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 ii  

Abstract 

 

  A dynamic inflow model is a powerful tool for predicting the induced velocity 

distribution over a rotor disc. On account of its closed form and simplicity, the model is 

highly practical especially for studying flight mechanics and designing control systems 

for helicopters. However, scant attention has been so far paid to applying this model to 

analyse autorotative rotors (i.e. rotors in the windmill-brake state), which differ from 

powered helicopter rotors (i.e. rotors in the normal working state) in that the geometric 

relation between the inflow and the rotor disc.   

  The principal aim of this research is to theoretically investigate the applicability of 

existing dynamic inflow models for autorotative rotors, and if necessary, to provide a 

new dynamic inflow model for autorotative rotors.  

  The contemporary dynamic inflow modelling is reviewed in detail from first 

principles in this thesis, and this identifies a modification to the mass-flow parameter 

for autorotative rotors. A qualitative assessment of this change indicates that it is likely 

to have a negligible impact on the trim state of rotorcraft in autorotation, but a 

significant effect on the dynamic inflow modes in certain flight conditions.  

  In addition, this thesis includes a discussion about the small wake skew angle 

assumption, which is invariably used in the derivation of Peters and He model. The 

mathematical validity of the assumption is cast doubt, despite the resultant model has 

experimentally been fully validated. This author discusses on a theoretical ground the 

possible reason why the Peters and He model works well in spite of its inconsistent 

derivation.  
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Chapter 1    

 

Introduction   

 
1.1 Overview  
  The primary aim of this thesis is to theoretically investigate the applicability of 

existing dynamic inflow models for autorotative rotors. Contemporary dynamic inflow 

models such as the Pitt and Peters model(1) have been developed for helicopter rotors in 

the normal working state. The literature suggests that this would be the first time that 

the possibility of applying the dynamic inflow model to autorotative rotors has been 

examined from a theoretical viewpoint. 

 

  Ever since the first gyroplane, Model C.4 designed by Juan de la Cierva, flew in 

1923(2,3,4), it has always been a major problem how to describe the distribution of the 

airflow around the rotor. Although simple momentum theory can provide a key insight 

into the rotor performance in steady axial flight(5,6), a more sophisticated description 

about the inflow distribution is required to study the rotor performance, rotor stability 

and controllability in unsteady state or in forward flight, and to evaluate rotor loads, 

which are closely connected with the controls. The rotor loads are important also in 

relation to rotor vibration and structural fatigue. Historically, a variety of methods have 

been proposed to describe the detailed inflow distribution over rotors in the normal 

working state, either in steady or unsteady state for either axial or forward flight. 

Examples thereof include various dynamic inflow models.  

 

  In the following Sections in this Chapter, the characteristic features and historical 

development of the dynamic inflow model will be outlined. The discussion of this thesis 

shall mainly be focused on theoretical and mathematical aspects, but some numerical 

verification of the salient points are to be presented.  

 

 

1.2 Organisation of this Thesis  
  An extensive literature review is given in Chapter 1 in relation to dynamic inflow 

models such as the Pitt & Peters and Peters & He models. In an attempt to outline the 

characteristic features of dynamic inflow modelling, the practical applications and 
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historical development are shown in comparison with other methods, such as lift 

deficiency functions and CFD methods. Furthermore, a brief history of gyroplanes and a 

description of the current problems in the field of gyroplane research are introduced so 

as to make clear the significance of this research.  

 

  In Chapter 2, the mathematical derivation of Peters and He model is carefully 

examined aiming to theoretically identify the necessary modifications to the model for 

its application to autorotative rotors. In this examination, the author seeks to improve 

the lucidity of the derivation of these models by examining the assumptions they are 

based on, presenting proofs to related theorems, as well as offering new approaches to 

interpreting these methods. A few potentially misleading typographical error in the 

original literature are also detailed. Although the author enunciates his own point of 

view in places, it must be herein emphasised that the results and derivations presented in 

this Chapter fundamentally rely on the work contained in Dr. C.-J. He’s doctoral 

thesis(7).   

 

  In Chapter 3, the applicability of the existing dynamic inflow model for autorotative 

rotors is considered, and the necessary modification to the model for such applications 

are presented in terms of the geometric difference between rotors in the normal working 

and windmill-brake states with regard to the relation between the rotor angle of attack 

and the incoming flow. This difference always exists between rotors in those two states. 

Some computational simulations are also conducted to study the affect of the 

modification made in the mass-flow parameter.  

 

  In Chapter 4, the small wake skew angle assumption, which is a vital requirement in 

the derivation of Peters and He model, is examined. The analysis of Chapter 4 is based 

on that of Chapter 2, but the results are not limited to autorotative rotors. An alternative 

model, in which the small wake skew angle assumption is not used, is also presented. 

The reason why the Peters and He model practically works so well in spite of the 

questionable assumption is discussed on a theoretical ground.  

 

  In Chapter 5, an overview and discussion of the results presented in this thesis are 

provided together with recommendations for future research directions.  
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1.3 Focus of this Thesis 
  The primary focus of this research is the improvement of the performance of existing 

gyroplanes and the clarification of the dynamic behaviour of these aircraft. Following 

the advent of the helicopter1, the gyroplane gradually gave way to the helicopter, and 

only a small number of studies were undertaken either on an academic, military or 

governmental basis after the Second World War2. In the mean time, the gyroplane has 

been developed generally by amateur home-builders and some small companies for 

sports or leisure flying, and consequently, a good number of pilots were killed in 

accidents without amply clarifying the possible causes of such accidents. Some fatal 

accidents could have been attributed to human error or technical malfunctions owing to 

inexpert weekend DIY manufacturing, but other accidents might have been caused by 

more fundamental design faults, or the control system. As the dead cannot speak in their 

own defence, it may be attributed to the authorities that closer investigations into the 

possible causes have not been pursued.  

 

  In the United Kingdom, CAA decided to ground all gyroplanes produced by Air 

Command International Inc. in 1991 after a series of six fatal accidents resulting in 

seven fatalities from 1989 to 1991, and this became the trigger for a series of research 

studies on gyroplanes at the University of Glasgow(8,9,10). (Some accident reports in the 

U.K. are available from Ref. (11).) Compared to the U.K. and the U.S.A., where the 

gyroplane is relatively popular, the public recognition of the danger of gyroplanes is 

much smaller in other countries, and legislative systems such as airworthiness 

certificates and relevant air traffic laws can also be less developed.  

 

  For example, in Japan, where no official licensing system is set up for the gyroplane, 

there were 23 accidents between 1974 and 2006, including 8 accidents involving Air 

Command Gyroplanes, with 18 pilots killed. Given that there are only 120 or so 

officially registered gyroplanes in Japan, this accident rate is clearly significant. The 

Secretariat of ARAIC concluded that 19 accidents thereof could simply be attributed to 

human error and 1 to improper maintenance(12). Considering the fact that all Air 

                                                   
1 It is controversial to whom the title of the first inventor of the helicopter should be credited. Two Frenchmen, Louis 
Breguet (1880-1955) and Paul Cornu (1881-1944), independently insisted that they flew in 1907, but it is rather 
doubtful that their machines had enough power to take off. A Dane, Jens Ellehammer (1871-1946), flew in 1913, with 
the Crown Prince of Denmark witnessing the flight. It is more popularly accepted that the first flight is credited either 
to Focke Fw.61 in 1936(13,14) or to Breguet-Dorand’s Gyroplane Laboratoire in 1935. In any case, the helicopter was 
not practical maturity until Sikorsky’s Type R-4 was put into production in 1942(15).  
2 Quite a few research studies were made before the Second World War including Refs. (2-4,16-22). However, the 
number of such works published after the war is considerably few. References (23) and (24) are two such rare 
examples of studies undertaken after the Second World War before 1991.  
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Command Gyroplanes have been grounded in the U.K. due to the possible inherent 

instability, one may consider that there is a possibility that some of the accidents in 

Japan could be attributed to the inherent flight characteristics of the vehicles rather than 

human error.  

 

  There is thus a requirement to improve the basic understanding of the gyroplane 

aeromechanics, with both theoretical and experimental approaches necessary for this 

aim. In order to study flight mechanics of the gyroplane, a mathematical model of the 

induced velocity for autorotative rotors is an absolute necessity, and the dynamic inflow 

model should be better suited to this modelling task than other approaches to describing 

the inflow distribution, including various CFD methods. This forms the principal 

motivation for the present research.  

 

  As well as addressing safety issues as described above, there is also a belief that 

gyroplanes can still compete with other classes of V/STOL aircraft, including 

helicopters and tilt rotors, as a short-range transport of the future, and several projects to 

explore this possibility are presently under way. Thus, it is believed that a wide range of 

basic research, either theoretical or experimental, is necessary at this stage to realise 

those projects in time to come. Based on the view above, the possible contribution to the 

further development in gyroplanes also partly motivated this research.  

 

  Furthermore, autorotation is also of great importance for helicopters as the way of 

emergency landing, though it is an abnormal condition. Nevertheless, scant attention is 

paid to either the theoretical or experimental investigation, and this situation needs a 

suitable mathematical model which can be used in control analysis. Hence, further 

research on the flight state of autorotation should be meaningful not only for gyroplanes 

but also for helicopters in autorotation.  

 

  This background forms the motivation for this work, and it is hoped that this research 

will contribute to the study of control system and flight dynamics for the gyroplane and 

the autorotative state of the helicopter.  

 

 

1.4 General Introduction to the Dynamic Inflow Model  
  In the following Subsections, the base principles of the dynamic inflow model and an 

outline of the schematic application thereof are briefly reviewed prior to Chapter 2, in 
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which the model will be derived and examined in depth from a rigorous mathematical 

perspective. The understanding of base principles beforehand is believed to make it 

easier to understand later Chapters. Also, it is aimed that the characteristic features of 

the dynamic inflow model are generally elucidated in comparison with other methods 

for describing the induced flow distribution over a rotor disc.  

 

1.4.1 Base Principles 

  The dynamic inflow model is essentially an application of Newton’s laws of motion. 

During the flight, the rotor is supported by the air, with this force called lift. By 

Newton’s third law of motion, the rotor in turn exerts a force of the same magnitude as 

this lift in the right opposite direction (see Fig. 1-1). This force accelerates the air below 

the rotor according to Newton’s second law of motion; the force equals the mass of the 

accelerated air multiplied by the acceleration,  

 

  ma = F .             (1.1) 

 

 

Fig. 1-1 [The first principle of the dynamic inflow model.] 

 

  There are two points which need attention here. Firstly, the equation of motion of 

inviscid incompressible flow is called Euler’s Equations (or Eulerian Equations of 

motion), and it takes a slightly different form than Eq. (1.1), though essentially the same. 

The derivation of Eq. (1.2) from Eq. (1.1) should be found in most of textbooks on fluid 

mechanics such as Refs. (25) or (26).  

 

  �
∂t

∂u
+ �(u � ∇)u = �∇P ,         (1.2)  
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where u , t , �  and P  denote fluid velocity, time, fluid density and pressure, 

respectively. 

 

  Secondly, the total mass of the air flow accelerated is not as straightforward as in the 

motion of point masses, and thus the determination of the apparent mass of the flow 

forms a problem that must also be considered. Still, the reader should be encouraged to 

remember that the dynamic inflow model is in essence simply an application of 

Newton’s laws of motion. Note that when applying Eq. (1.1) or (1.2), the rotor may be 

regarded as a thin flat continuous surface, which accelerates the air underneath the rotor 

to generate discontinuities in the pressure and velocity between upper and lower sides 

thereof. This assumption is called actuator disc theory.  

  The dynamic inflow model is typically represented in the form of a matrix equation.   

 

 [M] u
 + [L]�1u = F ,            (1.3) 

 

where u and F are state vectors of the induced flow and the lift (rotor thrust and 

moments)3, a dot (.) denotes differentiation with respect to time, ∂/∂t�. At this stage, it 

may be noted that Eq. (1.3) is, very roughly speaking, in the same form as of Eq. (1.2), 

which is itself a rewriting of Eq. (1.1) for an ideal fluid. (Note that since the differential 

operators of ∂/∂t� is linear, it can be expressed as a matrix in Hilbert space. However, 

the differential operator of (u � ∇) in Eq. (1.2) is not linear, and hence it should be 

invariably linearised to result in a linear form.) Given Newton’s laws of motion, the 

derivation of the dynamic inflow model in the form of Eq. (1.3) from Eq. (1.2) is thus 

straightforward. Note that the [M]  and [L]  matrices in Eq. (1.3) are conventionally 

called apparent mass matrix and gain matrix, and their product, [A] = [L][M] , is called 

time constant matrix. These epithets will be occasionally used also in this thesis.  

 

1.4.2 The Characteristics of the Dynamic Inflow Model 

  In this Section, a general appraisal of the dynamic inflow model is described, aiming 

to sketch out its features (i.e., strength, weakness, usefulness, limitation, etc.) in a 

practical context compared to other models. The characteristic features of the dynamic 

inflow model can be outlined as follows:  

 

i. the dynamic inflow model is a mathematical model describing the unsteady dynamic 

                                                   
3 It is difficult to identify who first introduced the matrix form because the dynamic inflow model was developed by 
many researchers in a parallel manner in the early stages. Reference (27) is one of the earliest works in which the 
matrix form is used, and Ref. (1) is believed to be most instrumental in establishing the matrix form.  
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distribution of the induced velocity at/near a rotor in terms of aerodynamic loads 

acting on the rotor;   

ii.  it may be associated with practical modifications or empirical corrections, and can be 

extended so as to incorporate additional effects such as aeroelasticity, compressibility, 

ground effect, blade root-cut, tip-loss, wake distortion and so on;   

iii.  it can be represented by relatively simple equations, especially when described by 

finite state variables, and is thus computationally light;  

iv. it can be represented in a closed form, and thus can be applied for eigenvalue analysis 

and Floquet analysis. Especially when described by finite state variables, it is of 

particular use in analysing rotor control, stability, handling qualities and so on. 

 

  The versatility and flexibility described by point (ii) above are considered to be 

among the major advantages of a dynamic inflow model. Also, no restriction or 

assumption is required for the representation of lift in order to associate the lift with the 

induced flow in the frame of dynamic inflow models. The model can be thus flexibly 

coupled with any lift theory.  

 

  Regarding point (iii) above, although expressions of apparent mass and gain matrices 

in Eq. (1.3) by finite dimensional matrices are mathematically an approximation, the 

dynamic inflow model often needs to be formulated by a small number of state 

variables, and this mathematical simplicity makes it possible to compute the induced 

flow distribution within a limited time. Note that the number of state variables (i.e. 

Fourier coefficients) can be increased as much as required though, it only means 

improving the accuracy of the representation of lift or induced flow based on actuator 

disc theory. Since actuator disc theory itself is an extreme simplification of the rotor, 

this is arguably a limitation of the dynamic inflow model. More comprehensive CFD 

methods based on vortex methods are thus usually more suitable for studying detailed 

blade geometry and the relevant aerodynamic effects. Still, it is known that the dynamic 

inflow model imparts reasonable, at least practically sufficient, distributions of the 

induced velocities for most flight conditions of helicopters. For example, in a major 

seminal review, Chen shows comparisons between various dynamic inflow models 

expressed by 3 � 3  matrices, experimental data and computational methods, and 

concludes that “all the first-harmonic inflow models predict the induced velocity as well 

(as poorly) as the free-wake methods...” (28). Considering the acceptable accuracy in the 

representation of the induced flow field, the extremely simple form of the dynamic 

inflow model can be considered as a superior strength, especially when iteratively 
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conducting real-time simulations4.  

 

  The following schematic diagram illustrates how to couple the dynamic inflow model 

with other theories. Similar diagrams are frequently sketched by Peters and his 

coworkers(1,29).  

 

Fig. 1-2 [Schematic diagram for the typical use of the dynamic inflow model.] 

 

  Since the dynamic inflow model describes the induced velocity as a function of the 

lift, the diagram shows the typical combination of the dynamic inflow model with the 

lift theory, which describes the rotor lift, and the blade dynamics, which explains local 

angle of attack of the rotor. Still, this loop can be easily changed or extended by adding 

extra components such as body dynamics5.  

  

  The closed loop described in Fig. 1-2 is the key to eigenvalue analysis that arises in 

considering stability(30-33) with respect to point (iv) above. Note that open loop models 

including free-wake and prescribed-wake methods, which are effective at 

time-marching problems, are usually not well-matched with such stability analyses.  

 

  In general, the lift theory and the rotor dynamics are much more advanced than the 

inflow model, and they can be tailor-made for individual blades incorporating root-cut, 

tip-loss, detailed blade shape and even aeroelastic deformation. Since a blade is quite 

flexible and hence experiences various airspeeds per revolution, such an advanced 

theory should be highly useful for structural analysis. However, from the control point 

                                                   
4 The amazingly rapid development in computational methods made thereafter must, of course, also be taken into 
account today. 
5 A dynamic inflow model in the form of Eq. (1.3) is often synonymously called finite-state model, though this can 
not be a precise usage in the sense that any feasible method in reality should be expressed in terms of a finite number 
of variables. The connotation may imply that in comparison with dynamic inflow models, CFD methods need 
millions of states, which correspond to the number of their mesh, nodes, or grid points, and that it is thus impractical 
to use these methods for eigenvalue analysis.  
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of view, it is more important that there should be a balance between each theory shown 

in Fig. 1-2, because it is often the case that the combination of crude models yields 

better stability analysis results than those found for a crude model coupled with a 

detailed model6(34-36). It is regrettable that these advanced blade dynamic models should 

be still often used in combination with simple momentum theory or quasi-steady inflow 

model. Examples of more advanced inflow models popularly used today include the Pitt 

and Peters model(1) and the Peters and He model(37), but their applicability to 

autorotative rotors has never been rigorously examined.  

 

  Based on the discussion above, this author believes that further sophistication and 

validation of the unsteady inflow model on a theoretical basis is of prime importance for 

the development of the analysis of autorotative rotors.  

 

 

1.5 Concise History of the Attempts to Describe the Induced Flow 
Distribution  
  In this Section, the historical development of the dynamic inflow model is outlined in 

parallel with the history of other theories such as lift deficiency function, equivalent 

Lock number and CFD methods. It is generally difficult to clearly put theories into 

different categories, because all theories have been developed with mutually affecting 

each other. Sometimes it is the case that one theory comes to be hierarchically implied 

by another even though their start points were quite different. In this discussion, it is 

intended to focus on the role that the dynamic inflow model played in the development 

of models in this area.  

 

1.5.1 From Classical Theory to the Pitt and Peters Model  

  In the simplest and oldest inflow model, it was assumed that the induced flow is 

steady and uniform over the rotor (see Fig. 1-3, top). The magnitude of the uniform 

induced velocity can be easily calculated from momentum theory, yet this simple model 

can yield a surprising level of information concerning the power required and the basic 

                                                   
6 The dynamic inflow model with higher harmonics, which means larger [M]  and [L]  matrices, does not always 
give better results than of the first harmonic inflow model with 3 � 3  order matrices(38). This might be also partly 
because of the unbalance of the accuracy between the description of the inflow distribution and the model itself, since 
the dynamic inflow model is based on linearised Euler’s Equations, which are already hugely simplified from the 
Navier-Stokes Equations. In order to clarify the dynamic and aerodynamic couplings of the rotor in the higher 
frequency region, it is awaited to improve the dynamic inflow model with higher harmonics, which may require some 
empirical corrections. Reference (39) discusses why the second harmonic inflow model with 5 � 5  order matrices 
performs worse than the first harmonic model in Ref. (40), suggesting that the time-constant was underestimated. In 
any case, a dynamic inflow model with higher harmonics has not yet been successfully proposed.  
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flight performance in hover(5). In the forward flight, however, the blades have different 

relative airspeeds at different positions on the rotor, and the uniform distribution cannot 

be realistically applied. Glauert proposed a linear distribution in which a longitudinal 

gradient is considered(5,41).  

 

 

Fig. 1-3 [Comparison between the uniform distribution and Glauert’s model.] 

 

  Glauert’s model is effectively a first order linear approximation, and is too simple to 

provide an accurate representation for the complicated induced flow distribution found 

in practice, but yields reasonable results when applied with an appropriate gradient. The 

induced flow field in Glauert’s model is described as follows,  

  v = v0(1 +Kc
R

r
cos ψ),          (1.4) 

where Kc represents the longitudinal gradient of the distribution, and v , v0 , r, R and 

ψ  denote the (axial) induced velocity, the uniform induced velocity, radial position on 

the rotor disc, the rotor radius and the rotor azimuth, respectively. (See Fig. 1-3, 

bottom.) Many values were theoretically or experimentally proposed for Kc, and the 

examples are found in Refs. (16) and (42). Coleman and Feingold(43) suggested 

Kc = tan(1/2), and this was the first time that Kc had been represented as a function of 

wake skew angle, 1. This was a marked improvement, because the distribution of the 

induced velocity heavily depends on the wake skew angle. Stepniewski introduces in 

Ref. (44) a broader variety of presupposed static distributions of the induced velocity.  

 

  Note that in momentum theory, the magnitude of induced velocity is evaluated 

regardless of the number of blades, airfoil section, chord length, blade twist, planform, 

rotor speed and so on. In order to include these detailed aspects of rotor, there was a 

school of attempts starting from blade element theory to describe the induced velocity, 
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examples of which can be found in Refs. (44) and (45).  

 

  Harris and McVeigh assumed that the local angle of attack of a blade should be zero 

at the root and tip so that the lift should be zero, which means that induced velocity 

forms a zero relative angle of attack at these points even in forward flight(45). These 

works based on blade element theory helped to promote the improvement in the theory 

of non-uniform induced flow distribution. Harris further studied full-articulated rotors at 

low advance ratios, which exhibit an excessive amount of lateral flapping, correlating 

wind tunnel test data with several classical inflow theories and numerical simulations 

based on the prescribed wake method(46). Harris concluded that none of those theories 

were satisfactory in predicting the lateral flapping at low advance ratios. This result 

indicated that an essential improvement in the theoretical models was still necessary.  

 

  The first attempt to rigorously describe the distribution in a theoretical manner in the 

frame of actuator disc theory can be traced back to Kinner(47), who introduced the 

ellipsoidal coordinate system to describe the induced flow, and represented the 

distribution of lift in the form of a functional series of the associated Legendre functions. 

Note that these works introduced above are related not to the unsteady inflow 

distribution, but to the steady distribution of the induced flow.  

 

  After the Second World War, the heyday of gyroplanes had passed, and the helicopter 

came to be a practical class of aerocraft. Some important works concerning the unsteady 

induced velocity were done in the 1950’s in the context of helicopter flight mechanics. 

NACA engineers found through rotor whirl-tower tests in the 1950’s that when 

increasing the collective pitch rapidly, there arises an overshoot of thrust(15). The reason 

for this is that the delay of the induced flow in reaction to the change in the collective 

pitch leaves the local angle of attack high until the angle is decreased by the newly 

developed induced velocity7 . This finding attracted the attention of rotorcraft 

aerodynamicists at the time to unsteady phenomena of the induced flow.  

 

  Mangler and Squire conducted one of the most important studies considering the 

                                                   

7 One important aspect with this phenomenon is that the airfoil may generate lift at a higher angle of attack than its 
stall angle, because there is also a delay in the occurrence of stall. As a result, the overshoot of thrust sometimes can 
be as large as double the maximum lift in the steady state. This phenomenon is called dynamic stall. Examples of 
such radical overshoot of thrust include a rapid yaw control of helicopters, and this led to the possibility of serious 
damage in the tail rotor because the overshoot of tail rotor thrust surpasses the maximum steady state value, upon 
which the structure was designed. The induced velocity delayed in the response is now called dynamic inflow and this 
is the root of the name of the dynamic inflow model(15).  



Chapter 1                                                    Introduction  

 12 

modelling of an unsteady distribution of the induced flow undertaken in this period(48).  

They first associated Kinner’s distribution of lift, which satisfies Laplace’s equation and 

can describe the pressure discontinuity across the rotor, with the induced velocity field 

in the form of Euler’s Equations. In their model, the rotor is treated as a solid circular 

disc as in actuator disc theory, and a lift distribution is assumed so as to satisfy the 

desired hub load. Mangler and Squire’s model can be regarded as the theoretical 

archetype of the dynamic inflow model in the sense that the acceleration of the induced 

flow was therein implied. However, the method of coupling the rotor load with induced 

velocity was not as sophisticated as that of modern dynamic inflow models8. Joglker 

and Loewy extended Mangler and Squire’s theory to incorporate the wake geometry(49)9. 

 

  Carpenter and Friedvich(50) presented another important work that also took the 

dynamic inflow effect into consideration, motivated by the “jump take-off” of 

overloaded helicopters. Some gyroplanes in the 1930’s already practised jump take-off, 

which is a vertical take-off achieved by suddenly increasing the collective pitch of the 

rotor, which is sufficiently prerotated at the minimum collective pitch. Jump take-off is 

often explained as a sudden conversion of the excess kinetic energy stored in the rotor 

into the rotor work, but the overshoot of thrust due to the dynamic inflow effect is also 

important. Unfortunately, the dynamic inflow effect was not well understood by 

gyroplane engineers at that time. Carpenter and Friedvich’s approach was quite different 

from Mangler’s; they simply extended momentum theory by adding an extra term, 

apparent mass term, which accounts for the delay in the induced flow to respond to 

changes in collective pitch. Their model is now called unsteady momentum theory. The 

remaining problem therewith is how to evaluate the apparent mass, and they adopted the 

value of 8/32 ≃ 63.7  % of the air mass in a sphere with the same diameter as the rotor, 

following Ref. (51). Their unsteady momentum theory can be simultaneously coupled 

with other equations about blade dynamics, and the computed results agreed well with 

experimental data for hovering flight.  

 

  Whereas the phenomenon caused by the dynamic inflow have been increasingly 

attracting the interest of helicopter aerodynamicists since the 1950’s, most of the efforts 

in modelling the induced velocity distribution was still focused on the static distribution, 

in part because more basic information about the inflow distribution was first required 
                                                   
8 Reference (57) shows that Mangler and Squire’s model does not agree well with experimental data. See also Ref. 
(28) about the accuracy of the model.  
9 Although the whole picture of their model is highly complicated, one particularly instructive feature of Ref. (49) is 
that it presents a lucid and detailed rearrangement of the equations for aerodynamic coefficients expressed in 
ellipsoidal coordinates, which are seldom provided in other literature.  
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at that time(52-54).   

 

  In the meantime, Sissingh developed a new model in which the roll and pitch 

coupling of a rotor and their damping effect were linked with the variation of the 

dynamic inflow(55). This cross-coupled damping effect was first reported in Ref. (56), 

but was not well explained by the existing theories in which a uniform distribution of 

the induced velocity was assumed. Sissingh assumed non-uniform distribution of the 

induced velocity, and associated the variation with the first harmonic variation of the lift 

coefficient. The idea of explaining the cross-coupled damping effect by non-uniform 

inflow variation was novel, and led to the contemporary dynamic inflow model, Eq. 

(1.3). Sissingh’s results agreed with the experimental data of Amer so well that his 

approach was adopted in Lockheed REXOR Program and McDonnell-Douglas’ 

(formerly Hughes) simulation program FLYRT(29). However, Sissingh assumed that the 

reaction of the inflow should occur instantaneously, and did not take the dynamic delay 

into account. His model is therefore called quasi-steady model. Moreover, Sissingh 

formulated the inflow distribution as a Fourier series dependent only on the azimuth, 

but did not consider the radial variation.  

 

  Wheatley mentioned the close relation between the induced flow and the rotor load, 

and the possible problems with noise and vibration(16) as early as in the 1930’s, but it 

was not until the 1960’s that this relationship attracted more general attention, partly 

because of the advent of hingeless rotor, which was first adopted in the 

Messerschmidt-Bölkow BO105 in the late 1960’s by virtue of the development in 

composite materials. The hingeless rotor is more sensitive to the variation of rotor load 

than full-articulated rotors, and hence the inclusion of inflow distribution into the model 

of the control system came to be considered as a vital necessity.  

 

  Curtiss and Shupe associated non-uniform rotor load with perturbations in pitching 

and rolling moments for hingeless rotors in axial flight in the frame of a quasi-steady 

model in 1971(58). Instead of fully incorporating dynamic inflow effects, they modified 

the Lock number to account for the dynamic change in lift. Note that the reduced Lock 

number10, which is usually called the equivalent Lock number, can be identified with 

Loewy’s or Miller’s lift deficient function. Bannerjee et al. compared both the 

equivalent Lock number method and the dynamic inflow model with experimental data, 

                                                   
10 The Lock number is defined as E = �acR4/I . Reducing the Lock number is thus intuitively equivalent to 
assuming a heavier blade.  
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and concluded that the dynamic inflow model works better at low advance ratios up to 

0.4(59).  

 

  The techniques of taking experimental measurements of the induced velocity 

distributions have been developed since the 1960’s onwards, and examples include Refs. 

(60) and (61). Gaonkar and Peters later described the situation, “... the theory of 

dynamic inflow has been driven constantly by the impetus of experimental data.” in Ref. 

(62). In point of fact, those experiments showed that unsteady momentum theory does 

not agree sufficiently well with experimental data, and this became the trigger to further 

develop the dynamic inflow model to cover forward flight conditions. Wood and 

Hermes tried to combine momentum theory and blade element theory to describe the 

induced flow in forward flight(63), and Azuma and Kawachi proposed the local 

momentum theory, in which instantaneous momentum balance at a local blade element 

is considered, and the blades are approximated as multiple wings, each of which has an 

elliptical circulation distribution(64). The local momentum theory was so designed that 

the time-wise decay of the induced flow can be described by an attenuation coefficient 

even in unsteady forward flight. 

 

  In 1972, Ormiston developed the idea that the Fourier coefficients of the distributions 

of induced velocity and lift should be associated in the form of a matrix equation. Since 

he described the lift by circulation based on the Kutta-Joukowski theorem and blade 

flapping dynamics was also incorporated, the model resulted in an elaborate 

formulation(27). The representation of induced velocity was not therein completed 

because only the time-averaged velocity distribution was considered in the model, and 

thus, as Ormiston himself stated in the paper, the major significance of the work should 

be in the mathematical rigour in the derivation.  

 

  Ormiston also developed a quasi-steady model with Peters to show that inclusion of 

the non-uniform distribution of the induced velocity of a hingeless rotor improved the 

agreement between the theory and experimental data(65). Although their model was still 

partly based on complicated circulation theory, it was more accessible than the previous 

model in Ref. (27), and the correlation with experimental data was significantly 

improved. However, some elements of the gain matrices for this model were constant 

regardless of the wake skew angle or any other flight variables, and some non-diagonal 

terms are assumed to be zero, that is to say, cross-coupling effects are not sufficiently 

taken into consideration.  
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  Peters further developed the model to the form of Eq. (1.3) including the apparent 

mass matrix(66), and demonstrated that the unsteady non-uniform induced velocity and 

the blade aeroelasticity have a significant effect on the response characteristics of the 

rotor system. However, the model is only appropriate for hovering flight, and thus the 

non-diagonal elements of the gain matrix were not therein considered. Moreover, the 

elements of matrices were not mathematically rigorously determined.  

 

  In 1976, Ormiston proposed an advanced mathematical model in which flapping 

angle, inflow components and pitch angle are expanded as a Fourier series, and the 

flapping angle and inflow components are unified in the form of a matrix equation, 

which is suitable for eigenvalue analysis(67). Although only the first harmonics (i.e. 

longitudinal and lateral components) are therein considered, off-diagonal elements of 

matrices are also provided, and thus some cross-coupling behaviour of the rotor is also 

taken into account. The formulation is an important milestone towards the contemporary 

dynamic inflow models.  

 

  Various attempts at establishing the dynamic inflow model were made by many 

researchers at this time in rather a parallel manner, and the examples include Refs. (68), 

(69) and (70). White and Black’s model(69) is quasi-steady, and Johnson’s model(70) is 

similar to Carpenter and Friedvich’s unsteady momentum theory. Although all of these 

references concluded that their models showed a considerable progress in correlation 

with experimental data such as Ref. (62), none of them could satisfactorily fully explain 

dynamic inflow effects. Crew, Hohenemser and Ormiston tried to formulate the 

reduction in control hub moment due to dynamic inflow effect in hover by either using 

the equivalent Lock number method or replacing the inflow term in the blade equations 

with an equivalent inflow term. Reference (71) has a brief summary of some of those 

various dynamic inflow models presented in this period. (Note that it is pointed out in 

Ref. (29) that the summary of Ref. (71) contains a misconception that the lateral and 

longitudinal components of the induced flow, ?1s  and ?1c , are missed in the 

time-derivative part, i.e. the vector multiplied by the apparent mass matrix, resulting in 

an erroneous expression for the uniform component of induced velocity.) 

