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Summary 

This research Project was initiated by Historic Scotland, with the objective of 

selecting appropriate Scottish quarries for further investigation with a view to 

reopening. It is hoped thereby to ensure the continued availability of this 

traditional roofing material of proven quality and durability and thus to ma;1lta;1l 

and restore the indigenous character of Scottish architecture. 

Methodology The basis of the research was to identify those physical, chemical and 

geological attributes of slate which make it a good roofing material. These were then 

related to specific Scottish quarries in order to select those which showed the best 

potential for resumed production. However, as no fresh samples of Scottish slate 

were available, the work was based initially on slate of known and reliable quality 

from producing quarries elsewhere. The parameters examined were mineral 

composition, metamorphic grade, fabric and weathering properties. When the 

parameters most closely related to the quality of finished slates were established then 

the Scottish slate was examined for these same parameters. 

• Mineral Composition Recent progress In the determination of the 

chemical formulae of the phyllosilicates of fine-grained material has 

enabled the mineral composition of slate to be calculated from its total 

oxide composition. Calculations based on representative samples from 

each group of quarries gave good results when taken from sites in close 

proximity, but application to samples from more remote sites gave a 

weaker correlation. 

• Metamorphic Grade Metamorphic grade affects the crystallinity and the 

grain size of a material. Traditionally for sedimentary rocks both 

properties were evaluated by the sharpness of peaks in XRD analysis, 

using Full Width at Half Magnitude (FWHM) as the criterion. However, 

this method is not effective when applied to slate, and an alternative 

method of determining its crystallinity was developed, based on the 

intensities of peaks of the main minerals. 
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• Fabric of Slate A relationship was developed between the characteristics 

of slaty cleavage and the potential minimum thickness of the finished 

roofing slate. A Fabric Points Scheme (FPS) was devised and used 

initially to relate the fabric of slates from producing quarries with the 

actual thickness of the finished slates. This relationship was then used to 

predict the potential minimum thickness of Scottish slate and verified 

where possible by comparing the actual thicknesses of used Scottish 

slates. 

• Weathering Properties Estimates of the durability of slate were made by 

ex.perimentally weathering new slates using a wetting and drying test. and 

measuring the increase in ability of the slate to absorb water. It was found 

that 5 to 12 wetting and drying cycles were equivalent to one year of 

natural weathering. It was then possible to estimate the life of a slate to 

the point at which water absorption reached a value of 0.3% which is the 

limit specified by the British Standard for slate, BS 680. 

Resources of Scottish slate There was a satisfactory degree of agreement between 

the quality of the various slates as established using the above parameters and their 

performance or to their reputation. Based on the data thus obtained, an assessment 

was made of the potential of each of the known Scottish slate quarries. 

• The best Scottish slate is found at Ballachulish, and there are sufficient 

resources to merit further investigation. 

• There are large resources of very durable Macduff slate on the north slopes of 

the Slate Hills Aberdeenshire. 

• The mineralogy of Highland Border slate suggests that it would have good 

potential as a roofing material. Other properties however vary considerably 

from quarry to quarry and for producing units within a quarry. 

• No quarry in the Easdale area was particularly suitable for further investigation, 

but one suggestion has been made. 
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The following quarries are recommended for further investigation: 

1. Ballachulish Khartoum 

2. Macduff Kirkney 

3. Highland Border Craiglea 

4. " Aberfoyle 

5. Easdale Breine Phort 
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Chapter 1 Introduction 

Slate is a rock derived from fine-grained mudstones or siltstones, or in some cases 

volcanic tuffs, which have undergone low-grade metamorphism and deformation 

due to tectonic compression. It is made up of a high proportion of platy minerals i.e. 

phyllosillicates. These phyllosilicates align during deformation, imparting a 

schistosity or cleavage to the rock along which it can be split into thin sheets. It is 

the ability to be split along planes of cleavage that make slate suitable for use as a 

building material, in particular a roofing material 

1.1 Aim 

Much of the urban landscape of Scotland consists of slate roofs, and slate is the 

roofing material for many historic buildings. However, there are no longer any slate 

quarries in production in Scotland and any repairs or renovations to such buildings 

must rely on second hand slates or on supplies from outside Scotland. It was with 

this in mind that this research Project was initiated by Historic Scotland, with the 

objective of selecting appropriate Scottish quarries for further investigation with a 

view to reopening. It is hoped thereby to ensure the continued availability of this 

traditional roofing material of proven quality and durability and thus to maintain 

and restore the indigenous character of Scottish architecture. This Thesis is 

concerned with the development of methods suitable for the analysis of slates in terms 

of their mineralogy, crystallinity, fabric and weathering properties. Individual quarries 

are described in Appendix A The Scottish Slate Quarries. Because this is to be 

published as a separate document in the form of a Technical Advice Note (TAN) by 

Historic Scotland some parts of the Thesis have been duplicated in the Appendix so 

that it can stand alone. 

1.2 Methodology 

The emphasis of the original Historic Scotland contract was on Scottish slate, with 

particular importance placed on updating the last article written on Scottish quarries 

Chapter J Introduction 
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by Richey and Anderson in 1944. Therefore to comply with the contract 

necessitated looking at over 100 individual quarries spread over a large area. As a 

result it was not possible to map any quarry in great detail, and only a few 

representative samples were analysed from each quarry. In addition some laboratory 

test methods had to be rejected as too time consuming, because of the need to 

include such a large data set. However, to assess the quality of Scottish slate it is 

necessary firstly to determine those properties of slate in general which make it a 

good roofing material. The lack of any working quarries in Scotland meant that no 

recently finished samples of Scottish slate were available. Initially therefore, slate 

samples were collected from producing quarries in North Wales and Cumbria, where 

the product is of known and reliable quality. The slates from these areas are very 

different and provide a reasonably broad spectrum with which to compare Scottish 

slate. In a further stage of the research it is proposed to look at Scottish slate in 

relation to that produced world-wide and hence broaden the data base used in all 

aspects of this work. The samples from these producing quarries which were used in 

this Project are listed in Appendix 1.1. The samples were analysed in terms of their 

mineral composition, metamorphic grade, fabric and weathering properties and 

compared with the graded quality of the finished slate. When the parameters most 

closely related to the quality of finished slate were established, then the Scottish 

slates were examined for these same parameters. 

The quarries chosen for further study were selected on the basis of their mineralogy, 

fabric and weathering properties and localities. The next stage of research will be to 

carry out a site investigation of each chosen quarry. This will look at the rock in situ 

to determine the resources, the proportion of usable slate, and parameters such as the 

density and orientation of discontinuities, joint patterns, veins etc. which control the 

size of slate. A larger sample set for an individual quarry will be tested according to 

the procedures laid out in this Report to identify those seams which have the best 

fabric and mineral composition. 

Chapter I Introduction 
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1.3 Previous Work 

While many aspects of slate as a rock have been covered in the literature, there has 

been very little work done on relating the geological properties of slate to its use as a 

roofing material. The last definitive article on the Scottish slate industry and Scottish 

slate quarries was the Wartime Pamphlet No 40 (Richey and Anderson, 1944). As 

the industry closed in the 1960s, more recent work only makes passing references to 

Scottish slate (Crockett 1975, Harries-Rees 1991 and Wagner et al. 1994 and 1995). 

An important aspect of the present Study is to update the Wartime Pamphlet in the 

light of recent developments in our understanding of the geology of the various slate 

areas and the changes that have taken place within the quarries. 

More recent references to working quarries have concentrated on the economics of 

quarry operations. For example, Tacoume et al. (1997) and Le Corre (1970) discuss 

the effect of the spacing of discontinuities within a quarry, such as joints, on the rate 

of recovery of slate. But without access to unweathered faces in Scottish quarries, 

this is only of limited relevance to this Study. Tacoume's et al. (1998) work will be 

useful once a quarry has been chosen for further study with a view to reopening. 

Mineralogy: Very little work has been done on quantifying the mineral composition 

of slate. Analyses of fine grained material have mainly been confined to shales e.g. 

Schultz (1964) evaluated the composition of Pierre Shale, and A very and Bullock 

(1977) classified soils by X-ray techniques. Le Corre (1970) and Marty (1980) 

discussed slate in terms of its mineralogy, fabric and impurities in fairly general 

terms. Because of recent developments in the microprobe analysis of fine grained 

material (Dempster and Tanner 1998), it has been possible to refine the 

determination of mineral composition with a view to relating it to the properties of 

the slate. 

The metamorphic grade: Considerable research has been devoted to the measuring 

of metamorphic grade in terms of its illite crystallinity (IC) i.e. the sharpness of the 

illite X-ray diffraction (XRD) peak. A more general term, Full Width at Half 

Chapter J Introduction 
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Magnitude (FWHM), is used in this Report instead of Ie. Because the metamorphic 

grade of slate is at the upper limit of the effectiveness of this FWHM technique there 

is a loss of sensitivity. It was therefore necessary to develop alternative methods of 

assessing the metamorphic grade. 

Fabric: Apart from some reference to the effect of mineral composition on the 

ability to split a slate by Le Corre (1970) and Wagner et ai. (1994), little research 

has been carried out on the splitting properties of slate. Building on the descriptive 

method of assessing fabric developed by Powell (1979), a more quantitative 

approach is developed in this Study to relate fabric to the minimum potential 

thickness of the finished slate (Chapter 4). 

Weathering properties are generally covered by the various national standards for 

slate and the specifications in trade literature, but only in the case of the American 

and British standards was the research behind the various standards available. 

A comprehensive study of the durability of American slate was carried out by 

Kessler and Sligh (1932) in preparation for the American standard for slate. In this 

study, the effects of age on the properties of slate on roofs were compared with 

similar effects achieved by laboratory tests. Watkins carried out research in 1934 in 

preparation for the publication of the British Standard for slate, BS 680. This 

research tried to relate the reputation of slates with properties determined objectively 

in the laboratory. Various studies into the weathering reactions which take place in 

slate have been carried out e.g. Roekens et al. (1991) and Shayan and Lancuck 

(1987). 

The various national standards for slate address the problem of how best to 

determine the durability of a slate. A precis of those national standards referred to in 

this Report is given in Appendix B. 
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1.4 Scottish Slate Industry 

Slate quarrying was one of Scotland's most significant building material industries 

throughout the 18th, 19th and early 20th centuries. It was concentrated at four 

geological areas (Fig.l.1) namely: 

1. Ballachulish near the Great Glen fault. 

2. The Slate Islands near Oban, of which Easdale is the best known. 

3. A series of quarries just north of the Highland Boundary Fault stretching 

from Arran in the west to Dunkeld in the east. 

4. A group of quarries near Huntly in Aberdeenshire located in high ground 

called the Slate Hills. 

N 

~.f./ 
;.1 
I 

• 
Keith. 

Huntly 

• 

Fig. 1.1 Location of the principal centres of slate production in Scotland. 
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Slate has made a significant contribution to Scottish architecture in the past. "Slates 

are very versatile as a roofing material, permitting carpenters to adopt various shapes 

of roofs and complicated intersections. The slates could be dressed to form mitres in 

hips and valleys, to be fued round curves in turrets and the rowzded cheeks of 

dormers" (Naismuth 1985). This versatility allowed builders to incorporate intricacies 

in their designs that were impossible to achieve in other materials and contributed 

significantly to Scottish architectural tradition. 

1.4.1 Brief History of the Scottish Slate Industry 

The origins of the Scottish slate industry are unknown. However, re-used slates 

believed to come from the Easdale slate belt were identified in a wall "tentatively 

ascribed as 14th century" in the Finlaggan Project on Islay in the Inner Hebrides (Per. 

com Ruckley 1997). The industry was already established in the 15th century 

although our knowledge is episodic, for instance in 1445 the Royal Chamberlain paid 

11110d for 130,000 slates quarried on Bute to repair the Kings Castle in Dumbarton 

(Hewison 1845). 

Records improved in the 18th century when the Scottish slate industry was centred on 

Easdale and the surrounding Slate Islands, part of the Earl of Breadalbane's estate 

(Tucker 1977). Thanks to the good accounts maintained by the Marble and Slate 

Company of Netherlorn which the Earl set up in 1745, the expansion of the industry 

can be followed. At the time of the establishment of this company, seven crews each 

of 4 or 5 men were employed producing over a million slates annUally. These were 

supplied throughout Scotland but mainly to the east coast. Transport was by sea in 

ships capable of carrying cargoes of 20,000 to 30,000 slates. As these ships were 

loaded from small boats off the rocky coastline of Argyll, it is not surprising that many 

cargoes were lost. In 1751 new quarries were opened at Ellenabeich and Luing and in 

1766 further quarries at Luing, Belnahua and Kilchattan with annual production 

increasing to 4-5 million slates at the end of the century' . 

lJournals of the Company at Scottish Record Office GDl12J18 54 
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In 1799 a tax was introduced on all slates carried by sea. The cost of transport was a 

major part of the cost of the slate and this tax was levied at 20% on the price at the 

point of delivery (Tucker 1977). It had a detrimental affect on the industry not only in 

Scotland but throughout Britain as a whole. In spite of opposition from slate 

proprietors, the tax was not removed until 1831. 

During the 19th century, the records kept by the Marble and Slate Company of 

Netherlorn were not as good, probably indicating that the business was in difficulty. 

The price of slates dropped from £ 1 per 1000 in the boom of the 1750s to 17/- per 1000 

in 1825 and 15/- per 1000 in 1827 (Tucker 1977). It was reported at this time that 

Ballachulish was prepared to accept 1216 per 1000 from a Glasgow dealer. By 1838 

the manager James Robertson was being told not to spend money on new leases and 

removal of tips. When the fifth Earl of Breadalbane died in 1862 the company was 

broken up into several smaller enterprises. A dramatic end to quarrying at Ellenabeich 

occurred on 22nd of November 1881 during a great gale when a tidal wave broke the 

retaining wall and flooded the quarry, preventing it from ever again being worked. The 

initial monopoly enjoyed by the Easdale slate quarries in the 18th century was over, but 

the Slate Islands continued to be a major contributor to the overall Scottish production 

during the 19th and 20th centuries until the final demise of the industry in the 1960s. 

One factor in the decline of the fortunes of the Easdale quarries was the rise in the level 

of production in other areas. In the early 19th century production of slate in Banffshire 

and Aberdeenshire was increasing, e.g. the Foudland Quarry maintained an annual 

production of 800,000 for 30 years rising to a peak of 1,000,000 in 1826/27 selling at 

10/- per 1000. "The quantity of slates made in the Foudland, Tillymorgan and Gartly 

quarries has occasioned a great diminution in the consumption of the Easdale and 

Ballachulish slate in Aberdeenshire, only two cargoes of the former and one of the 

latter having been imported at Aberdeen in 1810" (Blaikie 1834). 

Easdale would also have been affected by the opening of the Ballachulish West Quarry 

10 1693 and the larger East Quarry in 1694 (Fairweather 1994)2. Ballachulish 

3 AccCl"ding to Bremmer (1869) this quarry was not opened until 1780! 
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expanded rapidly during the 19th century. According to Smith's account (1825), 

production at that time was half the level of that from Easdale. This rose to double that 

from Easdale by the 1860s onwards. Employment grew from 300 men in 1845 to 587 

men in 1875. From 1882 to 1888 Ballachulish was producing 15 million slates 

annually (Tucker 1977). 

The Welsh slate industry was also expanding rapidly, from 20 million slates in 1786 to 

over 100 million in 1831 (Tucker 1977). The expansion of the railway system in the 

second half of the 19th century facilitated the transport of cheaper Welsh slates and 

heralded the decline of the Scottish slate industry as a whole. 

The inroads made by the Welsh industry were not felt immediately as production in 

Scotland continued to increase, reaching its peak at the end of the 19th century. This 

was a time of rapid growth in urban population with concomitant demand for new 

housing and hence slates, e.g. in 189645,0003 tonnes (approximately 45 million slates) 

were produced. Production started to decline soon after 1900 and had already dropped 

to half its maximum level by 1910. Production ceased completely during World War I 

due to lack of manpower. The industry partly recovered in the 1920s and 1930s to 

between 15,000 and 20,0004 tonnes per annum (15 - 20 million slates), but by then 

manufactured tiles had become a major competitor taking an increasing proportion of 

the roofing market. No separate figures for slate production were reported for Scotland 

between 1945 and 1964 but the last return in the statistical accounts recorded 5 tonnes 

in 1966.5 

Although resources are still abundant, the one time buoyant industry is now defunct. A 

more detailed account of the history of Scottish quarries is given in the appraisals of 

individual quarries (Appendix A). Descriptions of the quarries of Wales, Cumbria, 

Devon and Cornwall are given in Hart's account (1991). 

3 1895-1896 Mineral Statistics; Home Office 

, 1921-1938 Annual Report of the S~etary of Mines; Mines Department, Board of Trade 

5 1950-1973 u.K. Mineral Statistics; Institute of Geologica! Sciences 
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1.4.2 Methods of Working 

Until the late 17th century the production of slates was from faces exposed above the 

shore. On Easdale the tide was utilised to loosen blocks between high and low water by 

means of wooden wedges which expanded when wet. It was not possible to use the 

tide at Ballachulish as the quarries were at a higher level, but instead water was poured 

over the wood. 

Removal of surface water was always a problem especially in quarries close to the 

shore. At Easdale sluices allowed for the disposal of water at low tide. In the early 

19th century improved drainage devices, including a steam pump and a windmill, were 

introduced with varying success, to allow quarrying below sea level. Ellanabeich was 

60m (200ft) deep at the time it was flooded. 

In the early days slate blocks were transported in creels to the slate cutting banks. 

Later, tramways were introduced and the blocks transported in wagons drawn by 

horses. On Easdale the problem was to lift the slate up to ground level from 

approximately 45m (150ft) below. For this cranes and inclined planes were used. Both 

Ballachulish and Easdale had extensive tramway networks in place at the end of the 

19th century. Stationary engines were used on inclined planes from the quarry faces to 

the dressing sheds, and locomotives between the quarries and quays (Tucker 1977). 

Holes were drilled by hand and filled with black powder, which dislodged the slate 

blocks on being exploded. Not until 1926 was the time consuming procedure of 

drilling manually mechanised by using compressed air. The size of blocks was limited 

by the spacing of discontinuities such as joints. Blocks were split along cleavage into 

slabs about 25mm (1 inch) thick. These were then conveyed to the dressing sheds by 

the trammers. The dressers split the slabs into slates using a gilb (thin chisel) driven by 

blows from afairehean (mallet). Placing the slate on a clach eimile (iron plate) the 

dresser finished the slate into a rectangular shape using his core sgleit (long heavy 

knife) (Peach et ai. 1909). The slates were then ready for transport to their markets. 

Chapter 1 Introduction 



10 

Before a possible revival of the Scottish slate industry it is necessary to look at modern 

slate production. Crockett reviewed the British industry in 1975, Harries-Rees and 

Wagner et al. the European market in 1991 and 1995 respectively. A review of 

modern working practices is outside the scope of this work. 

1.5 Slate Industry Today 

At present there is a ready supply of second-hand Scottish slates, reflected in their 

relatively low cost. However, demolition and redressing losses are leading to 

diminishing stocks. Theft of slate from restorable buildings, even occupied buildings, 

is increasing as demand outstrips supply. Although the second-hand Scottish slate is 

mainly used in historic building repair and restoration, there has also been a return to 

the use of natural slate on new roofs. While concrete tiles still dominate, over 20% of 

new roofs are currently covered in natural slate. In 1990, 42,()()(} tons of British slate 

were produced at £1000/ton and 43,000 tons were imported, mainly from Spain, at a 

price approximately 25% less than that of the indigenous supply. More recently, even 

cheaper slates are being imported from Brazil and China. (Richards 1995). 

Historic Scotland is aware that the use of non-indigenous roof covering has led to the 

streetscapes of many Scottish cities, towns and villages losing much of their original 

character. Rural buildings too have been greatly changed in appearance. To quantify 

this loss, they commissioned a second research project to run in parallel with this 

Project at the Department of Town and Regional Planning, Dundee University. The 

aim of the Dundee project is to assess the historical and aesthetic importance of 

Scottish slate and the technical, financial and aesthetic issues involved in using 

traditional Scottish slate. It also includes a survey of sources and levels of demand as 

well as the attitudes of architects, conservation bodies, local authorities and developers 

to the use of slate. 

This Report concentrates on the inherent properties of slate which relate to its 

performance as a roofing material,' methods of measuring these and draws conclusions 

on the potential for reopening one or more Scottish quarries. 
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Chapter 2 Mineralogy 

2.1 Introduction 

Slate is a rock derived from argillaceous sediments or fme-grained volcanic ashes. It is 

produced by metamorphism and defonnation and characterised by cleavage along planes 

which are independent of the original bedding. This Study shows that many of the 

properties of slate are largely dependent on its mineral composition: the proportion of 

platy minerals controls its splitting, quartz controls its hardness and durability, while the 

presence of some minor minerals adversely affects its durability. Therefore the relative 

proportions of the major minerals present is an important criterion in detennining the 

properties of a slate. However, due to the fme-grained nature of the material, 

detennination of its mineral composition is not straightforward, and the aim of this 

Chapter is to evaluate the accuracy of different analytical methods for determining the 

mineral composition of slate and to present the results of these analyses. 

2.2 Background 

The essential minerals of slate are quartz and the phyllosilicates (white micas and 

chlorite) and various accessory minerals. The determination of the relative 

abundance of constituent minerals in fine grained rocks has been the subject of a 

number of publications (Schultz 1964, Carroll 1970, Brindley 1961, Avery and 

Bullock 1977) but these have concentrated on the proportions in clays and their 

techniques are not directly applicable to slate. At the level of metamorphism 

observed in Scottish slate, most of the clay minerals have been converted to white 

mica and chlorite. Schultz (1964) did determine a proportionality constant between 

the areas of quartz and carbonate XRD peaks and their concentration. His work was 

done using copper radiation while cobalt radiation was used in this Study, so no 

direct comparison was possible. As this chapter evaluates the methods of mineral 

identification, some of the characteristics of the minerals involved are first briefly 

reviewed. 
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2.2.1 Quartz 

Fonnula Si02 Hardness 7 

Quartz, the most common of minerals, is present in nearly all types of rock and is always 

present in slate. Structurally, it is made up of silicon tetrahedra (Fig. 2.1) in which all the 

oxygens are shared with neighbouring tetrahedra forming a three dimensional framework 

without cleavage. It is the most persistent of the common minerals and survives 

transportation, weathering prior to sedimentation and the increased temperature and 

pressure of low·grade metamorphism. Although less abundant in the finer grained 

mudstones that are the precursors of slate, its presence is nevertheless significant. Detrital 

grains of primary quartz become more elongated during the development of the slaty 

cleavage and are orientated with their long axis parallel to the cleavage. Secondary quartz 

grows during metamorphism in a number of ways. It may grow around pre·existing 

quartz grains, as clusters of new grains in the pressure shadows of the larger grains of any 

mineral, or independently in veins filling fissures caused by joints and faults. These veins 

can range in size from those visible to the naked eye, distorting cleavage on a large scale, 

to minor clusters, only detected at microscopic level, which destroy the homogeneity 

necessary to produce a regular slate surface. 

Although some quartz is necessary to strengthen a slate, too much quartz, especially if too 

coarse· grained, impairs the ability of slate to be split into thin sheets, and is therefore 

detrimental to the production of higher-grade thin slates. The amount of quartz found in 

Scottish slate is 15%-35%. 

2.2.2 Phyllosilicates 

Fonnula variable (see below) Hardness 2-3 

Phyllosilicates is a group of minerals which derive their name from the Greek word 

phyllon for leaf which reflects their platy habit. They belong to a group of silicate minerals 

characterised by their perfect cleavage and elasticity, reflecting their layered atomic 

structure. Next to quartz, phyllosilicates are the most common sedimentary and low·grade 

metamorphic minerals, and include clays, illites, and micas such as white micas, chlorite 
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and biotite. The bulk of slate is made up of white micas and chlorite. The structure and 

fonnulae of phyllosilicates are discussed in some detail as these control the physical and 

chemical properties of slate (Bailey 1984). 

2.2.2.1 Layered Structure of Phyllosilicates 

The atomic structure of phyllosilicates is comprised of tetrahedral and octahedral layers 

Tetrahedral layers consist of silicate tetrahedra Si04
4

- bound together so that 

three of the four oxygens are shared by neighbouring silica giving a hexagonal grid. The 

remaining oxygen at the apex of each tetrahedron is nonnal to the sheet and is co­

ordinated to the cation forming the octahedral layers. The overall fonnula of the 

tetrahedral sheet is ShOs 2- (Fig. 2.1). 

o Oxygen 

• Silicon 

Plan view of the 
tetrahedral layer. Silicon 
atoms at each apex, are 
bonded to 3 oxygens 
within the plane. The 
fourth oxygen (not 
shown is orthogonal to 
the layer. 

Side view of the 
tetrahedral layer 

Tetrahedral 
silicon 

r··············· .. ·•· ················_·1 
~ ~ i 
I ........----. ! 
i : 
: : , ... _ ................................ _ .....• _ . ..: 

Fig. 2.1 Tetrahedral layer of a phyllosilicate 

ii Octahedral layers consist of octahedrally bound cations typically magnesium 

Mg2+ or aluminium Al
3
+ forming a brucite or gibbsite layer respectively The cations are 

bonded to the oxygens at the apex of the tetrahedra as described above, as well as to 
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Fig. 2.2 The octahedral layer of a phyllosilicate and its relationship to the underlying 

tetrahedral layer. 

2.2.2.2 Classification of Phyllosilicates 

14 

The wide range of different phyllosilicate structures can be accounted for by variation of: 

the cation in the tetrahedral layer 

11 the cation in the octahedral layer 

ill packing arrangement of the sheets 

i. Variation of the cation in the tetrahedral layer 

This is due to the replacement of Si4+ by Al3+ causing a charge deficiency which is 

balanced by inter-layer cations such as K", Na+ or to a lesser extent Ca2+ or Mg2+. 

ii. Variation of the cations in the octahedral layer. 

Three cation sites are generated by each hexagon in the tetrahedral layer. If all three are 

occupied by a divalent cation such as Mg2+ the structure is termed a trioctahedrallayer. 

If on the other hand two of the sites are occupied by a trivalent cation such as Al3+ the 

structure is called a dioctrahedral layer. The mineral formed is controlled by the 
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primary composition of the protolith. 

iii. Variation in packing arrangement 

a) 1:1 Layer type This is simplest arrangement consisting of alternating layers 

of tetrahedral and octahedral sheets, often abbreviated to a t-o layer. Serpentine 

minerals MgJShOs(OH)4 are the trioctahedral version while kaolin (clay) minerals 

AhShOs(OH)4 are the dioctahedral equivalent. This type of phyllosilicate has a 

spacing of 7.2 A to 7.3A and gives a prominent peak in X-ray diffraction patterns at 

this value (Fig.2.3). 

t 
Octahedral 
layer 

IVVV\ 
7A 

~ 
Tetrahedral 
layer 

Fig. 2.3 Layered structure of a clay mineral 

b) 2:1 Layer type The next simplest stacking is seen in micas such as muscovite 

and white mica. Here two tetrahedral layers both point towards the octahedral layer in 

a t-o-t structure. The characteristic spacing of this structure is approximately loA as 

seen in X-ray diffraction patterns. Examples of minerals with this type of structure are 

talc, muscovite and paragonite (Fig. 2.4). 

Talc 

MuscovitelParagonite 

trioctahedral Mg3S401o(0H)2 

dioctahedral (K, Na)Ah(AlShO 1O)(OH)2 

In white micas the extra negative charge caused by the replacement of lout of 4 Si4+ 

by Al3+ is balanced by inter-layer alkali metals such as K+ giving muscovite or Na+ 

giving paragonite. The illite group of white micas differs from muscovite in having a 

higher Si4+ :Al3+ ratio in the tetrahedral sheet and hence fewer inter-layer cations 

holding the structure together i.e. illites are white micas which are deficient in K+. 

The sodium equivalent is brammallite, but this term is only rarely used. 

Phengite is a member of the illite group in which excess silica in the tetrahedral sheet 

Chapter 2 Mineralogy 



16 

is compensated by replacement of trivalent Al by bivalent Mg and Fe in the octahedral 

site, and the sum of the interlayer cations is approximately equal to that of muscovite. 

The naming of white micas in the literature is not consistent and the terminology used 

by Deer et al. (1992) is shown in Table 2.1. The general term white mica has been 

used in this Report. 
~----------------------------------------~ 

VVVV i 
I I loA 

IVVV\ t 
Tetrahedral layer 

c>ctanedral layer 

Tetrahedral layer 

Fla. 2.4 Layered structure of white micas includina muscovite. 

Mineral Inter-layer Octahedral Tetrahedral 

cations cations cations 

White micas Muscovite Kl All ShAl 

mite Kl·x Al2 Sh+xAh.x 

Phengite Kl Al2-x(MgFe )x Sh+xAll-x 

Table 2.1 Classifieation of white micas accordina to the chemical composition after Deer et aJ 

(1992). 

c) 2:1:1 Layer type This layer structure consists of a t-o-t layer and an extra 

octahedral layer, giving it a basal spacing of 14.2 A which is used to identify chlorites 

in XRD analysis (Fig. 2.5). Chlorite is a primary mineral found in low-grade 

metamorphic rocks growing at the expense of clay in argillaceous rocks. The colour of 

chlorite gives greenschists their naine. 
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I Octahedral layer 

VVVV Tetrahedral layer 
0 

14 A 

I I 1 
Octahedral layer 

IV\IV\ Tetrahedral layer 

Fig. 2.S Layered structure of a chlorite 

The general formula of chlorite is (Mg, Fe, Al)6(Al, Si)401O(OH)8, with considerable 

chemical variation due to isomorphous substitution. These isomorphous replacements 

have been used to classify chlorites by Foster (1962), but the system is arbitrary and 

carries no generic significance (Casthelineau & Nieva, 1985). It is however the 

classification most often used in the literature and is included here for completeness (Fig. 

2.6). The actual composition of the chlorite reflects the original composition of the rock 

and does not change in a systematic way with increasing temperature and pressure 

(Casthelineau & Nieva, 1985). 

i 
: 
: 

Thuringite ! Chamosite 

I 
................................................................. ~ ......................................................................... ~ ................................................ . 

I : 

I I 
Ripidolite Brunsvigite Diabantite 

Sheridanite Clinochlore Penninite 

i i 

2.76 3.10 

No. of silicon atoms per fonnula unit 
R2+ = Total number of divalent cations per formula unit 

0.76 

0.25 

Fig. 2.6 Uassification of chlorite based'on the two principal types of ionic replacement after Foster 

(1962). 
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Swelling chlorites: 

Stephen and MacEwan (1950,1951) identified a type of chlorite whose basal spacing 

expanded from 14..\ to 17..\ when glycolated. There is some controversy about the 

nature of this special group of chlorites and some authors have regarded them as a 

variant of mixed layered minerals (Carroll 1956). Because any swelling 

phyllosilicates, whatever their classification, would have a detrimental effect on the 

durability of a slate, their presence was tested by glycolation as discussed in Section 

5.6.1. 

2.2.2.3 Poly types 

As well as variation in the chemical composition of the different layers of a phyllosilicate, 

there is also variation in the way they are stacked. The unbound oxygen of the tetrahedral 

layer is used to bond with the cation of the octahedral layer. The geometry of this 

arrangement requires that each hexagon of the tetrahedral layer is staggered by a/3 

relative to the hexagon on the adjacent layer. There are six possibilities for the direction 

of each shift (Fig. 2.7). If the direction of stagger differs from layer to layer in some 

regular fashion the mineral is said to exhibit polytypism (Bailey 1984). While in theory 

numerous polytypes are possible, only a few are found to occur naturally. They are 

named systematically as follows: 

Fig. 2.7 Staggered stacking of the tetrahedral layers. 

Naming of white mica poly types 

Different polytypes are denoted by oX, 
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n is an integer denoting the number of layers in the repeat unit. 

X is a letter representing the symmetry such as M for monoclinic or T for triclinic 

i is an integer differentiating between polytypes with similar periodicity and 

symmetry 

Naturally occurring poly types found in white micas 

Composition seems to dictate the layer sequence found naturally e.g. the 2M, is the 

predominant one for dioctahedral muscovite with 1M" 3T & 2M, less abundant (Srodon 

et al. 1984) 

White micas exists as three common polymorphic variations IMl, 1M & 2M 

1Md a disordered form that develops during weathering 

1M regressive diagenesis 

2M most stable form in micas or detrital illites from source areas where a cold 

and dry climate did not favour hydrolysis. This is the poly type of white 

micas usually found in slate and its significance is discussed further in 

Section 3.2.3.2. 

Chlorite micas also exhibit polymorphism. 

Because of the extra layer in the chlorite structure there is a large number of theoretical 

polytypes (Brown and Bailey, 1962). However, 80% of naturally occurring chlorites are 

the polytype 2ITh in which the structure is a monoclinic cell. This is the stable structure 

found in low grade metamorphic rocks such as slate. 

Significance of the crystalline structure of the phyllosilicates 

The platy structure of the phyllosilicates gives slate its splitting property. Slate with 

insufficient ordering of the phyllosilicates' basal planes would be difficult to cleave. 

Excessive ordering, on the other hand, as seen in a pure muscovite with a flaky texture, 

would lack cohesive strength. The optimum degree of regularity of crystalline structure 

for a good slate is not known, but it can be assumed to lie between these two extremes. 
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2.2.3 Other Minerals 

Other minerals present are feldspar, the ore minerals, carbonates and graphite. 

Although often present in only small amounts some of these minerals are easily 

weathered and their presence may have a disproportionate effect on the durability of a 

slate. 

2.2.3.1 Feldspars 

Formulae 

Plagioclase 

Alkali Feldspars 

Hardness::::: 6 

NaAISbOs- CaAhShOs 

KAlSbOs - NaAISbOg 

Albite to Anorthite 

Orthoclase to Albite 

Feldspars are common minerals found in all type of rocks, and are usually present as 

albite in the greenschist facies of slate. They have an atomic structure similar to quartz 

in that all four oxygens of the silicate tetrahedron are shared with neighbouring 

tetrahedra. (Section 2.2.1). In feldspars, some silicon atoms are replaced by aluminium 

and concomitant cation in order to maintain balanced charge. In the case of the alkali 

feldspars, this coupled substitution can be represented as follows: 

Si4+ ~ Ae+ + M+ where M+ = Na+ or K + 

Similarly in the case of the plagioclases, this coupled substitution can be represented as 

follows: 

2Si4+ ~ 2A13+ + M2+ where M2+ = Ca2+ 

In chemical reactions feldspars are weathered to clay. 

2NaAISbOs+ 2W +H20 ~ AhShOs(OH)4 + 4 Si02 + 2Na+ 

The relative durability of the different feldspars is discussed further in Section 5.2.2. 

2.2.3.2 Carbonates 

This mineral is made up of anions of C032- which are electrically balanced by a range 

of positively charged cations such as Ca, Mg and Fe, the most common of these being 

calcium carbonate, calcite (Table 2.2). All carbonates are susceptible to attack by acid, 

giving off carbon dioxide and water, e.g. 
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Ca C03 + 2HCl ---------> CaCh + C02 + H20 

making slates with carbonates present especially vulnerable to weathering in an urban 

environment with an acidic atmosphere. Their relative stability is covered in greater 

detail in Section 5.2.2. 

Mineral Formulae 

Magnesite MgC03.3H20 

Calcite/Aragonite CaC03 

Siderite FeC03 

Dolomite CaMg(C03h 

Table 2.2 Common carbonates found in slate. 

All the carbonates show some chemical variation due to solid solution. Because of the 

important role carbonates play in chemical-weathering reactions they are discussed 

at greater length in Section 5.2.2. 

The variation in carbonate content from 100% in a pure limestone to 0% in a pure 

clay has been used as the basis of classification of sedimentary rocks as specified in 

the European standard for building stone prEN 12407: 1996. Wagner et al. (1994) 

extrapolated this when they based their classification of slate on the carbonate 

content of its sedimentary precursor, e.g. argillaceous sediment is composed of 

>97.5% clay which is metamorphosed into an argillaceous slate (Table 2.3). 

Pure clay 0-2.5% Carbonate Argillaceous slate 

Marly clay 2.5- 10% Marly argillaceous slate 

Clayey marl 10%-25% Argillaceous marly slate 

Marl 25-65% Marly slate 

Table 2.3 Classification of slate based on the protolith after Wagner et aL 1994. 
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2.2.3.3 Iron Ore Minerals 

The most common ore minerals found in slate are the oxides and sulphides of iron. 

The stability of these minerals is crucial in determining the durability of a slate. Iron is 

found as the Fe2+ ferrous ion and the Fe 3+ ferric ion. Weathering usually involves 

oxidising the more reduced ferrous ion to the oxidised ferric ion such as in limonite 

FeO.OH.nH20 (see Section 5.2.3.5 for more details). 

i The oxides of iron 

Haematite Fe203 

Magnetite Fe304 

These are both relatively oxidised forms of iron and as such their presence in slate is 

harmless. 

Limonite FeO.OH.nH20 

This is a field term to describe hydrated oxides of iron with poor crystalline structure. 

It is yellow to brown in colour and readily dissolved in Hel (see Section 5.2.3.5 for 

more details). 

ii The sulphides of iron 

Pyrite FeSz 

This is the most common form of iron sulphide found in sedimentary rocks. It is often 

fonned as a result of bacterial reduction of aqueous sulphate to sulphide, which then 

reacts with ferrous iron to form pyrite. Marcasite is a polymorph of pyrite found in 

acidic aqueous environments. 

Pyrite occurs as large euhedral crystals, or disseminated throughout the rock. The 

large cubic crystals are usually resistant to weathering. When it does break down, it 

weathers to limonite. 

Marcasite is usually associated with pyrite and weathers more easily than pyrite to 

limonite 

Pyrrhotite -FeSl+x non stoichiometric 

This is a less stable iron sulphide than pyrite and is easily decomposed by Hel while 
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pyrite is not. In weathering reactions it is oxidised to sulphates, carbonates and oxides. 

In slate deposits pyrrhotite is found in contact metamorphic deposits as pseudomorphs 

of pyrite. 

The iron mineral present in slate is a function of the pH and the Eh of the environment 

and the activity of the various ions during fonnation. Therefore haematite is found in 

moderate to high oxidising conditions while pyrite, siderite and magnetite fonn in 

reducing conditions. The fonnation of pyrite or siderite depends on the concentration 

of sulphur and carbonate in the pore fluids. 

iii Other ore minerals 

Rutile and Anatase Ti02 

Rutile is the most common fonn of Ti02, being the high temperature polymorph. 

Anatase is the low temperature polymorph and is found as an alteration product of Ti­

bearing minerals such as ilmenite. It is a common detrital mineral in sediments where 

it is often of authigenic origin (Deer et al. 1993). 

Ilmenite FeTi03 

There is extensive solid solution between the end members of (Fe, Mg, Mn)Ti03 I.e. 

the iron end member is ilmenite FeTi03. This mineral lacks cleavage, which enables it 

to survive sedimentation processes thus making it a common detrital mineral. 

2.2.3.4 Miscellaneous Minerals 

Other accessory minerals are often found in slate such as graphite, apatite, chloritoid, 

tounnaline and zircon. Of these, graphite is the one with the greatest effect on the 

properties of slate. 

Graphite is derived from organic matter which has been preserved in reducing 

conditions. This organic matter is later metamorphosed to graphite, a dimorphous fonn 

of carbon, and is found disseminated throughout the rock or in local concentrations. 

Its presence during metamorphism inhibits the growth of minerals and as a result it is 

associated with less crystalline material. It acts as a catalyst in chemical reactions and 
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plays a significant role in the weathering of slate (Kessler & Sligh 1932). 

2.2.4 Conclusion 

The principal minerals of slate are quartz, white micas and chlorite, which in the case 

of true argillaceous slate make up over 95% of the total. The relative amounts can 

vary considerably as can individual workers' interpretation of what makes a good slate 

(Table 2.4). 

Source 

Le Corre (1970). 

Crockett (1975) 

Wagner et al( 1994) 

% Phyllosilicates 

%Illite %Chlorite 

70-87* No differentiation 

38-40 6-18 

40 20 

%Quartz 

13-30* 

31-45 

30 

Table 2.4 Composition of slate according to different authors. 

* Depending on the grain size of the quartz. 

Slate properties are controlled by the proportions of quartz, phyllosilicates and, when 

present in sufficient concentrations, feldspars. Because of its three-dimensional 

tetrahedral structure, quartz is a hard mineral (Mohs hardness = 7) without cleavage 

making it very durable and giving cohesion to the slate. The feldspars too have a 

three-dimensional tetrahedral framework giving them a hardness of 6 in the Mohs 

scale. However the coupled substitution for some of the silicon atoms by aluminium 

and either alkali cations such as. K+ and Na+ or alkali earth cations such as Ca2
+ 

(Section 2.2.3.1) makes them more vulnerable to weathering than quartz. The layered 

structure of the phyllosilicates gives the splitting ability to slate. However these multi­

layered structures are only held together by weakly bonded alkali cation layers or weak 

Van der Waal's bonding. The multi layered structure is the conduit for water, which is 

the principal agent in all weathering reactions, to penetrate the slate. 

More research is needed to correlate the mineralogy of rocks in general with their 

mechanical properties. However, it can be assumed that there is an optimum range of 

quartz content sufficient to impart enough hardness to the slate yet not so much as to 
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destroy the splitting property of the phyllosilicate. The amount and type of deleterious 

minerals present affect the vulnerability of a slate to chemical weathering. 

2.3 Samples 

Unweathered and weathered samples were collected from producing quarries in 

North Wales and Cumbria. They were taken from different producing units (veinsl) 

within a quarry and in the case of Ffestiniog they were also collected from areas 

between producing units or veins, i.e. areas deemed unsatisfactory for slate at this 

particular quarry. 

As there are no working quarries in Scotland, Scottish samples were collected from 

many different sources, ranging from slate tips and outcrops in the quarries to 

second-hand slate merchants. It was generally found that bands of rock left in situ in 

a quarry were coarser grained than those found in the intervening waste tips. Hence 

samples from the tips located near the producing seams were considered to be more 

representative of the slate produced. The collection included some samples from all 

the quarries mentioned in the quarry reports (Appendix A). One or more samples were 

selected as representative of each group of Scottish quarries, as well as one Welsh slate 

from the Oakley Quarry in Ffestiniog, and used as standards for the area (Table 2.5). 

Over a hundred grams of powder was prepared from each sample for use in all the 

analyses except in the case _9f, standard samples where 200 grams was prepared. The 

same sample was used in all tests, except for the experimental weathering of slates 

where test pieces Scm x Scm were needed. These were cut from finished roofing 

slates. 

I The part of the formation used in the production of roofing slates are called veins in the Welsh slate 
industry, The equivalent term used in the Scottish slate industry was seam 
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Quarry Group Location Quarry Sample No Quarry Report 

Reference 

Wales Ffestiniog Oakley WfFl 

Ballachulish East Laroch EI-JO 2.S.1 

Easdale Seil Island Breine Phort SB-6 3.S.3 

Luing Island Port Mary LP-5 3.S.7 

Highland Border Bute Island Hilton Quarry B2 4.5.2 

Aberfoyle Aberfoyle Ab-S 4.5.4 

Dunkeld Newtyle North DNA 4.5.7 

Macduff Kirkney Hill Kirkney MK-4 5.5.1 

Table 2.5 Samples selected as representative of each Scottish group of quarries and one Welsh 

slate. 

W IF-I This is a dark grey very fine-grained slate; cleavage surface is flat and smooth, 

no bedding features are visible. There is slight brown staining after storage. 

EI-tO This is a dark grey fine-grained slate; cleavage surface is fairly smooth with a 

slight sheen and faintly crenulated in places. Lineation is subparallel to the 

pillaring line; no bedding features are visible. Pyrites are less than 1 mm in size 

and brown in colour but there is no leaching. There is slight superficial staining 

on the weathered surfaces. 

8B-6 This is a dark grey, fine to medium-grained slate. The cleavage surface is flat 

but crenulated. Pyrites are 1-2mm in size; those on the surface are weathered 

and have leached. Surfaces are superficially weathered. 

Lp·5 This is a dark blue-grey, fine to medium-grained slate; the cleavage surface is 

fairly flat but crenulated, with a slight sheen. Pyrites are bimodal; the smaller 

ones are less than Imm in size and superficially rusty, the larger ones are 4mm 

square and have a fresh metallic appearance. There is faint colour banding due 

to bedding which is at a high angle to cleavage. 

B2 This is a dark blue-grey, fine to medium-grained slate. The cleavage surface is 
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flat and smooth with a slight sheen. No bedding features are visible apart from 

a slight darkening of the surface. There is no superficial weathering. 

Ab.5 This is a dark blue-grey, fine to medium-grained slate with individual white 

mica grains visible on the cleavage surface, which is flat and smooth. No 

bedding features are visible apart from a slight darkening of the surface. There 

is no superficial weathering. 

DN.4 This is a dark blue-grey fine to medium-grained slate; the cleavage surface is 

flat and smooth. No bedding features are visible apart from a slight darkening 

of the surface. There is no superficial weathering. 

MK.4 This is a blue-grey, medium-grained slate with individual white mica grains 

visible on the cleavagelbedding surface. The cleavage smface is flat but 

slightly rough in texture. Bedding is sub-parallel to the cleavage surface. 

Apart from slight pale brown staining on the surface, there is no superficial 

weathering. Unlike many slates in the Macduff area, this sample is not a 

hornfels. 

2.4 Qualitative Analysis 

Identification of minerals 

The minerals present in the slate were identified in thin sections as quartz, white mica, 

chlorite and opaque ore minerals, with accessory feldspar and carbonates. However 

the fine-grained nature of slate and the intergrowth of minerals makes distinguishing 

between minerals with similar optical properties very difficult. For example, quartz 

and feldspar have similar birefringence colours and relief and in fresh samples the 

feldspar are relatively unaltered giving then a similar appearance to quartz in plain 

polarised light. Therefore in the absence of twinning in the feldspars, quartz and 

feldspars can only be distinguished by their interference figures, which is not possible 

given the small grain size of the samples. It was necessary to use XRD analyses to 

distinguish between white mica, and paragonite, and to identify the different . 
carbonates, iron ore minerals and accessory minerals. 
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The formulae of the phyliosilicates 

The formulae of the phyllosilicates were determined by electron microprobe 

analyses. 

2.4.1 Determination of Minerals present in Slate using 
XRD Analysis 

When crystalline material is bombarded with X-rays, constructive interference occurs 

in the diffracted beam. This forms a peak when the angles of incidence and the inter­

layer spacing of the crystalline lattice satisfy the Bragg (1912) relationship. 

n '" = 2dSinO 

The inter-atomic spacing d controls the position of peaks, measured in terms of the 

angle 0, which is used as a means of identifying the minerals present in slate. 

2.4.1.1 Equipment 

The following equipment was used throughout this work: 

Diffractometer 

Philips PW 1050/35 X-ray diffractometer with vertical goniometer run at 36kV 

and20mA 

Source of radiation was Co filtered by Fe. 

Detector: HV= 535 Window = 300 Lower level = 360 Response sec = 3 

Slits: divergence 10
; receiver 0.1 0

; anti-scatter 10 

Scanning speed variable measured in °2e/min 

Rate 300 counts/sec 
, 

Radius of goniometer 173mm 

Computer 

Sie Ray 122 XRD Automation system 

Sie Ray 122D Automation" interface 

PC using Sie 122D software 

'Traces' program run under Microsoft Windows. 

(Traces is a Diffraction Technology Ltd. Software package) 

For identification of minerals the XRD scans were run from 40 to 640 29 at 2 29/min; 

step = 0.2 
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2.4.1.2 Principles of XRD Analysis 

X-rays are part of the electromagnetic spectrum with wavelengths between 0.1 and 

45;\ (Krauskopf 1953). This range of wavelengths is the same order of magnitude as 

the inter-atomic spacing between the planes of atoms that make up the regular structure 

of a crystalline lattice (Section 2.2.2). When a crystalline substance is bombarded by 

monochromatic X-rays the beam is diffracted, producing a pattern unique to each 

mineral. This characteristic is used in X-ray Diffraction (XRD) analysis. 

Most rocks, including slate, are made up of a variety of minerals each characterised by 

its own diffraction pattern or trace. The best X-ray traces are produced by 

homogeneous materials with a small grain size, so that a representative sample of 

minerals is bombarded in each scan. This makes X-ray diffraction one of the best 

analytical methods for the study of slate, which satisfies both requirements of 

homogeneity and grain size. 

2.4.1.2.1 Atomic Structure 

X-rays are the energy released when electrons surrounding the nucleus of an atom 

jump from a higher to a low~r energy level. Electrons in the atom occupy discrete 

shells to which Bohr gave the numbers 1,2,3 ... etc. (The older notation of K, L, M etc 

has been retained in the XRD nomenclature). Within each shell are subshells called s, 

p and d which define the shapes of the orbit (These letters come from an early attempt 

in the 19th century to qualify the spectra of an atom into sharp, principal and diffuse 

lines). Each orbit has a characteristic energy associated with it, the lowest energy level 

being Is, followed by the 2s and the 2p. The energy of the X-ray emitted depends on 

the transition made by the electron. These transitions are not random but governed by 

rules which are within the realms of Quantum Mechanics and outside the scope of this 

Report. 
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s shells p shells d shells 

N shell n=3 7 
Ma /K8 tI 

M shell n=2 / 

Jt 
Ka 

~ 
K shell n=l 

Fig. 2.8 Diagrammatic representation of the lower energy levels of electrons in an atom. 

2.4.1.2.2 

Possible transitions which accompany emission of X-rays 
K series fIlling of vacancy in the K (n=l) shell 
M series filling of vacancy in the M (n=2) shell 
a when /In=1 ~when/ln=2 

X-ray Generation 

When a beam of electrons accelerated through 30k V strikes a metal target such as 

copper or cobalt the metal is ionised, i.e. loses electrons. When electrons from the 

lowest energy levels, i.e. the innermost 1 s shell, escape, electrons from higher energy 

levels such as the 2p or 3s drop down to fill the vacant 1 s. Photons of energy are then 

released giving rise to the spectrum characteristic of the metal (Fig. 2.8). The lowest 

energy transition is isolated!:>y filtering out all but the Ka. X-rays and so producing a 

monochromatic beam (More precisely a doublet is produced due to a minute 

difference in energy levels between different 2p sub-orbits). 

Copper 2p ----> 1 s Ka A. = 1.5418A 

This monochromatic peak is superimposed on white radiation due to the general 

interaction of high velocity electrons with matter. 

Copper radiation filtered by nickel is the source generally quoted in the literature. 

However fluorescence by iron in the sample makes it less suited for many minerals. 

Fluorescence occurs when the primary beam ejects electrons of low energy from atoms 
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in the sample. Again electrons from higher energy levels drop down to fill the gaps 

emitting X-rays as they do so. In effect the sample acts as a secondary source of 

electrons. The problem of fluorescence is greatest when the incident radiation has a 

wavelength only slightly shorter than the ionisation potential of the metal, which is the 

case for copper radiation on iron bearing minerals. To minimise iron fluorescence 

there is now a trend to using cobalt radiation filtered by iron. 

Cobalt 2p ----> Is Ka j. wavelength = 1.79021 A 

2.4.1.2.3 Diffraction 

Diffraction from a 1 dimensional crystal is equivalent to that of light by an optical 

grating. When the X-rays from successive layers of the crystal are in phase, 

constructive interference occurs and the diffracted beam is detected as a peak. This is 

a function of the angle of the incident beam, the wavelength of the X-ray and is given 

by the Laue equation (Nuffield 1966). 

aSin9 = n j. 

For a three dimensional crystal, three simultaneous equations need to be solved, one 

for each Cartesian co-ordinate. Fortunately a simpler empirical method can be used. 

This treats diffraction of X-rays as if individual layers of the crystal were acting as 

semi transparent mirrors. Constructive interference occurs when the Bragg (1912) 

equation is satisfied (Fig. 2.9): 

DA = 2dSine n is an integer 
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Diffracted beam 

A 

Inter- 1 atomic 
spacing 
d 

Fig. 2.9 Condition for reflection according to Bragg's Law after Nuffield 1966 

While X-rays are not reflected by atoms, only diffracted, the results of this approach 

agree with observations. 

2.4.1.3 Interpretation of XRD Profiles 

In modern X-ray powder techniques the sample is scanned by increasing the angle 

between the diffracted and the undiffracted beams (29), (Fig. 2.9) at a constant rate of 

29/min. Three aspects of the XRD profile produced give infonnation about the atomic 

structure of the lattice. 

• Position of the peaks 

• Intensity of the peaks 

• Shape of the peaks 

2.4.1.3.1 Position of Peaks 

The position of peaks is a measure of the distance between planes within the crystal, 

the d-spacings, and is used to identify the minerals present. Small shifts in these 

peaks give information about the chemical content. X-ray diffraction is particularly 

suitable for this type of qualitative analysis. Because the position of peaks varies 

slightly with operating conditions it is necessary to calibrate with respect to quartz 

when a high degree of precision is required (Section 2.4.1.6). 
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2.4.1.3.2 Intensities and Areas of Peaks 

The intensity and area of a peak of a particular mineral is proportional to the total 

amount of that mineral present. Unfortunately it is not a direct relationship, as the 

intensity is affected by numerous factors of which two are relevant to the analysis of 

slate. Both the orientation of crystals and their size affect the area and intensity of 

peaks. By grinding the sample to I-lOll both of these problems can be minimised. The 

intensities of XRD peaks were used as a measure of crystallinity (Section 3.4) while 

the areas of XRD peaks were used to estimate the mineral composition of slates 

(Section 2.5.5). 

2.4.1.3.3 Peak Shape 

The shape of the peak is used to measure the increase in crystallinity of a slate and is 

discussed in detail in Section 3.4. 

2.4.1.4 Computer Software 

Traces' is a computer software package, which is used to process the X -ray profile and 

which attempts to quantify the three aspects of the scan discussed above. Minerals are 

identified by comparison with standards. Relative intensities of peaks are determined 

and concentrations are estimated based on a similar rock with known composition. 

The program is invaluable in handling the data, especially in determining peak heights, 

areas under curves, full width at half magnitudes FWHM (Section 3.4) as well as 

storing and retrieving XRD profiles. However, the algorithm used in some of the 

quantification procedures was not found satisfactory and these were done manually. 

2.4.1.5 Method 

Sample Preparation 

Slurry was prepared from each sample by mixing the powdered slate with acetone, 

pouring on to a glass slide and allowing to dry. The size of the sample was 25mm x 

Chapter 2 Mineralogy 



34 

25mm. To minimise the alignment of the platy minerals parallel to the slide, the 

sample was continually stirred as it was being poured onto the slide. In addition, a 

rapidly-drying solvent i.e. acetone was used to minimise the settling time. The areas 

and intensities of the white mica and chlorite peaks were compared with the average 

values obtained for two rock samples, one taken parallel to cleavage and the other 

perpendicular to cleavage (Table 4.1). Areas of the white mica peaks and the chlorite 

peaks were +40% and -7% relative to the average values respectively. Similarly, the 

respective intensities were +4% and -22% relative to the average values. Both the area 

and intensity of the quartz peak were +28% relative to the average for the two rock 

samples. Hence the degree of alignment is white mica > quartz> chlorite. 

2.4.1.6 Results 

As most samples contain quartz, the position of the quartz [100] peak was used as an 

internal standard at 24.26°. This was particularly important in the identification of the 

iron ore minerals, as the main peaks of both pyrite and haematite are very close. 

Results are given in Appendix 2.1. The major minerals, quartz, white mica and chlorite 

are present in all slate, however it is possible to make some general comments on of 

the mineralogy of a slate producing area, in terms of the type of carbonate and iron ore 

present. These generalisations are summarised in Table 2.6. 

