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Abstract

A dynamic inflow model is a powerful tool for plieting the induced velocity
distribution over a rotor disc. On account of itssed form and simplicity, the model is
highly practical especially for studying flight nteamics and designing control systems
for helicopters. However, scant attention has tsefar paid to applying this model to
analyse autorotative rotors (i.e. rotors in thedmmill-brake state), which differ from
powered helicopter rotors (i.e. rotors in the ndrmarking state) in that the geometric
relation between the inflow and the rotor disc.

The principal aim of this research is to theaadly investigate the applicability of
existing dynamic inflow models for autorotative ard, and if necessary, to provide a
new dynamic inflow model for autorotative rotors.

The contemporary dynamic inflow modelling is ewed in detail from first
principles in this thesis, and this identifies adification to the mass-flow parameter
for autorotative rotors. A qualitative assessmdrhis change indicates that it is likely
to have a negligible impact on the trim state oforcraft in autorotation, but a
significant effect on the dynamic inflow modes @rtain flight conditions.

In addition, this thesis includes a discussiomuabthe small wake skew angle
assumption, which is invariably used in the deroratof Peters and He model. The
mathematical validity of the assumption is castldpdespite the resultant model has
experimentally been fully validated. This authosalisses on a theoretical ground the
possible reason why the Peters and He model woelkim spite of its inconsistent
derivation.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Overview

The primary aim of this thesis is to theoretigalvestigate the applicability of
existing dynamic inflow models for autorotative ort. Contemporary dynamic inflow
models such as the Pitt and Peters nfBdelve been developed for helicopter rotors in
the normal working state. The literature suggeds#s this would be the first time that
the possibility of applying the dynamic infow mdde autorotative rotors has been
examined from a theoretical viewpoint.

Ever since the first gyroplane, Model C.4 desthihg Juan de la Cierva, flew in
1923234 it has always been a major problem how to desdtfie distribution of the
airflow around the rotor. Although simple momenttimeory can provide a key insight
into the rotor performance in steady axial fligft a more sophisticated description
about the inflow distribution is required to stuthe rotor performance, rotor stability
and controllability in unsteady state or in forwdlight, and to evaluate rotor loads,
which are closely connected with the controls. Tor loads are important also in
relation to rotor vibration and structural fatiguistorically, a variety of methods have
been proposed to describe the detailed inflow iBigion over rotors in the normal
working state, either in steady or unsteady stateefther axial or forward flight.
Examples thereof include various dynamic inflow misd

In the following Sections in this Chapter, theacdtteristic features and historical
development of the dynamic inflow model will be lmgd. The discussion of this thesis
shall mainly be focused on theoretical and mathealagspects, but some numerical
verification of the salient points are to be preéedn

1.2 Organisation of this Thesis

An extensive literature review is given in Chagptein relation to dynamic inflow
models such as the Pitt & Peters and Peters & Haelaoln an attempt to outline the
characteristic features of dynamic inflow modellinhe practical applications and
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historical development are shown in comparison wather methods, such as lift
deficiency functions and CFD methods. Furthermarerief history of gyroplanes and a
description of the current problems in the fieldggfoplane research are introduced so
as to make clear the significance of this research.

In Chapter 2, the mathematical derivation of Ret@nd He model is carefully
examined aiming to theoretically identify the nexagy modifications to the model for
its application to autorotative rotors. In this exaation, the author seeks to improve
the lucidity of the derivation of these models byamining the assumptions they are
based on, presenting proofs to related theoremwaelisas offering new approaches to
interpreting these methods. A few potentially masleg typographical error in the
original literature are also detailed. Although #nahor enunciates his own point of
view in places, it must be herein emphasised tlatésults and derivations presented in
this Chapter fundamentally rely on the work corgdinn Dr. C.-J. He’s doctoral
thesis”.

In Chapter 3, the applicability of the existinghdmic inflow model for autorotative
rotors is considered, and the necessary modificatathe model for such applications
are presented in terms of the geometric differdrateveen rotors in the normal working
and windmill-brake states with regard to the relatbetween the rotor angle of attack
and the incoming flow. This difference always exisetween rotors in those two states.
Some computational simulations are also conductedstudy the affect of the
modification made in the mass-flow parameter.

In Chapter 4the small wake skew angle assumptiarmich is a vital requirement in
the derivation of Peters and He model, is examiiée. analysis of Chapter 4 is based
on that of Chapter 2, but the results are not éohiio autorotative rotors. An alternative
model, in which the small wake skew angle assumpiBonot used, is also presented.
The reason why the Peters and He model practioadisgks so well in spite of the
questionable assumption is discussed on a thealrgticund.

In Chapter 5, an overview and discussion of #mults presented in this thesis are
provided together with recommendations for futwsearch directions.
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1.3 Focus of this Thesis

The primary focus of this research is the improgat of the performance of existing
gyroplanes and the clarification of the dynamicdebur of these aircraft. Following
the advent of the helicopferthe gyroplane gradually gave way to the helicopad
only a small number of studies were undertakeneeiin an academic, military or
governmental basis after the Second World AMar the mean time, the gyroplane has
been developed generally by amateur home-buildeds ssame small companies for
sports or leisure flying, and consequently, a gooehber of pilots were killed in
accidents without amply clarifying the possible @ of such accidents. Some fatal
accidents could have been attributed to human errtechnical malfunctions owing to
inexpert weekend DIY manufacturing, but other aeoid might have been caused by
more fundamental design faults, or the controlesystAs the dead cannot speak in their
own defence, it may be attributed to the autharitleat closer investigations into the
possible causes have not been pursued.

In the United Kingdom, CAA decided to ground gilroplanes produced by Air
Command International Inc. in 1991 after a seriesin fatal accidents resulting in
seven fatalities from 1989 to 1991, and this bec#merigger for a series of research
studies on gyroplanes at the University of Glas§oéw’. (Some accident reports in the
U.K. are available from Ref. (11).) Compared to th&. and the U.S.A., where the
gyroplane is relatively popular, the public recdgm of the danger of gyroplanes is
much smaller in other countries, and legislativestayns such as airworthiness
certificates and relevant air traffic laws can dledess developed.

For example, in Japan, where no official licegssiystem is set up for the gyroplane,
there were 23 accidents between 1974 and 2006dimg) 8 accidents involving Air
Command Gyroplanes, with 18 pilots killed. Giverattlthere are only 120 or so
officially registered gyroplanes in Japan, thisident rate is clearly significant. The
Secretariat of ARAIC concluded that 19 accidengsdbf could simply be attributed to
human error and 1 to improper maintendtteConsidering the fact that all Air

1 1t is controversial to whom the title of the fiiatentor of the helicopter should be credited. Twwenchmen, Louis
Breguet (1880-1955) and Paul Cornu (1881-1944), iedeégntly insisted that they flew in 1907, but itather
doubtful that their machines had enough powerke aif. A Dane, Jens Ellehammer (1871-1946), flevi913, with
the Crown Prince of Denmark witnessing the flightsImore popularly accepted that the first flightredited either
to Focke Fw.61 in 19364 or to Breguet-Dorand'&yroplane Laboratoirén 1935. In any case, the helicopter was
not practical maturity until Sikorsky’s Type R-4 svaut into production in 1942,

2 Quite a few research studies were made befor8ehend World War including Refs. (2-4,16-22). Howethee
number of such works published after the war issaterably few. References (23) and (24) are two saih
examples of studies undertaken after the Secontt\Wdar before 1991.



Chapter 1 Introduction

Command Gyroplanes have been grounded in the WK.td the possible inherent
instability, one may consider that there is a gmobi that some of the accidents in
Japan could be attributed to the inherent fligtgrabteristics of the vehicles rather than
human error.

There is thus a requirement to improve the basiderstanding of the gyroplane
aeromechanics, with both theoretical and experielesgpproaches necessary for this
aim. In order to study flight mechanics of the gteme, a mathematical model of the
induced velocity for autorotative rotors is an dbmnecessity, and the dynamic inflow
model should be better suited to this modelling thsn other approaches to describing
the inflow distribution, including various CFD metls. This forms the principal
motivation for the present research.

As well as addressing safety issues as descabetie, there is also a belief that
gyroplanes can still compete with other classesV#STOL aircraft, including
helicopters and tilt rotors, as a short-range frartsof the future, and several projects to
explore this possibility are presently under wayug, it is believed that a wide range of
basic research, either theoretical or experimeigahecessary at this stage to realise
those projects in time to come. Based on the viesve, the possible contribution to the
further development in gyroplanes also partly mated this research.

Furthermore, autorotation is also of great imgace for helicopters as the way of
emergency landing, though it is an abnormal coolitNevertheless, scant attention is
paid to either the theoretical or experimental stigation, and this situation needs a
suitable mathematical model which can be used mirob analysis. Hence, further
research on the flight state of autorotation shdnéaneaningful not only for gyroplanes
but also for helicopters in autorotation.

This background forms the motivation for this Waand it is hoped that this research
will contribute to the study of control system dtight dynamics for the gyroplane and
the autorotative state of the helicopter.

1.4 General Introduction to the Dynamic Inflow Modd
In the following Subsections, the base princiglethe dynamic inflow model and an
outline of the schematic application thereof arieflyr reviewed prior to Chapter 2, in
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which the model will be derived and examined inttejpom a rigorous mathematical

perspective. The understanding of base principkferbhand is believed to make it
easier to understand later Chapters. Also, itnsedi that the characteristic features of
the dynamic inflow model are generally elucidateccomparison with other methods
for describing the induced flow distribution overador disc.

1.4.1 Base Principles

The dynamic inflow model is essentially an apgiien of Newton’s laws of motion.
During the flight, the rotor is supported by the, awith this force called lift. By
Newton’s third law of motion, the rotor in turn etea force of the same magnitude as
this lift in the right opposite direction (see Figl). This force accelerates the air below
the rotor according to Newton’s second law of mtithe force equals the mass of the
accelerated air multiplied by the acceleration,

ma = F, (1.1)

the Lift pax 29072~

Fig. 1-1 [The first principle of the dynamic inflomodel.]

There are two points which need attention henestlf, the equation of motion of
inviscid incompressible flow is called Euler's E¢oas (or Eulerian Equations of
motion), and it takes a slightly different form th&q. (1.1), though essentially the same.
The derivation of Eq. (1.2) from Eg. (1.1) shouklfound in most of textbooks on fluid
mechanics such as Refs. (25) or (26).

p%+p(u~V)u: - VP, (1.2)
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where u, t,p and P denote fluid velocity, time, fluid density and psere,
respectively.

Secondly, the total mass of the air flow acceéztas not as straightforward as in the
motion of point masses, and thus the determinatiothe apparent mass of the flow
forms a problem that must also be considered, 8t#l reader should be encouraged to
remember that the dynamic inflow model is in essesomply an application of
Newton’s laws of motion. Note that when applying Ef1) or (1.2), the rotor may be
regarded as a thin flat continuous surface, whadelgrates the air underneath the rotor
to generate discontinuities in the pressure andcitgl between upper and lower sides
thereof. This assumption is calladtuator disc theory

The dynamic inflow model is typically representedhe form of a matrix equation.

[M] u+[L] 'u=F, (1.3)

where u and F are state vectors of the induced flow and the (fiftor thrust and
moments), a dot (.) denotes differentiation with respectitoe, 9/0. At this stage, it
may be noted that Eq. (1.3) is, very roughly spegkin the same form as of Eq. (1.2),
which is itself a rewriting of Eq. (1.1) for an @leluid. (Note that since the differential
operators ofd/of is linear, it can be expressed as a matrix in efillspace. However,
the differential operator of«- V) in Eq. (1.2) is not linear, and hence it should be
invariably linearised to result in a linear fornGjven Newton’s laws of motion, the
derivation of the dynamic inflow model in the foiwh Eq. (1.3) from Eq. (1.2) is thus
straightforward. Note that thev] and [L] matrices in Eq. (1.3) are conventionally
called apparent mass matriandgain matrix,and their product|s] = [L][M], is called
time constant matrixThese epithets will be occasionally used alghimthesis.

1.4.2 The Characteristics of the Dynamic Inflow Moel

In this Section, a general appraisal of the dyinanilow model is described, aiming
to sketch out its features (i.e., strength, weaknesefulness, limitation, etc.) in a
practical context compared to other models. Theateristic features of the dynamic
inflow model can be outlined as follows:

the dynamic inflow model is a mathematical modeladiing the unsteady dynamic

® Itis difficult to identify who first introducechie matrix form because the dynamic inflow model deseloped by
many researchers in a parallel manner in the statyes. Reference (27) is one of the earliest warkdich the
matrix form is used, and Ref. (1) is believed tarmest instrumental in establishing the matrix form.
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distribution of the induced velocity at/near a roto terms of aerodynamic loads
acting on the rotor;

it may be associated with practical modificatiomsmpirical corrections, and can be
extended so as to incorporate additional effeath s1$ aeroelasticity, compressibility,
ground effect, blade root-cut, tip-loss, wake distm and so on;

it can be represented by relatively simple equati@specially when described by
finite state variables, and is thus computationidjiyt;

it can be represented in a closed form, and thn$eaapplied for eigenvalue analysis
and Floquet analysis. Especially when describeditije state variables, it is of
particular use in analysing rotor control, stapjlltandling qualities and so on.

The versatility and flexibility described by poii) above are considered to be
among the major advantages of a dynamic inflow rhodéso, no restriction or
assumption is required for the representationfoiiorder to associate the lift with the
induced flow in the frame of dynamic inflow modelhe model can be thus flexibly
coupled with any lift theory.

Regarding point (iii) above, although expressiohapparent mass and gain matrices
in Eg. (1.3) by finite dimensional matrices are Ineghatically an approximation, the
dynamic inflow model often needs to be formulated @& small number of state
variables, and this mathematical simplicity makepdssible to compute the induced
flow distribution within a limited time. Note thahe number of state variables (i.e.
Fourier coefficients) can be increased as muchegsiired though, it only means
improving the accuracy of the representation dafdif induced flow based on actuator
disc theory. Since actuator disc theory itself nsextreme simplification of the rotor,
this is arguably a limitation of the dynamic inflowodel. More comprehensive CFD
methods based on vortex methods are thus usualtg motable for studying detailed
blade geometry and the relevant aerodynamic eff&til§ it is known that the dynamic
inflow model imparts reasonable, at least pradiicalfficient, distributions of the
induced velocities for most flight conditions oflicepters. For example, in a major
seminal review, Chen shows comparisons betweerowsardynamic inflow models
expressed bys x3 matrices, experimental data and computational ousth and
concludes thatdll the first-harmonic inflow models predict theduced velocity as well
(as poorly) as the free-wake method€®. Considering the acceptable accuracy in the
representation of the induced flow field, the extedy simple form of the dynamic
inflow model can be considered as a superior strengspecially when iteratively
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conducting real-time simulatiohs

The following schematic diagram illustrates haxcouple the dynamic inflow model
with other theories. Similar diagrams are frequergketched by Peters and his
coworker§??,

Aerodynamic

Rotor Inflow Loads
1 Dynamic Inflow Model

F 3

Angle of Lift and Blade

Control Attack . Loads
» » Lift Theory

».
>

Y
I 4

A

Flap, Lag, Feather Rotor Dynamics

and Rotor Speed

Inertial Loads

Fig. 1-2 [Schematic diagram for the typical usehaf dynamic inflow model.]

Since the dynamic inflow model describes the aedlivelocity as a function of the
lift, the diagram shows the typical combinationtleé dynamic inflow model with the
lift theory, which describes the rotor lift, andetblade dynamics, which explains local
angle of attack of the rotor. Still, this loop da@ easily changed or extended by adding
extra components such as body dynarnics

The closed loop described in Fig. 1-2 is the teegigenvalue analysis that arises in
considering stabilitf°>® with respect to point (iv) above. Note that opeapl models
including freewake and prescribed-wake methods, which are efiectat
time-marching problems, are usually not well-matthith such stability analyses.

In general, the lift theory and the rotor dynasnaze much more advanced than the
inflow model, and they can be tailor-made for indixal blades incorporating root-cut,
tip-loss, detailed blade shape and even aeroeldstarmation. Since a blade is quite
flexible and hence experiences various airspeedsrgmlution, such an advanced
theory should be highly useful for structural as@y However, from the control point

4 The amazingly rapid development in computationeiads made thereafter must, of course, also lee tako
account today.

® A dynamic inflow model in the form of Eq. (1.3)déten synonymously called finite-state model, jiothis can
not be a precise usage in the sense that any lieaséthod in reality should be expressed in terfiesfmite number
of variables. The connotation may imply that in gamson with dynamic inflow models, CFD methods need
millions of states, which correspond to the nuntfeheir mesh, nodes, or grid points, and that thus impractical
to use these methods for eigenvalue analysis.
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of view, it is more important that there shouldabbalance between each theory shown
in Fig. 1-2, because it is often the case thatdbmbination of crude models yields
better stability analysis results than those fodmda crude model coupled with a
detailed modé&f**3® It is regrettable that these advanced blade dimamdels should
be still often used in combination with simple maranm theory or quasi-steady inflow
model. Examples of more advanced inflow models fopuused today include the Pitt
and Peters mod® and the Peters and He mddfél but their applicability to
autorotative rotors has never been rigorously erathi

Based on the discussion above, this author kedigkiat further sophistication and
validation of the unsteady inflow model on a théioe basis is of prime importance for
the development of the analysis of autorotativensot

1.5 Concise History of the Attempts to Describe thénduced Flow
Distribution

In this Section, the historical development @& ttynamic inflow model is outlined in
parallel with the history of other theories suchliftsdeficiency function, equivalent
Lock number and CFD methods. It is generally difficco clearly put theories into
different categories, because all theories have lbeseloped with mutually affecting
each other. Sometimes it is the case that oneytlwmones to be hierarchically implied
by another even though their start points wereeqgdifferent. In this discussion, it is
intended to focus on the role that the dynamiminfmodel played in the development
of models in this area.

1.5.1 From Classical Theory to the Pitt and Peterslodel

In the simplest and oldest inflow model, it waswamed that the induced flow is
steady and uniform over the rotor (see Fig. 1-B).tdhe magnitude of the uniform
induced velocity can be easily calculated from motum theory, yet this simple model
can yield a surprising level of information condaghthe power required and the basic

® The dynamic inflow model with higher harmonics,igihmeans large{M] and [L] matrices, does not always
give better results than of the first harmonicamfimodel with 3 X 3 order matricé€®. This might be also partly
because of the unbalance of the accuracy betweethestription of the inflow distribution and theaebitself, since
the dynamic inflow model is based on lineariseceEsIEquations, which are already hugely simplifiexn the
Navier-Stokes Equations. In order to clarify theamyic and aerodynamic couplings of the rotor inhigier
frequency region, it is awaited to improve the dyiwinflow model with higher harmonics, which magguire some
empirical corrections. Reference (39) discussestivysecond harmonic inflow model with X 5 order matrices
performs worse than the first harmonic model in R&J), suggesting that the time-constant was ustierated. In
any case, a dynamic inflow model with higher harioeas not yet been successfully proposed.
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flight performance in hov&. In the forward flight, however, the blades haiféecent
relative airspeeds at different positions on thteryand the uniform distribution cannot
be realistically applied. Glauert proposed a linéatribution in which a longitudinal
gradient is consider&d?,
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Fig. 1-3 [Comparison between the uniform distribotand Glauert’s model.]

Glauert’s model is effectively a first order lareapproximation, and is too simple to
provide an accurate representation for the comjgicanduced flow distribution found
in practice, but yields reasonable results wheniegmvith an appropriate gradient. The
induced flow field in Glauert’s model is describasifollows,

v=1(1l 4+ Kc%cos V), (1.4)

where K. represents the longitudinal gradient of the distion, andv, v,, », & and

¢ denote the (axial) induced velocity, the uniformauced velocity, radial position on
the rotor disc, the rotor radius and the rotor aghm respectively. (See Fig. 1-3,
bottom.) Many values were theoretically or expentadly proposed fork., and the
examples are found in Refs. (16) and (42). Coleraad Feingol® suggested
K. = tan(x/2), and this was the first time that. had been represented as a function of
wake skew angley. This was a marked improvement, because the lolisiton of the
induced velocity heavily depends on the wake skaglea Stepniewski introduces in
Ref. (44) a broader variety of presupposed stasicibutions of the induced velocity.

Note that in momentum theory, the magnitude afuged velocity is evaluated
regardless of the number of blades, airfoil segtabrord length, blade twist, planform,
rotor speed and so on. In order to include theseildd aspects of rotor, there was a
school of attempts starting from blade element mhéo describe the induced velocity,

10
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examples of which can be found in Refs. (44) art).(4

Harris and McVeigh assumed that the local anflattack of a blade should be zero
at the root and tip so that the lift should be zevbich means that induced velocity
forms a zero relative angle of attack at these tpo@ven in forward flight>. These
works based on blade element theory helped to piethe improvement in the theory
of non-uniform induced flow distribution. Harrisrtber studied full-articulated rotors at
low advance ratios, which exhibit an excessive amai lateral flapping, correlating
wind tunnel test data with several classical infldweories and numerical simulations
based on the prescribed wake metffddHarris concluded that none of those theories
were satisfactory in predicting the lateral flagpiat low advance ratios. This result
indicated that an essential improvement in therttexal models was still necessary.

The first attempt to rigorously describe the rifiition in a theoretical manner in the
frame of actuator disc theory can be traced backitmer*”, who introduced the
ellipsoidal coordinate system to describe the iedudlow, and represented the
distribution of lift in the form of a functional ges of the associated Legendre functions.
Note that these works introduced above are related to the unsteady inflow
distribution, but to the steady distribution of ihduced flow.

After the Second World War, the heyday of gyrapkhad passed, and the helicopter
came to be a practical class of aerocraft. Someitapt works concerning the unsteady
induced velocity were done in the 1950’s in theteghof helicopter flight mechanics.
NACA engineers found through rotor whirl-tower tesn the 1950’s that when
increasing the collective pitch rapidly, there esi@n overshoot of thr#&t. The reason
for this is that the delay of the induced flow gaction to the change in the collective
pitch leaves the local angle of attack high urti# fangle is decreased by the newly
developed induced velocify This finding attracted the attention of rotortraf
aerodynamicists at the time to unsteady phenomktiee anduced flow.

Mangler and Squire conducted one of the most rtapb studies considering the

7 One important aspect with this phenomenon is tiagtrfoil may generate lift at a higher angle ek than its
stall angle, because there is also a delay in¢hercence of stall. As a result, the overshoohaidt sometimes can
be as large as double the maximum lift in the stestate. This phenomenon is caltiyghamic stallExamples of
such radical overshoot of thrust include a rapid gantrol of helicopters, and this led to the pbiisy of serious
damage in the tail rotor because the overshodgtilofator thrust surpasses the maximum steady s&dte, upon
which the structure was designed. The induced itgldelayed in the response is now caligghamic inflowand this
is the root of the name of the dynamic inflow m&ael

11
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modelling of an unsteady distribution of the induidw undertaken in this perié.
They first associated Kinner’s distribution of Jifthich satisfies Laplace’s equation and
can describe the pressure discontinuity acrossatoe, with the induced velocity field
in the form of Euler’s Equations. In their moddigtrotor is treated as a solid circular
disc as in actuator disc theory, and a lift disttibn is assumed so as to satisfy the
desired hub load. Mangler and Squire’s model canrdgarded as the theoretical
archetype of the dynamic inflow model in the sethse the acceleration of the induced
flow was therein implied. However, the method ofigling the rotor load with induced
velocity was not as sophisticated as that of modiymamic inflow modefs Joglker
and Loewy extended Mangler and Squire’s theorytoiiporate the wake geométry’.

Carpenter and Friedvief? presented another important work that also toak th
dynamic inflow effect into consideration, motivatdey the fjump take-off” of
overloaded helicopters. Some gyroplanes in the '$38@eady practised jump take-off,
which is a vertical take-off achieved by suddemigreasing the collective pitch of the
rotor, which is sufficiently prerotated at the rmmim collective pitch. Jump take-off is
often explained as a sudden conversion of the exdestic energy stored in the rotor
into the rotor work, but the overshoot of thruseda the dynamic inflow effect is also
important. Unfortunately, the dynamic inflow effeetas not well understood by
gyroplane engineers at that time. Carpenter aretfAch’s approach was quite different
from Mangler’s; they simply extended momentum tlgeby adding an extra term,
apparent mass ternwhich accounts for the delay in the induced flmwrespond to
changes in collective pitch. Their model is nowledlnsteady momentum theoiyhe
remaining problem therewith is how to evaluateapparent mass, and they adopted the
value of 8/37 ~ 63.7 % of the air mass in a sphere with the same diamaet the rotor,
following Ref. (51). Their unsteady momentum theoan be simultaneously coupled
with other equations about blade dynamics, andcctimputed results agreed well with
experimental data for hovering flight.

Whereas the phenomenon caused by the dynamuawirtilave been increasingly
attracting the interest of helicopter aerodynanscsince the 1950’s, most of the efforts
in modelling the induced velocity distribution wstdl focused on the static distribution,
in part because more basic information about tAevindistribution was first required

8 Reference (57) shows that Mangler and Squire’s frbies not agree well with experimental data. $e® Ref.
(28) about the accuracy of the model.

® Although the whole picture of their model is higlstbmplicated, one particularly instructive featofeRef. (49) is
that it presents a lucid and detailed rearrangewfethie equations for aerodynamic coefficients esped in
ellipsoidal coordinates, which are seldom providgedther literature.

12
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at that tim&2°%

In the meantime, Sissingh developed a new madelhich the roll and pitch
coupling of a rotor and their damping effect weirgkéd with the variation of the
dynamic inflow®®. This cross-coupled damping effect was first regbin Ref. (56),
but was not well explained by the existing theoiresvhich a uniform distribution of
the induced velocity was assumed. Sissingh assumgelniform distribution of the
induced velocity, and associated the variation Withfirst harmonic variation of the lift
coefficient. The idea of explaining the cross-cedptdamping effect by non-uniform
inflow variation was novel, and led to the contemgpg dynamic inflow model, Eg.
(1.3). Sissingh’s results agreed with the expertadedata of Amer so well that his
approach was adopted in Lockheed REXOR Program Me®onnell-Douglas’
(formerly Hughes) simulation program FLYRY. However, Sissingh assumed that the
reaction of the inflow should occur instantaneouahd did not take the dynamic delay
into account. His model is therefore callgdasi-steady modeMoreover, Sissingh
formulated the inflow distribution as a Fourieriesrdependent only on the azimuth,
but did not consider the radial variation.

Wheatley mentioned the close relation betweenrttieced flow and the rotor load,
and the possible problems with noise and vibr&tibas early as in the 1930's, but it
was not until the 1960’s that this relationshipaatted more general attention, partly
because of the advent of hingeless rotor, which iiast adopted in the
Messerschmidt-Bolkow BO105 in the late 1960’'s bytug of the development in
composite materials. The hingeless rotor is monsisee to the variation of rotor load
than full-articulated rotors, and hence the indusof inflow distribution into the model
of the control system came to be considered atabngcessity.

Curtiss and Shupe associated non-uniform rotad Mith perturbations in pitching
and rolling moments for hingeless rotors in axlght in the frame of a quasi-steady
model in 197%%. Instead of fully incorporating dynamic inflow efits, they modified
the Lock number to account for the dynamic chamgifti Note that the reduced Lock
numbet®, which is usually called thequivalent Lock numbgcan be identified with
Loewy’s or Miller’s lift deficient function. Banngre et al compared both the
equivalent Lock number method and the dynamic wfinodel with experimental data,

1% The Lock number is defined ap = pacR4/I. Reducing the Lock number is thus intuitively eglént to
assuming a heavier blade.

13
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and concluded that the dynamic inflow model workstdr at low advance ratios up to
0.4%9),

The techniques of taking experimental measuresnafit the induced velocity
distributions have been developed since the 19@®/gards, and examples include Refs.
(60) and (61). Gaonkar and Peters later describedsttuation, “...the theory of
dynamic inflow has been driven constantly by theeitms of experimental datan Ref.
(62). In point of fact, those experiments showedat insteady momentum theory does
not agree sufficiently well with experimental dadad this became the trigger to further
develop the dynamic inflow model to cover forwaiddyHt conditions. Wood and
Hermes tried to combine momentum theory and bldeiment theory to describe the
induced flow in forward fligHt®, and Azuma and Kawachi proposéde local
momentum theoryn which instantaneous momentum balance at d ldade element
is considered, and the blades are approximatedu#igpla wings, each of which has an
elliptical circulation distributioff®. The local momentum theory was so designed that
the time-wise decay of the induced flow can be diesd by an attenuation coefficient
even in unsteady forward flight.

In 1972, Ormiston developed the idea that therieogoefficients of the distributions
of induced velocity and lift should be associatedhie form of a matrix equation. Since
he described the lift by circulation based on th&t&Joukowski theorem and blade
flapping dynamics was also incorporated, the modedulted in an elaborate
formulatiof?”. The representation of induced velocity was naréin completed
because only the time-averaged velocity distributias considered in the model, and
thus, as Ormiston himself stated in the paperbgr significance of the work should
be in the mathematical rigour in the derivation.

Ormiston also developed a quasi-steady model Reéters to show that inclusion of
the non-uniform distribution of the induced velgcdf a hingeless rotor improved the
agreement between the theory and experimentafdagsthough their model was still
partly based on complicated circulation theoryydis more accessible than the previous
model in Ref. (27), and the correlation with expental data was significantly
improved. However, some elements of the gain negrfor this model were constant
regardless of the wake skew angle or any othentfigriables, and some non-diagonal
terms are assumed to be zero, that is to say,-cogding effects are not sufficiently
taken into consideration.

