
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
 

 
Bordage, Simon (2013) Organ specificity in the plant circadian 
clock. PhD thesis. 
 
 
 
 
http://theses.gla.ac.uk/4387/  
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or study 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any format 
or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the author, title, 
awarding institution and date of the thesis must be given 
 

 

http://theses.gla.ac.uk/
http://theses.gla.ac.uk/4387/


 
 

1 

 
 
 

Organ specificity in the plant circadian clock 
 
 
 
 
 
 
 
 

Simon Bordage 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in fulfilment of the requirements for the Degree of  
Doctor of Philosophy 

 
 
 

Institute of Molecular, Cell and Systems Biology 
College of Medicine, Veterinary and Life Sciences 

University of Glasgow 
 
 
 
 

June 2013 





 
 

3 

Abstract 

Circadian clocks are endogenous oscillators that control many physiological processes and 
confer functional and adaptive advantages in various organisms.  These molecular 
oscillators comprise several interlocked feedback loops at the gene expression level.  In 
plants, the circadian clock was recently shown to be organ specific. The root clock seemed 
to involve only a morning loop whereas the shoot clock also includes an evening loop in a 
more complex structure.  My work aimed at refining the differences and similarities 
between the shoot and root clocks, using a combination of experimental and theoretical 
approaches. 

I developed an imaging method to obtain more data from the shoot and root clocks over 
time in various conditions. Some previous results were confirmed: the free running periods 
(FRPs) are longer in roots compared to shoots under constant light (LL). In addition, the 
amplitude of clock gene expression rhythms is lower in roots compared to shoots. 
However, the expression of several evening genes is circadian in roots, contrary to 
previous conclusions. This was confirmed with qPCR, and was observed in both light- and 
dark-grown roots. Yet light affects clock gene expression in roots, so an automatic 
covering system was designed to keep the roots in darkness and obtain data in more 
physiological conditions.  

Clock genes behaved differently in shoots and light-grown roots that were in the same 
environmental conditions, and may be differentially affected by blue and red light. 
However shoot and root clocks were more similar under constant darkness (DD). My 
imaging and RT-qPCR data, together with new microarray results and preliminary studies 
on clock mutants suggest that shoot and root circadian systems may have a similar 
structure but different input pathways.  

Entrainment is a fundamental property of circadian systems, which can be reset by cues 
such as light/dark (LD) cycles. I demonstrated that light can directly entrain the root clock 
in decapitated plants. The root clock could be entrained by a broad range of T cycles using 
low light intensity. In addition, rhythms were preferably entrained by low light than by any 
putative signal from shoots in experiments using conflicting LD cycles of different 
strengths. My results indicate that direct entrainment by LD cycles could be the main 
mechanism that synchronise the shoot and root clocks at constant temperature. This is 
physiologically relevant because dark-grown roots can perceive light channelled by the 
exposed tissues, in a fibre optic way.  I also showed for the first time that clock and output 
genes could be rapidly entrained by temperature cycles in roots.  

Several mathematical models of the shoot circadian clock were used to try and fit the root 
clock data by optimising some parameters. The best set of parameters gave a good 
qualitative fit to root data under LD, LL and DD. It reproduced the long FRP observed in 
roots under LL and captured the entrainment under LD with lower amplitude in roots. The 
parameters that were changed for these simulations were all related to light input, which 
supports the idea of similar clock structures in shoots and roots but with different input 
pathways. Together my results confirmed that the plant circadian clock is organ specific 
and suggest that it is organ autonomous. 
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1 General introduction 

 

 

In biology, there may be only one constant: change! Some changes are not predictable and 

others are. When the changes in a variable recur with a similar pattern (a cycle) and 

systematic interval (period), they define a rhythm. Chronobiology is the study of rhythms 

in life. Biological rhythms are a fundamental property of all life and encompass a wide 

range of periods, from seconds (heart beats) to years (flowering). Life has evolved on a 

rotating planet, where some environmental changes are rhythmic and therefore predictable, 

especially the daily cycles of light and darkness (Koukkari and Sothern, 2006a). The term 

circadian comes from the Latin words “circa” (about) and “dies” (day). Circadian rhythms 

are the subset of biological rhythms with a period of ~ 24 hours. 

 

 

1.1 Why are biological rhythms important?   

Rhythms are such an integral part of life that the absence or perturbation of specific 

oscillations (e.g. brain waves) in humans and other animals is used in the practice of 

medicine to distinguish between illness and good health. Life and death are defined by 

presence and absence of rhythms (Koukkari and Sothern, 2006a).  

 

1.1.1 Biological oscillations are pervasive 

Biological oscillations are pervasive in three senses: 

1) All major biological processes are represented. In animals, oscillations are involved in 

the acquisition, transfer and processing of information (e.g. neural oscillators), movement 

(oscillations in muscles), secretion (e.g. oscillations in the membrane potential of secretory 

cells such as pancreatic islet cells), reproduction (e.g. menstrual cycles), growth and 

development (e.g. periodic mitosis) (Rapp, 1987). Rhythms are involved in many 

biological processes in plants too: hormonal signalling (Robertson et al., 2009), leaf 

movement (Harmer, 2009), solute transport (Haydon et al., 2011), flowering (Andres and 

Coupland, 2012), growth in shoots and roots (Farre, 2012; Ruts et al., 2012a), stomatal 

regulation (Lee, 2010), defence (Jander, 2012; Goodspeed et al., 2012), etc. Just 

considering one type of oscillation, circadian rhythms, microarray data in the model plant 
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Arabidopsis thaliana suggest that about one third of the genes expressed are clock 

regulated (Harmer, 2009). If thermocycles and photocycles are also considered, 89% of 

Arabidopsis transcripts cycle in at least one condition, i.e. diurnal or constant conditions 

(Michael et al., 2008). This reflects how pervasive 24 h rhythms are in plants.  

 

2) Oscillations occur in a broad spectrum of chemical and biological systems spanning the 

most primitive to the most complex (Rapp, 1987). Several examples of rhythms have been 

given earlier in complex multicellular organisms (e.g. animal and plants). Circadian 

rhythms are also observed in much simpler eukaryotes. For instance Ostreococcus tauri is 

a green unicellular algae described as the smallest free-living eukaryote. Orthologs of plant 

specific genes, such as the core clock components TOC1 and CCA1, are also involved in 

rhythmicity in Ostreococcus (Thommen et al., 2012, and references cited therein). 

Circadian systems are also represented in other branches of life. For instance the 

filamentous fungus Neurospora crassa has served for decades as a model organism for 

uncovering the basic circadian physiology and molecular biology (Baker et al., 2012). The 

production of conidia (spores) is an example of overt rhythm in this fungus. Biological 

rhythms are also found in some prokaryotes. Synechococcus elongates is a well-studied 

cyanobacterium that exhibits circadian rhythms. In this bacterium three genes are essential 

components of the clock: kaiA, kaiB and kaiC.  Nakajima and colleagues were able to 

reconstitute the self-sustained oscillation of Kai phosphorylation in vitro by incubating 

KaiA KaiB and KaiC proteins and ATP (Nakajima et al., 2005). This demonstrated that 

only a few components are sufficient to generate a circadian rhythm. The period of the 

KaiC phosphorylation measured in vitro was remarkably consistent with its period in vivo. 

 

3) The periods can range from fractions of seconds to month or years. Circadian rhythms 

are probably the most studied rhythms in biology. However many other rhythms exist in 

life, with a very broad range of periods. The period of circadian rhythms are usually 

considered to be between 20 and 28 h. Rhythms with longer or shorter periods are called 

infradian or ultradian respectively. To give two extreme examples, thalamic sensory 

neurons in the monkey can fire rhythmically every 30 ms (Poggio and Viernstein, 1964) 

whereas some Chinese bamboos flower every 120 years (Janzen, 1976)! In between, many 

periods can be found in biological oscillation, notably circannual (e.g. bird migration), 

circatidal (e.g. crab activity), and of course circadian rhythms. These three subsets of 
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biological rhythms have natural synchronisers: physical rhythms generated by the rotations 

and revolutions of the earth and moon, namely seasons, tide and diurnal cycles. 

 

1.1.2 Oscillations confer functional advantages  

Temporal organisation is probably the most obvious advantage conferred by biological 

rhythms. Entrainment and synchronisation of biological rhythms keep natural processes in 

step with the demand of a periodic environment (Pittendrigh, 1993); the concept of 

entrainment will be detailed in section 1.4. Even in constant conditions key physiological 

pathways are temporally compartmentalised in Arabidopsis (Harmer et al., 2000). The 

authors showed that under constant light (LL) photosynthesis genes peak near the middle 

of the subjective1 day, whereas phenylpropanoid biosynthesis genes peak before subjective 

dawn. The latter are involved in the production of photoprotective pigments; the 

anticipation of dawn by their early production would probably be advantageous. The 

circadian clock can also coordinate key pathways in animals (Panda et al., 2002). 

 

The value of creating temporal order with oscillations is not always to ensure that two 

processes occur at the same time. The fixed phase angles introduced in periodic systems 

can also be used to separate incompatible processes (Rapp, 1987). For instance in 

cyanobacteria, nitrogen fixation requires nitrogenase, an enzyme that is inhibited by 

oxygen. Photosynthesis produces oxygen throughout the day, but nitrogen fixation is 

regulated by the clock so that it is maximal during the night. Therefore the same cell can 

perform two incompatible processes: photosynthesis during the day and nitrogen fixation 

during the night (Johnson et al., 2011). More generally, stimuli of the same strength 

applied at different times of the day can result in responses of different intensities; this is 

known as “gating” (Hotta et al., 2007). Gating of a signal may allow plants to better 

process and react to the wide range of environment signals they are constantly subjected to, 

such as light or cold temperature (Hotta et al., 2007). Another example is the gating of cell 

division by the circadian clock in algae and in cyanobacteria. In these organisms cell 

division occurs during the night. The gating of this process may protect DNA from 

damaging UV radiation during DNA replication (Farre, 2012).  

 

                                                 
1 The word “subjective” is used in constant conditions following entrainment. For instance in 

constant light (LL), the subjective night is the portion of the day that would have been dark if the 
entraining LD cycle had persisted 
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Endogenous rhythms offer the clear advantage of anticipatory preparation for predictably 

recurrent conditions (Pittendrigh, 1993). A striking example is the circatidal movement of 

Euglena, nicely described by John Palmer in his book “The Living Clock”. This unicellular 

protist can be found on river sides. Euglena anticipate the tide in and “bury themselves in 

the mud where they cannot be washed away. But when the tide recedes they ascend up and 

out of the mud to sit on the surface for some photosynthetic sunbathing” (Palmer, 2002).  

 

Biological rhythms also confer adaptive advantages, and circadian biology can lead to 

practical applications, for instance in agriculture. These important aspects will be 

developed in the next section. 

 

 

1.2 Circadian rhythms 

1.2.1 The discovery of endogenous rhythms 

Diurnal rhythms have been observed thousands of years ago, but it was not realised that 

they could be endogenous. Scientific literature on circadian rhythms began in 1729 and 

was related to plant leaf movement. The French astronomer de Mairan reported that the 

daily leaf movement of the sensitive heliotrope plant persisted in constant darkness, 

demonstrating their endogenous origin (de Mairan, 1729, cited in McClung, 2006). Strictly 

speaking it cannot be ruled out that the oscillations were driven by temperature changes, 

even though the experiments were carried out in a wine cellar! The endogenous origin was 

disputed, but de Candolle measured leaf movements more accurately and showed that they 

had a period of 22 to 23h in Mimosa pudica under constant conditions (de Candolle, 1832, 

cited in McClung, 2006). Until experiments on the fungus Neurospora crassa were 

conducted in space (Sulzman et al., 1984), the fact that the period was not exactly 24 h was 

the best evidence that circadian rhythms were truly endogenous and not driven by some 

subtle and undetected geophysical cue associated with the rotation of the Earth on its axis. 

 

The inheritability of circadian rhythms was already suggested in 1880 by Charles and 

Francis Darwin (McClung, 2006). Fifty years later, the inheritance of period length among 

progeny from crossed parents with distinct period lengths was first reported in Phaseolus: 

hybrids had period length intermediate between those of the parents (Bunning, 1932). Leaf 

movements are actually just one among many rhythms in plants, including germination, 
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growth, enzyme activity, gas exchange, photosynthetic activity, flower opening and 

fragrance emission (Cumming and Wagner, 1968). And plants belong to just one of the 

kingdoms possessing circadian rhythms. These appear almost ubiquitous in higher 

organisms (Harmer, 2009).  

 

1.2.2 Properties of circadian rhythms 

In contrast with other nycthemeral (or daily) rhythms, which also have a period of 24 h in 

diurnal conditions, circadian rhythms have other defining characteristics. They are 

endogenous and self-sustaining (McClung, 2006), so they persist under constant 

environmental conditions (such as constant light or dark, and constant temperature). In 

such conditions a circadian rhythm free runs, and is characterised by a Free Running 

Period (FRP). This FRP is usually not exactly 24 h, hence the term “circa”. A remarkable 

feature of circadian rhythms is their persistence: sustained rhythms could be observed for 

over two years in rodents under constant conditions  (Pittendrigh, 1993). The same 

organism can have a different FRP depending on the experimental conditions; under 

constant light (LL) the FRP of a diurnal organism tends to decrease when the light 

intensity increases (Aschoff, 1960). This is known as “Aschoff’s rule”.  

 

Another attribute of circadian rhythms is temperature compensation: the period remains 

relatively constant over a range of ambient temperatures (McClung, 2006). This 

characteristic allows the circadian system to keep accurate time even when ambient 

conditions are cold or hot. Chemical processes exhibit marked temperature dependence. 

For instance, the rate of a typical chemical reaction doubles with a 10°C increase in 

temperature (Q10 = 2). But Bunning observed a Q10 of only 1.2 for the period of leaf 

movement in Phaseolus coccineus (Bunning, 1931). This observation was extended to 

other plants and animals by the 1960s (Sweeney and Hastings, 1960), and the relative 

temperature insensitivity of the period is a striking feature of circadian rhythms. 

 

Finally, circadian rhythms can be reset by environmental cues such as light and 

temperature (Harmer, 2009). Such cues are called zeitgebers, a German term meaning 

“time giver”. For instance a circadian rhythm with a FRP of 26 h under LL has a period of 

24 h under normal Light/Dark (LD) or temperature cycles. Thus circadian rhythms can be 

entrained by the environment. The concept of entrainment will be developed in section 1.4. 
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Specific terminology is used to describe time in circadian biology (DeCoursey, 2004a). 

The time defined by the zeitgeber is commonly referred as “ZT” and usually starts at dawn 

(ZT0); in a cycle of 12 h light/12 h dark, the time of dusk would then be ZT122. However 

the circadian time (CT) is a subjective time: for an organism with a FRP of 26 h, each 

circadian hour would actually represent 26/24 h (i.e. ~ 1.1 h) in the international unit 

system. Other common terms in circadian biology are amplitude and phase. The amplitude 

is the extent of an oscillatory movement, usually measured from mean to extreme value 

(i.e. the difference between the mean value and the peak or the trough). The amplitude can 

also be defined as the difference between peak and trough. The phase is the instantaneous 

state of an oscillation within a period. It usually refers to the time of the peak (acrophase), 

relative to a reference which is often dawn or dusk. This phase relationship is more explicit 

in the term “phase angle”: the phase angle is the difference between identifiable phases 

(e.g. acrophase, or dawn) of two oscillations, and is expressed in hours or degrees of arc. 

For instance two 24 h rhythms which are in exact opposite phase have a phase angle of 12 

h or π.  

 

Circadian rhythms are not only seen at the whole organism level, such as change in 

behaviour; they are also found at the molecular level, with changes in gene expression and 

signalling molecules (Harmer, 2009). In several model organisms, circadian rhythms are 

generated by the interactions of rhythmically expressed genes that form positive and 

negative feedback loops (Dunlap, 1999). This central clock is a part of the circadian system 

that can be simplified as a core oscillator that generates rhythmic outputs via specific 

signalling pathways and can be reset by environmental cues such as light and temperature 

(Harmer, 2009). This is illustrated in figure 1.1. The circadian system could be considered 

at different scales, from the cellular to the organism level. In this thesis the expression 

“circadian system” will refer to the intracellular system, which can be described as a 

complex molecular network (see section 1.3). 

 

 
 
 
 
 
 

                                                 
2 Note that ZT0 will occasionally refer to dusk in other chapters, e.g. when an experiment started at 

dusk 
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Figure 1.1: Simplified version of a circadian system 
The circadian system includes the circadian (core) clock, but also input and output 
pathways. Zeitgebers such as Light/Dark and temperature cycles can reset the core clock 
via complex input pathways. In turn the circadian clock controls the expression of 
thousands of genes and physiological rhythms such as photosynthesis, stomatal and leaf 
movements, growth, flowering, fragrance emission etc.  Solid black arrows represent the 
simplified linear pathway between inputs and outputs through the oscillator. Dotted arrows 
represent possible feedbacks and the complex network nature of the circadian system.  

 

 

 

1.2.3 Adaptive advantages conferred by the plant circadian clock  

The term adaptation is used in biology in two ways. Evolutionary adaptation refers to 

inherited features that enhance survival or reproduction of an organism. In contrast, 

physiological adaptation refers to the ability of an individual to adjust or acclimate to an 

environmental change (DeCoursey, 2004b). Evidence suggests that the plant circadian 

clock is adaptive in both senses: evolutionary and physiological. A few examples are given 

below. 

 

In 2002 Green and colleagues showed that several circadian clock mutants had low-

viability phenotypes. For instance CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is one 

of the key components of the circadian clock in Arabidopsis.Plants that overexpress CCA1 

lose the ability to anticipate the daily change in LD cycles. These CCA1-ox plants flowered 
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later and were less viable under very short day conditions than their wild-type (WT) 

counterpart (Green et al., 2002). Later, Dodd and colleagues studied other circadian 

mutants, with shorter (~20 h) or longer (~ 28 h) FRP compared to the WT. They grew 

these plants under different T cycles, i.e. LD cycles with a period of T hours. Plants with a 

clock period matched to the environment (T20 or T28) had more chlorophyll, fixed more 

carbon, grew faster and survived better than plants with a circadian period differing from 

their environment (Dodd et al., 2005). This illustrated the competitive advantage conferred 

by a circadian clock that resonates with the external environment. Another study confirmed 

the adaptive significance of the plant clock in terms of reproductive success (Yerushalmi et 

al., 2011). 

 

The circadian clock also contributes to physiological adaptation in plants. For instance the 

plant clock is involved in the adaptation of plant physiology to the change of seasons, with 

important implications in terms of reproduction and response to cold stress. In Arabidopsis 

flowering is accelerated in long days. This photoperiodic flowering is partly regulated by 

the circadian clock through the rhythmic expression of the clock gene GIGANTEA (GI). It 

is the coincidence between the circadian rhythms of CONSTANS (CO), GI and FLAVIN 

BINDING, KELCH REPEAT, F-BOX1 (FKF1) and exposure to light under long days that 

determines whether the regulatory proteins such as CO are stabilised to promote flowering 

(Andres and Coupland, 2012). The circadian clock can also modulate cellular cold 

signalling networks, which would prepare the cell for the onset of winter (Eriksson and 

Webb, 2011). For instance the sensitivity to cold stimuli is gated by the clock. A conserved 

response to cold across plant species is the induction of CBFs (C-REPEAT BINDING 

FACTORS). The CBFs upregulate the expression of genes that increase the levels of 

cryoprotectants in the cell. CBF expression is upregulated by CCA1 and LHY, two core 

clock genes.  Freezing tolerance is reduced in the cca1/lhy double mutant compared to WT 

Arabidopsis. A similar effect is observed in poplar trees, where decreased expression of 

LHY1 and LHY2 reduces cold hardiness. In addition the circadian clock of poplar trees is 

involved in initiating growth cessation and dormancy (Eriksson and Webb, 2011). 

 

1.2.4 Some applications of circadian biology 

Clock genes identified in Arabidopsis, as described in the next section, are mostly 

conserved among angiosperms, suggesting that the clock mechanism may be conserved 

among plant species including important crops (Nakamichi, 2011). For instance orthologs 
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of GI have been identified in pea and in rice. As mentioned earlier, GI is involved in the 

photoperiod flowering in Arabidopsis, so homologs of GI might also play a role in the 

flowering of crops.  

 

The control of flowering has an important impact on yield and has been a key trait in the 

domestication of crops (Zakhrabekova et al., 2012). One example of an important crop is 

barley, and one of the cultivars of barley currently used in agriculture is Mari. This cultivar 

is an induced early flowering barley mutant and has been used for over 50 years to 

facilitate short season adaptation and further geographic range extension. The gene 

responsible for this key adaptive phenotype, Mat-a, was identified recently. Interestingly 

Mat-a is a homolog of the key clock gene ELF3 (EARLY FLOWERING 3) in Arabidopsis 

(Zakhrabekova et al., 2012; Faure et al., 2012). The authors showed that mat-a mutations 

disturb the flowering pathway, leading to the early phenotype. The adaptation to different 

geographic regions and climatic conditions is a critical issue in times of global warming. 

  

The role of the circadian clock in plant growth and defence against pathogens might also 

have applications in agriculture. Indeed the growth of the whole plant is severely affected 

by improper clock regulation in Arabidopsis, resulting not only in altered timing and 

capacity for growth but also aberrant development of shoot and root architecture (Ruts et 

al., 2012b). The circadian clock also plays a role in plant immunity. Wang and colleagues 

recently discovered new defence genes in Arabidopsis that are under circadian control 

(Wang et al., 2011a). This allows plants to anticipate possible infection at dawn when the 

pathogen normally disperse spores, and also time immune responses according to the 

perception of different pathogenic signals upon infection. 

 

Circadian biology can have other applications in agriculture. At least 20 herbicides have 

been shown to display time of day-dependent effects upon plants (Koukkari and Sothern, 

2006c). Oscillations in the response of plants to herbicides have been attributed to many 

factors including the phases of other rhythms such as leaf movement, phloem transport, 

translocation of photosynthate and stomatal opening (Koukkari and Sothern, 2006c). 

Rhythmicity in the response to herbicides was demonstrated for cotton seedlings under LD 

and constant conditions, suggesting the role of the circadian clock in this process (Rikin et 

al., 1984). Miller and colleagues examined the influence of the time of the day when 

applying four different herbicides in the field. They found a circadian response to each 
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herbicide, even after adjusting for environmental conditions such as light, temperature and 

humidity that can affect the efficacy of a herbicide (Miller et al., 2003). The authors 

concluded that the amplitudes in the response to these herbicides were large enough to 

consider the possible financial and environmental implications.  

 

The concept that chemicals or other treatments are tolerated better at some times of the day 

than others is well known in medicine. Some treatments are given at a specific time of the 

day, and other treatments may soon be optimised so they are taken when they are more 

efficient and/or less toxic for the human body (Levi et al., 2010). Circadian rhythms were 

first discovered in plants and now have potential applications in agriculture, but also in the 

practice of human medicine. Other discoveries in Arabidopsis may also have broader 

applications than in plant science or agriculture.  

 

 

1.3 Molecular basis of the plant circadian clock  

While overt circadian rhythms, such as leaf movement, were studied in plants much earlier 

than in other organisms, the molecular bases of the circadian clock were discovered later. 

Identification of circadian clock components began in the 1970s in several model 

organisms: Drosophila, Chlamydomonas and Neurospora. It was more than 10 years later 

that circadian rhythms were described at the molecular level in plants (Harmer, 2009). 

Although most of the molecular components of circadian systems are not evolutionarily 

conserved, the basic architecture of eukaryotic oscillators is similar: interlocked feedback 

loops between species-specific components that sustain robust rhythms (Nagel and Kay, 

2012). In addition, similar layers of regulation apply to all circadian systems: 

transcriptional repressor and activator complexes, rhythmic transcript accumulation, 

rhythmic chromatin remodelling, regulation of cellular localization, phosphorylation, and 

proteasome-mediated degradation (Herrero and Davis, 2012).  

 

In 1985 Kloppstech described a circadian rhythm in the abundance of three transcripts in 

pea, including the LIGHT-HARVESTING CHLOROPHYLL A/B BINDING PROTEIN 

(LHCB, or CAB). A few years later, Nagy et al. (1988) repeated and extended this 

experiment to wheat, where CAB-1 transcription was under circadian control (Nagy et al., 

1988). It was soon established that in Arabidopsis the transcription rate and transcript 
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accumulation of CAB (Millar and Kay, 1991) and a number of other genes (McClung and 

Kay, 1994) were also under circadian control. Arabidopsis was emerging as a powerful 

system in which to combine forward genetic analysis with molecular gene cloning 

techniques (Somerville and Koornneef, 2002). Note that most of the results presented 

hereafter come from the study of Arabidopsis thaliana. The words “plant” and 

“Arabidopsis” will therefore refer to this plant species, unless stated otherwise.  

 

CAB is an output gene, i.e. a gene whose expression is controlled by the clock. It has been 

often used to monitor the clock in Arabidopsis. Millar et al. (1992) demonstrated that a 

short fragment of the CAB2 promoter could drive rhythmic transcription and mRNA 

accumulation of luciferase (LUC) mRNA detectable as rhythmic light emission from 

Arabidopsis seedlings bearing the CAB:LUC transgene. LUC catalyses the ATP-dependent 

oxidative decarboxylation of luciferin (sprayed on the plants) with a concomitant release of 

photons at 560 nm; this light emission can be quantified with a sensitive charge-coupled 

device (CCD) camera (Welsh and Kay, 2005).  

 

1.3.1 Transcription – Translation Feedback Loops (TTFLs) 

The development of the luciferase assay system permitted the first screen for Arabidopsis 

clock mutants. Arabidopsis seeds bearing the CAB:LUC transgene were mutagenised, and 

M2 seedlings were screened to yield the first plant clock mutant:  toc1 (TIMING OF CAB 

EXPRESSION1) (Millar et al., 1995a). TOC1 is also known as PRR1, a member of the 

Pseudo-Response Regulator family.  

 

Another clock component, CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1), was initially 

identified as binding the CAB2 promoter. Its overexpression causes arrhythmicity (Wang 

and Tobin, 1998), suggesting a role in the core clock. LHY (LATE ELONGATED 

HYPOCOTYL) is CCA1’s closest paralog in Arabidopsis (Carre and Kim, 2002). Both are 

morning-expressed MYB transcription factors, while TOC1 is evening-expressed. cca1 and 

lhy loss of function mutants confer a short period phenotype and have only residual 

rhythmicity, suggesting that they are core clock components that function redundantly 

(Alabadi et al., 2002; Mizoguchi et al., 2002). These three components formed the first 

loop proposed in the Arabidopsis clock (Alabadi et al., 2001). LHY and CCA1 negatively 

regulate TOC1 expression by binding to its promoter. Conversely, TOC1 appeared to 

augment the expression of LHY and CCA1, directly or indirectly. 
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Most of the clock components described in this section are shown in figure 1.2, and some 

of them are also presented in figure 1.4. Figure 1.2 illustrates the complexity of the clock 

machinery at the transcription-translation level; yet this model omits many levels of 

regulation (such as post-transcriptional modifications) for simplification.  The models 

presented in figure 1.4 are simpler diagrammatic models, but they represent three versions 

of mathematical models that better explain the  dynamics of the clock as a whole. These 

mathematical models, which progressively integrated more data and simulated more levels 

of regulation, will be presented in section 1.5. 

 

The mechanism of TOC1 has remained unclear for almost a decade. In 2009 Pruneda-Paz 

et al. discovered that CHE (CCA1 HIKING EXPEDITION) repressed the activity of 

CCA1. In addition CHE and TOC1 physically interact, which established a molecular link 

between TOC1 and CCA1 gene regulation. The authors suggested that TOC1 activates 

CCA1 expression by antagonising its repression by CHE (Pruneda-Paz et al., 2009). But in 

the last year, more evidence showed that TOC1 can directly bind DNA and repress the 

expression of genes such as CCA1 (Gendron et al., 2012; Huang et al., 2012). In addition 

the repressor role of TOC1 allows more experimental data to be explained (Pokhilko et al., 

2012). 

 

CCA1 and LHY seem to be mainly repressors of gene expression, but they can also act as 

activators (figure 1.2). For instance they form a morning loop with PRR7 and PRR9: CCA1 

and LHY activate these PRRs which in turn repress the MYB transcription factors (Farre et 

al., 2005; Nakamichi et al., 2005; Salome and McClung, 2005a). PRR9 has also been 

shown to participate in a positive feedback loop with LIGHT-REGULATED WD1 

(LWD1), a clock-associated protein involved in the regulation of period length and 

photoperiodic flowering (Wang et al., 2011b). Two other PRR and MYB transcription 

factors form a negative feedback loop within the clock: PRR5 and RVE8 (REVEILLE8) 

(Rawat et al., 2011). 
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Figure 1.2: A model representing the interlocked Transcriptional 
Translational Feedback Loops (TTFL) of the Arabidopsis circadian clock, 
and connections with modulators of physiological processes 
The central loop is shown in the darker grey background and consists of the two partially 
redundant MYB transcription factors CCA1 and LHY, and TOC1. CCA1/LHY form similar 
loops with CHE and with JMJD5. CCA1 and LHY act both as activators and repressors of 
clock gene expression. TOC1 has been recently revealed as a global repressor of clock 
gene expression.  Some components of the clock network are not shown for 
simplification. Protein-protein interactions are only shown for LUX, ELF3 and ELF4 which 
form the Evening Complex (EC). The EC regulates hypocotyl growth by directly binding to 
the promoters of PIF4 and PIF5. Interaction between GI, CO and FT modulates 
photoperiodic flowering (LD = Long Days). Each gene/protein is represented by a distinct 
colour. Transcriptional regulations are represented by black lines. Dashed lines indicate 
the protein and gene associations. Arrows and horizontal lines represent activation and 
repression respectively. Molecular components are further described in text. The figure is 
from (Nagel and Kay, 2012). 
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An evening loop was proposed to be formed between TOC1 and an unknown component Y 

that was thought to include GI (Locke et al., 2005b; Locke et al., 2006) . GI was already 

known to be involved in the clock and in the control of photoperiodic flowering (Fowler et 

al., 1999; Park et al., 1999) but its position in the clock network was not clear yet. Later 

models distinguished Y and GI functions (Pokhilko et al., 2010) and eventually replaced Y 

by other components. These include ELF3 and ELF4 (EARLY FLOWERING 3 and 4) and 

LUX ARRHYTHMO (LUX) (Pokhilko et al., 2012). LUX and ELF3 were proposed to bind 

to the PRR9 promoter and repress its expression (Helfer et al., 2011; Dixon et al., 2011). 

Soon after Nusinow et al (2011) showed that LUX, ELF3 and ELF4 proteins can interact 

and form the so-called Evening Complex (EC). ELF3 and ELF4 also form a complex with 

NOX (Latin for “night”) also known as BOA (BROTHER OF LUX ARRHYTHMO). 

NOX and LUX are homologs that are thought to be partially redundant (Adrian Troncoso-

Ponce and Mas, 2012). NOX overexpression altered the rhythms of several clock genes, 

suggesting an important role of NOX within the core oscillator (Dai et al., 2011). 

 

Other components have been shown to modulate clock function such as PRR3, TIC (TIME 

FOR COFFEE) and SRR1 ( SENSITIVITY TO RED LIGHT REDUCED) and more recently 

JMJD5, a Jumonji C Domain-containing protein also known as JMJ30 (Nagel and Kay, 

2012).  Jumonji C Domain-containing proteins appear to be involved in chromatin 

remodelling, acting as histone demethylases. They have been shown to modulate clock 

function in both plants and humans, suggesting that histone modification has evolved as an 

important mechanism of circadian systems (Lu and Tobin, 2011). Chromatin remodelling 

and other mechanisms of regulation will be further described in the next subsection. 

 

1.3.2 Other layers of regulation in the circadian clock 

Many biochemical mechanisms contribute to circadian regulation within the TTFL. These 

include chromatin remodelling, post-transcriptional and post-translational regulations, 

cellular localisation and protein complex formation. Some examples are given below. 

 

Evidence in plant and animal systems has shown a link between dynamic change in 

chromatin structure and circadian regulation of gene expression (Adrian Troncoso-Ponce 
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and Mas, 2012). In Arabidopsis the induction of  TOC1 transcription and its repression by 

CCA1 were correlated with clock-controlled cycles of histone acetylation, favouring 

transcriptionally permissive or repressive chromatin structure depending on the circadian 

time (Perales and Mas, 2007). Therefore the transcription of a clock gene may depend on 

its promoter accessibility. Transcription can also be regulated by light. For instance CCA1 

transcription is induced by light (Yakir et al., 2009). Once the mRNA is synthesised, its 

turnover is usually closely regulated (Staiger and Green, 2011). For CCA1 mRNA, this 

turnover is also regulated by light: CCA1 mRNA is relatively stable in the dark but has a 

short half-life in the light (Yakir et al., 2007). The degradation of RNA can also depend on 

splicing variants. Unproductive isoforms with premature termination codons can be the 

substrate for Nonsense-mediated decay (NMD). More generally, alternative splicing can 

mediate clock responses to the environment in both plant and animals (Staiger and Green, 

2011). This was recently shown  in Arabidopsis, where extensive alternative splicing in 

clock genes was revealed in plants acclimated to different steady state temperatures or 

undergoing temperature transitions (James et al., 2012).  

 

Some mRNAs are then translated into functional proteins. Post-translational processes play 

critical roles in all circadian systems (McClung, 2011). One example is phosphorylation 

mediated by Casein Kinase 2 (CK2). This enzyme is one of the few evolutionarily 

conserved molecular components involved in the regulation of key clock genes. CK2 is 

found in the mammalian, Drosophila, Neurospora and Arabidopsis circadian systems 

(Nagel and Kay, 2012). In Arabidopsis, CK2 phosphorylates CCA1 and LHY, and this 

process is considered to be important for CCA1 function, specifically the DNA-binding 

properties and subsequent regulation of its targets within the oscillator. Protein stability 

and degradation also play an important role in the plant clock. For instance protein 

abundance of the blue-light photoreceptor and F-box protein ZEITLUPE (ZTL) is 

rhythmic although its mRNA is constitutively expressed. ZTL protein rhythmicity is 

conferred by a light-dependent interaction with GI and is necessary to sustain a normal 

circadian period by controlling the degradation of TOC1 (Kim et al., 2007). TOC1 stability 

may also be dependent on cell type or tissue. Indeed, PRR3 expression appear to be 

restricted to the vasculature and may function to modulate TOC1 stability by hindering 

ZTL-dependent TOC1 degradation (Para et al., 2007). 
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Dynamic subcellular distribution of clock components is at the core of eukaryotic circadian 

systems (Herrero and Davis, 2012). An example is the localisation of TOC1 protein: it is 

stabilised in the nucleus by interaction with PRR5. But the disruption of this interaction in 

weak alleles of toc1 and prr5 decreases the TOC1 nuclear pool and makes TOC1 

susceptible for degradation mediated by ZTL in the cytoplasm (Wang et al., 2010). In 

contrast, colocalisation of proteins can lead to the formation of functional complexes, such 

as the EC mentioned earlier. The activity of the EC might be modulated by the dynamics 

of ELF3 nuclear-cytoplasmic distribution (Herrero and Davis, 2012). 

 

Therefore the circadian clock is a complex circuit made of multiple interlocked feedback 

loops regulated at many levels. Mathematical analysis has suggested that such complexity  

increases flexibility and enhances robust entrainment and temperature compensation (Rand 

et al., 2006). Although the TTFLs are thought to be a central mechanism in various 

circadian systems, they are not always necessary to generate circadian rhythms. Indeed it 

was recently shown that non-transcriptional mechanisms are sufficient to sustain circadian 

rhythms in Ostreococcus and red blood cells (O'Neill and Reddy, 2011; O'Neill et al., 

2011a). Other mechanisms probably function in conjunction with TTFLs.  

 

1.3.3 Connections between the clock and other networks 

In diurnal and constant conditions, the clock can regulate the rhythmic expression of 

thousands of genes (Harmer et al., 2000; Michael and McClung, 2003). Bioinformatics 

analysis revealed several motifs in the promoter regions of clock and output genes, 

associated with phase specific expression (Adams and Carre, 2011). These motifs include 

the morning and evening elements (ME and EE), and provide a mechanistic link between 

transcription factors, such as CCA1 and LHY, and clock-controlled genes. The mutation of 

such conserved sequences can alter rhythmicity; this was shown with the EE present in the 

CCR2 (COLD, CIRCADIAN RHYTHM, AND RNA BINDING 2)  promoter for example 

(Harmer et al., 2000). CCR2 is an output gene also known as GRBP7 (GLYCINE-RICH 

RNA-BINDING PROTEIN 7). The EE is also implicated in the circadian regulation of the 

clock genes TOC1, GI and ELF4 (Harmer and Kay, 2005). 

 

The circadian clock is closely related to physiological processes such as growth and 

flowering. For instance the EC provides a link between the clock and the rhythmic growth 

of hypocotyls (figure 1.2): the EC directly binds to the promoters of the growth-related 
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transcription factors PIF4 and PIF5 (PHYTOCHROME INTERACTING FACTORS) 

(Nusinow et al., 2011). The authors suggested that the EC has a key role in the circadian 

gating of hypocotyl growth in the early evening. A coordinated regulation by light and the 

clock explains the diurnal growth of hypocotyls (Nozue et al., 2007). Photoperiodic 

flowering is another process that is coregulated by light and the clock. As mentioned in 

section 1.2.3, it is the coincidence between the circadian rhythms of CO, GI and FKF1 and 

exposure to light under long day that determines whether the regulatory proteins such as 

CO are stabilised to promote flowering (Andres and Coupland, 2012). Briefly, the light-

dependent interaction between FKF1 and GI release the repression of CO mRNA 

transcription, allowing the translation of CO during long days. CO can then activate the 

transcription of FT, which is closely associated with flowering.  

 

The circadian clock can also interact with many other networks, including responses to 

hormones (Robertson et al., 2009), metabolic pathways (Kerwin et al., 2011; Blasing et al., 

2005), cold signalling pathways (Eriksson and Webb, 2011), and solute transport (Dodd et 

al., 2007; Haydon et al., 2011). In addition, increasing evidence suggests that many 

signalling pathways can act as both inputs and outputs within the circadian network 

(Pruneda-Paz and Kay, 2010). For instance CCA1 regulates expression of key genes 

involved in nitrogen assimilation; in turn, pulses of nitrogen can modify the phase of CCA1 

expression (Gutierez et al., 2008). Similarly, the abundance of calcium and cyclic 

adenosine diphosphate ribose (cADPR) is clock-regulated, and perturbation of these cycles 

alters circadian parameters (Dodd et al., 2007).  

 

Therefore, the circadian system is best described as a network. It acts as a signal integrator, 

interacting with many other signalling pathways to restrict plant responses to 

environmental stimuli to the most appropriate time of the day. In turn, these signalling 

pathways can feedback to affect clock functions (Harmer, 2009). The light-signalling 

pathway is one of these networks and its interaction with the clock is crucial for the proper 

entrainment of the circadian system. 
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1.4 Entrainment of circadian oscillators  

As we have seen earlier, circadian rhythms do not always have a period of 24 h exactly. 

The FRP in constant conditions can be shorter or longer than 24 h. If the circadian system 

were not reset regularly, the endogenous rhythms would quickly lose synchrony with 

physical rhythms such as LD and temperature cycles. Consequently the clock could not 

provide an internal estimate of external environment time and would therefore lose its 

main function. In that context, entrainment is the most fundamental property of the clock to 

understand (Johnson et al., 2003). 

 

1.4.1 General concepts 

Entrainment is not the equivalent of synchronisation. Synchronisation denotes the 

spontaneous expression of a common period by a population of coupled oscillators 

whereas entrainment is a special case of synchronisation in which it is possible to explicitly 

identify an oscillator that is driving another (Rapp, 1987). Certain authors consider that 

synchronisation also implies that the waveform of the driving rhythm coincides with the 

waveform of the driven rhythm (Johnson et al., 2003). I will use in this thesis the more 

general definition of synchronisation mentioned above (1987). Entrainment also implies 

that a stable phase relationship is established between the entraining and entrained 

oscillations. In addition, after releasing the organism in constant conditions the entrained 

rhythm free runs with a phase determined by the zeitgeber cycle (Johnson et al., 2003).  

 

Most organisms live in a cyclic environment, with the possible exception of organisms 

dwelling in caves or deep in the ocean (Johnson et al., 2003) and buried seeds (Millar, 

2003). In nature, multiple environmental factors oscillate over the daily cycle, including 

light and darkness, temperature, humidity, food availability, and social cues. At least some 

of these factors can function as zeitgebers. The most consistent environmental time cue is 

the 24 h cycle of light and darkness (LD), and almost all circadian rhythms can be 

entrained to LD cycles (Johnson et al., 2003). Temperature is another major zeitgeber, and 

other external factors such as feeding or sounds can also contribute to entrainment 

(Koukkari and Sothern, 2006b). 
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Entrainment can occur by modulation of the period and/or phase of the biological rhythm 

so that its period conforms to the period of the environment. Light can influence both 

phase and period of circadian rhythms (Johnson et al., 2003). Two different models have 

been proposed to explain circadian entrainment: the discrete model and the continuous 

model (Johnson et al., 2004). The former focuses on the effects of environmental 

transitions such as dawn and dusk, and predict the entrainment on the basis of phase 

changes. The latter focuses on the importance of gradual changes in the environment and 

predicts the entrainment on the basis of period changes.  

 

The entrainment behaviour of many organisms can be predicted by the discrete model, 

which uses the map of phase-dependent resetting called the Phase Response Curve (PRC) 

and the FRP to estimate entrainment characteristics. A PRC is a plot of phase shifts of a 

circadian rhythm as a function of the circadian phases at which the stimulus is given. One 

example of PRC for Arabidopsis thaliana is shown in figure 1.3. The observation of a PRC 

is universal for entrainment in all organisms, but the shape of the PRC varies greatly from 

one organism to the other (Johnson et al., 2003). However, a characteristic feature of PRCs 

is that light has less phase resetting efficacy during the organism’s subjective day than 

during its subjective night, as shown in figure 1.3.  The shape of the PRC reflects the level 

of the state variables of the circadian system. The PRC can usually be broken down into 

three parts: phase advances, dead zone (during the subjective day) and phase delays. PRCs 

illustrate the fact that response to light (or other entraining stimuli) can be gated by the 

clock. Examples of gating at the molecular level are given in section 1.4.2. 

 

The PRC only show the effect of a single stimulus on the phase, whereas entrainment 

results from regularly repeating perturbations (Roenneberg et al., 2003). Nevertheless, if 

only two stimuli are given at appropriate times during each cycle, they can effectively act 

as a zeitgeber. For instance, most circadian clocks can entrain to skeleton photoperiods. A 

skeleton photoperiod is a LD cycle whose photophase consists only of brief photic 

stimulation at dawn and dusk (separated by a dark interval).  In terms of entrainment of the 

clock, skeleton photoperiods mimic complete photoperiods quite well in some organisms 

and have provided a useful tool to chronobiologists (Johnson et al., 2004). In Arabidopsis 

the shoot clock can be entrained by skeleton photoperiods (Millar, 2003) but at least 3                

h of light per cycle was required to maintain normal plant development. An experiment 
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using skeleton photoperiods to investigate the entrainment of the clock in dark-grown roots 

will be presented in chapter 5.  

 

 

 
 
Figure 1.3: Phase response curve for Arabidopsis 
thaliana 
Seedlings expressing a CAB2:LUC reporter were entrained for 6 
days in LD cycles and then transferred to constant low fluence rate 
red light (3 µmol.m-2.s-1) for 5 days, during which the 
bioluminescence was monitored. At 4 h intervals after transfer to 
constant red light, successive batches of seedlings were given a 
light pulse (3 h of bright red light at 300 µmol.m-2.s-1). The 
magnitudes of the resulting phase shifts were calculated as the 
difference between the mean phase of the rhythm in each batch of 
seedlings after the light pulse and the mean phase of the rhythm 
exhibited by control seedlings. Phase shifts are plotted against the 
circadian time (CT) of the pulse. Advances are plotted as positive 
values, and phase delays are plotted as negative values. From 
(Devlin and Kay, 2001) 

 

 

 

Although circadian rhythms are entrained by cycles of 24 h in nature, they can also be 

entrained by cycles of different periods (T) in the laboratory. These non-24-h cycles are 

called “T cycles”. When an organism appears to entrain to several different T cycles with 

stable phase angles that are different and specific for each value of T, this is an excellent 

demonstration of entrainment (Johnson et al., 2003). However, stable entrainment occurs 

within certain limits of T cycles. In Arabidopsis, rhythms were shown to be entrained by 

LD cycles in a range between T = 20 h and T = 32 h at least (Roden et al., 2002). The 
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range of entrainment is the range of zeitgeber periods (T) to which an oscillator is able to 

entrain. This range depends partly on the type of oscillator: a rigid oscillator would have a 

narrow range of entrainment, whereas a weaker oscillator could be entrained by a broader 

range of T cycles (Abraham et al., 2010). The range of entrainment also depends on the 

zeitgeber strength: the stronger the zeitgeber, the broader the range of entrainment. For 

instance Abraham et al. tested temperature cycles of various periods T on different clocks 

in mice3. They also used thermocycles with different amplitudes, from 1.5 to 8 ºC changes 

in temperature. They showed that the supra chiasmatic nucleus (SCN) clock (considered as 

the master clock) in mice can entrain to T = 22 h Hot/Cold (HC) cycles with relatively 

strong zeitgeber (6 and 8 ºC temperature variation) but not with weaker zeitgeber (1.5 ºC 

and 4 ºC temperature variation), whereas the lung clock can be entrained by any of these 

thermocycles. The lung clock is therefore more sensitive to temperature cycle entrainment 

than the SCN clock (Abraham et al., 2010). T cycle experiments will be presented in 

chapter 5; they were used to compare entrainment properties of shoot and root clocks in 

Arabidopsis, using photocycles. 