 

  Another important study of this period was conducted by Peters and Gaonkar(72). 

These authors extended the equivalent Lock number approach(59), which was used in the 

frame of quasi-steady model for studying flapping stability, to the advanced dynamic 

inflow model for studying flap-lag stability. They conducted extensive calculations for 
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the following model types: no induced flow perturbations, quasi-steady momentum 

theory, unsteady momentum theory, an empirical model and the equivalent Lock 

number model. They concluded that the dynamic inflow effect significantly increases 

the flap-damping, and reduces the lag-damping. Some experimental attempts were also 

made to identify the elements of the gain matrix(73). Gaonkar et al. studied the dynamic 

inflow effects on the flap-lag stability with a quasi-steady model using the equivalent 

Lock number(74).  

 

  The study of Van Holten, Ref. (75), is an important example of three-dimensional 

unsteady rotor modelling based on acceleration potential theory. This study cast a doubt 

on whether the classical lifting line model is valid for unsteady rotor dynamics, and 

represented the (incompressible) induced flow field in the form of asymptotic 

expansions. The theoretical basis and the limitation of Van Holten’s model are examined 

in Ref. (76). Although Van Holten’s model is mathematically rigorously derived, the 

model is represented in the form of integral equations, and is not well suited for flight 

dynamics applications.  

 

  The most important achievement in the history of dynamic inflow model was 

arguably made by Pitt and Peters(1), who extended the model of Ref. (65) for hovering 

to fully include forward flight. The characteristic features of this model are its versatility, 

possibly wide applications, the convenience it offers in being able to be used for 

stability and control analysis, and the quite mathematical presentation of its derivation. 

The equivalent Lock number approach is therein completely abandoned, and the gain 

matrix is described as a function of the wake skew angle. In Ref. (28), Chen presents 

intensive comparisons between the Pitt and Peters model and other dynamic inflow 

models including those models proposed in Refs. (43), (69) and (77). Chen concluded 

that the Pitt and Peters model shows an overall better agreement with experimental data 

than other models. Reference (78) introduces the derivation of the Pitt and Peters model 

in detail, together with an extensive literature review and comparison with other 

numerical models.  

 

1.5.2 Lift Deficiency Function  

  Whether steady or unsteady, the idea of associating the induced velocity with rotor 

loads can be considered essentially based on simple Newtonian mechanics. On the other 

hand, there is a different approach, in which the distribution of induced flow is 

calculated from the distribution of vortices through the Biot-Savart law. The lift 
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distribution is also associated with the vortex distribution by means of the 

Kutta-Joukowski theorem. This approach generally becomes much more 

computationally intensive than the dynamic inflow model, but is more suitable for 

studying the detailed shape and behaviour of the rotor wake and for incorporating 

detailed blade geometry11. Moreover, the vortex method is suitable for studying 

unsteady aerodynamics by considering the interaction between unsteady vortices.  

 

  The study of unsteady rotor aerodynamics using the vortex method may be traced 

back to Glauert(79). Theodorsen developed the study and introduced Theodorsen’s lift 

deficiency function, C(k), to account for the loss in circular lift due to the dynamic 

development of the wake of an oscillating blade(80). Reference (5) presents the detailed 

mathematical derivation of the lift deficient function. Theodorsen’s work was really a 

milestone in theoretical unsteady aerodynamics, yet the distribution of the induced flow 

is in reality much more complicated than what Theodorsen presumed, and thus the 

approach needed further sophistication. References about the development of lift 

deficiency functions include Refs. (81), (82) and (83). Greenberg coupled Theodorsen’ 

lift deficiency function with the quasi-steady model. Willmer regarded the trailing wake 

from the outer part of a blade straight by neglecting its curvature, and succeeded in 

representing the azimuthal variation of lift, which showed a reasonable agreement with 

experimental data.  

 

  Miller introduced the concepts of the near wake and far wake, and concluded that the 

higher harmonic rotor loads are evident during forward flight and are subject to the far 

wake, and also that the higher harmonic loads are sensitive to the vertical spacing of the 

wake sheet layers(85). Loewy improved Theodorsen’s lift deficiency function by 

incorporating the spacing function to account for the influence of the shed vorticity, and 

this modification made the lift deficiency function much more useful in rotorcraft 

analysis. Loewy’s work reconfirmed not only the importance of three-dimensional 

modelling of the rotor wake for rotorcraft analysis, but also the necessity of taking the 

dynamic inflow effect into consideration when studying critical flutter speed and so 

on(86). Loewy’s function is a great improvement from Theodorsen’s though, only 

                                                   
11 As is discussed in Section 1.3, the dynamic inflow model is based on simple actuator disc theory. Although the 
dynamic inflow model is highly flexible to combine with any other advanced blade dynamics theories(7,36), the start 
point (i.e. actuator disc theory) can be an inherent limitation of the approach. On the contrary, the vortex method is 
able to incorporate elaborate blade geometry and dynamics from the beginning, and can impart more intricate 
distribution. However, its minuteness sometimes leads to a lack of versatility, and the computational intensity may 
also be a problem. It should be noted here that these two theories are not incompatible, and can indeed be used in 
conjunction to overcome either of the single method’s shortcomings. One example of such an attempt is found in Ref. 
(84).  
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two-dimensional vortex sheets are therein assumed, and hence the limitation of this 

assumption leads to the following shortcomings, which are pointed out by Peters and 

He(7): (i) skewed helical vortex geometry, which is expected in forward flight, cannot be 

incorporated; (ii) the model has a singularity for the collective mode at the zero 

frequency, and the model is thus not suitable for low frequency problems; (iii) the 

theory is based on the frequency domain, and the applications coupled with other 

theories such as eigenvalue analysis flight dynamics are limited; and (iv) the model is 

not suitable to utilize for control systems.  

 

  Some attempts to improve Loewy’s lift deficiency function include Refs. (87), (88) 

and (89). Jones and Rao(87) developed Loewy’s lift deficiency function so as to 

incorporate the compressibility of air using the acceleration potential. Taking the 

compressibility of air into account was quite novel since most of precedent models 

presupposed only incompressible flow at that time. However, Jones and Rao did not 

consider time delay in the response of the air, and thus their model was also a 

quasi-steady model. This approach has the problem that compressible air needs some 

time to transmit a signal, and thus such a quasi-steady modelling should be valid only 

for incompressible flow.  

 

  Hammond and Pierce(88) improved Jones and Rao’s model by incorporating the 

time-delay in the response of induced velocity. Friedmann and Venkatesen(89) modified 

Loewy’s lift deficiency function in conjugation of quasi-steady inflow model of 

Greenberg(82), perturbation inflow model(71) or dynamic inflow models of Johnson(70), 

and studied the stability of the fuselage/rotor coupling dynamics in ground resonance. It 

is interesting that the final forms of these models, which are based on lift deficiency 

function, came quite close to the dynamic inflow model, which was introduced in the 

previous section, despite these models were developed from quite different start points.  

 

  The concept of lift deficiency function was originally simply a correction function 

based on two-dimensional wake theory and was defined in frequency domain, but 

Friedmann and Venkatesen converted the representation into time domain using 

classical control theory, in which Loewy’s lift deficiency function is recognized as a 

transfer function relating the 3/4-chord induced velocity to the lift of the reference blade. 

This mathematical sophistication associates Loewy’s lift deficiency function with the 

two-dimensional dynamic inflow model in the finite state form, and the contribution 

thereof to two-dimensional unsteady aerodynamics is both theoretically and practically 
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of great importance(90,91). Friedmann and Venkatesen finally proposed a dynamic inflow 

model of the same form as Eq. (1.3)(90), which was developed from Loewy’s lift 

deficiency function. Reference (92) gives a lucid explanation how classical lift 

deficiency functions can be hierarchically implied by more advanced dynamic inflow 

models.  

 

1.5.3 Computational Method  

  Since there are a number of technical references published regarding various 

computational methods, which are most rapidly developing tools in this field, it should 

be out of scope of this thesis to introduce all their details. Instead, only characteristic 

features of computational methods shall be herein introduced in comparison with 

dynamic inflow models.   

 

  In Theodorsen’s lift deficiency function theory, considerable simplifications and 

assumptions such as a two-dimensional wake sheet and constant vertical spacing 

between wake sheets are introduced. This was inevitable at that time in part because 

computers of the time were not able to track the complicated behaviour of vortices, 

which affect each other by their own induced velocity fields. Nowadays, owing to the 

rapid development in the computational technology, much more computationally 

intensive calculations can be conducted with smaller number of assumptions or 

simplifications at a much lower cost. These computational methods based on the vortex 

theory and the Biot-Savart law can be classified roughly into three types: (i) rigid wake 

model, (ii) prescribed wake model and (iii) free wake model. A rigid wake is assumed in 

the rigid wake model, and this is the strongest assumption, which in turn corresponds to 

the lightest computational load. In a prescribed wake model, the distribution of vortices 

is either empirically or semi-empirically prescribed at the initial state, and then the 

development of the wake distribution is computed through the Biot-Savart law. The free 

wake model is the most computationally intensive, and allows the wake distribution 

develop freely. Owing to the rapid development in computational resources, the free 

wake method is increasingly used and became the mainstream of contemporary CFD 

methods. The basic ideas of these methods are lucidly explained in Ref. (5), and the 

reader may refer to Refs. (77), (85), (93), (94) and (95) for further details concerning the 

historical development of these computational methods.  

 

  One characteristic feature of these computational methods, especially with free wake 

method, is that simulations of the development of the rotor wake can be conducted 
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based only on the first principles such as the Navier-Stokes equations, Biot-Savart law 

and vorticity transport equation(5) 12. Recent rapid development in computational 

resources has made it possible to mesh the pertinent flow field and solid boundary 

(blades, hub, etc.) into millions of cells, and to simulate the resultant distortion in the 

three-dimensional wake distribution and the induced flow field in the time domain. The 

advantages of free wake analysis include the detailed description of the complicated 

flow field, the local treatment of airfoil dynamics, a thorough inclusion of complex 

interaction of vortices and specific boundary conditions, and the relatively low cost of 

conducting computations compared to full-scale experiments. Since the inflow is only 

globally treated in the dynamic inflow model, the detailed description from vortex 

methods is clearly better suited to examining locally complicated aerodynamic 

phenomena. Regarding the degree of reality of the wake description, it can be said that 

momentum theory is too simple, CFD methods are most convoluted, and the dynamic 

inflow method lies between these other two. Thus, momentum theory is most suitable 

for evaluating basic performance of rotor, CFD methods are for complicated local 

aerodynamic phenomena, while the dynamic inflow model is for analysing general 

stability (frequency, damping, modal information, etc.), control characteristics, vibration, 

handling qualities and transitional rotor dynamics13.  

 

  A disadvantage of the CFD approach is that those vortex methods are not suitable for 

eigenvalue stability analysis because of the large number of states required to describe 

the unsteady wake. Another shortcoming in CFD simulations is that only the most stable 

state is presented in the simulation even when there are a plural of bifurcated non-linear 

solutions to the governing non-linear equations. Since the Navier-Stokes equations and 

the Euler equations are non-linear, they may give either non-linear solutions, which 

bifurcate from linear or other non-linear solutions, or isolated non-linear solutions, 

which do not bifurcate from any other solutions. These hidden secondary or tertiary 

solutions are usually neglected in numerical simulations because the most feasible 

solution is trailed step by step from the primary linear solution in a time-marching 

simulation, but, in fact, non-linear jump can happen in reality, i.e., it is possible that the 

physical state can change to an isolated state(97). Furthermore, eigenvalue stability 

                                                   
12 Roughly speaking, a vortex is generated around a solid boundary, transported according to the induced flow, which 
other vortices induced, and vanish due to the viscosity of the fluid.  
13 Padfield suggested three levels of methods of rotorcraft simulation models in Ref. (96): in Level 1, the induced 
flow is described as a superposition of a finite number of simple flow states on the disc as a first-order model; in 
Level 2, the disc is replaced by individual blades; in Level 3, the entire rotor wake geometry is taken into 
consideration. According these three levels, it can be said that the momentum theory and advanced CFD methods 
correspond to the level 1 and 3, respectively, and the dynamic inflow model is supposed to cover more or less the 
level 2.  
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analysis is necessary in order to find bifurcated non-linear solutions. The free wake 

method is thus not suitable for stability analysis of non-linear solutions. Whereas 

dynamic inflow models are linear in general, they offer a greater flexibility to be 

combined with non-linear theories, and the examples include the study of Bassett(98), in 

which the Peters and He model(37) is used14. Houston and Brown showed a unique 

attempt to compare the dynamic inflow model with a vortex transport wake model 

focused on flight mechanics in autorotation(99), and concluded that the dynamic inflow 

model works satisfactorily for much of the autorotation regime except for steep descents, 

in which a comprehensive description of the inflow is essential.  

 

1.5.4 From the Pitt and Peters Model to the State of the Art 

  The Pitt and Peters model is a significant milestone in the history of rotorcraft 

aerodynamics. It was the first truly practical dynamic inflow model which could be used 

for control system analysis, and well agreed with experimental data both for hovering 

and forward flight(28,100). Dynamic inflow effects are so important in control and 

stability analysis that a convenient and versatile dynamic inflow model such as the Pitt 

and Peters model had been long-awaited. Nagabhushanam and Gaonkar(101) studied air 

resonance stability in forward flight by both the three-state and five-state models of Pitt 

and Peters. The torsional flexibility of the blades is also therein considered, and the 

stabilities of various modes are extensively examined. They concluded: the three-state 

model is more consistent than the five-state model in general; dynamic inflow tends to 

increase stability margins in general, that the air resonance characteristics are 

independent of the number of blades; and appropriate combination of aeroelastic 

coupling parameters can significantly improve air resonance stability. Reference (62) 

(or Ref. (102), which is almost identical to Ref. (62)) shows how dynamic inflow 

models were developed due to the desire to correlate with experimental data15, and 

                                                   
14 The dynamic inflow model is more suitable for stability analysis of non-linear solutions(98,103), though non-linear 
analysis in this field still awaits further development. Poiseille flow in a circular pipe is maybe an example of 
non-linear jump. No non-linear solutions bifurcated from the linear solution are hitherto found analytically, and the 
linear solution is analytically proven to be absolutely stable. However, as the Reynolds number increases, the flow 
changes from laminar to turbulent flow. This is considered to be a non-linear jump from the linear solution to an 
isolated non-linear solution, though any isolated solutions have yet been analytically found. Generally speaking, a 
turbulent flow may in practice be described by an orbit in phase space between two or more unstable equilibrium 
solutions to the governing equations, where these unstable equilibrium solutions cannot be found by simulation 
approaches.  
15 These authors concluded that the Pitt and Peters model agrees with experimental data quite well in hover. However, 
their correlations in forward flight or transient flight cases are poor, conceivably because of the lack of experimental 
data for these flight cases. The accuracy of Pitt and Peters model, which is at least as accurate as momentum theory, is 
predictable in hover because the model hierarchically implies momentum theory. The novel aspect with the Pitt and 
Peters model is the continuous representation of the gain matrix from axial to edgewise flight cases, and some further 
comparisons with experimental results to the model’s performance for these cases is desirable. This author shall 
examine the Pitt and Peters model in Section 2.3.   
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presents a comparison between the results obtained from the Pitt and Peter model with 

experimental data including Ref. (61).  

 

  Dynamic inflow effects are of great importance in rotor stability analysis because 

dynamic inflow modes have nearly the same order of magnitude as those of flapping or 

lead-lag modes, and significantly affects the stability of various blade motions or 

aeromechanical phenomena such as ground resonance, air resonance, blade flapping, 

rotor-body coupling, pitch-roll coupling, flap-lag coupling and so on. Chen and Hindson 

extensively studied dynamic inflow effects on the stability in the vertical acceleration 

response of the helicopter in both the Carpenter and Friedvich model and the Pitt and 

Peters model with various thrust coefficients and blade Lock numbers. This study was 

conducted with the purpose of developing a super-augmented high-gain flight control 

system for military helicopters(104). These authors reconfirmed the importance of 

dynamic inflow effects in control and stability analysis, reporting that both models 

performed well in comparison with NASA flight test results from CH-47B.  

 

  Although the Pitt and Peters model is widely used even now, it has the following 

weaknesses: 

 

i. hub loads are therein used as the aerodynamic load on the rotor to associate with the 

induced velocity, that is to say, the model does not distinguish between different lift 

distributions that yield the same hub loads. However, a model that can distinguish 

specific lift distribution is required for blade structural analysis and aeroelastic 

analysis;  

ii.  the Pitt and Peters model is based on simple actuator disc theory, even though it is 

flexible enough to be coupled with more complicated blade element theory. This may 

reflect an inherent limitation of the model to account for the more complicated 

phenomena which are related to detailed blade geometry;  

iii.  the Pitt and Peters model is expressed in the perturbation form, but it is preferable for 

practical purposes that variable are described in terms of the overall variables;  

iv. variables in the Pitt and Peters model are defined in the rotor coordinates, but for 

flight dynamics it would be more convenient to define the model in wind-axis 

coordinates.  

 

  Pitt and Peters themselves re-examined their model critically inspecting the 

assumptions such as actuator disc theory and the linearity of the distribution in 
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comparison with other inflow models(105,106). In Ref. (40), Gaonkar and Peters defined 

the dynamic inflow effects as low frequency properties of the unsteady wake in contrast 

to conventional high frequency airfoil dynamics such as flutter, and showed a 

hierarchical relation between thirteen inflow models including quasi-steady, momentum 

theory, the equivalent Lock number approach and full unsteady models of 3DOF and 

5DOF. This thorough comparison is highly instructive, and the authors remarked that 

there was no satisfactory replacement for momentum theory before the Pitt and Peters 

model appeared. They concluded that quasi-steady modelling is sufficient at high 

advance ratios, but that the dynamic inflow model of 5DOF is inadequate for a rotor 

having fewer than 5 blades, and that 3DOF model is overall more accurate than the 

5DOF model. Results of this work indicate to what extent the dynamic inflow model 

needs to be sophisticated depending on the nature of individual problems. Regarding 

points (iii) and (iv) above, Peters and HaQuang proposed a non-linear version of Pitt 

and Peters model, in which all variables are treated not as perturbations but as in total 

amount(107), expressed in the wind-axis coordinate system.  

 

  The non-linear version was adopted in NASA Ames helicopter mathematical model, 

designated ARMCOP, and reportedly performed well(108). Gaonkar and Peters 

summarised the historical development of the dynamic inflow model in Ref. (29), and 

showed an intensive comparison between various models. This review is also extremely 

instructive that it points out some misconceptions found in the past literature including 

Refs. (65), (71), (89), (105) and (106), and also limitations to the applicability of either 

the linear or non-linear dynamic inflow model. 

 

  The most important work which appeared after the Pitt and Peters model is arguably 

the Peters and He model(7), which forms the theoretical basis of this thesis. The 

derivation of this model is the most mathematically rigorous, and is consistent from the 

first principles compared to its preceding models. A concise version of the derivation is 

found in Ref. (37), and the model’s validation and correlation with experimental data 

are shown in many research works, for example, in Refs. (30), (92), (109), (110), (111), 

(112) and (113). In the Peters and He model, the representations of both inflow and 

pressure distributions are generalised so that an arbitrary number of harmonics and 

radial shape functions can be used for each state.   

 

  Reference (92) presents a comparison between the Peters and He model and the 

experimental data from Refs. (114) - (116) using both rectangular and tapered blades, 
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and concluded that the model performs as well as or better than some computational 

codes of free-wake and prescribed-wake methods at a smaller computational cost. 

Reference (112) also compares the Peters and He model with classical theories and 

computational methods with contrasting their shortcomings, and demonstrates that the 

Peters and He model implicitly includes classical theories including Theodorsen’s and 

Loewy’s lift deficiency functions and Prandtl-Goldstein’s tip-loss formula16. Reference 

(39) is a notably instructive study, since it compares the Peters and He model with 

various classical theories including Theodorsen’s, Loewy’s or Miller’s lift deficiency 

functions and other finite-state methods. Reference (39) concluded that the Peters and 

He model is overall superior to classical unsteady models, but it cannot provide an 

accurate description of inflow in the close vicinity of the blade surface, nor can it 

account for wake roll-up. The Peters and He model has been further improved in some 

variations, with examples including Refs. (117) and (118), in which the ground effect is 

incorporated. The ground effect in this modelling is described as an extra term in the 

pressure potential in order to satisfy the boundary condition.   

 

  In applying the dynamic inflow model to a flight simulation code, there has been a 

mystery that the simulated results sometimes predict a completely opposite off-axis 

response in hover and low speed forward flight in comparison with the corresponding 

flight test data(119-123). A large number of publications related thereto suggested many 

possible causes for this phenomenon including gyroscopic force of the wake(124), 

aerodynamic interaction between the rotor and fuselage(125), dynamic twisting of the 

blade(126), wake distortion(127,128) and so on. It is highly likely that several of these 

mechanics are therein coupled in a complex manner. This problem is an active area of 

current research. Regarding the wake distortion, Ref. (129) proposes that the gain 

matrix in the Peters and He model should be modified as an augmented L-matrix so as 

to account for the effects due to wake curvature in non-hover flight conditions. Those 

models which have augmented gain matrix are called the augmented Peters and He 

model or augmented Pitt and Peters model, depending on the base model, and the 

literature about these augmented models includes Refs. (130) - (134). Note that the 

complicated wake distortion effects are incorporated in these models by wake curvature 

parameter, KR , which is empirically determined. Reference (134) introduced the 

augmented Pitt and Peters model in which wake skew, wake curvature and wake 

spacing are incorporated as additional states in transitional flight. 

                                                   
16 It may be rather odd that Pitt and Peters model is not compared with the Peters and He model at all either in Ref. 
(92) or (112) in spite of comparisons with many of more classical theories. This author will present his own view 
about the Pitt & Peters and Peters & He models in Section 2.3.  
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  Zhao(135) presented a table of various values of KR for comparison, and proposed 

augmented models for both the Pitt & Peters and Peters & He models including detailed 

mathematical derivations. In Ref. (135), a more refined description of the wake 

curvature which is expressed by lateral and longitudinal wake curvatures, Kc and Ks, 

is also proposed. The inclusion of the wake effects into dynamic inflow modelling is 

still an up-to-date issue in the field, and further improvement, validation and correlation 

with experimental and CFD simulation data are required, partly because the correction 

parameters must be essentially empirically determined.   

 

  References (136) and (137) propose a state-of-the-art methodology whose 

mathematical derivation is quite different from that of the Peters and He model. The 

model is based on the conservation equations of mass and momentum, and they are 

transformed into state-space forms by the Galerkin method so that the Peters and He 

model is therein hierarchically implied. A velocity potential is also therein considered 

on top of an acceleration potential, and both off- and on-disc flow are described by the 

set of three components. Although it seems that the Peters and Morillo model has not 

yet been widely utilized at present, it will likely be the leading next generation dynamic 

inflow model.  

 
1.6 Literature on Autorotation  
  In this Section, the historical and current state of works on gyroplanes and helicopters 

in the windmill-brake state is briefly introduced in order to outline the importance of 

this research in the relevant context. Cierva himself made a huge contribution to the 

development in the theory of early gyroplanes from both theoretical and practical points 

of view(2,3,4,138). (The left picture of Fig. 1-4 is Cierva’s Type C.4, which made the first 

controlled gyroplane flight in 1923.) British aerodynamicists such as Lock and Glauert, 

whom Cierva vehemently criticised, made more rigorous theoretical 

work(20-22,41,79,139-143). Concurrently, a number of experimental and theoretical studies 

were intensively conducted in the U.S.A. by NACA engineers such as Wheatley and 

others(16-19). Indeed, there was a sound basis for further studying the characteristics and 

aerodynamics of the gyroplane at that time. The initial development in the Autogiro by 

Cierva is introduced in Ref. (144) in rather a story-telling manner, while Ref. (145) 

gives detailed background about the gyroplane both in historical and technical aspects. 

Despite the great success of gyroplanes in commercial and military fields in the 1930’s, 

the mainstream of rotorcraft research shifted to the helicopter after the 1940’s. Most of 
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the technical and theoretical achievements made by that time for the gyroplane such as 

flapping hinge, lead-and-lag hinge, cyclic blade feathering, gimballed or spider 

mechanism control system, blade element theory, momentum theory and so on were 

applied to the helicopter17. However, further developments thereafter were conducted 

only for the helicopter, and theoretical study on the gyroplane was almost forgotten.  

 

  In the meantime, gyroplanes were chiefly developed by small companies such as 

Bensen Aircraft Corporation, Rotary Air Force Inc., Air Command International and so 

on(146), or individual devotees such as Kenneth Wallis(147), mainly for sports flying. The 

most popular configuration for gyroplanes today, namely, one- or two-seater short 

fuselage with pusher propeller and cantilevered fin, was established by these developers. 

(The right picture of Fig. 1-4 is G7-R477 designed by a Japanese amateur gyroplane 

devotee, Masanori Kokubun, showing the typical configuration of contemporary 

light-weight sports gyroplanes.) However, little theoretical development was undertaken 

about the aerodynamic features of the vehicle in spite of a series of fatal accidents, and 

the developments were mainly structural for reducing the price or for making it easier to 

home-build without any backup either from the industrial sector or from academics. As 

a result, some models were poorly designed from the safety point of view, and hence a 

more comprehensive theory was required either to design a gyroplane or to investigate 

accidents18.  

 

 
Fig. 1-4 [Gyroplanes: C.4 and G7-R447.]19 

 
                                                   
17 It should be mentioned here that while most of today’s helicopters have swash plates to control the cyclic pitch, 
most of modern gyroplanes have the direct control system, in which the direction of the rotor head is directly 
controlled by rods connected with the control stick.   
18 There were more mathematics-oriented researches about “autorotation” such as Refs. (160) and (161), yet their 
interests were focused on more general aerodynamic phenomena such as the gyration of sycamore seeds, fluttering of 
chuff, rotation of anemometre and so on, and their results are far from applying for home-built gyroplanes. There is 
probably a gap in the usage of the word “autorotation” between aeronautical aerodynamicists and mathematical 
hydrodynamicists.  
19 The picture of C.4 was kindly provided by Dr. Bruce Charnov of Hofstra University, and the picture of G7-R447 
was kindly provided by Mr. Masanori Kokubun, with the copyrights approved.  
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  As mentioned in Section 1.2, it was the first time after the Second World War that 

gyroplanes have been extensively investigated20 at the University of Glasgow as part of 

CAA funded research programme following several grievous accidents in the United 

Kingdom(148). The research topics include aerodynamic characteristics of various 

configurations(8), qualitative or quantitative control and stability analysis(149,150), 

rotorcraft flight dynamics in autorotation(9,10) and numerical simulation of autorotative 

flight(151-153). Spathopoulos studied a mathematical model to simulate rotorcraft in 

autorotation(154), and Bagiev assessed gyroplane handling qualities using both flight 

tests and simulations(155). Some new projects to revive the gyroplane are presently under 

way including a hybrid-gyroplane by Cartercopter(156), a turbine-powered gyroplane by 

Groen Bros. Inc.(157) and some more conceptual designs such as massive VTOL 

transport(157) and airbike(158). The possibility of using a gyroplane as unmanned 

reconnaissance vehicle is also examined(159) in stability and dynamic characteristics21. 

Academic studies of gyroplanes have thus recently restarted, and the future outcome 

and scope of these projects are not yet clear.  

 

  The very first motivation of Cierva to invent the Autogiro was that he wanted to build 

a safe vehicle which is free from stall. In fact, Ref. (144) reads about Autogiro, “... 

although not designed with the sporting purpose of increasing speed not with the 

commercial object of enlarging the radius of action, but with the humanitarian purpose 

of reducing to a minimum the number of accidents and the number of human lives 

sacrificed in the flight for the conquest of the air.” It is thus quite ironical that the 

contemporary gyroplanes are designed chiefly for the sporting purpose, albeit not for 

the speed, and hence are associated with unacceptable casualty rates. The flight 

principle of the gyroplane itself is not in the wrong, and there still is a possibility that 

the gyroplane can regain a prominent position in aviation if updated with state-of-the-art 

advanced technology. What are urgently required now are further theoretical, practical 

or experimental works such as mathematical models, technical knowledge, experimental 

data and so on, to provide a sound technical basis either for improving contemporary 

gyroplanes or for developing new gyroplanes.  

 

                                                   
20 In some projects of designing convertiplane, which is a mule of fixed-wing aircraft and rotarycraft, the flight 
principle of the gyroplane occasionally attracted some attention. These projects includes Fairy’s Rotordyne(162), 
whose concept is now tried to revive by Groen Brothers Inc.(157) There were also some attempts to develop a 
gyroplane for commercial purpose, but they all resulted in failure.  
21 Interestingly, the authors concluded that the elevator control should be used together with longitudinal cyclic 
control, unlike the most of contemporary small gyroplanes, which usually have only small (or sometimes no) fixed 
horizontal stabilizer.  
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Chapter 2    

 

Review of the Dynamic Inflow Model of Peters and He  

 

2.1 Introduction  
2.1.1 Overview 

  In this Chapter, the theoretical derivation of Peters and He model will be reviewed in 

depth and examined in detail. The general theory of dynamic inflow models has been 

extensively developed by Peters and his coworkers in the last two decades, and the 

Peters and He model is theoretically one of the most refined dynamic inflow models in 

existence today.  

 

  The later Chapters of this thesis are based on the Peters and He model, and thus it is 

necessary to first review the foundations of this model. As well as permitting the 

foundations of the work of the present thesis to be presented, a review of this model is 

also convenient since the relevant literature, including Refs. (1) and (7) offers a 

somewhat disjointed view of the model’s derivation, which is not readily accessible. In 

particular, some assumptions and theorems therein used are not explicitly declared or 

proven in the original literature, and thus the present author tries to improve the lucidity 

of the explanation of the mathematical derivation of this model by complementing the 

details of some difficult rearrangements of equations and correcting some typographical 

error contained in the original references. Although the author also presents new 

explanations of some aspects of this derivation, it must be stressed here again that the 

general idea of this Chapter is based on the works of previous authors, including Peters, 

He and their coworkers. In particular, this Chapter is largely based on Ref. (7), which 

should be the most thorough source of the pertinent theory. Some complementary 

theorems and peripheral topics are discussed either in footnotes or appendices.  

 

2.1.2 Notations 

  Symbols and notations are used so as to be as consistent with Refs. (1), (7) and (92) 

as possible, although it should be noted that there is a variation of notations even 

between these references. The author thus chose the most reasonable designations for 

the case. Readers are encouraged to confirm the definitions when reading a plurality of 
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literatures.   

  In this thesis, those variables that are related to the time-derivative and convection 

terms of the Euler equation are denoted by (t) and (c) as superscripts, respectively. This 

notation is original in this thesis, and it is hoped that it will facilitate a better 

understanding. The variables that are related to Fourier coefficients for cosine and sine 

functions are also given c and s as superscripts, respectively. For the Legendre functions, 

r, j, i, k, m  and n are used as dummy indices. No matter how confusing they may look, 

the way of using letters in this Chapter is thus consistent. For example, L�rmcjn  denotes a 

Fourier coefficient having four indices of r,m, j  and n, corresponding to a cosine 

function.  

 

 

2.2 Review of the Dynamic Inflow Model of Peters and He  
2.2.1 Fundamental Assumptions for the Mathematical Derivation of the Peters and 

He Model.  

  The Peters and He model is based on the following assumptions, (A1) - (A5):  

 

 (A1) the flow is inviscid. Thus, the induced flow is generated by the pressure  

  potential (or acceleration potential), and governed by the Euler equations,  

   
∂t�

∂U
+ (U � ∇)U = �∇Φ ,        (2.1) 

     where U, t� and Φ represent non-dimensionalised velocity, time and a pressure  

     potential function, respectively22;  

 (A2) the pressure distribution over the rotor disc is continuous, but it has  

     a discontinuity across the rotor disc;  

 (A3) air flow is assumed to be incompressible and satisfies the equation of  

     continuity,   

   ∇ � U = 0 ;           (2.2) 

 (A4) the rotor disc can be regarded as a flat orientable disc.  