14
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Peters further developed the model to the fornE@f (1.3) including the apparent
mass matriX®, and demonstrated that the unsteady non-uniforacied velocity and
the blade aeroelasticity have a significant effattthe response characteristics of the
rotor system. However, the model is only appropriar hovering flight, and thus the
non-diagonal elements of the gain matrix were hetdin considered. Moreover, the
elements of matrices were not mathematically rigslpdetermined.

In 1976, Ormiston proposed an advanced matheahatiodel in which flapping
angle, inflow components and pitch angle are expdras a Fourier series, and the
flapping angle and inflow components are unifiedthe form of a matrix equation,
which is suitable for eigenvalue analy¥’k Although only the first harmonics (i.e.
longitudinal and lateral components) are thereinsaered, off-diagonal elements of
matrices are also provided, and thus some crogshogubehaviour of the rotor is also
taken into account. The formulation is an importailestone towards the contemporary
dynamic inflow models.

Various attempts at establishing the dynamicoimflmodel were made by many
researchers at this time in rather a parallel maramal the examples include Refs. (68),
(69) and (70). White and Black’s moff@ is quasi-steady, and Johnson’s m&8eis
similar to Carpenter and Friedvich’s unsteady mammantheory. Although all of these
references concluded that their models showed aiderable progress in correlation
with experimental data such as Ref. (62), nondeifrt could satisfactorily fully explain
dynamic inflow effects. Crew, Hohenemser and Oronistried to formulate the
reduction in control hub moment due to dynamicawfleffect in hover by either using
the equivalent Lock number method or replacingitiiew term in the blade equations
with an equivalent inflow term. Reference (71) laabrief summary of some of those
various dynamic inflow models presented in thisiguer(Note that it is pointed out in
Ref. (29) that the summary of Ref. (71) containsiaconception that the lateral and
longitudinal components of the induced flow,, and X,., are missed in the
time-derivative part, i.e. the vector multiplied the apparent mass matrix, resulting in
an erroneous expression for the uniform componkimidoiced velocity.)

Another important study of this period was cortddcby Peters and GaonK&k
These authors extended the equivalent Lock nunigeoacit®, which was used in the
frame of quasi-steady model for studying flappingbgity, to the advanced dynamic
inflow model for studying flap-lag stability. Thegonducted extensive calculations for
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the following model types: no induced flow pertuibas, quasi-steady momentum
theory, unsteady momentum theory, an empirical hade the equivalent Lock
number model. They concluded that the dynamic wf&dfect significantly increases
the flap-damping, and reduces the lag-damping. Sexperimental attempts were also
made to identify the elements of the gain m&tHixGaonkaret al studied the dynamic
inflow effects on the flap-lag stability with a cgissteady model using the equivalent
Lock numbef™.

The study of Van Holten, Ref. (75), is an impottaxample of three-dimensional
unsteady rotor modelling based on accelerationnpi@leheory. This study cast a doubt
on whether the classical lifting line model is dafor unsteady rotor dynamics, and
represented the (incompressible) induced flow fighd the form of asymptotic
expansions. The theoretical basis and the limitadioVan Holten’s model are examined
in Ref. (76). Although Van Holten’s model is mathedinally rigorously derived, the
model is represented in the form of integral equetj and is not well suited for flight
dynamics applications.

The most important achievement in the historydyhamic inflow model was
arguably made by Pitt and Peféswho extended the model of Ref. (65) for hovering
to fully include forward flight. The characterisfieatures of this model are its versatility,
possibly wide applications, the convenience it msffen being able to be used for
stability and control analysis, and the quite mathtcal presentation of its derivation.
The equivalent Lock number approach is therein detaely abandoned, and the gain
matrix is described as a function of the wake skegle. In Ref. (28), Chen presents
intensive comparisons between the Pitt and Pet@delmand other dynamic inflow
models including those models proposed in Refs), @®®) and (77). Chen concluded
that the Pitt and Peters model shows an overaiibagireement with experimental data
than other models. Reference (78) introduces thgatmn of the Pitt and Peters model
in detail, together with an extensive literaturevieev and comparison with other
numerical models.

1.5.2 Lift Deficiency Function

Whether steady or unsteady, the idea of assogidltie induced velocity with rotor
loads can be considered essentially based on sikgMaonian mechanics. On the other
hand, there is a different approach, in which thstridution of induced flow is
calculated from the distribution of vortices thrbughe Biot-Savart law. The lift
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distribution is also associated with the vortex tribsition by means of the
Kutta-Joukowski theorem. This approach generallycobees much more
computationally intensive than the dynamic inflowodel, but is more suitable for
studying the detailed shape and behaviour of ther rwake and for incorporating
detailed blade geometi Moreover, the vortex method is suitable for stody
unsteady aerodynamics by considering the intenadtéween unsteady vortices.

The study of unsteady rotor aerodynamics usimgvibrtex method may be traced
back to Glaueft®. Theodorsen developed the study and introdudeebdorsen’s lift
deficiency function C(k), to account for the loss in circular lift due toetdynamic
development of the wake of an oscillating bf&deReference (5) presents the detailed
mathematical derivation of the lift deficient fuirmt. Theodorsen’s work was really a
milestone in theoretical unsteady aerodynamicsthetistribution of the induced flow
is in reality much more complicated than what Theedn presumed, and thus the
approach needed further sophistication. Refereradesut the development of lift
deficiency functions include Refs. (81), (82) aB®)( Greenberg coupled Theodorsen’
lift deficiency function with the quasi-steady mbad&/ilimer regarded the trailing wake
from the outer part of a blade straight by neglegtits curvature, and succeeded in
representing the azimuthal variation of lift, whishowed a reasonable agreement with
experimental data.

Miller introduced the concepts of thear wakeandfar wake and concluded that the
higher harmonic rotor loads are evident during fnavflight and are subject to the far
wake, and also that the higher harmonic loads emsitive to the vertical spacing of the
wake sheet layef. Loewy improved Theodorsen's lift deficiency fuioct by
incorporating the spacing function to account far influence of the shed vorticity, and
this modification made the lift deficiency functiamuch more useful in rotorcraft
analysis. Loewy’'s work reconfirmed not only the mn@ance of three-dimensional
modelling of the rotor wake for rotorcraft analydisit also the necessity of taking the
dynamic inflow effect into consideration when sty critical flutter speed and so
on®). Loewy's function is a great improvement from THersen’s though, only

11 As is discussed in Section 1.3, the dynamic infioadel is based on simple actuator disc theorpAigh the
dynamic inflow model is highly flexible to combingth any other advanced blade dynamics theBristhe start
point (i.e. actuator disc theory) can be an inhiligritation of the approach. On the contrary, Hoetex method is
able to incorporate elaborate blade geometry andmics from the beginning, and can impart moredate
distribution. However, its minuteness sometimeddda a lack of versatility, and the computatian&énsity may
also be a problem. It should be noted here thaethgo theories are not incompatible, and can mhdeeused in
conjunction to overcome either of the single methetortcomings. One example of such an attemfpuisd in Ref.
(84).
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two-dimensional vortex sheets are therein assuraed, hence the limitation of this

assumption leads to the following shortcomings,clvhére pointed out by Peters and
He': (i) skewed helical vortex geometry, which is exeel in forward flight, cannot be

incorporated; (ii) the model has a singularity the collective mode at the zero
frequency, and the model is thus not suitable éw Frequency problems; (iii) the

theory is based on the frequency domain, and th@icafions coupled with other

theories such as eigenvalue analysis flight dynarare limited; and (iv) the model is
not suitable to utilize for control systems.

Some attempts to improve Loewy’s lift deficieniepmction include Refs. (87), (88)
and (89). Jones and R¥d developed Loewy’'s lift deficiency function so as t
incorporate the compressibility of air using thecederation potential. Taking the
compressibility of air into account was quite nogaice most of precedent models
presupposed only incompressible flow at that tiHewever, Jones and Rao did not
consider time delay in the response of the air, #ng their model was also a
quasi-steady model. This approach has the probtendompressible air needs some
time to transmit a signal, and thus such a quasiest modelling should be valid only
for incompressible flow.

Hammond and Pier® improved Jones and Rao’s model by incorporating th
time-delay in the response of induced velocitye@mann and Venkates&h modified
Loewy’s lift deficiency function in conjugation ofjuasi-steady inflow model of
Greenber§?, perturbation inflow mod€&® or dynamic inflow models of Johns6H
and studied the stability of the fuselage/rotorgimg dynamics in ground resonance. It
is interesting that the final forms of these modetkich are based on lift deficiency
function, came quite close to the dynamic inflowdalp which was introduced in the
previous section, despite these models were deseltypm quite different start points.

The concept of lift deficiency function was origlly simply a correction function
based on two-dimensional wake theory and was dkfinefrequency domain, but
Friedmann and Venkatesen converted the represmmtatito time domain using
classical control theory, in which Loewy’s lift defncy function is recognized as a
transfer function relating the 3/4-chord inducetbeiy to the lift of the reference blade.
This mathematical sophistication associates Loewff'sleficiency function with the
two-dimensional dynamic inflow model in the finistate form, and the contribution
thereof to two-dimensional unsteady aerodynamidsth theoretically and practically
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of great importanc®°Y. Friedmann and Venkatesen finally proposed a dymarfiow
model of the same form as Eq. (£°3) which was developed from Loewy's lift
deficiency function. Reference (92) gives a lucidplanation how classical lift
deficiency functions can be hierarchically implieg more advanced dynamic inflow
models.

1.5.3 Computational Method

Since there are a number of technical refereruésiished regarding various
computational methods, which are most rapidly dapiely tools in this field, it should
be out of scope of this thesis to introduce alirtidletails. Instead, only characteristic
features of computational methods shall be heretroduced in comparison with
dynamic inflow models.

In Theodorsen’s lift deficiency function theorgpnsiderable simplifications and
assumptions such as a two-dimensional wake shegktcanstant vertical spacing
between wake sheets are introduced. This was aiseitat that time in part because
computers of the time were not able to track themacated behaviour of vortices,
which affect each other by their own induced vejofields. Nowadays, owing to the
rapid development in the computational technologyich more computationally
intensive calculations can be conducted with smaflember of assumptions or
simplifications at a much lower cost. These comiparal methods based on the vortex
theory and the Biot-Savart law can be classifiagghty into three types: (i) rigid wake
model, (ii) prescribed wake model and (iii) freekeanodel. A rigid wake is assumed in
the rigid wake model, and this is the strongestimggion, which in turn corresponds to
the lightest computational load. In a prescribedevanodel, the distribution of vortices
is either empirically or semi-empirically prescribat the initial state, and then the
development of the wake distribution is computadulyh the Biot-Savart law. The free
wake model is the most computationally intensivaj allows the wake distribution
develop freely. Owing to the rapid development ameputational resources, the free
wake method is increasingly used and became thastn@am of contemporary CFD
methods. The basic ideas of these methods arelyluexghlained in Ref. (5), and the
reader may refer to Refs. (77), (85), (93), (94) éb) for further details concerning the
historical development of these computational mesho

One characteristic feature of these computatiorethods, especially with free wake
method, is that simulations of the developmenth& totor wake can be conducted
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based only on the first principles such as the BlaStokes equations, Biot-Savart law
and vorticity transport equatiB'®>. Recent rapid development in computational
resources has made it possible to mesh the pertfleem field and solid boundary
(blades, hub, etc.) into millions of cells, andsimulate the resultant distortion in the
three-dimensional wake distribution and the induitew field in the time domain. The
advantages of free wake analysis include the @etadescription of the complicated
flow field, the local treatment of airfoil dynamica thorough inclusion of complex
interaction of vortices and specific boundary ctiods, and the relatively low cost of
conducting computations compared to full-scale expents. Since the inflow is only
globally treated in the dynamic inflow model, thetailed description from vortex
methods is clearly better suited to examining ligcatomplicated aerodynamic
phenomena. Regarding the degree of reality of thkewdescription, it can be said that
momentum theory is too simple, CFD methods are roostoluted, and the dynamic
inflow method lies between these other two. Thuspr@ntum theory is most suitable
for evaluating basic performance of rotor, CFD rodth are for complicated local
aerodynamic phenomena, while the dynamic inflow ehad for analysing general
stability (frequency, damping, modal informatiokg.§ control characteristics, vibration,
handling qualities and transitional rotor dynarics

A disadvantage of the CFD approach is that tlvostex methods are not suitable for
eigenvalue stability analysis because of the lamgmber of states required to describe
the unsteady wake. Another shortcoming in CFD satirs is that only the most stable
state is presented in the simulation even wherethes a plural of bifurcated non-linear
solutions to the governing non-linear equationac8ithe Navier-Stokes equations and
the Euler equations are non-linear, they may gitieee non-linear solutions, which
bifurcate from linear or other non-linear solutiprs isolated non-linear solutions,
which do not bifurcate from any other solutions.e$é@ hidden secondary or tertiary
solutions are usually neglected in numerical sithohs because the most feasible
solution is trailed step by step from the primairnear solution in a time-marching
simulation, but, in factpon-linear jumpcan happen in reality, i.e., it is possible thn t
physical state can change to an isolated &tht&urthermore, eigenvalue stability

12 Roughly speaking, a vortex is generated aroundic lsoundary, transported according to the indufted, which
other vortices induced, and vanish due to the gisgof the fluid.

13 padfield suggested three levels of methods oferift simulation models in Ref. (96): in Level hetinduced
flow is described as a superposition of a finitenber of simple flow states on the disc as a firsieo model; in
Level 2, the disc is replaced by individual bladed;evel 3, the entire rotor wake geometry is takeo
consideration. According these three levels, itlmarsaid that the momentum theory and advanced C#tBoais
correspond to the level 1 and 3, respectively,taeddynamic inflow model is supposed to cover nwrkess the
level 2.
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analysis is necessary in order to find bifurcated-hnear solutions. The free wake
method is thus not suitable for stability analysis non-linear solutions. Whereas
dynamic inflow models are linear in general, thefferoa greater flexibility to be
combined with non-linear theories, and the exampielside the study of Bass&ft, in
which the Peters and He mod@lis used®. Houston and Brown showed a unique
attempt to compare the dynamic inflow model withvatex transport wake model
focused on flight mechanics in autorotati$h and concluded that the dynamic inflow
model works satisfactorily for much of the autotima regime except for steep descents,
in which a comprehensive description of the inflievessential.

1.5.4 From the Pitt and Peters Model to the Statef dhe Art

The Pitt and Peters model is a significant maest in the history of rotorcraft
aerodynamics. It was the first truly practical dymainflow model which could be used
for control system analysis, and well agreed wipegimental dathoth for hovering
and forward flight®°® Dynamic inflow effects are so important in comtand
stability analysis that a convenient and versatyieamic inflow model such as the Pitt
and Peters model had been long-awaited. Nagabhaishand Gaonk&f" studied air
resonance stability in forward flight by both thneege-state and five-state models of Pitt
and Peters. The torsional flexibility of the bladesalso therein considered, and the
stabilities of various modes are extensively exawinThey concluded: the three-state
model is more consistent than the five-state madeeneral; dynamic inflow tends to
increase stability margins in general, that the m@sonance characteristics are
independent of the number of blades; and appr@priambination of aeroelastic
coupling parameters can significantly improve &sanance stability. Reference (62)
(or Ref. (102), which is almost identical to Re62)) shows how dynamic inflow
models were developed due to the desire to coereldth experimental daty and

4 The dynamic inflow model is more suitable for dtgbanalysis of non-linear solutioff&1°® though non-linear
analysis in this field still awaits further devetognt. Poiseille flow in a circular pipe is maybeexample of
non-linear jump. No non-linear solutions bifurcafeain the linear solution are hitherto found aniably, and the
linear solution is analytically proven to be absely stable. However, as the Reynolds number inesgdle flow
changes from laminar to turbulent flow. This is siolered to be a non-linear jump from the lineausoh to an
isolated non-linear solution, though any isolatelditfons have yet been analytically found. Gengrafleaking, a
turbulent flow may in practice be described by dritan phase space between two or more unstahliitagum
solutions to the governing equations, where thest¢able equilibrium solutions cannot be found loyudation
approaches.

1% These authors concluded that the Pitt and Petedelnagrees with experimental data quite well imeioHowever,
their correlations in forward flight or transiefight cases are poor, conceivably because of ttiedaexperimental
data for these flight cases. The accuracy of RidtReters model, which is at least as accurateoasemtum theory, is
predictable in hover because the model hierardgicaplies momentum theory. The novel aspect whih Pitt and
Peters model is the continuous representationeofi#tin matrix from axial to edgewise flight casas] some further
comparisons with experimental results to the maderformance for these cases is desirable. Thi®ashall
examine the Pitt and Peters model in Section 2.3.
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presents a comparison between the results obt&ioedthe Pitt and Peter model with
experimental data including Ref. (61).

Dynamic inflow effects are of great importancerator stability analysis because
dynamic inflow modes have nearly the same ordenagnitude as those of flapping or
lead-lag modes, and significantly affects the ditgbof various blade motions or
aeromechanical phenomena such as ground resora@ingesonance, blade flapping,
rotor-body coupling, pitch-roll coupling, flap-lagpupling and so on. Chen and Hindson
extensively studied dynamic inflow effects on thabdity in the vertical acceleration
response of the helicopter in both the Carpentdrfedvich model and the Pitt and
Peters model with various thrust coefficients afatié Lock numbers. This study was
conducted with the purpose of developing a supgrramted high-gain flight control
system for military helicoptef$?. These authors reconfirmed the importance of
dynamic inflow effects in control and stability &yes, reporting that both models
performed well in comparison with NASA flight testsults from CH-47B.

Although the Pitt and Peters model is widely usgdn now, it has the following
weaknesses:

hub loads are therein used as the aerodynamicdodbe rotor to associate with the
induced velocity, that is to say, the model doesdistinguish between different lift
distributions that yield the same hub loads. Howeaemodel that can distinguish
specific lift distribution is required for bladersttural analysis and aeroelastic
analysis;

the Pitt and Peters model is based on simple actaiggc theory, even though it is
flexible enough to be coupled with more complicdbatie element theory. This may
reflect an inherent limitation of the model to agob for the more complicated
phenomena which are related to detailed blade gegme

the Pitt and Peters model is expressed in the ibation form, but it is preferable for
practical purposes that variable are describedrimg of the overall variables;
variables in the Pitt and Peters model are definethe rotor coordinates, but for
flight dynamics it would be more convenient to defithe model in wind-axis
coordinates.

Pitt and Peters themselves re-examined their Mmadécally inspecting the
assumptions such as actuator disc theory and trearlty of the distribution in
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comparison with other inflow modé&®°® In Ref. (40), Gaonkar and Peters defined
the dynamic inflow effects as low frequency prosrof the unsteady wake in contrast
to conventional high frequency airfoil dynamics Isuas flutter, and showed a
hierarchical relation between thirteen inflow madeicluding quasi-steady, momentum
theory, the equivalent Lock number approach anduiasteady models of 3DOF and
5DOF. This thorough comparison is highly instruetiand the authors remarked that
there was no satisfactory replacement for momertheory before the Pitt and Peters
model appeared. They concluded that quasi-steadgeltimyy is sufficient at high
advance ratios, but that the dynamic inflow modebDOF is inadequate for a rotor
having fewer than 5 blades, and that 3DOF modeivierall more accurate than the
5DOF model. Results of this work indicate to whateat the dynamic inflow model
needs to be sophisticated depending on the nafuirediwidual problems. Regarding
points (iii) and (iv) above, Peters and HaQuangopsed a non-linear version of Pitt
and Peters model, in which all variables are tcbaiat as perturbations but as in total
amount!?”, expressed in the wind-axis coordinate system.

The non-linear version was adopted in NASA Amebcbpter mathematical model,
designated ARMCOP, and reportedly performed 98I Gaonkar and Peters
summarised the historical development of the dyoanflow model in Ref. (29), and
showed an intensive comparison between various Isotleis review is also extremely
instructive that it points out some misconceptifoend in the past literature including
Refs. (65), (71), (89), (105) and (106), and aisotations to the applicability of either
the linear or non-linear dynamic inflow model.

The most important work which appeared afterRlieand Peters model is arguably
the Peters and He mof&l which forms the theoretical basis of this thesibe
derivation of this model is the most mathematicaliyprous, and is consistent from the
first principles compared to its preceding modélsoncise version of the derivation is
found in Ref. (37), and the model’s validation asairelation with experimental data
are shown in many research works, for example,efs. R30), (92), (109), (110), (111),
(112) and (113). In the Peters and He model, tpeesentations of both inflow and
pressure distributions are generalised so thatrbitraxy number of harmonics and
radial shape functions can be used for each state.

Reference (92) presents a comparison betweerP¢iers and He model and the
experimental data from Refs. (114) - (116) usin¢hbrectangular and tapered blades,
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and concluded that the model performs as well alsetter than some computational
codes of free-wake and prescribed-wake methods sinaler computational cost.
Reference (112) also compares the Peters and Helmaath classical theories and
computational methods with contrasting their shartngs, and demonstrates that the
Peters and He model implicitly includes classitedaries including Theodorsen’s and
Loewy’s lift deficiency functions and Prandtl-Gotdin’s tip-loss formul¥. Reference
(39) is a notably instructive study, since it comgsathe Peters and He model with
various classical theories including Theodorseb&ewy’s or Miller’s lift deficiency
functions and other finite-state methods. Referdi3& concluded that the Peters and
He model is overall superior to classical unsteatydels, but it cannot provide an
accurate description of inflow in the close vigniof the blade surface, nor can it
account for wake roll-up. The Peters and He modslliteen further improved in some
variations, with examples including Refs. (117) &ht8), in which the ground effect is
incorporated. The ground effect in this modellisgdescribed as an extra term in the
pressure potential in order to satisfy the boundandition.

In applying the dynamic inflow model to a flighimulation code, there has been a
mystery that the simulated results sometimes prealicompletely opposite off-axis
response in hover and low speed forward flightomparison with the corresponding
flight test dat4'°**® A large number of publications related theretggmsted many
possible causes for this phenomenon including gpmis force of the wak&?),
aerodynamic interaction between the rotor and &ggef®, dynamic twisting of the
bladé®®®, wake distortioff?”*?® and so on. It is highly likely that several of ske
mechanics are therein coupled in a complex maries. problem is an active area of
current research. Regarding the wake distortiorf, Rie29) proposes that the gain
matrix in the Peters and He model should be matlifie araugmented L-matriso as
to account for the effects due to wake curvaturaan-hover flight conditions. Those
models which have augmented gain matrix are cdahedaugmented Peters and He
model or augmented Pitt and Peters moddepending on the base model, and the
literature about these augmented models includds. RE30) - (134). Note that the
complicated wake distortion effects are incorpatatethese models by wake curvature
parameter, K, which is empirically determined. Reference (13d)roduced the
augmented Pitt and Peters model in which wake skeake curvature and wake
spacing are incorporated as additional stateairsitional flight.

18 1t may be rather odd that Pitt and Peters modedisompared with the Peters and He model aithkrein Ref.
(92) or (112) in spite of comparisons with manyrafre classical theories. This author will presestown view
about the Pitt & Peters and Peters & He model=utién 2.3.
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Zhad'®) presented a table of various values mf for comparison, and proposed
augmented models for both the Pitt & Peters andrB& He models including detailed
mathematical derivations. In Ref. (135), a moreineef description of the wake
curvature which is expressed by lateral and lonigial wake curvaturesk. and K,
is also proposed. The inclusion of the wake effétts dynamic inflow modelling is
still an up-to-date issue in the field, and furthmprovement, validation and correlation
with experimental and CFD simulation data are negljipartly because the correction
parameters must be essentially empirically detezthin

References (136) and (137) propose a state-edthemethodology whose
mathematical derivation is quite different from ttled the Peters and He model. The
model is based on the conservation equations ok mad momentum, and they are
transformed into state-space forms by the Galenk@thod so that the Peters and He
model is therein hierarchically implied. A velocipptential is also therein considered
on top of an acceleration potential, and both affd on-disc flow are described by the
set of three components. Although it seems thatPiiers and Morillo model has not
yet been widely utilized at present, it will likebe the leading next generation dynamic
inflow model.

1.6 Literature on Autorotation

In this Section, the historical and current sti#teorks on gyroplanes and helicopters
in the windmill-brake state is briefly introduced order to outline the importance of
this research in the relevant context. Cierva himsade a huge contribution to the
development in the theory of early gyroplanes flooth theoretical and practical points
of view®3*13®) (The left picture of Fig. 1-4 is Cierva’s Type4Cwhich made the first
controlled gyroplane flight in 1923.) British aegmdmicists such as Lock and Glauert,
whom Cierva vehemently criticised, made more rigsro theoretical
work(?0-224L79.139-143) cancyrrently, a number of experimental and thécak studies
were intensively conducted in the U.S.A. by NACAgereers such as Wheatley and
other§®9. Indeed, there was a sound basis for further stgdyre characteristics and
aerodynamics of the gyroplane at that time. Theaindevelopment in the Autogiro by
Cierva is introduced in Ref. (144) in rather a gtmiling manner, while Ref. (145)
gives detailed background about the gyroplane botiistorical and technical aspects.
Despite the great success of gyroplanes in comaieand military fields in the 1930’s,
the mainstream of rotorcraft research shifted tohblicopter after the 1940’s. Most of
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the technical and theoretical achievements madidtytime for the gyroplane such as
flapping hinge, lead-and-lag hinge, cyclic bladeatlering, gimballed or spider
mechanism control system, blade element theory, emtm theory and so on were
applied to the helicoptét However, further developments thereafter weredooted
only for the helicopter, and theoretical study e ¢yroplane was almost forgotten.

In the meantime, gyroplanes were chiefly devellopg small companies such as
Bensen Aircraft Corporation, Rotary Air Force In&ir Command International and so
on**® or individual devotees such as Kenneth Waffi mainly for sports flying. The
most popular configuration for gyroplanes todaymel, one- or two-seater short
fuselage with pusher propeller and cantileveregdviias established by these developers.
(The right picture of Fig. 1-4 is G7-R477 desigrieda Japanese amateur gyroplane
devotee, Masanori Kokubun, showing the typical mpmhtion of contemporary
light-weight sports gyroplanes.) However, littletnetical development was undertaken
about the aerodynamic features of the vehicle ite s a series of fatal accidents, and
the developments were mainly structural for redgcire price or for making it easier to
home-build without any backup either from the irtdas sector or from academics. As
a result, some models were poorly designed frons#fiety point of view, and hence a
more comprehensive theory was required either sigdea gyroplane or to investigate
accident®®.

17 1t should be mentioned here that while most o&icslihelicopters have swash plates to control yioapitch,
most of modern gyroplanes have the direct conyrstiesn, in which the direction of the rotor headirgctly
controlled by rods connected with the control stick

18 There were more mathematics-oriented researctes $dutorotation” such as Refs. (160) and (1619 tiyeir
interests were focused on more general aerodynaimeicomena such as the gyration of sycamore sdetisting of
chuff, rotation of anemometre and so on, and tiesinlts are far from applying for home-built gyrapés. There is
probably a gap in the usage of the word “autorotéitbetween aeronautical aerodynamicists and madtieah
hydrodynamicists.

1% The picture of C.4 was kindly provided by Dr. Bru@earnov of Hofstra University, and the picture ot BZ47
was kindly provided by Mr. Masanori Kokubun, witretcopyrights approved.
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As mentioned in Section 1.2, it was the firstdimfter the Second World War that
gyroplanes have been extensively investigdted the University of Glasgow as part of
CAA funded research programme following severaéwypus accidents in the United
Kingdonf'*®. The research topics include aerodynamic chaiatiter of various
configuration®’, qualitative or quantitative control and stabilignalysi§*®*%
rotorcraft flight dynamics in autorotatii® and numerical simulation of autorotative
flight*>15% Spathopoulos studied a mathematical model to lat@urotorcraft in
autorotatiof®, and Bagiev assessed gyroplane handling qualitsésy both flight
tests and simulatioff$®>. Some new projects to revive the gyroplane arsgurity under
way including a hybrid-gyroplane by Cartercoffté&t a turbine-powered gyroplane by
Groen Bros. Iné€"®” and some more conceptual designs such as massi@L VT
transport®” and airbike*®®. The possibility of using a gyroplane as unmanned
reconnaissance vehicle is also examifiédn stability and dynamic characterisfits
Academic studies of gyroplanes have thus recemyarted, and the future outcome
and scope of these projects are not yet clear.

The very first motivation of Cierva to invent tAeitogiro was that he wanted to build
a safe vehicle which is free from stall. In facgfR(144) reads about Autogiro,..”
although not designed with the sporting purposeinafeasing speed not with the
commercial object of enlarging the radius of actibat with the humanitarian purpose
of reducing to a minimum the number of accidentd #re number of human lives
sacrificed in the flight for the conquest of the"alt is thus quite ironical that the
contemporary gyroplanes are designed chiefly fer gporting purpose, albeit not for
the speed, and hence are associated with unackeptabualty rates. The flight
principle of the gyroplane itself is not in the wp and there still is a possibility that
the gyroplane can regain a prominent position iatéon if updated with state-of-the-art
advanced technology. What are urgently required amvfurther theoretical, practical
or experimental works such as mathematical motistbnical knowledge, experimental
data and so on, to provide a sound technical asier for improving contemporary
gyroplanes or for developing new gyroplanes.

20 |1n some projects of designing convertiplane, wligch mule of fixed-wing aircraft and rotarycrafte flight
principle of the gyroplane occasionally attractethe attention. These projects includes Fairy’s 162
whose concept is now tried to revive by Groen Brathiec™>” There were also some attempts to develop a
gyroplane for commercial purpose, but they all iteslin failure.