 

All entraining stimuli eventually alter the expression of some clock components, causing 

the necessary phase shift in the clock to synchronise the organism to the external cycle 

(Salome and McClung, 2005b). Light is the most studied zeitgeber in plants, so the rest of 

this section will mainly focus on the resetting of the clock by LD cycles. At the molecular 

level, this resetting is achieved through the modification of mRNA and/or protein and/or 

activity levels encoding one or more of the clock components.  

 

1.4.2 Entrainment of the plant circadian clock by LD cycles 

Plants can perceive light via photoreceptors. In Arabidopsis at least three families of 

photoreceptors are involved in the entrainment of the circadian clock: phytochromes 

(PHY), cryptochromes (CRY) and the blue light sensing LOV domain proteins.  

These photoreceptors differ in their spectral and fluence sensitivity and in the response 

they trigger. 

 

Phytochromes are red/far-red-light absorbing photoreceptors and in Arabidopsis there are 5 

phytochromes, PHYA through PHYE. Amongst them PHYA and PHYB play the 
                                                 
3 The circadian clock is not necessarily the same in every cell; some organisms have different 

clocks in different organs. This will be discussed in section 6 
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predominant role in entrainment (Somers et al., 1998a). In the dark PHYs are present in 

their inactive red-light-absorbing (Pr) form (Kozma-Bognar and Kaldi, 2008). After 

capturing a photon they are converted to the far-red-light-absorbing conformer (Pfr), which 

initiates downstream signalling events. The active Pfr form is converted to Pr by far red 

light. PHYA is the most sensitive and light-labile member of this family. PHY A can 

actually be activated by almost any wavelength of visible light, including blue light, but 

can be inactivated only by near infrared light. PHYB, D and E function redundantly as 

input photoreceptors in the high-fluence range of red light. The Pr forms are translocated to 

the nucleus where they form nuclear bodies (NB), which might represent multiprotein 

complexes in which PHYs interact with transcription factors (TFs) and other regulatory 

proteins to control the expression of light-induced genes (Kozma-Bognar and Kaldi, 2008). 

 

The two other families are blue light photoreceptors (Christie and Briggs, 2001). The 

CRYs were first discovered in plants. They are also present in most eukaryotes and are 

implicated in the circadian clock of fruit fly and mouse. In insects as in plants, CRYs 

function as circadian photoreceptors that transduce blue light signals to the core oscillator, 

whereas the mammalian CRYs have essentially a light-independent function in the core 

feedback loop (Kozma-Bognar and Kaldi, 2008). Three LOV domain proteins are also 

involved in entrainment: ZTL, FKF1 and LKP2 (LOV KELCH PROTEIN 2) (Somers et 

al., 2004; Schultz et al., 2001; Nelson et al., 2000). These three LOV domain proteins are 

believed to function by similar mechanisms and in a redundant fashion (Baudry et al., 

2010). 

 

There are several mechanisms by which these photoreceptors transduce light signals to the 

clock. Some photoreceptors can directly interact with clock components. For instance ZTL 

interacts with GI in a blue-light dependent manner; this interaction confers rhythmicity to 

ZTL at the protein level although ZTL transcripts are expressed constitutively (Kim et al., 

2007). This interaction allows the accumulation of ZTL during the day and a rapid 

degradation of TOC1 at dusk through the F-box domain of ZTL (Mas et al., 2003). A pulse 

of light after dusk would probably slow this degradation of TOC1, which might contribute 

to the phase delay observed in the PRC around dusk (figure 3.1). 

 

Photoreceptors can also interact with light-signalling intermediates such as the PIFs. 

Following light perception PHYB translocates to the nucleus where it can interact with 
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PIFs which are bound to the promoters of light responsive genes including CCA1 and LHY  

(Martinez-Garcia et al., 2000). CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) 

is another light-signalling intermediate to the entrainment of the clock. COP1 interaction 

with the CRYs has been linked with the protein regulation of ELF3 and GI (Yu et al., 

2008). 

 

Light can also regulate clock genes at the transcriptional level. As mentioned earlier, CCA1 

expression is induced by light whereas its mRNA is degraded under light (but is relatively 

stable in the dark). These two levels of regulation may be important to accurately entrain 

the circadian clock by allowing CCA1 expression to peak at dawn (Yakir et al., 2007). 

Light also activates the transcription of other clock genes, such as LHY, PRR9 and GI 

(Salome and McClung, 2005b). In addition the translation of LHY can be upregulated by 

light, which would further increase the amplitude of LHY and contribute to the robustness 

of the clock (Kozma-Bognar and Kaldi, 2008; Kim et al., 2003a). 

 

These are a few examples that illustrate the complexity of light input pathways to the 

clock. Light can modulate the expression of several clock genes at many levels and at 

different time of the day. The response to light can be gated by the clock itself, since PHYs 

and CRYs transcription are clock regulated (Toth et al., 2001; Hall et al., 2001). A dark 

interval between each light cycle is also important for proper entrainment. In shoots the 

expression of thousands of genes can be entrained under LD cycles (Michael et al., 2008). 

 

1.4.3 Entrainment of the plant circadian clock by non-photic signals 

Temperature is thought to be the second major zeitgeber in nature. The Arabidopsis clock 

can be entrained by temperature cycles of only 4 °C in amplitude, but the temperature-

sensing mechanism is not known yet (McClung, 2011). Two clock components, PPR7 and 

PRR9, appear to be necessary for entrainment within a certain range of temperature: the 

prr7/prr9 double mutant cannot be entrained to 22/12 °C thermocyles (Salome and 

McClung, 2005a). Other plants can also entrain to temperature cycles with sometimes 

remarkable sensitivity: temperature steps as small as 0.5 °C can entrain the clock of the 

plant Kalanchoe (Rensing and Ruoff, 2002). The authors of this study argued that the 

efficacy of temperature as an entraining agent in nature - even in homeotherms - has been 

under-appreciated. 
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Microarray analysis revealed that thermocyles alone can drive at least half of all transcripts 

critical for synchronising internal processes such as the cell cycle and protein synthesis 

(Michael et al., 2008). This study analysed transcriptome data of Arabidopsis plants grown 

under different environmental conditions, including photocycles. The rhythmic transcripts 

do not necessarily overlap between temperature and LD cycle conditions. An earlier study 

already showed that some genes respond preferably to thermocycles versus photocycles 

(e.g. CAB2) whereas others respond preferably to photocycles versus thermocycles (e.g. 

CAT3) (Michael et al., 2003). This was demonstrated using conflicting zeitgebers: LD and 

temperature cycles were in antiphase so that light and dark cycles coincided with cold and 

hot cycles respectively. Other genes, such as CCA1, LHY and TOC1, can be entrained by 

thermocycles or photocyles and with the same phase of expression (Salome and McClung, 

2005b). However these three core clock genes did not show acute induction or repression 

at temperature steps, suggesting that temperature might entrain the clock at the post-

transcriptional level. 

 

Factors other than light and temperature might contribute to the entrainment of the clock 

by modulating the expression of clock genes: hormones, including auxin, abscisic acid and 

cytokinin (Robertson et al., 2009; Legnaioli et al., 2009; Seung et al., 2012), and solutes 

such as sucrose, nitrogen and calcium (Haydon et al., 2011; Blasing et al., 2005; Gutierez 

et al., 2008; Dodd et al., 2007). For instance sucrose or other photosynthates are thought to 

entrain the clock of dark-grown roots under constant temperature (James et al., 2008). In 

conclusion it is possible that several non-photic mechanisms contribute to entrainment.  

 

 

1.5 Modelling the plant circadian clock 

There are many definitions for the word “model”, and even in a scientific context this word 

can have different meanings, from simple diagrams to complex equations. Indeed the 

diagram presented in figure 1.2 can be considered as a model. However, given the 

complexity of the circadian system introduced earlier, the dynamic behaviour of the clock 

would be hard to understand without mathematical models. There are many types of 

mathematical models, including Ordinary Differential Equations (ODE) models. 
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Compared to a diagrammatic model, an ODE model is a detailed translation of all the 

model’s inherent steps into differential equations which describe the changes in all factors 

over time (Roenneberg et al., 2008). Therefore mathematical models can incorporate 

detailed dynamics of sets of biochemical interactions. They have been used to summarise 

experimental data, to infer new relations from experimental data, guiding the researcher to 

new testable hypothesis and to find properties of the system that are hard to measure 

directly. If successful the model chosen should not only fit the existing data and but also 

give new biological insights on a system (Ay and Arnosti, 2011). Mathematical models 

present the opportunity to derive specific, sometimes non-intuitive, predictions and also to 

carry out critical testing. Simulations will reveal whether the mathematical model is 

capable of reproducing the observed phenomena (Beersma, 2005).  

 

The rest of this section will focus on the ODE models of the plant circadian clock: the 

Locke et al. and the Pokhilko et al. models (Locke et al., 2005a; Locke et al., 2005b; 

Locke et al., 2006; Pokhilko et al., 2010; Pokhilko et al., 2012). They will be referred 

hereafter as the L2005a, L2005b, L2006, P2010 and P2012 models respectively. Their 

differential equations represent biological events such as transcription, translation, protein 

transport and degradation. These models were mainly based on known genetic interactions, 

but also incorporated unknown components and tested new types of connexions. 

Michaelis-Menten kinetics was used to describe enzyme-mediated degradation of proteins, 

and Hill functions were used to describe activation and repression of transcription. The 

number of equations and parameters increased progressively, and more data were 

described and used to constrain parameters in newer versions of the clock models. LHY 

and CCA1, which have redundant functions, were always treated as a single component. 

The acute light response in activation of PRR9, LHY/CCA1 and GI transcription was 

modelled using a light-sensing activator (protein P) which accumulates in darkness and is 

degraded in the light. The L2006, P2010 and P2012 models were used in this thesis to 

simulate clock gene expression in shoots and roots (chapter 7). 

 

1.5.1 The Locke et al models 

From the molecular loop identified in the Arabidopsis circadian clock (Alabadi et al, 

2001), the first mathematical model was proposed in 2005 by Locke et al. A single 

feedback loop between LHY/CCA1 and TOC1 was sufficient to generate robust 24 h 

oscillations (Locke et al., 2005a). It included a hypothetical component X as an 
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intermediate activator between TOC1 and LHY/CCA1 to simulate the ~12 h delay observed 

experimentally between TOC1 expression and LHY/CCA1 induction. 

 

As for many biological systems, the data available for parameter fitting was noisy and 

varied. That is why a cost function was constructed to quantify the agreement between the 

model and key experimental features.  The cost function was a sum of five terms that 

quantify the agreement between the model and qualitative experimental features: period in 

LD cycles, in DD cycles, phase, broadness of LHY mRNA peak and amplitude. This cost 

function, together with a global search of parameter space allowed identification of an 

optimal set of parameter values. A significant advantage of this approach is that it can 

show that a gene network is inconsistent with experimental data because its circuit is 

incorrect, not due to a poor choice of parameter values. Similar cost functions and global 

parameter optimisation were used for the L2005b and L2006 models.  

 

But the L2005a model failed to account for significant experimental data, such as rhythms 

observed in cca1/lhy plants. In 2005 other genes were known to play a role in the clock but 

they had not been located relative to the LHY/CCA1 - TOC1 loop. Therefore, an 

interlocked feedback loop network capable of oscillation in this double mutant was 

developed (Locke et al., 2005b) and another hypothetical component (Y) was added. It 

activated TOC1, which in turn repressed Y, forming a second loop. This evening loop was 

retained in the L2006 model (figure 1.4.A). TOC1 still activated LHY through X, and light 

input occurred via activation of Y and LHY. This model fitted not only the data specified in 

the parameter optimization, but also other experimental results.  

 

To identify Y, transcript abundance of clock-affecting genes with peak mRNA levels in the 

evening in both wild type (WT) and cca1/lhy double mutant seedlings were analysed. GI 

mRNA levels fitted very well to the predicted Y profiles in WT and mutants. Moreover the 

GI promoter also includes an Evening Element (EE), the putative binding site for LHY 

acting as an inhibitor.  
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A. L2006 

 

B. P2010 

 

C. P2012 

 

Figure 1.4: Diagrammatic representation for the last three ODE models of the 
Arabidopsis circadian clock 
The main elements - especially genes (boxed), transcriptional regulation (solid lines) and the 
location of light inputs (flashes) are shown. Elements of the morning and evening loops are in 
yellow and grey boxes respectively. The locations of parameters that will be modified in 
chapter 7 are also shown: the parameters in red represent constants of inhibition by 
LHY/CCA1 (e.g. g16), the parameters in blue are some of the parameters directly related to 
light inputs (e.g. m1), and some other parameters are in black (e.g. g1).  
A. L2006 model (Locke et al., 2006). X and Y are unknown components 
B. P2010 model (Pokhilko et al., 2010). Proteins are shown only for ZTL, LHY (LHYmod) and 
TOC1 modified (TOC1mod). Posttranslational regulation is shown by dashed arrows.  
C. P2012 model (Pokhilko et al., 2012). Proteins are shown only for the EC, ZTL and COP1. 
The EC protein complex is denoted by a dashed black line. Posttranslational regulation of 
TOC1 and EC by GI, ZTL and COP1 are shown by red dashed lines. Posttranslational 
regulation by light (or dark) is shown by small yellow circles. 
Diagrams adapted from Pokhilko et al. (2010 and 2012). 
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Importantly, mathematical models can produce quantitative predictions of dynamic 

processes that allow detailed experimental design. For instance, the acute light activation 

of Y in WT was predicted to be very transient (just after dawn), allowing targeting tissue 

sampling to the appropriate interval, whereas conventional sampling had obscured this 

induction of GI. The L2005b model highlighted the importance of GI as a component of 

light input to the clock. 

 

A further study presented evidence that GI acts with TOC1 in the feedback loop of the 

circadian clock (Locke et al., 2006). This was an advance in systems biology because GI 

was identified as a candidate gene using experiments based directly on predictions from 

mathematical modelling. The L2006 model was extended to include a third loop between 

PRR7/PRR9 and CCA1/LHY (figure 1.4.A). This three loop network consisted of morning 

and evening oscillators coupled intracellularly. It accounted for additional experimental 

data, especially the rhythmic toc1 mutant allele, and allowed tracking of dawn and dusk. A 

very similar structure was proposed simultaneously by Zeilinger et al. (2006). The two 

models differ slightly in light induction of Y and LHY/CCA1, and in the details of the 

morning loop mechanism.  

 

These models were not yet complete, as they did not incorporate known clock-affecting 

genes such as PRR5, ELF4 and LUX. However, even incomplete mathematical models can 

be useful in providing a framework to understand the existing experimental results, in 

focusing future experimental work on key regulatory interactions that reveal the location of 

additional genes within the network and in informing the detailed design of these 

experiments (Locke et al., 2006). The L2006 model was used to identify GI as a mediator 

for long-term response of the shoot clock to sucrose (Dalchau et al., 2011). 

 

1.5.2 The P2010 model 

Although most of the L2006 model structure remained in the P2010 models, it was refined 

and other components and connections were added to this later version of the clock model 

(figure 1.4.B). Besides, some post transcriptional and post-translational regulations were 

integrated in the P2010 model. For instance, the unknown component X used in previous 

models was replaced by a modified TOC1 protein, which represented a post-translational 
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modification or complex dependent on TOC1 protein, based on the fact that TOC1 can 

bind to protein complexes at the CCA1 promoter (Pruneda-Paz et al., 2009). 

 

The other unknown component, Y, remained but it was distinguished from GI. Indeed GI 

did not perform all the function of Y (Locke et al., 2005b). Y was still a direct activator of 

TOC1 whereas GI became an indirect activator; the direct activation of TOC1 by GI (partly 

represented by Y in the L2006 model) was removed because of the high levels of TOC1 

observed in gi mutants. In addition ZTL was explicitly added to the model. Indeed ZTL is 

necessary for the targeting of TOC1 protein degradation by the proteasome (Mas et al., 

2003). The model described the stabilisation of ZTL at the post-translational level by GI 

protein and the acceleration of TOC1 protein degradation by ZTL (Kim et al., 2007). This 

caused an unexpected, indirect activation of TOC1 expression, consistent with the 2.5-fold 

increase of mean TOC1:LUC expression observed in lhy/cca1 compared with lhy/cca1/gi 

(Locke et al., 2006). 

 

PRR9/7, also modelled as only one component in the L2006 model, was split into two 

components in the P2010 model: PRR9 and PRR7. Another component was introduced in 

the “morning loop”: the night inhibitor (NI). This has an important function in controlling 

the phase of morning gene expression in the P2010 model. Experimentally, PRR5 together 

with PRR7 and PRR9 is important for the regulation of LHY and CCA1 (Farre et al., 2005; 

Nakamichi et al., 2005; Nakamichi et al., 2010). New data on the prr5/7 mutant showed a 

good match to the model, supporting the idea that PRR5 is an essential part of the NI. The 

regulation of LHY/CCA1 expression by a wave of inhibitors (PRR9, then PRR7 and 

NI/PRR5) allowed dawn and dusk sensitivity, and the morning loop responded to changing 

photoperiod, contrary to the L2006 model. 

 

An inhibition of PRR9 expression by TOC1 was introduced because overexpression of 

TOC1 was shown to reduce PRR9 mRNA to a negligible level (Matsushika et al., 2002; Ito 

et al., 2005). The model also matched the low level of PRR9 in LL because the acute 

induction of PRR9 at light-on does not occur in these conditions 

 

Compared to previous models, some parameter values (35 out of 90) were constrained with 

experimental data. The remaining parameters were fitted to two types of data: the 

quantitative profiles of clock components, and values of FRPs in WT and mutants under 
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varying environmental conditions. Compared to previous models, the P2010 model 

matched more data in varying environments and mutants. In addition, the distinction 

between PRR9, PRR7 and NI/PRR5 and their modulation by light increased the flexibility 

of entrainment and the robustness of the present model to parameter changes compared 

with the L2006 model. 

 

The P2010 model was used and modified by Guerriero and colleagues to introduce 

stochasticity in the model (Guerriero et al., 2012). This allowed explanation of the 

dampening of rhythms observed experimentally in plants under LL. 

 

1.5.3 The P2012 model 

Compared to the other updates of the clock model, the P2012 model also kept some 

features of the previous versions but introduced more significant changes. The morning 

loop between LHY/CCA1 and the PRRs has been maintained, and LHY/CCA1 still 

represses evening genes in the P2012 model. As in the P2010 model, PRR9 is repressed by 

an evening component, but this repression is now achieved by the Evening Complex (EC). 

The EC has been integrated in the model in accordance with recent experimental data. 

Three proteins form this complex: ELF3, ELF4 and LUX. These were shown to form a 

complex and bind to the promoter of target genes  (Nusinow et al., 2011), including PRR9 

and LUX (Dixon et al., 2011; Helfer et al., 2011). ELF3, ELF4 and LUX mutations caused 

striking, arrhythmic phenotypes (Hicks et al., 1996; Covington et al., 2001; Doyle et al., 

2002; Hazen et al., 2005) so they were already suspected to operate in the clock 

machinery. But they were not integrated in previous models because their functions were 

unclear.  

 

The post-translational regulation of ELF3 by COP1 (Yu et al., 2008) was also added to the 

model. ELF3 protein was also connected to GI, via the EC, based on experimental data (Yu 

et al., 2008) and the assumption that GI can accelerate the destruction of the EC by 

bringing F box proteins into its vicinity. In turn, the EC was assumed to repress the 

expression of GI and the four other evening genes TOC1, ELF3, ELF4 and LUX. This 

assumption was based on experimental data showing that the expression of the 5 evening 

genes was derepressed in elf3, elf4 and lux mutants (Fowler et al., 1999; Kikis et al., 2005; 

Kolmos et al., 2009; Dixon et al., 2011; Helfer et al., 2011). 
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Another significant modification compared to previous models was the connection 

between TOC1 and LHY/CCA1. TOC1 was previously thought to be an activator of these 

morning genes based on genetic data (Alabadi et al., 2001). The role of TOC1 as a 

repressor was already suggested in 2002 (Matsushika et al., 2002). In addition, timeseries 

data on the ztl and prr7/9 mutants were most consistent with TOC1 being an inhibitor 

instead of an activator of LHY and CCA1 (Pokhilko et al., 2012). The authors also 

presented new data with toc1 mutant and TOC1-ox plants that further supported the 

negative role of TOC1 in regulation of LHY/CCA1. Moreover, two other papers showing 

that TOC1 acts as a repressor were published a few months apart (Gendron et al., 2012; 

Huang et al., 2012).  

 

The structure of the P2012 model includes the repressilator, i.e. the three inhibitor ring 

oscillator that was also recently found in the mammalian clock (Hogenesch and Ueda, 

2011). In plants this repressilator includes the EC, LHY/CCA1 and the PRR genes: in the 

late night the EC is inhibited by the rise of LHY/CCA1; these morning genes are then 

inhibited by the PRRs during the day, and the PRRs are inhibited by the EC in the early 

night. This new structure allows re-interpreting previous observations: for instance the 

previously suggested activation of LHY and CCA1 by EC genes can now be explained by a 

double repression via the PRRs.  

 

Multiple light inputs affect the kinetics of the system. Many of them were already present 

in the P2010 model. Others were added together with the EC: this complex is regulated by 

light through the light-regulation of COP1. The model provides an explanation for the 

different response to short light pulses at various times of the day (the PRC). Simulations 

with the P2012 suggest that the PRC is mostly determined by the acute light response in 

LHY/CCA1 expression. Such activation results in phase delay or phase advance depending 

on the time the light pulse is given.  

 

Compared to previous models, the P2012 model explains more experimental data from WT 

and mutant plants in various environmental conditions. But like any other model it has 

some limitations. For instance the identity of the “protein P” used to simulate the acute 

induction of several clock gene expression by light is still not known. Although the light 

intensity can be modulated for simulations, the model does not distinguish between 

different light qualities. Other inputs than light, such as temperature, are not included in the 
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model. More generally, other clock components and mechanisms of regulation need to be 

integrated. Finally it is assumed that the clock is identical in every cell of the plant, 

although increasing evidence suggests tissue and organ specificity. This last point is the 

object of the next section. 

 

 

1.6 From cell autonomous rhythms to organ specific 
clocks 

It has been generally assumed that all plant cells contain autonomous clocks (Harmer, 

2009). Rhythms were recently observed at the cellular level in plants (Yakir et al., 2011) 

and an intact plant is not necessary for rhythms to persist. For instance circadian gene 

expression could be observed in suspension cell cultures and calli (Nakamichi et al., 2003; 

Sai and Johnson, 1999; Kim et al., 2003b; Wilkins and Holowins, 1965) and in excised 

organs (Hall et al., 2001; Thain et al., 2002). Although rhythms have not been observed in 

isolated cells in plants yet, cell-autonomous rhythms are found in single cells from various 

branches of life, from the simplest to the most complex organisms.  The clock in the 

cyanobacterium Synechococcus exerts a pervasive control over cellular processes including 

global gene expression and the regulation of nitrogen fixation so that it is maximal in the 

night phase (Johnson et al., 2011). In Ostreococcus tauri, most of the biological processes 

appear to be rhythmically regulated at the transcriptional level (Pfeuty et al., 2012). 

Persistent circadian rhythms can also be observed in single cells from mammals, such as 

fibroblasts (Nagoshi et al., 2004) and in red blood cells (O'Neill and Reddy, 2011). 

 

Although cell autonomous rhythms are found in various multicellular organisms, the 

complexity of circadian outputs is thought to be an emergent property of intercellular 

interactions in animals (Bell-Pedersen et al., 2005). In mammals, a master clock is located 

in the SCN and synchronises the peripheral clocks of different organs (Richards and Gumz, 

2012). Rhythms can also be observed in most if not all plant tissues. However, the 

intracellular clocks of different organs have been considered independent in plants. Thain 

et al. showed that the expression of the same gene (CAB or CHS) could be set at different 

phases in different organs and tissues of a single plant, by applying different LD treatments 

to restricted tissue areas in Arabidopsis and tobacco (Thain et al., 2000).  
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In the same intact plant rhythms with different FRP can coexist under constant conditions, 

supporting the idea of autonomous and independent circadian systems in plant cells, but 

suggesting that these oscillators may differ between cells or tissues. Leaf movement 

rhythms have a longer FRP than rhythms in stomatal conductance, photosynthesis or 

expression of the CAB2 gene (Millar et al., 1995b; Somers et al., 1998b). Stomatal 

conductance and carbon assimilation also have different FRP under LL (Dodd et al., 2004). 

CHS expression is similar in epidermal tissues of shoots and light-grown roots, but its 

period differs from that of CAB expression in shoots under LL (Thain et al., 2000; Thain et 

al., 2002). As the different FRP mentioned above were observed in outputs that are 

primarily generated by different cell types, the variation may be due to different clock 

composition between cells rather than distinct clock mechanisms existing within a single 

cell. Several studies support this idea. PRR3 is thought to modulate clock functions and is 

expressed most strongly in the vasculature (Para et al., 2007). In prr3 plants, genes with 

widespread expression patterns have a modest short period phenotype, whereas a stronger 

phenotype is seen for genes preferentially expressed in the vasculature. This supports the 

idea that PRR3 acts primarily in that tissue (Para et al., 2007). More recently, Yakir et al. 

monitored rhythms at the cellular level and showed that stomatal guard cells have a 

different FRP from surrounding epidermal and mesophyll leaf cells (Yakir et al., 2011). 

However the authors showed that many clock genes were rhythmically expressed in guard-

cell enriched extracts as well as in the whole leaf, although their expression profiles may 

be cell or tissue specific. 

 

In many circadian mutants, multiple clock outputs are affected in a similar manner (Dodd 

et al., 2004; Para et al., 2007; Thain et al., 2002; Hall et al., 2002). This suggests that the 

clocks driving rhythmicity in diverse cell types are fundamentally similar, sharing many 

components but exhibiting some biochemical differences (Harmer, 2009). An example 

illustrating this idea is the differential effects of the toc1 mutations on the rhythms of 

CAB2 expression and cytosolic free calcium ([Ca2+]cyt) (Hotta et al., 2008). The toc1-2 

mutation results in a truncated protein, whereas the mutant allele toc1-1 leads to a full 

protein that has an amino acid change in the CCT domain (CONSTANS, CONSTANS-

LIKE and TOC1). In the toc1-2 mutant, the FRP of both CAB2 expression and [Ca2+]cyt 

were similar and shorter compared to the wild type, but the toc1-1 mutation only affected 

the FRP of CAB2. The authors suggested that in the toc1-1 mutant, the mutation on the 

CCT domain of TOC1 impaired its interaction with other proteins in a cell-specific 
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manner, resulting in a shorter FRP of CAB2 expression in mesophyll and epidermis cells 

but without affecting the rhythms of [Ca2+]cyt in other cell types. 

 

Different output rhythms are also observed in different organs of animals, such as 

Drosophila and mammals, but the clock components are thought to be shared between the 

cells of the same organism (Allada and Chung, 2010; Richards and Gumz, 2012). In 

Drosophila, the same PER-based clock is found in peripheral and brain clocks, and can be 

directly synchronised to LD cycles in these various organs. The different rhythms observed 

in Drosophila may be due to tissue-specific control of circadian outputs (Allada and 

Chung, 2010). In mammals, tissues that are not exposed to light are entrained by other 

inputs, such as feeding cues, and display different rhythms compared to the SCN clock 

(Richards and Gumz, 2012). Similarly, the various rhythms observed in plants might be 

due to differences in input or output pathways within the circadian systems of different 

cells or tissues. For instance rhythmic output genes are differentially regulated by light and 

temperature cycles (Michael et al., 2003; Michael et al., 2008), but most if not all clock 

genes are rhythmic in both conditions (photo- and thermocycles). In the dark-grown roots 

of plants under LL, many less genes are rhythmic compared to shoots (James et al., 2008). 

Nevertheless one would expect that at least the same clock genes are rhythmic in shoots 

and roots of WT plants.  

 

Our laboratory has studied mature, hydroponically grown Arabidopsis plants and showed 

that clock gene expression differed markedly between roots and shoots (James et al., 

2008). In constant conditions, only the morning loop (CCA1/LHY and PRR7/9) was 

rhythmic in roots, and the period was longer in roots compared to shoots. Although TOC1 

transcripts oscillated in both shoots and roots under LD cycles, its rhythm was not detected 

at the mRNA level in roots under LL. A similar behaviour was observed for other evening 

genes implicated in the shoot clock: GI, LUX, ELF3 and ELF4. In addition, TOC1 protein 

did not seem to oscillate in roots under LL, whereas the levels of LHY protein were 

rhythmic under the same conditions. Furthermore, the toc1-10 mutation did not shorten the 

FRP of LHY mRNA in dark-grown roots, contrary to data for the shoots. This suggested 

that TOC1 was not part of the root core clock.  

 

In the shoot clock model TOC1 and GI are repressed by LHY/CCA1 (Pokhilko et al., 

2012) and these repressions are thought to be mediated via binding of LHY and/or CCA1 
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to the EEs present in the promoters of TOC1 and GI. Indeed EEs are necessary and 

sufficient to confer evening-phased circadian regulation, and CCA1 and LHY are likely to 

act as repressors via the EE (Harmer and Kay, 2005). However EE-binding complexes 

containing LHY could be detected in shoots but not in roots (James et al., 2008). The 

authors suggested that the morning and evening loops found in the shoot clock are 

disengaged in the root clock because CCA1 and LHY would be unable to inhibit gene 

expression in roots. In addition microarray data showed that fewer genes display 

rhythmicity in roots than in shoots, 3.2% and 13.7% respectively. Notably for output genes 

regulated by EE and expressed both in shoots and roots, such as CCR2 and CHS, the 

transcript abundance in LL was rhythmic only in shoots, not in roots (James et al., 2008). 

Moreover the genes that were rhythmically expressed in roots had a longer FRP compared 

to shoots, consistent with the long FRP observed in the morning loop in roots. For instance 

RVE1 and RVE8 peaks of expression were delayed in roots relative to shoots, consistent 

with control by the root specific clock. Interestingly, one phosphoenolpyruvate carboxylase 

kinase gene (PPCK) in soybean is under robust circadian control in shoots but not in roots, 

and its promoter contains a sequence very similar to the EE found in Arabidopsis evening 

genes (Sullivan et al., 2004).  

 

However under LD conditions and constant temperature, transcript levels of most if not all 

clock genes oscillated in roots and were in phase with shoots in Arabidopsis (James et al., 

2008). In addition the abundances of LHY, CCA1 and TOC1 proteins closely followed the 

transcript abundances. The rhythms in dark-grown roots under LD and constant 

temperature were therefore thought to be synchronized by a signal from the shoots (James 

et al., 2008). The authors reasoned that this signal might be related to photosynthesis, such 

as the diurnal fluctuations in the supply of carbohydrate to the roots. Indeed sugar 

metabolism strongly influences cycling gene expression (Blasing et al., 2005). Addition of 

sucrose in the medium at dusk in LD resulted in an expression pattern like that observed in 

LL: it extended the next expression of CCA1 and PRR9 in roots but not in shoots, but it did 

not affect the expression of TOC1 in roots (James et al., 2008). Furthermore, DCMU, a 

specific inhibitor of photosynthetic electron transport, progressively disrupted operation of 

the root clock.  

 

Therefore, the plant circadian clock appeared to be organ specific, but not organ 

autonomous (James et al., 2008). The root clock seemed to be a simplified version of the 
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shoot clock, with only the morning loop running in dark-grown roots of WT plants. 

However, the expression of evening clock genes such as TOC1 regained rhythmicity in the 

prr7/9 double mutant under LL (James et al., 2008), suggesting that the root clock may be 

more complex than a simple loop between CCA1/LHY and PRR7/9. The structure of the 

root clock had to be further investigated. In addition the mechanism of root clock 

entrainment remained unclear. 

 

 

1.7 Aims and outline of the work 

The general aim of my project was to add organ specificity to the plant circadian clock 

model. This work focused on the root circadian clock in Arabidopsis thaliana, its 

differences and similarities with the shoot clock, and the synchronisation of the two organs 

under diurnal conditions. Both experimental and theoretical approaches were used and 

focused on the transcriptional level of regulation. 

 

In order to obtain more data of clock gene expression I developed an imaging system to 

monitor rhythms in both shoots and roots simultaneously. Similar systems already existed 

but with plants usually grown on media containing sucrose, and with their roots exposed to 

light. I optimised an automated protocol to image plants in more physiological conditions 

(chapter 3).  

 

Our lab showed that the root clock was a simplified slave version of the shoot clock in 

Arabidopsis. They used mature plants grown in hydroponic solution in black boxes so the 

roots were kept in the dark (James et al., 2008). One could wonder whether the differences 

observed between shoot and root clocks were simply due to the different light conditions 

experienced by these two organs. To address this question I used the same experimental set 

up as James and colleagues except that I exposed the roots to the same light conditions as 

shoots. I optimised a RT-qPCR protocol used in our lab, which allowed me to better 

compare the amplitudes of rhythms in shoots and roots as well as their periods. I performed 

similar experiments using imaging, i.e. with light-grown roots and dark-grown roots as a 

control. To investigate the possible effects of light on the root clock I illuminated the roots 

with either white light, or red and/or blue light; I also carried out experiments in constant 
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darkness. I compared the rhythms of several clock and output genes expression in both 

shoots and roots under these different light and dark conditions (chapter 4). 

 

To investigate the entrainment of the root clock, plants were imaged under various light 

and dark conditions. These included LD 12/12 cycles preceding or following LL 

conditions, conflicting LD cycles, T cycles and skeleton photoperiods. Some plants were 

decapitated to study the entrainment of excised roots. The entrainment of the root clock by 

temperature cycles was also addressed (chapter 5).  

 

Preliminary studies on the cca/lhy double mutant and the toc1 and ztl single mutants were 

carried out. Together with other results, they could provide information on the role of these 

genes in the root clock, and the possible differences with the shoot clock (chapter 6). 

 

In parallel with the experiments mentioned above, three mathematical models of the shoot 

clock were modified to fit the root clock data. The Circadian Modelling software was first 

used to simulate the qualitative differences between shoot and root clocks. Then global 

parameter optimisations were performed with the Systems Biology Software Infrastructure 

(SBSI). Simulations were then done with COPASI, using different sets of parameters in 

various conditions, and compared to clock gene expression profiles in roots (chapter 7). 

 

Based on an increasing number of root data that I obtained in various conditions during my 

PhD, I progressively modified the most recent versions of the mathematical models in 

order to better understand the differences and similarities between shoot and root clocks. 
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2 Materials and Methods 

 

The experimental data were obtained using two different methods, RT-qPCR or imaging. 

The protocols were specific for each method, from the media used to the data collection. A 

notable difference was the culture conditions: RT-qPCR data came from plants grown in 

hydroponic culture, whereas imaging data were obtained with plants grown on agar plates. 

The two methods will be referred as “hydroponic system” and “imaging system” hereafter. 

Both systems were optimised, from the plant growth conditions (including the media used) 

to the data analysis. The development of the imaging system is described in chapter 3, and 

only the optimised protocol is summarised in this chapter. The protocol for the hydroponic 

system and changes to the method used in the lab earlier (James et al., 2008) are identified. 

Material and methods common to both systems are presented in sections 2.1 and 2.4. 

Finally the methods used for modelling are presented in section 2.5. All the chemicals were 

from Sigma unless stated otherwise. 

 

 

2.1 Seeds 

2.1.1 Seed stock 

Different types of Arabidopsis thaliana were used depending on the systems. For the 

hydroponic system, the Col-0 Wild-Type (WT) was used, as in (James et al., 2008).  

 

For imaging experiments, several [clock gene promoter]:LUC+ (luciferase) fusions were 

used. They were in the Ws (Wassilewskija) Wild-Type (WT) background unless stated 

otherwise. The seeds with the following constructs were gifts from Andrew Millar and 

used in previous publications: CCA1:LUC+, TOC1:LUC+, PRR9:LUC+, CCR2:LUC+ 

and CAT3:LUC+  

(Doyle et al., 2002; Edwards et al., 2010; Kim et al., 2008; McWatters et al., 2007). Seeds 

with the GI: LUC+ were also gifts from Andrew Millar. The toc1-4 and ztl-105  mutants 

with the CCR2:LUC+ construct were in Col-0 background and were gifts from Karen 

Halliday. The cca1-11 lhy-21 double mutant with the CCR2:LUC+ construct was from the 

Nottingham Arabidopsis Stock Centre (reference N9809). Seeds with the PRR7:LUC+ and 

the RVE1: LUC+ construct were both in the Col-0 WT background; these seeds came from 
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Rob McClung’s and Stacey Harmer’s lab respectively (Rawat et al., 2009; Salome and 

McClung, 2005a). 

 

These seeds were first sown on soils with 0.2 g/L of Intercept (Bayer) and grown under LL 

and constant temperature (20°C) for bulking up. When plants started flowering the 

Arasystem (http://www.arasystem.com/) was used for each individual to avoid cross-

fertilisation, seed contamination and spreading of seeds. Once the plants were dried the 

seeds were harvested and stored in darkness. 

 

2.1.2 Seed surface sterilisation and stratification 

Before starting any experiment seeds were surface sterilised. They were first washed with 

70% ethanol for 1-2 min, and then sterilised for ~10 min with a solution containing 2-3% 

bleach and 0.1% tween 20.  Finally they were rinsed 3 times with sterile water. After this 

surface sterilisation, the seeds were stratified for 2-4 days at 4 °C before sowing.  

 

 

2.2 Hydroponic system  

Initially the method of James et al. (2008) was used (section 4.2). Subsequently an 

optimised protocol was used for the other experiments presented in this thesis. The 

optimised protocol is presented below, and the differences (if any) with the previous 

protocol (James et al., 2008) are in italics at the end of each subsection. 

 

2.2.1 Media 

The hydroponic solution contained the macro- and micronutrients presented in Table 2.1. 

Stock solutions were first prepared and autoclaved. These were then diluted in distilled 

water and the pH was adjusted to 5.7 with 1M NaOH. This solution was not autoclaved.  

The same solution was used to prepare sterile solid medium used to grow plants for the 

first 10-12 days (cf. below). 0.7 % agar was added to the hydroponic solution described 

above, and then autoclaved before pouring in 1.5 mL eppendorf tubes. 
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Table 2.1: Nutrients and their final concentrations used in the hydroponic solution 

Macronutrients Final concentration (mM) Micronutrients Final concentration (µM) 
KNO3 1.25 CuSO4 0.16 
Ca(NO2) 0.5 ZnSO4 0.38 
MgSO4 0.5 MnSO4 1.8 
FeNaEDTA 0.0425 H3BO3 45 
KH2PO4 0.625 (NH4)6Mo7O24 0.015 
NaCl 2 CoCl2 0.01 
 

 

2.2.2 Seed sowing and plant transfer 

Seeds were sown on 1.5 mL eppendorf tubes filled with solid medium (detailed above). 

The tips of these tubes were cut so that roots could later grow through. About 10 days after 

germination (before the roots reached the bottom of the tubes), plants were transferred to 

boxes containing the hydroponic solution. These boxes were covered with black tape to 

keep the roots in the dark, except for the experiment with light-grown roots where 

transparent boxes were used (figure 2.1). These boxes contained a hydroponic solution 

(table 2.1) that was replaced after ~ 10 days (i.e. about a week before harvesting).  

 

  

 
Figure 2.1: Two types of boxes used for the hydroponic cultures 
The black box (left) was used for dark-grown roots, and the transparent box (right) was used 
for light-grown roots. The same black lid was used for both boxes. It has 13 holes where 1.5 
mL ependorf tubes can be placed (each tube containing one plant). If less than 13 plants were 
used per box, the remaining holes were plugged with corks (as in the picture) or black tape. For 
light-grown roots extra lights were used at the bottom of the growth cabinet to have even light 
on shoots and roots. 
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Differences: The rubber corks shown in figure 2.1 were replaced by black tape. Every 

black box used was checked and retaped if necessary to make sure it was “light-tight”. 

This is because light (even at very low levels) turned out to have a significant effect on the 

root clock (see chapters 4 and 5). Note that boxes cannot be perfectly light-tight: some 

light can penetrate into the boxes at least through the eppendorf tubes (visible on the right-

hand side box in figure 2.1). 

 

2.2.3 Entraining conditions 

All plants were first entrained in 12 h white light (110-130 µmol.m-2.s-1):12 h dark 

(referred as LD) for about 4 weeks. The growth cabinet was temperature and humidity 

controlled. The humidity was set at 60%. The temperature was constant until the end of 

harvesting (20 °C) except for the “temperature experiment” (see below).  

 

Differences: There is some variability in the light intensity experience by any plant. 

However this variability was later reduced by not using the corners of the growth cabinet 

where the light intensity was lower. 

 

2.2.4 Harvesting and sample storage 

4 week old tissue (rosette leaves or roots) was harvested every 3 or 4 hours over 3 or 4 

days depending on the experiment. During harvesting plants were released into LL or DD 

(usually after harvesting one last DL cycle). For the “temperature experiment”  (section 

5.7) the conditions of the cabinet were set to DD when harvesting started and the 

temperature alternated between 12 °C and 20 °C on a 12 hour cycle, 12 hours out of phase 

from the previous light dark cycle, i.e. the previous dawn became the new subjective dusk 

(transition from 20 to 12 °C). 

 

For each time-point rosette leaves and roots were harvested separately. All the shoots/roots 

from the same box (8-10 plants per box unless stated otherwise, fig. 2.1) were pooled 

together, rapidly frozen in liquid nitrogen and stored at -80 °C. For the root tissue, most of 

the water (liquid medium) was removed in a few seconds with a tissue before freezing. To 

harvest time-points during dark cycles, a green safety light was used. All the samples were 

ground in liquid nitrogen and store at -80 °C before RNA extraction and quantification. 



2. Materials and methods 

 

 
 

63 

 

Differences: In James et al. (2008) plants were harvested about a week later, so they were 

close to flowering. No green safety light was used to harvest time-points during dark cycles 

(so plants were exposed to dim white light for a few seconds at each time-point).  

 

2.2.5 RNA extraction, DNase treatment and quality control 

RNA was extracted using the RNeasy Plant Mini kit (Qiagen). In this kit the RLT buffer 

was used by default. The purity of RNA was then estimated by spectrophotometry: the 

absorbance (A) at 230, 260 and 280 nm was measured. The A260/A280 and A260/A230 

ratio were usually greater than 1.8 and 2 respectively, indicating a relatively pure RNA 

extract. If they were less than 1.7 and 1.9 respectively, the extraction was repeated a 

second time with the same RLT buffer and a third time if necessary but with the RLC 

buffer from the same Qiagen kit. Rarely the ratios were still not good enough after these 

three extractions. In that case the extracts were pooled together and purified by ethanol 

precipitation. RNA extracts were stored at -80 °C. 

 

Each RNA extract was treated with DNase (Ambion DNA-free kit) according to the 

manufacturer’s recommendation, except that the incubation time was increased to 50 min 

at 37 °C. After this treatment each sample was quantified again with a nanophotometer 

(Geneflow). In most cases, the 260/280 and 260/230 ratios were unaltered; if not, the 

extraction was repeated.  

 

The efficiency of the DNase treatment was checked by PCR and gel electrophoresis. For 

each sample a 1 µL aliquot was mixed with 1 µL actin primers (table 2.2), 3 µL DEPC 

(diethylpyrocarbonate) water and 5 µL GoTaq Hot Start Green Master Mix (Promega). 

