described

in this section. It should also be noted that we have not attempted to give a full

description of missingness in the dataset (which might be a MNAR mechanism).

As a result, conclusions are tentative.
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8.5 Chapter summary

This chapter began by exploring the distributions of measures of pubertal status

in ALSPAC, collected by means of annual self-reported questionnaires between the

ages of 7 and 14. As we would expect, this showed that most children were at the

early stages of puberty at age 7 and the later stages by age 14. This analysis raised

the potential problem that self-reported data may not be consistent, and this was

explored using concordance analysis. Indeed, it was found that there were marked

discrepancies in the self-reported data from year to year, for example, some chil-

dren reported one pubertal stage one year and a lesser stage in subsequent years.

Chapter Seven then explored relationships between pubertal status and body com-

position in the ALSPAC data. In addition to being cautious as a result of the

aforementioned inconsistencies, we must keep in mind that we do not have any

gold-standard measures of body-composition in this dataset. As proxies for body-

composition, we used both BMI SDS (see section 2.2) and fat mass index, as

shown in equation 8.1, where FM(kg) is estimated from the Glasgow BIA models

(see section 1.2.1.2.2). We found a positive relationship between pubertal stage

as determined by self-reported Tanner stage and BMI SDS. In addition to Tan-

ner stage, we were able, for the girls, to look at the association between age of

menarche and BMI SDS. As mentioned, there were inaccuracies in the consistency

of the self-reported data: girls often reported different ages of menarche at each

wave of questionnaires. In a naive attempt to deal with this, we used each girl’s

earliest reported age of menarche. From this, we were able to calculate the time

between each wave of questionnaires and the time of menarche. This difference was

plotted against BMI SDS and fat mass index, and statistically significant positive

relationships were found for both.
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While we must be very careful with the results from this chapter, these analyses

suggest that there are relationships between puberty and body composition. It

would appear that, as children progress into adolescence, both BMI SDS and FM

increase significantly.
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Chapter 9

Review and discussion
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9.1 Summary

This thesis has described an attempt to track energy-imbalance and body compo-

sition through puberty. The main tools have been:

• an extensive search of literature, identifying and considering in turn the

main components of body composition and the energy-balance equation,

• careful analysis of the (admittedly limited) data to investigate the issues

identified in the literature search,

• a simulation study, used to consider the effect of real-life data issues on

analysis.

In reviewing the literature on body composition, we found that Tim Cole, in 1990,

published a method of calculating age- and sex-specific body mass index (BMI)

standard deviation scores (SDS) for children. We identified that, despite the con-

cerns about the use of BMI as a marker for fatness in adults, this method (the

LMS method) is a relatively straightforward and accurate representation of body

size in childhood. In terms of exploring energy-balance and weight gain, however,

BMI SDS falls short. While it gives a useable indication of an individual child’s

size relative to other children, it gives no information about the body in terms

of absolute values or proportions of fat mass (FM) and fat-free mass (FFM). For

this, far more complicated methods are required. We researched the methods that

are currently used for determining fat-free mass and fat mass in both adults and

children, and how effective and practical each method was considered to be by

leading researchers in the field. We found a clear trade-off in this methodology:

the more accurate the method, the more time-, cost- and personnel- intensive the

procedure. An accurate two-component method of determining body composition

in live subjects is hydrodensitometry, a procedure that is unsuitable for many indi-
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viduals - particularly children - as it involves complete submersion in water. Dual

energy x-ray absorptiometry (DEXA) and bioelectrical impedance (BIA) are two

methods of achieving estimates of FM and FFM in the body. They are both more

practical for routine use - but less accurate with current models - than hydroden-

sitometry.

We were able to explore these methods with the Avon Longitudinal Study of Par-

ents and Children (ALSPAC) data. Firstly, we classified children as not overweight,

overweight or obese according to their BMI standard deviation score. In an ideal

population, we could perhaps hope to find around 85% of the population were not

overweight (i.e. underweight or normal weight), 10% overweight and 5% obese.