2L Interestingly, the authors concluded that theattavcontrol should be used together with longitaticyclic
control, unlike the most of contemporary small gyames, which usually have only small (or sometim&sfixed
horizontal stabilizer.
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Chapter 2

Review of the Dynamic Inflow Model of Peters and He

2.1 Introduction
2.1.1 Overview

In this Chapter, the theoretical derivation ofdPe and He model will be reviewed in
depth and examined in detail. The general theorgiyoiamic inflow models has been
extensively developed by Peters and his coworkerthe last two decades, and the
Peters and He model is theoretically one of thetmaf;ed dynamic inflow models in
existence today.

The later Chapters of this thesis are based erfPdters and He model, and thus it is
necessary to first review the foundations of thiedel. As well as permitting the
foundations of the work of the present thesis tplesented, a review of this model is
also convenient since the relevant literature, udiclg Refs. (1) and (7) offers a
somewhat disjointed view of the model’s derivatiamich is not readily accessible. In
particular, some assumptions and theorems thewsd are not explicitly declared or
proven in the original literature, and thus thespra author tries to improve the lucidity
of the explanation of the mathematical derivatiérihis model by complementing the
details of some difficult rearrangements of equaiand correcting some typographical
error contained in the original references. Althoutlpe author also presents new
explanations of some aspects of this derivatiomust be stressed here again that the
general idea of this Chapter is based on the wafrkgevious authors, including Peters,
He and their coworkers. In particular, this Chapselargely based on Ref. (7), which
should be the most thorough source of the pertitleabry. Some complementary
theorems and peripheral topics are discussed eitlieotnotes or appendices.

2.1.2 Notations

Symbols and notations are used so as to be asstamt with Refs. (1), (7) and (92)
as possible, although it should be noted that thera variation of notations even
between these references. The author thus chosmdbkereasonable designations for
the case. Readers are encouraged to confirm tivatoefs when reading a plurality of
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literatures.

In this thesis, those variables that are relatethe time-derivativeand convection
terms of the Euler equation are denoted by (t) @h@s superscripts, respectively. This
notation is original in this thesis, and it is hdpéat it will facilitate a better
understanding. The variables that are related toi€ocoefficients for cosine and sine
functions are also given ¢ and s as superscriggpectively. For the Legendre functions,
r,j.i,k,m and n are used as dummy indices. No matter how confusieg may look,
the way of using letters in this Chapter is thussistent. For examplej:» denotes a
Fourier coefficient having four indices aofm,; and n, corresponding to a cosine
function.

2.2 Review of the Dynamic Inflow Model of Peters athHe
2.2.1 Fundamental Assumptions for the MathematicaDerivation of the Peters and
He Model.

The Peters and He model is based on the folloagsgmptions, (Al) - (A5):

(A1) the flow is inviscid. Thus, the induced flagvgenerated by the pressure
potential (or acceleration potential), and goeerby the Euler equations,
%IHU-V)U:—VQ (2.2)
where U,# and @represent non-dimensionalised velocity, time apdessure
potential function, respectivéfy
(A2) the pressure distribution over the rotor dgscontinuous, but it has
a discontinuity across the rotor disc;
(A3) air flow is assumed to be incompressible satisfies the equation of
continuity,
V-U=0; (2.2)
(A4) the rotor disc can be regarded as a flainteigle disc.

The assumption (Al) explains why the flow is golverned by the Navier-Stokes
equations, but by the Euler equations. Since thécav around the rotor is sufficiently
fast (for example, a typical Reynolds number alzolélicopter blade is0® - 10°), the

22 The Euler equations can be derived as a conseguéiice conservation of momentum (Newton’s lavmotion),
if assumptions (A3) and (A1) are valid. Thus, agstioms (A2) and (A4) can mathematically be implied
assumption (Al) if Newtonian mechanics is approydithough it may sound needless to state, assumfid) may
be interpreted that Newtonian mechanics is cons@ltr be valid.
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assumption (Al) can be reasonably used for magitftases.

The assumptions (A2) and (A4) indicate that thedeh is based on actuator disc
theory, and the assumption (A4) gives the theaktirounds for regarding the lift
working on the rotor disc as the pressure potéfiti@he assumption (A3) means that
air compressibility and shock wave effect are rgglgle. While this is not always the
case with high-speed helicopter flights, this agstion can still be reasonably valid for
a wide range of helicopter flights and for mostaptane flights.

2.2.2. The Representation of the Pressure Field

The mathematical derivation of the dynamic inflavedel essentially relies on the
principle of superposition of linear equations.c®ireqg. (2.1) contains a non-linear term
(i.e. the convection term), which must be lineatise advance for dynamic inflow
modelling as follows (see also Appendix 2.1),

ﬁ—(V-V)q:—V@, (2.3.2)

where V is the non-dimensionalised steady base flow, is the pressure potential
which drives the induced flow and is the induced flow, which is regarded as a
perturbation in this linearised equation. Note ti&t second term in the left-hand side
of Eqg. (2.3.1) has a minus sign unlike Eq. (2.Egduse positivey and V are defined

in opposite directions, as shall be seen in Fig. i Cartesian coordinates, Eq. (2.3.1)
can be separated into the following three equations

——V——V—=-V,, 2.3.2
o ox Yoy oz : (2.3.2)
dqy dq, Jqy gy
AT v TR v N Vi R v S 2.3.3
ot “ox Yoy "0z v ( )
dq. dq. aq. aq.

Vo VL Vi Y (2.3.4)

o or Yoy "0z

23 Note that the dynamic inflow model based on actudisc theory can be subsequently coupled withliény
distribution, in which each blade shape may beidened in detail. Still, this should be consideasda combination
of different theories, and it should be explicéijmphasised that the derivation of Peters and Heehithased on
simple actuator disc theory.
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Fig. 2-1 [Vehicle coordinate systems; both for efiter and Gyroplane.]

Note that Eq. (2.3.1) is expressed in the vefdon, with each of q,V and ve
having three components, irrespective of the paeracoordinate system that is adopted.
For the purpose of the following discussion, théorocoordinates,(z,y,z), and
streamline coordinates, are introduced here. Note th&t becomes one-dimensional
along ¢. The cylindrical coordinate system on the rotacdi(r, «, 2), is also used (Fig.
2-1), wherer is non-dimensionalised by the rotor radiusras»/R (thus 0 <7 <1).

The transformations between thg:- and 7y z-systems are detailed in Appendix 2.2.
It is often the convention that only thecomponent ofq is called the induced velocity,
in part because the-component is far larger than the or y- component and maybe
also because only the-component ofq is directly related to the lift and rotor thrust.
The z-component ofq is induced by thez-component ofve in Eq. (2.3.1), which
describes the aerodynamic pressure working onatioe disc in thez-direction, namely,
the lift.

The ¢-axis is skewed by the angle gf with respect to the:-axis, Fig.2-2, and its
positive direction is defined as the upstream diloe¢ which is why the second term of
Eq. (2.3.1) has a negative sign. Note that whenpeoimg helicopter and gyroplane
rotors, the¢- and z-axes come to opposite sides, and thus the posiiigetion of rotor
angle of attack,«, is defined in a different way, Fig. 2-3.
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Fig. 2-2 [Difference in the aerodynamic configuoatiof the rotors of normal working
and windmill-state states.]

" Helicopter Gyroplane

Fig. 2-3 [Difference in the rotor angle of attadikhelicopter and gyroplane rotors.]

On account of the principle of superposition iokar equations, Eq. (2.3.1) can be
decomposed into two equations,

% — Vol (2.4.1)

(V- V)q=Vol, (2.4.2)
where

0 4+ 30O = . (2.4.3)

Multiplying Egs. (2.4.1) and (2.4.2) by and applying Eq. (2.2), the following
Laplace’s equations are obtained,

AW =0, (2.5.1)
AP =0, (2.5.2)
AD = L01D 4 AP =0, (2.5.3)
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The pressure functionp, can be given by solving these Laplace’s equatiorser
appropriate boundary conditions. The Peters andniddel is based on the following
boundary conditions:

(B1) @ becomes zero at infinity;
(B2) » becomes zero at the edge of the rotor.

The pressure distribution on the rotor disc isstdered to be linearly proportional to
the distribution of induced velocity due to theedmity of Eq. (2.3f. (Note that this
property does not hold if Euler's equations are fioearised.) The problem of
describing the distribution of induced velocity ctren simply result in a Dirichlet
problem for Laplace’s equation under the boundanddions of (B1) and (B2).

Note that if air is assumed to be perfectly inpoessible, any perturbation of air (e.g.
pressure, temperature, density, velocity, entrepy,) should theoretically propagate at
once even to infinity. Thus, although the boundasgdition (B1) can be considered to
be intuitively reasonable as a physical assumptidn,is mathematically not
self-evidently acceptable. However, (B1) will bgpegved without further discussion in
this Chapter following Peters and He.

Laplace’s equation is separable either in Categscircular cylindrical, conical,
ellipsoidal, elliptic cylindrical, oblate spheroidaparabolic, parabolic cylindrical,
paraboloidal, prolate spheroidal or spherical comie systedi®***? The choice of
coordinate system should be decided according ¢obthundary conditions and the
ellipsoidal coordinate system is generally beliet@the the most suitable for rotorcraft
problems, because the ellipsoidal coordinate sygtemnides solutions to Laplace’s
equation expressed by the associated Legendreidoactwhich satisfy the boundary
condition (B2) well and are suitable for represegtihe pressure gap between the upper
and lower surfaces of the disc, namely the life(akso Appendix 2.3).

In this coordinate system, the solution to Lapkeequation subject to boundary
conditions of (B1) and (B2) is expressed as

24 The application of linearised Euler equationsdescribing the distribution of induced flow of daocan be
traced back to Mangler and Sqifife
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Sy, t) =S 3 Prw)Q in) | C(E) cos (m) + DI'(E) sin(mqp)} , (2.6.1)

m=0n=1

m+n =1 mod.2, (2.6.2)

where P'(v) and Q"(in) are the associated Legendre functions of the dinst second
kinds, respectively (see Appendix 2.4). Also, itassumed here that the pressure
potential, @, is a smooth continuous function which is diffdi@ble as many times as
required with respect t@ and v, and that® is periodic with respect ta> with a
period of 2z. This solution is sometimes call@tandtl’s potential functionfor which
Ref. (47) may be consulted for further details. éNdhat although the associated
Legendre equations of the first and second kinaétdyihe four solutions of”!'(v),
Q. (i), P(iv) and Qy'(n), onlyP;(v) and Q,'(in) can satisfy the boundary conditions
(B1) and (B2), and so the other two solutions stidug¢ discarded. Moreover, when
m+n =0 mod.2, the boundary conditions are not satisfied (se@efpix 2.5), and
hence only thosem and » which satisfy m +» =1 mod.2 should be chosen.
Furthermore, with regard to the indices of the lelye function of the first kind,
n>m is required from the definition (see Appendix 2.%) summary,» should
satisfy n=m+1,m+3,m+5,.....

2.2.3. Normalisation of the Pressure Function

In the elliptic coordinate system, the regier 0 is described as > o, idem quod
z>0 asv<0. Thus, when® is described by only thoses. and » which satisfy
m+n =1 mod.2, the distribution ofé becomes discontinuous at the surface o,
namely, at the rotor disc. The rotor disc itselflescribed as; =0, v =v1 - in the
elliptic coordinate system. The discontinuity oé goressure distribution across the rotor
disc can be considered equal to the lift.

L(’F, ¥, E) = (I)(Fa P, f) ’ v<0,=0 (I)(’F’ v, E) ’ v>0,7=0
——2) Y Pr)QU0) | cos(mu) + D@ sin(m)| (v > 0)

m=0 n=m-+1,m+3,...

=3 Y B[ cosmi) + (@) sin(m)) .

m=0n=m+1,m+3,...

2.7)

Note that P'(-v)=(—1)""P'(v), P'w), 7)) and 7)) are defined as

n

follows®*%),
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N )

() = (— 1) ) (2.8.1)
m 1 (n +m)!

Pn = \/2n+1 (n —m)!’ (28.2)

Tzlc — (_ 1)m+l2QZl(iO)leOZl’ (283)

= (= 1) 2QI0)) D (2.84)

The function P’'(v) is the normalised associated Legendre functioth@ffirst kind,
and its orthogonality is defined in the intervalok v <1 as

/1 ]_j,zl(u)]_ﬁl(v)dy = 6nj, (2.9.1)

P () >0, (2.9.2)

m+1

where 6,; is Kronecker’s delta.

b1y = {(1) o (2.9.3)
Equations (2.7), (2.9.1) and (2.9.2) indicatet ttiee radial distribution of lift is
expanded in the functional space spanned by thenalmed associated Legendre
functions of the first kind, where each &f'(v) is a unit basis, and that the angular
distribution of lift is also expanded in the furmial space spanned by trigonometric

functions, whose orthogonalities are given by

1 2 1 2T
—/ sinmz sinnzdr = —/ cos mx cos nxdr = S, (2.10.2)
m™Jo T™Jo
2 2T
/ sinma cosnzdr = / cosmz sinnzdr = 0. (2.10.2)
0 0

Equation (2.6.1) can also be normalised as

B =—gd D PN [ costme) + 7 (D) sin(my)],

m=0 n=m+1,m+3,...

(2.11)
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where Q"'(in) = Q"(in)/Q"'(:0). Note thata® and &' also satisfy Laplace’s equation
under the same boundary conditions, Eqgs. (2.54.6-3), i.e. they should be expressed
in the same form as that af,

B =23 S Prw)Q ) [E D) costmu) + 700 sin(mes)],

m=0 n=m+1,m+3,...
(2.12.1)
SO = -2 D PrQ [ cos(mu) + 70 sin(mes).
m=0 n=m+1,m+3,...
(2.12.2)

Based on the principle of superposition of lineguations, the lift described by Eq.
(2.7) can also be decomposed into two parts casrelpg to the time-derivative and
the convection terms in the Euler equations, respy,

L(v,n,¢,t) = L“)(V 1,9, 1) +L<")(1/,77,1/1,f), (2.13.1)
Ownen=Y 3 () [0 cos (ma) + 70 (@) sin(map)]
m=0n=m+1,m+3,...
(2.13.2)
L= S P[0 costmi) + 7 @) singmes)
m=0n=m+1,m+3,...
(2.13.3)

In order to identify the Fourier coefficient fumans, 7<) ;7<) zm9) gnd 7<), an
appropriate lift theory is required. Examples tloéraclude blade element theé?y
ONERA dynamic stall theo”? and others. Reference (37) compares several lift
models based on Ref. (166). Note that the repragens of the lift as Egs. (2.13.1) -
(2.13.3) are expressed in general forms, and hdrese equations are independent of
any specific representation of lift. This makespdssible to flexibly combine the
dynamic inflow model with any possible lift theomwhich may vary depending on the
class of the aircraft (i.e. helicopter, gyroplaet,.), aerodynamic status of the rotor (i.e.
normal working state, windmill-brake state, etajiao on.

2.2.4. The Relation between the Pressure Functiom@the Induced Velocity

The induced velocity is described by the presfumetion by way of Egs. (2.4.1) and
(2.4.2), and the pressure function, Eq. (2.11),represented by the normalised
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associated Legendre function of the first kind amgonometric functions. Thus the
next step is the expression of the distributiorthef induced velocity in the form of a
Fourier series by appropriate orthogonal functi@ms make clear the relation between
its Fourier coefficients and their counterpartshia lift distribution, i.e. 77" 77 zme(©)
and 7, Integrating Eq. (2.4.2) along the streamlinedgel

q= _%/qu)(@df_ (2.14)

0

Note that althoughv in Eq. (2.4.2) is a vector, it can be reduced sxalar along
the ¢-axis, and thus the integration along thexis allowsV to be replaced with
V=|V|. Supposeq = (u,v,w), Where w can be expressed by thecomponent of Eq.
(2.14) as

1 an)((:)

The value of®(@ at infinity is to be determined from the boundaondition (B1).
From the z-component of Eq. (2.4.1), the time-derivative «ofis given in the same
manner as

G, oo
%z— | (2.16)

Note that specific mappings between thaxis and »yz-axes are not required at this

stage. Sinced” and ¢© described by Egs. (2.12.1) and (2.12.2) are lifieactions
with respect tor"" 7m0 ;<) and 7 the actions of the differentiation and

integration in Egs. (2.15) and (2.16) can be regored in the form of linear operators in
Hilbert space,

ow o™
= = (1)
=== Cle®, (2.17)
1 [P0
_ — (¢)

where ¢ and D are appropriate mappings from the Hilbert spadere ¢ and ¢
are defined, into another functional space wherend ow/ot are defined. Since the
induced velocity is always uniquely induced in teat to the pressure gradient from
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the physical point of view, the mappings need tanpections, thusc and D may be
assumed to be isomorphic linear operators to haverse mappinga The following
rearrangements are thus always as<tred

D' [w] = 3, (2.19)
Clw] =W, (2.20)
C ] + D w] = W + &) = . (2.21)

2.2.5 Matrix Representations
Suppose thatv in Eq. (2.17) can be expressed in the form of @riEo series as

o0 o0

wrEw, ) =Y > W)l (f) cos(mip) + BT sin(m)],

m=0n=m+1,m+3,...

(2.22)
where v is an appropriate function that can form a congptathogonal system of

functions for each ofn in the interval ofo <v < 1. Inserting Egs. (2.22) and (2.12.1)
into EqQ. (2.20) yields

Tt = Ko, (2.23.1)
Tt = KB, (2.23.2)

where K is the matrix representation of the linear operato', and Fourier
coefficients o', 4, T;CU) and T;S(f) are defined in the vector space spanneddyy
and sinry (r=1,2,...) according to an integer of, which satisfiesj =+ +1,7+3,....
%’ Note that a linear operator in Hilbert space canrdpresented as a matrix ;.

Here, o, B, T;CU) and T;S(f) are represented as column vectors, each of whose

% physically, it is obvious that a unique inducamhfldistribution is caused in response to a presdistgbution
over a rotor. However, the discussion about theritibvility of C and D lacks rigour because these mapping<of
and D have not been mathematically proven to be bijasti®eters and He did not discuss this point inhdegmd
the present Chapter will also assurfeand D are invertible without further discussion.

26 Note that when the model is based on the non+liBeter equations, it is not self-evident whett@&rand D

have inverse mappings because the pressure furatiold possibly be a multi-valued function givinglaral of
bifurcated solutions. In general, the theory offioear operators in Hilbert space is not yet sigfitly developed in
mathematics.

27 Note that in the following discussion, dummyiges 7 and j will be used in addition ton and n, when
necessary, following the notation of Petet8 Readers should not confuse with 7, which denotes the
non-dimensional radial position.
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elements is itself a vector again, following theention in flight dynamics (i.e1 x rj
matrix).

r_ ot 11 .2 2 7 r
al = (az,a4,...,oz3,oz5,...,arﬂ,ozr%,...), (2.24.1)
T tral ol .2 2 Lar T
B = By Byr-i By By oo Bl B ) (2.24.2)
TZ”,?C“) = t(T;C(t)7 TiC(t)’ o Tgc(ﬁ’ T?)c(ﬁ’ s thi(?’ T::if;)’ 2, (2.24.3)

Tzzs(t) _ 1‘,(7_;5(t)7 7_les(t)7 .

L 2s(t) 2s(t) . ms(t) _ms(t)
STy T T, T ) (2.24.4)

m+1" m+3"’

The matrix K is the representation of the linear operator traatsforms botha;_' to

T;CU) or g to T;S(t), and it is assured that is non-singular with its inverse matrix,

K-, for the same reasons that and D have their inverse matricesk can be

represented as a partitioned matrix, and its elésnean be expressed as’, where m

and r indicate the row- and column-positions of the ipiart, respectively, and. and
j indicate the row- and column-positions in the partition. (See Fig. 2-4.)

n-th column block
1st column block

g ~11 ~1n
KN KM oo oo o LK

11

11

~11 711
1st row block Kai  Kx

A'[)il 1\‘1’;”
m-th row block

Fig. 2-4 [Matrix representation of~'.]
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For its inverse matrix to exist, the matrix needs to be regufdr Suppose also that
w in EQ. (2.18) can be expressed in the same form as Eq. (2.22),

wrEr e, ) =Y > WEW) ) cos(mp) + @ (T) sin(m)],

m=0 n=m+1,m+3,...

(2.25)
where ¥"* is also an appropriate function which can formamplete orthogonal
system of functions for each. in the interval ofo <» < 1. Note that¥"" in Eq.
(2.25) may be different fromp™™ in Eq. (2.22), because Egs. (2.19) and (2.20) are
independent. Inserting Eqgs. (2.25) and (2.12.2) &Y. (2.19) yields the following
equations,

7_:;1,(:((1) — Y—l[é‘;]’ (226)
TZlS(C) — v [ZU:] , (227)

where Y is the matrix representation of the linear operaio Here again,Cjﬁ, @,

T;C(C) and r’f("’) are defined in the functional space spannedclyy and sinry

(r=1,2,...) according to an integey, which satisfiesj =»+1,r +3,.....

(= (GG G Cori L ) (2.28.1)
w;: f(w;,wi,...;wg,wg,...;w:H,w:H,...), (2.28.2)
neO) ), A 260 ) gmee) neld) (2.28.3)
R At S ol e PP S (2.28.4)

The matrix y has its inverse matrix~' for the same reason why the inverserof
exists. The matrixy may be considered as a partitioned matrix, transfoy both ¢
to 79 and @ to . The elements of the matrix can be expressed as”,

2

where m and r indicate the row- and column-block positions ipaatitioned matrix,

2 The matrix K may be intuitively considered as a square magtthough bothm and r are ideally in the
range 0 to oo.

40



Chapter 2 Review of the Dynamic WwflMdodel of Peters and He

respectively, and: and ;j indicate the row- and column-positions in the partition,
respectively, as illustrated in Fig. 2-4. Equatid@st.3), (2.23.1), (2.23.2), (2.26) and
(2.27) yield the following matrix equations,

7 r 1-1
K" (di) +| v (Ci) = (T:j“(”) + <r:7“<c>> = (rﬁ?“) :
nj J nj J g g g

(2.29.1)

7 r 71-1
KM <ﬂ7> + yrs (wr> _ (7_’::7,5(1‘)) + (les(c)) _ (les) .
njp J npy J 4 L L

(2.29.2)

Note that whilem >0 in Eq. (2.29.1),m >1 in Eqg. (2.29.2). Note also that
should satisfy n>m, n+m =1 mod.2 (i.e. n=m+1,m+3,m+5,...) Iin both
equations. When these equations are numericallypated, the integers.,,» and j

need to be truncated at an appropriate finite nursbethat K" and Y should be

finite-dimensional square matrices, for whighux{r} = max{m} IS necessary.

2.2.6 The Unified Representation of the Induced Flo Fields

Equations (2.29.1) and (2.29.2) are expresséerims of Fourier coefﬁcient&;; e

and @' to represent the same induced velocity distrilmytiout, in fact, only two of

these sets of coefficients are sufficient to repnésany flow field. Thus, appropriate
transformations represented by matricejéj” and Bf}’ are introduced to unify the

(2.30.1)

(2.30.2)

)6

representations such that

] 1)
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A 7 (5;) _ (gf), (2.31.2)
B (a;) . (gk) (2.31.3)
e | <b;) _ (wk) (2.31.4)

w(T,w,t):Z‘ Y. W)d(t)cos(ry) + V() sin(ry)]. (2.32)

Equations (2.30.1) and (2.30.2) can be rewrid®n

-1
o ()< | ()= () s () = (+). @
nj J nj J ) ) )
-1
o ()< | ()= () e (2) < (). 332
nj J nj J ) ) )

where
M :[ K H AT, (2.34.1)
. »
Z_] .
Ly =l v ] B/ ] (2.34.3)

Equations (2.33.1) and (2.33.2) can be decompagauh into a time-derivative and
convection parts as, respectively,

A (aj) _ (T;;w“)) | (2.35.1)

e (bJ) _ (T;;w“)) | (2.35.2)
; -1

o (a;> _ (Tgw<c>>, (2.35.3)
.
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These matrix equations of Eqgs. (2.33.1) and (2)3&re well-known as the typical
forms of the dynamic inflow model, though the basticictures of these equations are

essentially those of the Euler equations, Eq. (Mﬂjereasqz;j may be any appropriate

function in so far as it can form a complete ortbrog system of functions for each

in the interval of[0, 1], Peters recommended purely from a practical pointiew in
Refs. (37) and (92) tha@/u)ﬁ’;(u) may be the best choice on account of the rapid

convergence of these functions around 1 (i.e. around the blade tip), and also of the
practical feasibility that arises from the factttbamputations with these functions may
be carried out analytically in a closed fétH®?)

v =10, (2.36)

J ; J
The remaining problem is how to define”” and v, and Peters also
recommended the following representations agaim faqoractical point of view.

vy _ g
v _;P;_(z/), (2.37.1)
qﬂf” =Pv). (2.37.2)
As well as the fact thatl/u)P;(u) forms a complete orthogonal system of functions,

it can also be expressed in terms of only the fFadisition of the rotor discy = v1 — 2,
and this property hugely simplifies the practicebtment of the equations in relation to
the blade element theory (see also Appendix 2.7),

q—m

1, - “ 12 (n+ ! 2
—Pw) = \/W ) G—m)(g+mn—g—1I

g=m,m+2,m+4,...
(2.38)

where

Hm:(n—i—m—l)!!(n—m—l)!!. (2.39)

n (n +m)(n—m)!l

For the case when = m + 1, Eq. (2.38) can be further simplified as foll&%s

1.

) 2m+3)"
;P;”H(y) =\ /Wr . (2.40)
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In the later discussionp;‘ is to be integrated over the rotor disc, and # fhat

(1/v)P(v) is a function of+ alone makes the integration much simpler. Equation
(2.40) is of particular use for that cAseEquations (2.33.1), (2.34.1) and (2.35.1) allow
of the assumption that, without the loss of geritgral

AZ =6, (2.41)
oz; = a;. (2.42)

Thus, the matriXAij becomes the unit matrix. In this case, the maﬁ’jjx should be

determined through substituting Eqgs. (2.26), (2B1(2.31.4), (2.34.2), (2.34.3),

(2.35.3), (2.35.4), (2.36) and (2.27) into Eq. 8.&and equating coefficients. Regarding
the cosine terms, substituting Eqs (2.23.2), (2.258B86) and (2.37.2) into Eq. (2.34.2)
yields

S P eostre) + b sin(r)]

r=0 j=r+1,r+3,...

=3 Y PO Beos(ky) + D Dsin(ke)].  (2.43)

k=0 i=k+1,k+3,...

On account of the orthogonality of normalisedoasged Legendre functions of the
first kind over [0,1], EQ.(2.9.1), and of the trigonometric functionseow, 27| (EQ.

(2.10.1) and (2.10.2));; and =* can be determined as

&t = %/0 ﬂ/o- <Z | Z %P;(y)[a;(t) cos(ry) + b;(t) Sin(Ti/J)})Pf(V) cos(ky)dvdy

_ </01%]3jf(y)ﬁ’jf(y)du a, (2.44)

29 Also, as is often the case with application tgHticontrol systems, only a crude approximatioredgiired where
n is simply considered to ber + 1.
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w]f _ %/O 77/0' <Z Z %p;(u)[a;(t)cos(rw) + b;(t)sin(rw)])Pf(y) sin(ki)dvdiy

i P
r=0 j=r+1,r+3,...

— < /0 léﬁ(y)ﬁf(y)dz/) b (2.45)
Thus, from Egs. (2.31.1) and (2.31.4),
B = [ Lpw P, (2.46.1)

Note that matrix[ij]T‘] does not have to have non-zero values for it3emntin fact, a

diagonal partition matrix suffices for the transfation required in Egs. (2.31.3) and
(2.31.4).

Bl - /0 L) Prwav. (2.46.2)

This integration can be analytically expressibled the formula is found in Ref.
(167).

11 /5 _ itj—2r—2 . . Hj - (2¢+1) .
/0 ;Pj-(u)Ff(u)dy =(—-1) J (20 +1)(25 + 1)ﬁ1§;2 P 1)Hq.

(2.47)

The inverse matrix ofoj‘j was found by He (Ref. (7), page 30),

[35/,_]—1:(—1)‘ = 2T+ 1)

— - : (2.48)
4 /Hij‘ (i + )@ +35+2)[(@ —35)?—1]

where this expression will be highly convenient foe later discussion o e and

mrs

nj "
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2.2.7 The Apparent Mass Matrix, M
In order to combine Eq. (2.36) with Eq. (2.1He t:-derivative in Eq. (2.17) should
be transformed into ellipsoidal coordinafegsee Appendix 2.3). In general,

0 1

_ .2 9 2 9

In particular, on the rotor disg = 0, and hence Equation (2.49) can be simplified to

0 1 0
& rotor disc - ; . 8_77 (250)
Equations (2.17) and (2.50) yield
. oD 1 09
vsw= 0z n=0 :; a’l] 7]:[]. (251)

On the other hand, Egs. (2.12.1) and (2.22) give

1 op® 1 > 1. 0Q, (i)
.- I _p" n me(t) ms(t) - ,
TR YD DU 72O @ costm) + 7 D sinma ]|
(2.52)
S
W= Y P cos(ry) + (D) sin(r)]. (2.53)
r=0 j=r+1,7+3,...