 

  The assumption (A1) explains why the flow is not governed by the Navier-Stokes 

equations, but by the Euler equations. Since the air flow around the rotor is sufficiently 

fast (for example, a typical Reynolds number about a helicopter blade is 105  - 106), the 

                                                   
22 The Euler equations can be derived as a consequence of the conservation of momentum (Newton’s law of motion), 
if assumptions (A3) and (A1) are valid. Thus, assumptions (A2) and (A4) can mathematically be implied in 
assumption (A1) if Newtonian mechanics is approved. Although it may sound needless to state, assumption (A1) may 
be interpreted that Newtonian mechanics is considered to be valid.  
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assumption (A1) can be reasonably used for most flight cases.  

 

  The assumptions (A2) and (A4) indicate that the model is based on actuator disc 

theory, and the assumption (A4) gives the theoretical grounds for regarding the lift 

working on the rotor disc as the pressure potential23. The assumption (A3) means that 

air compressibility and shock wave effect are negligible. While this is not always the 

case with high-speed helicopter flights, this assumption can still be reasonably valid for 

a wide range of helicopter flights and for most gyroplane flights. 

 

2.2.2. The Representation of the Pressure Field 

  The mathematical derivation of the dynamic inflow model essentially relies on the 

principle of superposition of linear equations. Since Eq. (2.1) contains a non-linear term 

(i.e. the convection term), which must be linearised in advance for dynamic inflow 

modelling as follows (see also Appendix 2.1),   

 

  
∂t�

∂q � (V � ∇)q = �∇Φ ,         (2.3.1) 

 

where V is the non-dimensionalised steady base flow,  Φ  is the pressure potential 

which drives the induced flow and q  is the induced flow, which is regarded as a 

perturbation in this linearised equation. Note that the second term in the left-hand side 

of Eq. (2.3.1) has a minus sign unlike Eq. (2.1), because positive q and V are defined 

in opposite directions, as shall be seen in Fig. 2-2. In Cartesian coordinates, Eq. (2.3.1) 

can be separated into the following three equations,  

  

 
∂t�

∂qx� Vx
∂x

∂qx� Vy
∂y

∂qx� Vz
∂z

∂qx
= �∇xΦ ,        (2.3.2) 

 
∂t�

∂qy � Vx
∂x

∂qy � Vy
∂y

∂qy � Vz
∂z

∂qy
= �∇yΦ ,        (2.3.3) 

 
∂t�

∂qz� Vx
∂x

∂qz� Vy
∂y

∂qz� Vz
∂z

∂qz
= �∇zΦ .        (2.3.4) 

                                                   
23 Note that the dynamic inflow model based on actuator disc theory can be subsequently coupled with any lift 
distribution, in which each blade shape may be considered in detail. Still, this should be considered as a combination 
of different theories, and it should be explicitly emphasised that the derivation of Peters and He model is based on 
simple actuator disc theory.    
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Fig. 2-1 [Vehicle coordinate systems; both for Helicopter and Gyroplane.] 

 

  Note that Eq. (2.3.1) is expressed in the vector form, with each of  q,V  and ∇Φ  

having three components, irrespective of the particular coordinate system that is adopted. 

For the purpose of the following discussion, the rotor coordinates, (x, y, z) , and 

streamline coordinate, $ , are introduced here. Note that V becomes one-dimensional 

along $ . The cylindrical coordinate system on the rotor disc, (r�, ψ, z), is also used (Fig. 

2-1), where r� is non-dimensionalised by the rotor radius as r�= r/R (thus 0 � r�� 1).  

 

  The transformations between the xyz- and r�ψz-systems are detailed in Appendix 2.2. 

It is often the convention that only the z-component of q is called the induced velocity, 

in part because the z-component is far larger than the x- or y- component and maybe 

also because only the z-component of q is directly related to the lift and rotor thrust. 

The z-component of q is induced by the z-component of ∇Φ  in Eq. (2.3.1), which 

describes the aerodynamic pressure working on the rotor disc in the z-direction, namely, 

the lift.  

 

   The $-axis is skewed by the angle of 1 with respect to the z-axis, Fig.2-2, and its 

positive direction is defined as the upstream direction, which is why the second term of 

Eq. (2.3.1) has a negative sign. Note that when comparing helicopter and gyroplane 

rotors, the $- and z-axes come to opposite sides, and thus the positive direction of rotor 

angle of attack, : , is defined in a different way, Fig. 2-3.  
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Fig. 2-2 [Difference in the aerodynamic configuration of the rotors of normal working 

and windmill-state states.] 

 

 

Fig. 2-3 [Difference in the rotor angle of attack of helicopter and gyroplane rotors.] 

 

 

  On account of the principle of superposition of linear equations, Eq. (2.3.1) can be 

decomposed into two equations,  

 

  
∂t�
∂q

= �∇Φ(t) ,           (2.4.1)   

  (V � ∇)q = ∇Φ(c) ,           (2.4.2) 

where  

  Φ(t) +Φ(c) = Φ .           (2.4.3) 

 

  Multiplying Eqs. (2.4.1) and (2.4.2) by ∇ and applying Eq. (2.2), the following 

Laplace’s equations are obtained,   

 

  △Φ(t) = 0 ,            (2.5.1) 

  △Φ(c) = 0 ,            (2.5.2) 

  △Φ = △Φ(t) +△Φ(c) = 0 .          (2.5.3) 
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  The pressure function, Φ , can be given by solving these Laplace’s equations under 

appropriate boundary conditions. The Peters and He model is based on the following 

boundary conditions:  

 

 (B1) Φ  becomes zero at infinity;  

 (B2) Φ  becomes zero at the edge of the rotor.  

 

  The pressure distribution on the rotor disc is considered to be linearly proportional to 

the distribution of induced velocity due to the linearity of Eq. (2.3)24. (Note that this 

property does not hold if Euler’s equations are not linearised.) The problem of 

describing the distribution of induced velocity can then simply result in a Dirichlet 

problem for Laplace’s equation under the boundary conditions of (B1) and (B2).  

 

  Note that if air is assumed to be perfectly incompressible, any perturbation of air (e.g. 

pressure, temperature, density, velocity, entropy, etc.) should theoretically propagate at 

once even to infinity. Thus, although the boundary condition (B1) can be considered to 

be intuitively reasonable as a physical assumption, it is mathematically not 

self-evidently acceptable. However, (B1) will be approved without further discussion in 

this Chapter following Peters and He.   

 

  Laplace’s equation is separable either in Cartesian, circular cylindrical, conical, 

ellipsoidal, elliptic cylindrical, oblate spheroidal, parabolic, parabolic cylindrical, 

paraboloidal, prolate spheroidal or spherical coordinate system(163,164). The choice of 

coordinate system should be decided according to the boundary conditions and the 

ellipsoidal coordinate system is generally believed to be the most suitable for rotorcraft 

problems, because the ellipsoidal coordinate system provides solutions to Laplace’s 

equation expressed by the associated Legendre functions, which satisfy the boundary 

condition (B2) well and are suitable for representing the pressure gap between the upper 

and lower surfaces of the disc, namely the lift (see also Appendix 2.3).  

 

  In this coordinate system, the solution to Laplace’s equation subject to boundary 

conditions of (B1) and (B2) is expressed as  

 

                                                   
24 The application of linearised Euler equations for describing the distribution of induced flow of a rotor can be 
traced back to Mangler and Squire(48). 
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 Φ(�, &, ψ, t�) =
∑

m=0

∞ ∑

n=1

∞
Pmn (�)Q

m
n (i&)

[

Cmn (t�) cos(mψ) +D
m
n (t�) sin(mψ)

]

, (2.6.1) 

 m + n � 1 mod.2 ,            (2.6.2) 

 

where Pmn (�) and Qmn (i&) are the associated Legendre functions of the first and second 

kinds, respectively (see Appendix 2.4). Also, it is assumed here that the pressure 

potential, Φ , is a smooth continuous function which is differentiable as many times as 

required with respect to r� and ψ , and that Φ  is periodic with respect to ψ  with a 

period of 22. This solution is sometimes called Prandtl’s potential function, for which 

Ref. (47) may be consulted for further details. Note that although the associated 

Legendre equations of the first and second kinds yield the four solutions of Pmn (�), 

Qmn (i&), P
m
n (i�) and Qm

n (&), onlyPmn (�) and Qmn (i&) can satisfy the boundary conditions 

(B1) and (B2), and so the other two solutions should be discarded. Moreover, when 

m + n � 0 mod.2 , the boundary conditions are not satisfied (see Appendix 2.5), and 

hence only those m  and n  which satisfy m + n � 1 mod.2  should be chosen. 

Furthermore, with regard to the indices of the Legendre function of the first kind, 

n � m  is required from the definition (see Appendix 2.5). In summary, n  should 

satisfy n = m + 1, m + 3, m + 5, .... .  

 

2.2.3. Normalisation of the Pressure Function  

  In the elliptic coordinate system, the region z < 0  is described as � > 0 , idem quod 

z > 0  as � < 0 . Thus, when Φ  is described by only those m  and n  which satisfy 

m + n � 1 mod.2 , the distribution of Φ  becomes discontinuous at the surface � = 0 , 

namely, at the rotor disc. The rotor disc itself is described as & = 0, � = 1 � r�2
√

 in the 

elliptic coordinate system. The discontinuity of the pressure distribution across the rotor 

disc can be considered equal to the lift.  

 
  L(r�, ψ, t�) � Φ(r�, ψ, t�)



�<0,&=0

� Φ(r�, ψ, t�)


�>0,&=0

              

           = � 2
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
Pmn (�)Q

m
n (i0)

[

Cmn (t�) cos(mψ) +D
m
n (t�) sin(mψ)

]

(� > 0) 

        �
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)

[

Amcn (t�) cos(mψ) + A
ms
n (t�) sin(mψ)

]

.    

                (2.7)  

 

  Note that Pmn (� �) = (� 1)m+nP
m
n (�) , P�mn (�), A

mc
n (t�)  and Amsn (t�)  are defined as 

follows(165),  
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  P�mn (�) = (� 1)m �mn

Pmn (�)
 )

,         (2.8.1) 

  �mn = 2n + 1

1 �
(n �m)!
(n +m)!

√

,         (2.8.2) 

  Amcn = (� 1)m+12Qmn (i0)�
m
nC

m
n ,         (2.8.3) 

  Amsn = (� 1)m+12Qm
n (i0)�

m
nD

m
n .         (2.8.4) 

 

  The function P�mn (�) is the normalised associated Legendre function of the first kind, 

and its orthogonality is defined in the interval of 0 � � � 1  as   

 

  
∫

0

1

P�mn (�)P
�m
j
(�)d� = <nj,           (2.9.1)   

  P�m
m+1

(�) > 0 ,             (2.9.2) 

 

where <nj is Kronecker’s delta.  

 

  <nj =
1, (n = j)
0. (n �=j)

�

         (2.9.3) 

 

  Equations (2.7), (2.9.1) and (2.9.2) indicate that the radial distribution of lift is 

expanded in the functional space spanned by the normalised associated Legendre 

functions of the first kind, where each of P�mn (�) is a unit basis, and that the angular 

distribution of lift is also expanded in the functional space spanned by trigonometric 

functions, whose orthogonalities are given by  

  
2

1
∫

0

22

sinmx sinnxdx =
2

1
∫

0

22

cosmx cos nxdx = <mn ,    (2.10.1) 

  
∫

0

22

sinmx cos nxdx =

∫

0

22

cosmx sinnxdx = 0 .    (2.10.2) 

 

  Equation (2.6.1) can also be normalised as 

  

Φ(�, &, ψ, t�) = �
2

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)Q

�m
n (i&)

[

Amcn (t�) cos(mψ) + A
ms
n (t�) sin(mψ)

]

,    

                (2.11) 
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where Q�mn (i&) = Q
m
n (i&)/Q

m
n (i0). Note that Φ(t)  and Φ(c)  also satisfy Laplace’s equation 

under the same boundary conditions, Eqs. (2.5.1) - (2.5.3), i.e. they should be expressed 

in the same form as that of Φ ,  

 

Φ(t)(�, &, ψ, t�) = �
2

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)Q

�m
n (i&)

[

Amc(t)n (t�) cos(mψ) + Ams(t)n (t�) sin(mψ)
]

,   

                (2.12.1) 

Φ(c)(�, &, ψ, t�) = �
2

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)Q

�m
n (i&)

[

Amc(c)n (t�) cos(mψ) + Ams(c)n (t�) sin(mψ)
]

.  

                (2.12.2)  

 

  Based on the principle of superposition of linear equations, the lift described by Eq. 

(2.7) can also be decomposed into two parts corresponding to the time-derivative and 

the convection terms in the Euler equations, respectively,  

 

  L(�, &, ψ, t�) = L(t)(�, &, ψ, t�) + L(c)(�, &, ψ, t�),     (2.13.1) 

  L(t)(�, &, ψ, t) �
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)

[

Amc(t)n (t�) cos(mψ) + Ams(t)n (t�) sin(mψ)
]

,  

                (2.13.2) 

  L(c)(�, &, ψ, t�) �
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)

[

Amc(c)n (t�) cos(mψ) + Ams(c)n (t�) sin(mψ)
]

.  

                (2.13.3) 

 

  In order to identify the Fourier coefficient functions, Amc(t)n , Ams(t)n , Amc(c)n  and Ams(c)n , an 

appropriate lift theory is required. Examples thereof include blade element theory(7), 

ONERA dynamic stall theory(30) and others. Reference (37) compares several lift 

models based on Ref. (166). Note that the representations of the lift as Eqs. (2.13.1) - 

(2.13.3) are expressed in general forms, and hence these equations are independent of 

any specific representation of lift. This makes it possible to flexibly combine the 

dynamic inflow model with any possible lift theory, which may vary depending on the 

class of the aircraft (i.e. helicopter, gyroplane, etc.), aerodynamic status of the rotor (i.e. 

normal working state, windmill-brake state, etc.) and so on.  

 

2.2.4. The Relation between the Pressure Function and the Induced Velocity  

  The induced velocity is described by the pressure function by way of Eqs. (2.4.1) and 

(2.4.2), and the pressure function, Eq. (2.11), is represented by the normalised 
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associated Legendre function of the first kind and trigonometric functions. Thus the 

next step is the expression of the distribution of the induced velocity in the form of a 

Fourier series by appropriate orthogonal functions, and make clear the relation between 

its Fourier coefficients and their counterparts in the lift distribution, i.e. Amc(t)n , Ams(t)n , Amc(c)n  

and Ams(c)n . Integrating Eq. (2.4.2) along the streamline yields 

 

  q = �
V

1
∫

0

∞
∇Φ(c)d$ .           (2.14) 

 

  Note that although V in Eq. (2.4.2) is a vector, it can be reduced to a scalar along 

the $-axis, and thus the integration along the $-axis allows V to be replaced with 

V = |V|. Suppose q = (u, v, w), where w  can be expressed by the z-component of Eq. 

(2.14) as  

  w =
V

1
∫

∞

0

∂z

∂Φ(c)
d$ .           (2.15) 

 

  The value of Φ(c)  at infinity is to be determined from the boundary condition (B1). 

From the z-component of Eq. (2.4.1), the time-derivative of w  is given in the same 

manner as  

 

  
∂t�

∂w � �
∂z

∂Φ(t)



&=0

.           (2.16) 

 

  Note that specific mappings between the $-axis and xyz-axes are not required at this 

stage. Since Φ(t)  and Φ(c)  described by Eqs. (2.12.1) and (2.12.2) are linear functions 

with respect to Amc(t)n , Ams(t)n , Amc(c)n  and Ams(c)n , the actions of the differentiation and 

integration in Eqs. (2.15) and (2.16) can be represented in the form of linear operators in 

Hilbert space,  

  
∂t�

∂w � �
∂z

∂Φ(t)



&=0

� C[Φ(t)] ,         (2.17) 

  w =
V

1
∫

∞

0

∂z

∂Φ(c)
d$ � D[Φ(c)] ,         (2.18) 

 

where C and D are appropriate mappings from the Hilbert space, where Φ(t)  and Φ(c)  

are defined, into another functional space where w  and ∂w/∂t� are defined. Since the 

induced velocity is always uniquely induced in reaction to the pressure gradient from 
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the physical point of view, the mappings need to be injections, thus C and D may be 

assumed to be isomorphic linear operators to have inverse mappings25. The following 

rearrangements are thus always assured26,  

 

  D�1[w] = Φ(c) ,            (2.19) 

  C�1[w
 ] = Φ(t) ,            (2.20) 

  C�1[w
 ] +D�1[w] = Φ(t) +Φ(c) = Φ .       (2.21) 

 

2.2.5 Matrix Representations  

  Suppose that w  in Eq. (2.17) can be expressed in the form of a Fourier series as  

 

  w(r�, ψ, t�) =
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
Ψm(M)n (�)[:mn (t�) cos(mψ) + ;

m
n (t�) sin(mψ)] ,  

                (2.22)  

where Ψm(M)n  is an appropriate function that can form a complete orthogonal system of 

functions for each of m  in the interval of 0 � � � 1 . Inserting Eqs. (2.22) and (2.12.1) 

into Eq. (2.20) yields  

 

  Amc(t)n = K[:r
j
] ,           (2.23.1) 

  Ams(t)n = K[;r
j
] ,           (2.23.2) 

where K  is the matrix representation of the linear operator C�1 , and Fourier 

coefficients :r
j
, ;r

j
, Arc(t)

j
 and Ars(t)

j
 are defined in the vector space spanned by cos rψ  

and sin rψ  (r = 1, 2, ...) according to an integer of j, which satisfies j = r + 1, r + 3, ... .  
27 Note that a linear operator in Hilbert space can be represented as a matrix in R

∞. 

Here, :r
j
, ;r

j
, Arc(t)

j
 and Ars(t)

j
 are represented as column vectors, each of whose 

                                                   
25 Physically, it is obvious that a unique induced flow distribution is caused in response to a pressure distribution 
over a rotor. However, the discussion about the invertibility of C  and D  lacks rigour because these mappings of C  
and D  have not been mathematically proven to be bijections. Peters and He did not discuss this point in depth, and 
the present Chapter will also assume C  and D  are invertible without further discussion.  
26 Note that when the model is based on the non-linear Euler equations, it is not self-evident whether C  and D  
have inverse mappings because the pressure function would possibly be a multi-valued function giving a plural of 
bifurcated solutions. In general, the theory of non-linear operators in Hilbert space is not yet sufficiently developed in 
mathematics.  
27   Note that in the following discussion, dummy indices r  and j  will be used in addition to m  and n , when 
necessary, following the notation of Peters(7,37). Readers should not confuse r  with r�, which denotes the 
non-dimensional radial position.  
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elements is itself a vector again, following the convention in flight dynamics (i.e. 1 � rj 
matrix).  

  

  :r
j
= t(:1

2
, :1

4
, ...;:2

3
, :2

5
, ...;:r

r+1
, :r

r+3
, ...),       (2.24.1) 

  ;r
j
= t(;1

2
, ;1

4
, ...; ;2

3
, ;2

5
, ...; ;r

r+1
, ;r

r+3
, ...),       (2.24.2) 

  Amc(t)n = t(A1c(t)
2

, A1c(t)
4

, ...; A2c(t)
3

, A2c(t)
5

, ...; Amc(t)
m+1

, Amc(t)
m+3

, ...),    (2.24.3) 

  Ams(t)n = t(A1s(t)
2

, A1s(t)
4

, ...; A2s(t)
3

, A2s(t)
5

, ...; Ams(t)
m+1

, Ams(t)
m+3

, ...).    (2.24.4) 

 

  The matrix K is the representation of the linear operator that transforms both :r
j
 to 

Arc(t)
j

 or ;r
j
 to Ars(t)

j
, and it is assured that K is non-singular with its inverse matrix, 

K�1 , for the same reasons that C  and D  have their inverse matrices. K  can be 

represented as a partitioned matrix, and its elements can be expressed as Kmr

nj
, where m 

and r indicate the row- and column-positions of the partition, respectively, and n and 

j indicate the row- and column-positions in the mr partition. (See Fig. 2-4.) 

 

 
Fig. 2-4 [Matrix representation of C�1.] 
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  For its inverse matrix to exist, the matrix K needs to be regular28. Suppose also that 

w  in Eq. (2.18) can be expressed in the same form as ω in Eq. (2.22),   

 

  w(r�, ψ, t�) =
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
Ψm(L)n (�)[=mn (t�) cos(mψ) +̟

m
n (t�) sin(mψ)] , 

                (2.25)  

where Ψm(L)n  is also an appropriate function which can form a complete orthogonal 

system of functions for each m  in the interval of 0 � � � 1 . Note that Ψm(L)n  in Eq. 

(2.25) may be different from Ψm(M)n  in Eq. (2.22), because Eqs. (2.19) and (2.20) are 

independent. Inserting Eqs. (2.25) and (2.12.2) into Eq. (2.19) yields the following 

equations,  

 
  Amc(c)n = Y�1[=r

j
],           (2.26) 

  Ams(c)n = Y�1[̟r

j
] ,           (2.27) 

 
where Y  is the matrix representation of the linear operator D. Here again, =r

j
, ̟r

j
, 

Arc(c)
j

 and Ars(c)
j

 are defined in the functional space spanned by cos rψ  and sin rψ  

(r = 1, 2, ...) according to an integer j, which satisfies j = r + 1, r + 3, .... .  

 

  =r
j
= t(=1

2
, =1
4
, ...; =2

3
, =2
5
, ...; =r

r+1
, =r
r+3
, ...),       (2.28.1) 

  ̟r

j
= t(̟1

2
, ̟1

4
, ...;̟2

3
, ̟2

5
, ...;̟r

r+1
, ̟r

r+3
, ...),      (2.28.2) 

  Amc(c)n = t(A1c(c)
2

, A1c(c)
4

, ...; A2c(c)
3

, A2c(c)
5

, ...; Amc(c)
m+1

, Amc(c)
m+3

, ...),    (2.28.3) 

  Ams(c)n = t(A1s(c)
2

, A1s(c)
4

, ...; A2s(c)
3

, A2s(c)
5

, ...; Ams(c)
m+1

, Ams(c)
m+3

, ...).    (2.28.4) 

 

  The matrix Y  has its inverse matrix Y�1  for the same reason why the inverse of K 
exists. The matrix Y  may be considered as a partitioned matrix, transforming both =r

j
 

to Amc(c)n  and ̟r
j
 to   Ams(c)n . The elements of the matrix Y  can be expressed as Yrm

nj
, 

where m and r indicate the row- and column-block positions in a partitioned matrix, 

                                                   
28 The matrix K  may be intuitively considered as a square matrix, although both m and r  are ideally in the 
range 0  to ∞.    
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respectively, and n and j indicate the row- and column-positions in the mr partition, 

respectively, as illustrated in Fig. 2-4. Equations (2.4.3), (2.23.1), (2.23.2), (2.26) and 

(2.27) yield the following matrix equations,   

 

  

[

Kmr

nj

] 

:
 r
j

)

+

[

Ymrc
nj

]�1 

=r
j

)

=

 

Amc(t)n

)

+

 

Amc(c)n

)

=

 

Amcn

)

, 

                (2.29.1)   

  

[

Kmr

nj

] 

;
 r
j

)

+

[

Ymrs
nj

]�1 

̟r

j

)

=

 

Ams(t)n

)

+

 

Ams(c)n

)

=

 

Amsn

)

.   

                (2.29.2) 

 

  Note that while m � 0  in Eq. (2.29.1), m � 1  in Eq. (2.29.2). Note also that n 

should satisfy n > m, n +m � 1 mod.2  (i.e. n = m + 1, m + 3, m + 5, ... ) in both 

equations. When these equations are numerically computed, the integers m, r, n and j  

need to be truncated at an appropriate finite number so that Krm

nj
 and Yrm

nj
 should be 

finite-dimensional square matrices, for which max{r} = max{m}  is necessary.  

 

2.2.6 The Unified Representation of the Induced Flow Fields   

  Equations (2.29.1) and (2.29.2) are expressed in terms of Fourier coefficients :r
j
, ;r

j
, =r
j
 

and ̟r

j
 to represent the same induced velocity distribution, but, in fact, only two of 

these sets of coefficients are sufficient to represent any flow field. Thus, appropriate 
transformations represented by matrices Akr

ij
 and Bkr

ij
 are introduced to unify the 

representations such that  

 
[

Kmk

ni

][

Akr
ij

] 

a
 r
j

)

+

[

Ymkc
ni

]�1[

Bkr
ij

]  

ar
j

)

=

 

Amc(t)n

)

+

 

Amc(c)n

)

=

 

Amcn

)

, 

                (2.30.1) 
[

Kmk

ni

][

Akr
ij

] 

b
 r
j

)

+

[

Ymks
ni

]�1[

Bkr
ij

]  

br
j

)

=

 

Ams(t)n

)

+

 

Ams(c)n

)

=

 

Amsn

)

,

                (2.30.2) 

where  

  

[

Akr
ij

] 

a
 r
j

)

=

 

:
 k
i

)

,         (2.31.1) 
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[

Akr
ij

] 

b
 r
j

)

=

 

;
 k
i

)

,          (2.31.2) 

  

[

Bkr
ij

�
 

ar
j

)

=

 

=k
i

)

,         (2.31.3) 

  

[

Bkr
ij

]
�

br
j

)

=

 

̟k

i

)

,         (2.31.4)    

  w(r, ψ, t) =
∑

r=0

∞ ∑

j=r+1,r+3,...

∞
Ψr
j
(�)[ar

j
(t) cos(rψ) + br

j
(t) sin(rψ)] .   (2.32) 

 

  Equations (2.30.1) and (2.30.2) can be rewritten as 

 
[

Mmr

nj

] 

a
 r
j

)

+

[

Lmrc
nj

]�1 

ar
j

)

=

 

Amc(t)n

)

+

 

Amc(c)n

)

=

 

Amcn

)

, (2.33.1) 

[

Mmr

nj

] 

b
 r
j

)

+

[

Lmrc
nj

]�1 

br
j

)

=

 

Ams(t)n

)

+

 

Ams(c)n

)

=

 

Amsn

)

,  (2.33.2) 

 

where  

  

[

Mmr

nj

�

=

[

Kmk

ni

][

Akr
ij

]

,       (2.34.1) 

  

[

Lmrc
nj

]�1

=

[

Ymkc
ni

]�1[

Bkr
ij

�

,     (2.34.2) 

  

[

Lmrs
nj

]�1

=

[

Ymks
ni

]�1[

Bkr
ij

]

.      (2.34.3) 

 

  Equations (2.33.1) and (2.33.2) can be decomposed again into a time-derivative and 

convection parts as, respectively,  

 

  

[

Mmr

nj

] 

a
 r
j

)

=

 

Amc(t)n

)

,          (2.35.1) 

  

[

Mmr

nj

] 

b
 r
j

)

=

 

Ams(t)n

)

,        (2.35.2) 

  

[

Lmrc
nj

]�1 

ar
j

)

=

 

Amc(c)n

)

,          (2.35.3) 

  

[

Lmrs
nj

]�1 

br
j

)

=

 

Ams(c)n

)

.        (2.35.4) 
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  These matrix equations of Eqs. (2.33.1) and (2.33.2) are well-known as the typical 

forms of the dynamic inflow model, though the basic structures of these equations are 

essentially those of the Euler equations, Eq. (2.3). Whereas Ψr
j
 may be any appropriate 

function in so far as it can form a complete orthogonal system of functions for each m  

in the interval of [0, 1] , Peters recommended purely from a practical point of view in 
Refs. (37) and (92) that (1/�)P�r

j
(�) may be the best choice on account of the rapid 

convergence of these functions around r� = 1  (i.e. around the blade tip), and also of the 

practical feasibility that arises from the fact that computations with these functions may 

be carried out analytically in a closed form(37)(92),  

 

  Ψr
j
=
�

1
P�r
j
(�).            (2.36) 

  The remaining problem is how to define Ψm(L)n  and Ψm(M)n , and Peters also 

recommended the following representations again from a practical point of view.   

 

  Ψr(M)
j

=
�

1
P�r
j
(�),           (2.37.1) 

  Ψr(L)
j

= P�r
j
(�).            (2.37.2) 

  As well as the fact that (1/�)P�r
j
(�) forms a complete orthogonal system of functions, 

it can also be expressed in terms of only the radial position of the rotor disc, r�= 1 � �2
√

, 

and this property hugely simplifies the practical treatment of the equations in relation to 

the blade element theory (see also Appendix 2.7),   

 

    
�

1
P�mn (�) = (2n + 1)Hm

n

√ ∑

q=m,m+2,m+4,...

n�1

(q �m)!!(q +m)!!(n � q � 1)!!
(� 1) 2

q�m
(n + q)!!

r�q,    

                (2.38) 

where  

  Hm
n = (n +m)!!(n �m)!!

(n +m � 1)!!(n �m � 1)!!
.        (2.39) 

 

  For the case when n = m + 1 , Eq. (2.38) can be further simplified as follows(92),    

 

  
�

1
P�m
m+1

(�) =
(2m)!!

(2m + 3)!!
√

r�m.          (2.40) 
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  In the later discussion, Ψr
j
 is to be integrated over the rotor disc, and the fact that 

(1/�)P�mn (�) is a function of r� alone makes the integration much simpler. Equation 

(2.40) is of particular use for that case29. Equations (2.33.1), (2.34.1) and (2.35.1) allow 

of the assumption that, without the loss of generality,  

 

  Akr
ij

= <ij,            (2.41) 

  :r
j
= ar

j
.              (2.42) 

 

  Thus, the matrix Akr
ij

 becomes the unit matrix. In this case, the matrix Bkr
ij

 should be 

determined through substituting Eqs. (2.26), (2.31.3), (2.31.4), (2.34.2), (2.34.3), 

(2.35.3), (2.35.4), (2.36) and (2.27) into Eq. (2.18) and equating coefficients. Regarding 

the cosine terms, substituting Eqs (2.23.2), (2.25), (2.36) and (2.37.2) into Eq. (2.34.2) 

yields  

 

  
∑

r=0

∞ ∑

j=r+1,r+3,...

∞

�

1
P�r
j
(�)[ar

j
(t�) cos(rψ) + br

j
(t�) sin(rψ)]  

          =
∑

k=0

∞ ∑

i=k+1,k+3,...

∞
P�k
i
(�)[=k

i
(t�) cos(kψ) +̟k

i
(t�) sin(kψ)] .  (2.43) 

 

  On account of the orthogonality of normalised associated Legendre functions of the 

first kind over [0, 1] , Eq.(2.9.1), and of the trigonometric functions over [0, 22]  (Eq. 

(2.10.1) and (2.10.2)), =k
i
 and ̟k

i
 can be determined as  

 

 =k
i
=
2

1
∫

0

22
∫

0

1
�
∑

r=0

∞ ∑

j=r+1,r+3,...

∞

�

1
P�r
j
(�)[ar

j
(t) cos(rψ) + br

j
(t) sin(rψ)]

�

P�k
i
(�) cos(kψ)d�dψ  

   =
�∫

0

1

�

1
P�r
j
(�)P�k

i
(�)d�

�

ar
j
,          (2.44) 

 

 

                                                   
29 Also, as is often the case with application to flight control systems, only a crude approximation is required where 
n  is simply considered to be m + 1 .  
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 ̟k

i
=
2

1
∫

0

22
∫

0

1
�
∑

r=0

∞ ∑

j=r+1,r+3,...

∞

�

1
P�r
j
(�)[ar

j
(t) cos(rψ) + br

j
(t) sin(rψ)]

�

P�k
i
(�) sin(kψ)d�dψ  

   =
�∫

0

1

�

1
P�r
j
(�)P�k

i
(�)d�

�

br
j
.          (2.45) 

 

  Thus, from Eqs. (2.31.1) and (2.31.4),  

 

  Bkr
ij
=

∫

0

1

�

1
P�r
j
(�)P�k

i
(�)d� .          (2.46.1)  

 

  Note that matrix [Bkr
ij
]  does not have to have non-zero values for its entries; in fact, a 

diagonal partition matrix suffices for the transformation required in Eqs. (2.31.3) and 

(2.31.4).  