Then a PCR was run for 35 cycles, each cycle consisting of 3 steps: denaturation at 94 °C, 

annealing at 55 °C and elongation at 72 °C. The PCR products were then run on a 0.5 x 

TBE/1.2% Agarose gel containing 3 µl EtBr (10mg/ml)/100 ml gel. A 100bp ladder 

(Promega G210A) was also used. The gel was run at 100V for 1 hour. Any sample that 

displayed a band at ~500 bp was still contaminated with DNA and therefore had to be 

treated again with the DNA-free kit. 

 

Once the samples were DNA-free, a denaturing agarose gel electrophoresis was used to 

check the integrity of RNA preparations. The gel contained 1.3% agarose, 3.7% 
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formaldehyde and a MOPS buffer (3-(N-morpholino)propanesulfonic acid, 4.2 g/L, pH 

adjusted to 7 using NaOH). 1 µg of RNA was used, and a loading buffer with ethidium 

bromide (0.1 g/L) was added to each sample. The gel was run for 1 hour at 80V and then 

illuminated with UV light. The cytosolic 25 S and 18 S ribosomal RNAs usually appeared 

as discrete bands or peaks and in approximately 2:1 ratio. If not, the whole process of RNA 

extraction and quality control was repeated.  

 

Differences: Previously RNA extracts were quantified only before the DNase treatment, 

and with a different spectrophotometer (Genquant, Amersham international). The 

efficiency of the DNase treatment was not systematically checked by PCR and gel 

electrophoresis. RNA quality gels were not carried out systematically.  

 

2.2.6 RT-qPCR 

After assuring the quality of each extract, their RNAs were reverse-transcribed using a 

cDNA synthesis kit with a Superscript™ II reverse transcriptase (Invitrogen). For each 

sample 1 µg of total RNA was used for the reverse transcription, and oligo dT was used as 

primer. The cDNA were then diluted 10 times with DEPC water.  

 

The cDNA were then quantified by qPCR using the SyBr fluorophore (Brilliant SYBR 

Green III, Stratagene) and gene-specific primers (table 2.2). Reactions were conducted 

using at least one primer predicted to span an exon-intron boundary. The expression of 

ISU1 was more constant over time courses and between organs compared to the expression 

of UBIQUITIN (UBQ). Therefore ISU1 served as a reference gene for the amounts of 

starting mRNAs. The reactions were conducted in the Mx3000P qPCR system (Agilent) 

 

Differences: Previously the cDNA was synthesised with random hexamers. The 

fluorophore was SYBRI (Stratagene). Previous primers used to amplify GI were replaced 

by new ones giving a shorter amplicon. UBQ was replaced by ISU1 as reference gene. 

Standards were not systematically used (i.e. not on each plate), so the absolute quantity of 

mRNA could not always be determined. Instead the quantifications were relative, e.g. 

calibrated to the maximum value in the time-course. 
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Table 2.2: Primers used for PCR and qPCR 
The actin primers were used for simple PCR, to check for DNA contamination in RNA extracts. The 
other primers were used for qPCR. For genes marked * the primer labelled (1) were the ones that 
were first used, as in James et al. (2008), and then replaced by the primers labelled (2). The other 
primers were the same as in James et al. (2008). 
 
Target Forward Reverse 
Actin 
(PCR) 

CTTACAATTTCCCGCTCTGC GTTGGGATGAACCAGAAGGA 

CCA1 ATCTGGTTATTAAGACTCGGAAGCC GCCTCTTTCTCTACCTTGGAGAAAA 
LHY GAATTATTAGCTAAGGCAAGAAAGCC GCCTCTTTCTCCAACTTTGTGAAGA 
TOC1 GTGTTCTTATCAAGTGACTGCAGTG CAAGTCCTAGCATGCGTCTTCTTC 
PRR7 GTCTTTAAGTGCTTATCGAAAGGAGC CACTACCACTAGAACTTTGGCATCT 
PRR9 TGTTGAAGTGTATGCTGAGAGGTGC ATCATCACGCAAAGTCAGTCTTCTC 
CHS CAGACAGGACATCGTGGTGGT ACATGAGTGATCTTTGACTTGG 
*GI (1) GGTGTCATACTGAGTGTTTGTGATG CAATGGCATAGTATCTATGAAACAAACG 
*UBC (1) TTAGAGATGCAGGCATCAAGAGCGC CATATTTCTCCTGTCTTGAAATGAA 
*GI (2) CGGGCAACTGATGGAATGCTTG TTGTTGCTGGTAGACGACACTTC 
*ISU1 (2) GCCATCGCTTCTTCATCTGTTGC GTGGGAGAGAAAGATGCTTTGCG 
 

 

The optimised RT-qPCR protocol described above was used for the experiments presented 

in sections 4.4 and 4.5, whereas the previous protocol (James et al., 2008) was only used 

for the experiment presented in section 4.2. To summarise, several steps of the sample 

processing previously used were modified: plant tissue was harvested a week earlier, RNA 

extracts were quantified before and after DNAse treatment, and their quality was then 

systematically checked, oligo dT was used as primers for the cDNA instead of random 

hexamers, SYBR I was replaced by SYBR III in the master mix for qRT-PCR and ISU1 

was used as a reference gene to normalise data. Overall this modified protocol reduced 

variability in our results. 

 

 

2.3 Imaging system 

2.3.1 Media 

Two solid ½ MS media were used for the imaging experiments. First a liquid ½ MS 

medium was prepared from powder (Plant cell culture tested, Sigma) and its pH adjusted to 

5.7 with 1M KOH. This solution was used to prepare two media: one with 1.2% agar and 

without charcoal, and the other one with 1.8% agar and 2% charcoal. The pH of the latter 
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had to be readjusted because charcoal acidifies the medium. The medium without charcoal 

is commonly used in plant biology, whereas the medium with charcoal was used to reduce 

light scattering. These media were then autoclaved 15 min. at 115 ºC and poured on 

120x120 mm square plates (Greiner). First 75 mL of ½ MS medium without charcoal was 

poured per plate. Once this medium was solidified, its upper part (~ 3 cm from the top of 

the plate) was removed and replaced by the medium containing charcoal. Figure 3.2 shows 

images of plates with and without charcoal. More generally the protocol for imaging 

experiments is the result of an optimisation process that is described in chapter 3. 

 

2.3.2 Seed sowing, plant transfer and entrainment 

Two rows of 10-12 transgenic seeds were sown per plate on medium without charcoal. 

Those plates contained about 50 mL of ½ MS medium with 1.2% agar (no sugar). About 

10 days after germination, seedlings were transferred to new plates; usually 2 clusters of 3 

plants were transferred per plate. These new plates contained the same medium except for 

the top part of the plate (in the shoot area) where 2% charcoal was added to darken the 

medium. For experiments with dark-grown roots, the plates and lids were partly covered 

with black tape, as shown in figure 3.2. Plants were then entrained in 12 h light (80-100 

µmol.m-2.s-1):12 h dark cycles (referred as LD) at 20 °C for 3-4 weeks from sowing to 

imaging.  

 

2.3.3 Luciferase assay 

Plates with 3-4 week old plants containing a LUC reporter gene were sprayed with 60 mM 

D-Luciferin (Promega) in 0.01% triton (300 µL per plate) and transferred to the dark 

imaging chamber. Plants with dark-grown roots were sprayed under low intensity green 

light. Each plate was put on the stand shown in figure 3.1 and the roots were kept in the 

dark by an automated covering system or exposed to light depending on the experiments.  

This dark room was set at a constant temperature (20 °C) and various light regimes 

depending on the experiment. Four block of blue and red LEDs could provide up to 20 

µmol.m-2.s-1; by default the light intensity was set to 15 µmol.m-2.s-1 with equal amount of 

blue and red light. 

 

The bioluminescence was detected over time by the Intensified CCD camera 225/18 

(Photek) with a 16 mm lens. This camera, the LEDs and the covering system were 
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controlled by the same software (IFS32, Photek) so that the whole system was automated 

and synchronised: images could be captured in pitch dark, shoots and roots could be 

illuminated with LEDs between two images, but roots could also be covered during light 

cycles. Images were taken for 15 minutes every 1.5 – 3 h in photon counting mode, 

without any filter. The IFS32 software was used to process the data. The luminescence 

could be visualised spatially, as shown in figure 3.2. All the individual images of a time 

course were combined to get one image per plate and per experiment. This image, 

representing the total luminescence per plate recorded over the experiment, was used to 

divide the plate in distinct areas for either roots or shoots. This total luminescence allowed 

me to refine the area to be integrated, taking into account that the shoots moved over time 

and the roots could grow during the experiment. Raw data were then extracted and further 

analysed with Excel (Microsoft). The luminescence of each time-point was normalised 

with the average luminescence of the corresponding time-course over the last LD cycle, 

unless otherwise stated.  

 

 

2.4 Data analysis 

2.4.1 BRASS analysis 

Time-course data from imaging and RT-qPCR experiments were analysed using Biological 

Rhythm Analysis Software System (BRASS) (www.millar.org). The whole time-courses 

were considered and the data from the first day in constant conditions were discarded from 

the analysis (because of possible transient effects), unless stated otherwise. The FFT-NLLS 

suite of programs was used to estimate periods between 15 and 35 h, considered to be 

within the circadian range. The same software was used to estimate phases, amplitudes and 

relative amplitude error (RAE). The RAE is defined as the ratio of the amplitude error to 

the most probable amplitude. It is used to assess individual rhythm robustness: values close 

to 0 indicate robust cycling and values at or near 1 indicate a rhythm with an error value as 

large as the amplitude itself, i.e. not statistically significant. The term “scored rhythmic” 

will refer to any rhythm detected by this BRASS analysis, regardless of the RAE. 
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2.4.2 ANOVA analysis 

The analyses of variance (ANOVA) were carried out with Sigma plot 11.0 (Systat 

Software, Inc.), using the two-way analysis. Significance was determined by using the 

Holm-Sidak method for multiple pairwise comparisons.  

 

2.5 Modelling 

Some parameters of different mathematical models were modified in attempt to fit the root 

clock data. Software was used as detailed below. 

 

2.5.1 Changing model parameters with Circadian Modelling (CM)  

Circadian Modelling (CM) is a flexible, user-friendly software interface for running 

simulations. It was developed by Paul E. Brown and colleagues, and is available at 

http://millar.bio.ed.ac.uk/.   Starting from the Locke et al. (2006) model, referred hereafter 

as L2006 model, the different biological parameters and light conditions can be easily 

changed.  

 

In the L2006 model, CCA1/LHY and PRR7/PRR9 are treated as single components labelled 

LHY and APRR respectively. 16 ODE (Ordinary Differential Equations) describe the 

dynamic expression of the core clock genes and their proteins. Three of them are shown 

below, representing the levels of TOC1, X and Y (GI) mRNA:  

 

(1) 

 
 

 

(2) 
 

 

(3) 
  

 

 

These 3 equations contain the parameters g3, g4, g5 and g6 that were changed (see chapter 

7, section 7.2). g3 and g6 are the inhibition constants for expression of TOC1 and GI, 
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respectively, by LHY. g4 is the activation constant for expression of X by TOC1. g5 is the 

inhibition constant for expression of Y by TOC1. Ci
(j) (t) is the cellular concentration of the 

products of the ith gene (i = T, L, Y, X or P labels TOC1, LHY, Y, X or P); j = m or n 

denotes that it is the corresponding mRNA or protein in the nucleus. α, a, b, c, d, e, f, g are 

Hill coefficients. nj and gj are transcription rates. mj and kj are degradation rates. Θlight (t) 

are light activation terms. 

 

The values of the parameters g3, g4, g5 and g6 were changed manually based on biological 

data and assumptions. Then simulations were run with these different set of parameters to 

try and fit the root data qualitatively. Many combinations of parameters were tried in 

different light conditions. The simulated time-courses of several clock gene mRNA were 

then compared to the root data. 

  

2.5.2 Global parameter optimization using Systems Biology Software 
Infrastructure (SBSI™) 

The Systems Biology Software Infrastructure (SBSI™) was used to optimize the 

parameters for the root clock with supercomputers in Edinburgh. This infrastructure is 

meant to automate the connection between data, models and analysis allowing the updating 

of large-scale data, models and analytical tools with greatly reduced overheads. SBSI™ 

includes algorithms for numerical simulation of complex models and for the indirect 

estimation of unknown parameter values by fitting to data, especially time series 

(http://csbe.bio.ed.ac.uk/sbsi.php). SBSIVisual, a desktop application, was used to access 

SBSINumerics in order to run parameter optimizations. 

 

Optimization attempts to find the best possible parameter values for a biological model to 

reproduce a given set of experimental data. To configure an optimization, a model in 

SBML format and experimental data in SBSI data format must be provided (uploaded). 

The models used were the Locke et al. 2006, the Pokhilko et al. (2010 and 2012) models, 

referred hereafter as L2006, P2010 and P2012 respectively. Root clock data in DD and LL 

were converted into SBSI data format.  

 

To configure the optimization process, several algorithms are available. The Parallelised 

Genetic Algorithm (PGA) was used. Genetic Algorithms (GAs) are search methods based 

on the principles of natural selection and genetics. GAs encode the decision variables of a 
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search problem into strings of alphabets which represent candidate solutions to the 

problem. The strings are referred to as chromosomes, the alphabets are genes and the 

values of genes are termed alleles. In this application, a chromosome would represent a 

candidate set of parameter values to be evaluated. GAs rely on a population of 

chromosomes, which undergo selection and mutation over a number of generations, where 

the evaluation function provides the selection force. The evolution proceeds through the 

following steps: 

1. Initialization - an initial population of candidate solutions is generated by a set up phase. 

2. Evaluation - the fitness values of candidate solutions are evaluated. Each candidate 

solution (or “allele”) gives a cost. This depends on the cost function chosen (see below). 

3. Selection - the best solutions (those with lower costs) are propagated to the next 

generation. 

4. Recombination/mutation - these two processes allow the creation of novel parameter 

sets which may be better than the parental sets. 

5. The novel sets replace the original parental population. 

6. Steps 2-5 are repeated until some terminating condition is reached (e.g. the target cost 

function value, or an absolute number of generations, is reached) 

Several parameters can be configured in this process, for instance the population size, the 

number of generations and the mutation frequency. 

 

Optimization proceeds using an objective or cost function to evaluate the goodness of fit of 

a particular parameter set. The FFT (Fast Fourier Transform) cost function evaluates the 

periodicity of oscillatory models. The target period is defined by the user. For the 

optimisation processes used in this thesis, the target period were chosen between 28 and 30 

h (corresponding to FRPs of clock genes in roots under LL or DD with imaging). For 

example, if the data of CCA1 mRNA are included in this process (note that one can use any 

data that are simulated by the model to constrain the optimisation), and if a set of 

parameters generated during this process gives a simulation with the exact target period 

(say 28 h), the corresponding cost would be 0. In this example, the further away from 28 h 

the simulated period is, the higher the cost. In most cases, the Chi-Squared (χ2) cost 

function was also used: it evaluates the quantitative fit between simulation and 

experimental data.  
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The parameters to optimize and the constraints are configured by the user. Each 

optimisation process presented in this thesis started with the initial parameter values of the 

model used, except for the light (L) and dark (D) parameters: these were modified to 

simulate constant conditions (LL or DD) by setting their values to 0 or 1.  

 

For the L2006 model, 4 parameters were optimised: g3, g4, g5 and g6. They appear in the 

3 equations presented in the previous section. For each of them, the parameter space was 

searched for values between 0.001 and 1000 times their default value. 

 

For the P2010 model, 3 parameters were optimised: g5, g15 and g16. g5 and g16 are the 

equivalents of the L2006 g3 and g6 parameters respectively, i.e. inhibition constants of 

TOC1 and Y by LHY/CCA1. g15 is the inhibition constants of GI by LHY/CCA1. These 3 

parameters appear in the 3 equations below: 

 

(4) 

  

(5) 

  

(6) 

  
 

ci
m and ci stand for dimensionless concentrations of mRNA and protein, respectively. Index 

“i” labels TOC1 (T), Y, LHY (L) and GI (G). 

d, e n, o, s and g exponents are Hill coefficients 

nj and mj are rates constants of transcription and degradation, respectively 

gj are Michaelis-Menten constants 

qj are the rate constant of acute (P-dependent) light activation of transcription 

cp is the concentration of protein P, a light-sensitive activator that accumulates in darkness 

and is quickly degraded by light 

L and D represent Light and Dark (with values between 0 and 1 depending on the light 

conditions) 
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g5, g15 and g16 were allowed to change up to 100 fold (increase or decrease), starting 

from their default values. 

 

For the P2012 model, 2 different sets of parameters were optimised. First a set of six 

Michaelis-Menten constants: g1, g5, g6, g8, g15 and g16. g5 and g15 are the equivalents of 

the L2006 g5 and g15 parameters respectively, i.e. inhibition constants of TOC1 and GI by 

LHY/CCA1. The others are also constants of inhibition. They are presented in the 

equations below: 

 

(7) 

  
(8) 

  

(9) 

  

(10) 

  

(11) 

  

(12) 

  
 

Labels in these equations are similar to the labels in the P2010 model: 

ci
m and ci stand for dimensionless concentrations of mRNA and protein, respectively. Index 

“i” labels LHY (L), PRR9 (P9), PRR7 (P7), the Night Inhibitor (NI), TOC1 (T), the 

Evening Complex (EC) and GI (G). 

a and e exponents are Hill coefficients 

nj and mj are rates constants of transcription and degradation, respectively 

gj are Michaelis-Menten constants 

qj are the rate constant of acute (P-dependent) light activation of transcription 

cP is the concentration of protein P, a light-sensitive activator that accumulates in darkness 

and is quickly degraded by light. 
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L and D represent Light and Dark, with values between 0 and 1 depending on the light 

conditions (e.g. under DD, L=0 and D=1) 

 

Finally a set of 5 “light-related parameters” were optimised: m1, p1, p12, p15 and p24. 

They all appear in equations of the P2012 model together with the “L” parameter (they are 

multiplied by L). m1 is present in equation (7) above. pj are constants of translation, 

protein modification, protein complex formation and translocation between nucleus and 

cytoplasm. They appear in the following equations:  

 

(13) 
 

(14) 

 
(15) 

(16) 
 

(17) 

 
(18) 

(19) 
 

 

  

More details about these equations and their parameters can be found in Pokhilko et al. 

(2012) and its supplements. 

 

To optimise the 5 “light-related parameters” mentioned above, two optimisation algorithms 

were used: the PGA (described above) and the Particle Swarm Optimization (PSO). PSO is 

a computational method that optimizes a problem by iteratively trying to improve a 

candidate solution with regard to a given measure of quality (in this case it tries to reduce 

the cost). PSO optimizes a problem by having a population of candidate solutions, here 
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dubbed particles, and moving these particles around in the search-space according to 

simple mathematical formulae over the particle's position and velocity. Each particle's 

movement is influenced by its local best known position and is also guided toward the best 

known positions in the search-space, which are updated as better positions are found by 

other particles. This is expected to move the swarm toward the best solutions 

(http://en.wikipedia.org/wiki/Particle_swarm_optimization). 

 

 

2.5.3 Simulations with COPASI 

The name COPASI stands for COmplex PAthway Simulator. It is an open-source software 

application for creating and solving mathematical models and biological processes 

(http://en.wikipedia.org/wiki/COPASI). The version 4.8.35 was used for simulations, after 

changing manually some parameters of the P2012 model. Many “tasks” are available: they 

are different types of analysis that can be performed on a model. The two tasks used for 

this thesis were the “time-course simulation” and the “parameter scan”. Combined with the 

“time-course simulation”, the “parameter scan” allows rapid visualisation of the effects of 

a parameter change on a user-defined output (in our case, clock genes mRNA levels). 

Many more details can be found in the user manual available online 

(http://www.copasi.org/). 

 

Several parameters were scanned with up to 100 fold changes from their initial values. For 

instance, a parameter p could be scanned between 0.1 and 1 in 0.1 increment. For each of 

these values (0.1, 0.2 … 0.9 and 1), a time course of gene G expression could be 

visualised. When compared with the default values, the resulting simulations directly 

indicated for example whether a parameter has an influence on the FRP or amplitude.  

 

In the P2012 model the parameter L is such as L= 1 when light is present and 0 otherwise. 

The parameter D is by default D = 1-L. When the parameter L was changed to x (e.g. 

x=0.4), the parameter D had to be changed to D = x-L before running simulation in LD. 

This change allows D to have the value 0 during the dark cycles. 
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3 Development of an imaging system to monitor 
gene expression over space and time 

 

 

3.1 Introduction 

3.1.1 The luciferase (LUC) reporter and its advantages for dynamic studies 

Gene expression studies have been greatly facilitated by the use of reporters such as β-

glucuronidase (GUS), green fluorescent protein (GFP) and firefly luciferase (LUC). 

Reporter systems present advantages compared to the isolation and quantification of 

mRNA. The latter is laborious and destructive, and the spatial distribution of a specific 

mRNA within a tissue sample can be lost (de Ruijter et al., 2003). On the other hand, 

methods using reporters can be non-destructive and automated. 

 

The firefly LUC catalyses the oxidative decarboxylation of beetle luciferin using O2 and 

Mg2+-ATP as substrates.  This reaction releases a photon at 562 nm. The use of firefly 

LUC as reporter of gene expression in plants was first demonstrated by Ow et al. (1986). 

These authors used X-ray films to detect the bioluminescence. Nowadays the photon 

production can be monitored over time by automated systems using a coupled-charge 

device (CCD) camera. 

 

In 1992, Millar and colleagues used for the first time the firefly LUC gene as a reporter to 

monitor rhythmic gene expression in Arabidopsis (Millar et al., 1992). It was the first time 

LUC was used to reveal the temporal regulation of transcription in a multicellular 

organism. LUC is inactivated after its reaction with luciferin. It makes a good reporter for 

promoter activity dynamics. For instance, Millar et al. (1992) used a CAB:LUC construct 

and could hardly detect any oscillation in LUC protein amount over time whereas the 

bioluminescence (reflecting the CAB promoter activity) was circadian. Since then, the LUC 

gene has been modified (LUC+) to increase the signal (de Ruijter et al., 2003). LUC is 

targeted to the peroxisome whereas LUC+ is cytosolic. This reporter has become a very 

common tool in circadian biology.  
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3.1.2 Use of LUC to monitor gene expression in roots 

Although LUC is a very common reporter in shoots, it has not been often used to monitor 

gene expression in roots. This may be because there is less interest in this organ or just 

because roots are more difficult to image: the signal is usually lower compared to shoots 

and fewer plants can be monitored at a time. 

 

In 2001, Toth et al. reported tissue-specific expression of photoreceptors using LUC+. All 

phytochrome (except PHY C) and cryptochrome promoters displayed circadian oscillations 

in shoots under constant conditions. Some images of whole seedlings showed the spatial 

expression pattern of these photoreceptors, but no time course of their expression in roots 

was reported (Toth et al., 2001). 

 

Thain and colleagues used CHS:LUC reporter to image different organs, including roots. 

But they had to image clusters of 15 plants (Thain et al., 2000) or increase the light 

intensity up to 250 µmol.m-2.s-1 (Thain et al., 2002) in order to get enough signal from 

roots. Besides, they used 3% sucrose in the medium (as many researchers have been doing 

in our research field). In these conditions, the authors found that CHS was expressed 

rhythmically in the roots. However, CHS is not expressed in dark grown roots (James et 

al., 2008). 

 

LUC reporters have been used in other area of plant biology to study gene expression in 

roots, for instance in plant nutrition and plant-pathogen interactions. The nitrate transporter 

NRT2.1 encodes a main component of the high-affinity transport system (HATS) for root 

uptake of NO3
-, which plays a crucial role in N acquisition by crops. Its transcription is a 

major target of the systemic feedback repression exerted by high N status of the plant 

(Girin et al., 2010b). These authors generated NRT2.1:LUC transgenic plants and showed 

different luminescence according to whether the plants were grown on medium with or 

without nitrate (expression was higher in the latter case). However, they did not follow 

NRT2.1:LUC activity over time, nor did they specify how many plants could be imaged at 

a time (presumably 6 seedlings at most). 

 

Pathogenesis-related proteins, or PRs, are induced under specific pathological conditions 

(Van Loon, 1985). Santamaria and co-authors studied a PR1-like promoter activity 

(AtPRB1) and showed it was induced in an organ-specific manner. They could distinguish 
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leaves and roots, but also stems and flowers; in this case they apparently imaged at most 

one plant at a time (Figure 4 in Santamaria et al., 2001). Like most other studies in roots, 

they did not follow LUC activity over time. 

 

Many researchers add sucrose in their media. It allows plants to grow faster, and can 

increase the bioluminescence signal compared to medium without sugars. However, adding 

sucrose in the medium affects the root clock (James et al., 2008) and also the shoot clock 

(Dalchau et al., 2011). Therefore all my experiments were carried out without any sucrose 

in the media.  

 

To summarise, similar methods using the LUC reporter gene have been used for decades, 

but mainly to image shoot luminescence. The use of the LUC reporter to monitor gene 

expression in roots has rarely been reported in the literature. When it has, the experimental 

conditions were not well documented (e.g. the number of plants or organs imaged 

simultaneously was not specified) or not physiological (e.g. sucrose in the medium or high 

light on the roots). In order to image simultaneously shoots and roots in more physiological 

conditions over time the standard protocol (usually used for seedlings or shoots, as 

described in (Hall and Brown, 2007)) needed significant adaptations, which will be 

described in this chapter. The optimised protocol that was used for further experiments is 

summarised in chapter 2 (“Materials and Methods”). 

 

 

3.2 Imaging simultaneously shoots and roots on vertical 
plates 

Our imaging system set up had to be adapted in order to image both shoots and roots 

simultaneously. We had access to a Photek ICCD225 photon-counting camera mounted in 

a light-tight box (Photek, UK). It was usually used to image plants grown on horizontal 

plates or pots, so the camera was mounted vertically. To image simultaneously shoots and 

roots, seeds have to be sown on top of vertical plates, so that the roots can grow down the 

plate, on the surface of the solid medium. To image these vertical plates, the whole system 

could have been rotated 90 degrees. But this was not possible given the space constraints. 

The light-tight box was too small to contain 6 vertical plates sitting on a new stand, a new 

set of red and blue LEDs and the automated covering system shown in Figure 3.1 and 

described later in this chapter. In addition, this box was not temperature controlled. It 
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would have to be open all the time for the temperature to be steady (the room is 

temperature controlled). Otherwise, the LEDs would have warmed up the whole box. 

 

 
Figure 3.1: Overview of the imaging system 
After spraying the plants with luciferin, the vertical plates (1) were placed on a 
stand (2) that could hold up to 6 plates (only 2 plates are shown here). Each plate 
was divided in two compartments: one for shoots (3) and one for roots (4). The 
plates were held by two rails (5). A black cover (6) could slide automatically 
between these two rails, and could keep the roots in darkness when the light was 
on. The light was provided by four blocks of blue and red LEDs; only one is shown 
here (7). These LEDs, the covering system and the camera (8) were all controlled 
by the same software (IFS32, Photek). The whole system was set up in a 
temperature-controlled dark room. 

 

 

New stands for the plates and the camera, and another dark chamber had to be built. This 

was done in collaboration with the Glasgow University (GU) mechanical workshop. A 

LED system with both blue and red was designed in collaboration with the GU 

bioelectronics unit. The LEDs are controlled by the same software that controls the 

camera, i.e. IFS32 (Photek), switching the light on or off depending on the light regime 

required, but also ensuring that the light is off when capturing images.  

 

Most components of the imaging system are shown in Figure 3.1. This new set up gave 

more space and therefore more flexibility to conduct different experiments. Indeed, one to 

six plates could be imaged at a time depending on the experiment.  The relative positions 

of the plates, the camera and the LEDs could be easily adjusted (e.g. if the signal was high 
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enough, plants could be put further away from the camera so that up to six plates could be 

imaged at a time, as opposed to 1 plate if the signal was low). The room was temperature 

controlled (20 °C). The light intensity was set manually at the beginning of each 

experiment (equal amount of blue and red so that the irradiance was 15 µmol.m-2.s-1, unless 

stated otherwise). 

 

The final protocol can be found in chapter 2 section 2.2. It had to be optimised in order to 

image both shoots and roots simultaneously. However, the general procedure – from seed 

surface sterilisation to data analysis – has remained similar during this optimisation 

process. First, seeds were surface sterilised and stratified for 2-4 days at 4 ºC. Then they 

were sown on vertical plates containing ½ MS solid medium. Plants were entrained in LD 

(12/12) at 20 °C (white light, 80-100 µmol.m-2.s-1). After 2-5 weeks the plates were 

sprayed with luciferin. They were then transferred to a dark chamber and imaged over time 

in different light conditions (e.g. LD followed by LL). The data were extracted with the 

IFS32 software (Photek) and analysed with the BRASS software.  

 

The protocol was optimised using plants expressing the CCA1:LUC+ fusion. This was 

chosen for several reasons. It was expected to be circadian in both shoots and roots. Its 

amplitude was high in shoots. Even though CCA1 mRNA has a lower expression in roots 

compared to shoots (James et al., 2008), its amplitude was high in roots too (hundreds of 

fold change between trough and peak). Moreover, the FRP of CCA1 transcripts oscillations 

is longer in roots compared to shoots (James et al., 2008). Therefore plants were imaged in 

LD followed by LL to check whether this period difference could be observed with 

imaging. 
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3.3 Increasing the signal/noise (S/N) ratio 

With the CCA1:LUC+ fusion, the root luminescence was much lower than the shoot 

luminescence. Therefore the relative noise was higher in roots. Other fusions used later 

also had a low S/N ratio in roots compared to shoots. Several ways of increasing this ratio 

were considered. This is detailed below.   

 

3.3.1 Increasing the root signal 

One reason for a lower root signal was simply that the amount of root tissue was small 

compared to shoot tissue. I therefore used older plants (4-5 weeks old) with bigger roots, 

and clustered (2-6 plants per cluster). To avoid the drying out of the medium and to make 

sure plants had enough nutrients, 10-12 days old seedlings were transferred to new plates 

with fresh medium (Figure 3.2 A and B); these plates were used for imaging. 

 

Bigger plants contain more cells than smaller ones, and therefore consume more luciferin. I 

increased the concentration of luciferin sprayed on the plates.  Spraying 300 µL of luciferin 

60 mM per plate and integrating the luminescence for 15 minutes every hour allowed me 

to detect signals from both shoots and roots for several days (imaging 4 plates at a time). 

 

In preliminary experiments shoots and roots seemed to have the same FRP in constant light 

(data not shown). This was not consistent with the previous results from our lab (James et 

al., 2008), where CCA1 has a longer period in roots compared to shoots. Further studies 

showed this was an artefact. The noise was high and caused by the luminescence emitted 

by the shoots being reflected off the agar plate back to the camera (cf. next sub-section).  

 

In the meantime our camera and software were upgraded. It allowed me to use another 

mode of the camera (Binary Slice or BS) in an automated manner. This mode of the 

camera was supposed to increase the S/N ratio. The signal was greatly amplified. This BS 

mode is discussed further later in the chapter. 
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Figure 3.2: Brief overview of the optimised imaging protocol, from sowing to imaging 
Seedling were grown on 1/2 MS medium for 10-12 days (A) before being transferred on fresh 1/2 MS 
medium with charcoal on top (B). Roots were then either light- or dark-grown. In the latter case, an 
black acrylic bar was placed horizontally under the shoots (B) to minimise light leakage to the roots;  
to keep the roots in the dark,  black tape was placed around the plate (C). After another 10-12 days of 
entrainment in LD (12/12) at 20º C, plants were ready for imaging (they were ~3 weeks old) (C). The 
original lid (with black tape as in C, or without if roots were light-grown) was removed. The plants 
were sprayed with luciferin (~6 µmole per plant) and the new lid (D) was used to seal the plate. This 
new lid contained a black barrier and tape that distinguished two compartments (one for shoots and 
one for roots); this reduced light scattering between the two organs. An example of a bright field 
image and its corresponding luminescence is shown in E and F respectively. 
 

 

3.3.2 Decreasing the noise 

In the context of our imaging system noise can be divided into two categories: “electronic 

noise” and “optical noise”. The former is the noise intrinsic to the camera (dark current and 

readout noise for CCD cameras) and cannot be changed. The “optical noise” is the noise 

related to the “light pollution”. The photon counting camera being extremely sensitive to 

light, it is important to use it in a pitch dark chamber. But there is a source of light inherent 

to the technique used here: the photons emitted by the plants. Some of them are part of the 

signal to be measured. But others are noise, namely the chemiluminescence of the 

chlorophyll and the bioluminescence (produced by the luciferase) scattered from other 

A B C 

D E F 
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parts of the plant. The former can easily be discarded: it decreases exponentially over time 

after the light is off so discarding the first 2 minutes of darkness just after the light is off 

and before starting integrating the signal removes the chlorophyll chemiluminescence. The 

latter is the light scattering between two areas of interest (in this case between shoots and 

roots). The bioluminescence is much higher in the shoots compared to roots, at least for the 

CCA1:LUC+ plants used in the optimisation experiments. This turned out to be true for 

most if not all the transgenic plants used later on. Therefore decreasing noise means in our 

case reducing this light scattering from shoots to roots. 

 

To address this problem, Thain et al. (2000) added 1 % charcoal to their medium. But 

while this darkens the plates, it also seems to darken the plant’s life: they did not grow well 

on media with charcoal. Therefore other “plate darkeners” were tested, but with no more 

success:  

- black tape on the inside base of the plates: it reduced the reflection of light from the 

plants to the plastic and back to the camera. But again plants did not grow well. The 

remains of solvent or other compounds were probably toxic. 

- black plastic or paper (with presumably less solvent or toxic compounds – if any at all 

were left after washing with ethanol 70%); but these materials being less dense than the 

medium, it was hard to keep them in the bottom of the plates until the agar solidified 

- black food dye: as well as charcoal it can darken the whole medium, but plants could 

hardly grow on it. 

 

These darkeners prevented the plants from growing normally and also seemed to reduce 

the signal from the roots, possibly due to reduced growth (and probably fewer cells). 

Another explanation could be a lower light scattering from root tissues to other root 

tissues. Actually this “noise” within the same organ is not a problem; it rather amplifies the 

signal since we are interested in the organ as a whole.  

 

Preliminary experiments showed that it was important to reduce light scattering from 

shoots to roots. To achieve this, two compartments per plate were clearly distinguished: 

one for shoots and one for roots. To do so, a new lid was designed (Figure 3.2.D): it is 

made of the bottom part of a plate, with a card holders stuck on each side (at 2.5 cm from 

the top) and a plastic rectangle between the two. This rectangle defines the boundary 

between shoots and root compartments. The sides of the shoot compartment (sides of the 
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plate, card holder and plastic rectangle) were covered with black tape. Before using it for 

imaging, this new lid was washed with 70% ethanol and UV treated to prevent any 

contamination. 

 

Because the bioluminescence from the shoots could also be scattered in a light medium, it 

was darkened with 2% of charcoal, but only for the shoot compartment. To do so, the 

plates were first poured with 1/2 MS without charcoal. Once solidified, the top part (up to 

0.5 cm below the barrier, for overlapping) was removed and replaced by the medium with 

charcoal. The 10-12 days old plants were transferred to this plate with fresh media (with 

charcoal on top; Figure 3.2.B). These plants were entrained another 10-12 days before 

being sprayed and imaged. 

 

Although adding charcoal in a medium seems absolutely straightforward, it initially gave 

some complications. The 1/2 MS medium contained 1.2 g/L of agar. Its pH was adjusted to 

5.7 with KOH before autoclaving. When charcoal was added to this medium, the medium 

did not solidify properly after cooling down. It turned out the charcoal acidified the 

medium, and as a result the pH had to be readjusted to 5.7. Moreover, the solid medium 

with charcoal dried out faster than the basic medium (i.e. without charcoal). Adding more 

agar (1.8 g/L) in the medium containing charcoal limited this issue.  

 

The effect of these adaptations on the S/N ratio were progressively tested with imaging. A 

representative experiment is detailed in the next section. 

 

 

3.4 Comparison between time courses obtained with 
different lids and media 

As described above, a number of parameters were modified in order to increase the S/N 

ratio. In the meantime, blue and red LEDs were designed and the camera and IFS32 

software were upgraded. A key improvement seemed to be the division of the plate in two 

compartments (shoots and roots separated by a black barrier) and addition of charcoal in 

the medium (in the shoot compartment only). To test whether these modifications 

improved the S/N ratio in our final imaging system set up (with new LEDs, camera and 
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 software), 5 weeks old plants were imaged for 4 days (1d LD and 3d LL) in 2 conditions: 

1) with the new medium (with charcoal on top) and the new lid (with black barrier) or 2) 

without these adaptations. These conditions (and the corresponding plants or plates they 

are growing in) will be referred as 1 and 2 respectively.   

 

Figure 3.3 A and B show an image of each plate (one per condition) and the area of 

integration for analysis of expression. Each plate was divided in 3 equal parts: shoots, top 

of the roots and bottom of the roots. Note that for condition 2 (Figure 3.3.B), the shoot area 

did not include all the shoots: some leaves could be found in the 2nd third of the plate (i.e. 

the middle part, labelled “R2 top”) because there was no barrier to hold them, unlike 

condition 1 (Figure 3.3.A). The corollary is that in condition 2 the top section of the roots 

(Figure 3.3.B) cannot be integrated as they are for the roots in condition 1: it is the only 

area that differs between the 2 conditions in terms of surface (and instead of being a 

rectangle, it is a polygon so it contains root tissue but no leaves). This observation already 

highlighted one advantage of the barrier: it could hold the shoots (which tended to fall 

down otherwise) and it allowed more of the root tissue to be imaged. Finally the bottom 

part had the same area in the 2 conditions. 

 

The promoter activity in the shoots was similar in the two conditions, and this was also 

true for the promoter activity in the bottom section of the roots (Figure 3.3.C). Both shoots 

and roots had a sharp peak of CCA1:LUC+ activity around the last dawn (ZT0); they were 

in phase. In LL CCA1 continued to cycle in the roots but with a longer FRP compared to 

the shoots (Figure 3.3.C). The raw luminescence was clearly higher in condition 2 (Figure 

3.3.B) compared to condition1 (Figure 3.3.A) where charcoal and black tape reduced light 

scattering. Nevertheless the normalised data were very similar in both conditions, 

qualitatively and quantitatively (Figure 3.3.C). In LL, both shoot and root rhythms 

dampened, with broader peaks compared to LD, and a longer FRP in roots compared to 

shoots. The plots in condition 1 were almost superimposable with the plots in condition 2. 

Adding charcoal and black tape did not seem to make any difference as far as the lower 

part of the root is concerned. 
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A. B. 

  
C. D. 

  

Figure 3.3: Masking of the root signal by the shoot signal can be reduced by 
compartmentalising the plate 
Plants expressing CCA1:LUC+ were all entrained 4-5 weeks in LD (12/12). Then CCA1:LUC+ activity 
was monitored in shoots and roots under LL in two different conditions (i.e. two different media and 
lids): 1. With medium containing charcoal on top, and lid with black barrier. These distinguish two 
compartments described in text and in Figure 2 B-D; 2. Without this compartmentalisation. A and B 
show images obtained in condition 1 and 2 respectively, with 3 areas of integration per plate: shoots, 
top and bottom of the roots (labelled “shootX”, “RXtop” and “RXbottom” respectively, X = 1 or 2 labels 
the condition). These images were obtained after adding up all the frames (or time-points) of the 
corresponding time-courses (i.e. they represent the total luminescence for each condition). C shows 
normalised data from the shoots and the bottom section of the roots. Each time-point was normalised 
with the mean luminescence of the corresponding time-course. D show raw data from the two 
sections (top and bottom) of roots. Shoots are represented by green lines and circles, roots are 
represented by orange or brown lines and triangles. White and hatched bars represent light (days and 
subjective nights respectively), the dark bar represent the last night. ZT0 = last dawn 
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However, the difference between the 2 conditions becomes clear once the upper part of the 

roots is considered. First, a halo of light can be observed all around the shoots in condition 

2 (Figure 3.3 B) to a much greater extend compared to condition 1 (Figure 3.3 A). Given 

the much stronger signal in shoots compared to roots, the part of this halo of light that is in 

the “R2 TOP” area is expected to contain a significant amount of signal from the shoots 

(scattered in the root area), masking the root signal at least partly. This is indeed observed 

in Figure 3.3.D, which shows that after the first subjective dawn (ZT24), “R2 TOP” peaked 

earlier than any other root area analysed here; its phase was then closer to the 

corresponding shoot phase (shoot 2, Figure  3.3.C). At least part of the signal must have 

come from the shoot 2. In addition, after the second subjective dawn (ZT48) “R2 TOP” 

started rising earlier than the other root areas, before reaching a plateau. Again, the 

bioluminescence integrated here must have been a sum of shoot and root signals: this could 

explain the observed earlier rise (like shoots) and later fall (like roots) with a plateau in 

between, resulting in a broad peak. 

 

Peaks of the other root areas analysed were broad too, yet their phase was more delayed 

compared to shoots. The total amount of photon per time point and area analysed was 

higher in plate 2 compared to plate 1 (Figure 3.3.D). This was consistent with a higher 

level of noise in that plate (light scattering from shoot 2 to the roots). In general noise was 

not obvious when looking at individual images. However Figure 3.3 A and B are images 

obtained after adding all the images of the time course. This allowed me to refine the area 

to be integrated, and to take account of the fact that the shoots move over time and the 

roots can grow during the experiment. 

 

In terms of FRP, no clear difference could be observed between the two conditions. The 

BRASS software was used to analyse the rhythms in LL (between ZT0 and ZT72) 

presented in Figure 3.3. Shoots 1 and 2 had a FRP of 25.4 h and 25.8 h respectively. All 

the roots (top and bottom, 1 and 2) had a FRP close to 30h (+/- 1 h). Because this 

experiment was not repeated in the exact same way, no statistical analysis could be done 

between the two conditions. However, it is important to note that plants were about 5 week 

old: they had therefore more root tissue than younger plants, but they were also close to 

flowering. The amount of tissue must have produced a higher signal compared to the 
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younger plants imaged in previous trials (where the FRP in roots was much closer to the 

FRP in shoots). When the signal is high enough, the noise becomes less significant, as 

would be the case in near-flowering plants. However I avoided the study of flowering 

plants since their physiological state would be markedly different compared to younger 

plants, and their clock might work differently compared to younger plants.  

 

Therefore 3-4 week old plants were used for further experiments, as shown in Figure 3.2. 

Their amount of root tissue was high enough for the luminescence to be detected and 

distinguished from the shoot signal (i.e. the S/N ratio was high enough). It also allowed to 

image up to 6 plates simultaneously, with 2 clusters of 2 or 3 plants per plate. Therefore 

more data could be produced faster. This will be presented in the next sections and 

chapters. 

 

In conclusion, with black tape and charcoal on top of the plate: 

- two compartments were clearly distinguished (one for shoots, one for roots) 

- light scattering between these two compartments was reduced 

- the barrier between shoots and roots was also useful to hold the shoots and therefore 

integrate a bigger area for roots (e.g. “R1TOP” vs. “R2TOP” in Figure  3.3.A and B). 

With this imaging set up, previous RT-qPCR results (James et al., 2008) were qualitatively 

reproduced (Figure  3.3.C): in LD, the expression of CCA1 was synchronised in shoots and 

roots, but in LL these two organs were out of phase. 

 

 

3.5 TOC1:LUC+ activity is circadian in roots exposed to 
light 

The set up including a new lid and charcoal on top of the medium as described above was 

used to image plants with the TOC1:LUC+ reporter (Figure 3.4). The time-courses 

represent three independent experiments with different combinations of the following 

parameters: ecotype (Ws or Col-0) and mode of the camera (Binary Slice [BS] or Photon 

Counting [PC]). In all cases, the first day of LL was discarded and the promoter activity 

was rhythmic in roots for several subsequent days. The activity of TOC1 promoter was 

circadian in roots (as well as shoots) in both Ws and Col-0 backgrounds.  
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Figure 3.4: TOC1:LUC+ activity is 
circadian in roots exposed to light 
Plants carrying the TOC1:LUC+ fusion 
were entrained in LD for 4 weeks and 
then imaged in constant light (time 0 = 
last dawn). The first day in LL was 
discarded. The ecotypes were Ws or 
Col-0 and 2 modes of the camera were 
used: BS (Binary Slice) or PC (Photon 
Counting). Each time course represents 
the luminescence of a cluster of 5-6 
whole roots. Data were normalised with 
the average luminescence of the 
corresponding time course. 
 

 
 

The comparison of BS and PC modes showed that although BS mode increased the signal, 

it also increased the noise so the S/N ratio was not improved. In addition, it gave a lower 

resolution, and was less quantitative than the PC mode (which gives 1 count per photon). 