Substituting Egs. (2.50), (2.52) and (2.53) iBtp (2.17) yields

J

> | Y. PW)lal(®)cos(ry) + () sin(ry)]

1 - - T 8(2::](”7) t) ms(t) [\ o2
=32 X Pl @ cos(my) + 70 D)singmy)|

m=0n=m+1,m+3,...

n=0
(2.54)

Multiplying Eq. (2.54) byP;(u) and cos(ry), and integrating by over [0,1] and

by « over [0,27], the orthogonality of the normalised associategelnelre function of

%0 References (1) and (35) contain the same typograbéiror in the representation of Eq. (2.49).
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the first kind and the trigonometric functions, E¢8.9.1) and (2.10.1), yield the
following relations,

(left — hand term) = WZ Z a'(t), (2.55.1)
r=0 j=r+1,7+3,... !
oo 00 8_7' ;
(right — hand term) = —ZZ Z O Q(;(“?) T:f“)(f). (2.55.2)
2 r=0 n=r+1,r43,... g n=0
Therefore,
0Q"(im)
oo L relt)
=3 a 7,:0Tj (?). (2.56)

Similarly, multiplying Eq. (2.54) byP;(u) and sin(ry), and integrating by over
[0,1] and by over [0,27] Yields

1 . d@:(“ﬂ
2 dn

= - 750, (2.57)
n=0"

Equations (2.56) and (2.57) can be further sifiggliby the following formula,

_ dQi(in)

w(j+ )G —r)l! o 4
o (7). (2.58

50 ; =—(H"
n—o 20+ r—DNG—r—1 2" J

Comparing Egs. (2.56) and (2.57) with Egs. (23and (2.35.2), =m and j =n
are required, that is to say/ is a diagonal matrix. From Eq. (2.58), the elermesft
matrix M can be obtained as

dQ,'(in
ar = [ = L5529
nj 2 dn

] -1
n=0

4
n
= ;H:, 5771,7“671, j

:4(n+mf1)!!(nfmf1)!!5"”‘5@7. (2.59)

m(n +m)!l(n —m)!!
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Note that only such combinations ef and » that m +» =1 mod.2 are chosen.
Table 2-1 shows some examples of the valuaf

n=>0 n=1 n =2 n=3 n=4 n=>5 n==~06 n="7
m =0 4 16 256 1024
P 97 2257 12257
m=1 |- 8 64 512
3T 457 5257
m=2 |- - 32 128 4096
157 1057 47251
m=3 |- - - 64 1024
357 9457
m=4 |- - - - 512 2048
3157 20797
m=5 |- - - - - 1024
6937
m =6 - - - - - - 4096
30037

Table 2-1. [Examples ofi/”.]

2.2.8. The Gain Matrix, L - part 1 - The General Representation

While the representation of matriMle” is common to both Egs. (2.35.1) and
(2.35.2), Egs. (2.35.3) and (2.35.4) have differematrices for L and L.
Substituting Egs. (2.12.2), (2.32), (2.36) and {23 into Eq. (2.18) yields

> X PG costre) + i (Dsin(ry)]

r=0 j=r+1,r4+3,..

_i/ml 0 (Z Z Pm( )Q (in)|m, >(Z)008(m¢) +Tnm5(c>(f)sin(mz/})]>d§_

-2V, von
m=0 n=m+1,m~+3,.

(2.60)

Multiplying Eq. (2.60) by eitherP” (vy) cos(rib) OF Pl'(v)sin(riy), Where v, and v
indicate a fixed point on the rotor disc, from whithe reference streamline, along
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which a ¢-axis is defined, is generated in the downstreamacton. Note that(z, y,)
is the Cartesian representation of the point orrdb@ disc (/1 —vy,v,) expressed in
polar coordinates, as shown in Fig. 2-5.

E =00
\\"/"' .
y r
£=0
Zy

Fig. 2-5 [Skewed cylindrical description for theaowake.]

The ¢-coordinate in Fig. 2-5 is pointing in the oppodiiesction to thez-axis, and
this is typical of the normal working state of dib@pter rotor™.

Incidentally, readers are encouraged to beariid rthat the representation of wake
tube as an infinitely long skewed cylinder is a élygsimplified approximation; the
flow in the rotor wake in reality becomes strongilybulent within a distance of several
rotor radii from the rotor. Figure 2-6 shows anrapée of more realistic description of
the wake tube simulated by the vortex transponmtativethod?. In this thesis, the
skewed cylindrical representation is used followiHg and Peters, whereas there
possibly is much room in the description of wakbetdor further improvements and
sophistications for the analytical representation.

Fig. 2-6 [Wake tube description by the vortex t@orgation method.]

31 The case of an autorotative rotor (i.e. the wirlHbtake state) will be discussed in Chapter 3.
32 Figure 2-5 is kindly provided by Prof. Richard BrowhGlasgow University, with the copyright approved
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Integrating Eq. (2.60) by, over [0,1] and by« over [0,2x], the orthogonality of
the normalised associated Legendre functions of fite¢ kind and trigonometric
functions give the following relations,

o0

DY <;(f>

=0 j=r+1,r4+3,..
2

/0 0 2Vv/ 3n<i i

[o.8] 0.8

T X @)

=0 j=r+1,r+3,...

_[/02/ 2Vu/ 3n(i i

=¥

7 (#),

()@ (in) cos(mm) d€ - P/ (1) cos (ri)dud ¥

(2.61)

(C)(g)_

(1)Q; (i) sin(mw))dé - P (un) sin ()i | 7

.

(2.62)

From Egs. (2.35.3), (2.35.4), (2.61) and (2.8R% elements of matrices; and
Ly can be expressed as follows,

g [ Van( "(in) cos(mw) dg - P (vo) cos (o),

(2.63)
- | i / / Van( () Qi) sm(ﬂﬂb)) € P'{wn)sin(ré)dvod.

(2.64)
Regarding the definition of the gain matrix, Pstpresented a different foftfi, in

which the mass-flow parametev, is excluded. This form is distinguished from Eqgs.
(2.63) and (2.64) by hat symbol, ("), following &t notation.

27 =

::w = / / 1/877( (i) cos(mz/J)> dé - P;(z/o) cos(r)dvody, (2.65.1)
27

:;n* — / / 1/377( ” "(in) sm(mlb)) d¢ - P:(z/o)sm(mﬁ dvody, (2.65.2)
27

?;nc _ / / ~ 877( (1)Q™ (i) cos(m¢)> de - Pj(yo)dyodw (2.65.3)
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Note that L) has the coefficient ofi/4 while L and Ly have 1/2. (See
Appendix 2.8 thereabout.) Note also that when o, the associated Legendre function
of the first kind reduces to the Legendre functafrthe first kind (see Appendix 2.5).

The integrations of Egs. (2.65.1) - (2.65.3) wil tliscussed in the next Subsectfon

2.2.9 The Gain Matrix, L - part 2 - Skewed Cylindrical Representation for the Wake
Tube
Using Egs. (2.12.2) and (2.50), Egs (2.65.1)6%2) can be rearranged as

o o0 9B ()

L= / ——d& - P(vy) cos(ri))duodi, (2.66.1)
27 ooa(I)m‘s(

LQZ“:% / / / d€ - P (vo) sin(ri))dvody, (2.66.2)
27 ooa(bm(’(

L?L’”:M / / / d¢ - P)(vo)dvody. (2.66.3)

In spite of the apparent complicated forms ofséhexpressions, it is shown by He
that these integrations are analytically expressiblclosed forms in Ref. (7), and his
method will be revisited in this Subsection. Fogall, it should be confirmed that He’s
method is based on the following assumptiéns

(C1) the wake tube should be described as a skeyiedier with the wake skew
angle ofy to the rotor disc, as is shown in Fig. ¥:5

(C2) the wake skew angle;, should be smaf.

Suppose the rotor wake is expressed in the sbiapkewed cylinder following He,

33 With regard to the coefn(:lent OL there are variations in the literature: for exéampRefs. (92) and (37)

nj

introduce dn‘ferentL where the former is double as of the latter. Sgeefdix 2.9 about the variation in the

definition.

3% These assumptions are not mentioned at all in RBfs(37), (92) and (112), and are mentioned @mgn
appendix of Ref. (7). Most readers who have not Refd (7) may thus perhaps struggle to executentiegiations
of Eq. (2.65) and how to determine the elementei®fain matrix.

35 As mentioned in the previous Subsection, assumgfid) is controversial. However, it is highly lliggmpossible
to analytically perform the complicated integrasan Eqgs. (2.66.1) - (2.66.3) without the simphfion. Even in
more advanced augmented dynamic inflow models Ref§.(129)), in which more convoluted wake distortis
considered, only ad hoc coefficients modifying Beter and He model are used to represent the vistoetin. It is
likely that this is due to the hopeless complegityhose integrations when incorporating the waikéodtion into the
analytical calculation at this stage.

% In high speed forward flight, the wake skew arglanot be considered small. Thus for this flightation, the
justification for assumption (C2) also weakens. ldger, the validity of this assumption is not disagsin any of the
previous studies, although the Peters and He nmisa@tlely used for flight dynamics applications eve full
forward flight condition. The assumption shall betfier discussed in Chapter 4.

nj
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these integrations can be considered as volumgrattens throughout the skewed
cylindrical domain shown in Fig. 2-5. The one-dirsiemal ¢-coordinate is defined

inside the skewed cylinder along a streamline. Anfpanside the skewed cylinder,

(z,v,2), can be described by and (z,y,), which is a specific point on the rotor disc
from which the reference streamline develops in dbeinstream direction (see also
Appendix 2.2).

x = Esinx + zo, (2.67.1)

Y = Yo, (2.67.2)

z=—£cosy, (2.67.3)
where

Ty = —Tcosy, (2.68.1)

yo = Fsin ). (2.68.2)

Equations (2.67.1), (2.67.2) and (2.67.3) in tyixre the following relations,
1

d¢ = — dz, (2.69.1)
cos X
0 Ox 0 Oy 0 0z 0 _ . 9 0

Note thatcos x£0 is necessary when deriving Eq. (2.69.1) from Eg67.3), thus
edgewise flight { = r/2) should be excluded from the model hereindfter
From Eq. (2.69.2),

Using Eq. (2.70) Eq. (2.66.1) can be rearraraged

o oo a(bmc(c)
e = / —df P’ (vo) cos(rp)drydy

jn
= /27/ /OO&I)W(C)dg P’ (vp) cos(rp)drody

27r cos X

o oo a(bmc(c)
tanx/ / —df P’(Z/O) cos(ry)drody. (2.71)

37 However, the resultant model based on these emsatiill later be extended up tg = 7/2 owing tothe small
wake skew angle assumptidine extension of the model apparently contradi@snecessary condition for
rearranging Eq. (2.67.3) to Eq. (2.69.1). This authill discuss this point in depth in Chapter 4.
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The first term on the right-hand side of Eq. (3.¢an be straightforwardly integrated
as

oo

(first term) = — /277/ { ””M] P’(l/o)cos(rw)dyodw
27 cos X

0
2T
mc
27r cos X / /

27rcosx/h/ ( (v0) cos( m¢)) "(vg) cos(rip)dvodp

SN N (2.72)
2 cos x

: P;(l/o) cos(ry)dvody

Note that < .

=0 by applying the boundary condition (B1). Using Egq.

(2.69.1), the second term on the right-hand sidegf(2.71) can be rearranged as

t 2m oca(I)mC
(second term) = 271_&;:)(/ / —dz P'(I/U)cos(rw)dyodw

(2.73)
The same discussion can be applied to Eqg. (2,66.2

on Ooaq)ms(c)
=g [ [ [ e Posntrinaay

2 Ooa(bmsc
/ // dg - P’ (vo) sin(ry)dvodyp
27Tcosx

tan X

/ " / / —dg P’ (vo) sin(ry)dvodip, (2.74)
where

(first term) = — /277/ { "'SM] P’(l/o)sm(rw)dyodz/}
27 cos X

0

1

= —57717‘571 i (275)
2 cos x /
o s aq)ms(c)
(second term) = 2:1'&(1:)(/ / / dz - P’ (vo) sin(ry)dvodip.
(2.76)
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Equation (2.66.3) is a special case of Eq. (2)66. which » = 0. In summary, EQs.
(2.66.1) - (2.66.3) can be rearranged as follows,

o o a(bmc(c)
e = 1 —— OO — tan X / / </ )P’(l/o)cos(rw dvodip, (2.77.1)
Jn 2 cos x

27 cos X J
_ ms(c)
L 1 tan 2m 0 8<I> _
L’_m(S = mr ILJ - / / </ P(VO) Sln(?"w)dl/gdw (2 77 2)
in 2cosy 27 cos X !
e tanx [ [ a@'“"<">
LQIN,(, _ 1 m’ - an x / / < / ) P.(VO)dVwa' (2.77-3)
m 4 cos x 47 cos X J

2.2.10 The Gain Matrix, L - part 3- The Pressure Function
From Eq. (2.12.2)27 and ™ can be expressed as follows,

imap —ima
e Y + e y

@1 = P (w)Q} (i) cos(m) = —

PwQiay,  (2.78.1)

imy __ —imi
el

@0 = P)Qin)sin(me) = ———PIw)Q)(in).  (2.78.2)

Note that the partial derivative with respect #ocan be expressed in polar
coordinates as

0 1 it _8 1.8 _fi'li'g ii
£:§{€ ( o TiF %) ¢ <ar+z'r a¢)}' (2.79)

Equations (2.78.1) and (2.79) yield the exprassibthe successive differentiation of
o) with respect toz.

8kq>ZL(:((:) - 1 { izr(_ 0 n 1 ) a)
ok _2k+1 € oF  ir 81/]

ooty { < o 1 a>
—_— = =t ==
Ok ok+1; oF it o

k
(o 1 d s L im By A
— e—l,w <§+; %> } (el,m,q/ 4 e—l,mw)P’:L (I/)Q" (”7)’
(2.80.1)

i) 9 1 9 k imap —ima\ PN AN
—e" (54‘;%)} (€™ = e M) P (v)@Q;) (in) .

(2.80.2)
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For example, the first and second derivativesppf? and ™9 are expressed as

follows®,
8@2"0((") 1{ i(m+1)y —i(m+1)v < 0 m>
o CE\ O ety
n (e,i(m—l)w + ez‘(ml)u)( — % — E) }PT(V)QT(”])’ (2811)
. ,

o) 1 d m+1 0 m
n _ i(m+2)y —i(m+2)1 _ ) _ 4"
{(e te ) ( or + ( or * )

Ox? 22 r r
L o g m-—1 0 m
i(m—2)1 —i(m—2)1 _ - _
+e te ) < or r ) < or r )
+ z(eimw + e—’f/ml’/‘) <8_2 _1,_12 — m—2) }P’"’(}/)Qm(in) (2 81 2)
or2 ror 2 " " ' | '

ms(c)
8q)" — L i(m4+1)y _ —i(m+1)y _ 2 + E
g 5% (e e )

+(eumnu_%€«mmw)<<_12,_Zﬁ)t}ﬁ?(yyggxin), (2.82.1)

2 1 ms(c)
0 (I)n, _ L{ (ei(m+2)¢v _ e—i(m+2)’u)< o 2 + m + 1) ( E_FE)
dr? 23 or or

T T
vy oy 0 m-—1 a m
i(m—2)1 —i(m—2)1 _ _
+e te ) < or r ) < or r )
+ 26 <—82 12 —mz) }P '()Q;) (in) (2.82.2)
o2 ror g2/ e R

2.2.11 The Gain Matrix, L - part 4 - The Small Wake Skew Angle Assumption

When the flight condition is close to axial flighhe wake skew angley, can be
regarded sufficiently small, and the trigonomefiioictions can be approximated as
follows,

2

COS =
X 1+ X2

=1-XH1+XH '~ -x%2~1, (2.83.1)

38 Reference (7) has a typographical error in Eql(2)8
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2X

; — — 21 ~ X2\ ~ .83.
sinx =17 2X(1 4+ X?) 2X(1 - X?) ~2X, (2.83.2)
2X 2\—1 2
tanx:m:QXQ—X) ~2X(1 + X?) ~2X, (2.83.3)
where
X = tang. (2.83.4)

Using Egs. (2.67.3) and (2.83.3), the pressunetion can be expanded in the form
of a Taylor series aroundk,, y,,0) to describe the pressure field in the neighboulhoo
of the rotor disc,

" (2, y, 2) = " (Esin x + T0, Yo, 2)
— (I)Z“”("’)(— ztan x + o, Yo, 2)

~ @Zlc(c)(acg —2Xz, 90, 2)
k,-q)mc(c)

(2.84)

T=Ig

Equations (2.79), (2.83.1), (2.83.3) and (2.8¥waEq. (2.77.1) to be rearranged as

. . ban X o1 0 aq)zw(c)
frme — 5””5j” + / / P;(Ij) CcoS (’r"(l})/ e dZdde
0 —00

m 2 cos x 2w cos x Jy
1
=~ 2—57‘m5jn
Cos Y
. i+1 mc(c)
tan x /27 / / )" JRCARN 8
P’ (v) cos(r (2Xz) dzdvd
27r COSXZ ) ¥) Z k?' Corktl | . v

X 2w i 8 1 8
5!"15le +— / / P V) cos Tw /oog k! { ‘ < %—’— ZT81/1>
L0 1o\
_ i me(c)
¢ <6r + z‘raqp) } .

1 1 oo 2T )
=gtz [ el + b+ e 1l

IC /l{ﬁ (~ 2 @y wazar.

q=0

dzdvdi)

=10

(2.85)
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Regarding the integration af in Eq. (2.85), only certain combinations af» and
k can give non-zero values since

27
o [ bl + bl + 1+ 110] = o, (2.86)

where p = |r| + |m| + |k + 1|.%° For non-zero elements cffJ the possible combination

is either of the following two cases: whemr > m, =+rFmF(k+1)=0; when r <m,
+rFm+(k+1)=0. These two cases can be unified as a single esipresf £ +1 as
k+1==+(rFm)=|r£ml, and thus Eq. (2.85) can be further simplified as

Ljﬁ’,lc—lémém N X\rimz / P / { a im”)}h "()Q™ (v)dzdw.

r

(2.87)

Regarding the right-hand terms of Eq. (2.87is itonvenient to define the following
two functions,

A / P(u)/ ——+— Pm( Q! (v)dzdv, (2.88.1)

f7) = fv) = /0 (§,+L)P“( Q™ (v)dz. (2.88.2)

Equations (2.88.1) and (2.88.2) are useful wherking on thek =0 case of Eq.
(2.87). Equation (2.88.2) yields

d{lg):/_;(%¢il; ) Pw)Q; )z

0 # Fm—-10 m?’Etm m
:/QC( 5'212+ r a’f'+ r2 ) ()QII(V)dZ

0 9 $m—1

S B = QA ), (2.89)

39 Peters and He used the compound sigrtofinstead of modulus for Eq. (2.85) in Refs. (7) &i6). However, for
example, = 7 = m is conventionally interpreted as eitherr +m or —r —m, excluding +r —m or

— r 4+ m. Since the combination of + and - is herein congbyearbitrary, this author believes that modulig;ms are
more appropriate for use in Eqgs. (2.85) and (2.86).
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where it is implied that the pressure functionsas Laplace’s equation,

AP me(c) _

n

<82 F 10 m?

PR R

)P =o. (2.90)
Note that the first term on the right-hand sifi&q. (2.89) can be transformed as

/ TP @ W)z = Prw@re)] = KmP,;'U (2.91)

Equations (2.89) and (2.91) result in a lineaimary differential equation forf(r).

df :l:m+1 1 - n _ 1 d +m+1 I - g _
ot f+VKZlPZ(V)—m(T +f)+y—mm(V)—0’ (2.92.1)
where
A (n +m)!(n —m)!l

Equation (2.92.1) is easy to solve analyticahg f(r) is obtained as

7 1 {/r —im+] Nd C} (2 93)
f_f:i:'nH—l 0 I/I(m n( ) T+ .

where C is an arbitrary constant. Singe= v1 -2, Eq. (2.93) can be rearranged as

follows upon usingdr = ——dv = — Zdu,
V1-—12 r

= m{ fOV P (v)dy + C} . (2.94.1)

Especially whenk = 0,m =r +1,

f _ E{/VF_WPZL(V)dV'F C} . (2942)
0
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Note that the normalised Legendre function offite kind satisfies
PN v) = —- —[ - 7’””113,71(1/)} . (2.95)

By Eq. (2.95), EqQ. (2.94.1) can be further reaged as

7

=m—1 v
f=% {/ B )y + C}

n

7—,m—l |:pZL_] ) ) l-m _ - :| v 7771—10
=———|——1 =) P" (V)| +—

m—1 m—1 —m—
R Al )] e
Kn, pn' ’ p”f / Kn,
m—1
1 0 _
= — —P (), (2.96)
K,,,y PR )

n

m—1
n

where the integration constant of is chosen asczp—P,j?(o) so that f(0)=0.
P

m
n

Equation (2.88.1) can be thus simply expressed as

rm 1 p; ! >l > 2 97
Ny = g [ PP @ (2.97)

n

Recall that this is only for the case that=r+ 1. Equation (2.97) gives the explicit

representation ofA;‘Z‘ in accordance with the relation between,; and »:

(i) n<r, r+m=1 mod.2,
P,(v)=0,H, =0,
A=, (2.98.1)

jn

(ii) m>r, n>r, r+m =1 mod.2;

ntj—2r+1 H )
A;ZLZ(_U = g no V(2j+1)@2n+1) (2.98.2)

JHH, =)t i+1) '
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(iii) n>r, m>r, r+m =0 mod.2;

rm H:
R\ (2.98.3)

(iV) n<r, m>r, r+m =0 mod.2;
AT (= 1)# L (n+r—DU(r—n-2)1 V(2j+1)2n+1)
in g A —n—=D (G-n)(n+j+1)
n J

(2.98.4)

2.2.12 The Gain Matrix, L - part 5-The Elements in Closed Forms
Using the results of the previous Subsection,ittegrals of Egs. (2.66.1) - (2.66.3)
can be explicitly represented in the following faffth

(L5 = (xm)[or], (2.99.1)
[zlmc _ [X|7-7m\ +(— 1)miﬂ(7‘,m)X|7‘+m|] [I‘lm , (2992)
[zﬁn}s _ [X|7-7m\ _ (_ 1)min(r,m)X|7-+m|] [Frm} , (2993)

jn jn

where T is a function defined as follows,

[ S AT AT (2.100)

jn ) jl7ln

Note thatT takes different values depending on whether» is odd or even

(i) 7+m =0 mod.2;

m HJ:’ - ! T D
= H?Z /0 A" P(v) P, (v)dv

l=r+1

H,
= H{%/o I/ID:;(I/)P;(I/)CZZ/
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noop

n="gn
o

_cyF 2/enaleiHD (2.101.1)
JEE, () 42 =) = 1]

(i) 7+m =0 mod.1, j=n=+1;

Tm
Jn

= sgn(r — m)g — Z /0 A;IPZ’( V)P (v)dv

= sgn(r — m)g _ /0 vP (V)P (v)dv

= sgn(r — m)g

H, (n+14r) n+1—r/

H! (2n+3)(2n+1 ”“

+ (n — 1)( n+r)/ P Wy
2n+1)(2n—1)

( )71' Hﬁn{ 1 1 5
=sgn(r—m)=- | — 0ini1
2 \H \\VH,, Vent)Ents)

Lot 1 . }
H /@2n+1)(2n—1) -1

ot osearem) 5o (2.101.2)
2\/H;;'H;j V(n+1)(2j+1)

(i) r+m =1 mod.2, j#n+1;

" =0. (2.101.3)

jn

Note that Eqgs. (2.101.1) - (2.101.3) indicatet theery other element of the gain
matrix, whether moving along a row or a columnzeéso (i.e. the matrix looks like a
chessboard). Note also that the only variable efghin matrix is the wake skew angle,
x. Some specific examples of Egs. (2.101.1) - (23)0dre shown below, using both
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000 _ g , (2.102.1)

X 27 X 27 1 —sina,

jole _ tanX — — ey 2.102.2
12 V10 2 V10 V 1 +sina, ( )

X 27 X 27 1 —sina,

Llocz—tan—:—“— , 2.102.3
21 V10 2 V10V 1+sinea, ( )

A1157E 2 X\ _ 2

=21+ ant) T (2.102.4)
AHC_E _ 2X) _ 5 sin a,

L= 4(1 tan 2) ~ 30 Temay)’ (2.102.5)

where the following trigonometric formulae are used

. 1 — cos 1 —sina,
fan?X = __C8X_ _ T MRAe (2.103.1)

2 1+4cosy 1+sina,

2 2
1+ tan?X = S (2.103.2)

2 1+4cosy 1+sinae
2 X 2cos x 2sina,

1 — tan"= = = (2.103.3)

2 1+4cosy 1+sina,

The simplest example of the gain matrix is a3 matrix for the three-state model,
which comprised only those elements in whick 0, m is eithero or 1 depending
on r +m mod.2, andj:r—i-l, n=m+1.

My 00\ far\ (I om0y oy

0 M; 0 b;s +1 o0 L;S 0 v b;s _ T;s(t) n 7_;5(0) _ T;s

0 0 M; a;c L;(])c 0 Lgc a;c T;c(t) r;"’(‘” T;C
(2.104)

0 In Ref. (28), the effective angle of attack, :g —x= tan ' .é. , Is used instead of in the representation of
w

the gain matrix. Unless reference is made to Ej3$08.1) - (2.103.3), it may appear that the gaatrixfor Chen’s
model has quite different entries from those inchitthe wake skew angle is used. He also recomméndeef. (7)
that the effective angle of attack should be uastkad of the wake skew angle in relation to PetedsHaQuang’s
non-linear model, but the reason is not thereitedtal his author believes that the difference ismathematically
essential so far as Egs. (2.103.1) - (2.103.3yalid.
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In Eq. (2.104),7
References (7), (37), (92) and (112) describe sexaenples of the possible lift theories.

‘7,” and 7,° should be associated with an appropriate lift theo

172

2.3 The Pitt and Peters model

The Pitt and Peters mofféis a predecessor to the Peters and He models tatlli
arguably one of the most popular dynamic inflow eledvidely used today. Although
these two models look similar at a glance, the eratitical derivation and the resultant
matrices are quite different, and the relation leetwthese two models has not been
fully explained in the pertinent literature. Refece (101) should be a rare reference
which shows that the Pitt and Peter model formpexial case of the Peters and He
model for axial flight cases, but for other flightenarios between these two models has
not been fully theoretically elucidated, and therrelation was shown only
experimentall§/*.

In this Section, the relation between the Pitt 8eters model and the Peters and He
model shall be theoretically examined aiming to enalear the connection between the
two models.

2.3.1 The Apparent Mass Matrix, M
The main difference between the two models lethe fact that while in the Peters
and He model the induced flow is associated withcbefficients, 7, in the Pitt and

Peters model, the induced flow is associated waitbrroadings,Cr, Cy and C;.
The thrust coefficient is defined as

Cr= [ fwas

’ ,1!

NP (2.105)

where

P =3 3 P C2(F) cos(mup) + DI () sin(my)] .

m=0 n=m+1,m+3,.
(2.106)
Since those terms in which+#0 will be zero when integrated ovew,2x] with
respect toy, Eq. (2.105) simply results in

41 The Pitt and Peters model was seldom theoreticaltypared with the Peters and He model, in a puddigaper
available, despite other wake models were compaitbdthe Peters and He model to validate the m&fdeh fact,
References (63) and (101) are only referencesgtbelst knowledge of the present author, in whielréhationship
between these two models is discussed. Howevedisassion is limited to an experimental result the
mathematical relationship is not clarified at all.
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Cr= [[eas

[ VTG - TR e =5

1
™ 0

==l (2.107)

Note that as long as Eq. (2.107) is satisfied; distribution of ¢; will suffice
because all terms which contaii for k¥ >3 will vanish when integrated ovep, 1]
with regard tor. Thus, ¢, (k> 3) should be determined by extra boundary conditions
on the rotor pressure when necessary. Figure 2Wsslwo examples of the possible
pressure distribution where Eq. (2.107) is satifiethe top diagram is of the simplest
case where only?! term is considered and thus= v1 —; and the bottom is the
next simplest case wherei and ¢; terms are considered with an additional
boundary condition that the pressure should be aere hub centrep =0|_, i.e.

7=0"

0.81
U.- -

.4- ,.._,,.._...,,‘.,.,,..

.2‘ \\‘

02 04 06 038 1
o 0.7 ___,..--—-’*_”'---._,\

P/CL g N
051
0.4
0.3 )
0.21 |
0.1 7

02 0.4 06 0.8

Fig .2-7 [Lift distributions on a blade describegthe associated Legendre function; the
first and second harmonics.]

42 The Pitt and Peters model is fundamentally basegictuator disc theory and momentum theory. Bothaaar
disc theory and momentum theory are independedeiaiiled rotor information such as number of blagénform
of blades, airfoil and the 3-dimensional pressusg&itution on the blades. What is required in it and Peters
model is thus only the mean value of the pressum&ing on the rotor, and this gives a variety o$gible pressure
distributions, so far as they give the same hutiiags.
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On the other handg; is related tor" as follows,

/ / " / Pl(v)7)(t)rdrdd

/ /0l V311 =2 drdy - °(T)

>4|>—‘

>1|'—‘

_ ﬁf(fu' (2.108)

Regarding the definition of lift coefficients digher harmonics (i.e. roll and pitch
moments), Mangler suggested the following forff,

L(r,¢) = %CO + Cpsiny 4+ Cyrcos ¥ + Copsin 29 + Coppcos 2¢p + - -
(2.109)
However, Peters did not mention in the literatilme factor of 1/2 appearing in the

first term. It is thus reasonable to assume thatlifin coefficients of Pitt and Peters
model are defined as follows,

L(7,v) = Cy + 2(Crsiny + Cyrcos ¥ + Copsin2¢p + Cyprcos 29 + - - +).
(2.110)

Note that the difference in the definition isagfurse minor, having no influence on
results so long appropriate attention is paid &s¢hfactors. Coefficients ¢;, and ¢y,

can be associated with lift coefficients;” and 7°, respectivel§/,

43 Reference (37) does not have a clear definitidiftafoefficients, while Reference (1) has a typqaiial error in
the calculation of the lift coefficients. At leastthose studies of Peters that appear in thedxybiphy of this thesis,
the lift coefficients are not explicitly definedh@&re are some other variations in the definftidfi®, and this situation
should confuse readers.