 

  Bk
ij
=

∫

0

1

�

1
P�k
j
(�)P�k

i
(�)d� .          (2.46.2)  

 

  This integration can be analytically expressible and the formula is found in Ref. 

(167).  

 

     
∫

0

1

�

1
P�k
j
(�)P�k

i
(�)d� = (� 1)i+j�2r�2 (2i + 1)(2j+ 1)

Hk

i

Hk

j

√
√
√
√
√

∑

q=r,r+2,...

j�1

(i � q)(i + q + 1)
(2q + 1)

Hk
q .   

                (2.47) 

   The inverse matrix of Bk
ij
 was found by He (Ref. (7), page 30),   

 
[

Bk
ij

]�1
=

Hk

j
Hk

i

√
(� 1) 2

i+j�2r

�
(i + j)(i + j+ 2)[(i � j)2 � 1]

2 (2i + 1)(2j+ 1)
√

,       (2.48) 

 
where this expression will be highly convenient for the later discussion of Lmrc

nj
 and 

Lmrs
nj

.   
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2.2.7 The Apparent Mass Matrix, M 

  In order to combine Eq. (2.36) with Eq. (2.17), the z-derivative in Eq. (2.17) should 

be transformed into ellipsoidal coordinates30 (see Appendix 2.3). In general,  

 

  
∂z

∂
= �

�2 + &2
1

�

&(1 � �2)
∂�

∂
+ �(1 + &2)

∂&

∂
�

.     (2.49) 

 

  In particular, on the rotor disc & = 0 , and hence Equation (2.49) can be simplified to 

 

  
∂z

∂



rotor disc

= �
�

1 �
∂&

∂
.          (2.50) 

 

  Equations (2.17) and (2.50) yield  

 

  v
 i = w
 � �
∂z

∂Φ(t)



&=0

=
�

1 �
∂&

∂Φ(t)



&=0

.        (2.51) 

 

 

  On the other hand, Eqs. (2.12.1) and (2.22) give 

 

 
�

1 �
∂&

∂Φ(t)

&=0

= �
2

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞

�

1
P�mn (�) ∂&

∂Q�mn (i&)
[

Amc(t)n (t�) cos(mψ) + Ams(t)n (t�) sin(mψ)
]



&=0

, 

                (2.52) 

 w
 =
∑

r=0

∞ ∑

j=r+1,r+3,...

∞

�

1
P�r
j
(�)[a
 r

j
(t�) cos(rψ) + b
 r

j
(t�) sin(rψ)] .    (2.53)   

 

  Substituting Eqs. (2.50), (2.52) and (2.53) into Eq. (2.17) yields 

  

 
∑

r=0

∞ ∑

j=r+1,r+3,...

∞
P�r
j
(�)[a
 r

j
(t�) cos(rψ) + b
 r

j
(t�) sin(rψ)]  

      = �
2

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�) ∂&

∂Q�mn (i&)
[

Amc(t)n (t�) cos(mψ) + Ams(t)n (t�) sin(mψ)
]




&=0

.  

                (2.54)   
  Multiplying Eq. (2.54) by P�r

j
(�) and cos(rψ), and integrating by �  over [0, 1]  and 

by ψ  over [0, 22] , the orthogonality of the normalised associated Legendre function of 

                                                   
30 References (1) and (35) contain the same typographical error in the representation of Eq. (2.49).  
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the first kind and the trigonometric functions, Eqs. (2.9.1) and (2.10.1), yield the 

following relations,   

 

  (left � hand term) = 2
∑

r=0

∞ ∑

j=r+1,r+3,...

∞
a
 r
j
(t�),      (2.55.1) 

  (right � hand term) = �
2

2∑

r=0

∞ ∑

n=r+1,r+3,...

∞
<jn

∂&

∂Q� rn(i&)




&=0

Arc(t)n (t�). (2.55.2) 

 

  Therefore,  

 

  a
 r
j
= �

2

1 �
∂&

∂Q� r
j
(i&)



&=0

Arc(t)
j

(t�).        (2.56) 

 
  Similarly, multiplying Eq. (2.54) by P�r

j
(�) and sin(rψ), and integrating by �  over 

[0, 1]  and by ψ  over [0, 22]  yields 

 

   b
 r
j
= �

2

1 �
d&

dQ� r
j
(i&)



&=0

Ars(t)
j

.          (2.57)  

 

  Equations (2.56) and (2.57) can be further simplified by the following formula,  

 

  �
d&

dQ� r
j
(i&)



&=0

=
2(j+ r � 1)!!(j� r � 1)!!

2(j+ r)!!(j� r)!! �
2

2�
Hr
j

��1 .     (2.58） 

 

  Comparing Eqs. (2.56) and (2.57) with Eqs. (2.35.1) and (2.35.2), r = m  and j = n 

are required, that is to say, M  is a diagonal matrix. From Eq. (2.58), the elements of 

matrix M  can be obtained as  

 

  Mmr

nj
=

�

�
2

1
<mr<nj

d&

dQ�mn (i&)




&=0

��1
 

          =
2

4
Hmn <mr<nj 

        =
2(n +m)!!(n �m)!!

4(n +m� 1)!!(n �m� 1)!!
<mr<nj.       (2.59) 
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  Note that only such combinations of m  and n that m + n � 1 mod.2  are chosen. 

Table 2-1 shows some examples of the value of Mm
n .  

 

 n = 0  n = 1  n = 2  n = 3  n = 4  n = 5  n = 6  n = 7  

m = 0   
2

4
 

 
92

16
 

 
2252

256
 

 
12252

1024
 

m = 1  -  
32

8
       

 
452

64
 

 
5252

512
 

 

m = 2  - -  
152

32
 

 
1052

128
 

 
47252

4096
 

m = 3  - - -  
352

64
 

 
9452

1024
 

 

m = 4  - - - -  
3152

512
 

 
20792

2048
 

m = 5  - - - - -  
6932

1024
 

 

m = 6  - - - - - -  
30032

4096
 

Table 2-1. [Examples of Mm
n .] 

 

 

2.2.8. The Gain Matrix, L - part 1 - The General Representation 

  While the representation of matrix Mmr

nj
 is common to both Eqs. (2.35.1) and 

(2.35.2), Eqs. (2.35.3) and (2.35.4) have different matrices for Lmrc
nj

 and Lmrs
nj

. 

Substituting Eqs. (2.12.2), (2.32), (2.36) and (2.37.2) into Eq. (2.18) yields      

 

   
∑

r=0

∞ ∑

j=r+1,r+3,...

∞
P�r
j
(�)[=r

j
(t�) cos(rψ) +̟r

j
(t�) sin(rψ)]    

    =
2V

1
∫

0

∞

�

1

∂&

∂
 

∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)Q
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                (2.60)  

 

  Multiplying Eq. (2.60) by either P�mn (�0) cos(rψ0) or P�mn (�0) sin(rψ0), where �0  and ψ0  

indicate a fixed point on the rotor disc, from which the reference streamline, along 
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which a $-axis is defined, is generated in the downstream direction. Note that (x0, y0) 

is the Cartesian representation of the point on the rotor disc ( 1 � �0
√

, ψ0) expressed in 

polar coordinates, as shown in Fig. 2-5.  

 

Fig. 2-5 [Skewed cylindrical description for the rotor wake.] 

 

  The $-coordinate in Fig. 2-5 is pointing in the opposite direction to the z-axis, and 

this is typical of the normal working state of a helicopter rotor31.  

 

  Incidentally, readers are encouraged to bear in mind that the representation of wake 

tube as an infinitely long skewed cylinder is a hugely simplified approximation; the 

flow in the rotor wake in reality becomes strongly turbulent within a distance of several 

rotor radii from the rotor. Figure 2-6 shows an example of more realistic description of 

the wake tube simulated by the vortex transportation method32. In this thesis, the 

skewed cylindrical representation is used following He and Peters, whereas there 

possibly is much room in the description of wake tube for further improvements and 

sophistications for the analytical representation.  

 

Fig. 2-6 [Wake tube description by the vortex transportation method.] 

                                                   
31 The case of an autorotative rotor (i.e. the windmill-brake state) will be discussed in Chapter 3.  
32 Figure 2-5 is kindly provided by Prof. Richard Brown of Glasgow University, with the copyright approved.  
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  Integrating Eq. (2.60) by �0  over [0, 1] and by ψ  over [0, 22], the orthogonality of 

the normalised associated Legendre functions of the first kind and trigonometric 

functions give the following relations,  
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                (2.61)     
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                (2.62)   

 

  From Eqs. (2.35.3), (2.35.4), (2.61) and (2.62), the elements of matrices L�rmcjn  and 

L�rmsjn  can be expressed as follows,  

 

Lmrc
nj

=
22V

1
∫

0

22
∫

0

1
∫

0

∞

�∂&

∂
 

P�mn (�)Q
�m
n (i&) cos(mψ)

)

d$ � P�r
j
(�0) cos(rψ)d�0dψ ,  

                (2.63) 
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                (2.64) 

 

  Regarding the definition of the gain matrix, Peters presented a different form(37), in 

which the mass-flow parameter, V , is excluded. This form is distinguished from Eqs. 

(2.63) and (2.64) by hat symbol, (^), following Peters’ notation.  
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  Note that L�0mcjn  has the coefficient of 1/4  while L�rmcjn  and L�rmsjn  have 1/2 . (See 

Appendix 2.8 thereabout.) Note also that when r = 0 , the associated Legendre function 

of the first kind reduces to the Legendre function of the first kind (see Appendix 2.5).  

The integrations of Eqs. (2.65.1) - (2.65.3) will be discussed in the next Subsection33.  

 

2.2.9 The Gain Matrix, L - part 2 - Skewed Cylindrical Representation for the Wake 

Tube 

  Using Eqs. (2.12.2) and (2.50), Eqs (2.65.1) - (2.65.3) can be rearranged as  
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22
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0
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∂Φmc(c)n
d$ � P�r
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(�0) cos(rψ)d�0dψ ,    (2.66.1) 
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∂Φms(c)n
d$ � P�r

j
(�0) sin(rψ)d�0dψ ,    (2.66.2)     

  L� 0mc
jn

=
42

1
∫

0

22
∫

0

1
∫

0

∞

∂z

∂Φmc(c)n
d$ � P�0

j
(�0)d�0dψ .               (2.66.3) 

 

  In spite of the apparent complicated forms of these expressions, it is shown by He 

that these integrations are analytically expressible in closed forms in Ref. (7), and his 

method will be revisited in this Subsection. First of all, it should be confirmed that He’s 

method is based on the following assumptions34: 

 

 (C1) the wake tube should be described as a skewed cylinder with the wake skew 

     angle of 1 to the rotor disc, as is shown in Fig. 2-535; 

 (C2) the wake skew angle, 1, should be small36.  

 

  Suppose the rotor wake is expressed in the shape of skewed cylinder following He, 
                                                   

33 With regard to the coefficient of L�
mr

nj , there are variations in the literature: for example, Refs. (92) and (37) 

introduce different L�
mr

nj  where the former is double as of the latter. See Appendix 2.9 about the variation in the 

definition.  
34 These assumptions are not mentioned at all in Refs. (1), (37), (92) and (112), and are mentioned only in an 
appendix of Ref. (7). Most readers who have not read Ref. (7) may thus perhaps struggle to execute the integrations 
of Eq. (2.65) and how to determine the elements of the gain matrix.  
35 As mentioned in the previous Subsection, assumption (C1) is controversial. However, it is highly likely impossible 
to analytically perform the complicated integrations in Eqs. (2.66.1) - (2.66.3) without the simplification. Even in 
more advanced augmented dynamic inflow models (e.g. Ref. (129)), in which more convoluted wake distortion is 
considered, only ad hoc coefficients modifying the Peter and He model are used to represent the wake distortion. It is 
likely that this is due to the hopeless complexity of those integrations when incorporating the wake distortion into the 
analytical calculation at this stage.  
36 In high speed forward flight, the wake skew angle cannot be considered small. Thus for this flight situation, the 
justification for assumption (C2) also weakens. However, the validity of this assumption is not discussed in any of the 
previous studies, although the Peters and He model is widely used for flight dynamics applications even in full 
forward flight condition. The assumption shall be further discussed in Chapter 4.  
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these integrations can be considered as volume integrations throughout the skewed 

cylindrical domain shown in Fig. 2-5. The one-dimensional $-coordinate is defined 

inside the skewed cylinder along a streamline. A point inside the skewed cylinder, 

(x, y, z), can be described by $  and (x0, y0), which is a specific point on the rotor disc 

from which the reference streamline develops in the downstream direction (see also 

Appendix 2.2).  

  x = $ sin1+ x0 ,            (2.67.1) 

  y = y0 ,              (2.67.2) 

  z = � $ cos1,            (2.67.3) 

where 

  x0 = � r�cos ψ ,           (2.68.1) 

  y0 = r�sinψ .            (2.68.2) 

 

  Equations (2.67.1), (2.67.2) and (2.67.3) in turn give the following relations,  

  d$ = �
cos1

1
dz,           (2.69.1) 
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+
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∂
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∂ � cos1
∂z

∂
.     (2.69.2) 

 

  Note that cos 1�=0  is necessary when deriving Eq. (2.69.1) from Eq. (2.67.3), thus 

edgewise flight (1 = 2/2) should be excluded from the model hereinafter37.  

  From Eq. (2.69.2),  
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1 �
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∂
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  Using Eq. (2.70), Eq. (2.66.1) can be rearranged as 
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37 However, the resultant model based on these equations will later be extended up to 1 = 2/2  owing to the small 
wake skew angle assumption. The extension of the model apparently contradicts the necessary condition for 
rearranging Eq. (2.67.3) to Eq. (2.69.1). This author will discuss this point in depth in Chapter 4.  
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  The first term on the right-hand side of Eq. (2.71) can be straightforwardly integrated 

as  

  (first term) = �
22 cos 1

1
∫

0

22
∫

0

1
�

Φmc(c)n

�∞

0

� P�r
j
(�0) cos(rψ)d�0dψ   

                =
22 cos 1

1
∫

0

22
∫

0

1

Φmc(c)n




$=0

� P�r
j
(�0) cos(rψ)d�0dψ    

                =
22 cos 1

1
∫

0

22
∫

0

1
 

P�mn (�0) cos(mψ)

)

P�r
j
(�0) cos(rψ)d�0dψ  

             =
2 cos 1

1
<mr<nj.            (2.72) 

  Note that Φmc(c)n




$=∞

= 0  by applying the boundary condition (B1). Using Eq. 

(2.69.1), the second term on the right-hand side of Eq. (2.71) can be rearranged as  
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                (2.73)  

  The same discussion can be applied to Eq. (2.66.2),  
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  Equation (2.66.3) is a special case of Eq. (2.66.1) in which r = 0 . In summary, Eqs. 

(2.66.1) - (2.66.3) can be rearranged as follows,   
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2.2.10 The Gain Matrix, L - part 3 - The Pressure Function  
  From Eq. (2.12.2), Φmc(c)n  and Φms(c)n  can be expressed as follows,  
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  Note that the partial derivative with respect to x  can be expressed in polar 

coordinates as  
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  Equations (2.78.1) and (2.79) yield the expression of the successive differentiation of 

Φmc(c)n  with respect to x .  
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  For example, the first and second derivatives of Φmc(c)n  and Φms(c)n  are expressed as 

follows38,  
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2.2.11 The Gain Matrix, L - part 4 - The Small Wake Skew Angle Assumption 

  When the flight condition is close to axial flight, the wake skew angle, 1, can be 

regarded sufficiently small, and the trigonometric functions can be approximated as 

follows,  

  cos1 =
1 +X2

1 �X2

= (1 �X2)(1 +X2)�1 ≃ (1 �X2)2 ≃ 1 ,   (2.83.1) 

                                                   
38 Reference (7) has a typographical error in Eq. (2.81.2) 
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  sin1 =
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2X
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where  

  X = tan
2

1
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  Using Eqs. (2.67.3) and (2.83.3), the pressure function can be expanded in the form 

of a Taylor series around (x0, y0, 0) to describe the pressure field in the neighbourhood 

of the rotor disc,  
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  Equations (2.79), (2.83.1), (2.83.3) and (2.84) allow Eq. (2.77.1) to be rearranged as 
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  Regarding the integration of ψ  in Eq. (2.85), only certain combinations of r, m  and 

k can give non-zero values since  
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where p = |r| + |m| + |k + 1| .39 For non-zero elements of L� rmc
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, the possible combination 

is either of the following two cases: when  r > m ,  	 r �m � (k + 1) = 0 ; when r < m , 

	 r �m 	 (k + 1) = 0 . These two cases can be unified as a single expression of k + 1  as 

k + 1 = 	 (r �m) = |r 	m| , and thus Eq. (2.85) can be further simplified as 

 

L� rmc
jn

=
2

1
<rm<jn +

2

1
X|r	m|

∑

k=0

∞ ∫

0

1

P�r
j
(�)

∫

�∞

0
�
∏

q=0

k �

�
∂r�

∂
+

r�

	m + q
�
�

k!

zk
P�mn (�)Q

�m
n (�)dzd� . 

                (2.87)   

 

  Regarding the right-hand terms of Eq. (2.87), it is convenient to define the following 

two functions,   

 

  Λrm
jn
=

∫

0

1

P�r
j
(�)

∫

�∞

0 �

�
∂r�

∂
+

r�

	m�
P�mn (�)Q

�m
n (�)dzd� ,    (2.88.1) 

  f(r�) = f(�) =

∫

�∞

0 �

∂r�

∂
+

r�

�m�
P�mn (�)Q

�m
n (�)dz.     (2.88.2) 

  

  Equations (2.88.1) and (2.88.2) are useful when working on the k = 0  case of Eq. 

(2.87). Equation (2.88.2) yields   

 

  
dr

df(r)
=

∫

�∞

0 �

∂r2
∂2 �

r

m

∂r

∂ 	
r2
m
�

P�mn (�)Q
�m
n (�)dz   

        =
∫

�∞

0 �

�
∂z2
∂2
+

r

�m � 1
∂r

∂
+

r2
m2 	m�

P�mn (�)Q
�m
n (�)dz   

        = �
∫

�∞

0

∂z2
∂2
P�mn (�)Q

�m
n (�)dz + r

�m � 1
f(r),     (2.89) 

                                                   
39 Peters and He used the compound sign of 	 instead of modulus for Eq. (2.85) in Refs. (7) and (37). However, for 
example, 	 r 	m  is conventionally interpreted as either + r +m  or � r �m , excluding + r �m  or 
� r +m . Since the combination of + and - is herein completely arbitrary, this author believes that modulus signs are 
more appropriate for use in Eqs. (2.85) and (2.86).  
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where it is implied that the pressure function satisfies Laplace’s equation,    

 

    △Φmc(c)n =

�

∂z2
∂2
+
∂r2
∂2
+
r

1

∂r

∂ �
r2
m2
�

P�mn (�)Q
�m
n (�) = 0 .     (2.90) 

 

  Note that the first term on the right-hand side of Eq. (2.89) can be transformed as  

  

  
∫

�∞

0

∂z2
∂2
P�mn (�)Q

�m
n (�)dz = dz

d
[

P�mn (�)Q
�m
n (�)

]
z=0

z=�∞
=
�Kmn

1
P�mn (�).  (2.91)  

 

  Equations (2.89) and (2.91) result in a linear ordinary differential equation for f(r).  

 

  
dr

df
+

r

	m + 1
f +

�Km
n

1
P�mn (�) = r	m+1

1

dr

d
(r	m+1f) +

�Km
n

1
P�mn (�) = 0 , (2.92.1) 

where 

  Km
n = 2

2
Hmn = 2

2 �
(n +m)!!(n �m)!!

(n +m � 1)!!(n �m � 1)!!
.       (2.92.2) 

 

  Equation (2.92.1) is easy to solve analytically, and f(r) is obtained as  

 

  f =
r�	m+1
1
�∫

0

r�

�Kmn

r�	m+1
P�mn (�)dr�+ C

�

,       (2.93)    

 

where C  is an arbitrary constant. Since r�= 1 � �2
√

, Eq. (2.93) can be rearranged as 

follows upon using dr� =
1 � �2

√
� �

d� = �
r�

�
d� ,  

 

  f =
r�	m+1Km

n

1

�
∫

0

� r�	mP�mn (�)d� + C

�

.        (2.94.1)  

 

  Especially when k = 0, m = r + 1 ,   

 

  f =
Km
n

r�m�1�∫

0

�

r��mP�mn (�)d� + C

�

.        (2.94.2) 
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  Note that the normalised Legendre function of the first kind satisfies 

 

  r��mP�mn (�) = �mn

�m�1
n �

d�

d
�

� r��m+1P�m�1
n (�)

�

.       (2.95) 

 

  By Eq. (2.95), Eq. (2.94.1) can be further rearranged as  

 

  f =
Km
n

r�m�1�∫
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        = �
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�

+
Km
n

r�m�1
C     

        =
Km
n

1 �
�mn

�m�1
n

P�m�1
n (�),          (2.96) 

 

where the integration constant of C  is chosen as C =
�mn

�m�1
n
P�mn (0)  so that f(0) = 0 . 

Equation (2.88.1) can be thus simply expressed as 

 

  Λrm
jn
= �

Km
n

1 �
�mn

�r
j
∫

0

1

P�r
j
(�)P�rn(�)d� .       (2.97) 

 

  Recall that this is only for the case that m = r+ 1 . Equation (2.97) gives the explicit 

representation of Λrm
jn

 in accordance with the relation between r,m, j  and n:   

 

（i）n < r, r +m � 1 mod.2 ;  
  P�rn(�) � 0, Hr

n
� 0 ,  

   ∴   Λrm
jn
= 0 ,             (2.98.1) 

 

（ii）m > r, n � r, r +m � 1 mod.2 ;  

  Λrm
jn
= (� 1) 2

n+j�2r+1

2

2 �
Hm
nH

r

j

√

Hrn �
(j� n)(n + j+ 1)
(2j+ 1)(2n + 1)

√

,    (2.98.2) 
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（iii）n � r, m > r, r +m � 0 mod.2 ;  

  Λrm
jn
= <jn

Hm
n

Hr
n

√
√
√
√ ,           (2.98.3) 

 

（iv）n < r, m > r, r +m � 0 mod.2 ;  

  Λrm
jn
= (� 1) 2

n+j�2r

Hm
nH

r

j

√
1 �

(n + r)!!(r � n � 1)!!
(n + r � 1)!!(r � n � 2)!! �

(j� n)(n + j+ 1)
(2j+ 1)(2n + 1)

√

.  

                (2.98.4) 

 

2.2.12 The Gain Matrix, L - part 5 -The Elements in Closed Forms 

  Using the results of the previous Subsection, the integrals of Eqs. (2.66.1) - (2.66.3) 

can be explicitly represented in the following forms(7),  

 

  [L� 0m
jn
]c = (Xm)[Γ0m

jn
] ,          (2.99.1) 

  [L� rm
jn
]c = [X|r�m| + (� 1)min(r,m)X|r+m|][Γrm

jn
] ,      (2.99.2) 

  [L� rm
jn
]s = [X|r�m| � (� 1)min(r,m)X|r+m|][Γrm

jn
] ,      (2.99.3) 

 

where Γ is a function defined as follows,   
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∞
Ar
jl
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.          (2.100) 

 

  Note that Γ takes different values depending on whether r +m  is odd or even 

  

(i) r +m � 0 mod.2 ;  
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      =
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(ii) r +m � 0 mod.1 , j = n 	 1 ;  
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(iii) r +m � 1 mod.2 , j �=n 	 1 ;  

  Γrm
jn
= 0 .             (2.101.3) 

 

  Note that Eqs. (2.101.1) - (2.101.3) indicate that every other element of the gain 

matrix, whether moving along a row or a column, is zero (i.e. the matrix looks like a 

chessboard). Note also that the only variable of the gain matrix is the wake skew angle, 

1. Some specific examples of Eqs. (2.101.1) - (2.101.3) are shown below, using both 1 
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and :e40,  

 

  L�00c
11
=
2

3
,             (2.102.1) 

  L� 01c
12
= �

10
√22 tan

2

1
= �

10
√22

1 + sin:e

1 � sin:e
√

,      (2.102.2) 

  L� 10c
21
=

10
√22 tan

2

1
=

10
√22

1 + sin:e

1 � sin:e
√

 ,       (2.102.3) 

  L� 11s
22
=
4

5
�

1 + tan2
2

1
�

=
2(1 + sin:e)

5 ,       (2.102.4) 

  L� 11c
22
=
4

5
�

1 � tan2
2

1
�

=
2(1 + sin:e)

5 sin:e ,        (2.102.5) 

 

where the following trigonometric formulae are used.  

 

  tan2
2

1
=
1 + cos 1

1 � cos 1
=
1 + sin:e

1 � sin:e,        (2.103.1) 

  1 + tan2
2

1
=
1 + cos 1

2
=
1 + sin:e

2 ,       (2.103.2) 

  1 � tan2
2

1
=
1 + cos 1

2 cos 1
=
1 + sin:e

2 sin:e .        (2.103.3) 

 

  The simplest example of the gain matrix is a 3 � 3  matrix for the three-state model, 

which comprised only those elements in which r = 0, m  is either 0  or 1  depending 

on r +m mod.2 , and j = r + 1, n = m + 1 .  
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                (2.104) 

 

                                                   

40 In Ref. (28), the effective angle of attack, :e = 2
2 � 1= tan�1





@

?


, is used instead of 1 in the representation of 

the gain matrix. Unless reference is made to Eqs. (2.103.1) - (2.103.3), it may appear that the gain matrix for Chen’s 
model has quite different entries from those in which the wake skew angle is used. He also recommended in Ref. (7) 
that the effective angle of attack should be used instead of the wake skew angle in relation to Peters and HaQuang’s 
non-linear model, but the reason is not therein stated. This author believes that the difference is not mathematically 
essential so far as Eqs. (2.103.1) - (2.103.3) are valid.   
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  In Eq. (2.104), A0c
1
, A1s
2

 and A1c
2

 should be associated with an appropriate lift theory. 

References (7), (37), (92) and (112) describe some examples of the possible lift theories.  

 

 

2.3 The Pitt and Peters model  
  The Pitt and Peters model(1) is a predecessor to the Peters and He model, but is still 

arguably one of the most popular dynamic inflow models widely used today. Although 

these two models look similar at a glance, the mathematical derivation and the resultant 

matrices are quite different, and the relation between these two models has not been 

fully explained in the pertinent literature. Reference (101) should be a rare reference 

which shows that the Pitt and Peter model forms a special case of the Peters and He 

model for axial flight cases, but for other flight scenarios between these two models has 

not been fully theoretically elucidated, and the correlation was shown only 

experimentally41.  

  In this Section, the relation between the Pitt and Peters model and the Peters and He 

model shall be theoretically examined aiming to make clear the connection between the 

two models.  

 

2.3.1 The Apparent Mass Matrix, M   

  The main difference between the two models lies in the fact that while in the Peters 

and He model the induced flow is associated with lift coefficients, Amn , in the Pitt and 

Peters model, the induced flow is associated with rotor loadings, CT, CM  and CL. 

  The thrust coefficient is defined as  

 

  CT �
∫∫

ΦdA�



&=0,�= 1�r�2

√ ,         (2.105) 

where 

  Φ(�, &, ψ, t�) =
∑

m=0

∞ ∑

n=m+1,m+3,...

∞
Pmn (�)Q

m
n (i&)

[

Cmn (t�) cos(mψ) +D
m
n (t�) sin(mψ)

]

.    

                (2.106) 

  Since those terms in which m �=0  will be zero when integrated over [0, 22]  with 

respect to ψ , Eq. (2.105) simply results in 

                                                   

41 The Pitt and Peters model was seldom theoretically compared with the Peters and He model, in a published paper 
available, despite other wake models were compared with the Peters and He model to validate the model(92). In fact, 
References (63) and (101) are only references, to the best knowledge of the present author, in which the relationship 
between these two models is discussed. However, the discussion is limited to an experimental result, and the 
mathematical relationship is not clarified at all.  
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  CT =

∫∫

ΦdA�    

         =
2

1
∫

0

22
∫

0

1{

r� 1 � r�2
√

C0
1
�
3

1
r� 1 � r�2
√

(2 � 5r�2)C0
3
� ...)dr�dψ  

       =
3

4
C0
1
.             (2.107) 

 

  Note that as long as Eq. (2.107) is satisfied, any distribution of CT will suffice 

because all terms which contain C
0
k  for k � 3  will vanish when integrated over [0, 1]  

with regard to r�. Thus, C0k  (k � 3) should be determined by extra boundary conditions 

on the rotor pressure when necessary. Figure 2-7 shows two examples of the possible 

pressure distribution where Eq. (2.107) is satisfied42: the top diagram is of the simplest 

case where only C01  term is considered and thus Φ = 1 � r�2
√

; and the bottom is the 

next simplest case where C01  and C03  terms are considered with an additional 

boundary condition that the pressure should be zero at the hub centre, Φ = 0


r�=0

, i.e. 

Φ =
2

5
r�2 1 � r�2
√

.  

 

 

Fig .2-7 [Lift distributions on a blade described by the associated Legendre function; the 

first and second harmonics.] 

 
                                                   
42 The Pitt and Peters model is fundamentally based on actuator disc theory and momentum theory. Both actuator 
disc theory and momentum theory are independent of detailed rotor information such as number of blades, planform 
of blades, airfoil and the 3-dimensional pressure distribution on the blades. What is required in the Pitt and Peters 
model is thus only the mean value of the pressure working on the rotor, and this gives a variety of possible pressure 
distributions, so far as they give the same hub loadings.  
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  On the other hand, CT is related to Amn  as follows,  

 

  CT �
2

1
∫

A

LdA� =
2

1
∫

0

22
∫

0

1

P�0
1
(�)A0c

1
(t�)r�dr�dψ  

         =
2

1
∫

0

22
∫

0

1

3
√

r 1 � r2
√

dr�dψ � A0c
1
(t�)    

       =
3

√2 A0c1 .            (2.108)   

 

  Regarding the definition of lift coefficients of higher harmonics (i.e. roll and pitch 

moments), Mangler suggested the following form(5,48),   

 

  L(r�, ψ) =
2

1
C0 + CL sinψ + CM cos ψ + C2L sin 2ψ + C2M cos 2ψ + � � � .  

                (2.109)  

 

  However, Peters did not mention in the literature the factor of 1/2  appearing in the 

first term. It is thus reasonable to assume that the lift coefficients of Pitt and Peters 

model are defined as follows,  

 

  L(r�, ψ) = C0 + 2(CL sinψ + CM cos ψ + C2L sin 2ψ + C2M cos 2ψ + � � �).    

                (2.110)  

 

  Note that the difference in the definition is of course minor, having no influence on 

results so long appropriate attention is paid to these factors43. Coefficients CL and CM 

can be associated with lift coefficients, A1s
2

 and A1c
2

, respectively44,  

 

 

 

                                                   
43 Reference (37) does not have a clear definition of lift coefficients, while Reference (1) has a typographical error in 
the calculation of the lift coefficients. At least in those studies of Peters that appear in the bibliography of this thesis, 
the lift coefficients are not explicitly defined. There are some other variations in the definition(27)(86), and this situation 
should confuse readers.  
44 Higher harmonics can be defined and determined in the same manner when required. Examples include 

C2L �
2

1
∫

A

L(� r2 sin 2Ψ)dA� �
105

√8 A2s
3
(t)  and C2M �

2
1
∫

A

L(� r2 cos 2Ψ)dA� =�
105

√8 A2c
3
(t).  
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  CM �
2

4
∫

A

L(r�, ψ)(� r�cos ψ)dA�  
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4
∫

0
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∫

0

1

P�1
2
(�)A1c

2
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15
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  In the Pitt and Peters model, the induced flow is also considered in the following 

form,  

 

  w = ?0 + ?1sr sinψ + ?1cr cos ψ + ?2sr
2 sin 2ψ + ?2cr

2 cos 2ψ + � � � .   

                (2.113) 

  Equating Eqs. (2.113), (2.22) and Eq. (2.36) yields  
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1
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√
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1
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  ?1s �
2

4
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A
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√
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2
(t�),      (2.115) 

  ?1c �
2

4
∫

A

w(r�sinψ)dA = � 2 15
√
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Thus,   
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                (2.117) 
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  The matrix appearing on the right-hand side of Eq. (2.117) is well-known as the 

apparent mass matrix in the Pitt and Peters model(1)45. It is thus confirmed that the 

apparent mass matrix in the Pitt and Peters model is consistently and hierarchically 

implied as a special case of the Peters and He model.  