Area Ballachulish Easdale Highland Border Macduff 

Carbonate Dolomite Dolomite/ Calcite None 

Magnesite 

Iron Ore Pyrite/Pyrrhotite PyritelPyrrhotite Haematite Haematite 

Distinctive Amphibole Bute slate has a 

Mineral separate paragonite 

phase 

Table 2.6 Summary of the accessory minerals found in Scottish slate. For a more detailed review 

see Quarry Reports Appendix A 

The intensities of the major minerals were determined and used for crystallinity 
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measurements (Section 3.4.2). 

2.4.2 Determination of the Chemical Composition of the 
Phyllosilicates 

Chemical composition of the phyllosilicates was determined by electron microprobe 

analysis. In this techniques a high energy beam of electrons is finely focussed onto the 

polished carbon coated surface of the sample. 

The source of electrons, called an "electron gun", is a tungsten filament which emits a 

cloud of electrons when heated. This cloud of electrons is converted into a beam by 

passing through a cylindrical metal cup and accelerated towards an anode with a 

positive potential difference of approximately lOkV. Having passed through an 

aperture in the anode, the beam is focused by passing through cylindrical 

electromagnets so that it attains its smallest diameter at the specimen. When 

bombarded with electrons the specimen gives off X-rays which are characteristic of the 

elements within. These X-rays are analysed by X-ray dispersive spectrometers, 

whereby the beam is separated into peaks by diffraction by a crystal lattice according to 

Bragg's law as described (Section 2.4.1.2.3). However in the case of electron 

microprobe procedure, several crystals of different inter-atomic spacing are needed to 

cover the whole range of wavelengths which need to be analysed. This generates an 

X-ray spectrum characteristic of each element present, the intensity of which is 

proportional to the concentration of that element. This concentration is measured by 

comparing the intensity of the peak corresponding to a particular element to that 

observed in a standard. In addition, it is necessary to correct for differences between 

the composition of the specimen and that of the standard. This is caused by the 

interaction of the X-rays with all the major minerals present in the specimen due to 

back-scattering (Z), absorption (A) and fluorescence (F). The correction procedure, 

called ZAF, is done on-line to enable each analysis to be checked before the next 

analysis (Reed 1996). The chemical compositions of the white micas and chlorites 

present in the slate standards (Table 2.5) were determined by this technique. 
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2.4.2.1 Method 

Machine Conditions: 

The electron microprobe used was the Camebax SX-50 with four spectrometers 

operated at lOkV accelerating voltage with a 6nA beam current and a finely focused 

beam. 

Spectl, TAP { Na (5s), AI(5s) }; Spect2 LIP {Fe(20s), Mn(lOs)}; Spect3 TAP 

{Si(5s),Mg(lOs)}; Spect4 PET {K(5s), Ca (lOs), Ti(lOs) } 

The problem of spot analyses of white micas is loss of the relatively volatile alkalis 

during analysis. Some workers avoid this by defocusing the electron beam but this 

results in a larger area being targeted and in fine-grained materials the resultant 

analysis is of a mixture of minerals. Apart from current, the conditions used in this 

Study were those developed by Dempster and Tanner (1997) whereby a finely focused 

beam is used to analyse fine grained micas. This has been further modified to minimise 

the loss of alkalis in white micas by reducing the beam current from 20nA to 6nA (Per. 

com. Dempster). The effectiveness of this was tested by analysing the same location 

twice and it was found that the loss of K and Na was less than 15% in the second 

analysis. All operating conditions were checked by the analysis of in-house standards 

of known composition and compared with results obtained at other laboratories. 

Because of these low beam currents and the fine grain size, it was not possible to 

identify individual minerals visually and many analyses showed a mixture of both 

chlorite and white mica and hence were discarded. Satisfactory analyses were 

identified as follows: 

• for white micas by selecting analyses with total oxides of approximately 95%, total 

alkali cations of approximately 1 per formula unit and low Fe+Mg values. 

• for chlorite by selecting analyses with total oxides of approximately 90% and low 

total alkali cations. There was obviously no problem with loss of alkalis. 

2.4.2.2 Results 

The chemical compositions of the'white micas and chlorites were calculated based on 

total cation charges of +22 and +28 respectively. Over 10 satisfactory analyses were 
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obtained for both the chlorite and white micas in each standard sample. The precision 

of the results was measured by the coefficient of variation
2 

(C of V) e.g. for 
? 

Ballachulish slate (standard EL-l 0) the C of V was 0.03-0.04 for the main elements in-

chlorite and slightly less for those in the white micas (Appendix 2.2.) In the case of 

alkalis in the white mica the C of V was determined for the total alkalis present (Na + 

K), as individually there was considerably greater variation. Average results are given 

in Table 2.7. 

Ballachulish Slate 

EL-IO White Mica 

Chlorite 

Easdale Slate 

SB-6 White Mica 

Chlorite 

LP-S White Mica 

Chlorite 

Highland Border Slate 

Nao.13Ko.8IAII.8IMgolsFeo.08(Alo.87Si3.1301O)(OHh 

AII.47Fel.8sMg25sMnool(AI134Si26601O) (OH)g 

Nao.13Ko.63AllsoMgoI7Feo.12(Alo.soSiuoOIO)(OHh 

AII.62Fel.97Mn 0.01 Mg2.I 8(AII.22Si2.7801O) (OH)g 

Nao.I3Ko.6SA1 l.84MgO. J4Feo.os( Alo.soS iuoO 10)(0 Hh 

A11.39FeJ.9JMn 0.Q3Mg2.66(Ah,37Sh.6301O) (OH)s 

B2 White Mica Nao.2IKo.7~11.6IMgo.27Feo.26(Alo84SbI601O)(OHh 

Chlorite A1I.3sFeI.5Mg3.oo(AII.32Sh.680IO) (OH)s 

Ab-5 White Mica 

Chlorite 

DN-4 White Mica 

Chlorite 

Macduff Slate 

MK-4 White Mica 

Chlorite 

Welsh Slate 

W IF-I White Mica 

Chlorite 

N ao.23Ko.68AI J .7sMgo. I 2Feo 22(AlossSh.120 10)(0 H)2 

A11.<!6fe2.23Mg2.13(A1IJ6Siz.6401O) (OH)g 

Nao.20Ko.73All.7~go.12Feo.19(Alo.ssSh.1SOIO)(OHh 

All.sJPe2.JoMg2.J9(All.32Sh6801O) (OH)s 

Nao.32Ko.63Al1.s8Mgo04Feo.ls( Alo.99S i3.ol 010)( OHh 

AIJ.64fe2.47MgJ.6(All.37Sh.6301O) (OH)s 

Nao.ll Ko,,78All.8Mgo.~eo.07(Alo.8SSb.ISOIO)(OHh 

Al1.77Fe2.7SMgl.02(All.3SSh.6S01O) (OH)s 

Table 2.7 Formulae of white micas and chlorites as determined by microprobe analyses. 

Iron assumed to be present as Fel+· 

2 Coefficient of variation = sf x sample deviation Imean 
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2.5 Quantitative Analysis 

Because of the fine grain size and the inter-growth of minerals in slate, their relative 

amounts are difficult to evaluate by conventional methods such as point count analysis. 

Some workers simply denote the minerals as major and minor. Although XRD is the 

best method to determine what minerals are present, it is only semi-quantitative when 

used to determine the proportions of the different minerals. For this a combination of 

different methods was necessary. 

The following methods have been investigated: 

Spiking with known amounts of quartz 

2 XRF analysis 

3 SEM back scatter analysis 

4 Traditional chemical analysis 

5 XRD semi-quantitative analysis 

A comparative assessment of the different methods is given in Section 2.6. 

2.5.1 Determination of the amount of Quartz: Spiking 

To determine the amount of quartz present in a slate sample, known amounts of quartz 

were added and the increases in area and intensity of the quartz peak in an XRD scan 

were measured. The sample chosen was the Macduff standard MK-4, to which were 

added known amounts of Loch Aline sand, a source of quartz known for its purity. To 

ensure adequate mixing, samples were ground together for 5 minutes, mixed manually 

for 15 minutes, and this was then followed by mechanical mixing for a further 15 

minutes. Samples were scanned by X-ray using three cavity mounts so that the same 

sample could be remixed and reused. Each was scanned five times from 40 to 300 29 at 

10 29/min. The scan of a sample analysed in a cavity mount was compared with one 

prepared by the slurry method and no appreciable difference was found. 

Both the intensities and the areas of the [100] quartz peaks at 24.260 29 were 

determined and average values were plotted against the percentage of quartz added. In 

both cases the best-fit lines were linear and gave a correlation value of R2 >0.96 (Fig. 
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2.10). The amount of quartz present in the original sample was calculated using the 

regressional lines determined in Fig. 2.10 which in the case of area of peaks was as 

follows: 

y = 4591.4x + 2321.7 

x = total amount of quartz present in the spiked sample 

y = area of peak in counts 

Assume that the area of a peak is proportional to the amount of quartz present 

Let q = amount of quartz present in the slate sample 

Let k = proportionality constant 

Area of peak 

At 0% quartz added 

At 50% quartz added 

y = kx 

Y = kq = 2321.7 

2321.7 
k=---

q 

y = k(0.5q + 0.5) = 4617.4 

k = 9234.8 
q+ 1 

2321.7 9234.8 

q 

q =0.335 

= 
q+ 1 

(33.5%) 

Similarily, by using the increase in intensity of the quartz peak, the quartz present in 

the original slate sample was calculated as 27%. 

There was poor agreement between the two methods i.e. the area-of-peaks method 

gave a value of 33.5% and the intensity-of-peaks gave a value of 27%. 

As the percentage weight of quartz increased there was a corresponding reduction in 

the percentage weight of white mica and chlorite. This data set was used for evaluating 

the precision of XRD semi-quantitative analyses (Section 2.5.5.2). 
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Fig. 2.10 Determination of quartz content of a sample of Macduff slate (MK-4) by spiking with 
known amounts of quartz. a) The increase in the area of the quartz (100) peak with 
the amount of quartz added. b) The increase in the intensity of the quartz (100) peak 
with the amount of quartz added. 

2.5.2 X-Ray Fluorescence Spectroscopy: XRF Analysis 

XRF analysis is a standard technique for determining the bulk chemical composition of 

rocks. Powdered samples which have been fused into discs are bombarded with X­

rays and emit secondary radiation which is characteristic of the elements present. 

In this procedure. a metal anode is bombarded by a beam of electrons emanating from 
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a heated tungsten filament. The anode gives off a continuous spectrum of X-rays 

superimposed on which are the characteristic peaks of the metal of the anode. When 

the sample is bombarded with these X-rays, it gives off secondary radiation due to the 

filling of inner shells as described in Section 2.4.1.2.2. The choice of anode affects the 

intensity of the radiation, e.g. a metal with higher Z produces the more intense 

continuous radiation. However, the intensity of the secondary radiation produced by 

the sample is greater when the energy of the primary radiation is only slightly greater 

than the K peak of the elements present (Section 2.4.1.2.3). Some laboratories use 

tungsten (W, Z = 74) for heavy element analyses and chromium (Cr, Z = 24) for light. 

However, in this work the metal rhodium (Rh), which has an intermediate value for Z 

of 45, is used in all elemental analyses. The radiation entering the spectrometer 

consists of the secondary radiation produced by the sample which is superimposed on 

the primary radiation of the anode. The radiation is dispersed by several analysing 

crystals and analysed by wave length dispersive spectrometers (Section 2.4.2). 

In quantitative analyses, the intensity of the radiation from each element present in the 

sample is compared with that from standards of known composition. Systematic 

errors, such as dead time, line overlap, X-ray absorption and enhancement, can occur 

due to interaction of the X-ray beam with the sample. Corrections are done iteratively 

by the instrument, based on the assumption that the sample is homogeneous. In the 

case of major elemental analyses which have long wavelengths that only penetrate to a 

shallow depth, the sample appears heterogeneous however small the grain size. The 

sample is therefore homogenised by fusing it into a glass with a flux such as lithium 

borate. The presence of the flux dilutes the sample however, so that this procedure is 

used only for elements present at high concentrations i.e. the major elements. Results 

are given as the percentage weights of oxides of the major elements (Fitton 1997). 

2.5.2.1 Method 

A sample of approximately 19m was weighed precisely with 5 times the amount of 

flux (Spectroflux 105), ignited in a furnace at ll00°C, and then quenched into glass 

beads. Samples were analysed using a Philips PW1480 A. dispersive sequential X-ray 

spectrometer. One problem arose from the presence of small amounts of graphite in 
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many slates which was not completely oxidised during ignition. Trace amounts of 

scum were left, from which cracks in the glass beads would have propagated. To 

prevent this happening, a small amount (O.25gm-0.3gm) of the oxidising agent 

ammonium nitrate (NH4N03) was added to each sample, thus ensuring complete 

conversion of the graphite to C02 and its loss with the rest of the volatiles. 

Over 100 samples were analysed using the XRF technique and the major elements are 

shown in Appendix 2.3 expressed as percentage weights of oxides, all iron being 

assumed to be present as Fe203. 

To determine the precision of the analyses, one sample was processed 5 times and one 

glass bead analysed five times. The results are given in Appendix 2.4 and a summary 

in Section 2.5.2.2. 

2.5.2.2 Results 

The minerals present in each sample are known from the XRD whole rock analyses. 

XRF analysis determines the percentage weight of each oxide (iron was assumed to be 

present as Fe203). Allocating the individual oxides to different minerals is 

complicated by the fact that nearly every element is found in more than one mineral 

e.g. silicon is present in every mineral apart from the iron ore minerals and carbonates. 

Therefore any algorithm used to determine the relative amounts of each mineral 

involved approximations. 

2.5.2.2.1 Algorithm used in the determination of the percentage weight of each 
mineral 

1. The Loss on Ignition (La!) was taken as the difference between 100% and the 

total percentage of all the oxides. 

2. The weight of iron was recalculated to account for the presence of ferrous iron, 

using the ratio of reduced to total iron. This ratio was determined 

independently by wet chemical analysis (Section 2.5.4.3). The percentage 

volatiles were adjusted by adding the increase in weight due to oxidation of the 
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reduced iron. The XRF results were then normalised to account for this 

adjustment. 

% volatiles = % LOI + 0.112 x % wt FeO 

3. The percentage by weight of each oxide was converted to the number of moles 

of each cation. 

4. The amount of apatite present was calculated based on the moles of 

phosphorus and the amount of calcium, then determined stoichiometrically and 

subtracted from the total. 

5. Excess calcium if present was attributed to carbonate, calcite or dolomite 

depending on which mineral was detected by XRD analysis. The related 

amounts of volatiles were adjusted according to the chemical formula. 

6. The moles of white mica were based on the amount of potassium (K) present, 

using the formulae determined by the probe as described above. The amounts 

of sodium (Na) and other elements in the phengite were calculated using the 

formula and then the residue of each determined. 

7. Excess Na was attributed to albite, the associated silica and aluminium 

calculated and the residue found as before. 

8. The moles of chlorite present were determined as a function of the amount of 

excess Mg present. The associated elements were calculated according to the 

formula determined by microprobe analysis and subtracted from the residues. 

9. Excess aluminium (AI) was allocated to clay, and the associated silicon and 

water was calculated using the formula for halloysite SiAhOs.2H20 and 

subtracted from the residues. 

10. Excess silicon (Si) was attributed to quartz. 
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11. Excess iron (Fe) was attributed to the mineral detected by XRD analysis i.e. 

haematite or pyrite. In the case of pyrite the associated sulphur was deducted 

from the remaining volatiles. 

12. The percentage weight of each mineral was calculated from the number of 

moles times the molecular weight. The unallocated residue of each cation 

was then calculated as the weight of the oxide. 

When there was a high amount of potassium, steps 6 and 7 were adjusted by basing the 

moles of white mica on the sodium present and attributing the excess potassium to the 

feldspar orthoclase. An example of the above calculation is given in Appendix 2.2. 

The actual clay present was not determined, halloysite with two molecules of water 

was chosen as it gave the best fit for excess Ah03 and H20. The presence of this form 

of clay was detected in the XRD analyses of some Ballachulish slate. 

2.5.2.3 Evaluation of Results 

Assumptions: 

The white mica and chlorite formulae, as determined for a standard for each area, were 

assumed to be representative for all the samples in the area. Similarly the percentage 

of reduced iron was determined for one or two samples per area and taken as 

representative of the whole. 

The precision of XRF analysis was determined as follows: 

1 Random machine errors: one sample was analysed five times, sample 

deviations s for individual oxides were found to be <=0.06 and the coefficient 

of variation 0.005 (Appendix 2.4). 

2 Sample preparation errors: five beads were prepared for analysis from one 

sample. The sample standard deviation s was 0.14 for Si02 and for LOI while 

for all other cations it was <=0.06. The coefficient of variation was 0.007 

(Appendix 2.4). 
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The precision of the XRF analyses was high so that the results were suitable for 

calculating the modal analysis. One problem, difficult to assess, is the 

interdependency of results e.g. albite and white mica are interdependent and 

underestimating the white mica increases the apparent albite content. There is similar 

interdependence between chlorite and haematite, which is particularly sensitive due to 

the large formula weight of chlorite. Haematite and quartz are calculated as "left­

overs" after iron and silicon have been allocated to all the other minerals and are 

therefore subject to cumulative errors. The corollary of this is that if the amount of 

quartz found by this residual silicon method correlates with the amount of quartz 

determined by some other analytical method, this suggests that all the results for 

minerals containing silicon are satisfactory. 

The accuracy of the XRF method can be assessed in two ways, by examination of 

residue both quantitatively and qualitatively and by correlation with independent 

methods. 

The Residue: 

Generally the residue was attributable to the trace mineral ilmenite (Ti02) and to 

excess volatiles. The fit was good for the standard samples themselves and within the 

immediate confines of the quarry of origin. In most cases it was also possible to get 

satisfactory results for samples from surrounding quarries, but with one notable 

exception. The mineral composition of the Balvicar samples were calculated based on 

both the Breine Phort, Seil sta~dard and the Port Mary, Luing standard but no 

satisfactory results were obtained. This was due to the high level of magnesium and 

the presence of magnesite for which no allowance was made in the algorithm. 

Results 

The results are given in Appendix 2.5. A triangular plot of the three major minerals, 

(quartz, white mica and chlorite) is given in Fig. 2.lla. Because in a triangular plot the 

total of the three minerals is normalised to 100%, this had the effect of making samples 

with a high proportion of other minerals such as feldspar and clays have an apparently 

high value of quartz. It was therefore decided that an XY scatter plot, where the 
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absolute values of quartz as calculated by XRF analyses were plotted, was a better 

representation of the mineralogy. The axes chosen were quartz and white mica as 

these are the two most durable minerals in slate and hence give the best representation 

of the original mineral composition (Fig. 2.11). 

Chlorite 
0.2 0.4 0.6 0.8 1.0 

• Ballachulish 

C Easdale and 
Seil 

~ Luing 

o Aberfoyle 

+ Dunkeld 

White Mica 

Fig.2.11 Mineral composition of Scottish slate calculated from XRF data. a) A triangular plot 

showing the relative proportions of the three major minerals. 
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Fig.2.1l (continued) Mineral composition of Scottish slate calculated from XRF data. b) Absolute 

values of quartz and white micas. c) Average values grouped according to location. 
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2.5.3 SEM Back Scatter Imaging 

A scanning electron microscope (SEM) uses a finely focused high-energy electron 

beam similar to that used in an electron microprobe (Section 2.4.2) but designed for 

imaging. In a SEM, the electron beam is scanned across the surface of a specimen in a 

television-like raster and the signal from an electron detector is displayed on the screen 

(Reed 1996). Two types of image are produced, one from the secondary electron beam 

and one from back-scattered electrons. The secondary electrons give an image of 

topographical features which is used in assessing the slaty cleavage of slates (Chapter 

4). In this section the Back-Scattered Images (BSI) are used to give information on the 

compositional variation in a sample. 

A Back-Scattered Image is produced by the elastic collisions of the X-rays with the 

atoms on the surface of the sample. The intensity of BSE (Back Scatter Electrons) is 

dependent on z the atomic number of the element. This property was used to 

distinguish between minerals of different mean atomic number i.e. minerals with high 

average atomic number appeared bright and those with low z appeared dark. 

Approximate modal composition may be determined using the images of mean atomic 

number. 

2.5.3.1 Method 

Work was carried out on a Cambridge Instruments Stereoscan 360, using a four 

Quadrant Back Scatter Detector 

Machine conditions 

Filament current 

Probe current 

Extra high tension 

Working distance 

I::::2.60A 

I =-1.5-2.5 nA 

EHT=20KV 

WD ::::20mm 

The BSI is affected by the surface topography, so polished sections were used. 

Polished samples Were cut parallel and perpendicular to cleavage and carbon coated to 
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reduce charging. 

2.5.3.2 Results 

Knowing the minerals present in slate from the preliminary XRD work it was possible 

to attribute the different tones to the amount of each mineral present. In slate, metal 

oxides such as haematite appeared very bright, chlorite appeared bright, white mica 

appeared as mid-grey areas, while quartz and feldspar were a darker grey. It was not 

possible to distinguish other minerals e.g. dolomite has approximately the same 

density as white mica and hence was indistinguishable by this method. It was possible 

to integrate the relative areas of the different minerals using a digipad image analysis 

program. 

It was assumed that the area occupied by the different shades of minerals is directly 

proportional to the relative volume of the different minerals. Given that over 50% of a 

slate sample is made up of platy minerals and that these mineral show complete 

orientation as seen from stereo XRD profiles, it was necessary to check this 

assumption. This was done by comparing the relative areas for two sections, one taken 

parallel to cleavage and the other at 90° to cleavage. No significant difference was 

found in the relative area of each mineral for the two orientations in the samples tested 

(Table 2.8). 

MK-4 Very Bright Mid Dark grey 
bright % grey 0/0 

% % 
Parallel to cleavage 1 1 8 41 41 

Perpendicular to cleavage 7 6 44 44 

Table 2.8 Percentage areas of different minerals for two aspects of a slate one parallel to cleavage 

and one perpendicular. 

A much greater problem was caused by the inter-growth of the minerals, which, 

instead of dividing the area into distinct zones of different tones corresponding to the 
, 

different minerals, gave an ill-defined graduation from one shade of grey to another. 

This gave a trace with a high noise to peak ratio (Fig. 2.12). In order to maximise 
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resolution, adjustments were made to the probe current to increase the contrast, with a 

corresponding adjustment to the brightness, until the darker minerals were just 

detectable. However it was impossible to get consistent results for the Aberfoyle and 

Dunkeld standard samples. Results are given in Table 2.10. 

Brightness 

% area (% volume) 

%chlorite 

%white mica 
and dolomite 

%quartz and 
feldspar 

Fig. 2.12 High noise to peak ratio makes interpretation of SEM back scattered images imprecise. 

Interpretation of results: 

The percentage volume was converted to percentage weight as follows: 

% weight = % volume x specific gravity (S.G.) 

The densities of quartz and the iron ore minerals were obtained from the literature and 

a range of values for muscovite and chlorite (Deer et al. 1992). Due to the variable 

chemical composition of chlorite and white mica the apparent specific gravities of 

these minerals were calculated using the chemical formulae determined by electron 

microprobe analyses. This was done by taking the molecular weight of the mineral 

and dividing by the number of oxygens in the formula and standardising with respect 

to quartz. The percentage volume figures were converted to percentage weights by 

multiplying by apparent specific gravity and normalising (Table 2.9). 
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S.G. Apparent S. G. 

gmlcm 
3 gmlcm 

3 

Sample W/F-J EL-I0 MK-4 

Nos 

Quartz 2.65 

Haematite 5.25 

Pyrite 5.0 

Calcite 2.7 

Dolomite 2.8-2.9 

Feldspar 2.55-2.63 

Chlorite 2.3-3.3 3.15 3.01 3.10 Ripidolite 

Muscovite 2.77-2.88 2.92 2.92 2.92 White 

mica 

Table 2.9 Specific gravity of the various minerals found in slate (Deer et aL 1992). 

The specific gravity for chlorite fell within the range of values recorded by Deer et al. 

(1992), the values varying slightly from one area to the next depending on the 

proportion of iron present. W/F- I gave the highest at 3.15. The values for the white 

micas were slightly higher than those reported for muscovite, due to the presence of 

small amounts of iron in the fonner. 

Very bright Bright Mid grey Dark grey 

W/F-l L 17 46 33 % Volume 

2 19 50 29 % Weight 

EL-10 7 42 50 % Volume 

2 8 44 47 % Weight 

MK-4 7 12 50 31 % Volume 

12 12 49 27 % Weight 

Table 2.10 Relative amounts of major minerals by percentage volume and percentage weight 
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2.5.4 Chemical Analyses 

A selection of slate samples were analysed by the following traditional wet chemistry 

techniques: 

Loss on Ignition 

2. Carbonate Analysis 

3 Reduced Iron Analysis 

4 Graphite Analysis 

2.5.4.1 Loss on Ignition (LOI) 

A dried sample was ignited in a furnace at llOO°C for thirty minutes, allowed to 

cool and weighed. The process was repeated until a constant weight was achieved. 

% volatiles = LOI + % FeO x 0.112 

2.5.4.2 Percentage Weight of Carbonate 

The presence of carbonate was tested by adding a few drops of 10% Hel to the 

powdered sample and observing effervescence. The smell of sulphurous acid indicated 

the presence of sulphur in some samples. 

Carbon dioxide was determined quantitatively by igniting the sample at l100°C to 

l200°C and removing the volatiles in a stream of nitrogen. Carbon dioxide was 

absorbed in soda asbestos and determined gravimetrically. Similarly, water was 

detennined by absorption in a tube containing anhydrous magnesium perchlorate and 

determined gravimetrically. This is the classic method devised by Riley (1958). 

The amount of carbonate present was determined in duplicate for a selected number of 

samples (Table 2.11). 
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Sample H10 % weight COl % weight 

EL-I0 4.36 4.44 4.92 5.02 

LS-2 3.36 3.50 0.30 0.24 

SB-2 4.78 4.90 2.76 2.82 

SB-3 2.90 2.98 13.90 13.98 

LP-6 4.04 4.12 1.32 1.30 

LT-3 4.04 4.16 10.70 10.94 

LT-5 4.32 4.26 5.00 5.06 

MK-2 3.61 3.92 0.16 0.16 

MH-2 3.56 3.67 0.16 0.17 

ElK-I 2.92 3.04 4.66 4.66 

FJK-2 2.96 3.10 3.16 3.36 

FlEW-l 4.36 4.44 4.92 5.02 

ElEW-2 4.64 4.52 5.00 5.04 

Table 1.11 Carbonate and water determined gnvimetricaUy for a selection of slate samples. 

PyriteFeS2 

The amount of pyrite present was detennined from the amount of sulphur detected in 

XRF trace analysis (Appendix 2.6). 

2.5.4.3 Percentage Weight of Ferrous Oxide 

Ferrous oxide was detennined by titration with standard potassium dichromate 

solution after the rock had been dissolved by hydrofluoric acid, sulphuric acid and 

phosphoric acid (Riley 1958). 

The dichromate ion C120l is an oxidising agent in an acid solution and hence 

oxidises Fe2
+ to Fe3

+ as follows: 

C120l-+ 6 Fe2+ + 14H+ -+ 2Cr3+ + 7H20 + 6 Fe3+ 

Using K+ and 8042
- as spectator ions, this gives a balanced equation as follows: 

K2 CnO, + 7H2804 + 6Fe804 -+ Cn(804)3 + 3F~ (804)3;: K2(804) + 7H20 

Diphenyl amine is used as an indicator, changing from colourless to blue at the end 

point. 
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The ratio of reduced to total iron may be typical of the environment of deposition of 

the original protolith. High values of approximately 90% were found in both the dark 

grey slates i.e. the Welsh and the Ballachulish samples, which suggests reducing 

conditions at the time of sedimentation of the original deposits. The presence of both 

graphite and pyrite is also associated with a reducing environment during deposition. 

In contrast to the Ballachulish and the Welsh slate, the Macduff slate has a low ferrous 

content and the iron ore mineral found in such slate is haematite. 

FeD % weight Graphite detected 

EL-IO 5.16 89% yes 

SB-6 2.90 66% yes 

SB-7 2.47 52% yes 

LP-5 4.30 66% yes 

B2 1.90 42% no 

AB-5 2.80 33% no 

DN-l 5.66 78% no 

DN-4 2.90 39% no 

MK-4 2.97 28% no 

MF-1I 2.58 29% no 

W/F-l 6.92 88% yes 

Table 2.12 Amount of reduced iron and the ratio of reduced to total iron. 

The situation is more variable in the Highland Border slate. Two samples from the 

Newtyle quarries at Dunkeld (Appendix A 4.4.3) showed very different values; the 

first sample DN-l has a high ferrous content while the second DN-4 has a low ferrous 

content. This difference is seen in the colour of the slate whereby the low ferrous 

content is due to the presence of ferric haematite which imparts a purple colour to the 

slate. The first sample is green, indicating absence of haematite and not only a high 

chlorite content. The colour of slate in the quarries follows the bedding direction and 

hence changes of colour reflect primary differences in oxidation potential (Eh volts). 

2.5.4.4 Graphite 

The presence of graphite was detected in XRF analysis as discussed (Section 2.5.2.1). 
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It was also detected during reduced-iron determinations where on dissolving the 

sample in hydrofluoric acid, the insoluble graphite floated to the surface (Section 

2.5.4.3). Results are reported in Table 2.12. 

2.5.5 XRD Semi-Quantitative Analysis 

The possibility of determining the mineralogy of slate using XRD analysis without 

reference to a standard was examined. 

The area and intensity of the peaks is related to the amount of the mineral present, but 

the chemical composition of the mineral and preferential orientation also affect the 

results. In addition problems occur when the sample is small in relation to the incident 

beam. The intensity of the diffracted X-Ray is proportional to the volume of the 

sample irradiated; hence there is loss of intensity when the sample size is less than the 

spread of the incident beam or thinner than that penetrated by the beam. The length of 

the sample is particularly important at low 29 angles used in the analysis of 

phyllosilicates. The 7° 29 XRD peak, which is unique to chlorite, is particularly 

affected by this problem. A better peak would be the [002] at 14° 29 but this is also 

the location of the [00 1] peak of several clays. The [00 1] white mica peak at 10° 29 is 

also affected by this problem but to a lesser extent. 

The length L of a sample is by the geometry of the X ray Diffractor as follows 

L = Ro Tan a/SinS 

7 4.9 

10 3.5 

14 2.5 

a = incident beam slit 

Ro = goniometer radius = 17.3cm 

9 = angle of the incident beam 

(Moore & Reynolds 1997) 

intensity/maximum intensity 

50% 

71% 

100% 

Table 2.13 Loss of intensity at low 29 angles for a sample 2.Scm long 
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At high angles of 2e, there is an equivalent loss of intensity due to the samples being 

insufficiently thick. However, simply increasing the thickness affects the position of 

peaks and defocuses the beam. 

Thus there are many problems in determining the mineral composition of a slate by 

XRD, and quantitative analysis alone is not recommended unless there is no 

alternative. Instead, the best method is to determine the mineral composition relative 

to a slate from the same area whose composition is known from XRF and electron 

microprobe data as already discussed. Then equivalent peaks are compared and the 

chemical composition calculated on a pro rata basis. In this way problems of loss of 

intensity due to the geometry of the XRD equipment are minimised as well as variation 

due to differences in chemical composition etc. 

Section 2.3 describes how a standard was defined for some quarries by the method of 

determining the chemical composition of the phyllosilicates (Section 2.4.2). Time 

constraints made it impossible to determine such a standard for all of the quarries 

covered in this Report. Therefore the possibility was investigated of determining a 

rough estimate of the mineral composition based on XRD analyses alone without 

reference to a standard. 

The bulk of slate is made up of the platy minerals, (white mica and chlorite), which 

have similar grain size and orientation, differences in the intensities of their 

representative peaks are due to (i) chemical composition (ii)loss of intensity due to the 

sample length being too small and (iii) abundance. It is possible to correct for the 

effect of chemical composition by calculating the attenuation coefficient ~ (see 

below) and applying a correction factor to the peak intensities. It was also possible, 

using the values shown in (Table 2.13), to correct the intensity of the peaks for loss due 

to the sample being too short. It then becomes reasonable to attribute the relative 

intensities and areas of mineral peaks to their relative concentrations. It is not however 

possible to extend the process to estimate the amount of quartz, due to differences in 

the crystal structure and degree of orientation. However there is no variation in the 

intensity of the quartz peaks due to different chemical composition. Following the 
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standard sample preparation procedure (Section 2.4.1.5) to minimise any variation due 

sample preparation, it was found that the ratio of the quartz [100] peak to the amount 

of quartz present (as determined by XRF) was relatively consistent as compared with 

that found for the white mica (Fig. 2.13). The best-fit line was found using a linear 

regression analysis and the proportionality constant determined. Using this constant, it 

is therefore possible to get an approximate quartz content for slates from areas where 

no more accurate information is available. 

2.5.5.1 Determination of attenuation coefficient ~ 

According to Klug & Alexander 1974 the intensity I of an X-ray is related to the 

weight wand attenuation coefficient Il 

II = w· -! 

Ili 

The attenuation coefficient of a mineral of known composition can be determined 

using the weighted average of each element present (Table 2.14 & 2.15). Values for 

white micas and chlorite are given in Table 2.16. 

Il = I:willl 

Z Element Il (Co Ka) 

8 0 17.4 

II Na 47.1 

12 Mg 63.5 

13 AI 77.5 

14 Si 100.4 

19 K 222.0 

20 Ca 257.0 

22 Ti 300.0 

25 Mn 405.0 

26 Fe 56.2 

Table 2.14 Elemental mass attenuation coefficients extracted from the International Tables for X­
ray Crystallography Vol. 4 1974 for Co Ka radiation. 
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Mineral Formula 1.1 

Quartz Si02 56.2 

Albite NaAIShOs 52.9 

Haematite Fe203 44.5 

Pyrite FeS2 101.5 

Calcite CaC03 112 

Magnesite MgC03 29 

Siderite FeC03 35 

Dolomite MgCa(C03)2 74 

Table 2.1S Attenuation coefficients for a selection of minerals 

Sample 1.1 chlorite 1.1 white mica 

El-tO 46.32 64.60 

SB-6 46.23 61.79 

LP-5 45.92 62.45 

B2 45.70 62.73 

AB-S 45.83 61.93 

DN-4 46.32 62.71 

MK-4 46.39 61.61 

Mean 46.1 62.S 

SDev 0.28 1.0 

CofV 0.0006 0.016 

Table 2.16 Attenuation coefficients for chlorite and white micas in the standard slate samples. 

The effect of chemical composition on the chlorite attenuation coefficient is 

insignificant (s = 0.28) and an average figure of 46.1 was used. Similarly, the average 

figure for white mica of 62.5 was used (s = 1.0), (Table 2.16). 

2.5.5.2 Method 

Powdered samples were scanned by XRD from 4 - 30° at 10 26 per minute. The areas 

of the [100] quartz peak at 24.2~0 26. the [001] white mica peak at 100 26 and 
, 

the [00 1] chlorite peak at 7° 26 were determined using the Traces software package. 
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Precision of XRD results 

The following statistical evaluation was carried out: 

The precision of the software program was assessed by determining the areas 

of each of the three main peaks over 20 times. 

2. Three XRD samples were prepared from the same slate and analysed over an 

interval of two years. 

3. The effect of reducing the concentration was assessed by mixing the slate with 

quartz (data from spiking experiment, Section 2.5.1) 

Coefficient of variation 

Determination of area - Traces software 

2 Sample preparation 

3 Variation due to concentration 

Quartz 

0.014 

0.04 

White Mica 

0.017 

0.05 

0.16 

Table 2.17 XRD precision measurements. 

Chlorite 

0.027 

0.05 

0.17 

The results are summarised in Table 2.17, where it can be seen that variation in 

concentration has the most significant effect on the precision of results. This shows 

that variation in the results due to sample preparation or interpretation is insignificant 

compared with imprecision due to differences in the sample itself. 

Reliability of XRD results 

There is no correlation between the amount of the phyllosilicates of the different 

standards as determined by XRF analyses and the area of the XRD peaks. (Fig. 2.13). 

However the quartz content as determined by XRD does show some correlation with 

the XRF results. This shows that quartz peaks are less affected by preferential 

orientation than are white micas. In this section this relationship is used to determine 

the approximate amount of quartz in a slate. 
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Correlation between area of XRD peak and %weight of 
mineral 
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Fig. 2.13 Area of XRD peak relative to the XRF results for ditTerent standard samples. 

Sample Counts % weight 

MK-4 2592 22.5 

LP-5 1708 19.1 

EL-I0 3394 36.0 

WfF-l 3104 23.6 

SB-6 3491 24.3 

AB-5 1710 16.0 

AB-6 2971 25.2 

WfF-9 3177 24.4 

DN-4 2948 22.8 

Table 2.18 Area of XRD peaks and the quartz content as determined by XRF analysis. 

2.5.5.3 Results 

XRD is a very simple and convenient procedure and when necessary can be used to 

give a rough estimate of the miner~l composition of a slate as follows: 
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1. Determination of the percentage weight of quartz at 1 16 counts per 1 % weight 

(Fig. 2.13). 

2. The remainder of the composition is assigned to phyllosilicates in the ratio of 

their [001] peaks corrected for their attenuation coefficient (Table 2.16) and 

loss of intensity due to the size of sample being smaller than the spread of the 

incident X-ray beam (Table 2.13) 

3. Some refinement of the above may be necessary in the case of slates with large 

amounts of feldspar and carbonates. 

2.6 Comparison of Results 

2.6.1 Evaluation of the Spiking Technique 

The values obtained for quartz by this method are substantially different from those 

obtained in both the SEM and XRF methods i.e. the sample of MK-4 has 22% quartz 

using XRF method but 33% using the spiking method as determined by the area of the 

quartz peak. One explanation is that this is due to the difference in grain size and/or 

crystallinity between the added quartz, and that present in the slate. These values of 

quartz content were not used in this Report. 

2.6.2 Comparison of XRF and SEM Analyses 

SEM results (Table 2.10) are compared with those calculated from XRF data 

(Appendix 2.5) in Table 2.19. When XRF results are grouped according to mineral 

density e.g. quartz plus feldspar is compared with the dark zone of a SEM back 

scatter image, there is reasonable agreement between the results (Table 2.18 & Fig. 

2.14). However the SEM method is limited in its usefulness. Apart from the 

difficulties in analysis, it is also unable to distinguish between minerals of similar 

densities. However it has been useful in giving an independent assessment of the 

accuracy of the XRF results. 
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Sample Quartz Feldspar Chlorite White Dolomite! Haematite! 

Mica Calcite Pyrite 
.-

SEM Dark area Light grey Medium grey Very bright 

MK-4 XRF 22.5 5.4 14.6 41.5 7.6 

SEM 27 12 49 12 

W/F-l XRF 23.6 2.6 27.6 45.7 0 

SEM 29 19 50 2 

EL-IO XRF 34.6 14.5 21.1 26.3 1 6.5 2.7 

SEM 30 8 43.5 2 

Table 2.19 XRF data grouped according to density of individual minerals for comparison with 
SEM results. 
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Fig. 2.14 Correlation ofXRFISEM results for minerals of comparable densities 
e.g. medium density minerals (SEM) relative to white mica + dolomite (XRF). 

2.6.3 Comparison of XRF and Traditional Chemical 
Analyses 

The carbonate values determined by XRF (Appendix 2.5) were compared with those 

produced by wet chemistry. Although the correlation between the percentage C02 

values determined by the two methods gives R2 = 0.9, there is a systematic difference 
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whereby the values determined by wet chemistry are consistently higher than those 

determined from XRF calculations. This could be due to the presence of other 

carbonates such as siderite, but it is more likely to be due to the oxidation of trace 

amounts of graphite in the wet chemistry technique. Oxidation of one gram of graphite 

yields 3.7gm of C02. Substantial amounts of magnesite are present in the Balvicar 

(Appendix A 3.5.4) and the Toberonochy (Appendix A 3.5.5) samples which are not 

accommodated by the XRF algorithm and hence not used in the correlation. 

~ 
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c .: 

M 
0 
U 

Carbon dioxide content as determined by XRF and wet 
chemistry analyses 
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1.0 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 

C02 from wet chemistry analyses % weight 

Fig. 2.1S Correlation between COl calculated from XRF analyses and that determined by wet 
chemistry analyses. 
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Sample CO2 % C02 by Difference CO2 XRF 

Run 1 Run2 wt calculated from XRF % wt dolomite 

EL-IO 4.84 4.92 4.88 1.99 3.11 6.5 

LS-2 0.30 0.24 0.27 0.27 0.00 0 

SB-2 2.76 2.82 2.79 1.42 0.57 1.2 

SB-5 2.52 2.52 2.52 1.66 0.86 1.8 

BB-2 5.40 5.44 5.42 3.17 2.25 4.7 

LP-6 1.32 1.30 1.31 1.31 0.00 0 

LT-5 5.00 5.06 5.03 2.54 2.49 5.2 

MK-2 0.00 0.00 0.00 0 0.00 0 

LT-3 10.7 10.94 10.82 0.81 1.7 

SB-3 13.9 13.98 13.94 6.36 13.3 

Table 2.20 Comparison of carbon dioxide results obtained by XRF and wet chemistry. 

2.6.4 Comparison of XRF and XRD Results. 

The mineralogy of slate was calculated from XRD data relative to the relevant standard 

on a pro rata basis by comparing the areas of the different peaks with the equivalent 

values in the standard. This method should eliminate many of the problems inherent in 

XRD quantification analyses. There is poor correlation between the XRF and the 

XRD quantitative analyses when applied to individual minerals, but when the figures 

for the three major minerals (quartz, white mica and chlorite) are grouped together the 

weighting of the occasional rogue XRD result is reduced and the correlation is 

moderately good. For example for Ballachulish slate R2 = 0.69 (Fig. 2.16) although 

the best-fit line does not have a slope of one, nor an intercept of zero. As XRD results 

measure crystalline material, while XRF determines the total amount of mineral based 

on its chemical composition, it was hoped that the ratio of XRD to XRF results would 

give a measure of the crystalline/amorphous ratio, but this was not possible due to 

there being too many variables. 
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Mineral Composition of Ballachulish Slate 
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Fig. 2.16 Comparison of the mineral composition of Ballachulish slate as determined by XRD and 

XRF analyses. The XRD results are calculated on a pro rata basis relative to the standard EL-I0 

The composition of Ballachulish samples was also determined without reference to the 

standard EL-lO as described in Section 2.5.5.3. In this method the sum of the 

concentrations of the three major minerals is normalised to 100% i.e. recalculated pro 

rata so that the total equals 100%. Therefore to enable comparison with the XRF 

results, the sum of the concentrations of the three major minerals as determined by 

XRF analyses was also norriialised to 100%. The correlation figure between XRF and 

XRD results was R2 = 0.64, with the slope of the graph equal to one and the intercept 

equal to zero. This shows that it is possible to get a rough estimate of the proportions 

of the major minerals in slate without supporting electron microprobe and XRF 

analyses (Fig. 2.17). It is however impractical to extend this method to other minerals 

present in slate. 
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Fig. 2.17 Comparison of the three major mineral composition of BaUachulish slate as determined 
by XRD (without reference to the standard EL-I0) and XRF results have been normalised to 

100% i.e. recalculated so that the totals equal 100% 

2.7 Conclusions 

• To determine the mineralogy of slate is not a straightforward process and a 

combination of methods is necessary. 

• The above work was based on all the slate quarries visited in Scotland, which 

stretch over a wide area. It is therefore not surprising that using chemical 

composition of the phyllosilicates from one quarry to determine the mineral 

composition of slates in another quarry was not always successful. 

• The methodology described above would be better suited to determining the 

mineralogy of the different zones of a quarry chosen for a more detailed study. 
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1 Detennination of the formulae of the phyllosilicates by microprobe analysis for 

one or more standard samples. 

2 Interpretation of bulk chemistry from XRF results to give the composition of 

the slate in terms of the major minerals present, checking results with SEM 

quantification where possible. 

3 XRD analyses, although less precise, are useful in a fairly homogeneous area 

and would support the XRF analyses. Where XRF and electron microprobe 

results are not available the XRD can be used for less precise results. 

4 Detennination of carbonate and reduced iron for a few samples. 

JdeaUy the mineralogy should be done on un-weathered samples from boreholes. 

Comparison with the weathered sUrface would give important information on how 

the slate of a particular quarry is weathered. Such work is outside the scope of this 

research. 
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Chapter 3 The Metamorphic Grade of Slate 

3.1 Introduction 

The metamorphic grade was investigated as a possible control on the quality of a slate 

as a roofmg material. The aim of this chapter is to assess different ways of evaluating 

the metamorphic grade in slates where temperature and pressure are low, and to 

relate the grade to the quality of the slate. 

The changes that occur during diagenetic and metamorphic processes are 

• growth of new minerals and loss of clay minerals 

• change in the chemical composition of phyllosilicates 

• increasing crystallinity due to increasing regularity of the atomic structure of 

individual minerals. 

• increase in grain size 

The mineral composition of slate and the chemical composition of individual minerals 

have been discussed in Chapter 2. This section is concerned with the route taken in 

converting the protoliths of slate, fine-grained clays and silts, into the final product. x­
ray diffraction can be used to detect the petrological changes which have taken place in 

developing a slate, but is particularly useful in assessing the increase in crystaUinity 

due to increasing regularity of the crystalline structure and grain size. 

3.2 Background -Metamorphism 

Most slates are derived from clays and silts, which are fine-grained sediments 

deposited under water. Clay minerals have a grain size of < 0.0039mm (11256") on the 

Udden-Wentworth scale while silt has a grain size of 0.0039 - 0.0625mm. (11256" -

1116"). When these deposits are subjected to increasing temperature and pressure 

during burial, they become compacted and minerals recrystallise to form a rock. 
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Diagenesis is the tenn used to describe the changes that take place as sediments are 

converted to a sedimentary rock, i.e. the clays and silts become a mudstone. As the 

conditions become further and further removed from those at the surface, minerals that 

were stable in a sedimentary environment begin to dissolve and new minerals begin to 

grow, i.e. the rock undergoes metamorphism. There is no agreed divide between 

diagenetic processes and metamorphic processes. The tenn anchimetamorphism was 

introduced by Kubler (1967) and followed by Dunoyer de Segonzac (1969) and Frey 

(1970) to cover all those processes which occur between late diagenesis and epigenesis, 

the earliest stage of metamorphism. 

With increasing temperature and pressure the mudstone becomes a shale. Increasing 

alignment of the minerals and the shale becomes a slate and at slightly higher 

metamorphic grade a phyllite. If temperature and pressure increase even further, grain 

size becomes larger, slaty cleavage is lost and the rock becomes a schist. 

3.2.1 Types of Metamorphism 

There are many processes involved in metamorphism but only those relevant to the 

genesis of slate are described. 

3.2.1.1 Burial Metamorphism 

Sediments experience greater temperature and pressure with depth of burial. Whilst 

the geothennal and geobarometric gradients may vary considerably, average values are 

taken as 2SoCIkm and 0.3kbarlkm respectively. Under a thick pile of sediments 

accumulating in a basin therefore, the conditions can be sufficiently extreme for 

metamorphic processes to take place. This is called burial metamorphism. 

3.2.1.2 Regional Metamorphism 

It has long been recognised that regional metamorphic rocks occur in belts up to 

thousands of kilometres long, but only tens of kilometres wide. This type of 
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metamorphism is related to large scale compression which occurs at lithospheric plate 

boundaries or points of inter continental compression. In these conditions, rocks are 

subjected to directed stress, fold, deform and develop cleavage and schistosity. Slate is 

found in these belts where sediments, sufficiently fine grained, have experienced just 

the right temperature for characteristic slate minerals to grow and sufficient directed 

pressure for cleavage to develop. 

3.2.1.3 Contact Metamorphism 

When an igneous body is intruded into the upper crust, the surrounding country rock is 

baked, producing a hornfels. When the country rock is slate, this has the effect of 

destroying the cleavage in the aureole surrounding the intrusion, except in the outer 

fringes where the slate is hardened sufficiently to produce a good roofing material. 

Macduff roofing slates were produced from one such aureole. However, the same 

process which produced good quality slate also limited its extent (Appendix A 5.2.3). 

3.2.2 Metamorphic Zones of the Scottish Highlands 

The slate belts of Scotland occur in a classic area of metamorphic geology. They are 

the product of regional metamorphism and were formed during the Caledonian tectonic 

events. Barrow (1893,1912) made the first systematic studies of the variation in degree 

of metamorphism across the Scottish Highlands, setting up a zonal scheme which has 

been used world wide. Different minerals, e.g. chlorite, biotite, grew at different grades 

of metamorphism and were uSed to identify metamorphic zones. He recognised that 

slates were the least changed from the original sediments and called the area with slaty 

cleavage the "zone of undigested clastic micas". This zone was later renamed the 

chlorite zone by Tilley (1925) after the mineral that typifies this level of 

metamorphism. Slates are generally found in this chlorite zone (also referred to as the 

greenschist metamorphic zone due to the colour imparted to the rocks by the presence 

of green minerals such as chlorite). 

Barrows (1893,1912) work formed the foundation for subsequent studies of high grade 

metamorphism, wherein equilibrium constants of many different metamorphic 
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reactions are used to detennine the geothennal and geobarometric conditions. 

However, slate is found at a grade where original minerals have not attained 

equilibrium conditions, so that other methods had to be devised to investigate regional 

metamorphism at these very low grades. 

3.2.3 Diagenetic and Metamorphic Zones 

Due to the small grain size of low grade metamorphic rocks and the non-equilibrium 

conditions, it is not possible to use isograds in the conventional manner. Measurement 

of metamorphic grade therefore exploits the increasing grain size and increasing 

crystallinity of individual minerals. A technique frequently used is illite crystallinity 

(Ie), wherein the sharpness of X-ray diffraction peaks (expressed as an angle 29) is 

used to measure both of these properties (Illite crystallinity is discussed at greater 

length in Section 3.3). Kubler (1967) defined the boundaries of the anchimetamorphic 

zone (anchizone) in tenns of the observed illite crystallinity and assigned a value of 

0.43°29 to the lower boundary and of 0.21°29 to the upper boundary (Table 3.1). 

Zone Illite crystallinity (~e). 

diagenetic zone > 0.43 

anchizone 0.43 - 0.21 

epizone < 0.21 

Table 3.1 Limits of dial~~etk and metamorphic zones defined by Wite crystallinity 

The metamorphic grade of Scottish slate spans the boundary between the anchizone 

and the epizone but most is found in the epizone (See Fig. 3.6). 

3.2.3.1 Diagenetic Zone 

During diagenesi~ water is driven out of the sediments and clay minerals such as 

kaolin (Section 2.3.2) become unstable and are converted to chlorite and illite. These 
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changes are not isochemical. as extensive exchange of ions between the sediments and 

the pore fluids takes place. 

With increasing depth ofbwial, clay minerals with irregular mixed layers give way to a 

mineral having regular layers called allevardite. At greater depth this in turn is 

replaced by the simple ordered mineral illite. Chlorite is also fonned from irregular 

clay minerals by the adsorption of Mi+ cations to produce a mineral with mixed layers 

of chlorite and smectite i.e. co"ensite, which on increasing depth of bwial gives way 

to a mineral having regular layers i.e. chlorite (Dunoyer de Segonzac 1970). (Fig. 3.1). 

The mineral fonned is controlled by the cation in the pore fluids e.g. if K+ is adsorbed 

illite is fonned and if M~+ then chlorite is fonned. 

Roberts and Merriman's (1985) observations, in their regional study of the slate of the 

Welsh basin, agree with the above conclusion. In what they called "Stage I" the < 2J.L 

fraction has an illite crystallinity of>O.43 ~9 and the polytype is IMd (Section 2.2.2.3) 

No cleavage fabric had developed at this stage. 

Irregular mixed I Clay Minerals 
layers Adsorption of Mi+ , Adsorption of K 

/ \ Dehydration 
Regular mixed Adsorption of ions 
layers Corrensite Re-arrangement of 

Allevardite 

I 
the mineral lattice 

Ordered " minerals Chlorite I Diagenesis Illite 

Fig. 3.1 Tbe transformation of clay minerals during diagenesis after Dunoyer de Segonzac (1970) 
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3.2.3.2 Anchizone 

As well as an improvement in illite crystallinity, several other changes have been 

reported in the anchizone. 

a) Change of illite polytype 

Frey (1970), in his regional study of the Alpine border region in Switzerland, listed a 

change in polytype as one of several events that take place in the anchizone. The 

nonnal trend in the polymorphic variation of illite is IMtt ----> 1M ----> 2M. with 

increasing temperature (Section 2.2.2.3). 

• The 1Mct poly type This consists of disordered layers, formed as a result of 

weathering, and is typical of sedimentary clays. 

• The 1M poly type This polytype is fairly rare although illites rich in Fe and Mg 

recrysta1lise preferentially as 1M. 

• The 2M, po1ytype This is the most stable form found in micas from metamorphic 

zones and detrital illites where erosion was sufficiently rapid to prevent weathering. 

The presence of this polytype was observed in Upper Ordovician periglacial 

sediment where the detrital illite had hardly weathered (Dunoyer de Segonzac, 

1969). 

Particle size and chemical composition can affect illite polytype. Small particles are 

more disordered during sedimentation and more sensitive to weathering. According to 

Kubler (1964), the crystallinity of illite is a valid marker for metamorphic grade only 

when crystallinity bas becolD.~ ind:ependent of lithology, and its concomitant inherited 

crystallinity. However from the point of view of the quality of slate the degree of 

crystallinity is important whatever its origin. 

b) Change in illite composition The chemical composition of illite approaches 

phengite with increasing grade (Fig. 3.2) as well as with an increase in the MglFe 

ratio. 

Chapter 3 The Metamorphic Grade o/Slate 



74 

Muscovite 

Phengite 

Caledonite Pyrophyllite 

Fig. 3.2 Chemical changes in white mica composition during metamorphism. 

c) Growth of new minerals 

Kisch (1990) in his integrated picture of the changes that occur from diagenesis to what 

he calls incipient metamorphism i.e. anchimetamorphism also mentions the appearance 

of paragonite, a sodium muscovite and pyrophyllite as typical of the anchizone. 

Roberts and Merriman (1985) describe a regular intrastratified sodium and potassium 

mica in their Stage II and report the appearance of discrete paragonite and K mica in 

the next zone. 

3.2.3.3 Epizone 

This is the lowest level of ~tional metamorphism, also called the greenschist facies 

or chlorite zone in the Barrovian scheme. The mineral assemblage typical of this zone 

is chlorite and phengitic muscovite with variable amounts of quartz, albite, and 

accessory pyrite. The white mica is characterised by a 2Ml polytype with discrete 

paragonite, not a mixed-layer paragonite/muscovite. Ti02 is reported as anatase and 

rutile (Section 2.2.3.3) in the Cambrian and Ordovician slate by Merriman and Roberts 

(1985) in their excellent description of the slate formations of Wales. 
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3.3 Background - Illite Crystallinity 

The shape of XRD peaks gives infonnation about the regularity of the atomic structure 

of individual minerals, which is used as an index of the metamorphic grade (Section 

2.4.1.3.2). Sharp peaks are typical of highly crystalline substances while poorly 

crystalline substances have broader peaks. The width is measured at half the maximum 

height of the peak. This width is affected by two properties of the slate, crystal size 

and metamorphic grade. These are both different aspects of crystallinity. Roberts and 

Merriman (1985) in their regional study of North Wales attribute the decrease in illite 

crystallinity to the increase in grain size with metamorphic grade. 