Therefore the PC mode was used by default in all other experiments. 

 

Figure 3.4 shows clearly that the TOC1 promoter activity was circadian in roots of Col-0 

and Ws. This was in apparent contrast to previous results which showed TOC1 transcript 

abundance was not clearly rhythmic in roots (James et al, 2008). 

 

The different results obtained with RT-qPCR and imaging are not necessarily 

contradictory. Imaging data give us information about the promoter activity, whereas the 

RT-qPCR results mentioned above quantify the accumulated mRNAs. The mRNA 

degradation is not taken into account in the former case, and possible splicing effects are 

not considered in the latter case. Alternative splicing is widespread in plants and plays a 

regulatory role in the circadian clock (James et al., 2012). Therefore the transcript 

abundance need not exactly reflect promoter strength. However, there is another major 

difference between the two protocols: the RT-qPCR results were obtained with dark grown 

roots, whereas the plants used for imaging were entirely exposed to light. Light is a key 

environmental signal for plants, regulating gene expression and development (Neff et al, 

2000). I therefore tested the influence of light on the root clock directly. 

 

Two plates with 6 TOC1:LUC+ plants in each were imaged simultaneously (Figure 3.5). 

For one plate, roots were kept in darkness all the time (using a manual cover all the time 
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except during imaging) whereas for the other one, roots were exposed to light. In both 

cases, the expression profiles were very similar in shoots and consistent with the literature:  

- in LD they have a sharp peak around dusk but also a small peak after dawn; 

- in LL, they free run with smoother peaks and they become damped over time.  

 

 

 
Figure 3.5: TOC1 rhythm in roots depends on light conditions 
Two plates with plants carrying the TOC1:LUC+ fusion were entrained in LD for 4 weeks and then 
imaged for 1 day in DL followed by 6 days in LL. For one plate, roots were covered until the 4th day 
in LL (ZT108) when they were uncovered (represented by the red arrow). The other plants had 
roots exposed to light all the time. For each organ in each condition (light- or dark-grown roots) the 
data were normalized with the average of the corresponding time-course until ZT108. Shoots are 
represented by green lines and circles, roots are represented by orange or brown lines and 
triangles. White and hatched bars represent light (days and subjective nights respectively), the dark 
bar represent the last night.  
 

 

Shoots and roots were rhythmic and in phase in LD. Roots were still rhythmic during the 

first day of LL in both cases (exposed to light or not), and roots exposed to light peaked 

earlier and with a higher amplitude than roots kept in the dark (Figure 3.5). 

 

In LL the expression of TOC1 in roots depended on whether this organ was exposed to 

light or not. Illuminated roots had a higher level of luminescence and TOC1 maintains 

rhythmicity for over 5 days. The absolute levels of luminescence in roots kept in the dark 
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were on average 3.4 times lower than those in the light (note that the data presented in 

Figure 3.5 were mean normalised), and rhythmicity was not detected after two days.  

 

After 108 hours (at subjective dusk), the cover was removed so that all roots were exposed 

to the light. The luminescence of roots previously covered increased rapidly and regained 

rhythmicity. The absolute luminescence was comparable to the one of roots always 

exposed to the light. It is important to bear in mind that all luminescence values were 

normalised with the average value of the corresponding 108 h time-course (i.e. the period 

before uncovering the roots, Figure 3.5). We cannot easily compare the root profiles of the 

2 plates (previously covered or not) after ZT108. For instance they have different phase 

and period, which could be influenced by the time the roots were uncovered and the total 

amount of light they had received (which is obviously much less for the roots that were 

uncovered).  

 

Thus the experiments showed that light can directly affect TOC1 expression in roots. This 

“direct” effect of light on the root clock will be further investigated and confirmed in the 

next chapter.  It is well known that light induce the expression of some clock genes in 

shoot. It is also thought to have an indirect effect on clock gene expression roots, possibly 

through photosynthates (James et al., 2008). But a more direct effect of light on the root 

clock may well mask some clock mechanisms in the roots grown in physiological 

conditions (they are supposed to be in the dark), for instance its entrainment by shoot 

signals. To investigate this systematically, our imaging system had to be adapted so that 

roots could be covered automatically whenever desired.  

 

3.6 Keeping the roots in constant darkness 

Roots are usually in a dark environment so it is more relevant to study directly the root 

clock in this more physiological condition. An automatic covering system for the roots was 

therefore designed with the help of the GU bioelectronic unit and mechanical workshop. 

This system allowed me to cover the roots when the light was on for the shoots, and 

uncover them automatically to measure the bioluminescence of both shoots and roots. 

 

The “prototype” covering system allowed me to cover the roots for half of the plates 

imaged (i.e. the bottom row, see Figure 3.1). To validate this new covering system, the 
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previous experiment (Figure 3.5) was repeated: using TOC1:LUC+ as a reporter gene, 

plants with roots covered or exposed to light were imaged over time. The data were 

compared to the ones obtained previously with a “manual cover” (Figure 3.6). The results 

were very similar, especially when roots were uncovered: TOC1 was then rhythmic in LD 

and LL. When roots were covered, the absolute level of TOC1 expression was low and not 

clearly rhythmic. Nevertheless results were qualitatively confirmed:  

- shoots and roots were synchronised in LD conditions (note that shoot data were not 

shown in Figure 3.6) 

- roots were still rhythmic in LL when roots are exposed to light 

- roots seemed to regain rhythmicity in LL when roots previously covered were exposed to 

light. 

 

Therefore the prototype was extended to allow the coverage of all the plates (top and 

bottom row presented in Figure 3.1) used for imaging.  

 
Figure 3.6: Validation of the new covering system for the roots. 
Comparison of results obtained with manual and automatic covering of the roots. In both cases 
plants with a TOC1:LUC+ reporter were entrained in LD cycles for 4 weeks, and then imaged for 1 
day in LD followed by 6 days in LL. Triangles are data obtained with manual cover, smoother lines 
(without symbols) are data obtained with the automatic covering system. Orange dashed lines and 
open triangles represents data from roots always exposed to light; brown line and closed triangles 
represents data from roots kept in darkness until ZT108 when they were uncovered (represented 
by the red arrow). Data were normalised with their mean luminescence over the last 24 h in LD. 
Grey bars: dark cycles, white and hatched bars: light cycles (day and subjective days respectively). 
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Covered roots might express TOC1 rhythmically in LL too but with lower amplitude. That 

could explain why its rhythm is not always detected. It would also be consistent with its 

(regain of) rhythmicity when roots are exposed to light (or uncovered).  Using 

CCR2:LUC+ reporter in the toc1 mutant background, the role of TOC1 in the root clock 

will be further investigated in chapter 6. 

 

 

3.7 Conclusion 

Monitoring the activity of a promoter in the roots with the luciferase reporter gene has 

been described in different areas of plant biology. However, this method has rarely been 

used to follow gene expression over time and space, e.g. in different organs. When organ-

specificity was shown in that way, it was not clear how many plants were imaged at a time 

(Thain et al., 2002; Santamaria et al., 2001), probably a few organs or seedlings only. This 

is in contrast with the monitoring of gene expression in shoots where hundreds of seedlings 

can be imaged at the same time (Southern and Millar, 2005). One reason for this huge 

difference in the number of organs imaged simultaneously is the low signal in roots. To 

increase the root signal, Thain and colleagues (2002) used clusters of plants and high light 

intensity. They also used sucrose in the growth medium, but later sucrose was shown to 

affect clock gene expression in shoots and roots (Dalchau et al., 2011; James et al., 2008). 

Therefore I did not use any sugar in the media. To increase the root signal I used clusters 

of organs but from older plants. Most experiments presented in the following chapters were 

done with 3-4 weeks old plants. 

 

Older plants mean bigger shoots and therefore more signal from this organ. This resulted in 

higher noise for the roots, the light emitted by shoots being scattered in every directions. 

Using a specific lid divides our plates in two distinct compartments (one for shoots and one 

for roots, with a black barrier in between) and adding charcoal in the medium of the top 

part (shoot compartment) greatly reduces this light scattering (Figures 3.2 and 3.3). This 

was particularly useful when the signal/noise ratio was low in roots. In addition, using two 

compartments allowed keeping the roots in constant darkness. Depending on the strength 

of the promoter and its induction, the imaging protocol allowed me to image up to 24 

individual plants (shoots and roots) at a time, and even more with fusion such as 35S:LUC 

(35S being highly expressed constitutively). 
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Light can affect genes expression in the roots (cf. next chapter) so my protocol kept this 

organ in constant darkness, with an automated covering system during imaging. Using 

such a system over a few days without exposing the roots to light has not been reported as 

far as I know. It is the first time this imaging method was used in physiological conditions 

(no sugar in the medium, no light on the roots) to monitor different gene expression in 

shoots and root over time. 

 

My optimised protocol for imaging the root luminescence is summarised in chapter 2. It is 

significantly longer than protocols usually used for seedlings. Much more media (with or 

without charcoal) and plates needed to be prepared: only 2 clusters of 3 plants were usually 

imaged per plate. The plants needed to be transferred half way through: this allowed me to 

keep the medium fresh and to add some charcoal on the top of vertical plates. But it also 

increased the risk of contamination: this was rarely an issue but it increased the time of 

preparation in sterile conditions. Finally, to keep the roots in the dark the roots had to be 

covered, then sprayed with luciferin under dim green light. The protocol was more time-

consuming at the beginning, when the roots needed to be covered manually between each 

image. But the next chapter will show that light could affect the root clock.  

 

The promoter activity of CCA1 was synchronised in shoots and roots under LD cycles. In 

LL, shoots and roots were out of phase, with a longer FRP in roots (Figure 3.3). This was 

qualitatively consistent with the previous study (James et al, 2008). The method was 

further validated with other promoter of morning genes (chapters 4 and 5), and allowed me 

to obtain more data and faster compared to RT-qPCR: longer time-courses and higher 

temporal resolution. In addition, the imaging method is non-destructive: the same organs 

can be monitored over time, which reduces the biological variability of the results. The 

technical variability is probably also reduced compared to the experiment using RT-qPCR, 

because the latter necessitate many steps and each of them could add in some variability, 

from harvesting to data analysis through RNA extraction and cDNA synthesis. However, 

this chapter showed some discrepancies between imaging and RT-qPCR data for TOC1 

expression. These discrepancies will be investigated in chapter 4.  
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4 Direct effects of light on the root clock 

 

 

4.1 Introduction 

James et al. (2008) showed that the root clock mechanism differs markedly from that of the 

shoot clock. In these experiments roots were kept in the dark. Light is such an important 

factor in circadian biology (and in life more generally) that one can wonder whether it is 

the parameter responsible for the differences observed between shoot and root clocks. Are 

shoot and root clocks different just because the roots are virtually in constant darkness? Or 

are there more fundamental differences between the mechanisms of these two clocks?  

 

As we have seen in the previous chapter, it would be much easier to use light-grown roots 

for imaging. Not only would it not require any customised equipment, such as the 

automatic covering system presented in the previous chapter, roots exposed to light can 

give a higher signal compared to dark-grown roots: this has been shown for TOC1:LUC+ 

in the previous chapter and will be detailed for other constructs in this chapter. Therefore, 

if light did not have any significant direct effect on the root clock (i.e. if light only 

increases the signal but without affecting the clock mechanism), we would probably leave 

the roots exposed to light. 

 

Etiolated seedlings (which have never seen the light) entrained by temperature cycles 

display much less rhythmicity compared to seedlings entrained by LD cycles (Wenden et 

al., 2011). For instance, a TOC1 rhythm was not detected in these dark grown seedlings. 

Besides, the FRP of CCA1 was longer than 24 h in these etiolated seedlings. Interestingly 

this is qualitatively similar to the rhythms of dark-grown roots in James et al. study (2008): 

in constant conditions, TOC1 was arrhythmic and CCA1 had a FRP longer than 24 h (and 

longer than light-grown shoots). However, etiolated seedlings were entrained by 

temperature before release to constant temperature (and DD) in the study of Wenden et al. 

(2011), whereas James et al (2008) kept the roots in the dark and constant temperature.  

 

The clock of dark grown roots, as well as the etiolated seedling clock, has a 24 h period in 

diurnal cycles (LD and constant temperature for the former, DD and temperature cycles for 
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the latter). Since roots were dark-grown in James et al. (2008), it was thought that a 

rhythmic signal from shoots could couple the shoot and root clocks in diurnal conditions. 

Whatever this signal is, it is most likely different from direct absorbance of light in LD 

cycles which entrain the shoot clock. Similarly, etiolated seedlings were entrained by a 

non-photic zeitgeber. Can the different light inputs alone explain the different mechanisms 

between these circadian systems, especially between shoot and root clocks?  

 

To address this question, plants were grown in two different light conditions: with the roots 

illuminated in the same way as the shoots (light-grown roots), or kept in darkness (dark-

grown roots). Time-courses in LD followed by LL were analysed using RT-qPCR and 

imaging. 

 

 

4.2 The expression of morning and evening clock genes 
are circadian in illuminated roots, with a longer FRP 
compared to shoots  

To investigate the possible effects of light on the root clock, plants were grown in the same 

conditions as in James et al. (2008) except that roots were light-grown. Briefly, 

Arabidopsis thaliana (Col-0) wild type plants were grown in hydroponic culture. The black 

boxes used previously to keep the roots in darkness (James et al., 2008) were replaced by 

transparent boxes and additional lights were placed underneath to ensure that shoots and 

roots received comparable light (Figure 2.1). After four to five weeks of entrainment in LD 

(12/12), plants were harvested over 4 days (one diurnal cycle followed by 3 days of LL) 

and mRNA was quantified by RT-qPCR (Figure 4.1). 

 

In the diurnal cycle, morning and evening gene expression were synchronised in shoots 

and illuminated roots. Profiles in shoots and roots were very similar for “morning genes” 

(these include PRR7 that peaks during the first half of the day, Figure 4.1.A). There were 

more differences between shoots and roots for evening genes (Figure 4.1.B), especially for 

GI: shoots had a small GI peak at dawn and a much higher peak before dusk, consistent 

with the literature (Locke et al., 2006), whereas in roots GI rose continuously from dawn 

and peaked earlier than shoots. It resulted in a broader peak for GI in roots compared to 

shoots, already observed with dark-grown roots in James et al. (2008).  
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Figure 4.1: The expression of morning and evening clock genes is 
circadian in illuminated roots, with a longer FRP compared to shoots 
Plants were grown in hydroponic culture with their roots in transparent boxes so that 
roots were exposed to the same light/dark conditions as shoots (i.e. “light-grown 
roots”). Plants were entrained 4-5 weeks in LD before release in LL. A and B: relative 
expression of “morning” (LHY, CCA1 and PRR7; Figure A) and “evening” (TOC1 and 
GI; Figure B) clock genes in shoots and roots; mRNA levels were normalised to UBQ 
and calibrated to the highest value of the corresponding time-course (highest peak 
value = 100%). White and hatched bars represent light (days and subjective nights 
respectively), dark bars represent nights. C.  Average Free Running Periods (FRPs) of 
shoots (S) and root (R) “morning” and “evening” gene expression. Individual FRP 
were estimated from data presented in A and B respectively, using BRASS. Their 
averages (labelled L for Light-grown roots) are compared to the corresponding 
averages from James et al, 2008 (labelled D for Dark-grown roots). Because the 
evening genes were not circadian in dark-grown roots, only morning genes FRP were 
averaged for roots (RD and RL). Different letters on the bars indicate significantly 
different groups; e.g. shoots (SL and SD) and roots (RL and RD) FRPs were 
significantly different (P<0.001) but RL and RD FRPs were not (P=0.558) according to 
a 2 ways ANOVA test. 
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In LL, the morning loop of illuminated roots ran with a longer FRP compared to shoots, 

and the average FRP of “morning genes” was not significantly different from the James et 

al. (2008) study (Figure 4.1.A&C, and Table 4.1). The average FRP of genes in shoots 

with light-grown roots (SL) was shorter compared to that in shoots with dark-grown roots 

(SD) (Figure 4.1.C and Table 4.1.); these FRPs (SL and SD) were significantly different 

(P=0.001), which was consistent with Aschoff’s rules (Aschoff, 1960); indeed the overall 

light irradiance in our conditions was actually higher than in James et al. (2008) due to the 

additional light illuminating roots. Nevertheless, light had no significant effect on the FRP 

of morning genes in the roots. 

 

Surprisingly the evening genes were rhythmic under LL in illuminated roots (Figure 4.1. B 

and C, and Table 4.1), which was not previously observed in dark-grown roots (James et 

al., 2008). The FRP of GI in roots was similar to the average FRP of morning genes in this 

organ (Table 4.1); however, the FRP of TOC1 was a few hours longer than other clock 

genes in roots (Table 4.1.). 

 

Table 4.1: FRP of clock gene expression in shoots and roots under LL 
A. Plants with Light-grown roots (L). Individual FRPs for “morning” and “evening” gene expression 
were estimated from data presented in Figure 4.1.A and 4.1.B respectively, using BRASS. These 
FRP were then averaged for “morning” genes, “evening” genes or both (labelled “all” in last 
column). 
B. Plants with Dark-grown roots (D). Corresponding FRPs for shoots with dark-grown roots from 
James et al. (2008). 
 

  LHY CCA1 PRR7 TOC1 GI morning evening all 

A.Light-

grown 

roots (L) 

Shoots 

(SL) 
22.11 22.39 22.17 22.65 21.32 22.22 21.99 22.13 

Roots 

(RL) 
24.67 25.15 25.53 29.5 26.24 25.12 27.87 26.22 

B.Dark-

grown 

roots (D) 

Shoots 

(SD) 
23.3 23.3 23.9 23.3 24.4 23.5 23.85 23.64 

Roots 

(RD) 
25.9 25.5 24.7 ND ND 25.37 ND 25.37 

 

Overall, these results show that differences observed between shoot and root clocks are not 

solely due to different light conditions. It suggests that these two clocks have fundamental 

differences, at least different FRP in LL. However light seems to directly affect clock gene 
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expression in roots, such as entraining evening clock genes. In this section only one set of 

RT-qPCR data was presented (Figure 4.1). But light effects were also observed using 

imaging: TOC1:LUC+ activity free ran when roots were illuminated, and exposing dark 

grown roots to light had a direct effect on TOC1 expression (section 3.5). In the latter case, 

it seemed that TOC1 regained rhythmicity in roots once they were illuminated. Does light 

entrain the evening clock genes in roots? Or does it just reveal existing low amplitude 

rhythms that were previously not detected in dark-grown roots? To answer this question, 

similar experiments were done using our imaging method. Results are presented in the next 

section. 

 

 

4.3 Light directly affects the expression of clock genes in 
roots 

The previous section showed that direct exposure to light may affect clock gene expression 

in roots.  

The experiment presented in section 3.5 was repeated with TOC1:LUC+ plants. The same 

experiment was also carried out with other constructs: CCA1-, CCR2-, GI- and PRR9:LUC 

+ in Ws. Briefly, plants were entrained for 3-4 weeks in LD (12/12) under white light with 

roots exposed to light or not (light- or dark-grown). For each construct, two sets of plants 

were then imaged simultaneously under LD and LL (a combination of blue and red light, 

see method in section 2.3): one with dark-grown roots and another one with light-grown 

roots (Figure 4.2). 
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Figure 4.2: Light directly affects the expression of clock genes in roots 
Plants were entrained for 3-4 weeks in LD (12/12) before release in LL. For half of the plants, roots 
were light-grown (i.e. exposed to the same light/dark conditions as shoots); for the other half roots 
were dark-grown. The promoter activities of GI, TOC1, PRR9, CCA1 and CCR2 were monitored in 
roots (A) and shoots (B) over the last day in LD (ZT0 = dawn) and in LL. From ZT108 (red arrows), 
dark-grown roots were exposed to light (i.e. put in the same conditions as shoots and light-grown 
roots). For each organ in each condition (light- or dark-grown roots) the data were normalized with the 
average of the corresponding time-course until ZT108. Bars in the backgrounds represent days or 
subjective days (white bars), night (dark grey bars) and subjective night (hatched bars). Error bars are 
SEM for 3 clusters of 2-6 plants (organs) from 2 independent experiments. 
 

 

Whether roots were light- or dark grown, shoots had very similar profiles as expected (the 

shoots themselves were in the same conditions) (Figure 4.2.B).  Shoot data were consistent 

with the literature: in LD, TOC1 and GI had sharp peaks around dusk but also a small peak 

after dawn; CCA1 and PRR9 peaked around dawn; in LL, they all free ran with smoother 

peaks than in LD and the amplitude decreased over time. Note that the dawn peaks of 

TOC1 and GI could be observed by using RT-qPCR (Figure 4.1) because an extra time-

point was harvested 1.5 hours after dawn; plants for RT-qPCR were usually harvested 

CCR2 

CCA1 
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every 3-4 h, whereas imaging gave us a greater temporal resolution. For each construct, 

shoots of plants with dark-grown and light-grown roots were grown and imaged in the 

same conditions (e.g. at the same light intensity). In this case clock genes have the same 

FRP in shoots, whether roots are light- or dark-grown. This indicates that the differences 

observed previously in the FRPs of clock genes in shoots (Figure 4.1 and Table 4.1) were 

probably due to differences in light intensity between experiments. 

 

But the expression of clock genes in roots differs significantly whether roots were light- or 

dark-grown. In LD, clock gene expressions were synchronized in shoots and roots (dark- 

or light-grown). The amplitudes were significantly lower in dark-grown roots compared to 

shoots and compared to light-grown roots (Figure 4.2 and 4.3.A&B). In addition, the 

relative amplitudes were not significantly different in light-grown roots compared to shoots 

(Figure 4.3.B). Whether roots were light- or dark-grown, phases were similar in shoots and 

roots for each gene (Figure 4.2) except GI: it peaked earlier in light-grown roots compared 

to dark-grown roots (Figure 4.2.A). 

 

 

 

 

 

A. B. 
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Figure 4.3: Light directly affects the amplitudes of clock gene expression in roots in 
LD and LL, but not their FRP 
All data from Figure 4.2 were used to estimate amplitudes and periods of clock and output genes in 
Shoots (S) and Roots (R) with Light-grown (L) or Dark-grown (D) roots. 
A, B: Relative amplitudes under LD. For each individual time-course used for Figure 4.2, the raw 
amplitude was estimated as the difference between peak and trough values during the last DL 
cycle (ZT12-36, Figure 4.2). This raw amplitude was normalised to the average amplitude in shoots 
(i.e. average of 6 values from SL and SD). The normalised amplitudes were then averaged for 
each gene and in each condition (i.e. SL, SD, RL and RD) (A). The mean values presented in A 
were then averaged for each condition, i.e. SL, SD, RL and RD (B). 
C, D: Relative amplitudes under LL. For each individual time-course used for Figure 4.2, the raw 
amplitude was estimated with BRASS between ZT48 and ZT108. This raw amplitude was 
normalised as in A (C). The normalised amplitudes were then averaged as in B (D). 
Error bars are standard deviations for 2-3 clusters of 2-6 plants (organs) (A-D). 
E, F: Circadian period estimates using BRASS. Each individual time-course presented in Figure 4.2 
was analysed between ZT48 and ZT108, i.e. before the dark-grown roots were exposed to light. 
The average periods and RAE are presented for each gene and in each condition (E). Error bars 
are SEM for 2-3 clusters of 2-6 plants (organs). A few time-courses from dark-grown roots (TOC1, 
CCA1 and CCR2) were not considered rhythmic; hence there are no error bars for these 3 data 
points. The values presented in E were then averaged for each condition, i.e. SL, SD, RL and RD 
(F). Different letters on the bars indicate significantly different groups (P<0.001) according to 2 
ways ANOVA tests (B, D, F). 
 

 

In LL morning as well as evening genes were always rhythmic in roots when roots were 

exposed to light. This confirmed the previous observation about GI and TOC1 expression 

being rhythmic in light-grown roots (Figure 3.5 and 4.1). In dark-grown roots with shoots 

under LL, all genes studied here were scored rhythmic in at least one set of data (Figure 

4.2 and 4.3). For instance TOC1 and CCR2, i.e. two evening genes that were thought to be 

arrhythmic in dark-grown roots (James et al, 2008) were scored rhythmic at least once out 

of three replicates (Figure 4.3.E). Note that all the plants were in the Ws background. The 

same experiment was done with TOC1:LUC+ in Col-0 background and gave very similar 

results (data not shown): the rhythm could be detected in dark-grown roots. GI was always 

scored rhythmic in light- and dark-grown roots. In addition the FRPs were similar for 

morning and evening genes in roots, which indicates they could be part of the same 

oscillator (i.e. morning and evening loops may not be uncoupled in LL). However the 

FRPs were more variable in roots compared to shoots. The average FRP tended to be 

higher in light-grown roots compared to dark-grown roots (Figure 4.3.F), but this was not 

highly significant (P = 0.044). But the average FRPs were significantly higher in both 

light-grown and dark-grown roots compared to shoots (Figure 4.3.E&F, P<0.001), which is 

consistent with all our previous results obtained with imaging and RT-qPCR.  

 

The relative amplitudes of clock genes were lower in dark-grown roots compared to light 

grown roots in LL (Figure 4.3.C), and more generally the amplitudes in the roots were 
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lower than in the shoots (Figure 4.3.D). To confirm the direct effect of light on levels of 

gene expression in roots, dark-grown roots were illuminated (uncovered) after 3 days in 

LL: the root covers were removed from ZT108 so that all roots were exposed to the same 

light as shoots (from the red arrow in Figure 4.2.A). Plants were then imaged for another 3 

days in LL. TOC1 and GI expression in roots previously covered went up very quickly and 

peaked 9-12h later (at ZT117-120, Figure 4.2.). Their absolute luminescence reached 

levels comparable to the one of light-grown roots (cf. Figure A.1 in Appendix). All 

luminescence values presented in Figure 4.2 were normalised against the mean value of the 

corresponding 108 h time-course (i.e. period before illuminating dark-grown roots); this 

allowed us to compare gene expression profiles in light- and dark grown root, for instance 

their amplitudes (Figure 4.3). But the absolute levels of luminescence in roots kept in dark 

were much lower than those in the light (cf. Figure A.1 in Appendix). 

 

The difference in gene expression between light- and dark-grown roots was also obvious 

for PRR9, CCA1 and CCR2 (Figure 4.2.A). The amplitudes of these genes were higher in 

light-grown roots compared to dark-grown roots (Figure 4.3.C). After the cover was 

removed (from ZT108, indicated by red arrow in Figure 4.2.A), the expression increased in 

dark-grown roots. For CCR2 this was qualitatively similar to GI and TOC1: the expression 

in roots previously covered went up quickly and peaked ~9-12 h later (ZT117-120, Figure 

4.2.). For morning genes this was different: PRR9 peaked sharply 3 h after the cover was 

removed in dark-grown roots, and CCA1 peaked only about 36 h later (Figure 4.2). These 

interesting results suggested that the effect of light on gene expression in roots was gated 

by the clock.  

 

In conclusion, some previous results were confirmed: the root clock has a longer FRP in 

LL compared to the shoot clock, whether roots were exposed to light or not. But the 

expression of most if not all clock genes in roots was directly affected by light. The extent 

of these effects depended on genes and possibly on the time of exposure; indeed the effect 

of light on gene expression seemed to be gated by the clock. Overall, direct exposure to 

light increased expression levels and amplitudes of clock genes in roots; it might also 

advance the phases of some clock genes in roots, but this was only observed for GI in LD. 

These new data not only confirmed a direct effect of light on clock gene expression in 

roots, they also showed that the expression of evening gene is circadian in dark grown 

roots too. This is in contrast with previous RT-qPCR results (James et al., 2008) where GI 
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and TOC1 were thought to be arrhythmic. It is possible that low amplitude rhythms of GI 

and TOC1 in dark-grown roots were not detected at the mRNA level by RT-qPCR in 

previous work. Are these genes really arrhythmic at the transcript level, or are their 

rhythms just harder to detect because of variability? This question will be addressed in the 

next section.  
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4.4 Direct exposure to light affects clock gene transcript 
levels in roots 

The previous two sections showed that light can directly affect clock gene expression in 

roots. But these RT-qPCR and imaging data raised other questions: 

- 1) are GI and TOC1 transcript levels actually circadian in dark-grown roots? 

- 2) does light increase clock gene amplitude in roots at the transcript level? 

If both answers are positive, this would explain why GI and TOC1 rhythms are more easily 

detected in light-grown roots compared to dark-grown roots. And if these evening genes 

are circadian in dark-grown roots, they presumably play a role in the root core clock as 

they do in the shoots. 

 

To address these questions, the experiment described in section 4.2 with light-grown roots 

was repeated in a slightly different way. The results are presented along with controls, i.e. 

plants with dark-grown roots; these were harvested every 4 h, whereas plants with light-

grown roots were harvested every 3 h as before The differences between experiments 

presented in section 4.2 and in this section are detailed in chapter 2. To summarise, several 

steps of the method previously used to process the samples were modified:  

- Plant organs (shoots and roots) were harvested a week earlier to make sure no plant was 

about to flower by the end of the experiment; 

- RNA extracts were quantified before and after DNAse treatment (this treatment can 

degrade some RNA), and their quality was then systematically checked; 

- oligo dT was used as the primer for the cDNA synthesis instead of random hexamers; 

- SYBR I was replaced by SYBR III in the master mix for RT-qPCR; 

- ISU1 was used as a reference gene to normalise data instead of UBQ.  

Overall this modified protocol reduced the variability of data points. It was therefore 

adopted by the laboratory. 

 

Figure 4.4 and Table 4.2 show the results obtained for plants with light- or dark-grown 

roots. In both conditions, transcript profiles are very similar in shoots (Figure 4.4.A). 

Shoots with light- or dark-grown roots are labelled SL and SD respectively. The averages 

of SL and SD FRPs in LL were not significantly different (P=0.328, Figure 4.4.D), 
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contrary to the results presented in section 4.2 where slight differences in light conditions 

between experiments gave different FRPs for SL and SD (Figure 4.1). The FRPs in SLs are 

consistent with previous results (~22 h) and less variable compared to FRPs in SDs where 

the FRPs are ~22 h for morning genes, but ~24h for evening genes FRPs (Table 4.2). 

However this experiment needs to be repeated before any firm conclusion can be drawn. 

 

The amplitude for PRR9 in SL was similar to that in SD; the same was true for GI (Table 

4.2). But TOC1 and CCA1 amplitudes showed more differences between these sets of data 

(i.e. between SL and SD). For CCA1, this may be due to only one time-point: at ZT36 

(Figure 4.4 top left), the level of CCA1 RNA seems abnormally low in the shoots with 

light-grown roots compared to the control, whereas the rest of the time course is almost the 

same in both conditions. There might have been something wrong with this sample (which 

should have been repeated), and the low level when a peak was expected could explain a 

reduced amplitude. Overall shoot transcript profiles were very similar in both conditions.  

 

On the other hand, transcript profiles differed markedly in roots whether they were 

exposed to light or not (light- or dark-grown roots, labelled RL and RD respectively). 

Overall, transcript levels were higher in RL compared to RD except for CCA1 (Figure 4.4). 

The lower levels in CCA1 when roots were exposed to light (compared to dark-grown 

roots) were consistent with the work of Yakir and colleagues: CCA1 RNA was more stable 

in the dark than under light (Yakir et al., 2007). Although PRR9 levels were similar in both 

conditions under LL, its peak in LD was much higher in RL compared to RD (Figure 

4.4.B), which was consistent with the imaging data (section 4.3). It was even higher than in 

shoots. Surprisingly no rhythm of PRR9 transcript levels in dark-grown roots was detected 

under LL here (Table 4.2) so the amplitude cannot be compared between RD and RL in 

constant conditions. 

   

In LD the amplitudes were significantly lower in dark-grown roots compared to shoots for 

all genes, but the amplitudes in light-grown roots were much more variable: light affected 

differentially gene expression in roots (Figure 4.4.B&C). For instance PRR9 expression 

was more induced in light-grown roots compared to dark-grown roots and shoots, but 

CCA1 amplitude seemed to be lower in light-grown roots compared to dark-grown roots. 
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C. D.   

 
 

 
Figure 4.4: Direct exposure to light affects clock gene transcript levels in roots 
Plants were grown in hydroponic culture with their roots in transparent or dark boxes (for light- and 
dark grown roots respectively). Plants were entrained 4 weeks in LD before release in LL. 
A and B: Transcript levels of CCA1, PRR9, GI and TOC1 in shoots (A) and roots (B) for plants with 
light-grown roots (i.e. exposed to the same light/dark conditions as shoots) or with dark grown roots; 
mRNA levels are normalised to ISU1. White and hatched bars represent light (days and subjective 
nights respectively), dark bars represent nights. 
Data from A and B were used to estimate amplitudes and periods of clock genes in Shoots (S) and 
Roots (R) with Light-grown (L) or Dark-grown (D) roots. 
C: Relative amplitudes under LD. For each individual time-course in A and B, the raw amplitude was 
estimated as the difference between peak and trough values during the last DL cycle (ZT0-24). This 
raw amplitude was normalised to the average amplitude in shoots (i.e. average of 2 values from SL 
and SD). The normalised amplitudes were then averaged for each condition (i.e. SL, SD, RL and RD). 
Different letters on the bars indicate significantly different groups (P<0.001) according to a one way 
ANOVA test; RL was not considered in this analysis. 
D. Average Free Running Period (FRP) of shoots (S) and roots (R) clock gene expression for plants 
with light-grown (L) or dark-grown (D) roots. Individual FRP were estimated from data presented in A 
and B, using BRASS. Different letters on the bars indicate significantly different groups (P<0.001) 
according to a 2 way ANOVA test. The controls (plants with dark-grown roots) were from Sullivan et 
al. (unpublished) 
 

 

TOC1 
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In both LD and LL GI and TOC1 transcript levels were higher in RL compared to RD 

(Figure 4.4.B), and GI had a higher amplitude in RL compared to RD (Figure 4.4 and 

Table 4.2). Indeed GI RNA levels were rhythmic in both RL and RD under LL, which was 

consistent with imaging data (section 4.3). And although TOC1 was not scored rhythmic in 

RL for this set of data (contrary to section 4.2 where it was), TOC1 was rhythmic in RD 

under LL! Again this is only one set of data, but it is consistent with other results: TOC1 

and GI promoter activities are circadian in light-grown roots, but also dark-grown roots 

and they are circadian in shoots. Their rhythms may not always be detected in dark-grown 

roots because of a lower signal/noise ratio; for instance, the GI mRNA amplitude is almost 

doubled when roots are exposed to light (RL) compared to control (RD) (Table 4.2), which 

makes the rhythm easier to detect when roots are exposed to light. 

 

Although transcript profiles differed markedly in roots whether they were exposed to light 

or not, their average FRP was similar in both conditions. There was no significant 

difference between RL and RD average FRPs (P<0.001, Figure 4.4.C). It confirmed the 

previous RT-qPCR results (section 4.2).  

 

 

Table 4.2: FRP and amplitudes of clock gene transcript 
levels in shoots and roots under LL 
Values are estimates from all data presented in Figure 4.4 using 
BRASS. L = Light-grown roots, D = Dark-grown roots, L/D = ratio of L 
and D amplitudes. “Average” represents the averages of clock genes 
scored rhythmic. ND; Not Determined (i.e. not scored rhythmic) 
 
  FRP (LL) Amplitude (LL) 

  L D L D L/D 

SHOOTS 

(S) 

CCA1 21.91 21.99 0.04 0.06 0.66 

PRR9 21.53 21.96 0.03 0.03 1.05 

GI 21.09 23.85 0.16 0.15 1.11 

TOC1 22.63 24.28 0.02 0.02 1.27 

average 21.79 23.02  

ROOTS 

(R) 

CCA1 27.03 25.70 0.04 0.09 0.41 

PRR9 28.04 ND 0.03 ND ND 

GI 27.08 28.09 0.21 0.11 1.86 

TOC1 ND 32.29 ND 0.01 ND 
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average 27.38 28.69  

 

 

In conclusion, most results of previous sections (4.2 and 4.3) were confirmed qualitatively: 

shoot and root clocks have differences in FRP and amplitudes, and light can affect the root 

clock. Direct exposure to light did not seem to affect the FRP in roots: clock genes had a 

similar FRP in light- and dark-grown roots, and these FRP were longer compared to the 

FRP in shoots. There were some quantitative differences with previous RT-qPCR results: 

although FRP in shoots were similar to the values presented in section 4.2, more 

differences could be observed in roots. This might be due to greater variability in roots, 

where the expression was usually lower compared to shoots. The RT-qPCR experiments 

should be repeated several times in the same conditions. However, taken together the 

results presented in sections 4.2 – 4.4 are qualitatively consistent. 

 

Light increased expression levels and amplitudes of several clock genes in roots. Notably 

the amplitude of GI was higher under LD and LL when roots were exposed to light than in 

dark-grown roots, and the peak of PRR9 in LD was higher in light-grown roots compared 

to dark-grown roots and shoots. This is consistent with shoot data where both GI and PRR9 

are known to be induced by light, with PRR9 expression being particularly induced after 

dawn but quickly dampened under LL in seedlings (Pokhilko et al., 2012). In LD the 

amplitudes were lower in dark-grown roots compared to shoots: this is in agreement with 

imaging data (section 4.3) and it was missed in previous studies and in section 4.2 due to 

different methods of analysis. 

 

Our improved RT-qPCR protocol allowed us to detect GI and TOC1 rhythms in dark-

grown roots. This was in contrast with a previous study (James et al., 2008). Therefore 

shoot and root clocks seem to be more similar than previously thought:  

- They may share many components; not only morning genes (CCA1, LHY, PRR9 and 

PRR7) but probably some evening genes too (GI, TOC1 and possibly LUX and ELF4). In 

fact a recent microarray4 showed that LUX and ELF4 were rhythmic in dark-grown roots 

                                                 
4 LUX and ELF4 were arrhythmic in roots under LL in the first microarray (James et al., 2008). The 

second microarray mentioned here was done in similar conditions but Agilent chips were used 
(instead of Affymetrix chips), and plants were ~1 week younger and only harvested every 4 h 
(instead of 3 h). 
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under LL (Sullivan et al., unpublished). The role of some of these genes as root clock 

components will be further investigated in chapter 6. 

-  Some clock genes, such as GI and PRR9, can be induced by light in roots, as well as in 

shoots. Whether light can actually reset the root clock will be clarified in the next chapter. 

 

Shoot and dark-grown root clocks have significantly different FRP under LL, but their 

entrainment conditions also differ before release in LL. Different entrainment “histories” 

could affect the FRP (Aschoff, 1960). If differences between shoot and dark-grown root 

clocks were caused only by these different inputs and entrainment conditions (i.e. different 

light conditions), one could expect these two clocks to be even more similar under DD. 

This will be investigated in the next section. 

 

 

4.5 The FRP under DD is similar in shoot and root clocks 

Under DD the shoot clock had a longer FRP than under LL (Millar et al., 1995b; James et 

al., 2008). However the root clock FRP did not change much between LL and DD (James 

et al., 2008). Since the latter experiment was only done once, it is not clear whether results 

in roots were significantly different between LL and DD conditions. These data suggested 

that the shoot FRP might be similar (if not longer) compared to the root FRP under DD. 

The following experiments were carried out to investigate the clock in DD more 

thoroughly.  

 

Plants expressing different reporters were entrained as usual (4 weeks of LD (12/12) cycle 

on ½ MS medium without sucrose) before release in DD and imaging. Plants expressed a 

[clock gene promoter]:LUC+ fusion with one of the following promoters: CCA1, PRR9, 

PRR7 or  GI. Experiments were replicated three to four times. Results are presented in 

Figure 4.5.  

 

Shoot rhythms dampened very quickly and had very low amplitude after a few days in DD 

(Figure 4.5 A-D). This was consistent with Dalchau et al. (2011): without exogenous 

sucrose, they could detect rhythmicity in shoots under DD but with lower amplitude (if any 

rhythm at all) compared to media without sucrose. Surprisingly rhythms seemed to be 

more sustained in roots (Figure 4.5 A-D). 
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If the whole time-courses in DD presented in Figure 4.5 were considered when analysing 

rhythms with BRASS, most time-courses in shoots were scored arrhythmic (Figure A.2 in 

appendix. The arrhythmicity could be due to quick dampening of a rhythm. But this quick 

dampening in shoots might have been an artefact of the method: the luciferin-luciferase 

reaction requires ATP, which presumably declines the longer the plant is in the dark.  

 

To be able to detect rhythms in both shoots (where oscillations dampened very quickly) 

and roots for at least two consecutive cycles, the BRASS analysis was performed with the 

“all windows” mode. Each window was set at 72 h, with an increment of 6 h from ZT0 

(last dusk, start of DD). In other words, BRASS algorithms tried to detect rhythmicity from 

ZT0 to ZT72, then ZT6 to ZT78, etc. until ZT36 to ZT108. Then if several windows gave a 

rhythm for a certain gene, the software automatically chose the window that gave the 

lowest RAE. In this less stringent way of analysis, more datasets were scored rhythmic and 

RAE values were lower. 

 

Results presented in Figure 4.5 E and F show the FRP was more variable (both between 

replicates and between promoters) in shoots compared to roots. Variability in the seedling 

FRP under DD was also shown for CAB expression (Millar et al., 1995b): its FRP was 

much more variable in DD compared to LL. Interestingly the rhythms seemed more robust 

in roots under DD (Figure 4.5). Overall the average FRPs of shoots and root gene 

expression were not significantly different (P=0.038 according to a t-test). However, the 

periods seemed shorter in shoots compared to roots when considering the whole time-

course (Figure A.4 in appendix). These experiments under DD should be repeated to 

determine whether FRPs are significantly different in shoots and roots when comparing the 

same time windows. Given the very low signals under DD compared to LL (cf examples of 

row data in Figure A.3, appendix) plants may then have to be imaged one at a time (i.e. 

closer to the camera) to increase the signal/noise ratio. TOC1 rhythms were detected 

neither in roots nor in shoots, possibly because the signal was too low in our conditions. 

All the other genes studied were scored circadian at least once in both organs, including GI 

in roots (Figure 4.5.E). This was in contrast with previous data of the root clock in DD 

(James et al., 2008); this experiment in DD using RT-qPCR was therefore repeated and is 

presented in Figure 4.6. 
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Figure 4.5: The expression of morning and evening genes free run in DD with similar 
FRP in shoots and roots 
Plants were entrained for 4 weeks in LD (12/12) before release in DD. All the roots were dark-grown.  
A-D: Luminescence of CCA1:LUC+, GI:LUC+ , PRR7:LUC+ and PRR9:LUC+ over 4 days  in DD in 
roots (open symbols) and shoots (closed symbols). Data are averages of 2-4 independent 
experiments. The data are normalized with the mean value of the corresponding time-course. Error 
bars are SEM for 2-4 clusters of 3-6 plants (organs) from independent experiments. Hatched bars 
represent subjective days, dark bars represent subjective nights. E: Circadian period estimates of 
data presented in A-D using BRASS for roots and shoots. F.  Average Free Running Period (FRP) of 
shoots and root gene expression; individual gene FRPs were from E. The differences between shoot 
and root FRP averages is not highly significant (P=0.038) according to a t-test. Time 0 (=ZT0) is the 
last dusk before DD 
 

The same experiment as in section 4.4 (with dark-grown roots) but with release in DD 

instead of LL was carried out by Stuart Sullivan and Janet Laird. Results are presented in 

Figure 4.6. It confirmed that not only morning genes (such as CCA1, LHY and PRR9) but 

also GI and TOC1 are circadian under DD (Figure 4.6 A-E). But at the transcript level, 

rhythms dampened less in shoots compared to previous imaging data. And in this case it 

was in the roots that amplitudes were lower and FRPs more variable (Figure 4.6). Besides, 

FRPs were shorter in shoots and roots compared to imaging results (Figure 4.5).  

 

These quantitative differences between Figure 4.5 and 4.6 could be partly due to different 

techniques used, but also differences in experimental conditions: plants grown in 

hydroponic cultures (Figure 4.6.) were entrained with higher (white) light intensity until 

release to DD, whereas plants grown on plates (Figure 4.5.) were entrained with lower 

(blue and red) light intensity a day before release to DD. As mentioned earlier, the history 

of the organism under entrainment can influence the FRP, this is known as aftereffect 

(Johnson et al., 2004). Interestingly the expression profiles of most genes differed mostly 

during the first day in DD between shoots and roots, i.e. when the very recent history of 

each organ was significantly different: the shoots were under LD whereas the roots were 

dark-grown. This was true with both imaging and hydroponic systems (Figure 4.5 and 4.6 

respectively).  