 

2.3.2 The Gain Matrix, L 

  For the gain matrix, Eq. (2.25) is assumed to represent the inflow distribution in the 
previous discussion. For a special flight case where 

∂t�
∂
= 0  (steady) and z = � $  (axial 

flight), Eq. (2.15) results in a simple forms,  

 

  Φ(t) = 0 ,             (2.118)  

  Φ = Φ(c) ,             (2.119) 

  w �
V

1
∫

∞

0

∂z

∂Φ(c)
d$ = �

V

1
Φ


&=0

.         (2.120) 

 

  From Eqs. (2.6.1) and (2.120),  

 

  ?0 =
2

1
∫

0

22
∫

0

1

wr�dr�dψ  

      =
22V

1
∫

0

22
∫

0

1∑

m=0

∞ ∑

n=m+1,m+3,...

∞
P�mn (�)Q

�m
n (0)

[

Amccn (t�) cos(mψ) + Amscn (t�) sin(mψ)
�

r�dr�dψ  

      =
V

1
∫

0

1 ∑

n=1,3,5,...

∞
P�0n(�)r�dr� � =

0c(c)
n (t�).       (2.121)  

 

  Especially for n = 1 ,  

  ?0 =
V

1
∫

0

1

P�1(�)r�dr� � A0c(c)1
(t�) =

2V

1 � =0c(c)
1

.      (2.122) 

 

  Indeed, the proportionality coefficient obtained from Eq. (2.122), 1/2 , agrees with 

the L11  entry of the gain matrix in the Pitt and Peters model. This result also agrees 

with the relation between CT, VT (the non-dimensionalised total flow at the rotor 

plane) and ?0  for a steady axial flight case, in which they can be simply obtained from 
momentum theory, Eq. (2.123), if replacing V  and =0c(c)

1
 in Eq. (2.122) with VT and 

CT, respectively,  
                                                   
45 In some references such as Ref. (107), a matrix having � 16/452  for the (2, 2) and (3, 3) entries is 
introduced as the apparent mass matrix of the Pitt and Peters model. This difference in the sign is caused by a 
difference in the definitions of CL  and CM .  
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  CT = 2VT?0 ,             (2.123) 

 

  This is not an unexpected coincidence because steady axial flight is presupposed in 

the Pitt and Peters model to determine the L11  entry. However, the L11  entry of the 

gain matrix obtained from Eq. (2.122) should not be adopted as it is in the unified 

model, because the induced flow in Eq. (2.122) is represented by the Fourier coefficient 

of = , which is different from :  and ;  in the previous Subsection.  

  

  In Ref. (1), the Pitt and Peters model was derived by determining each element of the 

apparent mass and gain matrices by presupposing a specialised flight case, such as 

steady axial or edgewise flight. Those entries are collected together into the matrices at 

the final stage(1), but the necessary transformation for unifying the model (recall 

Subsection 2.2.6) is arguably lacking in the derivation, resulting in a model in which 

vectors (:, ;)  and (=, ̟)  are mixedly used to represent the same induced flow 

distribution.  

 

  Whereas some flight cases which are dominated by either Φ(c)  or Φ(t)  alone (i.e. 

only one of (:, ;) or (=, ̟) is therein dominant and the other is negligible) may be 

practically described well by the Pitt and Peters model, this author therefore doubts for 

the reason above that there is a problem with the representation of the inflow 

components in the Pitt and Peters model.  

 

 

2.4 The Mass-flow Parameter and Non-linear Versions  
  The flow parameter in the Peters and He model, V , can be the non-dimensionalised 

freestream speed, V∞. However, it is better to account for energy added to the flow 

from the rotor in order to describe the induced flow in the wake, and Ref. (1) 

recommends to replace V  with the mass-flow parameter, Vm, which is defined as  

 

  Vm =
@2 + ?2

√

@2 + ?(? + ?m)
=

VT

@2 + ?(? + ?m),        (2.124) 

 

where @, ?  and ?m are advance ratio, the total inflow, inflow due to the rotor thrust, 

respectively. Figure 2-8 shows the relation between these parameters.  
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Fig. 2-8 [Inflow components in the wind axes.] 

 

  Note that these parameters are defined in the wind axes. In Fig. 2-8, ?f  is the normal 

component of V∞ and satisfies  

 

  ? = ?f + ?m.             (2.125) 

 

  In a steady case, ?m is simply given by momentum theory and is equal to the 

uniform component of the induced flow(1,92),  

 

  ?m =
2VT

CT
= ?0 .             (2.126)  

 

  However, in an unsteady case, ?m does not generally coincides with ?0, and is 

defined by the first row of the gain matrix as(107)  

 

  ?m =
2

1
(1, 0, 0)

[

L

]�1 ?0
?1s
?1c

)

.         (2.127) 

 

  With regard to the flow parameter, Peters and HaQuang proposed an extended 

version for the Pitt and Peters model(107), which is obtained by the following process:  

 

i. swapping the flow parameter, V , with the mass-flow parameter matrix,   

   V �→
VT 0 0
0 Vm 0
0 0 Vm







 ;         (2.128) 

ii.  treating all variables as total flow rather than perturbation.  

 

  Due to the non-linearity between the mass-flow parameters and inflow components, 

this model is called the non-linear version of the Pitt and Peters model or Peters and 
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HaQuang’s non-linear model.  

 

  This modification should give a better description of induced flow, because the thrust 

is more directly related to the total inflow and the induced velocity based on momentum 

theory than the roll and pitch moments are. The roll and pitch moments are more 

sensitive to the variation in the inflow, and this is indeed the case with this formulation46. 

The process (ii) above is done by integrating the perturbation version of Pitt and Peters 

model over the rotor disc.  

 

  The Peters and He model can also be extended to its non-linear version by replacing 

the flow parameter with the mass-flow parameter matrix, in which ?m is defined as  

  

  ?m =
3

√2 (1, 0, 0, ..., 0)
[

L� rmc
jn

]�1�
amn

�

.        (2.129) 

 

  This relation can be derived from Eq. (2.108), (2.126) and  

 

  ?0 ≃ 3
√

a�0
1
             (2.130) 

 
where a�0

1
 is the steady uniform induced flow(1,7). This approximation is introduced in 

Ref. (7). The non-linear version of Pitt and Peters model is verified in Refs. (62) and 

(102). The non-linear version of the Peters and He model is verified in Refs. (7), (92) 

and (112) and is widely used today.  

 

  The present author has no objection to the validity of those non-linear models at all, 

but is of the personal opinion that the naming of “non-linear” might be misleading; in 

the context of fluid mechanics, the term of non-linearity is usually associated with the 

convection term in the Euler equations or the Navier-Stokes equations. The non-linear 

dynamic inflow models are not fully non-linear in this sense, because the derivation of 

the model essentially depends on the linearised Euler equations. (The process of 

non-linearisation is always a process of deleting infinitesimal variables of higher orders, 

and it is impossible to recover those deleted terms at a later stage.) The non-linearity in 

the non-linear dynamic inflow models indicates only the non-linear relationships 

                                                   
46 Reference (71) discusses in its Section 10-6 why a different flow parameter for rotor moments than that for the 
rotor thrust is required for unsteady flight cases.  
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between flow parameters and rotor forces considering momentum theory, and thus this 

appellation may be confusing.  

 

 

2.5 Discussion  
  In this Chapter, the Peters and He model was thoroughly reviewed in detail. In order 

to explore the possibility of applying the dynamic inflow model to autorotative rotors, a 

comprehensive examination of the theoretical derivation of the theory from the first 

principles is essential together with the consideration of the assumptions therein used. 

  In the course of examining the derivation of the model, the assumptions upon which 

the Peters and He model is based, (A1) - (C2), are clearly identified in this Chapter.  

 

  Among these assumptions, the small wake skew angle assumption, (C2), is arguably 

the most objectionable because the wake skew angle can be quite large in forward flight, 

and indeed, the Peters and He model was intended to be used for a wide range of wake 

skew angles from 0
  to 90
 . Since the assumption forms a fundamental step of the 

derivation, this should be considered as a contradiction, and hence lucid explanation 

must be made concerning its validity. Unfortunately, the literature suggests no answer to 

this contradiction. The present author shall discuss this problem in Chapter 4 in depth.  

 

  With reference to past studies, it appears that the present thesis is the first study to 

consider the mathematical relation between the Pitt and Peters model and the Peters and 

He model. The present Chapter casts some doubt over whether the Peters and He model 

hierarchically includes the Pitt and Peters model. It may be premature to make a 

conclusive remark about this matter because this is a type of problem which needs to be 

concluded through a plural of more concrete proofs by authorities including the original 

authors. It is hoped that this thesis would provoke further discussion of this issue.  
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2.6 Chapter Summary  
  This Chapter was written with the objective of providing a sound theoretical basis for 

the subsequent Chapters of this thesis. Chapters 3 and 4 are essentially based on the 

theoretical considerations of this Chapter, and thus it is believed that the objective above 

is attained.  

  This Chapter can be summarised as follows:  

 

1. The derivation of Peters and He model has been thoroughly re-examined; 

2. All assumptions which are used in the derivation have been clearly identified;  

3. The limitations of these assumptions and possible modifications have been 

considered;  

4. The Pitt and Peters model has been reviewed in relation to the Peters and He model, 

with some doubt cast on the statement in Ref. (102) that the Peters and He model 

hierarchically includes the Pitt and Peters model;  

5. The logical inconsistency of the small wake skew angle assumption has been 

described.
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Chapter 3  

 

Dynamic Inflow Modelling for Autorotative Rotors  

 
N.b.) The content of this Chapter is shortened and published as Ref. (168).  

 

3.1 Introduction 
  In the history of the development of dynamic inflow modelling, scant attention has 

been paid so far in analysing autorotative rotors. References. (9), (10) and (151) may be 

recherché examples in which the Pitt and Peters model is used for rotors in the 

windmill-brake state. Still, little theoretical attention as to the applicability of the model 

was paid.  

 

  Important theoretical attempts recently made to extend the dynamic inflow model 

include Refs. (169) and (170), in which the original model was enhanced to cover the 

vortex-ring and windmill-brake states. Although Refs. (169) and (170) are mainly 

focused on the vortex ring state and its smooth transition in the context of helicopter 

applications, such theoretical works should also be of great importance for gyroplane 

engineers.  

 

  The aim of this Chapter is to identify a necessary modification to the dynamic inflow 

model when applied to an autorotative rotor through reviewing the derivation of 

dynamic inflow model from the first principles. Whereas the Peters & He or Pitt and 

Peters model is kept in mind as a specific example in the following Sections, the 

essence of the discussion is not limited to any particular model, but can be applied for 

other variations of dynamic inflow models in general. Results of numerical simulations 

are also presented to compare the original and modified models.  
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3.2 The Applicability of the Dynamic Inflow Model to an Autorotative 
Rotor  
 

3.2.1 Examination on Matrix Elements of Dynamic Inflow Models  

  There is a major geometric difference between a powered helicopter rotor and an 

autorotating rotor:  

 

 (D1) the free stream is coming toward an autorotating rotor from below, while       

     it is coming from above to a rotor in normal working state (see Fig. 2-3).  

  

  Although the terms of the normal working state and the windmill-brake state are 

already used in Chapter 1 to describe the rotor states of the helicopter and the gyroplane, 

they need to be given more strict definitions here; the state in which a rotor is receiving 

the incoming flow from below is hereinafter referred to as the windmill-brake state, and 

the state in which a rotor is receiving the inflow from above is referred to as the normal 

working state following Ref. (5)47. Point (D1) above can be considered as a fundamental 

geometric dissimilitude between windmill-brake and normal working states, and how 

the difference in the underlying configuration is reflected on the equations of the 

dynamic inflow model is to be discussed in this Chapter. As was seen in Chapter 2, the 

entire derivation of Peters and He’s dynamic inflow model is highly mathematical and 

complicated though, it is not necessary to trace each and every line of the derivation to 

examine the applicability of the model for autorotative rotors. What are required to 

discuss point (D1) above are only the base equations, viz., the linearised Euler 

equations,  

 

  
∂t

∂q � V∇q = �∇Φ,            (3.1) 

 

in which the flow components, q , are defined along a streamline coordinate, $ , whose 

positive direction is defined to be upstream. The reason why the second term on the 

left-hand side has the sign of minus is that the direction of V  is defined to be opposite 

                                                   

47   The definition of these geometric attitudes of a rotor towards the inflow should be independent of whether or 
not the rotor speed is mechanically retained constant. However, the normal working state conventionally implies that 
the rotor is governed by an engine, and the wind-mill brake state implies that the rotor is not mechanically driven. 
Indeed, the fact that an autorotative rotor is not mechanically driven is another major difference from an powered 
helicopter rotor, but the DOF in the rotor speed can be implemented in a mathematical model with regard to blade 
dynamics (see Fig. 1-2), and thus any change in the rotor speed can be calculated in the loop in a quasi-steady manner. 
Thus, this thesis does not pay special attention to the extra DOF in the rotor speed of an autorotative rotor.  
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to the positive direction of $-axis. Since this is the case both for the normal working 

and windmill-brake states by definition (see figure 2-2 about this comparison between 

two states of a rotor easier), the left hand side of Eq. (3.1) holds the same for both rotor 

states in the vector form.  

 

  When focusing only on the z-components of Eq. (3.1), it can be noticed that (i) the 

direction of lift against the free stream is different as is shown in Fig. 2-2, and (ii) the 

direction of the z-axis and the induced flow in the windmill-brake state are opposite to 

those in the normal working state. (Figure 2-2 is obtained by re-drawing Fig. 2-3 so that 

the rotor plane should be put horizontally and that the free stream should come from the 

upper left side of the rotor in the diagram.) The derivation of dynamic inflow models are 

based on the z-component of the linearised Euler equation, thus the model for the 

windmill-brake state needs to change the signs of both q  and Φ  in Eq. (3.1). This 

leads to the identical form with that for the normal working state, and therefore it can be 

ascertained that each element of the matrices in a dynamic inflow model holds the same 

both for normal working and windmill-brake states. 

 

  Note that the discussion above is not limited only to the Peters and He model, but 

also to other models such as the Pitt and Peters model as long as their derivations are 

based on the linearised Euler equations.  

 

3.2.2 Definitions of the Wake Skew Angle  

  In Fig. 2-2, the wake skew angle, 1, is defined as follows for both normal working 

and windmill-brake states(37),  

 

  1 = tan�1
?

@
(
(
(
(

(
(
(
(
.             (3.2)   

 

  Note that although the general matrix representation of a dynamic inflow model 

remains the same, the direction of such parameters as :  and 1 must be different 

because of the difference in the direction of inflow towards the z-axis of the airframe 

(see Fig. 2-2).  

 

  When applying a dynamic inflow model to the windmill-brake state, it may happen 

that one would misinterpret the inflow angle, : , should be in the range from 90o  to 

180o  for the windmill-brake state unless the definition of :  is changed. As a matter of 
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fact, Chen introduced a different definition of 1 from Eq. (3.2) in that it does not have 

the modulus(28), and thus according to this definition, the rotor angle of attack, : , 

should be in the range from 90o  to 180o  for the windmill-brake.  

 

 Chen's definition may look versatile at a glance, because the model could be used both 

for normal working and windmill-brake states without any changes in the definition so 

that angles of 0
 � 1 � 90
  and angles of 90
 � 1 � 180
 therein indicate the normal 

working and windmill-brake states, respectively. However, Chen's definition would 

entail unfavourable divergences of some gain matrix elements which contain tan(1/2) 

to ∞  at 1 = 180
 . Still, that 1  equals 180
  means axial descent cases in the 

windmill-brake state, which is practically quite a possible operational state for 

gyroplanes, and thus the unfavourable divergence has been a problem with dynamic 

inflow modelling when applying Chen’s formulation to autorotative rotors.   

 

  Intuitively, the windmill-brake state can be regarded upside-down to the normal 

working state (Fig. 2-2), and thus :  and 1 must be defined so as to come in the range 

of 0o  and 90o  for both states. The modulus sign in the definition should not be 

dropped off for this reason.  

 

3.2.3 Examination on the Mass-flow Parameter  

  Now the mass-flow parameter should be examined. The flow parameter V  is 

recommended to be replaced with Vm  in order to account for energy added in the 

wake by the rotor(1,7,66,92). The added energy can also be interpreted as the acceleration 

of inflow and the contraction of the wake tube in the normal working state. The 

mass-flow parameter defined for the normal working state is to be referred to as Vm+ 

hereinafter,  

 

  Vm+ � VT+ ?m
∂?m

∂VT  

     =
VT

@2 + (?f + ?m)(?f + 2?m)
=

@2 + ?2
√

@2 + ?(? + ?m),     (3.3) 

 

where the definition of ?m is given as Eq. (2.127).  

 

  However, the definition of Vm  should be changed for the windmill-brake state, 

because a rotor in the wind-mill brake state is not adding but receiving energy from the 
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free stream (this can be interpreted as the deceleration of inflow or the expansion of the 

wake tube). This shall be reflected upon the sign of the second term of Eq. (3.3), and so 

the mass-flow parameter for the wind-mill brake state should be defined as 

 

  Vm� � VT� ?m
∂?m

∂VT  

       =
VT

@2 + (?f + ?m)?f
=

@2 + ?2
√

@2 + ?(?� ?m).       (3.4) 

 

  The Vm defined for the windmill-brake state in this manner is to be referred to as 

Vm� hereinafter.  

  In Eqs. (3.3) and (3.4), ?  can consistently be defined as  

 

  ? = ?f + ?m,             (3.5)  

 

where ?m < 0  for the windmill-brake state and ?m > 0  for the normal working state. 

The difference in the sign of ?m is the reflection of the geometric difference between 

the two states. The following equations are intuitively evident from Fig. 2-2,  

 

 |?| = |?f| + |?m| ,     (for the normal working state)   (3.6) 

 

 |?| = ||?f| � |?m|| .    (for the windmill-brake state)   (3.7)  

 

  Note that the difference between Vm+ and Vm� is not naturally accommodated in the 

definition of Vm because the difference is the reflection of the physical difference in 

those two rotor states in terms of the energy flow, and thus this is independent of the 

choice of coordinate system48.  

 

3.2.4 Unified form of Vm+ and Vm� 

  The necessity of separating Vm  into Vm+  and Vm�  can be more mathematically 

enunciated than the physical and rather intuitive discussion in the previous Subsection. 

Differentiating V2
T
= @2 + ?2 = @2 + (?f + ?m)

2  with respect to ?m yields  

                                                   
48 If the sign of ?m  alone is changed, Vm+ and Vm� will mutually invert to each other. This can intuitively 
interpreted as the reflection of the fact that a rotor in the windmill-brake state can be regarded upside-down to a rotor 
in the normal working state. An error in the definition of ?m  would lead to wrongly swapping Vm+ and Vm�.  
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∂?m

∂VT
=
VT

?
= cos 1            (3.8) 

 

for the normal working state. Especially when in high-speed forward flight,  

 

  cos 1 ≃ sin: ≃ tan:.           (3.9)   

 

  Note that tan:  should be always positive due to the modulus sign in Eq. (3.2), and 

thus ?/VT in Eq. (3.9) is also required to be positive. When in the normal working state, 

this is indeed the case because VT > 0  and ? > 0 . However, ? < 0  when in 

autorotation. Hence, this further requires that cos 1 should be defined as |?|/VT in 

order to be consistent with Eq. (3.2), if it is supposed to cover both the normal working 

and windmill-brake states. Indeed, the minus sign on the right-hand side of Eq. (3.4) is 

equivalent to the modulus sign in effect.  

  In fact, Vm+ and Vm� can be unified by using modulus sign as  

 

  Vm	 � VT	 ?m
∂?m

∂VT
=

VT

@2 + ?2 + ?m|?| .        (3.10) 

 

  Equation (3.10) can consistently be used both in the normal working and 

windmill-brake states and is consistent with Eq. (3.2). In Ref. (104), Peters defined 

tan:  (Eq. (19), p.66) and reads, “:  is always positive, whether the flow is from 

above or below”. As discussed above, the mass-flow parameter should be defined as Eq. 

(3.10) to be consistent with Peters’ own definition of tan: , Eq. (3.2)49. Further 

discussion about this issue shall be held in Appendix 3.1.  

  

3.3 Numerical Simulation 
  The difference between Vm+ and Vm� came from rather an elementary and intuitive 

discussion, but this would appear to be the first time that the difference has been 

explicitly highlighted in relation to the dynamic inflow model. The comparison of Vm+ 

and Vm� is conducted by numerical simulation using a generic rotorcraft simulation 

code RASCAL at the University of Glasgow, which was already used for some 

studies(9,10,151,154,155), and whose validation was evident in Ref. (152). The non-linear 

version of Pitt and Peters model is used in the simulation model to describe the induced 

                                                   
49 The mass-flow parameter, Vm , first appeared in Ref. (66) and has been used in dynamic inflow models of Peters. 
However, its mathematical derivation is not elucidated in published papers.  
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velocity field, and local aerodynamic loads on a blade can be thereby given through 

blade element approach. It should be acknowledged that the algorithms are implemented 

in RASCAL by Dr. Stewart Houston at the University of Glasgow.  

 

  On the other hand, inertial loads are therein described by the Euler equations of rigid 

body as below.  

 
  Iflap(ω
 x� ωyωz)�mycgahingez = Mflap ,       (3.11) 

  Ipitch(ω
 y � ωxωz) = Mpitch,         (3.12)  

  Ilag(ω
 z� ωxωy)�mycgahingex = Mlag,       (3.13) 

 

where blades are considered rigid. Reference (152) is to be referred about the detailed 
derivation of ωx, ωy, ωz, ahingex  and ahingez .  

 

  The rotor forces and moments in the airframe coordinate system are represented by 

the integration of those moments and lift on each blade element. Using transform 

matrices, [T1], [T2]  and [T3] , from blade element coordinate system to the airframe one, 

rotor loads and moments can be written as 

 

  X = [T1]
�1∑

j=1

b [

[T2]
�1[T3]

�1
�
∑

i=1

b

Xelem

�]

,      (3.14) 

  L = [T1]
�1∑

j=1

b [

[T2]
�1rhinger�[T3]

�1
�
∑

i=1

b

Xelem

�]

+ (rhub � rcg)r�X ,  (3.15) 

             

where Xelem = X
aero

elem
+X

inert

elem
. See Appendix 3.2 about further details of these 

transformation matrices and the derivation of Eqs. (3.14) and (3.15). Based on those 

aerodynamic and inertial forces and moments, the control inputs vector, u , and state 

vector, x, are expressed in the state-space form,  

 

  
dt

dx
= [A]x + [B]u,          (3.16) 

where  

  x = t(u, v, w, p, q, r, B, >, ψ,Ω),        (3.17) 

or  

  x = t(u, v, w, p, q, r, B, >, ψ,Ω, v0, v1s, v1c),      (3.18) 
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wherein u =t (<r, &s, &c,Ωp)  for gyroplanes50. Note that the model can be linearised 

either in the classical 7 DOF rigid-body form with Eq. (3.17) when the inflow dynamics 

are effectively treated quasi-statically, or linearised in 10 DOF form with Eq. (3.18) to 

encapsulate inflow dynamics. In either case, Eqs. (3.11), (3.12) and (3.13) form a closed 

loop together with the dynamic inflow model. (Recall Fig. 1-2.)    

 

  Equation (3.16) comprises nearly one hundred non-linear ordinary equations, though 

the exact number depends on several parameters including the number of blades. The 

set of simultaneous differential equations is to be numerically solved by the 

Runge-Kutta method in RASCAL. Further detail about the code can be found in Refs. 

(34) and (152). Stability and natural response characteristics of a state described by Eq. 

(3.16) can be studied by the eigenvalues of the state matrix, [A] . When the real part of 

an eigenvalue is positive, the state (mode) is unstable. Likewise, when negative, then 

stable. The imaginary part of an eigenvalue means the modal frequency.  

 

 

3.4 Results from Numerical Simulation 
  The numerical simulation was computed to see how much the difference between 

Vm+ and Vm� would influence the induced velocity and flight controls under different 

trim conditions. Used therein are two types of rotorcraft: Montgomerie, which is a 

two-seater medium gyroplane, and Westland Puma (see Fig. 3-1), which is a much 

heavier helicopter. Their brief specifications are shown in Table 3-1.  

 

 

Fig. 3-1 [Montgomerie (left) and Westland Puma (right).]51 

 

                                                   
50 It is characteristic to the gyroplane that the propeller speed is in the control inputs vector.  
51 The left picture in Fig. 3-1 is reproduced from the webpage of Flight Dynamics Group at Glasgow University.  
The right picture is kindly provided by AgustaWestland, with copyright approved.   
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 Montgomerie Puma 

M  (kg) 

Ixx (kgm2) 

Iyy  (kgm2) 

Izz (kgm2) 

Ixz  (kgm2) 

b  

R (m) 

m  (kg) 

350 

73 

297 

224 

0 

2 

3.81 

15 

5810 

9638 

33240 

25889 

2226 

4 

7.498 

91 

Table 3-1 [Specification of the Montgomerie and Puma.] 

 

  Since the rotor of a gyroplane is always in the windmill-brake state, simulations for 

the Montgomerie were done over a wide range of practical forward flight speeds and 

descent rates. On the other hand, the Puma was assumed to be descending with a fixed 

collective pitch, which is the most practical case where a helicopter rotor enters the 

windmill-brake state, because helicopter rotors usually enter the windmill-brake state 

only in emergency situations such as sudden power failure, where collective pitch 

should be minimized so as to keep the rotor speed as high as possible. 

 

  Figures 3-2 to 3-8 are related to the Montgomerie: Fig. 3-2 shows the resultant 

variation between the magnitude of dimensional mass-flow parameters of vm+ and 

vm�; Fig. 3-3 to 3-8 show the influence of the difference in the mass-flow parameters in 

terms of forward flight speed and the descent rate against the inflow components, 

airframe attitudes and flight controls in trim, respectively.   
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Fig. 3-2 [Comparison of forward flight speed and mass-flow parameters, Montgomerie.] 

 

 

 

 

Fig. 3-3 [Comparison of forward speed and inflow components, Montgomerie.] 
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Fig. 3-4 [Comparison of forward speed and airframe attitude, Montgomerie.] 

 

 

 

 

Fig. 3-5 [Comparison of descent rate and inflow components  

at 50 knots, Montgomerie.] 
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Fig. 3-6 [Comparison of descent rate and airframe attitude at 50 knots, Montgomerie.] 

 

 

 

 

Fig. 3-7 [Comparison of descent angle and flight controls, Montgomerie.]  
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Fig. 3-8 [Comparison of forward flight speed and flight controls, Montgomerie.]  

 

 

  Figures 3-9 to 3-15 are related to the Puma. Figures 3-9 and 3-10 show the resultant 

variation between the magnitude of dimensional mass-flow parameters of vm+ and vm� 

with respect to the forward flight speed and descent angle, respectively.  

 

 
Fig. 3-9 [Comparison of forward flight speed and mass-flow parameters  

with collective pitch at 6.5
 , Puma in the windmill-brake state.] 
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Fig. 3-10 [Comparison of inflow velocity for Vm+ and Vm�with collective pitch at 6.5
 , 

Puma in the windmill-brake state.] 

 

 

  When comparing Eqs. (3.3) and (3.4), it can be predicted that when @ increases (i.e. 

high-speed flight or deep descent), the difference between Vm+ and Vm� would be 

smaller, because @  becomes dominant in the numerators. This indicates that the 

difference between Vm+ and Vm� should be larger in either low-speed flight or shallow 

descent. Indeed, Fig. 3-9 and 3-10 show this tendency. Through the comparison between 

the second terms in the numerators of Eqs. (3.4) and (3.5) (i.e. 

?(? + ?m) = (?f + ?m)(?f + 2?m)  and ?(? � ?m) = (?f + ?m)?f ), it can be said that 

Vm+ < Vm� when in descent (?f < 0) because ?f < ?f + 2?m and ?f + ?m < 0 . (Note that 

?m should always be positive by definition.) Both Fig. 3-9 and 3-10 are configured for 

full autorotation, and are indeed consistent with the observation above.  

 

  Figures 3-11 and 3-12 show the influence of forward flight speed with the fixed 

collective pitch at 6.5o  upon the airframe attitude and the cyclic controls in trim 

conditions, respectively. 
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Fig. 3-11 [Comparison of descent rate and airframe attitude, Puma.] 

 

 

 

Fig. 3-12 [Comparison of Forward Flight Speed and Flight Controls, Puma.] 

 

  The stability analysis was also conducted configuring Puma helicopter alone, for 

which detailed configuration data exist(171). It was trimmed in autorotative descents at 

the minimum collective pitch angle of 6.5 degree at the root.  
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 Figure 3-13 shows the magnitude of the lateral inflow component, v1s, calculated from 

Peters’ original formulation (i.e., with Vm+) and the modified dynamic inflow model 

(i.e., with Vm�) with respect to the descent angle. Figure 3-14 shows the stability 

characteristics in the lateral inflow mode, and Fig. 3-15 shows the stability 

characteristics in the uniform/longitudinal mode. The resultant eigenvalues are shown in 

Tables 3.2 to 3.5 for both 7 DOF and 10 DOF simulations. 

 

 

 

 
Fig. 3-13 [Comparison of lateral inflow component for Vm+ and Vm�.] 
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Fig. 3-14 [Lateral inflow mode; comparison for Vm+ and Vm�.]  

 

 

 

 

Fig. 3-15 [Coupled uniform/longitudinal inflow modes;  

comparison for Vm+ and Vm�.]  
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modes 7 DOF 10 DOF 

lateral / directional -1.7256±1.3189i -1.9149±1.4127i 

longitudinal  -0.5709±0.3350i -0.7909±0.9535i 

longitudinal  -0.2660±0.1519i -0.5179±0.0434i 

lateral  -0.4314 0.2128 

lateral / longitudinal  -0.1818 -0.1179 

longitudinal  0.8512 -0.7753 

wake (uniform / longitudinal) n/a -17.2634 

wake (lateral) n/a -2.4283 

wake (uniform / longitudinal) n/a 1.5525 

*n.b. - Longitudinal modes include the rotor speed mode. 

 

Table 3-2 [Linearised system eigenvalues - Vm+; 

35 KIAS, 3500 feet/min. vm = 3.6 m/s.]  

 

 

 

modes 7 DOF 10 DOF 

lateral / directional -1.6846±1.3975i -1.5493±1.4667i 

longitudinal  -0.6641±0.3103i -0.6123±0.1654i 

longitudinal  -0.2142±0.1743i -0.2982±0.3543i 

lateral  -0.4286 -0.2533 

lateral / longitudinal  -0.1727 -0.1444 

longitudinal  0.8726 0.8590 

wake (uniform / longitudinal) n/a -20.3226 

wake (lateral) n/a -7.1206 

wake (uniform / longitudinal) n/a -5.9260 

*n.b. - Longitudinal modes includes the rotor speed mode. 

 

Table 3-3 [Linearised system eigenvalues - Vm�; 

35 KIAS, 3500 feet/min. vm = 14.3 m/s.] 
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modes 7 DOF 10 DOF 

lateral / directional -0.9059±0.7283i -0.8938±0.7401i 

longitudinal -0.2615±0.3352i -0.2899±0.3151i 

longitudinal / lateral -1.5448 -1.4008 

lateral  -1.6468 -1.6973 

longitudinal -0.1229 -0.1233 

longitudinal  0.5407 0.5304 

longitudinal  0.1797 0.1654 

wake (uniform / longitudinal) n/a -11.9044±5.1166i 

wake (uniform / lateral) n/a -6.3293 

*n.b. - Longitudinal modes includes the rotor speed mode. 