3.3.1 Crystal Size 

In large crystals there is efficient destructive interference for all values of 29 

intennediate between the angles producing the peaks. In smaller crystals not every 

beam diffracted from every incremental plane of atoms has a corresponding beam with 

equal but opposite phase to cancel it. This incomplete destructive interference has the 

effect of broadening the peak. The extra peak width above that dictated by the 

limitations of the X-ray equipment is used in the Scherrer equation to estimate the 

crystal size t (Moore & Reynolds 1989) as follows: 

The Scherrer equation 

t = 0.9).1 Bcos 8 where 

A. = wavelength 

e = Bragg angle 

B = Bm2 - Bs2 

Bm = measured width 

Bs = width of the unbroadened peak, 

characteristic of the operating conditions. 

Before being able to measure grain size it is necessary to detennine the width of the 

unbroadened peak Bs 
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3.3.2 Illite Crystallinity (IC) 

X-ray analysis has long been used to measure systematic trends of increasing grade of 

metamorphism. Numerous studies have shown that the shape and width of the. 

mica/illite basal peak at 10 A changes with depth of burial and grade of metamorphism. 

Because results are dependent on operating conditions it is difficult to correlate 

between different workers. Several attempts have been made to devise methods which 

are independent of operating conditions. 

Weaver (1960), in his study of the relative degree of diagenesis and metamorphism of 

shales and slates from the Ouachita Mountains, defined the Weaver Index as the ratio 

of the intensity of the peak at 10.5 A to the intensity at loA, but small differences in 

the position of the peak affect the result. This was superseded by Kubler (1964), who 

used the peak width in millimetres at half height as a measure of the degree of 

crystallinity. Although quick and easy to measure, this method is dependent on 

operating conditions such as scan rate, chart speed etc. To overcome this problem 

measurements are now in 0:29 which should be more independent of operating 

conditions. This is called the Kubler Index K.I. or the Full Width at Half Magnitude 

FWHM. Weber (1972) suggested using quartz as an internal standard and defined the 

relative halfheight Hhrct as: 

mrd = mUUte(mm)!llhquanz(mm) x 100 

This he felt would allow comparison of reflection measurements from different X-ray 

equipment. Kisch (1990) in his critical comparison of illite crystallinity does not adopt 

the quartz standard as it varies unsystematically with scanning rates and the same 

sample can have different Hhm at different instrument settings. 

Variation in Illite CrystlllUnity Values 

In the literature, the effects of different operating conditions are evaluated in terms of 

defining the limits of the anchizone (anchimetamorphic zone of Kubler 1964). Weaver 

(1960), in his study "Shale-Slate Metamorphism in the Southern Appalachians", found 

that the rate of change of Ie increases significantly at the diagenesislanchizone and the 

anchizone/epizone boundaries. This he interpreted as an increase in the rate of 

crystallisation. 
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Kubler (1967), taking a statistical approach to IC i.e. 5 samples/outcrop, defined the 

limits of the anchimetamorphic zone as 0.42 and 0.250:29. Robinson, Warr and Bevins 

(1990) addressed the problem of inter laboratory comparisons of IC values and 

attempted to define common limits of the anchizone in terms ofIC. They are critical of 

the "isocryst" approach of Roberts and Merriman (1985), who contoured the North 

Wales region from 0.17 to 0.70 0:29 using steps of 0.03. However they agree with the 

major sub divisions of the anchizone into lower and upper divisions. 

XRD Operating Conditions 

Kisch (1990) looked at the effect of different operating conditions: 

1. While the goniometer scanning and the chart speed can be standardised by 

evaluating the IC in "29 the scanning rate does affect the peak width. Kisch 

(1990) found that a fast scanning rate of2 0:29/min broadens the peaks by 0.04-

0.05 029 as compared to a slow rate of 0.5 0:29/min. 

2. Kisch also found that an increase in the time constant affected the IC value e.g. 

by increasing the time constant from 2 to 4 seconds the IC value is reduced by 

0.05~9 

3. According to Kisch (1990), the effect of a wider divergence and scatter slit is 

negligible. 

4. The effect of type of radiation was not studied by Kisch (1990). In the 

literature, most work discussed has been carried out using copper radiation. 

The effect of the swing to cobalt as a source of X-rays has not been looked at. 

Comparison of XRD profiles involves conversion of copper peaks to cobalt or 

vice versa. 

Sample Preparation 

Weber (1972) studied the effects of different sample preparation techniques. Using as 

a reference value polished rock slabs orientated parallel to cleavage he found the 

following: 
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a Thickness of fIlm 

Samples were reduced to 1 mm and then treated with H202 for several hours during 

which time the organic matter was oxidised and the rock disintegrated. A thin film 

compared well up to 130Hhrel or 4.2 Hh, while a thick film had higher IC values but 

more scatter in the results. 

b Grain Size 

Sample was separated into fractions with a grain size of (i) <2 J,l, (ii) 2-6 J.1 and (iii) 6-

20 J.1. using a sedimentation method similar to that described in Section 3.4.1.1. The 

smaller grain size has a higher IC and is assumed to have a higher ratio of illite to 

smectite. During rock disintegration a grain size fractionation occurred. However the 

crystallinity of the various illite fractions becomes equal when Hhrel- 130. 

Chemical Composition 

In a sodium-rich samples, Kisch (1990) reports apparent broadening of the loA peak 

due to the coexistence ofbrammallite and illite (Section 2.3.2) because of superposition 

of adjacent basal reflections. Other chemical variations may well cause similar 

problems. 

3.3.3 Conclusion 

Measurement of mite Crystallinity in terms of FWHM in units of ~e rather than in 

millimetres eliminates the effect of different plotting technique. Measurements were 

made using the "Traces" sOftware package (Section 2.4.1.4). The accuracy of these 

measurements was checked manually and they were found to be accurate. 

Operating conditions can affect the results, but for a comparative evaluation of the 

crystallinity grades of different slates, standardisation of operating techniques 

eliminates these effects. Similarly a standard routine for preparing samples reduces the 

effect of different sample thicknesses etc. The effectiveness of this can be assessed by 

determining the repeatability of results (Table 3.3). 
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Grain size affects the IC values. In order to determine the metamorphic grade it is 

necessary to reduce this effect by comparing equivalent grain-size fractions. However, 

it is the average crystallinity that determines the properties of a slate and grain size is 

an important element of this crystallinity. Hence for the purposes of this Report it is 

the average crystallinity value for all grain size fractions which is more appropriate and 

not the crystallinity of a particular fraction. 

The most significant limitation of the IC method of determining crystallinity is the loss 

of sensitivity within the epizone i.e. when IC is less than 0.21 ~e. Most commercial 

roofing slate lies within the epizone. Roberts and Merriman (1985), when mapping 

North Wales in terms of the metamorphic grade (Section 3.3.2), ascribe the loss in the 

metamorphic gradient in the epizone to the insensitivity of the IC method and state that 

an increase in crystal size below Ie = 0.16 ~e is not accompanied by a reduction in the 

width of the white mica peak at this grade. This important limitation of the Ie method 

is discussed further in Section 3.4. 

3.4 Slate Crystallinity 

The crystallinity of a slate is defined as the degree to which individual minerals have 

developed a regular crystalline structure. 

Crystallinity is derived from: 

1 The original deposits, which may have retained considerable crystallinity, 

especially if the original detrital material was relatively unweathered. 

2 The increase in crystallinity during subsequent diagenetic and metamorphic 

processes as minerals became more regular in their crystal structure and any 

amorphous material is incorporated into new minerals. 

3 The increase in grain size associated with these diagenetic and metamorphic 

changes also contributes to the overall crystallinity. 

However, as far as the properties of slate are concerned, it is the actual value of 

crystallinity that is significant and whether this is inherited from the detrital source or 

acquired during subsequent metamorphism is not important. 
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Because XRD detects only the presence of crystalline material it is ideally suited for 

comparing the relative crystallinity of different slates. Individual XRD peaks become 

sharper and stronger as the crystal structure of individual minerals approaches the ideal 

described in Section 2.2. The usual method for detennining the sharpness of peaks is 

IC. In this Report the more general term FWHM (Full Width at Half Magnitude) is 

preferred (Section 3.3). However, this technique was found to be insensitive at the 

metamorphic grade observed in slate with 90% of the values clustered between 0.10 

and 0.20 28 (Fig. 3.4, Section 3.4.1). Other methods investigated, such as the ratio of 

the trace height to the area, were found to be equally insensitive. Yet it was apparent 

from the overall shape of the XRD traces (Fig. 3.3) that there was considerable 

variation in the degree of crystallinity in slate from one area to another, so that it was 

necessary to devise some method to compare these differences in a quantitative way. 

3.4.1 Crystallinity and FWHM 

Because of the effect of grain size on the FWHM values, measurements are usually 

carried out on the < 2J1 or < 6J1 fractions. In order to compare results with those 

reported in the literature, it was decided to check the effect grain size has on the 

observed crystallinity. 

3.4.1.1 Methodology 

Samples were separated into fractions of different grain size by sedimentation. The 

settling time was assumed to follow Stokes Law for spherical particles where v cx:r2 

Stokes Law 
2r2 gAp 

\I = --=-....:-
91'/ 

v == velocity 

r == diameter of particle 

g == gravity 

AI> = density difference 

'1 == dynamic viscosity 

Samples tested: WIF-l, WIF-16, EL-4 and LC-2 
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Method: 

• Samples were ground manually using a pestle and mortar and passed through a 

140J.L sieve, sieving frequently to prevent over grinding. 

• The powder was then disaggregated in an ultrasonic bath for 15 minutes before 

transferring to measuring cylinders. 

• The measuring cylinders were filled with water and the slurries shaken before 

being allowed to settle for the appropriate length of time (Table 3.2). 

• After sedimentation had taken place, the top 10 cms of each liquid was siphoned 

off and centrifuged at 4500rpm for 30 minutes. 

• The supernatant liquids were then decanted and the residues transferred onto 

ceramic slides and allowed to dry overnight. 

• The slides were stored in a desiccator until analysed by XRD. 

For the larger grain sizes the remaining liquids in the measuring cylinders were 

filled to the top and shaken and the rest of the procedure was followed after allowing 

sedimentation for the appropriate length of settling time for each fraction as per 

table. 

Gnln size <2J.1 <6J.1 <lOJ.1 

Settling time 7hrs38min 51 minutes 18.3minutes 

Table 3.2 Settling times for different grain-size fnctions. 
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3.4.1.2 Evaluation of Results 

The precision of FWHM results was assessed as follows: 

The crystallinity of the white mica of samples of Ffestiniog and Cwt y Bugail slate 

was detennined several times at two different scanning rates. The means and 

variation were calculated and used to determine the precision of FWHM 

measurements at different scan rates (Table 3.3). The mean values show a slight 

decrease in FWHM at the higher scan rates, which disagrees with the trend reported 

by Kisch (1991) (See also Section 3.3.2). This probably reflects the inherent 

imprecision of the technique. It does show that there is no significant loss of 

precision at higher scan rates and all subsequent quantitative work was carried out at 

10 28/min. The effect of varying the time constant was not assessed. 

Sample <l~ <6~ <10~ 

WIF-l 0.314 0.294 0.244 0.238 0.158 0.160 

WIF-16 0.228 0.218 0.160 0.172 0.204 0.188 

EL-4 0.176 0.174 0.152 0.182 0.218 0.212 

LC-2 0.238 0.228 0.162 0.160 0.146 0.154 

Quarry Number of Scan Mean Standard Coefficient of 
samoles . rate 2aimin Deviation variation 

Ffestiniog 10 2 0.149 0.014 0.100 

0.5 0.155 0.023 0.148 

CwtyBugail 5 2 0.157 0.019 0.122 

O.S 0.164 0.023 0.140 

Table 3.3 a) Errect of IniD size on FWHM measurements at O.S-leimin.b) Errect of scan rates 

on FWHM results and their precision. 

The FWHMs were detennined for Scottish samples at 10 28/min from 40 to 300
• The 

procedure was extrapolated to incorporate the principal peaks of the major minerals 
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and results are given in Appendix 3.2 and summarised in Fig. 3.4 and Table 3.4. The 

Ballachulish and Easdale samples have lower values than the Highland Border and 

Macduff slates. 

FWHMwhite Mean Standard Coefficient of 
micas deviation variation 
Ballachulish 0.137 0.022 0.16 

Luing 0.143 0.027 0.19 

Seil & Belnahua 0.117 0.013 0.11 

Bute 0.182 0.068 0.38 

Aberfoyle 0.164 0.015 0.09 

Dunkeld 0.162 0.014 0.09 

Macduff 0.191 0.028 0.14 

Table 3.4 Average FWHM values of Scottish slate 

3.4.1.3 Discussion 

The are several reasons why the FWHM method of measuring metamorphic grade 

and grain size was considered unsatisfactory: 

1. The average FWHM (Table 3.4) values for the various Scottish quarries 

(apart from a few weathered samples with predictably high values) were 

clustered between 0.25 and 0.10. However, this range of values is no greater 

than those for Bute slates considered in isolation i.e. 0.182± 0.07 at 95% 

confidence. Bute samples do have a significantly greater variation than 

those from other areas but nevertheless this clustering does limit the 

usefulness of the FWHM method as discussed in Section 3.3.3. 

2. The presence of paragonite in many Scottish slates has the effect of 

broadening the white mica peaks and hence give an erroneously high FWHM 

and concomitant low crystallinity. 

3. Attempts to use FWHM to determine the grain size using the Scherrer 

equation as described in Section 3.3.1 were unsuccessful due to the width of 

the peak approaching the limitation of the X-ray equipment. 

4. The procedure is very time consuming and would have been difficult to 

apply to a large data set. 
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Although the FWHM values of Ffestiniog and Ballachulish slate are approximately 

the same, it was noted that there is a large difference in the intensities of the 

individual XRD peaks (Fig. 3.3) i.e. the intensities of the former are approximately 

half those of the latter. For a given area, the intensity of a peak correlates inversely 

with the FWHM. Given the restraints imposed by No 4 above, it was decided to use 

the intensity of peaks instead of FWHM as a rough method of highlighting 

differences in the crystallinity of slates. 

3.4.2 Crystallinity based on Intensities of XRD Peaks 

As already discussed, the FWHM method is too insensitive to measure the crystallinity 

of slate. For example, Ffestiniog slates have a mean FWHM value of 0.15 28 ± 0.03 

which approximates to that of Ballachulish slates (0.14 28 ± 0.04), yet when their 

respective XRD profiles are compared, the former have peak heights of < 450 counts 

while the latter reach a height of> 1100 counts (Fig. 3.3). This again indicates that the 

classical method of determining crystallinity was not suitable in discriminating 

between different quality slates. Therefore it was necessary to identify the key 

differences in the XRD scans and devise some method to quantify these observations. 

Variation in intensities of peaks was seen as the most significant factor and the 

following discussion describes the approach taken in quantifying these differences to 

reflect the overall crystallinity of a slate. 

3.4.2.1 Methodology 

To assess the crystallinity of a slate in terms of the intensity of XRD peaks, it is 

essential to determine those factors other than the crystallinity, which also contribute to 

that intensity. 

The intensity of XRD peaks is dependent on the following: 

• The amount of the mineral present 

• Orientation of minerals 

• Attenuation coefficient of the mineral 

• Machine conditions 
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Mineral Composition: As well as being a measure of the crystallinity, the intensity 

of a peak is also influenced by the amount of the mineral present. Therefore to make 

the crystallinity measurement independent of the proportions of individual minerals, 

it is necessary to determine the total contribution made by all the crystalline 

minerals. Peak intensity measurements were accordingly taken for all the crystalline 

minerals present, i.e the three major minerals chlorite, white mica and quartz, and 

the minor minerals feldspar, carbonate minerals and iron ore minerals, and the 

results summed. 

Orientation of minerals: Only those minerals aligned to satisfy the Bragg angle 

(Section 2.4.1.2) contribute to the diffracted X-ray peak, therefore the degree of 

alignment of the different minerals in a sample would impact on the crystallinity 

value. The slurry method of sample preparation for XRD scans gives a random 

orientation of minerals (Section 2.4.1) which reduces the effect of varying degrees 

of orientation. This can be seen in Table 4.1 where the sum of the intensities of the 

three peaks in the randomly orientated sample approximately equals that of the two 

orientated samples. (To minimise the imprecision of XRD results the total of the 

three peaks was used for comparison, rather than a direct comparison between 

individual peaks). 

Chemical Composition: To minimise the effect of chemical composition, the 

intensity of each peak was adjusted by a correction factor based on the attenuation 

coefficient of each mineral as described in Section 2.5.5. 

Machine Conditions 

A correction was also made to intensity values of peaks at low angles of diffraction, 

to allow for the spread of the X-ray beam in relation to the dimensions of the 

sample. This is described more fully in Section 2.5.5. 

Other variations were minimised by using the same machine settings throughout and 

by standardising sample preparation. 
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Samples: Unweathered and weathered samples were collected from producing 

quarries in North Wales and Cumbria. Samples were taken from different veins 

within a quarry and in the case of Ffestiniog they were also collected from areas of 

between veins. As there are no working quarries, Scottish samples were collected 

from many different sources such as tips and outcrops in the quarries and second­

hand slate merchants as specified in Appendix 1.1. 

Using the same XRD scans as described in Section 2.4.1, the data set was processed as 

follows: 

In order to minimize the effect of the chemical composition on the intensity of different 

peaks, the attenuation factor of each mineral were determined and the intensity was 

corrected to equal that of quartz. (This was an arbitary decision to keep the range of 

crystallinity values to less than 2000) 

Intensity (mineral) = 

Ilmineral 

k 

Intensity of mineral in total counts 

Attenuation factor of mineral 

Size correction 

Corrected intensity = lmineral X tlmineral x k 

J.1quartz 

Crystallinity equals the sum of the corrected intensities of the main peaks shown in 

Table 3.5. 

Crystallinity = ~I Mineral 
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Mineral Angle 29 D-spacingA [hid] ~ 

Quartz 24.26 4.26 100 56.2 

White mica 10 9.8 001 64.8 

Chlorite 7.2-7.3 14.2 001 45.1 

Feldspar Plag 32.70-32.50 3.18-3.20 52.9 

KFeldspar 31.38 3.31 

Haematite 38.88 2.69 104 44.5 

Carbonate Calcite 34.31 3.04 104 112 

Dolomite 36.1 2.89 104 74 

Magnesite 38.1 2.74 104 29 

Siderite 37.35 2.80 104 35 

Table 3.5. Details of the XRD peaks used in determining the crystallinity of slate; Attenuation 
coefficients J.1 of the different minerals. 

Note. The identification of siderite is difficult due to low peak intensities and, 

although shown in Table 3.5, identification was sometimes equivocal. In such cases 

the peak heights for siderite were not included in the value of the total crystallinity. 

Results of the crystallinity are given in Appendix 3.1 and plotted against FWHM in 

Fig. 3.4. 

3.4.2.2 Evaluation of Results 

The crystallinity values of the different slates is given 10 Appendix 3.1 and 

summarised in Fig. 3.5. The crystallinity values calculated are on an empirical scale 

ranging from 200 to 1800. However it should be emphasised that even the lowest 

values have a well developed crystalline structure as compared with sedimentary 

mudstones and shales. 

To check the validity of the technique it is important to see that the values obtained 

by this method are indeed typical of an area. With this in mind several fresh 

samples, collected from a single quarry, were scanned and found to give 

approximately the same value indicating that crystallinity is indeed characteristic of 
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an area. For example, five Cwt y Bugail (Appendix 1.1) samples are in the range of 

392 ± 92 (95% confidence level). 

Results were then compared with other non-slates such as a Caithness flagstone, a 

schist and a hornfels (Fig.3.5). The Caithness flags were found to have a low 

crystallinity while the schist and hornfels samples were found to have a medium 

degree of crystallinity. Although Caithness flags were found to have low value, this 

was relative to slates and they were actually very crystalline for a sedimentary rock, 

due to their detrital source rich in quartz. The fact that the schist and hornfels do not 

have values higher than the most crystalline slates shows that the technique is not 

independent of petrology and orientation. But the technique is only intended for use 

to compare within one rock type, slate, which has considerable similarity in both 

these properties whatever the source. 

When the relationship between FWHM and crystallinity was assessed (Fig. 3.4) a 

loose correlation was found between the FWHM values of the white micas and 

overall crystallinity (R2 = 0.37). However little or no relationship was found between 

the FWHM values of the chlorite and quartz. This suggests that the extrapolation of 

the FWHM technique to include other minerals was of no value. 

Although results show a lot of scatter, there is some correlation between FWHM and 

crystallinity (Fig. 3.4). The Ballachulish and Easdale slates have the highest 

crystallinity as measured by both techniques, while the Macduff and some of the 

Highland Border slates have the lowest. 

Other slates vary as follows (Fig. 3.5): 

• The Welsh slate has low crystallinity. 

• Due to the high contribution from its calcite content (Appendix 3.1), the 

crystallinity of Cumbrian slate is medium to high 

• Ballachulish and Easdale slates have high to very high crystallinity, in spite of 

the fact that all Scottish samples have experienced over 60 years of weathering 

and often substantially more. 
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• As is to be expected from such a diverse area, the Highland Border slate has a 

wide range of values. 

• Macduff slates are fairly homogeneous reflecting its mineralogy and have 

crystallinity medium.grade 

• The French samples show a correlation between crystallinity and the grade of 

slate as judged by the quality control in the quarries (Appendix 1.1). The Grade 

B slates are deemed inferior due to the presence of amorphous pyrite visible to 

the unaided eye. All three quarries have medium crystallinity at 600 - 700 for 

Grade A and a value approximately 200 less for their Grade B counterparts e.g. 

Noyant Grade A has a crystallinity value of 593 and Grade B a value of 353 

(Appendix 3.1) 

The effect of weathering on the crystallinity of slate is investigated further in 

Chapter 5. From anecdotal evidence it appears that weathered slates have values 

lower than that for the source area e.g. the lowest value in the Ballachulish group is 

for a slate over 100 years old as estimated by Mr. Cummings, second-hand slate 

dealer (per. com.). Because the rate of weathering is variable depending on the 

history of the slate there is an increase in the standard deviation for Scottish slate. 

This suggests that instead of average values being used for comparing the 

crystallinity of Scottish slate with current producing areas, some positive adjustment 

should be made to the results. One simple technique would be to use the maximum 

value as typical of the original material. 

Highland Border slate shows considerable variation. The low crystallinity value for 

several of the Aberfoyle slate correlates with its reputation of softening within 20-50 

years. However, Luss slate has a similar reputation yet the two samples collected 

have high crystallinity value. Craiglea also has a good reputation and it too has a 

high crystallinity value. 
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Crystallinity of slate 
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Fig. 3.6 Crystallinity of Scottish slates. 

3.4.3 Conclusion 

Because of the large number of quarries which needed to be included in this Report, 

the data sets for some quarries are smaller than desirable. Thus, given the spread of 

values due to variable weathering the average crystallinity values shown for some 

quarries may not reflect the true average. Yet with that proviso the following 

conclusions can be made: 

• Crystallinity of slate as measured by FWHM and intensities of peaks is related 

but the range of values observed in the latter is greater and enables different 

slates to be more easily graded. 

• A crystallinity value is characteristic of an area. 

• Crystallinity of a slate does not always correlate with their reputations. For 

example Pen yr Orsedd slates have similar crystallinity values to that of the 
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Spanish slate, yet the former have a much greater life expectancy than the later. 

The longevity of the Pen yr Orsedd slates is due to their high quartz but this is 

not reflected in the quartz contribution to the overall crystallinity of the slate. 

However slates containing substantial amounts of calcite such as Cumbrian and 

Killaloe have medium crystallinity values due to the contribution made by this 

crystalline mineral which does agree with their reputations. In order to relate 

crystallinity to longevity of a slate it is necessary to examine the contribution 

made by the different minerals. This will be discussed further in Chapter 5. 

• Determination of the crystallinity as a function of the intensities of the XRD 

peaks has value in determining the durability of slate. Ballachulish and Easdale 

slates have high to very high crystallinity in keeping with their reputation for 

longevity. Highland Border slate is variable, but one example, Aberfoyle, has 

low crystallinity and a reputation of softening after 20 to 30 years. Macduff 

slates have low crystallinity values but are very durable, showing that other 

factors are involved besides the crystallinity. This will be discussed further in 

Chapter 6. 
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Chapter 4 The Fabric of Slate 

4.1 Introduction 

Slate belts are found in mountainous areas where tectonic forces have deformed and 

shortened the earth's crust. Rocks respond to these compressive forces by folding. At 

the same time minerals grow normal to the maximum stress and in so doing the 

rocks develop a cleavage. At a microscopic level, it can be seen that cleavage is due 

to closely spaced sub-parallel dark seams of phyllosilicates, carbonaceous material 

and insoluble residues along which the rock can be split (Fig. 4.1). This is the 

property of a fine-grained rock that allows it to be split into thin sheets suitable as a 

roofing material. 

Evaluating the fabric of a slate in terms of its cleavage properties is an important 

aspect in determining its suitability for exploitation as a roofing material. The aim 

of this part of the research is to devise a technique to carry out this evaluation. 
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Fig. 4.1 Cleavage develops parallel to the axial plane of the fold and normal to the direction of 
maximum stress. 
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4.2 Background 

As there is still controversy about the way cleavage develops, a generic 

categorisation is not possible. In his definitive classification Powell (1979) used a 

descriptive method based on the morphology and this approach has been used 

throughout this report. 

4.2.1 Classification 

A cleaved rock is divided into two domains; cleavage domains consisting of strongly 

aligned minerals (Fig. 4.2) which are separated by microlithons where the minerals 

mayor may not be aligned. Most rocks exhibit this domainal property of cleavage; 

even the type called continuous cleavage is so called only because the spacing 

between the cleavage domains is so small that it is not resolvable by the optical 

microscope. 

Factors used in classification (after Powell 1979) 

• Shape of cleavage domains: 

• Spacing between cleavage domains 

• Proportion of rock occupied by cleavage domain. 

• Fabric of the microlithon 
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-E- O.2mm ~ 

Fig. 4.2. Photomicrograph of microfabric in slaty cleavage in an Aberfoyle slate. Mica rich 
cleavage domains anastomose around lal'ge quartz and chlorite grains in the microlithons. 

I. Shapes of cleavage domains (CDs) are divided into four groups; stylolitic, 

anastomosing, rough and smooth depending on their smoothness and 

regularity (Fig.4.3). The most irregular shape is stylolitic where the CDs are 

long and continuous but very jagged. In anastomosing fabric the CDs are 

long, continuous and undulating, forming a network of irregular lenticular 

microlithons. Rough cleavage is found in rocks containing abundant sand-

ize mineral grains; here the CDs are short and discontinuous. Smooth 

cleavage fabric is at the most planar end of the spectrum and consists of 

smooth and continuous cleavage domains. 
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Fig. 4.3 Different shapes of cleavage domains 
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2. Spacing is a measure of the distance between cleavage planes. This is easy 

to determine when the planes are planar and parallel but in anastomosing 

cleavage where the enclosed microlithons are discoid or trapezoidal, a 

judgement must be made whether to take a maximum, minimum or an 

average value. In spite of this problem spacing is a useful parameter. The 

spacing of the slaty cleavage found in roofing slate in this Study is generally 

10 to 50llm. Although the spacing decreases with increasing metamorphism 

it is also dependent on the grain size of the protolith and hence cannot be 

used unconditionally as a measure of the metamorphic grade. 

3. Proportion The proportion of the rock occupied by a cleavage domain 

generally increases with increasing metamorphism as more of the minerals in 

the microlithons dissolve and re-precipitate as aligned minerals and become 

part of the cleavage domain. 

4. Fabric Greater alignment of the minerals in the microlithon develops with 

increasing metamorphic grade 

These four parameters control the thickness and texture of the slate. 

4.2.2 Formation of Cleavage 

Weber (1981), in his study of slates in the Rheinisches Schiefergebirge and other 
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areas, has shown that cleavage develops by more than one process: 

1. Cleavage without syntectonic phyllosilicate recrystallisation I.e. pressure 

solution cleavage. 

2. Cleavage with syntectonic phyllosilicate recrystallisation increasing with 

increasing metamorphic grade. 

Phyllosilicates are easily sheared because of their layered structure. At the lowest 

metamorphic grade, cleavage develops mechanically with flexure-like deformation 

as the platy minerals are drawn into the cleavage domains. If a primary fabric 

exists e.g. due to settling of micas on a bedding plane, this deformation will give a 

crenulation cleavage with orthorhombic symmetry in the hinges and monoclinic in 

the fold limbs. The transition from cleavage domain to microlithon is continuous. 

Width of the microlithons depends on grain size but generally is in the 10-20 

microns range. 

At higher metamorphic grades, the deformation mechanisms during prograde strain 

are no longer purely mechanical but are also chemical, wherein material is 

transferred from the cleavage lithons to the microlithons by dissolution and 

recrystallisation. Due to the heterogeneous nature of rocks, stress is partitioned into 

areas of progressive shearing and progressive shortening (Bell et al. 1986). 

Minerals dissolve in the cleavage domains causing the rocks to shorten normal to 

cleavage. At the same time in the areas between the cleavage domains, i.e. the 

microlithons, extension is taking place at right angles to shortening. Micro­

fracturing occurs in the direction of extension allowing fluids derived from the 

cleavage domains to enter the minute cracks and provide the raw material for 

porphyroblasts of minerals, such as chlorite or white mica, to grow. Basal planes 

[00 I] of these porphyroblasts are at a high angle to cleavage indicating growth in the 

direction of stretching (Ramsay 1976). As cleavage continues to develop, the 

contact between microlithon and cleavage becomes sharper due to extensive 

pressure solution. 

On the other hand there is another school of thought, believing that cleavage begins 

to develop at the earlier stage of qiagenesis (Maxwell 1962). Roy (1978) attributes 

the presence of silty dykes paral1el to the cleavage lithons to the onset of cleavage 

development before complete lithification of the sediments. 
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Crenulation cleavage is also found in slates. This consists of harmonic wrinkles 

found on the cleavage surface, due to the development of cleavage in a rock with a 

pre-existing fabric. This type of cleavage is commonly found in Easdale slate and is 

described in the various quarry reports (Appendix A Section 3.6; an example is 

shown in Appendix A Fig. 15). 

4.2.3 Correlation between Cleavage and Strain 

Although there is a relationship between development of cleavage and strain, 

evaluating the amount of strain necessary to produce cleavage is not direct. 

Estimates of strain have been deduced from measurements of features in a rock 

thought to have been originally spherical, such as concretions, and lapilli in tuffs, 

and especially reduction spots which appear as ellipsoids in slate. These reduction 

spots formed around a particle of organic matter, which acted as a reducing agent 

and converted purple ferric oxide to green/yellow ferrous oxide (Fig. 4.4). Such 

bleached spots are initially spherical and are subsequently deformed into ovoids as 

the cleavage develops. The relative lengths of the three mutually perpendicular axes 

of these ellipsoids give an indication of the degree of deformation and hence an 

estimation of the percentage shortening of the rock perpendicular to cleavage. In a 

comparative study of the slates of the Caledonides, Wood (1971) found that the 

ellipsoids of North Wales, an area of open and upright folds, have a mean ratio of 

1.6: 1 :0.27, while in the Taconic slate belt of North America, where the 

accompanying folds are tight and overturned, the values are 1.7: 1 :0.17. 

However the accuracy of estimates of the amount of deformation undergone by 

reduction spots is limited by lack of reliable data on loss of volume during the 

development of cleavage. Cloos (1947), an advocate of pre-lithification cleavage 

development, assumed that the intermediate axis remained constant which implies a 

60% reduction in volume. In contrast Wood (1974) assumed constant volume in his 

work and hence calculated that the onset of slaty cleavage is found with 30% 

shortening and 35% extension and that best commercial slates have shortening of 

70% and extension of 150%. Other estimations of volume loss have been based on 
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petrographic and geochemical studies, using as an indication of substantial volume 

loss the fact that in soluble minerals, cleavage domains are depleted relative to those 

in insoluble. Yet another approach, based on comparing the density of a typical 

argillaceous slate (2.8 gm/cc) with that of shale at a depth of 1500m (2.66gm/cc), 

suggests little non-volatile loss. Using this last method Sorby (1908) estimated the 

volume loss to be 10%. Ramsay and Wood (1973) examined the shape changes due 

to both compaction and volume loss during tectonic deformation and found that all 

slates fall within the field of apparent flattening and the majority lie within the true 

flattening (Fig. 4.5). 

In this Report, the three orthogonal axes are called X, Y and Z where x> Y>Z. 

The cleavage plane generally lies in the X-Y plane. 

The pillaring line is parallel to the X direction i.e. the stretching direction. 

The pillaring surface is generally in the X-Z plane (Fig. 4.10). 
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Fig. 4.4 Reduction spots in slate: a) Arran slate (NR963S04), b) Cumbrian slate (SD2S0837). 
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4.2.3.1 Measurement of Strain 

Whatever the genesis of these ellipsoidal reduction spots, their degree of flattening 

is a measure of the submicroscopic fabric of a slate. Using the three orthogonal axes 

X, Y, Z of the ellipsoid (where X> Y>Z) , Flinn (1962) represented the strain by 

plotting the ratio XlY versus Y/Z. This was later modified by Ramsay (1976) so 

that the natural logarithm in of the ratios is plotted as shown in Fig. 4.5. Ellipsoids 

found in slate always plot in the oblate or flattening area of the graph. 

InXIY 
prolate 

plane strain 
~V=O 

~ -:.: -:. :':-:':-:-:'. 
::;:slate :;:;:;:: .. . ... .......... . 
. :;;;:~)~~~~:::;:. 

InY/Z 

oblate 

Fig. 4.5 Logarithmic Flinn diagram showing the plane strain boundary between the fields of 
flattening and constrictional strain at constant volume after Ramsay (1976). 

Wood (1974) found that strain changed with variation in the location in geological 

structures. In folds with variable plunge, strain values correlate well with 

culminations and depressions so that maximum principal extensions are found in 

culminations and the greatest flattening producing the most oblate ellipsoids is 

found in plunge depressions. 

Using an X-ray goniometer, Oertel (1970) was able to correlate the degree of 

ordering of basal planes of chlorite and muscovite with the degree of shortening. 

The degree of deformation of quartz grains was also used by Wood (1974). In this 

method, the ratio of the long axis to th~ short axis of quartz grains gives a qualitative 

indication of strain. Wood gives the following values of a few slate-producing 

regions: 
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Welsh and North American slate belt 3: 1 

Valdres, Norway 4: 1 

Ballachulish, Scotland 6: 1 

4.2.4 Correlation between Cleavage Intensity and 
Metamorphism 
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Kisch (1991), in his comprehensive review of work done world-wide on cleavage, 

endeavoured to correlate slaty cleavage and the degree of metamorphism. 

Metamorphic grade was measured in illite crystallinity which, when converted to 28, 

can be used for comparing data from different sources (Section 3.3.2.3.b), although 

instrument conditions still affect the values. 

U sing the literature as a database, Kisch found that comparison of the intensity of 

slaty cleavage is hampered by insufficient detail of micro fabrics and a lack of 

uniformity in descriptive methods. Nevertheless his tables of comparison of strain, 

fabric and metamorphic grade for different tectonic units is a valuable synopsis of 

work done world-wide. The only reference to Scotland in Kisch's review is to work 

the of Kemp et al. (1985) on the Southern Uplands. Several detailed studies have 

been carried out in the Welsh slate belts e.g. Merriman & Robert's (1985) work in 

Snowdonia and Llyn, North Wales. 

Lithological controls 

Whereas there is a strong link between the onset of slaty cleavage and the degree of 

metamorphism, lithological effects ~e also important. Norris and Rupke (1986) 

found that finer-grained metapelite develops cleavage at a lower grade of 

metamorphism than coarser-grained rocks such as greywackes The morphology of 

the cleavage domains is also affected by grain size i.e. the spacing is wider and the 

shape is rougher in coarser grained protoliths (Kisch 1991). 
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4.2.5 Discussion 

While there is a direct relationship between strain and the first appearance of distinct 

types of cleavage, there is only a loose relationship between strain and improvement 

in illite crystallinity IC (Kisch 1991). In pelites, cleavage begins to develop in the 

diagenetic zone at 0.6-0.42 IC, and smooth cleavage domains and microlithons with 

fabric are associated with the IC values typical of the anchizone. Equivalent stages 

of cleavage development appear at slightly higher grades in metagreywackes. 

Where IC is significantly lower (i.e. more crystalline) than normal, this is due to 

many factors such as post-kinematic annealing following later intrusion of an 

igneous body in the region (Kisch 1991). 

4.3 The Influence of Cleavage on the Production 
Roofing Slate 

From the industry's point of view, the most important aspect of the slate deposit is 

the type and intensity of its cleavage. This controls every aspect of production, from 

ease of extraction to the characteristics of the finished product. How cleavage 

affects the characteristics of slate such as thickness and the texture of its cleaved 

surface is the subject of this section. 

Consideration of the many criteria governing the selection of the best slate for the 

job is outside the scope of this work and this discussion is limited to those 
, 

submicroscopic aspects of cleavage which affect the ability of the rock to be split 

into thin slabs. The ability to cleave a rock is also affected by geological features 

such as folding, igneous intrusions, jointing, veins of quartz etc. These macroscopic 

characteristics are discussed in the various quarry reports (Appendix A). 

The ideal slate deposit, from the point of view of its cleavage, is a fine-grained 

homogeneous material which h~s been metamorphosed to develop the optimum 

slaty cleavage. 
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The optimum cleavage fabric has: 

1. Closely spaced, straight cleavage domains (CDs). 

2. CDs straight and continuous. 

3. CDs regularly spaced. 

4. Microlithons (MLs) also having an aligned fabric. 

But slate is a natural material and these criteria are rarely achieved. Fabric can range 

from that observed in slate extracted from the old vein at Oakley Quarry, Blaenau 

Ffestiniog, North Wales to a Westmorland slate from Broughton Moor Quarry, 

Cumbria. The fabric in the former is fine-grained material with a regular pervasive 

cleavage (Fig. 4.6) enabling the rock to be split to 3mm thickness without tapering, 

while the fabric in the latter is coarse-grained producing a thicker slate (Fig. 4.7). 

Between these two extremes lies an example of Scottish slate from Ballachulish 

(Fig. 4.8). Here the distinction between the MLs and the CDs can be clearly seen as 

the continuous CDs are anastomosing around the large microlithons. As the fabric 

was being strained in the direction of stretching, tensional cracks developed in the 

MLs allowing fluids to penetrate and other minerals to grow (Bell et al. 1986). 

Slates were produced from all of these sources in spite of their very different 

fabrics. The aim of this discussion is to evaluate the fabric of slate from working 

quarries in such a way that it can be co"elated with the thickness of the slates 

produced, and hence set up a system with which to assess the splitting potential of 

Scottish slate. 
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Fig. 4.6 Fabric of slate from old vein Oakley Quarry (SH694473), Ffestiniog. /' _ ~ 
~ O.2rnm ----:;;;"" 

Photomicrograph (XP) of the microfabric shows closely spaced and straight cleavage domains 

in this fine-grained slate. The very dark area is a cluster of pyrite grains. 

~ 0.2111111 ---7 
Fig. 4.7 Photomicrograph (PPL) of the fabric of slate from Broughton Moor Quarry (SD254646), 

Cumbria. The cleavage in this slate is made up of widely spaced anastomo ing cleavage 

domains and microlithons without parallel fabric. 
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Fig. 4.8 Photomicrograph (PPL) of the fabric of a Ballachulish slate (NN08558). 

The cleavage in this slate is made up of closely spaced cleavage domains which anastomose 

gently around the microlithons. Microlithons are quartz-rich and show little parallel fabric. 

Fig. 4.9 Photomicrograph ( PPL) of t~e relationship between detrital mica grains and chlorite 

overgrowths in an Aberfoyle slate (NNSOS030). ~ O.05mm ----7 
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4.3.1 Anisotropy of Slate 

As slate is an anisotropic material it has different properties depending on direction. 

One of these properties, and that most relevant to producing roofing slate, is 

variation of fabric with orientation and the resultant effect on the splitting ability of 

the slate. 

Three orthogonal sections were prepared as follows: 

I . Cleavage surface. This is the face parallel to the cleavage face and is 

perpendicular to the direction of maximum shortening. This is the XY plane 

and perpendicular to Z. The grain of a slate is parallel to the longest axis of 

the certain minerals due to their elongation during deformation (Fig. 4.10). 

2. Pillaring surface This is the plane perpendicular to the cleavage surface 

and parallel to the grain of the late. The intersection of this surface with the 

cleavage surface is the pillaring line. In most cases this imparts a secondary 

line of weakness along which the slate can be broken , a property which is 

always recognised by the quarrymen and exploited in the winning of slate 

(Fig.4.10). 

3. Third surface. This face is perpendicular to the previous two sections. Due 

to the tendency of the slate to break preferentially along the other two planes 

it is not easy to get a natural break in this direction . 

Grain: The 
alignmenlof 
lhe long axes of 
minerals 

grain 

x 

3 Third surface 

I Cleavage surface 

2 PiJJaring surface 

Fig. 4.10 Terms given to the different features of a slate. 
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This internal fabric of a slate is visually demonstrated by reduction spots as 

discussed in Section 4.2.3, the ratio of the axes of these oblates giving a measure of 

the degree of deformation. Several examples of such reduction spots (Fig. 4.4a) 

were found in Arran Slate Quarry (Appendix A 4.5.1) and the following 

measurements made: 

Average axes X:Y:Z = 1.6:1:0.06 

While the X:Y ratio agrees with that found by Wood (Section 4.2.3), Z is 

exceptionally low. This was due to the reduction spots being found on the cleavage 

surface and hence the measured Z not being the true value but a minimum due to 

flaking of the surface. However the slate broke preferentially parallel to the longest 

axis of the reduction spot, i.e. the pillaring line. Not all slate has a pillaring line e.g. 

the slate in the Kirkby Quarry in Cumbria. Here the degree of strain in the X and Y 

axes is the same, hence the lack of a linear fabric and no pillaring line. This is 

demonstrated by a concretion (Fig. 4.4b), originally spherical, which has been 

strained into a very oblate shape and appears as circular on the cleavage surface. 

These two examples are only useful in explaining the fabric and in particular the 

pillaring line. 

The anisotropy of the fabric is demonstrated in a slate from Luing (LC-l), (Fig. 

4.11), which shows three orthogonal aspects of the cleavage. The plane of cleavage 

is a flat flaky texture with no apparent alignment; the pillaring surface shows the 

domainal fabric with areas of aligned platy minerals interspersed with layers of 

coarser minerals, while the third aspect also shows the domainal texture from a 
~ -. .. 

different angle. 

Orientation of Minerals 

The anisotropy of slate due to non-random orientation of minerals was demonstrated 

by XRD scans of orientated slides. Two polished sections, one cut parallel and one 

cut at right angles to cleavage, were prepared. An XRD scan of these sections was 

taken and compared with the randomly orientated smear (Fig. 4.12, Table 4.1). The 

XRD traces showed that there is complete orientation of the platy minerals i.e. no 

basal peaks were detected on the scan of the perpendicular section and enhanced 

peaks of greater intensity were detected on the section parallel to cleavage. 
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Fig. 4.11 Anisostropy of slate. Three orthogonal aspects of the fabric of an Easdale slate 
Le-l a) View of the surface showing a platy fabric with a flaky texture. b) View of the 
pillaring surface showing the domainsl nature of the slaty cleavage c) View of the third 
surface showing an end-on view of the cleavage. 
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Fig. 4.12 Effect of orientation on XRD scans of a Macduff slate MK-4, a) a powdered sample 

randomly orientated, b) parallel to the cleavage surface, c) perpendicular to the cleavage 

surface. 
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MK-4 Chlorite [001] White mica [00 1] Quartz [ 100] 

Orientation relative Area Intensity Area Intensity Area Intensity 

to cleavage 

Random 1412 145 3981 271 2277 309 

Parallel 3025 370 5695 520 1327 170 

Perpendicular 0 0 0 0 2193 313 

Mean of parallel and 1513 185 2848 260 1759 242 

perpendicular values 

Table 4.1 Effect of orientation on XRD scans of a Macduff slate. Sample MK·4, a) a powdered 

sample, randomly orientated, b) parallel to the cleavage surface, c) perpendicular to the 

cleavage surface. 

4.3.2 Measurements of Fabric 

To evaluate the fabric of slate, the orientation of phyllosilicates were studied by 

XRD analyses of rock slabs cut in different orientations relative to the attitude of 

their bedding and cleavage (Oertel 1970, Sutton 1989). Weber (1981) also used the 

degree of orientation of the phyllosilicates using X-ray goniometry but this 

technique was not available in-house. The degree of shortening in best commercial 

Welsh slates was measured using reduction spots and found to be 70% (Wood 

1974). However none of these methods discriminate between different fabrics in 

terms of their ability to be split into roofing slates of varying thicknesses. 

In this Report, several methods of. evaluating the anisotropy of a slate were 

investigated, such as the oblateness of reduction spots, however it was found that 

reduction spots are too infrequent to be used as a general means of evaluation. 

Measurement of the degree of orientation of platy minerals using X-ray analyses of 

rock slabs cut in different orientation relative to cleavage was investigated in Section 

4.3.1. However the degree of the orientation was too unifonn to be used as a 

method of discriminating between different types of fabrics. Roofing slate is 

produced from rocks with a wide range of different fabrics as seen in Figs. 4.6 - 4.9 

and it was necessary to develop a general method of assessing and comparing 

fabrics which is independent of mineralogical differences and therefore applicable to 
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a wide range of different slates. Individual samples were examined using the 

scanning electron microscope (SEM) and the splitting potential of the fabric 

evaluated in a semi-quantitative way. To test the validity of this method a selection 

of slates from producing quarries was evaluated and compared with their known 

splitting properties as evaluated by the quality control at the quarry. 

4.3.2.1 Methodology 

The topography of the pillaring surface was examined using SEM imaging and 

photography. As sawing the sample destroyed this surface topography, it was 

necessary to break the sample along natural lines of weakness such as the pillaring 

line. This was easily done in a slate with a strong pillaring fabric, such as the Welsh 

slate W IF-I, but slates with little linear fabric have a poorly developed pillaring line, 

making it difficult to get a natural break along the pillaring surface. However, such 

slates with a less developed grain are less anisotropic in the planes perpendicular to 

cleavage. For example, in the Cumbrian slate (Fig. 4.4b) there is no pillaring line 

and the precise orientation of the section cut perpendicular to the cleavage is not 

critical. 

The method used to prepare the slate was as follows: 

• The slate sample was broken using a hammer and chisel and a flat surface with 

the pillaring surface visible was selected using a hand lens (Fig. 4.10). 

• Surface particles were removed by. placing in a beaker of water in a sonic water 

bath for 10 minutes. 

• The sample was dried in a oven at 105°C for 30 minutes. 

• The sample was placed on a SEM stub, earthed with silver paint and a gold 

coating. 

• The samples were then examined under the SEM. Where possible, the 

procedures discussed below were carried out at specific magnifications of x 500, 

750, 1 K and 1.5K to facilitate comparison between different samples. 

The following observations and measurements were made: 

• Spacing: the distance between cleavage domains 
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An average value of the spacing between cleavage domains was determined across 

the field of view. These measurements were made directly on the SEM. which has 

the facility to measure distances accurately. Whenever possible the distance was 

measured over several cleavage domains in order to obtain an average value. This 

was especially important in the case of anastomosing cleavage domains. Spacing 

was determined at several magnifications but machine conditions were not found to 

affect the results. 

Problems arose when the degree of alignment of minerals was so great that 

individual CDs were indistinguishable. This arose in slates with good fabrics and 

any lack of precision was offset by a high alignment value. Problems also arose 

when the slate was very heterogeneous and the area measured was not typical of the 

whole slate. An extreme case of this was found in the Cnocfergan slate, which is 

really a flagstone. Here splitting can take place because micaceous minerals form 

layers between the quartz rich areas of equant minerals. This slate was excluded 

from the analysis. 

• % Alignment: The proportion of the total surface area occupied by minerals 

orientated in the direction of cleavage. 

In general, the minerals of a slate are aligned in the cleavage domains and non­

aligned in the microlithons. The ratio of the thickness of cleavage domains to that of 

the microlithons is a measure of the degree of development of the slaty cleavage. 

However as the degree of alignment within the microlithons increased, it was not 

always possible to distinguish between the two type of domains. From the point of 

view of splitting a slate, the proportion of suitably aligned platy minerals i.e. parallel 

to the cleavage surface, whether in the cleavage domains or microlithons was 

deemed significant. It was therefore decided to measure the proportion of slate 

consisting of aligned minerals. Estimates of the percentage alignment were made on 

screen but better precision was obtained from photographs of SEM images taken at 

4-5 locations on each sample. Each photograph was analysed by taking two to three 

cross sections at right angles to cleavage, and measuring the cumulative length of 

zones of alignment and then calculating the % value relative to the total length of the 

cross section. 
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• Shape of cleavage domains as described in Section 4.2.1 (Fig. 4. 2) 

The shapes of the cleavage domains and their degree of continuity were noted. 

• Microlithon fabric: the degree of alignment of minerals in the zones between 

the cleavage domains. 

The fabrics of the ML varied from those with complete alignment of elongated 

minerals to those where the minerals were equant. In cases where the alignment was 

considerable it was incorporated into the degree of alignment previously described. 

In some cases it was possible to quantify the degree of alignment in the microlithon 

fabric by measuring the long and short axes of the minerals and determining the 

ratio. Other samples could only be evaluated in a semi-quantitative way. 

• Homogeneity: A measure of the variance in all the properties in the fabric. 

The ideal slate is a uniform material and all imperfections and irregularities affect 

the splitting value of the slate. The presence of large detrital grains, e.g. of quartz, 

in an otherwise fine-grained rock would increase the minimum commercial 

thickness of the roofing slate produced. To assess the heterogeneity of the slate, the 

degree of variation of the spacing and percentage alignment properties and the 

overall appearance from one location to the next were used as criteria in evaluating 

this property but no attempt was made to quantify it numerically. 

4.3.2.2 Evaluation of Results 

Values of the different measurements are given in Appendices 4.1 and 4.2. 

Precision: 

Repeated checks of the photographs of the same samples were made and the 

measurements of properties such as the percentage alignment never differed by more 

than one point in the Fabric Points Scheme. Operator bias was not a major factor in 

the process of evaluating the slate. 
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Sample Precision 

Two SEM stubs were prepared from a single sample (W/F-5) from the old vein in 

the Oakley Quarry to assess sample precision and gave similar results (Appendix 

4.1). Two samples from the same vein also gave consistent results, based on the 

initial weightings as discussed in Section 4.3.2.3. 

Variation within a vein is attributed to variation in the material itself. For example, 

a sample taken from the quarry face oLd vein Cwt y Bugail and a finished slate 

produced earlier from that vein gave values of 18 FP (minimum commercial 

thickness of 4.2mm) and 15 FP (minimum commercial thickness of 5.6mm) 

(Appendix 4.1) respectively. Since this work was carried out, roofing slates 4mm 

thick are being produced from the seam in this quarry with the better slaty fabric. 

Using the data for the Welsh and Cumbrian slates, the interdependence of 

parameters was noted in that there is a strong reciprocal relationship (R2 = 0.7479) 

between spacing y and the degree of alignment x (Fig. 4.13). The relationship is as 

follows: 

k 
-1.05 

y= X k = constant 

Relations hip between the degree of alignment of minerals and s pacing between 
cleavage domains. 
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Fig. 4.13 Relationship between spacing of cleavage domains and the % area of aligned minerals 
in Welsh and Cumbrian slates. 
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4.3.2.3 Evaluation Procedure 

In order to interpret the above measurements, a considered judgement was made 

regarding the relative importance of the different parameters to the splitting property 

of the slate. This relative importance is termed the weighting. A range of values 

was assigned to each parameter and then each parameter was varied systematically 

to get the optimum correlation between the points system and the minimum 

commercial thickness. As an illustration, the variation of the different weightings 

relative to a value of 5 at 15 ~m for spacing is shown to get the final optimum 

conditions. The different measurements were assigned an initial weighting (Table 

4.2) for each cleavage property as described in Section 4.3.2.1 and evaluated as 

follows: 

• Spacing - Weighting 7.5 

It is assumed that the closer the spacing the thinner the slate can be split. Initially, 

the spacing of 15 ~m observed in the sample from the old vein Ffestiniog W IF-I was 

assigned a value of 5, and other samples were given values inversely proportional to 

their spacing, relative to this sample. Therefore the value of 7.5 is given to the 

minimum observed spacing of lOllm. 

15 
Value = x5 

spacing 

• %Alignment - Initial Weighting 10 

The greater the degree of alignment the better the splitting potential of the slate. 

Initially the maximum value for this parameter was 10 but it was subsequently re­

evaluated (Section 4.3.2.4) and a weighting value of 2 was assigned to this 

parameter (Table 4.2). 

IT I % alignment . h . 
va ue = x welg tmg 

100 

• Shape - Weighting 4 (Straightness 2 Continuity 2) 

The ideal shape of the CDs is deemed to be straight and continuous. Straight CDs 

are given a value of 2, anastomosing CDs a value of 1 and irregular CDs a value of 
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0, while interim values were allocated to slates which do not fall easily into the 

different categories. Continuity of the CDs was also considered important. A fabric 

where the CDs are predominantly continuous are given a value of 2 and those with 

less persistent CDs are given points pro rata. 

• Microlithon Fabric - Weighting 3 

Where possible a figure was assigned to this parameter based on 10gJO(length/width) 

of individual microlithons, but often a value in the range J -3 was assigned 

subjectively. 

• Homogeneity - Weighting 3 

This parameter was assigned a value between 0 and 3 in a semi-quantitative way, as 

discussed in Section 4.3.2.1 (Table 4.2). 

The value given to the fabric is the sum of the values given to the different 

parameters above. 

4.3.2.4 Verification of the Fabric Points Scheme (FPS) 

A selection of the photographs used in the evaluation of slate is shown in Fig. 4. 15 

but these do not correspond directly to the results given in Appendices 4.1 and 4.2 

which are the average values obtained for measurements taken at many locations. 

The validity of the proposed points scheme was tested by determining the degree of 

correlation between values found for different slates and the thickness of the 

finished product (Fig. 4.14). The correlation coefficients depend on the type of 

regression analysis used and the weightings given to the different parameters. For 

the regression analysis it was found that the best fit was given by an exponential 

relationship and this is used throughout the following evaluation. The weighting 

gi ven to each parameter was assessed independently by determining the value 

which gave the highest correlation. Because of the interdependence of the 

weightings, the procedure was repeated until an optimum set of values was found for 

all the parameters (Table 4.2). 
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Fig. 4.14 Relationship between fabric and the thickness of the slate produced. 

Parameter/weighting Initial Optimum Final 

Spacing w.r.t. 15Jlm 5 4.9 5 

% alignment 10 2 2 

Shape 2 3 2 

Continuity 2 1.6 2 

Microlithon 3 3.3 3 

Homogeneity 3 6 3 
R2 0.8618 0.8820 0.8769 
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Table 4.2 Multivariant analysis of fabric, the effect of the final adjustments to the different 
weightings of the different parameters on the optimum correlation coefficient. 

In this case study the initial weightings gave a correlation coefficient of R 2 = 0.8618. 

This figure was improved by reducing the contribution made by the degree of 

alignment, increasing that made by the homogeneity and making minor adjustments 

to the other parameters until an optimum correlation coefficient of R2 = 0.8820 was 

obtained. The relationship between the minimum thickness of the slate produced and 
r 

the number of points assigned to the fabric at optimum conditions is: 

t = 12.371 e,O.0503x t = thickness (mm) x = number of fabric points 
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This relationship was then used to assign a potential minimum thickness to Scottish 

slate The data set used for this work was limited to Welsh and Cumbrian slates 

because only working quarries were able to provide an assessment of splitting 

ability. This data set should be broadened before a more thorough discriminant 

analysis is carried out. 