44 Higher harmonics can be defined and determlneldeirsame manner when required. Examples include

Cyp, E%/L( 2 sin 2W)dA — \/T’T%(ﬂ and Cyy = - /L(f 2 cos 2U)dA = 7\/%?’%((15)

A A
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Cp = %/L(F, ¥)(— Tsiny)dA
A
4 2T lpl oo ~
= —;/U ; , ()7, (t)r" sin” drdy
8 ..
= - 2.111
= (0, (2.111)
Cu= %/L(F, ) (= Teosp)dA
A

e 4 2r 1 Loy ) ~
=—= /U /U Pl (w7, (£)7 cos® pdrdy)

_ - %T;C@. (2.112)

In the Pitt and Peters model, the induced floval& considered in the following
form,

W = Ao+ AirSineg + Ao cos + Aogr?sin 290 + Aoer? cos 200 + -+ -

(2.113)
Equating Egs. (2.113), (2.22) and Eq. (2.36)dgel
Ao = %/wdA = V3a)(D), (2.114)
A
Ay = %/w(?sinw)dA =—2V158)(1), (2.115)
A
Ale z% w(rsiny)dA = — 2 \/ﬁa;(f). (2.116)
A
Thus,
20 0 al* 7 = 0 0 Ao Cr
0 5= 0oy |=]"0] & o & 0 (}\(‘;])_(CL>.
00 =/ \a et 0 0 =) \da Cu

(2.117)
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The matrix appearing on the right-hand side of &y117) is well-known as the
apparent mass matrix in the Pitt and Peters rifelt is thus confirmed that the
apparent mass matrix in the Pitt and Peters madebnsistently and hierarchically
implied as a special case of the Peters and Helmode

2.3.2 The Gain Matrix, L

For the gain matrix, Eq. (2.25) is assumed toe®sgnt the inflow distribution in the
previous discussion. For a special flight case wf{%&& 0 (steady) and: = — ¢ (axial

flight), Eqg. (2.15) results in a simple forms,

e =0, (2.118)
d =00, (2.119)
_1 Y991 1

From Egs. (2.6.1) and (2.120),

1 2T 1
:—/ / wrdrdiy
™

2T
“mvl [ PIQTO) | O cos(my) + 770 sinGm)] raras
m=0n= m+] ,m+3,.
_1 0e(e) 7
_V/U g v)Fdr - (7). (2.121)

Especially forn = 1,

L. 0, (2.122)

1 [t
Ap = — P d Oc(c)
o1 P A0 o

Indeed, the proportionality coefficient obtainiedm Eq. (2.122),1/2, agrees with
the L,, entry of the gain matrix in the Pitt and Petersdeio This result also agrees
with the relation betweert;, vr (the non-dimensionalised total flow at the rotor
plane) and), for a steady axial flight case, in which they tensimply obtained from
momentum theory, Eq. (2.123), if replacingand ¢ in Eq. (2.122) withV; and
Cr, respectively,

%5 In some references such as Ref. (107), a matrimbav 16/457 for the (2,2) and (3,3) entries is
introduced as the apparent mass matrix of theaR@tPeters model. This difference in the sign issed by a
difference in the definitions of; and C),.
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Cr= 2V, (2.123)

This is not an unexpected coincidence becausel\staxial flight is presupposed in
the Pitt and Peters model to determine the entry. However, ther,, entry of the
gain matrix obtained from Eq. (2.122) should notdumpted as it is in the unified
model, because the induced flow in Eq. (2.122@mesented by the Fourier coefficient
of ¢, which is different froma and g in the previous Subsection.

In Ref. (1), the Pitt and Peters model was derive determining each element of the
apparent mass and gain matrices by presupposimeaatised flight case, such as
steady axial or edgewise flight. Those entriescatkected together into the matrices at
the final stag®, but the necessary transformation for unifying thedel (recall
Subsection 2.2.6) is arguably lacking in the derdrg resulting in a model in which
vectors (o,3) and (¢(,w) are mixedly used to represent the same induced flo
distribution.

Whereas some flight cases which are dominateeitiyer @@ or o alone (i.e.
only one of (o,3) or (¢, =) is therein dominant and the other is negligiblegynibe
practically described well by the Pitt and Petersdet, this author therefore doubts for
the reason above that there is a problem with #@resentation of the inflow
components in the Pitt and Peters model.

2.4The Mass-flow Parameter and Non-linear Versions

The flow parameter in the Peters and He modelcan be the non-dimensionalised
freestream speedy... However, it is better to account for energydedto the flow
from the rotor in order to describe the inducedwflln the wake, and Ref. (1)
recommends to replaceé with the mass-flow paramete¥;,, which is defined as

R R I e )

Vi + 32 i

v (2.124)

where 4, A and )\,, are advance ratio, the total inflow, inflow duethe rotor thrust,
respectively. Figure 2-8 shows the relation betwthese parameters.

68



Chapter 2 Review of the Dynamic WwflMdodel of Peters and He

Fig. 2-8 [Inflow components in the wind axes.]

Note that these parameters are defined in thd akes. In Fig. 2-8,\; is the normal
component ofV,, and satisfies

A=A+ A (2.125)

In a steady case), is simply given by momentum theory and is equaltie
uniform component of the induced fl&w?,

Cr

However, in an unsteady casg, does not generally coincides with, and is
defined by the first row of the gain matrix88

1 o
Am_i(l,o,())[ L ] ()\15). (2.127)

)\](',

With regard to the flow parameter, Peters and t#af@ proposed an extended
version for the Pitt and Peters mdtf&l, which is obtained by the following process:

i. swapping the flow parameter;, with themass-flow parameter matrix,

Vi 0 0
Ve |0 Vi 0 ]; (2.128)
0 0 Vi

ii. treating all variables as total flow rather thamntybation.

Due to the non-linearity between the mass-flomapeeters and inflow components,
this model is called thaeon-linear version of the Pitt and Peters modePeters and
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HaQuang’s non-linear model

This modification should give a better descriptaf induced flow, because the thrust
is more directly related to the total inflow ane tinduced velocity based on momentum
theory than the roll and pitch moments are. Thé aod pitch moments are more
sensitive to the variation in the inflow, and thisndeed the case with this formulatifin
The process (ii) above is done by integrating tbeypbation version of Pitt and Peters
model over the rotor disc.

The Peters and He model can also be extendesd tom-linear version by replacing
the flow parameter with the mass-flow parameterixan which X, is defined as

-1
2 T rme m
Ao =ﬁ(17070,...70)[ L ] (a) (2.129)

This relation can be derived from Eq. (2.108)128) and
Ao =~ /3a! (2.130)

where a is the steady uniform induced flow?. This approximation is introduced in
Ref. (7). The non-linear version of Pitt and Petaxsdel is verified in Refs. (62) and
(102). The non-linear version of the Peters andntdelel is verified in Refs. (7), (92)

and (112) and is widely used today.

The present author has no objection to the \gliof those non-linear models at all,
but is of the personal opinion that the naming rdri-linear” might be misleading; in
the context of fluid mechanics, the term of noredirity is usually associated with the
convection term in the Euler equations or the NaS8iekes equations. The non-linear
dynamic inflow models are not fully non-linear img sense, because the derivation of
the model essentially depends on the linearisecerEaguations. (The process of
non-linearisation is always a process of deletirigpitesimal variables of higher orders,
and it is impossible to recover those deleted teatres later stage.) The non-linearity in
the non-linear dynamic inflow models indicates orihe non-linear relationships

46 Reference (71) discusses in its Section 10-6 wdifferent flow parameter for rotor moments thart fioa the
rotor thrust is required for unsteady flight cases.
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between flow parameters and rotor forces consigeriomentum theory, and thus this
appellation may be confusing.

2.5 Discussion
In this Chapter, the Peters and He model waotlginly reviewed in detail. In order
to explore the possibility of applying the dynarmiow model to autorotative rotors, a
comprehensive examination of the theoretical déowaof the theory from the first
principles is essential together with the consitienaof the assumptions therein used.
In the course of examining the derivation of thedel, the assumptions upon which
the Peters and He model is based, (Al) - (C2)clealy identified in this Chapter.

Among these assumptions, the small wake skeweaggumption, (C2), is arguably
the most objectionable because the wake skew aagl®de quite large in forward flight,
and indeed, the Peters and He model was intendeed tsed for a wide range of wake
skew angles fronp° to 90°. Since the assumption forms a fundamental stefhef
derivation, this should be considered as a corttiadi, and hence lucid explanation
must be made concerning its validity. Unfortunatéie literature suggests no answer to
this contradiction. The present author shall disdbgs problem in Chapter 4 in depth.

With reference to past studies, it appears thatpresent thesis is the first study to
consider the mathematical relation between theaRidt Peters model and the Peters and
He model. The present Chapter casts some doubwdhether the Peters and He model
hierarchically includes the Pitt and Peters modielmay be premature to make a
conclusive remark about this matter because thastype of problem which needs to be
concluded through a plural of more concrete proyfauthorities including the original
authors. It is hoped that this thesis would proviokther discussion of this issue.
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2.6 Chapter Summary

This Chapter was written with the objective obyding a sound theoretical basis for
the subsequent Chapters of this thesis. Chaptewsd34 are essentially based on the
theoretical considerations of this Chapter, and ihis believed that the objective above
is attained.

This Chapter can be summarised as follows:

1. The derivation of Peters and He model has beemtighty re-examined,;

2. All assumptions which are used in the derivationehdeen clearly identified;

3. The limitations of these assumptions and possibledifications have been
considered;

4. The Pitt and Peters model has been reviewed itiaelt the Peters and He model,
with some doubt cast on the statement in Ref. (10&) the Peters and He model
hierarchically includes the Pitt and Peters model,

5. The logical inconsistency of the small wake skevglanassumption has been
described.
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Chapter 3

Dynamic Inflow Modelling for Autorotative Rotors

N.b.) The content of this Chapter is shortenedm@rtlished as Ref. (168).

3.1 Introduction

In the history of the development of dynamic amfl modelling, scant attention has
been paid so far in analysing autorotative rotBeferences. (9), (10) and (151) may be
recherché examples in which the Pitt and Petersemisd used for rotors in the
windmill-brake state. Still, little theoretical atttion as to the applicability of the model
was paid.

Important theoretical attempts recently made xtered the dynamic inflow model
include Refs. (169) and (170), in which the origimedel was enhanced to cover the
vortex-ring and windmill-brake states. Although Re{169) and (170) are mainly
focused on the vortex ring state and its smoothsttian in the context of helicopter
applications, such theoretical works should alsambgreat importance for gyroplane
engineers.

The aim of this Chapter is to identify a necegsaodification to the dynamic inflow
model when applied to an autorotative rotor throughiewing the derivation of
dynamic inflow model from the first principles. Wieas the Peters & He or Pitt and
Peters model is kept in mind as a specific exanwpl¢he following Sections, the
essence of the discussion is not limited to anyiquear model, but can be applied for
other variations of dynamic inflow models in gerneResults of numerical simulations
are also presented to compare the original andfreddnodels.
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3.2 The Applicability of the Dynamic Inflow Model to an Autorotative
Rotor

3.2.1 Examination on Matrix Elements of Dynamic Infow Models
There is a major geometric difference betweeroweped helicopter rotor and an
autorotating rotor:

(D1) the free stream is coming toward an autoagatotor from below, while
it is coming from above to a rotor in normainking state (see Fig. 2-3).

Although the terms ofhe normal working statand the windmill-brake stateare
already used in Chapter 1 to describe the rottestat the helicopter and the gyroplane,
they need to be given more strict definitions hémne;state in which a rotor is receiving
the incoming flow from below is hereinafter refaetr® as the windmill-brake state, and
the state in which a rotor is receiving the inflmm above is referred to as the normal
working statdollowing Ref. (5f’. Point (D1) above can be considered as a fundament
geometric dissimilitude between windmill-brake amakmal working states, and how
the difference in the underlying configuration iflected on the equations of the
dynamic inflow model is to be discussed in this @tba As was seen in Chapter 2, the
entire derivation of Peters and He’s dynamic inflowedel is highly mathematical and
complicated though, it is not necessary to trach eand every line of the derivation to
examine the applicability of the model for autotiv& rotors. What are required to
discuss point (D1) above are only the base equatioiz., the linearised Euler
equations,

_—_ = _VP
5 Wq Vo,

(3.1)

in which the flow componentsq, are defined along a streamline coordinatewhose
positive direction is defined to be upstream. Teaspn why the second term on the
left-hand side has the sign of minus is that theatlion of v is defined to be opposite

47 The definition of these geometric attitudes obtr towards the inflow should be independent oéthir or
not the rotor speed is mechanically retained comsktowever, the normal working state conventignatiplies that
the rotor is governed by an engine, and the wintihréake state implies that the rotor is not meébalty driven.
Indeed, the fact that an autorotative rotor ismethanically driven is another major differencerfran powered
helicopter rotor, but the DOF in the rotor speeqd lsa implemented in a mathematical model with @garblade
dynamics (see Fig. 1-2), and thus any change inotioe speed can be calculated in the loop in @iegtaady manner.
Thus, this thesis does not pay special attentidghe@xtra DOF in the rotor speed of an autoratatbior.
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to the positive direction of-axis. Since this is the case both for the normaiking
and windmill-brake states by definition (see fig@-2 about this comparison between
two states of a rotor easier), the left hand sidép (3.1) holds the same for both rotor
states in the vector form.

When focusing only on the-components of Eq. (3.1), it can be noticed thathg
direction of lift against the free stream is di#fat as is shown in Fig. 2-2, and (ii) the
direction of the z-axis and the induced flow in the windmill-brakatst are opposite to
those in the normal working state. (Figure 2-2btamed by re-drawing Fig. 2-3 so that
the rotor plane should be put horizontally and thatfree stream should come from the
upper left side of the rotor in the diagram.) Tleeihtion of dynamic inflow models are
based on the--component of the linearised Euler equation, thes model for the
windmill-brake state needs to change the signsodh lg and ¢ in Eq. (3.1). This
leads to the identical form with that for the notiwarking state, and therefore it can be
ascertained that each element of the matricesdynamic inflow model holds the same
both for normal working and windmill-brake states.

Note that the discussion above is not limitedydol the Peters and He model, but
also to other models such as the Pitt and Petedelnas long as their derivations are
based on the linearised Euler equations.

3.2.2 Definitions of the Wake Skew Angle
In Fig. 2-2, the wake skew anglg, is defined as follows for both normal working
and windmill-brake stat&9,

-1
=t
X an |y

ﬁ‘ _ (3.2)

Note that although the general matrix represemabf a dynamic inflow model
remains the same, the direction of such parameters and y must be different
because of the difference in the direction of wfltowards thez-axis of the airframe
(see Fig. 2-2).

When applying a dynamic inflow model to the winthbrake state, it may happen

that one would misinterpret the inflow angle, should be in the range frora0’ to
180 for the windmill-brake state unless the definitmina is changed. As a matter of
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fact, Chen introduced a different definition @f from Eq. (3.2) in that it does not have
the modulu$®, and thus according to this definition, the rotorgle of attack,q,
should be in the range frorB0" to 180 for the windmill-brake.

Chen's definition may look versatile at a glarms;ause the model could be used both
for normal working and windmill-brake states with@ny changes in the definition so
that angles ofo° < x <90° and angles obo° < y < 180° therein indicate the normal
working and windmill-brake states, respectively. wéwer, Chen's definition would
entail unfavourable divergences of some gain madi&ments which contaifian(y/2)
to oo at y=180°. Still, that y equals 180° means axial descent cases in the
windmill-brake state, which is practically quite @ossible operational state for
gyroplanes, and thus the unfavourable divergenseblegn a problem with dynamic
inflow modelling when applying Chen’s formulatiom autorotative rotors.

Intuitively, the windmill-brake state can be redgd upside-down to the normal
working state (Fig. 2-2), and thus and x must be defined so as to come in the range

of O and 90 for both states. The modulus sign in the definitshould not be
dropped off for this reason.

3.2.3 Examination on the Mass-flow Parameter

Now the mass-flow parameter should be examindte Tlow parameterv is
recommended to be replaced wit), in order to account for energy added in the
wake by the rotdt”®%%) The added energy can also be interpreted asctiedesation
of inflow and the contraction of the wake tube he tnormal working state. The
mass-flow parameter defined for the normal workstate is to be referred to as, .
hereinafter,

Vit = Vit A
m+ — T+ mm

_ IJ’Q + (Af + >‘7n)(>‘f + 2>‘m) . ,UQ + )\(A + Am)

- o (3.3)

where the definition ofy,, is given as Eq. (2.127).

However, the definition ofl,, should be changed for the windmill-brake state,
because a rotor in the wind-mill brake state isadting but receiving energy from the
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free stream (this can be interpreted as the dextelarof inflow or the expansion of the
wake tube). This shall be reflected upon the sigim® second term of Eq. (3.3), and so
the mass-flow parameter for the wind-mill brakeesthould be defined as

Vi = Vi At
m— = VT mm

. — (3.4)

The V,, defined for the windmill-brake state in this manigto be referred to as
V... hereinafter.
In Egs. (3.3) and (3.4)) can consistently be defined as

>\:>\j’+)\m) (35)

where ),, <0 for the windmill-brake state and,, >0 for the normal working state.
The difference in the sign of,, is the reflection of the geometric difference betw
the two states. The following equations are inteily evident from Fig. 2-2,

A=A+ N, (for the normal working state) (3.6)

I =[IAf = A (for the windmill-brake state) (3.7)

mll-

Note that the difference between,. and v,,_ is not naturally accommodated in the
definition of v;,, because the difference is the reflection of thgsmal difference in
those two rotor states in terms of the energy flamg thus this is independent of the
choice of coordinate systéf

3.2.4 Unified form of v,,, and v,,_
The necessity of separating, into V,,. and v, can be more mathematically
enunciated than the physical and rather intuitigeussion in the previous Subsection.

Differentiating V2 = ? + \? = s + (\; + A,,)* With respect tox,, yields

8 |f the sign of \,,, alone is changedV,,+ and V;,_ will mutually invert to each other. This can irttuély

interpreted as the reflection of the fact thattara the windmill-brake state can be regardeddesdown to a rotor
in the normal working state. An error in the defom of \,, would lead to wrongly swappind’,+ and V,,,_.
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ovr A
m_VT_COSX (3.8)

for the normal working state. Especially when igtispeed forward flight,
cos X ~ sina >~ tana. (3.9)

Note thattana should be always positive due to the modulus sigag. (3.2), and
thus \/Vzr in Eg. (3.9) is also required to be positive. Wirethe normal working state,
this is indeed the case because>0 and A >0. However, A <0 when in
autorotation. Hence, this further requires thaty should be defined ag\|/v; in
order to be consistent with Eq. (3.2), if it is paped to cover both the normal working
and windmill-brake states. Indeed, the minus sigrih@ right-hand side of Eq. (3.4) is
equivalent to the modulus sign in effect.

In fact, v,,. and v;,_ can be unified by using modulus sign as

Vr _ /142 + A2 + )\m|>\|
a)\m B VT '

Vm:t = VT:t >\m (310)

Equation (3.10) can consistently be used boththiea normal working and
windmill-brake states and is consistent with Eq2)3In Ref. (104), Peters defined
tana (EQ. (19), p.66) and reads, & is always positive, whether the flow is from
above or below”. As discussed above, the mass{ilamameter should be defined as Eq.
(3.10) to be consistent with Peters’ own definitioh tano, Eq. (3.2§°. Further
discussion about this issue shall be held in AppeBd.

3.3 Numerical Simulation

The difference betweem,,, and v,,_ came from rather an elementary and intuitive
discussion, but this would appear to be the finstetthat the difference has been
explicitly highlighted in relation to the dynamicfiow model. The comparison of,,,
and Vv,,_ is conducted by numerical simulation using a genegtorcraft simulation
code RASCAL at the University of Glasgow, which wakeady used for some
studie§ 10131154159 g whose validation was evident in Ref. (152e Thon-linear
version of Pitt and Peters model is used in theuititon model to describe the induced

4 The mass-flow parametel/,,, first appeared in Ref. (66) and has been usegiriardic inflow models of Peters.
However, its mathematical derivation is not elutédiain published papers.
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velocity field, and local aerodynamic loads on adel can be thereby given through
blade element approach. It should be acknowledugdhe algorithms are implemented
in RASCAL by Dr. Stewart Houston at the UniversifyGlasgow.

On the other hand, inertial loads are thereirciilesd by the Euler equations of rigid
body as below.

I f1ap(@0r — wyw2) — MYeg@' ™ = Moy, (3.11)
Ipit(th(wy - w.’l.‘wz) = ]\lp’i,h:h) (3.12)
Tigg(w, — wawy) — mycgazmge = Miags (3.13)

where blades are considered rigid. Reference (55&) be referred about the detailed
derivation of w,,w, w., "™ and ",

The rotor forces and moments in the airframe dioate system are represented by
the integration of those moments and lift on eatddd element. Using transform
matrices, [T1],[Ty] and [7T3], from blade element coordinate system to theaamé one,
rotor loads and moments can be written as

27 (£ Xoen) ] (3.14)

1 i=1

X = [Tl]il

b
j=

L = (1073 [ {77 (3 Koten) | + (s — )X, (3.15)

1 i=1

e

J

where X, =X%" +X"" . See Appendix 3.2 about further details of these

elem

transformation matrices and the derivation of H8s14) and (3.15). Based on those
aerodynamic and inertial forces and moments, thdrabinputs vector,u, and state
vector, x, are expressed in the state-space form,

d

— = [Alx + [Blu, (3.16)
where

x = "(u,v,w,p,q,7,6,6,9,9), (3.17)
or

X = t(”? v, W, pP,4q,T, ¢7 07 d}a Qv Vo, Vis, Ulc) ’ (3.18)
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wherein u =! (6,,7,,7.,Q,) for gyroplane¥. Note that the model can be linearised
either in the classical 7 DOF rigid-body form wit. (3.17) when the inflow dynamics
are effectively treated quasi-statically, or linead in 10 DOF form with Eg. (3.18) to
encapsulate inflow dynamics. In either case, E®}41{, (3.12) and (3.13) form a closed
loop together with the dynamic inflow model. (Réd¢ag. 1-2.)

Equation (3.16) comprises nearly one hundredlm&ar ordinary equations, though
the exact number depends on several parameterglinglthe number of blades. The
set of simultaneous differential equations is to temerically solved by the
Runge-Kutta method in RASCAL. Further detail abthé code can be found in Refs.
(34) and (152). Stability and natural response attaristics of a state described by Eq.
(3.16) can be studied by the eigenvalues of the statrix, [4]. When the real part of
an eigenvalue is positive, the state (mode) isalnhst Likewise, when negative, then
stable. The imaginary part of an eigenvalue mela@stodal frequency.

3.4 Results from Numerical Simulation

The numerical simulation was computed to see haweh the difference between
V... and v,,_ would influence the induced velocity and flightintmls under different
trim conditions. Used therein are two types of rotaft: Montgomerie, which is a
two-seater medium gyroplane, and Westland Puma Kgge3-1), which is a much
heavier helicopter. Their brief specifications shewn in Table 3-1.

ﬂ'&
i

g =S

Fig. 3-1 [Montgomerie (left) and Westland Pumatit)g>*

%0 |t is characteristic to the gyroplane that thepeiter speed is in the control inputs vector.
%1 The left picture in Fig. 3-1 is reproduced frore thebpage of Flight Dynamics Group at Glasgow Unsite
The right picture is kindly provided by AgustaWaesitl, with copyright approved.
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Montgomerie Puma
M (kg) 350 5810
I, (kgm?) 73 9638
I, (kgm?) 297 33240
I.. (kgm?) 224 25889
I- (kgm?) 0 2226
b 2 4
R (m) 3.81 7.498
m (kg) 15 91

Table 3-1 [Specification of the Montgomerie and RuUm

Since the rotor of a gyroplane is always in thedmill-brake state, simulations for
the Montgomerie were done over a wide range oftacforward flight speeds and
descent rates. On the other hand, the Puma wasmeddo be descending with a fixed
collective pitch, which is the most practical cagleere a helicopter rotor enters the
windmill-brake state, because helicopter rotorsaligienter the windmill-brake state
only in emergency situations such as sudden poasuré, where collective pitch
should be minimized so as to keep the rotor spedtgh as possible.

Figures 3-2 to 3-8 are related to the Montgomefig. 3-2 shows the resultant
variation between the magnitude of dimensional rflass parameters ofv,,, and
vn_; Fig. 3-3 to 3-8 show the influence of the diffiece in the mass-flow parameters in
terms of forward flight speed and the descent eajainst the inflow components,
airframe attitudes and flight controls in trim, pestively.
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Fig. 3-2 [Comparison of forward flight speed andssiflow parameters, Montgomerie.]
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Fig. 3-3 [Comparison of forward speed and inflowngmnents, Montgomerie.]
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Fig. 3-6 [Comparison of descent rate and airfrattiride at 50 knots, Montgomerie.]
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Fig. 3-7 [Comparison of descent angle and flighttomls, Montgomerie.]

84

1400



Chapter 3 Dynamic Inflow Mdadwj for Autorotative Rotors

flight controls (deg)

2
longitudinal cyclic
- — [
0 - -
;- — - . lateral cyclic
-2 - %7\‘7"‘*\*~:I>\—\7\,‘7+ -
-4
Vm+ _Q_
vV, —+—
-6
e — — —
e T B
8 - rudder angle i
-10 : : :
35 40 45 50 55 60 65 70 75

forward flight speed (knot)

Fig. 3-8 [Comparison of forward flight speed angHt controls, Montgomerie.]

Figures 3-9 to 3-15 are related to the Puma.rEg3-9 and 3-10 show the resultant
variation between the magnitude of dimensional rflass parameters ofv,,, and v,
with respect to the forward flight speed and detsaegle, respectively.
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Fig. 3-9 [Comparison of forward flight speed andssylow parameters

with collective pitch at6.5°, Puma in the windmill-brake state.]
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Fig. 3-10 [Comparison of inflow velocity fov,.. and v,,_with collective pitch at6.5°,

Puma in the windmill-brake state.]

When comparing Egs. (3.3) and (3.4), it can lealigted that when. increases (i.e.
high-speed flight or deep descent), the differebheenveenv,,. and Vv, would be
smaller, because: becomes dominant in the numerators. This indicdlbed the
difference betweerv,,, and V,,_ should be larger in either low-speed flight orlkiva
descent. Indeed, Fig. 3-9 and 3-10 show this tesyddirough the comparison between
the second terms in the numerators of Eqgs. (3.4)d a8.5) (i.e.
AMAFA) = A+ XD +2),) and AA—X\,) =(\s+A)\ ), it can be said that
Vi < Ve When in descenty(¢ < 0) becauser; < A, +2x,, and A;+ A, < 0. (Note that
A Should always be positive by definition.) Both F8g9 and 3-10 are configured for
full autorotation, and are indeed consistent whiia ébservation above.

Figures 3-11 and 3-12 show the influence of fodvllight speed with the fixed

collective pitch at6.5 upon the airframe attitude and the cyclic contripistrim
conditions, respectively.
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Fig. 3-12 [Comparison of Forward Flight Speed ahghf Controls, Puma.]
The stability analysis was also conducted comiiigu Puma helicopter alone, for

which detailed configuration data ext&t. It was trimmed in autorotative descents at
the minimum collective pitch angle of 6.5 degreéhatroot.
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Figure 3-13 shows the magnitude of the laterdbwfcomponent,v,,, calculated from
Peters’ original formulation (i.e., with,,,) and the modified dynamic inflow model
(i.e., with v,,_) with respect to the descent angle. Figure 3-ldwshthe stability
characteristics in the lateral inflow mode, and .Fig+15 shows the stability
characteristics in the uniform/longitudinal modéeTresultant eigenvalues are shown in
Tables 3.2 to 3.5 for both 7 DOF and 10 DOF sinmofest
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Fig. 3-13 [Comparison of lateral inflow componeat fv,,. and Vv,,_.]
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Chapter 3
modes 7 DOF 10 DOF
lateral / directional -1.7256+1.3189i -1.9149+1.4112
longitudinal -0.5709+0.3350i -0.7909+0.9535i
longitudinal -0.2660+0.1519i -0.5179+0.0434i
lateral -0.4314 0.2128
lateral / longitudinal -0.1818 -0.1179
longitudinal 0.8512 -0.7753
wake (uniform / longitudinal) n/a -17.2634
wake (lateral) n/a -2.4283
wake (uniform / longitudinal) n/a 1.5525

*n.b. - Longitudinal modes include the rotor spesatie.

Table 3-2 [Linearised system eigenvalues, - ;
35 KIAS, 3500 feet/min.v,, = 3.6 m/s.]

modes 7 DOF 10 DOF
lateral / directional -1.6846+1.3975i -1.5493+1.266
longitudinal -0.6641+0.3103i -0.6123+0.1654i
longitudinal -0.214240.1743i -0.2982+0.3543i
lateral -0.4286 -0.2533
lateral / longitudinal -0.1727 -0.1444
longitudinal 0.8726 0.8590
wake (uniform / longitudinal) n/a -20.3226
wake (lateral) n/a -7.1206
wake (uniform / longitudinal) n/a -5.9260

*n.b. - Longitudinal modes includes the rotor speeitie.