 

Table 3-4 [Linearised system eigenvalues - Vm+; 

40 KIAS, 2250 feet/min. vm = 18.2 m/s.] 

 

 

 

 

modes 7 DOF 10 DOF 

lateral / longitudinal -0.9064±0.7283i -0.8958±0.7375i 

longitudinal  -0.2623±0.3344i -0.2915±0.3138i 

longitudinal / lateral -1.5955±0.0459i -1.4185 

lateral  n/a -1.6765 

longitudinal  -0.1229 -0.1233 

longitudinal  0.5411 0.5308 

longitudinal  0.1792 0.1644 

wake (uniform / longitudinal) n/a -12.9543±4.7248i 

wake (uniform / lateral) n/a -7.1681 

*n.b. - Longitudinal modes includes the rotor speed mode. 

Table 3-5 [Linearised system eigenvalues - Vm�; 

40 KIAS, 2250 feet/min. vm = 20.6 m/s.] 
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3.5 Analysis of the Results Obtained  
  Firstly, results about Montgomerie are to be discussed. The two mass-flow 

parameters are hardly different in Fig. 3-2 (the difference numerically calculated is only 

about 0.05 m/s), and the influence of the difference upon flight controls, airframe 

attitudes and induced flow are also negligible. (In point of fact, the largest differences 

numerically obtained are not more than 51.0 10−× % in the inflow components, and less 

than 42.5 10−×  deg. in the airframe attitude. These are not beyond the possible 

numerical errors in magnitude, and the differences are hardly visible in the diagrams.) 

 

  On the other hand, the difference in two mass-flow parameters is more obvious in the 

case of Puma, Fig. 3-9 and 3-10. It is likely that the weight of vehicle is reflected in the 

difference. However, the difference in two mass-flow parameters does not affect the 

flight controls, airframe attitudes or induced flow at all. (The differences numerically 

obtained are less than 22.3 10−× % in the inflow components, and less than 48.3 10−×  

deg. in the airframe attitude.) The cyclic controls do not show recognisable differences 

either.  

 

  The possible reason why the difference in the mass-flow parameters is negligible may 

be explained as follows; the uniform and longitudinal components of induced velocity 

in trim conditions are determined by the product of the gain matrix and the rotor load 

vector, where VT is multiplied with the thrust and Vm is multiplied with the pitching 

moment. Since the thrust is two orders of magnitude greater than the aerodynamic 

pitching moment in trim condition, the difference in Vm hardly affects the uniform and 

longitudinal components of induced velocity. On the other hand, the lateral component 

of the induced flow is a function of the aerodynamic rolling moment alone, and hence is 

inversely proportional to the mass-flow parameter (indeed, Fig. 3-13 confirms the 

relative difference expected from inspection of Fig. 3-9), but the magnitude of v1s is 

negligible in both cases due to the small aerodynamic rolling moment. As a result, 

control angles required to trim are therefore negligibly affected by the change in Vm 

proposed here, and, consequently, the airframe attitude and the induced velocity in trim 

conditions are hardly affected by Vm either.  

 

  On the other hand, the difference between Vm+ and Vm� substantially affects the 

results from the stability analysis. Differences between the two mass-flow parameters 

become significant for descent angles steeper than about 30 deg. For the vehicle mass 

simulated (5810 kg), this equates to airspeeds less than 40 knots with corresponding to 
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rates of descent in excess of 2300 feet/min. The elements of the time constant matrix, 

[L][M] , associated with the longitudinal and lateral components of the dynamic inflow 

model are inversely proportional to Vm. The longitudinal and uniform components are 

coupled due to the off-diagonal terms and it might be thus expected that the dynamic 

inflow modes will all be characterised by differences between Vm+ and Vm�. Figures 

3-14 and 3-15 confirm that this is indeed the case. For the case of Vm+, the lateral mode 

decreases in magnitude with increasing descent angle, and the coupled 

longitudinal/uniform mode degenerates from an oscillatory character to a pair of 

aperiodic modes, one of which also migrates towards the right-hand (unstable) plane.    

 

  This is not the case for Vm�, where the corresponding behaviour is asymptotic to a 

stable value of large modulus, with increasing descent angle. Low modulus inflow 

modes will couple with the rigid-body dynamics, tending to invalidate the quasi-steady 

assumption underpinning the linearisation of the model. (See Table 3-2.) However, 

corresponding results for the Vm� case, where the inflow modes are of relatively large 

modulus, illustrate that the quasi-steady linearisation is a good approximation to the 

fully coupled case, Table 3-3.  

 

 

3.6 Discussion  
  As is surveyed in Section 1.5, the study of rotorcraft flight mechanics in autorotation 

receives scant treatment in the literature after the advent of helicopters. It is certainly the 

case that those references such as Refs. (172) and (173) cover only elementary theory of 

autorotation and typically limited only to axial flight conditions. Also, most of the books 

available about gyroplanes such as Refs. (174) and (175) are just for amateur gyroplane 

pilots, and thus their contents are academically quite insufficient. Recently, Leishman 

did extend in the second edition of his textbook the treatment of flight in autorotation 

through considering gyroplane theory and application, and it is indeed the gyroplane 

problem that has served as the focus for studies in the application of dynamic inflow to 

autorotation(173). However, the approach taken previously has been to accept the 

dynamic inflow theory, testing its applicability implicitly through validation (against 

flight test data) of the wider issues of vehicle trim, stability and control. The dynamic 

inflow model such as the Pitt and Peters model can be used also for rotors in the 

windmill-brake state without any change in the matrix elements.  

 

  For steady flight conditions, the only change required is in the mass-flow parameter 
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where Vm� should be used for rotors in the windmill-brake state instead of Vm+. The 

literature suggests that this should be the first time that the difference between Vm+ and 

Vm�  has been explicitly identified. The simple discussion in Section 3.1 may be 

essentially applicable to other variations of dynamic inflow model such as the Peters 

and He model and its updated variations(7,129).    

 

  The dynamic inflow modelling was revisited from the first principles in this Chapter, 

in an explicit attempt to assess its applicability for autorotation. This study has 

identified a modification to the mass-flow parameter. Note that the angle between the 

rotor disc and the free stream, : , and the wake skew angle, 1, should be defined 

differently, because of the geometric difference in the relation between the inflow and 

the rotor disc.  

 

  Numerical simulations of the Montgomerie and Puma confirm the analytical 

assessment that the change will have a negligible impact on the trim calculation, but can 

have a significant effect on the stability of inflow modes. This difference only becomes 

evident in steep descents with low forward speed, in an area of the flight envelope that 

is of little practical utility for the helicopter even in autorotation. The modified 

mass-flow parameter, Vm�, retains the inflow modes well-separated in modulus from 

the rigid-body modes, but this is not the case with Vm+, where body and inflow modes 

are coupled.  

 

  The gyroplane can of course conduct steep, power-off descents, and, moreover, the 

gyroplane rotor will tend to operate in an analogous state if flown in steady level flight 

at very low speed. However, simulation of a typical light gyroplane shows that the 

minimum level flight speed is too fast to cause significant differences in Vm. The 

change to Vm is thus not practically significant for gyroplane flights either.  

 

  Therefore, those works such as Refs. (9) and (10), in which the dynamic inflow 

model for the normal working state with Vm+  was used, can still be considered 

practically quite reasonable in their results in spite of the theoretical incorrectness. Note 

that by looking at Eq. (2.128), it can be expected that the difference between Vm+ and 

Vm� would be more strongly related with CL and CM than with CT, and thus in those 

situations where CL and CM are much larger, the difference would be more evident. 

Such a manoeuvre is not very realistic with a helicopter descending in autorotation, but 

can be meaningful to take into account when estimating the overall performance of a 
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gyroplane.  

 

  Comparing Fig. 3-2 and Fig. 3-9, it can be said that the weight of the aircraft has the 

dominant influence in the magnitude of mass-flow parameter, and hence when 

designing jumbo-gyroplanes, whose conceptual designs are seriously under way by 

some companies(157), the difference in the mass-flow parameters may play a more 

crucial role.  

 

 

3.7 Chapter Summary 
  The necessary modification to dynamic inflow modelling for autorotative rotors is 

proposed with regard to steady flight conditions. The definition of :  and 1 are also 

confirmed so as to be consistently applicable for rotors both in the normal working and 

windmill-brake states. Numerical simulations are conducted to examine the control 

inputs, airframe attitudes, induced flow and the stability in trim steady conditions. On 

the basis of findings and results above, the following general conclusive remarks are to 

be made:  

 

1. It is theoretically confirmed that the apparent and gain matrices can hold the same 

elements in either the normal working or the windmill-brake states;  

2. It is identified that the mass-flow parameter for the windmill-brake state should be 

dissimilar to that for the normal working state;   

3. With regard to the definitions of 1, it was shown that Chen’s definition(28) is not 

valid for autorotative rotors. Peters’ definition, Eq. (3.2), is usable for rotors both in 

the normal working and windmill-brake states;  

4. Numerical simulation indicates that the difference in the mass-flow parameter 

causes only negligible effects on the control inputs, airframe attitudes and the 

induced flow to trim a state;  

5. Numerical simulation indicates that the difference in the mass-flow parameter 

affects the stability. Still, considerable differences only become apparent for steep 

descents with low forward speed;   

6. The behaviour of the inflow modes are affected by the difference in the mass-flow 

parameter; without modification for autorotation, they will tend to slow and couple 

strongly with the rigid-body modes as the descent angle steepens. With the 

modification, the inflow modes become well-separated from the rigid-body modes; 

7. Some inflow modes without modification for autorotation are found in the unstable 
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region. These modes become stable with modification to Vm�. The author suggests 

that stable modes should be more physically realistic than unstable modes of inflow, 

and therefore that Vm� should produce more meaningful inflow in autorotation.  

8. Due to the limited area of the flight envelope of autorotating rotorcraft where the 

modification is practically required, those reference works such as Refs. (9), (10) 

and (151), (154) and (155), where unmodified dynamic inflow model is used for 

autorotative rotors, can be considered still reasonable about their results.   
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Chapter 4 

 
 
Consideration of the Small Wake Skew Angle Assumption  
 
4.1 Introduction  
  Peters and He derived their dynamic inflow model invariably based on the small 

wake skew angle assumption (Subsection 2.2.11), but proceeded to state that this model 

can be applied to a wide range of wake skew angles from 0
  to 90
 (37). Since the model 

is extensively compared with experimental data and the correlation is found overall 

excellent(7), the practical validity of the model for a wide range of wake skew angles 

should be considered acceptable. Still, there is clearly a need to theoretically elucidate 

the validity of this approach in the model derivation.  

 

  In point of fact, the original authors have never discussed mathematically the validity 

of the assumption; indeed the small wake skew angle assumption appears only in the 

appendix of Ref. (7) (Appendix C, page 168)52, and the pertinent part of the derivation 

is not mentioned in any other relevant published papers.   

 

  This author thus believes that the validity of the small wake skew angle assumption 

needs to be theoretically re-examined. Note that since the rotor is supposed to be 

working in the normal working state in the original works of Peters and He, the normal 

working state shall be used as the representative rotor state also in this Chapter. 

However, the general coverage of this Chapter shall not be limited to the normal 

working state alone.   

 

 

4.2 New Gain Matrix Model  
4.2.1 Derivation of a New No-Assumption Model  

  In an attempt to examine the small wake skew assumption, a new gain matrix is 

proposed without using the assumption. In this formulation, Eqs. (2.77.1) - (2.77.3) are 

used instead of Eq. (2.87).  

  Although all the derivation in Chapter 2 from Eq. (2.77) to (2.104) is applicable to 
                                                   
52 In Ref. (7), the assumption is suddenly introduced with a phrase, “Now we will examine the integral behaviour for 
small wake skew angle 1 for which we have...” However, it is not analytically explained in any other places why 
the resultant model can later be extended up to 1 = 2/2 .  
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Eqs. (2.77.1) - (2.77.3) except Eqs. (2.83.1) - (2.83.3), the Taylor series of the pressure 

potential, Eq. (2.84), should be modified as  

 

  Φmc(c)n (x, y, z) = Φmc(c)n (x0 � tan1z, y0, z) 

            =
∑

k=0

∞

k!

(� 1)k
�

z tan1

�
k

∂xk

∂kΦmc(c)n





x=x0

.    (4.1) 

   

  Note that although it may appear that Eqs. (2.77.1) - (2.77.3) would diverge to 

infinity at 1 = 2/2 , this case is already excluded when Eq. (2.69.1) is derived from Eq. 

(2.67.3)53. Equations (2.77.1) - (2.77.3) and (4.1) lead to the following final 

representations for the new gain matrix elements.  

 

  [L� 0m
jn
]c =

cos 1

1
(Ym)[Γ0m

jn
] ,         (4.2) 

  [L� rm
jn
]c =

cos 1

1
[Y|r�m| + (� 1)min(r,m)Y|r+m|][Γrm

jn
] ,     (4.3) 

  [L� rm
jn
]s =

cos 1

1
[Y|r�m| � (� 1)min(r,m)Y|r+m|][Γrm

jn
] ,     (4.4) 

where 

  Y =
2

tan1
.            (4.5) 

 

  Note that when 1 � 1 , Eqs. (4.2) - (4.5) reduce to Eqs. (2.99.1) - (2.99.3) and X , 

respectively. Therefore, it can be said that Eqs. (4.2) - (4.5) hierarchically imply Peters 

and He’s gain matrix elements for axial flight.  

 

 Some examples of Eq. (4.2) - (4.5) are as follows. 

  L� 00c
11
=
2 cos 1

3 ,           (4.6) 

                                                   
53 Therefore, the extension of the Peters and He model up to edgewise flight is incompatible not only with the small 
wake skew angle assumption, but also with the derivation of Eq. (2.69.1). This indicates that the edgewise flight case 
should be discussed separately, if it is possible to deal with analytically. This is indeed the case, and perfectly 
edgewise flight shall be discussed later in this Chapter.  
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  L� 01c
12
= �

10
√

cos 1

2 tan1
,          (4.7)  

  L� 10c
21
=

10
√

cos 1

2 tan1
,           (4.8) 

  L�11s
22

=
2

5
�

1 +
4

1
tan2 1

�

,         (4.9) 

  L�11c
22

=
2

5
�

1 �
4

1
tan21

�

.         (4.10)  

 

  Note also that when 1 � 1 , Eqs. (4.6) - (4.10) reduce down to Eqs. (2.102.1) - 

(2.102.5).  

 

4.2.2 The Modified Pitt and Peters Model 

  The difference of the gain matrices between the Pitt & Peters and Peters & He models 

are only in the coefficients and thus the trigonometric parts are the same54. Thus, it 

should be possible to propose a modified Pitt & Peters model as well by replacing the 

trigonometric parts in the original Pitt and Peters model with those appearing in Eq. 

(4.6) - (4.10). The specific form of the modified model will be as follows;  
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                (4.11) 

 

  For 1 = 0  (hover), Eq. (4.11) is identical with the original Peters and He formulation. 

However, with progression into edgewise flight, the (1, 1) element in the gain matrix, 

1/2cos1,  tends to infinity. This means that the uniform induced velocity will increase 

with the wake skew angle, but this is counter to reality. Therefore, despite the derivation 

of this model should be mathematically more consistent, it can be predicted that this 

model would not provide realistic solutions when 1 is fairly large.  

 

  In the next Subsection, numerical simulation of this model is provided.  

 
                                                   
54 While the Peters and He model is given the general formulation for any combination of m , n , r  and j, the Pitt 
and Peters model is provided only up to the five-state model. Therefore, strictly speaking, the simple replacement in 
Subsection 4.2.2 can de done only up to the five-state model.  
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4.2.3 Numerical Simulation  

  Numerical simulation is conducted by RASCAL in order to compare the Peters’ 

original formulation and the new no-assumption model, using the Westland Puma as the 

reference vehicle. Since the Pitt and Peters model is used in the simulation code, the 

modified Pitt and Peters model is used in the simulation55.  

  Figures 4-1 to 4-8 show comparisons between those two models about trim solutions 

between hover and 20 knots.    

 

 

Fig. 4-1 [Comparison of collective pitches against forward flight speed.] 

 

                                                   
55 It should be acknowledged that the coding of RASCAL was done by Dr. Stewart Houston at the University of 
Glasgow.  



Chapter 4                 Consideration of the Small Wake Skew Angle Assumption  

 101 

 

Fig. 4-2 [Comparison of longitudinal cyclic pitches against forward flight speed.] 

 

 

 

Fig. 4-3 [Comparison of lateral cyclic pitches against forward flight speed.] 
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Fig. 4-4 [Comparison of roll attitudes against forward flight speed.] 

 

 

 

 

Fig. 4-5 [Comparison of pitch attitudes against forward flight speed.] 
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Fig. 4-6 [Comparison of wake skew angles against forward flight speed.] 

 

 

 

 

Fig. 4-7 [Comparison of uniform components of induced velocity against forward flight 

speed.] 
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Fig. 4-8 [Comparison of the longitudinal components of induced velocity against 

forward flight speed.] 

 

 

  It can be observed that the new formulation fails to trim beyond about 10 knots56 due 

to blade stall caused by excessive angle of attack following from the requirement for 

large collective pitch. These flight mechanics solutions suggest excessive drag due to a 

large angle of attack, which is caused by the pitch attitude rapidly decreasing with 

increasing airspeed. This is indeed the case, and the induced drag increases markedly 

with flight speed as the uniform component of induced velocity follows a trend opposite 

to Peters’ formulation with the small wake skew angle assumption.    

 

  It can be said that this is physically counter-intuitive as well. In Eq. (4.11), the 

denominators tend to zero with the increasing wake skew angle (which increases with 

airspeed) as 1→ 90
  then cos1→ 0 . Solutions appear to be most sensitive to the 

leading term element in the gain matrix, which increases in magnitude with airspeed 

driving the uniform component of induced velocity to do likewise. Note that the time 

constant matrix, [L][M] , is also subject to the gain matrix elements, and thus the modes 

also take on a dissimilar form, Fig. 4-9.  

                                                   

56 Generally speaking, small angle assumptions such as cos > ≃ 1  and sin > ≃ > can be thought practically 
applicable for  |>| � 10
  or so. The forward flight speed of 10 knots corresponds more or less with a wake skew 
angle of 10
 . Thus, it may be suggested that the unrealistic results beyond 10 knots or so should indicate that the 
model will be simply unrealistic without the small wake skew angle assumption.  
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Fig. 4-9 [Comparison of modes.] 

 

  Regarding axial flight, it is confirmed that the modified Pitt and Peters model 

hierarchically complies with the original Pitt and Peters model both analytically and 

numerically. Hence those validation works for the Pitt and Peters model such as Refs. 

(62) and (102) can automatically verify the new model in axial flight cases, where the 

new model is reduced to their model. 

  

  However, when 1 tends to 2/2 , the gain matrix elements in the new model tend to 

infinity unlike Pitt and Peters’ formulation, and, indeed, the simulation results confirm 

and quantify the extent to which the new model provides unrealistic solutions when the 

forward flight speed increases; drag increases as the forward flight speed increases, and 

collective pitch and induced velocity need to be large too. (Recall that L11  is constant 

in the original Pitt and Peters model. The behaviour of the leading element in the gain 

matrix is the key to the divergence.)  

 

  It is argued that the validity of the small wake skew angle assumption is 

mathematically quite questionable, but the fact that the Peters and He model with the 

assumption practically works better indicates that the reason why their model works 

should be clarified on the theoretical ground. 
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4.3 Further Discussion  
4.3.1 Deductive and Inductive Approaches 

  The simulation results indicate that the new formulation without the small wake skew 

assumption is unrepresentative despite the fact that the derivation must mathematically 

be more consistent than that of the Peters and He model. Considering the facts that the 

Peters and He model was numerically validated in Refs. (7), (92) and (112) showing 

excellent correlation with experimental data and also that its advanced models such as 

Refs. (131), (132) and (135) are widely used today, the practical validity of the Peters 

and He model can be considered to be fully validated in spite of the questionable 

assumption57. 

  

  Questions naturally arising from this situation should include an argument if it is 

possible to prove why the Peters and He model is practically valid in spite of the 

mathematically questionable application of the small wake skew angle assumption. In 

order to respond to this question, the possibility to deductively present a proof shall be 

first discussed. (A deductive approach can generally provide a logically rigorous proof.)  

 

  Generally mathematically speaking, an approximated equation based on an 

assumption can approximate the original equation only when the underlying assumption 

is valid; hence when the assumption breaks down, the original and the approximated 

equations should formally be regarded as different equations. (For example, it is plainly 

evident that tan1 and 2 tan(1/2)  are different functions, though tan1 can be well 

approximated by 2 tan(1/2) when 1 is sufficiently small. They would behave quite 

differently when 1 is fairly large.) 

  

 It can be thus believed that an attempt to apply the Peters and He model, which is 

derived on the small wake skew angle assumption, for larger angles, for which the 

assumption breaks down, is mathematically inappropriate or even meaningless in itself, 

regardless how the results are experimentally validated. Since the mathematical 

consistency in the derivation breaks down when the model is extended to larger wake 

skew angles, it is impossible to mathematically discuss the resultant model any further.  

 

  There seems to be no mathematically cogent reason available which makes it possible 
                                                   
57 This author informally enquired after the mathematical validity of the assumption to Dr. ChengJian He by email, 
but his reply reads only that the model was numerically validated in correlation with experimental data. The present 
author believes that such a numerical validation is weak as a theoretical proof for the validity of the assumption, but 
any further replies were given. Thus, it still remains unclear how the original authors consider the validity of the 
assumption purely from the analytical point of view.  
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to extend the approximated equations up to those cases in which the approximations are 

not valid any longer. Therefore, it can be said that the inappropriateness of the 

application of the resultant model for larger wake skew angles is mathematically 

evident.  

 

  Another mathematically inconsistent point in the derivation is the way of applying 

the small wake skew angle assumption. If 1 is really small, then Eqs. (2.67.1) and 

(2.67.3) could be further approximated as  

 

  x = $ sin1+ x0 ,    

   ≃ $1+ x0             (4.12) 

  z = � $ cos 1.    

   ≃ � $              (4.13) 

 

  Equations. (2.83.2) - (2.83.3) could also be further approximated as  

 

  sin1 ≃ 1,            (4.14)   

  tan1 ≃ 1.             (4.15) 

 

  The reasons why the small wake skew angle assumption is not applied before Eq. 

(2.85) in the derivation or why Eqs. (2.83.2) and (2.83.3) are not approximated down to 

1 are not explained in Ref. (7) at all. The way of applying the assumption in the 

original derivation is thus considered mathematically inconsistent.  

 

  Since logical debâcles with regard to the above-mentioned points are evident, the gap 

between the questionable derivation and the experimental validity of the resultant model 

cannot be filled by a deductive discussion within the present frame of the derivation.  

 

  This may indicate that the only possibility to deductively justify the assumption, if 

any, may lie in a fundamental extension of the model derivation by introducing new 

(more reasonable) assumptions, which shall be related to those physical phenomena that 

are hugely simplified or not considered at all in the original model, to construct 

consistent logics. Indeed, there are quite a few ignored or oversimplified physical 

phenomena in the original derivation. (For example, the cylindrical description of the 

wake tube itself is a crudest modelling of a wake tube and thus quite unrealistic.) When 

extending the original model derivation by taking new physical aspects into 
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consideration, there are generally two possible approaches; (i) building a completely 

new model from scratch with the aim to outperform the Peters and He model with a 

more mathematically consistent derivation, and (ii) modifying the present derivation of 

Peters and He model with the aim to have the same resultant model with a more 

mathematically consistent derivation.  

  

  With regard to the former approach, if the new model outperforms or works at least 

as well as the Peters and He model, then the paradox with the small wake skew angle 

assumption may be considered to be ascribed to the newly incorporated physical aspects. 

However, even if the new model performs well, the new model should also require 

experimental validation, and thus this cannot be a conclusive mathematical proof 

against the small wake skew angle assumption. (Recall that the Peters and He model is 

already experimentally validated implying that the small wake skew angle assumption 

is practically useful. As long as the extension of the present model should (even partly) 

rely on an experimental method, it is logically difficult to rigorously refute the small 

wake skew assumption thereby.) In addition, new assumptions related to the new 

physical aspects shall be new problems to experimentally validate because the effects of 

these physical phenomena are not easily evaluated theoretically. In any case, a new 

model should be considered as a different model from the Peters and He model and thus 

cannot be a theoretical counter-proof against the derivation of the Peters and He model. 

Also, building a completely new dynamic inflow model together with its validation 

should be beyond the scope of this thesis.  

 

  With regard to the latter approach, even though it were possible to ascribe the 

paradox with the small wake skew angle assumption to some new physical phenomena, 

since there should still be many simplifications and neglected physical phenomena in 

the original derivation, the selection of those physical phenomena which to newly 

introduce should inevitably be purposeful and intentional to some extent, as long as the 

derivation is aimed to result in the same representation as that of the Peters and He 

model. In order to theoretically verify the selection, it is required to exclude all the other 

possibilities which may be related to the wake skew angle; otherwise the selection can 

be considered as a purposefully far-fetched. However, this probatio diabolica is 

logically impossible to carry out.  

 

 Based on the discussion above, this author concludes that a deductive approach 

towards the paradox regarding the small wake skew angle assumption is impossible 
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even by extending the present frame of the derivation with new physical phenomena 

taken into consideration. 

  

  Those points discussed so far can be summarised as;  

 

 (E1) the small wake skew angle assumption is mathematically evidently  

   questionable, regardless of the practical validity of the model. It cannot  

   mathematically be acceptable and rather meaningless to apply a large 1 to an  

   equation which is derived on assumption that 1� 1 ;  

 (E2) within the present frame of the derivation, there is no mathematically  

   cogent reason available which verifies the application of those equations  

   which are derived based on the small wake skew assumption even to those  

   cases in which the assumption breaks down;  

 (E3) the way of applying the assumption in the derivation is not consistent  

   (e.g. Eqs. (4.12) - (4.15));  

 (E4) the gap between the practical validity of the model and the mathematical  

    inconsistency with the small wake skew angle assumption cannot  

   theoretically be elucidated. The mathematical inconsistency is evident and  

   thus the model’s practical validity cannot be further theoretically discussed  

   within the present frame of derivation;  

 (E5) even if it were possible to build a new model without the small wake  

   skew angle assumption by newly incorporating some physical phenomena,  

   the selection should inevitably be purposeful. Also, the validity of the  

   selection needs to prove that all other possibilities are excluded, but this  

   proof is logically impossible;  

 (E6) it is impossible to quantitatively evaluate complicated physical  

   phenomena in a theoretical approach. In any case, the effect of new physical  

   phenomena should be validated experimentally, thus this approach is weak  

   as a theoretical counter-proof against the derivation of Peters and He model;  

 (E7) there is a theoretical possibility that a model without the small wake skew  

   angle assumption can be built from scratch to outperform the Peters and He  

   model. However, the validation of the new model should also be provided  

   experimentally. This is weak as a mathematical counter-proof against the  

   Peters and He model because the possible new model should be regarded as a  

   different model from the original Peters and He model.  
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  Although this author concludes that the application of the small wake skew angle 

assumption cannot theoretically validated by a deductive approach, it is possible to 

inductively discuss the small wake skew angle assumption approving as the starting 

point that the Peters and He model is practically valid. This approach cannot logically 

provide any rigorous proof, but can provide a reasonable explanation of the problem, 

and hence must be meaningful to make an insight into this issue deeper.    

 

4.3.2 Characteristics of the Gain Matrix Elements of the Peters and He Model   

  The properties of the gain matrix elements of the Peters and He model should be now 

discussed. Figure 4-10 shows comparisons between the trigonometric parts contained in 

the gain matrix elements of the Peters and He model and their counterparts in the 

no-assumption model derived in Section 4.2.  

 

 

 
Fig. 4-10 [Comparisons of trigonometric parts in the gain matrices.] 
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  It can be seen that the non-approximated equations are well approximated by the 

approximated functions up to around 10
 , then the non-approximated equations rapidly 

diverge to either 	∞ as x→ 90
, whereas the approximated equations remain finite. 

In fact, compared to the rapid divergence of the non-approximated equations, the 

behaviours of approximated equations at larger wake skew angles are considerably 

gentle (somewhat linear or parabolic), Fig. 4-11; they remain only within the range from 

0  to 2  at x = 90
 .  

 

 
Fig. 4-11 [Trigonometric parts based on the small wake skew angle assumption.] 

 

  Recalling (E1) and (E2), this author believes that the only possibility to explain the 

small wake skew angle assumption is to assume;  

 

 (F1) the small wake skew angle assumption may be merely an expediency to derive  

   Eqs. (2.83.2) and (2.83.3), which gently behave as 1 increases, and hence have  

   physically little to do with actual small wake skew angles;  

 (F2) Equations. (2.83.2) and (2.83.3) may approximate not only those cases in  

   which the wake skew angle is small but also some cases in which the wake skew  

   angle is pretty large.  

 

  Regarding (F1), it is quite possible to assume that the resultant forms of gain matrix 

elements of the Peters and He model are pre-aimed, because the trigonometric parts of 

the resultant gain matrix are identical with those of the Pitt and Peters model(1). In fact, 
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this view explains the apparently inconsistent way of applying the small wake skew 

angle assumption, (E3), and also why the resultant model is later extended up to 

1 = 90
 .  

 

  Point (F2) above can be also considered as a reasonable inference when comparing 

with the Pitt and Peters model, because no assumption about the range of wake skew 

angles is underlying in the derivation of the Pitt and Peters model, that is to say, the 

same trigonometric functions as those of the Peters and He model can be therein derived 

without the small wake skew angle assumption. Interestingly, edgewise flight case, in 

which the gain matrix elements of no-assumption model in Subsection 4.2.2 diverge to 

infinity, is also analytically dealt with in the derivation of Pitt and Peters model to 

provide finite values to the gain matrix elements.  

 

   Now, in order to examine the conjectures of (F1) and (F2) above, the derivation of 

the Pitt and Peters model should be revisited in comparison with that of the Peters and 

He model with the foci on (i) how the trigonometric functions are therein derived 

without using the small wake skew angle assumption, and (ii) how the edgewise flight 

case is analytically dealt with in the derivation.  

 

4.3.3 The Pitt and Peters Model and the Edgewise Flight Case  

  In the Pitt and Peters model, the gain matrix elements are determined based on Eq. 

(2.15),  

  w =
V

1
∫

∞

0

∂z

∂Φ
d$ ,            (2.15) 

 

in the same manner as in the Peters and He model. The pressure potential function is 

also represented by the associated Legendre functions of the first and second kinds, and 

the model derivation is not essentially different from that of the Peters and He model up 

to this point. However, Eq. (2.15) is treated in quite a different way in the derivation of 

Pitt and Peters model than that in the Peters and He model. 

  

 While the skewed cylindrical description of the wake tube is necessarily introduced in 

the Peters and He model to explicitly carry out the integral of Eq. (2.15) with the wake 

skew angle as a variable, the gain matrix elements of the Pitt and Peters model are 

determined in the following manner(1);  
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 (i) analytically performing the integral of Eq. (2.15) for axial flight;  

 (ii) analytically performing the integral of Eq. (2.15) for edgewise flight;  

 (iii)  guessing functions which can bridge the results from processes (i) and (ii);  

 (iv) numerically validating the resultant model.  

 

  In the process (iii) above, the suitable functions are chosen from Mangler’s Fourier 

coefficients, Refs. (48) and (176)58. It is interesting that the edgewise flight case is 

analytically calculated in the derivation of the Pitt and Peters model, while the edgewise 

flight case is excluded in the derivation of the Peters and He model at this stage because 

otherwise the right-hand term of Eq. (2.69.1) tending to 0/0  when 1→ 90
  is 

impossible to define.  

 

  Therefore, it should be worth trying to deal with the edgewise flight case for the 

Peters and He model in the same manner as in the derivation of the Pitt and Peters 

model. Note that since the wake skew angle is not explicitly used in the derivation of 

the Pitt and Peters model, no assumption is therein required about the wake skew angle. 

In perfectly edgewise flight, the $-axis coincides with the x -axis and is described in 

the ellipsoidal coordinate system as; (i) & = 0, � 1 � � � 1  on the rotor disc; and (ii) 

� = 0, 0 � & � ∞ outside the rotor disc (see Fig. A2-1). 

 

  Following the same manner as in the Pitt and Peters model in Ref (1), the gain matrix 

elements of the Peters and He model for edgewise flight should be able to be 

represented as  

 

 L� rmc
jn

=
22

1
∫

0

22
∫

0

1
∫

1�y2
0

√

∞ �

&∂�

∂
�

P�mn (�)Q
�m
n (i&) cos(mψ)

��

�=0

dx � P�r
j
(�0)d�0dψ  

  +
22

1
∫

0

22
∫

0

1
∫

x0

1�y2
0

√
�

�∂&

∂
�

P�mn (�)Q
�m
n (i&) cos(mψ)

��

&=0

dx � P�r
j
(�0)d�0dψ .   