From public knowledge and the results of the literature search, we expected to find

that the numbers of overweight and obese children in the sample would be higher

than the ideal - which was precisely what we did find. At the ‘age 11’ wave of

questionnaires and clinics, for example, we found that almost 20% of both sexes

were classified by their BMI SDS as obese.

Using the ALSPAC datasets as well as other data that we were able to acquire, we

showed that DEXA and BIA gave body composition estimates that were not in

agreement with one another - which, having carried out the literature review, was

what we expected to find. Unfortunately, due to a lack of appropriate data, we

were unable to continue with further modelling of DEXA. Continuing with BIA,

we explored recently developed models of body composition and also proceeded to

develop our own models. Unfortunately, we did not have data from gold standard

methods on which to test such models. Therefore, while we are not yet in a posi-

tion to suggest models for use in clinical practice, we have succeeded in showing
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that the models which are currently used are not accurate on the individual level

for this study, representative of the UK population. This was shown by the occur-

rence of very low, sometimes negative, FM estimates for many individuals.

Moving on to the energy-balance equation (equation 1.1 in section 1.1), we identi-

fied the main elements of energy expenditure (EE) to be resting energy expenditure

(REE) (or basal metabolic rate (BMR)), diet-induced thermogenesis (DIT) and

physical activity energy expenditure (PAEE); and energy intake (EI) is on the

other side of the equation. While there do exist accurate methods for measuring

energy expenditure (direct and indirect calorimetry), the literature review identi-

fied the complexity of their use which means that they are not suitable for routine

use with many people - including children and adolescents. PAEE is often esti-

mated from self-report of activity - a method that is known to be highly unreliable.

There have been several studies of physical activity which have involved the use

of heart-rate monitoring and / or accelerometry. While these methods are more

objective than self-report, they are not without fault. They still require models to

get from a measurement of heart rate to a measure of PAEE - and as with models

for many things in this area, there is no one model that is considered to be the

correct one. PAEE can be measured by exercising inside a calorimeter, but this

does not replicate real-life situations and is not suitable for the young. A similar

issue arises with energy intake, which is usually estimated by self-report through

the use of food diaries.

The lack of availability of data limited what we could do with each aspect of the

energy-balance equation. With anthropometric data available at several stages in

ALSPAC, we were able to look at some of the many models for REE that have
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appeared in the literature. Firstly, we replicated and attempted to extend the

models published by Harris and Benedict in 1919, using data that was published

in their book [86]. We concluded that the published models were in fact the best

models available for the original data. However, we must keep in mind that what

was considered representative of the population a century ago is unlikely to be

representative of the population today!

Following on from this, we collated several recently published models for REE

and applied them to the ALSPAC datasets. In this section, we could not attempt

to identify models as correct or incorrect - since we did not have results from a

gold-standard method for comparison - we merely intended to show agreement,

or lack thereof, among the models. Using descriptive statistics, t-tests, Bland-

Altman diagrams and intraclass correlations, it was shown that no two models are

in agreement. While many of these models are currently used in clinical practice,

their lack of agreement shows that, at most, only one of them can be correct. We

also considered nonlinear modelling but, due to insufficient data, were unable to

draw concrete conclusions. It is clear that a single, accurate model for REE must

be developed and validated for use, allowing for potential differences due to factors

such as gender, age, race and anthropometry.

In Chapter Six, we began by considering the perfect study in this area. It quickly

became clear that this study is an impossibility with current equipment and

methodology - the best we can hope for is to reduce error. We simulated lon-

gitudinal resting energy expenditure and body composition data, with a view to

considering how data issues such as sample size and missing observations affect

analysis. We found that error was reduced to an acceptable level with sample sizes
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of around n = 1500 (with no missing data - a very unrealistic scenario!). Look-

ing at the effect of missing data, we considered complete-case analysis and two

imputation methods: (1) developing models for dependent variables on smaller,

complete sub-samples and using these models to impute missing observations, and

(2) multiple imputation using chained equations (MICE). Both imputation meth-

ods resulted in improved parameter estimates over the complete-case analysis.