 

Nevertheless, both experiments gave similar results qualitatively: most if not all clock 

genes studied were circadian in shoots and roots under DD and their average FRPs were 

similar in both organs. These results suggest again that differences between shoot and root 

clocks may be due to different inputs. 
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Figure 4.6: Transcript levels of morning and evening genes free run in DD with similar 
FRP in shoots and roots 
Plants were grown in hydroponic culture with dark-grown roots. Plants were entrained 4 weeks in LD 
before release in DD. A-E: mRNA levels of CCA1 (A), PRR9 (B), GI (C), TOC1 (D) and LHY (E) in 
shoots and roots; mRNA levels are normalised to ISU1. Hatched bars represent subjective days; dark 
bars represent nights (last night and subjective nights). F.  Average Free Running Period (FRP) of 
shoots and root gene expression; individual FRPs were estimated from data presented in A-E, using 
BRASS. The difference between shoot and root average FRPs is not significant (P=0.106) according 
to a t-test. Data from Sullivan et al. (unpublished). Time 0 (=ZT0) is the last dusk before DD 
   

 

 

4.6 Both red and blue light can affect the root clock 

The clock of dark-grown roots was thought to be indirectly entrained by light, possibly via 

photosynthate rhythms (James et al., 2008). But in natural conditions, light (especially red 

and far-red) can actually penetrate through the soil (Tester and Morris, 1987). Even in our 

soil-free experimental conditions, roots were probably not grown in pitch dark: there could 

be some light leakage that could reach the roots via the eppendorf tubes going through the 

black lids, as suggested in Figure 2.1. 

 

The effects of light were studied in this chapter by using combinations of different 

wavelengths: ~ 460 nm and ~645 nm for blue and red lights (imaging experiments), and 

the whole visible spectrum for white light (RT-qPCR experiments). Different light 

qualities can have different effects on the circadian clock. For instance ZTL is a 

photoreceptor that control TOC1 stability in a blue light regulated manner (Kim et al., 

2007; Mas et al., 2003). The results presented so far were qualitatively similar with either 

white light or blue and red light: the FRP was longer in roots (dark- and light-grown) 

compared to shoots, and light could directly affect clock gene in roots. 

 

To investigate whether both blue and red light can affect the root clock, I used imaging. 

Plants were grown as in section 4.3 with light-grown roots. Briefly, plants were entrained 

for 3-4 weeks in LD (12/12) under white light with roots exposed to light. For each 

construct, plants were then imaged 2 days in LD and 4 days in LL (blue or red light) 

(Figure 4.7). 



4. Effects of light on the root clock 

 

 
 

119 

 

 

A. BLUE LIGHT 
 

B. RED LIGHT 
 

  

  

  

CCA1 

PRR9 

GI 



Organ specificity in the plant circadian clock 

 

 
 
120 

  
C. D. 

 

 
Figure 4.7: Both blue and red light affect clock gene expression in root 
Plants were entrained in white LD cycles for 4 weeks, and then imaged for 2 days in LD followed by 
4 days in LL, using either blue or red LEDs over these 6 days. Roots were light-grown all the time.  
A and B: promoter activity of CCA1, PRR9, GI and TOC1 under blue light (A) or red light (B). 
Darker colours and circles: shoots; lighter colours and triangles: roots (dark and light blue: blue 
light; red and orange: red light). Data were normalised with their mean luminescence over the last 
24h in LD. Grey bars: dark cycles, white and hatched bars: light cycles (day and subjective days 
respectively). Data are average luminescence of 1 cluster of 3-6 plants from 1 experiment. 
C. Circadian period estimates under LL of all time-courses (all genes in shoots and roots) 
presented in A and B using BRASS 
D. Average FRP of shoots (S) and roots (R) clock gene expression for plants under blue (B) or red 
(R) light. Individual FRP were from fig. C. Different letters on the bars indicate significantly different 
groups; e.g. shoots (SR and SB) and roots (RR and RB) FRPs are significantly different (P<0.001) 
and RR and RB FRPs are significantly different too (P<0.01) according to a 2 ways ANOVA test 
 

 

As for a combination of blue and red light or white light, each of these two wavelengths 

(blue or red light) could entrain most (if not all) clock genes studied here in roots (Figure 

4.7). All rhythms were synchronized between shoots and roots under LD, and FRPs were 

significantly longer in roots compared to shoots in LL (P<0.001, Figure 4.5 D). There was 

possibly one exception: TOC1 was not scored rhythmic in roots under constant blue light; 

but the signal was very low so it is possible that this precluded detection of oscillations. A 

TOC1 
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rhythm of ~17 h period could actually be detected, but with a RAE of ~1, i.e. it is not 

considered rhythmic; this might reveal a 34 h period biphasic rhythm (for instance, the 

TOC1 rhythm is biphasic under LD). 

 

The effects of blue or red light on clock gene profiles and amplitude in roots were similar 

to the effects of a combination of blue and red light. When roots were exposed to light 

(blue and/or red), CCA1 and GI amplitudes were similar in shoots and roots (under both 

LD and LL). PRR9 peaks in LD were higher and sharper in roots compared to shoots. The 

peak of GI in LD was broader and earlier in roots compared to shoots (Figure 4.7 A and 

B). 

 

There was no significant difference between shoot average FRPs under blue or red light 

(i.e. between SR and SB in Figure 4.5.D; P=0.544). However the root average FRP under 

blue light was significantly higher than the root average FRP under red light (P<0.01, 

Figure 4.7.D). For both blue and red light, the average FRPs are longer in roots compared 

to shoots. 

 

Figure 4.8 recapitulates all shoot and root FRPs under LL (with light-grown roots) and DD 

(with dark-grown roots) obtained in this chapter with imaging. All these periods were used 

together for a 2 way ANOVA test. This analysis confirmed that for each LL conditions 

(red, blue, or red and blue light) the FRP is longer in roots compared to shoots. 

It also showed that different light qualities had different effects on shoot and root clock 

FRPs, as detailed below.  
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A.  B. 

  
Figure 4.8: Comparison of FRPs in shoots and roots in various conditions 
Average FRP of shoots (A) and roots (B) clock gene expression for plants under constant light (blue 
(B), red (R) or red and blue (RnB) light) or constant dark (DD). Individual FRP were from Figure 4.3 
(light-grown roots), 4.5 and 4.7. Different letters on the bars indicate significantly different groups; e.g. 
all roots FRPs are significantly different in LL (under blue, red and red and blue light), and significantly 
different from the shoot FRPs in LL (P<0.001) but root FRP are not significantly different between 
Blue LL and DD (P=0.929) according to a 2 way ANOVA test. 
 

 

 

Shoot FRPs were on average longer (~26 h) under blue or red light compared to their 

average FRP under blue and red light (~25h); but the differences were not highly 

significant (P>0.02, Figure 4.8.A). This was consistent with Aschoff’s rules: indeed the 

light intensity was halved in this “blue or red experiment” compared to the “blue and red 

experiments” of section 4.3  In both experiments, each wavelength gave a 7-8 µmol.m-2.s-1 

irradiance, i.e. ~15 µmol.m-2.s-1 when blue and red were combined. Therefore lower light 

intensity increased FRP in shoots as expected. In addition, the shoot FRP was significantly 

higher in DD compared to any LL conditions (P<0.001, Figure 4.8.A). 

 

On the contrary, different light qualities had different effects on the root clock FRP (Figure 

4.8.B). Red as well as red and blue light both significantly shortened the root clock FRP 

compared to DD (P<0.001) but to a lesser extent compared to their effect on the shoot 

clock FRP. Besides, a combination of red and blue shortened the root clock FRP more 

compared to red or blue light separately (P<0.001); again this was consistent with 

Aschoff’s rules (the total intensity was doubled in red and blue light condition). But there 
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was also a significant difference between blue and red light (P=0.001), and blue light did 

not shorten the root clock FRP compared to DD (P=0.929). 

 

In conclusion, both blue and red light seemed to have similar effects on the clock gene 

amplitudes: clock genes had a similar profile under red, blue, and red and blue light. But 

red light may have a greater effect in shortening the root FRP. It is important to note that 

the experiments presented in this section have only been carried out once. Although their 

results are consistent with previous data, they should be repeated before drawing any firm 

conclusions. It would be particularly interesting to further investigate the possible distinct 

effects of blue and red light on the root clock. 

 

 

4.7 Conclusion 

 

The main question addressed in this chapter was: is the root clock different from the shoot 

clock just because the roots are virtually in constant darkness, whereas the shoots are 

exposed to light and dark? The answer is no. There are differences between shoot and root 

circadian systems. Otherwise, clock genes would have more similar profiles in shoots and 

light-grown roots. But they do not: the FRP are significantly longer in roots compared to 

shoots in LL. This was demonstrated with imaging and RT-qPCR experiments, and in 

different conditions with the same light on shoots and roots: blue, red or white light (Figure 

4.1.C, 4.3 E&F, 4.4.D, 4.7 C&D, Table 4.1 & 4.2).  

 

There were quantitative differences between imaging and RT-qPCR data in terms of FRP. 

The period estimates in shoots under LL were higher for imaging data compared to RT-

qPCR data. But this was likely due to the lower light intensities used for imaging and is 

consistent with Aschoff’s rules. These rules apply to diverse organisms including plants, at 

least for shoots. For instance Somers and colleagues showed that with either blue or red 

constant light, the lower the intensity, the longer the FRP of CAB expression in 

Arabidopsis (Somers et al., 2004). But Aschoff’s rules have not been tested in roots yet, 

and I did not aim to do this (otherwise I would have used a range of light intensities with 

the same light quality). Although different intensities were used in this chapter, the light 

quality varied as well. In the diverse light conditions used here (red and/or blue, white 
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light) the FRP in roots were variable but without any clear trend. Nevertheless the FRP 

were always higher in roots compared to shoots. 

 

Another key difference between shoot and root clock gene expression is their amplitude in 

LD. The amplitudes of all the clock genes studied in this chapter were lower in dark- 

grown roots compared to shoots. This was first revealed with imaging (Figure 4.3.A&B), 

and then confirmed with RT-qPCR (Figure 4.4.C). However the amplitudes of clock 

promoter activities were always higher in light-grown roots compared to dark-grown roots, 

getting closer to the amplitudes in shoots. For instance the amplitudes were not 

significantly different in shoots and light-grown roots under LD with imaging (Figure 

4.3.B). This similarity between shoots and light-grown roots under LD was not observed at 

the mRNA level: light affected differentially the relative amplitudes of clock genes in 

light-grown roots compared to shoots. For instance the amplitudes of CCA1 and PRR9 

were respectively lower and higher in light-grown roots compared to shoots. 

 

Differences in amplitudes were also observed in LL between light- and dark-grown roots 

(Figure 4.2.B, 4.3 and 4.5). Light could differentially affect clock gene expression in roots. 

The most striking examples were when dark-grown roots under LL were suddenly exposed 

to light: their expression increased greatly, especially for evening genes (Figure 4.2.B). 

However this induction by light was not the same for all genes and seemed to be gated by 

the clock. The amplitudes of clock genes in roots exposed to light were also more variable 

at the mRNA level compared to dark-grown roots: they seemed to be increased only for 

evening genes whereas they were decreased for morning genes. On the other hand, the 

relative amplitudes in dark-grown roots compared to shoots were more stable and lower, 

which made some rhythms harder to detect. 

 

However this chapter also revealed similarities between the shoot and root clocks. Many 

components of the shoot clock are also circadian in the roots at the transcript level. This 

includes evening genes such as GI and TOC1 that were previously thought to be 

arrhythmic in dark-grown roots. Their rhythmicity in various conditions (LD, LL and DD) 

could be detected here with the imaging system I developed, and also with an improved 

protocol for RT-qPCR experiments. However TOC1 rhythms were usually weak and not 

always detected in roots: this does not necessarily mean that TOC1 was arrhythmic in some 

cases; indeed a low amplitude rhythm can be missed depending on the variability and the 
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method used. This highlights the interest in using different techniques and different 

conditions. To illustrate this point, let us go back to the example of GI rhythm in roots. It 

was first detected by RT-qPCR when this organ was exposed to light. This was confirmed 

with imaging in similar conditions (i.e. with light-grown roots). Using imaging revealed 

that GI promoter activity was also circadian in dark-grown roots, in LD, LL and DD. GI 

rhythmicity was therefore questioned at the mRNA levels, and an improved RT-qPCR 

protocol finally revealed GI rhythms in dark-grown roots under LL and DD, at the 

transcript level. In the end, GI was scored rhythmic in every condition and with both 

methods. Although rhythms were weaker for TOC1 compared to GI, they could be 

detected at least once in each condition, i.e. in LD and LL with light- and dark-grown 

roots, and also in DD. Taken together, the results presented in this chapter suggest that the 

root clock contains evening genes too, as the shoot clock does. 

 

Interestingly both morning and evening genes were rhythmic in roots under DD, and with a 

similar FRP than in shoots (Figure 4.5 and 4.6). The rhythms dampened quickly in this 

condition, they were more variable and not always detected. Nevertheless, the similarities 

between shoot and root clocks under DD suggest that the differences observed between 

their mechanism in LD and LL might be explained by different light input pathways in 

these two organs. Indeed different input pathways feeding the clocks of shoots and light-

grown roots could result in different gene expression in each organ, which in turn could 

give different FRPs under LL. For instance roots under constant blue light had a similar 

FRP than roots under DD, whereas constant red light shortened the FRP of roots. On the 

contrary, both blue and red light shorten the FRP in shoots compared to DD. These results 

presented in section 4.6 indicate that blue and red light may have differential effects on 

shoot and root clocks. 

 

More generally light can differentially regulate gene expression in different organs of 

Arabidopsis and rice, including roots (Jiao et al., 2007). Roots can express photoreceptors 

whether they are light-grown on plates (Toth et al., 2001) or dark-grown in hydroponic 

culture (Sullivan et al., unpublished). Some phytochromes and cryptochromes are even 

circadian regulated in roots. In addition, some photoreceptors can be functional in this 

organ: for instance root-localised phytochromes can play a role in root elongation and 

sensitivity to jasmonic acid (Costigan et al., 2011). Therefore the study of light effects in 

the roots is relevant physiologically.  
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However roots usually grow in the dark. That is why our imaging system was adapted to 

keep roots in darkness. In natural conditions, light can penetrate through the soil (Tester 

and Morris, 1987) but the intensity reaching the roots are usually much lower compared to 

the shoots. And in natural conditions, most plants grow under LD cycles. Therefore the 

effects of light were further studied by using different light intensities and under diurnal 

conditions, as described in the next chapter. 
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5 Entrainment of the root circadian clock 

 

5.1 Introduction 

As we have seen in the general introduction, most organisms have an internal clock that 

allows them to anticipate rhythmic changes such as LD and temperature cycles. To be 

synchronised with these environmental rhythms, the circadian clocks are reset by external 

cues. The main zeitgebers for plants and other organisms are light and temperature. In 

shoots, the clocks of different tissues that were completely out of phase under LL were 

resynchronised within a few days after transfer to LD cycles (Wenden et al., 2012). One 

can wonder whether such a rapid resynchronisation could also occur between shoot and 

root tissues. 

 

It is not clear which mechanisms entrain the root clock. When Arabidopsis plants were 

grown at constant temperature and with their roots in dark boxes, the root clock was still 

entrained under LD cycles (James et al., 2008). How could dark-grown roots at constant 

temperature be entrained? Experiments using sucrose or DCMU (a specific inhibitor of 

photosynthesis) suggested that the root clock could be entrained by light indirectly, e.g. via 

photosynthate (James et al., 2008). These experiments used plants grown in hydroponic 

culture and RT-qPCR to quantify their clock gene expression over time. In this chapter I 

further investigated the entrainment of the root clock using imaging and RT-qPCR.  

 

The previous chapter showed that exposure of the roots to “high” light intensity can have a 

strong effect on clock gene expression in this organ. Could lower light levels have a 

significant effect on the root clock too? Small amounts of light can penetrate through the 

soil (Tester and Morris, 1987), and photoreceptors are expressed in dark-grown roots 

(Sullivan et al., unpublished). Therefore direct entrainment of the root clock by LD cycles 

might be relevant physiologically. Such entrainment has been shown previously but with 

light-grown roots (Thain et al., 2000). The authors exposed shoots and roots to opposite 

LD cycles and observed that the expression of CHS was in antiphase in shoots and roots. 

In these experiments shoots and roots were exposed to the same white light (250 µmol.m-

2.s-1).  This indicated that the root clock could be directly entrained by LD cycles, and also 

suggested that the clocks of different tissues may not be coupled. However, roots are 
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usually not exposed to high light intensity, which may have masked any coupling in the 

experiments of Thain et al. I also used conflicting LD cycles to consider the possible 

coupling between shoot and root clocks, but by exposing dark-grown roots to lower light 

intensities.  

 

The sensitivity of an oscillator to an entraining signal can be studied by using T cycles of 

different zeitgeber strength (Abraham et al., 2010). The shoot clock can be entrained by 

photocycles of different periods (T), in a range between T = 20 h and T = 32 h at least 

(Roden et al., 2002), but the light intensity used was 80 µmol.m-2.s-1 in this study. I have 

tested a broader range of T cycles with lower light intensity to explore the sensitivity of 

shoot and root clocks to LD cycles. 

 

The shoot clock is particularly sensitive to the light/dark transitions at dawn and dusk since 

it can be entrained by skeleton photoperiods (Millar, 2003). Pokhilko et al. used skeleton 

photoperiods to test their predicted regulation of LHY/CCA by its inhibitors (Pokhilko et 

al., 2010). In that case theoretical work – updating of the mathematical model – preceded 

validation by experiments. Here the experiments were carried out before modelling. I 

asked whether the root clock could be entrained by skeleton photoperiods because this 

could provide further information about the clock mechanism and might also reveal 

additional differences between shoots and roots. 

 

This chapter focuses mainly on entrainment by LD cycles, but also considers entrainment 

by temperature cycles. Indeed thermocycles seem an obvious zeitgeber for dark-grown 

roots in a natural environment.  

 

5.2 The clocks of shoots and illuminated roots are out of 
phase in LL and quickly resynchronised in LD cycles 

In chapters 3 and 4 the shoot and root clocks were investigated under constant conditions 

following entrainment in LD cycles. To test whether the shoot and root clocks would be re-

entrained after several days in LL, clock gene expression was monitored over several days 

in LD cycles both before and after a period in LL.  

 

The results presented in Figure 5.1 confirm that shoot and root clocks have different FRPs 

in LL (Figure 5.1 A-D) and also show that both clocks can be very quickly resynchronised 
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under LD conditions (Figure 5.1 A-C, E). After only one dark period (ZT 132-144), shoot 

and root clocks that were desynchronised under the preceding LL were in phase again 

(Figure 5.1 A-C).  

 

Interestingly morning and evening genes seemed to react in different ways: TOC1 and GI 

expression decreased abruptly from ZT132 (i.e. as soon as the first dark cycle following 

LL started), whereas CCA1 and PRR9 profiles changed dramatically only 12h later: they 

were greatly induced after ZT144 (i.e. at the first dark to light transition following the LL 

period). This transient LD cycle (ZT132-156) had a very similar effect on evening genes in 

both shoots and roots. However, it seemed to affect morning and evening genes differently: 

CCA1 and PRR9 become synchronised in shoots and roots only after the DL transition 

(from ZT144). It indicates that morning genes may be reset at dawn rather than dusk, 

whereas evening genes might be reset at dusk (and possibly at dawn too).  

 

Similar results were obtained with output genes (Figure 5.1.C). Shoots and roots were in 

phase in LD cycles, but roots had a longer FRP in LL compared to shoots. After the LL 

period, CCR2 behaved like the other evening genes: its resetting seemed to be stronger at 

dusk than dawn. Interestingly CAT3 (CATALASE3), which peaks in the middle of the day, 

seemed to be strongly reset at both dawn and dusk. However this could be a masking 

effect: the promoter of CAT3 seemed to be most active during the light period in both 

organs. 

 

Thus this experiment confirmed previous conclusions, including that TOC1 is rhythmic in 

light-grown roots. It also showed that roots and shoots could be rapidly re-synchronised in 

LD cycles. It may take a few more days for the shoots to adopt a stable phase angle with 

the LD cycles following LL. This would be consistent with published results (Wenden et 

al., 2012), where a full resynchronisation of shoot tissues were observed within 2-4 days, 

and would explain why rhythms in the shoots were different from 24 h (Figure 5.1.E). The 

roots and shoots were exposed to the same LD conditions. The entrainment of the root 

clock by these LD cycles could be either direct or indirect. Each of these possible 

mechanisms was investigated and the results are presented in the following sections. 
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D. E. 

  
Figure 5.1: the FRP is longer in roots compared to shoots in LL, but both 
organs are synchronised in diurnal conditions 
Plants with different LUC+ reporter were entrained for 3-4 weeks in LD (white light) before 
imaging (blue and red light); roots were all light-grown (i.e. exposed to the same light/dark 
conditions as shoots). Plants were then imaged for 24 h in LD before release in LL and re-
entrainment in LD.   
A-C: Bioluminescence over time of shoots and roots for morning genes (A: CCA1 and PRR9), 
evening genes (B: TOC1 and GI) and output genes (C: CCR2 and CAT3). Experiments for A 
and B were repeated at least twice, whereas C is a single experiment.  
Green lines and circles represent shoots; orange lines and triangles represent roots. Bars in 
the backgrounds represent days or subjective days (white bars), night (dark grey bars) and 
subjective night (hatched bars). Error bars are SEM for 2-3 clusters of 3-6 plants/organs (from 
2-3 independent experiments). 
D and E: Circadian period estimates for CCA1, PRR9, TOC1 and GI promoter activities (S = 
shoots, black symbols; R = roots, white symbols) in LL (D) and LD (E) using BRASS. The first 
day of LL and LD were discarded for this analysis.  

  

 

 

5.3 The root clock can be entrained by direct perception 
of light 

 

The previous section showed that the clock of light-grown roots is entrained by LD cycles.  

This entrainment could be achieved by direct exposure to light or indirectly through a 

rhythmic signal from shoots. To rule out this possible indirect effect in the case of light-

grown roots, and ask whether light can directly entrain the root clock, some plants were 

decapitated. 

 



Organ specificity in the plant circadian clock 

 

 
 
132 

Plants with the GI:LUC+ reporter gene were used. Roots were either light- or dark-grown; 

a bright field image and the corresponding luminescence are shown in Figure 5.2.A and B. 

Plants were first entrained in LD cycles for 3.5 weeks, and then imaged for 13 days: 4 days 

in LD, 4 days in LL and another 5 days in LD. Half of the plants were decapitated at ZT24 

(before dawn). Results are presented in Figure 5.2. 

 

GI expression profiles were almost superimposable in shoots with light- or dark-grown 

roots (Figure 5.2.D) as expected (indeed the shoots were all in the same light conditions, 

whereas the roots were not). Rhythms under LD cycles had a 24 h period, but the FRP was 

longer in LL (Figure 5.2 D, G, H). This is consistent with previous results (Figure 5.1 and 

previous chapter) and could be considered as an internal control.  

 

Figure 5.2.C shows the result of decapitation for plants with light-grown roots. GI behaved 

as expected in the control roots: it had a 24 h rhythm under LD cycles (Figure 5.2 C, G) 

but a longer FRP in LL (~30 h; Figure 5.2 C, H), which is consistent with previous results 

(Figure 5.1 and previous chapter). Interestingly the GI expression profile was similar in the 

roots of decapitated plants, although levels of expression were lower in decapitated plants 

compared to the controls. This might be due to lower energy levels in these roots that are 

deprived of their shoots. Nonetheless, the periods of GI expression were also 24 h under 

LD and longer under LL in decapitated plants.  Therefore GI expression can be entrained 

by direct exposure to light in roots.  

 

The results were very similar for dark-grown roots (Figure 5.2.E). In this case plants were 

under the same conditions as before (Figure 5.2.C) except that the roots were always kept 

in the dark, i.e. roots were effectively in DD. For the control (non-decapitated) these dark-

grown roots had a 24 h rhythm in diurnal conditions (Figure 5.2 E and G). This is 

consistent with previous RT-qPCR data and was thought to be the result of indirect 

entrainment via shoots which are directly exposed to LD cycles (James et al., 2008). The 

decapitated plants maintained a 24 h rhythm in “LD” (ZT24-96) as well (Figure 5.2 E and 

G). This is surprising because they were expected to free run (with a FRP>24 h) as under 

DD (Figure 5.2.F). The decapitated plants with dark-grown roots also free ran in LL with 

an FRP longer than 24 h (ZT96-208 in Figure 5.2.E and Figure 5.2.H). These dark-grown 

roots that were decapitated were therefore entrained, which was unexpected. 
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There are at least two possible explanations of these data. First it is possible there was 

some light leakage from the shoot compartment of the plate to the root compartment. 

Second some root tissue remained in the shoot compartment after decapitation; its 

luminescence can be seen in Figure 5.2.B. This tissue could have conducted light to the 

rest of the roots via light piping: indeed plant tissue can act as a fibre optic (Sun et al, 

2003).  

 

To try to distinguish between these two explanations, the same experiment as in Figure 

5.2.E was repeated in a slightly different way: no root tissue was left in the shoot 

compartment, so that if any entrainment were still observed under LD, it could only be due 

to light leakage. The results were very similar to the one presented in Figure 5.2.E: the 

decapitated dark-grown roots had a 24 h period under LD and a longer FRP under LL (data 

not shown). This was surprising because our imaging protocol was designed so that roots 

are kept in darkness. Adding charcoal in the medium and using a customised lid (Figure 

3.2) must reduce light leakage from the shoot compartment of the plate to the root 

compartment to a minimum level. However this set up cannot be perfectly light-tight: some 

light is probably channelled by the front of the lid, from top (this is the only part of the lid 

that cannot be covered if the shoots need to be exposed to light) to bottom.  

 

To make sure that light leakage could not be directly from the LEDs to the root 

compartment, the experiment presented in Figure 5.2.E was repeated in the same way 

except that black tape was put around the shoot compartment. In this case the dark-grown 

roots free ran from the moment they were decapitated: the results were the same as in 

Figure 5.2.F (i.e. under DD), although the imaging room was under LD for 3 days (as in 

Figure 5.2.E). This confirmed that the covering system for roots is light-tight. It does not 

distinguish between light piping and light leakage from the shoot to the root compartment. 

In either case, the root clock must be extremely sensitive to light. 

 

The same experiment as in Figure 5.2 was done with CCR2:LUC+ as a reporter, and the 

results were qualitatively similar to GI (cf. Figure A.4 in Appendix). Decapitated roots had 

a 24 h rhythm during LD cycles, whether roots were light- or dark-grown (Figure A.4 

A&C 2 in Appendix). After one day in LL the signal of decapitated roots was very low. 

However the signal increased again in light-grown roots when the plants were retransferred 

to LD cycles, and their rhythm were close to 24 h. In DD the signal of decapitated roots 

was too low to be detected.  
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Figure 5.2: LD cycles can directly entrain GI expression in roots 
Plants with the GI:LUC+ reporter were entrained 3.5 weeks in LD (white light) before imaging (blue 
and red light); roots were light- or dark-grown. Plants were imaged for 24h in LD. Then half of them 
were decapitated before dawn (at ZT24, indicated by the red arrows).  
A and B: bright image of 4 plates with 2 clusters of 2 plants in each (A) and corresponding 
luminescence (B) after decapitation; the plants were decapitated (left-hand sides) or not (right-hand 
sides) and their roots were light-grown (top plates) or dark-grown (bottom plates). 
After half of the shoots were removed at ZT24 (decapitation), all the plants were either transferred 
to LD and LL cycles (C-E) or to DD (F). 
C-F: Bioluminescence over time of light-grown roots (C), shoots (D) and dark-grown roots (E, F). 
Grey bar represents D cycles, white and light grey hatched bars represent L and subjective L 
respectively, and dark grey hatched bars represent subjective nights. Data were normalised with 
the mean luminescence of the first LD cycle (before decapitation, C-E) or with the mean 
luminescence of the time-course in DD (F). The time course for shoots was not displayed in F for 
clarity. Error bars are SEM for 4 clusters of 2-3 plants (organs) from 3 independent experiments, 
except for the last 3.5 LD cycles (following the LL period) where only 1 cluster were imaged. 
G and H: Circadian period estimates of data presented in C-F in LD (G) and constant conditions (H 
: LL or DD) using BRASS for roots and shoots 
Symbols and colours used in Figure C-F are the same as in Figure G and H for clarity. Shoots and 
roots are represented by circles and triangles respectively. For each graph the lighter colours 
represents organs of plants with light-grown roots, whereas darker colours represents organs of 
plants with dark-grown roots. The open symbols represent decapitated plants. 
 

 

 

The results presented in this section strongly suggest that light can act as a direct zeitgeber 

for the root clock. It does not rule out the possible existence of other zeitgebers, such as 

photosynthates. This raises the question: if both light and photosynthates can entrain the 

root clock, which one is the stronger zeitgeber?  
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5.4 GI expression in roots is preferably entrained by 
direct perception of light than by any putative signal 
from shoots 

The previous section demonstrated that the root clock can be directly entrained by LD 

cycles, using decapitated plants. In intact plants, the root clock might also be indirectly 

entrained by LD cycles, e.g. via photosynthate rhythms (James et al., 2008). If these two 

mechanisms (i.e. direct and indirect entrainment by LD cycle) coexist in the root circadian 

system, which one is the main zeitgeber? To address this question, roots and shoots were 

exposed to conflicting LD cycles with varying light intensities.  

 

Plants with dark-grown roots and carrying the GI:LUC+ reporter were entrained in LD 

cycles before imaging. After spraying them at dusk with luciferin, they were subjected to 

24 h of darkness. Shoots and roots were then exposed to LD cycles exactly in antiphase 

and finally allowed to run free in DD (Figure 5.3). Shoots were exposed to light at 20 

µmol.m-2.s-1 while roots were exposed to intensities between 0.2 and 20 µmol.m-2.s-1 

(except a control for which roots were kept in the dark, labelled R0). These roots were 

exposed to 1, 5, 10, 20 or 100% of the light illuminating shoots; they were therefore 

labelled R1, R5, R10, R20 and R100 respectively. 

 

Shoots and dark-grown roots (R0) behaved in a very similar way (Figure 5.3.A). As soon 

as illumination started during the first invert cycle (i.e. from ZT12) GI expression 

increased in both organs and peaked 3-6 h after this new dawn. It then decreased and rose 

again the next day, reaching a maximum 3 h before dusk (ZT45). After these two transient 

cycles (ZT12-60) both organs were clearly entrained to the new LD cycles. GI expression 

adopted a stable phase angle during the next three LD cycles (ZT60-132), with a peak at 

dusk in both organs. The period under LD was ~ 24 h in shoots and R0 (Figure 5.3.D). 

After release in DD, GI free ran with a longer period in both organs (Figure 5.3.D). Thus 

GI can be rapidly re-entrained by LD cycles that were in antiphase with previous LD 

cycles (during entrainment before imaging). This is true for both shoots and dark-grown 

roots (R0), which was not surprising given that shoots and roots are known to be in phase 

under LD cycles.  
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The amplitudes of shoots and dark-grown roots were also rapidly stabilised: they decreased 

the first two days and were almost unchanged the last three days under LD (Figure 5.3.A). 

The decrease in amplitude might be due to the perturbation caused by the inversion of LD 

cycles. Another possible explanation might be the different light intensity used for these 

invert cycles: plants were entrained for 3 weeks in LD at ~ 100 µmol.m-2.s-1 and then for 5 

days in LD at ~ 20 µmol.m-2.s-1. Amplitudes were always lower in roots compared to 

shoots (Figure 5.3). 

 

During the first day of imaging (ZT0-24), the GI expression profile was very similar in all 

the roots (Figure 5.3.B&C). This was expected because all the roots had been in the same 

conditions (i.e. dark-grown) until then. However, as soon as roots were exposed to light, 

GI cycled in antiphase compared to the control roots. The phase of GI expression 

progressively shifted to the new “root dusk” (represented by dotted lines in Figure 5.3.A-

C). A transient could be observed the first day (ZT24-48), as it was observed in shoots 

(ZT12-36, described in previous paragraph): GI peaked ~3 h after the first “new dawn” 

(ZT27). GI rhythms quickly seemed to adopt a stable phase angle during the next three LD 

cycles (ZT48-120, Figure 5.3.B&C), with a peak ~3 h before dusk for all the roots exposed 

to 1 µmol.m-2.s-1 or more. There was one exception in terms of phase: the roots exposed to 

the lowest light intensity (0.2 µmol.m-2.s-1) peaked earlier than the other roots, at least 

during the second LD cycle (ZT54, Figure 5.3.B).  

 

The period under LD was ~ 24 h in all roots exposed to 2 µmol.m-2.s-1 or more (Figure 

5.3.D). After release in DD, GI free ran with a longer period in these roots. Thus GI can be 

rapidly entrained in roots by LD cycles that were in antiphase with LD cycles experienced 

by shoots. The phase of GI expression in DD was determined by the LD cycle the organ 

was directly exposed to: this is obvious between ZT120 and ZT168 when roots that were 

exposed to light free ran in antiphase compared to shoots and control roots (Figure 

5.3.B&C). 
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Figure 5.3: GI expression in roots is entrained by direct perception of light rather 
than any putative signal from shoots 
Plants with the GI:LUC+ reporter were entrained 3 weeks in LD with dark-grown roots before 
imaging. Plants were then transferred one day in DD (1 D cycle followed by 1 subjective D cycle); 
imaging started at this subjective dawn (time 0). Shoots and roots were then exposed to LD cycles 
in antiphase, except for the controls. Shoots and roots (R0) controls were entrained in phase, but 
shoots were exposed to LD cycles that were in antiphase with the LD cycles experienced before 
imaging, and R0 were kept in the dark. All shoots were exposed to 20 µmol.m-2.s-1 light (= 100%). 
The roots R1, R5, R10, R20 and R100 were exposed to 1, 5, 10, 20 and 100% of the light intensity 
that shoots were exposed to. After these antiphase LD cycles (4 cycles for roots, 5 for shoots), 
plants were released into DD. 
A-C: Bioluminescence over time of shoots and control roots (A), and roots exposed to antiphase 
LD cycles (B and C); the control root time-course (R0) is shown on the 3 graphs for comparison. 
Note the 2 different Y axis scales.  White bars represents L cycles on the shoots and on the roots 
R100 (100% of the light intensity), grey bars represent L cycles (with x % of the light intensity, x = 
1, 5, 10 or 20) on roots R1, 5, 10 and R20 respectively, black and hatched bars represents D and 
subjective D cycles respectively. Data were normalised with the mean luminescence of the first 24 
h of imaging, i.e. before roots were exposed to light (all plants were in the same conditions during 
these 24 h). The data points represent averages of at least 3 replicates (from 2-3 independent 
experiments). Although the SEMs were low they were not displayed on Figure A-C for clarity. 
D: Circadian period estimates of root data presented in A-C in LD and DD using BRASS. The last 3 
days in LD and day 2-4 in DD were considered for this analysis.  
E: relative amplitudes of roots exposed to light as a function of light intensity (1- 100% of the light 
on shoots). The amplitudes were estimated by BRASS for the last 3 cycles in LD (as in D) and 
normalised with the average of the shoots amplitude (estimated in the same way, = 100%). Error 
bars are SEM for 2-4 clusters of 2-3 plants/organs. The relative amplitude of R0 is shown on the y 
axis (average = 29%, SD = 10%); by extrapolation the light intensity that might be perceived by R0 
via light piping from shoots is represented by the grey and red dashed bar (i.e. less than 3% of the 
light intensity on shoots)  
 

 

 

Although GI did not have a 24 h period under LD in the roots exposed to lower light 

intensities (0.2 and 1 µmol.m-2.s-1, i.e. R1 and R5), it was rhythmic in both LD and DD 

conditions (Figure 5.3.D). In DD the FRP and the phases of GI in R5 were similar to the 

ones observed in the other roots (exposed to higher light); GI free ran in antiphase in R5 



Organ specificity in the plant circadian clock 

 

 
 
140 

compared to R0 (Figure 5.3.C). The phase of GI in R1 under DD was less clear and 

possibly determined by the extra L cycle on the corresponding shoots (Figure 5.3.B). But 

the periods for both R1 and R5 in LD cycles were 25-26 h, not 24 h; very similar periods 

were estimated with both BRASS and COSOPT, another commonly used software for 

rhythm analysis  This was possibly because the phase angles were not stabilised yet after 

the four LD cycles on roots. For instance Figure 5.4.B shows that it is only during the last 

two LD cycles on roots (ZT72-108) that R1 peaked ~3 h before dusk, i.e. like the other 

roots exposed to higher light. Before that, the phase of GI in R1 progressively shifted 

towards dusk. A similar but less obvious observation could be made for R5. However there 

could be a more intriguing explanation. Interestingly the periods under LD of R1 and R5 

were ~ 25-26 h. This matches with the FRP of GI in dark-grown roots under LL (Figure 

5.2). It is possible that ~ 1-5% of the light perceived by the shoots was channelled down 

the roots. If this was the case, R1 and R5 were virtually under LL (during the LD period), 

which would explain why they were maybe not entrained in “LD”. One way to test these 

ideas (phase angle stabilisation VS. free running) would be to repeat the experiment and 

run it longer under invert LD cycles. 

 

In the roots, the amplitudes tended to be stabilised after one or two transient cycles in LD 

(Figure 5.3.B&C). The interval between ZT48 and ZT120 was used to estimate both the 

periods (described above) and the amplitudes in roots with BRASS (Figure 5.3.E). There is 

clear positive correlation between the amplitudes of GI in roots and the light intensity this 

organ was exposed to. Interestingly this correlation could be well fitted with a Hill 

equation (dashed line in Figure 5.3.E). This might indicate some cooperativity in the 

mechanism of GI induction by light. In addition, the amplitude of GI in R0 was close to its 

amplitude in R1. Using the Hill equation (from the regression in Figure 5.3.E) to determine 

the light intensity possibly perceived by dark-grown roots (R0) would result in a broad 

range of values below ~3%. This range of values would be consistent with the fraction of 

light that could be channelled from shoots to roots (Sun et al., 2005).  

 

To summarise, GI rhythms in roots were preferably entrained by the light they were 

directly exposed to rather than a putative entraining signal from their shoots. This was the 

case even when the light intensity of the LD cycles illuminating roots was much lower than 

that of the LD cycles illuminating shoots. In addition, the shoots were exposed to one more 

light cycle compared to the roots (ZT108-120); yet the roots then free ran in DD with a 



5. Entrainment of the root clock 

 

 
141 

phase determined by the LD cycle they had been directly exposed to. Therefore light seems 

to be a stronger zeitgeber for the root clock than any putative signal from the shoots at 

constant temperature. 

 

5.5 Shoot and root clocks both have a broad range of 
entrainment but respond differently to T cycles 

The previous sections show that the root clock – at least GI – can be directly entrained by 

LD cycles with very low light intensity. Is the root clock more sensitive to light than the 

shoot clock in terms of entrainment? If so, Herzel and colleagues’ work suggests that the 

root clock should have a broader range of entrainment compared to the shoot clock 

(Abraham et al., 2010). I decided to ask whether both shoot and root clocks could entrain 

to weak zeitgebers, and if so, how broad is the range of entrainment in each case. 

 

T cycle experiments were carried out with low light intensity (0.15 µmol.m-2.s-1, Figure 

5.4). GI:LUC was used as the reporter. Plants with dark-grown roots were entrained for 3 

weeks in LD 12/12 (white light, ~100 µmol.m-2.s-1) as usual.  They were then sprayed with 

luciferin and imaged over time. First they were all entrained for another 2 days in LD 

12/12 (blue and red light, 15 µmol.m-2.s-1) and released in DD for 2 days (Figure 5.4.A). 

These LD cycles were used as a control and to normalise the whole time-courses. Figure 

5.4.A shows that results were very reproducible during this period. After these 4 days of 

imaging plants were transferred to different T cycles but at low light intensity (blue and red 

light, 0.15 µmol.m-2.s-1) and finally released into DD (Figure 5.4.B-F). The following 

periods were used for T cycles: 16, 24, 28, 32 and 40 hours in Figure B-F respectively (the 

photoperiod being half of each cycle, e.g. LD 8/8 for T16 cycles). 

 

Surprisingly GI was entrained in both shoots and roots by all of these T cycles during the 

LD periods (Figure 5.4.B-F and Table 5.1). The periods of GI in both organs matched the 

periods of the corresponding T cycles very well under LD (Table 5.1). Moreover GI was 

quickly synchronised with the “new LD cycles”: it took only 1 or 2 T cycles before the 

rhythms stabilised in both shoots and roots (Figure 5.4.B-F); the damping observed during 

these first T cycles may be due to the very low light intensity used in these experiments. 

Free-running rhythms of GI were detectable in DD after the T cycles in all cases except for 

shoots after the T24 and T40 cycles (Table 5.1).  
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Figure 5.4: GI expression can be entrained by a broad range of low amplitude LD cycles in 
both shoots and roots 

Plants with the GI:LUC+ reporter were entrained 3 weeks in LD 12/12 (white light) before imaging 
started. They were entrained another 2 days in LD 12/12 (blue and red light 15 µmol.m-2.s-1) and 
released 2 days in DD (A) before transfer to different T cycles (blue and red light 0.15 µmol.m-2.s-1) 
and release in DD (B-F).  
A. The first 4 days (L12/D12- DD)  of the time-courses presented in B, C, D, F (different T cycles) 
were averaged for shoots and roots 
B, C, D, F: The 2 days of DD presented in A are shown for each T cycle experiment, followed by 
low amplitude LD cycles (B, C, D, F: T = 8/8, 12/12, 14/14 and 20/20 LD cycles respectively) and 
release in DD. Row data from each time-course were normalised with the mean luminescence of 
the corresponding LD 12/12 last cycle. Normalised data are averages of 2-4 clusters of 2-3 plants 
from 1 or 2 independent experiments. 
E: Other T cycle experiment but with LD 16/16 cycles and without imaging before the T cycles 
started. These time-courses were normalised with the mean luminescence over the last T cycle 
(from ZT192 to ZT224). See text for more details. 
 

 

There was no clear correlation between FRPs under DD and the periods of the preceding T 

cycles. Nevertheless, the FRP in roots increased with T between 16h and 28h (with FRPs 

of about 26, 28 and 30 h for T=16, 24 and 28 h respectively) but it decreased afterwards 

(Table 5.1). The opposite trend was observed in shoots but since free-running rhythms 

were only detectable in 3 of the 5 T cycle datasets it is difficult to draw any conclusions. 

 

Table 5.1: Period estimates (h) of the time-courses presented in Figure 5.4 
The last 3 T cycles and the first 3 days in DD (72 h from the first subjective dawn) were used to 
estimate the period in LD and DD respectively, using BRASS. 
 

LD DD LD DD LD DD LD DD LD DD
Shoots 16.12 27.41 23.81 ND 28.28 21.57 30.7 28.59 39.76 ND
Roots 16.23 26.1 24.05 28.56 28.25 30.19 32.25 28.85 40.04 28.49

T16 T24 T28 T32 T40

 
 

   

An obvious difference between shoots and roots under the different T cycles was the phase 

of GI expression. Figure 5.4 shows that for each T cycle, GI peaked earlier in roots 

compared to shoots. It took both organs only one or two transient cycles to adopt a stable 

phase relationship to the zeitgeber cycle. This phase angle depends on T for each organ 

(Table 5.2), which indicates a real entrainment of GI by LD cycles.  

 

In addition, the waveforms were different in the two organs, especially under LD 20/20 

cycles: the GI peak was asymmetric in roots but not in shoots. More generally, peaks were 

sharper in roots. These differences between shoot and roots in terms of phases and 

expression profiles clearly suggest different regulation of GI in these organs.  
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Table 5.2: Phases of peak expression in shoots and roots under T cycles 
The last 3 T cycles of the time-courses presented in Figure 5.4 were used to estimate the phases 
of GI expression in shoots (S) and roots (R) under LD using BRASS. The average phases of peak 
expression and their SEM are presented in 2 ways: in terms of hours after dawn (upper part) or in 
terms of Circadian Time (CT, lower part; the values presented in the upper part were multiplied by 
24 and divided by T) 
 

 
  T16 T24 T28 T32 T40 

 
  Phase SEM Phase SEM Phase SEM Phase SEM Phase SEM 

ho
ur

s S 7.77 0.39 13.24 0.50 12.81 0.47 13.26 0.75 13.94 0.54 
R 6.10 1.08 9.89 0.54 9.88 0.60 5.10 0.30 8.33 0.50 

C
T

 S 11.65 0.59 13.24 0.50 10.98 0.40 9.95 0.56 8.36 0.32 
R 9.14 1.62 9.89 0.54 8.47 0.51 3.83 0.23 5.00 0.30 

 

 

Another obvious difference between GI rhythms in shoots and roots under T cycles is their 

amplitude: they were higher in roots under all these low LD cycles. But in both shoots and 

roots, the amplitude depends on T, with a peak at T32 (Figure 5.5). This indicates that both 

shoot and root clocks can resonate, at a surprisingly high value for T (32 h), which is 

actually very close to the FRPs in shoots and roots under DD in my conditions (Chapter 4, 

Figure 4.5). Regardless of the resonance frequency, it would suggest that both clocks are 

“weak” (Abraham et al., 2010) or flexible, as opposed to rigid oscillators which are more 

robust (their amplitude varies little with T). 