                (4.16) 

 

                                                   

58 Mangler represented the induced velocity distribution in the form of the Fourier series, and tan
2

1
=

1 + sin:e

1 � sin:e
√

 

appears as the coefficient for first harmonics, Ref. (48). However, Mangler put some assumptions including that the 
rotor is lightly loaded, that the distribution is symmetrical about the x -axis and so on, and hence the rotor described 
in Mangler’s theory may be different from that for the Pitt and Peters model, in which those assumptions are not 
underlying. Considering the facts that the cosine components alone in the dynamic inflow model describe a 
symmetrical distribution about the x -axis and that the first harmonics describe only linear unevenness in the 
distribution, it may be reasonable to suppose that the coefficient for cos ψ  can be tan(1/2). Still, the process for 
determining the gain matrix elements, process (iii) above, is not analytically clear at all.  
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  See Fig. 4-12 about the integral domains.  

 

Fig. 4-12 [Integral Domains of the $-axis for the Edgewise Flight Case.] 

 

  Unlike the original derivation of the Peters and He model, the gain matrix elements 

for edgewise flight as represented above should be able to analytically be determined by 

the integral in Eq. (4.16), because there is no essential difference in the pressure 

potentials between the Pitt & Peters and Peters & He models except 	 signs and 

coefficients related to normalisation.  

 

  In order to calculate the right-hand side of Eq. (4.16), the derivation of the Pitt and 

Peters model can be utilised. Reference (1) shows as an analytical result;  

 

 ?0 = �
V

1
∫

∞

1�y2
0

√

&

1 �
∂�

∂Φ!



�=0,m=0,n=1

dx �
V

1
∫

1�y2
0

√

x0

�

1 �
∂&
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


&=0,m=0,n=1

dx    

   =
2V

1
CT+

64V

152
CM,            (4.17)  

          

where Φ!  is the pressure potential for the Pitt and Peters model defined as 

Φ! = � ∑

m,n=�, m�n

∞
Pmn (�)Q

m
n (i&)

[

Cmn cosmψ +D
m
n sinmψ

]

.   

  Considering P�0
1
(�)Q� 0

1
(i&) = � 3

√
P0
1
(�)Q0

1
(i&) and

∫

0

22
∫

0

1

P�0
1
(�0)d�0dψ = 3

√
2 , it can be 

predicted from Eq. (4.17) that when m = 0, n = j = 1 , 

   

 L�0mc
nj

=
2

3
.             (4.18)  
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  This result coincides with Eq. (2.102.1), which is derived on the small wake skew 

angle assumption. This coincidence is highly interesting when recalling the 

no-assumption model in Section 4.2, whose gain matrix elements diverge to infinity at 

1 = 90
 .  

 

  In the derivation of the Pitt and Peters model, other gain matrix elements such as 

L13, L31  and L33  are also analytically obtained. (Note that it is stated in Ref. (1) that 

L22  is an exception, and only a numerical result of L22 ≃ 2  is therein shown.) Since 

there is no essential difference in the pressure potentials between the Pitt & Peters and 

Peters & He models except coefficients it can be considered that Eq. (4.16) is possible 

to analytically calculate also for other combinations of m , n, r and j  for edgewise 

flight. The coincidence between Eqs. (4.18) and (2.102.1) should strengthen views (F1) 

and (F2) above that the small wake skew angle assumption has little to do with actual 

wake skew angles; the assumption rather seems to be playing a role in bridging axial 

and edgewise flights.  

 

  Since both Eq. (4.18) and the no-assumption model, in which L�00c11 → ∞ for edgewise 

flight, are analytically derived, there must be another analytical difference which made 

their results so different in their derivations. When comparing Eq. (4.16) and Eq. (2.65), 

it can be noticed that while Eq. (4.16) have two terms related to ∂/∂�  and ∂/∂& , 

respectively, Eq. (2.65) has only one term related to ∂/∂& . At the stage when Eq. (2.65) 

is derived, the small wake skew angle assumption is not yet applied, and hence it can be 

believed that the difference is brought independently of the small wake skew angle 

assumption. Indeed, the ∂/∂�  term is missed out from the derivation of the Peters and 

He model when Eq. (2.49) is simplified to Eq. (2.50)59. This simplification should be 

fully justified for the derivation of the apparent mass matrix elements because the 

derivation is based on Eq. (2.17) without any integrals. However, the simplification is 

maybe not appropriate for the derivation of the gain matrix elements because the 

integral path along the $-axis is not restricted only in the domain which is described as 

& = 0 . Thus, even for obtaining the induced velocity distribution on the rotor disc, it is 

considered that & = 0  should be substituted only after the integral along the $-axis is 

                                                   
59 The derivation of the no-assumption model in Section 4.2 is entirely based on that of the Peters and He model, 
except for the small wake skew angle assumption. The fact that the no-assumption model, which must 
mathematically be more consistent, breaks down for edgewise flight should indicate that the key to explain the 
difference between Eq. (4.18) and the divergence to infinity would lie in other part of the original derivation of the 
Peters and He model than the small wake skew angle assumption itself. This observation is consistent with the 
identification of the difference between Eqs. (4.19) and (2.65).  
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completed.  

 

  Based on this view, Eq. (2.65.1) can be extended by using Eq. (2.49) as  
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                (4.19)   

 

  Now, the possibility of further pressing on the integral of Eq. (4.19) analytically shall 

be examined. The $-axis is represented in the ellipsoidal coordinates as  
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                (4.20) 

  and thus  
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                (4.21)  

  where J = [(1 + &2)(1 � �2)� y2
0
](1 � y2

0
� �2

0
)

√

.  

 

  Also, along the $-axis, �  and &  satisfy  

 

 1 + &2 � �2 � &2�2 � y2
0

√
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0
� �2
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√
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  where 

 t � tan1 = �
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√

.     (4.23) 

 

 

 

  Therefore, along the $-axis,  
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Also, from Eq. (4.22), �  can be represented as a function of &  along the $-axis,  

 

 � =
cos2 1+ &2

& 1 � y2
0
� �2

0

√

sin1+ K
√

cos 1,    (for � > 0)    (4.25) 

 

where  

 K = &2(&2 + 1) + �2
0
(&2 + 1)cos2 1� &2y2

0
sin2 1.      (4.26)  

 

  Inserting Eqs. (4.21), (4.24), (4.25) and (4.26) into Eq. (4.19) gives an integral of & 

alone with the integral domain of &  from 0  to ∞.  

  It can be easily confirmed that when m = r = 0 , n = j = 1 , �0 = 1 , 1 = 0 , y0 = 0 ,  

 

 
∫

0

∞

∂z

∂Φ
d$ =

∫

∞

0
 

3
√

tan�1
�

&

1
�

�
1 + &2
3

√
&
)

d& = 3
√

.     (4.27) 

 

  Thus, for this special case, Eq. (4.19) will be  

 

 L� 00c
11
=
22

3
∫

0

22
∫

0

1

d�0dψ =
2

3 .          (4.28)  

 

  The coincidence between Eqs. (4.28) and (2.102.1) indicates that Eq. (4.19) 

hierarchically covers the axial flight case of the Peters and He model. Also, it can be 

shown that Eq. (4.19) naturally accommodate Eq. (4.16), which is derived from Eq. 

(4.19) by assuming two extreme cases, � = 0  and & = 0 , respectively. Therefore, it can 

be said that Eq. (4.19) should describe more general cases varying from axial to 

edgewise flights. Equation (4.19) can also naturally reduce down to Eq. (2.50) when 

& = 0  for the derivation of the apparent mass matrix.  

 

 

  It should be hoped that an analytical solution could be provided from Eq. (4.19) for 

an arbitrary combination of �0 , y0 , m , n, r, j  and 1. However, it is turned out to be 
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extremely difficult to analytically carry out the integrals appearing in Eq. (4.19) even 

for some simple cases such as m = r = 1  and n = j = 2 . Since the primary aim of this 

Chapter is not providing a new model but clarifying the paradox with the small wake 

skew angle assumption, an attempt to analytically complete the integrals in Eq. (4.19) 

for a general case can be abandoned now. Instead, the two terms in the right-hand side 

of Eq. (4.19) shall be qualitatively discussed below.  

 

  When �  equals 1 (i.e. axial flight for a streamline running through the hub centre), 

&(1 � �2)/(�2 + &2) becomes zero and thus only the second term remains. As long as the 

wake skew angle is sufficiently small, �  is nearly zero over the most part of the 

streamline, and hence the contribution of the first term can still be considered small. On 

the other hand, �(1 + &2)/(�2 + &2)  becomes nearly 1  when �  is close to 1 . Also, 

& → ∞  as $ → ∞ , and thus �(1 + &2)/(�2 + &2) → 1  as $ → ∞  regardless of �0  or 

1 ( �=2/2), thus the contribution of the second term cannot generally be ignored. This is 

indeed the case with the formulation of the Peters and He model, in which the first term 

is ignored but the wake skew angle is assumed to be small. Thus, the derivation of 

Peters and He model and the small wake skew angle assumption can be considered 

consistent in this case.  

 

  In perfectly edgewise flight (when exactly 1 = 2/2), the $-axis coincides with the 

x -axis and �  becomes constantly zero outside the rotor disc, and thus the second term 

of Eq. (4.19) is scored out in the domain. In this case, it is believed that the first term is 

playing a crucial role. The huge difference between the no-assumption model, in which 

L�00c11 → ∞ as 1 → 2/2 , and Eq. (4.28) is thus likely ascribed to the fact that the first term 

is ignored in the derivation of the Peters and He model.  

 

  It should be difficult to make a general comment for an arbitrary combination of 

m, n, r, j and 1, but based on the discussion above, what can be therefrom predicted 

include that (i) if the wake skew angle is sufficiently small, the contribution of the first 

term of Eq. (4.19) should be negligible regardless of �0 , and (ii) if the wake skew angle 

is close to 2/2 , the first term of Eq. (4.19) may largely affect the results.  

 

   Point (i) above is consistent with the formulation of the Peters and He model 

including the small wake skew angle assumption, and point (ii) is underpinned when 

considering the difference between the edgewise cases between Eqs. (4.18) and the 

no-assumption model in Section 4.2, because edgewise flight and other flight scenarios 
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(0 < 1 < 2/2) must be continuously bridged from the physical point of view, and thus 

the gap should be explained by an analytical difference in the formulation, which must 

be the first term of Eq. (4.19).  

 

  Note also that in the formulation of Eq. (4.19) together with Eqs. (4.21), (4.24), 

(4.25) and (4.26), the wake skew angle appears only in Eqs. (4.25) and (4.26). Since Eq. 

(4.25) contains both cos 1 and sin1 in its denominator, it will not diverge to infinity 

(or to zero either). This indicates that the general formulation based on Eq. (4.19) is free 

from diverging to infinity even at 1 = 2/2 . This is consistent with the qualitative 

discussion above and also with a continuous transition from axial to edgewise flights, 

which is intuitively required, too.  

 

4.3.4 How the Small Wake Skew Angle Assumption Works 

  Recalling the difference between the derivations of the Pitt & Peters and Peters & He 

models, discussion in the previous Subsection indicates that introducing the small wake 

skew angle assumption works as if the first term of Eq. (4.19) were not ignored. In order 

to analytically examine this conjecture, a special case that m = r = 0 , n = j = 1 , y0 = 0  

and �0 = 1  shall be checked. For this simplest case, the first and second terms in Eq. 

(4.19), which shall be designated as FT  and ST  hereinafter, can explicitly be 

expressed as  

 

 FT �
∫

0

∞

�2 + &2
&(1 � �2) �

∂�

∂
 

P�0
1
(�)Q� 0

1
(i&)

)

d$  

   = 3
√ ∫

0

∞
 

&6 + (2&2 + 1) cos4 1+ &2(3&2 + 1)cos21

&(&3 cos4 1+ &3(&2 � 1) cos21� &5) arctan(1/&)
 

  +
&6 + (2&2 + 1) cos4 1+ &2(3&2 + 1) cos2 1

&4 � &2(&2 � 1) cos2 1� &2 cos4 1
cos2 1

�

d& ,    (4.29)  

 

 ST �
∫

0

∞

�2 + &2
�(1 + &2) �

∂&

∂
�

P�0
1
(�)Q� 0

1
(i&)

�

d$  

   = � 3
√ ∫

0

∞
�

&6 + (2&2 + 1) cos4 1+ &2(3&2 + 1)cos2 1

(&2 + 1)2(&2 + cos2 1) cos21arctan(1/&)
 

        +
&6 + (2&2 + 1) cos4 1+ &2(3&2 + 1) cos2 1

&5 + &3 + &(&2 + 1) cos2 1
cos2 1

�

d& .  (4.30) 

  This author analytically calculated Eqs. (4.29) and (4.30) by using MAPLE, which is 

a mathematics software package for symbolic computation, for axial and edgewise 
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flights. For axial flight (1 = 0),  

 

  Eq. (4.29) ⇒ 0 ,            (4.31) 

 Eq. (4.30) ⇒ 3
√

.            (4.32) 

 

  For edgewise flight (1 = 2/2),  

 

 Eq. (4.29) ⇒ 3
√

            (4.33) 

 Eq. (4.30) ⇒ 0 .            (4.34)   

 

  Thus, the results of Eqs. (4.31) - (4.34) indicate that FT + ST gives the same value 

both for axial and edgewise flights. These results are consistent with the conjecture in 

the previous Subsection, with the derivation of the Pitt and Peters model (in which the 

same values are analytically derived for both axial and edgewise flights), with the Peters 

and He model based on the small wake angle assumption (in which L�00c11  is assumed to 

be constant) and also with Eq. (2.130). However, for other flight scenarios between 

axial and edgewise flights (0 < 1 < 2/2), it can be predicted that FT  and ST  would not 

that beautifully set off each other because of the differences noticed between Eqs. (4.29) 

and (4.30).  

 

  Since FT  and ST  behave in somewhat opposite ways as 1 increases to balance 

each other to some extent, as discussed in the previous Subsection, it may be a good 

approximation to use only one of them with its behaviour moderated with regard to 1. 

It is hence understandable that the small wake skew angle assumption may approximate 

the model well not only for axial flight but also edgewise flight. Yet, any symmetry 

cannot be clearly recognised between Eqs. (4.29) and (4.30) with regard to 1, it is 

therefore indicated that FT  and ST  would not generally result in 3
√

 when 

0 < 1 < 2/2 . (If Eqs. (4.29) and (4.30) had a symmetry with regard to 1, it would have 

been the case that FT  and ST  may have balanced each other resulting in a constant 

value for the L�00c11  for any 1; but this is highly likely not the case.)  

 

  This further indicates that although the result based on the small wake skew angle 

assumption (i.e. a constant value for L�00c11 ) is well consistent with the analytical results 

above and thus well bridge axial and edgewise flight cases, the assumption would likely 

not always coincide with analytical results when 0 < 1 < 2/2 . With regard to the small 

wake skew angle assumption, naturally arising questions should include an argument 



Chapter 4                 Consideration of the Small Wake Skew Angle Assumption  

 121 

whether the assumption provides analytical solutions for some reason or it provides 

mere approximations. In point of fact, the sheer coincidence of the trigonometric 

functions in the gain matrix of the Peters and He model with those of the Pitt and Peters 

model would naturally make readers face a question if there is a hidden mathematical 

reason which allows the questionable application of the assumption to provide 

analytical solutions.  

 

    This author discussed only a special case of L�00c11 , but believes that the discussion 

above should suffice as a counter-proof in response to the question above to show that 

the small wake skew angle assumption does not provide analytically rigorous results for 

all 1 ∈ [0, 2/2] . Moreover, the present author adds following two reasons to conclude 

that the small wake skew angle assumption does not provide analytical solutions; (i) the 

way of applying the assumption in the original derivation is analytically not consistent, 

E(3), and; (ii) in the derivation of the Pitt and Peters model, it is stated that L22  for 

edgewise flight cannot analytically derived unlike other gain matrix elements, and it is 

only numerically shown that L22 ≃ 2 . This indicates that L�11s22 = 2 for 1 = 2/2  in the 

Peters and He model is not consistent with its fully analytical result60. This conclusion 

should be consistent with points (E1), (E2) and (E3), and also with conjectures (F1) and 

(F2).  

 

  In any case, in order to more generally and rigorously discuss if ST  together with the 

small wake skew angle assumption can well approximate those results which are 

derived from FT  and ST  for axial and edgewise flight cases, Eq. (4.19) ideally needs 

to be analytically calculated to a closed-form as a function of 1. However, it is turned 

out that it is extremely difficult to press on the integrals for more general cases. This 

potentially intensive calculation must be well beyond the scope of this thesis, and hence 

this author believes that this problem can be left as a good future problem.   

 

  It is believed that this problem needs to be concluded through more concrete proofs 

and discussion. Especially, it is necessary that the original authors would join the 

discussion to provide clear and coherent explanations about (i) the difference between 

the Pitt & Peters and Peters & He models in the treatments of the edgewise flight cases, 

and (ii) how the small wake skew angle assumption can be analytically validated. It is 

                                                   
60 Indeed, there is a certain symmetry recognised between the two terms in Eq. (4.19) with regard to �  and & . For 
example, Eq. (4.19) approximately reduces to (1/�)(∂Φ/∂&)  and (1/&)(∂Φ/∂�)  for axial and edgewise flights, 
respectively. However, the present author was not able enough to draw a conclusion to the problem if there is any 
logical connection between this symmetry and the practical validity of the small wake skew angle assumption.  
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hoped that this thesis would provoke further discussion of this problem.  

 

 

4.4 Chapter Summary  
  This is arguably the first study which identified the paradoxical aspects of the small 

wake skew angle assumption in the derivation of Peters and He model. A new model 

based on the derivation of Peters and He model was proposed without the assumption, 

but this model does not work well. This further led to the discussion why the Peters and 

He model practically works so well in spite of the questionable assumption. In so doing, 

the difference between the Pitt & Peters and Peters & He models in the treatments of the 

edgewise flight cases was identified and the paradox with the small wake skew angle 

was explained in relation to the difference.  

  Discussed points and results in this Chapter can be summarised as follows:  

 

1. Regarding the small wake skew angle assumption used in the derivation of the 

Peters and He model, this author points out its mathematical inconsistency and 

inappropriateness. A new model is proposed without using the assumption, but the 

results suggested by the model are counter to reality;  

2. This author discussed why the Peters and He model practically works well in spite 

of the questionable application of the small wake skew angle assumption in the 

derivation. In so doing, the possibility of deductively proving the validity of the 

assumption is ruled out, and thus only inductive discussions are made on the 

assumption that the Peters and He model is practically valid;  

3. Due to the mathematical inconsistency that the resultant model is extended to large 

wake skew angles, this author conjectured that the small wake skew angle 

assumption has little to do with an actual wake skew angle, but may play a role in 

approximating the model for some specific flight cases including a flight case with 

a large wake skew angle such as edgewise flight;  

4. Since the gain matrix elements in the Pitt and Peters model for edgewise flight are 

analytically determined, this author applied the same approach for the gain matrix 

elements of the Peters and He model without using the small wake skew angle 

assumption, and obtained the same result as those of the original model, which is 

derived based on the assumption;   

5. By comparing the equation for edgewise flight in the derivation of Pitt and Peters 

model and the Peters and He model, this author points out that the base equation of 

the Peters and He model, Eq. (2.50), lacks one term related to ∂/∂� . It is identified 
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that the pertinent term is left out when Eq. (2.49) is simplified to Eq. (2.50), but the 

simplification is maybe not appropriate for generally deriving the gain matrix 

elements;  

6. The properties of two terms contained in Eq. (2.49) are qualitatively discussed. It is 

confirmed that the first term, which is left out at the simplification, may not hugely 

affect the result when the wake skew angle is nearly zero. Thus, the derivation of 

the Peters and He model, in which the first term is ignored but the wake skew angle 

is assumed to be small, is consistent in this point;   

7. It is qualitatively discussed that the two terms contained in Eq. (2.49) behave 

somewhat in opposite ways as the wake skew angle increases. Thus, it can be 

considered reasonable to think that only the second term in Eq. (2.49) together with 

the small wake skew angle assumption may approximate the equation both for axial 

and edgewise flights to some extent;   

8. Since it is turned out that analytically carrying out the integrals in Eq. (4.19) should 

be extremely difficult, only the simplest special case with L�00c11  is examined to test 

the prediction above. It is confirmed that the axial and edgewise flight cases result 

in the same value, as if the small wake skew angle assumption were therein 

assumed, due to the opposite tendencies that the two terms in Eq. (4.19) have. Still, 

the two terms do not have a perfect symmetry with regard to the wake skew angle. 

This likely indicate that they would not always balance out for 0 < 1 < 2/2 ;  

9. It can be predicted that the small wake skew angle assumption may more generally 

approximate the axial and edgewise flight cases. However, in order to confirm this 

conjecture more rigorously, it is to be hoped in the future that the integrals in Eq. 

(4.19) will be fully analytically completed to a closed-form as a function of 1.   
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Chapter 5 

 

 

Conclusions and Future Directions 

 

5.1 Introductory Remarks - Review of the Research Aim and Objectives 

  The predefined aim of this research project is to theoretically build a dynamic inflow 

model that is suitable for autorotative rotors. The dynamic inflow model for the 

helicopter has been intensively developed by Peters and his co-workers over the last two 

decades, but little theoretical attention has hitherto been paid to the possible application 

of the model to the autorotative rotors, which include rotors of gyroplanes and 

autorotating helicopters.  

 

  The literature suggests that this should be the first time that the dynamic inflow 

model has been theoretically examined for autorotative rotors, and it is hoped that this 

thesis will offer a valuable contribution to control analyses of gyroplanes and 

helicopters in autorotation. Since this thesis sought to develop a new application of the 

dynamic inflow mode, the theory of the dynamic inflow model needed to be thoroughly 

re-examined in order to identify the necessary modification. Consequently, the research 

objectives were defined as the following three steps:  

 

(i) to critically review the theoretical derivation of the contemporary dynamic inflow  

  models in detail;   

(ii) to examine whether these contemporary dynamic inflow models can also be applied  

  to autorotative rotors;   

(iii) to identify necessary modifications to the contemporary dynamic inflow model in  

  order that this model can be applied to autorotative rotors. 

 

  Clearly a desired outcome of this investigation would have been the determination 

that existing dynamic inflow models can be applied to autorotative rotors without 

modification. In such a scenario step (iii) above would be unnecessary, while steps (i) 

and (ii) would still have been required establishing a theoretical verification of the 

modified model.  

 The next Section summarises these results.  
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5.2 Conclusions  
  The author first examined in detail the derivation of the Peters and He dynamic 

inflow model, which is originally designed for helicopters in the normal working state, 

and also considered whether it can be used also for gyroplanes. As a result, the 

following results and observations are obtained:  

  

1. The Peters and He model can be used for autorotative rotors without any change in 

the matrix elements, but a modification is necessary in the mass-flow parameter.  

2. Other dynamic inflow models such as the Pitt and Peters model also follow 

Conclusion 1 above, since the matrix elements can be determined regardless of the 

geometric difference, whereas the difference in the mass-flow parameter arises 

from the fundamental geometric difference between rotors in the normal working 

and windmill-brake states.  

3. The modified mass-flow parameter for the windmill-brake state is proposed. In the 

course of the study of the mass-flow parameter, the difference between Chen’s and 

Peters’ definitions of the mass-flow parameter is clarified. It is confirmed that 

Chen’s definition is not appropriate to be used for the wind-mill brake state.  

4. It is confirmed from numerical simulations that the difference in results of the 

models using the modified and unmodified mass-flow parameters is generally 

negligible in controls and airframe attitudes during trim flights. The difference 

becomes more pronounced in the stability characteristics, but only in steep 

descents. 

5. The difference between Vm+ and Vm� significantly affects stability analysis. Some 

modes for steep descent in autorotaion obtained with Vm+ are in the unstable 

region, but these modes become stable with Vm�. Stable modes can be considered 

physically more realistic than unstable modes.  

6. It is confirmed that the difference in the modified and unmodified mass-flow 

parameters does not significantly alter the results of previous studies such as Refs. 

(151) - (155), where the unmodified mass-flow parameter was used for the 

windmill-brake state.  

7. The unified form of Vm+ and Vm� is proposed so as to be consistent with Peters’ 

definition of tan: .  

 

 It is believed that the predefined aim and objectives of this research project are 

successfully accomplished by Conclusions 1 - 7. Especially, Conlusion 5 underpins the 

necessity of modifying the original mass-flow parameter in Peters’ dynamic inflow 
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models, Vm, into Vm� for the windmill-brake state. This issue, however, needs further 

investigation, because no flight data for steep descent in autorotation is available to 

confirm the simulation results and observations above.  

  

  Furthermore, in the course of re-examining the dynamic inflow model in detail, the 

following critical views concerning the dynamic inflow model are expressed:  

 

8. The view that the Pitt and Peters model may not be hierarchically included by the 

Peters and He model is expressed on theoretical grounds.  

9. The theoretical unreasonableness of the application of the small wake skew angle 

assumption, which is an indispensable part of the derivation of Peters and He’s 

dynamic inflow model, to a wide range of wake skew angle is pointed out.  

 

  From a purely practical point of view, this author does not disagree that the Peters and 

He model may approximately cover the Pitt and Peters model in most flight cases, as 

are reported in Refs. (7), (92) and (102). In point of fact, Conclusions 8 is not a 

conclusive counter-proof against those validation works. However, those references did 

not show any rigorous mathematical derivations, but only stated their conclusions 

supported by experimental or simulational results. Since both the Pitt & Peters and 

Peters & He models are arguably analytically derived by the same authors, the present 

author believes that this situation awaits theoretical works clarifying relations between 

existing dynamic inflow models. It is hoped that Conclusions 8 and 9 would provoke 

further theoretical discussions.   

 

  This author further discussed the small wake skew angle assumption in Chapter 4 in 

depth, and a new model was derived on trial following the derivation of Peters and He 

model but without the small wake skew angle assumption:  

 

10. A new representation of the gain matrix is theoretically derived and proposed so 

that the small wake skew angle approximation is not required based on the 

derivation of Peters and He model, and that the Peters and He model is 

hierarchically therein contained as an approximation in the limit that the wake skew 

angle tends to zero. However, the simulation results indicate that the newly 

proposed model does not perform well. 

 

  Based on Conclusion 10 and the practical validity of the Peters and He model(7,92, 
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102,107), this author discussed why the Peters and He model works so well in spite of the 

questionable assumption, and the following points are identified:  

11. While the new no-assumption model above breaks down for edgewise flight, the 

edgewise flight case is also dealt with analytically in the derivation of the Pitt and 

Peters model, though their theoretical bases should not be markedly different from 

the Peters and He model. Comparing the Peters & He and Pitt & Peters models for 

edgewise flight, it is identified that the Pitt and Peters model has an extra term. The 

term is ignored in the derivation of Peters and He model before the small wake 

skew angle assumption is introduced in the model.  

12. Considering the facts that the Pitt & Peters and Peters & He models have identical 

trigonometric functions for their gain matrices and that the derivation of Pitt and 

Peters model does not require any assumption about the wake skew angle, it can be 

assumed that equations based on the small wake skew angle assumption may 

describe not only those cases in which the wake skew angle is small, but also those 

cases in which the wake skew angle is pretty large.  

13. It was qualitatively discussed that the two terms contained in Eq. (4.19) behave in 

somewhat opposite ways as the wake skew angle increases. This tendency is 

analytically confirmed for a special case that m = r = 0 , n = j = 1 , y0 = 0  and 

�0 = 1 .  

14. From Conclusions 11, 12 and 13, it can be predicted that introducing the small 

wake skew angle assumption may work as if both two terms of Eq. (4.19) were 

retained.  

15. The asymmetry between Eqs. (4.29) and (4.30) with respect to 1 indicates that 

L�00c11  is not always constant depending on 1. This observation is against the result 

based on the small wake skew angle assumption, in which L�00c11  is constant. This 

further indicates that the small wake skew angle assumption should not provide 

analytical results to the model but provide only approximations thereto. 

 

  The identification that the small wake skew angle assumption is inconsistent can be 

regarded as a significant result by itself, and it is believed that this is the first study to 

question the validity of its application on theoretical grounds. Conclusions 10 - 15 

above were held in an inductive way on the assumption that the small wake skew angle 

assumption and the resultant model are practically acceptable. In order to theoretically 

confirm more rigorously Conclusions 14 and 15, it is ideally necessary that Eq. (4.19) 

should be calculated analytically to a close-form as a function of the wake skew angle. 

However, it was turned out that this calculation is extremely difficult. Conclusion 13 is 
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examined about only one special case, but this is considered to be enough as a 

counter-proof to show that the small wake skew angle assumption does not provide 

analytical results to the model but provide only approximations thereto. 

 

  In summary, it can be said that the predefined aim of this thesis to theoretically 

examine the availability of contemporary dynamic inflow models for autorotative rotors 

has been successfully accomplished. Also, a detailed discussion was held about the 

small wake skew angle assumption. It is expected that the results and observations 

presented in this dissertation will contribute to the relevant fields of study and lend a 

deeper and valuable insight into the dynamic inflow model theory.   

 

 

5.3 Future Directions  
  The present author shall suggest some future research topics following the present 

research.  

 

(i) Further Theoretical Sophistications of the Dynamic Inflow Model  

  With regard to possible further sophistications of the dynamic inflow model for 

autorotative rotors, modelling more detailed wake geometry should be worth 

considering, because the description of the wake tube as a skewed cylinder is the 

crudest approximation of reality. It must be next to impossible to analytically describe a 

realistic wake tube, which is highly turbulent (even though it were possible, the 

implementation of the wake geometry in the integral path of Eqs. (2.65) must be 

impossible), but even a slight improvement in the description should be important.  

 

  Conclusion 1 above is based on the present frame of the derivation of the Peters and 

He model, in which an autorotative rotor can be regarded the upside-down of a rotor in 

the normal working state, but the conclusion may change if differences in the wake 

geometry between normal working and wind-mill brake states such as wake contraction 

and expansion are taken into account in the derivation.  

 

  In addition to the static wake geometry, the dynamic behaviour of the wake tube 

should be important too. Dynamic effects caused by cyclic controls are discussed in 

Refs. (130) - (133). The dynamic response of the wake and induced flow to dynamically 

changing free stream may also be important in relation to autorotative rotors, because 

this situation may happen in an ever-increasing oscillation of poorly balanced autogyros, 
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which is often misconceivably called PIO, highly likely resulting in fatal accidents. 

Such dynamic problems should need a new modelling, in which those effects such as 

the momentum and inertia of wake tube, time-delay in the response of wake geometry 

and so on should be fully taken into consideration. The first thing which is worth trying 

for such an advanced dynamic model for gyroplanes may be to give some modifications 

to the gain matrix following Ref. (132).   

 

(ii) More Consistent Model to Explain the Small Wake Skew Angle Assumption  

  Since Conclusions 12 and 14 are derived in an inductive approach, they cannot be 

logically rigorous proofs, although the prediction was confirmed about a special case. 

Thus, it is hoped that a new model would be build based on Eq. (4.19). It is extremely 

difficult (maybe impossible) to analytically complete the integrals in Eq. (4.19) to a 

closed-form as a function of the wake skew angle, but this is necessary to ultimately 

clear up the problem with the paradoxical small wake skew angle assumption.   

 

  The new model will likely be involved with extensive numerical calculations based 

on Eq. (4.19). The possibility of introducing new assumptions, which are more 

reasonable than the small wake skew angle assumption, to build a more comprehensive 

dynamic inflow model can also be pursued. Note that it may be not always the case that 

the new model could provide better results than those from the present Peters and He 

model from a practical point of view because of many other assumptions used in the 

derivation such as the cylindrical description of a wake tube. (Generally speaking, it is 

sometimes the case that sophisticating only one aspect of a model will result in a poorer 

model.) However, the paradox with the small wake skew angle assumption must be 

concluded as an analytical problem at this stage because the model derivation is asserted 

to be analytical. It is believed that a truly better analytical model cannot be built in the 

future without the understanding of this problem.  