Estimates from data imputed using MICE were lower in error than those using

the other method, but it must be noted that MICE is costly in terms of time and

computational resources, and assumes that the data are missing at random (MAR)

or missing completely at random (MCAR).

Data on other aspects of energy-(im)balance was not available to us for the ALSPAC

study - physical activity data were extremely limited and energy intake data were

simply not gathered. For this reason, we looked at quantifying energy-imbalance

over time using changes in body composition. The main aim of this section was

to determine how much energy-imbalance over a short period of time resulted in

maintaining or changing body composition according to BMI standard deviation

scores. We know that young people usually require a positive energy-imbalance to

maintain healthy growth - but it is unknown how much is healthy and how much

is too much.

We were able to calculate, from BIA-derived estimates of fat mass and fat-free

mass gained over time, the estimated energy-imbalance for each individual over

the time period (wave 9 to wave 11). Overall, we found that healthy growth was

achieved with a very small degree of energy-imbalance - often less than 100 kcal

per day. There were other, surprising results - for example, those with a high BMI
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SDS at 9 and a high degree of energy-imbalance were actually at a lower BMI SDS

by 11. With no scientific answer to this, we must, at this point, simply attribute

it to the fact that ‘heavier’ people require more energy than their counterparts for

everyday living.

The study concluded by looking at puberty and the determination of pubertal

status. We identified the Tanner scale to be the most widely used method of de-

termining the pubertal stage of an individual. We did, however, discover that there

are flaws in this method. The main flaw is that Tanner stage is often reported

by adolescents themselves, or by their parents, rather than by trained medical

professionals. This brings the potential problem of inaccurate responses - whether

intentional or otherwise. For example, it is possible that a ‘plump’ adolescent

girl would consider herself to be further along the pubertal process than would

be determined by a trained professional. We considered links identified in the

literature between pubertal status and body composition, finding that this is a

subject much more widely written about for girls than for boys. What literature

was available for boys suggested that those with a higher BMI at a young age

seemed to experience puberty later than their lower-BMI counterparts. The con-

sensus for girls was the opposite - greater fatness in youth was reported to lead to

earlier sexual maturation. It must be noted, however, that whatever relationships

exist between puberty and body composition are intensely complex and certainly

cannot be considered to be causal at this stage. As an alternative, or addition,

to Tanner stage for assessing pubertal development, we identified age of menarche

for girls and peak height velocity (PHV) for boys. While PHV can be determined

given frequent clinic visits, age of menarche must be self-reported and is therefore

susceptible to inaccuracy.
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The ALSPAC puberty data were made available to us in the late stages of this

project, and allowed us to consider a number of the issues that were raised in

the literature review. These data were collected by means of a postal question-

naire completed by the children themselves, parents or teachers. We described the

ALSPAC children in terms of their reported pubertal status, and it quickly became

obvious that there we were encountering difficulties with the accuracy of the re-

ported data. For example, there were several hundred children for whom reported

Tanner stage decreased over time, and there was a clear association (among all

children) between the reported Tanner stage and the person who completed the

questionnaire. We also considered the accuracy of the reported age of menarche,

finding that often, girls who reported their first age of menarche in more than one

questionnaire were not consistent. Using these self-reported data in conjunction

with the (at best tentative) body composition estimates discussed earlier (BMI

SDS and fat mass by BIA), we explored the relationships between puberty and

body composition. While we found a positive association between BMI SDS and

Tanner stage for girls, we found a lack of evidence for such associations among

boys. We were therefore unable to draw conclusions similar to those found in the

literature regarding BMI and age of sexual maturation. Instead, we were simply

able to conclude that there appears to be a stronger positive relationship between

body composition (by proxy) and pubertal stage for girls (by both Tanner stage

and age of menarche) than for boys (by Tanner stage alone, in the absence of PHV

data).
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9.2 Limitations of research

As with the majority of research projects, this PhD was not without a number of

limitations - some we were able to overcome in some way, others we were not.