 

In conclusion GI could be entrained by a weak zeitgeber (low amplitude LD cycles) in a 

broad range of T cycle in both shoot and root clocks. This suggests that both clocks are 

very sensitive to entrainment by LD cycles. The fact that GI resonates more in shoots than 

in roots at T32 (Figure 5.5) suggest that the shoot clock might be even more sensitive to 

light than the root clock and would be a weaker oscillator according to Abraham et al. 

(2010). Nevertheless the root clock seems sensitive enough to be entrained by very low 

light intensity, which is consistent with other results presented in this chapter.  
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A. B. 

  
Figure 5.5: The amplitude of GI expression rhythm resonates in both shoots and 
roots 
The amplitudes of GI expression rhythms under different T cycles were estimated from the data 
presented in Figure 5.4. Since the different T cycle experiments presented in Figure 5.4 were done 
in slightly different ways (e.g. there was no data before the T cycles started in the T32 experiment), 
the data were renormalized in order to compare amplitudes between the different T cycles. All the 
time courses for the different T cycle experiments were renormalized with the average 
luminescence over their 4th T cycle (i.e. last common cycle for all experiment) to be comparable. 
Then the amplitudes of these 4th T cycles were plotted. Data are averages of 2 clusters of 2-3 
plants from the same experiment. Bars represent SEM. 
A. Shoot and root resonance curves 
B. Ratio between shoot and root amplitudes (i.e. data from A). 
 

 

 

5.6 Shoot and root clocks respond differently to skeleton 
photoperiods 

Since dark-grown roots can perceive light, they can presumably recognise the transitions 

between light and dark under diurnal conditions. Previous sections strongly suggest that 

the root clock can be directly entrained by low light/dark cycles. The light/dark transitions 

at dawn and dusk are sufficient to entrain the shoot clock (Millar, 2003). Can such skeleton 

photoperiods entrain the clock of dark-grown roots too?  

 

The response of shoots and roots to skeleton photoperiods were tested experimentally by 

measuring the bioluminescence of the CCA1-, PRR9-, PRR7- and GI:LUC reporter genes. 

Plants expressing these reporters were entrained as usual (4 weeks of LD 12/12 cycle on ½ 

MS medium without sucrose). They were then imaged over the last day in LD 12/12 before 
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transfer to skeleton photoperiod for 3 days and finally released in DD. Roots were kept in 

the dark all the time. Results are presented in Figure 5.6.  

 

 

A. CCA1 B. PRR9 

  

C. GI D. PRR7 

  
Figure 5.6: Shoot and root clock genes respond differently to skeleton photoperiods 
Plants were entrained in LD (12L:12D) for 3 weeks, then imaged a last day in 12L:12D (from ZT0) 
before transfer to skeleton entrainment for 3 days and release in DD (from ZT96). Each skeleton 
photoperiod consist of two 3 h light pulses, one starting at dawn and the other one finishing at dusk 
(3L:6D:3L:12D), from ZT24 to ZT96.  
A-D: Normalised luminescence from CCA1-, PRR9-, GI- and PRR7:LUC plants respectively. White 
bars represent light periods; black and hatched bars represent dark periods. The luminescence was 
normalised to the mean luminescence over the last 12L:12D period for each organ. Data were 
averages of 2-3 clusters of 1-3 plants from 1 experiment. Bars correspond to SEM.  
 

 

During the skeleton photoperiods, the expression of clock genes was differentially 

regulated in shoots and roots. In shoots, the profiles of CCA1 and PRR9 were consistent 

with published data (Pokhilko et al., 2010). The peaks were higher at dawn compared to 
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dusk, especially for CCA1 with only a shoulder at dusk (Figure 5.6.A). PRR9 also peaked 

at dusk but with a lower level compared to dawn (Figure 5.6.B), which was also predicted 

and observed experimentally by Pokhilko and colleagues. Interestingly, this trend was 

inverted in roots, where the PRR9 peak at dusk was much lower compared to its dawn 

peak, whereas the CCA1 peak at dawn was not much higher than its dusk peak (Figure 

5.6.A&B). The difference between shoots and roots was even more pronounced for GI 

under skeleton photoperiods: in shoots GI only peaked at dusk with a shoulder at dawn, 

whereas GI peaked at dawn and dusk in roots with a similar level of expression (Figure 

5.6.C). This profile was similar to the PRR7 profile in both shoots and roots: PRR7 peaked 

to similar levels at dawn and dusk (Figure 5.6.D).  

 

These different responses to skeleton photoperiods observed between shoots and roots 

reveal different regulation of genes by light and by the clock in the two organs. Possible 

explanations are speculative at this stage but could provide the basis for further 

experiments. In shoots, the shoulder of CCA1 at dusk – as opposed to its high peak at dawn 

– could be explained by CCA1/LHY repression by a wave of inhibitors that are mainly 

expressed from the afternoon until the night (PRR9, PRR7 and the Night Inhibitor (NI) 

constitute this wave). The relatively higher peak of CCA1 at dusk (compared to dawn) 

observed in roots compared to shoots (Figure 5.6.A) suggest less repression of CCA1 in 

roots at dusk. This could be due to lower levels of clock gene expression in dark-grown 

roots compared to shoots (chapter 4); the lower levels of PRR9 and PRR7 in roots would 

repress CCA1/LHY less compared to shoots. In addition PRR5 is a good candidate for NI 

(Pokhilko et al., 2010) but was arrhythmic in roots (Sullivan et al., unpublished). Its levels 

of expression at dawn and dusk were similar and therefore it might not inhibit CCA1/LHY 

at dusk any more than at dawn. These interpretations are based on the P2010 model, but 

are still valid with the P2012 model where the same wave of inhibitors (together with 

TOC1) inhibits CCA1/LHY. Besides, TOC1 acts later in the evening and in the night in the 

P2012 model. Furthermore, TOC1 protein seemed to be lower in roots compared to shoots 

(James et al., 2008). Altogether, results presented in Figure 5.6.A are consistent with the 

published results mentioned above and other root data (chapter 4). 

 

The differences between shoot and root responses to skeleton photoperiods were more 

striking for PRR9 and GI. In roots PRR9 had much smaller peak at dusk compared to dawn 

(Figure 5.6.B), and GI peaked at similar levels at dawn and dusk (Figure 5.6.C). But 

considering the P2010 model these observations could be consistent with previous root 



Organ specificity in the plant circadian clock 

 

 
 
148 

data. In diurnal cycles TOC1 mRNA had a broader peak in roots compared to shoots, its 

level rising already in mid-afternoon (James et al., 2008); that could explain more 

repression of PRR9 during the 3h before dusk in roots under skeleton photoperiods. 

Considering the P2012 model, data presented in Figure 5.6.B suggest there is more 

repression of PRR9 by the EC around dusk in roots compared to shoots. The EC might 

peak earlier or have more inhibitory effects in roots. Data in diurnal cycles (e.g. Figure 

5.6.B) already suggested differential regulation of PRR9 in shoots and roots: the peak was 

sharper in root, consistent with more repression than in shoots at the end of the day. 

 

GI data in roots under skeleton photoperiods suggest it is similarly regulated during the 3h 

after dawn and before dusk. The peak at dawn – as opposed to the shoulder observed in 

shoots - is consistent with the observation that LHY-containing EE-binding complexes 

could not be detected in roots (James et al., 2008). Therefore GI would be less (if at all) 

inhibited by morning genes around dawn. This is also consistent with imaging data (Figure 

5.6.C, previous sections and chapter 4): in diurnal conditions GI levels increase in roots 

from dawn to dusk, without a dawn peak whereas in shoots, an acute light activation of GI 

expression followed by its inhibition by CCA1/LHY results in a sharp dawn peak of GI. 

Although GI peaked at dawn and dusk in roots under skeleton photoperiods, it free ran in 

DD with only its dusk peak (Figure 5.6.C). 

PRR7 had a similar profile in both shoots and roots under skeleton photoperiods: it had the 

same peak at dawn and dusk, although the amplitude was lower in roots compared to 

shoots. After release in DD the relative levels were higher in roots compared to shoots 

(Figure 5.6.D) but rhythmic in both organs (Table 5.3). 

 

After release in DD, the rhythms seemed to be more sustained in shoots for CCA1 and GI, 

but more sustained in roots for PRR9 and PRR7 (Figure 5.6).  Nonetheless it suggests that 

skeleton photoperiods are sufficient to entrain the root clock as well as the shoot clock.  

Note that the averages represent 2-3 clusters of 1-3 plants imaged at the same time (in 

other words this experiment has only been done once). This experiment should be repeated 

before drawing any firm conclusion about the data in DD. Nevertheless, the same pattern 

observed for each gene/organ over 3 consecutive days (under skeleton photoperiod) could 

be considered as a triplicate. These data are therefore more reliable than the following data 

under DD 
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In conclusion, the different responses of clock gene expression to skeleton photoperiods in 

shoots and roots may reflect different clock mechanisms in these two organs. The main 

differences were observed for PRR9 and GI. The former is probably more repressed at the 

end of the day and the later less repressed at the beginning of the day, in roots compared to 

shoots. A lower repression of GI in roots would be consistent with the lack of CCA1/LHY 

binding to EE in this organ. However the mechanism of PRR9 repression in roots is not 

known and should be further investigated.  

 

 

5.7 Entrainment of the root clock by temperature cycles  

Most of my initial work was focused on the effects of light on the root clock. It showed 

that the clock of dark-grown roots can be entrained by direct perception of light. This could 

be relevant physiologically and indeed could be the main mechanism of entrainment at 

steady temperatures. But in natural conditions, temperature changes daily in a rhythmic 

manner (with some random fluctuations). Temperature is one of the main zeitgebers for 

circadian clocks in general. Given that much of the root network is underground, in close 

to full darkness, I decided to test whether the root clock can be entrained by temperature 

cycles using RT-qPCR. 

 

In this experiment, plants were entrained 4 weeks in LD cycles and constant temperature 

(20 °C) before starting harvesting (ZT0). Then the growth cabinets were set to DD and 

temperature cycles (12 h at 12 °C followed by 12 h at 20 °C) during the 3 days of 

harvesting. It is important to note that the zeitgeber phase was inverted: the “subjective 

dawn” at ZT0 corresponds to the start of the cold cycle (which would be a “new subjective 

dusk”). Figure 5.7.A&B clearly illustrated this phase shift: CCA1 and RVE1 are morning 

genes that usually peak around dawn. On the first day of harvesting both shoots and roots 

peaked a few hours after the first “subjective dawn” (ZT0). However their next peak 

appears only 36 hours later, i.e. at the “new subjective dawn”. The mRNA levels in both 

shoots and roots even anticipated this transition between the cold cycle (new subjective 

night) and the warm cycle (new subjective day): they started rising before ZT36,and they 

peaked again 24 h later. This is exactly what would happen in LD cycle: they would rise 

before dawn. Therefore CCA1 and RVE1 expression seemed to be entrained by 

temperature cycles. 
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A. B. 

  
C. D. 

  
E. F. 

  
Figure 5.7: Shoot and root clock genes can be entrained by temperature cycles 
Plants were entrained in LD 12/12 and constant temperature for four weeks. At ZT0 they were 
transferred to DD and temperature cycles (12/20 °C). The blue and red bars represent 12 and 20 
°C respectively, and the light and dark hatched bar represent the subjective light and dark cycles 
respectively (i.e. LD cycles experienced before DD and temperature cycles).  
A-F: Transcript levels of CCA1, RVE1, PRR9, PRR7, GI and TOC1 respectively. The data were 
normalized twice: first with UBQ and then with the mean value of these data (normalised with UBQ) 
over the last two days. This experiment was processed by Brian McDade. 
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LHY expression was very similar to CCA1 (results not shown). RVE1 is known to be 

induced by LHY protein and the expression of this downstream gene matches that of the 

new phase shown by the clock genes. This is indirect evidence that the levels of LHY 

protein reflect the observed shift in its mRNA levels, resulting in a rhythmic activation of 

RVE1 expression. 

 

PRR7 and PRR9 are thought to be involved in temperature entrainment of the shoot clock 

(Salome and McClung, 2005a). Interestingly, their phase of expression started shifting to 

the new zeitgeber phase during the first temperature cycle in both shoots and roots (ZT0-

24, Figure 5.7.C&D). As for CCA1 and RVE1, the mRNA levels of these PRRs were 

synchronised with the new zeitgeber after only 2 – 3 days of temperature cycles.  

 

The expression profile of GI was similar to that of PRR7/9 (Figure 5.7.E). For TOC1, the 

transition from one phase to another seems more complex (Figure 5.7.F). However the last 

2 days show us similar results: shoots and roots were in phase and peaked at the expected 

“time of the day” based on the temperature cycle (i.e. around the “new dusk” for TOC1 and 

GI). Some differences between shoots and roots were evident on the second day but less so 

on the third one. It is likely the circadian system needs more than 48 hours to reach a 

steady state after such a big change in light and temperature conditions.  

 

A longer time-course and extra time-points would be helpful to estimate the rhythm 

characteristics (e.g. phases and periods) and possibly show us more differences between 

shoots and roots. For instance, the phases of CCA1 and RVE1 expression seems to be 

delayed in roots compared to shoots (Figure 5.7.A&B). However, temperature changed 

more slowly in the hydroponic medium than in the air (Sullivan et al., unpublished), which 

would explain the phase delays between shoots and roots.    

 

This experiment was done before ISU1 was chosen as a new reference gene for RT-qPCR. 

We previously used UBQ as a reference gene for our time-courses. There is no universal 

reference gene for RT-qPCR, and depending on the conditions, one gene may be better 

than another. In the particular conditions used in this experiment, the level of UBQ was 

quite variable over the time-course and between the two different organs. It was actually 

more variable during the first 24 hours, which may be due to the huge change in the 
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conditions: from LD cycle we switched directly to DD and temperature cycles with 

opposite phases (the cold cycle corresponding to the previous light cycle). Ideally we 

should use a reference gene that is stably expressed over the whole time-course, in both 

shoots and roots. But such a gene has not yet been found for these specific conditions. 

However the UBQ levels were more stable the last 2 days of our experiment. I therefore 

normalized the data twice: first with UBQ (as usual), and a second normalization with the 

mean value of these data (normalised with UBQ) over the last two days. This allows us to 

compare relative levels of expression in both shoots and roots (e.g. relative amplitudes). 

 

Even better, a good reference gene would fulfil the same condition (described above), but 

also be stable in LL and temperature cycle. We planned to do the same experiment as 

discussed above, but setting LL instead of DD during the temperature cycles. We 

processed most of the samples but lost one day because of technical issues. Nevertheless, 

the preliminary results (not shown) indicated that temperature cycles also drive the root 

clock in LL. 

 

To determine whether the rhythms observed in roots after temperature cycles are truly 

circadian, we need another experiment. Plants should be entrained for several days by 

temperature cycles, and then released to constant conditions (light and temperature). 

Circadian genes would still be expressed rhythmically in those constant conditions.  

 

 

5.8 Conclusion 

This chapter showed that the root clock can be entrained by both LD and temperature 

cycles. The entrainment by LD cycles at constant temperature seems to be mainly related 

to direct perception of light by the roots, rather than an indirect signal from the shoots as it 

was thought before (James et al., 2008). This is true whether roots are directly exposed to 

LD cycles, or kept in darkness. In fact dark-grown roots can perceive light channelled by 

upper tissues exposed to light (Sun et al., 2005). Although this piped light is probably 

much lower than light directly perceived upper tissues, it must be sufficient to entrain dark-

grown roots. This was demonstrated after decapitating plants.  

 

By “direct entrainment” I mean that LD is probably the “direct pacemaker” for the root 

clock, i.e. there would be no “intermediate” oscillator(s) between the LD cycles and the 
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central clock in roots. This is in contrast with previous work that suggested the entraining 

effects of light and dark would be “indirect” (James et al., 2008); for instance LD cycles 

could entrain a metabolic oscillator (e.g. sugar levels) that would in turn entrain the root 

clock. This hypothesis has not been ruled out, but there is now more evidence for a direct 

entrainment of the root clock by LD cycles at constant temperature. This is summarised 

below. Note that the effects of light on the clock are not so “direct”, as mentioned in the 

general introduction. There are many ways by which light could contribute to the 

entrainment of the clock, for instance by direct interaction of photoreceptors with clock 

proteins, by activation of transcription or translation, etc. 

 

The surprising results from the “decapitation experiment” raised other questions: if very 

low light levels can directly entrain the root clock, is it a stronger zeitgeber than a putative 

rhythmic signal from shoots? And is the root clock more sensitive to LD cycles compared 

to the shoot clock? The answer to the first question is probably yes, to a certain extent. For 

instance LD cycles with an “amplitude” of only 2 µmol.m-2.s-1 could entrain GI in roots 

even though the shoots were exposed to LD cycle with much higher amplitude (20 

µmol.m-2.s-1) and in antiphase with the LD cycles experience by the roots. Other studies 

with different organisms also used conflicting phasing of zeitgebers, namely LD and 

temperature cycles. The clock was either entrained by LD or temperature cycles depending 

on the relative strength of each zeitgeber (Liu et al., 1998; Johnson et al., 2004). In our 

case, even with only 0.2 or 1 µmol.m-2.s-1 of light on the roots GI expression peaked during 

the second half of the “root day”, and then free ran with a phase determined by these “root 

LD cycles” (Figure 5.3). If a zeitgeber from shoots (e.g. photosynthates) was strong 

enough, it would have entrained GI in the roots so that it peaked during the second half of 

the “shoot day” (i.e. when roots were in the dark). This was not the case. However, GI did 

not seem properly entrained in R1 and R5 (Figure 5.3.C&D): the periods in LD cycles 

were 25-26 h, not 24 h. Either the phase angles were not stabilised yet after the four LD 

cycles on roots or GI free ran because the roots might have been virtually in LL (due to 

light piping from the shoots). This would need more experiments to be clarified. 

Nevertheless, the results presented in this chapter support the idea that plant clocks from 

different tissues and organs are probably not coupled, or very weakly. 

 

Because light levels are most likely decreasing when transmitted down the roots (e.g. by 

absorption and diffraction), the root tips would be exposed to very low levels of light – if 
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any at all. It means that roots must be either extremely sensitive to light, or the root clock 

must be entrained by (an) other pacemaker(s). The T cycle experiments showed that both 

root and shoot clocks seem to be very sensitive to weak zeitgebers, namely LD cycles of 

different periods with very low light intensity (0.15 µmol.m-2.s-1). In both organs GI could 

be entrained by a very broad range of T cycles (from 16 to 40 h at least), which 

demonstrate how sensitive to entrainment by LD the plant clocks are. When dark-grown 

roots were decapitated but still entrained by LD cycles (Figure 5.2), the amount of light 

reaching the roots was possibly less that 0.15 µmol.m-2.s-1. It is possible that other 

mechanisms of entrainment coexist in the root: for instance the LD cycles perceived by the 

top of the roots might be translated to other rhythmic signals that would in turn entrain the 

other parts of the roots. For instance a light-induced intercellular signalling, as suggested 

by Bischoff et al. (1997) cannot be excluded.  

 

Most if not all the experiments presented in this chapter showed that root and shoot clocks 

behave differently under entraining conditions, although the zeitgebers were the same for 

both organs. The differences became evident during the entrainment by T cycles and by 

skeleton photoperiods. In the latter case, GI and PRR9 responses to skeleton photoperiods 

were clearly different between shoots and roots, whereas CCA1 and PRR7 profiles were 

more similar in both organs. These differences reveal different mechanisms in each organ, 

and could be due to different regulation by the clock, by light, or both. For instance GI had 

very similar peaks at dawn and dusk in roots, contrary to the shoots where GI peaked 

mainly at dusk. This might be due to masking effects in roots: 3 hours of light had almost 

the same effect at dawn and at dusk in roots. However the much smaller peak of GI in 

shoots at dawn is explained by CCA1/LHY inhibition of GI in the current model (Pokhilko 

et al., 2012). This inhibition may not occur in roots, because CCA1/LHY may not bind EE 

in roots (James et al., 2008). This possibility will be explored using modelling in chapter 7. 

 

Finally the root clock was shown to be entrained by temperature cycle for the first time. 

The phases of clock genes shifted in one or two days from the phases dictated by the 

previous LD cycles to the new phases of temperature cycles (in antiphase compared to the 

previous LD cycles). The phase angle under temperature cycles seemed to be rapidly 

stabilised, but the time-course was too short to confirm this for all genes. In addition, the 

plants were not released in constant conditions afterwards: a free run would be needed to 

confirm that the root clock was truly entrained. In the meantime such experiments were 

carried out in the lab: they confirmed that temperature can really entrain the root clock, as 
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expected. Although low levels of light can directly entrain the root clock, temperature 

seems to be a more obvious zeitgeber for dark-grown roots in natural conditions. 



 

 
 

157 

 

6 Effects of the cca1/lhy, toc1 and ztl mutations on 
the root clock 

6.1 Introduction 

The data presented in this chapter come from experiments that have not been repeated yet. 

These preliminary results could therefore be informative but not conclusive. When I started 

my PhD the root clock was thought to be a simplified version of the shoot clock; only the 

“morning loop” seemed to be circadian under LL (James et al., 2008). In the models at that 

time (Locke et al., 2006; Zeilinger et al., 2006), LHY/CCA1 and PRR7/9 formed this 

morning loop. In these mathematical models the morning loop was coupled with the 

evening loop via connections with LHY/CCA1 (Figure 1.4.A). A prediction was that the 

prr7/9 mutation should have stopped the root clock. But contrary to this, in the prr7/9 

double mutant, TOC1 transcripts regained rhythmicity in roots under LL (James et al., 

2008). One explanation for this unexpected rhythmicity was that in roots, disengagement 

of the morning and evening loops would require PRR7 and/or PRR9. The current model of 

the clock is more complex than the L2006 model (Pokhilko et al., 2012) but it still includes 

a morning loop between the PRRs and LHY/CCA1. If this is the only loop present in the 

root clock mechanism, the cca1-11/lhy-21double mutation should then stop the root clock. 

The effects of this double mutation were therefore tested experimentally. 

 

The previous chapters suggest that shoot and root clocks may share the same components, 

including evening genes. Yet these two clocks behave differently, especially under LL. 

Therefore some of the clock components may play different roles in shoots and roots. If so, 

mutations of such components should affect shoot and root clocks differently. Earlier 

studies showed that the toc1-10 mutation did not affect the root clock; at least it did not 

seem to shorten the root clock FRP under LL, although the same mutation did shorten the 

FRP in the clock of mature shoots (James et al., 2008). Previous chapters showed that 

TOC1 expression is actually rhythmic in roots under LD, LL and DD, at least at the mRNA 

levels. But this does not necessarily mean that TOC1 is part of the core mechanism in 

roots, even though TOC1 is a core clock gene in shoots. For instance TOC1 might be an 

output in roots, which could reconcile the results mentioned above: TOC1 could be 

circadian in roots but its mutation would not have any effect on the root clock, at least not 
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on the FRP under LL. This idea was tested with imaging by monitoring the CCR2:LUC+ 

activity in the toc1-4  mutant.  

 

Finally, the effect of the ztl-105 mutation was explored. This mutation lengthens the FRP 

of clock genes in shoots (Baudry et al., 2010; Somers et al., 2004). But in WT plants clock 

genes already have a longer FRP in roots compared to shoots. Is ZTL functional in roots? 

If not, it could explain why the FRP under LL is longer in roots compared to shoots. 

 

6.2 The cca1/lhy double mutant displays rhythmicity in 
roots, but with a shorter FRP than in shoots 

Does the cca1-11/lhy-21 double mutation stop the root clock? To answer this question, 5 

week old plants carrying the CCR2:LUC+ reporter in the cca1-11/lhy-21 double mutant 

background were imaged for 5 days in LL (Figure 6.1). This double mutant has a clear 

growth phenotype: shoots and roots are smaller and the plants flower earlier compared to 

the WT. Therefore plants were already flowering when imaging started. But the signal 

from dark-grown roots of younger (and smaller) plants was too low to be monitored. The 

following results should be considered with caution, the plants being in a different 

developmental stage (reproductive stage) compared to other studies presented in this thesis. 

 

Under LD, the phase of CCR2 was advanced in the cca1-11/lhy-21 double mutant 

compared to the WT, in both shoots and roots (Figure 6.1). The levels of luminescence 

were relatively high in roots during the first few hours of imaging, making the dusk peak 

of CCR2 in the double mutant hard to distinguish (Figure 6.1). This is probably because 

more luciferase accumulated in these old plants than in the younger plants I usually image. 

Although plants were sprayed with luciferin at least 12 h before imaging started, it may 

have taken longer for all the accumulated luciferase to be inactivated. 

 

The FRP of CCR2 in shoots under LL was shorter in the double mutant compared to the 

WT (19.17 h and 25.02 h respectively, Table 6.1), consistent with previously published 

work (Locke et al., 2005b). In roots, the CCR2 rhythm persisted the first 3 days under LL 

in the double mutant, and its FRP was also shorter compared to the WT (22.48 h and 28.06 

h respectively, Table 6.1); these period estimates only considered the LL period between 

ZT24 and ZT96 because CCR2 was arrhythmic the last 2 days in LL.  Note that the rhythm 
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of CCR2 was rapidly dampened in the roots of the double mutant, but interestingly CCR2 

rhythm damped less in roots than in shoots in the double mutant (Figure 6.1).  

 

A.  B.  

  
 
Figure 6.1: The cca1-11/lhy-21 double mutant displays rhythmicity in the root under 
LL 
All the plants were in the WS background. WT and cca1-11/lhy-21 double mutant plants carrying 
the CCR2:LUC+ reporter were entrained for 5  weeks in LD cycles before imaging. They were then 
entrained a last day in LD before release in LL for 5 days. Roots were dark-grown. 
A and B: Luminescence of CCR2:LUC+ in roots (A) and shoots (B) over time. Each time-course 
was normalised to the mean over the last LD cycle. Data were from 1 cluster of 5-6 plants. The 
dark grey bars in the backgrounds represent the last night before release in LL. 
 

This experiment should be repeated to test how significant the differences between FRPs 

are, and it should be repeated with younger (non-flowering) plants. Nevertheless it already 

indicates that the root clock involves probably more than just a morning loop.  

 

Table 6.1: FRPs of CCR2 expression in roots and shoots of WT and mutants 
under LL 
The periods were estimated from the data presented in figures 6.1, 6.2 and 6.3. The time-

courses between ZT48 and ZT144 were considered (i.e. all the period in LL except the first 24 

h), except for dark-grown roots of cca1-11/lhy-21 and toc1-4 mutant (periods marked with * ): 

the time-courses between ZT24 and ZT96 were considered because rhythms were too 

dampened afterwards. ND: Not Determined, because the experiments were not done. 

 
shoots dark-grown roots light-grown roots 

 
mutant WT mutant WT mutant WT 
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cca1/lhy-21 vs. WT 19.17 25.02 22.48* 28.06* ND ND 

toc1-4  vs. WT 21.41 25.75 25.62* 29.72* 23.45 27.47 

ztl vs. WT 29.85 24.50 30.69 28.47 ND ND 

 

 

6.3 The toc1-4 mutation shortens the FRP in the root 
clock 

To investigate whether TOC1 actually plays a role in the root clock or not, the toc1 mutant 

was studied. Plants expressing the CCR2: LUC+ reporter in the toc1-4 mutant or in the 

WT were entrained in LD for 3-4 weeks. They were then imaged one day in LD followed 

by 5 days in LL (Figure 6.2). The roots were light- or dark-grown to see if the possible role 

of TOC1 in the root clock depends on light conditions. 

 

Under LD, the profiles of CCR2 expression were almost identical in shoots of WT and 

mutant, with the same time of peak expression (Figure 6.2.B). CCR2 also peaked at the 

same time in roots of WT and mutant (Figure 6.2.A). However the phase of CCR2 was 

advanced a few hours in light-grown roots compared to dark-grown roots.  

 

In LL, the FRP was shorter in the toc1-4 mutant compared to the WT in shoots (21.41 h 

and 25.75 h respectively, Table 6.1), consistent with previous results (Millar et al., 1995a). 

In roots, CCR2 free ran too and its FRP was ~ 4 h shorter in the toc1-4 mutant compared to 

the WT whether roots were light- or dark-grown (Figure 6.2 and Table 6.1).  However 

rhythms dampened rapidly to a low and arrhythmic level in dark-grown roots of the toc1-4  

mutant (Figure 6.2.A). Therefore only the first 3 days of LL were considered for the period 

analysis (i.e. ZT24-96, Figure 6.2.A).  

 

The FRP of CCR2 in the roots of the toc1-4  mutant was shorter when roots were exposed 

to light compared to dark-grown roots (23.45 h and 25.62 h respectively, Table 6.1), but 

plants with dark-grown roots started flowering during the experiment, which might have 

affected rhythms in roots.  
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Figure 6.2: The toc1-4  mutation shortens the FRP of CCR2 expression in both light- 
and dark-grown roots under LL 
WT and toc1 -4 mutant plants (both in the Ws background) carrying the CCR2:LUC+ reporter were 
entrained for 3-4 weeks in LD cycles before imaging. They were then entrained a last day in LD 
before release in LL for 5 days. Roots were either light- or dark-grown (top and bottom row 
respectively). 
A and B: Luminescence of CCR2:LUC+ in roots (A) and shoots (B) over time. Each time-course 
was normalised to the mean over the last LD cycle. Data were from 1 cluster of 3-6 plants. 
The dark grey bars in the backgrounds represent the last night before release in LL. 
 

   

In conclusion, the data from light-grown roots are consistent with the data from shoots, in 

the sense that the toc1-4 mutation shortened the FRP of the mutant in both organs 

compared to the WT. The results were qualitatively similar when roots were dark-grown, 

although the rhythms dampened rapidly. In any case the experiments should be repeated, 

especially the one with dark-grown roots that should be done with non-flowering plants. 
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Nevertheless, the preliminary results presented in this section indicate that TOC1 is 

possibly a core clock gene in roots. 
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6.4 The ztl-105 mutation differentially affects CCR2 
expression in shoots and roots 

If ZTL is a component of the root clock, its mutation should affect the FRP of clock-

controlled genes in this organ. CCR2 is such an output gene: its expression is rhythmic 

under LL in roots of the WT (figure 6.1 and 6.2). Plants expressing the CCR2: LUC+ 

reporter in the ztl -105 mutant or in the WT were entrained in LD for 4 weeks. They were 

then imaged one day in LD followed by 5 days in LL (Figure 6.3). The roots were dark-

grown.  

 

Under LD, the profiles of CCR2 expression were almost identical in shoots of WT and 

mutant, with notably the same time of peak expression (Figure 6.3.B). CCR2 also peaked 

at the same time in roots of WT and mutant (Figure 6.3.A), and CCR2 peaked at dusk in 

both organs (Figure 6.3.A-C).  

 

The FRP of CCR2 was longer in the ztl -105 mutant compared to WT, in both shoots and 

roots (Figure 6.3 and Table 6.1). However the difference between mutant and WT was 

much more pronounced in shoots than in roots (Figure 6.3.D). The FRP in shoots was 

about 6 h longer in the ztl -105 mutant compared to the WT. This is consistent with 

published data (Baudry et al., 2010; Somers et al., 2004). The difference between FRP in 

WT and mutant was much less in roots (~ 2 h, Figure 6.3.D and Table 6.1), although it 

seemed longer the first 3 days in LL (Figure 6.3.A). Indeed there were at least 35 h 

between the two first peaks of CCR2 in the roots of the mutant in LL but the time between 

the subsequent peaks was reduced, hence a FRP estimate of 30.69 (Table 6.1). There was 

therefore a phase shift in LL for the expression of CCR2 in the roots of the ztl -105 mutant, 

which was then in antiphase with shoots (Figure 6.3.C, ZT72-144).  

 

Interestingly the FRP was very similar in shoots and roots of the ztl -105 mutant (~30h, 

Figure 6.3.D and Table 6.1). This experiment needs to be repeated to see whether 

differences in FRP are significant or not, between shoots and roots and between WT and 

mutant. Considering these four conditions (shoots and roots in WT and mutant) with future 
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replicates, an ANOVA analysis might then reveal that only the FRP of shoots in WT is 

significantly different from the three other FRPs. If this speculation is correct it would 

suggest that ZTL is not functional in roots.  

 

 
A. B. 

  
C. 
 

D. 

 

 
Figure 6.3: The ztl -105 mutation affects differently CCR2 expression in shoots 
and roots 
WT and ztl mutant plants carrying the CCR2:LUC+ reporter were entrained for 4 weeks in LD 
cycles before imaging. They were then entrained a last day in LD before release in LL for 5 
days. Roots were dark-grown. 
A-C: Luminescence of CCR2:LUC+ in roots (A) and shoots (B) for WT and ztl -105 mutant. 
Shoots and roots of the mutant were reploted together in C. The dark grey bars in the 
backgrounds represent the last night before release in LL. Data were from 1 cluster of 3-6 
plants. 
D: FRPs in LL of data presented in A-C. Circadian period were estimated using BRASS for 
roots and shoots in WT and mutant; their values are also presented in Table 6.1. 
 



6. Effects of mutations on the root clock 

 

 
 

165 
 

 

 

6.5 Conclusion 

The mutants studied in this chapter are known to be clock mutants in shoots, but apart from 

the toc1 mutant they had not been studied in roots before. The single mutations of TOC1 

and ZTL, and the double mutation of CCA1 and LHY had qualitatively similar effects on 

the expression of CCR2 in both shoots and roots. In LL the toc1-4 and cca1-11/lhy-21  

mutations shortened the FRP in shoots and roots compared to the WT, whereas the ztl -105 

mutation lengthened the FRP in both organs. 

 

In LD, the profiles of CCR2 expression, including its dusk phase, were very similar in WT, 

toc1-4 and ztl -105 mutants but different in the cca1-11/lhy-21 double mutant, where the 

phase was advanced. This was true for both shoots and roots. The amplitudes were lower 

in roots compared to shoots in the three mutants, as it is the case in WT. 

 

In LL, the amplitudes were in general lower in roots compared to shoots in WT and 

mutants, with the possible exception of the cca1-11/lhy-21 double mutant where CCR2 

damped quickly in LL to relatively flat levels in both organs. For all mutants the lower 

amplitude of clock genes in dark-grown roots compared to shoots is comparable with the 

data in WT presented in this chapter and in the previous ones. 

 

In the cca1-11/lhy-21 double mutant, the amplitude in LL seemed to dampen more in 

shoots compare to roots, but this may be an artefact. In fact the plants were older and 

flowering, and the mechanism of the clock might depend on the developmental stage. This 

is probably the case in humans where chronotype is age-dependent (Roenneberg et al., 

2007). Therefore these results should be taken carefully, as well as the data from dark-

grown roots in the toc1-4 mutant because the plants were starting to flower. More 

generally, all the results presented in this chapter are only indicative because the 

experiments were only done once. 

 

The FRP of CCR2 was clearly shorter in light-grown roots of the toc1-4 mutant than in that 

of the WT. This is consistent with the effects of toc1 mutation on the shoot clock. But it is 
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in contrast with a previous study (James et al., 2008) where the toc1-10  mutation did not 

seem to have any effect on the root FRP in LL. However James and colleagues studied 

dark-grown roots. When the roots were dark-grown for my imaging experiment, the effect 

of the toc1 -4 mutation was clearer: it shortened the FRP of CCR2. In addition, James and 

colleagues used the toc1-10 mutant whereas the plants I imaged were in the toc1-4 mutant 

background. Mutations at different loci of ztl result in different FRP under LL, e.g. ~25 h 

and ~ 28 h for the ztl-21 and ztl-31 mutants respectively (Kevei et al., 2006). Similarly, 

different toc1 alleles might have different effects on the root clock. The effect of the 

mutation may also depend on the presence or absence of light on the roots. However, 

TOC1 was shown to be rhythmic in light- and dark-grown roots in most conditions 

(Chapters 3-5), and it is a core clock gene in shoots. Taken together with the preliminary 

data of toc1-4 mutant in roots (section 6.2), this indicates that TOC1 might be a key player 

in the root clock too. 

 

The experiment with the ztl -105 mutant was also done once. However, the FRP in shoots 

and roots of the mutant were very similar (~ 30 h) and only 2 h longer than the FRP in 

roots of the WT. In contrast, the FRP in the shoots of the WT were 4-6 h shorter, i.e. ~ 24 h 

as previously published (Somers et al., 2004).  

 

If these results are reproducible, they could suggest that ZTL may be less effective in roots 

compared to shoots. Indeed in shoots the enhanced stabilisation of ZTL by GI under blue 

light seems to contribute to normal clock function (Kim et al., 2007). In dark-grown roots 

there must be less blue light, if any at all (Sun et al., 2005; Tester and Morris, 1987). ZTL 

would therefore be less stable in dark-grown roots, assuming this mechanism is similar in 

both organs. This might contribute to the longer FRP observed in the roots of WT plants, 

as is observed in the shoots of ztl mutant (Mas et al., 2003). ZTL functions need to be 

further investigated in roots, at different levels (e.g. mRNA and protein) and under 

different conditions (e.g. blue or red light). 
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7 Modelling the root clock 

 

7.1 Introduction 

All the mathematical models of the plant circadian clock published so far - between 2005 

and 2012 - have been based on seedling data. These are mainly imaging data and are very 

similar to our data from mature shoots5. However it was shown in 2008 that the circadian 

clock differs in shoots and roots (James et al., 2008). Therefore the general aim of the 

work in this chapter was to refine the plant circadian clock model, adding some organ 

specificity.  

 

The root clock was first thought to be a simplified slave version of the shoot clock (James 

et al., 2008). Although most if not all the clock genes found in shoots were also rhythmic 

in roots under diurnal conditions, only the morning loop was running in the roots under 

constant conditions, and with a longer FRP compared to shoots. Thus my initial aim was to 

model these differences: the longer FRP of morning genes, the arrhythmia of evening 

genes under LL or DD, and also a synchronisation mechanism between the two organs 

under LD. In 2008 the latest versions of the plant circadian model were the Zeilinger et al. 

(2006) and the Locke et al. (2006) models, the latter being referred as the L2006 model 

hereafter. Some parameters of the L2006 model were modified in an attempt to simulate 

the behaviour of the root clock (section 7.2). 

 

During the last few years, more root clock data have been acquired in different conditions. 

It turned out that the evening loop is actually circadian in roots too (under LL and DD); 

this was easier to detect with imaging than with RT-qPCR. Nevertheless these data 

confirmed that the shoot and root clocks have different FRPs under LL. In the meantime, 

two updated versions of plant circadian clock models were published (Pokhilko et al., 

2010; Pokhilko et al., 2012) and will be referred as the P2010 and P2012 models hereafter. 

Both models were used and some of their parameters changed in attempt to fit the more 

recent root data (sections 7.3-7.6).  

                                                 
5 Seedling data are mostly – if not only – shoot data. Similarities with data from mature shoots were 

therefore expected, although our plants are a few weeks older than seedlings 
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Later experiments showed that the clock of dark-grown roots, which can perceive some 

light channelled from the exposed tissues, can be directly entrained by LD cycles. 

Therefore the equations and parameters modelling light and dark inputs to the clock in the 

latest model (P2012) may be appropriate for a model of the root clock too. Some of these 

“light-related parameters” were optimised in order to fit more root data (section 7.6). 

 

In this chapter simulations with default parameters of published models will be referred as 

shoots and be represented by solid green lines. Simulations with other parameters 

(attempting to fit the behaviour of the root clock) will be referred as “roots” and 

represented by dashed or dotted lines. For simplification, all the simulations presented in 

this chapter were done with the same (default) initial states. All these are simulations of 

mRNA levels for different clock genes. 

 

7.2 Changing the parameters g3, g4 and g6 of the L2006 
model can simulate some aspect of the root clock in 
specific conditions 

In 2008 one of the latest versions of the plant circadian clock model was the L2006 model. 

Some of its parameters were changed to attempt to fit the root clock data qualitatively. The 

first simulations were run with Circadian Modelling (CM), a user friendly software where 

the different biological parameters and light conditions can be easily changed. As for other 

mathematical models the L2006 model is based on seedling data. Could the parameters of 

this model be modified to fit the behaviour of the root clock?  At that time our knowledge 

about the root clock was the one published by James et al. (2008). The main differences 

between root and shoot (or seedling) clocks were that: 

- only the morning loop oscillated under LL in dark-grown roots 

- the period of this oscillations was about 2 h longer than that of the 3-loop clock in shoots. 

 

To simulate the dark environment of the roots, the light terms in the differential equations 

had to be removed. When all light inputs in the equations were removed the three loops 

remained rhythmic with a period close to 24 h (Table 7.1). This simulated FRP in DD did 

actually not match experimental data. Therefore other parameters had to be changed. For 

the following simulations the default set of parameters in constant darkness was used as a 
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starting point; then a few parameter values were changed based on biological data and 

assumptions as detailed below. 

 

Experimentally, no EE-binding complex containing LHY could be detected in roots and 

therefore LHY/CCA1 may not be able to inhibit gene expression in this organ (James et 

al., 2008). To simulate this behaviour, the values of two parameters were changed: g3 and 

g6 (cf. Figure 1.4.A and equations 1 and 3 in section 2.5). The bigger these values, the 

lower CCA1/LHY inhibition of TOC1 and Y mRNA synthesis respectively. Several 

combinations of parameters that reduced TOC1 amplitude were tried, e.g. in setting g3 and 

g6 to 1000-fold their default value (Figure 7.1). The mean expression level of TOC1 was 

then higher, but expression was still rhythmic with a shorter period. In increasing g3 and 

g6 less (20 times), TOC1 expression remained high and still oscillated with a lower 

amplitude (Figure 7.1.A). Besides, LHY had a slightly longer period with these sets of 

parameters (g3 and g6 increased 20 or 1000 times) compared to the default value 

representing the shoots (Figure 7.1.B and Table 7.1). However, the FRP should be even 

longer (~25.4 h on average for dark-grown roots under LL according to James et al, 2008). 

Many other combinations of these two parameters were used for simulation, but without 

fitting the root data better (simulations not shown). 

  

Then the observed effects of the prr7/9 double mutant were considered: in the roots of this 

mutant, the evening loop surprisingly regained rhythmicity (James et al., 2008).  The 

PRR7 and PRR9 proteins are actually related to TOC1 (also known as PRR1). Hence 

biochemically two plausible explanations of the prr7/9 mutant would be that in roots PRR7 

and PRR9 might either compete with or enhance the function of TOC1. In the L2006 

model, this could be simulated by changing the values of g4 and g5 (cf. Figure 1.4.A and 

equations 2 and 3 in section 2.5). Many combinations for these 2 parameters were used 

together with different combinations of g3 and g6 to run other simulations. Some of these 

new parameter sets affected the morning loop period or gave a lower amplitude for TOC1. 

One example is shown in Figure 7.1 C&D, where changing g3, g4 and g6 simultaneously 

gave not only a higher level for TOC1 mRNA (Figure 7.1.C) with lower and more variable 

amplitude (hence its rhythmicity might have not been detected by RNA quantification), but 

also a 2 h longer FRP for the morning loop (Figure 7.1.D and Table 7.1). This set of 

parameters, with g3 and g6 increased 20 fold and g4 decreased 100 fold, is the one that 

best fitted the root data qualitatively. It will be referred as 20(g3g6)0.01g4. For instance, 
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the FRP for APRR (representing PRR7 and PRR9) mRNA is also longer with 

20(g3g6)0.01g4 compared to the default value (Table 7.1). 

 

 

A. B. 

  
C. D. 

  
 
Figure 7.1: Simulations of TOC1 and LHY mRNA levels in shoots and “roots” 
under DD using the L2006 model 
The simulations with default parameters of the L2006 model represent seedling data in DD 
and are labelled shoots (green solid lines). The other simulations attempt to fit the root clock 
data obtained with dark-grown roots in LL (James et al., 2008); they are labelled “roots” 
(orange dashes or brown dots) 
A and B: Simulations with the “1000(g3g6)” and “20(g3g6)” sets of parameters. The default 
set of parameters of the L2006 models were used, except g3 and g6 (both increased 1000 or 
20 fold respectively) to simulate the LHY and CCA1 lack of binding to EE. Simulations under 
DD for TOC1 (A) and LHY (B) mRNA levels. 
C and D: Same as A and B respectively but with g3 and g6 increased 20 fold, and g4 
decreased 100 fold (labelled “20(g3g6)0.01g4”). 
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The “optimised” set of parameter (20(g3g6)0.01g4) was then used to run simulations in LD 

(Figure A.5 in appendix).. Interestingly, the period of clock genes in “roots” was then close 

to 24 h, especially for TOC1 (Table 7.1).  