Table 3-3 [Linearised system eigenvalues, - ;
35 KIAS, 3500 feet/min.v,, = 14.3 m/s.]
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modes

7 DOF

10 DOF

lateral / directional

-0.9059+0.7283i

-0.8938+0.740

longitudinal -0.2615+0.3352i -0.2899+0.3151i
longitudinal / lateral -1.5448 -1.4008
lateral -1.6468 -1.6973
longitudinal -0.1229 -0.1233
longitudinal 0.5407 0.5304
longitudinal 0.1797 0.1654
wake (uniform / longitudinal) n/a -11.9044+5.1166i
wake (uniform / lateral) n/a -6.3293
*n.b. - Longitudinal modes includes the rotor speeitie.
Table 3-4 [Linearised system eigenvalues, - ;
40 KIAS, 2250 feet/min.v,, = 18.2 m/s.]
modes 7 DOF 10 DOF
lateral / longitudinal -0.9064+0.7283i -0.8958+0738

longitudinal -0.2623+0.3344i -0.2915+0.3138i

longitudinal / lateral -1.5955+0.0459i -1.4185
lateral n/a -1.6765
longitudinal -0.1229 -0.1233
longitudinal 0.5411 0.5308
longitudinal 0.1792 0.1644

wake (uniform / longitudinal) n/a -12.9543+4.7248i

wake (uniform / lateral) n/a -7.1681

*n.b. - Longitudinal modes includes the rotor speeitie.
Table 3-5 [Linearised system eigenvalues, - ;

40 KIAS, 2250 feet/min.v,, = 20.6 m/s.]
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3.5 Analysis of the Results Obtained

Firstly, results about Montgomerie are to be wksed. The two mass-flow
parameters are hardly different in Fig. 3-2 (théedence numerically calculated is only
about 0.05 m/s), and the influence of the difference upon fligldntrols, airframe
attitudes and induced flow are also negligible. gfint of fact, the largest differences
numerically obtained are not more thar0x 10°% in the inflow components, and less
than 2.5x10* deg. in the airframe attitude. These are not beydre possible
numerical errors in magnitude, and the differerareshardly visible in the diagrams.)

On the other hand, the difference in two massfd@rameters is more obvious in the
case of Puma, Fig. 3-9 and 3-10. It is likely ttint weight of vehicle is reflected in the
difference. However, the difference in two massvflparameters does not affect the
flight controls, airframe attitudes or induced flaw all. (The differences numerically
obtained are less tha@.3x 10%°% in the inflow components, and less th&r8x 10*
deg. in the airframe attitude.) The cyclic contrdts not show recognisable differences
either.

The possible reason why the difference in thesnflasv parameters is negligible may
be explained as follows; the uniform and longitadinoomponents of induced velocity
in trim conditions are determined by the producthe gain matrix and the rotor load
vector, whereV; is multiplied with the thrust and,, is multiplied with the pitching
moment. Since the thrust is two orders of magnitgoceater than the aerodynamic
pitching moment in trim condition, the difference v,, hardly affects the uniform and
longitudinal components of induced velocity. On ttker hand, the lateral component
of the induced flow is a function of the aerodynamalling moment alone, and hence is
inversely proportional to the mass-flow parametedded, Fig. 3-13 confirms the
relative difference expected from inspection of.R3eP), but the magnitude of,, is
negligible in both cases due to the small aerodynawiling moment. As a result,
control angles required to trim are therefore rgglgly affected by the change i,
proposed here, and, consequently, the airframeastiand the induced velocity in trim
conditions are hardly affected by, either.

On the other hand, the difference between and v,,_ substantially affects the
results from the stability analysis. Differencesvween the two mass-flow parameters
become significant for descent angles steeper dbant 30 deg. For the vehicle mass
simulated (5810 kg), this equates to airspeedsthess40 knots with corresponding to
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rates of descent in excess of 2300 feet/min. Tamehts of the time constant matrix,
[L][M], associated with the longitudinal and lateral cormgnts of the dynamic inflow
model are inversely proportional tg,. The longitudinal and uniform components are
coupled due to the off-diagonal terms and it migatthus expected that the dynamic
inflow modes will all be characterised by differescbetweenv,,. and v,,_. Figures
3-14 and 3-15 confirm that this is indeed the c&se.the case of/,.., the lateral mode
decreases in magnitude with increasing descent eangind the coupled
longitudinal/uniform mode degenerates from an tsoity character to a pair of
aperiodic modes, one of which also migrates towtresight-hand (unstable) plane.

This is not the case fov,,_, where the corresponding behaviour is asymptaotia t
stable value of large modulus, with increasing desangle.Low modulus inflow
modes will couple with the rigid-body dynamics, derg to invalidate the quasi-steady
assumption underpinning the linearisation of thedeho(See Table 3-2.) However,
corresponding results for thg,_ case, where the inflow modes are of relativelgdar
modulus, illustrate that the quasi-steady lineéinsais a good approximation to the
fully coupled case, Table 3-3.

3.6 Discussion

As is surveyed in Section 1.5, the study of rotait flight mechanics in autorotation
receives scant treatment in the literature afterattivent of helicopters. It is certainly the
case that those references such as Refs. (17Z)LaBicover only elementary theory of
autorotation and typically limited only to axiaight conditions. Also, most of the books
available about gyroplanes such as Refs. (174)&ar&) are just for amateur gyroplane
pilots, and thus their contents are academicallfeqgusufficient. Recently, Leishman
did extend in the second edition of his textbook tteatment of flight in autorotation
through considering gyroplane theory and applicat@nd it is indeed the gyroplane
problem that has served as the focus for studiéiseirmpplication of dynamic inflow to
autorotatiof’®. However, the approach taken previously has beeraccept the
dynamic inflow theory, testing its applicability piicitly through validation (against
flight test data) of the wider issues of vehiclientrstability and control. The dynamic
inflow model such as the Pitt and Peters model lmarused also for rotors in the
windmill-brake state without any change in the xattements.

For steady flight conditions, the only changeuiszd is in the mass-flow parameter
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where v,,_ should be used for rotors in the windmill-braketstinstead ofv,,.. The
literature suggests that this should be the fins¢ tthat the difference between,, and
V... has been explicitly identified. The simple dis¢assin Section 3.1 may be
essentially applicable to other variations of dyiamflow model such as the Peters
and He model and its updated variatfor,

The dynamic inflow modelling was revisited frohetfirst principles in this Chapter,
in an explicit attempt to assess its applicabifioy autorotation. This study has
identified a modification to the mass-flow parametdote that the angle between the
rotor disc and the free stream, and the wake skew angle, should be defined
differently, because of the geometric differenceéha relation between the inflow and
the rotor disc.

Numerical simulations of the Montgomerie and Puc@nfirm the analytical
assessment that the change will have a negligipiact on the trim calculation, but can
have a significant effect on the stability of iMlanodes. This difference only becomes
evident in steep descents with low forward spee@ni area of the flight envelope that
is of little practical utility for the helicopterven in autorotation. The modified
mass-flow parametery,,_, retains the inflow modes well-separated in mosifhom
the rigid-body modes, but this is not the case with, where body and inflow modes
are coupled.

The gyroplane can of course conduct steep, poffatescents, and, moreover, the
gyroplane rotor will tend to operate in an analagetate if flown in steady level flight
at very low speed. However, simulation of a typitight gyroplane shows that the
minimum level flight speed is too fast to causensgigant differences inv,,. The
change toV,, is thus not practically significant for gyroplaflights either.

Therefore, those works such as Refs. (9) and, ({@Oyhich the dynamic inflow
model for the normal working state witti,, was used, can still be considered
practically quite reasonable in their results iftespf the theoretical incorrectness. Note
that by looking at Eq. (2.128), it can be expedtet the difference between;,,, and
V... would be more strongly related witt, and C,, than with ¢, and thus in those
situations whereC, and C,, are much larger, the difference would be more evid
Such a manoeuvre is not very realistic with a loglier descending in autorotation, but
can be meaningful to take into account when estilgahe overall performance of a
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gyroplane.

Comparing Fig. 3-2 and Fig. 3-9, it can be shat the weight of the aircraft has the
dominant influence in the magnitude of mass-flowapaeter, and hence when
designing jumbo-gyroplanes, whose conceptual desaye seriously under way by
some compani€s”, the difference in the mass-flow parameters may @ more
crucial role.

3.7 Chapter Summary

The necessary modification to dynamic inflow mibdg for autorotative rotors is
proposed with regard to steady flight conditionke Tdefinition of « and y are also
confirmed so as to be consistently applicable éwons both in the normal working and
windmill-brake states. Numerical simulations arenducted to examine the control
inputs, airframe attitudes, induced flow and thab8ity in trim steady conditions. On
the basis of findings and results above, the fakgwgeneral conclusive remarks are to
be made:

1. It is theoretically confirmed that the apparent gaih matrices can hold the same
elements in either the normal working or the winkhimiake states;

2. ltis identified that the mass-flow parameter foe windmill-brake state should be
dissimilar to that for the normal working state;

3. With regard to the definitions of, it was shown that Chen’s definitiéf is not
valid for autorotative rotors. Peters’ definitideq. (3.2), is usable for rotors both in
the normal working and windmill-brake states;

4. Numerical simulation indicates that the differericethe mass-flow parameter
causes only negligible effects on the control ispwirframe attitudes and the
induced flow to trim a state;

5. Numerical simulation indicates that the differericethe mass-flow parameter
affects the stability. Still, considerable diffecess only become apparent for steep
descents with low forward speed;

6. The behaviour of the inflow modes are affected sy difference in the mass-flow
parameter; without modification for autorotatiohey will tend to slow and couple
strongly with the rigid-body modes as the descemglea steepens. With the
modification, the inflow modes become well-sepatdtem the rigid-body modes;

7. Some inflow modes without modification for autotota are found in the unstable
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region. These modes become stable with modification,_. The author suggests
that stable modes should be more physically réalisan unstable modes of inflow,
and therefore that/,,_ should produce more meaningful inflow in autorotat

8. Due to the limited area of the flight envelope ataotating rotorcraft where the
modification is practically required, those refererworks such as Refs. (9), (10)
and (151), (154) and (155), where unmodified dymamflow model is used for
autorotative rotors, can be considered still reabtanabout their results.
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Chapter 4

Consideration of the Small Wake Skew Angle Assumpin

4.1 Introduction

Peters and He derived their dynamic inflow moetariably based on the small
wake skew angle assumption (Subsection 2.2.11pimeeeded to state that this model
can be applied to a wide range of wake skew arfges 0° to 90°®". Since the model
is extensively compared with experimental data #rel correlation is found overall
excellent”, the practical validity of the model for a widenge of wake skew angles
should be considered acceptable. Still, thereaarbt} a need to theoretically elucidate
the validity of this approach in the model derivati

In point of fact, the original authors have neglesxcussed mathematically the validity
of the assumption; indeed the small wake skew aagbeimption appears only in the
appendix of Ref. (7) (Appendix C, page 188and the pertinent part of the derivation
is not mentioned in any other relevant publisheokps

This author thus believes that the validity of gmall wake skew angle assumption
needs to be theoretically re-examined. Note thatesithe rotor is supposed to be
working in the normal working state in the originabrks of Peters and He, the normal
working state shall be used as the representab@ rstate also in this Chapter.
However, the general coverage of this Chapter shail be limited to the normal
working state alone.

4.2 New Gain Matrix Model
4.2.1 Derivation of a New No-Assumption Model

In an attempt to examine the small wake skewrmapton, a new gain matrix is
proposed without using the assumption. In this fdation, Egs. (2.77.1) - (2.77.3) are
used instead of Eq. (2.87).

Although all the derivation in Chapter 2 from Eg8.77) to (2.104) is applicable to

%2 |n Ref. (7), the assumption is suddenly introdusitt a phrase, “Now we will examine the integrahbeiour for
small wake skew angle¢ for which we have...” However, it is not analytlgeexplained in any other places why
the resultant model can later be extended up te- /2.
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Egs. (2.77.1) - (2.77.3) except Egs. (2.83.1) 83R), the Taylor series of the pressure
potential, Eqg. (2.84), should be modified as

q)m"(")($7 Y, Z) = q)m(t((t)($0 — tan X% Yo, Z)

n n

, :a me(c)
(= 1)k KOF D
= ( ) zZtan x S

| k
k=0 At Oz

(4.1)

=1

Note that although it may appear that Eqgs. (2)7-7(2.77.3) would diverge to
infinity at x = =/2, this case is already excluded when Eq. (2.68.d¥rived from Eq.
(2.67.3%°. Equations (2.77.1) - (2.77.3) and (4.1) leachtfollowing final

representations for the new gain matrix elements.

70mye 1 n m
2 = _L_qyyrom, (4.2)
COS X

[-Z/I:m} ¢ _ 1 [Yir—m\ + (_ 1)7",7?71,(7‘,m)Y|7'+mw [l—\rjm] ' (4.3)
Jn CcOs X m

[il:"l}s _ 1 [Yir—m\ _ (_ 1)7",7?71,(7‘,m)Y|7'+mw [l—\rjm] ' (4.4)
jn cos in

where

_ ta;”‘. (4.5)

Note that wheny < 1, EQs. (4.2) - (4.5) reduce to Egs. (2.99.1) - 439 and X,
respectively. Therefore, it can be said that E42)(- (4.5) hierarchically imply Peters
and He’s gain matrix elements for axial flight.

Some examples of Eq. (4.2) - (4.5) are as follows.

iOU(t _ 3 (46)

1 2cosy

%3 Therefore, the extension of the Peters and He mg® edgewise flight is incompatible not onlytiwthe small
wake skew angle assumption, but also with the déam of Eq. (2.69.1). This indicates that the edge flight case
should be discussed separately, if it is posshbesl with analytically. This is indeed the came] perfectly
edgewise flight shall be discussed later in thiaér.
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R0 %Z:X (4.8)
L) = g (1 +£tan2 x) , (4.9)
i =21 Ty ). (4.10)

Note also that when < 1, Egs. (4.6) - (4.10) reduce down to Eqgs. (2.102.1)
(2.102.5).

4.2.2 The Modified Pitt and Peters Model

The difference of the gain matrices between tkie8Peters and Peters & He models
are only in the coefficients and thus the trigontiioeparts are the sarife Thus, it
should be possible to propose a modified Pitt &Petodel as well by replacing the
trigonometric parts in the original Pitt and Peteredel with those appearing in Eq.
(4.6) - (4.10). The specific form of the modifiesbdel will be as follows;

1 157 tan y -1

38—” 0 0 )'\0 2 cos Y 0 o1 cos x 1 )'\0 Cr
0 —7= 0 A |+ 0 —2(1 +§tanzx) 0 (=1 a
16 \ ! . 3 Ch,
0 0 - Ale 157 tan x B 1,9 Ae M
45m o1 o5 x 0 2(1 Ztan X)
(4.11)

For x =0 (hover), Eq. (4.11) is identical with the origiréters and He formulation.
However, with progression into edgewise flight, the1) element in the gain matrix,
1/2cosx, tends to infinity. This means that the unifomduced velocity will increase
with the wake skew angle, but this is counter &itg Therefore, despite the derivation
of this model should be mathematically more coesistit can be predicted that this
model would not provide realistic solutions whenis fairly large.

In the next Subsection, numerical simulationhig tmodel is provided.

%% While the Peters and He model is given the gerieralulation for any combination ofn, n, = and j, the Pitt
and Peters model is provided only up to the fiaestodel. Therefore, strictly speaking, the simmpfgacement in
Subsection 4.2.2 can de done only up to the fisesnodel.
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4.2.3 Numerical Simulation

Numerical simulation is conducted by RASCAL inder to compare the Peters’
original formulation and the new no-assumption nhodeing the Westland Puma as the
reference vehicle. Since the Pitt and Peters misdeted in the simulation code, the
modified Pitt and Peters model is used in the sitirr.

Figures 4-1 to 4-8 show comparisons between ttvaganodels about trim solutions
between hover and 20 knots.

16
15.5 Peters’ formulation e
_ no-assumption model —|—
15 | ]
g 145 | ]
= -
2 =
3] e e R
8 -
3 135
13 4
12.5 4
12 : .
0 5 10 15 20

forward flight speed (knot)

Fig. 4-1 [Comparison of collective pitches agaiiostvard flight speed.]

%5 |t should be acknowledged that the coding of RAS@vs done by Dr. Stewart Houston at the University
Glasgow.
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Fig. 4-2 [Comparison of longitudinal cyclic pitchagainst forward flight speed.]
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Fig. 4-3 [Comparison of lateral cyclic pitches aggiforward flight speed.]
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Fig. 4-4 [Comparison of roll attitudes against fard flight speed.]
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Fig. 4-5 [Comparison of pitch attitudes againsivard flight speed.]
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Peters’ formulation R

no-assumption model  ————

S
o
T

L

wake skew angle (deg.)
[
o
T
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Fig. 4-6 [Comparison of wake skew angles againstdad flight speed.]
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Fig. 4-7 [Comparison of uniform components of inedelocity against forward flight
speed.]
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[ Peters’ formulation #—

6 | no-assumption model —|— |

v, (M/s)

forward flight speed (knot)

Fig. 4-8 [Comparison of the longitudinal componesftinduced velocity against
forward flight speed.]

It can be observed that the new formulation filgim beyond about 10 kndfsdue
to blade stall caused by excessive angle of att@iébwing from the requirement for
large collective pitch. These flight mechanics siohs suggest excessive drag due to a
large angle of attack, which is caused by the pdtitude rapidly decreasing with
increasing airspeed. This is indeed the case, lmdntduced drag increases markedly
with flight speed as the uniform component of inellizelocity follows a trend opposite
to Peters’ formulation with the small wake skew laragssumption.

It can be said that this is physically countdtitive as well. In Eqg. (4.11), the
denominators tend to zero with the increasing wekeaw angle (which increases with
airspeed) asy — 90° then cosy — 0. Solutions appear to be most sensitive to the
leading term element in the gain matrix, which @ages in magnitude with airspeed
driving the uniform component of induced velocitydo likewise. Note that the time
constant matrix,[L][M], is also subject to the gain matrix elements, thond the modes
also take on a dissimilar form, Fig. 4-9.

56 Generally speaking, small angle assumptions suatpad ~ 1 and sin 6 ~ € can be thought practically
applicable for || < 10° or so. The forward flight speed of 10 knots cquoesls more or less with a wake skew
angle of 10°. Thus, it may be suggested that the unrealissiglt® beyond 10 knots or so should indicate that th
model will be simply unrealistic without the smalake skew angle assumption.
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uniform mode (Peters’ formulation) #
uniform mode (no assumption) —|—

5 - "( longitudinal mode (Peters’ formulation) 1

longitudinal mode (no assumption) — L

imaginary part (1/s)

-16 -14 -12 -10 -8 % -4

real part (1/s)

Fig. 4-9 [Comparison of modes.]

Regarding axial flight, it is confirmed that theodified Pitt and Peters model
hierarchically complies with the original Pitt af&ters model both analytically and
numerically. Hence those validation works for th# 8nd Peters model such as Refs.
(62) and (102) can automatically verify the new elad axial flight cases, where the
new model is reduced to their model.

However, wheny tends tor/2, the gain matrix elements in the new model tend to
infinity unlike Pitt and Peters’ formulation, anddeed, the simulation results confirm
and quantify the extent to which the new model mtes unrealistic solutions when the
forward flight speed increases; drag increasebas$orward flight speed increases, and
collective pitch and induced velocity need to begdatoo. (Recall that.,; is constant
in the original Pitt and Peters model. The behavauhe leading element in the gain
matrix is the key to the divergence.)

It is argued that the validity of the small walskew angle assumption is
mathematically quite questionable, but the fact tha Peters and He model with the
assumption practically works better indicates i@ reason why their model works
should be clarified on the theoretical ground.
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4.3 Further Discussion
4.3.1 Deductive and Inductive Approaches

The simulation results indicate that the new falation without the small wake skew
assumption is unrepresentative despite the fatttieaderivation must mathematically
be more consistent than that of the Peters and étiemConsidering the facts that the
Peters and He model was numerically validated ifs. R&), (92) and (112) showing
excellent correlation with experimental data arsbahat its advanced models such as
Refs. (131), (132) and (135) are widely used totlasy,practical validity of the Peters
and He model can be considered to be fully valdiate spite of the questionable
assumption’.

Questions naturally arising from this situatidmosld include an argumerit it is
possible to prove why the Peters and He model étmally valid in spite of the
mathematically questionable application of the dnaalke skew angle assumptidn.
order to respond to this question, the possibibtyleductively present a proof shall be
first discussed. (A deductive approach can genepativide a logically rigorous proof.)

Generally mathematically speaking, an approxichatguation based on an
assumption can approximate the original equatidyp when the underlying assumption
is valid; hence when the assumption breaks dowaotiginal and the approximated
equations should formally be regarded as diffeegpiations. (For example, it is plainly
evident thattany and 2tan(y/2) are different functions, thoughany can be well
approximated by2tan(y/2) when x is sufficiently small. They would behave quite
differently when y is fairly large.)

It can be thus believed that an attempt to apipdy Reters and He model, which is
derived on the small wake skew angle assumptionjai@er angles, for which the
assumption breaks down, is mathematically inappatgor even meaningless in itself,
regardless how the results are experimentally atdl Since the mathematical
consistency in the derivation breaks down whenntloglel is extended to larger wake
skew angles, it is impossible to mathematicallgdss the resultant model any further.

There seems to be no mathematically cogent remsafable which makes it possible

5 This author informally enquired after the mathdnatvalidity of the assumption to Dr. ChengJianbyeemail,
but his reply reads only that the model was nuradlyivalidated in correlation with experimental @athe present
author believes that such a numerical validationgak as a theoretical proof for the validity of tissumption, but
any further replies were given. Thus, it still rénsaunclear how the original authors consider thielity of the
assumption purely from the analytical point of view
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to extend the approximated equations up to thosescia which the approximations are
not valid any longer. Therefore, it can be saidt ttiee inappropriateness of the
application of the resultant model for larger wadleew angles is mathematically
evident.

Another mathematically inconsistent point in therivation is the way of applying
the small wake skew angle assumption.ylfis really small, then Egs. (2.67.1) and

(2.67.3) could be further approximated as

x = Esiny + xy,

~&x + 1 (4.12)
z=—£&cosx.
~ e (4.13)

Equations. (2.83.2) - (2.83.3) could also behfartapproximated as

sinx ~ x, (4.14)
tanxy ~ x. (4.15)

The reasons why the small wake skew angle assums not applied before Eq.
(2.85) in the derivation or why Eqs. (2.83.2) aBB8.3) are not approximated down to
x are not explained in Ref. (7) at all. The way pblging the assumption in the
original derivation is thus considered mathemalyagalconsistent.

Since logical debéacles with regard to the aboestioned points are evident, the gap
between the questionable derivation and the expertiah validity of the resultant model
cannot be filled by a deductive discussion witlie present frame of the derivation.

This may indicate that the only possibility toddetively justify the assumption, if
any, may lie in a fundamental extension of the rhaldgivation by introducing new
(more reasonable) assumptions, which shall beectkat those physical phenomena that
are hugely simplified or not considered at all he toriginal model, to construct
consistent logics. Indeed, there are quite a femorgd or oversimplified physical
phenomena in the original derivation. (For examghe, cylindrical description of the
wake tube itself is a crudest modelling of a wakeetand thus quite unrealistic.) When
extending the original model derivation by takingwn physical aspects into
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consideration, there are generally two possibleraahes; (i) building a completely
new model from scratch with the aim to outperfoime Peters and He model with a
more mathematically consistent derivation, andr{igdifying the present derivation of
Peters and He model with the aim to have the samaltant model with a more
mathematically consistent derivation.

With regard to the former approach, if the newdelcoutperforms or works at least
as well as the Peters and He model, then the panadb the small wake skew angle
assumption may be considered to be ascribed toeiwey incorporated physical aspects.
However, even if the new model performs well, tlevnmodel should also require
experimental validation, and thus this cannot beoaclusive mathematical proof
against the small wake skew angle assumption. (Ribed the Peters and He model is
already experimentally validateidhplying that the small wake skew angle assumption
is practically useful. As long as the extensionhaf present model should (even partly)
rely on an experimental method, it is logicallyfidifilt to rigorously refute the small
wake skew assumption thereby.) In addition, newurapsions related to the new
physical aspects shall be new problems to expetatigivalidate because the effects of
these physical phenomena are not easily evaluaardtically. In any case, a new
model should be considered as a different moden fifee Peters and He model and thus
cannot be a theoretical counter-proof against thevation of the Peters and He model.
Also, building a completely new dynamic inflow mddegether with its validation
should be beyond the scope of this thesis.

With regard to the latter approach, even thouglwere possible to ascribe the
paradox with the small wake skew angle assumptaoime new physical phenomena,
since there should still be many simplificationgl areglected physical phenomena in
the original derivation, the selection of those gibgl phenomena which to newly
introduce should inevitably be purposeful and ititeral to some extent, as long as the
derivation is aimed to result in the same repreg@m as that of the Peters and He
model. In order to theoretically verify the selectj it is required to exclude all the other
possibilities which may be related to the wake skagle; otherwise the selection can
be considered as a purposefully far-fetched. Howetlgs probatio diabolica is
logically impossible to carry out.

Based on the discussion above, this author coeslutiat a deductive approach
towards the paradox regarding the small wake skegleaassumption is impossible
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even by extending the present frame of the dedwmatvith new physical phenomena
taken into consideration.

Those points discussed so far can be summarssed a

(E1) the small wake skew angle assumption is nmadltieally evidently
guestionable, regardless of the practical vgliof the model. It cannot
mathematically be acceptable and rather meassadb apply a large to an
equation which is derived on assumption that 1;

(E2) within the present frame of the derivatidrere is no mathematically
cogent reason available which verifies the ajapion of those equations
which are derived based on the small wake slesaraption even to those
cases in which the assumption breaks down;

(E3) the way of applying the assumption in thewdgion is not consistent
(e.g. Egs. (4.12) - (4.15));

(E4) the gap between the practical validity of thedel and the mathematical
inconsistency with the small wake skew angfiagption cannot
theoretically be elucidated. The mathematicabisistency is evident and
thus the model’s practical validity cannot bgtier theoretically discussed
within the present frame of derivation;

(E5) even if it were possible to build a new modéhout the small wake
skew angle assumption by newly incorporating s@mysical phenomena,
the selection should inevitably be purposeflsoAthe validity of the
selection needs to prove that all other possésilare excluded, but this
proof is logically impossible;

(E6) it is impossible to quantitatively evaluatenplicated physical
phenomena in a theoretical approach. In any, thseffect of new physical
phenomena should be validated experimentallg this approach is weak
as a theoretical counter-proof against the déon of Peters and He model,

(E7) there is a theoretical possibility that a mlogithout the small wake skew
angle assumption can be built from scratch tperdorm the Peters and He
model. However, the validation of the new magteduld also be provided
experimentally. This is weak as a mathematioahter-proof against the
Peters and He model because the possible newlmsioould be regarded as a
different model from the original Peters andrhiedel.
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Although this author concludes that the applaatof the small wake skew angle
assumption cannot theoretically validated by a dedel approach, it is possible to
inductively discuss the small wake skew angle aggiom approving as the starting
point that the Peters and He model is practicadllydv This approach cannot logically
provide any rigorous proof, but can provide a reabte explanation of the problem,
and hence must be meaningful to make an insigbttins issue deeper.

4.3.2 Characteristics of the Gain Matrix Elements bthe Peters and He Model

The properties of the gain matrix elements ofReéers and He model should be now
discussed. Figure 4-10 shows comparisons betweetnigionometric parts contained in
the gain matrix elements of the Peters and He maddl their counterparts in the
no-assumption model derived in Section 4.2.
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Uy = 1 tan x
Y= 251 L ——-
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141 151
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Fig. 4-10 [Comparisons of trigonometric parts ia gain matrices.]
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It can be seen that the non-approximated equatma well approximated by the
approximated functions up to around°, then the non-approximated equations rapidly
diverge to either+ ~ as z — 90°, whereas the approximated equations remain finite.
In fact, compared to the rapid divergence of the&-approximated equations, the
behaviours of approximated equations at larger wslt@v angles are considerably
gentle (somewhat linear or parabolic), Fig. 4-hEytremain only within the range from
0 to 2 at = =90°.

)

S (x
y = 1-+tan~ (Z)

y=1

- (T
y=1—tan- (—)
0.5 o z ’ 2

y = 2tan | =

0 20 40 60 80
x

Fig. 4-11 [Trigonometric parts based on the smakevskew angle assumption.]

Recalling (E1) and (E2), this author believed tha only possibility to explain the
small wake skew angle assumption is to assume;

(F1) the small wake skew angle assumption may é&elynan expediency to derive
Egs. (2.83.2) and (2.83.3), which gently behawe increases, and hence have
physically little to do with actual small wakieesv angles;

(F2) Equations. (2.83.2) and (2.83.3) may apprat@mot only those cases in
which the wake skew angle is small but also soases in which the wake skew
angle is pretty large.

Regarding (F1), it is quite possible to assunag the resultant forms of gain matrix

elements of the Peters and He model are pre-aibemduse the trigonometric parts of
the resultant gain matrix are identical with tho$e¢he Pitt and Peters moéfel In fact,
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this view explains the apparently inconsistent vadyapplying the small wake skew
angle assumption, (E3), and also why the resultaotlel is later extended up to
x = 90°.