One such limitation was uncovered very early on in the project, during the ini-

tial search of the literature, and concerned the original scope of research. As

mentioned earlier, we had originally hoped to model energy-imbalance. While re-

searching energy-imbalance, the sheer breadth of the topic became clear and it was

obvious that it would be necessary to narrow our aims somewhat. As we began

examining the available data, this necessity became clear for another reason - there

was a distinct lack of data available on several aspects of energy-imbalance. Often

this was because data were not collected, perhaps because it was not possible or

practical to do so. For example, one of the original aims was to use the ALSPAC

data to validate DEXA as a means of determining body composition. However,

this would have required hydrodensitometry data, currently the only body compo-

sition determination procedure deemed to be a gold-standard. Hydrodensitometry,

as described in section 1.2.1.2.2, involves complete submersion in water - a pro-

cedure generally considered unsuitable for young people - and was therefore not

carried out by ALSPAC. Without this, the best we were able to offer regarding

DEXA was a comparison with BIA, itself not a gold-standard measurement.

As we progressed with this research, data - whether the lack availability or the

timing of our access - became a major stumbling block. We had intended to inves-

tigate methods and models over puberty, but were nearing the end of the project

before we received puberty data from ALSPAC. Further to this, once received, we
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found the puberty data to be flawed in several ways. All puberty data were right-

censored: the last wave of the questionnaire was wave 14 and not all respondents

had (according to self-report) reached puberty by this wave (using certain agreed

definitions of puberty). Some respondents of both sexes reported early Tanner

stages in the final wave, and some girls stated that they had not reached menar-

che by this time. The collected data were not ideal - for example, while we had a

measure of menarche in addition to Tanner stage for girls, there was no alternative

provided for boys. Had we had it, we could have made use of PHV data - often

used as an indicator of puberty for boys. This would have required measurements

to have been made regularly - at the very least quarterly - throughout the study

duration. The biggest issue was that the growth data were collected by means of

an annual postal questionnaire, resulting in entirely self-reported data, a method

known to be highly unreliable. Additionally, these questionnaires were adminis-

tered at different time points from the practitioner-led clinics, making it difficult to

draw conclusions when analysis involved both sets of data - for example, examining

body composition by BIA (from clinic data) over puberty (from questionnaires).

On top of data issues, we came across problems with previous modelling of sev-

eral aspects of body composition and energy-imbalance. While much has been

written on most individual areas, the literature is often conflicting. For example,

for resting energy expenditure (REE), we were able to easily identify seven sets

of models for estimation based on anthropometric measurements, none of them

gold-standard and no two in agreement.

Very often, several of these limitations co-existed. For example, we had hoped to

be able to determine the degree of energy-imbalance that was necessary for healthy
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growth. Without measurements of the energy-balance components, we attempted

to overcome this by using a proxy - estimates of fat-mass gain and fat-free-mass

gain over time multiplied by the energy required to store this mass. Without gold-

standard body composition data, we were forced to use FM and FFM estimates

from BIA - by a model we have shown to be inaccurate on the individual level. In

addition to this, the estimates of the energy cost of storing such mass were simply

that - estimates, reported by one researcher.

This project has succeeded in highlighting various problems with energy-balance

research as it stands today. As a result of the limitations discussed, conclusions

from modelling should be treated with great care - while many pieces of modelling

can be applied with reasonable confidence to the population, it is impossible to

apply them with the required level of accuracy to the individual, which would

ultimately be the aim with such a research topic. Much more work must be done in

the areas identified in this project before models can be considered ‘gold-standard’

and applied with confidence to the individual adolescent.
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9.3 Contributions of research

Until now, research into body composition and energy-balance has been largely fo-

cused on individual aspects thereof. One of the main contributions of this research

is the integration of the literature on these individual aspects into a comprehensive

review.