Table 7.1: Period estimates of simulated rhythms in shoots and “roots” 
under DD and LD using the L2006 model 
The periods of simulated rhythms from Figure 7.1 and 7.2 were estimated with CM. 
The default values are from the L2006 model and represent shoots. A few 
parameter values were then changed: g3 and g6 increased 20 fold (labelled 
“20(g3g6)”) and g4 decreased 100 fold (labelled “0.01g4”). With the CM software 
the periods were estimated in two ways: time (h) between two consecutive peaks or 
trough. Both estimates gave very similar results; they were then averaged over the 
time courses presented in Figure 7.1 and 7.2. ND= Not Determined (i.e. considered 
arrhythmic). 
 

 DD LD 

mRNA shoots “roots” 
20(g3g6) 

“roots” 
20(g3g6)0.01g4 shoots “roots” 

20(g3g6)0.01g4 
LHY 23.75 24.37 25.74 24.00 24.56 
TOC1 23.75 17.11 15.79 24.00 24.10 

Y 23.75 17.09 16.46 ND ND 
APRR 23.75 24.37 25.64 24.00 24.36 

 

 

Since the roots were dark-grown, it was unlikely that the root clock data could be 

simulated in LD (or LL) using the same input-related terms in the equations (e.g. the light 

parameter “L”), at least not the same parameter values6. However, some inputs for the root 

clock could be indirectly related to LD cycles such as rhythmic levels of sugars (James et 

al., 2008). Therefore it might be possible to keep the same equations as in the L2006 

model but modify the light-related parameter values to fit the root data. Since many terms 

of the model are related to light it would have been very time-consuming to optimise them 

manually with CM. A more global and automated approach to optimize parameters for the 

root clock was preferable. That is why the Systems Biology Software Infrastructure (SBSI) 

was used in the next sections. Nonetheless, the main features of the root clock could be 

fitted qualitatively in specific conditions: longer FRP for the morning genes, and high 

relative levels of TOC1 with low amplitude, whose rhythms could have been missed 

experimentally by RNA quantification due to variability and sampling frequency. This 

suggested that the framework of the L2006 model might also be applicable to roots. 

  

                                                 
6 it was later found that light can directly entrain the root clock, but the level of light perceived by 

dark-grown roots would then be lower 
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7.3 Changing only one parameter of the P2010 model (g5) 
can simulate many root clock data under LD, LL and 
DD 

The Systems Biology Software Infrastructure (SBSI) allowed me to search a broader space 

of parameters compared to CM, in an automated way. Once the model and the data to be 

fitted were chosen, the optimisation process could be configured with SBSI Visual. The 

main steps of the process to be configured are the optimisation algorithm, the parameters to 

optimise and the cost function(s). The latter evaluates the goodness of fit of a particular 

parameter set. See section 2.5 for more details. 

 

A first parameter optimisation was run using the L2006 model and root data in DD (from 

Figure 4.5). The same parameters as in previous section (using CM) were chosen for the 

optimisation process, i.e. g3, g4, g5 and g6. The Parallelised Genetic Algorithms (PGA) 

and the Fast Fourier Transform (FFT) cost function (with a target of 30 h) were used. 

Some of the “optimised” parameter sets gave a longer FRP for all clock genes (over 30 h) 

and lower amplitudes, which was consistent with our root data from imaging experiments 

(simulations not shown). For instance an increase in g3, g4 and g5 values (about 6-, 75- 

and 3-fold respectively) together with a decrease in g6 (161-fold) gave such a long period. 

But these parameters could not predict root data in LD and in LL. Besides, an updated 

version of the plant circadian clock model had been published in the meantime (Pokhilko 

et al., 2010). Therefore this newer model (P2010) was used for further optimisation jobs to 

try and fit the root data. 

 

Although many equations and parameters differed between the L2006 and P2010 models, 

the overall structure of these two models were comparable: a morning and an evening loop 

were connected by a central loop between LHY/CCA1 and TOC1. In the P2010 model, 

CCA1 and LHY were modelled as one component that will be referred as LHY/CCA1. This 

morning component repressed not only TOC1 but also GI and Y (as it did in the L2006 

model), which is represented by the parameters g5, g15 and g16 respectively in the P2010 

model (cf. Figure 1.4.B and equations 4-6 in section 2.5). Therefore these parameters were 

changed for the same reasons that g3 and g6 were changed (cf. previous section): the 

experimental data suggested that CCA1 and LHY were unable to inhibit gene expression in 

roots (James et al., 2008). 
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Starting from the P2010 default parameters and allowing up to 100 fold increase or 

decrease for g5, g15 and g16, these parameters were optimised to fit the root data. The 

PGA optimisation algorithm and the FFT cost function were used to get a longer FRP in 

roots based on our root data for CCA1:LUC+ and PRR7:LUC+ in DD (from Figure 4.5). 

The Chi-squared (χ2) cost function was also used so that the actual data could be fitted (not 

just the 30 h period used as a target for the FFT cost function). These two cost functions 

were not weighted. Four thousands generations were used for this optimisation process and 

the last few hundreds did not decrease the cost further so the process was stopped. 

 

The optimal parameter sets had about 50 fold increase of g5 but only 8% increase of g16 

and no change of g15. Interestingly these parameters increased although they were also 

allowed to decrease; this was consistent with a lack of binding to EE observed in roots. 

This set gave a slightly longer FRP compared to the default set of parameters in DD (data 

not shown). Given the robustness of the model, 8% change in one value did not have much 

effect on the clock (cf. next paragraph). Then further simulations were run with only one 

value changed: g5 increased 50 fold (but no change in g15 and g16); this will be referred 

as the 50g5 set. Figure 7.3, 7.4 and 7.5 show these simulations for different clock genes in 

DD, LL and LD respectively. 

 

Indeed changing only one parameter of the P2010 model (i.e. g5 increased 50 fold) gave 

the same longer FRP in DD as the optimised set of parameter mentioned above (Figure 

7.3). This period was only 0.2 h longer than with the default set (Table 7.2). However the 

same period was also reached for the other clock genes (e.g. TOC1 and PRR9) not used in 

the optimisation process, consistent with the period values of CCA1 and PRR7 (used for 

optimisation, Table 7.2). It was also consistent with our more recent data in DD, where a 

TOC1 rhythm could be detected at the mRNA level (Figure 4.6). In DD the simulated 

levels of GI dropped to 0 in less than 12 h with both parameter sets (default and 50g5). 

This was probably a weakness of the P2010 model since GI is rhythmic in DD in both 

shoots and roots experimentally (Figure 4.5 and 4.6). However Y mRNA levels were 

rhythmic in DD and were qualitatively similar to the levels of GI in DD. Presumably the 

P2010 model could give satisfactory fits in DD even though GI was zero because GI 

function in DD was provided by Y. 
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A. B. 

  
C. D. 

  
 
Figure 7.2: Simulations of clock genes mRNA levels in shoots and “roots” 
under DD using the P2010 model 
The simulations with default parameters of the P2010 model represent shoot data. The other 
simulations (labelled “roots”) derive from a set of parameter attempting to fit the root clock 
data in DD (see text for details): it is the same set of parameters as shoots except g5 that 
was increased 50 fold. 
A, B, C and D: LHY/CCA1, PRR7, TOC1 and Y mRNA levels respectively. 
 

 

 

Interestingly, the 50g5 set gave a significantly longer FRP in LL compared to the default 

set, although this was not constrained in the optimisation process (Figure 7.4). The FRP 

was on average 1.5 h longer (Table 7.2) which was almost the difference observed between 

the FRP of shoot and root clocks in LL (James et al., 2008). These attempts to simulate the 

root clock involved the same light inputs as in the P2010 model of the shoot clock. This 

was not realistic for dark-grown roots (e.g. James et al., 2008) but might be realistic for 
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light-grown roots as in chapter 4 and 5. In the latter case, the FRP was also longer in roots 

compared to shoots, so the simulations with the 50g5 set matched qualitatively these data. 

As for DD (previous paragraph), the simulations in LL gave almost the same FRP for the 

expression of different clock genes except for GI whose period was shorter than other 

genes in LL. Yet the 50g5 set gave a longer period for GI compared to the default set of 

parameters (Table 7.2). 

 

 

A. B. 

  
C. D. 

  
 
Figure 7.3: Simulations of clock genes mRNA levels in shoots and “roots” 
under LL using the P2010 model 
The simulations with default parameters of the P2010 model represent shoot data. The other 
simulations (labelled “roots”) derive from a set of parameter attempting to fit the root clock 
data in DD (see text for details) but used in LL here: it is the same set of parameters as 
shoots except g5 that was increased 50 fold.  
A, B, C and D: LHY/CCA1, PRR7, TOC1 and GI mRNA levels respectively. 
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Finally the same set of parameter (50g5) was used for simulations in LD and compared 

with default values (Figure 7.5 and Table 7.2). As in LL, the amplitude of TOC1 was lower 

in “roots” (50g5 set) compared to the shoots (default set of parameters); again this was 

consistent with experiments. The periods were almost the same for most if not all genes in 

shoots and “roots”. The period was slightly lower than 24 h for PRR7 but with both sets of 

parameters (Table 7.2). Overall the period obtained with the 50g5 set in LD were much 

closer to 24 h compared to the corresponding simulations of the previous section (Table 

7.1). In addition the phases in LD were the same in shoots and “roots”. Therefore this new 

set of parameters (50g5) captured one fundamental property of circadian clocks: 

entrainment. Overall the 50g5 set of parameter fitted the root data much better than any 

other “optimised set” found so far in this chapter. 

 

A. B. 

  
C. D. 
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Figure 7.4: Simulations of clock genes mRNA levels in shoots and “roots” 
under LD using the P2010 model 
The simulations with default parameters of the P2010 model represent shoot data. The other 
simulations (labelled “roots”) derive from a set of parameter attempting to fit the root clock 
data in DD (see text for details) but used in LD here: it is the same set of parameters as 
shoots except g5 that was increased 50 fold.  
A, B, C and D: LHY/CCA1, PRR7, TOC1 and GI mRNA levels respectively. 
 

 

 

Thus changing only a one parameter of the P2010 model could provide a qualitative fit to 

several aspects of the root data: a longer free-running period in LL but synchronization 

with the shoot clock in LD.  In DD, the simulations gave similar FRPs for both shoots and 

root clocks. This was consistent with our more recent data, using imaging and RT-qPCR 

(Figure 4.5 and 4.6). However, the behaviour of GI under DD could not be simulated 

accurately with this model (P2010).  More generally, an updated version of the shoot clock 

model (P2012) could integrate more shoot data. Therefore the P2012 model was used to 

simulate the root clock in the next sections. 

  

 

Table 7.2: Period estimates of simulated rhythms in shoots 
and “roots” under DD, LL and LD using the P2010 model 
The periods of simulated rhythms from Figure 7.3, 7.4 and 7.5 were 
estimated with BRASS (in hours); the periods for different mRNA were 
then averaged for each time course; SD: Standard Deviation. ND= Not 
Determined (i.e. considered arrhythmic). The default values are from the 
P2010 model and are labelled shoots. The other parameter set is the 
same except g5 increased 50 fold (labelled “roots”).  
 
 DD LL LD 
mRNA shoots “roots” shoots “roots” shoots “roots” 
LHY 27.56 27.77 25.09 26.42 24.01 23.98 
TOC1 27.59 27.86 25.00 26.22 24.01 24.02 
GI ND ND 24.00 25.81 24.01 24.06 
PRR7 27.66 27.80 25.07 26.56 23.89 23.86 
PRR9 27.64 27.78 25.15 26.60 24.02 24.02 
average 27.61 27.80 24.86 26.32 23.99 23.99 
SD 0.05 0.04 0.48 0.32 0.05 0.08 
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7.4 Low levels of light perceived by dark-grown roots is 
sufficient to explain the low amplitude and the long 
FRP under LL in the root clock 

By the time the most recent model was published (Pokhilko et al., 2012) - referred as 

P2012 hereafter, more root clock data had been produced in different conditions: in LD, 

LL and DD with light- or dark-grown roots. Evening genes such as TOC1 and GI are 

actually circadian in dark-grown roots (chapters 4 and 5). In addition, other experiments 

showed that light can directly entrain the root clock (chapter 5). Therefore the current 

mathematical models – including their light-related terms- could be used with more 

confidence to simulate the root clock. In fact, light directly perceived by the roots (e.g. via 

piping or leakage) is probably a stronger zeitgeber than indirect effects of light (e.g. via 

photosynthates), at least at constant temperature. The very same equations as in the P2012 

model but with a different set of parameters might be able to simulate the root data. The 

question is: which parameters are organ-specific? 

 

Now the main differences between the shoot and root clocks are: 

- a longer FRP in roots under LL 

- a lower amplitude in roots under LD 

Considering that dark-grown roots must perceive lower light levels compared to shoots 

during light cycles, this lower light should give a longer FRP in roots under LL according 

to Aschoff’s rules. In addition, the expression of several clock genes is acutely induced by 

light (e.g. PRR9 and GI). Therefore lower light levels perceived by dark-grown roots might 

also explain lower amplitudes in roots compared to shoots. Can the P2012 reproduce these 

features when levels of light inputs are modified? To test this, the “light parameter” (L) 

value was decreased. However, how much light the roots can perceive is not known, so a 

range of values between 0.1 and 1 was tested (1 being the default value in light cycles).  

 

Simulations were done with COPASI. The “parameter scan” task allows running quick 

simulations with a user-defined range of one or more parameters. In this case, the L 

parameter was scanned between L=0.2 and L=1 (here with 5 intervals of 0.2), and 

“outputs” such as clock gene expressions over time were visualised for each of these 

values of L (Figure 7.6). The scan was run in LL to check whether the P2012 model can 

reproduce the Aschoff’s rules. Figure 7.6 shows that for LHY/CCA1 and GI simulations, 

the lower the light, the longer the FRP under LL. This was also true for other clock genes 
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(not shown). Therefore the P2012 model can reproduce Aschoff’s rules. But if L value is 

too low (e.g. 0.2), clock genes levels dampens quickly and FRPs are too long. 

 

Note that L does not necessarily represent the light intensity, at least not on a linear scale. 

The P2012 is such that L=1 when light is present and 0 otherwise7. For instance, the 

default value of 1 might represent a light intensity of 50-100 µmol.m-2.s-1 (i.e. an order of 

magnitude usually used to produce data feeding the model), but a value of 0.2 does not 

represent a fifth of this intensity (10-20 µmol.m-2.s-1). Otherwise the simulation with L=0.2 

should give a much shorter FRP (it is over 30 h in Figure 7.6); for instance the shoot FRP 

under 10-20 µmol.m-2.s-1 is less than 26 h (previous chapters and Somers et al., 1998). 

Anyway, since Aschoff’s rules were apparently not used to constraint the P2012 model 

(Pokhilko et al., 2012), it is interesting that this model can reproduce these rules at all. 

 

 

A. LHY/CCA1 B. GI 

  

 
Figure 7.5: The P2012 model can reproduce Aschoff’s rules 
The L parameter was scanned with COPASI with 5 intervals on a linear scale between 0.2 
and 1 (i.e. L takes the different values of 0.2, 0.4, 0.6, 0.8 and 1).  Simulations for LHY/CCA1 
(A) and GI (B). 
 

   

 

With L=0.4 the FRP of simulated mRNA levels were 3 h longer compared to the FRP with 

L=1; this is quantitatively similar to the differences observed between shoot and root 

clocks data under LL with imaging (Figure 7.7) (. There was a shift between the two first 
                                                 
7 there is also a function that simulates the smooth transition between L and D 
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peaks in LL, at least for CCA1 and PRR9 (Figure 7.7.A&B). This was only transient and 

possibly due to relatively high initial values used for the simulations (i.e. shoot values). 

The periods were estimated between ZT48 and ZT144 (i.e. 4 days in LL when the rhythms 

were more stable) using BRASS (data not shown). 

 

Interestingly, compared to the amplitudes under LL when L=1, the amplitudes under LL 

when L=0.4 were similar for morning genes but much lower for evening genes. This is also 

consistent with experimental data (Figure 4.4) and could explain why some rhythms were 

harder to detect in roots under constant conditions (e.g. TOC1). 
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Figure 7.6: Simulations of clock genes mRNA levels in shoots and “roots” under LL 
using the P2012 model with different light intensities 
Simulations (left, smooth lines) are compared to experimental data (right, lines with symbols). The 
simulations with default parameters of the P2012 model are labelled shoots. The other simulations 
(labelled “roots”) use the same set of parameters as shoots except light amplitude set to 0.4 
(instead of 1). Experimental data are from Figure 4.3 (first 84 h in LL from shoots and dark-grown 
roots); these are averages (SEM are not shown here for clarity) except for CCA1 and TOC1 root 
data for which only one rhythmic set of data is presented here. Simulations and experimental data 
were normalised with the average of the corresponding time-course over the 84 h in LL. A, B, C 
and D: CCA1, PRR9, TOC1 and GI mRNA levels respectively. 
 

This lower level of light (L=0.4) could also simulate lower amplitude for all clock genes 

under LD; some of the simulations are shown in Figure 7.8. The amplitudes were halved in 

“roots” compared to shoots, especially for CCA1 and PRR9 (Figure 7.8. A&B); the 

reduction in amplitude was bigger than this for TOC1 but less for GI (Figure 7.8.C&D). 

These differences are similar to experimental data (Figure 7.8). As for simulations in LL, 

the rhythms were quickly stabilised after a ~48 h transition at the start of the simulation.  

 

Thus the low light intensity perceived by dark-grown roots compared to the higher light 

perceived by the shoots could be sufficient to explain the two main differences between 

their clocks: different FRP under LL and lower amplitudes in roots under diurnal cycles. 
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Figure 7.7: Simulations of clock genes mRNA levels in shoots and 
“roots” under LD using the P2012 model with different light 
intensities 
Same simulations as in Figure 7.7 but under LD. Simulations (left, smooth lines) 
are compared to experimental data (right, lines with symbols). The simulations with 
default parameters of the P2012 model are labelled shoots. The other simulations 
(labelled “roots”) use the same set of parameters as shoots except light amplitude 
set to 0.4 (instead of 1). Experimental data are from Figure 4.3 (36 h in LD from 
shoots and dark-grown roots); these are averages (SEM are not shown here for 
clarity). Simulations and experimental data were normalised with the average of 
the corresponding time-course over the 36 h in LD. A, B, C and D: CCA1, PRR9, 
TOC1 and GI mRNA levels respectively. 
 

 

7.5 Entrainment of the root clock and longer FRPs in 
light-grown roots compared to shoots can be 
simulated after optimising P2012 model parameters 

The previous section showed that changing only one parameter of the P2012 model (the 

light amplitude) can simulate the low amplitude and the long FRP of clock genes observed 

in the root clock under LD and LL respectively. Indeed dark-grown roots can perceive 

light channelled by tissues exposed to light (chapter 5). But the clock of light-grown roots, 

which are exposed to the same light intensity as shoots, also has a longer FRP in LL 

compared to the shoot clock. One possible explanation would be that the light signalling 

pathway is different in the two organs; for instance the levels of light perceived by roots 

might be buffered, so that the effective levels (reaching the core clock) would be similar 

regardless of the actual light intensity (e.g. the one perceived by shoots). This would be 

surprising. In addition, the amplitude of some clock genes in the roots (e.g. GI) depends on 

the light intensity they are exposed to: the higher the light intensity, the higher the 

amplitude (chapter 4 and 5). Therefore the root clock can distinguish different light 

intensities. Thus other parameters than the light amplitude may differ in the root clock in 

order to explain differences with the shoot clock, such as different FRPs under LL. 

 

Changing parameters related to the inhibition of evening genes by LHY/CCA1 could give 

a longer FRP under LL, with L=1 (sections 7.2 and 7.3). For instance in section 7.3 a 

longer FRP could be simulated by increasing only one parameter of the P2010 model: g5. 

This parameter was the constant of TOC1 inhibition by LHY/CCA1, which is still 

represented by g5 in the P2012 model (cf. Figure 1.4.C and equation 9 in section 2.5). But 

increasing g5 value up to 100 fold had almost no effect on the FRP under LL in this later 
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model (simulations not shown). Since CCA1 and LHY were thought to be unable to inhibit 

gene expression in roots (James et al., 2008), other parameters could be affected in this 

organ: namely g15, g 16 and g6 (cf. Figure 1.4.C and equation 10-12 in section 2.5). They 

represent all the other constant of inhibition by LHY/CCA1 in the P2012 model. g15 is the 

equivalent of g15 in the P2010 model and represents the inhibition constant of GI, whereas 

g16 and g6 represent the inhibition constants of ELF3 and LUX/ELF4,  respectively, by 

LHY/CCA1 . All these evening components contain EE in their promoter, so they might 

not be inhibited by LHY/CCA1 in the roots. However, scanning these parameters 

individually with COPASI (with changes up to 100 fold) did not lengthen the FRP under 

LL either (simulations not shown). On the contrary, increasing some of these parameter 

values tended to shorten the FRP. 

 

Then the same parameters were reduced up to 10 fold, each one being scanned 

individually. Decreasing g5 and g15 values tended to shorten the FRP under LL, whereas 

decreasing g6 and g16 lengthened the FRP (simulations not shown). Although a decrease 

in these values would simulate more inhibition of the corresponding genes by LHY/CCA1 

(which was not suggested by experiments done by James et al, 2008), it is conceivable that 

the morning genes may affect evening genes differentially. For instance, CCA1 and LHY 

proteins might inhibit only some of these genes (e.g. ELF3/4 or LUX) through binding to 

their EE, resulting in a longer FRP, without binding to other gene promoters (e.g. TOC1 

and GI). This could be compatible with the EMSA results previously published (James et 

al., 2008) since this assay was not gene-specific. In other words, there might be some 

binding of CCA1 and LHY proteins to EE in roots, but less than in shoots (hence harder to 

detect) and with more affinity to some promoters. In addition, more or less binding of 

CCA1 or LHY to EE does not need to imply more or less inhibition of the corresponding 

gene; in general, binding to gene promoters can also activate expression. In order to test 

this idea, SBSI was used to search a broader space of parameters. The simulations 

mentioned in the previous paragraph only tested one parameter a time. But changing two 

or more parameters simultaneously could have more complex effects on the clock (e.g. not 

just additive effects).  

 

Not only the 4 parameters mentioned above (i.e. g5, g6, g15 and g16) were used for the 

following optimisation process, but also g1 and g8 (cf. Figure 1.4.C and equations 7 and 8 

in section 2.5). These two parameters were chosen for several reasons. First, the skeleton 
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photoperiod experiments presented in chapter 5 (Figure 5.7) suggested that CCA1 and 

PRR9 may be respectively less and more repressed during the evening in the roots 

compared to shoots; this might be simulated by increasing the value of g1 (inhibition 

constant of LHY/CCA1 by the PRRs) and decreasing the value of g8 (inhibition constant of 

PRR9 by the EC) respectively. Interestingly, scanning these two parameters individually in 

that way (i.e. increasing g1 or decreasing g8) lengthened the FRP under LL (simulations 

not shown). Second, a lower inhibition of LHY/CCA1 by the PRRs (especially by the later 

expressed ones such as TOC1) may allow CCA1 mRNA levels to rise and peak earlier, 

contrary to the simulations presented in Figure 7.8.A where it peaked too late in the 

simulated roots. Indeed the profiles of CCA1 mRNA levels should be very similar in 

shoots and roots (apart from the amplitude that is lower in roots). Third, increasing the 

value of g8 could contribute to some uncoupling between morning and evening genes 

observed in roots under LL. This uncoupling was thought to be achieved by a lack of 

evening genes inhibition by LHY/CCA1 and to result in arrhythmia of evening genes 

under LL (James et al., 2008). Although these results were not confirmed by the more 

recent work presented in this thesis, different FRPs were observed between morning and 

evening genes at the mRNA level (Figure 4.4) and suggest less coupling - if any at all - 

between morning and evening loops in roots under LL. 

 

A parameter optimisation was run using the L2012 model and light-grown root data in LL, 

namely the imaging data of CCA1, PRR9, GI and TOC1 presented in Figure 4.2. The six 

parameters mentioned above (g1, g5, g6, g8, g15 and g16) were chosen for the 

optimisation process, starting from their initial (default) values and allowing up to 10 fold 

changes. As in section 7.3, the optimisation algorithm was the PGA. Two cost functions 

were used: the FFT (with a target of 28 h) and the χ2 cost functions. The best set of 

parameters (after 400 generations) is presented in Table 7.3. It gave a longer FRP in LL 

(simulations not shown). But the simulated levels of GI and CCA1 were then much higher 

in “roots” compared to shoots, contrary to experimental data (e.g. Figure 4.4) which 

showed the opposite (higher mRNA levels in shoots compared to roots). This was probably 

because g1 and g15 were too high (7.8 and 10 time their default value respectively): it 

simulated much lower inhibition of CCA1 and GI respectively (compared to the default 

values of g1 and g15), resulting in higher mRNA levels in these simulations (“roots”) 

compared to shoots. The simulations previously done with COPASI (mentioned earlier) 

showed that increasing individually g1 and g15 respectively lengthen and shorten the FRP. 
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When both values were increased by the optimisation process - done here with SBSI 

(Table 7.3), the resulting FRP was longer (this was constrained by the FFT cost function). 

This was good enough to reduce the overall cost, but does not mean it was the best 

solution. Indeed the process could be stuck in local optima. Besides, the number of 

generations may not have been enough to give a better solution.  

 

Table 7.3: Optimal sets of parameters related to inhibition constants in 
roots  
A combination of six parameters (first column) of the P2012 model, related to inhibition 
constants, was optimised with SBSI. Three optimisation processes attempted to fit root 
clock data. The initial (default) parameter values are presented in the second column 
(shoots). The third and fourth columns (labelled “roots” [*10 (LL)]” and “roots” [*2 (LL)”]) 
were the best sets obtained when parameters could increase or decrease up to 10 or 2 
fold respectively; these two optimisation processes attempted to fit light-grown root 
clock data under LL. The last column (labelled “roots” [*10 (DD)]”) was the best set 
obtained when parameters could increase or decrease up to 10 fold; this last 
optimisation process attempted to fit dark-grown root clock data under DD. Simulations 
using the “*2(LL)” set are show in Figure 7.9. The values of g1, g15 and g16 (in bold) 
were consistently increased in these optimisation processes compared to their default 
values 
 

 shoots 
“roots” 
[*10 (LL)]” 

“roots” 
[*2 (LL)”] 

“roots” 
[*10 (DD)] 

g1 0.100 0.789 0.200 0.225 
g5 0.150 0.131 0.118 0.064 
g6 0.300 0.409 0.103 1.608 
g8 0.010 0.003 0.020 0.021 
g15 0.400 4.000 0.798 3.171 
g16 0.300 2.446 0.600 3.000 
 

 

In order to avoid such high values of parameters, the same optimisation process was 

repeated but with a reduced parameter space: the 6 parameters could increase or decrease 

up to two fold only. The best set of parameters (after 1000 generations) is presented in 

Table 7.3. It also gave a longer FRP in LL; simulations in LL were run with this optimal 

set (Figure 7.9). In this case the mRNA levels of clock genes were closer to their default 

values, except for GI that remains higher. The damping rate under LL was also higher 

compared to the default rate, for all the genes presented here (the simulations for shoots 

gave very few – if any at all – damping after the second day in LL). However, damping of 

clock gene expression was also observed experimentally, for both shoots and roots.  
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Figure 7.9 present actually three sets of simulations for each gene: 1) the default values 

(representing shoots), 2) the simulations with the “*2(LL)” set of parameters (with 6 

modified parameters presented in Table 7.3) and 3) the simulations with the same set as 2) 

but with a lower light intensity (value of L halved8). The latter attempted to simulate dark-

grown roots. As we have seen earlier, the FRP under LL should be similar in light and 

dark-grown roots. At least both FRP should be longer than the shoot FRP in LL. Figure 7.9 

shows it was the case. However, the FRP was too long for these “simulated dark-grown 

roots”. Indeed it should be rather shorter than longer compared to the FRP in light-grown 

roots (chapter 4 and 5).  But interestingly, this set of parameters gives a ~24 h period under 

LD, whether L=1 (“light-grown roots”) or L=0.5 (“dark-grown roots”), and with lower 

amplitudes when L=0.5 (simulations not shown). Simulations were also carried out under 

DD with the same set of parameters (simulations not shown). But all the genes dampened 

very quickly and their mRNA levels became completely flat after less than 2 or 3 cycles in 

DD. This was in contrast with experimental data where rhythms are sustained longer in DD 

(Figure 4.5 and 4.6). Therefore this set of parameter could not simulate root data in all 

conditions tested experimentally. 

 

Another optimisation job was run under DD, as in section 7.3, but with the P2012 model. 

In that section, although the optimisation process used DD data, the optimal set also gave a 

longer FRP under LL and a 24 h period under LD. Compared to section 7.3, more root data 

were used in the following optimisation: not only CCA1 and PRR7, but also GI and PRR9 

imaging data under DD (Figure 4.5). The same optimisation algorithm (PGA) and two cost 

functions were used: FFT (with a target of 29 h) and χ2. The 6 parameters presented in 

Table 7.3 were optimised, allowing up to 10 fold increase or decrease. The cost hardly 

decreased after 1000 generations and the process was stopped. Nevertheless the optimal set 

of parameters (Table 7.3, “roots” [*10 (DD)]”) was used for simulations (not shown). It 

did not fit data any better than the “*2(LL)” set discussed earlier. For instance the “*10 

(DD)” set did not give any sustained rhythms under LL. 

                                                 
8 a small parameter scan of “L” showed that with these new “g parameter set” L=0.5 gave a better 

fit than L=0.4 used previously 
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Figure 7.8: Simulations of clock genes mRNA levels in shoots and “roots” 
under LL after modifying parameters related to inhibition constants 
Simulations (left, smooth lines) are compared to experimental data (right, lines with symbols). 
The simulations with default parameters of the P2012 model are labelled “shoot”. The other 
simulations (labelled “light-grown roots” and “dark-grown roots”) use the “*2(LL)” set of 
parameters presented in Table 7.3 but with different light intensities (L=1 for light-grown roots 
and L=0.5 for dark-grown roots). Experimental data are from Figure 4.3 (first 84 h in LL from 
shoots and dark-grown roots); these are averages (SEM are not shown here for clarity). 
Simulations and experimental data were normalised with the average of the corresponding 
time-course over the 84 h in LL. A, B, C and D A, B, C and D: LHY/CCA1, PRR9, TOC1 and 
GI mRNA levels respectively. 
 

  

The optimal sets of parameters presented in this section could fit qualitatively some root 

clock data in specific conditions: in LD and either LL or DD. A similar trend could be 

observed in the values of 3 parameters presented in Table 7.3: g1, g15 and g16 were 

always increased in the optimal sets. The increase in the value of g1 would be consistent 

with the root data for CCA1 under skeleton photoperiods: it simulated a lower inhibition of 

LHY/CCA1 by thePRRs, which could explain the lower inhibition observed before dusk. 

The increase in g15 and g16 values simulated a lower inhibition of GI and ELF3 by 

morning genes.  This is not only consistent with a possible lack of binding of LHY /CCA1 

proteins to EE. It would also explain the shoulder of GI observed in roots (instead of the 

dawn peak observed in shoots; cf. Figure A.6 in Appendix). In addition, a higher value of 

g16 lowers the amplitudes of clock genes under LL (simulations not shown); this might 

explain why the possible rhythmic expression of some genes, such as ELF3, was hardly 

detected in roots. Indeed, the mRNA levels of ELF3 were scored arrhythmic in our 

microarray data (Sullivan et al, unpublished).Interestingly, the values of g15 and g16 

tended to their maximum levels in each optimisation process (Table 7.3). 
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The choice of parameters optimised in this section was partly based on experimental data, 

notably the lack of inhibition of LHY/CCA1 to EE. It was also motivated by previous 

optimisations using similar parameters in the previous models (sections 7.2 and 7.3): the 

optimal sets gave qualitative fits to root data in several – but not all - light conditions. 

Some optimisations attempted to fit root data under DD. However, more recent results 

showed that shoot and root clock data are similar under DD. The main differences between 

the two clocks are observed under LD and LL. In the following section, attempts to 

simulate these differences while keeping the similarities under DD are discussed.  

 

7.6 Differences in light inputs could explain most 
differences observed between shoot and root clocks 
under LD and LL 

The optimisation processes under LL presented in the previous section did not give any set 

of parameters that fit root data under DD. These experimental data are similar to the shoot 

clock data under DD (Figure 4.5 and 4.6). Notably both clocks have a similar long FRP 

under these conditions. Therefore the parameters of the model might be the same in shoots 

and roots under DD. It is only when light is present that obvious differences can be 

observed between shoots and roots (i.e. under LL and LD). Some parameters must be 

organ-specific in order to explain these differences. Changing only the light intensity could 

explain these differences in dark-grown roots (section 7.4), and would be consistent with 

the low light levels perceived by these roots. However, the clock of light-grown roots also 

has a longer FRP compared to the shoot clock. Thus, other parameters are probably organ-

specific, allowing a long FRP in roots in any condition. 

 

Light affects the expression of several clock genes and proteins, and this is translated into 

many “light-related parameters” in the P2012 model. What I will call the “light-related 

parameters” hereafter are the parameters that appear in the equations of the P2012 model 

together with the “L” parameters (cf. Figure 1.4.C and equations 13-19 in section 2.5); 

these parameters are always multiplied by “L”. It means they have no effect under DD 

(when L=0). The “light-related parameters” could be divided in two categories: those that 

always appear with “cp” 9, and those that do not. The latter comprises only 5 parameters 

                                                 
9 cp is the concentration of the light-sensitive protein P, used in the model for the acute light 

activation of PRR9, LHY/CCA1 and GI 
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which will be used for the following optimisation process: m1, p1, p12, p15 and p24. The 

former (the “cp related parameters”) must have almost no effect under LL since cp tends 

quickly to 0 under LL, but they contribute to the entrainment of the clock under LD. That 

is why the “cp related parameters” were not included in the following optimisation process 

run under LL. 

  

Some of the “light-related parameters” might be organ-specific. Light may affect gene 

expression differentially in shoots and roots: compared to DD, different combinations of 

light inputs may shorten the FRP under LL in shoots but not in roots (chapter 4). The 

question is: which of these parameters could be different in roots? The parameters chosen 

for previous optimisations were modified “a posteriori”, because each of them were 

suspected to be different in roots given our experimental data. In this section the idea is to 

optimise “a priori” the “light-related parameters” mentioned above (m1, p1, p12, p15 and 

p24). There is no direct evidence that any of these specific parameters might be organ-

specific. But modifying them would not affect the behaviour of clock components under 

DD (consistent with the similarities between shoot and root clock under these conditions) 

and should allow entrainment under LD (since the “cp related parameters” and the “dark 

related parameters” 10 would be unchanged). An optimisation process that tries to fit the 

clock data of light-grown roots, especially their longer FRP, can be used to constrain these 

“light-related parameters”. If such an optimal set of parameters could be found, it may also 

give a lower amplitude under LD (and possibly a similar FRP under LL) when the light 

amplitude is reduced.  

 

An optimisation process was run under LL in order to fit data of light-grown roots (CCA1, 

PRR9, TOC1 and GI, as in the previous section). The default values of the P2012 model 

were used at the start (with L=1). All the 5 “light-related parameters” mentioned above 

(m1, p1, p12, p15 and p24) were optimised. Their value could increase up to two fold, or 

decrease. Two optimisation algorithms were used simultaneously: the PGA (used 

previously) together with the Particle Swarm Optimisation (PGO, described in section 2.5). 

Both FFT and χ2 cost functions were used, with a target period of 28 h. The population size 

and the maximum number of generation were both set to 1000. The optimal set of 

parameters resulting from this process is presented in Table 7.4.  

                                                 
10 by “dark-related parameters” I mean the parameters that appear in the equations of the P2012 

model together with the “D” parameters 



7. Modelling the root clock 

 

 
 

195 

 

 

Table 7.4: Optimal set of “light-related 
parameters” for the root clock 
The 5 parameters presented in the first column are 
related to light inputs in the P2012 model. Their 
default values are in the second column. They 
were optimised with SBSI to fit the data of light-
grown roots under LL. The optimised values are in 
the last column 

 default (h-1) optimal (h-1) 
m1 0.54 0.37 

p1 0.13 1.46E-05 

p12 3.40 6.80 

p15 3.00 0.23 

p24 10.00 13.67 

 

 

Simulations were run under LL (Figure 7.10) and LD (Figure 7.11) with the optimal set 

presented in Table 7.4. Both Figures show 3 simulations for each gene expression: 1) the 

default values (representing shoots), 2) the simulations with the optimal set of parameters 

which represent “light-grown roots”, and 3) the simulations with the same set as 2) but 

with a lower light intensity (value of L halved); the latter attempted to simulate “dark-

grown roots”. All the simulations presented in Figure 7.10 and 7.11 were circadian: the 

periods were 24 h under LD and longer under LL (Table 7.5). 
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Figure 7.9: Simulations of clock genes mRNA levels in shoots, “dark-grown 
roots” and “light-grown roots” under LL after modifying parameters related to 
light inputs 
Simulations (left, smooth lines) are compared to experimental data (right, lines with symbols). 
The simulations with default parameters of the P2012 model are labelled “shoot”. The other 
simulations (labelled “light-grown roots” and “dark-grown roots”) use the “optimal” set of 
parameters presented in Table 7.5 but with different light intensities (L=1 for light-grown roots 
and L=0.5 for dark-grown roots). Experimental data are from Figure 4.3 (first 84 h in LL from 
shoots and dark-grown roots); these are averages (SEM are not shown here for clarity). 
Experimental data were normalised with the average of the corresponding time-course over 
the 84 h in LL. A, B, C and D A, B, C and D: LHY/CCA1, PRR9, TOC1 and GI mRNA levels 
respectively. 
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Under LL, the simulations of clock genes in roots all gave a longer period compared to 

shoots (Table 7.5). The periods were on average 2.6 h longer in “light-grown roots” 

compared to shoots, which is consistent with imaging data. They were even longer in 

“dark-grown roots” (~29.4 h) although experimental data showed they should not be 

longer than in “light-grown roots”. But apart from this discrepancy, most simulations had a 

good qualitative fit with experiments. All mRNA levels were damping under LL (Figure 

7.10). Interestingly, their amplitude were similar in shoots and “roots” for morning genes 

(Figure 7.10 A&C), but they were lower in roots for evening genes (Figure 7.10 B&D). In 

addition, these evening genes had even lower amplitude in “dark-grown roots”, whereas 

their expression was higher in “light-grown roots”. This is consistent with experimental 

data and could explain why the rhythms of evening genes were harder to detect in dark-

grown roots compared to light-grown roots or shoots under LL. 
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Figure 7.11: Simulations of clock genes mRNA levels in shoots, 
“dark-grown roots” and “light-grown roots” under LD using the P2012 
model after modifying parameters related to light inputs 
Same simulations as in Figure 7.10 but under LD. Simulations (left, smooth lines) 
are compared to experimental data (right, lines with symbols). The other 
simulations (labelled “light-grown roots” and “dark-grown roots”) use the “optimal” 
set of parameters presented in Table 7.5 but with different light intensities (L=1 for 
light-grown roots and L=0.5 for dark-grown roots).  Experimental data are from 
Figure 4.3 (36 h in LD from shoots and roots); these are averages (SEM are not 
shown here for clarity). Simulations and experimental data were normalised with 
the average of the corresponding time-course over the 36 h in LD. A, B, C and D: 
CCA1, PRR9, TOC1 and GI mRNA levels respectively. 
 

   

Under LD, the simulations for shoots and “light-grown roots” were almost superimposable 

(Figure 7.11). This is surprising given that 5 parameters are very different between the two 

sets. However, when a sixth parameter was changed (namely the light amplitude that was 

halved) to simulate the “dark-grown roots”, the simulated profiles differed markedly. The 

main difference was lower amplitude, which is consistent with “dark-grown roots” data. 

The shapes of the oscillations also differed between these “dark-grown roots” and shoots, 

especially for GI. In that case, the dawn peak of GI observed in shoots was replaced by a 

shoulder in roots. Again this is consistent with imaging data (Figure 7.11.D). This could be 

due to lower levels of LHY/CCA1 proteins (resulting from their lower mRNA levels) 

which would reduce the inhibition of GI synthesis. However, the simulation of LHY/CCA1 

mRNA peak only 3h after dawn in the “dark-grown roots” (Figure 7.11.A), which is not 
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observed experimentally. But more importantly, all the simulated rhythms presented in 

Figure 7.11 had a 24 h period (Table 7.5).  

 

 

Table 7.5: Period estimate of simulated rhythms in shoots and 
“roots” under LL and LD using the P2012 model 
The periods of simulated rhythms from Figure 7.10 and 7.11 were estimated 
with BRASS (in hours); the periods for different mRNA were then averaged 
for each time course; SD: Standard Deviation. The default values (labelled 
shoots) are from the P2012 model. The other parameter sets are the 
“optimal set” presented in Table 7.5 with L=1 (“light-grown roots”) or L=0.5 
(“dark-grown roots”).  
 

  LL LD 

  shoots 
"light-
grown 
roots" 

"dark-
grown 
roots" 

shoots 
"light-
grown 
roots" 

"dark-
grown 
roots" 

GI 24.39 27.16 29.47 24.04 24.06 24.16 
LHY/CCA1 24.25 26.67 29.07 24.01 24.02 24.00 
PRR9 24.44 27.20 29.59 24.11 24.14 24.11 
TOC1 24.26 26.90 29.36 24.02 24.02 23.99 
average 24.34 26.98 29.37 24.05 24.06 24.07 
SD 0.09 0.25 0.22 0.05 0.06 0.08 

 

 

Among the optimised parameters, p1 changed most dramatically (from 0.13 h-1 to ~0; 

Table 7.5). p1 is the constant of CCA1/LHY activation by light. The lower its value, the 

less activation. The other important change of parameter concerned p15 (Table 7.5). Its 

reduction in the optimisation process indicates that COP1 may be less degraded by light in 

roots compared to shoots. These “predictions” could be tested experimentally by 

measuring the effects of light on the synthesis and degradation of the corresponding 

proteins. 

 

Optimising 5 parameters directly related to light inputs to the clock could simulate most 

differences observed between shoot and root clocks under LD and LL. These parameters 

have no influence under DD. Therefore simulations with this new set would give very 

similar results in shoots and “roots” under DD (not shown), which is consistent with 

experimental RT-qPCR data. However, these simulations would not be identical if 

different initial states are taken into account. Indeed, if shoots and “roots” (especially 

“dark-grown roots”) are simulated in LD before release in DD, their “initial states” (e.g. 

levels of proteins) when DD starts would be different. This could influence the results.  
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7.7 Conclusion 

In this chapter several “shoot clock” mathematical models were used and some of their 

parameters modified in order to try and fit the root clock data. Newer versions of these 

models were used once available. In the meantime, more experimental data were produced 

and guided different parameter optimisation processes. 

 

Modifying manually 3 parameters of the L2006 model could simulate a major difference 

between shoot and root clock under LL: a 2 h longer FRP in roots compared to shoots. 

Two of these parameters were increased in accordance with other experimental data: LHY 

protein did not seem to bind to EE and therefore might not inhibit gene expression in roots 

(James et al., 2008). The same modified set of parameters simulated higher levels of TOC1 

mRNA with much lower amplitude in roots compared to shoots. This already indicated that 

TOC1 might be circadian in roots, but its rhythm could be harder to detect experimentally. 

But the number of data fitted was very limited and the manual process very time-

consuming. 

 

The P2010 and P2012 models were later used to optimise similar parameters, based on the 

same idea: there may be less inhibition of clock genes by LHY in roots. But more recent 

data were used for these optimisation processes (e.g. evening genes were actually circadian 

in roots too), and these optimisations were mainly done in an automatic way, using SBSI.  

A broader space of parameter could then be searched, and more data could be 

simultaneously fitted. For instance, a longer FRP could also be achieved by modifying just 

a few parameters. Interestingly, the Michaelis-Menten constants that corresponded to 

inhibitions by LHY/CCA1 tented to increase in these automatic processes although they 

were also allowed to decrease. These increases are consistent with a lack of inhibition of 

evening genes by LHY/CCA1 in roots. But with the P2012 model, only some of these 

constants were increased, which indicate that LHY/CCA1 may actually bind to some EE 

and inhibit gene expression in roots. It would be useful to test this idea experimentally with 

ChIP assays. This method could give more specific results than the EMSA carried out in 

James et al. (2008). For instance it could indicate whether LHY/CCA1 have different 

affinities for different clock gene promoters. More generally, this kind of data would be 

very useful in guiding the modelling process. 
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The best fits to root data were obtained with optimised sets of parameters related to light. 