Point (F2) above can be also considered as amebke inference when comparing
with the Pitt and Peters model, because no assompbout the range of wake skew
angles is underlying in the derivation of the Ritid Peters model, that is to say, the
same trigonometric functions as those of the PetetlsHe model can be therein derived
without the small wake skew angle assumption. &stigmgly, edgewise flight case, in
which the gain matrix elements of no-assumption ehda Subsection 4.2.2 diverge to
infinity, is also analytically dealt with in the deation of Pitt and Peters model to
provide finite values to the gain matrix elements.

Now, in order to examine the conjectures of (&d9 (F2) above, the derivation of
the Pitt and Peters model should be revisited mparison with that of the Peters and
He model with the foci on (i) how the trigonometfienctions are therein derived
without using the small wake skew angle assumptmdl, (i) how the edgewise flight
case is analytically dealt with in the derivation.

4.3.3 The Pitt and Peters Model and the Edgewiseight Case
In the Pitt and Peters model, the gain matrixnelets are determined based on Eqg.
(2.15),

1 [20®
w:‘—// “ (2.15)

[o0)

in the same manner as in the Peters and He molelpfiessure potential function is
also represented by the associated Legendre fusabibthe first and second kinds, and
the model derivation is not essentially differemtni that of the Peters and He model up
to this point. However, Eq. (2.15) is treated intgwa different way in the derivation of

Pitt and Peters model than that in the Peters anchétlel.

While the skewed cylindrical description of thek@adube is necessarily introduced in
the Peters and He model to explicitly carry outititegral of Eq. (2.15) with the wake
skew angle as a variable, the gain matrix elemehtthe Pitt and Peters model are
determined in the following manri8y

112



Chapter 4 Consideration of the Siidke Skew Angle Assumption

(i) analytically performing the integral of Eq..{®) for axial flight;

(if) analytically performing the integral of EQ.(5) for edgewise flight;

(iif) guessindunctions which can bridge the results from preesg(i) and (ii);
(iv) numerically validating the resultant model.

In the process (iii) above, the suitable functi@me chosen from Mangler’'s Fourier
coefficients, Refs. (48) and (178) It is interesting that the edgewise flight case i
analytically calculated in the derivation of thétRInd Peters model, while the edgewise
flight case is excluded in the derivation of theédPeand He model at this stage because
otherwise the right-hand term of Eq. (2.69.1) tegdito o/0 when x — 90° is
impossible to define.

Therefore, it should be worth trying to deal witie edgewise flight case for the
Peters and He model in the same manner as in tlnatien of the Pitt and Peters
model. Note that since the wake skew angle is rpligtly used in the derivation of
the Pitt and Peters model, no assumption is theegjnired about the wake skew angle.
In perfectly edgewise flight, the-axis coincides with the:-axis and is described in
the ellipsoidal coordinate system as; 4i}>0, —1<v <1 on the rotor disc; and (ii)
v =0, 0<n<oco outside the rotor disc (see Fig. A2-1).

Following the same manner as in the Pitt andrBet@del in Ref (1), the gain matrix
elements of the Peters and He model for edgewight flshould be able to be
represented as

Frme . 1 2 ! > { a ('” YT )] >4
L]_n =27, /o /\/17112 P P (v)Q7'(in) cos(m) V:0d$ P;_(Vo)dyodw

1 2m (10T o I B
Tomhy / / {_@L(W@n<m>cos<mw>)] da - P () duody.

von =0
(4.16)

. L . . /1 —si
%8 Mangler represented the induced velocity distidruin the form of the Fourier series, artrzin% =117 ZE e
ae

appears as the coefficient for first harmonics, R&). However, Mangler put some assumptions irioythat the
rotor is lightly loaded, that the distribution gnsmetrical about ther -axis and so on, and hence the rotor described
in Mangler’s theory may be different from that foe Pitt and Peters model, in which those assumgtioe not
underlying. Considering the facts that the cosimagmnents alone in the dynamic inflow model descaibe
symmetrical distribution about the -axis and that the first harmonics describe omlgdir unevenness in the
distribution, it may be reasonable to supposettimtoefficient forcos ¢ can betan(x/2). Still, the process for

determining the gain matrix elements, processdhiyve, is not analytically clear at all.
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See Fig. 4-12 about the integral domains.

outside
the rotor disc
=20

inside
the rotor disc
n=20

s,

Fig. 4-12 [Integral Domains of the-axis for the Edgewise Flight Case.]

Unlike the original derivation of the Peters atie model, the gain matrix elements
for edgewise flight as represented above shoulableeto analytically be determined by
the integral in Eq. (4.16), because there is neerdsd difference in the pressure
potentials between the Pitt & Peters and Peters &&nibdels except- signs and
coefficients related to normalisation.

In order to calculate the right-hand side of Ej16), the derivation of the Pitt and
Peters model can be utilised. Reference (1) sheves analytical result;

1 0%

1 [Vl 9 1 /0
o= —— - dr —— - d
0 V/x n 81/ v=0,m=0,n=1 v V 171/21/ 87’] 7n=0,m=0,n=1 v
\/ “0
1 15
—Cr+ Oy, (4.17)

o T Gay

where & is the pressure potential for the Pitt and Petersdel defined as

b= X PQ)[C cosmy + D sinmy].

m,n=—, m<n

Considering P)(v)Q(in) = — V3 P/(v)Q](in) and/%/lpf(uo)duodw =+3x, it can be
0 0

predicted from EqQ. (4.17) thatwhen =0, n=j=1,

70me __ 3
pome=2. (4.18)
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This result coincides with Eq. (2.102.1), whichderived on the small wake skew
angle assumption. This coincidence is highly irdeng when recalling the
no-assumption model in Section 4.2, whose gainixatements diverge to infinity at
x = 90°.

In the derivation of the Pitt and Peters modéhep gain matrix elements such as
Ly, Ls; and Lz; are also analytically obtained. (Note that it tigtesd in Ref. (1) that
Ly, IS an exception, and only a numerical resultzgf ~ 2 is therein shown.) Since
there is no essential difference in the pressutenpi@ls between the Pitt & Peters and
Peters & He models except coefficients it can hesictered that Eq. (4.16) is possible
to analytically calculate also for other combinasoof m, », » and j for edgewise
flight. The coincidence between Egs. (4.18) and(2.1) should strengthen views (F1)
and (F2) above that the small wake skew angle gstsamhas little to do with actual
wake skew angles; the assumption rather seems pdageng a role in bridging axial
and edgewise flights.

Since both Eq. (4.18) and the no-assumption maaeVhich LY — «~ for edgewise
flight, are analytically derived, there must be theo analytical difference which made
their results so different in their derivations. 8ihcomparing Eg. (4.16) and Eq. (2.65),
it can be noticed that while Eqg. (4.16) have twomte related too/ov and 9/0n,
respectively, Eqg. (2.65) has only one term related/on. At the stage when Eqg. (2.65)
is derived, the small wake skew angle assumptioiget applied, and hence it can be
believed that the difference is brought indepengeot the small wake skew angle
assumption. Indeed, the/ov term is missed out from the derivation of the Petnd
He model when Eq. (2.49) is simplified to Eq. (380This simplification should be
fully justified for the derivation of the apparentass matrix elements because the
derivation is based on Eq. (2.17) without any irkésy However, the simplification is
maybe not appropriate for the derivation of thengaiatrix elements because the
integral path along the-axis is not restricted only in the domain whichdescribed as
n = 0. Thus, even for obtaining the induced velocitytritisition on the rotor disc, it is
considered that) = 0 should be substituted only after the integral gltime ¢-axis is

%9 The derivation of the no-assumption model in $ec4.2 is entirely based on that of the PetersHmchodel,
except for the small wake skew angle assumptior.fabt that the no-assumption model, which must
mathematically be more consistent, breaks dowedgewise flight should indicate that the key tolaixpthe
difference between Eq. (4.18) and the divergendefitity would lie in other part of the originakdivation of the
Peters and He model than the small wake skew asglemption itself. This observation is consistéittt the
identification of the difference between Egs. (4.48d (2.65).
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completed.

Based on this view, Eg. (2.65.1) can be exteryeasing Eq. (2.49) as

irmc__ 1 /27r/1 /:x.
2wy Sy Sy

2 9 - _
+ V}g —-:_-:772) a_ﬂ(p:(y)@ﬁ(zn) cos(mlﬁ))] d¢

n(l —v?) 0
2402 Ov

(13,7('/)@17(2'77) cos(mw))

: P;(z/o) cos(ry)dvdip.

n=0

(4.19)

Now, the possibility of further pressing on tinéegral of Eq. (4.19) analytically shall
be examined. The-axis is represented in the ellipsoidal coordinakes

e=—\2— - w2\l A - - - ),

(4.20)
and thus

vl =v(l+7°)(1 -y 1) ] nd —n(1 =) (1 -yl —v7)

df = v — ’]771
J\/2—1/2+772—1/§—2y3—2J J\/2—1/2+772—1/§—2y3—2J
(4.21)

where J = /[(1+72)(1 =) = y2J(1 v} — ).
Also, along the¢-axis, » and n satisfy

\/1+T]2—1/2—T]21/2—y§—\/1—y§—1/3:—tw7, (4.22)
where

A+m)1—v2) =y — /1=y =1
tEtanX——\/ ’ \/ P2 (4.23)

vn

Therefore, along the-axis,
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1/(1—1/2—y2— (1—1/2+772—7721/2—y2)(1—yQ—Z/Z))
dv = — o ’ " Y. (4.29)

(L + 1 =y = \/(1 —2 4=t =) (L -yl - )

Also, from Eq. (4.22),» can be represented as a functionofilong the ¢-axis,

n,/l—yé—uésinx—f—\/l_(

V= 5 CoS X, (fOf v > O) (4.25)
cos” x + n?
where
K:772(772-l—1)+1/§(772+l)coszx—UQyisinzx. (4.26)

Inserting Eqgs. (4.21), (4.24), (4.25) and (4.260 Eq. (4.19) gives an integral of
alone with the integral domain of from 0 to .
It can be easily confirmed that whemn=r =0, n=j=1, vp=1, x=0, yo=0,

x%;{z)df = /:: (\/gtanl (l) - Van )dﬁ = V3. (4.27)

0 n 1472

Thus, for this special case, Eq. (4.19) will be

co0e _ 3 [P 3
L == / dvodip = =. (4.28)
2w )y Jo 2

11

The coincidence between Eqgs. (4.28) and (2.10khdl)cates that Eqg. (4.19)
hierarchically covers the axial flight case of tReters and He model. Also, it can be
shown that Eq. (4.19) naturally accommodate EdL6(4.which is derived from Eq.
(4.19) by assuming two extreme cases; 0 and , = 0, respectively. Therefore, it can
be said that Eqg. (4.19) should describe more gereases varying from axial to
edgewise flights. Equation (4.19) can also natyredduce down to Eq. (2.50) when
n =0 for the derivation of the apparent mass matrix.

It should be hoped that an analytical solutionldde provided from Eq. (4.19) for
an arbitrary combination of,, v,, m, n, r, j and x. However, it is turned out to be
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extremely difficult to analytically carry out thategrals appearing in Eq. (4.19) even
for some simple cases such as=r =1 and » = j = 2. Since the primary aim of this

Chapter is not providing a new model but clarifyithg paradox with the small wake
skew angle assumption, an attempt to analyticaliypmete the integrals in Eq. (4.19)
for a general case can be abandoned now. Insteadiwb terms in the right-hand side
of Eq. (4.19) shall be qualitatively discussed telo

When v equals 1 (i.e. axial flight for a streamline running throutite hub centre),
n(1 —v%)/(*+n* becomes zero and thus only the second term rem@niong as the
wake skew angle is sufficiently small, is nearly zero over the most part of the
streamline, and hence the contribution of the fest can still be considered small. On
the other handy(1 +#%/(* +7?) becomes nearly when v is close to1. Also,
n—oo as ¢—oo, and thusv(l+7%/@*+7*) —1 as ¢ — o regardless ofy, or
x (#7/2), thus the contribution of the second term canmoiegally be ignored. This is
indeed the case with the formulation of the Ped@ds He model, in which the first term
is ignored but the wake skew angle is assumed tental. Thus, the derivation of
Peters and He model and the small wake skew armsglengption can be considered
consistent in this case.

In perfectly edgewise flight (when exactly= =/2), the ¢-axis coincides with the
z-axis andv becomes constantly zero outside the rotor dist,tlns the second term
of EQ. (4.19) is scored out in the domain. In ttase, it is believed that the first term is
playing a crucial role. The huge difference betwdenno-assumption model, in which
LY — oo as y — /2, and Eq. (4.28) is thus likely ascribed to thd faat the first term
is ignored in the derivation of the Peters and Heleh

It should be difficult to make a general commémt an arbitrary combination of
m,n,r,5 and x, but based on the discussion above, what can dreftbm predicted
include that (i) if the wake skew angle is suffidlg small, the contribution of the first
term of Eq. (4.19) should be negligible regardiglss,, and (ii) if the wake skew angle
is close tor/2, the first term of Eq. (4.19) may largely affeog tresults.

Point (i) above is consistent with the formwatiof the Peters and He model
including the small wake skew angle assumption, poidt (i) is underpinned when
considering the difference between the edgewisescastween Egs. (4.18) and the
no-assumption model in Section 4.2, because edgdiighit and other flight scenarios
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(0 < x < m/2) must be continuously bridged from the physicahpof view, and thus
the gap should be explained by an analytical diffiee in the formulation, which must
be the first term of Eq. (4.19).

Note also that in the formulation of Eq. (4.18péther with Eqs. (4.21), (4.24),
(4.25) and (4.26), the wake skew angle appearsiorifgs. (4.25) and (4.26). Since Eq.
(4.25) contains bothos y and sinx in its denominator, it will not diverge to infiryit
(or to zero either). This indicates that the gelhneranulation based on Eq. (4.19) is free
from diverging to infinity even aty = r/2. This is consistent with the qualitative
discussion above and also with a continuous transftom axial to edgewise flights,
which is intuitively required, too.

4.3.4 How the Small Wake Skew Angle Assumption WogK

Recalling the difference between the derivatiohthe Pitt & Peters and Peters & He
models, discussion in the previous Subsection atdgthat introducing the small wake
skew angle assumption works as if the first terrk@f (4.19) were not ignored. In order
to analytically examine this conjecture, a specade thatm =r=0, n=j=1, yo=0
and v, =1 shall be checked. For this simplest case, thé dinsl second terms in Eq.
(4.19), which shall be designated &3 and sT hereinafter, can explicitly be
expressed as

FT = / nl =) aV(P?(wc??(z'n))dg

V2 +n?

_\/—/ ( n’ cos x + 1 (n? — 1) cos® x — n°) arctan(1/n)

7 4+ (202 + 1) cos” x +12(3n2 + 1) cos” x

4— —1)cos®x — n?cos’
n' =i’ 4) X X > cos? X) dn, (4.29)
78 + (202 4+ 1) cos™ x + n?(3n%> + 1) cos” x

ST = /°°“i;” (P <zn>)d£

—-v3 [ (<n2 + 1)%(0 + cos” x) cos” xarctan(1/)
0 \if + (202 4 1) cos” x 4+ 12 (317 4+ 1) cos® x
w4 4 1) cos”x cos’ x) dn. (4.30)
7% + (202 4+ 1) cos” x 4+ (312 + 1) cos” ¥
This author analytically calculated Egs. (4.28) #4.30) by using MAPLE, which is
a mathematics software package for symbolic contipatafor axial and edgewise
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flights. For axial flight § = 0),

Eq. (4.29)= o, (4.31)
Eq. (4.30)= /3. (4.32)

For edgewise flighty(= 7/2),

Eq. (4.29)= V3 (4.33)
Eq. (4.30)= 0. (4.34)

Thus, the results of Egs. (4.31) - (4.34) indictitat 77+ ST gives the same value
both for axial and edgewise flights. These resaitts consistent with the conjecture in
the previous Subsection, with the derivation of i and Peters model (in which the
same values are analytically derived for both aaal edgewise flights), with the Peters
and He model based on the small wake angle assomfati which L% is assumed to
be constant) and also with Eq. (2.130). However,diher flight scenarios between
axial and edgewise flights & x < 7/2), it can be predicted thatT and ST would not
that beautifully set off each other because ofdifferences noticed between Egs. (4.29)
and (4.30).

Since FT and ST behave in somewhat opposite ways xasncreases to balance
each other to some extent, as discussed in theopsee®Bubsection, it may be a good
approximation to use only one of them with its bhaebar moderated with regard tg.

It is hence understandable that the small wake siteyle assumption may approximate
the model well not only for axial flight but alsagewise flight. Yet, any symmetry
cannot be clearly recognised between Eqs. (4.28)(4r80) with regard toy, it is
therefore indicated thatrr and ST would not generally result inv/3 when
0<x<n/2.(If Egs. (4.29) and (4.30) had a symmetry withare to y, it would have
been the case thatT and ST may have balanced each other resulting in a conhsta
value for the LY} for any x; but this is highly likely not the case.)

This further indicates that although the resasdd on the small wake skew angle
assumption (i.e. a constant value fgf) is well consistent with the analytical results
above and thus well bridge axial and edgewise ffligises, the assumption would likely
not always coincide with analytical results wher: x < /2. With regard to the small
wake skew angle assumption, naturally arising dgorestshould include an argument
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whether the assumption provides analytical solgidor some reason or it provides
mere approximationsin point of fact, the sheer coincidence of the dngmetric
functions in the gain matrix of the Peters and Hmleh with those of the Pitt and Peters
model would naturally make readers face a questitimere is a hidden mathematical
reason which allows the questionable applicationtlod assumption to provide
analytical solutions.

This author discussed only a special case!pf but believes that the discussion
above should suffice as a counter-proof in respomgbe question above to show that
the small wake skew angle assumption does not gecamalytically rigorous results for
all x € [0,7/2]. Moreover, the present author adds following twasons to conclude
that the small wake skew angle assumption doepnowtde analytical solutions; (i) the
way of applying the assumption in the original dation is analytically not consistent,
E(3), and; (ii) in the derivation of the Pitt anét€rs model, it is stated that, for
edgewise flight cannot analytically derived unligiaer gain matrix elements, and it is
only numerically shown that,, ~ 2. This indicates thats=2 for x ==/2 in the
Peters and He model is not consistent with its/fatialytical resuf’. This conclusion
should be consistent with points (E1), (E2) and)(B&d also with conjectures (F1) and
(F2).

In any case, in order to more generally and agsly discuss ifST together with the
small wake skew angle assumption can well approxntaose results which are
derived from F7T and ST for axial and edgewise flight cases, Eq. (4.1@nlty needs
to be analytically calculated to a closed-form daraction of x. However, it is turned
out that it is extremely difficult to press on theegrals for more general cases. This
potentially intensive calculation must be well begidhe scope of this thesis, and hence
this author believes that this problem can bedsfa good future problem.

It is believed that this problem needs to be taded through more concrete proofs
and discussion. Especially, it is necessary that dhiginal authors would join the
discussion to provide clear and coherent explanstabout (i) the difference between
the Pitt & Peters and Peters & He models in thatitnents of the edgewise flight cases,
and (i) how the small wake skew angle assumptem lee analytically validated. It is

® |ndeed, there is a certain symmetry recogniseatdsst the two terms in Eq. (4.19) with regarditoand 7. For
example, Eqg. (4.19) approximately reducesigv)(0®/dn) and (1/n)(0®/dv) for axial and edgewise flights,
respectively. However, the present author was blgt enough to draw a conclusion to the problerhefé¢ is any
logical connection between this symmetry and tlaetizal validity of the small wake skew angle asgtiom.
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hoped that this thesis would provoke further disus of this problem.

4.4 Chapter Summary

This is arguably the first study which identifidte paradoxical aspects of the small
wake skew angle assumption in the derivation o€iRBeand He model. A new model
based on the derivation of Peters and He modelpn@sosed without the assumption,
but this model does not work well. This further tedhe discussion why the Peters and
He model practically works so well in spite of pgestionable assumption. In so doing,
the difference between the Pitt & Peters and Pé&téde models in the treatments of the
edgewise flight cases was identified and the paradth the small wake skew angle
was explained in relation to the difference.

Discussed points and results in this Chaptebeasummarised as follows:

1. Regarding the small wake skew angle assumption use¢le derivation of the
Peters and He model, this author points out itshemaatical inconsistency and
inappropriateness. A new model is proposed withusirig the assumption, but the
results suggested by the model are counter taygali

2. This author discussed why the Peters and He madetigally works well in spite
of the questionable application of the small wakews angle assumption in the
derivation. In so doing, the possibility of dedwuety proving the validity of the
assumption is ruled out, and thus only inductivecdssions are made on the
assumption that the Peters and He model is prégticid,;

3. Due to the mathematical inconsistency that theltestumodel is extended to large
wake skew angles, this author conjectured that ghmall wake skew angle
assumption has little to do with an actual wakeaskegle, but may play a role in
approximating the model for some specific flighses including a flight case with
a large wake skew angle such as edgewise flight;

4. Since the gain matrix elements in the Pitt and Beteodel for edgewise flight are
analytically determined, this author applied thensaapproach for the gain matrix
elements of the Peters and He model without udiegsimall wake skew angle
assumption, and obtained the same result as tHase @riginal model, which is
derived based on the assumption;

5. By comparing the equation for edgewise flight ie therivation of Pitt and Peters
model and the Peters and He model, this authotgoin that the base equation of
the Peters and He model, Eq. (2.50), lacks one telated too/ov. It is identified
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that the pertinent term is left out when Eq. (2.46%implified to Eq. (2.50), but the
simplification is maybe not appropriate for gengraleriving the gain matrix
elements;

6. The properties of two terms contained in Eq. (2a1®) qualitatively discussed. It is
confirmed that the first term, which is left outthe simplification, may not hugely
affect the result when the wake skew angle is geaeto. Thus, the derivation of
the Peters and He model, in which the first termgm®red but the wake skew angle
is assumed to be small, is consistent in this point

7. 1t is qualitatively discussed that the two termsitamed in Eq. (2.49) behave
somewhat in opposite ways as the wake skew angledses. Thus, it can be
considered reasonable to think that only the setermd in Eq. (2.49) together with
the small wake skew angle assumption may approgith&t equation both for axial
and edgewise flights to some extent;

8. Since it is turned out that analytically carryingt ¢he integrals in Eq. (4.19) should
be extremely difficult, only the simplest speciake with L{- is examined to test
the prediction above. It is confirmed that the halad edgewise flight cases result
in the same value, as if the small wake skew amgEumption were therein
assumed, due to the opposite tendencies that théetms in Eq. (4.19) have. Still,
the two terms do not have a perfect symmetry watiard to the wake skew angle.
This likely indicate that they would not always &rate out foro < x < 7/2;

9. It can be predicted that the small wake skew aaggeimption may more generally
approximate the axial and edgewise flight casesvever, in order to confirm this
conjecture more rigorously, it is to be hoped ia future that the integrals in Eq.
(4.19) will be fully analytically completed to aosled-form as a function of.

123



Chapter 5 Conctuss and Future Directions

Chapter 5

Conclusions and Future Directions

5.1 Introductory Remarks - Review of the Research Aim and Objectives

The predefined aim of this research project ithemretically build a dynamic inflow
model that is suitable for autorotative rotors. Tdiygnamic inflow model for the
helicopter has been intensively developed by Paisishis co-workers over the last two
decades, but little theoretical attention has hithbeen paid to the possible application
of the model to the autorotative rotors, which umld rotors of gyroplanes and
autorotating helicopters.

The literature suggests that this should be e fime that the dynamic inflow
model has been theoretically examined for autakeabtors, and it is hoped that this
thesis will offer a valuable contribution to coritranalyses of gyroplanes and
helicopters in autorotation. Since this thesis sbug develop a new application of the
dynamic inflow mode, the theory of the dynamic amflmodel needed to be thoroughly
re-examined in order to identify the necessary fication. Consequently, the research
objectives were defined as the following three step

(i) to critically review the theoretical derivatiaf the contemporary dynamic inflow
models in detalil;

(i) to examine whether these contemporary dynaniiow models can also be applied
to autorotative rotors;

(iii) to identify necessary modifications to thentemporary dynamic inflow model in
order that this model can be applied to autoraabtors.

Clearly a desired outcome of this investigatioould have been the determination
that existing dynamic inflow models can be appliedautorotative rotors without
modification. In such a scenario step (iii) aboveuld be unnecessary, while steps (i)
and (ii) would still have been required establighin theoretical verification of the
modified model.

The next Section summarises these results.
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5.2 Conclusions

The author first examined in detail the derivatiof the Peters and He dynamic
inflow model, which is originally designed for hadipters in the normal working state,
and also considered whether it can be used alsayyooplanes. As a result, the
following results and observations are obtained:

1. The Peters and He model can be used for autoretaiters without any change in
the matrix elements, but a modification is necessathe mass-flow parameter.

2. Other dynamic inflow models such as the Pitt ande@emodel also follow
Conclusion 1 above, since the matrix elements eaddvermined regardless of the
geometric difference, whereas the difference in ness-flow parameter arises
from the fundamental geometric difference betwesnrs in the normal working
and windmill-brake states.

3. The modified mass-flow parameter for the windmiiddke state is proposed. In the
course of the study of the mass-flow parameterdifierence between Chen’s and
Peters’ definitions of the mass-flow parameter l@rified. It is confirmed that
Chen’s definition is not appropriate to be usedtifigrwind-mill brake state.

4. 1t is confirmed from numerical simulations that t#ference in results of the
models using the modified and unmodified mass-flparameters is generally
negligible in controls and airframe attitudes dgritmim flights. The difference
becomes more pronounced in the stability charaties; but only in steep
descents.

5. The difference betweemw,,, and v,,_ significantly affects stability analysis. Some
modes for steep descent in autorotaion obtaineth wjt. are in the unstable
region, but these modes become stable wijth. Stable modes can be considered
physically more realistic than unstable modes.

6. It is confirmed that the difference in the modifiethd unmodified mass-flow
parameters does not significantly alter the resafifgrevious studies such as Refs.
(151) - (155), where the unmodified mass-flow paetan was used for the
windmill-brake state.

7. The unified form ofv,,, and v,,_ is proposed so as to be consistent with Peters’
definition of tana.

It is believed that the predefined aim and obyedi of this research project are

successfully accomplished by Conclusions 1 - 7 eEisly, Conlusion 5 underpins the
necessity of modifying the original mass-flow paeder in Peters’ dynamic inflow
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models, V,,, into v,,_ for the windmill-brake state. This issue, howevereds further
investigation, because no flight data for steepcelesin autorotation is available to
confirm the simulation results and observationsvabo

Furthermore, in the course of re-examining theadyic inflow model in detail, the
following critical views concerning the dynamiclmiv model are expressed:

8. The view that the Pitt and Peters model may nohbibearchically included by the
Peters and He model is expressed on theoreticahdso

9. The theoretical unreasonableness of the applicatidhe small wake skew angle
assumption, which is an indispensable part of thevdtion of Peters and He’s
dynamic inflow model, to a wide range of wake skawle is pointed out.

From a purely practical point of view, this autldoes not disagree that the Peters and
He model may approximately cover the Pitt and Reteodel in most flight cases, as
are reported in Refs. (7), (92) and (102). In pamhtfact, Conclusions 8 is not a
conclusive counter-proof against those validatiarks. However, those references did
not show any rigorous mathematical derivations, buly stated their conclusions
supported by experimental or simulational resusce both the Pitt & Peters and
Peters & He models are arguably analytically defilog the same authors, the present
author believes that this situation awaits theoagtworks clarifying relations between
existing dynamic inflow models. It is hoped thatn€lusions 8 and 9 would provoke
further theoretical discussions.

This author further discussed the small wake s&egle assumption in Chapter 4 in
depth, and a new model was derived on trial follmnihe derivation of Peters and He
model but without the small wake skew angle assiompt

10. A new representation of the gain matrix is thecedly derived and proposed so
that the small wake skew angle approximation is remjuired based on the
derivation of Peters and He model, and that theerBeand He model is
hierarchically therein contained as an approxinmatiothe limit that the wake skew
angle tends to zero. However, the simulation resuidicate that the newly
proposed model does not perform well.

Based on Conclusion 10 and the practical validitthe Peters and He moféf
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102107 this author discussed why the Peters and He nvooidds so well in spite of the

questionable assumption, and the following poingsidentified:

11. While the new no-assumption model above breaks dimwvedgewise flight, the
edgewise flight case is also dealt with analyticall the derivation of the Pitt and
Peters model, though their theoretical bases shwatldbe markedly different from
the Peters and He model. Comparing the Peters &ndePitt & Peters models for
edgewise flight, it is identified that the Pitt aRdters model has an extra term. The
term is ignored in the derivation of Peters and ritadel before the small wake
skew angle assumption is introduced in the model.

12. Considering the facts that the Pitt & Peters an@éri8e& He models have identical
trigonometric functions for their gain matrices ahét the derivation of Pitt and
Peters model does not require any assumption ahewvake skew angle, it can be
assumed that equations based on the small wake akgle assumption may
describe not only those cases in which the wakes sikggle is small, but also those
cases in which the wake skew angle is pretty large.

13. It was qualitatively discussed that the two terrostained in Eq. (4.19) behave in
somewhat opposite ways as the wake skew angleasese This tendency is
analytically confirmed for a special case that=r=0, n=j=1, yo=0 and
vy =1.

14. From Conclusions 11, 12 and 13, it can be predithed introducing the small
wake skew angle assumption may work as if both tevens of Eq. (4.19) were
retained.