The optimum conditions were obtained by assigning a weighting of 6 to the 

parameter of homogeneity which is on a par with that assigned to spacing (Table 

4.2). It is unfortunate that the parameter with the greatest control was least 

amenable to quantification. It could be that with a larger data set, which includes 

slates from other working quarries world-wide, this parameter would lose some of 

its relative weighting. However, homogeneity may well be a significant parameter 

and further work should be done to define this term more rigorously. At the present 

stage of this research, the degree of variance of other measurements, such as CD 

spacing, was used to assign a value to homogeneity. But this does not address the 

greater problem of determining homogeneity of a slate seam based on a few small 

samples. Because the principal aim of the procedure was to produce a rigorous and 

objective method of analysing the fabric of slate, it was decided to revert to a value 

of 3 for the parameter of homogeneity: 

t = 12.645 e ....o693x 

t = thickness mm 

x = number of fabric points 

This was then applied to samples of Scottish slate and a second set of values for 

theoretical minimum thickness were obtained (Appendix 4.1) and used in the 

following discussion of Scottish slate. 

(The equivalent values, calculated with a homogeneity weighting of 6 i.e. 

approximately the optimum weightings above, are given in parenthesis Appendix 

4.2) 
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Fig. 4.15 Fabric of Welsh slate; a) Ffe tiniog old vein WIF-1 best slate has straight closely-spaced 
cleavage domains. Slates 4mm thick are produced from this vein. b) Sample WIF-5 is also from the 
old vein. This figure is at a larger scale which highlights the domainal nature of the cleavage i.e. 
quartz. rich zones in the microlithons (ML) are separated by zones rich in platy minerals in the 
cleavage domains (CD). c) Ffestiniogpigs vein WIF·12 has straight but more widely-spaced cleavage 
domains than that found in samples from the old vein. Slates 8mm thick are produced from this 
vein. d)Ffestiniog sampleWIF-9 from between the producing veins has a poorly developed fabric. e) 
Cwt y Bugail sample W ICB·1 from the best vein has straight closely spaced cleavage domains and 
strongly aligned fabric in the microlithons. Slates 5mmthick are produced from this vein. Note the 
larger scale f) Cwt y Bugail sample W/CB·4 from the new vein from which slates 8mm thick are 
produced. The cleavage domains are more widely spaced than in slate from the best vein. 
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Fig. 4.15 continued g)Ffestini.og W/F·12Ilew vein has irregularly spaced cleavage d.omains. Slates 
8mm thick are pr.oduced fr.om this vein. h) Pen yr Orsedd W/PO-3 best heather blue has cI.osely­
spaced cleavage d.omains and str.ongly aligned fabric in the micr.olithons. Slates 5mm thick are 
pr.oduced fr.om this vein. Note the larger scale i) 1)n y Weingladd W/PO-ll has cl.osely spaced 
cleavage d.omains and well developed fabric in the micr.olith.ons. Slates 5mm thick are pr.oduced 
from this quarry. 
Fabric of Cumbrian slate j ) Kirby E/K·3 The fabric has anast.om.osing discontini.ous cleavage 
domains and minerals in the micr.olith.ons are n.on-a1igned. Slates 9mm thick are pr.oduced from 
this quarry. k) Br.oughton Mo.or EIBM·l The fabric has anastomosing discontinious cleavage 
d.omains and n.o alignment .of minerals in the micr.olith.ons. Slates 12mm thick are pr.oduced from 
this quarry I) Brossan St.one EIBS ·3 the fabric has anast.om.osing disc.ontinious cleavage domains 
and non·allgned minerals in the micr.ollthons. Slabs for cladding 14mm thick are pr.oduced fr.om 
this quarry. 
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4.3.2.5 Discussion 

The minimum thickness of a commercial slate is determined by the ability to be 

split, therefore if the fabric scheme has validity in predicting the commercial 

potential of a slate deposit, there should be good correlation between the points 

scheme values and the thickness of the produced slate. 

As suggested, the database for the evaluation of the slaty fabric should be extended 

to include slate world-wide. However in general it was found that there is a high 

degree of interdependence between the different cleavage properties, similar to that 

between spacing and the degree of alignment of minerals (Fig. 4.13). For example 

fine-grained slates have finely spaced cleavage domains which are also straight and 

continuous. In addition these slates also show the greatest degree of homogeneity. 

For this reason the correlation coefficients are not sensitive to changes in the relative 

weightings of the different parameters. 

However there are other factors besides the statistical approach above which need to 

be considered. While it is simple to measure the thickness of a finished slate, in the 

case of samples taken from the quarry face, the minimum commercial thickness 

value assigned to the slate by the quarry manager were taken. The relationship 

between this potential thickness of the slates and FPS values has correlation value 

R2 = 0.88 (Fig. 4.14), which suggests that 88% of the variation in thickness can be 

attributed to the properties of fabric as assessed in the proposed points scheme. In 

this regression analysis no account was taken of the bias in the data, e.g. the 

thickness of the slate from the old vein Oakley Quarry, Ffestiniog is not as thin as 

possible but limited to 4mm for commercial reasons. However slates from other 

seams were split to produce the thinnest roofing slates possible without tapering. 

(Per. com. Mr E Williams Ffestiniog Slate Quarries. In fact there are several 

situations where a slate is not split to its minimum thickness, hence this data set does 

not reflect the true splitting ability of the slate but rather an effective splitting as 

determined by the economics of production, requirements of the industry etc. In 

spite of this bias, the high co"ellltion value recommends the fabric points scheme 
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as a useful procedure in determining the potential splitting ability of a slate 

deposit. 

The minimum thickness to which a slate can be split has a direct bearing on the 

economics of a quarry. For example, a quarry with the potential to split slate to 4mm 

has twice the potential yield as a vein with an "8mm" fabric. This is why the best 

slate from each quarry refers to the thinnest slate in production and not to other 

properties such as durability etc. 

Correlation of the grain size and the cleavage surface: 

The grain size affects the spacing of the cleavage domains as well as affecting the 

surface of the slate. Fine grain size has a silky texture while a coarse grained slate 

has a rough and gritty feel. The limited data available for Scottish slate suggest that 

a larger grain size increases the ability of a slate to absorb water. This has important 

consequences to the durability of a slate and is discussed further in Chapter 5. 

4.4 The Fabric of Scottish Slate 

The fabric of Scottish slate, collected from the various quarries or from second-hand 

slate dealers, has been assessed according to the procedure described above. Using 

the relationship derived from the multivariate statistical analysis described (Section 

4.3.2.4), the minimum commercial thickness of Scottish slate was calculated and 

where possible compared with actual thicknesses (Appendix 4.2). 

t = 12.645 e ...{l06933x 

t = thickness mm 

x = number of fabric points 

The fabric points scheme (FPS) relates the microscopic properties of the slate fabric 

to its splitting ability and does not take into account factors which are localised or 

only seen on a macroscopic scale. Such factors, relevant to Scottish slate, are: 

• The presence of pyrites locally distorts the cleavage fabric and increases the 

minimum thickness of thicker slate. 

• Crenulation cleavage common in Easdale slate. 
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• Refraction of cleavage due to changes in grain size. 

• Undulating cleavage. 

The assessment of Scottish slate is described in the various quarry reports (Appendix 

A) and only a limited discussion is given here to show how the FPS has been used to 

evaluate the fabric and where possible to support the assessment with anecdotal 

evidence. A selection of photographs of various fabrics of Scottish slate is shown in 

Figs. 17- 20, but no direct comparison can be made with the results in Appendices 

4.1 and 4.2. The latter are based on the average measurements made at many 

locations, and not on the single location shown in the photographs. 

4.4.1 The Fabric of Ballachulish slate 

A selection of fabrics of Ballachulish slates from different quarries is shown in Fig. 

4.16. These fabric range in FPS values from 15 to 7 (17 to 7), which equates to 

thicknesses of 4.4mm to 7.6mm (4.5mm to 8.0mm). The spacings of CDs at East 

Laroch (Appendix A 2.5.1) are 20llm (Fig. 4.l6a) indicating a fine-grained material 

giving a smooth surface, while that from Khartoum (Appendix A 2.5.3) is coarser 

grained with CD spacing of 40llm (Fig. 4.16c). In general, CDs are planar and 

continuous and the degree of mineral alignment is high ranging from 50 to 60%. The 

microlithons also have a high degree of alignment. All of these characteristics point 

to a slate with good splitting potential. The one-hundred-year-old slate has the best 

fabric, closely followed by a sample collected from the best seam as described in the 

Wartime Pamphlet No 40 (Richey & Anderson 1944). These two samples have the 

most closely spaced CDs and highest degree of homogeneity. The lowest values 

were obtained for Khartoum due to the widely spaced cleavage domains and lower 

homogeneity. Historical records suggest. that the Ballachulish slate was split to a 

thickness of 6-9mm which is slightly thicker than the potential thickness as 

predicted by the fabric points scheme (Appendix A 2.4.4.4). 
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Fig. 4.16 Fabric of Ballachulish slate a) East Laroch EL-3 b) West Laroch WL-S c) Khartoum K1 

These slates have closely-spaced straight cleavage domains separated by zones of aligned minerals 
in the microlithons. Estimated commercial thickness of slates from these quarries is 6-7mm. 
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4.4.2 The Fabric of Easdale Slate 

The fabric of the Easdale slate group varies considerably from quarry to quarry 

(Fig. 4.17). The FPS values vary from 14 to 5 (16 to 5), which equates to a potential 

minimum thickness of 4.9mm to 8.9mm (5.0mm to 9.2mm). Peach et al. (1909) 

report that the average thickness of Easdale slate is % inch (6mm). 

The finest grained material with the most closely spaced cleavage domains was 

found at Easdale Island (Fig. 4. 17a, Appendix A 3.5.1), Toberonochy (Fig. 4.17e, 

Appendix A 3.5.5) and Port Mary (Fig. 4.17f, Appendix A 3.5.7), while the coarsest 

grained and hence most widely spaced CDs were found in a sample of Belnahua 

slate (Appendix A 3.5.11). CDs are generally straight and occasionally 

anastomosing. 

Pyrite cubes are common at some locations in Easdale slate; in a sample of Balvicar 

slate it can be seen cutting across the cleavage fabric (Fig. 4.17b), while in a sample 

from Breine Phort it distorts the cleavage (Fig. 4.17c). 

Judging from the few finished slates measured, the slates were not cut as thinly as 

that determined theoretically (Table 4.3). This may be due to a lack of accuracy of 

the fabric points scheme but is more likely due to the need for a thicker slate in 

Scotland's climatic conditions. 
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Fig. 4.17 Fabric of Easdale slate a) Easdale Island EE-3 used-slate. Although irregularly spaced, the 
cleavage domains are straight and continuous. This slate has an estimated commercial thickness of 
6mm but is actually 9mm thick. b) Balvicar SB-2 This sample has an estimated commercial thick­
ness of 8mm. This view shows an eohedral mineral of pyrite truncating the cleavage. c) Breine 
Phort SB-S This view shows the cleavage domains wrapping around a grain of quartz. d) Breine 
Phort SB-S In this view, the cleavage domains are straight and closely-spaced giving it an estimated 
commercial thickness of Smm. e) Toberonochy LT-2 used-slate. Straight closely-spaced cleavage 
domains and microlithons with aligned minerals give this sample an estimated commercial thick­
ness of 6mm. The actual thickness is Smm. f) Port Mary LP-6 Straight and closely spaced at 
regular interval give this sample an estimated commercial thickness of Smm. 
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4.4.3 The Fabric of Highland Border Slate 

With only a few samples from individual quarries analysed it is not possible to know 

how representative the following comments are. 

Arran (Fig.1Sa, Appendix A 4.5.1) 

The samples collected were fine grained, cleavage domains closely spaced, straight 

and continuous and the degree of alignment of minerals low. The theoretical 

minimum thickness is 5.2mm (5.3mm) 

Luss (Appendix A 4.5.3) 

Fine grained, closely spaced cleavage domains were straight and continuous with 

50% alignment of minerals suggesting good splitting. However on a larger scale the 

cleavage is undulating and this is indicated as low homogeneity slate. The 

theoretical minimum thickness is 5.Smm (6.1mm). A Luss slate, not assessed, had a 

thickness of Smm. 

Aberfoyle (Fig.lSb & c, Appendix A 4.5.4) 

Several samples of Aberfoyle slate were evaluated and showed a wide range of 

results, indicating the variation within one group of quarries. The slate is coarse 

grained, with spacing of cleavage domains of 30-40J.lm, anastomotic and fairly 

continuous. The degree of alignment varies from 40% in the best seam (as described 

by Mr Ferguson, a retired Aberfoyle quarrier) to 15% in AB-3. The microlithon has 

little fabric. The average theoretical minimum thickness is 7.4mm (7.2mm), which 

agrees with the actual thickness of a used slate (Smm) AB-6, estimated as over 100 

years old by Mr. Cummings, second-hand slate dealer, Perth. The lowest values 

were obtained for AB-4 and AB-5 which substantiates the comments of the 

quarrymen e.g. AB-5 comes from the best seam as identified by Mr Ferguson and 

AB-4 was selected by Mr Williams as having the best potential from Lockout 

Quarry. 
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Aberuchill (Fig.ISd, Appendix A 4.5.5) 

The fabric in the Aberuchill quarries is poorly developed, CDs are spaced 251lm to 

30llm and are discontinuous and irregular. There is a low degree of alignment of 

minerals and quartz grains in the microlithons are only slightly elongated. The FPS 

assigns a minimum theoretical thickness of 10.4mm (1 0.5mm) to the samples from 

this area. The sample of slate from a local Aberuchill farmhouse (not assessed) was 

12 mm thick. 

Craiglea (Fig. ISe, Appendix A 4.5.6) 

The fabric of two samples of Craiglea slate was assessed, one collected from the 

quarry waste tips and the other from a local farmhouse. The latter had a considerably 

better fabric than that from the quarry. The CDs of the used slate sample have a 

spacing of 21llm and are straight and continuous, while those from the quarry are 

more widely spaced, anastomotic and discontinuous. The finished slate also had 

greater alignment of minerals both overall and within the microlithons and a higher 

degree of homogeneity. This variation highlights the problem of assessing the fabric 

of a quarry based on too small a data set. The FPS assigned a theoretical minimum 

thickness of S.7mm (9.0mm) to the quarry sample and 6.1mm (6.9mm) to the 

finished slate which was actually 9-11mm thick. 

Dunkeld (Fig. 18f, Appendix A 4.5.7) 

The samples of Dunkeld slate collected in the quarries are fine grained with CD 

spacing of approximately 20flm and are straight and continuous with some 

alignment of minerals. The theoretical minimum thickness is 5.2 - 6.7mm (5.2 -

6.Smm). A used slate supposedly from a Dunkeld quarry (per. com. Mr. Cummings, 

second-hand slate dealer) had a poorer fabric, a theoretical minimum thickness of 

S.9mm (9.2mm) and an actual thickness of tOmm. 
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Fig. 4.18 Fabric of Higbland Border Slate a) Arran A-1 The fabric has straight closely spaced 
cleavage donains. The estimated commercial thickness is 5mm b) Ab-5 Cleavage domains are 
anastomosing around the microlithons. The estimated commercial thickness is 7mm. c) Aberfoyle 
Ab-6 used-slate is 8mm thick. d) Aberuchill Au-1 Large quartz grains are separated by thin 
anastomosing cleavage domains. Estimated commercial thickness is llmm. e) Craiglea Cr-3 used­
slate. This slate has a relatively high proportion of aligned minerals giving it an estimated com­
mercial thickness of 6mm although the actual thickness is 9mm. f) Newtyle DN-3 Straight 
closely-spaced cleavage domains give this an estimated commercial thickness of Smm. Note the 
larger scale. 
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4.4.4 The Fabric of Macduff Slate 

Macduff slate is relatively homogeneous over a large area including all the slate 

hills. The average CD spacing is 26 f.Lm with a standard deviation of 6. The shape is 

anastomotic and about 50% continuous. The degree of alignment is fairly low in 

both the CDs and the microlithons. The overall homogeneity is medium. The FPS 

determined minimum thickness to be approximately Smm. 

Slates from Tillymorgan have minimum theoretical values of S.5mm (7.9mm). A 

sample collected from a bald patch, which is assumed to be the location at which 

slates were dressed (see Appendix A), was examined to see if the quarrymen of old 

were able to select slate of above average fabric quality. However the sample had a 

minimum theoretical thickness of S.6mm (S.lmm) which suggests no such selection. 

This was confirmed on examining MF-14, a slate from the bam at Greystone Farm 

on the Hill of Tillymorgan, which had a minimum theoretical thickness of 9.1mm 

(S.Smm). Again a finished slate did not have a better than average fabric. This slate 

sample was 14mm thick although it has a potential of being split to 9mm by modem 

production techniques as predicted by the FPS. 
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Fig. 4.19 Fabric of Macduff slate a) Corskie MC-2. Cleavage domains are anastomosing around 
the microlithons. The estimated commercial thickness is 10mm. b) Raining MH-2. The cleavage 
domains are straighter and more closely spaced than in the Corskie sample, giving it an esti­
mated commercial thickness of 7mm. The euhedral mineral marked T is tourmaline. Note the 
larger scale. d) Foudland MF -2. This has straighter and more continuous cleavage domains 
than the average Macduff slate, giving it an estimated commercial thickness of 6mm. e) 
Foudland used-slate MF-14. Cleavage domains are widely spaced and anastomotic. This has an 
estimated commercial thickness of 8mm although the actual thickness is 14mm. 
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4.4.5 Discussion 

The fabric points scheme was used to estimate the splitting ability of slate from 

Scottish quarries. In order to determine how weJl it achieved this objective, the 

thickness of finished slates was compared with the thickness as determined by the 

points scheme. The sources of slates used in this comparison were (i) from second 

hand sources where only the source area was known but not the actual quarry (ii) 

finished slates found in the quarry which were generally not split to their potential 

minimum thickness or (ii) finished slates found on local farm buildings where the 

source quarry was almost certainly known. The results of this comparison are shown 

in Table 4.3. 

Slates which had reached the market are probably a truer guide to the average 

thickness of the finished slate produced from a particular quarry or group of quarries 

than rejects found in the quarry. In all cases the actually thicknesses were greater 

than that determined theoretically. This may suggest a faulty FPS but is more likely 

to suggest that slates were not split to their minimum thickness because of the need 

for thicker slate for Scottish climatic conditions. 

Sample Quarry or group of Source Theoretical Actual 

quarries thickness mm thickness mm 

BX-l Ballachulish 2nd hand dealer 5 9 

EE-3 Easdale Island local building 6 9 

EX-l Easdale 2nd hand dealer 9 10 

LC-3 Cullipool quarry 8 9 

BB-I Belnahua quarry 8 15 

Ab-6 Aberfoyle 2nd hand dealer 8 8 

Cr-3 Craiglea local building 7 10 

DX-I Dunkeld 2nd hand dealer to 10 

MF-14 Macduff group local building 9 14 

Table 4.3 Comparison between the theoretical and actual thicknesses of Scottish slates. 
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Slate dimensions 

The thickness is only one dimension of the slate, albeit a very important aspect. The 

other dimensions such as the length and breadth of a slate are controlled by 

geological factors in the quarry which govern the dimensions of the slate block 

which can be extracted. This is a function of spacing and orientation of 

discontinuities such as veins, joints etc. within the quarry. The effect of such 

discontinuities can only be investigated on a fresh quarry surface, and hence it is not 

possible in the weathered Scottish quarries. Instead, a theoretical approach is used in 

Section 6.5.4 to demonstrate the inter-relationship between size of slates produced 

and the spacing and orientation of discontinuities. 

4.5 Conclusions 
In this section the fabric of slates from producing quarries in North Wales and 

Cumbria was evaluated using a points scheme based on submicroscopic properties 

of the cleavage. The results were correlated with the actual thickness of the slate 

and the relationship between the potential minimum commercial thickness value 

assigned to the slate based in the points scheme and actual thickness was determined 

by regressional analysis. 

This relationship was then used to predict the potential thickness of Scottish slate. 

The validity of the method was assessed by comparing the actual thicknesses of used 

Scottish slates with their theoretically determined potential thickness. It was found 

that there was a tendency for finished slates to be split thicker than a Welsh slate 

with a corresponding numb~r of points but in several examples there was good 

agreement to within 1 mm. However it is worth noting that the closest agreement 

between the potential commercial thickness and actual thickness was found in those 

slates which had been sold and used on a roof, rather than those found rejected 

within the environs of the quarry. No slate was split thinner than the theoretical 

limitation. 

The relationship between fabric and thickness of finished slates was based on that 

observed for Welsh and Cumbrian slates. A wider range of samples from quarries 

world-wide should be studied to 'provide a broader data set to test this relationship 

more thoroughly. 
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The FPS was then applied to a few samples from all the slate quarries described in 

Appendix A and a potential splitting ability was determined. As in all aspects of this 

work, the data set was spread too thinly to allow a more rigorous statistical analysis 

to be made. This results in observations which may not be representative of the 

natural variation in the quarry. However it gives a preliminary estimate of the 

splitting quality of the slate from all of the Scottish slate quarries reviewed. 
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Chapter 5 Weathering Properties 

5.1 Introduction 

As slates are extensively used as a roofing material they are most exposed to severe 

weather conditions acting on the building. There is little or no protection from 

extremes of temperatures, rain, ice, snow and high winds. High winds can lift slates 

so that they rotate on their securing nails and can also deflect the rafters, straining 

the slates to breaking point if secured too tightly. Slates are also exposed to flue 

gases and leaching from deposits of soot as well as a polluted atmosphere in 

industrial areas. 

In common with other exterior building materials slates are weathered by both 

chemical and physical methods: 

Chemical weathering, where ionisation, hydrolysis and oxidation of minerals takes 

place as the system of slate, air and water approaches equilibrium. A major 

contributory factor to chemical weathering is acidic attack of susceptible minerals 

within the slate by polluted atmosphere. 

Physical deterioration of slate is due principally to the mechanical action of wind. 

Although essentially a chemical agent, water also acts in a physical manner as it 

expands and contracts in cracks when subjected to freezing and thawing cycles. 

The aim of this part of the research is to understand the changes which take place 

in a slate on a roof and then to devise a method which experimentally reproduces 

these change to enable prediction of the life-spans of new slates 

5.2 Background - Weathering Reactions 

There have been various studies of the chemical reactions that take place in the 

weathering of slate. Some have looked at the weathering reactions which take place 

in situ while other studies have examined those that have taken place in a finished 
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slate. An example of the former is that carried out by Bayliss and Loughman ( 1964) 

in slate in New South Wales. They examined the change in the mineral composition 

of the slate with depth i.e. a depth profile and found that of the three major minerals 

in slate quartz, crystallised illite and chlorite/montmorillonite, that chlorite is the 

least stable, being destroyed in the leached zone. In contrast quartz content is left 

unchanged while the degradation of illite is confine to the surface layer. Kaolinite 

is the end product of the breakdown of both chlorite/montmorillonite and illite. 

minerals. 

Before looking at the weathering of Scottish slates it is necessary to discuss the 

processes involved. Chemical weathering of any building material is brought about 

by the actions of water, acid and oxygen. 

5.2.1 Dissolution - Action of Water 

The most important agent of weathering is water. In a dry atmosphere, the 

weathering of rocks proceeds extremely slowly as can be seen in the preservation of 

carved inscriptions dating from over three thousand years ago in the arid climate of 

Egypt, and by the slow decay of stone (including slate objects) in museums. 

Moisture performs a number of functions; it is the agent of transfer, bringing 

solutions into contact with solids and so allowing reactions to take place, it carries 

dissolved C02 and other atmospheric agents into the slate and is also a continuous 

supply of oxygen to facilitate reactions and biochemical activity. 

Dissolution 

Soluble minerals are dissolved by ionisation as in breakdown of feldspar to clay and 

quartz. In a strong leaching environment, clay minerals (Section 2.2.2.2, Fig. 2.3) 

such as kaolinite and halloysite are the common weathered products. 

2NaAIShOs + 9H20 7 AhShOs(OHk2H20 + 4H2 Si03 + 2NaOH 

Albite Halloysite 

However in an environment that is only mildly leaching, illite (Table 2.1) or 

montmorillonite are produced. 
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3KAIShOg +8H20 -7 KAh(AIShOIO)(OHh + 6H2 SiO j + 2KOH 

Orthoclase White mica 

(Montmorillonite has a dioctahedral structure similar the white micas but lacking 

potassium ions) 

These reactions depend on the removal of the alkali cations to proceed which is not 

possible in slate having low porosity. Of the feldspars plagioclase is more 

vulnerable to weathering but this feldspar is not the generally found in slate. Hence 

the hydration of alkali silicates is not an important reaction in the weathering of 

slates. 

The weathering of white micas depends on the ease at which potassium can be 

removed by dissolution. One approach is to compare the stability of white mica 

with another potassium bearing mineral such a biotite. It was found that there was 

considerable disparity in the rate of solution of potassium ions from dioctahedral 

muscovite and trioctahedral biotite, the former being much more stable (Loughnan 

1969). This has been attributed to the differences in orientation of hydroxyl groups 

(Bassett 1960) to the presence of oxidisable iron in the latter (Walker 1949). 

Whatever the reason the conclusion is that potassium cations fixed in muscovite are 

not easily removed. This suggests that the closer the white mica (the dioctahedral 

phyllosillicate found in slate) approaches muscovite the less vulnerable to 

weathering. Therefore the white mica in Easdale slate, which has an alkali cation 

content of approximately 0.8 per formula unit, is more vulnerable to weathering than 

that found in the other Scottish slate areas, all of which have a alkali cation content 

greater than 0.9 per formula unit (Table 2.7). 

Of greater significance is the weathering of carbonates 

CaC03 + H2C03 -7 Ca 2+ + 2HC03-

and hydration of anhydrite to gypsum 

Ca S04 + 2H20 -7 Ca S04.2H20 

These are two important weathering reactions. 
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5.2.2 Weathering of Carbonates - Action of Acid 

Pure water is neutral with a pH of 7 but natural water in equilibrium with the 

atmosphere contains dissolved carbon dioxide, resulting in a weak acid with a pH of 

5.7, making it a much better dissolving agent. Other acids, such as nitric acid Illay 

also contribute to the acidity of natural water, but of greater importance are sulphur 

acids H2S03 and H2S04 which are strong acids and hence lower the pH 

considerably. 

CO2 + H20 ~ H2C03 

H2C03 ~ H+ +HC01-

5.2.2.1 Calcium carbonate 

Calcium carbonate, found as two polymorphs, calcite and aragonite, is only slightly 

soluble in pure water but dissolves slowly in natural water due to the formation of 

calcium bicarbonate 

CaC03 + C02 + H20 -7 Ca2
+ + 2HC03-

In the presence of a strong acid it reacts rapidly giving off carbon dioxide gas. 

Where that acid is sulphurous or sulphuric acid, hydrated calcium sulphate i.e. 

gypsum is produced. 

CaC03 + H2S04 -7 CaS04 + H20 + CO2 i 

In a study of slate weathering, Roekens et al. (1991) took slates from St Rombout's 

Cathedral in Mechelen, Belgium constructed from the 13th to the 15th century. 

Mechelen is located in the' polluted industrialised area between Antwerp and 

Brussels. They found that the un-weathered part of the slate contained micas, quartz 

and minor amounts of aragonite but no pyrite. In contrast the weathered portion of 

the slate showed fan-shaped splitting which on AAS (Atomic Absorption 

Spectroscopy) and EDXRF (Energy Dispersive X-ray Fluorescence) analysis 

revealed increased Ca2
+ and sol i.e. gypsum concentrations. The aragonite in the 

slate had reacted with atmospheric sulphur (in the form of sulphurous acid) to form 

gypsum which causes expansion and splitting due to its larger molar volume. In 
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their study Roekens et al. concluded that other acids found in the atmosphere such 

as N02 and HCl were of minor importance. 

5.2.2.2 Other carbonates 

Other carbonates such as magnesite, siderite and dolomite are also susceptible to 

weathering. 

Siderite FeC03 is only deposited when a source of Fe2
+ is available i.e. in reducing 

conditions (Section 5.2.3). It is less common in slate than calcite and its solubility 

constant is 1/100 of that of calcite, making it more resistant to weathering (Table 

5.1). There is continuous solid solution between siderite and magnesite. 

Magnesite MgC03 The magnesium carbonate has a greater solubility constant than 

calcite and is only precipitated in evaporites (Table 5.1). It can also form at high 

temperature or as a product of weathering of magnesium rich rocks. An epidiorite 

sill on the east coast of Luing and Seil close to Balvicar and Toberonochy slate 

quarries (Appendix A 3.5.) may well be the source of the magnesite found in the 

samples analysed from these quarries. 

Dolomite CaMg(C03h Dolomite is a very common rock yet it is not produced in the 

laboratory without extremes of pH or high concentrations of anions. The answer to 

this conundrum may lie in its organised crystalline structure of alternating Ca2
+ and 

Mg2+ cations, which can only be produced slowly or at high temperature 

experimentally. It is often found in Scottish slate where its low solubility constant is 

very unreactive (Table 5.1). 

Apatite Cas(P04h(F,OH) Although not a carbonate, apatite is included here for 

completeness. It is a hydrated calcium phosphate salt, traces of which are found in 

most slates, but as can be seen from its solubility coefficient (Table 5.1), it is 

extremely insoluble and hence unreactive. 
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Solubility products of carbonates and apatite 

Magnesite 2.0 x 10'; 

Calcite 4.5 x 10.9 

Siderite 

Dolomite 

Apatite 

3.0x to'll 

to'I7 _ to'I9 No precise figure available. 

10,58 fluoroapatite 

10,60 hydroxyapatite 
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Table 5.1 Solubility products of the most common carbonates and apatite (Krauskopf 19(7) 

Ease of weathering is roughly in line with the solubility constants i.e. 

magnesite >calcite >siderite »dolomite » apatite 

When considering the effect the presence of carbonates has on the durability of a 

slate, the type of carbonate present should also be taken into account. 

5.2.3 Oxidation - Action of Oxygen 

Second only to water is the role oxygen plays in weathering reactions. Metals such 

as iron combine with oxygen to form soluble products. 

5.2.3.1 Definition of Oxidation 

When an element is oxidised, it losses one or more electrons, represented by the half 

equation, 

M ~ Mn+ne-

Oxidation does not occur in isolation, but is always accompanied by reduction, 

where some compound or element accepts the released electrons. These two 

complementary processes are called a redox reaction. However it is oxidation and 

more specifically that of iron and sulphur compounds, that is relevant to the 

weathering of slate. 
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5.2.3.2 Oxidation of Iron Compounds 

Iron can exist in one of three oxidation states, the metal, Fe2
+ ferrous compounds 

and Fe3+, ferric compounds. In slate, ferrous iron is found in chlorite, to a lesser 

extent in phengite and in iron sulphides, all of which are susceptible to oxidation, 

producing bright, usually rusty-coloured staining. 

Any ferrous compound on prolonged exposure to air is oxidised e.g. the reaction for 

the weathering of a chlorite containing ferrous iron, such as brunsvigite (Table 2.6), 

shows the overall conversion of ferrous to ferric iron, the releasing of silica and 

ionisation of non-oxidisable metals like magnesium. 

This overall reaction takes part in stages, probably initiated by oxidation of the Fe2
+ 

to Fe3+ thus upsetting the balance of the charges between the tetrahedral and the 

octahedral layers. 

The oxidation state of iron in the iron sulphide minerals is also important in 

considering the vulnerability of slates to weathering i.e. the relatively reduced form 

pyrrhotite FeS is much more easily weathered than the more oxidised form pyrite 

FeS2. This is discussed in greater detail in Section 5.2.3.5. 

Ferric iron can be present in many forms such as oxides and hydrated oxides. 

Anhydrous oxides Fei)3 haematite and its less common polymorph 

maghemite. 

Hydrates FeO.OH. nH20 goethite and lepidocrocite. 

Haematite is an iron ore mineral common in slate due to its great stability and 

insolubility. Field evidence (Appendix. A) suggests that haematite-rich layers follow 

bedding and hence it is a diagenetic mineral and not always a product of weathering. 

Other ferric compounds such as goethite, or its fine-grained equivalent limonite, 

exist, although the precise conditions under which they form are largely unknown. 
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Although not susceptible to oxidation these minerals can be weathered by 

dissolution. Limonite is the field term used for hydrated iron minerals which cause 

the rusty-brown staining observed in the many Scottish slate quarries. 

5.2.3.3 Oxidation of Manganese 

Manganese (Mn) is also oxidisable, but in a more complicated manner than Iron 

because of its numerous oxidation states. The reaction products are less 

conspicuous being black and less abundant because of the relative scarcity of the 

element. 

5.2.3.4 Oxidation of Sulphur 

The oxidation of sulphur is very relevant to the weathering of slate. Sulphur has a 

range of oxidation states from -2 when bonded to a metal to +6 when present as 

sulphuric acid. 

5.2.3.5 Oxidation of Iron and Sulphur 

Iron and sulphur are found together in slate as pyrite FeS2 and pyrrhotite Fel_xS 

Pyrite is found as an euhedral mineral or disseminated throughout the rock. When 

present as crystalline cubes, pyrite is resistant to weathering, which accounts for 

slate with diamonds (term used by quarriers for cubes of pyrite) having a good 

reputation. When pyrite is present as small rounded grains disseminated throughout 

the rock it is less crystalline and hence readily altered to limonite. Pyrrhotite does 

not form euhedral crystals and alters readily to a mixture of iron minerals. 
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The type of sulphide found in a particular slate is controlled by its metamorphic 

history, the oxidation state of metamorphic fluids and the extent to which the 

following redox reaction has gone to completion. 

2FeS H FeS2 + Fe2
+ +2e-

Both pyrrhotite and pyrite are found in Ballachulish and Easdale slates. The former 

is often found as lenses within crystalline minerals such as quartz and pyrite. Pyrites 

are found as large porphyroblasts which post-date the growth of the matrix minerals 

and the development of cleavage. The source of the pyrrhotite is problematic. Pyrite 

is the iron sulphide which forms during the diagenesis of anoxic organic rich 

sediments (Section 5.3.1), therefore pyrrhotite must form at a later stage. One 

suggestion is that it formed during metamorphism due to the reduction of 

disseminated pyrite. One of many possible reactions suggested by Thompson (1972) 

is 

2 FeS2 +C + (2FeO)silicates -7 4FeS + CO2 fluid 

which according to Hall (1982 ) is a low grade metamorphic reaction taking place at 

the achizonel greenschist boundary. 

At a later stage in its metamorphic history, possible during post-metamorphic uplift 

(Hall et al. 1988), microfractures formed allowing relatively oxidising fluids to 

penetrate the rock. This reversed the process causing pyrrhotite to dissolve, be 

oxidised and re-precipitate as large pyrite porphyroblasts. 

Under different metamorphic conditions pyrites in the North Ballachulish slate 

quarries, have been converted to pyrrhotites during contact metamorphism (Section 

5.3.1). 

These few examples demonstrate the complexity of the history of pyrite/pyrrhotites 

The extent that this process has gone to completion controls the weathering 

properties of the slate. Pyrites are stable, as are pyrrhotites founds as lenses within 

pyrites but pyrrhotite, found as disseminated amorphous material, is easily 

weathered. 
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Slate No 1 

Fresh Quartz chlorite muscovite pyrite paragonite feldspar 

Surface stain Hydronium jarosite Fe.1(S04h(OHk2H20 

Salt crust Halotrichite FeAI2(S04)4.22H20 

Loose flakes Melanterite 

Slate No 2 

Fresh Quartz muscovite chlorite haematite goethite feldspar paragonite and 

kaolinite 

Upper layer Gypsum 

Reddish stains Increase in the amount of goethite and haematite at the loss of chlorite 

Lower layer Gypsum. hydronium jarosite with a translucent crust of gypsum 

Table S.2 Weathering products of slate after Shayan and Lancuck (1987) 

The profiles of weathered slates studied by Shayan and Lancuck (1987) showed 

considerable disintegration on the upper surface and a globular salt on the under 

surface. The decrease in the amount of chlorite on the weathered portion relative to 

the fresh part of the slate showed that chlorite had weathered, producing hydrated 

sulphates of iron and aluminium (Table 5.2). 

Both slates, one containing pyrite and one containing haematite, have very similar 

weathering products but in addition gypsum was formed in slate no 2, although the 

source of calcium needed to produce gypsum was not identified. 

5.3 Weathering in the Scottish Slate Quarries 

Alteration of slate in situ takes place as the rock is subjected to changing conditions 

during its metamorphism and subsequent uplift. Weathering takes place in the late 

stages of uplift as it nears the earth's surface until eventually it is exposed at the 

surface. Slate reactions, which occur on exposure to oxidising atmospheric 

conditions, are the subject of this Section. Scottish quarries have not been used for 

50 to >200 years and the effect of superficial weathering can be seen in both the 
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remaining outcrops and in the reject tips. These observations have been described in 

the individual quarry reports (Appendix A). 

5.3.1 Environment of Deposition 

The conditions under which the original deposits were deposited and underwent 

diagenesis have a lasting effect on the properties of the slate. If it is assumed that the 

slate did not change its oxidation state during subsequent metamorphism, then the 

aspects of slate discussed here can be directly related to its earlier history. 

The low energy environment necessary for the deposition of mudstone (the 

precursor of slate) is often associated with stagnant, reducing. One example of such 

conditions is the stagnant basin in which the Ballachulish deposits were laid down 

conditions (Hickman 1975). In such an environment, sulphates were reduced to 

sulphides and pyrite formed. Organic matter was not completely recycled and the 

residue became graphite when the rock was metamorphosed. When such deposits 

are exposed to the atmosphere millions of years later they are vulnerable to 

oxidation. At ordinary temperatures, oxidation is extremely slow, but the rate of the 

reaction is increased in the presence of water which dissolves minute amounts of the 

reactants. 

The environment of deposition which produces the thinnest slate is also associated 

with the relatively un-oxidised minerals, pyrite and carbon, which lead to its 

deterioration. This is particuhlrly true when the pyrite is disseminated throughout the 

rock and causes intensive brown staining e.g. in Balvicar Quarry (Appendix A 

3.5.4). In the Ballachulish group of quarries the pyrites were converted to pyrrhotite 

during contact metamorphism associated with the intrusion of the Ballachulish 

granite (Hall 1982). These pyrrhotites have weathered out leaving large holes in the 

lower level quarries at North Ballachulish (Neumann 1950). 
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Scottish slate has characteristics which reflect the environment of deposition e.g. the 

reducing conditions under which Ballachulish (Appendix A 2.2.1.3) and Easdale 

(Appendix A 3.2.1.2) protoliths were formed produced a dark blue to black slate due 

to the presence of graphite. Some of the Easdale slate is less graphitic and 

consequently more blue slate was produced. 

In contrast the slates of the Macduff area are derived from a sequence which 

included turbidites, which were laid down in relatively oxidising conditions and as a 

result the iron ore mineral found in such quarries is haematite (Sutton & Watson 

1955). The colour of Macduff slate is typically grey due to a high white 

mica/chlorite ratio. Weathering in these quarries is due to the deterioration of 

chlorite. Light brown staining due to the weathering of chlorite is often noted along 

joint. Weathered chlorite is also associated with quartz veins in some quarries. 

The situation is more variable in the Highland Border slate and in a few quarries, 

e.g. Aberfoyle (Appendix A 4.5.4) and Dunkeld (Appendix A 4.5.7), the colour of 

the slate can change abruptly from purple to green. This may reflect a sharp 

boundary between the oxidising and reducing conditions at the time of diagenesis. 

The best quality slate in several Highland Border quarries, such as Craiglea 

(Appendix A 4.5.6) and Dunkeld, is from fine-grained red deposits which are 

associated with deep water. In reducing conditions the ferrous iron combined to 

form chlorite while in the oxidising conditions the ferric iron was taken into 

haematite. 

5.4 Experimental Weathering of Slate 

It is difficult to assess how well a test or group of tests can predict the durability of a 

slate, and diverse methods have been used over the years to evaluate the quality of 

the material. One approach, and the one followed in this Report, is to determine 
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how a slate deteriorates with time and then to devise tests which produce a similar 

deterioration experimentally. However, this should ideally be carried out lIsing 

data from a range of slates with known history, which is not often available. In the 

absence of such a comprehensive data set, the results of the experiments can be 

verified to some extent by reference to the reputation of the slate in the trade. 

5.4.1 Weathered Slate 

While some work has been done on the chemical reactions which have taken place 

in weathered slate (Section 5.2) it is necessary to relate this to changes in properties 

of the roofing material. 

Kessler & Sligh (1932) examined the effect of weathering on 61 samples of old 

slates exposed from 12 to 131 years and found that there was a loss of strength and 

an increase in water absorption with time (Fig.S.I). Comparing the data with those 

for fresh samples, it was possible to determine the average annual increase in water 

absorption and the average yearly decrease in strength. Some correlation was found 

between the two parameters (R2 = 0.69) showing that both water absorption and loss 

of strength are a feature of weathering. This is substantiated by examination of data 

gathered by the Building Research Establishment BRE on weathered slate, where 

there is an increase in water absorption with the age of the slate (Fig.S.2), but there 

is no equivalent data for loss of strength with age. Therefore the test which 

simulates the weathering of slate experimentally should also produce an increase 

in water absorption and loss 'of strength as well as exhibiting chemical weathering 

as discussed in Section 5.2.1. 
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Fig. 5.1 Loss of strength and increase in water absorption observed with ageing after Kessler & 

Sligh 

(1932) 

Water absorption in weathered slates 
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Fig.S.2 Increase in water absorption with years of natural weathering. Source of data BRE 

archives. 

5.4.2 Unweathered Slate 

Two studies of the best methods of evaluating the durability of roofing slates have 

been carried out. The first comprehensive study was carried out on American slates 

by Kessler and Sligh (1932) and the second was carried out in the preparation of the 
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British Standard for slate BS 680 (Watkins 1934, BRE archives). The first study, 

based on a data set of 343 samples, has provided a wealth of data against which it 

has been possible to compare the performance of Scottish slate. 

Data collected from the BRE archives has been invaluable in providing a few results 

for fresh samples of Scottish slates as well as the source of the following opinions 

on the relative merits of slate from different Scottish quarries. 

5/2/47 

"[n my opinion Ballachulish, Toberonochy and Easdale are best. 

At the same time the Ballachulish slate of today is not of the same 

quality as 20 years ago. Aberfoyle and Luss are next in quality 

and Balvicar in the third category. Aberfoyle is liable to be 

slightly soft after say ]5 years under cover." Mr Sommerville, 

Superintendent of Maintenance, Corporation of Glasgow 1947. 

"Ballachulish is the best, Balvicar is very poor, Cullipool is good, 

Aberfoyle blue is soft, lasting for example 20 years on a 

Grangemouth roof, but the green is good. Luss is soft and of short 

life ", (Mr Robertson, a slater with 50 years experience from a family 

of slaters). 

30/1/47 

Ballachulish has the best reputation, followed by Aberfoyle. The 

remainder, including CullipooZ and Balvicar, are about the same 

quality. Aberfoyle and Cullipool have water absorption greater than 

.30 andfail BS 680 contrary to their good reputation. (Mr McNecol, 

Director of Aberfoyle slate quarries) 

In addition information from Mr Elfed Williams of Ffestiniog slates quarries on the 

quality of slates from different sources was found to be very reliable. Other sources 

of information were used when corroborating information was obtained. 
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5.4.3 National Standards for Slate 

National standards for slate, designed to assess its durability, have been set by some 

countries. However, the considerable differences in approach adopted by the 

different countries gives some idea of the complexity of the problem, and limits set 

often reflect the type of slate produced in the particular country. 

Synopses of the several different national standards for countries within the 

European Union are given in Appendix B, although these are soon to be replaced by 

a new European Standard prEN12326. Because this Report continually refers to the 

data published on American slate (Kessler & Sligh 1932) a precis of the American 

standard has also been included. 

It is not possible to look at all the methods proposed to test slate and the following 

discussion has been limited to those tests which appear to fulfil the criteria in 

Section 5.4.1: 

1. Flexural strength 

2. Water absorption 

3. Wetting and drying 

5.4.3.1 Flexural Strength of a Slate. Modulus of Rupture Rn 

Failure of a slate is often caused by tensional stresses due to gravity, or bending 

stresses resulting from the uplifting effect of the wind. Flexural strength is the usual 

criterion for the strength of a slate, as it is considered a more appropriate measure 

than the more standard compression test used in the evaluation of other building 

materials. Results are reported as the modulus of rupture, a measure of the intrinsic 

strength of a material (Appendix B 3.6 for details). 

. 3PI 
Ra=--

2be2 

Ra. = Modulus of rupture in newtonlmm2 

P = Failure load in newtons 

= Distance between support bars of the three point bending machine 

b = Width of test piece in mm 
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e = Thickness of slate in mm 

As slate is an anisotropic material, the strength of a slate depends on the direction of 

applied stress, i.e. the strength of a slate along the grain is less than that across the 

grain (See Fig. 5.3). Kessler & Sligh ( 1932) found that the strength of a slate broken 

along the grain is on average 0.65 times that across the grain but the ratio was not 

characteristic of a slate producing region (Fig.5.4). 

Transverse strength 
Fai lure is across 
the grain. 

Grain of slate 

Fig. 5.3 Transverse strength; the slate fails across the grain, longitudinal strength failure is 
along the grain. 

Mean Ra (MPa) 

Standard Dev 

Values range 

Ra across grain 

76 

14 

52-97 

Ra along grain 

55 

12 

20-87 

Ratio 

1.48 

0.45 

1.1-2.6 

Table 5.3 Variation in the Modulus of Rupture; data extracted from Kessler and Sligh (1932) 

Chapter 5 Weathering Properties 



154 

Regional variation of the Modulus of Rupture 
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Fig.S.4 Variation in the strength of a slate with ageing after Kessler & Sligh (1932). 

5.4.3.1.1 Minimum Strength Requirement 

Because there is no correlation between intrinsic strength of a slate and its 

reputation for durability (Kessler & Sligh 1932), there is no case for a minimum 

modulus of rupture to be specified. There is however a case for specifying a 

minimum bending strength of the slate as produced. For example Spanish slate is 

reported (trade literature and press) to have a low intrinsic strength and when split 

too thinly for the British climate often fails. This has been rectified to some extent 

by producing a thicker slate for the British market. 

As the strength of Welsh and English slate is greater than that specified for other 

roofing materials, the British Standard has no minimum requirement, and as a result 

it was possible to import weaker slates into Britain. 

Several countries do have minimum requirement in their standards, but limits set 

vary considerably, e.g. that set by the Spanish is conspicuously lower than that set 

by the French and the American standards (Table 5.4). 
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To determine an appropriate minimum strength, that set for man-made tiles and 

slates was considered, but because of different testing conditions no direct 

comparison was possible. 

Limits MPa Grade I Grade2 Grade3 

PrENI2326 E.U. A function of the thickness 

BS680 British No requirement 

NFP32 French 70 dry 40 wet 50 dry 33wet 33 dry 24 wet 

DIN 52 201 German 

UNI 8626 & 8635 Italian A function of the thickness 

UNE 220 20185 Spanish 28.4 dry 22.7 wet 

C1l9 ·74 American 62 62 62 

Table 5.4 Variation in the minimum requirement for the strength of a slate as specified by 
different national standards. To enable comparison all units were converted to MPa. 

The European Commission for Standardisation CEN has effectively set a minimum 

apparent strength requirement by setting the minimum thickness as a function of the 

modulus of rupture (Appendix B 3.12). However, as the function also incorporates 

a factor taking into account the climate and construction techniques, no comparison 

with other national limits was possible. 

5.4.3.1.2 EtTect of Water Absorption on Strength 

Modulus of rupture when wet 

Both the British and American studies investigated the loss of strength due to 

absorbed water as a means of assessing the quality of slate. In each case the modulus 

of rupture was determined after prolonged immersion, the percentage loss of 

strength plotted against water absorbed, measured as a percentage of the dry weight, 

and correlation coefficients determined (Fig. 5.5). The American study showed a 

loss of strength of approximately 30% regardless of the source of slate, and no 

relationship with water absorption. The British study did however suggest some 

correlation with water absorption. The significance of this will be discussed in 

Section 5.4.3.2.1. • 
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Fig. 5.S Relationship between water absorption and loss of strength a) American slates after 
Kessler and Sligh (1932) b) European slates tested by BRE 1955 (BRE archives) 

c) European slates tested by BRE 1930 (BRE archives). 
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Rate of decrease in strength 

It is not the initial strength of the material that is important but the rate of decrease 

of strength. Some standards test the strength of a slate before and after an 

experimental weathering procedure e.g. the Italian standard requires less than 20% 

reduction in strength for a slate subjected to a thermal cycle test (Appendix B 7.2). 

In theory this is valid, given that loss of strength is one of the characteristics of a 

weathered slate, but in practice it has its limitations. The test is destructive and 

hence the same slate cannot be tested before and after experimental weathering. As 

there is considerable natural variation in strength, even within one quarry, this is a 

serious problem. 

5.4.3.2 Water Absorption 

Water is present in slate in the pores and is also an essential constituent of some 

minerals such as clays. Because of the importance of water in all weathering 

reactions, the determination of porosity was considered important. Kessler & Sligh 

(1932) found an average porosity of 0.88% for all the slates in the American study. 

But of far greater importance is the amount of water absorption, which although 

related to porosity, is also controlled by permeability, pore size and other properties 

of the slate. Kessler & Sligh (1932) found a correlation figure R 2 = 0.5 between 

porosity and water absorption. 

5.4.3.2.1 Limits of Water Absorption 

One of the characteristics of weathered slate is an increase in the ability to absorb 

more water during a set period of time (Section 5.4.1). All national standards 

reviewed include a test of water absorption although there is considerable variation 

in the testing procedures as well as in the limits of absorption allowed (Table 5.5). 

Values for absorption vary considerably depending on the testing procedure e.g. the 

BS 680 method of boiling increases the water absorption by 30 to 50% relative to 

simple immersion as carried out according to prEN12326 (Appendix 5.) 
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Report 

American 
(Kessler and Sligh, 
1932) 
BRE 1930 

BRE 1955 

EU standard 

Test conditions 

48 hours immersion at 
room temp 

24 hours at room temp 

48 hours boiling 

48 hours immersion 

Range of values 

found % 

0-0.8 

0-0.3 

0-1.5 

no data 
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National Standard 

Limit % 

0.25 

0.3 

0.6 

Table 5.5 Variation in water absorption test procedures 

It is known from a memo in the BRE archives that the BS 680 limit was set at 0.3% 

to exclude foreign slate with a poor reputation. This resulted in excluding Scottish 

slate of good reputation (Table 5.5). Slates such as those from Aberfoyle which 

failed the test by a small margin (Appendix A 4.4.3) would pass the proposed 

European Standard test as the conditions are less stringent and the limit is set at 

0.6%. 

5.4.3.2.2 Rate of increase of water absorption 

All national standards agree that the amount of water absorption is an important 

criterion in evaluating the quality of a slate. It is proposed here that of greater 

significance is the rate of increase in water absorption due to a period of 

weathering, either naturally on a roof or simulated experimentally. 

From a limited number of points taken from the BRE study of naturally weathered 

slates (supplemented by some in-house work) it is possible to see that there is an 

increase in water absorption with time (Fig. 5.2). 

• The Ffestiniog slate from the old vein in both the Greaves quarry and the Oakley 

quarry shows a very slow rate of increase, which is in keeping with its excellent 

reputation for durability. 

• The Ballachulish slate shows a similar profile (in spite of the large discrepancy 

in the values for the lOO-year-old slates). 

• The Aberfoyle results shows an increase in absorption after a shorter time than 

the previous two types of slate which agrees with anecdotal evidence for 

softening after twenty years. 

• The Balvicar slate has a poor reputation and the scatter of points reflects this. 
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This data set is too limited for any definite conclusions to be made but it IS 

supplemented by experimental work as discussed in Section 5.5. 

5.4.3.3 Experimental Weathering of Slate 

There are many different procedures which aim to reproduce experimentally the 

deterioration observed in a slate on a roof. Some tests, such as the acid test, assess 

the effect of chemical weathering, while others, such as the freeze-thaw test, 

concentrate on the physical aspects. The wetting and drying test replicates an aspect 

of the environment on a roof and the results of experimental weathering mirror those 

seen in natural weathering. 

5.4.3.3.1 Acid Testing Procedures 

Many national standards try to reproduce the conditions experienced by a slate in a 

polluted atmosphere by incorporating an acid test either by immersion in acid as in 

BS 680 or exposure to acid vapour as in the proposed EU standard (Table 5.6). 

Although slates which fail the test exhibit softening and exfoliation as observed in 

natural weathering, there is much dissatisfaction with the inability of this test to 

discriminate between different qualities of slate. 

The British Standard addresses this problem by making the test applicable only for 

slate destined for use in polluted areas. Even then exception is made for , . 

Westmorland slates which, although failing the acid test, are still found to perform 

well in industrial areas! The proposed European standard has two forms of the test 

depending on the amount of calcite present. 

The alternative method of exposure to sulphurous acid is a closer representation of 

the conditions experienced by a slate in a polluted atmosphere and is the form of the 

test to be adopted by the prEN 12326. 
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Standard Conditions Grading Time Method of Appendix B 

(days) inspection Reference 

PrEN12326 E.U Exposure to S02 3 grades 21 Visual 3.10 

at 2 different Abrasion for slates 

strengths with >20% 

carbonate 

BS 680 British Immersion in 10 Visual inspection 

20% H2SO4 

NF French No acid test 

ON 52 206 German Exposure to S02 14 Visual and change 6.8 

28 of weight 

UNI8626 Italian No acid test 

Spanish No acid test 

C119-74 U.S. 1% H2SO4 7 Depth of softening 

Table 5.6 Variation in acid test procedures for a selection of national standards 

No of slates No of runs Acid test BS 680 Exposure to S02 No of 

runs 

Ballachulish 5 30 Most pass All passed 3 

Balvicar 2 6 All failed All failed 6 

Cullipool 6 All failed All passed 3 

Toberonochy 1 6 Failed 

Aberfoyle 2 12 All passed All passed 9 

Table 5.7 Effect of acid on a selection of Scottish slates (Source: BRE archives) 

5.4.3.3.2 Wetting and Drying Test 

The wetting/drying (WID) test subjects a slate to repeated cycles of immersion in 

water and drying in an oven, which closely reflects the conditions experienced by a 

slate on a roof. In the American study the oven temperature was initially at 50°C 

which approximated to the maximum temperatures experienced by an in-service 

slate. However, because of the need to accelerate the experimental weathering 

procedure this was subsequently increased to 105°C, which has the problem of 

exposing the slate to conditions not normally experienced on a roof. All chemical 
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reactions are accelerated by an increase in temperature, but a minimum temperature 

is necessary for a reaction to get started. This minimum energy requirement may 

well be satisfied by the high temperature of the experimental conditions, and some 

chemical changes may proceed which would not take place naturally e.g. the 

increase in crystallinity observed experimentally (Section 5.5.2.4) is not seen In 

naturally weathered slates. 

The changes of properties of a slate experimentally weathered by the wetting and 

drying procedure are: 

• Increase in water absorption 

• Loss of strength 

• Formation of gypsum 

These changes mirror those observed in naturally weathered slates. Especially 

important is the fact that gypsum, the principal mineral found in the weathered 

portions of slates, can be produced in the laboratory, suggesting that the test is 

useful in evaluating the quality of a slate. 

Supporting evidence comes from the study by Kessler & Sligh (1932) who, on 

recognising the importance of the formation of gypsum, studied the reaction 

between iron sulphide and calcite in isolation. Again gypsum formed when a 

mixture of iron sulphide and calcite was subjected to 100 cycles of wetting/drying. 

Carbon was found to accelerate the reaction, showing the role that graphite plays in 

the chemical weathering of slates (Table 5.8). 