This project has shown that, in a sample representative of UK children, higher

proportions of children are overweight or obese than would be expected, and pre-

pubertal children who are overweight or obese are likely to remain as such as they

enter puberty.

In the chapter on body composition models, we confirmed for this dataset that

BIA and DEXA are not in agreement with one another (a discrepancy that had

already been identified in other studies). Furthermore, it was pointed out that

hydration equations commonly used for children are not equal to the adult value

at age 18, suggesting that further work needs done to develop models for body

composition from impedance. Further illustrating this point, it was found that

current BIA models can result in negative FM values for some individuals.

From the review of literature on energy expenditure, there were several models for

REE identified which are currently used. This project has shown that, of these

REE equations, no two are in agreement.

This thesis further contributes to research by, through the use of reasonably re-

alistic simulated REE and body composition data, examining the effect that real
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-life data issues might have on analysis. It has shown that multiple imputation

using chained equations considerably reduces the mean square error (MSE) of pa-

rameter estimates even when very large amounts (up to 80%) of data are missing

from the independent variable, even when similar amounts are missing from the

(non-imputed) dependent variable.

An important contribution to the research occurred when considering the degree

of energy-imbalance required for healthy growth in childhood and adolescence.

This project has shown that such growth is achieved with a very small degree

of positive imbalance. It appears, therefore, that children do not need an energy

intake that is much larger than their energy expenditure in order to grow healthily.

The final chapter of analysis showed that self-reported pubertal stage data over

time is likely to be inconsistent for some individuals. This is an important contri-

bution to research as it suggests that, for accurate and reliable results, data should

not be self-reported if possible.

The project then went on to show that BMI SDS increases with pubertal staging,

and importantly, there may be an association between obesity and early puberty

for girls.
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9.4 Future work

At this stage in the research, further, more complicated modelling of current data

is not what is required. While it is infuriating, as a statistician, to see consistently

poor practice (lack of willingness to use or build on models developed by other

researchers, for example), the fundamental problems do not lie with the statistical

modelling. What is required are foundational changes in how data are collected

and used, i.e. models for individual components of energy-imbalance must be able

to be validated against gold-standards.

However, far more important than this, it is crucial that there is much more of an

awareness that everything in this area of research is interrelated. Without gold-

standard measures of body composition, for example, we cannot hope to develop

accurate models for resting energy expenditure. However, we must keep in mind

that designing and implementing such a study would be very costly indeed.

Having said that, the most fundamental need at this stage is to be able to ob-

tain, on a routine basis, accurate estimates of fat-mass and fat-free mass. Without

this, as mentioned above, modelling of other components becomes obsolete and we

therefore cannot hope to make any useful progress in tracking energy-imbalance

over time.

In terms of modelling and data issues, further consideration should be given to

imputation of missing data, given that this type of data are particularly susceptible

to missingness. This thesis explored two methods of imputation with simulated

data. It would be worthwhile in future investigating other imputation methods
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and models, if possible, on real data. There is a huge literature on missing values

and imputation. Perhaps all that is really required is for researchers in this area

to apply existing research. Of course, there will always remain the problem that

data are missing not at random (MNAR). Those children who are unusually light

or heavy are likely to be differentially removed from studies of growth and body

composition by their parents. That is a non-statistical problem to be overcome!
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Appendix A

Diagnostic plots

Figure A.1: Diagnostic plots for initial linear modelling of resistivity in BCU
data (page 120)

Figure A.2: Diagnostic plots for transformed model of resistivity in BCU
data (page 120)
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Figure A.3: Diagnostics from resistivity model with age (page 124)

Figure A.4: Diagnostics for multiple linear regression: HB energy expendi-
ture data (page 140)
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Figure A.5: Diagnostics for model of BMR from FM and FFM (excluding
sex) using Wells’ data (page 168)
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