15. The asymmetry between Egs. (4.29) and (4.30) vedpect toy indicates that
L% is not always constant depending @nThis observation is against the result
based on the small wake skew angle assumptionhiohwzi} is constant. This
further indicates that the small wake skew angkuption should not provide
analytical results to the model but provide onlpraximations thereto.

The identification that the small wake skew arggsumption is inconsistent can be
regarded as a significant result by itself, anid ibelieved that this is the first study to
question the validity of its application on thedsat grounds. Conclusions 10 - 15
above were held in an inductive way on the asswngtiat the small wake skew angle
assumption and the resultant model are practieabeptable. In order to theoretically
confirm more rigorously Conclusions 14 and 15siideally necessary that Eq. (4.19)
should be calculated analytically to a close-fosmadunction of the wake skew angle.
However, it was turned out that this calculatiorxsremely difficult. Conclusion 13 is
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examined about only one special case, but thisorssidered to be enough as a
counter-proof to show that the small wake skew aragsumption does not provide
analytical results to the model but provide onlpmaximations thereto.

In summary, it can be said that the predefined af this thesis to theoretically
examine the availability of contemporary dynamiitow models for autorotative rotors
has been successfully accomplished. Also, a ddtallscussion was held about the
small wake skew angle assumption. It is expected the results and observations
presented in this dissertation will contribute e trelevant fields of study and lend a
deeper and valuable insight into the dynamic infroedel theory.

5.3 Future Directions
The present author shall suggest some futureamdsdopics following the present
research.

(i) Further Theoretical Sophistications of the Dynanic Inflow Model
With regard to possible further sophisticatiorfstiee dynamic inflow model for

autorotative rotors, modelling more detailed wakeorgetry should be worth
considering, because the description of the wake tas a skewed cylinder is the
crudest approximation of reality. It must be nextmhpossible to analytically describe a
realistic wake tube, which is highly turbulent (evéhough it were possible, the
implementation of the wake geometry in the integrath of Egs. (2.65) must be
impossible), but even a slight improvement in teealiption should be important.

Conclusion 1 above is based on the present fidrttee derivation of the Peters and
He model, in which an autorotative rotor can beardgd the upside-down of a rotor in
the normal working state, but the conclusion magngfe if differences in the wake
geometry between normal working and wind-mill brakates such as wake contraction
and expansion are taken into account in the déoivat

In addition to the static wake geometry, the dyitabehaviour of the wake tube
should be important too. Dynamic effects causedymlic controls are discussed in
Refs. (130) - (133). The dynamic response of thkeveand induced flow to dynamically
changing free stream may also be important inicglab autorotative rotors, because
this situation may happen in an ever-increasinglason of poorly balanced autogyros,
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which is often misconceivably callgdlO, highly likely resulting in fatal accidents.
Such dynamic problems should need a new modeliimgyhich those effects such as
the momentum and inertia of wake tube, time-detathe response of wake geometry
and so on should be fully taken into consideratidre first thing which is worth trying
for such an advanced dynamic model for gyroplanag bbe to give some modifications
to the gain matrix following Ref. (132).

(i) More Consistent Model to Explain the Small Wale Skew Angle Assumption

Since Conclusions 12 and 14 are derived in andtivk approach, they cannot be
logically rigorous proofs, although the predictias confirmed about a special case.
Thus, it is hoped that a new model would be buddda on Eq. (4.19). It is extremely
difficult (maybe impossible) to analytically comfgethe integrals in Eq. (4.19) to a
closed-form as a function of the wake skew angl#,this is necessary to ultimately
clear up the problem with the paradoxical small gvakew angle assumption.

The new model will likely be involved with extems numerical calculations based
on Eqg. (4.19). The possibility of introducing nevesamptions, which are more
reasonable than the small wake skew angle assumpdiduild a more comprehensive
dynamic inflow model can also be pursued. Note ithatay be not always the case that
the new model could provide better results thars¢hipom the present Peters and He
model from a practical point of view because of gnather assumptions used in the
derivation such as the cylindrical description ofiake tube. (Generally speaking, it is
sometimes the case that sophisticating only onecagy a model will result in a poorer
model.) However, the paradox with the small wakevskangle assumption must be
concluded as an analytical problem at this stagause the model derivation is asserted
to be analytical. It is believed that a truly be@ealytical model cannot be built in the
future without the understanding of this problem.

5.4 Conclusive Remarks
A variety of results have fruitfully been obtaihom the present research not only

for the autorotative rotors but also for the dynamilow model itself in general. All of
those results are believed to be unique and sogmifi It is hoped that this thesis can
form a valuable contribution across a wide rangeeldvant research fields.
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Appendix 2.1 Linearisation of the Euler Equation
The motion of incompressible fluid is governedthg Navier-Stokes Equations.

%_,_(U.V)U:_V@_H,AU_ (A2.1.1)

When the viscosity can be ignored, Eq. (A2.1ehuced to the Euler Equations, in
which AU = 0. Provided thatu = v +u where Vv is the steady base flow and is
the perturbation, the convection term in Eq. (AR)1s linearised as follows,

(U-V)U=(V+u)V)(V+u)
=V -VV4+V -Vu+u-VV +u-Vu
:V~Vu+o(|u|2), (A212)

Appendix 2.2 Transformation from Cartesian to Polar Coordinates on
the Rotor

The azimuth in the cylindrical coordinates on tbtr is conventionally taken to the
negative direction of the:-axis (see Fig. 2-1).

T =—Tcosv, (A2.2.1)
y=Tsiny. (A.2.2.2)

The metric factors between these two coordingteems are defined as

W= (E) 4+ ()=, (A2.2.3)
W= (2—2)2 + (%)(Z _ (A2.2.4)

Thus, the differential operators are transforrmgdollows,

0 1 0r 0 1 0O0x 0

8_x:h_?'§ oF h?%'%

= —cosl/}i-l——smw i

or oo
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Ifwf 2,1 0\ (0 1 0
e Camm) - Gam) (A22.9)

& 1 ay 0 1 oy 0

8y:h_?§8_7:+h_§%8w

) 0 cosy 0
:Slﬂlﬁ&-’* 7 %
1 i 0 0 W 0 _ 0
Note that
87833.8 81/'87_ 0 . 0
5= o o T coswa—f—smwa—y, (A2.2.7)

0o Oxr 0 0Oy 0

. o _ 0
%:%.%_’_%-%:rsmwg—f—rcoswa—y. (A228)

Appendix 2.3 The Ellipsoidal Coordinate System
Ellipsoidal coordinates(v, v, n), are defined by(z,y,2) as follows,

z=—+1+n2V1—12cos, (A2.3.1)
y=1/1+n2vV1—12sinv, (A2.3.2)
z2=—nv. (A2.3.3)

The coordinate surfaces and their domains ohdifh are given as follows:

(i) ellipsoids in=const. 0<n<o0] (A2.3.4)
(ii) hyperboloids v =const. —1<v<1; (A2.3.5)
(i) half planes ) = const. 0 < <2m. (A2.3.6)
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o

Z

Fig. A2-1 [The ellipsoidal coordinate system.]

Examples of the representation in this coordisgtem include

the hub centre n=0, v==+1, (A2.3.7)
the rotor surface n=0, —1<v<1, (A2.3.8)
the edge of the rotor :n =0, v=0. (A2.3.9)

Note that the upper and lower surfaces of therrate distinguished by the sign of

v<0 I 2>0, (the lower surface) (A2.3.10)
v>0 . z2<0. (the upper surface) (A2.3.11)

The metric factors are given as follows. The supss of 1, 2 and 3 indicatev, v, ),
respectively in this order.

Y L (A2.3.12)
1— 12

hy = /(1 +n2)(1 —12), (A2.3.13)
B I/2+7]2

s = | (A2.3.14)

Vector differential operators (i.e. grad, div angd in ellipsoidal coordinates are
expressed as
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1B — o 1—1/28<I>+e 1 3<I>+e 14n% 0P
ra = €y /j 1]
& v O - 20 22 on

(A2.3.15)
divV:V2 F{g(d(l— )(I/2+T]2)Vl)
< VeSS J’:; ”1 — VZ)V2> +a%< Vo2 )t ) V3>] :
(A2.3.16)
20 =l (0% ol ma )t ) )
(A2.3.17)

where @ and V = (V;,V,,V3) are arbitrary scalar and vector functions, respelgt
The differential operators are formally transformgdm Cartesian coordinates to
ellipsoidal coordinates as follows,

8_1.3z.8+1.8z.8+1.8z.3
8z_h? ov v h; oy O h§ on On
n(l—v*) 0 v(l+n*) 0

T V2 4+ n? v DR '3_77’ (A2.3.18)

8_1.31'.8_'_1_31'.8_'_1_31'.8
833_/1? ov Ov h; oy O h§ dn On

vl =0 14 sine o n+4n) 122 9
RZET A ¢_+¢Waw A T Yoy
(A2.3.19)

O 19y o 1 9y 9 19y

By w2 ov ov 0 0 2 an o

v(1—v) [1+4+n? . cos o (1+n*) 1—v2 0
T T a2 75in TS0 FSin Yo
vi+ 1-v \/1—1/2 )1 +n?) 81# ve+n 1+n on

(A2.3.20)
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Appendix 2.4 Prandtl’s Potential Function
From Eqg. (A2.3.17), Laplace’s Equation is expeess the ellipsoidal coordinate
system as follows,

L (R B (e e B I (R
(A2.4.1)

Given that ®(v,¢,n) = @,(v)®,(¥)®,(n), Laplace’s Equation is separated into the
following three differential equations corresporglto each variable.

0 AP 2
%[(1—#) —] + [~ e+ 1]e, = o, (A2.4.2)
d do, 2
oy,
e +m?®, =0. (A2.4.4)

Equation (A2.4.2) ishe associated Legendre equatiamd its solutions are given in
the form of the associated Legendre function offitet and second kinds, i.e?”(v)
and Q!'(v). Equation (A2.4.3) will also result in the asstethLegendre equation by
replacing n with in. Thus, the solutions are obtained B%(in) and Q.'(in). The
solutions to Eq. (A2.4.4) are given by sine andreas

&, = Acosmi + Bsinmy, (A2.4.5)

where A and B are arbitrary constants. Among these solutiorisg® (2.4.2) - (2.4.4),
P'(in) and Q'(v) tend to infinity at the rotor edge, €0, » =0), and thus they must

be abandoned in order to satisfy the boundary tionddf (B2). Therefore,

[N ¢]

(v,m,v) = Z Z Pl v)Q(in) [C’” cos(ma) + D' sm(mw)} (A2.4.6)

m n

where ¢ and D" are arbitrary constants. In addition, only thosenbinations in
which n =m +1,m +3,m +5,... satisfy the boundary condition (B2). Hence,
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[o¢) [o¢)

) =Y S PrQin) O cos(my) + D sin(mi)|

m  m—+1,m+3,...

(A2.4.7)

This is calledPrandtl's Potential Functionafter the German physicist, Ludwig
Prandtl (1875-1953), who was a great pioneer ajcdhgramics.

Appendix 2.5 The Associated Legendre Functions

The associated Legendre function of the firstdkis defined as a solution to the
associated Legendre equation, which is describdétkifiorm of Eq. (A2.4.2). It can also
be defined as polynomials,

n Jm

Pi@) = (1~ 2V Py(2), (—n<m<n) (A25.1)

n d:l;”L

where P,(z) is the Legendre function of the first kind, whiefil be introduced later in
Appendix 2.6%. Important relations derived from Eq. (A2.5.1)lirde

P (x) = (— 1)7”22 J_r Z;iF{T'(w), (A2.5.2)

P)(x) = Py(x). (A2.5.3)

Note that the variable of in this Appendix is no more than a general vadabl
and thus should not be interpretedasn rotor Cartesian coordinates. In a context of
rotorcraft problems,z in this Appendix is usually interpreted as Some specific
examples of the associated Legendre function ofitstekind include
;
Py(x) = Py(x) = ) (1)

k=0

(2n — 2k)!
27kl (n — k)l(n — 2k)!

w2k, (A2.5.4)

P;(x) =V1— 2% =sind, (A2.5.5)

®1 The associated Legendre functions are occasiodefiged with an additional factor of— 1) depending on
textbooks, especially in those books concerningitiura mechanics. This factor is related to the dpakharmonics,
and is not necessary in a context of rotorcrafblenms. The reader should pay attention to the tianian the
definition when consulting references.
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Pl(z) = 3z V1 — 2% = 3 cos fsin, (A2.5.6)
P(z) =3(1 — 2%) = 3sin’6, (A2.5.7)
Pi(z) =5(52% = 1)V1 — 22 = 3(5cos” 0 — 1)sin0), (A2.5.8)
P(x) = 152(1 — 2) = 15 cos fsin” 6, (A2.5.9)
Pi(z) = 15(1 —$2)§: 15sin®6, (A2.5.10)
Pl(z) =5 (72® = 32) VI — 27 = 5(7 cos’ 0 — 3cos 0) sin), (A2.5.11)
Pi(z) =5 (72° = 1)(1 — 2?) = 57 cos*0 — 1) sin’0, (A2.5.12)
Pi(z) = 105z (1 — xQ)g =105 cos fsin® 0, (A2.5.13)
P!(z) =105(1 — 2% )?> = 105sin 6. (A2.5.14)

4

Note that some of the examples above have thstiguton of = = cos¢, and this is
utterly reasonable because it is proven that thefsassociated Legendre functions can
be a perfect set which can form a functional spg@ened only by cosiné®). Figure
A2-2 shows some of the examples above.

0.2 w4 06 08 1

Fig. A2-2 [The associated Legendre functions offitts kind.]
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It can be seen from the diagram that only thaso@ated Legendre functions in
which m +n =1 mod.2 is satisfied become zero at=0. Thus, only those
combinations ofm and » which satisfym +n =1 mod.2 are to be used in rotor

problems. This property can be more rigorously prowy the following recurrence
formula,

@2n+ 1Dzl =Mn+m)P" +(n—m+ l)P'” (A2.5.15)

Equation (A2.5.15) is straightforwardly given bhathematical induction from Egs.
(A2.5.4) - (A2.5.6). The orthogonality of the assibed Legendre function of the first
kind is represented as

2 (n+m)
2n+1 (n—m)!

/ PP P (x)de = . (A2.5.16)

Thus, the associated Legendre function of trst kind can be normalised as

P (v
Plv)=(—1)" (%) , (A2.5.17)
where
m 2 (n+m)
pn, - \/2TL + 1 (’I’L _m)" (A2.5.18)

Note that since the radial position on the ralisc is usually normalised by the rotor
radius, the integral interval used in the rotorlgsia is [0,1], and hence the following
equations can be useful alternatives to Eqs. (A8)5and (A2.5.18) to define the
orthogonality.

/ P')P N« / 2)P)(x)dz = L2+1 : EZJ::Z;:M (A2.5.19)

m 1 (n+m)!
Py = \/2n+1 T (A2.5.20)

The associated Legendre function of the second is the conjugate function of the
associated Legendre function of the first kind wedi as the conjugate solution of the
associated Legendre function of the first kind . EA2.4.2). Still, the associated
Legendre function of the second kind alone candimed as
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Q) = (—1)"(1 Q@) (~n<m<n) (A2.5.21)

It is known that the differentiation of the asisted Legendre function of the second
kind can be represented as a simple recurrendgorela

0Q, (z) 1 .
o = =g e @n (@) — (m +n)Q (@) (A2.5.22)
When z =0,
m—1 ';
QU0) = T [ 2], (A2.5.23)

F(lfrg—n)l—\(flgm_k 1)
where T is the gamma function defined as

I'(s) = /().oox‘*le“dx (s >0). (A2.5.24)

Some specific examples of the associated Legeharetion of the second kind
include

0/ _l 1+
Q) = 5n—r, (A2.5.25)
Q) =g 1, (A2.5.26)
2 _
Qg(x):“f’z 3)1n1fz+§—gaﬂ, (A2.5.27)
] (xQ—l)lnti—%:
Q@) =———— (A2.5.28)
4 — 622+ 3z(x? — 1)In=
Qi) = —— 2\/i(f_l_z it (A2.5.29)
, 22(32° = 5) — 3(2? — 1)*ln s
Q(z) = 2T , (A2.5.30)
302° — 802 + 66 + 15(1 — 2°) In =
QYa) = (A2.5.31)

3
2(1 — a2)2
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Since the associated Legendre function of therskdkind in Prandtl’s potential
function, Eg. (A2.4.7), has an imaginary varialthes definition should be extended to a
complex function. The extension itself can be singne by regarding: in equations
above as a complex variable. Figure A2-3 showgehEpart of some examples of the
above.

0,8 -0.6 L35 02 0 06 08 o

-1 0.8 -0.6 0.4 -0.2 Aos 08 1
_l-
Q)

-2

Fig. A2-3 [Real parts of the associated Legendnetions of the second kind.]

Note that at|z| = 1, those functions in the left diagram become zebthe others in
the right diagram diverge to infinity, depending thhe combination of» and ». The
imaginary parts of the same functions are showfignA2-4.

Q)

Q)

1 - -08 -06 -04 -0.2

- T
0.2 0.4 0.6 08 1

Q) ]

Fig. A2-4 [Imaginary parts of the associated Legeridnctions of the second kind.]
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Appendix 2.6 The Legendre Functions
The Legendre functions of the first and secomdi&iare conjugate solutions to each

other toLegendre’s equatign

2
(1- 562)% — 2w%+ n(n+ 1)y =0. (A2.6.1)

The Legendre function of the first kind can bgarled as a special case of the
associated Legendre functiow,'(z), when m =0, yet the Legendre function of the

first kind alone can independently be defined as

—2k)! o
Py(x) = Z( 2nk,n_k)!(n_2k)!w ", (A2.6.2)

The following recurrence relation is useful.
2n+1)zP,(z) = (n+1)P, () +nP, 4(x), (n=1,2,3..) (A2.6.3)

where Py(z) =1 and Pi(z) = z. Some specific examples of the Legendre functmins
the first kind include

Py(z) =1, (A2.6.4)
P(z) ==z, (A2.6.5)
i 35 1
Py(x) =57~ (A2.6.6)
Ps(x) ——az —zx, (A2.6.7)
304 1503
Py(z) = 57 i +8, (A2.6.8)
63, 35, 15
Ps(z) = R (A2.6.9)
Po(a) = 21361 L %ﬁ +%:c2 —15_6, (A2.6.10)

429 . 693 ; 315 , 35
— —T ——

16 16 16 16" (A2.6.11)
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On the other hand, the Legendre function of #e®sd kind is defined as

()12 (2s)1!

Qo) = (- U —a0) = (- 1 =) for n=2s,

(A2.6.12)
A ()12 e

Qn($) - (_ 1) n! pn(tf) = (_ 1) (28 I 1)” 25+]($) for n=2s+1,

(A2.6.13)
where

Pl =1 n(n2!+ Rt 0 2)n(n4-!|- DOE D (A2.6.14)

gue) =2 — 1;En+ 2) 5, (n=3)n - 1;En+ 2(n+4) 5
(A2.6.15)

Some specific examples of the Legendre functairibe second kind include

1 1
Qo) =51 (1), (A2.6.16)
Qi) =3 (-22) -1, (A2.6.17)
3z2—1 1 3
Qua) == () — 2, (A2.6.18)
2 _ 2
Qufr) = 220 (1) 2 2 (A2.6.19)

The Legendre functions of the second kind divetgenfinity at = = +1. This
property corresponds to the fact that the Legeridnetions of the first kind have
singular points atr = + 1. Some examples of the Legendre functions of tret &ind
second kinds are shown in Fig. A2-5.
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Po(x) '

Ps@) gg-

-1 -0.8-0.6-0.4-0..

-1

Fig. A2-5 [The Legendre functions of the first asetond kinds.]

Appendix 2.7 A Complement to Eq. (2.38)
From (A2.5.1),

Loy = - 23l p, ). (A2.7.1)

4 m
v o dv

On the other hand, there is a formula calRadrigue’s formulato represent the
Legendre function of the first kind as follows,

Po) = ﬁ(%)@? 1y (A2.7.2)

The derivation of Rodrigue’s formula is provided Ref. (163). Substituting Eq.
(A2.7.2) into Eq. (A2.7.1) and usingt = 1 —* yields Eq. (2.38).

Appendix 2.8 Comments on the Coefficients ot and 7"

L has the coefficient ofi/4 while i and L have 1/2, following the

jn

definition of Peters, Eq. (2.65.1) - (2.65.3). Timmplies that 2« and L;» are Fourier
coefficients of a Fourier series which is defined a
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o0

f(z) ~ Z(a” cos nx + by, sinnz), (A2.11.1)
n=1
1 m
( ag —E/Wf(x)cm, (A2.11.2)
< a :l/w f(z) cosnzdz (A2.11.3)
=) ) A1,
9 b, = %/:f(x)sinnxdx. (A2.11.4)

where f(x) is an arbitrary periodical functions defined in r, 7).

In the representations above, while Eg. (A2.1hd9 a pleasing symmetry between
a, andb,, the symmetry breaks in Egs. (A.2.11.2) - (A2.)11lbétweenq, and the
others.

There is another definition of Fourier expansionwhich Fourier coefficients are
consistently and symmetrically defined for al] but the general representation of the
expanded function needs to contain the case satdotitweenn =0 and n+£0.

flx) ~ % + Z(a” cosnx + b, sinnz), (A2.11.5)
n=1

ay, = %/ﬂ f(x) cosnzdzx, (A2.11.6)

b, = %/ﬂ f(z)sinnzdz. (A2.11.7)

If the dynamic inflow model were developed basedEqgs. (A2.11.5) - (A2.11.7),
then EQs. (2.66.1) and (2.66.3) could have beemnekkfin a unified form, but
representations of the pressure potential and edlflow such as Eq. (2.25) must have
had an extra term, for examplé/2 for Eq. (2.25), in the same form as Eq. (2.11.5).

Many of textbooks including Ref. (163) have E{&2.11.5) - (A2.11.7) for the
definition of a Fourier series, but Peters used E48.11.1) - (A2.11.4) for his studies.
The variations in the definition should be paid @akeattention when consulting the
literature.
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Appendix 2.9 Variation in the Representation of thePressure Potential
With regard to the gain matrix elements, in soeferences such as Ref. (31*};;? for

r+m =0 mod.2 IS given as follows,

n+j—2r

— 2 n ]
po_ GO AVEe4DEIHD (A2.12.1)
Jn H”:Hj (n+H)n+j+2)[(n—75%—1]

Allow Eq. (2.101.1) to be re-carried here againthe comparison,

n+j—2r

(DT 2/ D)

) T ]

(2.101.1)

Reference (92) contains Eq. (2.101.1). Equati@$01.2) and (2.101.3) are also
doubled in Ref. (37). There is also a variationthe representation of the dynamic
inflow model. In Ref. (92), the dynamic inflow mdder the cosine part is supposed to
have the form of

[M](al) +2VIL] ™ (a) = (77,0), (A2.12.2)

while in Ref. (37) it is formulated as

[M](al) + VIL] ™ (a) = (77,.)- (A2.12.3)

The reader may notice that the second term in(&2}12.2) has an extra coefficient
of 2 compared to Eq. (A2.12.3). This variation isedto the variation in the
representation of pressure potential. In Ref. (98¢ Fourier coefficientsy’, are
associated with the Lift, Eq. (2.13), while in RE7), the Fourier coefficients; ', are
associated with Eq. (2.12). In either way, the getliflow can be associated with the
pressure potential, but depending on how to defitee pressure potential and the
dynamic inflow model (i.e. the combination of whethEgs. (2.12) or (2.13) and
whether Egs. (A2.12.2) or (A2.12.3)). This thesidbased on the definitions in Ref. (7).
Readers have to avoid the possible confusion wleadimg a plural of relevant

literature.
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Appendix 3.1 Further Discussion about the Mass-fle Parameter
In addition to high-speed flight cases discusse8ubsection 3.2.4, the axial flight
case shall be examined in this Appendix in orderutaerpin the validity of the
definition of V,.... In axial flight (z = 0),
Vr= VA2 =[)| (A3.1.1)

in order to maintainC, > 0. Also,

A2+ Al
md: Y
BY

= A A+ Al (A3.1.2)
Especially when the vehicle is climbing, ag> 0,

Vit = 2\ + As. (climbing) (A3.1.3)
Likewise, when in descent, as < o,

Vine = — Aj. (descent) (A3.1.4)

Note that),, > 0 in both cases by definition. On the other handePedefinition of
mass-flow parametery,,., yields the following values in axial flight,

Ving = 2\ + Mgy (climbing) (A3.1.5)
Vit = — 2 — Aje (descent) (A3.1.6)

Sincev,,. and Vv,,. provide the same value with the climbing case, #red sign
change found between Egs. (A3.1.5) and (A3.1.6efkection of the modulus sign
implemented in the definition of;,., and this is consistent with the observation about
high-speed fligh in Subsection 3.2.4.
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Appendix 3.2 Forces and Moments on a Blade Element
The derivation of Egs. (3.17) and (3.18) are emird in this Chapter. References
(5) and (152) should be referred about furtheritbeta
The hub velocity vector in aircraft axes,,venice)» €@ be expressed as

uhub(vehicle) = u’(,‘fﬂh’i,{tlef(’1,'(ih’i,(tle%) +w X (rC-!}- - rh'lbb)’ (A321)

where ... 1S the vehicle velocity in aircraft axes; is the vehicle angular
velocity, r., is the centre of mass position vector with respetie airframe reference
and r,, is the position of the rotor hub with respecthe airframe reference.

Then, uy,,veniciey €aN be transformed to the shaft-oriented axewhich the --axis
lies along the rotor shaft, as

uhub(shu,ff) = [Tl } uhub(’(,‘fﬂh’i,{tle) ' (A3 . 2 . 2)

where [11] is the matrix that transforms a vector from airieato shaft axes defined as

cos 6, 0 — sin 6,
[Tl] = | sinf,sin Os oS ¢ sin ¢, y (A3 2. 3)
sinfcos s —sing,  cos Oscos ¢

where ¢, and ¢, are longitudinal and lateral tilt of the rotor #haith respect to the
airframe, respectively. Nexty,,, ..., 1S transformed to a rotating frame of reference
about the shatft,

uhub(hub) = [TQ] uhub(sha,fﬁ) ' (A3 . 2 4)

where w,,,.,, IS the hub velocity in the rotating frame of refiece and[7] is defined
as

[To] = | cosyp  sinegy 0O (A3.2.5)

0 0 1

siny — cosy 0]

where ¢ is the azimuthal position of the reference bla#¢hen the rotor has a
hinge-offset, the hinge velocityy,,,., is obtained as
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0
uhz’nge = uhub(hub) + Wh'inge X rhz’nge + ( 0 > ’ (A326)

—

where w,,,,. is the hinge angular velocity, is the hinge position with respect to

hin ge
the shaft-based rotating frame of reference ands the induced velocity. Note that
is a function of radial and azimuthal positionseTtinge angular velocity can be given

as follows;

0
Whinge = [TQ] [TI]W + ( 0 > ) (A327)
Q

where @ is the rotor speed. By using a transformation xatrr;], that transforms a
vector from hinge to blade axes, we have

s
Whtade = T3] Whinge + ( 0 ) ; (A3.2.8)
¢

where 3, 6 and ¢ are flap, pitch and lag angles, respectively, and

cos ¢ sin ¢ 0
[T5] = | —cosfBsin¢ cosfcos( sinf ] . (A3.2.9)
sinfBsin( —cos(sinf3 cos3

The absolute velocity of the blade element inlilaele axesu,,,., is thus defined as
Uplade = Uhinge + Witade X Toladeelem. s (A3-2-10)

where r,....... 1S the radial position of the blade element wigspect to the hinge in
the blade axes. Then, the local angle of attackthadocal absolute velocity at the
blade element are calculated as

¢

Ublade * 0, 07 1

i = a0 (S E), (A3.2.11)
Ublade * (07 07 1)

‘/e%lem = \/(ubla,de : t(07 07 1))2 + (ublu,d(i ' t(l7 07 0))2 . (A3-2-12)
The local lift and drag are defined as
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1 2
L(ﬂle%m = §pcelefm‘/elemre%l(imaaelem ’ (A3 . 2 . 13)

1
D(il(inl, = EpC(ﬂl(ﬂmVzlemreleﬂn(s ’ (A3 . 2 . 14)

where ¢, is the chord of the blade element,,, is the radial length of the blade
element,a is the lift curve slope and is the drag coefficient. Note that,,, is
generally a function of the radial position, andand s are generally functions of the
local angle of attack and the local Mach number.
The local lift and drag are defined along thesction of v,,,,,. In the blade element
frame of reference, they are expressed as

X:;e’:] = L(ﬂle%m sin Qlelem — Delefm COS Qelem (A3 ) 2 ' 15)
v o, (A3.2.16)
ZZ;E,T(?; - LEiZEiTH, COS Qlelemn — DEiZ(iTH, sin Olelem - (A3 ) 2 ' 17)

These are aeronautical loads working on a bldgment. On the other hand, the
inertial loads on the blade elements can be gigen a

inertial __ m aelem
- elem elem’

(A3.2.18)

elem

where m,,,, is the mass of the blade element anlt‘:f is the absolute acceleration of

the blade element defined as
elem

adﬁm = [TJ] { [TQ} [TI] |:11 +w Xu+w X (W X rhub)} + W hinge X Thinge + Wiiade X [Tj] (thinge X rhinge)} .

(A3.2.19)

Equations (3.17) and (3.18) can be obtained feguations above by defining that

o inertial
X — xuaero y xinertial
elem elem + elem
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