Sample CaS04 wt. % CaS04 wt. % 

Calcite and pyrite 7.0 

Calcite and marcasite 2.3 

Little carbon added 

14.9 

6.0 

Table 5.8 Formation of gypsum after 100 wetting/drying cycles after Kessler & Sligh (1932) 

Their work also included the wetting and drying of many slates and found that those 

slates containing considerable amounts of both pyrite and calcite disintegrated 

almost completely. Slates also showed loss of strength and increased water 
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absorption similar to that observed in natural weathering. In spite of this, the test 

was not included in the American standard due to the time needed to carry out the 

procedure, and instead the effect of immersion in acid was tested by abrasion. 

(Appendix B 9.3). 

Apart from the German procedure, there is a general consensus in the test conditions 

from one national standard to another. The BRE report (Watkins 1934) states that 

10 cycles are sufficient to produce decay in slates with appreciable amounts of 

pyrite. 

Wetting cycle Drying cycle 

National Standard Temp Time Temp Time No of Inspection 

°C hrs °C hrs Cycles 

PrEN12362 E.U 23 6 110 17 20 Visual 

BS680 British 20 6 105 17 15 Visual 

NF P32-302 French 18 8 105 15.5 25 Visual 

Din 52204 German 20 0.25 Heated to 105 25 Change in strength 

UN 22-197 Spanish 20 4 105 20 25 Change in weight 

Table 5.9 Variation in conditions for the wetting/drying test 

5.4.3.3.3 Other tests 

The freeze-thaw 

Frost action is considered to be one of the common causes of stone weathering, but 

given the low porosity and water absorption of slate, frost is not a serious problem in 

its weathering. In the American study only one sample failed after 1374 cycles and 

that sample had shown signs of weathering before the test commenced. 

The thermal cycle test 

A test involving cycles of heating and cooling is proposed by the European standard, 

to determine the effect the expansion and contraction of the component minerals. 

Kessler & Sligh (1932) found that the two samples that failed a similar test in their 

experiments contained calcite and sulphide and would have failed the wetting and 

drying test anyway. 
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5.4.3.4 Evaluation of Tests 

Experimental weathering 

The most reliable experimental test of weathering of slate is the wetting and drying 

test, as the slate shows the same signs of deterioration as naturally weathered 

material. Experimental exposure of slates to acid vapour also shows a similar effect 

to naturally weathered slate but special allowances have to be made for slate with 

considerable amounts of calcite. The American Standard assesses the degree of 

deterioration due to acid exposure by abrasion (Appendix B 9.3), which determines 

the depth of softening on the surface. Kessler & Sligh (1932) state that the acid test 

would give erroneous results for slates with considerable amounts of calcite but 

because American slates in production at the time had very little calcite the abrasion 

test was adopted. Yet the new EU Standard proposes to test slates with high calcite 

using an abrasion technique. It would be interesting to reconcile these two 

conflicting views by experimental work in the future. 

Water absorption 

The amount of water absorption vanes considerably according the methods of 

testing. Watkin (1934) states that it takes a month for water absorption to stabilise at 

room temperature, a process which can be speeded up by boiling. This is the method 

used in BS 680 although most other national standards preferred a simple immersion 

technique, which is a better representation of natural conditions. 

As discussed in Section 5.4.3.2.1, the limits set by different national standards vary 

considerably. Historically, limits of water absorption have been set pragmatically in 

an attempt to exclude slate of perceived poor quality. However it was recognised 

that this also excluded slates with a proven record, as can be seen in an extract from 

a memo in the BRE archives. 

Some French and some Scottish slates of good reputation and 

Prescelly slates fail to meet the requirements of the Standard for 

no other reason than that their water absorption exceed by a 

small margin the present limiting value (0.3 per. cent). A simple 
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330 BRE archives) 
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A more scientific approach to setting a water absorption limit will be discussed in 

Section 5.5. 

Relationship between loss of strength and increase in water absorption 

Given that an increase in the capacity of slate to absorb water and loss of strength 

are characteristics of natural weathering, it was expected that the reduction in 

strength due to soaking in water would correlate with the volume of water absorbed. 

Analysis of the data for American slates in Kessler & Sligh's study showed no such 

correlation (see Fig.5.5a). This may have been due to the time of immersion (48 

hours at room temperature) being insufficient for equilibrium absorption. This idea 

is supported by data from the BRE 1955 Report where there is some correlation (R2 

= 0.39) between water absorption carried out by boiling and loss of strength (Fig. 

5.5b). However the 1930 Report also showed some correlation too (R2 = 0.55) when 

immersion lasted only 24 hours (Fig.S.Sc). There are several reasons for 

inconsistency in these results such as (i) insufficient data or (ii) variation in the 

conditions under which the modulus of rupture tests were performed. It is clear that 

loss of strength due to immersion in water is not a useful method of assessing the 

quality of a slate. 

The conclusion from the foregoing is that the best procedure for evaluating the 

durability of slate is to subject it to experimental weathering by repeated cycles of 

wetting and drying and to measure its deterioration by the increased ability to 

absorb water. This will be discussed further in Section 5.5.2. 

5.5 Experimental Weathering of Scottish Slate 

5.5.1 Stability of Chlorite - Glycolation of Samples 

From observations in the quarries, it was recognised that of the three major minerals 

(quartz, white mica and chlorite); found in slate, chlorite is the most vulnerable to 

weathering. This can be seen clearly in three samples of slate from Hilton Quarry, 

Bute (Appendix A 4.5.2). 
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Samples XRD Quartz White mica Chlorite 

results 24.26° 29 K Na 14° 29 J 7" 29 

Quarry sample Area 2258 6708 4668 

B2 FWHM 0.136 0.184 0.162 

Intensity 263 397 lSI 138 451 

Slate from roof Area 1980 7030 6412 

B3 FWHM 0.130 0.135 0.127 

Intensity 238 631 133 235 784 

Weathered Area 2208 7672 2094 

sample FWHM 0.170 0.181 0.133 

B4 Intensity 220 407 \09 III 266 

Table 5.10 X-ray analysis of Bute slate showing preferential weathering of chlorite 

Two samples were collected from the Hilton Quarry: the first sample B2 showed the 

normal degree of weathering and the second B4 was from a band of badly weathered 

slate. The XRD analyses of the samples showed little difference in the intensities 

and areas of the quartz and white mica peaks, but significant decrease in area and 

intensity of the chlorite peaks in the weathered sample (Table 5.10, Fig. 5.6). 

Another sample B3 collected from a derelict farm shed nearby was analysed and 

identified as originating from the local quarry due to the distinctive paragonite (a 

sodium-rich white mica) peak. This sample showed approximately the same quartz 

content, slightly higher white mica peaks and substantially higher intensities and 

areas for chlorite than the typically weathered slate from the quarry. This suggests 

that the producing seam was more crystalline than the samples from the quarry or 

that the dressed slate weathers less than slate which is exposed in the quarry face. 

Broadening of peaks was also observed in the more weathered slates, so that the two 

white mica peaks became less distinct. 

Chlorite is the least stable of the three major minerals found in slates This is 

substantiated by the depth profile made by Bayliss and Loughman (1964, Section 

5.2), field observations made in the various quarries (Appendix A) and the mineral 

composition of Scottish slates determined from XRF analyses (Section 2.5). These 

XRF analyses show that there is an inverse relationship between amount of clay and 

chlorite found in Ballachulish slate (Fig. 2.7) R2 = 0.5091 while the white mica 
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content appears to rise and quartz content is unchanged. This suggests that chlorite 

is being converted to clay as described in Section 5.2.3.2. There is a similar 

reciprocal relationship found in Easdale slate from the Seil quarries although the 

correlation is very poor. 
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Fig. 5.6 Preferential weathering of chlorite observed in slate from Hilton Farm quarry 

Bute a) quarry sample b) sample from farm shed c) sample from a badly weathered 

band in the quarry. 
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Correlation between clay and major minerals in Ballachulish slate. 
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Fig. 5.7 Relationship between the weight of major minerals found in slate and clay. 

Because of this tendency for chlorite to weather more readily than quartz and white 

mica, several samples of Scottish slate were tested for swelling by exposure to 

glycol for a period of 24 hours at 60°C. The effect of temperature was also 

determined by heating samples for one hour at 300°C. XRD scans were run on the 

untreated, the heated and glycohited samples and any changes in the properties of 

the chlorite [001] and [002] peaks and the [001] white mica peak were noted. 
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The following properties were checked: 

• change in position of peaks due to loss/gain of water 

• increase in intensity due to increase in crystallinity on heating 

• decrease in intensity of the 14° 28 peak due to kaolin becoming amorphous 

• broadening of the peaks due to swelling. 

Results 

No general trend was observed and the variation in intensities was within the natural 

variation due to the imprecision of the XRD scans (Fig.5.8). 

• no change in position of peaks i.e. no increase in the spacing between layers of 

the mineral due to glycolation (Section 2.4.1.3.1). 

• variation in intensities was observed but no trend In change of crystall inity 

(Section 2.4.1.3.2 & 2.5.5), 

• loss in intensity in the 14° 28 for one Aberfoyle (AB-5) sample suggests that 

some clay became amorphous on heating (Section 2.4.1.3.2 & Section 2.5.5). 

• FWHM values for Macduff slate increased by an average of 0.01 each (Section 

2.4.1.3. & Section 3.4). 

Discussion 

Although some tentative observations have been made above, initial work suggests 

that none of the slates chosen were strongly affected either by heating or by 

exposure to glycol. Therefore considerably more work would need to be carried out 

to determine the statistical variation in this technique before deciding what trends 

are significant. The fact that the Scottish slates showed little change on glycolation 

does not rule out the technique as a method of assessing the stability of 

phyllosilicates. 
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Fig. 5.8 XRD scans of a Bute slate B2 a) normal, b) effect of heating and c) effect of glycolation 
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5.5.2 Climatic Response 

As already stated (Section 5.4.3.3.2), slates undergoing the wetting/drying test show 

increase in water absorption, loss of strength and formation of gypsum, i.e. the same 

deterioration as found in slates exposed to the elements. Therefore determining the 

percentage water absorption at intervals during the repeated cycles of wetting and 

drying would give a measure of the rate of increase in water absorption. The limit (~f 

water absorption could be set as that determined when the slate shows signs of 

failure. Ideally the increase in water absorption due to experimental weathering 

could provide a characteristic profile, which could then be compared with that 

observed in similar slates that have been naturally weathered and the experiment 

thereby calibrated. Then, given a suitable limit of water absorption, the life 

expectancy of the slate could be determined. 

5.5.2.1 Method 

The wetting-and-drying procedure followed that set out in BS 680. The periodic 

water absorption tests were carried out according to the procedure laid down by BS 

680 and, with slight modification, that proposed in prEN 12326 (Appendix B). 

• Four test pieces 5cm square were cut from each slate sample 

• The cut edges of the test pieces were polished using 400 grit carborundum paste, 

followed by 600 grit until a smooth silky texture was obtained. 

• Samples were then washed with water and scrubbed to remove any traces of 

carborundum paste and put in the oven for two days to dry. 

• Samples were allowed to cool in a desiccator for an hour. 

• Samples were then weighed to 0.0001 gm. The thickness of the slate was 

measured to 0.1 mm, at four locations using callipers. 

• Two of the test pieces from each slate samples were immersed in water for 48 

hours as prescribed by the prEN12326 test. The remaining two samples were 

placed in a flask of distilled water and refluxed for 48 hours as prescribed by the 

BS 680 method. 
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• Samples were dried with a cloth to remove surface water and weighed to 0.0001 

gm (the refluxed samples having been allowed to cool for 30 minutes in a 

desiccator before weighing). 

• The increase in weight was calculated and reported as a percentage of the dried 

sample weight. 

When water absorption test was carried out on weathered slates with a flaky surface, 

loss of material during the test would give erroneous results, so the samples were 

dried for two days in the oven at 105°e after refluxing or immersion and re­

weighed. The increase in water absorption was then calculated relative to this new 

weight. 

Slate samples were then experimentally weathered using the wet/dry test procedure 

set out in BS 680, one cycle consisting of the following: 

• Samples were placed in an oven at 105°e for 17 hours 

• Samples were removed from the oven and allowed to stand for 1 hour before 

being placed in a beaker of distilled water at ambient temperature for 6 hours. 

The percentage water absorption of the samples was tested four times at increasing 

intervals, using the prEN 12326 or BS 680 method as appropriate, until 

approximately 100 - 150 cycles had been carried out. The thickness was measured at 

varying intervals throughout the test. 

The test pieces were then assessed as follows: 

• Visual check for signs of weathering. 

• Thickness and weight changes. 

• XRD analysis for change in position and intensity of peaks. 

The BS 680 water absorption test, in which the samples are refluxed (boiled) for 48 

hours, was thought to contribute to the deterioration of the slate. This effect was 

checked by performing additional water absorption tests as follows (Table 5.11): 
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1. According to BS 680 on those which had previously been tested only according 

to prEN 12326. 

2. According to prEN12326 on those which had previously been tested only 

according to BS 680. 

No of IK3 W/F8 

previous 142 WID cycles 140 WID cycles 

BS 680 tests BS 680 prEN12326 BS 680 prEN12326 

4 0.1293% wt. 0.1123% wt. 0.12173% wt. 0.13207% wt. 

0 0.1290% wt. 0.0931 % wt. 0.0977% wt. 0.0640% wt. 

Table 5.11 Effect of previous BS 680 water absorption tests on the test itself 

In the case of IKl3 the effect of previous water absorption test on the BS 680 result 

was negligible, but previous refluxing had a significant effect on the prEN 12326 

result. In the case of WF/8 the test was carried out at a stage when the sample was 

beginning to show increased variation in results and the effect of the extra refluxing 

was significant in both cases. Therefore the refluxing method of assessing the 

increase in water absorption also contributes to the deterioration of the slate. The 

prEN12326 method of assessing increase in water absorption does not have this 

problem. However, because of the need to differentiate between different quality 

slates in a reasonable length of time, the refluxing method is more suitable. 

Comparison between slates is therefore possible, providing the technique is 

standardised so that all slates undergo the same regime. 

5.5.2.2 Results 

Results are given in Appendix 5.1 and summarised in Fig. 5.9 
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Fig. 5.9 Climatic response profile of a selection of old and new slates 

1. W/F-8 Welsh sample from the old vein Oakley Quarry, Ffestiniog. Data for slate 
from this vein, albeit from different quarries, had been gathered by BRE in 1944 when re· 
assessing the BS 680 standard for slate. 

2. 1IK-3 Killaloe slate from Killoran Quarry, Portroe near Nenagh in Ireland (Map: 
Tipperary, Sheet 19). This quarry was worked until the mid 19th century and then at 
intervals during this century, the most recent being in 1990 in a joint venture (by 
McAlpine, Capco Slate Co. and an Irish roofing company) making it possible to get fresh 
samples (per. com. M. Joy, local historian). KiUaloe slate has been used as a roofing 
material in the surrounding area and is known for its durability. 

3. LB·3 Slate from roof of Garsten Cottage, Blackmill Bay (Quarry Reports 3.5.10). 
Although the age of the slate is assumed to be that of the house, which was built in 1911, 
the source is not known. The quarries at Blackmill Bay were not being worked at this time 
so the slate may be from Tir na Oig 1 km to the north. 

4. Le·3 Blue grey slate from Cullipool which looked new, and was definitely never on 
a roof as there was no nail hole. It is known that a local quarrier Mr D McKay continued 
to split slates in the area after the quarries were officially closed. This is the least 
weathered Scottish slate used in this Report. 

5. Spanish slate, Glasgow rooting merchant. Little information about its source is 
available. 

Chapter 5 Weathering Properties 



174 

5.5.2.3 Calibration of Results 

An attempt was made to relate the increase in water absorption in the experiment 

which subjected the slates to repeated cycles of wetting and drying (Fig. 5.9), to 

that observed in slates which have experienced natural weathering on roofs. 

A tentative calibration has been achieved based on data collected for the BRE study 

of weathered samples in 1948/49 (Fig. 5.2). A linear regression of the few data 

points for naturally weathered slate samples from the old vein in the Ffestiniog area 

gave the following relationship between water absorption y and years of natural 

weathering x 

y = O.0024x + 0.162 

This implies an initial water absorption figure of 0.162% and an annual increase of 

0.0024% per year over a hundred year period. (Although the rate of increase in 

water absorption of 0.OO24/year was comparable with the better types of American 

slate (Fig. 5.1), no conclusion can be drawn from this comparison due to different 

testing procedures). 

The linear regression for the experimental weathering of a new slate from the old 

vein, gave the following relationship for the first 88 cycles (Fig. 5.9) 

y = O.OOO2x + 0.0843 

This gives a rate of increase in water absorption per WID cycle of 0.0002% 

By comparing this relationship with that found for the naturally weathered slates 

based on the BRE data, it is possible to get a rough equivalence between natural and 

experimental weathering as 12 WID cycles per year. However the rate of increase 

in water absorption is not linear but increases with time so that exponential or 

polynomial regressionailines give a better fit (Fig. 5.10). Therefore using a linear 
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relationship is an over simplification, as can be seen when the experimental 

weathering of the W /F-8 sample was continued to 181 WID cycles and the best fit 

line was as foHows: 

y = 0.0003x + 0.0843 

which equates to 8 WID cycles per year. 

The more the climatic response profiles deviate from a straight line the greater the 

approximation, as can be seen for the experimental weathering of the Spanish slate 

Fig.5.9b. However, with limited data it was necessary to use the initial part of the 

curve, which approximates to a straight line, to compare the climatic response 

profiles of different slates. 

An independent calibration was attempted by comparing the water absorption of a 

Killaloe slate supposedly 200 years old (per. com. Mr Tom O'Brien, used slate 

dealer, Killaloe) with a new Killaloe slate. 

200 year old slate % water absorption 

New Killaloe slate IK3 

Trade Literature (Hart 1991) 

Average value for new slate 

Increase in % water absorption over 200 years 

Annual increase in % water absorption 

0.12 

0.09 

0.10 

0.181 

0.10 

0.081 

0.00041 

Comparing this figure with that obtained for an experimentally weathered slate 

y = 0.00OO9x + 0.119 

this equates to 4.5 WID cycles per year. 
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Experimental weathering of Welsh slate 
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Fig. S.10 Climatic response profiles of a) a Welsh slate b) a Spanish slate. 

A different approach was taken with LB-3, a slate from Garsten Cottage, Blackmill 

Bay, Luing (Appendix A 3.5.10). The slate was assumed to have the same age as the 

house, which was built in 1911. The graph in Fig.5.8 was extrapolated backwards at 

the rate of 6W ID cycles per year to the origin and the following relationship was 

obtained. (A higher rate of 10 WID cycles per year gave a negative result for the 

original water absorption figure ~d was discounted.) 
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y = O.0004x +0.10 

Given all the variations possible in the history of the different slates, let alone their 

imprecise ages (based on information from second-hand slate dealers), it is only 

possible to say that 5-12 experimental WID cycles are equivalent to one year of 

natural weathering. 

5.5.2.4 Interpretation of Results 

The limit of water absorption 

There was insufficient time to test any of the slates to the point of observed failure, 

therefore it was not possible to define a level of water absorption indicative of 

failure and hence a value for a useful working life. W /F-8 showed measurable 

deterioration after 100 WID cycles, i.e. there was an increase in the rate of water 

absorption with time, an increase in variance of the results, as well as a visual 

change in that brown staining developed. However, there was nothing to suggest 

that failure was imminent. Although the procedure was run for nearly a year, this 

was still insufficient time to bring it to a satisfactory conclusion. 

Without a scientifically determined limit for water absorption, that set by BS 680 of 

0.3% was used in the following determination of the longevity of a slate. 

The climatic response profiles (Fig.5.8) were extrapolated to give the number of 

cycles necessary until a value of 0.3% water absorption was reached (Table 5.11). 

Then the life expectancy was calculated using a rate of lOW ID cycles per year. 

There are several assumptions made in the above extrapolation which cannot be 

tested scientifically. However there is anecdotal evidence e.g. the Killaloe slate has 

a reputation of lasting over 200 years and one example of such longevity was seen 

on the roof of a row of terraced houses in Clonmel built in the late 18th century. 

Because the houses were in such a bad state of repair, it was assumed that the slates 

were original, and because distinctive banding similar to that found in Killaloe slate 

was visible, the slates were assumed to be from Killaloe. The usual figure used in 

the trade for Welsh slate is 100 years and Spanish slate has a life expectancy of 30 

years (Table 1.1). 
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Climatic response profiles 

As discussed in Section 5.5.2.3, the relationship between the increase in water 

absorption and experimental weathering time is non-linear, but to enable 

comparison between different slates the initial part of the graph was treated as linear 

(Table 5.12). The Killaloe slate has the lowest rate of increase in water absorption, 

while the highest rate of increase was found in the Spanish and unused Cullipool 

slate. 

New No of Equation Increase Visual change No. of Life 

slates test in cycles expectancy 
cycles thicknessl to at 10 

cycle %0 0.3% cycles/yr 

IK-3 127 Y = 0.00009x+0.1195 0.167 No change 2005 200 

WF·8 123 Y = 0.0002x.+0.0805 0.152 Brown stains 1095 109 

181 Y = 0.0003x.+0.0805 0.271 

LC·3* 99 y= 0.OOO6x +0.1938 0.455 Leaching of iron 177 18 

Spanish 97 Y = 0.OOO6x+0.1484 0.310 Brown stains 253 25 

Y = 0.1496eu
,IJUjx 231 23 

Table 5.12 Experimental weathering of new slate. (*LC·3 may not be new Fig. 5.9). 

While this Report has not succeeded in determining experimentally a suitable limit 

for water absorption it has pointed the way to setting a limit scientifically given 

sufficient length of time for the experiment. It has shown that a suitable method of 

assessing the durability and life expectancy of a slate is to measure the rate of 

increase in water absorption due to repeated cycles of wetting and drying. 

The above discussion highlights the problems of determining the weathering 

properties of Scottish slate without access to fresh samples. 

5.5.2.4 Understanding the Weathering of Slate 

Most of the above discussion is based on water absorption figures obtained using the 

BS 680 method. A parallel set of results was obtained according to prEN12326 by 

water immersion. If, as reported by Watkins (1934), it takes a month of immersion 

in water at room temperature for the weight to stabilise, the prEN 12326 test is 
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measuring only the rate at which the slate absorbs water. If, again according to 

Watkins, weight stability is achieved by the boiling method in 48 hours, the BS 680 

test measures the total capacity of the slate to absorb water. Both methods are valid 

measures of deterioration in a slate, but the BS 680 method, if accepted as a proxy 

for natural weathering, gives larger values and earlier signs of significant change 

and therefore shortens the length of time needed to evaluate a new slate. 

To understand the changes which take place in an experimentally weathered slate, 

and to see how they correspond with those observed in natura\\y weathered slate, 

XRD scans were run on the weathered and non-weathered samples. 

The increase in thickness and loss of weight in the experimentally weathered 

Killaloe slate imply an increase in porosity and concomitant increase in water 

absorption, but the absence of changes in the position and intensity of peaks. 

including that of calcite, suggests that any changes are undetectable by XRD scans. 

The Welsh sample also showed no shift in the position of peaks and the intensity of 

the mica and chlorite peaks increased (no carbonate was detected in this slate). 

Therefore the mineralogical changes observed in these experimentally weathered 

slates do not reflect the changes observed in naturally weathered slate. Instead of 

loss of crystallinity, as observed in old slates, there was actually an increase in 

crystallinity and a concomitant decrease in FWHM. This was due to the samples 

being kept at >l00°C for long periods, which does not mirror the natural weathering 

conditions. 

However the Spanish slate, which showed the greatest increase in water absorption, 

also showed significant differences between its XRD scans of un-weathered and 

experimentally weathered samples (Table 5.13). There was a 26% -30% decrease in 

area and 20% -24% decrease in intensity of the chlorite [001] peak. Similar but 

smaller changes were found in the white mica [001] peak but no changes were 

observed in the quartz peak. This loss in area and intensity of the phyllosilicates 

cannot be accounted for by loss of weight, which was negligible (0.02%) but must 

be due to other changes in their crystalline nature. One suggestion is that chlorite is 

being converted to clay. This is supported by the fact that the chlorite [002] peak, 

which is also the principal clay peak, showed a smaller decrease in area than the 
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[001] peak i.e. 14%-20% and no decrease in intensity between the un-weathered and 

experimentally weathered samples. The FWHM of the chlorite [001] peak increased 

with weathering due to loss of crystallinity but that of the [002] peak decreased. 

This is interpreted an increase in the crystallinity of clay due to prolonged heating. 

More research is needed to establish the effect of experimental weathering on the 

phyllosilicates. No calcite was detected in this slate, therefore the changes observed 

can not be accounted for by the weathering reactions discussed in Section 5.2.2.1. 

The overall crystallinity of the experimentally weathered Spanish samples 

decreased, which corresponds to what is observed in naturally weathered slates. 

Chlorite Intensity Area FWHM Position 

[001] peak counts counts 29 2e 

SI-0 405 4958 0.156 7.26 

un-weathered 373 4067 0.156 7.26 

Sl-19 305 3103 0.158 7.26 

weathered 282 3029 0.166 7.26 

SI-21 308 3346 0.178 7.25 

weathered 308 3320 0.196 7.25 

Chlorite Intensity Area FWHM Position 

[002] peak counts counts 29 29 

SI-0 1482 16400 0.194 14.54 

un-weathered 1428 16700 0.204 14.54 

SI-19 1405 12801 0.140 14.56 

weathered 1486 13024 0.130 14.57 

SI-21 1395 14380 0.160 14.55 

weathered 1416 13796 0.158 14.55 

Table S. 13 The effect of experimental weathering on the a) chlorite lOOt] and b) [002] XRD 
peaks: SI-0 is unweathered; SI-19 and SI-21 were weathered for 97 WID cycles: SI-19 was 

tested according to BS 680, St·2t was tested according to prEN12326 

Recommendations: 

1. Carry our experimental weathering of a wider range of new slate. 

2. Refine the thickness measurements, which were only carried out using callipers 

to an accuracy of 0.1 mm. If done more accurately, these could be used to predict 

the climatic response profiles. 
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3. Determine the changes in fabric of weathered slates using the SEM (Section 4). 

4. Carry out chemical analysis to account for the loss of weight. 

5.6 Conclusions 

The aim of this Section was to identify a key method of testing a new slate with a 

view to predicting its performance on a roof. Other test procedures are 

supplementary but not redundant e.g. there is a need for a minimum strength 

requirement for different climatic environments and for an acid test to assess the 

effect of polluted atmosphere on a slate containing significant amounts of carbonate. 

Slates, experimentally weathered using wetting and drying cycles, show some of the 

characteristics of deterioration seen in naturally weathered slates. The increase in 

water absorption is one of the quantifiable effects which, when compared with that 

observed in a naturally weathered slate, gives an estimate of the number of cycles of 

wetting and drying equivalent to one year of natural weathering. 

This Section has shown that experimentally weathered slates show an increase in 

volume and loss in weight, indicating an increase in porosity. Although the 

deterioration is exponential, it would be impractical to weather a good slate for a 

sufficiently long time until the climatic response profile is determined. However, it 

is possible to use the initial rate at which deterioration takes place as a relative 

measure of the vulnerability of the slate to weathering. 

The proposed testing procedure is as follows: 

• Determination of the percentage water absorption by refluxing the sample for 48 

hours according to BS 680. 

• Subjecting the slate to 20 repeated cycles of wetting and drying. The number of 

cycles needed to produce sufficient change is only approximate. 

• Repeating the water absorption test and determining the average Increase In 

water absorption per WID cycle. 
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• The longevity of a slate can be assessed relative to a Welsh slate based on the 

increase in water absorption. A figure of 100 years is the usual figure lIsed for 

the life span of a Welsh slate. 
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Chapter 6 Possible Revival of the Scottish 
Slate Industry 

6.1 Introduction 

The Scottish slate industry was centred in four areas: 

1. Ballachulish on the shores of Loch Leven close to the Great Glen Fault. 
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2. The islands of Easdale, Seil, Luing and Belnahua in a belt stretching from 

Oban to Jura. 

3. In the Southern Highlands close to the Highland Boundary Fault in a series of 

quarries from Arran to Dunkeld. 

4. The Macduff quarries in Buchan and the Keith Quarries near Banff in the north 

east of Scotland. 

Scottish slate has a distinctive appearance making an important contribution to the 

character of many Scottish houses. This partly arises from the slates being on the 

whole smaller, thicker and less regular than their Welsh counterparts as well as having 

a slight sheen due to the higher metamorphic grade. There is also greater variation in 

colour than more homogeneous imports. The smaller size has had an impact on the 

vernacular style of architecture whereby slates are fixed to sarking, instead of spanning 

from batten to batten as found in England and Wales. Similarly the practice of 

graduated coursing, so that the largest slates are used at the eaves and each subsequent 

course uses smaller sizes until the smallest (peggies) are used at the ridge, exaggerates 

the perspective of the roof and makes efficient use of irregular sizes. The practice of 

using even the smallest of slates is also significant from an environmental point of 

view, as a higher proportion of the quarry product is used. The irregular shape of the 

slates gave rise to the practice of shouldering, whereby the upper comers are mitred to 

enable them to lie flat. In addition the thicker Scottish slate is stronger and hence more 

suitable for the Scottish climate. (Most of the west coast of Scotland is in the highest 

zone for annual driving rain index (Harrison 1996), which was identified as the most 

significant climatic condition in the deterioration of buildings in general.) 
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Scottish slate is remarkably durable, often out-lasting the life of the building. This can 

be seen in the older parts of the towns and cities which are still substantially roofed 

with Scottish slate 50 years after the demise of the Scottish slate industry. But this 

townscape will not last without a new source of Scottish slate. Since the closure of the 

last of the producing quarries at Ballachulish in 1955, all maintenance has had to rely 

on salvaged second-hand slates, leading to diminishing stocks. Unless quarrying is 

revived soon, there will be an important change in the character of Scottish 

townscapes. Alternative materials, such as concrete tiles and resin-based and fibre 

cement replica slates, will have to be introduced and the special slating skills will be 

lost. 

This Research Report is concerned with characterising and explaining the roofing 

properties of slate with particular reference to Scottish slate. One of the aims of 

this Research is to select a Scottish quarry with sufficient reserves, capable of 

supplying marketable roofing slates, which will help maintain the characteristics 

of Scottish buildings for future generations to appreciate. 

In order to achieve this aim it is necessary to assess those properties which make a 

good slate and to determine whether there are adequate resources of good quality 

slate in Scotland. 

6.2 Review of different Roofing Materials 

The traditional roofing material in many parts of Scotland was slate, in particular in 

those areas with local availability and low transport costs. But there have been 

considerable inroads made by other roofing materials as can be seen in a recent survey 

of Scotland's housing (Scottish Homes 1991). The proportion of houses whose 

principal roofing material is slate now stands at approximately 35% or 657,000. By far 

the most common roofing materials are concrete and clay tiles which comprise over 

60% of the total dwellings. 

All roofing materials are subject to the same local climatic conditions and experience 

the same problems in their supporting structures and fixing methods e.g. clay tile roofs 
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may fail due to nail sickness in the same way as slate. Replacing slate with concrete 

tiles on a roof originally designed to support slate may lead to additional problems of 

sagging of the supporting timbers. 

There is considerable difficulty in companng the durability of different roofing 

materials, and estimates of service life vary considerably, especially as the more 

durable the material the longer the time-span and the less reliable the data. In the case 

of natural materials, such as slate and clay tiles, there is also considerable natural 

variation and one of the reasons for failure may be due to a disreputable source. In the 

case of manufactured materials, some, such as asbestos tiles, are being phased out and 

other newer materials have no proven record of durability. 

Harrison (1996), in a recent survey of domestic housing in Scotland and England, 

presented data on the state of repair of roofs in general, but little information specific to 

slate (Table 6.1). He does however mention that slate roofs of houses built between 

1900 and 1918 are in the greatest need of repair. Assuming that pre-1900 roofs have 

been repaired, this gives some idea that the life span of a slate roof is approximately 

100 years. 

The following discussion looks at the principal roofing materials used on short pitched 

domestic housing, which are: 

1. Concrete tiles 

2. Clay tiles 

3. Slates 

4. Manufactured slates 
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Rooting Material Number of Houses % Condition 

Concrete and clay tiles 1.2 million 64 I in 5 need repair 

Scotland (not differentiated) 

Natural slate and stone 657,000 35 I in 2 need repair* 

Manufactured slates 17,000 I in 2 need repair 

Clay tiles 4.2 million 26 1 in 3 need repair 

Concrete tiles 8.1 million 51 1 in 12 need repair 

England 

Natural slate and stone 3 million 19 1 in 2 need repair 

Manufactured slates 689,000 4 I in 2 need repair 

Table 6.1 Classification of roofs of domestic housing in the U.K. Extracts from a survey of the roofs 
of domestic housing in Scotland and England as summarised by Harrison (1996) 

6.2.1 Concrete Tiles 

Concrete consists of cement mixed with water which react to produce hydrated 

silicates. This results in a hard matrix which binds together an aggregate. 

Complwnce with British Standards 

Concrete tiles must comply with BS 473 550: 1990 Specifications for concrete roofing 

tiles and jinings. 

This will be superseded by the new CEN BS EN 490 and BS EN 491. 

Durability 

Surveys of the durability of used concrete tiles suggest 30 to 50 years life (Table 6.2), 

although according to a BRE report (Harrison 1996) new concrete tiles are expected to 

last 100 years if all building regulations are satisfied. 
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6.2.2 Clay Tiles 

Clay, shaped and burnt into tiles, has a long history. Fragments of burnt brick have 

been found in Egypt dating from 1200 BC (Prentice 1990), but it is the Romans who 

brought the process to a fine art. Clay tiles are similar to slates in that the raw material 

is derived from sedimentary deposits and the variation in the composition can affect the 

final product. The most important ingredient is quartz, which can make up to 90% of 

the total and which imparts its hardness and durability to the finished product. The 

other minerals present are phyllosilicates such as illite and chlorite as found in slate as 

well as smectite and kaolin (Section 2.2.2). The plastic nature of the phyllosilicates 

enables the tile to be moulded and then to form a glass during the firing part of the 

process. Iron minerals present are oxidised to haematite and impart the colour to the 

brick. Reducing conditions must be avoided by controlling the furnace temperature, as 

reduced iron minerals would have a similar detrimental effect as discussed for slate 

(Section 5.2.3.5). 

Compliance with British Standards 

Clay tiles must comply with BS402 Part I: 1990 Clay roofing tiLes andfittings. 

Durability 

As with concrete tiles, the BRE survey states that clay tiles are expected to last 100 

years if all building regulations are satisfied. Davis Langdon Consultancy estimate a 

life of 60 years based on commonly reported published figures. The Maol figure 

reported in Builder Feb 1995 is 40.years. 

6.2.3 Slate 

The name slate has been applied to all naturally occurring rocks which can be cut into 

slabs and used as a roofing material. Historical records do not distinguish between 

flagstones and true slate and many of the early records of roofing slate probably refer to 

flagstone. In Britain true slates in the geological sense are found in the mountainous 
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regions of North Wales, Cumbria and the Highlands of Scotland, remote from areas of 

habitation. In an age of poor roads, slates were only used in the most prestigious 

buildings close to sources of supply. One of the oldest examples of the use of slate in 

Britain is of slate-slabs used as flooring in the 3rd century Roman remains at 

Segontiurn (Caernarfon). There is only scant evidence of slate roofing until the 15th 

century. In the 14th century, slates were shipped to repair Chester Castle from near 

Bangor (Richards 1995) at about the same time as putative Easdale slates were used in 

the 14th century wall at Finlaggan, Islay (Section 1.4). It is only since the 15th century 

that the use of slate as a roofing material quickly developed. The history of the 

Scottish slate industry is discussed in Section 104. 

6.2.3.1 Natural Slate 

Natural slate is one of the most durable roofing materials available. Problems arise 

when impurities are present. Natural slates chosen and fixed in accordance with BS 

5534 will withstand most wind loads and provide a watertight roof. Failure, when it 

occurs, is often due to nail sickness and a large proportion of the slates can be reused. 

Compliance with British Standards 

Natural slate must comply with BS 680 Part 2: 1971 Specifications for roofing slates 

Metric Units. 

DurabiUty 

Natural slate of UK origin should last more than 100 years but inferior slate can fail 

within months. The Maol figure for the durability of imported slate is 30 years. 

Building Regulation of Slate 

This is covered by the following BS Codes of Practice 

BS5534: Part 1: 1990 Code of practice for slating and tiling 

BS8000: Part 6: 1990 Workmanship on building sites. Code of practice for slating and 

tiling of roofs and claddings 
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6.2.3.2 Man-made Slate 

These are synthetic slates from a wide range of materials. Most of those found on 

roofs today are likely to be of obsolescent asbestos cement and at the end of their 

lifespan. Other materials are of relatively recent introduction. 

Materials of manufacture include: 

• Portland Cement and a variety of aggregates 

• Portland Cement reinforced with man-made fibres 

• Portland Cement reinforced with asbestos fibres (obsolete) 

• Resins (thermosetting, polyester or acrylic) with crushed slate or other inert filler. 

The slate is ground to a fine powder, incorporated into a resin base and moulded 

against a natural slate to produce a realistic simulation of the natural product 

(Harrison 1996). 

Complillnce with British Standards 

The following specifications are not strictly applicable to the slate but have been used 

in the BSE report 

Concrete slate: 

Fibre reinforced slate 

Glass-fibre reinforced slate 

Durability 

BS473 550 See concrete tiles above 

BS 690 Part 4: 1974 Asbestos-cement slates and sheets. 

BS 4624: 1981 Methods of test for asbestos-cement 

building products 

BS6432: 1984 Methods for determining properties of 

glass fibre reinforced cement material. 

The Maol figure reported in Builder Feb 1995 is 30 years for fibre cement slate and 

synthetic slates, comparable to the figure for concrete tiles. Asbestos tiles were 

introduced at the end of the 19th century but few roofs more than SO years old still 

exist. 

Man-made fibre reinforced slates often discolour, become distorted and crack. 
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6.2.4 Conclusions 

Figures of comparative costs for plain areas of roofing, including battens and standard 

underfelt, were supplied by Everest. 

Roofing Tiles and Slates £ (ml
) Typical life span 

(years)* 

Clay Tiles Machine made plain 30.00 60 40 

Handmade 45.00 

Interlocking Pantiles 19.00 

Concrete Tiles Plain 26.00 50 30 

Slate look-alike 17.00 

Natural Slates Spanish 31.00 N/A 30 

Welsh Blue 45.00 - 50.00 100 100 

Reconstituted slate 

Crushed slate with resin and Pre weathered slate grey 35.00 N/A 

glass fibre reinforcement, 

Ground slate and resin Welsh grey colour 31.00 

Fibre Cement Slate Bluelblack 23.50 N/A 30 

Matt coated 27.50 

Table 6.2 Costs and estimated lifespans of ditTerent roofing materials from Focus 1997 
Products in PrtU!tice: TMme Roofing. 

*Estimates of life span vary considerably. The first set of figures is from "The current cost of rooting" 

compiled by Davis Langdon Consultancy and the second set is by Maol as published in Builder 1995. 

When the cost of maintenance and the durability of the material are taken into account 

over a 100 year cycle, roofing with British slate is one of the cheapest methods 

available. Although the figures are based on Welsh slates, Scottish slates also have a 

proven durability record with slates lasting over 100 years. By increasing our 

understanding of the material this research project aims to give scientific backing to 

this reputation. 
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6.3 Assessment of Quality 

Assessment of the quality of a slate is difficult due to the inherent variation of any 

natural material. Historically slate has been assessed qualitatively at source by 

relying on the experience of quarry managers. Yet often the criteria for selecting a 

particular source of slate were economic factors such as transport costs, accessibility 

to markets and availability of manpower. During World Wars I and II, the 

production of slate came to a standstill because of lack of manpower. One of the 

reason given for the closure of the Aberfoyle Quarry (Appendix A 4.5.4) was the 

higher wages paid locally by the Forestry Commission (Per. com. Mr Ferguson, 

retired quarrier). 

The quality of the slate from a particular quarry was dependent on the expertise and 

knowledge of the quality controller. At a time of more stable population and local 

use of the material, it was possible to link the performance of a particular slate to its 

origin and pass this information from generation to generation. However this system 

did not prevent poor quality slates reaching the markets, and at various times 

different slate-producing countries addressed the problem by introducing national 

standards for slate which set out the minimum requirements on the basis of a set of 

tests. But the approach adopted by each of the different countries reflected the type 

of slate produced in that country and did not result in an independent standard 

capable of predicting performance. Even within one country such as Britain, 

different climatic conditions in different parts of the country require different types 

of slate. The best grade of Welsh slate is split too thinly for the Scottish weather. 

With increasing international trade in slate, there is growing dissatisfaction with the 

ability of different standards to select satisfactory slates and exclude unsatisfactory 

ones. The lack of a minimum strength requirement in the British Standard, as British 

slates are stronger than most other roofing materials, leads to the importation of 

weaker slates. The lack of uniformity in standards is being addressed by the 

proposed introduction of a new European standard. However, without information 

on what scientific research is behind this standard, it was necessary to take an 

independent look at the different methods of assessing the quality of slates. 
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This Report places great emphasis on relating the physical properties of slate to its 

geological make up. Having addressed the problem of evaluating the mineral 

composition (Section 2), metamorphic grade (Section 3) and the fabric of slate 

(Section 4), it is now necessary to relate these parameters to the properties of 

Scottish slate and select the most suitable Scottish quarries for further investigation. 

1. The first criterion in selecting a quarry is the ability of the slate rock to produce 

flat slabs 

Fabric (Chapter 4) 

2. The second criterion is the quality of the rock in terms of its durability 

Crystallinity (Chapter 3) 

Mineral composition (Chapter 2) 

6.3.1 Fabric of Slate 

The economics of any particular quarry is controlled by the fabric of the slate and 

hence the ability to split the slate into thin slabs. Ease of splitting was evaluated in 

Chapter 4 and compared with the known splitting ability of slate from producing 

quarries. Scottish slate was assessed with reference to the splitting ability of 

Cumbrian and Welsh slates and its potential minimum commercial thickness is 

shown in Fig. 4.15. The size of the slate is controlled by the spacing and orientation 

of discontinuities such as joints and veins (Section 6.5.4). 

6.3.2 Durability of Slate 

By comparing the experimentally assessed properties of various slates with their 

reputation the following conclusions were reached in this Study, 

The durability of slate is dependent on 

1. Metamorphic grade 

2. Mineral composition 

3 Grain Size !Fabric 
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Slates with the highest metamorphic grades (as measured by the crystallinity of the 

material) have an excellent reputation for longevity (Section 3.4.2.2). This is 

because with increasing metamorphic grade there is an increased ordering of the 

minerals and an increase in grain size with regular grain to grain boundaries. Unlike 

sedimentary rocks, where an increase in grain size is associated with higher 

permeability, the regularity of grain boundaries is associated with a decrease in 

porosity and inability to absorb water. However, the increase in grain size due to 

increasing metamorphic grade is associated with a decrease in the splitting 

properties of the slate. 

The greatest control on the durability of slate is low water absorption. As well as 

being found in slates with higher metamorphic grade as described above, this 

property is also associated with a fabric with closely spaced cleavage domains. 

These develop in slate from a fine grained protolith e.g. fresh Toberonochy slate has 

a low water absorption figure of 0.10% (BRE archives). In spite of the presence of 

the deleterious mineral magnesite, very little weathering was observed in the 

Toberonochy reject tips. In contrast at Balvicar, which also has magnesite present 

but with a water absorption value of 0.94-1.34%, weathering is extremely severe. 

This shows the important role of water absorption in weathering. However, in the 

absence of deleterious minerals a high degree of water absorption is less crucial. 

Although there are no water absorption values for fresh Macduff slate, it is assumed 

to have high water absorption due to the presence of algae etc on the roofs in the 

area. Yet the slate is very durable because of the absence of deleterious minerals. 

Some slates have a reputation of softening when on a roof for 20 to 50 years. It was 

found that these slates have a low quartz content and a high chlorite content. Quartz 

has a hardness of 7 on the Mohs' scale while that of the phyllosilicates is 2 -3, 

giving some idea of the contribution quartz makes to the durability of slate. Chlorite 

is the most susceptible of the major minerals in slate to chemical weathering, 

followed by white mica. Quartz is the most durable. 
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6.3.2.1 Evaluation of the Durability of Slate 

An attempt is made in this Section to reconcile all these observations and relate them 

to the durability of slate. In Chapter 3, the relationship between crystallinity and the 

quality of a slate was discussed, and Appendix 3.1 gives the XRD analysis results on 

which crystallinity measurements were based. These were then modified as follows 

to incorporate an empirical assessment of the relative contributions to durability 

made by the different minerals to arrive at a durability index .. 

1. The contribution made by quartz was increased threefold to take into account 

its hardness relative to the other major minerals. In addition, for a given 

mineral concentration, the intensity count of the XRD peak for quartz [1001 

is lower than those of the white mica and chlorite [001] peaks. This is due to 

non-random orientation of the minerals in the powder sample (Fig. 6.1). 

2. The contribution made by chlorite was halved to take into account its greater 

vulnerability to weathering reactions. 

3. The contribution made by calcite was removed but that of dolomite was 

retained due to its extremely low solubility product. 

The results of this extension of the crystallinity measurements are also given in 

Appendix 3.1 and are summarised in Table 6.3 below. 

It should be noted that this method cannot take any account of the effect of non­

crystalline minerals such as graphite to the durability of slate. This is a serious 

omission as graphite acts as a catalyst and hence facilitates weathering reactions 

(Section 5.4.3.3.2). 
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Welsh Slate Durability Index Reputation Source 
Cwt y Bugail 543 Good This Report and 

Pen yr Orsedd 731 Very good BRE archive 

Ffestiniog 593 Good 

Twll Coed 462 Poor 
Cumbrian Slate 
Kirkby 788 
Elterwater 585 Good BRE archives 

Brossan Stone 691 
Broughton 637 
Brandy Crag 790 
Irish Slate 
Killaloe 582 Very good This Report 
Spanish slate 660 Poor This Report 
Scottish Slate 
Ballachulish 1354 Very good This Report and 
Easdale Island 1152 Very good BRE archi yes 
Balvicar 1134 Poor 

Table 6.3 Relationship between the reputation of a slate and its durability index 

Ballachullsh Slate 
Relationship between corrected intensities of XRD peaks and wt % 

as determined by XRF analyses 
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Fig.6.1 Relationship between intensities ofXRD peaks of the major minerals and their 

concentration. 
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Comment There appears to be some correlation within an area between the 

reputation of a slate and the durability index. However, the low value for Killaloe slate 

with an excellent reputation, and the high value for Spanish slate with a poor 

reputation, show the weakness of this method. Clearly other weightings might have 

been chosen to provide a better correlation between the index and reputed durability, 

but more research is needed to establish whether there is in fact a quantifiable link 

between the chemical and physical properties of a slate and its durability. This would 

need also to take account of the non-crystalline mineral content such as graphite. Until 

this is done, it must be concluded that the method described above is unsatisfactory for 

assessing slate durability. 

6.4 Resources and Reserves 

The resource is the overall volume of the slate deposit and reserves is the amount of 

slate which can be exploited and hence is dependent on many factors: geological, 

economic and environmental etc. However since not all of these factors have been 

explored in this Study no figure can be put to the reserves. In this Report therefore, 

any estimates, based solely on geological factors, of the proportion of useable rock 

are referred to as usable slate. 

In giving quantitative estimates of usable slate the following points have to be 

evaluated: 

• Resource i.e. the volume of the available outcrop. 

• Depth of workable slate. : 

• Proportion of rock suitable as slate. 

6.4.1 Resources 

The Resource is the area of the outcrop times the depth. 

Area of the outcrop 

The area of the outcrop can refer to the area in the immediate confines of the quarry or 

the limit of the slate outcrop in the surrounding areas. In some cases the limits of the 
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quarry are clearly defined such as on Easdale Island or Belnahua. but more often this is 

not the case. Except in one or two cases (which are clearly mentioned in individual 

quarry reports) the total area of outcrop is usually on so large a scale that it is not seen 

as a limiting factor. 

No allowance is made in this Report/or the availability o/land/or slate quarrying. 

Depth of Outcrop 

Without borehole information the depth of outcrop can only be inferred from 

geological maps. In general the depth of outcrop is not seen as a limiting factor. 

6.4.2 Depth of Workable Slate 

The depth to which a quarry can be economically worked is variable. It is generally 

noted that the quality of a slate improves with depth but the deeper the quarry the 

higher the cost of extraction. The limit of the usable slate is dictated by the engineering 

factors such as the need to pump out groundwater etc. For a quarry situated on high 

ground, the depth to which it can be worked is considerably more than for a quarry on 

low ground, especially if close to the sea. Yet several Easdale quarries were worked to 

a depth of greater than SOm, as the quality of the slate was good, but with dire 

consequences (see Ellenabeich Appendix A 3.5.2). For historical reasons none of the 

Macduff quarries was worked to much more than 10m depth, making their flUther 

exploitation feasible. 

6.4.3 Exploitable Proportion of Slate Rock 

Within a quarry the slate is often found interspersed with quartz veins, igneous bodies 

and other types of rock. Where there is a high concentration of such irregularities the 

amount of useable slate is low. 

Slate quarries are generally worked along strike, following the line of a productive unit 

or seam. For this reason the possibility of extending the seam is given in individual 

quarry reports. For example at Toberonochy (Appendix A 3.5.5), the seam in the 
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quarry is of good quality but the resources within the confines of the quarry are limited, 

so the possibility of looking for an extension of the useable slate along strike is 

suggested. 

Exploitation of useable slate in the surrounding area but outwith the immediate 

confines of the quarry would need much exploratory work such as boreholes etc. to 

determine the quality and extent of the slate. 

In this preliminary study of all the Scottish slate quarries, it is possible in some cases 

to estimate the resource. Based on these estimates, quarries are described in this 

Report in the following terms: (These are the terms used in Appendix A and Section 

6.5) 

Resource (xlOO,OOOm3
) 

<10 

10 - 100 

100-1000 

1000-10,000 

>10,000 

Exhausted 

Limited 

Medium 

Large 

Very large 

For those quarries which appear to have substantial resources, the usable slate can 

then be estimated based on the size of the seam and other observations in the quarry. 

To make a more accurate assessment of the useable slate of a selected quarry would 

involve firstly surveying the area surrounding it to determine the extent of the 

available resources, and then a more detailed mapping inside the quarry to determine 

the ratio of useable slate to the total rock. This is beyond the scope of this Thesis. 

6.4.4 Joints and Recovery 

Having located a good seam of slate, the size of the blocks extracted is strongly 

influenced by the pattern of joints in the rock. 

Joints are classified as systematic and irregular: 
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Systematic jointing consists of planar fractures, whose form and orientation are 

related to the deformation history of the rock and subsequent de-stressing associated 

with erosion. Superimposed on Scottish slate is irregular jointing associated with 

over 50 years of weathering, so that it is not often possible to determine the original 

systematic fractures. The type of joints most often identified are parallel to the 

cleavage surface 10 and normal to the cleavage surface J,. Occasionally other 

fractures, such as diagonal joints, form a pattern which is considered as 

characteristic of the original rock 12 (The terms 10, J, etc. are those used in the 

Appendix A). 

Size of Slates 

The spacing of joints and the angle (pitch) at which they cut the cleavage surface 

controls the dimensions of a slab produced in the quarry (Fig. 6.2). This in turn 

affects the size of slate produced (see Appendix A 2.3.4 for sizes of Ballachulish 

slates). Welsh quarries generally report around 5-10% recovery, yet Bailey et al.( 1916) 

when describing the Ballachulish quarries reports "6000 tons annually of finished 

material representing 30,000 to 35,000 tons of quarried rock", which equates to 15% 

recovery. Blaikie (1834) mentions 20% recovery when discussing Macduff slate. These 

figures reflect the difference in roofing practice between Scotland and the rest of the 

U.K. whereby the former makes use of different sizes of slate and is prepared to use 

even the smallest Peggies (228 x lS0mm). 

The relationship between size of slate and percentage recovery was calculated (Table 

6.4) for different pitches of joints and for varying perpendicular spacing between 

them (Fig. 6.3), This shows how the use of smaller sizes increases the rate of 

recovery where jointing is fairly closely spaced (Fig. 6.3a), especially at higher 

angles of pitch (Fig. 6.3b). 
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Pilch 

Discontinuity 

Spacing 

Fig. 6.2 Orientation of joints relative to the cleavage surface. Slates are cut along the pillaring 
line, which is the perpendicular line shown. The recovery is affected by the distance bet wecn 
joints and the angle or pitch of the joints. 

6.4.5 Weathering of Quarry Faces 

It should be borne in mind in considering the individual quarry reports which follow 

that all the faces of present day Scottish quarries have been exposed for at least 30 

and in some cases more than 100 years. The effect of this exposure in terms of 

weathering is to some extent indicative of the likely durability of the slate. 

Weathering of the slate at the quarry faces has been assessed subjectively by 

reference to the extent of rusty staining, the softness of the surface rock etc. 

Chapter 6 Possible Revival of the Scottish Slate Industry 



201 

Theoretical estimate of the rates of recovery of slate as a function of the 

following 

1 Size of slate 

2 Spacing of discontinuities such as joints 

3 Angle at which the discontinuities cut the cleavage surface 

Definition of terms 

Spacing S 

Width W 

Length L 

Breadth B 

Pitch a 

Method 

Effective spacing 

Effective width 

Minimum width 

Total area 

Distance along the grain of the slate. The long edge of the 

slate is cut along this line, assumed to be vertical. 

Width of block, a constant 

Longer dimension of the slate 

Shorter dimension of the slate 

Angle between the horizontal and the discontinuity measured 

on the cleavage surface. 

E.S. = S - B x tan a 

E.W.= S/tan a 

M.W. = B+L/tan a 

IfE.W. > M.W. then W = W otherwise W = 0 

T.A. =S x W 

Number of slates = Integer (E.S.lL) x WfB < .......... ~:.~.: ........................ > 

rivv/ Recovery R = N x L x B 

% Recovery = Rtf .A. x 100 

Note: Once there is sufficient width for one slate. there is no other width limitation 

Table 6.4 Method of assessing the effect of size of slate on theoretical recovery rates. 
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6.5 Resources of Scottish Slate 

An important aspect of this research Project was to update the last report on the 

Scottish slate quarries, which was carried out in 1944 (Wartime Pamphlet No 40). 

There have been many changes in the subsequent 55 years. Some quarries were 

substantially altered after that date due to continuing production for a further ten to 

twenty years, others no longer exist due to road building and landscaping. All 

quarries were considerably overgrown with gorse and heather making it impossible 

in many cases to assess them properly. 

The approach taken in this work was to reassess all the quarries described in the 

Wartime Pamphlet and to update it in the light of subsequent developments in the 

understanding of the geology of the region. The following aspects of each quarry 

are described fully in Appendix A, with a summary in this Section: 

• Site details 

• Topography 

• Geology 

• History 

• Mineralogy and crystallinity 

• Slate description 

• Cleavage and splitting properties 

• Joints 

• Imperfections 

• Description of workings 

• Usable slate 

The quarries were grouped according to their geological location as follows: 

1. Ballachulish 

2. Easdale 

3. Highland Border 

4. Macduff 
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These are also the generic terms used and applied to all the quarries in the relevant 

group. 

6.5.1 Ballachulish Slate Quarries 

Quarry 

Resources 

Weathering 

Access 

East Laroch 

Medium. For small scale development, there are limited 

resources within the present confines of the quarry. For large 

scale development the problem of the large rockfall in the SE, 

which has limited exploitation in the past, would have to be 

addressed. 

Good 

Excellent 

Environmental Sensitivity 

Quarry 

Resources 

Weathering 

Access 

This quarry has been landscaped and is now in the centre of a 

tourist area used for leisure activities. 