 

 

5.4 Conclusive Remarks  
  A variety of results have fruitfully been obtained from the present research not only 

for the autorotative rotors but also for the dynamic inflow model itself in general. All of 

those results are believed to be unique and significant. It is hoped that this thesis can 

form a valuable contribution across a wide range of relevant research fields.  
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Appendix 2.1 Linearisation of the Euler Equation 
  The motion of incompressible fluid is governed by the Navier-Stokes Equations. 

 

  
∂t�

∂U
+ (U � ∇)U = �∇Φ + �△U .          (A2.1.1) 

 

  When the viscosity can be ignored, Eq. (A2.1.1) reduced to the Euler Equations, in 

which △U= 0. Provided that U = V + u where V is the steady base flow and u is 

the perturbation, the convection term in Eq. (A2.1.1) is linearised as follows,  

 
  (U � ∇)U = ((V + u) � ∇)(V + u) 

            = V � ∇V +V � ∇u+ u � ∇V + u � ∇u 

       = V � ∇u+ o(|u|2).        (A2.1.2) 

 

 

Appendix 2.2 Transformation from Cartesian to Polar Coordinates on 
the Rotor  
  The azimuth in the cylindrical coordinates on the rotor is conventionally taken to the 

negative direction of the x -axis (see Fig. 2-1). 

  

  x = � r�cos ψ ,            (A2.2.1) 

  y = r�sinψ .            (A.2.2.2) 

 

  The metric factors between these two coordinate systems are defined as  

 

  h2
1
=
�

∂r�

∂x
�
2
+
�

∂r�

∂y
�
2
= 1 ,         (A2.2.3) 
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  Thus, the differential operators are transformed as follows,  
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∂y

∂
=
h2
1

1 �
∂r�

∂y �
∂r�

∂
+
h2
2

1 �
∂ψ

∂y �
∂ψ

∂
 

         = sinψ
∂r�

∂
+

r�

cos ψ �
∂ψ

∂
 

       =
2

1
{

eiψ
�

i∂r�

∂
+
r�∂ψ

∂
�

� e�iψ
�

i∂r�

∂ �
r�∂ψ

∂
��

.     (A2.2.6) 

Note that  

  
∂r�

∂
=
∂r�

∂x �
∂x

∂
+
∂r�

∂y �
∂y

∂
= � cos ψ

∂x

∂
+ sinψ

∂y

∂
,     (A2.2.7) 

  
∂ψ

∂
=
∂ψ

∂x �
∂x

∂
+
∂ψ

∂y �
∂y

∂
= r�sinψ

∂x

∂
+ r�cos ψ

∂y

∂
.     (A2.2.8) 

 

 

 

Appendix 2.3 The Ellipsoidal Coordinate System 
  Ellipsoidal coordinates, (�, ψ, &), are defined by (x, y, z) as follows,  

 

  x = � 1 + &2
√

1 � �2
√

cos ψ ,        (A2.3.1) 

  y = 1 + &2
√

1 � �2
√

sinψ ,         (A2.3.2) 

  z = � &� .            (A2.3.3) 

 

  The coordinate surfaces and their domains of definition are given as follows:  

 

 (i) ellipsoids    : & = const. 0 � & < ∞;      (A2.3.4) 

 (ii) hyperboloids   : � = const. � 1 � � � 1 ;     (A2.3.5) 

 (iii) half planes    : ψ = const. 0 � ψ < 22 .     (A2.3.6) 
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Fig. A2-1 [The ellipsoidal coordinate system.] 

 

  Examples of the representation in this coordinate system include  

 the hub centre  :  & = 0, � = 	 1 ,       (A2.3.7) 

 the rotor surface  :  & = 0, � 1 � � � 1 ,      (A2.3.8) 

 the edge of the rotor :  & = 0, � = 0 .        (A2.3.9) 

 

  Note that the upper and lower surfaces of the rotor are distinguished by the sign of � .  

 

 � < 0  : z > 0 ,   (the lower surface)      (A2.3.10)  

 � > 0  : z < 0 .  (the upper surface)      (A2.3.11) 

 

  The metric factors are given as follows. The subscripts of 1, 2 and 3 indicate (�, ψ, &), 

respectively in this order.  

 

  h1 =
1 � �2
�2 + &2

√

,           (A2.3.12) 

  h2 = (1 + &2)(1 � �2)
√

,         (A2.3.13) 

  h3 =
1 + &2
�2 + &2

√

.           (A2.3.14) 

 

 

  Vector differential operators (i.e. grad, div and △) in ellipsoidal coordinates are 

expressed as  
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   gradΦ = e�
�2 + &2
1 � �2

√

∂�

∂Φ
+ eψ

(1 + &2)(1 � �2)
√

1

∂ψ

∂Φ
+ e&

�2 + &2
1 + &2

√

∂&

∂Φ ,    

                (A2.3.15) 

 

  divV =
�2 + &2
1

�

∂�

∂
�

(1 � �2)(�2 + &2)
√

V1

�

 

         +
∂ψ

∂
�

(1 + &2)(1 � �2)
√

�2 + &2
V2

�

+
∂&

∂
�

(�2 + &2)(1 + &2)

√

V3

��

,   

                (A2.3.16) 

 

  △Φ =
�2 + &2
1

�

∂�

∂
�

(1 � �2)
∂�

∂Φ
�

+
∂ψ

∂
�

(1 + &2)(1 � �2)
(�2 + &2)

∂ψ

∂Φ
�

+
∂&

∂
�

(1 + &2)
∂&

∂Φ
��

,   

                (A2.3.17) 

 

where Φ  and V = (V1, V2, V3) are arbitrary scalar and vector functions, respectively. 

The differential operators are formally transformed from Cartesian coordinates to 

ellipsoidal coordinates as follows,  

 

 

  
∂z

∂
=
h2
1

1 �
∂�

∂z �
∂�

∂
+
h2
2

1 �
∂ψ

∂z �
∂ψ

∂
+
h2
3

1 �
∂&

∂z �
∂&

∂
    

       = �
�2 + &2
&(1 � �2) �

∂�

∂ �
�2 + &2
�(1 + &2) �

∂&

∂
,       (A2.3.18) 

 

  
∂x

∂
=
h2
1

1 �
∂�

∂x �
∂�

∂
+
h2
2

1 �
∂ψ

∂x �
∂ψ

∂
+
h2
3

1 �
∂&

∂x �
∂&

∂
 

       =
�2 + &2
�(1 � �2)

1 � �2
1 + &2

√

cos ψ
∂�

∂
+

(1 � �2)(1 + &2)
√

sinψ

∂ψ

∂ �
�2 + &2
&(1 + &2)

1 + &2
1 � �2

√

cos ψ
∂&

∂
,   

                (A2.3.19) 

 

  
∂y

∂
=
h2
1

1 �
∂�

∂y �
∂�

∂
+
h2
2

1 �
∂ψ

∂y �
∂ψ

∂
+
h2
3

1 �
∂&

∂y �
∂&

∂
   

       = �
�2 + &2
�(1 � �2)

1 � �2
1 + &2

√

sinψ
∂�

∂
+

(1 � �2)(1 + &2)
√

cos ψ

∂ψ

∂
+
�2 + &2
(1 + &2)

1 + &2
1 � �2

√

sinψ
∂&

∂
.  

                (A2.3.20) 
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Appendix 2.4 Prandtl’s Potential Function 
  From Eq. (A2.3.17), Laplace’s Equation is expressed in the ellipsoidal coordinate 

system as follows,  

 

   △Φ =
�2 + &2
1

�

∂�

∂
�

(1 � �2)
∂�

∂Φ
�

+
∂ψ

∂
�

(1 + &2)(1 � �2)
(�2 + &2) �

∂ψ

∂Φ
�

+
∂&

∂
�

(1 + &2)
∂&

∂Φ
��

= 0 .  

                (A2.4.1) 

 

  Given that Φ(�, ψ, &) = Φ�(�)Φψ(ψ)Φ&(&) , Laplace’s Equation is separated into the 

following three differential equations corresponding to each variable.  

 

  
d�

d
[

(1 � �2)
d�

dΦ�
]

+
[

�
1 � �2
m2

+ n(n + 1)
]

Φ� = 0 ,    (A2.4.2) 

  
d&

d
[

(1 + &2)
d&

dΦ&
]

+
[

1 + &2
m2

� n(n + 1)
]

Φ& = 0 ,     (A2.4.3) 

  
dψ2
d2Φψ

+m2Φψ = 0 .           (A2.4.4) 

 

  Equation (A2.4.2) is the associated Legendre equation, and its solutions are given in 
the form of the associated Legendre function of the first and second kinds, i.e. Pmn (�) 

and Qm
n (�). Equation (A2.4.3) will also result in the associated Legendre equation by 

replacing &  with i& . Thus, the solutions are obtained as Pmn (i&)  and Qm
n (i&) . The 

solutions to Eq. (A2.4.4) are given by sine and cosine.  

 

  Φψ = A cosmψ +B sinmψ ,         (A2.4.5) 

 

where A  and B are arbitrary constants. Among these solutions to Eqs. (2.4.2) - (2.4.4),  

Pmn (i&) and Qm
n (�) tend to infinity at the rotor edge (& = 0, � = 0), and thus they must 

be abandoned in order to satisfy the boundary condition of (B2). Therefore,  

 

  Φ(�, &, ψ) =
∑

m

∞ ∑

n

∞
Pmn (�)Q

m
n (i&)

[

Cmn cos(mψ) +D
m
n sin(mψ)

]

,  (A2.4.6) 

 
where Cmn  and Dm

n  are arbitrary constants. In addition, only those combinations in 

which n = m + 1, m + 3, m + 5, ...  satisfy the boundary condition (B2). Hence,  
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  Φ(�, &, ψ) =
∑

m

∞ ∑

m+1,m+3,...

∞
Pmn (�)Q

m
n (i&)

[

Cmn cos(mψ) +D
m
n sin(mψ)

]

.   

                (A2.4.7) 

 

  This is called Prandtl’s Potential Function after the German physicist, Ludwig 

Prandtl (1875-1953), who was a great pioneer of aerodynamics.  

 

 

Appendix 2.5 The Associated Legendre Functions 
  The associated Legendre function of the first kind is defined as a solution to the 

associated Legendre equation, which is described in the form of Eq. (A2.4.2). It can also 

be defined as polynomials,  

 

  Pmn (x) = (1 � x2)2
m

dxm
dm
Pn(x), (� n � m � n)     (A2.5.1) 

 

where Pn(x) is the Legendre function of the first kind, which will be introduced later in 

Appendix 2.661. Important relations derived from Eq. (A2.5.1) include  

 

  P�m
n (x) = (� 1)m

(n +m)!

(n �m)!
Pmn (x),        (A2.5.2)  

  P0n(x) = Pn(x).           (A2.5.3) 

 

    Note that the variable of x  in this Appendix is no more than a general variable, 

and thus should not be interpreted as x  in rotor Cartesian coordinates. In a context of 

rotorcraft problems, x  in this Appendix is usually interpreted as r�. Some specific 

examples of the associated Legendre function of the first kind include 

  P0n(x) = Pn(x) =
∑

k=0

[
2

n
]

(� 1)k
2nk!(n � k)!(n � 2k)!

(2n � 2k)!
xn�2k,   (A2.5.4) 

  P1
1
(x) = 1 � x2

√
= sin >,          (A2.5.5) 

                                                   
61 The associated Legendre functions are occasionally defined with an additional factor of (� 1)m  depending on 
textbooks, especially in those books concerning quantum mechanics. This factor is related to the spherical harmonics, 
and is not necessary in a context of rotorcraft problems. The reader should pay attention to the variation in the 
definition when consulting references.  
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  P1
2
(x) = 3x 1 � x2

√
= 3 cos > sin >,        (A2.5.6) 

  P2
2
(x) = 3(1 � x2) = 3 sin2 >,         (A2.5.7) 

  P1
3
(x) =

2

3
(5x2 � 1) 1 � x2

√
=

2

3
(5 cos2 >� 1) sin >,     (A2.5.8) 

  P2
3
(x) = 15x(1 � x2) = 15 cos > sin2 >,        (A2.5.9) 

  P3
3
(x) = 15(1 � x2)2

3

= 15 sin3 >,         (A2.5.10) 

  P1
4
(x) =

2

5
(7x3 � 3x) 1 � x2

√
=

2

5
(7 cos3 >� 3 cos >) sin >,    (A2.5.11) 

  P2
4
(x) =

2

15
(7x2 � 1)(1 � x2) =

2

15
(7 cos2 >� 1) sin2 >,     (A2.5.12) 

  P3
4
(x) = 105x(1 � x2)2

3

= 105 cos > sin3 >,       (A2.5.13) 

  P4
4
(x) = 105(1 � x2 )2 = 105 sin4 >.        (A2.5.14) 

 

  Note that some of the examples above have the substitution of x = cos >, and this is 

utterly reasonable because it is proven that the set of associated Legendre functions can 

be a perfect set which can form a functional space spanned only by cosines(163). Figure 

A2-2 shows some of the examples above.  

 

Fig. A2-2 [The associated Legendre functions of the first kind.] 
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  It can be seen from the diagram that only those associated Legendre functions in 

which m + n � 1 mod.2  is satisfied become zero at x = 0 . Thus, only those 

combinations of m  and n  which satisfy m + n � 1 mod.2  are to be used in rotor 

problems. This property can be more rigorously proven by the following recurrence 

formula,  

  (2n + 1)xPmn = (n +m)P
m

n�1 + (n
�m + 1)Pm

n+1
.     (A2.5.15) 

 

  Equation (A2.5.15) is straightforwardly given by mathematical induction from Eqs. 

(A2.5.4) - (A2.5.6). The orthogonality of the associated Legendre function of the first 

kind is represented as  

 

  
∫

�1

1

Pmn (x)P
m

l
(x)dx =

2n + 1

2 �
(n �m)!
(n +m)!

<nl.      (A2.5.16)     

 

  Thus, the associated Legendre function of the first kind can be normalised as  

  P�mn (�) = (� 1)m
 

�mn

Pmn (�)
)

,         (A2.5.17) 

where  

  �mn = 2n + 1

2 �
(n �m)!
(n +m)!

√

.         (A2.5.18) 

 

  Note that since the radial position on the rotor disc is usually normalised by the rotor 

radius, the integral interval used in the rotor analysis is [0, 1] , and hence the following 

equations can be useful alternatives to Eqs. (A2.5.16) and (A2.5.18) to define the 

orthogonality.  

  

  
∫

0

1

Pmn (x)P
m
n (x)dx = 2

1
∫

�1

1

Pmn (x)P
m
n (x)dx = 2n + 1

2 �
(n �m)!
(n +m)!

<nl. (A2.5.19) 

  �mn = 2n + 1

1 �
(n �m)!
(n +m)!

√

.         (A2.5.20) 

 

  The associated Legendre function of the second kind is the conjugate function of the 

associated Legendre function of the first kind defined as the conjugate solution of the 

associated Legendre function of the first kind to Eq. (A2.4.2). Still, the associated 

Legendre function of the second kind alone can be defined as  
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  Qm
n (x) = (� 1)m(1 � x2)2

m

dxm
dm
Qn(x). (� n � m � n)    (A2.5.21) 

 

  It is known that the differentiation of the associated Legendre function of the second 

kind can be represented as a simple recurrence relation,  

 

  
∂x

∂Qm
n (x)

=
x2 � 1
1

[

nxQmn (x)� (m + n)Qm

n�1(x)
]

.     (A2.5.22) 

 

  When x = 0 ,  

  Qm
n (0) = �

Γ
�

2

1�m�n
�

Γ
�

2

n�m
+ 1
�

2m�122
3

tan
[

2

2(m + n)
]

,    (A2.5.23) 

 

where Γ is the gamma function defined as  

 

  Γ(s) =

∫

0

∞
xs�1e�xdx (s > 0).         (A2.5.24) 

 

  Some specific examples of the associated Legendre function of the second kind 

include 

  Q0

0
(x) =

2

1
ln
1 � x
1 + x

,           (A2.5.25) 

  Q0

1
(x) =

2

x
ln
1 � x
1 + x � 1 ,          (A2.5.26) 

  Q0

3
(x) =

4

x(5x2 � 3)
ln
1 � x
1 + x

+
3

2 �
2

5
x2 ,      (A2.5.27) 

  Q1

1
(x) =

2 1 � x2
√

(x2 � 1) ln
1�x
1+x� 2x

,         (A2.5.28) 

  Q1

2
(x) =

2 1 � x2
√

4 � 6x2 + 3x(x2 � 1) ln
1�x
1+x

,       (A2.5.29) 

  Q2

2
(x) =

2(x2 � 1)
2x(3x2 � 5)� 3(x2 � 1)2 ln

1�x
1+x

,      (A2.5.30)  

  Q3

3
(x) =

2(1 � x2)2
3

30x5 � 80x3 + 66x + 15(1 � x2)3 ln
1�x
1+x

.     (A2.5.31) 
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  Since the associated Legendre function of the second kind in Prandtl’s potential 

function, Eq. (A2.4.7), has an imaginary variable, the definition should be extended to a 

complex function. The extension itself can be simply done by regarding x  in equations 

above as a complex variable. Figure A2-3 shows the real part of some examples of the 

above.  

 

 

Fig. A2-3 [Real parts of the associated Legendre functions of the second kind.] 

 

 

  Note that at |x| = 1 , those functions in the left diagram become zero and the others in 

the right diagram diverge to infinity, depending on the combination of m  and n. The 

imaginary parts of the same functions are shown in Fig. A2-4.   

 

 
Fig. A2-4 [Imaginary parts of the associated Legendre functions of the second kind.] 
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Appendix 2.6 The Legendre Functions 
  The Legendre functions of the first and second kinds are conjugate solutions to each 

other to Legendre’s equation,  

 

  (1 � x2)
dx2
d2y � 2x

dx

dy
+ n(n + 1)y = 0 .        (A2.6.1) 

 

  The Legendre function of the first kind can be regarded as a special case of the 

associated Legendre function, Pmn (x), when m = 0 , yet the Legendre function of the 

first kind alone can independently be defined as  

 

  Pn(x) =
∑

k=0

[
2

n
]

(� 1)k
2nk!(n � k)!(n � 2k)!

(2n � 2k)!
xn�2k.     (A2.6.2) 

 

  The following recurrence relation is useful. 

 

  (2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn�1(x), (n = 1, 2, 3...)  (A2.6.3) 

 

where P0(x) = 1  and P1(x) = x . Some specific examples of the Legendre functions of 

the first kind include 

 

  P0(x) = 1 ,            (A2.6.4) 

  P1(x) = x ,            (A2.6.5) 

  P2(x) =
2

3
x2 �

2

1
,           (A2.6.6) 

  P3(x) =
2

5
x3 �

2

3
x ,           (A2.6.7) 

  P4(x) =
8

35
x4 �

4

15
x2 +

8

3
,         (A2.6.8) 

  P5(x) =
8

63
x5 �

4

35
x3 +

8

15
x ,         (A2.6.9) 

  P6(x) =
16

231
x6 �

16

315
x4 +

16

105
x2 �

16

5
,       (A2.6.10) 

  P7(x) =
16

429
x7 �

16

693
x5 +

16

315
x3 �

16

35
x .      (A2.6.11) 
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  On the other hand, the Legendre function of the second kind is defined as  

 

  Qn(x) = (� 1)2
n

n!

*�

2

n
�

!
�
2
2n

qn(x) = (� 1)s
(2s� 1)!!
(2s)!!

q2s(x) for n = 2s,    

                (A2.6.12) 

  Qn(x) = (� 1) 2

n+1

n!

*�

2

n�1�
!
�
2
2n�1

pn(x) = (� 1)s+1
(2s+ 1)!!

(2s)!!
p2s+1(x) for n = 2s+ 1 , 

                (A2.6.13) 

 

where  

  pn(x) = 1 �
2!

n(n + 1)
x2 +

4!

(n � 2)n(n + 1)(n + 3)
x4 � � � � ,   (A2.6.14) 

  qn(x) = x �
3!

(n � 1)(n + 2)
x3 +

5!

(n � 3)(n � 1)(n + 2)(n + 4)
x5 � � � � ,  

                (A2.6.15) 

 

 

  Some specific examples of the Legendre functions of the second kind include 

 

  Q0(x) =
2

1
ln
�

1 � x
1 + x

�

,          (A2.6.16) 

  Q1(x) =
2

x
ln
�

1 � x
1 + x

�

� 1 ,         (A2.6.17) 

  Q2(x) =
4

3x2 � 1
ln
�

1 � x
1 + x

�

�
2

3x
,        (A2.6.18) 

  Q3(x) =
4

5x2 � 3x
ln
�

1 � x
1 + x

�

�
2

5x2
+
3

2
.      (A2.6.19) 

 

  The Legendre functions of the second kind diverge to infinity at x = 	 1 . This 

property corresponds to the fact that the Legendre functions of the first kind have 

singular points at x = 	 1 . Some examples of the Legendre functions of the first and 

second kinds are shown in Fig. A2-5.  
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Fig. A2-5 [The Legendre functions of the first and second kinds.] 

 

 

 

Appendix 2.7 A Complement to Eq. (2.38) 
  From (A2.5.1),     

 

  
�

1
P�mn (�) = �mn

1
(1 � �2)2

m

d�m
dm
Pn(�).         (A2.7.1) 

 

  On the other hand, there is a formula called Rodrigue’s formula to represent the 

Legendre function of the first kind as follows,  

  

  Pn(�) =
2nn!

1
�

d�

d
�
n

(�2 � 1)n .         (A2.7.2)  

 

  The derivation of Rodrigue’s formula is provided in Ref. (163). Substituting Eq. 

(A2.7.2) into Eq. (A2.7.1) and using r�2 = 1 � �2  yields Eq. (2.38).  

 

 

 

Appendix 2.8 Comments on the Coefficients of L� rmc
jn

 and L� rms
jn

   

  L�0mcjn  has the coefficient of 1/4  while L�rmcjn  and L�rmsjn  have 1/2 , following the 

definition of Peters, Eq. (2.65.1) - (2.65.3). This implies that L�rmcjn  and L�rmsjn  are Fourier 

coefficients of a Fourier series which is defined as  
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  f(x) �
∑

n=1

∞
(an cos nx + bn sinnx),        (A2.11.1) 

    a0 =
22

1
∫

�2

2

f(x)dx ,        (A2.11.2) 

    an =
2

1
∫

�2

2

f(x) cos nxdx ,       (A2.11.3) 

     bn =
2

1
∫

�2

2

f(x) sinnxdx .       (A2.11.4) 

 

where f(x) is an arbitrary periodical functions defined in [� 2, 2] .  

  In the representations above, while Eq. (A2.11.1) has a pleasing symmetry between 

an  and bn , the symmetry breaks in Eqs. (A.2.11.2) - (A2.11.4) between a0  and the 

others.  

  There is another definition of Fourier expansion, in which Fourier coefficients are 

consistently and symmetrically defined for all n, but the general representation of the 

expanded function needs to contain the case selection between n = 0  and n �=0 .  

 

  f(x) �
2

a0
+
∑

n=1

∞
(an cos nx + bn sinnx),       (A2.11.5) 

    an =
22

1
∫

�2

2

f(x) cos nxdx ,       (A2.11.6) 

     bn =
22

1
∫

�2

2

f(x) sinnxdx .       (A2.11.7) 

 

  If the dynamic inflow model were developed based on Eqs. (A2.11.5) - (A2.11.7), 

then Eqs. (2.66.1) and (2.66.3) could have been defined in a unified form, but 

representations of the pressure potential and induced flow such as Eq. (2.25) must have 

had an extra term, for example =0n/2  for Eq. (2.25), in the same form as Eq. (2.11.5).  

  Many of textbooks including Ref. (163) have Eqs. (A2.11.5) - (A2.11.7) for the 

definition of a Fourier series, but Peters used Eqs. (A2.11.1) - (A2.11.4) for his studies. 

The variations in the definition should be paid special attention when consulting the 

literature.  
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Appendix 2.9 Variation in the Representation of the Pressure Potential  
 With regard to the gain matrix elements, in some references such as Ref. (37), Γrm

jn
 for 

r +m � 0 mod.2  is given as follows,  

  

  Γrm
jn
=

Hm
nH

r

j

√
(� 1) 2

n+j�2r

�
(n + j)(n + j+ 2)[(n � j)2 � 1]

4 (2n + 1)(2j+ 1)
√

.    (A2.12.1) 

 

  Allow Eq. (2.101.1) to be re-carried here again for the comparison,  

  

  Γrm
jn
=

Hm
nH

r

j

√
(� 1) 2

n+j�2r

�
(n + j)(n + j+ 2)[(n � j)2 � 1]

2 (2n + 1)(2j+ 1)
√

.    (2.101.1) 

 

  Reference (92) contains Eq. (2.101.1). Equations (2.101.2) and (2.101.3) are also 

doubled in Ref. (37). There is also a variation in the representation of the dynamic 

inflow model. In Ref. (92), the dynamic inflow model for the cosine part is supposed to 

have the form of  

  [M](a
 r
j
) + 2V[Lc]�1(ar

j
) = (Anmc),        (A2.12.2) 

 

while in Ref. (37) it is formulated as  

 

  [M](a
 r
j
) + V[Lc]�1(ar

j
) = (Anmc).        (A2.12.3) 

 

  The reader may notice that the second term in Eq. (A2.12.2) has an extra coefficient 

of 2 compared to Eq. (A2.12.3). This variation is due to the variation in the 

representation of pressure potential. In Ref. (92), the Fourier coefficients, Amcn , are 

associated with the Lift, Eq. (2.13), while in Ref. (37), the Fourier coefficients, Amcn , are 

associated with Eq. (2.12). In either way, the induced flow can be associated with the 

pressure potential, but depending on how to define the pressure potential and the 

dynamic inflow model (i.e. the combination of whether Eqs. (2.12) or (2.13) and 

whether Eqs. (A2.12.2) or (A2.12.3)). This thesis is based on the definitions in Ref. (7). 

Readers have to avoid the possible confusion when reading a plural of relevant 

literature.  



Appendices   

 145 

Appendix 3.1  Further Discussion about the Mass-flow Parameter  
  In addition to high-speed flight cases discussed in Subsection 3.2.4, the axial flight 

case shall be examined in this Appendix in order to underpin the validity of the 

definition of Vm	. In axial flight (@ = 0),  

 

 VT = ?2
√

= |?|             (A3.1.1) 

 

in order to maintain CT > 0 . Also,  

 

 Vm	 = |?|
?2 + ?m|?|

= ?m + |?f + ?m| .        (A3.1.2)  

 

  Especially when the vehicle is climbing, as ?f > 0 ,  

  

   Vm	 = 2?m + ?f .    (climbing)       (A3.1.3)  

 

  Likewise, when in descent, as ?f < 0 ,  

 

 Vm	 = � ?f .     (descent)       (A3.1.4) 

 

  Note that ?m > 0  in both cases by definition. On the other hand, Peter's definition of 

mass-flow parameter, Vm+, yields the following values in axial flight,  

 

 Vm+ = 2?m + ?f ,    (climbing)       (A3.1.5)  

 Vm+ = � 2?m� ?f .  (descent)       (A3.1.6) 

 

  Since Vm	 and Vm+ provide the same value with the climbing case, and the sign 

change found between Eqs. (A3.1.5) and (A3.1.6) is reflection of the modulus sign 

implemented in the definition of Vm	, and this is consistent with the observation about 

high-speed fligh in Subsection 3.2.4.  
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 Appendix 3.2 Forces and Moments on a Blade Element  
  The derivation of Eqs. (3.17) and (3.18) are enunciated in this Chapter. References 

(5) and (152) should be referred about further details.  

  The hub velocity vector in aircraft axes, uhub(vehicle) , can be expressed as 

 

 uhub(vehicle) = uvehicle(vehicle) +w � (rc.g. � rhub),       (A3.2.1) 

 

where uvehicle(vehicle)  is the vehicle velocity in aircraft axes, w is the vehicle angular 

velocity, rc.g. is the centre of mass position vector with respect to the airframe reference 

and rhub is the position of the rotor hub with respect to the airframe reference.  

  Then, uhub(vehicle)  can be transformed to the shaft-oriented axes, in which the z-axis 

lies along the rotor shaft, as  

  

 uhub(shaft) = [T1]uhub(vehicle) ,            (A3.2.2) 

 

where [T1]  is the matrix that transforms a vector from airframe to shaft axes defined as 

 

 [T1] =

[
cos >s 0 � sin >s

sin >s sinBs cos Bs sinBs
sin >s cos Bs � sinBs cos >s cos Bs

]

,        (A3.2.3) 

 

where >s and Bs are longitudinal and lateral tilt of the rotor shaft with respect to the 

airframe, respectively. Next, uhub(shaft)  is transformed to a rotating frame of reference 

about the shaft,  

 

 uhub(hub) = [T2]uhub(shaft) ,            (A3.2.4) 

 

where uhub(hub)  is the hub velocity in the rotating frame of reference and [T2]  is defined 

as  

 

 [T2] =

[

sinψ � cos ψ 0
cos ψ sinψ 0
0 0 1

]

,           (A3.2.5) 

 

where ψ  is the azimuthal position of the reference blade. When the rotor has a 

hinge-offset, the hinge velocity, uhinge, is obtained as  
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 uhinge = uhub(hub) +whinge� rhinge+

 
0
0

� vi

)

,        (A3.2.6) 

 

where whinge is the hinge angular velocity, rhinge is the hinge position with respect to 

the shaft-based rotating frame of reference and vi is the induced velocity. Note that vi 

is a function of radial and azimuthal positions. The hinge angular velocity can be given 

as follows;  

 

 whinge = [T2][T1]w +

 

0
0
Ω

)

,           (A3.2.7) 

 

where Ω  is the rotor speed. By using a transformation matrix, [T3] , that transforms a 

vector from hinge to blade axes, we have  

 

 wblade = [T3]whinge+

 

;


>


=


)

,           (A3.2.8) 

 

where ;, > and =  are flap, pitch and lag angles, respectively, and  

 

 [T3] =

[
cos = sin = 0

� cos ; sin = cos ; cos = sin;
sin; sin = � cos = sin; cos ;

]

.        (A3.2.9) 

 

  The absolute velocity of the blade element in the blade axes, ublade, is thus defined as 

 

 ublade = uhinge+wblade� rbladeelem. ,          (A3.2.10) 

 

where rbladeelem is the radial position of the blade element with respect to the hinge in 

the blade axes. Then, the local angle of attack and the local absolute velocity at the 

blade element are calculated as  

 

 :elem = >elem + tan
�1
�

ublade � t(0, 0, 1)
ublade � t(0, 0, 1)�,         (A3.2.11) 

 Velem = (ublade � t(0, 0, 1))2 + (ublade � t(1, 0, 0))2
√

.      (A3.2.12) 

 

  The local lift and drag are defined as 
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 Lelem =
2

1
�celemV

2

elem
relema:elem,           (A3.2.13) 

 Delem =
2

1
�celemV

2

elem
relem<,             (A3.2.14) 

  

 where celem is the chord of the blade element, relem is the radial length of the blade 

element, a is the lift curve slope and <  is the drag coefficient. Note that celem is 

generally a function of the radial position, and a and <  are generally functions of the 

local angle of attack and the local Mach number.  

  The local lift and drag are defined along the direction of Velem. In the blade element 

frame of reference, they are expressed as  

 

 Xaero

elem
= Lelem sin:elem �Delem cos :elem,         (A3.2.15) 

 Yaero
elem

= 0,               (A3.2.16) 

 Zaero
elem

= � Lelem cos :elem �Delem sin:elem.         (A3.2.17) 

 

  These are aeronautical loads working on a blade element. On the other hand, the 

inertial loads on the blade elements can be given as 

 

 X
inertial

elem
= �melema

elem

elem
,            (A3.2.18) 

where melem is the mass of the blade element and a
elem

elem
 is the absolute acceleration of 

the blade element defined as  

 

 

a
elem

elem
= [T3]

{

[T2][T1]
[

u
 + w � u+w � (w � rhub)
]

+whinge� rhinge+wblade� [T3](whinge� rhinge)

�

. 

                 (A3.2.19) 

 

  Equations (3.17) and (3.18) can be obtained from equations above by defining that 

Xelem = X
aero

elem
+X

inertial

elem
. 
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