Indeed changing only the light amplitude could explain most of the data from dark-grown 

roots, with lower amplitudes under LD and longer FRP in LL compared to the shoot clock. 

This parameter change was motivated by a more recent discovery: dark-grown roots can 

perceive low levels of light channelled from exposed tissues and therefore be directly 

entrained by LD cycles (chapter 5). But simulating low light could not explain data from 

light-grown roots: when roots are exposed to the same light intensity as shoots, their FRP 

is still longer in roots. A last parameter optimisation was carried out with more “light-

related parameters” and gave interesting results. Changing several light inputs to the clock 

can simulate a longer FRP for both light- and dark-grown roots. The parameter set found 

could also explain entrainment under LD cycles, with lower amplitudes when roots are 

dark-grown. And the clock behaviour would be similar in shoots and roots under DD, 

consistent with experimental data. However, the FRP should be similar in light- and dark-

grown roots under LL, if not shorter in the latter case.  

 

In general, the results obtained with sets of parameters optimised in a specific condition 

(e.g. simulations in LL) could be validated in some but not all other condition(s) (e.g. 

simulations in LD but not in DD). Some discrepancies could be clarified with more 

experiments, which could better constrain the model and its parameters. Nevertheless, the 

ideas – if not predictions – suggested by this theoretical work could be tested 

experimentally and might help us to better understand the root clock.  
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8 General discussion 

 

The work presented in this thesis confirmed that shoot and root circadian systems are 

different in Arabidopsis. However, these differences revealed here, mainly using imaging, 

were not exactly the same as those reported by James et al. (2008) using different 

techniques. In addition, my work shows that both clocks also have more similarities than 

James and colleagues suggested.  

 

8.1 Shoot and root circadian systems: same structure 
but different inputs? 

A system is characterised by its structure, i.e. its components and their interactions 

(wiring), and may be subjected to different inputs. This section will discuss plant circadian 

systems at the cellular level, assuming that all the cells of an organ have the same clock.  

 

8.1.1 Components 

Many of the components of the shoot clock have been identified by screening of seedlings 

to select those with a circadian phenotype. The role of these components in the clock 

machinery were then confirmed and refined with other studies, including reverse genetics. 

There is no highthroughput technique allowing the identification of clock genes in roots. 

Nevertheless, clocks of different plant cells are believed to be similar, sharing many 

components but with possible biochemical differences (Harmer, 2009).  

 

The root circadian clock was recently shown to be a simplified version of the shoot clock, 

with only the morning loop running in the root clock under constant conditions. A 

feedback loop between LHY/CCA1 and PRR7/9 would form this loop. My work 

confirmed with imaging that these four genes are rhythmic under various diurnal and 

constant conditions (chapters 4 and 5). A preliminary study on the cca1-11/lhy-21  double 

mutant showed that rhythms seem to be affected in a similar way in shoots and roots of this 

mutant compared to the WT: the acrophases of CCR2 expression were earlier in LD, the 

FRPs under LL were shortened and the rhythms dampened rapidly in both organs (chapter 
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6). PRR7 and PRR9 were proposed to form a loop with CCA1 and LHY, and the prr7/9 

double mutant had a very long FRP in shoots, over 30 h (Farre et al., 2005; Salome and 

McClung, 2005a). PRR7 and PRR9 are expressed rhythmically in roots as well as in 

shoots. This was shown with RT-qPCR and confirmed with imaging in various conditions 

(James et al. 2008, chapters 4 and 5). A long FRP was observed in the roots of the prr7/9 

double mutant as well as in shoots (James et al., 2008; Sullivan et al, unpublished). 

Together these results suggest that PRR7 and PRR9 also play a role in the root clock. 

However evening genes such as TOC1 and GI regained rhythmicity in the roots of the 

prr7/9 double mutant (James et al., 2008). This already indicated that the root clock 

involved more than just the morning loop. The rhythmicity observed in the cca1-11/lhy-21 

double mutant also suggests that the root clock contains more than one loop (chapter 6). 

The existence of several feedback loops in the root clock as well as in the shoot clock are 

supported by the rhythmicity of evening clock genes in most (if not all) conditions tested in 

this thesis. 

 

GI rhythms were detected in roots in all the condition tested, whether roots were light- or 

dark-grown: LD and constant conditions (LL and DD) following different entrainment, e.g. 

different photoperiods and T cycles. GI was also rhythmic under DD and temperature 

cycles. In addition, preliminary data show that both shoot and root clocks are strongly 

perturbed in the gi-201 mutant under LL (Sullivan et al, unpublished). Therefore GI is 

probably a component of the root clock. The role of TOC1 in the root clock was less clear 

because of its weak rhythms in dark-grown roots (chapter 3 and 4). However TOC1 

rhythms were detected in roots at least once in each condition tested (LD, LL and DD) 

with RT-qPCR and imaging. TOC1 expression levels were higher in light-grown roots 

compared to dark-grown roots, so that in the former case rhythms were detected easily 

under LD and LL. In addition, the preliminary studies on the toc1 mutant indicated that 

TOC1 plays a role in the root clock: indeed its mutation led to shorter FRP in roots under 

LL compared to the WT. Although these experiments on the toc1-4 mutant need to be 

repeated, they were carried out in two conditions (light- and dark-grown roots) and with 

similar results. Taken together all these data suggest that TOC1 is a component of the root 

clock, although its rhythm is weaker compared to other components such as CCA1 or GI. 

 

In the current model of the “plant” circadian clock, other key players are included and 

rhythmic at the transcript level, for example ELF3, ELF4 and LUX (Pokhilko et al., 2012). 
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In our recent microarray ELF4 and LUX mRNA levels were scored rhythmic under LL in 

roots, but ELF3 was not (Sullivan et al., unpublished). This was only one set of data, so it 

is possible that ELF3 rhythms were present but too weak to be detected. In the P2012 

model, NI may represent PRR5 which is rhythmic at the transcript level in shoots but not in 

roots (Sullivan et al., unpublished). As for ELF3, PRR5 may be truly arrhythmic in roots or 

a low amplitude rhythm may not have been detected. More studies would be required to 

conclude that the evening genes mentioned above are part of the root clock. However there 

may be one piece of indirect evidence that ELF3 could play a role in the root clock, 

although ELF3 was not scored rhythmic in our microarray. Takase and colleagues studied 

water dynamics in roots and showed that it displayed circadian rhythms under LL and DD; 

however the circadian oscillation in water dynamics was obscured in the roots of the elf3 

mutant under LL (Takase et al., 2011). More generally the study of other single and 

multiple mutants in roots and their effects on circadian rhythms could be useful to confirm 

the possible role of corresponding genes as components of the root clock.  

 

Other genes are involved in the shoot clock, such as CHE and RVE8 (Nagel and Kay, 

2012). Although CHE transcript levels were not oscillating in roots in our microarray, 

RVE8 was expressed rhythmically in roots under LL, and with a longer FRP compared to 

shoots (Sullivan et al. unpublished). Interestingly the same microarray showed that several 

photoreceptors were expressed in dark-grown roots, and amongst them PHYB was scored 

rhythmic.  This suggests that not only many core clock components may be shared in both 

organs, but also some components involved in the light input pathway. 

 

More mRNA and imaging data from roots have been produced during the last few years. 

However little is known about other levels of regulation in the root clock. At the protein 

level, the expression pattern of LHY and TOC1 were analysed in roots over 3 days under 

LL: only LHY seemed to be circadian in roots (James et al., 2008). This could be 

consistent with the lower amplitude of TOC1 rhythm compared to LHY at the mRNA level 

(chapter 4). Rhythms at the transcript level do not necessarily feed through to rhythms at 

the protein level. For instance in plants carrying the CAB2:LUC fusion, the levels of  the 

LUC protein were relatively constant although LUC mRNA levels were oscillating (Millar 

et al., 1992). Conversely, rhythms at the protein level do not necessarily require the 

corresponding mRNA to be expressed rhythmically. For instance ZTL mRNA is not 

circadian in shoots but its protein level is circadian regulated in this organ and plays a role 
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in the shoot clock (Mas et al., 2003; Kim et al., 2007). It would be interesting to know 

whether the same is true for ZTL expression in roots. More generally the study of clock 

protein levels in roots would be informative. 

 

All these evening components were not only rhythmic in roots under LL, their FRPs in 

roots were longer compared to shoots and comparable with the FRP of morning 

components in roots, suggesting they could be part of the same oscillator. Alternatively 

they might be driven by the same oscillator. The role of the putative clock components in 

roots needs to be confirmed, e.g. by studying their protein levels and their interactions and 

by investigating the effects of mutations on the root clock.  

 

 

8.1.2 Wiring 

Even if the same components are present in shoot and root clock, their functions may differ 

in these two organs. For instance an EMSA assay revealed the presence of EE-binding 

complex containing LHY in shoots but not in roots (James et al., 2008). This indicated that 

morning and evening loops might be uncoupled in roots, and the authors suggested that 

this mechanism could explain fewer genes expressed rhythmically in roots compared to 

shoots. For instance several genes containing EEs in their promoter were not scored 

rhythmic by James et al. (2008). However the more recent results presented in this thesis 

showed that TOC1, GI and CCR2 – all EE-containing genes – were actually circadian in 

roots although their rhythms were weaker than in shoots. Besides the FRP in LL of these 

EE-containing genes were comparable to the FRP of morning genes, such as CCA1 and 

LHY. These new results suggest that morning and evening loops are coupled in roots as 

they are in shoots, but this is not necessarily in contradiction with the EMSA results of 

James et al.: coupling between loops might be achieved by different mechanisms in roots.  

 

In fact, the possible lack of binding of LHY to EE might explain other features of the root 

clock. In shoots the binding of CCA1 and LHY proteins to EE promoter sequences was 

correlated to repression of evening-expressed genes (Harmer, 2009). Therefore less 

binding to the promoter of an EE-containing gene may lead to less repression of this gene, 

and consequently weaker rhythms – if any at all. For instance in roots CCA1 and LHY 

proteins may have less affinity to EE, or their levels were too low, so that their binding 

may have been missed in the EMSA assay performed by James et al. (2008). This would 
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reconcile older and more recent root data: coupling between the morning and evening 

loops, and also coupling between morning transcription factors and output genes 

containing the EE would exist in roots but they would be weaker than in shoots. 

Consequently the EE-containing genes would have lower amplitude rhythms or they would 

be arrhythmic in roots. 

 

O’Neill and colleagues suggested that LHY/CCA1 heterodimer has a higher affinity for the 

EE than either homodimer. In addition LHY binding to EE was enhanced by casein kinase 

2-mediated phosphorylation (O'Neill et al., 2011b). If these in vitro results were 

reproducible in vivo, it would suggest that a lower binding to EE might be due to a lack of 

interaction between CCA1 and LHY and/or a lack of phosphorylation of LHY. 

Interestingly the casein kinase 2 (CK2) is involved in the pace of the clock. In the shoots of 

a ck2 mutant a reduced level of CK2 activity and CCA1 phosphorylation correlated with 

the period lengthening of various output rhythms and clock gene expression (Lu et al., 

2011). In addition, the longer FRP in roots under LL could be simulated in all the models 

tested by reducing the inhibition of one or more EE-containing genes by LHY/CCA1 

(Figure 7.1, 7.4 and 7.9) , and with these change of parameter  morning and evening genes 

were still coupled in LD and LL. Taken together these results suggest that the longer FRP 

in roots may be explained by lower affinity of LHY or CCA1 protein for EE sequences, 

resulting in less repression of evening genes, and this lower affinity might be due to 

reduced phosphorylation of CCA1 and LHY in roots compared to shoots. Alternatively, the 

lower levels of CCA1 and LHY mRNA may result in lower levels of their protein in roots 

compared to shoots, which might also explain less binding to the EE and therefore less 

inhibition of clock gene expression by LHY/CCA1 in roots compared to shoots. It would 

be very interesting to investigate experimentally the post-translational modifications of 

CCA1 and LHY in roots, and their possible effect on their binding to EE. 

 

The profile of GI expression differs in shoots and roots under LD. James et al. showed that 

GI mRNA peak was broader in roots compared to shoots. This could also be observed in 

several experiments with imaging (e.g. in Figure 4.7). In shoots under LD, GI peaks at 

dusk but also at dawn to a lesser extent. In the P2012 model the dawn peak of GI can be 

explained by the acute light activation of GI transcription at dawn followed by its 

repression by LHY/CCA1. This peak of GI at dawn could be observed in shoots with 

imaging because of the better temporal resolution compared to most of our RT-qPCR 
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experiments. However, only a shoulder could be observed at dawn for GI expression in 

roots. This would be consistent with a reduced inhibition of GI expression by LHY/CCA1 

(see Figure A.6 in appendix). Interestingly the value of g15, which represents the constant 

for inhibition of GI expression by LHY/CCA1 in the P2012 model, was consistently 

increased in several optimisation processes, although the value of g15 was allowed to 

decrease in these automated processes (Table 7.3). On the contrary, the value of g5, i.e. the 

constant for inhibition of TOC1 expression by LHY/CCA1, was less changed and in fact 

decreased in the same parameter optimisation processes. This would be consistent with the 

small peak of TOC1 observed at dawn in roots (e.g. in Figure 4.2). Therefore a few 

differences in the wiring of shoot and root clock might explain different FRPs but also 

different expression profiles in these two organs. 

 

Thus many core clock components seem to be shared between shoots and roots. These 

components might have similar interaction in both organs, although the strength of these 

connections may differ in shoots and roots. Changing the parameters related to the 

coupling between morning and evening genes in several shoot clock models could simulate 

the possibly different wiring in the root clock and fit qualitatively data under specific 

conditions: LD, LL and DD (chapter 7). However none of these parameter optimisation 

processes could give a set of parameters that fit root data in all three conditions. Other 

parameters of the clock model may be organ-specific. A genome-wide identification of 

protein–protein and protein-DNA interactions would provide more insight to the root clock 

structure.  

 

 

8.1.3 Inputs 

What is surely organ-specific in the plant circadian system is the different light inputs that 

shoots and dark-grown roots receive. The main differences between shoot and root clocks 

are their FRP under LL and their amplitude under LD: these are respectively longer and 

lower in roots compared to shoots. Interestingly these two features could be simulated with 

the P2012 model by changing only one parameter: the light intensity (L). Indeed reducing 

L could lower the amplitudes of clock genes under LD and lengthen their FRP under LL 

(Figure 7.7 and 7.8). These simulations were motivated by at least three facts: 

- dark-grown roots can perceive low light via channelling from exposed tissues (Sun et al., 

2005); 



8. Discussion 

 

 
 

209 

- some photoreceptors are expressed in roots (Toth et al., 2001) (Sullivan et al., 

unpublished) and could be functional (Costigan et al., 2011); 

- the root clock can be directly entrained by very low light levels (chapter 5). 

 

However, simulating low light intensity delayed the phase of CCA1 (Figure 7.8), which 

was not observed experimentally in dark-grown roots. In addition experiments showed that 

the FRP was longer not only in dark-grown roots, but also in light-grown roots compared 

to shoots, shoots and light-grown roots being exposed to the same light-intensity (chapter 

4). Therefore the different light conditions experienced by shoots and roots cannot solely 

explain the differences between their clocks. Nevertheless, shoot and root clocks were 

more similar in DD than in any condition with illumination. This suggests that at least 

some differences between the two clocks may be related to light. Although differences 

between shoot and root circadian systems might reside within the structure of their core 

clock (i.e. different components or different interactions as discussed earlier), other parts of 

the circadian network could be organ-specific, such as light input pathways. 

 

Light can differentially regulate gene expression in different organs of Arabidopsis and 

rice, including roots (Jiao et al., 2007). In Arabidopsis seedlings, light regulated the 

transcriptomes of cotyledons, hypocotyls and roots in a similar way, but with little overlap 

(~1%) between the light-regulated genes in these three organs (Jiao et al., 2007). The 

authors suggested that different signalling cascades could be involved in different organs 

and cell types, although the same photoreceptors seemed to be shared between organs. The 

idea of different cascades was supported by the overrepresentation of specific promoter 

motifs of light-regulated genes in roots and leaves, some of these motifs being organ-

specific (Jiao et al., 2005). 

 

Both blue and red light could entrain the shoot and root clocks (Figure 4.7). Under LL with 

blue or red light, the FRP was shortened in shoots compared to DD. But blue light alone 

did not significantly shorten the FRP in roots compared to DD, whereas red light did 

(Figure 4.8). ZTL is a blue light photoreceptor closely linked to core clock components 

(Mas et al., 2003; Kim et al., 2007). The ztl-105 mutation did not lengthen the FRP in 

roots as much as in shoots compared to the WT under a combination of blue and red light 

(Figure 6.3). These two experiments, with monochromatic light or with the ztl-105 mutant, 

were only done once and need to be repeated before drawing any conclusions, but taken 
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together their results indicate that ZTL might be less functional in roots compared to 

shoots. However other blue light photoreceptors such as CRY1 and 2 are expressed in dark-

grown roots (Sullivan et al., unpublished) and might be functional in roots. In dark-grown 

roots all blue light photoreceptor may be less active because less blue light can reach the 

roots (via channelling or penetration through the soil) compared to red light (Sun et al., 

2005; Tester and Morris, 1987). The effect of the ztl mutation on the root clock should be 

further investigated under blue or red light separately in roots.  

 

On the other hand, red light photoreceptors might be more active in dark-grown roots. Red 

and far red light could reach dark-grown roots more easily than blue light, via better 

penetration through soil or piping from the aerial tissues (Sun et al., 2005; Tester and 

Morris, 1987). In addition, PHYA and PHYB were expressed in dark-grown roots (Sullivan 

et al., unpublished) and PHYB mRNA was scored rhythmic under LL. The PHYA promoter 

was even found rhythmic in excised roots under DD, although rhythms were quickly 

dampened (Hall et al., 2001). This suggests that some photoreceptors could be involved in 

the root circadian system, most likely in its input pathways. Furthermore putative phyA-

induced motifs were overrepresented in light-induced genes in both cotyledons and roots of 

light-grown seedlings (Jiao et al., 2005). Interestingly PHYA is a photoreceptor that is 

sensitive to very low levels of red light; therefore it would be the most obvious candidate 

for photoreception in dark-grown roots. 

 

As mentioned in chapter 1, the effects of light on the circadian system can be found at 

many levels, from the photoreceptors to the core clock components. The light input 

pathways might be organ-specific because of different amounts of photoreceptors or their 

different functions in roots compared to shoots. This would need to be tested, for instance 

by investigating the possible effects of photoreceptor mutations on the root clock. Some 

other differences might be downstream of these photoreceptors and at different levels of 

regulation. Although the promoter activities of clock and output genes in roots were all 

similarly affected by light, i.e. increased levels of expression and amplitude (chapter 4), the 

mRNA levels of clock genes seemed to be differentially regulated by light in roots. For 

instance in light-grown roots compared to dark-grown roots, the levels of GI mRNA were 

higher, whereas CCA1 transcript levels seemed to be reduced. The lower levels of CCA1 

transcripts in roots exposed to light were consistent with its known degradation by light in 

shoots (Yakir et al., 2007). Taken together, this indicates post-transcriptional regulation by 
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light in roots, and this level of regulation could affect differentially clock gene expression 

in this organ. This might be true in dark-grown roots, although the levels of light would be 

much lower compared to shoots. The quality of light perceived by these two organs is 

probably different too; this will be further discussed in the next section.  

 

Plant cells were thought to have very similar clocks, partly because the different rhythms 

observed within a plant were different outputs generated by different cells (Harmer 2009). 

The root clock appeared to be an exception, because not only output rhythms but also core 

clock gene expression differed markedly in this organ compared to shoots. My work 

suggests that core clocks are probably more similar in shoots and roots than previously 

thought. Many components are likely shared, and their interaction has not been shown to 

differ dramatically in roots compared to shoots. However the light inputs to shoots and 

roots are obviously different, and could explain most differences observed between the two 

organs, such as the longer FRPs and lower amplitudes observed in roots compared to 

shoots. These differences could be simulated with the P2012 model by changing 

parameters related to light inputs (chapter 7); with these new parameters, the long FRP 

observed in both dark- and light-grown roots under LL could be reproduced without 

affecting entrainment under LD cycles. The parameters of the P2012 model should be 

further optimised to better fit the behaviour of the root clock. Once validated, a model with 

new parameter values could give predictions directly testable experimentally.  

 
 

 

8.2 Plant circadian systems and their inputs at different 
levels of organisation 

The previous section assumed that the circadian clocks are identical within the same organ. 

However, evidence suggests differences between the clocks of different tissues, as 

discussed in chapter 1. This section will discuss the plant circadian systems and their 

inputs at different levels of organisation, from intracellular levels to the whole plant and its 

environment. 
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8.2.1 Intracellular networks and microenvironment 

A circadian system can be considered at the subcellular level where it is represented by a 

complex network between clock components and other signalling pathways. Many efforts 

have contributed to a better understanding of this network in plants during the last decades, 

and experimental approaches were combined with mathematical modelling to reproduce 

the dynamics of the system. 

 

All the ODE models of the “plant” circadian clock published so far have been based on 

seedling data and assume that the core oscillator was identical in every cell. They focused 

on the TTFLs between clock genes and progressively integrated more components and 

their interactions in an increasingly complex network with many levels of regulation, 

including post-transcriptional and post-translational modifications. These models could 

explain more and more data from wild-type plants and mutants under various 

environmental conditions and have provided predictions that were verified experimentally.  

 

Although these models were all based on the TTFLs in shoots, they were used to reproduce 

other aspects of the circadian system. For instance the parameters of the L2005b and 

L2006 models were optimised to simulate the interaction of the clock with cADPR and 

sucrose respectively (Dodd et al., 2007; Dalchau et al., 2011). Integrating such 

interactions, and more generally other regulatory networks into future versions of the 

circadian system will probably help to explain more data and better understand plant 

physiology. More complex models may also help to distinguish the circadian systems of 

different tissues and their different inputs. For instance most differences between the shoot 

and root clocks could be simulated by changing a few parameters of the P2012 model 

(chapter 7). These parameters were all related to light inputs and some of them were not 

present in the previous versions of the ODE models. 

 

The effects of light on the clock machinery are now better integrated in the ODE model. In 

the P2012 model light affect many components at several levels of regulation 

(transcriptional, post-transcriptional and post-translational). However, the detail input 

pathway remains unclear. For instance, the acute light activation of gene transcription has 

been modelled by an unknown protein P since 2005. In addition, none of the ODE models 

has distinguished light qualities yet, although multiple light signalling pathways are 

required for correct biological timing in Arabidopsis (Dalchau et al., 2010) . Nevertheless, 
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light intensity can be modified in the P2012 model and this was useful to simulate the low 

light intensity perceived by dark-grown roots, which could reproduce several aspect of the 

root clock behaviour (chapter 7). 

 

Light is a complex parameter that can have a huge range of values in terms of quantity and 

also quality; even a combination of only 2 monochromatic lights could take an infinite 

number of values, e.g. in terms of blue/red ratio. Light quantity can vary greatly over space 

in a single organism. This is obvious when comparing two organs: the differences between 

the light perceived by aerial tissues and dark-grown roots of a single plant are evident. 

Even within the same organ, such as a leaf, different light irradiances can be observed. 

Interestingly different light intensities perceived by different tissues has been suggested to 

be a possible cause of different FRP in leaves. For instance the longer period of stomatal 

conductance rhythms compared to photosynthesis in the ztl1 mutant were correlated to the 

lower light intensity perceived by stomata compared to photosynthetic cells (Dodd et al., 

2004).  

 

Furthermore the light quantity and quality might well vary in different cells, and even in 

different organelles, partly because of different fibre optic properties of different cells, but 

also because light would have to cross different physical (e.g. membranes) and chemical 

(e.g. pigments) barriers where light might be diffracted or absorbed. Therefore it is 

conceivable that with the same light source for an organism, the light quantity and quality 

may vary greatly between tissues, cells and organelles. This may highlight the interest of 

using monochromatic light; yet the different light intensities reaching different part of an 

organism need to be considered.  

Many parameters vary in the microenvironment of a plant cell, and some of them may 

affect the clock. For instance solutes such as calcium and sucrose can affect clock gene 

expression (Haydon et al., 2011) and their concentrations probably vary between cells or 

tissues. Any difference in inputs might contribute to different dynamics in the circadian 

system of different cells and tissues. 

 

8.2.2 Tissue specificity in roots under constant light 

As discussed in chapter 1, the specificity of circadian clocks has been observed in various 

plant tissues the last decade, mainly in leaf tissues under LL. In seedling roots, different 

patterns of CCA1:LUC+ activity were recently observed in different tissues (Fukuda et al., 
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2012). The authors showed with imaging that the phase of CCA1 expression varied within 

the root tissue, and they also observed arrhythmic regions under constant conditions. Such 

information could have been missed in my work because the analyses presented in this 

thesis were done at the whole organ level. Some of my data could be reanalysed by 

distinguishing different areas in the roots, but most of the time the roots were entangled 

which would make such analysis difficult. Indeed many areas contained different regions 

from different roots. In addition, the root signal was usually low at the organ level so it 

would be even harder to detect in different root tissues. This is partly because my plants 

were usually dark-grown on a medium without sucrose, so the root signal was certainly 

lower compared to Fukuda et al. (2012) who used sucrose and light-grown roots. In 

addition, I usually imaged several plates at a time when the roots were light-grown: the 

signal was then high enough at the organ level but may be too low for more detailed spatial 

analysis. Nevertheless our imaging system could (and indeed should) be used to study the 

clock in different regions of the roots. This possibility has not been exploited yet.  

 

The results of Fukuda et al. (2012), and more generally the tissue specificity of plant 

circadian clocks, raise several questions about the root clock. First the rhythms observed at 

the organ level may reflect the oscillations of certain root cells or tissues only, the others 

being arrhythmic. It was only observed for CCA1 expression in roots, but may be true for 

other genes as well. For example, PRR3 is mainly expressed in the vasculature in leaves 

and its role in the shoot clock may be restricted to this tissue (Para et al., 2007). If clock 

genes are not expressed in all the root cells, this might contribute to their lower amplitude 

observed in the whole organ. And if some clock-controlled genes are expressed in roots 

with different phases in different tissues or cells, this may not only contribute to lower 

amplitudes and broader peaks observed at the organ level, but could also result in apparent 

arrhythmia in roots. In fact, many less genes are expressed rhythmically in roots compared 

to shoots under LL (James et al., 2008; Sullivan et al., unpublished). One can wonder if 

there are more arrhythmic transcripts in roots compared to shoots, or if (some of) these are 

expressed at different phases and/or with different FRPs in different root tissues. Imaging 

clock gene expression in roots with a high spatial resolution could provide answers to these 

questions.  

 

Within a plant with dark-grown roots, the range of light intensities reaching cells and 

molecules could be expected to be broader in roots than in shoots. For example the top of 
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the root would be closer to the light source and receive a considerable amount of light via 

piping or light penetration/leakage, whereas the bottom of the roots would perceive much 

less light. If Aschoff ‘s rules are valid at the cellular level, this would lead to a broader 

range of FRP in roots compared to shoots, which would result in broader peaks or 

arrhythmia under LL when the whole roots are considered (i.e. when the heterogenous 

rhythms are pooled together), and that can indeed be observed for several clock genes 

(chapter 4). Interestingly, when the roots were light-grown, the rhythms were more robust 

and the peaks of clock gene expression were sharper compared to dark-grown roots (Figure 

4.2). Again this would be consistent with Aschoff’s rules because all the tissues of light-

grown roots were exposed to the same light intensity, contrary to the tissues of dark-grown 

roots. 

 

The differences between tissues discussed so far in this section considered rhythms under 

LL. In such conditions the rhythms are not entrained by a zeitgeber and so can become 

desynchronised. The tissues of the same organs were pooled together in the experiments 

presented in this thesis, and therefore some cell or tissue specific information has probably 

been lost. Nevertheless, some consistent differences remained between the shoot and root 

circadian systems, under LL and LD, as discussed below. 

 

 

8.2.3 Organ specificity and autonomy in different conditions 

The organ specificity of the plant circadian system was first investigated with plants grown 

in hydroponic culture and by using RT-qPCR mainly (hydroponic system) and then with 

plants grown on plates (imaging system). Two main differences between shoot and root 

clocks could be observed with both systems: longer FRPs of clock gene expression under 

LL and lower amplitudes of oscillations under LD in roots compared to shoots. There were 

some discrepancies between the results obtained with these two systems, such as longer 

FRPs observed with imaging experiments compared to RT-qPCR experiments. This was 

probably due to the lower light intensity used for imaging (chapter 4). However, there were 

other differences between the environmental conditions used for imaging and RT-qPCR 

experiments. Some of these differences, and their possible effects on clock functions, are 

discussed below. 
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A major difference between the hydroponic and imaging systems was the light quality. 

Plants grown in hydroponic culture were exposed to white light, whereas most of the 

imaging experiments were carried out with a combination of blue and red light, which 

could be considered as an extremely simplified version of white light. However other 

wavelengths of the white light spectrum can play a role in the circadian system. For 

instance FR light can profoundly alter rhythmic gene expression in seedlings (Wenden et 

al., 2011). This range of the light spectrum seems particularly relevant for roots since FR 

light is probably the main light source for underground plant tissues (Sun et al., 2005; Sun 

et al., 2003). Therefore the effects of FR light should be studied on the root clock and this 

could be done with imaging. 

 

At the other end of the visible light spectrum, UV light can also affect rhythms. Several 

clock genes were shown to respond to low-intensity UV-B radiation (1 µmol.m-2.s-1), 

which seems to contribute to entrainment of the shoot clock (Feher et al., 2011). Although 

UV-B light is present in the white spectrum, it can hardly be channelled by light tissues (or 

penetrate through the soil) so this range of light did probably not affect the clocks of our 

dark-grown roots. However, the exposure of roots to high white light (and therefore 

significant amounts of UV-B) could explain some differences between our results and 

those of Thain et al. (2000, 2002) regarding the expression of CHS in roots. CHS is a key 

enzyme involved in the production of photoprotective pigments. Its expression cannot be 

detected in dark-grown roots (James et al., 2008). It could not be detected under 60 

µmol.m-2.s-1 of white light either, but it was expressed rhythmically in roots exposed to 

higher light intensities (150-250 µmol.m-2.s-1) (Thain et al., 2000 and 2002). It is possible 

that CHS was induced by UV-B but only above a certain threshold in the studies of Thain 

et al. Moreover CHS expression rose before dawn in roots under white light. This would 

suggest that the root circadian system is flexible: it might control the rhythmic production 

of “sunscreen” only if necessary.  

 

There may be other gene expressions that could be circadian-controlled in roots depending 

on the environmental conditions, such as the nitrate transporter NRT2.1. This gene was 

expressed rhythmically in the roots of plants grown hydroponically under LL (James et al., 

2008). However, I could not detect any rhythm in the luminescence of NRT2.1:LUC (data 

not shown). Note that the concentration of nutrients, including nitrates, is much higher in 

the ½ MS medium used for the imaging system compared to our hydroponic solution. 
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Therefore the expression of NRT2.1 was probably inhibited by the high level of nitrate 

present in the ½ MS medium, which would be consistent with the results of Girin et al. 

(2010a). Gutierez et al. (Gutierez et al., 2008) suggested that  N status could serve as an 

input for the circadian clock: pulses of organic and inorganic N could shift the phase of 

CCA1 expression, and this clock gene is a central regulator of nitrogen (N) metabolism. It 

would be very interesting to further investigate the circadian regulation of nitrate 

transporters on different media. This may illustrate the importance of non-photic signals 

for the generation of circadian outputs in roots. 

 

There was at least one other obvious difference between hydroponic and imaging 

environmental conditions. Roots of plants grown in hydroponic system were submerged in 

water. Oxygen has a very low solubility in water, and low levels of oxygen have been 

correlated to stress in plants. To escape this stress caused by low-O2 plants can alter their 

architecture, metabolism and elongation growth (Bailey-Serres and Voesenek, 2008). On 

the contrary, the roots of plants grown on vertical plates were mainly growing on the 

surface of the medium, i.e. exposed to air where the concentration of O2 is ~ 20%. 

Therefore the plants grown on plate and in hydroponic cultures were probably in different 

physiological states.  

 

The environmental conditions for imaging and RT-qPCR experiments were different at 

several levels: the light quality and quantity, the nutrient concentrations, oxygen 

availability for roots. Yet major differences in terms of periods and amplitudes of clock 

gene expression between the shoot and root clocks could be observed with both settings. 

This demonstrates that at least some aspects of the root circadian clock are robust to 

environmental variations. Other aspects seem to be more flexible, such as the light-

dependent expression of CHS and the nitrate-dependent expression of NRT2.1 in roots. 

More output genes should be studied in roots under different conditions. This would 

provide further insight into the physiological relevance of the root clock.  

 

 

The flexibility and organ specificity of the plant circadian clock was also supported by 

experiments under artificial diurnal conditions, such as T cycles, skeleton photoperiod, and 

conflicting LD cycles (chapter 5). The latter also suggested that the root clock is preferably 

entrained by direct absorption of light rather than signals from the shoots. Together with 
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the “decapitation experiment” (chapter 5), these experiments indicate that the clock is 

probably organ autonomous. For instance GI and CCR2 were expressed rhythmically in 

excised roots under diurnal and constant conditions. The clocks of root tissues may be 

coupled more strongly to external LD cycles than to intercellular signalling, consistent 

with previous studies (Thain et al., 2000; Wenden et al., 2012). The autonomy of circadian 

systems in dark-grown roots under LD cycles is possible because their clock is very 

sensitive to entrainment by low light/dark cycles, with a light intensity that would be 

comparable to the light levels channelled by exposed tissues. A possible coupling between 

the clocks of tissues and organs cannot be ruled out, but it needs to be proven. The idea of 

intercellular coupling between different clocks of plant seems plausible, and may well 

occur in certain conditions. It could contribute to the synchronisation between different 

tissue functions. However, this synchronisation may be achieved faster by a direct 

entrainment of all the plant cells (even in roots) by external cues.  

 

In natural conditions, light but also temperature are obvious zeitbebers for both shoot and 

root clocks. Temperature changes certainly have complex effects on living organisms and 

on their clock in particular. For instance cyclic changes in temperature can entrain the 

clock of diverse species, including Arabidopsis thaliana. But the pace of these clocks is 

little affected by steady-state temperature, a phenomenon known as temperature 

compensation which is a fundamental property of circadian rhythms. The shoot clock is 

temperature compensated, so the root clock may be as well: that would need to be verified 

experimentally. This thesis presented a preliminary study on temperature as a zeitgeber. 

The root clock could be entrained by HC 20/12 °C cycles under DD, after the plants were 

entrained by LD cycles at constant temperature. Although HC cycles were in antiphase 

with the previous LD cycles, clock and output genes were rapidly entrained by temperature 

cycles: it took only 2-3 transient days for the clock to be in phase with the HC cycles.  

The mechanism of entrainment by temperature is still poorly understood. The temperature-

dependent alternative splicing of several clock components probably contribute to 

entrainment. Indeed dynamic changes in alternatively spliced transcripts were recently 

correlated to temperature transitions; this was mainly shown in shoots but also in roots 

(James et al., 2012). Rhythmic changes of about 8 °C between days and night are realistic 

in temperate regions. However temperature changes are buffered underground (Walter et 

al., 2009). Therefore it would be interesting to further study the effects of temperature on 

the root clock with less variation between “days” and “nights”. Such study may be done in 
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the near future, possibly under LL or DD in order to dissect the effects of light and 

temperature as entraining agents. However organisms experience both LD and temperature 

cycles simultaneously in nature. 

 

8.2.4 Plants in complex environments 

In natural conditions, many parameters vary simultaneously and some of them can affect 

circadian systems. The most obvious are light and temperature cycles. These two 

zeitgebers have been shown to act synergistically to entrain behavioural and molecular 

rhythms of Drosophila (Yoshii et al., 2009). The authors compared the effects of LD 

cycles and/or temperature cycles behavioural rhythms and showed that the rhythms were 

more robust under the combination of LD and temperature cycles, with enhanced 

amplitude of Timeless, a core clock component in Drosophila. Similarly, a combination of 

light and temperature cycles may result in stronger rhythms in plants and might reveal 

more rhythmicity in roots. This needs to be tested. Other parameters, such as water and 

nutrient availability can fluctuate in the environment, and may have an effect on circadian 

rhythms in plants as discussed earlier.  

 

Little is known about how the circadian system contributes to diurnal rhythms in plants 

under natural conditions (Izawa, 2012). However plants have evolved under natural diurnal 

conditions that are much more complex than laboratory conditions. Izawa and colleagues 

studied the rhythms of WT and OsGI mutant rice grown in the field. Although the 

transcriptome data differed markedly between WT and mutant, flowering time and yields 

were comparable (Izawa, 2012). Studies on animal also revealed that known “clock genes” 

had less effect on circadian rhythms under more natural conditions compared to laboratory 

conditions (Gattermann et al., 2008; Daan et al., 2011; Vanin et al., 2012). This suggests 

that clock components may not have the same role under different environments, an idea 

that was also mentioned by Izawa regarding plant rhythms (Izawa, 2012).  

 

Other striking differences between circadian rhythms observed in laboratory and in more 

natural conditions were reported for several animals including the fruit fly (Gattermann et 

al., 2008; Daan et al., 2011; Vanin et al., 2012). The activity of Drosophila was 

dramatically different outdoors compared to laboratory conditions using LD cycles (Vanin 

et al., 2012). The authors questioned key assumptions about circadian behaviour that were 

based on laboratory studies, for instance the presumed crepuscular activity of flies. When 
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the same strains of flies were subjected to more complex variations in their environment, 

they were predominantly diurnal, with a major peak of activity in the afternoon that was 

not observed under LD cycles. Vanin and colleagues also conclude that temperature is the 

critical variable for predicting circadian behaviour in flies. The importance of temperature 

for plant circadian rhythms may also have been overlooked in the past decades. 

 

Interestingly several of the new observations made outdoors with Drosophila could be 

reproduced indoors when light and temperature settings in the lab mimicked the natural 

variation of these two parameters, with e.g. twilights and gradual changes in temperature 

(Vanin et al., 2012). Similarly circadian rhythms of Arabidopsis could be studied in the lab 

with more realistic conditions. Natural conditions would include other varying parameters 

than light and temperature. However “realistic” conditions are not necessarily natural: 

studying the clock of crop plants under greenhouse conditions could be very realistic. 

 

In my work, all the plants were grown on media without sucrose, many experiments were 

done with dark-grown roots, and some of them were carried out under diurnal cycles. This 

is a first (and modest) step towards realistic environment. The “realism” should go further, 

at least varying both light and temperature using gradients. This would certainly provide 

new information about rhythms in plants. 

 

 

8.2.5 Concluding remarks 

Circadian rhythms are by definition rhythms with a sustained period of about 24 h under 

constant conditions. Therefore one cannot know whether a rhythm is circadian until it is 

studied under constant condition. That is why many experiments presented in this thesis 

were done in LL or DD. Indeed the study of the root circadian clock has a short history 

compared to that of shoots, and it was not clear which component were circadian in roots, 

especially the ones that are core clock components in shoots. My work suggests that the 

clock structure is similar in both organs, at least in the conditions tested. The difference 

between the plant circadian systems may be mainly related to different inputs. The 

relatively simple inputs used in laboratory conditions should be adjusted to simulate more 

realistic environments, at least in terms of light and temperature, to understand the effects 

of these two major parameters and their interaction on plant rhythms. These may reveal 

different mechanisms of the plant clocks compared to more simple conditions. In turn, 
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these clocks may generate different outputs to adapt their physiology to their environment. 

The adaptive advantage conferred by the circadian clock has only been demonstrated in 

shoots so far. However a plant needs both shoots and roots to function properly. It is likely 

that the root clock plays a role in the synchronisation of physiological processes between 

shoots and roots, and possibly the anticipation of environmental changes, therefore 

contributing to the plant fitness. The physiological relevance of the root clock needs to be 

investigated and overt rhythms should be explored in roots, together with shoot rhythms.  
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Appendix 
 

 

 
 

 

Figure A.1: GI total luminescence in light- and dark-grown roots under LD and LL.  
 
Plants were entrained for 3-4 weeks in LD (12/12) before release in LL. For half of 
the plants, roots were light-grown (i.e. exposed to the same light/dark conditions 
as shoots); for the other half roots were dark-grown. The promoter activity of GI 
was monitored in roots and shoots over the last day in LD (ZT0 = dawn) and in LL. 
From ZT108 (red arrows), dark-grown roots were exposed to light (i.e. put in the 
same conditions as shoots and light-grown roots). Bars in the backgrounds 
represent days or subjective days (white bars), night (dark grey bars) and 
subjective night (hatched bars). 2 clusters of 2-3 plants (organs) from 2 
independent experiments are presented for each condition. These raw data and 
others were then normalised, averaged and used for Figure 4.2. 
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Figure A.2: LUC rhythms are less robust in shoots compared to roots under 
DD  
The periods of data presented in Figure 4.5 (A-D) were estimated with BRASS 
using the same 84h window for all time-courses, i.e. the whole period under DD 
except the first 24 h. In roots, all the time-courses were scored rhythmic (bars 
represent standard errors for 2-4 independent experiments), whereas in shoots, 2 
time-courses were scored rhythmic for PRR7, only 1 for CCA1 and GI (hence no 
error bars) and none for PRR9.  
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Figure A.3: GI:LUC signals are much lower in DD compared to LL 

Shoot and root raw data from 2 individual time-courses, 1 used for 
Figure 4.5 (DD) and 1 for Figure 4.2 (LL). Note the different scales for 
DD and LL 
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A. B. 

  
C. D. 

  

Figure  A.4: LD cycles can directly entrain CCR2 expression in roots 

Plants with the CCR2:LUC+ reporter were entrained 3-4 weeks in LD (white light) 
before imaging (blue and red light); roots were light- or dark-grown. Plants were 
imaged for 24h in LD. Then half of them were decapitated before dawn (at ZT24, 
indicated by the red arrows) and all the plants were transferred to LD and LL 
cycles (A-C)  
A-C: Bioluminescence over time of light-grown roots (A), shoots (B) and dark-
grown roots (C). Grey bar represents D cycles, white and light grey hatched bars 
represent L and subjective L respectively, and dark grey hatched bars represent 
subjective nights. Data were normalised with the mean luminescence of the first 
LD cycle (before decapitation, A-C) Error bars are SEM for 2 clusters of 2-3 plants 
(organs) from 2 independent experiments. 
D: Circadian period estimates of data presented in A-C in LD using BRASS for 
roots and shoots. 
Symbols and colours used in Figure C-F are the same as in Figure G and H for 
clarity. Shoots and roots are represented by circles and triangles respectively. For 
each graph the lighter colours represents organs of plants with light-grown roots, 
whereas darker colours represents organs of plants with dark-grown roots. The 
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open symbols represent decapitated plants. 
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A. B. 

  
C. D. 

  
 
Figure A.5: Simulations of clock genes mRNA levels in shoots and 
“roots” under LD (12/12) using the L2006 model 
The simulations with default parameters of the L2006 model represent 
seedling data in LD and are labelled shoots (green solid lines). The other 
simulations attempt to fit the root clock data obtained with dark-grown roots in 
LD (12/12); they are labelled “roots” (orange dashes). For the “roots” 
simulations, the “20(g3g6)0.01g4” set of parameters (presented in fig. 7.1 
C&D) was used: the default set of parameters of the L2006 models were 
used, except g3 and g6 (both increased 1000 or 20 fold respectively) and g4 
(decreased 100 fold).  
A-D: Simulations of LHY/CCA1 (A), APRR (B), TOC1 (C) and Y (D) mRNA 
levels. 
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Figure A.6: Increasing the parameter g15 in the P2012 model removes the 
dawn peak of GI mRNA and broaden its dusk peak. 

A. Simulation using the P2012 model. The parameter g15 was scanned with 
COPASI for values between 0.4 (default value for the shoot model) and 0.8. 
Increasing g15 simulates less inhibition of GI mRNA synthesis by LHY/CCA1 
protein. This results in a broader and higher peak of GI expression (red lines); the 
lower and higher lines represent simulations for g15 = 0.4 and g15 = 0.8 
respectively. The modification of g15 does not affect the level of LHY/CCA1 
protein (blue line). 
B. Experimental data from James et al. (2008). Relative levels of GI transcripts in 
shoots and roots under LD. 
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