Khartoum 

Medium resources within the confines of the quarry. 

Good. 

Reasonable road and track for small scale development. 

Environmental Sensitivity 

Comment 

Quarry 

Resources 

The site is on Forestry Commission land and away from the 

main tourist attractions. However, large scale development 

would be conspicuous in an area much used for hill walking. 

The access road is narrow and passes through the village of 

East Laroch. 

This is the quarry best suited for further investigation. 

West Laroch Quarries 

Large slate deposit continues south up the steep hill behind 

the two quarries, but the steepness of the slope and the 
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increasingly heavy overburden to the south make exploitation 

difficult. 

Poor - medium. 

Access Good. 

Environmental Sensitivity 

Quarry 

Resources 

Weathering 

Access 

Close to the village and now being used as an industrial site (a 

roads depot, bus depot and other businesses). 

North Ballachulish 

Very large. resources stretch many kilometres to the north of 

the quarries. 

In the low-level quarnes pyrites have been altered to 

pyrrhotite and have weathered badly, staining the rock in the 

process. Where the pyrrhotite has fallen out, large holes have 

been left. The high-level quarries are outside the range of this 

alteration (Neumann 1950) and have a less serious weathering 

problem. 

Access to the low-level quarries is good; that to the high level 

is by a steep, poorly defined path. 

Environmental sensitivity 

The low level quarnes are close to hotels 10 an area of 

outstanding natural beauty. The high level quarry is less 

conspicuous, while the resources to the north are remote from 

all habitation. 

6.5.2 Easdale Slate Quarries 

The slate from Easdale Island itself was once said to roof the world but resources on 

this small island are now exhausted. Resources of slate are available elsewhere in 

the area but considerable work would need to be done to select a quarry suitable for 

further exploitation. Only limited information from fresh samples is available and 

assessment of the weathering properties of the slate from different quarries is based 

on the appearance of the slate in the quarries after 50-100 years. 
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Quarries 

Resources 

Location 

Quarries 

Resources 

Weathering 

Access 

Easdale Island 

Easdale Island 

Exhausted 

Seil Island 

Ellenabeich 

Limited 

Good 

Poor 

206 

Environmental Sensitivity 

Comment 

Location 

Quarry 

Resources 

Weathering 

Access 

Ellenabeich is a conservation village with narrow streets. 

No action due to its location. 

Seil Island 

Breine Phort 

Medium resources are available along the cliff face and below 

the level of the present workings, with possible extension to 

the east 

Slate in the tips and quarry faces shows extensive rusty 

weathering. 

Reasonably good. 

Environmental Sensitivity 

Comment 

Location 

Quarries 

Resources 

Weathering 

Low: apart from a few houses near the entrance this slate 

quarry is remote from the villages in the area and hidden from 

view behind the cliffs. 

Re-opening this quarry is a possibility due to its location but 

further work would need to be done to determine the quality 

of the slate. 

Seil Island 

Balvicar 

Medium resources due to an epidiorite sill to the east and 

alluvium to the west. 

Poor to bad 
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Access Good 

Environmental Sensitivity 

Comment 

Location 

Quarry 

Resources 

Weathering 

Access 

High, this area has been landscaped as a golf course. 

Re-opening not recommended in view of the poor quality slate 

and high environmental sensitivity. 

Luing Island 

Toberonochy 

Resources are limited in the immediate vicinity of the quarry 

as it has been worked to >60m and is now flooded. 

Excellent. 

Good; close to the road and the sea. 

Environmental Sensitivity 

Comment 

Location 

Quarries 

Resources 

Weathering 

The quarry is located in a village with narrow roads and 

surrounded by attractive former quarriers' cottages. 

There is good quality slate in this area and it IS worth 

exploiting if sufficient reserves can be found and the 

environmental problems overcome. 

Luing Island 

Rubha na hEasgainne 

Medium resources but the proportion of usable slate is 

expected to be low due to geological factors such as folding. 

Poor to medium. 

Access There is no road leading to these quarries. 

Environmental Sensitivity 

Comment 

Location 

Quarries 

Resources 

Weathering 

Access 

Low; this quarry is remote from all habitation. 

Not recommended due to the inaccessibility of the quarries. 

Luing Island 

Port Mary 

Medium resources but reserves would be poor due to folding. 

Poor to medium. 

Good farm track to the north quarry. 
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Environmental Sensitivity 

Comment 

Location 

Quarries 

Resources 

Weathering 

Low, this quarry is hidden from view in a remote area. 

It may be worth looking at this quarry in more detail given the 

good location. 

Luing Island 

Cullipool 

Medium resources within the confines of Quarry No 3 

Medium - good 

Access Poor, through the narrow street of the village. 

Environmental Sensitivity 

Comment 

Location 

Quarries 

Resources 

Weathering 

Access 

High, this quarry is close to the village. 

Possibility for small-scale development within the confines of 

the Quarry No 3. 

Luing Island 

Tir na Oig 

Although the slate resources are large in this area, the 

proportion of usable slate is low due to geological factors such 

as folding. 

Medium. 

Very inaccessible. 

Environmental Sensitivity 

Comment 

Location 

Quarry 

Resources 

Weathering 

Access 

Low, these quarries are in a very remote area. 

Not recommended due to the inaccessibility of the quarries. 

Luing Island 

Black Mill Bay 

lArge resources of slate but proportion of usable slate is low. 

Poor. 

Good. 

Environmental Sensitivity 

Apart from one or two houses this quarry is in a remote area. 

Comment Not recommended due to the poor quality of the slate 
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Location 

Quarries 

Resources 

Belnahua Island 

Belnahua 

Exhausted. 

6.5.3 Highland Border Slate Quarries 

209 

Giving a general summary for a slate area as diverse as that of the Highland Border 

has severe limitations, and the following should be read in conjunction with 

individual quarry reports. 

Resources 

As the slate belt stretches from Arran to Dunkeld, the total resource is obviously 

large. However it is not possible to estimate reserves of roofing slate. As a rough 

guide it is generally assumed that the resources continue along strike and that the 

size of the present workings is a guide to potential reserves. More accurate 

assessment would require more thorough mapping of individual quarries and their 

surrounding areas, which is outside the scope of this Report. 

With these points in mind the following tentative summary is given: 

Location Arran Island 

Quarries Arran 

Resources Limited 

Weathering Good 

Access Very inaccessible 

Environmental sensitivity 

Location 

Quarries 

Resources 

Weathering 

Low; these quarries are in a remote area. 

Island of Bute 

Edinmore, Hilton and Ardmaleish 

Medium. 

The quality of this slate is very variable. 
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Edinmore and Ardmaleish are accessible but Hilton IS not 

accessible. 

Environmental sensitivity 

Location 

Quarry 

Resources 

Weathering 

Access 

Low, these quarries are in a remote area. 

Luss 

Auchengavin 

Limited to medium. 

Medium. 

Reasonably accessible. 

Environmental sensitivity 

Location 

Quarries 

Resources 

Weathering 

Access 

Medium. Although these quarries are hidden, the area around 

Loch Lomond is one of outstanding natural beauty and a 

tourist area. 

Aberfoyle 

Aberfoyle 

Medium. 

Medium - good. 

Accessible. 

Environmental sensitivity 

Location 

Quarries 

Resources 

Weathering 

Access 

Low.There are already extensive workings in this area and a 

relatively recent history of quarrying. 

Comrie 

Aberuchill and Drummond 

Medium. 

Good. 

Very inaccessible. 

Environmental sensitivity 

Location 

Quarry 

Low, these quarries are in a remote area. 

Logiealmond 

Craiglea 
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Weathering 

Access 

Medium. 

Good. 

A good track leads to the quarries. 
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Environmental sensitivity 

Location 

Quarries 

Resources 

Weathering 

Access 

Low, these quarries are in a remote area. 

Dunkeld 

Birnam and Newtyle 

Variable, see quarry reports. 

Medium - good. 

A good road leads to the lower level quarries at Birnarn but 

the upper level quarries at Birnam are inaccessible. The 

Newtyle quarries are close to the public road. 

Environmental sensitivity 

Birnam low 

6.5.4 

Location 

Quarries 

Resources 

Weathering 

Newtyle medium; these quarries are close to several houses. 

Macduff Slate Quarries 

Kirkney Hill 

Kirkney 

lArge resources are available for further exploitation. The 

present workings could be increased to a greater depth as well as 

extending along strike. 

Good quality slate. 

Access Poor, no roads lead to these quarries. 

Environmental Sensitivity 

Location 

Quarries 

Low, these quarries are fairly remote from all habitation. 

Corskie Hill 

Corskie, Raining and Roughouster 
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Large resources are available for further exploitation. Present 

workings could be increased to a greater depth as well as 

extended along strike. 

Good quality slate with only slight weathering of chlorites 

observed. 

Medium. The forestry road leads to the lower level quarries 

(Corskie) and another track leads to the top of the hill which is 

fairly close to the higher level quarries (Haining). 

Environmental Sensitivity 

Location 

Quarries 

Resources 

Weathering 

Access 

Low, these quarries are remote from all habitation. 

Wishach Hill 

Wishach 

Large resources are available for further exploitation. Present 

workings could be increased to a greater depth as well as 

extended along strike. 

Good quality slate. 

Poor. No road leads to this quarry although a forestry road is 

fairly close. At the time of writing, the vegetation was very 

dense making this quarry inaccessible. 

Environmental Sensitivity 

Location 

Quarries 

Resources 

Weathering 

Access 

Low, these quarries are very remote. 

Hill of Foudland 

Foudland 

Large resources are available for further exploitation. Many of 

the quarries in this area are covered with large tips. The depth of 

workings is greater than observed elsewhere in the Slate Hills. 

Good quality slate. 

Medium; there is a good track to the top of the hill close to the 

high level quarries, but many of the other workings are quite 

some distance from any vehicular access. 
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Low, these quarries are fairly remote from all habitation. 

Tillymorgan Hill 

Tillymorgan 
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Location 

Quarries 

Resources Many of the quarries in this area are covered with large tips, but 

large resources are available for further exploitation. 

Weathering 

Access 

Good quality slate. 

Poor. No roads lead directly to the quarries. 

Environmental Sensitivity 

Low, these quarries are fairly remote from all habitation. 

6.6 Conclusions and Recommendations for Further 
Investigation 

The Terms of Reference for this research Project call for a recommendation for 

further investigation to be made for at least one quarry in each of the four main slate 

areas. The remainder of this Section goes on to fulfil this requirement. Selection of a 

quarry is assumed to depend primarily on the likely quantity and quality of slate 

which may be extracted. However, other factors such as accessibility and 

environmental sensitivity have also been taken into account. These are summarised 

for each site in the foregoing Section 6.5, and are given in greater detail in Appendix 

A. 

The important criteria in assessing quantity and quality are: 

1. Potential minimum commercial thickness of slate which is controlled by 

its fabric (Section 4.4) 

2. Size of slate as determined by spacing and orientation of discontinuities 

such a joints within the quarry (Section 6.4.4). 

3. Durability as influenced by crystallinity and mineralogy (Section 6.3.2 

and Chapter 3). 
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Although at least one recommendation is made for each main slate area, for reasons 

which are given in each case, some areas offer much better prospects than others. 

Accordingly, the recommendations are set out below in order of their perceived 

potential for renewed exploitation. 

6.6.1 Ballachulish 

The best Scottish slate is found at Ballachulish, and there are sufficient resources to 

merit further investigation. However, some individual quarries have severe 

limitations in terms of access, proximity to centres of population, environmental 

sensitivity etc. Taking all the factors into account, the Ballachulish quarry proposed 

for further investigation is Khartoum for the following reasons: 

Mineralogy: The mineralogy of the slate is good. There is a high quartz content 

and the ratio of white mica to chlorite is high. The iron are mineral 

is pyrite but it is present as recrystallised cubes which show only 

superficial rusting. There is however some clay present in those 

samples analysed. 

Crystallinity: The crystallinity of the slate is very high as measured by the 

intensity of XRD peaks and FWHM of between 0.12 and 0.14 28. 

Size of slates: The cleavage is smooth and regular and would produce flat slates. 

Recovery: 

However the slate is coarser grained than at other Ballachulish 

quarries and the potential commercial thickness, estimated at 

7mm, is greater than the average for the area. Jointing is widely 

spaced; one set of organised joints spaced at 2m intervals, which 

pitch at a low angle relative to cleavage surface would place little 

constraint on the size on the slates. 

The proportion of the reserves that is usable slate is estimated as 

high. Wastage due to the presence of quartz veins would be 

localised while the slate in the accessible part of the quarry face is 

fairly homogeneous. 
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6.6.2 Macduff 

There are large resources of slate on the north slopes of the Slate Hills. Apart from the 

intensity of spotting, which depends on the proximity to the Insch Intrusion, the quality 

of the slate was found to be remarkably homogeneous from one hill to the next. 

Selecting a quarry for further exploitation has depended largely on other factors such as 

access etc. In general, quarries that have at least rudimentary vehicular access are those 

worked extensively in the past and hence those which have the problem of large tips 

covering the working area. Hence the decision on further investigation has had to 

balance the advantage of easier access against the need to clear larger volumes of waste 

material. 

With this in mind, of the several quarries in the area suitable for further investigation 

the group chosen in this Report is Kirkney Hill. 

Mineralogy: The mineralogy is ideally suited to producing a durable slate, in that 

the quartz content is moderately high and there is a high white mica 

to chlorite ratio. More significantly there are no deleterious 

minerals, the iron ore mineral present is in the oxidised fonn of 

haematite, and no carbonate and graphite were detected in those 

samples analysed. Spotting was infrequent as compared to that 

observed in the slate hills to the east. 

Crystallinity: The crystallinity is medium as measured by the intensity of XRD 

peaks and the FWHM is 0.17 - 0.23 26. 

Size of slates: Samples are fairly coarse grained and would produce a thick slate of 

approximately 7 to lOmm. In general the overhanging face has 

collapsed along the pillaring line and the inclined faces are obscured 

with debris. It was therefore not possible to assess the effect of 

density and orientation of jointing on the size of the slates. 

Recovery: The proportion of slate that is usable is probably high, as quartz 

veins and igneous intrusions are infrequent. However density and 

orientation of jointing may also have a significant effect on recovery. 
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6.6.3 Highland Border 

The mineralogy of Highland Border slate, in particular the lack of pyrites, suggests 

that it would have good potential as a roofing material. Other properties however, 

such as the degree of crystallinity, also control the durability of the slate and these 

vary considerably from quarry to quarry and for producing units within a quarry. 

Zones with poor crystallinity and low quartz content should be avoided. 

The Highland Border quarries proposed for further investigation are CraigJea and 

Aberfoyle for the following reasons: 

Other uses: 

Mineralogy: 

The green slate of Craiglea and some of the Aberfoyle have 

attractive bedding features which suggest that the slate could be 

used for architectural purposes other than roofing, such as flooring 

and cladding. 

The mineralogy of Highland Border slate indicates lower 

durability than other Scottish slate in that there is a higher 

proportion of chlorite. In addition Aberfoyle has lower than 

average quartz content. However the iron ore mineral present is in 

the oxidised fonn of haematite and there is no graphite. The presence 

of small amounts of calcite in the absence of pyrite/pyrrhotite is not 

considered deleterious. 

Crystallinity: The crystallinity of the Craiglea slate is high as measured by the 

intensity of XRD peaks and FWHM of between 0.12 and 0.14 

26. The crystallinity of Aberfoyle is low to medium and FWHM is 

0.1626. 

Size of slates: The Craiglea slate is fine to medium grained and would produce a 

slate 9-10mm thick. Because the waste tips have been left in a 

very unstable condition, it was not possible to assess the effect of 

density and orientation of jointing on the size of the slates. The 

Aberfoyle slate is finer grained and the commercial thickness is 
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estimated as 8mm. Joints are widely spaced and would not limit the 

size of slates. 

Grit bands delimit the Craigie a quarry, but it should be possible to 

extend the quarry into the high ground to the SW. Waste material 

has been dumped indiscriminately and would have to be cleared. 

Several seams were worked in the Aberfoyle quarries some of 

which could be extended along strike. These seams are separated 

by zones densely permeated by veins of quartz and calcite. There 

has also been indiscriminate dumping of waste in the Aberfoyle 

and reopening would involve major clearing of the area. 

Easdale 

There is no question that very durable slate has been produced from the Easdale area 

in the past, and those quarries which were worked extensively e.g. Easdale Island, 

show little superficial weathering. The quality of the slate in different quarries was 

assessed by looking at the effect of weathering on the quarry faces. Many quarries 

which were suitable in terms of their resources, location and access had badly 

weathered surfaces or complex geological features. Toberonochy slate appeared 

little weathered, but the confines of the present quarry are extensively worked. It 

may be worth investigating if the producing seam extends along strike. 

No quarry is ideal for further investigation as a possible source of Easdale slate. 

Resources in quarries with the best quality slate are exhausted and Breine Phort is 

proposed as a compromise between quality and resource. 
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Although the mineralogy of the slate is good in that there is a high 

quartz content and the ratio of white mica to chlorite is high, the 

white mica has low potassium plus sodium content making it more 

prone to weathering. The iron ore mineral is pyrite/pyrrhotite 

which is present as small crystals or is disseminated throughout the 

rock and is extensively weathered. 

Crystallinity: The crystallinity of the slate is very high as measured by the 

intensity of XRD peaks and FWHM of 0.11 to 0.12 28. 

Size of slates: Where the cleavage is smooth and regular it would be possible to 

produce thin flat slates. The fabric of the few samples analysed 

suggests potential commercial thickness at 5-6mm. However 

minor folding of the cleavage would increase the thickness and 

reduce the size of the slates. Jointing is closely spaced which 

would also limit the size on the slates produced. However the 

joints are generally orientated parallel to the cleavage and pillaring 

surfaces which would minimise this constraint. 

Recovery: 

6.6.5 

The proportion of the reserves in the present quarry that is usable 

slate is estimated as low due to the presence of igneous intrusions 

and quartz veins. However the large resources in the area outside 

the confines of the quarry may be worth investigating. 

Summary 

The brief for this Study calls for at least one quarry from each of the major areas to be 

recommended for further investigation. This is difficult in the case of Easdale, since all 

of the quarries have severe drawbacks. It is also difficult for Macduff for the opposite 

reason, that several quarries show good possibilities. Nevertheless, taking all the above 

factors into account, the following quarries are recommended for further investigation: 

1 Ballachulish Khartoum 

2 MacdutT Kirkney 

3 Highland Border Craiglea 

4 " "Aberfoyle 

5 Easdale Breine Phort 
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Chapter 7 Conclusions and Recommendations 

7.1 Introduction 

In order to achieve the principal objective of this research Project, the identification of 

those Scottish slate quarries with potential for further exploitation, it has been necessary 

to determine ways of evaluating the quality of slate. The general approach has been to 

analyse slates from producing quarries in Wales and Cumbria and identify those 

parameters with the greatest effect on the performance of slate as a roofing material. The 

analytical methods developed were then applied to samples of slate from all the quarries 

reviewed in the Wartime Pamphlet No 40 to identify the most likely resources of good 

quality Scottish slate. Ideally, comparisons should have been made between fresh 

production-run slates, but without access to fresh Scottish samples this was not possible. 

Because of the large number of quarries that needed to be included in this Report, the 

data sets for individual quarries for all aspects of this research are smaller than desirable. 

Slate is a fine-grained material, which has only been metamorphosed to a very low level 

and falls into a grey area between sedimentary and metamorphic rocks. The techniques 

used to assess the properties of materials in both these areas were found to be 

unsatisfactory. 

Evaluation of slate was based on the following properties: 

1. Mineral composition 

2. Metamorphic grade 

3. Fabric 

4. Weathering properties 

The methods developed were then applied to the Scottish slate quarries with a view to 

selecting those suitable for further investigation. 
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7.2 Mineral Composition 

In the past the composition of slate was described either in terms of major and minor 

minerals or as total oxides, without any information on their proportions. Recent 

progress has been made in the analysis of phyllosilicates in fine-grained material. This 

has enabled the mineral content of slate to be calculated from its total oxide 

composition. A representative sample from each group of quarries was analysed, the 

formulae of the component minerals established and hence the mineral composition. The 

mineral composition of other samples was then calculated from their total oxide content, 

using the formulae of the phyllosilicates from the standard. This technique appeared to 

give good results for samples taken in the immediate vicinity of the standard but when 

applied to samples from more remote sites in the area, unallocated oxides suggested that 

the formulae were no longer applicable. Thus the techniques developed would be better 

suited if the use of a single standard were limited to one quarry or group of closely 

spaced quarries. 

Results were verified by comparison with those from other analytical techniques where 

possible. 

It was found to be possible to relate the mineral composition of the slate loosely to the 

durability e.g. high quartz content and high white mica/chlorite ratio correlate with long 

service life. Ballachulish slate has a higher than average quartz content which may 

account for its longevity while some Aberfoyle slate has a reputation of softening after 

20-30 years which may be due to some seams having lower than average quartz content. 

However, it may also be due to the presence of calcite but this was not assessed. 

Minor minerals play a disproportionate role in the durability of slate. In general 

carbonates have a detrimental effect on durability but a distinction should be made 

between the different types of carbonate, e.g. dolomite is considerably more stable than 
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calcite. Similarly the type of iron ore mineral is also important. When present as an 

oxide (haematite) it is considerably more stable than as a sulphide (pyrite or pyrrhotite). 

7.3 Metamorphic Grade 

The second most important parameter in determining the properties of slate is the 

metamorphic grade, which controls the crystallinity and affects the grain size of the 

material. Traditionally for sedimentary rocks and soils both properties of crystallinity 

and grain size are evaluated by the sharpness of peaks in XRD analysis, using Full 

Width at Half Magnitude (FWHM) as the criterion. This work is usually carried out on 

a particular grain size fraction, which is an extremely time consuming procedure. 

However when applied to slate, the range of results is so small, with such high scatter, 

that the method is not effective for determining crystallinity. For these reasons an 

alternative method of determining the crystallinity of slate was developed, based on the 

intensities of peaks of the main minerals. Crystallinity values determined by this 

method vary from 200 to 1100, whereas the values given by FWHM range only from 

0.25 to 0.1. Thus while both methods measure crystallinity, the greater sensitivity of the 

intensity of peaks method makes it of more practical use in discriminating between 

different quality slates. 

The usefulness of the method was assessed by evaluating the results for a group of slates 

from working quarries. It was found that a given crystallinity value is characteristic of 

an area with coefficient of variation of approximately 10%. The technique was then 

applied to Scottish slate and the results were found to correlate with the reputation of the 

slate e.g. the crystallinity of weathered Ballachulish and Easdale samples was high to 

very high and these slates are known for their durability. 

As with the FWHM method of assessing crystallinity, the results of this technique are 

dependent on the experimental methods and equipment used. Therefore results must be 

compared with values from samples with known properties. 
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7.4 Fabric 

Much research has been carried out on the cleavage of slate and other low-grade 

metamorphic material with a view to understanding the tectonic regime under which the 

fabric developed. But little previous research has been done to relate the 

submicroscopic properties of the fabric to the ability to split it into thin sheets for use as 

a roofing material. 

Building on the characteristics of slaty cleavage defined by Powell (1979) it was 

possible to develop a relationship between these and the thickness of the finished roofing 

slate. The fabrics of a selection of slates from producing quarries in North Wales and 

Cumbria were examined and the submicroscopic properties quantified wherever possible 

and assigned a value called the Fabric Point Scheme (FPS) value. The results were 

correlated with the actual thickness of the finished slates and a relationship established. 

This relationship was optimised by regressional analysis using multivariate statistics. It 

was then used to predict the potential minimum thickness of Scottish slate. The validity 

of the method was verified by comparing the actual thicknesses of used Scottish slates 

with their theoretical minimum thicknesses. It was found that there was a tendency for 

finished slates to be split thicker than Welsh slates with a corresponding number of 

points but in several examples there was good agreement to within 1 mm. No slate was 

split thinner than the theoretical limit. 

The relationship between FPS and thickness of the slate was then applied to a few 

samples from all the slate quarries described in Appendix A and a theoretical minimum 

thickness for each sample was determined. As in all aspects of this work, the data set 

was too small, so that observations may not be representative due to the natural variation 

in the quarry. However it gives a indication of the splitting quality of the slate from all 

the Scottish slate quarries reviewed. 
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7.5 Weathering Properties 

Estimates of the durability of a slate were made by experimentally weathering new 

slates. The method which best mirrors the effect of natural weathering of slate on a roof 

is the wetting and drying test. The effect of weathering was assessed by measuring the 

increase in ability of the slate to absorb water with length of experimental weathering. 

This effect is also observed in slates which have been naturally weathered. The 

relationship between length of experimental weathering and water absorption 

(weathering profile) was determined for a few fresh slate samples and a few weathered 

Scottish samples. When the effect of natural weathering was compared to that of 

experimental weathering in terms of the rate of increase in water absorption with time it 

was found that 5 to 12 wetting and drying cycles were equivalent to one year of natural 

weathering. Applying this relationship to the weathering profiles, it was then possible to 

estimate the life of a slate to the point at which water absorption reached a value of 0.3% 

which is the limit specified by the British Standard for slate, BS 680. 

It is proposed that routine testing of new slate should include the following: 

• Determining the initial water absorption 

• 25 cycles of wetting and drying to test for oxidisable compounds, such as pyrite 

(especially in the presence of carbonate) 

• Determining the final water absorption after a set number of wetting and drying 

cycles. 

Rate of increase in water absorption relative to a slate of known performance, such as 

from the old vein at Ffestiniog 'as used in this work, can be used to estimate the service 

life. 
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7.6 Conclusions 

The geological parameters which affect the performance of slate have been used to 

select potentially viable quarries, as discussed at length in Appendix A. In evaluating the 

potential of a quarry to produce roofing slate the significant attributes are: 

• Dimensional Considerations 

• Durability 

Dimensional Considerations 

An important consideration In assessing the viability of a quarry is the potential 

minimum thickness and size of the finished slates. The Fabric Point Scheme (FPS) 

method has been used to assess the minimum potential thickness of slate from Scottish 

quarries. 

The effect of spacing and orientation within the quarry of discontinuities such as joints 

on its ability to produce slates of usable size can be assessed theoretically. However it 

has only been possible to apply this approach to a limited number of Scottish slate 

quarries. In most cases, the quarries are overgrown, faces are obscured with waste tips or 

were left in an unstable condition and have collapsed in the intervening years .. 

Durability 

The important determinants of the durability of slate are 

• Crystallinity 

• Mineralogy 

In general low water absorption indicates high durability and the more crystalline the 

slate the less it absorbs water. In addition, any deleterious minerals present are in a 

crystalline form and hence are stable. However, in some cases fine-grained slates with 

low crystallinity have low water absorption due to their grain size and are also durable. 

When mineralogy is good i.e. minerals are present in their oxidised form, the effect of 
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high water absorption is substantially reduced and minerals are stable even if water can 

penetrate the slate. This is the case for Macduff slate. 

Other, non geological, factors affecting the viability of a quarry are touched on briefly in 

the Quarry Reports Appendix A. 

Ballachulish Slate 

The best Scottish slate is found at Ballachulish, and there are sufficient resources to 

merit further investigation. However there are many other factors to consider. Individual 

quarries have their limitations in terms of access, proximity to centres of population, 

environmental sensitivity etc. 

Macduff 

There are large resources of slate on the north slopes of the Slate Hills. The quality of 

the slate was found to be remarkably uniform from one hill to the next. Areas between 

worked veins were not investigated. Selecting a quarry for further exploitation will 

depend on other factors such as access etc. In general, quarries that have at least 

rudimentary vehicular access are those worked extensively in the past and hence they 

have the problem of large tips covering the working area. The splitting properties of the 

slate rock deteriorate to the south due to increasing proximity to the Insch Igneous 

intrusion. 

Highland Border 

The mineralogy of Highland Border slate, in particular the lack of pyrites, suggests that 

it would have good potential as a roofing material. Other properties however, such as 

the degree of crystallinity, also affect the durability of the slate and these vary 

considerably from quarry to quarry and for producing units within a quarry. Zones with 

poor crystallinity and low quartz content which are present in some quarries should be 

avoided. 
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Easdale 

There is no question that very durable slate has been produced from the Easdale area in 

the past, and those quarries which were worked extensively e.g. Easdale Island, show 

I ittle superficial weathering. 

Many quarries which were suitable in terms of their resources, location and access had 

badly weathered surfaces or complex geological features. No quarry in this area was 

particularly suitable for further investigation. Toberonochy slate appeared little 

weathered, but the confines of the present quarry are extensively worked. It may be 

worth investigating if the producing seam extends along strike. A more practical 

alternative for further investigation is Breine Phort, even though the slate is badly 

weathered on the surface. 

Taking all these factors into account, the following quarries merit further investigation: 

1. Ballachulish Khartoum 

2. Macduff Kirkney 

3. Highland Border Craiglea 

4. " " Aberfoyle 

5. Easdale Breine Phort 
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Appendix 1.1a Sample Set of non-Scottish slates and the procedures for which they 
were used. 

Quarry Source Sample Grid Colour WR Total Fabric FWHM ~lisc 

Code Reference Oxides Crystal-
linity 

Cwty Bugai) SH732456 Dark-grey, 

Fine-grained slates produced in thicknesses 
of5mmt08mm 
"Medium strong" from quarry face WCB-I Yes Yes Yes Yes 

"Medium strong" from quarry face W/CB-2 Yes Yes 

Weathered sample from waste tips W/CB-3 Yes Yes 
"Extra heavy" finished slate W/CB-4 Yes Yes Yes 
"Medium strong" finished slate W/CB-5 Yes Yes Yes 

Pen yr Orsedd SH510 538 
Fine-grained in a variety of colours, 
thicknesses of 4mm to 8mm 
Tips WIPO-I Green/purple Yes Yes 
Reject from dressing shed WIPO-3 Purple Yes Yes 

Slate from quarry face WIPO-5 Purple Yes Yes 
"Best" heather blue finished slate WIPO-6 Purple Yes Yes 
"Best" heather blue finished slate WIPO-7 Red Yes Yes 
"Best" Bangor blue finished slate WIPO-8 Red Yes Yes 
"Best" red finished slate WIPO-9 Red Yes Yes 
"Best" finished slate WIPO-IO Red Yes Yes 

Tyn y Weirglodd SH494523 
ISample from quarry face W/PO-II Plum -red Yes Yes Yes Yes -
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Quarry Source Sample Grid Colour WR Total Fabric FWHM Misc 
Code Reference Oxides Crystal-

linity 

Ffestiniog and Gloddfa Ganol Quarries SH694473 
Fine grained slates produced in thicknesses 
from 4mm to 8mm 
Old vein finished slate W/F-I Blue-grey Yes Yes Yes Yes Thin sections H&L, 

FeO 
Old vein finished slate W/F-4 Blue-grey Yes Yes Thin sections H&L 

Old vein finished slate W/F-5 Blue-grey Yes Yes Yes 
Old vein finished slate W/F-8 Blue-grey Yes Yes Weathering 
Between old and new vein W/F-9 Blue-grey Yes Yes Yes Yes Thin sections H&L 
Old vein outcrop W/F-IO Blue-grey Yes Yes 
Old vein frost damaged sample W/F-Il Blue-grey Yes Yes Thin sections H&L 
North or pigs vein sample W/F-J2 Blue-grey Yes Yes Yes 
North or pigs vein W/F-13 Blue-grey Yes Yes Yes 
Between old and north (pigs) vein W/F-J5 Blue-grey Yes Yes 
New vein finished slate WIF-16 Blue-grey Yes Yes Yes 

I 

Twill Coed SO 494524 
Sample from quarry wrrC-l Red Yes Yes 

>enrhyn 50623650 
Fine grained slates in a variety of colours 
range ofthicknesses from 5mm to 8mm 
Sample from quarry W/P-I Purple Yes Yes Thin sections H&L 
Reject from quarry W/P-2 Purple Yes_~~ Thin sections H&L 

- ---- -- ---- --
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Quarry Source Sample Grid Colour WR Total Fabric FWHM Misc 
Code Reference Oxides Crystal-

linity 

Spanish slate supplied by Mr Elfed Williams of Ffestiniog Quarries 

W/X-I Quarry unknown Blue-e:rey Yes Yes 

W/x-2 Blue-grey Yes Yes 

W/X-3 Blue-grey Yes Yes 

Burlington Slate Company produces "Burlington Blue" and Burlington Green Slates 
The Burlington quarries produce three grades of slates 

1) "Best" 7-9mm 
2) "Strong" 9-12mm 
3) ''Extra strong" > 12mm and imperfects of any thickness 

Burlington Quarry Kirkby-in-Fumess SD 250 837 

Trade Name Burlington Blue 
"Best" roofing slate from quarry face ElK-I Blue-grey Yes Yes Yes CO2 & H20 
poor potential from quarry face ElK-2 Blue-grey Yes Yes CO2 & H2O 
Finished "strong" ElK-3 Blue-grey Yes Yes Yes 

"strong" slate from dressing shed ElK-4 Blue-grey Yes Yes 

Broughton Moor SD254646 

Trade Name Burlington Green or Westmorland 
"Extra strong" coarse grain 12mm E/BM-I Olive green Yes Yes Yes 

"Best" 9mm thick ElBM-2 Olive green Yes Yes 
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Quarry Source Sample Grid Colour WR Total Fabric FWHM Misc 
Code Reference Oxides Crystal-

linity 

Elterwater NY 324048 

Trade Name Burlington Green or Westmorland 
Finished "strong" slate FJEW-I Dark green Yes Yes CO2 & H2O 

Finished "strong" slate FJEW-2 Dark green Yes Yes CO2 & H2O 

Finished " extra strong" slate FJEW-3 Dark green Yes Yes Thin section L 

Finished "best" slate FJEW-4 Dark green Yes Yes Yes 

Finished slate from slate merchant FJW-I Yes Thin sections H&L 

Brossan Stone SD278974 
Trade Name "Silver grey" coarse grained slate used 

for cladding 
Weathered sample E1BS-I Grey green Yes Yes 
Dark Brossan Stone E1BS-2 Grey green Yes Yes 
Light Brossan Stone E1BS-3 Grey green Yes Yes 
Dark Brossan Stone E1BS-4 Grey green Yes Yes 

Brandy Crag SD284984 

rrade Name "Silver grey" coarse grained slate 9- IOmm 
thick used for floors and roofs 

E/BC-I Grey green Yes Yes 
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Quarry Source Sample Grid Colour WR Total Fabric FWHM ~1isc 
Code Reference Oxides Crystal-

linity 

Irish Slate 
KillaJoe Slate from KiUoran Quarry, Portroe Nr Nenagh Co. Tipperary Ireland. 

The following samples were collected from a slate dealer 
Slate> 200 yrs old IlK-I Tipperary Sheet Blue grey occasionally Yes Yes 
New slate from Killoran quarry I1K-3 19 with distinctive Yes Yes Weathering 

R770785 banding 
Killaloe old slate I/K-4 Yes Yes 

French Slate 
The following Ardoisieres d'Angers were collected by Mr Robin Kent of Historic Scotland. The Noyant Slate 
Mine is 60km NW Angers, Maine et Loire, The Grand Carreau and the Fresnal slate mines are 20 Km SE of 
Angers , 

Noyant Grade A F/N-I Blue-grey Yes Yes 
Noyant Grade B F/N-2 Blue-grey Yes Yes 

Grand Carreau Grade A F/G-I Blue-grey Yes Yes 
Grand Carreau Grade B F/G-2 Blue-grey Yes Yes 

Fresnal Grade B FIF-I Blue-grey Yes Yes 
Fresnal Grade A FIF-2 Blue-grey Yes Yes 

-_ ... - -- ._._-
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Quarry Sample Grid Colour WR Total Fabric FWHM ~1isc 
Code Reference Oxides Crystal-

linity 

Miscellaneous samples from different importers of 
roofing slates 

Spanish Cupa sample fine SIC-I Dark-grey Yes Yes 
grained with pyrite cubes S/C-2 Dark-grey Yes Yes 
Unweathered spanish SI-O Dark-grey Yes Yes Weathering 

Chinese slate aC-1 Dark grey Yes 

Vennont slate cut 7mm thick. UN-1 Purple Yes Yes Thin sections 
"Heather Purple" H&L 

Trade Name 

Garnet Mica schist S/A-I Dark grey Yes Yes 
Non-slate from Grampian Highlands of Scotland 

Garnet mica hornfels CS 7 Yes Yes 
/Garnet mica hornfels CC34 Yes Yes 
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Appendix l.lb ISample Set ofScoUish slates and procedures carried out 

Eudlle Slate 

EE-I 
EE-2 

-I 1 1=;::"~~3~r_~740Hl~4L yes yes -~~==--f-=----~~-= 
NM76S9 1709 I _ _ __ __ __ f-~- _ yes yes 

Eudale b.aael 
Craig na h-uamha Q. I Dark FY finc-medium grained with PYrites cubes from seam 

A similar slate from the tips 
unknown ! ___________ ~ '--~ yes 

I ~ I--SeD Jslud----
BreiD-Ph rt-----+------------ --+ I --- - -

.. 0 -+- --- ---

_ I Used slate from the island with Smm PYrites rusty but no leaching EE-3 

---t---- --+------+-------- NM754 166T 

~-----~~-I~ar:r=:ne~:===c~Vage ~:I -- ~;;!~:~~I- -~-.Q~&~Ql! l~-,..I-[Jj;T--=--i~-
Similar slates from the tips S8-7 NM7S341660 ______ ~_+-__ es ~ __ ~_ 
Similarslatcsfromthe~ S8-8 NM7S341660 ________ -1- es _~__ _ __ 

i 

- - -- --t--------
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MiscdlaaeoU5 -- --i-~-j --____ TIlin section WR Fabric To~1 _ FWHM __ FeO 
-- -+-----

~-- ----j--- ------- --- -+------
Balvicar 
I~Jllo! JSB1-J~~~s!~!!lCdiumgraincdslatcsfromthe ISO-I ----

I working faI;c, Pyrites are small «I nun) rusty but no leaching I SO-2 
SO-3 
SB-4 '-' cImc ~ slate &om face 

H horizontal Oxides ______ _ ----
L ndicular 

NM766 164 to NM7~9 168 __ ~_-+ 
NM7685 1662 ~- -------i _1662 ~CO'" H20i ,..::t~ ~ 
NM7679 1659 C02 & H20_~_ 
NM7678 1656 ~ yes yes 

-----~ _ .... --~--__t -- ---.----

-----+-----1 

-----

2nc1-baod-sbB dealer" EX-I I unknown yes I---~t~---t=--=-~ =-- =-:::::-~ _ ..... - LT-I ==,. L .~~~ ~-~f"'-:l,.,l- -
• used slate from village hall LT-2 unknown L L~ __y~__~__ _ __ _ 
ftomthe~ ____ ~__ _1.,!-3__ NM74990866 C02 & H2O -~tl---~-t- ___ _ 
~=-=--=:.=I=~I:.L:.:=c.===<-~====-==-.:=:::,---__ laocs __ ---l-=~=-p:~~ E~7:~- ~ - ~ ~ - _ ~ _ -f"'= ~. =1 u ~=~ 

LP-3 NM7476 1439 L s--- _~~_ --J:es-~f-~=---=--= 
c"cl--"ea-"-v---------------------+L-=L~=--~ ~:;: ::-c~=&~ - : -:r~~f=i= -~ _f---res .. 
Bocb NM739129 to NM7421i8~-=- -~-t-~ __ -:-t-~=--=_~_~_j- --~~ 

:-1 NM7397 1345 L es ----f~--~--f-----
:-2_ NM7400 1352 __ ___ es _.L~_ --~-- -~ -t- ___ _ 
:-3 unknown __ We~~~_ _ _.L~ _ -t- es ' _____ _ 

Port Mary 

-":i - __ t-NM733103_~rC02&H20 '- yes--t-~ --y~ 1- ----==t= NM731081 --t-- ---t--- -+-
These slateS are dark grey med-::-ium--grained,-';--:--cren--u-:I-ated--:--surface--=--,-:th-e-___ LO-l NM732508321 - _~_ y~l-_~ _ _l'"~S 
I pyrites are Smm in size are rusty, leached and or have fallen out LO~ - NM73290832 J- ~-j- - -f--~ 
LB-I and 2 are &om the ~_while LB-) is a used slate from local house 1.,!3-3 __ ~W!l_=) we~e~=~=-- --~~--l_:~Jes 

Medium e mediwn grained slate with crenulated surface NM714128L __ _1_ J______ 
A used slate, pyrites a 1·2nun in size and rusty but no leach~__ BO·I unknown + _ _____ ~__ L yes T _~_ yes 
a similar slate from the tips 180-2 NM7148 1268 I C02&H20 yes yes t _ Y~_L-~es 

Tir .. ~ 

Blaekntill Bay 

BelI.allna 

f-----
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MiKella.eoas ._ 
I---]~-Tbi. sectiou WR. Fabric Total FWHM FeO 

H bortzo.tal_ f-.--- -- Oxides -.---.--- ------

f--- L lleneadleular --- ._ .. - -----, \ ---

- 1--------1----- --. • Bonier Slate .--- -t ---- ---------- - ---------
Amut NR963 S04 '" NR961 SOl ------ - --------1------ ---,--

MaI·QuinY BJue..taev fine arained ftom tips A-I NR963 S04 ~~-1--- yes -----
Green medium arained slaIe from tips A-3 NR963S04 yes yes ~- 1------- .-
Lilbt &I'CY medium arained slate tiom tips A-S NR963 S04 yes yes yes 

1------ --
o.t 8I'CY medium·Pned slate A-6 NT963 S04 --- -~-- -- ~--f-----~- \---_ .. _._-

Bate 
f-- yes yCs-1----._--1--- - -------

ArdmaIeisb QiiInY rGleY~ue fine -medium araincd crcnu1atcd surface 8-la NS07496967 ~- -----
Green medium IrIincd JIaIe from seam 8-lb NS07496967 yes yes yes 

HiltoaOumv :Grcv blue tine .... in~t-tiom face 8-2 NSOS826842 I-~-- ---- I---~- -~-- __ yes __ 

Bluc-areY sI* tiom roof - Hilton farm B-3 NS06226844 -I---~-- I-- yes ~----- --- _.-

Weathered bancI in quany face B-4 NSOS836842 

-J~~ 
yes !------------

Edinmore QU8nY Blue grey fino.medium gnincd ftom tips B-S NSOS2681 c----------
yes yes 

-- -.---1-------- -- -
Luu Tbesc slates show little suoerficial watbcrin2 

• I Quarry 'Grey-bluc tine -medium araincd crcnulatcd clcavQC surface LS-I NS349 09273 -- -~-I---~ yes 
B~ tine &rained ftom seam LS-2 NS349 09273 -~~ yes -----

-- ----1------- -
Aberfoyie These slates show littli$uPerficiai wcalbering - ~.-- -yes-1---._- -~---- -- I----- - -
WcstOWlriY Green medium &rained slate ftom seam AB-I NNS0300289 yes yes ~ 1--------

leslate I by quartz vein from seam AB-2 NNS0310289 
t-- yes 

--
LochouiQU8rry I Grcv mediwn gqincd slate ftom face AB-3 NNS0410304 yes yes yes 

----

I Grey medium IU'Iined slate ftom lower level tips AB-4 NNS06032 i-~ yes yes yes 
No I vein Bluc-tUeV medium 1m' slate tiom seam AB-S NNSOS40302 yes yes yes yes yes _~ 
2nd hand slate dealer Darlt IfCCIl finc..mcdium ttraincd slate flaking on the under surface. AB-6 unknown __ __ 1'~ -~ I--.~- yes __ ._ 1---.-------

t- -. 1-------
Comrie These slates show little superficial weathering 

:;::~ :~;~ ~~--1~~~~~-- --~:~-~= --: ~=~ AberudIiU Qurry Green coarse grained slate from face, ripple marks visible Au-I 
Blue grey medium gJuDcd slate from scam Au-2 

I-----
A similar slate from a local roof Au-3 =~;; 1873------- - - -ti~ -I--- Y: --t --;: -+- ---t--~=~_~-DrummoDd Quarry Green coarse grained slate from scam Dr-I 

0- -----------r-- ---~___t I 
I LotriealmoDd 

- --- ~_-I--~- -_r~-f-l-±~-=-:--
Cniglea Quarry These slates show little superficial weathering 

>--------- Green coarse arained slate from scam Cr-I NN9492 32frF--- _______ -I-- Yes . - -~-i-2:eS-l----+------ --
_ BJ~~iIun~ from workccf_~____ _ Cr-2 NN94923219 i yes _ yes 

- ---- -
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~ 

1-::-:--____ --+-----------------+------1f----+----~--- -
Macduff Slate 

RiD 

-+----+---- - --+----1---- -

~::L:.=,==:::...c=;::-:::=---=-;::-~-c==-:=- ~~ ~7Eti:fJ5l~ ,,~o 1_" l ;:'-5_- : :l_es 
NJ5l3328" NJS44 328 to NJ54.119 ~~~ 

Kirkney Quarry 
KirfaJey Quarry 

HiD of Conlde 
Haining Quarry 

IHainingQuarry lORy .. _ ...... grained 
Haining Quarry - - -

slate from face MH-I NJS47 13283 ~ - -~-t---

==-===-==--- ---------~~=:i~---I~~~~~~:~;~:~~;=:; __ ~Q~- & H20~~_ --~ ~- -J~ __ ;-:;_=_+---
F=-=~:L.::==_::==:.J:Z:.:====~::::...::7::_ _____ ~M::::C~-~I-~N~J~S2:::::9=-:1:.::3~26=_:8::-+---- _______ ~_ yes i-- ___ _ 

MC-2 NI129 13268 ---- - ~ 1-----Corso Quarry 

MC-3 NJS2913268 ----------- es cs _______ ~ __ 

W"laac. Hill I f iNJS77 331 to-~S79334- --- - 1---- i -~t --- --~~ -t-~-~- - -
WishachQuanyTiPSMW-INJS77S3330~ ~=~~-~--!-~~--l-==--t--2'~ n -~--

=:r=" _"'~whh-"" ::~ ~§Jjl'28340-I~l-ij~~~_ju 
_____ -_-=---- MF-5 NJ61303372_L___ : -~-_-TJE~~~l~- -~~~l 

MF-6 NJ61173368 i '-~-t---- ~~ ___ : 
MF-7 NJ6!!73368--r-- -- L~-,- -i ___ _ _~_: _ 

Western Quarries _______ ~ ________ MF-9 NJ6009 3322 t : _)'~s LL~J 
- MF-IO INJ6010 3322 : yes i yes . 
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Miscell.Deoas 
WR -+ Fabric 

~---- ---~-.---. - ----
TbiDHCtiOD Total FWHM --FeO- -

-------~-----

H borizoDtal ! _Osidcs_ 
- .--_.-- b -----~+- ---~ -----

L perpeDdlcular ~-- - - -------
From seam MF-II NJ60183325 t- yes yes- -~---
Wcadlc:red SIIDPIe MF-12 

NJ6021 '353 + I 
yes 

~- +-- _._---

Wall of intact rock MF-13 NJ60663372 yes -- --~- --------
Stale &om local roof MF-14 unknown ~ yes -+-~- _.-------

Skirts ofFoudIand Tbcse ..-c IKY mcdiuau-e!'.;....d sIIItcs with fi'eQucnt silty bands and ---- 1-------
ocx:asion8l ~. MX-I NJS9073319 ~ -- - --- --------
MX-I fiom seam and 2 - 3 &om tips. MX-2 NJS9073319 yes 

~I---MX-3 NJS9073319 }'CS ICs _ _ ___ ~_ 

~-- --- - --------
HID ornu)'lllo ..... Tbcsc ..-c grr:y mcdi sIatcs with ~t silty bands and -- --- ---~-

occasionII ~. -. NJ646 345 to NJ659 351 
WiUamstoo Quany From working face MT-I NJ6523 3469 412 -- -~~ -~- -- - ---

Working face MT-2b NJ65243471 401 yes ~~ --------
Wl@!l'~ Tips MT-4 NJ65223484 --~- ----- .--.. -

Working face 
- r---~-

MT-5 NJ65213482 - ----~ - -._--

Scam MT-6 NJ65163483 Weathering l'es - ----- - --- - -- "_.-

Area used for dressing slates MT-BALD NJ64783453 ~ ryes -+----- --------

-------f------ - -- -- -----,--- ----- - -- --- -- ---- --
------ ------ - -_o- --- - -

j 

----------1------ ---
--- -1 - ----

----' L _____ '----

---- -r ----
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B~~al ... laaC~~h:.:-U~II.~h~S:::I::-:a~te",--~ __ ~~~_~ __ ~~ ______________________ _ 
East Laroch __ ~_~ _____ ------ -- - ----- -------
EL~~__ NOf1l:1 face__ 230 trace 187 635 136 
EL-3 . ----------~~-- ---103- -- -32T- - -111-
EL4----------------- 468 - --s4~--- 201 --733 -- - -'94--
EL~-- ----------=-=--=-===--=-2411race --_---- 188-____ ~.56f __ _ 3lD __ 
EL.:i ~ -upper Qalleriei ____________ 304 _______ 249 761 2

2
5
8

°1 . 
---- - 202 135~~_ 

~~~!- _____ ~-_=~~_= ==~~~====_3'6__~~ __ -~_-:--'05-- - 312 201 
eIIL 8estveit1 ______________ ~ ____ ._ 215 510 179 

West~roch --.- ----.-.~-------.---.. -- -- 193 531 111 
WL-1 Middle~arlY... ____ ~ ____ 374 _____ _ ______ _ 
WL-3 ---==---=-~_- _= _________ ._~ __ lQ.Il._ __3f3l'>_ 106 
wL~~ ______________ . ______ 3_'0 __________ ~L ___ £!._ _-206-

116 

n 
154 
151 

65 
90 

104 
69 
87 

110 
63 

137 

65 
93 
32 

70 --------
73 
65 

100 

74 
129 
144 

Siderite 
-Siderite 

Siderite 
Siderite 
Siderite 
Dolomite 

Siderite 
Siderite 

. __ ~derite 
Siderite 

- -.Siderite 

Siderite 

Dolomite 

246 

57 

75 

39 
25 

47 
50 
46 

46 

146 

------'----_._-----

~-.---------

:DoIomile ' 
196, 197 

;:-------------+------------~.---------.--~.-------.. --------
I~~~~-----------~~----------------------------------~---~-~-·----

66 193' 125i 
381 143i 1261 991 
661 

1 
1391 

112( 64! Haemalite 1 

671 44, 
80 

87 75' 
73: 128 

122 51 
70 50 
48 135 
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White mica Chlorite Miniit'''' )cRD Pe.u 
.Inten.!.lii" 

Angle 2~t~ 

K rich ---- Na rich 
-----"10.4-----10:9-

Quartz _ _ F~lds~r_ Haematite _ Carbonate 
__ K leld .Plag ./P_yrit.e __ CII~cite _ 34.31 

7.3 14.8 24.44 32.2 32.6-32.8 38.8 Dolomite 36.1 

AS-3 
A8-4 
A8-5 
AB-6 

PUIJlIe ____ . _.' 
slatewith a !JClCld . .!U'9 
-standard from 'best vein' 
i~l!8iidsi8ie£u-",!I1irlgS -. -

Cralgl •• 
Cr-l -Green-s.al'-
Cr·2 BlueSlale -
Cr·3 Jjilltel!cicnl~r~._ 

Co",rI. 
Au-I -Ablrudlill a 
Au·2 -AiienJChiua 
Au·3 slale 
Or·l Drummond O. 

Duftkekl 
0B-1 
08-2 
Os.:3 
ON·l 
ON·2 
ON·3 
ON·4 
OX·1 

Bimam 
'Blmam- -
'Bimam 
Newtyte South 
Newtyte S<lIJtI\_ 
_ NewtyIe_ NOl1h 
Newtyle North 
CUITlm.ngt 

62~__ 71 234 87 
71 44 68 __ ~ ____ ~_ 

__ '69 ___ ~~=~=-:_-=-~:_~~ . ~ ___ ~_ 
1.2)_._ . 61 _~L 80 
100 46-·--82- 331--"93-

98 

168 
___ 232_ 

251 

256" 
178-
;-91 
93 

120 
240 
iii 

1ff 

65 

118 
'aT 
1"26-

---' -~-.-.--- _. 
--~- ---

40 
0 

66 
38 
86 
28 
91 

209 

~Q~ 
113 

87 
230 
125 
381 
80 

282 

122 

165 
134 

--129 

96 
-'1-0--
170;-
151 

_.!~8L 
130 
99 
81 

118 
89 

112 
124 

- -

. - - -- -- - - -~41 ,.s/43:6·:"'.aJ!!leslte~ 38.07 
~ideritlt. . -37.55 

67 
146 

--136 
127 

. - 136 
186 

155 
165-
173-

189 

7 
99 

182" 44 - --- -~-~---

228 
-----~ --

___ ...245 ._ -- -------

-.-- -87-----
---- -. ---,--

122 --loe' 
139" 
123 
115 
137 
202 

117 
95 

64 

32 
30 



~pendiX 2.1 

Mineral XROPeaks 
:I~t!n~i~ 

Angle _2th_&1B __ 

WhitemicB 
-KrICfl--Narich 
-----10~4-----10.9-- -

Chlorite 

1.3 

248 

Quartz Feldspar Haematite Carbonate 
K leld Plag IPyrite Calcite 34.31 

14.8 24.44 32.2: 32.6-32.8 . 38.8 Dolomite 36.1 
41.5/43.6* Magnesite 38.07 

. . Siderite 37.55 

251 100 40 
248 102 56 
284 83 51 
330 121 trace 
281 104 36 
357 111 62 
241 91 51 
232_ 89 45 
158 81 42 

----.~-~---,---.-~.-------- -_. - . -- - .-- - .-
WrrC-l_Twill.fQ!9-----.-------........!!.L ______________ 1.3 __ 76 46 70 Haematite -- - . -

E/K-l 
E/K-2 
ElK-3 
ElK-4 

FIN-1 
FI/{g 

F/G-l 
F/G-2---

F/F-l 
F/F-2 

-SlC-l 

S7.c~2._ 

C/C~I_ 

UN-1 

SlA~1 

French 51 •• 
-----------.-,~-~-

Noyanl Grade A 148 
Noyant grade B 61 

: Grand Carreau :::: A 150 
Grand Carreau B 117 

: Fresnal grade B 161'1 
: Fresnel grade A 246, 
'Mlec •• s. 
Cupa sample 163 
Glades? 185: 

Chinese slale 91 

vermont slale 93 

112 
72 

82. 
128 

99 
71 

101 
103 
112 

70 

514: 

3601 
3521 
570' 

167 
193 
163 
150 

139 
95 1 trace 

n' I 
115!trace 

113 
125 
113 
105 

46 60' , 
67, 

i 
491 49

1 

51 ; 

Calcite 
Calcite 
Calcite 

__ C_ah::ite 

134 
117 
115 
111 

165 
170 
232 
209 

86 

151 
135 
101 

~~_-=_= 98 --= 63 ~--- --. _.:-_~~ ___ == c~cli!===_223 
o ~-48_---= 81 -~=__-_-~==~= 51_-=-:=-== =:-S'-.=--=- ---

Gamet Mica schisl 443 -==~===__ ____ ~~ _____ .....i!.37!........ -,04------108 ___ =-= __ ~~~--::=-6()====_==_=_·--=~=-· 



Appendix 2.2 Determination of Mineral Composition of a Ballachulish Slate (EL-IO) 
DA1;ABASE' .T~tal .. lsi - -ITi ;.&.1- .. ~M9 . ~c~ MnFe Na !K '0 
Chlorite '. i --.--.-." . j - !. t , , , ' 

EL1O+._ 15.~~~ 4.160 .. J>.~i 4.'~1 3"~f Q.Q()7: 0.012, 2.826, 0.002; 0.114; 
EL 10+ 15.~7..?t ~·.D84r Q.QQQ~ 4·!?1~! ~. !?1; 0.006 0.021 2.838 0'009; 0.024: 
EL10+ 1~605~ _~.1331 _ 0.007i ~.526~ 4.1221 .Q.~, 0.031 2.7~, Q.O()(): 0.014; 
~10+ ._ 15.37~ 1.572/ 0.006~ '!.!!5j ~.71?! o.QO~. 0.011 2.932: 0.Q()2' 0.015: 
EL-l0 . __ . ~~ _p 4.0221 n _ 0.007!_. u~_4.196;_ Q.Q!.f! 0.047: 3.0!6; Q.Q8J! 0'047; 
EL-l0 ._____ _ __ 15.639 4.169 ____ 0.008_~- _4.015IQ.Q~: O .. O~; g~l Q.033j 0.062: 
~ ._ 15.564 4.235 0.000 _~ 3.856! __ .Q.001; Q'()()()l 2.828JO.045~ Q.076 1 
EL-10 ______ _ _ .. ~ __ ~ __ ~. _ .4.502 3.9281 0.000) .9.Q!6

j 
~.0021 0.0381_ Q.Q!§! 

IEL-10 __ . _~ ___ ~ _. 0.007 _. _ ~471 ~~ _ .Q.OOO; 0.0g?; 2.~30j Q.020 0.017, 
EL-l0 d __ • __ •

p 
15.737 _4.220 0.011f----.4.146 __ .4.212!_ 0.0081 0.02QI :3,om7 .. Q.07~1 ().QQ9j 

IEL-l0 __ up 15.706 4.121 _~ __ ~ __ 4.223 _ 0.003)Q.0221 gjaJ __ O.0291 Q.Q~lJ 
EL-l0 15.759 4.140 0.009 4.281 4.191 0.002 0.031, 3.007 0.057 0.040 --- ._- - . - -~ -- ---; ---, --_.- -- .--

Mean __ _ _ _ . _ . __ ~~ 4.178 0.007 4.409 ___ ~ _ 0.0051 ~0231 ~.901 _ _ Q.033 !I.~ I 
St Dev __ . _ ~!!! 0.136 0.004_ 0.153 _~_ 0.005) (J.(J~1 0.093 0.029 (J.Q!l) i 
CofV __ __ _ ... _ .__ 0.033 . _ 0.035 _ .~ _ ___ .1 ._ .. 1()~032 -' i I 
Charge _. _~ 44.000 16.713 0.028 ._. 13.226 8.096 0.011(. Q~I 5.802 0.033 0.045 . ! 
Fonnulabased on 010 (OH)8J-- 28.000 2.659 0.004 2.806 .. 2.576 0.003: _Q.o15l _1.846 _ 0:021_ Q.0291!!.~1 
~larWeight ._. ________ 614.459 74.714 0.211 75.751 _ ... 62.136 _ O~!36JQ.~1 103.098. 0.485_. 1.117 gaa.()()().! 
~WI _______ 28459.30 7501.33 63.33 5870.71 3945.62 _ O.ool 0.001 57~4:~.. 22.86 250.13 5011.g0! 

~Xide --.. -~~.- 6::!~: 159.798 0.352 143.085 103.354 --O.191~ _~ 1~6311 . l~2.6:Ht 0.654 1.357 __ j 
%~xide. ..---t-- 100.000 26.006 0.057 ___ ~:?~ _~.820 ___ 0.()~11 0.168\ 21.5.'~:_1' 0.106 0'.22.11 0 .. 0001 
White MICa I Na+K I 

EL-10+ ~~===--=~~- 13.857 6.544 0.028 5.061 '~_~~~~Q:QOOr Q.QOO 0 .. !.!3_ 0.~16 !.[~;j!'!}161 
IEL-10+ . ___ 14.016 6.319 0.038 5.215 . Q~ ___ O.OOQ .. .Q.QQQ ().!?! 0.191 _!.768 1.~9 
EL-10+ ___ . _____ 13.976 6.222 0.032 5.433 0.256 _0.002~ __ .!> .. J:j .9-"-~ .. 0.233 _ _1.657 !.fl90! 

IEL-10+ __ 14.026 6.155 0.034 5.531 0.216 O.OOOI ___ ..Q.QO()j 0.1291 __ 0.289_ . 1.6721 1.961! 
EL-10+ ~. 14.007 6.153 0.026 5.560 0.224 ___ 0.0131 -J!:QQ!i <>'.998, ().411 _ !·E21j ~~~gJ 

,EL-l0 __ 14.055 6.104 0.020 5.519 0.331 _ 0.00!1 _ 0.QQ.51 ()JQQL __ 0.27511-6011 1.~?~i 
EL-l0 13.945 6.210 0.042 5.504 0.192 O.oolr . 0.000 1 0.097J 0.292/ 1.605l 1.8971 
EL-l0 ___ -=-=~-=__13.919 6.371 0.028 5.186~_n_.o.~-_Q.Ql~; 9.159~ .0.225

1

_ --[596jl.~211 
EL-l0 _______ _ _ 13.919 6.371 0.028 __ 5.186. __ 0.338 ___ ~ . Q·Q!~l 0.159L Q~225t_ 1:5961 1.821 
Mean __ ~. ____ ._._ 13.969 6.272 0.031 __ 5.3551_~ __ .!>:002 j ..Q.()Q4; 0.11<>.:. Q.262

1 
1.63!?j 1.6~5; 

~DeV _. _____ .___ 0.064 0.141 0.007 _ _ J!:.191 I .o-"-~ _ Q.~! 0.006 0.035
1 

0.0661 (~.Qz?, 0.072; 

~O:I~harge ____ :_u.n ___ !.': ~': 0.121 --=-~ _-_O~53i - --o.ooj 0.01; ~~~1 Q~~ -~~j 0.044; 

FormUlabasedon010(OH)2_ 22 3.136 0.015 __ ~~O.134! 0.0011 Q.C)()~i ~.'!.~l 0.131 1 .Q:811S.! 12 
Molecular Weight 397.428 88.120 0.736 72.292 .. 3.2221 ___ 0.~ g~lg0: 3~gQI __ ._~.012 _n 31.~§71 192

1 ~Wi 25674.868 8847.201 220.735 5602~_~~:595J __ -.-2:POOL 0.000: 220.3C>.2J 141.~5~t-. 70~Ei.7~g; 3340.800: 
~ 64.603 J Ii.· 
WtofOxideJmole_~_ 1-' 397.428 188.469 1.227' 136.5521·----5.35t---o.o55L.-~-_Q . .0~1!?.0431. 4.05~T -__ 38:508/ .\ 
%Oxide 100 47.422 0.309 34.3591 1.348_Q.Oj4[ 0.0391 1.2691 1.021· 9.689, 0.000 
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H 

8.000 
8.000 
0.00 

72.000 
11.718 

2 
2 

0.000 

18.000 
4.529 
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TotalSi Ti .AI Mg Ca Mn Fe Na K 0 
ChloriteEL-10 614.4591 ~6§91 0.004: 2.806' 2.576 0.003 0.015 1.846 O.OOO~ 0.000 
~n9~e.!=L-1Q 397.4?8! 3.1~; 0.015" 2.677 0.134 0.001. 0.002 0.070, 0.131 0.818 
Reduced IronITotal Iron (Wt) 0.89! , 
~l-=-lo-------- - - - 91.7~11 5?·~i 9.5781 16.280' 5.?60; 2.080' 0.094 6.410 0.800~ 2.560, 

~¥n'Il!l~~ X_RF.. • . 1. Q0
1 

5!'._?~Ji 0.574; 16.1?8; 5.2?7: 2.~7, 0.093 6.370, 0.795i 2.544! 
~~~_O!.rno!!SOfc;atJ()n --1. 0.952' ~:.OO?'- 0.317, 0.1.30' O.O~, 0.001, 0.08.9. 0 .. 026: 0.054; 
M~ of Apatite . __ Q._00032 _-=-= _ u __ -d I -_ - t 0.002: f i - - I t 

Residue. .- _ ___ _ _~ __ .Q.QQ.? . 0.317: Q.13QiO.035~ 0.001
1 

0.089, 0.0.26[' 0.054; 
Moles of dolomite _ Q·~d- -:-:=1- - ~. 0.035

1 
- 0.035 i I 4 -- - - i 

Residue __ -;-_ _______ __ ~ ._._ .Q.007 _ Q.317' 0.095
1 

O.OOO! 0.C>q11 0.0891 O.O?t3/ 0.054
1 IMoIesofP~.-.. _~._~? ___ ~ _____ 0.001 0.177 _ O.OO~ __ ; ().Q<>OI O.OO!? Q.Q09 0.Q54I' 

Residue 0.745 0.006 0.140 O.08§j 0.0001 0.001 j 0.084 0.017 O.()()() 

=::e-~-=:~---~. ;:: ~Egi~o.g·;-g:::I.~~-g:~.1 J:~I g~ -H~I g~~l 
Residue ________ ~_ __ ____ __ .-: 0.605_ 0.006_o.030 _. O.QQQI_ .. O.OOQ Q.OQ1 j 0.022) 0.000, _ 0.000, 
Halloysite ________ . 0.02950 0.030 ~~ __ O,()~O ____ +____ _ t I I 

t-::=Q=U8rtZ7:-='-- -__ ---_ - - 0.57583 -~r-- _ _ .. _ _ ____ -t __ _ _ I : 
,,,.... ___ _ 0.02228 __ ~ _ ___ _ ___ '_ _ ___ ~ j 0022 i 
Residue . 0.000 0.006 0.000 0.000 0.000 0.001

1 

0.000 o.ooor 0.000 
Residue in wt_=~=~-=-- _.J>~--,-_ 0.000 0.482 0.000 - 0.000 _:':'0.006 _0.049 0.000 - OJ>QO 0.006 
EL-1O ___________ "T~ Quartz Phengite Chlorite __ ~te ~_ite __ ApatiJ~ 1Dolomite H~loysite runall~t~ 
%Oxide 99.61 34.61 26.26 21.15 _ 2.67 __ .!.46! ()..!6 ~ . .s0 3.81+ 0 .. 73\ 

I I! I 
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H 
18 8 
12, 2 

Volatiles 
8.897 

0' 8.841 

100.341 
--j 

I 

0.982 

0.982 
0.345 
0.637 
0.132 
0.505 

0.505 
0.268 
0.237 
0.059 

0.156 
-0.023 

0.203 
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Appen~~2-,,~ X~ M~jor e!~ment ana!ys~s 
I 

Sample Numbers as in Appendix 2.1ulIless otherwise stilted ! ' 

!;amPie_ !SiOi >~12()3: Fe2OCj~Q- I CaO _ n 1~a20 __ J K20 !Ti02 'MnO !P205 , 

BaUachulish Slate ,t I 

'1___ ::: Ji:H ~:~ _j~~HiL~- ~:~ i:~iil 
i 

-j 

EL7 57.2 20.61 8.38 4.09 0.09 1.05 3.172 
rN-8~~~=-:_ 62.29 - 16·~i. 6.19 4.14 . Q.14 - 1.35 2.868-1 
'EL9 54.63 14.41 11.46 4.55 0.11 0.89 2.917 C:-:-c--··- --. ---- -~.------.- .. .--- ----- ----
~10_ 57.6 ~_ 16.28 6.41 5.26 ____ ~ 0.8 __ 2.56 
WL 1 62.75 18.26 5.56 3.74 0.07 0.81 3.358 
~- c-=-:- - . 
WL3 61.77 18.31 5.69 4.01 0.13 1.51 2.967 
----- .----.--1--- -- - -- .. _-,--- -----

WL5 . 58.51 18:83 7.29 4.67 0.1 0.65 3.312 ---- -_. - .. ---- -~ 

t
K1-- 53.5 21.66 6.75 3.73 0.07 1.17 3.9391 
I K2 61.11 19.67 .- 5.53 2.51 --- ().08 1.07 3.797-
K3 62.2 18.87 6.06 2.37 0.07 0.97 3.61 

~~ --.~---- ~ 

~-1 58.33 19. ?~ _ 6.53 3.67 ___ .9. ~~r- 1.23 3. r~4_ 
EasdaleSlate 

.-- .. --~ ~- ----_ .. -. -_._--_ .... 

IEE1 56.37 18.93 10 2.68___ 0.5 1.7 3.6! 
EE2 51.95 19.14 7.15 3.67 2.49 1.65 2.678 
EE3 52.03 20.07 7.31 3.2 2.71 1.493.043 
SB1 60.54 17.26 6.72 7.1 0.66 1.33 2.462 

---
SB2 59.27 15.8 5.72 6.81 0.56 1.34 2.103/ 
---.---- -------=--=-:--- .-- - - .-1. IS83---,- 50.37 ___ .12.~ _ 4.81 6.88 6.25 1.64 2.06~j 
SB4 48.52 15.08 5.42 7.39 4.36 2.24 2.174: ----- ---.-~----'--- --_._._-~-----/ 

SB5 53.64 __ 21~§ _ 7.34 3.01 __ 0.78 2.1 3.416) 
SB-6 59.56 20.15 4.88 2.24 0.22 2.33 3.3081 ---- - -~-I 

SB7 66.17 16.42 5.3 2.04 0.16 1.78 2.492 i 
SBB 56.75 19.71 6.28 2.9- 1.19 2.08 3.1071 

-+ 
LC1 56.89 19.59 5.61 2.72 1.62 1.94 3.397! 

Appendix 2.3 

0.9 1 

0.894 
0.688 
0.833 
0.728 
0.686 

t , 
---I I 

~~~~~ §:6~~j 
0.067 0.0461 

--. K~~~ g:g:i 
0.29 0.049 -~-··-·--I 

0.578 0.094 0.069) 
.-~ - ._- --- --- - ---~ 

0.756 0.041 0.045 
0.768- 0.031 --0:1 
--~--j--- j 

0.763 . 0.061 0.053
1 0.900 0.0281- . 0.054 .. ---- .----.---- .. --·---·f 

0.806 0.031 0.0651 - ----- - -_.--- ----

O~:~-- --~:~~~ ~:g~¥ 
0.979 1 - -~O~32~.~;~i -----I - .. ---~- _. ---- I 

O·§.~~I . _ 0.096 _..Q.12~i 

O.606~~- --Oo~~: --- ~:~~:j ---- --- -.. ---- - - -----1 
0.7 0.046 0.1441 
--_ j - ----- --. -- --. -- I 

0.~_1.1 _ _ -0'!~1- _ Q.~~~)i 
0.6~91 _Q.p99 _ Q~?1~~ 
0.?7~1 . _0.059 __ g·1§~1 
O. 7~~ f _ 0.03 g.1 O?; 
0.691 0.047 0.158, 
----j -- --- - - --~ 

0.6881 _ 0.068Q·!Z~~ 
0.763 0.091 0.173 i 

Total LOI 

93.()~)_~~9i 
93.331 6.67 
95.06 1 4.94 
--,---. - - ----

95.57 4.43 
94.55 5.45 
-- --- - - ---

89.99 10.01 
91.73 8.27 
95.39- - -.fsf 
----- - "- ---

95.29 4.71 _._- - ---

94.24 5.76 -- ------ -----~ 

91.8 8.2 
-~--- .. _--
94.67 5.33 --.- -----~----

95.05 4.95 
.. - ~ -----

94.32 5.68 
-- ~ -- - -

-- -- ----- - -

95.15 4.85 
-. - ------

89.63 10.37 
-_.-._- -- - -- -~--

90.78 9.22 
~.- --
96.95 3.05 
----- ------- - ---

92.5 7.5 
85.521- 14.48 ------1 - - ---

H:IJ . 1!!~ 
~~:~~ 1- . nf.6~ ------r-- - ------I 92.8 7.2 
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SampieSi02 :A1203 Fe203MgO :CaONa20 'K20 Ti02MnO P205 Total LOI 
lC2 - . 59.86 18.72 6.28i - - 2.55[ O.4f 1.53 3.11 0.921 0.087: 0.19. 93.66i 6.3~ 

----- - -----t ----, . t- ! I ' I 
lC-3 sa.86 19.13 6.41 2.63: 0.51i 1.75 3.193 0.906 0.0991 0.184 93.66i 6.3~ 

~P1 55.~ 18.46 ~.591 5.~! 0.62l 1.~4i 2.763( 0.769; 0.1211 0.15: 92.01! 7.95 
~_ _ 54.~~ _____ !~.~?~' ___ 4.71 1. ___ 0.59t-. -1'~;i _ ?'.?~; 0.6~1 0.09_2

1
, 0.139i 91.31 1 ~.65 

J.,.P.§- __ 54.51 ____ ~1.8~ ___ ,~ _____ ~ _ __ 0.37 _ ~.03 __ ~.~f!~ 0.8~~i 0.Q.€i7 1 0.143 1 93:91 6.1 
LP6 61.75 18.58 5.95 2.01 0.17 1.81 3.031 1.06i 0.0291 0.17! 94.57 5.43 
~B1-~- 55.~~ ~- 16:~~ - _ 4.8-1-~~~I~ -_~:_-~ ~ _--1.8{ 2.631, 0.637/ ():e>5/ 0.244! 90.38 9.62 

~___ _ _ ~ __ .. __ !!.8 _._ 4.55 .. 7.39 __ ~ _____ .. 0.851 ~.~~~!_ {).465: O . .Q~?j. 0.223 _~.()_.~ 19 .. 1 
lB3 53.2 19.44 7.77 3.43 1.07 2.2 3.033 0.759 1 0.0861 0.155 91.14 8.86 

tiE- .•• = '.' ~:~ '-~~~.: ~-_-TI =~~ . =-:~ _. ~:§1~ ~:~~I g: :~~ /. . ~:~~~1 il~;} ~ 1298~ 

it:.~:~-IHt- ~~JII-.ji =---_;~: :~il :frl ,Hi!~::~1 !Hl/ 1Hf 
~____ 54~~ ___ ~...:.! 7.54 3.75 ____ ~ _____ !:~.1._ 2._4~§ 0.~48 0.186 _ ().1~71_ 90.87 9.1~ 
EX-1 --:c- _____ 6_1._4'? ________ 1~ 7.07 2.19 1.06 __ !~ __g.~? 0.~69{).1~:3 0.079

1 

~5.?1 4.29, 
Highland Border Slate I i 

----,1-----/------+ ---_. -- ---- -- ----- - -- - --- - - I - - -- i -- -
A3 61.58 17.33 7.99 2.6 0.1 2.25 2.973 0.828 0.155 0.0731 95.88, 4.12 

~r--~-~'--~ -3i' ::i: ~:!~_-~~~=~i!~-Ulil Hiij1:~~ :}~I ~15~/ Hi 
82 _______ __ ~ __ 25.78 9.43 2.72 0.75 2.63 __ 4.071 1.679.1__ O_J02f_ 9.?4~j ~5.5~1 4.48 

~r-E:i ~i:E ::E :~~ ~;:i;; -tmjn n~fl~~:{~l H*IR~I ;:E 
~----E:! '!!:!=-=1~:~~-=~:~-~:l~=~1- l!~1 1:J~!1 ~:mjl :O~!l! ~EI ~:.~ 
~B3--- - __ 54.4a- __ ~ 21.36 9.~__ 2.71 _~~ 0.31 _ 2.72 _~ __ 2.~i1!1.40~1- -~15 0.1~2i 9~,-O~1 4.9.2 
"84 ___ ...., ___ 51.45 _ 21.24 11.29 2.27 0.62 3.04~.~12~ 2.5Z, _.Q~!03j 0.24~j ~.§'~~j 4.§~ 
"B5_------' 55.14 19.65 9.78 2.46 0.66 2.51 3.0431 1.346l _ J),128 0.21 94.91! 5.09 
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S~mple ! Si02 AI203 Fe2~ ; MgO CaO Na20 K20 Ti02 MnO 
AB-6 58.44, 20.11 7.12: 2.39 0.61 2.67 2.588 1.308 0.162 
AU1 56.57, 18~78 -9-.62 [ 2.560.66 2.991 2.745 1.229 0.148; 
~- ---- -------. I -- - I - --- - - i 

~~?_ I §5·~1 1~·14 1Q.76) 2.~4Q.3~ 2.191 3.769, 1.108 0.105 

,g~ l;:! uE!-=t~ ii ~. i:H- -}El UBI HE, H~ 
CA2 57.1 18.98 10.24 2.26 0.52 2.141 3.3681 1.355! 0.094 
------- ~- ---- -- --- ---- ---t -----1- ---1 

CA-3 ______ 53.1 _ 21.13 _ 10.25 ______ 2.7~ ~_ 0.69 2.24 _ ~.42~rl-- _ !_.2~!1' O.!?? 
DB1 57.49 19.25 9.28 2.26 0.38 1.25 4.144 1.169 0.085 
-----~-- - - - - ._-- -- - -- .. - ~-~. -~- -- --- -- -

DB2 59.11 17.88 9.43 2.04 0.28 1.99 3.97 1.132 0.163 
~. ------ - ----- ---- ----- -- --~ ------- --- ----I -- ---

DB3 55.11 20.66 10.72 1.64 0.24 1.68 4.719 1.135i 0.064 
~---- --- --------~---- - -- ---f---- - - --- - --- -- - -- -------E!!!-- ___ 58 _ 19.09 8.08 2.95 0.25_ _ 2.28_~.465 _!.! 95 q.Q~~ 
DN2 56.61 19.29 9.51 2.38 0.48 2.06 3.749 1.385 0.08 
DN3 _~-=~~- _~~--: _~ ~--=_ 21.3 8. 79--_--~ ~.62__ 0.37- __ ~I§4 __ . ~~I ~_ - i4§~ 0:92? I 
Ig~~ - ~ __ -=:~ .... ::~ ~:~: --= ~:;~ .. -_-_0_18; _____ ~:~~ _~ ~:;~~ -_]:~~Jj g~f~ 
Macduff Slate I 
MK2 53.64 21.83 10.27 1.93 0.19 _____ J.1 ___ ~__"__44~ __ 1.Q4131 
MK4 ____ 52.1 _ 22.61 11.88 1.6 0.18 1.63 ___ ~:287 __ 0.9_16.1 
MH1 52.95 24.71 9.2 1.1 0.14 1.12 5.5 0.808 L __ . _ _ _. ______ _ 

MH2 52.84 24.99 9.63 0.92 0.16 1.18 5.558 0.7811 

~~~ __ ~ :::~ ~ ~:: 1~~·: 1:~--~:~: __ J:~~ 1~~i J'~~i 
MX2___ 55.31 22.52 9.78 __ 1.94 0.33 ___ 1.39 -_~23!r ___ q.~~~l 
~~~ --- -- ~~:~~ 2!~~ 8;: -----1~: ----~ -~:~~ - t~~~t o~~j 
--------.------~--- - ------ ---- -- -.--- -- ---1- --- --I 

If-=n ~~t ~:E JjL=~ H:i--~~~[= U;I .·.l~!fl ~~5jl 
MF-14 52.82 23.70 9.08 1.47 0.59 1.6 3.612 1.011 
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0.0411 

0-.( 47) 
Q.{)J9

1 0.021, 
-I 

0 . .1~2f 
0.053! 
0.136 

0.16 
0.084 
0.071 
0.068 
0.05 

0:074 

P205 Total 
0.128 95.54 
0.248: 95.56 

0.24; 95.62: 
0.2071 96.36 i 

; I 0.124) ~1.211 

9.?1.E> j _ ~5.461 
0.174 1 96.21 i 

- 1 
0.229 95.211 ------- -- ---. - - i 
0.158 95.461 
0.175 96.18/

1 

0.1741 96.14 
0.138 1 95.54 1 

0.237 95.77 
___ 0 __ - ____ _ 

0.243 95.48 - - --" .. _----

0.229 95.43; 
O'-fS11 9~.951 
-

0.143 . - - I 
0.10~, 
0.116 - .. --1 
0.139, 

-- , 
0.2121 
O.11S1 

Q·~~il 
().o.~9! 
0.144: 
0.12 1 
- - I 

0.151' 
.. I 

0.123: 
0.147' 

I 
t 

~4.641 
~~~_361 
95.67 1 - - - --I 
96.22, - - - I 
~3.241 
96.87! 
95.661 
---- - - I 

95.44: 
95.63 
94.8 

97.24 
96.65 
94.11 

LOI 
4.46 
4.44 
4.38 
3.64 
8.79 
4.54 
3.79 
4.79 
4.54 
3.82 
3.86 
4.46 
4.23 
4.52 
4.57 
6.05 

5.36 
5.64 
4.33 
3.78 
6.76 
3.13 
4.34 
4.56 
4.37 
5.20 
2.76 
3.35 
5.89 
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Sample i Si02 AI203 iFe203 MgO Cao .Na20 K20 Ti02 MnO P205 Total LOI 
Cumbrian Slate i 

EIk-=1--- , 58.5 f -- i 
3.5 

-i t 
91.81 8.19 13.69: 5.56! 4.77, 1.58 3.326 0.692 0.068 0.127 

ElBS-3 
-j 

6.63: 
- t 

I 51.98 14.62 1 9.11 i 4.951 1.45 1.603 0.966 0.239 0.212' 91.75: 8.25 
Welsh Slate 

1 

iJ.4'i~ i i 
, i - -- -

-8.081 1 

3.063: 0.127! 
94.

24
1 

W/PO-3 58.81 18.97 2.15! ].5~; 0.882' 0.106 5.76 
-

-8.451 
---I - -I 

0.071 1 W/PO-11 58.67 19.88 2.45 1 0.19 1.56: 3.5861 0.762 0.121 95.74 4.26 
-- --------i ~f.931 ----j 

0.998' 
- , 

W/F-1 54.5 22.91 8.75 0.32 0.691 4.3, 0.335 0.212; 94.94 5.06 
-'- ~~ -_. .- ---

1.841- 0.35 - -6:96i ().~~~! 
I - I 

W/F-9 55.68 22.24 8.39 4.1"'-~1 0.287 0.22~! 95.Q?/_ 4.93 
-- ------- -- -----

r:~f-~ ~:~~ 
-. - - ------j -

W/P-1 60.89 18.56 6.98 2.111 2.9911 0.783 0.179 0.103 ~???I 4.28 
--- ----- -

-=--]:a~l 3.9?3j 1.028 1 

--

W/CB-1 54.71 22.73 8.91 0.334' 0.213) 94.83 1 5.17 
------- .. -. ~---- -- ----- - -

,Precision of XRF measurements ! 1 I 
-- 51:42 r -~8 

- - -- -~-.-.-- - - - ---- - --

3.5091 
-I 

AB-5A 11.3 2.23 0.61 3.06 1.581 0.104 0.24~1 95.34 4.660 
AB-5B--

- - -- ---- ------- - - - .. ------ ----,---1 . ---- -

51.33 21.34 11.26 2.27 0.62 3.14 3.5!?j 1.575J 0.104 0.245 95.4 4.600 -- .-------- ----- -- -0 __ -. --I - .. _-"--

AB-5C 51.57 21.32 11.22 2.26 0.62 3.13 3.5071 1.57 0.103 g:~1~1- 95.55 4.450 
Sf:S8 

-----
---~T9 

- ----- 0.62 --------~. --

3.4931' - _ 1.SSJ/ 
------

AB-50 21.41 2.27 3.05 0.099 95.64 4.360 
-- -- --- _. --------~- -

0.2481 
---- - --- -

AB-5E 51.55 21.29 11.15 2.26 0.61 3.07 3.~~~ j 1 ~?~?! 0.103 95.3 4.700 
---- ---- -_.--- -

=~:~:il K~l~t-
-- --

AB-5E 51.59 21.25 11.14 2.26 0.62 ~.~I!i- ~'?~f3! 0.105 95.32 4.680 
-- --

AB-5E 51.53 21.27 11.15 2.24 0.62 3.46 1.562! 0.101 4.830 ------ ---- ----- -- -._--. - -- --I ----I 

0·~4~! 
-

I\B-5E 51.55 21.23 11.18 2.24 0.61 ~.4~?1 1.556: 0.103 4.760 
------ --_ .. --- --- -----@ ---- -- -- -- 1 -

t\B-5E 51.62 21.28 11.16 2.25 0.61 ___ 3.041 3.4611 1.551 ! 0.103 0.2471 4.670 
-- ------- --- ---
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51.55 
---,--- -------

21.29 11.15 2.26 0.61 3.07 
-:-== --------,---~--- -~--

51.59 21.25 11.14 2.26 0.62 3.07 
~- 51.53 21.27 11.15 2.24 0.62 ~ 

51.55 21.23 11.18 2.24 0.61 ~" r .... 

2.251 0.611 :".14 

- 2.25 f ~~-- 0.6141 3.04ti 
0.01 0.01 0.03 
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Table 3 

-+-~------

i 
-I 

! 
--, 

, Precision of traces software in 
:determining the area ofp!ak 
Quartz White mica; Chlorite 

2933 1 39591 4335 : 
2848 4094 1 4132 1 

2970: 4130i 3995 1 

2932' 4047 1 3980: 

29961 4086\ 4273/ 
~986jl 3~~\ 4g15 
2967 3930 42341' 
2~7~j 40241 ~111j 
2848 r 4024 4142 

2882
1 

4137 417!-1 
~: f - "-CEt27~ 4.1 ~~~: 
~:~I -O.02~~3 

I j 

1- f 

! I ' 

~'ml° _JI ~ I 4.600 __ I 

~.450 _ __ _ ___ J 
4.360 I 

4.700r--- j 
~~~541- - -j 
o~~- -- - --J - j 

4.7QQ[ - -J.. i 
4.680 
~ -

~830 -I ; 
4.760 1 i 
4~670 _ - --1 f 
4.728 1 I 

-0.071 -t 
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Appendix 2.5 : Mineral Composition of Scottish slate samples as calculated from XRF data 
-- ~- .- - , , -- -"- r- -- - - --. -- , 

Ballachulish Slate I· 

EastLarocb Standard 
EL3 
EL4 
EL6 
EL7 

---------~ 
EL9 
EL10 

WestLUOCh-:=-[WL1 
Wl3 
WL5 

Kbartou.m -------

Used slate 

K1 
K2 
K3 
BX-1 
Mean 
SiDev. 

I Easdale Slate 

Sell ~ BaJvfcar--=-_- ----flBT -
5B2 
583 
5B4 ------

Total!1 Quartz ythi!e'!!!~i Chlorite; Py~~l AI.,jt~1 
9~.f), 34.6 .. ~!>'~j 21.?j _~.?; 4.5i 
~9·?1!7.2 ~j' 1~.6i ~~; !0.1

1 99~1. 23.8 i~.41 13.1: 5( 4:6\ 
100.5 . 40 _____ 27.4 t?-?J. ___ §.·1. . .1"!t 

!.02 _ 28 _______ 32:§ _. 22.1 i ____ 1.4 . __ .!>! 
99.1 __ 36.2 ___ 29.4 ._22.6 . ____ .1:7 _ 8.8

t 
99.6 30.3 29.8 24.9 9.6 4.91 
~.- -. . -- --- --.- ... - .. - . --I 
99.6 34.6 26.3 21.1 2.71 4.5, 

:::: ~~ ~:! -~-~-~ - ~;:: -- --- ~:~ _~ __ 1~~ 
99.§ ___ . 32.9_ .. _. 33.9 25.4. 2.5_ 2.51 
97.3 22.4 40.4 19.3 3.6 6.3 
99.5 32.6 --- ~ 12.1 ---4.1 5.6 

1 00.1 -- - 35------ 37 11.4 5.3 - - -. -S 
99.2 - - 29.2 --. - 38.5 -18.9 3.4 --7 
99.6 31 33.6 19.6 3.9---' 5.8 

1.0 6.5 6.3 4.3 2.3- -. - 2.4 

Total Quartz White mica 
--=-+-_._- -- -~--.-

~hlorite ___ Pyrite __ Albite 
. __ __ 2_1,_B I-- 1.6 ___ B._4 

20.0 O.B B.9 
99.1 32.7 32.7 - _. 

93.1 33.9 28.0 
100.2 24.3 2Z4 1Z 1 0.5 11.4 

1B.9 0.7 16.4 96.7 --U.B--- 2B.9 
. -.-.--~--------+----

S8S f 98.7 17.9 4S.4 12.7 ===1.7 13.7 
S87 _ _ _ _ 98.9 38.2 ___ 33.2 _._ 10.2 3.7 ____ 12 . .!t_ 
S8-6 i ... 97.3 24.3 _____ 44.0 ___ 9.9 ___ 2.8 ____ lS.8} 
SBB I 98.9 23.3 41.3 10.4 S.O 13.91 

Easdalelsl~d __ JEE2 -98.8 -~ ____ - 21.1 -~---~35.~- 9.6 -.::.= 6.9 __ -_-_--10.~1 

Breine Phon 

EE3 j 101.0 20.5 40.4
j 

4.7 8.9 9.0! 
l!!,!d~ate _____ EX-l _ .j02.1 ___ 30.8 -_~-=~- 39]- _5.7 __ 8.2 -.=_~~12.~ 

-------.. ~;!n ___ . ij:~::g =~-- i;:; --: - ::;J- 1~:~ --- 1~::._ -_--~~:~j 
.. ____ ~ STDev ______ 2.2 _ 6_6 __ ~ ____ 2.8 2.6 . __ 2.2) 

58-1-58-4, Pyrite based on sulphur XRF, chlorite based on residual Fe. I 
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Apatite, Dolomite: 
0.2 6.S: 
0.1' 0' 
0.1 0: 

0.1, Q; 
0.2 0: 

j --I 

0.2,1 0.1! 

0.1; jJ.~II 0.2i ~.§ 
0.1 i 0 
. -\ -
9'~1 .... -Q 
0.1 j _ 0.1 .. 
0.1\ 0 
0.21 01 

... -I -I 
0.1] .. Qi 
O·~I 2·1! 
0.1! 1 i . 
6/·_ ~:~l 
l -- --- ._- -

Apatite! Dolomite .- - ··1-· --.--.----
0.41 1.5 ._ .. l __ _ 

0.3 1 1.2 
1.3 1B.2 

0.5 13.31 
i 0.4) 

0.4; 
0.3( 
0.4 
0.3 
0.3 
0.2 
0.5 
0.3 
0.1 

j 

I 
!:~ 
0.01 

-- -I 
Q:~f 
~. !L 
7.61 
8.3, 

-- --- i 

3.1 \ 
Q.71 
3.1 
3.21 
--I 

Clay ~ Unallocated 
3.8: 0.7 
7.9! 
9.11 

61 
?:~l 

0.4; 
0.6 

-0.61 
-21 

1.4. 
t - --t 

0' 
3.a! 
2.7 
2.1 

-0.1 i 
0.6

1 
0.7: 

2 
5.1 
5.9 
6.3 
1.8 
4.3 

3 

1/ 
0.9' ---f 
2.91 
0.3, - t 

-0.51 
0.91 
- ·-1 
().51 
1_1\ 

~- -- t ..... l 
ClaYi Unallocated 
--0.01-0:71 
- - -\-- \ 
..l'.QL 6.8: 
0.0) -0.31 
- --1--' 
0.0 1 3.2i 

I I 
- j j 

1.11 -0.1: 

. L1~ -§·~i 
0.0: 2.1) 
-·-1 - - , 

1.1; 0.11 
6.91 0.01 

- , t 

8.9', -2.6 
- - ~ -- t 

2.3' -3.2, " __ I 

0.0' -5.8 
2:7i -1.1 
3.3' 2.6 
-----+ -

f 
100.31 
99.61 
99.7[ 
99.91 
.. ---j 

100 
100.4 
99.5 

100.3 
100.4 
loo.S 
100.4 
100.1 
99.8 
99.7 

100.1 
100.1 

0.3 

Ilmenite \ 
0.5! 
0.8! 
0.7: 

-q'~1 
Q.7

1 

~:~i 
0.5 
0.6 
0.7 
0.6 
0.8 
- - "- ~ 

0.71 
0.71 -.-- I 
0.7 
0.6 
0.7 

. , . _ ~~J~ [nI~~~ I 
_ 99.9 i-. _ Q.~ I 

. 100.0~ _ D:41 
99.9 0.5: --- , 

i 

_-98.6r. _()._§) 
99~ Q.§j 
99.5 _. . Q:~i 

9.9.0.~~ ().~.; 
98.1!j 0.5i 

~~~f ().~,.I 
98.9 0.7: 

. _~~ {).8: 
98.9: 0.6 -4T -- .. , 
_.0.41 _ _°.1

1 

Volatiles 
0.2 

-0.3 
-0.1 
-1.2 
-2.7 
1.1 
1.7 
0.2 
0.1 
0.5 
0.4 
2.2 

-0.3 
-1.1 
0.3 
0.1 
0.0 

Volatiles 
-2.2 
3.1 
2.5 
-

3.B 

-0.7 
0.1 
1.7 

-0.4 
-0.6 
-3.2 
-4.0 
-4.5 
-1.4 
2.2 
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Seil 
I
i T~lj Q~rtz; White RI;~i CI1I~~~j Py!ite

j 
Albite [ Apatite Dolomite 

0.4' 1.5' ~1 98.? 33.3; 32.71 1~.3i 2.6i 8.4; 

5 .. 82 _ 9~:~~~1 28.01 19.~.IE·~1 ~.9! 
5f!3 90.4 ~8.0 J 27.4 I _~.~) 0.5 i 11.4: 

::.. ofcNorite :=-.On:.~~~A~~L':f_ :~i 
[LTf_ - __ 8?:!! _~_~?9 _--.-_ 30.7_ ~ 12.1 ___ 3.81_-_-1!:..4 
lT2 99.9 21.0 37.2 7.1 7.8, 9.7 
---- --~-...:.... - - "-- ·_-t ----

_____ lT3 ___ f- _~ ____ ~ 36.4 10.7 __ ...§.~. ___ _ Z.Q. 
POI'tMary LPl __ ___ 95.5 __ ~ ___ u_ 33.7 20.6 ___ ..l:§ _ __ 10~ 
&Rubbana . __ LP3 ____ _ 96.6 25.6 _____ 31.6 _ 19.0 _-,?:! __ ".6 
~~~~e~__ __ LP5 _ _ 99.3 _ _ 19.1 ______ 41.3 15.6 ___ ~4 ____ 13.5> __ 

____ lP6 _________ 9_8._81---- __ ~!:! ____ ... 37.0 8.6 __ . .§:!! ____ 12.0 
CuIH I lCl 99.4 24.4 41.5 6.6 5.9 12.7 

Balvicar 

rtl¥roa~I 
~----

_ ________ LC2---- -- 98.3 . .lQ:! 38.0 11.0 5.5:~~~~ __ 
LC-3 98.5 27.7 39.0 10.9 5.7 11.4 

Tirna-;------ LT5______ 100.4 _~ 37.5 8.6 _~-_ 6.5 --~-,7;Q 
Black Mill ~ LBl 95.4 _~ ________ 32.1 13.0 ______ g.~~ __ ! 2.4 

J---______ ---1=l~B2=__ 97.8 25.4 29.7 3.0 5.8 4.6: 
LB3 97.6 20.1 37.0 13.2 ----r.1 - -- 15 .• ~-

________ Mean 96.7 25.5 35.9 11.4 --..:.. 5.51 __ ~J1.4 
St Dev 3.9 3.6 3.7 4.8 1.6 3.1 ---_. - ---- - ~ 

,- ···!:~n~ ~ ::~ .~~--~:;-:::; ---l~l_l&~1 
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0.3, 1.2 
1.3 1 18.2' 

- , 
0.51 

, 
i 

APatitei - ._-- j 

.!).g( 
0.41 
- -j 

0.2 
0.4 
0.3 
0.3 

13.3; 

I 
Dolomite! - -- t 

1.6i 
- - 1 

7.0, 
1.71 

.j 

1.4J 

- ~~I 
- ~----"- -

0.01 0.4 
0.4 ~~I 
04t. 0.5, 

Ur .···J~I 
_ 0.5

t
' _ . _ 28'~1' 

0.4 2.8 
o.4f· 4.51 -- . - --I 
~~~I- -- . ~~~I 
0.3

r 

4'!j' 
0.4 4.7 - - - .. ! 

I 

Clay' Unallocated 
0.0 0.6 98.8 
0.0: 7.1 i 99.9 

I ' 0.0 9.6 100.0 
o.o! 10.5~ 

! 
I 

99.9i 

. I , I I 

c!~luna"oca~edj j 
o.Oj 11'~f ~9'§1 
9'~i -O.!}! 99'01 
0.0' 10.6 99.4 
-_.. -- - --
0.0 4.2 99.7 
---- ---~ ----
0.0 2.5 99.1 
--- - ~---

3.5 0.0 99.3 
-._- ~-~ - ----
3.8

rl 

0.5 99.3 ._--- -- -"---

3.3 -0.1 99.3 

ii - .H ··i:~ 
... ~~II i!-~:;j 
1.7 1.5 99.1 
-~-- - - ----~.JJ .~~ -99.3 
2.6 4.0 0.2 

-- - + 
2.51 0.41 99.41 
-s.21 Q.7

1
1 -~9:1i 

i I 

Ilmenite 
0.5 
0.6 
0.4 
0.5 

j 

i 
I~menitel 

Q.6/ 

~::II 
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Dunkeld Total, Quartz White mica Chlorite Haematite Albite Apatite 
Bimam iO~19fl.6j 2_8.6, ~~~O: 11.8: 5.3 4.1 0.4 

loB2 100.6' 27.1' 46.0 1 10.4~ 5.9 10.6: 0.4 
1083 99.31

1 

22.51 54.71 6.81 7.9 6.9' 0.4 
Newtyle JQ~1 . 99.~.- ?4·~1 ~:?l fi.4/- . 2.7; 13.9: 0.3: 

JON..? 98:fl 2~.51 1~'~i ~~.li §.3: 11.~; 0.6 
~~!9J.~ .. ~~j ?S.7

f 

13,4, 3.9, 6.0, 0,6 
. ON4 . . 98.~ ...22.~ 44.3 _ !3.51 .. . _~.?; g.§1 O.?; 

,Y .... "!~ cQl<o'- 97.6 23·QI 37.3 13.'j _ -".n: 1~"" Q.4j 
._. ___ .. Mean __ .... _.99.2 . 24.0. { 46.6 ... _12.4 __ ._ ... __ ~~i 1. 0.1 f' . ~~I 

STDe~ _ _1.1 ~.J _1':!~. -3.0
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._-~~__ -~ _. ~= ~~~_~.:~~ _____ ._--.--I~ .. _~_.-.-~- --~~ . j _ __. __ . ~:_ i 
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~--. ..------- ----- _. .. ----:::-=-. 
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f- ._._. Max, _~=:-___ 28.4 _'~=~ 50.9 17.8..1.~ . 10.4 -- - - 0.5 
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Appendix 2.6 Attenuation Coefficients of minerals commonly found in slate 

Haematite Fe 0 Total Calcite Ca C 0 Total 
Formula 2.00 3.00 Formula 1 3 
Alomic WI 55.85 16.0 AlomicWI 40 12 16 
Molecular Wt 111.70 48.00 159.70 Molecular WI 40 12 48 100 

J.L 56.2 17.4 J.L 257 6.68 17.4 
Illw; 62n.54 835.20 7112.74 Il;w; 10280 80.16 835.2 11195 

J.L 44.54 J.L 112 

Quartz Si 0 Total Dolomite ca Mg C 0 Total 
Formula 1.00 2.00 Formula 1 1 2 6 
Atomic wt 28.1 16.0 AtomicWt 40 24 12 16 
Molecular Wt 28.10 32.00 SO.10 Molecular wI 40 24 24 96 184 

J.L 100.4 17.4 J.L 257 63.5 6.68 17.4 
JUWI 2821.24 556.80 3378.04 JUWi 10280 1524 160.32 1670.4 13635 

J.L 56.21 J.L 74.1 

Albite Na AI Si 0 Total Magnesite Ca Mg ·C 0 Total 
Formula 1.00 1.00 3.00 8.00 Formula 1 1 3 
Atomicwt 23.0 27.0 28.1 16.0 AlomicWt 40 24 12 16 
Molecular WI 23.00 27.00 84.30 128.00 262.30 Molecular WI 0 24 12 48 84 

J.L 47.1 n.5 100.4 17.4 J.L 257 63.5 6.68 17.4 
l1;w; 1083.30 2092.50 8463.72 2227.20 13866.72 Il;w; 0 1524 80.16 835.2 2439 

J.L 52.87 J.L 29.0 

Orthoclase K AI Si 0 Total Siderite Fe Mg C 0 Total 
Formula 1.00 1.00 3.00 8.00 Formula 1 0 1 3 
Atomic WI 39.1 27.0 28.1 16.0 AtomicWt 55.8 24 12 16 
Molecular WI 39.10 27.00 84.30 128.00 278.40 Molecular wi 55.8 0 12 48 115.8 

11 222 n.5 100.4 17.4 m 56.2 63.5 6.68 17.4 
lliWi 8680.20 2092.50 8463.72 2227.20 21463.62 lliWi 3135.96 0 80.16 835.2 4051 

11 n.l0 J.L 35.0 

Pyrite Fe S Total 
Formula 1 2 
AtomicWt 55.8 32 
Molecular wI 55.8 64 119.8 

f.L 56.2 141 

lliWi 3135.96 9024 12160 

f.L 101.5 

Appendix 2.6 260 



Appendix 3.1a Detennination of the relative crystaUinity based on XRD intensitites 
iT··· 1- _. l' ·-r· -, 

MiMnII 

A.18 

'correctiool rKtOn 
~;~~~ 
Ane...aio" coefIkieoII 
C~lidi.o--.l.:ct,,; , 

C~y !S'!PiI 
WCB-I 
WICB-2 
wlC!-~ 
W/CB-4 
WICB-S 
M~ 
StDev 

Pen yr Orsedd 

WIPO-I 
WIPO-5 
WIPO-6 
'#1[>0-7 
WIPO-8 
Wl]'()-9 
W/PO-IO 

WiPO- 11 
Mean 
S'·Dev 

W/F-I 

W /F-I average values 

W/F-4 
W/F-9 
W/F-IO 
W/F-II 
W/F-12 
W/F-15 
W/F-16 
W/F-2 
W/F·5 
Mean 

Appendix 3.1 a 

'm:t .. ~I- 71 ~1=~=:;'Iii.: 
0:71 

iij1' 
9'iil 

o 
_~L" 

113 
97 

102 
119 

179 
142 
1-26 

72-
84 
91 
67 

147 

155 
170 
164 
140 
Hit 

91? 
1?;! 
147 
196 
130 
148 
91 

158 
93 

0.5 
45:14 
jO:2j 

1 
56.21 
56.21 52.9 

1 ~f .~ 1~ 
71 ~l 

1 

21 
23 

23 

30 
37 
42 
31 

~ l!J 

~·~l~~ 

-

t 
162 

I 
55!Haematite 

~~ :c; 1~ =:~: 
132 ~ 561 

381 110 10i1 59 137 67 12·1 
13.1 -44 -niHaematite 

211 1351 ~ 84 

I I ,_. --- -- 1 

Most of the followi~ have a trace of anatase at 29.84-29.91 . . ~~I ·1~:r· .- !_.- .-!~ - _. ' , . 
.. _-1 ,--, .. 
72 881 1 46 
50 82! I 35 

= 1:1 ! : 
~ l~j J~-
~! i~j 1_ 36 
~3 .1111 + 62 

~~I -~!I I ~! 
201 81' 42 

1 29 

'

134.31 
.36.10 
38.07 

1112 

1 
I 

I 
I 

I 
I 
I 
I 
i 
I 

I­
I 

1 conec:ted int~itles 
\ While Mica ,Chlorite : Quartz ; Feldspar i Haematite I Carbon-

I late 

i j i , j i 
II! : i 1 

t \ j 1 I· 

1
. . I ' 1 L i 

weighting given to the different minera, Is in determining the durability 

I - ! I _. -i· . .... iO~5 ·;3 . 11 . ~·f 1 .. . [0 

t

' ' l 
, ' 

133 48[ 94; 48' 0 

184 951 91! 56 01 i5.fl 72 1151 4() Q 
166 92; 99 29 0 
193 1 i41 831 51 0: 

I I 1 

I ' : I 
291' oi 162: 721 44 

231 1 0 175! 381 84 

195/' ot 131 i 48
1' 

63
1 

117 01 1321 53 44, 

1,.361 61: 110 9i! 471 
148 0; 137 ~I 961 
109 0: 131, 411 61

1 
239 341 135: 771 67, 

, . 1 I 

i 
255 1 

i56
1 

--I 
200: 
239 1 

318\ 
--- t 
211' _. -) 
240, 
148; 
257 
151, 

104 
87: 
85 
92: 

101 
111 
101 
95' 
95 
32 

86, 
100; 
102 
83; 

121, 
104 
111' 

91 
89 
81 

i 
1 

I 

1 , 
39, 

381 
53\ 
481 
0; 

34' 
58: 
48[ 
42' 

40, 

0' , 
0: 
0, 

0' 0: 
0; 
0; 
ot 
0' 
o 

1 Crystal­

Il
inity 

1 

I 

o 
o 
o 
o 
o 

, 

i 
! 
I 

0 1 

o! 
O! 
0\ 
0 1 

01 
0' 

1 

OJ 

o 
o 
o 
o 
o 
0' 
o 
OJ 
0' 
o 

Durability 

I 
323

1 

426 
384 
385 

441\' 
392 

46 

I 
5691 
5271 
437\ 
346: 
451 1 

444
1 

342 1 

551 ! 
458

1 
86: 

484' 
380' 

440i 
461, 
540, 
460! 
511, 
3821 
483: 

304 
444 

487 
560 
-si8 
5~ 
550 
543 
34 

893 
877 
699 
610 
641 
718 
604 
804 
731 
115 

603 
537 
601 
581 
732 
612 
682 
516 
613 
450 
593 

261 



I 
Conected intensities 

Minenl 
t - ~ ~ ~ , IK= Mica ... rich i Chlorite 

~~~--1D.9 
Quartz r~ .... : to_--=- I 'Haematile : /,_' _ _ ,c.tIonate 29 

;34.31 
:White Mica Chlorite Quartz : Feldspar Haematite carbOn- ,Crystal­

'inity 
Anp~ '1 

t~-- 1ca1c118 j •. !!1 
l~oCl7 

I-

i 
j 

late , 

Corredioa r.ctors 
!.-owci!iinictiO.l.... ~.t~- 0.71 
A ........ ceefIkiaII 14.81 

r~ '--- --. -- -=- 91.21r-~ 

0_5 
eX .. 

~90.2I 

~!~43~· ~~Ile f
~~ . 38.8~ 

-i==E.f -~f~ 
i4Mr~j· 

1 
56.21 
58.211. 52.9 

i __ ~ _ .. '.J'!I~ 9.""";'~!I the d~ m~. Is ~1rI. ~~Injl the du~1I1ty 
.!!!.__ 1_ ,0.5 ;3 ,1 _ . ~1iO 

. : : . I 
F--~ .--- -1 .-~ I : j. l I 

----~r 135! 01 761 - 431 sst 

_I d 12'j "j ...... ~.~ 01 

-1.---83 

·---E---i: 
Wife-I 

I~~ . m;;r=~·J :' .-t 
- ----0-. ___ _ .. __ _ __ ~~~-=f . ~I '~I '~Ji gl 

ElK-I 121 34 167 113 calcite 134 196 ~~! 1671' 106 0 

E~ ......._ ~1- ··~l-r i~ ... - . =: E: :E~j i:_ ~.-j: ~ 
ElEW-\ 57 _. ~~ ~ ___ ~ _~I-_ caJcite 165 93 !!Sf 111/ 96 () 

I~:~~ __ . :~~~~ - 46=:~ -.-~--;I-. :- :;: ~: ~j l~.Jll Hj ~; ~.I 
ElEW-4 _ _ ____ _ 39 __ ~ 104 99 Calcite _~ 209 _~ 9()/ _ 1Q~ 93 Of 

ElBS-\ 
ElBS-2 
ElBS-3----

ElBS-4 

.----- ---=f-- - . -. -.-== I 1 -- 1 - i 

-- -I-----.......Q ----- --~f-.-- -~I--. : g:: 2~-- -~ ~~~ 1~1--- -: gl 
68 __ ~ __ 223 88 Calcite. ____ 106 i~10 1091 223 1 

_____ 83 Qj 

~~~~~ .. -.:.~~_ 187 102 Calcite. ____ 210 __ 1~·· -95 Hl71 - ~O: 

i=~~~_-_ _-:-=_~'::: ::'---.-~_ :~u=,~ :: ;:j~~l~ :1 
IE/W-I-______ -~---- 35 .--- --=-_~~ 94 45 Calcite. _=-~_ 86--_.:.--~ ___ i7l 1i?1~~I---42j 0; 

~j~--. 
1IB-2 

11K-I 
~~-L 
11K-4 

Appendix 3.1 a 

-.----/--- - --- - t-- - - - -- ------ - - .J j j -I I 
I I I I ' 

-~-~f--=-p I@~_-. 
215 - -"------

58 --~~.r_:=_~~1N .~=~ 
66 

123 
135 

122 63 - - -- - Calcite-

142 80 Calci1e 

-----..illt. 
135 

26 123 111 Calcite 151 
-.~ ... =1=--- _L.~__~_ 
~ ~~- :~ ~. ~~: --- ~: -----g::::. --~-=-~ ~~~-:.. 

-3(4) 198) 12J1 ~ 591 
~!li 217i 142]7!;j 

I ' I ! 
941 421 1231 104 i 

- 110
j 001 114;7~ 

. - 1 oiL W 12St .. ~ -801-

01 

61 
1 

0: 
6; 
or 

i 

i 

,I 
il 

267 
233 
229 
221 

329 
339 
~~2i 
4).61 

i 
~111 
165! 
--~j 

460' ~- I 
418! 

I 
2191 
2631 

.~ I 
I 

0' 
~ ~ I 

171; 

301 
269; 

301 1 

269: 
_~~ I 
201, 

I 

; Durability 

I 
711 

\ 

310 1 

568 
512 
520 
533 

791 
767 
694 
614 
717 
717 
684 

80 

462 

686 
691 
554 
644 

831 
889 
762 
670 

L __ ?~ 
566 
698 

_85~1 . 565 

ffil_ .- .--~~ 
~j .-~~ 

_905r -_-_813 

~j ::t 
:J.-=~-:; 
455' 790 
-4~!~· .~~!; 

! 

983
1 

__ . .I 828 
1052) 959 

664' 588 

~ 559 
587; 601 

262 



Mi ..... 

A.p~ 

Correction flOdors 

~'! di .... '!C1totI ~ 
A-ao.~ 
CfJI"I"eCfiM ~ 

~ 
FIN-~_ 

FIG-J 
FIG-2 

FIF-I 
FIF-L 

SIC-I 
SiC:2 

CIC-I 

UN·I 

S/A-I 

CS 7 bulk 

<:;:C34 ,,-u1" 

51 

Appendix 3.1a 

'Corrected Intensities 
• - --' • I '" t 
I~~ IIIc:!t iChIorite ; Quartz :F~ ; :~ite t Carbonate 26 

:34.31 r--
36.10 

; White Mica Chlorite Quartz 'Feldspar . Haematite . Carbon- ,Crystal­
.inlly 

'Durability 

I'Krich iMarich 1 I , I '~,calcite 

I -10~ -"~I 'I .... !sUjti j t- ~j=", 
0.71 0.51 ,: ,i I 1 I -~J 41.5f!3,r ~ 

~ :~= __ :11-~~ = j -~jC#oO 
"~-~r~~~ -~_~ __ 1~ _ 

139 
95 

~~:~l'~ 
n 

115 

50 
116 

63 

93 o 81 

443 37 108 

46 

49 

60 
67 

49 
51 

85 
57 

62 

51 

60 

j . 
I 
CaI~ 

: ate 

j38.j)7 

). ____ '~~ .. _ JlI.I~.~o~dltf8rentm~ .. "lf!determ. __ .:m_ingthed~~.bility 
p1L _-fL- 10.53 11 _ _p ;0 
1 I 240

' 
137 1331 83' 0, 

I '-'j -991 69: 931 931 01 
r --I' - .! . I - t r 

_- ~- --J:- _ ~~: ~~~i 1~~i 1~ ~i 
-+ :1 ::1 ,1.1 .~ gl 

?I>S.II 1591 ~! 1.~ oj 
:390 1141 116 ~ 0, 

148/
1 

51! 631 saT 0 

1~, 01 81f ~~ 0 

223 

719 

----~----- - -------
-r ---

01 250 90 0/ 
59/ 1~1 _~! 01 

01 '" t .. 1 Oji 

197 -311i.8bii 
285 204 

250 
22.4 
163 

158 

96 
7 

134 
12 

>---------

- ----

'1--­
+---

320 

229 

328! 1~4 --~ 0i 

i t i 
-j - - - r ' 

463 

o[ 5931 790 
0; 3541 506 

i - I 
oi 662 [ 850 

0/ 
-"1 

596 464j 

I 
;~~I °1 634 

;1 
895 

I 

-
602 
759 

I 681 
444j 

421 

0
1 3 442 

oj 1130 

OJ 1160 

of 
i 

--~!:i 844 

01 i101 
I 
I 

263 



Apeendix 3.1h Intensities of XRD peaks and crystallinity measurements 
! . . . ! - - T 

I I , ' Corrected Intensities 
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~pp~!~i! ~~.~ __ _!fu!l_~idth at Half ~agni!~~~.l!!ea~~relllen~ 
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EL-6 0.1421 0.165 0.159, 0.180 
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0.167 0.172 0.133 
- -- -------------------------------- ._- -- ----~---- -

0.127 0.136 0.13 - -- --------.--. ------------------------ 0.133
1
, o:1st--- -,r.il 

___ . ______________________________ ~ ____________ ~ ... ___ ·····-----------0· _ _ ______ ... _ 

0.166, 0.172 0.146 

Appendix 3.2 

B4-w 
---

Mean 
StDev 
CofV 

AJ:'!t~'-°YJe_ 
AB-1 
AB-3 
AB-4 
AB-5 
AB-6 

----- ----- - ------
0.141! 0.161 0.17 

-- - -... - ---.. ---------.-------------~-.--- ... ----------.- - - - ----

0.166i 0.182' 0.146 
------ --.--~--~---~--~-----~-----'------'----.-.-- -._--- -_._-. - --~-~-----

. 0.070 i 0.068' 0.020 
----~-~-----------------~~- ------~-------- -- -------=-:.. 

0.42' 0.38 0.13 

---------~----------------------- ----- --------- -- ----- ----

0.127 0.109: 0.19, 0.121 
--------- ---~-- -

0.12 0.139, 0.159, 0.131 
--------_.-_._-..- ---- - "-----_.-

0.101 0.12 0.15 0.099 
-----~-- ----------------- -_.----_. __ ::-=.. 

0.129. 0.138: 0.159 0.136 
- -----~-------- --------~-------~---------- ---- -----~--'-

0.13ei 0.141 0.16' 0.157 
Mean ____ -_-~-_-p=-~ _ _=_----- 0.123i 0.1291 0.1641 0.129 
St Dev_______ 0.0131 0.014! 0.0151 0.021 
C of V~ __ ~~_ ___ 0.111 0.111 0.091_~§ 

i 
---- --- --- -----------------~------'----------+l------'------

Dunkeld ' 
OEEf--=~~_~~ __ :~_-_----_+_--.~~~·~~~~0;.2;1;;5+1r-----=--0~.-:-19=-=2:t' __ -=0:.:....1:..::8:...:.4.1--i' ___ ...:::0~.1..:..i~5-
OB-2 ' 0.1521 0.164 0.1661 0.185 
DB~3- ----------;----0=-=.-=-=20=-==6+j 1---0=-.-=--=16:--::8+-----=0.:..:.16::.::4:.t-, 1--~0~.1:'::6~7 
ON-1-- ---------'-----~0=.1::...::6+1----0.::..:. . .:..:.17::...::3+--------=-0:..:. . .::..17.:..;.' 1--~0~.1:.::7~4 

- -- -- -- - --------------~------+-----__::_:_=_::_l--------.::.~+-------=-:...:...:....~ 

DN-2 0.1361 0.1321 0.162\ 0.163 
-- - - -----------------------=---'------~---~=-::-=.:...----

g~~}~~ __ -=_==__=___---_-===_====g~:1.::.::1.::.::;~!:11 =====g=: ~:~-:~:II =====~~: ~~~:"""+ i' =-=_...:::~~: ~.::.~~~ 
Mean 0.163, 0.157 i, 0.162\ 0.164 
slCi-ev-----------,----0::.: . ..:..:03::..::4+-------0= . ..:..:02:.:.3+i ---=':0.:":'0=14=+i ---~0::'.0:"::2~0 
---~----- --------------=-=--=-+-----~=+-------=-=-=-=--~-~~~ 

C of V 0.211 0.15i 0.091 0.12 
---- -- ----------~-----------+-----+-----'--'~-----=.:...::..=J 
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FWHM 
Peak2e 
Macduff 
MF-1 
MF-2 
MF-3 
MF-5 
MF-9 
MF-10 
MF-6 
MF-7 
MF-13 
MF-12 

------ .. --~----
Chlorite! White mica~ 

----.-.~-------------.~--- -

-7 -14, -10 
Quartz 

24.26 

--- --

0.201' 0.149 0.182 0.204 
-- ---- ---- ------ ----------~------------------- - -- ----

0.08~· _~_ 0.15 ______ i>:182 _ ____ OJ_I? 
0.155 0.212' 0.215 0.225 

-- - ---- ------

0.178: 0.194: 0.216 0.162 
--.. - ---.---~----

0.187~ 0.1551 0.168L_ ___..QJ_~3 
0.175 ', 0.197 ' 0.227 0.168 ------- ----~---

___________ ~ ___ n 0.134 1 0.176l 0.213; ______ 0.19_1.. 
0.1381 0.1551 0.169\ ____ 0.~~ 
0.174: 0.155~ 0.184 0.153 

0.141 0.189! 0.153 
___ 0 • __ ~ __ -_~-.. ____ ~_-___ ~ 
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MH-1 
MH-2 
MC-1 
MC-2 
MC-3 
MH-3 
MK-2 
MX-2 
MX-3 
MT-1 
MT-2 
MT-5 

0.216 0.236 0.211 
---"-------- - --------

0.149: 0.182', 0.155 
0.176: 0.129 0.176 0.119 

--~------ -----~--- -- - - ----------

0.129 ' 0.143 0.167 0.163 
- - - .- --------

0.231 0.163; 0.216 0.18 
------ - --- -------------------- --------------- - ------ -------'-

0.157' 0.182! 0.185: 0.2 
--~--------------- ------- --- ---- --------

- --_-~~_-_=---- ~:~~~l ~:~!~i ~:~~~, _n~ O~~~ 
._ _______ 0.1461 0.161 ___ J!.182! _____ Q:~58 

__________________ 0.1691___ 0.158\ 0.166! ___ 0.153 
0.152, 0.161 0.196 ', 0.172 

-~---------

0.185
1 

0.166! 0.229: 0.193 
Mean ____ nu_ 0.1601 0.1631 0.191: 0.169 
S~D_~_Y_n _n______ 0.031! 0.0161 0.0281 0.025 
C of V___ __ __________ 0.201 0.101 0.141 0.15 

----------------~-~~--+------+~---~---~ 

1 - ---- -----~-----__t_----+_----+-----____I 
i 
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Appendix 4.1 

~ppendix 4.1 Fabric and minimum commercial thickness at non-optimum conditions 
~'!1plej~~.. . .l~'~anmen! i~ _ --- ~_ s~ -=-~.~_,~~!oli~!, :t!~l1lo...9.eneity . FIIt)r~c ;Eqtl'l:_ ,Thickness 

I 1~t % j.StraJs!'~ )9~nti!,uityfl i F ... b.!ic /3 ,13 Points \ !g:.~5:(mm) 
t - 5 i 5{)

j
l _ 1) _ _____ 1 ill -0.c)~~3l 

-- - '- -----+--., Theor .. tLcal 1. 

CUmbrian '., i 
IEIK-i ---- - 62.8 9:8t ·-1 - -~-o! Or - - 0: 2!10.7 

EIK-3 _~_- -- --~~:! - __ ~ . --~-l~~--~=~r .9[ 1: ~I _~.~j_ :! -- -~~ ~~ ----- ~ -o.~ - ~( gi~j 19t 
i=' ~_~-~ =~-=~-~ 5.8 0 _____ -0 ___ -l~ -__ 0/,1,1:9" 
-W.-/C-S--"---- ---13 - -----60-----1.5-- --2 --------- 2 - ---- - 3 1 

w\CS-4 _ =~==_:)o - .22 1 _Q __ ____ _ -1 _____ 1) 
W\CS-5 17 30 2 1 1.5 2, 
~WIP-l.-___ ~= 18 ~8 ---- 1 -===--== -0 - ______ o= __ =-~_~- ._ 1) 
~~ _________ 10 46 2 _____ 2 .. _~_ 2.5 ________ £.?! 
Wn=-9 - ~: -- .- ~------ ~ ~ --- ~ ____ 2.~ -~------~·~I 
W/F-16 --4-0 25 1 0 1 ----- -1/ 
,WIPO-3 23.3 21 1.5 1.5 1.3 1 
WIP06-- 18 40 2 -------- 2 ---- 2 --- ----1 1 

---'-1-- -- --- --.---- - - -\ 
,WIPO-1~ 8 ___ 68 2 2 3 3i 
WrrC-1 40 11 0.5 ____ ~ 0 

-- -01 
-j 

i 

:~. J--~--: ~- ~-- -: ~-=~: ~r 
;;~J-~~~1m: E ~ . _ j~-~:~ ____ . !! 

15 4.3 
- -'~ 

7 7.7 - -- ----
12 5.7 

__ I ____ Tzl_ 
17 3.8 _ __ _ _ _ _ ___ --L __ 

15 4.3 
7 8.0 
5 ---8.71--

- ----_.-----j-

9 6.8 
12 
21 

3 

-~[~~ ~ -

2.9 
- ----.~ ,---

10.6 
--~-----

-- -- ----l- -

--1~==--=~:-.4.3f=-- -
16 4.2 -- .- --_.-

-'§f __ 7:?; 
81 7.41 

-~l- 6~ti 

Actual 

8 
9 

14 
9.6 
12 

5 
8 
5 
7 
4 
4 

8 

5 

4 
-
4 
8 
8 
-

8 
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Appendix 4.1 

!;amp~ : Space AIi9!'~t. ~_haee i~i~!olit~on , ti0mogeneity 
, 15 ~ __I: ~tra~ht12 i ~o~ti"",i~~_~ ~~bric 13 " 13 

5 50 l' 1: 11 - -_. ,j - - - ,--.. , , 
- ; 
Ballachulish 
EL~ I --- -I 
EL-4. i 
EL-5 ' 
EL-6 
EL-7 
EL-10 
WL-1 
WL-3 
WL-5 
K-1 
K-3 ---""'- --. 

BX-1 

:~H ........ :L- :t 
.. ~j-~ ~~t-~ --.--- : . ---

-_._---
20.4 55 --- --- ----~-

21 2' ------ -I 
- -.~ --- -------- -II 

1.5 2.5 ._---- -- -- -. 

2 21 
2 ------'2.5 
2 1 

--=-t-

liL·.····I<·.-~4---1c ...• ~.} 
E"'=J H 

•• 2~~r~--!F-"-ir 
- ---. _.+--

2 1 ---=+-_. -
_I 0 0 

LC-l ----<-

~g~~ =--+-- -2:: 40 
30 LT.,.[· .. __ 

LT-2 ---.- --- - - . 

LT-3 ------- "--

LT-5 

BB-1 66 31 
_ .. 

-~-

5~i. 
30.2 25 

27 35 

5B-5 25 56 

1 
____ - If------ O.§...._ ---1.;/ .... -~ 

------
~-.---- --

1.5 
1.5 

---01 

1.5 o 
2.5 

--~-:-II----- 1 
? 

n 
A 1-"'2 

-~·.:..::·-+I- ----.? 
-=if=-. - 1~ 

--------
1 

o.g} ---=·~-~I-----~ 
---.---

I 

---2+-- _I--~{ -
;.:: 

1 ' 

2 
- I 

1 i 

1 
2.5 
1.5 

2 
2 
o 
2 

2 

1.
5

1 

11 
11 
21 
2 
o 

! 

"-21 . 

l·§l- . 
I 01 

-1 
1.51 , 

i 
2 

Fabric Eqtn Thickness 
Points: 12.645 (mm) 

- . -0.0693 1-

Theoretical 

11: 
! 

121 -, 
I 

1-2 1 

14 
11 

12 
10 
7 --.-

15 

59 . ) 

5.61 

I 
5.6j 
4.91 

~~1 
5.4 
6.4 
7.6 
4.4 

,__ _ .-. I. 

Actual 

-"--

9 

9 
10 

ll· ;": 

1Q . §'.5j' 7, 7.5 9 

~[NI .8 
Ti+ . - ~! -... -

. ~"l!1-- - -7.~t 
I ! 

15 

- + -j .§l !J.4 j 
71 7.8! ---- --j - t 

12- 5.5 
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Appendix 4.1 

Sample ; Space ~ Ali9n_~t .~haP.8 . ~i~~~li!hon . Homogeneity Fabric Eqtn Thickness 

15:"" _____ ;~~!9!l~ t-C~~nuityJ2 .~~~~c: ~ 13 Points 12.645. (mm) 
5i 50i 1 1 1 1 -0.0693 
- 1 --- t -.-

: j 
Theoretical 

) i ' t • 

~! _~'an~_Torder 1 ~_ 3Oj-~_~= 21 -_ 2 r J . 
AS I 9 20 1! 11 0: 
A~_ -I - --- -- .- --I - ~ =-; - _.. . 
E. .... / ~ ..- ~ ~~..en~-J'O~~ __ ··-n;i 
AB-4 28' 41 1.5 1.5 1T -- -- - - --- --- - --- -- ----I 
AB-5 28.8 40_~ ___ 1 _____ _ _ 2 ________ ...Qj 

• 35 33 1.5 2 1 t - --- --- - -------- - ----~ .. ---- ---~-I 

AB-6_ ~1.2 40 ~ ___________ 1 __ ____ ...! ________ -....!1 

2 
1.5: 

13 
121 

t 

I 

OJ t 
1.51 81 

11 8 

-fl
j 

-~r 2 9 -- --
1 7 
-- -o . 2 AU-l . 35 15' 0 O· 0 I 

Au-i-- -~---- --- - ---------1 f 
AU-3 2:: :~: . _ --g _= -~ -: g---;I .... ~. .J 
ICR-(~:-~: _~-:-~ 28 11 --=-:'-==-~-....!':-:~==-O:5 _-=-.:-=:=-_-~=_jn _ }J -- ---~i 
It£! .~ ~ -~-~ --=- ~~ ~~ _~ -_~=:= t ·~_____2~~ -~ . . Hi 
m~~ _____ ~_21 25 _ 1.5 - _ t ---ul ?[-_ :: iQJ

J

! 
08-3 t 
!g~f--·-~~2t 62u::: __ 2~:_:~- 2-·-_-2) ..... ..{ .... ~-
OX-l 35.5 20 1 1.5 Oi 01 5 

5.0 
5.4 

I 
7·()1 
7.01 

J.11_ 
~'§L 
7.71 

10.71 

_!9.:4L 
10.01 - , 

I 
.. I 

~.7i 
6.1 i 

- t 

5.8! 
- -I 

§·~t 
I 
1 
1-

"-- - ~ 
5.2i 

1 

8.9] 

Actual 

8 

9 

10 
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Appendix 4.1 

Sample ; Space i ~lignment . ~~P,8~ ~icro!ithon _ Homogeneity 

I 1~jl% - _ 50ISt"-~i9ht12 --J-r~O!'.!i-nu~t}'/2 1 Fabric /3 1 /3 

L I ! -
!Jil!cduff Slate I I 
MK-2 I 16 

20
1 

~j+l ·I-i 
MH-l 
MH':2 
MX-1 

MT-BALD 30 13 

1 r 

~-jJ 
1 

_~ 1~ 0.5~ 
--- --1 

1: - -j 
11 

1. ; Q:~j 
--~ ----~I 1) 

. ::-~--:: -~~I-=l~ . __ - :::-'F~~~ -'4' 
-- ---- -----W_ --~1 

0.5/ o 
------+----------- --.-- - ----~ -----

1 

1.5 
1 

1.5 
i , 

21 

- f.~1 
1· _oj __ 
?I 

-- - f/ 
-11 -- -1.5 

Fal:nic : Eqtn Thickness 
Points 12.645 (mm) 

-0.0693 
Theoretical 

10 
6 
7 
3 

10 

9 
8 

10 
9 
5 
~7 

---
6 

6.5. 
- I 
8.1 : 

?~j 
10.2: 
6.3i 

~:I 
6.2 
6.9 
g~ 

7:9 --_. -

8.5 

Actual 

1 
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Appendix 4.2 

AJ.!pen~~x 4.2 Fabric and Illini~~rn commerci~1 ~"ickn~ss at optimum con~itions 

~-- 15 % _ j Str!lJ1lh~ __ L Continuityfl : Fabrfc 13 : 13 . Points I 12.~6 : (mm) 
~.!!'I'I~ IS~ce 1~li.9n~~t I __ ~_ Sha_-e!. _ iMicr~!ith~~ f. Homojl_eneity . FIlI)!ic i~gtn _ ,Thickness 

4.9 50 ; 1 i 1 ! 1 ! 2 -0.059 

i::_:l~lLi~;=¥u Ju=-~-11 II i-~:'~; AC11 
IElBM-1-~= ____ ~ ___ 102 =~ ___ ~ 5.8 ~-=~=~-o - __ ~~ 0 _=~_---=-=~_~ ___ 0) 1_ fuji_ --12 

Welsh--- ----------- - - ----T-- -~ ---~------- --~- -- 1- ----I 
W/CB-1 -- f-------f3 ------------so ~----~--- 1.5 -- -- - 2 ----- --- 2 3 18 - 4.21 5 

Iw\CB-4=- r-::~ 20 = ____ :...__=_~ 22~~_= 1 ___ _ ___ 0 _-~-~_~~~ 1 ~- 1. ~8 -t~ ~ 
w\CB-5 17 30 ______ 2 1 ~ __ ~M. ~__ g 13 --~4+~ 
W/P-1 18 48 1 0 0 l' 8 7.7 7 

::: . -~~i:-~- E~-=- ; ~~~- ~:~~H . ___ ~i :=::~.. _. ~ 
WIF-16 40 25 1 0 1 1 6 8.5 8 

::~3 2~.: -____ ~6---1.;----- - 1.; ----- 1.: 11 ---~~ -- ---~~~l 5 
rW/PO-11 ~8 68-~------2-- ------2 3 3 1 24-- 3.0 

-- -------- --~---- ------- ---~-- ---- ----- ~I --___ -~~ 
WfTC-l 40 _____ 11_ 0.5 ____ ____ ~...Q _____ 0 OJ _ 3 10.6 

I 

ISample ---=~----= --==-- ---- -~~~=-=--- ----~ -i - -~= --- - -
IWIF-5 ____ --15i;-==_---_- :~ _____ ~ ___ ;I .... :-- - ~ ~ ~I :~ t: 

-- - - 28 20 1 t 1 2 1 : ~J 7.3 

IWJF-l:ft;~:!~_:- --~j~=-~-:': f 1 n --~:~: /1 ~I ~;~ i 
I I 

--
4 
4 
8 
8 
8 
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Appendix 4.2 

Sample ; Space ; ~1~9~~nt!;_h~pe : ~~~rolittl0n . Homogeneity Fabric . Eqtn Thickness 
Points 12.36 , (mm) 

i 
~ ! 

Ballachullsh 
EL.~3 ··I~ 

~~!n·l 
EL-7 ~ . - +-

EL-10 
WL-1 
WL-3 
WL-S 
K-1 
K-3 
------~-

8X-1 

Easdale 
EE-3 
EX-1 
LC-l 
LC-2 
LC-3 
LT-1 
LT-2 
LT-3 
LT-5 

88-1 

58-1 ------
58-2 ---.-----t--

58-3 
58-S 

1!; I 'Yo ,. St~~h~~ r ~()!1!in~~fl _ f~~ri~!3 13 
4~~1_ 50 1; 1 1 

J 

I 

~3Q( ~ _ ~ ___ ~~1 ~ __ 2: 2 2' -- . ----~ 

. 21( ~r~--~ .. 
- ~ ~ ~ - .. - -- -j. . -.- . t 
2 ______ ~ _____ 2.5+ 

~
~1--~--~ ~- ~·--l'· ~+1· ----j.. - --~-.. -~ ~ .~. . ...... ~i 20 53 2 2 2! ---~~----- ~~-- -- ---- --~-~ -2ji! 

21 60 2 2 ~ 
J20.4 -~=~-! 55~==-=- 2 .~~~==- 2 -~~--~-=--lt ~ 

.. ,l=~n __ :~;t·: -=~1.· ••.. ~=-:f·.·· 
--+----~-~-~--~~-~!L -3--~--i 

21 2 
----:-t- -

1 
~~jh OJ o 

·-1 ~t 21 __ 
1 

.. un! ~ 1. _~=r.n 
__ 1.S 1.S 0 

1.S 21--rr~ 

--·-1 t 01 1 411 ; 1.~ ----r~~ . 
I 

- 1 ~ - ---O~51 nlfn_-!fr-. ~-l 
===t--- 2 ------+- 2 - 2 

2 -0.059' 
Theoretical Actual 

2 13. 5.7 
t 

1, 1:3) ~.8! 
, , 
i i 

_ 1; 13i 5.~1 

1~tl~i ~:~I 
I , 

-gt- . ~41 -~11 
~ ~I· 1;1 i:~t --1 I ~---1 
.~. -. 171 4.§( 

~_13! ~ ~ -S.7f-
1.f>t -XI. ~·~I 

~- I -~ -11 11 6.6 
j+~_ ~ __ ~~ -Ts __ 
2f 12S_gf 

•. ~I-= ~~~-~=16 ~~-=-~-~"-~-o 5 9.2/ -2 --~ ~4.9t 

·-t~- ----~ 
1.?t. .§)j' 7·~1 

, I 

-

9 

~. -

9 
10 

9 

8 

15 

I -~ - - t - . 1 

Qj ~~, - ~·?l 
!.:§ I -- -~L ~ Z:f> J 
_, __ L ~.~.( 

2 14 ~4 

276 



Appendix 4.2 

Sample : Space . ~~igl!~l1t . Sha~ ,~~cr()lithon Homogeneity 

I 
I 

1 ~; ~ ~ ~tr~!ght12 ; ~o~t~~~~ f Fa~ric /3 13 
4.9j SQI 1; 11 1 

- I . : . J 

~ )' t . .---.. --~ Highland Border 
A3 x ----, 13 

9 
~ _ 30 _ _?~ _ _ __ ~~j__ ! 

ASy 
A-6 
B-1 
B-2 
B-3 
AB-l 
AB-4 
AB-5 

AB-6 
AU-l 
AU-2 
AU-3 
OR-l 

---.- -

CR-l 
CR-2 
Cr-3 

LS-l* 
LS-2 
OB-l 
OB-2 
OB~ 
ON-3 
ON-4 
OX-l 

-. 20 -Jj_ -~~-=--=-=-l~ 01 

0 __ ~ ___ ~26 ___ ~~~-_=__~- 0 __ 01 
Q_. ___ ~ No..!"easurements ssible .-- ~ _ -- ~. I 

29 120 1 2 1, ------:-:-r----- - - ~ --- ------ - - t 

28" 41 1.5 1.5 l' 
___ 28.8 ~_~ 40 1 _==_ -~ 2 oj 

31~~ -.-- :~ 1.~------~ - ~I 
·35------15 0-------0 01 

28 10 o 
24.4 13 o 

28 11 1 

-------~--- -! 
-------+-- ~ ---

o 
o 

0.5 

I-
01 
0' -I 

Qj 

lli=1 -251-------~2 ~1~5 - -- -21 L 50~ 1 --- 2 ----- - ~ 2.51 
--- ~- ---1 

I 

_ ---.?!l 25 1 1.5 _ 1 ~ - ~-~- ~.~?I 
i 
! 

~---+- ----. 
----- -+---21 ----f 

62 2 2 21 , 

35.5 20 1 1.5 o 

2: 

I 
2! 

1.5 1 

- t 
I , 

Jl 
1 -
2 

-- - . 

2 
-
1 
-
0 

m-
1) 

-1 
l' 
- ~ - --

t 
I 
I 

1 
21 
- i 

I 
--- ~-

01 

Fabric . Eqtn Thickness 
Points 12.36 (mm} 

-0.059: 
Theoretical Actual 

15 5.0 
14 5.6 

8 

9 

t 

I 
i 

_ 1Qj ~'!:Jl 
91 7.1/ 

101 6.71 
.~ I 

1~1_ ;::) 
21 10.7, 

31 10.5/ 

3/ 
---r 
10.2! 

i 

61 8.5! 

j 1 
12' 6.3i -I 
121 6.01 

- - -- j - I 

11) 
i 

6.7! 
-1 

I 
I 
f 
I 

15: 
j 

5.2 

t 
51 9.2 10 
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Appendix 4.2 

Sample Space Alignment Shape Microlithon Homogeneity 
. 15 % Str~igt1~ -_ j~on!inuityJ2 Fa.,ric 13 . 13 - -

- j 
Macduff Slate 
MK-::2 r 
MK-4-- -i -.--

MC-1"'J ~t __ 
MC-2 
MC-3 
MH-1 
MH-2 
MX-1 

4.9 50 1~ 1 1 2 

16 
35 
30 
30 
18 

20 
30 

20 
15 
15 
30 
25 

- - I· 

. 

-_1) 
11 

---------t --

11 --+--
--
1.5 

1.5 
~ -1 

11 
--+ 
1; 
• 

11 

0.5, 
-iT 
~~+ 
Q:~ 

- -1~ 

1.5 
1 

1.5 

2. 
1 

-~r-~:::::: clL~_~-.t. _~= ~ =~:~=~~=~1._ 
1~ 1~ 2 

1 -- - - - 1.5 - - f 
------- f 

051 -- - - - -
. '-1 -- ~--~ .....:~-- -- - - - 1 

1.5 D 0.5 

Fabric . Eqtn Thickness 
Points 12.36. (mm) 

-0~059j 
Theoretical 

11 
7 
8 
31 
-of 

12 
- t 

I 
I 

_l-~j 
12. 

-1~1 
gl 
~j 
7: 

6.5 
8.Q! 
7.6i -- - t --

10'~1 
6·1; 

1 

8.1 

Actual 

f"-
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Appendix 5.1 , Weathering Experiments , 

Slates tested according to BS~80 and .P!"EN12326; 
- t 

i 

BS680 : prEN12326! BS680 Increase in water 
i 
I absorption/cycle 

i 
_ _ __ i 

IK3 I I 
i ! j I .- - 1 I 

No of cycles 0' 13 241 .-.§~j 52; I --I 
131 37 i I Cumulative Total 01 

0.12:1 
1421 

-- - ~ . I ·1 
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Appendix B: Precis of National Standards for Slate 

1. Introduction 
In the past, the selection of good roofing slate relied on the expertise of the quarryman 

at the quarry face. Different quarries relied on their local reputation which could rise 

and fall depending on their own quality control. As markets expanded each country 

built up its own set of standards, which to some extent were dependent on the type of 

slate produced in that country. With the onset of international markets, there is a 

greater need to find a standard that is applicable to all, and independent of national 

traits. To this end a new European Standard is being devised for use in the countries of 

the E.U. and is planned to supersede the national standards of member states. This has 

not been without teething problems, as the present draft requires a series of most 

complex tests, lacking the simplicity of the national standards and making the testing 

of slates an expensive and time consuming procedure. 

This review of national standards covers the following 

European Standard prEN 12326-1 & prEN 12326-2 

Britain 

France 

Germany 

Italy 

Spain 

U.S.A. 

BS 680 Part 2 1971 

NF P32 301 & NF P32-302 

DIN 52201 

UNI 8626 & UNI 8635 

UNE 220 201 85 

Cl19-74 

2. Testing of slate as a rooting material 

In an attempt to replicate the conditions experienced by a slate on a roof and to 

anticipate its life span, various tests have been devised. These tests can be grouped 

under three headings: 

1. Mechanical tests, such as the freeze thaw, water absorption, hardness and 

strength tests. 

2. Chemical tests, including determination of the concentration of carbonates, 
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presence of iron ores and graphite. 

3. Dimensional tests, which limit the degree of irregularity allowed in the slates 

for use as roofing material. 

3. European Standard prEN 12326-2 Draft Feb 1997 
(Slate and stone products for discontinuous roofing and cladding) 

Part 2 Methods of test 

This draft European Standard for slate was prepared by the European Committee for 

Standardisation (CEN). 

Sampling Clause No 4 of prEN 1236-2 

Slates are selected randomly from each lot, preferably by the recipient or in the 

presence of his representative. In the case of dispute, samples are taken from each lot 

of 50,000 slates. 

The following tests are proposed for the new Standard: 

Dimensional Tests Nos 5- 9 

11 Mechanical Tests Nos 10-12 &16 

III Chemical Tests Nos 13-15 

iv Petrographic examination and interpretation are covered in Annexes A & B. 

3.1 Determination of length and width and deviation from 
specified length and width; Clause No 5 of prEN 1236-2 

Samples required: 1 whole slate. 

Deviation of the measurements from that specified is calculated as a percentage. 
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3.2 Determination of straightness of edges; Clause No 6 of prEN 
1236-2 

Samples required: 1 whole slate. 

The deviation from straightness is measured and calculated as a percentage of the 

length of the edge. 

3.3 Determination of rectangularity; Clause No 7 of prEN 1236-2 

Samples required: 1 whole slate. 

The deviation from squareness is measured and calculated as a percentage of the 

length. 

3.4 Determination of thickness; Clause No 8 of prEN 1236-2 

Samples required: 100 whole slates. 

The average thickness of a 100 closely packed slates is determined. This figure is then 

adjusted according to the texture of the surface, e.g. the thickness of a smooth 2-4mm 

slate is reduced by 10% as compared to a textured slate which is reduced by 20% 

3.5 Determination of deviation from flatness; Clause No 9 of prEN 
1236-2 

Samples required: 1 whole slate. 

The curvature of a slate is defined as the height of the highest point of the slate when 
.. 

measured convex side uppermost less the height of the same point when concave side 

up. 

Curvature 
%Curvature = Xl 00 

Length 
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3.6 Determination of bending strength and modulus of rupture; 
Clause No 10 of prEN 1236-2 

Samples required: 30 large or 60 small slates. 

The modulus of rupture is a measure of the bending moment needed to rupture a slate 

and is in effect a measure of the tensile strength of the slate. Because of its anisotropic 

nature, the strength of a slate depends on the direction of the grain in relation to the 

direction of testing. Therefore the test is carried out in the cleavage plane both with 

and across grain. The elasticity of the slate can be measured at the same time, i.e. the 

amount of flexure as the slate is progressively loaded. Flexure testing is considered a 

more appropriate measure of the strength of a slate than the more normal compression 

tests used in the evaluation of other building materials. 

The modulus of flexure is calculated as follows: 

R= 3Pl 
2b e2 

where R = modulus of rupture in newtons/mm
2 

P = failure load in newtons 

1 = distance between the support bars of the three point bending test machine 

b = width of the test piece in mm 

e = mean thickness of the slate in mm 

This test is carried out on test pieces 125mm long both parallel and perpendicular to 

the edge of the slate. The load required to break the slate is determined and the 

modulus of rupture R is calculated as described above. 

The mean modulus of rupture Rm is determined for 30 tests in both directions. 

The characteristic modulus of rupture is defined as 

Rc = Rm -1.7 RsD where SD = standard deviation 

R - ~~ R;- Rm / 
SD- (n-I) 
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3.7 Determination of water absorption; Clause No 11 of prEN 
1236·2 

Samples required: 5 test pieces dried to a constant weight. 

The amount of water absorbed by a slate is a measure of its porosity and would be 

expected to indicate its vulnerability to chemical attack. 

Dried test pieces lOOmm x lOOmm with smooth edges are immersed in water for 48 

hours and the increase in weight is determined. 

01. liT b . m.,- - ma 100 -10 natera sorptIOn = x 
ma 

3.8 Freeze· thaw test; Clause No 12 of prEN 1236·2 

Samples required: 30 large or 60 small slates pre-soaked for 48 hours. 

The difference in bending strength is determined between untreated samples and those 

subjected to 100 cycles of freezing at -20°C and thawing at +23°C. The mean value 

and the standard deviation of the modulus of rupture of the treated samples is 

compared to that of the untreated batch using a two-sided Student t-Test at the 95% 

confidence level. The difference between the two is reported. 

3.9 Carbon Content 

Carbon may be present in two forms; either as carbonate, assumed to be calcium 

carbonate, or as non-carbonate carbon assumed to be graphite. Carbon dioxide gas is 

given off on the addition of acid to a carbonate, while graphite is unaffected. This fact 

is used to distinguish between the two forms of carbon by carrying out the same tests 

on two samples, one pre-treated with acid and one untreated. The result for the former 

gives the graphitic carbon alone while the result from the latter gives the total carbon. 

The amount of gas is determined by one of several methods. 
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Determination of non-carbonate carbon content; Clause No 13 of prEN 1236-2 

Samples required: 3 slate samples ground to a specified sieve size. 

Having removed all the carbonate with HCl, graphitic carbon content may be 

determined by one of two methods: 

Graphite is converted to C02 by catalytic thermal conversion and the amount 

of gas given off is detected by infra-red detector. 

11 Graphite is again converted to C02, this time in a stream of oxygen, and the 

amount of gas is determined coulometrically and compared with a standard. 

Determination of carbonate content; Clause No 14 of prEN 1236-2 

The total amount of carbon is determined using the first method above without 

the pre-treatment with acid and the difference gives the carbonate content 

11 The amount of carbonate present may be determined directly by comparing the 

amount of gas given off on the addition of He} acid with that from standards 

such as calcium carbonate and silica. 

111 A similar test using phosphoric acid as specified 10 EN 196-21 is also 

proposed. 

tV C02 gas may also be detected by absorption in a solution of NaOH and 

comparing the conductivity of the resultant solution with standards of known 

concentration. 

Results 

The results are reported as percentage weight of carbon or calcium carbonate by the 

appropriate formula: 

m CO _ %Cxl00.l 
70Ca 3-----

12 
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3.10 Sulphur Dioxide exposure tests; Clause No 16 of prEN 1236-2 

Samples required: 12 test pieces, 6 dry and 6 soaked in distilled water. 

3 wet and 3 dry test pieces are placed above the sulphurous acid solution at two 

different strengths for 21 days. They are then dried and inspected for flaking, colour 

change, swelling and softening. Slates which have a carbonate content of >20% are 

tested using an abrasion method. 

3.11 Thermal Cycle test; Clause No 16 of prEN 1236-2 

Samples required: 6 test pieces. 

Test pieces are subjected to 20 cycles of immersion in water at 23°C for 6 hours 

followed by drying for 17 hours at 11 O°e. They are then inspected for physical changes 

indicative of the presence of harmful mineral inclusions. 

3.12 European Standard prEN 12326·1 
Slate and stone products for discontinuous roofing and 
cladding: Part 1 Product Specifications Aug 1995 

Requirements 

Minimum thickness 

The absolute minimum thickness of a slate must be 2.0mm. 

The minimum acceptable thickness of a slate is a function of its inherent strength and 

dimensions as well as of climate. The basic nominal thickness is gi ven by the greater 

of eL or eT , where:-

eT= X /L VR; 



eL, eT = thickness mm 

L= length mm 

b = width mm 

RL, RT = modulus of rupture, either longitudinal or traverse value. 

newtons/mm
2 

X = constant detennined as a function of the climate and construction 

techniques. 
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This value is adjusted to take into account the carbonate content and the classification 

of the slate in the S02 exposure test. 

eCaC03 >20% = e + O.5mm + 7S2 

e = minimum nominal thickness mm 

S = thickness of the softened layer mm 

Variation of thickness from the nominal must be less than ± 35%. 

Traditional building techniques may be specified. 

Strength 

The minimum breaking load and the characteristic modulus of rupture as specified by 

the manufacturer. 

Water absorption 

Ai 

A2 > 

0.6% 

0.6% 

Freeze thaw resistance 

No reduction in strength 



Thermal Cycle Test 

T 1 No change in appearance 

T2 Oxidation but no structural change 

T3 Oxidation of metallic minerals 

Acceptable 

Acceptable 

which penetrate the slate Conditional 

T4 Exfoliation, splitting and structural changes Not acceptable 

Carbonate Content 

No higher than specified by the manufacturer. 

Sulphur Dioxide test 

Three grades: 

S 1 The best, unaffected by the concentrated acid 

S2 Unaffected by the weaker acid 

S3 Affected by the weaker acid 

Carbon Content 

Carbon content < 2.00% 

Dimensions 

Length and Width 

Squareness 

Curvature 

3.13 Conclusions 

± 5 mm of specification 

± 1 % of length 

Smooth slates <1.0% 

Normal slates <1.5% 

Textured slates<2.0% 

In the European Standard for slate: 

Acceptable 

Conditional 

Undecided 
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Tests of mechanical properties. e.g. water absorption, freeze-thaw and the thermal 

cycle test, attempt to reproduce the temperature changes and humidity conditions 

suffered by a roofing slate. No information is given on how results correlate with 

known life expectancies of slates. 
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Chemical tests for deleterious minerals are the carbonate test, and exposure to sulphur 

dioxide to detect the presence of iron ore minerals. While the presence of carbonates 

and iron ore minerals certainly contributes to the weathering of slate, more information 

is needed on how the limits set in the draft Standard are derived. 

The dimensional requirements are dictated by roofing regulations and practice in 

different countries. The assessment of how the compliance requirements affect 

Scottish slate is best done by the Dundee Town Planning Group and is outside the 

scope of this brief. 



4. British Standard BS 680 Part 2 1971 
Specification for Roofing Slates Part 2 Metric units 

4.1 Thickness 

Measured as the average thickness of 100 slates closely packed. 

One slate should not deviate by >25%. 

Slates that do not conform are deemed ungraded. 

4.2 Marketing Description 
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A full description of the slate, including the source vein, quarry, thickness and whether 

graded or ungraded, should be given. 

Test Samples required: 3 per test, 50mm x SOmm with edges ground to a smooth 

finish. 

4.3 Water Absorption Test 

Dried to a constant weight before being refluxed in boiling water for 48hrs and 

weighed. Results reported as a percentage increase in weight. 

4.4 Wetting and Drying Test 

Samples required: 3 prepared as described. 

Immersed in distilled water at room temperature for 6 hours and dried for 17 hours at 

105°C. Cycle repeated 15 times or until signs of splitting, flaking or delamination 

appear. 

4.5 Sulphuric acid immersion test 

Samples are soaked at room temperature in sulphuric acid diluted at 1: 7. 



4.6 Compliance 

Water Absorption Test 

Wetting and Drying Test 

Sulphuric Acid Immersion Test 

4.7 Comment 
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~O.3% 

No visual signs of deterioration 

No signs of delamination, swelling, softening or 

flaking and no gaseous evolution. 

The principle advantage of the British Standard is its simplicity, in sharp contrast to the 

proposed European Standard. The British Standard is based on the research done by 

BRE in 1934 at the time of the first edition of the Standard. For an unbiased view it 

would be necessary to see the background research done in the preparation of the 

other national standards. 

Strength 

The British Standard has no compliance requirement as it was decided that there is no 

correlation between durability and strength. According to trade literature the slate 

produced in Britain would actually comply with other countries' requirements. 

However the lack of this requirement may well be one of the reasons that imp0l1ed 

slate liable to fail has entered the British Market. 

The roofing practice in Britain of nailing slates as opposed to fixing with hooks which 

is more common in other European countries makes the slate more likely to fail either 

by tension of uplift. 



5. French Standard 
Norme fran~aise NF P 32-301 Avril 1988 
Norme fran~aise NF P 32-302 Avril 1989 
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A selection of slates chosen at random from each batch of 50,000 is subjected to 

various tests for their appearance and physical and chemical characteristics. Tests are 

carried out on whole slate specimens. The slates are classified into three categories A, 

Band C depending on how the average value obtained in the test results corresponds 

to the a minimum value as prescribed in NF P 32-301 and NF P 32-302. See Table 1. 

5.1 Sampling and Testing 

Sampling: SO slates are selected from each batch of 50,000, i.e. 0.1 %. 

Appearance: The 50 hand specimens are examined for imperfections 

Few irregularities are allowed in class A, however there is increasing tolerance of their 

presence in classes Band C. 

Physical Characteristics: 14 specimens are examined for 

Density 

ii Water Absorption 

III Effect of Freezing, measured as weight loss after 25 cycles of freezing 

at -25°C for 1 hour followed by thawing. 

IV Strength of the slate or Modulus of flexure 

7 wet and 7 dry slate tested according to NF P 18-411 

Chemical Characteristics: 7 samples are tested for: 

Oxidisable pyrites 

Calcium carbonate 
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5.2 Compliance Requirements 

Test units Class A Class B Class C 

gm/cm 3 
~ 2.75 ~ 2.70 ~ 2.65 Density 

Water Absorption % ~0.4 ~0.7 ~O.9 

Loss of mass after freezing % ~0.3 ~0.6 ~ 1.0 

Modulus of Flexure dry MPa ~70 ~50 2: 33 
wet 2: 40 2: 33 2: 24 

Minimum reference thickness mm 2.6 3 4 

Oxidisable Pyrites 
Non-penetrating and no leaching yes yes yes 
Non-penetrating with leaching no yes yes 

Penetrating pyrites no partial exclusion 

Micropyrites with leaching no no yes 

Calcium Carbonate with % ~ 1.5 ~5.0· ~ 10.0 
. 

oxidisable pyrites 

Calcium Carbonate with no % ~3 ~5 
. . 

~IO 

oxidisable pyrites 

TableB.l NF P 32 301 Compliance Requirements for the different categories of slate 

*Higher concentrations of calcium carbonate are allowed when the reference thickness is increased. 
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6. Germany DIN 52 201: Test methods 

This is the general test standard for slate in which all relevant standards for roof slates 

are mentioned when not covered by the standard itself. 

6.1 DIN 52 101 Testing of natural stone and mineral aggregates: 
Sampling 1988 

Procedures to carry out sampling so that the resultant population is representative and 

adequate to characterise the rock and its variance. 

6.2 Petrographical examinations 

a Hand specimen 

The samples are examined for structures such as fissures, stratification, cleavage and 

accessory minerals such as pyrites and marcasite. 

b Microscopic 

Thin sections are prepared and examined for mineral content, grain size and shape, and 

approximate composition as well as their relationship to the overall fabric of the rock. 

Micaceous Minerals The dispersal and how they are they linked 

Chlorites Clastic or porphyroblastic 

Carbonates 

Pyrites 

Dispersed or concentrated in veins 

Difficult to distinguish from other opaque minerals of 

carboniferous material 

6.3. Chemical Investigation 

Quantitative determination of: 

Loss on glow (equivalent to loss on ignition) 

11 Carbon dioxide 

III Sulphur in the form of sulphides and sulphates 
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6.4 Determination of the Specific Gravity DIN 52 102 1988 

Procedure for detennining density, gross density, net density, degree of density, and 

porosity of the rock 

6.5 Determination of Water Absorption DIN 52103 1972 

Procedure to determine the percentage increase in weight on absorption of water. 

6.6 Frost Thaw Alternation Test DIN 52 104 Part 1, 1982 

Samples which have been soaked in water are cooled to -20oe for 4 hours and then 

stored in a water bath at 20°e. 

After the required number of cycles the specimen is dried and weighed. 

The specimens are examined visually. 

6.7 Flexural strength test DIN 52 112 

Samples: 200mm X l00mm with span of 180mm 

Load is increased at O.2N/mm2/s 

Calculation of results in the usual manner 

6.8 Temperature Alternating Test DIN 52 204 1982 

25 cycles of the sample being heated to 105°C followed by quenching in a water bath 

at 20°C for 15 min. 

The samples are examined visually and detennination of the change in flexure strength 

is optional. 

6.9 Acid Test DIN 52 2061975 

Samples consisting of 5 air dried and 5 water saturated specimens are stored for 28 

days in sulphurous acid vapour. After 14 and then 28 days the relative change in 

weight and condition is noted (weight is usually increased). 

6.10 Compliance 

Not available 
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7. Italy UNI 8626 1984 
Pardotti per coperture discontinue; Charatteristiche, piani di 
campionamento e limiti do accettazione 
(Products for discontinuous roofing - Characteristics, sampling plans and 
acceptance limits) 

7.1 Sampling 

5 per lot of 1200 randomly chosen 

7.2 Method of testing UNI 8635 

Impermeability Test 

Slate sample forms the bottom of a watertight box containing water to a depth of 5mm. 

No drops of water should appear on the underside after 24 hrs. 

Thermal cycle 

The sample is subjected to 25 cycles of the following: 

48 hrs at 15°C in a water bath, after which the sample is left for 2 hours to reach room 

temperature. It is then subjected to -15°C for 1 hour. On completion of the 25 cycles 

the sample is tested for appearance, impermeability and resistance to flexure. 

Modulus of Rupture 

A sample on supports 200mm apart is subjected to a load at the mid point increasing at 

10 ± 2N/s. The force required to break the slate is noted and the modulus of flexure is 

calculated in the usual way: 

3Pl 
RJ = 2bi 
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7.3 Compliance 

The following tests, with corresponding limits of acceptability, are applicable to slate: 

Appearance and geometry Method of testing Limit of acceptability 

Appearance UNI8635.1 nodules <2mm 

Length UNI8635.2 as agreed 

Width UNI8635.3 " 

Thickness UNI8635.4 " 

Planarity UNI8635.5 ± 1.5% of length 

Density UNI8635.8 ± 10% specifications 

7.4 Characteristics in response to atmospheric and mechanical 
action 

Impermeability UNI 8635.10 

Thermal cycle UNI 8635.11 

Modulus of flexure UNI 8635.13 

Nominal Thickness 
mm 
2.7 
3.0 
3.3 
3.6 
4.0 
4.4 
4.8 

No drops of water after 24hrs 

Strength reduced <20% 

See Table 7.2 

Minimum pressure 
N/cm1 

8 
10 
12 
14 
16 
19 
22 

Table B.2 Limits of acceptance of resistance to flexure for slate 
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8. Spain UNE 220201-85 
Norma Espanola Pizarra ornamentales; Pizarras para 
cubiertal 

The following requirements must be met: 

8.1 Origin and Composition 

Source: The quarry and vein from which the slate originated must be specified. 

Composition: Carbon or clay <1 %, carbonate <10%. 

8.2 Dimensions and Curvature 

Dimensions: No slate must vary by >50% of the nominal thickness. 

Curvature: <1.5% 

8.3 Colour and surface features 

1. The colour should be uniform with only natural changes in tone. 

2. Knots should not protrude greater than half the thickness of the slate. 

3. No joint or line should penetrate more than half the thickness of the slate. 

4 No imperfection which would damage the solidity of the slate. 

5 No broken comers or flaking defects. 

8.4 Inclusions 

1. Metallic minerals, whether aggregates or bands, should not penetrate the slate. 

2. The composition of the mineral inclusion should be determined. 

8.5 Physical characteristics and alterations 

1. Weight should not vary by > 10% from the nominal weight. 

2. Specific gravity >2.6 gmlcm3
• Method of test specified in UNE 22-191. 

3. Water absorption <3%. Method of test specified in UNE 22-191. 

4. The dry slate without alteration must have a modulus of flexure >290Kg/cm
2

. 

Method of test specified in UNE 22-195. 
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5. The wet slate must show no visible signs of alteration and the modulus of 

flexure must not be less than 80% of that determined in 4. 

6. After the freezing test as specified in UNE 22-193 there should be no visible 

signs of alteration and the loss of weight must not be >3%. 

7. The reduction of the modulus of flexure after the freeze test must not be greater 

than 20% of that determined in 4. 

8. Slates with> 5% carbonate must be thicker that 5mm. 

8.6 Classification of slates 

Quarries are classified. Samples are taken from intact rock; a minimum of 5 samples 

per stratum but depending on the complexity. 

Characteristics and properties of the slate are determined based on a sample of 100 

slates from each batch of 10,000. 

Colour is specified e.g. black, grey and special colour. 

Texture is described as smooth, undulating or rough. 

Vulnerability to alteration is qualified as follows: 

PAC Piza"as poco alterables No mineral inclusion such as pyrite, pyrrhotite or 

marcasite, and carbonates <1 %. No appreciable alteration after the heat and acid test. 

PAl Piza"as de mediana alterabilidad Must not contain excessive inclusions 

vulnerable to polluted atmosphere. Little alteration after the heating (UNE 22-197) 

and acid (UNE 22-198) tests, but some discoloration and spotting is allowed. 

Carbonates <5%. 

PAS Piza"as muy atlerables Samples which contain many minerals unstable 10 

polluted atmosphere or carbonate >5%. 
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8.7 Methods of testing 

These are specified in the following standards: 

UNE22-190 Ornamental Slates, Plaques and Slabs General 

UNE 22-191 

UNE 22-193 

UNE 22-195 

UNE 22-197 

UNE 22-198 

UNE 22-199 

UNE 22-200 

" 

" 

" 

" 

" 

" 

" 

Absorption and Specific gravity 

Resistance to freezing 

Resistance to flexure 

Resistance to temperature 
change 
Resistance to oxidation 

Carbonate content 

Curvature of the surface 
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9 United States of America Standards 

C406 - 58 (re-approved 1970) Standard Specification for 
Roofing Slate 
C119-74 Standard Definitions of Terms Relating to Natural 
Stones 

The following standards relating to slate are under the jurisdiction of American Society 

for Testing and Materials (ASTM) Committee C-18 on Natural Building Stones 

9.1 Classification of slates 

Slates are classified into three grades with the following life expectancy 

SI 75-100 years 

40-75 

20- 40 

9.2 Compliance 

Slate should confonn to the following physical requirements:-

Modulus of Rupture Absorption Depth of 
across the grain of Water Softening 

psi (MPa) % (nun) 

Grade Sl >9000(62) <0.25 <0.002 (0.O5) 

Grade 52 >9000(62) <0.36 <0.008 (0.20) 

Grade S3 >9000(62) <0.45 <0.014 (0.36) 

9.3 Methods of testing of mechanical properties 

Modulus of Rupture: Testing methods are specified in C120·52 (re-approved 1970) 

Standard Methods of Flexure Testing of Slate (Modulus of Rupture, Modulus of 

Elasticity) 

Water Absorption of Slate: Testing methods are laid out in C121 -48 (re-approved 

1970) Standard Test Method for Water Absorption of Slate. 
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Depth of Softening This is a measure of the durability of a slate. Slate which contains 

pyrites, calcite and carbon can undergo chemical weathering e.g. 

pyrite + calcite ------> gypsum 

This reaction can cause swelling and lead to disintegration of the slate. The 

susceptibility of slate to weathering is estimated by standard abrasive techniques as 

described in C217-58 (re-approved 1970) Standard Test Method for Weather 

Resistance of Natural Slate. 

9.4 Specifications of appearance and dimensions 

Sizes and Thicknesses 

Sizes and allowable deviation from the oblong are laid out. 

Thickness of 3/16 in (4.8mm) is treated as standard. 

Texture: Smooth and rough are described. 

Colour: Nine colours are specified. 

Nail Holes: Method and position are specified 

Imperfections 

Curvature: <1/8" in 12" (0.1 mm in lOmm) 

Knots and Knurls: Protuberances on the lower surface must not project more 

than 1/16" (1.5mm) 

Ribbons: Grades S I and S2 should be free from ribbons of carbonaceous 

material while S3 should be free from ribbons near the nail holes. 

Bibliography 
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Selection of XRD Scans 



Sample numbers are shown on the top left comer of each scan. For further information on 
sources etc. see Appendix 1.1. 

Whole Rock Analyses 
(Machine conditions: from 4° to 600 at 2° 2a/min) 

Slate Area Quarry Sample Ref. Pae:e 

Ball achuli sh East Laroch EL-6 309 
" EL-I0 " 

West Laroch WL-5 " 
Khartoum K-I 310 

" K-2 " 
" K-3 " 

Easdale Easdale Island EE-2 311 
Balvicar S8-1 " 

Breine Phort 88-5 " 
Toberonochy LT-l 312 

Rubha na hEasgainnne LP-3 " 
Port Mary LP-S " 

" LP-6 313 
CulliJ)OOI LC-l " 
TirnaOig LT-S " 

Black Mill Bay LB-l 314 
Belnahua 88-1 " 

" BB-2 " 
H12h1and Border Arran Al 315 

Bute B-3 " 
" B-5 " 

Luss Ls-I 316 
Aberfoyle Ab-6 " 
Comrie Au-I " 

" Dr-I 317 
Craiglea Cr-l " 

" Cr-2 " 
Dunkeld OB-l 318 

" ON-I " 
" ON-3 " 

Macduff Kirkney MK-4 319 
Corskie MH-2 " 

" MH-l " 
" MC-l 320 

Foudland MF-l " 
" MF-ll " 

Wishach MW-l 321 
Tillymorgan MT-l " 

Skirts of Foudland MX-2 " 

306 
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Quantification 
(Machine Conditions from 4° to 30° at 2° 29/min) 

Slate Area Quarry Sample Ref. Pae:e 
Ballachulish East Laroch EL-6 322 

" EL-IO " 
West Laroch WL-5 " 

Khartoum K-I 323 
" K-2 " 
" K-3 " 

Easdale Toberonochy LT-I 324 
Rubha na hEasgainnne LP-3 " 

Port Mary LP-5 " 
" LP-6 325 

Cullipool LC-I " 
TirnaOig LT-5 " 

Black Mill Bay LB-I 326 
Belnahua BB-l " 

" BB-2 " 
Highland Border Arran Al 327 

Bute B-3 " 
" B-5 " 

Dunkeld DB-l 328 
" DN-l " 
" DN-2 " 

Macduff Kirkney MK-4 329 
Corskie MH-2 " 

" MH-l " 
" MC-l 330 

Foudland MF-l " 
" MF-5 " 

Wishach MW-l 331 
Tillymorgan MT-l " 

Skirts of Foudland MX-2 " 



308 

Glycolation and Heating 
(Machine Conditions from 40 to 250 at 10 28/min) 

Quarry Sample Treatment Page 
Ref. 

Aberfoyle Ab-5 Normal 332 
Heated for 1 hour at 3000 C " 

Exposed to glycol for 24 hours " 

Bute B2 Normal 333 
Heated for 1 hour at 3000 C " 

Ex~osed to glycol for 24 hours " 

Twill Coed TC-l Normal 334 
Heated for 1 hour at 3000 C " 

Exposed to glycol for 24 hours " 

Weathering Experiments 
(Machine Conditions from 40 to 25° at 10 28/min) 

Source Sample Page 
Ref. 

Spanish SI Unweathered 335 
Weathered artificially " 
Weathered artificially " 

Welsh WfF-8 Unweathered 336 
Weathered artificially " 

Full Width at Half Magnitude 
(Machine Conditions from 9.50 to 11.50 at 10 28/min) 

Quarry Sample Grain Size Page 
Ref. 

East Laroch EL-4 <2 micron 337 
<6 micron " 

<10 micron " 

Cullipool LC-2 <2 micron 338 
<6 micron " 
<10 micron " 

Ffestiniog W/F-l <2 micron 339 
<6 micron " 

<10 micron " 
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